Sample records for modulate transgene expression

  1. Functional conservation between rodents and chicken of regulatory sequences driving skeletal muscle gene expression in transgenic chickens

    PubMed Central

    2010-01-01

    Background Regulatory elements that control expression of specific genes during development have been shown in many cases to contain functionally-conserved modules that can be transferred between species and direct gene expression in a comparable developmental pattern. An example of such a module has been identified at the rat myosin light chain (MLC) 1/3 locus, which has been well characterised in transgenic mouse studies. This locus contains two promoters encoding two alternatively spliced isoforms of alkali myosin light chain. These promoters are differentially regulated during development through the activity of two enhancer elements. The MLC3 promoter alone has been shown to confer expression of a reporter gene in skeletal and cardiac muscle in transgenic mice and the addition of the downstream MLC enhancer increased expression levels in skeletal muscle. We asked whether this regulatory module, sufficient for striated muscle gene expression in the mouse, would drive expression in similar domains in the chicken. Results We have observed that a conserved downstream MLC enhancer is present in the chicken MLC locus. We found that the rat MLC1/3 regulatory elements were transcriptionally active in chick skeletal muscle primary cultures. We observed that a single copy lentiviral insert containing this regulatory cassette was able to drive expression of a lacZ reporter gene in the fast-fibres of skeletal muscle in chicken in three independent transgenic chicken lines in a pattern similar to the endogenous MLC locus. Reporter gene expression in cardiac muscle tissues was not observed for any of these lines. Conclusions From these results we conclude that skeletal expression from this regulatory module is conserved in a genomic context between rodents and chickens. This transgenic module will be useful in future investigations of muscle development in avian species. PMID:20184756

  2. Site-directed mutagenesis of serine 158 demonstrates its role in spinach leaf sucrose-phosphate synthase modulation

    NASA Technical Reports Server (NTRS)

    Toroser, D.; McMichael, R. Jr; Krause, K. P.; Kurreck, J.; Sonnewald, U.; Stitt, M.; Huber, S. C.; Davies, E. (Principal Investigator)

    1999-01-01

    Site-directed mutagenesis of spinach sucrose-phosphate synthase (SPS) was performed to investigate the role of Ser158 in the modulation of spinach leaf SPS. Tobacco plants expressing the spinach wild-type (WT), S158A, S158T and S157F/S158E SPS transgenes were produced. Expression of transgenes appeared not to reduce expression of the tobacco host SPS. SPS activity in the WT and the S158T SPS transgenics showed light/dark modulation, whereas the S158A and S157F/S158E mutants were not similarly light/dark modulated: the S158A mutant enzyme was not inactivated in the dark, and the S157F/S158E was not activated in the light. The inability to modulate the activity of the S158A mutant enzyme by protein phosphorylation was demonstrated in vitro. The WT spinach enzyme immunopurified from dark transgenic tobacco leaves had a low initial activation state, and could be activated by PP2A and subsequently inactivated by SPS-kinase plus ATP. Rapid purification of the S158A mutant enzyme from dark leaves of transgenic plants using spinach-specific monoclonal antibodies yielded enzyme that had a high initial activation state, and pre-incubation with leaf PP2A or ATP plus SPS-kinase (the PKIII enzyme) caused little modulation of activity. The results demonstrate the regulatory significance of Ser158 as the major site responsible for dark inactivation of spinach SPS in vivo, and indicate that the significance of phosphorylation is the introduction of a negative charge at the Ser158 position.

  3. DREAM regulates BDNF-dependent spinal sensitization

    PubMed Central

    2010-01-01

    Background The transcriptional repressor DREAM (downstream regulatory element antagonist modulator) controls the expression of prodynorphin and has been involved in the modulation of endogenous responses to pain. To investigate the role of DREAM in central mechanisms of pain sensitization, we used a line of transgenic mice (L1) overexpressing a Ca2+- and cAMP-insensitive DREAM mutant in spinal cord and dorsal root ganglia. Results L1 DREAM transgenic mice showed reduced expression in the spinal cord of several genes related to pain, including prodynorphin and BDNF (brain-derived neurotrophic factor) and a state of basal hyperalgesia without change in A-type currents. Peripheral inflammation produced enhancement of spinal reflexes and increased expression of BDNF in wild type but not in DREAM transgenic mice. The enhancement of the spinal reflexes was reproduced in vitro by persistent electrical stimulation of C-fibers in wild type but not in transgenic mice. Exposure to exogenous BDNF produced a long-term enhancement of dorsal root-ventral root responses in transgenic mice. Conclusions Our results indicate that endogenous BDNF is involved in spinal sensitization following inflammation and that blockade of BDNF induction in DREAM transgenic mice underlies the failure to develop spinal sensitization. PMID:21167062

  4. Large-scale production of tannase using the yeast Arxula adeninivorans.

    PubMed

    Böer, Erik; Breuer, Friederike Sophie; Weniger, Michael; Denter, Sylvia; Piontek, Michael; Kunze, Gotthard

    2011-10-01

    Tannase (tannin acyl hydrolase, EC 3.1.1.20) hydrolyses the ester and depside bonds of gallotannins and gallic acid esters and is an important industrial enzyme. In the present study, transgenic Arxula adeninivorans strains were optimised for tannase production. Various plasmids carrying one or two expression modules for constitutive expression of tannase were constructed. Transformant strains that overexpress the ATAN1 gene from the strong A. adeninivorans TEF1 promoter produce levels of up to 1,642 U L(-1) when grown in glucose medium in shake flasks. The effect of fed-batch fermentation on tannase productivity was then investigated in detail. Under these conditions, a transgenic strain containing one ATAN1 expression module produced 51,900 U of tannase activity per litre after 142 h of fermentation at a dry cell weight of 162 g L(-1). The highest yield obtained from a transgenic strain with two ATAN1 expression modules was 31,300 U after 232 h at a dry cell weight of 104 g L(-1). Interestingly, the maximum achieved yield coefficients [Y(P/X)] for the two strains were essentially identical.

  5. Modulation of TCRβ surface expression during TCR revision.

    PubMed

    Simmons, Kalynn B; Wubeshet, Maramawit; Ames, Kristina T; McMahan, Catherine J; Hale, J Scott; Fink, Pamela J

    2012-01-01

    TCR revision is a tolerance mechanism by which self-reactive TCRs expressed by mature CD4(+) peripheral T cells are replaced by receptors encoded by genes generated by post-thymic DNA rearrangement. The downmodulation of surface TCR expression initiates TCR revision, and serves as a likely trigger for the induction of the recombinase machinery. We show here in a Vβ5 transgenic mouse model system that downregulation of the self-reactive transgene-encoded TCR is not maintained by transgene loss or diminished transcription or translation. The downregulation of surface TCR expression likely occurs in two stages, only one of which requires tolerogen expression. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Transgenic neuronal expression of proopiomelanocortin attenuates hyperphagic response to fasting and reverses metabolic impairments in leptin-deficient obese mice.

    PubMed

    Mizuno, Tooru M; Kelley, Kevin A; Pasinetti, Giulio M; Roberts, James L; Mobbs, Charles V

    2003-11-01

    Hypothalamic proopiomelanocortin (POMC) gene expression is reduced in many forms of obesity and diabetes, particularly in those attributable to deficiencies in leptin or its receptor. To assess the functional significance of POMC in mediating metabolic phenotypes associated with leptin deficiency, leptin-deficient mice bearing a transgene expressing the POMC gene under control of the neuron-specific enolase promoter were produced. The POMC transgene attenuated fasting-induced hyperphagia in wild-type mice. Furthermore, the POMC transgene partially reversed obesity, hyperphagia, and hypothermia and effectively normalized hyperglycemia, glucosuria, glucose intolerance, and insulin resistance in leptin-deficient mice. Effects of the POMC transgene on glucose homeostasis were independent of the partial correction of hyperphagia and obesity. Furthermore, the POMC transgene normalized the profile of hepatic and adipose gene expression associated with gluconeogenesis, glucose output, and insulin sensitivity. These results indicate that central POMC is a key modulator of glucose homeostasis and that agonists of POMC products may provide effective therapy in treating impairments in glucose homeostasis when hypothalamic POMC expression is reduced, as occurs with leptin deficiency, hypothalamic damage, and aging.

  7. Regulating the ethylene response of a plant by modulation of F-box proteins

    DOEpatents

    Guo, Hongwei [Beijing, CN; Ecker, Joseph R [Carlsbad, CA

    2014-01-07

    The relationship between F-box proteins and proteins invovled in the ethylene response in plants is described. In particular, F-box proteins may bind to proteins involved in the ethylene response and target them for degradation by the ubiquitin/proteasome pathway. The transcription factor EIN3 is a key transcription factor mediating ethylne-regulated gene expression and morphological responses. EIN3 is degraded through a ubiquitin/proteasome pathway mediated by F-box proteins EBF1 and EBF2. The link between F-box proteins and the ethylene response is a key step in modulating or regulating the response of a plant to ethylene. Described herein are transgenic plants having an altered sensitivity to ethylene, and methods for making transgenic plant haing an althered sensitivity to ethylene by modulating the level of activity of F-box proteins. Methods of altering the ethylene response in a plant by modulating the activity or expression of an F-box protein are described. Also described are methods of identifying compounds that modulate the ethylene response in plants by modulating the level of F-box protein expression or activity.

  8. GhMAP3K65, a Cotton Raf-Like MAP3K Gene, Enhances Susceptibility to Pathogen Infection and Heat Stress by Negatively Modulating Growth and Development in Transgenic Nicotiana benthamiana.

    PubMed

    Zhai, Na; Jia, Haihong; Liu, Dongdong; Liu, Shuchang; Ma, Manli; Guo, Xingqi; Li, Han

    2017-11-21

    Mitogen-activated protein kinase kinase kinases (MAP3Ks), the top components of MAPK cascades, modulate many biological processes, such as growth, development and various environmental stresses. Nevertheless, the roles of MAP3Ks remain poorly understood in cotton. In this study, GhMAP3K65 was identified in cotton, and its transcription was inducible by pathogen infection, heat stress, and multiple signalling molecules. Silencing of GhMAP3K65 enhanced resistance to pathogen infection and heat stress in cotton. In contrast, overexpression of GhMAP3K65 enhanced susceptibility to pathogen infection and heat stress in transgenic Nicotiana benthamiana . The expression of defence-associated genes was activated in transgenic N. benthamiana plants after pathogen infection and heat stress, indicating that GhMAP3K65 positively regulates plant defence responses. Nevertheless, transgenic N. benthamiana plants impaired lignin biosynthesis and stomatal immunity in their leaves and repressed vitality of their root systems. In addition, the expression of lignin biosynthesis genes and lignin content were inhibited after pathogen infection and heat stress. Collectively, these results demonstrate that GhMAP3K65 enhances susceptibility to pathogen infection and heat stress by negatively modulating growth and development in transgenic N. benthamiana plants.

  9. Photo-biotechnology as a tool to improve agronomic traits in crops.

    PubMed

    Gururani, Mayank Anand; Ganesan, Markkandan; Song, Pill-Soon

    2015-01-01

    Phytochromes are photosensory phosphoproteins with crucial roles in plant developmental responses to light. Functional studies of individual phytochromes have revealed their distinct roles in the plant's life cycle. Given the importance of phytochromes in key plant developmental processes, genetically manipulating phytochrome expression offers a promising approach to crop improvement. Photo-biotechnology refers to the transgenic expression of phytochrome transgenes or variants of such transgenes. Several studies have indicated that crop cultivars can be improved by modulating the expression of phytochrome genes. The improved traits include enhanced yield, improved grass quality, shade-tolerance, and stress resistance. In this review, we discuss the transgenic expression of phytochrome A and its hyperactive mutant (Ser599Ala-PhyA) in selected crops, such as Zoysia japonica (Japanese lawn grass), Agrostis stolonifera (creeping bentgrass), Oryza sativa (rice), Solanum tuberosum (potato), and Ipomea batatas (sweet potato). The transgenic expression of PhyA and its mutant in various plant species imparts biotechnologically useful traits. Here, we highlight recent advances in the field of photo-biotechnology and review the results of studies in which phytochromes or variants of phytochromes were transgenically expressed in various plant species. We conclude that photo-biotechnology offers an excellent platform for developing crops with improved properties. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Expression of endogenous mouse APP modulates β-amyloid deposition in hAPP-transgenic mice.

    PubMed

    Steffen, Johannes; Krohn, Markus; Schwitlick, Christina; Brüning, Thomas; Paarmann, Kristin; Pietrzik, Claus U; Biverstål, Henrik; Jansone, Baiba; Langer, Oliver; Pahnke, Jens

    2017-06-20

    Amyloid-β (Aβ) deposition is one of the hallmarks of the amyloid hypothesis in Alzheimer's disease (AD). Mouse models using APP-transgene overexpression to generate amyloid plaques have shown to model only certain parts of the disease. The extent to which the data from mice can be transferred to man remains controversial. Several studies have shown convincing treatment results in reducing Aβ and enhancing cognition in mice but failed totally in human. One model-dependent factor has so far been almost completely neglected: the endogenous expression of mouse APP and its effects on the transgenic models and the readout for therapeutic approaches.Here, we report that hAPP-transgenic models of amyloidosis devoid of endogenous mouse APP expression (mAPP-knockout / mAPPko) show increased amounts and higher speed of Aβ deposition than controls with mAPP. The number of senile plaques and the level of aggregated hAβ were elevated in mAPPko mice, while the deposition in cortical blood vessels was delayed, indicating an alteration in the general aggregation propensity of hAβ together with endogenous mAβ. Furthermore, the cellular response to Aβ deposition was modulated: mAPPko mice developed a pronounced and age-dependent astrogliosis, while microglial association to amyloid plaques was diminished. The expression of human and murine aggregation-prone proteins with differing amino acid sequences within the same mouse model might not only alter the extent of deposition but also modulate the route of pathogenesis, and thus, decisively influence the study outcome, especially in translational research.

  11. Sustained AAV9-mediated expression of a non-self protein in the CNS of non-human primates after immunomodulation

    PubMed Central

    Ramsingh, Arlene I.; Gray, Steven J.; Reilly, Andrew; Koday, Michael; Bratt, Debbie; Koday, Merika Treants; Murnane, Robert; Hu, Yuhui; Messer, Anne

    2018-01-01

    A critical issue in transgene delivery studies is immune reactivity to the transgene- encoded protein and its impact on sustained gene expression. Here, we test the hypothesis that immunomodulation by rapamycin can decrease immune reactivity after intrathecal AAV9 delivery of a transgene (GFP) in non-human primates, resulting in sustained GFP expression in the CNS. We show that rapamycin treatment clearly reduced the overall immunogenicity of the AAV9/GFP vector by lowering GFP- and AAV9-specific antibody responses, and decreasing T cell responses including cytokine and cytolytic effector responses. Spinal cord GFP protein expression was sustained for twelve weeks, with no toxicity. Immune correlates of robust transgene expression include negligible GFP-specific CD4 and CD8 T cell responses, absence of GFP-specific IFN-γ producing T cells, and absence of GFP-specific cytotoxic T cells, which support the hypothesis that decreased T cell reactivity results in sustained transgene expression. These data strongly support the use of modest doses of rapamycin to modulate immune responses for intrathecal gene therapies, and potentially a much wider range of viral vector-based therapeutics. PMID:29874260

  12. Expression of the G72/G30 gene in transgenic mice induces behavioral changes

    PubMed Central

    Cheng, Lijun; Hattori, Eiji; Nakajima, Akira; Woehrle, Nancy S.; Opal, Mark D.; Zhang, Chunling; Grennan, Kay; Dulawa, Stephanie C.; Tang, Ya-Ping; Gershon, Elliot S.; Liu, Chunyu

    2012-01-01

    The G72/G30 gene complex is a candidate gene for schizophrenia and bipolar disorder. However, G72 and G30 mRNAs are expressed at very low levels in human brain, with only rare splicing forms observed. We report here G72/G30 expression profiles and behavioral changes in a G72/G30 transgenic mouse model. A human BAC clone containing the G72/G30 genomic region was used to establish the transgenic mouse model, on which gene expression studies, Western blot and behavioral tests were performed. Relative to their minimal expression in humans, G72 and G30 mRNAs were highly expressed in the transgenic mice, and had a more complex splicing pattern. The highest G72 transcript levels were found in testis, followed by cerebral cortex, with very low or undetectable levels in other tissues. No LG72 (the long putative isoform of G72) protein was detected in the transgenic mice. Whole-genome expression profiling identified 361 genes differentially-expressed in transgenic mice compared to wild-type, including genes previously implicated in neurological and psychological disorders. Relative to wild-type mice, the transgenic mice exhibited fewer stereotypic movements in the open field test, higher baseline startle responses in the course of the prepulse inhibition test, and lower hedonic responses in the sucrose preference test. The transcriptome profile changes and multiple mouse behavioral effects suggest that the G72 gene may play a role in modulating behaviors relevant to psychiatric disorders. PMID:23337943

  13. Constitutive TL1A expression under colitogenic conditions modulates the severity and location of gut mucosal inflammation and induces fibrostenosis.

    PubMed

    Barrett, Robert; Zhang, Xiaolan; Koon, Hon Wai; Vu, Michelle; Chang, Jyh-Yau; Yeager, Nicole; Nguyen, Mary Ann; Michelsen, Kathrin S; Berel, Dror; Pothoulakis, Charalabos; Targan, Stephan R; Shih, David Q

    2012-02-01

    Intestinal fibrostenosis is a hallmark of severe Crohn's disease and can lead to multiple surgeries. Patients with certain TNFSF15 variants overexpress TL1A. The aim of this study was to determine the effect of TL1A overexpression on intestinal inflammation and the development of fibrostenosis. We assessed the in vivo consequences of constitutive TL1A expression on gut mucosal inflammation and fibrostenosis using two murine models of chronic colitis. In the dextran sodium sulfate (DSS) and adoptive T-cell transfer models, there was proximal migration of colonic inflammation, worsened patchy intestinal inflammation, and long gross intestinal strictures in Tl1a transgenic compared to wild-type littermates. In the DSS model, myeloid- and T-cell-expressing Tl1a transgenic mice had increased T-cell activation markers and interleukin-17 expression compared to wild-type mice. In the T-cell transfer model, Rag1(-/-) mice receiving Tl1a transgenic T cells had increased interferon-γ expression but reduced T-helper 17 cells and IL-17 production. Narrowed ureters with hydronephrosis were found only in the Tl1a transgenic mice in all chronic colitis models. In human translational studies, Crohn's disease patients with higher peripheral TL1A expression also exhibited intestinal fibrostenosis and worsened ileocecal inflammation with relative sparing of rectosigmoid inflammation. These data show that TL1A is an important cytokine that not only modulates the location and severity of mucosal inflammation, but also induces fibrostenosis. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  14. A 3'-untranslated region (3'UTR) induces organ adhesion by regulating miR-199a* functions.

    PubMed

    Lee, Daniel Y; Shatseva, Tatiana; Jeyapalan, Zina; Du, William W; Deng, Zhaoqun; Yang, Burton B

    2009-01-01

    Mature microRNAs (miRNAs) are single-stranded RNAs of 18-24 nucleotides that repress post-transcriptional gene expression. However, it is unknown whether the functions of mature miRNAs can be regulated. Here we report that expression of versican 3'UTR induces organ adhesion in transgenic mice by modulating miR-199a* activities. The study was initiated by the hypothesis that the non-coding 3'UTR plays a role in the regulation of miRNA function. Transgenic mice expressing a construct harboring the 3'UTR of versican exhibits the adhesion of organs. Computational analysis indicated that a large number of microRNAs could bind to this fragment potentially including miR-199a*. Expression of versican and fibronectin, two targets of miR-199a*, are up-regulated in transgenic mice, suggesting that the 3'UTR binds and modulates miR-199a* activities, freeing mRNAs of versican and fibronectin from being repressed by miR-199a*. Confirmation of the binding was performed by PCR using mature miR-199a* as a primer and the targeting was performed by luciferase assays. Enhanced adhesion by expression of the 3'UTR was confirmed by in vitro assays. Our results demonstrated that upon arrival in cytoplasm, miRNA activities can be modulated locally by the 3'UTR. Our assay may be developed as sophisticated approaches for studying the mutual regulation of miRNAs and mRNAs in vitro and in vivo. We anticipate that expression of the 3'UTR may be an approach in the development of gene therapy.

  15. Regulating the ethylene response of a plant by modulation of F-box proteins

    DOEpatents

    Guo, Hongwei [Beijing, CN; Ecker, Joseph R [Carlsbad, CA

    2011-03-08

    The invention relates to transgenic plants having reduced sensitivity to ethylene as a result of having a recombinant nucleic acid encoding an F-box protein that interacts with a EIN3 involved in an ethylene response of plants, and a method of producing a transgenic plant with reduced ethylene sensitivity by transforming the plant with a nucleic acid sequence encoding an F-box protein. The inventions also relates to methods of altering the ethylene response in a plant by modulating the activity or expression of an F-box protein.

  16. Expression of the Arabidopsis thaliana BBX32 gene in soybean increases grain yield.

    PubMed

    Preuss, Sasha B; Meister, Robert; Xu, Qingzhang; Urwin, Carl P; Tripodi, Federico A; Screen, Steven E; Anil, Veena S; Zhu, Shuquan; Morrell, James A; Liu, Grace; Ratcliffe, Oliver J; Reuber, T Lynne; Khanna, Rajnish; Goldman, Barry S; Bell, Erin; Ziegler, Todd E; McClerren, Amanda L; Ruff, Thomas G; Petracek, Marie E

    2012-01-01

    Crop yield is a highly complex quantitative trait. Historically, successful breeding for improved grain yield has led to crop plants with improved source capacity, altered plant architecture, and increased resistance to abiotic and biotic stresses. To date, transgenic approaches towards improving crop grain yield have primarily focused on protecting plants from herbicide, insects, or disease. In contrast, we have focused on identifying genes that, when expressed in soybean, improve the intrinsic ability of the plant to yield more. Through the large scale screening of candidate genes in transgenic soybean, we identified an Arabidopsis thaliana B-box domain gene (AtBBX32) that significantly increases soybean grain yield year after year in multiple transgenic events in multi-location field trials. In order to understand the underlying physiological changes that are associated with increased yield in transgenic soybean, we examined phenotypic differences in two AtBBX32-expressing lines and found increases in plant height and node, flower, pod, and seed number. We propose that these phenotypic changes are likely the result of changes in the timing of reproductive development in transgenic soybean that lead to the increased duration of the pod and seed development period. Consistent with the role of BBX32 in A. thaliana in regulating light signaling, we show that the constitutive expression of AtBBX32 in soybean alters the abundance of a subset of gene transcripts in the early morning hours. In particular, AtBBX32 alters transcript levels of the soybean clock genes GmTOC1 and LHY-CCA1-like2 (GmLCL2). We propose that through the expression of AtBBX32 and modulation of the abundance of circadian clock genes during the transition from dark to light, the timing of critical phases of reproductive development are altered. These findings demonstrate a specific role for AtBBX32 in modulating soybean development, and demonstrate the validity of expressing single genes in crops to deliver increased agricultural productivity.

  17. Genomic Methylation Inhibits Expression of Hepatitis B Virus Envelope Protein in Transgenic Mice: A Non-Infectious Mouse Model to Study Silencing of HBV Surface Antigen Genes.

    PubMed

    Graumann, Franziska; Churin, Yuri; Tschuschner, Annette; Reifenberg, Kurt; Glebe, Dieter; Roderfeld, Martin; Roeb, Elke

    2015-01-01

    The Hepatitis B virus genome persists in the nucleus of virus infected hepatocytes where it serves as template for viral mRNA synthesis. Epigenetic modifications, including methylation of the CpG islands contribute to the regulation of viral gene expression. The present study investigates the effects of spontaneous age dependent loss of hepatitis B surface protein- (HBs) expression due to HBV-genome specific methylation as well as its proximate positive effects in HBs transgenic mice. Liver and serum of HBs transgenic mice aged 5-33 weeks were analyzed by Western blot, immunohistochemistry, serum analysis, PCR, and qRT-PCR. From the third month of age hepatic loss of HBs was observed in 20% of transgenic mice. The size of HBs-free area and the relative number of animals with these effects increased with age and struck about 55% of animals aged 33 weeks. Loss of HBs-expression was strongly correlated with amelioration of serum parameters ALT and AST. In addition lower HBs-expression went on with decreased ER-stress. The loss of surface protein expression started on transcriptional level and appeared to be regulated epigenetically by DNA methylation. The amount of the HBs-expression correlated negatively with methylation of HBV DNA in the mouse genome. Our data suggest that methylation of specific CpG sites controls gene expression even in HBs-transgenic mice with truncated HBV genome. More important, the loss of HBs expression and intracellular aggregation ameliorated cell stress and liver integrity. Thus, targeted modulation of HBs expression may offer new therapeutic approaches. Furthermore, HBs-transgenic mice depict a non-infectious mouse model to study one possible mechanism of HBs gene silencing by hypermethylation.

  18. Transgenic Over Expression of Nicotinic Receptor Alpha 5, Alpha 3, and Beta 4 Subunit Genes Reduces Ethanol Intake in Mice

    PubMed Central

    Gallego, Xavier; Ruiz, Jessica; Valverde, Olga; Molas, Susanna; Robles, Noemí; Sabrià, Josefa; Crabbe, John C.; Dierssen, Mara

    2012-01-01

    Abuse of alcohol and smoking are extensively co-morbid. Some studies suggest partial commonality of action of alcohol and nicotine mediated through nicotinic acetylcholine receptors (nAChRs). We tested mice with transgenic over expression of the alpha 5, alpha 3, beta 4 receptor subunit genes, which lie in a cluster on human chromosome 15, that were previously shown to have increased nicotine self-administration, for several responses to ethanol. Transgenic and wild-type mice did not differ in sensitivity to several acute behavioral responses to ethanol. However, transgenic mice drank less ethanol than wild-type in a two-bottle (ethanol vs. water) preference test. These results suggest a complex role for this receptor subunit gene cluster in the modulation of ethanol’s as well as nicotine’s effects. PMID:22459873

  19. Anxiety-like behavior in transgenic mice with brain expression of neuropeptide Y.

    PubMed

    Inui, A; Okita, M; Nakajima, M; Momose, K; Ueno, N; Teranishi, A; Miura, M; Hirosue, Y; Sano, K; Sato, M; Watanabe, M; Sakai, T; Watanabe, T; Ishida, K; Silver, J; Baba, S; Kasuga, M

    1998-01-01

    Neuropeptide Y (NPY), one of the most abundant peptide transmitters in the mammalian brain, is assumed to play an important role in behavior and its disorders. To understand the long-term modulation of neuronal functions by NPY, we raised transgenic mice created with a novel central nervous system (CNS) neuron-specific expression vector of human Thy- gene fragment linked to mouse NPY cDNA. In situ hybridization analysis demonstrated transgene-derived NPY expression in neurons (e.g., in the hippocampus, cerebral cortex, and the arcuate nucleus of the hypothalamus) in the transgenic mice. The modest increase of NPY protein in the brain was demonstrated by semiquantitative immunohistochemical analysis and by radioreceptor assay (115% in transgenic mice compared to control littermates). Double-staining experiments indicated colocalization of the transgene-derived NPY message and NPY protein in the same neurons, such as in the arcuate nucleus. The transgenic mice displayed behavioral signs of anxiety and hypertrophy of adrenal zona fasciculata cells, but no change in food intake was observed. The anxiety-like behavior of transgenic mice was reversed, at least in part, by administration of corticotropin-releasing factor (CRF) antagonists, alpha-helical CRF9-41, into the third cerebral ventricle. These results suggest that NPY has a role in anxiety and behavioral responses to stress partly via the CRF neuronal system. This genetic model may provide a unique opportunity to study human anxiety and emotional disorders.

  20. Transgenic expression of cyclooxygenase-2 (COX2) causes premature aging phenotypes in mice.

    PubMed

    Kim, Joohwee; Vaish, Vivek; Feng, Mingxiao; Field, Kevin; Chatzistamou, Ioulia; Shim, Minsub

    2016-10-07

    Cyclooxygenase (COX) is a key enzyme in the biosynthesis of prostanoids, lipid signaling molecules that regulate various physiological processes. COX2, one of the isoforms of COX, is highly inducible in response to a wide variety of cellular and environmental stresses. Increased COX2 expression is thought to play a role in the pathogenesis of many age-related diseases. COX2 expression is also reported to be increased in the tissues of aged humans and mice, which suggests the involvement of COX2 in the aging process. However, it is not clear whether the increased COX2 expression is causal to or a result of aging. We have now addressed this question by creating an inducible COX2 transgenic mouse model. Here we show that post-natal expression of COX2 led to a panel of aging-related phenotypes. The expression of p16, p53, and phospho-H2AX was increased in the tissues of COX2 transgenic mice. Additionally, adult mouse lung fibroblasts from COX2 transgenic mice exhibited increased expression of the senescence-associated β-galactosidase. Our study reveals that the increased COX2 expression has an impact on the aging process and suggests that modulation of COX2 and its downstream signaling may be an approach for intervention of age-related disorders.

  1. Transgenic miR156 switchgrass in the field: growth, recalcitrance and rust susceptibility

    DOE PAGES

    Baxter, Holly L.; Mazarei, Mitra; Dumitrache, Alexandru; ...

    2017-04-24

    Sustainable utilization of lignocellulosic perennial grass feedstocks will be enabled by high biomass production and optimized cell wall chemistry for efficient conversion into biofuels. MicroRNAs are regulatory elements that modulate the expression of genes involved in various biological functions in plants, including growth and development. In greenhouse studies, overexpressing a microRNA (miR156) gene in switchgrass had dramatic effects on plant architecture and flowering, which appeared to be driven by transgene expression levels. High expressing lines were extremely dwarfed, whereas low and moderate-expressing lines had higher biomass yields, improved sugar release and delayed flowering. Four lines with moderate or low miR156more » overexpression from the prior greenhouse study were selected for a field experiment to assess the relationship between miR156 expression and biomass production over three years. We also analysed important bioenergy feedstock traits such as flowering, disease resistance, cell wall chemistry and biofuel production. Phenotypes of the transgenic lines were inconsistent between the greenhouse and the field as well as among different field growing seasons. One low expressing transgenic line consistently produced more biomass (25%–56%) than the control across all three seasons, which translated to the production of 30% more biofuel per plant during the final season. The other three transgenic lines produced less biomass than the control by the final season, and the two lines with moderate expression levels also exhibited altered disease susceptibilities. Results of this study emphasize the importance of performing multiyear field studies for plants with altered regulatory transgenes that target plant growth and development.« less

  2. Transgenic miR156 switchgrass in the field: growth, recalcitrance and rust susceptibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Holly L.; Mazarei, Mitra; Dumitrache, Alexandru

    Sustainable utilization of lignocellulosic perennial grass feedstocks will be enabled by high biomass production and optimized cell wall chemistry for efficient conversion into biofuels. MicroRNAs are regulatory elements that modulate the expression of genes involved in various biological functions in plants, including growth and development. In greenhouse studies, overexpressing a microRNA (miR156) gene in switchgrass had dramatic effects on plant architecture and flowering, which appeared to be driven by transgene expression levels. High expressing lines were extremely dwarfed, whereas low and moderate-expressing lines had higher biomass yields, improved sugar release and delayed flowering. Four lines with moderate or low miR156more » overexpression from the prior greenhouse study were selected for a field experiment to assess the relationship between miR156 expression and biomass production over three years. We also analysed important bioenergy feedstock traits such as flowering, disease resistance, cell wall chemistry and biofuel production. Phenotypes of the transgenic lines were inconsistent between the greenhouse and the field as well as among different field growing seasons. One low expressing transgenic line consistently produced more biomass (25%–56%) than the control across all three seasons, which translated to the production of 30% more biofuel per plant during the final season. The other three transgenic lines produced less biomass than the control by the final season, and the two lines with moderate expression levels also exhibited altered disease susceptibilities. Results of this study emphasize the importance of performing multiyear field studies for plants with altered regulatory transgenes that target plant growth and development.« less

  3. Minimal doses of a sequence-optimized transgene mediate high-level and long-term EPO expression in vivo: challenging CpG-free gene design.

    PubMed

    Kosovac, D; Wild, J; Ludwig, C; Meissner, S; Bauer, A P; Wagner, R

    2011-02-01

    Advanced gene delivery techniques can be combined with rational gene design to further improve the efficiency of plasmid DNA (pDNA)-mediated transgene expression in vivo. Herein, we analyzed the influence of intragenic sequence modifications on transgene expression in vitro and in vivo using murine erythropoietin (mEPO) as a transgene model. A single electro-gene transfer of an RNA- and codon-optimized mEPOopt gene into skeletal muscle resulted in a 3- to 4-fold increase of mEPO production sustained for >1 year and triggered a significant increase in hematocrit and hemoglobin without causing adverse effects. mEPO expression and hematologic levels were significantly lower when using comparable amounts of the wild type (mEPOwt) gene and only marginal effects were induced by mEPOΔCpG lacking intragenic CpG dinucleotides, even at high pDNA amounts. Corresponding with these observations, in vitro analysis of transfected cells revealed a 2- to 3-fold increased (mEPOopt) and 50% decreased (mEPOΔCpG) erythropoietin expression compared with mEPOwt, respectively. RNA analyses demonstrated that the specific design of the transgene sequence influenced expression levels by modulating transcriptional activity and nuclear plus cytoplasmic RNA amounts rather than translation. In sum, whereas CpG depletion negatively interferes with efficient expression in postmitotic tissues, mEPOopt doses <0.5 μg were sufficient to trigger optimal long-term hematologic effects encouraging the use of sequence-optimized transgenes to further reduce effective pDNA amounts.

  4. Growth modulation effects of CBM2a under the control of AtEXP4 and CaMV35S promoters in Arabidopsis thaliana, Nicotiana tabacum and Eucalyptus camaldulensis.

    PubMed

    Keadtidumrongkul, Pornthep; Suttangkakul, Anongpat; Pinmanee, Phitsanu; Pattana, Kanokwan; Kittiwongwattana, Chokchai; Apisitwanich, Somsak; Vuttipongchaikij, Supachai

    2017-08-01

    The expression of cell-wall-targeted Carbohydrate Binding Modules (CBMs) can alter cell wall properties and modulate growth and development in plants such as tobacco and potato. CBM2a identified in xylanase 10A from Cellulomonas fimi is of particular interest for its ability to bind crystalline cellulose. However, its potential for promoting plant growth has not been explored. In this work, we tested the ability of CBM2a to promote growth when expressed using both CaMV35S and a vascular tissue-specific promoter derived from Arabidopsis expansin4 (AtEXP4) in three plant species: Arabidopsis, Nicotiana tabacum and Eucalyptus camaldulensis. In Arabidopsis, the expression of AtEXP4pro:CBM2a showed trends for growth promoting effects including the increase of root and hypocotyl lengths and the enlargements of the vascular xylem area, fiber cells and vessel cells. However, in N. tabacum, the expression of CBM2a under the control of either CaMV35S or AtEXP4 promoter resulted in subtle changes in the plant growth, and the thickness of secondary xylem and vessel and fiber cell sizes were generally reduced in the transgenic lines with AtEXP4pro:CBM2a. In Eucalyptus, while transgenics expressing CaMV35S:CBM2a showed very subtle changes compared to wild type, those transgenics with AtEXP4pro:CBM2a showed increases in plant height, enlargement of xylem areas and xylem fiber and vessel cells. These data provide comparative effects of expressing CBM2a protein in different plant species, and this finding can be applied for plant biomass improvement.

  5. A 3′-Untranslated Region (3′UTR) Induces Organ Adhesion by Regulating miR-199a* Functions

    PubMed Central

    Lee, Daniel Y.; Shatseva, Tatiana; Jeyapalan, Zina; Du, William W.; Deng, Zhaoqun; Yang, Burton B.

    2009-01-01

    Mature microRNAs (miRNAs) are single-stranded RNAs of 18–24 nucleotides that repress post-transcriptional gene expression. However, it is unknown whether the functions of mature miRNAs can be regulated. Here we report that expression of versican 3′UTR induces organ adhesion in transgenic mice by modulating miR-199a* activities. The study was initiated by the hypothesis that the non-coding 3′UTR plays a role in the regulation of miRNA function. Transgenic mice expressing a construct harboring the 3′UTR of versican exhibits the adhesion of organs. Computational analysis indicated that a large number of microRNAs could bind to this fragment potentially including miR-199a*. Expression of versican and fibronectin, two targets of miR-199a*, are up-regulated in transgenic mice, suggesting that the 3′UTR binds and modulates miR-199a* activities, freeing mRNAs of versican and fibronectin from being repressed by miR-199a*. Confirmation of the binding was performed by PCR using mature miR-199a* as a primer and the targeting was performed by luciferase assays. Enhanced adhesion by expression of the 3′UTR was confirmed by in vitro assays. Our results demonstrated that upon arrival in cytoplasm, miRNA activities can be modulated locally by the 3′UTR. Our assay may be developed as sophisticated approaches for studying the mutual regulation of miRNAs and mRNAs in vitro and in vivo. We anticipate that expression of the 3′UTR may be an approach in the development of gene therapy. PMID:19223980

  6. The RING finger/B-box factor TAM-1 and a retinoblastoma-like protein LIN-35 modulate context-dependent gene silencing in Caenorhabditis elegans.

    PubMed

    Hsieh, J; Liu, J; Kostas, S A; Chang, C; Sternberg, P W; Fire, A

    1999-11-15

    Context-dependent gene silencing is used by many organisms to stably modulate gene activity for large chromosomal regions. We have used tandem array transgenes as a model substrate in a screen for Caenorhabditis elegans mutants that affect context-dependent gene silencing in somatic tissues. This screen yielded multiple alleles of a previously uncharacterized gene, designated tam-1 (for tandem-array-modifier). Loss-of-function mutations in tam-1 led to a dramatic reduction in the activity of numerous highly repeated transgenes. These effects were apparently context dependent, as nonrepetitive transgenes retained activity in a tam-1 mutant background. In addition to the dramatic alterations in transgene activity, tam-1 mutants showed modest alterations in expression of a subset of endogenous cellular genes. These effects include genetic interactions that place tam-1 into a group called the class B synMuv genes (for a Synthetic Multivulva phenotype); this family plays a negative role in the regulation of RAS pathway activity in C. elegans. Loss-of-function mutants in other members of the class-B synMuv family, including lin-35, which encodes a protein similar to the tumor suppressor Rb, exhibit a hypersilencing in somatic transgenes similar to that of tam-1 mutants. Molecular analysis reveals that tam-1 encodes a broadly expressed nuclear protein with RING finger and B-box motifs.

  7. ThPP1 gene, encodes an inorganic pyrophosphatase in Thellungiella halophila, enhanced the tolerance of the transgenic rice to alkali stress.

    PubMed

    He, Rui; Yu, Guohong; Han, Xiaori; Han, Jiao; Li, Wei; Wang, Bing; Huang, Shengcai; Cheng, Xianguo

    2017-12-01

    An inorganic pyrophosphorylase gene, ThPP1 , modulated the accumulations of phosphate and osmolytes by up-regulating the differentially expression genes, thus enhancing the tolerance of the transgenic rice to alkali stress (AS). Inorganic pyrophosphorylase is essential in catalyzing the hydrolysis of pyrophosphate to inorganic phosphate during plant growth. Here, we report the changes of physiological osmolytes and differentially expression genes in the transgenic rice overexpressing a soluble inorganic pyrophosphatase gene ThPP1 of Thellungiella halophila in response to AS. Analyses showed that the ThPP1 gene was a PPase family I member which is located to the cytoplasm. Data showed that the transgenic lines revealed an enhanced tolerance to AS compared to the wild type, and effectively increased the accumulations of inorganic phosphate and organic small molecules starch, sucrose, proline and chlorophyll, and maintained the balance of osmotic potential by modulating the ratio of Na + /K + in plant cells. Under AS, total 379 of differentially expression genes were up-regulated in the leaves of the transgenic line compared with control, and the enhanced tolerance of the transgenic rice to the AS seemed to be associated with the up-regulations of the osmotic stress-related genes such as the L-type lectin-domain containing receptor kinase (L-type LecRK), the cation/H + antiporter gene and the vacuolar cation/proton exchanger 1 gene (CAX1), which conferred the involvements in the biosynthesis and metabolic pathways. Protein interaction showed that the ThPP1 protein specifically interacted with a 16# target partner of the photosystem II light-harvesting-Chl-binding protein. This study suggested that the ThPP1 gene plays an important regulatory role in conferring the tolerance of the transgenic rice to AS, and is an effective candidate in molecular breeding for crop cultivation of the alkali tolerance.

  8. Generation of a Homozygous Transgenic Rat Strain Stably Expressing a Calcium Sensor Protein for Direct Examination of Calcium Signaling.

    PubMed

    Szebényi, Kornélia; Füredi, András; Kolacsek, Orsolya; Pergel, Enikő; Bősze, Zsuzsanna; Bender, Balázs; Vajdovich, Péter; Tóvári, József; Homolya, László; Szakács, Gergely; Héja, László; Enyedi, Ágnes; Sarkadi, Balázs; Apáti, Ágota; Orbán, Tamás I

    2015-08-03

    In drug discovery, prediction of selectivity and toxicity require the evaluation of cellular calcium homeostasis. The rat is a preferred laboratory animal for pharmacology and toxicology studies, while currently no calcium indicator protein expressing rat model is available. We established a transgenic rat strain stably expressing the GCaMP2 fluorescent calcium sensor by a transposon-based methodology. Zygotes were co-injected with mRNA of transposase and a CAG-GCaMP2 expressing construct, and animals with one transgene copy were pre-selected by measuring fluorescence in blood cells. A homozygous rat strain was generated with high sensor protein expression in the heart, kidney, liver, and blood cells. No pathological alterations were found in these animals, and fluorescence measurements in cardiac tissue slices and primary cultures demonstrated the applicability of this system for studying calcium signaling. We show here that the GCaMP2 expressing rat cardiomyocytes allow the prediction of cardiotoxic drug side-effects, and provide evidence for the role of Na(+)/Ca(2+) exchanger and its beneficial pharmacological modulation in cardiac reperfusion. Our data indicate that drug-induced alterations and pathological processes can be followed by using this rat model, suggesting that transgenic rats expressing a calcium-sensitive protein provide a valuable system for pharmacological and toxicological studies.

  9. Transgenic over expression of nicotinic receptor alpha 5, alpha 3, and beta 4 subunit genes reduces ethanol intake in mice.

    PubMed

    Gallego, Xavier; Ruiz-Medina, Jessica; Valverde, Olga; Molas, Susanna; Robles, Noemí; Sabrià, Josefa; Crabbe, John C; Dierssen, Mara

    2012-05-01

    Abuse of alcohol and smoking are extensively co-morbid. Some studies suggest partial commonality of action of alcohol and nicotine mediated through nicotinic acetylcholine receptors (nAChRs). We tested mice with transgenic over expression of the alpha 5, alpha 3, beta 4 receptor subunit genes, which lie in a cluster on human chromosome 15, that were previously shown to have increased nicotine self-administration, for several responses to ethanol. Transgenic and wild-type mice did not differ in sensitivity to several acute behavioral responses to ethanol. However, transgenic mice drank less ethanol than wild-type in a two-bottle (ethanol vs. water) preference test. These results suggest a complex role for this receptor subunit gene cluster in the modulation of ethanol's as well as nicotine's effects. Copyright © 2012. Published by Elsevier Inc.

  10. GNC and CGA1 Modulate Chlorophyll Biosynthesis and Glutamate Synthase (GLU1/Fd-GOGAT) Expression in Arabidopsis

    PubMed Central

    Hudson, Darryl; Guevara, David; Yaish, Mahmoud W.; Hannam, Carol; Long, Nykoll; Clarke, Joseph D.; Bi, Yong-Mei; Rothstein, Steven J.

    2011-01-01

    Chloroplast development is an important determinant of plant productivity and is controlled by environmental factors including amounts of light and nitrogen as well as internal phytohormones including cytokinins and gibberellins (GA). The paralog GATA transcription factors GNC and CGA1/GNL up-regulated by light, nitrogen and cytokinin while also being repressed by GA signaling. Modifying the expression of these genes has previously been shown to influence chlorophyll content in Arabidopsis while also altering aspects of germination, elongation growth and flowering time. In this work, we also use transgenic lines to demonstrate that GNC and CGA1 exhibit a partially redundant control over chlorophyll biosynthesis. We provide novel evidence that GNC and CGA1 influence both chloroplast number and leaf starch in proportion to their transcript level. GNC and CGA1 were found to modify the expression of chloroplast localized GLUTAMATE SYNTHASE (GLU1/Fd-GOGAT), which is the primary factor controlling nitrogen assimilation in green tissue. Altering GNC and CGA1 expression was also found to modulate the expression of important chlorophyll biosynthesis genes (GUN4, HEMA1, PORB, and PORC). As previously demonstrated, the CGA1 transgenic plants demonstrated significantly altered timing to a number of developmental events including germination, leaf production, flowering time and senescence. In contrast, the GNC transgenic lines we analyzed maintain relatively normal growth phenotypes outside of differences in chloroplast development. Despite some evidence for partial divergence, results indicate that regulation of both GNC and CGA1 by light, nitrogen, cytokinin, and GA acts to modulate nitrogen assimilation, chloroplast development and starch production. Understanding the mechanisms controlling these processes is important for agricultural biotechnology. PMID:22102866

  11. Ectopic Expression of Xylella fastidiosa rpfF Conferring Production of Diffusible Signal Factor in Transgenic Tobacco and Citrus Alters Pathogen Behavior and Reduces Disease Severity.

    PubMed

    Caserta, R; Souza-Neto, R R; Takita, M A; Lindow, S E; De Souza, A A

    2017-11-01

    The pathogenicity of Xylella fastidiosa is associated with its ability to colonize the xylem of host plants. Expression of genes contributing to xylem colonization are suppressed, while those necessary for insect vector acquisition are increased with increasing concentrations of diffusible signal factor (DSF), whose production is dependent on RpfF. We previously demonstrated that transgenic citrus plants ectopically expressing rpfF from a citrus strain of X. fastidiosa subsp. pauca exhibited less susceptibility to Xanthomonas citri subsp. citri, another pathogen whose virulence is modulated by DSF accumulation. Here, we demonstrate that ectopic expression of rpfF in both transgenic tobacco and sweet orange also confers a reduction in disease severity incited by X. fastidiosa and reduces its colonization of those plants. Decreased disease severity in the transgenic plants was generally associated with increased expression of genes conferring adhesiveness to the pathogen and decreased expression of genes necessary for active motility, accounting for the reduced population sizes achieved in the plants, apparently by limiting pathogen dispersal through the plant. Plant-derived DSF signal molecules in a host plant can, therefore, be exploited to interfere with more than one pathogen whose virulence is controlled by DSF signaling.

  12. Antisense expression of the fasciclin-like arabinogalactan protein FLA6 gene in Populus inhibits expression of its homologous genes and alters stem biomechanics and cell wall composition in transgenic trees

    PubMed Central

    Wang, Haihai; Jiang, Chunmei; Wang, Cuiting; Yang, Yang; Yang, Lei; Gao, Xiaoyan; Zhang, Hongxia

    2015-01-01

    Fasciclin-like arabinogalactan proteins (FLAs) play important roles in the growth and development of roots, stems, and seeds in Arabidopsis. However, their biological functions in woody plants are largely unknown. In this work, we investigated the possible function of PtFLA6 in poplar. Quantitative real-time PCR, PtFLA6–yellow fluorescent protein (YFP) fusion protein subcellular localization, Western blotting, and immunohistochemical analyses demonstrated that the PtFLA6 gene was expressed specifically in the xylem of mature stem, and PtFLA6 protein was distributed ubiquitous in plant cells and accumulated predominantly in stem xylem fibres. Antisense expression of PtFLA6 in the aspen hybrid clone Poplar davidiana×Poplar bolleana reduced the transcripts of PtFLA6 and its homologous genes. Transgenic plants that showed a significant reduction in the transcripts of PtFLAs accumulated fewer PtFLA6 and arabinogalactan proteins than did the non-transgenic plants, leading to reduced stem flexural strength and stiffness. Further studies revealed that the altered stem biomechanics of transgenic plants could be attributed to the decreased cellulose and lignin composition in the xylem. In addition expression of some xylem-specific genes involved in cell wall biosynthesis was downregulated in these transgenic plants. All these results suggest that engineering the expression of PtFLA6 and its homologues could modulate stem mechanical properties by affecting cell wall composition in trees. PMID:25428999

  13. Characterization of a new Gsx2-cre line in the developing mouse telencephalon.

    PubMed

    Qin, Shenyue; Madhavan, Mayur; Waclaw, Ronald R; Nakafuku, Masato; Campbell, Kenneth

    2016-10-01

    In this study, we generated a transgenic mouse line driving Cre and EGFP expression with two putative cis-regulatory modules (CRMs) (i.e., hs687 and hs678) upstream of the homeobox gene Gsx2 (formerly Gsh2), a critical gene for establishing lateral ganglionic eminence (LGE) identity. The combination of these two CRMs drives transgene expression within the endogenous Gsx2 expression domains along the anterior-posterior neuraxis. By crossing this transgenic line with the Rosa tdTomato (Ai14) reporter mouse line, we observed a unique recombination pattern in the lateral ventral telencephalon, namely the LGE and the dorsal half of the medial GE (MGE), but not in the septum. We found robust recombination in many cell types derived from these embryonic regions, including olfactory bulb and amygdala interneurons and striatal projection neurons from the LGE, as well as cortical interneurons from the MGE and caudal GE (CGE). In summary, this transgenic mouse line represents a new tool for genetic manipulation in the LGE/CGE and the dorsal half of MGE. © 2016 Wiley Periodicals, Inc.

  14. PrPC Governs Susceptibility to Prion Strains in Bank Vole, While Other Host Factors Modulate Strain Features

    PubMed Central

    Espinosa, J. C.; Nonno, R.; Di Bari, M.; Aguilar-Calvo, P.; Pirisinu, L.; Fernández-Borges, N.; Vanni, I.; Vaccari, G.; Marín-Moreno, A.; Frassanito, P.; Lorenzo, P.; Agrimi, U.

    2016-01-01

    ABSTRACT Bank vole is a rodent species that shows differential susceptibility to the experimental transmission of different prion strains. In this work, the transmission features of a panel of diverse prions with distinct origins were assayed both in bank vole expressing methionine at codon 109 (Bv109M) and in transgenic mice expressing physiological levels of bank vole PrPC (the BvPrP-Tg407 mouse line). This work is the first systematic comparison of the transmission features of a collection of prion isolates, representing a panel of diverse prion strains, in a transgenic-mouse model and in its natural counterpart. The results showed very similar transmission properties in both the natural species and the transgenic-mouse model, demonstrating the key role of the PrP amino acid sequence in prion transmission susceptibility. However, differences in the PrPSc types propagated by Bv109M and BvPrP-Tg407 suggest that host factors other than PrPC modulate prion strain features. IMPORTANCE The differential susceptibility of bank voles to prion strains can be modeled in transgenic mice, suggesting that this selective susceptibility is controlled by the vole PrP sequence alone rather than by other species-specific factors. Differences in the phenotypes observed after prion transmissions in bank voles and in the transgenic mice suggest that host factors other than the PrPC sequence may affect the selection of the substrain replicating in the animal model. PMID:27654300

  15. Generation of a Homozygous Transgenic Rat Strain Stably Expressing a Calcium Sensor Protein for Direct Examination of Calcium Signaling

    PubMed Central

    Szebényi, Kornélia; Füredi, András; Kolacsek, Orsolya; Pergel, Enikő; Bősze, Zsuzsanna; Bender, Balázs; Vajdovich, Péter; Tóvári, József; Homolya, László; Szakács, Gergely; Héja, László; Enyedi, Ágnes; Sarkadi, Balázs; Apáti, Ágota; Orbán, Tamás I.

    2015-01-01

    In drug discovery, prediction of selectivity and toxicity require the evaluation of cellular calcium homeostasis. The rat is a preferred laboratory animal for pharmacology and toxicology studies, while currently no calcium indicator protein expressing rat model is available. We established a transgenic rat strain stably expressing the GCaMP2 fluorescent calcium sensor by a transposon-based methodology. Zygotes were co-injected with mRNA of transposase and a CAG-GCaMP2 expressing construct, and animals with one transgene copy were pre-selected by measuring fluorescence in blood cells. A homozygous rat strain was generated with high sensor protein expression in the heart, kidney, liver, and blood cells. No pathological alterations were found in these animals, and fluorescence measurements in cardiac tissue slices and primary cultures demonstrated the applicability of this system for studying calcium signaling. We show here that the GCaMP2 expressing rat cardiomyocytes allow the prediction of cardiotoxic drug side-effects, and provide evidence for the role of Na+/Ca2+ exchanger and its beneficial pharmacological modulation in cardiac reperfusion. Our data indicate that drug-induced alterations and pathological processes can be followed by using this rat model, suggesting that transgenic rats expressing a calcium-sensitive protein provide a valuable system for pharmacological and toxicological studies. PMID:26234466

  16. Nuclear hormone retinoid X receptor (RXR) negatively regulates the glucose-stimulated insulin secretion of pancreatic ß-cells.

    PubMed

    Miyazaki, Satsuki; Taniguchi, Hidenori; Moritoh, Yusuke; Tashiro, Fumi; Yamamoto, Tsunehiko; Yamato, Eiji; Ikegami, Hiroshi; Ozato, Keiko; Miyazaki, Jun-ichi

    2010-11-01

    Retinoid X receptors (RXRs) are members of the nuclear hormone receptor superfamily and are thought to be key regulators in differentiation, cellular growth, and gene expression. Although several experiments using pancreatic β-cell lines have shown that the ligands of nuclear hormone receptors modulate insulin secretion, it is not clear whether RXRs have any role in insulin secretion. To elucidate the function of RXRs in pancreatic β-cells, we generated a double-transgenic mouse in which a dominant-negative form of RXRβ was inducibly expressed in pancreatic β-cells using the Tet-On system. We also established a pancreatic β-cell line from an insulinoma caused by the β-cell-specific expression of simian virus 40 T antigen in the above transgenic mouse. In the transgenic mouse, expression of the dominant-negative RXR enhanced the insulin secretion with high glucose stimulation. In the pancreatic β-cell line, the suppression of RXRs also enhanced glucose-stimulated insulin secretion at a high glucose concentration, while 9-cis-retinoic acid, an RXR agonist, repressed it. High-density oligonucleotide microarray analysis showed that expression of the dominant-negative RXR affected the expression levels of a number of genes, some of which have been implicated in the function and/or differentiation of β-cells. These results suggest that endogenous RXR negatively regulates the glucose-stimulated insulin secretion. Given these findings, we propose that the modulation of endogenous RXR in β-cells may be a new therapeutic approach for improving impaired insulin secretion in type 2 diabetes.

  17. Antisense expression of the fasciclin-like arabinogalactan protein FLA6 gene in Populus inhibits expression of its homologous genes and alters stem biomechanics and cell wall composition in transgenic trees.

    PubMed

    Wang, Haihai; Jiang, Chunmei; Wang, Cuiting; Yang, Yang; Yang, Lei; Gao, Xiaoyan; Zhang, Hongxia

    2015-03-01

    Fasciclin-like arabinogalactan proteins (FLAs) play important roles in the growth and development of roots, stems, and seeds in Arabidopsis. However, their biological functions in woody plants are largely unknown. In this work, we investigated the possible function of PtFLA6 in poplar. Quantitative real-time PCR, PtFLA6-yellow fluorescent protein (YFP) fusion protein subcellular localization, Western blotting, and immunohistochemical analyses demonstrated that the PtFLA6 gene was expressed specifically in the xylem of mature stem, and PtFLA6 protein was distributed ubiquitous in plant cells and accumulated predominantly in stem xylem fibres. Antisense expression of PtFLA6 in the aspen hybrid clone Poplar davidiana×Poplar bolleana reduced the transcripts of PtFLA6 and its homologous genes. Transgenic plants that showed a significant reduction in the transcripts of PtFLAs accumulated fewer PtFLA6 and arabinogalactan proteins than did the non-transgenic plants, leading to reduced stem flexural strength and stiffness. Further studies revealed that the altered stem biomechanics of transgenic plants could be attributed to the decreased cellulose and lignin composition in the xylem. In addition expression of some xylem-specific genes involved in cell wall biosynthesis was downregulated in these transgenic plants. All these results suggest that engineering the expression of PtFLA6 and its homologues could modulate stem mechanical properties by affecting cell wall composition in trees. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Gibberellin 3-oxidase Gene Expression Patterns Influence Gibberellin Biosynthesis, Growth, and Development in Pea1[W][OPEN

    PubMed Central

    Reinecke, Dennis M.; Wickramarathna, Aruna D.; Ozga, Jocelyn A.; Kurepin, Leonid V.; Jin, Alena L.; Good, Allen G.; Pharis, Richard P.

    2013-01-01

    Gibberellins (GAs) are key modulators of plant growth and development. PsGA3ox1 (LE) encodes a GA 3β-hydroxylase that catalyzes the conversion of GA20 to biologically active GA1. To further clarify the role of GA3ox expression during pea (Pisum sativum) plant growth and development, we generated transgenic pea lines (in a lele background) with cauliflower mosaic virus-35S-driven expression of PsGA3ox1 (LE). PsGA3ox1 transgene expression led to higher GA1 concentrations in a tissue-specific and development-specific manner, altering GA biosynthesis and catabolism gene expression and plant phenotype. PsGA3ox1 transgenic plants had longer internodes, tendrils, and fruits, larger stipules, and displayed delayed flowering, increased apical meristem life, and altered vascular development relative to the null controls. Transgenic PsGA3ox1 overexpression lines were then compared with lines where endogenous PsGA3ox1 (LE) was introduced, by a series of backcrosses, into the same genetic background (BC LEle). Most notably, the BC LEle plants had substantially longer internodes containing much greater GA1 levels than the transgenic PsGA3ox1 plants. Induction of expression of the GA deactivation gene PsGA2ox1 appears to make an important contribution to limiting the increase of internode GA1 to modest levels for the transgenic lines. In contrast, PsGA3ox1 (LE) expression driven by its endogenous promoter was coordinated within the internode tissue to avoid feed-forward regulation of PsGA2ox1, resulting in much greater GA1 accumulation. These studies further our fundamental understanding of the regulation of GA biosynthesis and catabolism at the tissue and organ level and demonstrate that the timing/localization of GA3ox expression within an organ affects both GA homeostasis and GA1 levels, and thereby growth. PMID:23979969

  19. Gibberellin 3-oxidase gene expression patterns influence gibberellin biosynthesis, growth, and development in pea.

    PubMed

    Reinecke, Dennis M; Wickramarathna, Aruna D; Ozga, Jocelyn A; Kurepin, Leonid V; Jin, Alena L; Good, Allen G; Pharis, Richard P

    2013-10-01

    Gibberellins (GAs) are key modulators of plant growth and development. PsGA3ox1 (LE) encodes a GA 3β-hydroxylase that catalyzes the conversion of GA20 to biologically active GA1. To further clarify the role of GA3ox expression during pea (Pisum sativum) plant growth and development, we generated transgenic pea lines (in a lele background) with cauliflower mosaic virus-35S-driven expression of PsGA3ox1 (LE). PsGA3ox1 transgene expression led to higher GA1 concentrations in a tissue-specific and development-specific manner, altering GA biosynthesis and catabolism gene expression and plant phenotype. PsGA3ox1 transgenic plants had longer internodes, tendrils, and fruits, larger stipules, and displayed delayed flowering, increased apical meristem life, and altered vascular development relative to the null controls. Transgenic PsGA3ox1 overexpression lines were then compared with lines where endogenous PsGA3ox1 (LE) was introduced, by a series of backcrosses, into the same genetic background (BC LEle). Most notably, the BC LEle plants had substantially longer internodes containing much greater GA1 levels than the transgenic PsGA3ox1 plants. Induction of expression of the GA deactivation gene PsGA2ox1 appears to make an important contribution to limiting the increase of internode GA1 to modest levels for the transgenic lines. In contrast, PsGA3ox1 (LE) expression driven by its endogenous promoter was coordinated within the internode tissue to avoid feed-forward regulation of PsGA2ox1, resulting in much greater GA1 accumulation. These studies further our fundamental understanding of the regulation of GA biosynthesis and catabolism at the tissue and organ level and demonstrate that the timing/localization of GA3ox expression within an organ affects both GA homeostasis and GA1 levels, and thereby growth.

  20. Psoriasiform skin disease in transgenic pigs with high-copy ectopic expression of human integrins α2 and β1

    PubMed Central

    Staunstrup, Nicklas Heine; Stenderup, Karin; Mortensen, Sidsel; Primo, Maria Nascimento; Steiniche, Torben; Liu, Ying; Li, Rong; Schmidt, Mette; Purup, Stig; Dagnæs-Hansen, Frederik; Schrøder, Lisbeth Dahl; Svensson, Lars; Petersen, Thomas Kongstad; Callesen, Henrik; Bolund, Lars

    2017-01-01

    ABSTRACT Psoriasis is a complex human-specific disease characterized by perturbed keratinocyte proliferation and a pro-inflammatory environment in the skin. Porcine skin architecture and immunity are very similar to that in humans, rendering the pig a suitable animal model for studying the biology and treatment of psoriasis. Expression of integrins, which is normally confined to the basal layer of the epidermis, is maintained in suprabasal keratinocytes in psoriatic skin, modulating proliferation and differentiation as well as leukocyte infiltration. Here, we generated minipigs co-expressing integrins α2 and β1 in suprabasal epidermal layers. Integrin-transgenic minipigs born into the project displayed skin phenotypes that correlated with the number of inserted transgenes. Molecular analyses were in good concordance with histological observations of psoriatic hallmarks, including hypogranulosis and T-lymphocyte infiltration. These findings mark the first creation of minipigs with a psoriasiform phenotype resembling human psoriasis and demonstrate that integrin signaling plays a key role in psoriasis pathology. PMID:28679670

  1. PrPC Governs Susceptibility to Prion Strains in Bank Vole, While Other Host Factors Modulate Strain Features.

    PubMed

    Espinosa, J C; Nonno, R; Di Bari, M; Aguilar-Calvo, P; Pirisinu, L; Fernández-Borges, N; Vanni, I; Vaccari, G; Marín-Moreno, A; Frassanito, P; Lorenzo, P; Agrimi, U; Torres, J M

    2016-12-01

    Bank vole is a rodent species that shows differential susceptibility to the experimental transmission of different prion strains. In this work, the transmission features of a panel of diverse prions with distinct origins were assayed both in bank vole expressing methionine at codon 109 (Bv109M) and in transgenic mice expressing physiological levels of bank vole PrP C (the BvPrP-Tg407 mouse line). This work is the first systematic comparison of the transmission features of a collection of prion isolates, representing a panel of diverse prion strains, in a transgenic-mouse model and in its natural counterpart. The results showed very similar transmission properties in both the natural species and the transgenic-mouse model, demonstrating the key role of the PrP amino acid sequence in prion transmission susceptibility. However, differences in the PrP Sc types propagated by Bv109M and BvPrP-Tg407 suggest that host factors other than PrP C modulate prion strain features. The differential susceptibility of bank voles to prion strains can be modeled in transgenic mice, suggesting that this selective susceptibility is controlled by the vole PrP sequence alone rather than by other species-specific factors. Differences in the phenotypes observed after prion transmissions in bank voles and in the transgenic mice suggest that host factors other than the PrP C sequence may affect the selection of the substrain replicating in the animal model. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Polyhydroxyalkanoate synthesis in transgenic plants as a new tool to study carbon flow through beta-oxidation.

    PubMed

    Mittendorf, V; Bongcam, V; Allenbach, L; Coullerez, G; Martini, N; Poirier, Y

    1999-10-01

    Transgenic plants producing peroxisomal polyhydroxy- alkanoate (PHA) from intermediates of fatty acid degradation were used to study carbon flow through the beta-oxidation cycle. Growth of transgenic plants in media containing fatty acids conjugated to Tween detergents resulted in an increased accumulation of PHA and incorporation into the polyester of monomers derived from the beta-oxidation of these fatty acids. Tween-laurate was a stronger inducer of beta-oxidation, as measured by acyl-CoA oxidase activity, and a more potent modulator of PHA quantity and monomer composition than Tween-oleate. Plants co-expressing a peroxisomal PHA synthase with a capryl-acyl carrier protein thioesterase from Cuphea lanceolata produced eightfold more PHA compared to plants expressing only the PHA synthase. PHA produced in double transgenic plants contained mainly saturated monomers ranging from 6 to 10 carbons, indicating an enhanced flow of capric acid towards beta-oxidation. Together, these results support the hypothesis that plant cells have mechanisms which sense levels of free or esterified unusual fatty acids, resulting in changes in the activity of the beta-oxidation cycle as well as removal and degradation of these unusual fatty acids through beta-oxidation. Such enhanced flow of fatty acids through beta-oxidation can be utilized to modulate the amount and composition of PHA produced in transgenic plants. Furthermore, synthesis of PHAs in plants can be used as a new tool to study the quality and relative quantity of the carbon flow through beta-oxidation as well as to analyse the degradation pathway of unusual fatty acids.

  3. Infection by ME7 prion is not modified in transgenic mice expressing the yeast chaperone Hsp104 in neurons.

    PubMed

    Dandoy-Dron, Françoise; Bogdanova, Anna; Beringue, Vincent; Bailly, Yannick; Tovey, Michael G; Laude, Hubert; Dron, Michel

    2006-09-25

    The Hsp104 chaperone induces thermo-tolerance in yeast and rescues proteins trapped in aggregates. In this study, we showed that xenogenic expression of Hsp104 dramatically increased the viability of the neuronal mouse CAD cell line after exposure to heat shock. These results indicate that the Hsp104 protein confers thermo-resistance to mammalian neuronal cells, the canonical property of Hsp104 in yeast. Hsp104 also determines the prion state of prion-like proteins in yeast and to investigate whether Hsp104 expression may modify mammalian prion infection in vivo, transgenic mice with specific expression of Hsp104 in neurons were generated. Mice develop and reproduce normally, they show no detectable physical defect and may constitute valuable model for the study of aggregation-prone neuropathological disorders. Hsp104 transgenic and control littermates were infected intracerebrally with the ME7 strain of scrapie. No differences in the incubation time of the disease or in PrP(Sc) accumulation were observed between transgenic and control mice. These results suggest that the heat-shock protein Hsp104 is not efficient to modulate the multiplication of mammalian prions and/or to counteract neurodegeneration in the brain of scrapie-infected mice.

  4. Optical modulation of transgene expression in retinal pigment epithelium

    NASA Astrophysics Data System (ADS)

    Palanker, D.; Lavinsky, D.; Chalberg, T.; Mandel, Y.; Huie, P.; Dalal, R.; Marmor, M.

    2013-03-01

    Over a million people in US alone are visually impaired due to the neovascular form of age-related macular degeneration (AMD). The current treatment is monthly intravitreal injections of a protein which inhibits Vascular Endothelial Growth Factor, thereby slowing progression of the disease. The immense financial and logistical burden of millions of intravitreal injections signifies an urgent need to develop more long-lasting and cost-effective treatments for this and other retinal diseases. Viral transfection of ocular cells allows creation of a "biofactory" that secretes therapeutic proteins. This technique has been proven successful in non-human primates, and is now being evaluated in clinical trials for wet AMD. However, there is a critical need to down-regulate gene expression in the case of total resolution of retinal condition, or if patient has adverse reaction to the trans-gene products. The site for genetic therapy of AMD and many other retinal diseases is the retinal pigment epithelium (RPE). We developed and tested in pigmented rabbits, an optical method to down-regulate transgene expression in RPE following vector delivery, without retinal damage. Microsecond exposures produced by a rapidly scanning laser vaporize melanosomes and destroy a predetermined fraction of the RPE cells selectively. RPE continuity is restored within days by migration and proliferation of adjacent RPE, but since the transgene is not integrated into the nucleus it is not replicated. Thus, the decrease in transgene expression can be precisely determined by the laser pattern density and further reduced by repeated treatment without affecting retinal structure and function.

  5. Expression of recombinant human α-lactalbumin in milk of transgenic cloned pigs is sufficient to enhance intestinal growth and weight gain of suckling piglets.

    PubMed

    Ma, Jin; Li, Qiuyan; Li, Yan; Wen, Xiao; Li, Zhiyuan; Zhang, Zaihu; Zhang, Jiuming; Yu, Zhengquan; Li, Ning

    2016-06-10

    Human α-lactalbumin (HLA) has very high nutritional value and important physiological functions during the neonatal period. The peptides derived from HLA provide diverse health benefits including antimicrobial, antiviral, immune-modulating, and antihypertensive effects. Thus, it is worth investigating the effects on offspring development of increasing HLA in milk. In this study, we found that recombinant human α-lactalbumin (rHLA) exhibits efficient inhibition of dipeptidyl peptidase-IV (DPP-IV) activity in an in vitro simulated gastrointestinal digestion system. Using a BAC clone containing the complete HLA gene as a candidate vector, we generated two lines of transgenic cloned sows via somatic cell nuclear transfer that over-expressed rHLA. The average concentrations of rHLA in milk from the two lines of transgenic cloned sows were 2.24 ± 0.71 mg/ml and 2.67 ± 1.29 mg/ml. The feeding experiments revealed that rHLA represses dipeptidyl peptidase-IV (DPP-IV) activity in vivo. Furthermore, the piglets reared by rHLA transgenic cloned sows exhibit better performance in gain of body weight and intestine growth than the control piglets reared by non-transgenic sows. Therefore, these findings indicate that rHLA could serve as a natural precursor for a DPP-IV inhibitor, and the transgenic technology that produced the over-expression of rHLA could be a useful method for pig breeders to improve lactation performance. Copyright © 2016. Published by Elsevier B.V.

  6. Purification and Characterization of Recombinant Human Lysozyme from Eggs of Transgenic Chickens.

    PubMed

    Wu, Hanyu; Cao, Dainan; Liu, Tongxin; Zhao, Jianmin; Hu, Xiaoxiang; Li, Ning

    2015-01-01

    Transgenic chickens as bioreactors have several advantages, such as the simple establishment procedure, correct glycosylation profile of expressed proteins, etc. Lysozyme is widely used in food industry, livestock farming, and medical field as a replacement of antibiotics because of its antibacterial and complement system-modulating activity. In this study, we used RT-PCR, Western blot, and immunofluorescence to detect the expression of recombinant human lysozyme (rhLY) in the transgenic chicken. We demonstrated that the transgene of rhLY was genetically stable across different generations. We next optimized the purification procedure of rhLY from the transgenic eggs by utilizing two steps of cation-exchange chromatography and one gel-filtration chromatography. About 6 mg rhLY with the purity exceeding 90% was obtained from ten eggs, and the purification efficiency was about 75%. The purified rhLY had similar physicochemical and biological properties in molecular mass and antibacterial activity compared to the commercial human lysozyme. Additionally, both of them exhibited thermal stability at 60°C and tolerated an extensive pH range of 2 to 11. In conclusion, our study proved that the transgenic chickens we have previously generated were genetically stable and suitable for the production of active rhLY. We also provided a pipeline for purifying the recombinant proteins from transgenic eggs, which could be useful for other studies.

  7. Purification and Characterization of Recombinant Human Lysozyme from Eggs of Transgenic Chickens

    PubMed Central

    Wu, Hanyu; Cao, Dainan; Liu, Tongxin; Zhao, Jianmin; Hu, Xiaoxiang; Li, Ning

    2015-01-01

    Transgenic chickens as bioreactors have several advantages, such as the simple establishment procedure, correct glycosylation profile of expressed proteins, etc. Lysozyme is widely used in food industry, livestock farming, and medical field as a replacement of antibiotics because of its antibacterial and complement system-modulating activity. In this study, we used RT-PCR, Western blot, and immunofluorescence to detect the expression of recombinant human lysozyme (rhLY) in the transgenic chicken. We demonstrated that the transgene of rhLY was genetically stable across different generations. We next optimized the purification procedure of rhLY from the transgenic eggs by utilizing two steps of cation-exchange chromatography and one gel-filtration chromatography. About 6 mg rhLY with the purity exceeding 90% was obtained from ten eggs, and the purification efficiency was about 75%. The purified rhLY had similar physicochemical and biological properties in molecular mass and antibacterial activity compared to the commercial human lysozyme. Additionally, both of them exhibited thermal stability at 60°C and tolerated an extensive pH range of 2 to 11. In conclusion, our study proved that the transgenic chickens we have previously generated were genetically stable and suitable for the production of active rhLY. We also provided a pipeline for purifying the recombinant proteins from transgenic eggs, which could be useful for other studies. PMID:26713728

  8. Depressed expression of FAE1 and FAD2 genes modifies fatty acid profiles and storage compounds accumulation in Brassica napus seeds.

    PubMed

    Shi, Jianghua; Lang, Chunxiu; Wang, Fulin; Wu, Xuelong; Liu, Renhu; Zheng, Tao; Zhang, Dongqing; Chen, Jinqing; Wu, Guanting

    2017-10-01

    In plants, the enzymes fatty acid dehydrogenase 2 (FAD2) and fatty acid elongase 1 (FAE1) have been shown in previous studies to play important roles in the de novo biosynthesis of fatty acids. However, the effects of depressed expression of FAD2 and FAE1 on seed storage compounds accumulation remains to be elucidated. In this study, we produced RNA interfering transgenic rapeseeds lines, BnFAD2-Ri, BnFAE1-Ri and BnFAD2/BnFAE1-Ri, which exhibited depressed expression of the BnFAD2 and BnFAE1 genes under the control of seed-specific napin A promoter. These transgenic rapeseeds showed normal growth and development as compared with the wild type (CY2). Depressed expression of BnFAD2 and BnFAE1 genes modified fatty acid profiles, leading to increased oleic acid and decreased erucic acid contents in transgenic seeds. Consistent with these results, the ratios of C18:1/C18:2 and C18:1/C18:3 in C18 unsaturated fatty acids were greatly increased due to increased oleic acid content in transgenic seeds. Moreover, depressed expression of BnFAD2 and BnFAE1 genes resulted in slightly decreased oil contents and increased protein contents in transgenic seeds. Our results demonstrated that depressed expression of BnFAD2 and BnFAE1 greatly improves seed nutritional quality by modulating the fatty acid metabolism and storage products accumulation and that BnFAD2 and BnFAE1 are reliable targets for genetic improvement of rapeseed in seed nutritional quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Mild expression differences of MECP2 influencing aggressive social behavior

    PubMed Central

    Tantra, Martesa; Hammer, Christian; Kästner, Anne; Dahm, Liane; Begemann, Martin; Bodda, Chiranjeevi; Hammerschmidt, Kurt; Giegling, Ina; Stepniak, Beata; Castillo Venzor, Aracely; Konte, Bettina; Erbaba, Begun; Hartmann, Annette; Tarami, Asieh; Schulz-Schaeffer, Walter; Rujescu, Dan; Mannan, Ashraf U; Ehrenreich, Hannelore

    2014-01-01

    The X-chromosomal MECP2/Mecp2 gene encodes methyl-CpG-binding protein 2, a transcriptional activator and repressor regulating many other genes. We discovered in male FVB/N mice that mild (∼50%) transgenic overexpression of Mecp2 enhances aggression. Surprisingly, when the same transgene was expressed in C57BL/6N mice, transgenics showed reduced aggression and social interaction. This suggests that Mecp2 modulates aggressive social behavior. To test this hypothesis in humans, we performed a phenotype-based genetic association study (PGAS) in >1000 schizophrenic individuals. We found MECP2 SNPs rs2239464 (G/A) and rs2734647 (C/T; 3′UTR) associated with aggression, with the G and C carriers, respectively, being more aggressive. This finding was replicated in an independent schizophrenia cohort. Allele-specific MECP2mRNA expression differs in peripheral blood mononuclear cells by ∼50% (rs2734647: C > T). Notably, the brain-expressed, species-conserved miR-511 binds to MECP2 3′UTR only in T carriers, thereby suppressing gene expression. To conclude, subtle MECP2/Mecp2 expression alterations impact aggression. While the mouse data provides evidence of an interaction between genetic background and mild Mecp2 overexpression, the human data convey means by which genetic variation affects MECP2 expression and behavior. PMID:24648499

  10. Mild expression differences of MECP2 influencing aggressive social behavior.

    PubMed

    Tantra, Martesa; Hammer, Christian; Kästner, Anne; Dahm, Liane; Begemann, Martin; Bodda, Chiranjeevi; Hammerschmidt, Kurt; Giegling, Ina; Stepniak, Beata; Castillo Venzor, Aracely; Konte, Bettina; Erbaba, Begun; Hartmann, Annette; Tarami, Asieh; Schulz-Schaeffer, Walter; Rujescu, Dan; Mannan, Ashraf U; Ehrenreich, Hannelore

    2014-05-01

    The X-chromosomal MECP2/Mecp2 gene encodes methyl-CpG-binding protein 2, a transcriptional activator and repressor regulating many other genes. We discovered in male FVB/N mice that mild (~50%) transgenic overexpression of Mecp2 enhances aggression. Surprisingly, when the same transgene was expressed in C57BL/6N mice, transgenics showed reduced aggression and social interaction. This suggests that Mecp2 modulates aggressive social behavior. To test this hypothesis in humans, we performed a phenotype-based genetic association study (PGAS) in >1000 schizophrenic individuals. We found MECP2 SNPs rs2239464 (G/A) and rs2734647 (C/T; 3'UTR) associated with aggression, with the G and C carriers, respectively, being more aggressive. This finding was replicated in an independent schizophrenia cohort. Allele-specific MECP2 mRNA expression differs in peripheral blood mononuclear cells by ~50% (rs2734647: C > T). Notably, the brain-expressed, species-conserved miR-511 binds to MECP2 3'UTR only in T carriers, thereby suppressing gene expression. To conclude, subtle MECP2/Mecp2 expression alterations impact aggression. While the mouse data provides evidence of an interaction between genetic background and mild Mecp2 overexpression, the human data convey means by which genetic variation affects MECP2 expression and behavior.

  11. Coordinate cytokine regulatory sequences

    DOEpatents

    Frazer, Kelly A.; Rubin, Edward M.; Loots, Gabriela G.

    2005-05-10

    The present invention provides CNS sequences that regulate the cytokine gene expression, expression cassettes and vectors comprising or lacking the CNS sequences, host cells and non-human transgenic animals comprising the CNS sequences or lacking the CNS sequences. The present invention also provides methods for identifying compounds that modulate the functions of CNS sequences as well as methods for diagnosing defects in the CNS sequences of patients.

  12. The double-stranded RNA binding protein RDE-4 can act cell autonomously during feeding RNAi in C. elegans

    PubMed Central

    Raman, Pravrutha; Zaghab, Soriayah M.; Traver, Edward C.

    2017-01-01

    Abstract Long double-stranded RNA (dsRNA) can silence genes of matching sequence upon ingestion in many invertebrates and is therefore being developed as a pesticide. Such feeding RNA interference (RNAi) is best understood in the worm Caenorhabditis elegans, where the dsRNA-binding protein RDE-4 initiates silencing by recruiting an endonuclease to process long dsRNA into short dsRNA. These short dsRNAs are thought to move between cells because muscle-specific rescue of rde-4 using repetitive transgenes enables silencing in other tissues. Here, we extend this observation using additional promoters, report an inhibitory effect of repetitive transgenes, and discover conditions for cell-autonomous silencing in animals with tissue-specific rescue of rde-4. While expression of rde-4(+) in intestine, hypodermis, or neurons using a repetitive transgene can enable silencing also in unrescued tissues, silencing can be inhibited wihin tissues that express a repetitive transgene. Single-copy transgenes that express rde-4(+) in body-wall muscles or hypodermis, however, enable silencing selectively in the rescued tissue but not in other tissues. These results suggest that silencing by the movement of short dsRNA between cells is not an obligatory feature of feeding RNAi in C. elegans. We speculate that similar control of dsRNA movement could modulate tissue-specific silencing by feeding RNAi in other invertebrates. PMID:28541563

  13. Development of Transgenic Cloned Pig Models of Skin Inflammation by DNA Transposon-Directed Ectopic Expression of Human β1 and α2 Integrin

    PubMed Central

    Staunstrup, Nicklas Heine; Madsen, Johannes; Primo, Maria Nascimento; Li, Juan; Liu, Ying; Kragh, Peter M.; Li, Rong; Schmidt, Mette; Purup, Stig; Dagnæs-Hansen, Frederik; Svensson, Lars; Petersen, Thomas K.; Callesen, Henrik; Bolund, Lars; Mikkelsen, Jacob Giehm

    2012-01-01

    Integrins constitute a superfamily of transmembrane signaling receptors that play pivotal roles in cutaneous homeostasis by modulating cell growth and differentiation as well as inflammatory responses in the skin. Subrabasal expression of integrins α2 and/or β1 entails hyperproliferation and aberrant differentiation of keratinocytes and leads to dermal and epidermal influx of activated T-cells. The anatomical and physiological similarities between porcine and human skin make the pig a suitable model for human skin diseases. In efforts to generate a porcine model of cutaneous inflammation, we employed the Sleeping Beauty DNA transposon system for production of transgenic cloned Göttingen minipigs expressing human β1 or α2 integrin under the control of a promoter specific for subrabasal keratinocytes. Using pools of transgenic donor fibroblasts, cloning by somatic cell nuclear transfer was utilized to produce reconstructed embryos that were subsequently transferred to surrogate sows. The resulting pigs were all transgenic and harbored from one to six transgene integrants. Molecular analyses on skin biopsies and cultured keratinocytes showed ectopic expression of the human integrins and localization within the keratinocyte plasma membrane. Markers of perturbed skin homeostasis, including activation of the MAPK pathway, increased expression of the pro-inflammatory cytokine IL-1α, and enhanced expression of the transcription factor c-Fos, were identified in keratinocytes from β1 and α2 integrin-transgenic minipigs, suggesting the induction of a chronic inflammatory phenotype in the skin. Notably, cellular dysregulation obtained by overexpression of either β1 or α2 integrin occurred through different cellular signaling pathways. Our findings mark the creation of the first cloned pig models with molecular markers of skin inflammation. Despite the absence of an overt psoriatic phenotype, these animals may possess increased susceptibility to severe skin damage-induced inflammation and should be of great potential in studies aiming at the development and refinement of topical therapies for cutaneous inflammation including psoriasis. PMID:22590584

  14. Huperzine A alleviates synaptic deficits and modulates amyloidogenic and nonamyloidogenic pathways in APPswe/PS1dE9 transgenic mice.

    PubMed

    Wang, Ying; Tang, Xi Can; Zhang, Hai Yan

    2012-02-01

    Huperzine A (HupA) is a potent acetylcholinesterase inhibitor (AChEI) used in the treatment of Alzheimer's disease (AD). Recently, HupA was shown to be active in modulating the nonamyloidogenic metabolism of β-amyloid precursor protein (APP) in APP-transfected human embryonic kidney cell line (HEK293swe). However, in vivo research concerning the mechanism of HupA in APP transgenic mice has not yet been fully elucidated. The present study indicates that the loss of dendritic spine density and synaptotagmin levels in the brain of APPswe/presenilin-1 (PS1) transgenic mice was significantly ameliorated by chronic HupA treatment and provides evidence that this neuroprotection was associated with reduced amyloid plaque burden and oligomeric β-amyloid (Aβ) levels in the cortex and hippocampus of APPswe/PS1dE9 transgenic mice. Our findings further demonstrate that the amelioration effect of HupA on Aβ deposits may be mediated, at least in part, by regulation of the compromised expression of a disintegrin and metalloprotease 10 (ADAM10) and excessive membrane trafficking of β-site APP cleavage enzyme 1 (BACE1) in these transgenic mice. In addition, extracellular signal-regulated kinases 1/2 (Erk1/2) phosphorylation may also be partially involved in the effect of HupA on APP processing. In conclusion, our work for the first time demonstrates the neuroprotective effect of HupA on synaptic deficits in APPswe/PS1dE9 transgenic mice and further clarifies the potential pharmacological targets for this protective effect, in which modulation of nonamyloidogenic and amyloidogenic APP processing pathways may be both involved. These findings may provide adequate evidence for the clinical and experimental benefits gained from HupA treatment. Copyright © 2011 Wiley Periodicals, Inc.

  15. Identification of two integration sites in favor of transgene expression in Trichoderma reesei.

    PubMed

    Qin, Lina; Jiang, Xianzhang; Dong, Zhiyang; Huang, Jianzhong; Chen, Xiuzhen

    2018-01-01

    The ascomycete fungus Trichoderma reesei was widely used as a biotechnological workhorse for production of cellulases and recombinant proteins due to its large capacity of protein secretion. Transgenesis by random integration of a gene of interest (GOI) into the genome of T. reesei can generate series of strains that express different levels of the indicated transgene. The insertion site of the GOI plays an important role in the ultimate production of the targeted proteins. However, so far no systematic studies have been made to identify transgene integration loci for optimal expression of the GOI in T. reesei . Currently, only the locus of exocellobiohydrolases I encoding gene ( cbh1) is widely used as a promising integration site to lead to high expression level of the GOI. No additional sites associated with efficient gene expression have been characterized. To search for gene integration sites that benefit for the secreted expression of GOI, the food-and-mouth disease virus 2A protein was applied for co-expression of an Aspergillus niger lipA gene and Discosoma sp. DsRed1 gene in T. reesei, by random integration of the expression cassette into the genome. We demonstrated that the fluorescent intensity of RFP (red fluorescent protein) inside of the cell was well correlated with the secreted lipase yields, based on which, we successfully developed a high-throughput screening method to screen strains with relatively higher secreted expression of the GOI (in this study, lipase). The copy number and the insertion sites of the transgene were investigated among the selected highly expressed strains. Eventually, in addition to cbh1 gene locus, two other genome insertion loci that efficiently facilitate gene expression in T. reesei were identified. We have successfully developed a high-throughput screening method to screen strains with optimal expression of the indicated secreted proteins in T. reesei . Moreover, we identified two optimal genome loci for transgene expression, which could provide new approach to modulate gene expression levels while retaining the indicated promoter and culture conditions.

  16. Over-expression of a NAC 67 transcription factor from finger millet (Eleusine coracana L.) confers tolerance against salinity and drought stress in rice.

    PubMed

    Rahman, Hifzur; Ramanathan, Valarmathi; Nallathambi, Jagedeeshselvam; Duraialagaraja, Sudhakar; Muthurajan, Raveendran

    2016-05-11

    NAC proteins (NAM (No apical meristem), ATAF (Arabidopsis transcription activation factor) and CUC (cup-shaped cotyledon)) are plant-specific transcription factors reported to be involved in regulating growth, development and stress responses. Salinity responsive transcriptome profiling in a set of contrasting finger millet genotypes through RNA-sequencing resulted in the identification of a NAC homolog (EcNAC 67) exhibiting differential salinity responsive expression pattern. Full length cDNA of EcNAC67 was isolated, characterized and validated for its role in abiotic stress tolerance through agrobacterium mediated genetic transformation in a rice cultivar ASD16. Bioinformatics analysis of putative NAC transcription factor (TF) isolated from a salinity tolerant finger millet showed its genetic relatedness to NAC67 family TFs in related cereals. Putative transgenic lines of rice over-expressing EcNAC67 were generated through Agrobacterium mediated transformation and presence/integration of transgene was confirmed through PCR and southern hybridization analysis. Transgenic rice plants harboring EcNAC67 showed enhanced tolerance against drought and salinity under greenhouse conditions. Transgenic rice plants were found to possess higher root and shoot biomass during stress and showed better revival ability upon relief from salinity stress. Upon drought stress, transgenic lines were found to maintain higher relative water content and lesser reduction in grain yield when compared to non-transgenic ASD16 plants. Drought induced spikelet sterility was found to be much lower in the transgenic lines than the non-transgenic ASD16. Results revealed the significant role of EcNAC67 in modulating responses against dehydration stress in rice. No detectable abnormalities in the phenotypic traits were observed in the transgenic plants under normal growth conditions. Results indicate that EcNAC67 can be used as a novel source for engineering tolerance against drought and salinity stress in rice and other crop plants.

  17. Multiple effects of genetic background on variegated transgene expression in mice.

    PubMed Central

    Opsahl, Margaret L; McClenaghan, Margaret; Springbett, Anthea; Reid, Sarah; Lathe, Richard; Colman, Alan; Whitelaw, C Bruce A

    2002-01-01

    BLG/7 transgenic mice express an ovine beta-lactoglobulin transgene during lactation. Unusually, transgene expression levels in milk differ between siblings. This variable expression is due to variegated transgene expression in the mammary gland and is reminiscent of position-effect variegation. The BLG/7 line was created and maintained on a mixed CBA x C57BL/6 background. We have investigated the effect on transgene expression of backcrossing for 13 generations into these backgrounds. Variable transgene expression was observed in all populations examined, confirming that it is an inherent property of the transgene array at its site of integration. There were also strain-specific effects on transgene expression that appear to be independent of the inherent variegation. The transgene, compared to endogenous milk protein genes, is specifically susceptible to inbreeding depression. Outcrossing restored transgene expression levels to that of the parental population; thus suppression was not inherited. Finally, no generation-dependent decrease in mean expression levels was observed in the parental population. Thus, although the BLG/7 transgene is expressed in a variegated manner, there was no generation-associated accumulated silencing of transgene expression. PMID:11901126

  18. Multiple effects of genetic background on variegated transgene expression in mice.

    PubMed

    Opsahl, Margaret L; McClenaghan, Margaret; Springbett, Anthea; Reid, Sarah; Lathe, Richard; Colman, Alan; Whitelaw, C Bruce A

    2002-03-01

    BLG/7 transgenic mice express an ovine beta-lactoglobulin transgene during lactation. Unusually, transgene expression levels in milk differ between siblings. This variable expression is due to variegated transgene expression in the mammary gland and is reminiscent of position-effect variegation. The BLG/7 line was created and maintained on a mixed CBA x C57BL/6 background. We have investigated the effect on transgene expression of backcrossing for 13 generations into these backgrounds. Variable transgene expression was observed in all populations examined, confirming that it is an inherent property of the transgene array at its site of integration. There were also strain-specific effects on transgene expression that appear to be independent of the inherent variegation. The transgene, compared to endogenous milk protein genes, is specifically susceptible to inbreeding depression. Outcrossing restored transgene expression levels to that of the parental population; thus suppression was not inherited. Finally, no generation-dependent decrease in mean expression levels was observed in the parental population. Thus, although the BLG/7 transgene is expressed in a variegated manner, there was no generation-associated accumulated silencing of transgene expression.

  19. Tumorigenic potential of pituitary tumor transforming gene (PTTG) in vivo investigated using a transgenic mouse model, and effects of cross breeding with p53 (+/-) transgenic mice.

    PubMed

    Fong, Miranda Y; Farghaly, Hanan; Kakar, Sham S

    2012-11-20

    Pituitary tumor-transforming gene (PTTG) is an oncogene that is overexpressed in variety of tumors and exhibits characteristics of a transforming gene. Previous transgenic mouse models to access the tumorigenic potential in the pituitary and ovary have resulted in dysplasia without formation of visible tumors, possibly due to the insufficient expression of PTTG. PTTG expression level is critical for ovarian tumorigenesis in a xenograft model. Therefore, the tumorigenic function of PTTG in vivo remains unclear. We generated a transgenic mouse that overexpresses PTTG driven by the CMV promoter to determine whether PTTG functions as a transforming oncogene that is capable of initiating tumorigenesis. Transgenic animals were generated by microinjection of PTTG transgene into the male pronucleus of FVB 0.5 day old embryos. Expression levels of PTTG in tissues of transgenic animals were analyzed using an immunohistochemical analysis. H&E staining and immunohistostaining were performed to examine the type of tumor in transgenic and PTTG transgenic/p53+/- animals. PTTG transgenic offspring (TgPTTG) were monitored for tumor development at various ages. H&E analysis was performed to identify the presence of cancer and hyperplastic conditions verified with the proliferation marker PCNA and the microvessel marker CD31. Immunohistochemistry was performed to determine transgene expression, revealing localization to the epithelium of the fallopian tube, with more generalized expression in the liver, lung, kidney, and spleen. At eight months of age, 2 out of 15 TgPTTG developed ovarian cancer, 2 out of 15 developed benign tumors, 2 out of 15 developed cervical dysplasia, and 3 out of 15 developed adenomyosis of the uterus. At ten months of age, 2 out of 10 TgPTTG developed adenocarcinoma of the ovary, 1 out of 10 developed a papillary serous adenocarcinoma, and 2 out of 10 presented with atypia of ovarian epithelial cells. Tumorigenesis is a multi-step process, often requiring multiple oncogenes and/or inactivation of tumor suppressor genes. Therefore, to understand the contribution of p53 to PTTG induced tumorigenesis, we crossbred TgPTTG to p53+/- mice and maintained those 8 to 10 months. TgPTTG/p53+/- animals developed sarcomas faster than p53+/- alone as well as different tumor types in addition to cervical carcinomas in situ in 10 out of 17 females. We conclude that while PTTG is a functional transforming oncogene, it requires an additional partner to effectively promote tumorigenesis through the loss of p53 include or between function or modulation.

  20. Extending juvenility in grasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaeppler, Shawn; de Leon Gatti, Natalia; Foerster, Jillian

    The present invention relates to compositions and methods for modulating the juvenile to adult developmental growth transition in plants, such as grasses (e.g. maize). In particular, the invention provides methods for enhancing agronomic properties in plants by modulating expression of GRMZM2G362718, GRMZM2G096016, or homologs thereof. Modulation of expression of one or more additional genes which affect juvenile to adult developmental growth transition such as Glossy15 or Cg1, in conjunction with such modulation of expression is also contemplated. Nucleic acid constructs for down-regulation of GRMZM2G362718 and/or GRMZM2G096016 are also contemplated, as are transgenic plants and products produced there from, that demonstratemore » altered, such as extended juvenile growth, and display associated phenotypes such as enhanced yield, improved digestibility, and increased disease resistance. Plants described herein may be used, for example, as improved forage or feed crops or in biofuel production.« less

  1. Psoriasiform skin disease in transgenic pigs with high-copy ectopic expression of human integrins α2 and β1.

    PubMed

    Staunstrup, Nicklas Heine; Stenderup, Karin; Mortensen, Sidsel; Primo, Maria Nascimento; Rosada, Cecilia; Steiniche, Torben; Liu, Ying; Li, Rong; Schmidt, Mette; Purup, Stig; Dagnæs-Hansen, Frederik; Schrøder, Lisbeth Dahl; Svensson, Lars; Petersen, Thomas Kongstad; Callesen, Henrik; Bolund, Lars; Mikkelsen, Jacob Giehm

    2017-07-01

    Psoriasis is a complex human-specific disease characterized by perturbed keratinocyte proliferation and a pro-inflammatory environment in the skin. Porcine skin architecture and immunity are very similar to that in humans, rendering the pig a suitable animal model for studying the biology and treatment of psoriasis. Expression of integrins, which is normally confined to the basal layer of the epidermis, is maintained in suprabasal keratinocytes in psoriatic skin, modulating proliferation and differentiation as well as leukocyte infiltration. Here, we generated minipigs co-expressing integrins α2 and β1 in suprabasal epidermal layers. Integrin-transgenic minipigs born into the project displayed skin phenotypes that correlated with the number of inserted transgenes. Molecular analyses were in good concordance with histological observations of psoriatic hallmarks, including hypogranulosis and T-lymphocyte infiltration. These findings mark the first creation of minipigs with a psoriasiform phenotype resembling human psoriasis and demonstrate that integrin signaling plays a key role in psoriasis pathology. © 2017. Published by The Company of Biologists Ltd.

  2. Modulation of tissue repair by regeneration enhancer elements.

    PubMed

    Kang, Junsu; Hu, Jianxin; Karra, Ravi; Dickson, Amy L; Tornini, Valerie A; Nachtrab, Gregory; Gemberling, Matthew; Goldman, Joseph A; Black, Brian L; Poss, Kenneth D

    2016-04-14

    How tissue regeneration programs are triggered by injury has received limited research attention. Here we investigate the existence of enhancer regulatory elements that are activated in regenerating tissue. Transcriptomic analyses reveal that leptin b (lepb) is highly induced in regenerating hearts and fins of zebrafish. Epigenetic profiling identified a short DNA sequence element upstream and distal to lepb that acquires open chromatin marks during regeneration and enables injury-dependent expression from minimal promoters. This element could activate expression in injured neonatal mouse tissues and was divisible into tissue-specific modules sufficient for expression in regenerating zebrafish fins or hearts. Simple enhancer-effector transgenes employing lepb-linked sequences upstream of pro- or anti-regenerative factors controlled the efficacy of regeneration in zebrafish. Our findings provide evidence for 'tissue regeneration enhancer elements' (TREEs) that trigger gene expression in injury sites and can be engineered to modulate the regenerative potential of vertebrate organs.

  3. Muscle Expression of SOD1(G93A) Modulates microRNA and mRNA Transcription Pattern Associated with the Myelination Process in the Spinal Cord of Transgenic Mice.

    PubMed

    Dobrowolny, Gabriella; Bernardini, Camilla; Martini, Martina; Baranzini, Mirko; Barba, Marta; Musarò, Antonio

    2015-01-01

    A crucial system severely affected in several neuromuscular diseases is the loss of effective connection between muscle and nerve, leading to a pathological non-communication between the two tissues. One of the best examples of impaired interplay between muscle and nerve is Amyotrophic Lateral Sclerosis, a neurodegenerative disease characterized by degeneration of motor neurons and muscle atrophy. Increasing evidences suggest that damage to motor neurons is enhanced by alterations in the neighboring non-neuronal cells and indicate that altered skeletal muscle might be the source of signals that impinge motor neuron activity and survival. Here we investigated whether muscle selective expression of SOD1(G93A) mutant gene modulates mRNAs and miRNAs expression at the level of spinal cord of MLC/SOD1(G93A) mice. Using a Taqman array, the Affymetrix Mouse Gene 2.0 ST approach and the MiRwalk 2.0 database, which provides information on miRNA and their predicted target genes, we revealed that muscle specific expression of SOD1(G93A) modulates relevant molecules of the genetic and epigenetic circuitry of myelin homeostasis in spinal cord of transgenic mice. Our study provides insights into the pathophysiological interplay between muscle and nerve and supports the hypothesis that muscle is a source of signals that can either positively or negatively affect the nervous system.

  4. Spermine modulates the expression of two probable polyamine transporter genes and determines growth responses to cadaverine in Arabidopsis.

    PubMed

    Sagor, G H M; Berberich, Thomas; Kojima, Seiji; Niitsu, Masaru; Kusano, Tomonobu

    2016-06-01

    Two genes, LAT1 and OCT1 , are likely to be involved in polyamine transport in Arabidopsis. Endogenous spermine levels modulate their expression and determine the sensitivity to cadaverine. Arabidopsis spermine (Spm) synthase (SPMS) gene-deficient mutant was previously shown to be rather resistant to the diamine cadaverine (Cad). Furthermore, a mutant deficient in polyamine oxidase 4 gene, accumulating about twofold more of Spm than wild type plants, showed increased sensitivity to Cad. It suggests that endogenous Spm content determines growth responses to Cad in Arabidopsis thaliana. Here, we showed that Arabidopsis seedlings pretreated with Spm absorbs more Cad and has shorter root growth, and that the transgenic Arabidopsis plants overexpressing the SPMS gene are hypersensitive to Cad, further supporting the above idea. The transgenic Arabidopsis overexpressing L-Amino acid Transporter 1 (LAT1) absorbed more Cad and showed increased Cad sensitivity, suggesting that LAT1 functions as a Cad importer. Recently, other research group reported that Organic Cation Transporter 1 (OCT1) is a causal gene which determines the Cad sensitivity of various Arabidopsis accessions. Furthermore, their results suggested that OCT1 is involved in Cad efflux. Thus we monitored the expression of OCT1 and LAT1 during the above experiments. Based on the results, we proposed a model in which the level of Spm content modulates the expression of OCT1 and LAT1, and determines Cad sensitivity of Arabidopsis.

  5. The double-stranded RNA binding protein RDE-4 can act cell autonomously during feeding RNAi in C. elegans.

    PubMed

    Raman, Pravrutha; Zaghab, Soriayah M; Traver, Edward C; Jose, Antony M

    2017-08-21

    Long double-stranded RNA (dsRNA) can silence genes of matching sequence upon ingestion in many invertebrates and is therefore being developed as a pesticide. Such feeding RNA interference (RNAi) is best understood in the worm Caenorhabditis elegans, where the dsRNA-binding protein RDE-4 initiates silencing by recruiting an endonuclease to process long dsRNA into short dsRNA. These short dsRNAs are thought to move between cells because muscle-specific rescue of rde-4 using repetitive transgenes enables silencing in other tissues. Here, we extend this observation using additional promoters, report an inhibitory effect of repetitive transgenes, and discover conditions for cell-autonomous silencing in animals with tissue-specific rescue of rde-4. While expression of rde-4(+) in intestine, hypodermis, or neurons using a repetitive transgene can enable silencing also in unrescued tissues, silencing can be inhibited wihin tissues that express a repetitive transgene. Single-copy transgenes that express rde-4(+) in body-wall muscles or hypodermis, however, enable silencing selectively in the rescued tissue but not in other tissues. These results suggest that silencing by the movement of short dsRNA between cells is not an obligatory feature of feeding RNAi in C. elegans. We speculate that similar control of dsRNA movement could modulate tissue-specific silencing by feeding RNAi in other invertebrates. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Nucleic acids encoding metal uptake transporters and their uses

    DOEpatents

    Schroeder, Julian I.; Antosiewicz, Danuta M.; Schachtman, Daniel P.; Clemens, Stephan

    1999-01-01

    The invention provides LCT1 nucleic acids which encode metal ion uptake transporters. The invention also provides methods of modulating heavy metal and alkali metal uptake in plants. The methods involve producing transgenic plants comprising a recombinant expression cassette containing an LCT1 nucleic acid linked to a plant promoter.

  7. OsACA6, a P-type 2B Ca(2+) ATPase functions in cadmium stress tolerance in tobacco by reducing the oxidative stress load.

    PubMed

    Shukla, Devesh; Huda, Kazi Md Kamrul; Banu, Mst Sufara Akhter; Gill, Sarvajeet Singh; Gill, Sarvjeet Singh; Tuteja, Renu; Tuteja, Narendra

    2014-10-01

    The present study demonstrates the first direct evidence of the novel role of OsACA6 in providing Cd (2+) stress tolerance in transgenic tobacco by maintaining cellular ion homeostasis and modulating ROS-scavenging pathway. Cadmium, a non-essential toxic heavy metal, interferes with the plant growth and development. It reaches the leaves through xylem and may become part of the food chain, thus causing detrimental effects to human health. Therefore, there is an urgent need to develop strategies for engineering plants for Cd(2+) tolerance and less accumulation. The members of P-type ATPases family transport metal ions including Cd(2+), and thus play important role an ion homeostasis. The present study elucidates the role of P-type 2B Ca(2+) ATPase (OsACA6) in Cd(2+) stress tolerance. The transcript levels of OsACA6 were up-regulated upon Cd(2+), Zn(2+) and Mn(2+) exposure. Transgenic tobacco expressing OsACA6 showed tolerance towards Cd(2+) stress as demonstrated by several physiological indices including root length, biomass, chlorophyll, malondialdehyde and hydrogen peroxide content. The roots of the transgenic lines accumulated more Cd(2+) as compared to shoot. Further, confocal laser scanning microscopy showed that Cd(2+) exposure altered Ca(2+) uptake in OsACA6 transgenic plants. OsACA6 expression in tobacco also protected the transgenic plants from oxidative stress by enhancing the activity of enzymatic (SOD, CAT, APX, GR) and non-enzymatic (GSH and AsA) antioxidant machinery. Transgenic lines also tolerated Zn(2+) and Mn(2+) stress; however, tolerance for these ions was not as significant as observed for Cd(2+) exposure. Thus, overexpression of OsACA6 confers Cd(2+) stress tolerance in transgenic lines by maintaining cellular ion homeostasis and modulating reactive oxygen species (ROS)-scavenging pathway. The results of the present study will help to develop strategies for engineering Cd(2+) stress tolerance in economically important crop plants.

  8. NNMT activation can contribute to the development of fatty liver disease by modulating the NAD + metabolism.

    PubMed

    Komatsu, Motoaki; Kanda, Takeshi; Urai, Hidenori; Kurokochi, Arata; Kitahama, Rina; Shigaki, Shuhei; Ono, Takashi; Yukioka, Hideo; Hasegawa, Kazuhiro; Tokuyama, Hirobumi; Kawabe, Hiroshi; Wakino, Shu; Itoh, Hiroshi

    2018-06-05

    Nicotinamide N-methyltransferase (NNMT) catalyses the reaction between nicotinamide (NAM) and S-adenosylmethionine to produce 1-methylnicotinamide and S-adenosylhomocysteine. Recently, this enzyme has also been reported to modulate hepatic nutrient metabolism, but its role in the liver has not been fully elucidated. We developed transgenic mice overexpressing NNMT to elucidate its role in hepatic nutrient metabolism. When fed a high fat diet containing NAM, a precursor for nicotinamide adenine dinucleotide (NAD) + , these NNMT-overexpressing mice exhibit fatty liver deterioration following increased expression of the genes mediating fatty acid uptake and decreased very low-density lipoprotein secretion. NNMT overactivation decreased the NAD + content in the liver and also decreased gene activity related to fatty acid oxidation by inhibiting NAD + -dependent deacetylase Sirt3 function. Moreover, the transgenic mice showed liver fibrosis, with the induction of inflammatory and fibrosis genes. Induced NNMT expression decreased the tissue methylation capacity, thereby reducing methylation of the connective tissue growth factor (CTGF) gene promoter, resulting in increased CTGF expression. These data indicate that NNMT links the NAD + and methionine metabolic pathways and promotes liver steatosis and fibrosis. Therefore, targeting NNMT may serve as a therapeutic strategy for treating fatty liver and fibrosis.

  9. Expression of an Engineered Heterologous Antimicrobial Peptide in Potato Alters Plant Development and Mitigates Normal Abiotic and Biotic Responses

    PubMed Central

    Goyal, Ravinder K.; Hancock, Robert E. W.; Mattoo, Autar K.; Misra, Santosh

    2013-01-01

    Antimicrobial cationic peptides (AMPs) are ubiquitous small proteins used by living cells to defend against a wide spectrum of pathogens. Their amphipathic property helps their interaction with negatively charged cellular membrane of the pathogen causing cell lysis and death. AMPs also modulate signaling pathway(s) and cellular processes in animal models; however, little is known of cellular processes other than the pathogen-lysis phenomenon modulated by AMPs in plants. An engineered heterologous AMP, msrA3, expressed in potato was previously shown to cause resistance of the transgenic plants against selected fungal and bacterial pathogens. These lines together with the wild type were studied for growth habits, and for inducible defense responses during challenge with biotic (necrotroph Fusarium solani) and abiotic stressors (dark-induced senescence, wounding and temperature stress). msrA3-expression not only conferred protection against F. solani but also delayed development of floral buds and prolonged vegetative phase. Analysis of select gene transcript profiles showed that the transgenic potato plants were suppressed in the hypersensitive (HR) and reactive oxygen species (ROS) responses to both biotic and abiotic stressors. Also, the transgenic leaves accumulated lesser amounts of the defense hormone jasmonic acid upon wounding with only a slight change in salicylic acid as compared to the wild type. Thus, normal host defense responses to the pathogen and abiotic stressors were mitigated by msrA3 expression suggesting MSRA3 regulates a common step(s) of these response pathways. The stemming of the pathogen growth and mitigating stress response pathways likely contributes to resource reallocation for higher tuber yield. PMID:24147012

  10. Adenoviral vector tethering to metal surfaces via hydrolysable cross-linkers for the modulation of vector release and transduction

    PubMed Central

    Fishbein, Ilia; Forbes, Scott P.; Chorny, Michael; Connolly, Jeanne M.; Adamo, Richard F.; Corrales, Ricardo; Alferiev, Ivan S.; Levy, Robert J.

    2013-01-01

    The use of arterial stents and other medical implants as a delivery platform for surface immobilized gene vectors allows for safe and efficient localized expression of therapeutic transgenes. In this study we investigate the use of hydrolysable cross-linkers with distinct kinetics of hydrolysis for delivery of gene vectors from polyallylamine bisphosphonate-modified metal surfaces. Three cross-linkers with the estimated t1/2 of ester bonds hydrolysis of 5, 12 and 50 days demonstrated a cumulative 20%, 39% and 45% vector release, respectively, after 30 days exposure to physiological buffer at 37°C. Transgene expression in endothelial and smooth muscles cells transduced with substrate immobilized adenovirus resulted in significantly different expression profiles for each individual cross-linker. Furthermore, immobilization of adenoviral vectors effectively extended their transduction effectiveness beyond the initial phase of release. Transgene expression driven by adenovirus-tethered stents in rat carotid arteries demonstrated that a faster rate of cross-linker hydrolysis resulted in higher expression levels at day 1, which declined by day 8 after stent implantation, while inversely, slower hydrolysis was associated with increased arterial expression at day 8 in comparison with day 1. In conclusion, adjustable release of transduction-competent adenoviral vectors from metallic surfaces can be achieved, both in vitro and in vivo, through surface immobilization of adenoviral vectors using hydrolysable cross-linkers with structure-specific release kinetics. PMID:23777912

  11. Altered expression of CmNRRa changes flowering time of Chrysanthemum morifolium.

    PubMed

    Zhang, Yuman; Lian, Lijuan; Liu, Qing; Xiao, Na; Fang, Rongxiang; Liu, Qinglin; Chen, Xiaoying

    2013-04-01

    Flowering time is an important ornamental trait for chrysanthemum (Chrysanthemum morifolium, Dendranthema x grandiflorum) floricultural production. In this study, CmNRRa, an orthologous gene of OsNRRa that regulates root growth in response to nutrient stress in rice, was identified from Chrysanthemum and its role in flowering time was studied. The entire CmNRRa cDNA sequence was determined using a combinatorial PCR approach along with 5' and 3' RACE methods. CmNRRa expression levels in various tissues were monitored by real-time RT-PCR. CmNRRa was strongly expressed in flower buds and peduncles, suggesting that CmNRRa plays a regulatory role in floral development. To investigate the biological function of CmNRRa in chrysanthemums, overexpression and knockdown of CmNRRa were carried out using transgenic Chrysanthemum plants generated through Agrobacterium-mediated transformation. CmNRRa expression levels in the transgenic plants were assayed by real-time RT-PCR and Northern blot analysis. The transgenic plants showed altered flowering times compared with nontransgenic plants. CmNRRa-RNAi transgenic plants flowered 40-64 days earlier, while CmNRRa-overexpressing plants exhibited a delayed flowering phenotype. These results revealed a negative effect of CmNRRa on flowering time modulation. Alteration of CmNRRa expression levels might be an effective means of controlling flowering time in Chrysanthemum. These results possess potential application in molecular breeding of chrysanthemums that production year-round, and may improve commercial chrysanthemum production in the flower industry. © 2012 The Authors Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  12. Noggin and BMP4 co-modulate adult hippocampal neurogenesis in the APP{sub swe}/PS1{sub {Delta}E9} transgenic mouse model of Alzheimer's disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Jun; Department of Physiology, Third Military Medical University, Chongqing 400038; Song, Min

    2009-07-31

    In addition to the subventricular zone, the dentate gyrus of the hippocampus is one of the few brain regions in which neurogenesis continues into adulthood. Perturbation of neurogenesis can alter hippocampal function, and previous studies have shown that neurogenesis is dysregulated in Alzheimer disease (AD) brain. Bone morphogenetic protein-4 (BMP4) and its antagonist Noggin have been shown to play important roles both in embryonic development and in the adult nervous system, and may regulate hippocampal neurogenesis. Previous data indicated that increased expression of BMP4 mRNA within the dentate gyrus might contribute to decreased hippocampal cell proliferation in the APP{sub swe}/PS1{submore » {Delta}E9} mouse AD model. However, it is not known whether the BMP antagonist Noggin contributes to the regulation of neurogenesis. We therefore studied the relative expression levels and localization of BMP4 and its antagonist Noggin in the dentate gyrus and whether these correlated with changes in neurogenesis in 6-12 mo old APP{sub swe}/PS1{sub {Delta}E9} transgenic mice. Bromodeoxyuridine (BrdU) was used to label proliferative cells. We report that decreased neurogenesis in the APP/PS1 transgenic mice was accompanied by increased expression of BMP4 and decreased expression of Noggin at both the mRNA and protein levels; statistical analysis showed that the number of proliferative cells at different ages correlated positively with Noggin expression and negatively with BMP4 expression. Intraventricular administration of a chimeric Noggin/Fc protein was used to block the action of endogenous BMP4; this resulted in a significant increase in the number of BrdU-labeled cells in dentate gyrus subgranular zone and hilus in APP/PS1 mice. These results suggest that BMP4 and Noggin co-modulate neurogenesis.« less

  13. Characterization of growth and reproduction performance, transgene integration, expression and transmission patterns in transgenic pigs produced by piggyBac transposition-mediated gene transfer

    PubMed Central

    Zeng, Fang; Li, Zicong; Cai, Gengyuan; Gao, Wenchao; Jiang, Gelong; Liu, Dewu; Urschitz, Johann; Moisyadi, Stefan; Wu, Zhenfang

    2016-01-01

    Previously we successfully produced a group of EGFP-expressing founder transgenic pigs by a newly developed efficient and simple pig transgenesis method based on cytoplasmic injection of piggyBac plasmids. In this study, we investigated the growth and reproduction performance, and characterized the transgene insertion, transmission and expression patterns in transgenic pigs generated by piggyBac transposition. Results showed that transgene has no injurious effect on the growth and reproduction of transgenic pigs. Multiple copies of monogenic EGFP transgene were inserted at noncoding sequences of host genome, and passed from founder transgenic pigs to their transgenic offspring in segregation or linkage manner. The EGFP transgene was ubiquitously expressed in transgenic pigs, and its expression intensity was associated with transgene copy number but not related to its promoter DNA methylation level. To the best of our knowledge, this is first study that fully described the growth and reproduction performance, transgene insertion, expression and transmission profiles in transgenic pigs produced by piggyBac system. It not only demonstrates that piggyBac transposition-mediated gene transfer is an effective and favourable approach for pig transgenesis, but also provides scientific information for understanding the transgene insertion, expression and transmission patterns in transgenic animals produced by piggyBac transposition. PMID:27565868

  14. Ectopic norrin induces growth of ocular capillaries and restores normal retinal angiogenesis in Norrie disease mutant mice.

    PubMed

    Ohlmann, Andreas; Scholz, Michael; Goldwich, Andreas; Chauhan, Bharesh K; Hudl, Kristiane; Ohlmann, Anne V; Zrenner, Eberhart; Berger, Wolfgang; Cvekl, Ales; Seeliger, Mathias W; Tamm, Ernst R

    2005-02-16

    Norrie disease is an X-linked retinal dysplasia that presents with congenital blindness, sensorineural deafness, and mental retardation. Norrin, the protein product of the Norrie disease gene (NDP), is a secreted protein of unknown biochemical function. Norrie disease (Ndp(y/-)) mutant mice that are deficient in norrin develop blindness, show a distinct failure in retinal angiogenesis, and completely lack the deep capillary layers of the retina. We show here that the transgenic expression of ectopic norrin under control of a lens-specific promoter restores the formation of a normal retinal vascular network in Ndp(y/-) mutant mice. The improvement in structure correlates with restoration of neuronal function in the retina. In addition, lenses of transgenic mice with ectopic expression of norrin show significantly more capillaries in the hyaloid vasculature that surrounds the lens during development. In vitro, lenses of transgenic mice in coculture with microvascular endothelial cells induce proliferation of the cells. Transgenic mice with ectopic expression of norrin show more bromodeoxyuridine-labeled retinal progenitor cells at embryonic day 14.5 and thicker retinas at postnatal life than wild-type littermates, indicating a putative direct neurotrophic effect of norrin. These data provide direct evidence that norrin induces growth of ocular capillaries and that pharmacologic modulation of norrin might be used for treatment of the vascular abnormalities associated with Norrie disease or other vascular disorders of the retina.

  15. bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship.

    PubMed

    Strasser, A; Harris, A W; Cory, S

    1991-11-29

    Early death is the fate of most developing T lymphocytes. Because bcl-2 can promote cell survival, we tested its impact in mice expressing an E mu-bcl-2 transgene within the T lymphoid compartment. The T cells showed remarkably sustained viability and some spontaneous differentiation in vitro. They also resisted killing by lymphotoxic agents. Although total T cell numbers and the rate of thymic involution were unaltered, the response to immunization was enhanced, consistent with reduced death of activated T cells. No T cells reactive with self-superantigens appeared in the lymph nodes, but an excess was found in the thymus. These observations, together with previous findings on B cells, suggest that modulated bcl-2 expression is a determinant of life and death in normal lymphocytes.

  16. Ectopic expression of phloem motor protein pea forisome PsSEO-F1 enhances salinity stress tolerance in tobacco.

    PubMed

    Srivastava, Vineet Kumar; Raikwar, Shailendra; Tuteja, Renu; Tuteja, Narendra

    2016-05-01

    PsSEOF-1 binds to calcium and its expression is upregulated by salinity treatment. PsSEOF - 1 -overexpressing transgenic tobacco showed enhanced salinity stress tolerance by maintaining cellular ion homeostasis and modulating ROS-scavenging pathway. Calcium (Ca(2+)) plays important role in growth, development and stress tolerance in plants. Cellular Ca(2+) homeostasis is achieved by the collective action of channels, pumps, antiporters and by Ca(2+) chelators present in the cell like calcium-binding proteins. Forisomes are ATP-independent mechanically active motor proteins known to function in wound sealing of injured sieve elements of phloem tissue. The Ca(2+)-binding activity of forisome and its role in abiotic stress signaling were largely unknown. Here we report the Ca(2+)-binding activity of pea forisome (PsSEO-F1) and its novel function in promoting salinity tolerance in transgenic tobacco. Native PsSEO-F1 promoter positively responded in salinity stress as confirmed using GUS reporter. Overexpression of PsSEO-F1 tobacco plants confers salinity tolerance by alleviating ionic toxicity and increased ROS scavenging activity which probably results in reduced membrane damage and improved yield under salinity stress. Evaluation of several physiological indices shows an increase in relative water content, electrolyte leakage, proline accumulation and chlorophyll content in transgenic lines as compared with null-segregant control. Expression of several genes involved in cellular homeostasis is perturbed by PsSEO-F1 overexpression. These findings suggest that PsSEO-F1 provides salinity tolerance through cellular Ca(2+) homeostasis which in turn modulates ROS machinery providing indirect link between Ca(2+) and ROS signaling under salinity-induced perturbation. PsSEO-F1 most likely functions in salinity stress tolerance by improving antioxidant machinery and mitigating ion toxicity in transgenic lines. This finding should make an important contribution in our better understanding of the significance of calcium signaling in phloem tissue leading to salinity stress tolerance.

  17. Substitutions of PrP N-terminal histidine residues modulate scrapie disease pathogenesis and incubation time in transgenic mice

    PubMed Central

    Eigenbrod, Sabina; Frick, Petra; Bertsch, Uwe; Mitteregger-Kretzschmar, Gerda; Mielke, Janina; Maringer, Marko; Piening, Niklas; Hepp, Alexander; Daude, Nathalie; Windl, Otto; Levin, Johannes; Giese, Armin; Sakthivelu, Vignesh; Tatzelt, Jörg

    2017-01-01

    Prion diseases have been linked to impaired copper homeostasis and copper induced-oxidative damage to the brain. Divalent metal ions, such as Cu2+ and Zn2+, bind to cellular prion protein (PrPC) at octapeptide repeat (OR) and non-OR sites within the N-terminal half of the protein but information on the impact of such binding on conversion to the misfolded isoform often derives from studies using either OR and non-OR peptides or bacterially-expressed recombinant PrP. Here we created new transgenic mouse lines expressing PrP with disrupted copper binding sites within all four histidine-containing OR's (sites 1–4, H60G, H68G, H76G, H84G, "TetraH>G" allele) or at site 5 (composed of residues His-95 and His-110; "H95G" allele) and monitored the formation of misfolded PrP in vivo. Novel transgenic mice expressing PrP(TetraH>G) at levels comparable to wild-type (wt) controls were susceptible to mouse-adapted scrapie strain RML but showed significantly prolonged incubation times. In contrast, amino acid replacement at residue 95 accelerated disease progression in corresponding PrP(H95G) mice. Neuropathological lesions in terminally ill transgenic mice were similar to scrapie-infected wt controls, but less severe. The pattern of PrPSc deposition, however, was not synaptic as seen in wt animals, but instead dense globular plaque-like accumulations of PrPSc in TgPrP(TetraH>G) mice and diffuse PrPSc deposition in (TgPrP(H95G) mice), were observed throughout all brain sections. We conclude that OR and site 5 histidine substitutions have divergent phenotypic impacts and that cis interactions between the OR region and the site 5 region modulate pathogenic outcomes by affecting the PrP globular domain. PMID:29220360

  18. BIOSYNTHESIS AND ACTION OF JASMONATES IN PLANTS.

    PubMed

    Creelman, Robert A.; Mullet, John E.

    1997-06-01

    Jasmonic acid and its derivatives can modulate aspects of fruit ripening, production of viable pollen, root growth, tendril coiling, and plant resistance to insects and pathogens. Jasmonate activates genes involved in pathogen and insect resistance, and genes encoding vegetative storage proteins, but represses genes encoding proteins involved in photosynthesis. Jasmonic acid is derived from linolenic acid, and most of the enzymes in the biosynthetic pathway have been extensively characterized. Modulation of lipoxygenase and allene oxide synthase gene expression in transgenic plants raises new questions about the compartmentation of the biosynthetic pathway and its regulation. The activation of jasmonic acid biosynthesis by cell wall elicitors, the peptide systemin, and other compounds will be related to the function of jasmonates in plants. Jasmonate modulates gene expression at the level of translation, RNA processing, and transcription. Promoter elements that mediate responses to jasmonate have been isolated. This review covers recent advances in our understanding of how jasmonate biosynthesis is regulated and relates this information to knowledge of jasmonate modulated gene expression.

  19. Effects of the deletion of early region 4 (E4) open reading frame 1 (orf1), orf1-2, orf1-3 and orf1-4 on virus-host cell interaction, transgene expression, and immunogenicity of replicating adenovirus HIV vaccine vectors.

    PubMed

    Thomas, Michael A; Song, Rui; Demberg, Thorsten; Vargas-Inchaustegui, Diego A; Venzon, David; Robert-Guroff, Marjorie

    2013-01-01

    The global health burden engendered by human immunodeficiency virus (HIV)-induced acquired immunodeficiency syndrome (AIDS) is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad)-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr) encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC) we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1) through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and immunogenicity in a replicating Ad vector.

  20. Effects of the Deletion of Early Region 4 (E4) Open Reading Frame 1 (orf1), orf1-2, orf1-3 and orf1-4 on Virus-Host Cell Interaction, Transgene Expression, and Immunogenicity of Replicating Adenovirus HIV Vaccine Vectors

    PubMed Central

    Thomas, Michael A.; Song, Rui; Demberg, Thorsten; Vargas-Inchaustegui, Diego A.; Venzon, David; Robert-Guroff, Marjorie

    2013-01-01

    The global health burden engendered by human immunodeficiency virus (HIV)-induced acquired immunodeficiency syndrome (AIDS) is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad)-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr) encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC) we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1) through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and immunogenicity in a replicating Ad vector. PMID:24143187

  1. On the use of the T-REx tetracycline-inducible gene expression system in vivo.

    PubMed

    Dobrovolsky, Vasily N; Heflich, Robert H

    2007-10-15

    Components of the commercially available T-REx system were used to create two types of transgenic mice. The first contained the tetracycline-repressor transgene under the control of the CMV promoter/enhancer; the second type contained a green fluorescent protein (GFP) reporter transgene under the control of the CMV promoter/enhancer with a tetracycline repressor operator sequence. Transgene expression was unpredictable in animals containing the individual transgenes. Animals with the reporter transgene expressed GFP in only some tissues (e.g., pancreas, kidney), and one line of reporter transgenic animals developed kidney disease, presumably due to expression of the transgene. The two types of transgenic animals were crossbred to produce double-transgenic animals with the object of regulating the expression of the reporter in vivo. When a similar double-transgenic system was constructed in cultured cells, the repressor protein suppressed the transcription of the reporter transgene. The presence of the repressor in double-transgenic animals had no effect on the expression of the reporter; double transgenic animals developed the same kidney disease that was seen in singly transgenic mice with the reporter. Our results indicate that transgenes under the control of the CMV promoter in the T-REx system express somewhat unpredictably and in only a limited number of tissues, making the use of this system for the development of in vivo models problematical. Copyright 2007 Wiley Periodicals, Inc.

  2. A study on the influence of different promoter and 5'UTR (URM) cassettes from Arabidopsis thaliana on the expression level of the reporter gene β glucuronidase in tobacco and cotton.

    PubMed

    Agarwal, Parul; Garg, Varsha; Gautam, Taru; Pillai, Beena; Kanoria, Shaveta; Burma, Pradeep Kumar

    2014-04-01

    Several reports of promoters from plants, viral and artificial origin that confer high constitutive expression are known. Among these the CaMV 35S promoter is used extensively for transgene expression in plants. We identified candidate promoters from Arabidopsis based on their transcript levels (meta-analysis of available microarray control datasets) to test their activity in comparison to the CaMV 35S promoter. A set of 11 candidate genes were identified which showed high transcript levels in the aerial tissue (i.e. leaf, shoot, flower and stem). In the initial part of the study binary vectors were developed wherein the promoter and 5'UTR region of these candidate genes (Upstream Regulatory Module, URM) were cloned upstream to the reporter gene β glucuronidase (gus). The promoter strengths were tested in transformed callus of Nicotiana tabacum and Gossypium hirsutum. On the basis of the results obtained from the callus, the influence of the URM cassettes on transgene expression was tested in transgenic tobacco. The URM regions of the genes encoding a subunit of photosystem I (PHOTO) and geranyl geranyl reductase (GGR) in A. thaliana genome showed significantly high levels of GUS activity in comparison to the CaMV 35S promoter. Further, when the 5'UTRs of both the genes were placed downstream to the CaMV 35S promoter it led to a substantial increase in GUS activity in transgenic tobacco lines and cotton callus. The enhancement observed was even higher to that observed with the viral leader sequences like Ω and AMV, known translational enhancers. Our results indicate that the two URM cassettes or the 5'UTR regions of PHOTO and GGR when placed downstream to the CaMV 35S promoter can be used to drive high levels of transgene expression in dicotyledons.

  3. Exon 2-mediated c-myc mRNA decay in vivo is independent of its translation.

    PubMed Central

    Pistoi, S; Roland, J; Babinet, C; Morello, D

    1996-01-01

    We have previously shown that the steady-state level of c-myc mRNA in vivo is primarily controlled by posttranscriptional regulatory mechanisms. To identify the sequences involved in this process, we constructed a series of H-2/myc transgenic lines in which various regions of the human c-MYC gene were placed under the control of the quasi-ubiquitous H-2K class I regulatory sequences. We demonstrated that the presence of one of the two coding exons, exon 2 or exon 3, is sufficient to confer a level of expression of transgene mRNA similar to that of endogenous c-myc in various adult tissues as well as after partial hepatectomy or after protein synthesis inhibition. We now focus on the molecular mechanisms involved in modulation of expression of mRNAs containing c-myc exon 2 sequences, with special emphasis on the coupling between translation and c-myc mRNA turnover. We have undertaken an analysis of expression, both at the mRNA level and at the protein level, of new transgenic constructs in which the translation is impaired either by disruption of the initiation codon or by addition of stop codons upstream of exon 2. Our results show that the translation of c-myc exon 2 is not required for regulated expression of the transgene in the different situations analyzed, and therefore they indicate that the mRNA destabilizing function of exon 2 is independent of translation by ribosomes. Our investigations also reveal that, in the thymus, some H-2/myc transgenes express high levels of mRNA but low levels of protein. Besides the fact that these results suggest the existence of tissue-specific mechanisms that control c-myc translatability in vivo, they also bring another indication of the uncoupling of c-myc mRNA translation and degradation. PMID:8756668

  4. Breast Cancer and Early Onset Childhood Obesity: Cell Specific Gene Expression in Mammary Epithelia and Adipocytes

    DTIC Science & Technology

    2007-07-01

    resistance on neuroendocrine and reproductive functions in transgenic and knock-out mice. Proc Soc Exp Biol Med. 1999 Nov;222(2):113-23. 11. Thordarson ...libitum overfeeding of Sprague- Dawley rats and its modulation by moderate and marked dietary restriction. Toxicol Pathol 2005;33:650–74. 26. Thordarson

  5. Notch/Delta signaling constrains reengineering of pro-T cells by PU.1

    PubMed Central

    Franco, Christopher B.; Scripture-Adams, Deirdre D.; Proekt, Irina; Taghon, Tom; Weiss, Angela H.; Yui, Mary A.; Adams, Stephanie L.; Diamond, Rochelle A.; Rothenberg, Ellen V.

    2006-01-01

    PU.1 is essential for early stages of mouse T cell development but antagonizes it if expressed constitutively. Two separable mechanisms are involved: attenuation and diversion. Dysregulated PU.1 expression inhibits pro-T cell survival, proliferation, and passage through β-selection by blocking essential T cell transcription factors, signaling molecules, and Rag gene expression, which expression of a rearranged T cell antigen receptor transgene cannot rescue. However, Bcl2 transgenic cells are protected from this attenuation and may even undergo β-selection, as shown by PU.1 transduction of defined subsets of Bcl2 transgenic fetal thymocytes with differentiation in OP9-DL1 and OP9 control cultures. The outcome of PU.1 expression in these cells depends on Notch/Delta signaling. PU.1 can efficiently divert thymocytes toward a myeloid-like state with multigene regulatory changes, but Notch/Delta signaling vetoes diversion. Gene expression analysis distinguishes sets of critical T lineage regulatory genes with different combinatorial responses to PU.1 and Notch/Delta signals, suggesting particular importance for inhibition of E proteins, Myb, and/or Gfi1 (growth factor independence 1) in diversion. However, Notch signaling only protects against diversion of cells that have undergone T lineage specification after Thy-1 and CD25 up-regulation. The results imply that in T cell precursors, Notch/Delta signaling normally acts to modulate and channel PU.1 transcriptional activities during the stages from T lineage specification until commitment. PMID:16880393

  6. The Drosophila melanogaster Eip74EF-PA transcription factor directly binds the sciarid BhC4-1 promoter.

    PubMed

    Frank, Henrique Oliveira; Sanchez, Danilo Garcia; de Freitas Oliveira, Lucas; Kobarg, Jörg; Monesi, Nadia

    2017-11-01

    The DNA puff BhC4-1 gene of Bradysia hygida (Diptera, Sciaridae) is amplified and expressed in the salivary glands at the end of the last larval instar. Even though there are no BhC4-1 orthologs in Drosophila melanogaster, the mechanisms that regulate BhC4-1 gene expression in B. hygida are for the most part conserved in D. melanogaster. The BhC4-1 promoter contains a 129bp (-186/-58) cis-regulatory module (CRM) that drives developmentally regulated expression in transgenic salivary glands at the onset of metamorphosis. Both in the sciarid and in transgenic D. melanogaster, BhC4-1 gene expression is induced by the increase in ecdysone titers that triggers metamorphosis. Genetic interaction experiments revealed that in the absence of the Eip74EF-PA early gene isoform BhC4-1-lacZ levels of expression in the salivary gland are severely reduced. Here we show that the overexpression of the Eip74EF-PA transcription factor is sufficient to anticipate BhC4-1-lacZ expression in transgenic D. melanogaster. Through yeast one-hybrid assays we confirm that the Eip74EF-PA transcription factor directly binds to the 129 bp sciarid CRM. Together, these results contribute to the characterization of an insect CRM and indicate that the ecdysone gene regulatory network that promotes metamorphosis is conserved between D. melanogaster and the sciarid B. hygida. © 2017 Wiley Periodicals, Inc.

  7. Impacts of elevated CO2 on exogenous Bacillus thuringiensis toxins and transgene expression in transgenic rice under different levels of nitrogen.

    PubMed

    Jiang, Shoulin; Lu, Yongqing; Dai, Yang; Qian, Lei; Muhammad, Adnan Bodlah; Li, Teng; Wan, Guijun; Parajulee, Megha N; Chen, Fajun

    2017-11-07

    Recent studies have highlighted great challenges of transgene silencing for transgenic plants facing climate change. In order to understand the impacts of elevated CO 2 on exogenous Bacillus thuringiensis (Bt) toxins and transgene expression in transgenic rice under different levels of N-fertilizer supply, we investigated the biomass, exogenous Bt toxins, Bt-transgene expression and methylation status in Bt rice exposed to two levels of CO 2 concentrations and nitrogen (N) supply (1/8, 1/4, 1/2, 1 and 2 N). It is elucidated that the increased levels of global atmospheric CO 2 concentration will trigger up-regulation of Bt toxin expression in transgenic rice, especially with appropriate increase of N fertilizer supply, while, to some extent, the exogenous Bt-transgene expression is reduced at sub-N levels (1/4 and 1/2N), even though the total protein of plant tissues is reduced and the plant growth is restricted. The unpredictable and stochastic occurrence of transgene silencing and epigenetic alternations remains unresolved for most transgenic plants. It is expected that N fertilization supply may promote the expression of transgenic Bt toxin in transgenic Bt rice, particularly under elevated CO 2 .

  8. APRIL modulates B and T cell immunity

    PubMed Central

    Stein, Jens V.; López-Fraga, Marta; Elustondo, Fernando A.; Carvalho-Pinto, Carla E.; Rodríguez, Dolores; Gómez-Caro, Ruth; de Jong, Joan; Martínez-A, Carlos; Medema, Jan Paul; Hahne, Michael

    2002-01-01

    The TNF-like ligands APRIL and BLyS are close relatives and share the capacity to bind the receptors TACI and BCMA. BLyS has been shown to play an important role in B cell homeostasis and autoimmunity, but the biological role of APRIL remains less well defined. Analysis of T cells revealed an activation-dependent increase in APRIL mRNA expression. We therefore generated mice expressing APRIL as a transgene in T cells. These mice appeared normal and showed no signs of B cell hyperplasia. Transgenic T cells revealed a greatly enhanced survival in vitro as well as enhanced survival of staphylococcal enterotoxin B–reactive CD4+ T cells in vivo, which both directly correlate with elevated Bcl-2 levels. Analysis of humoral responses to T cell–dependent antigens in the transgenic mice indicated that APRIL affects only IgM but not IgG responses. In contrast, T cell–independent type 2 (TI-2) humoral response was enhanced in APRIL transgenic mice. As TACI was previously reported to be indispensable for TI-2 antibody formation, these results suggest a role for APRIL/TACI interactions in the generation of this response. Taken together, our data indicate that APRIL is involved in the induction and/or maintenance of T and B cell responses. PMID:12070306

  9. Poplar PtabZIP1-like enhances lateral root formation and biomass growth under drought stress

    DOE PAGES

    Dash, Madhumita; Yordanov, Yordan S.; Georgieva, Tatyana; ...

    2017-02-10

    Developing drought-resistance varieties is a major goal for bioenergy crops, such as poplar (Populus), which will be grown on marginal lands with little or no water input. Root architecture can affect drought resistance, but few genes that affect root architecture in relation to water availability have been identified. Here in this study, using activation tagging in the prime bioenergy crop poplar, we have identified a mutant that overcomes the block of lateral root (LR) formation under osmotic stress. Positioning of the tag, validation of the activation and recapitulation showed that the phenotype is caused by the poplar PtabZIP1-like (PtabZIP1L) genemore » with highest homology to bZIP1 from Arabidopsis. PtabZIP1L is predominantly expressed in roots, particularly in zones where lateral root primordia (LRP) initiate and LR differentiate and emerge. Transgenics overexpressing PtabZIP1L showed precocious LRP and LR development, while PtabZIP1L suppression significantly delayed both LRP and LR formation. Transgenic overexpression and suppression of PtabZIP1L also resulted in modulation of key metabolites like proline, asparagine, valine and several flavonoids. Consistently, expression of both of the poplar Proline Dehydrogenase orthologs and two of the Flavonol Synthases genes was also increased and decreased in overexpressed and suppressed transgenics, respectively. These findings suggest that PtabZIP1L mediates LR development and drought resistance through modulation of multiple metabolic pathways.« less

  10. Poplar PtabZIP1-like enhances lateral root formation and biomass growth under drought stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dash, Madhumita; Yordanov, Yordan S.; Georgieva, Tatyana

    Developing drought-resistance varieties is a major goal for bioenergy crops, such as poplar (Populus), which will be grown on marginal lands with little or no water input. Root architecture can affect drought resistance, but few genes that affect root architecture in relation to water availability have been identified. Here in this study, using activation tagging in the prime bioenergy crop poplar, we have identified a mutant that overcomes the block of lateral root (LR) formation under osmotic stress. Positioning of the tag, validation of the activation and recapitulation showed that the phenotype is caused by the poplar PtabZIP1-like (PtabZIP1L) genemore » with highest homology to bZIP1 from Arabidopsis. PtabZIP1L is predominantly expressed in roots, particularly in zones where lateral root primordia (LRP) initiate and LR differentiate and emerge. Transgenics overexpressing PtabZIP1L showed precocious LRP and LR development, while PtabZIP1L suppression significantly delayed both LRP and LR formation. Transgenic overexpression and suppression of PtabZIP1L also resulted in modulation of key metabolites like proline, asparagine, valine and several flavonoids. Consistently, expression of both of the poplar Proline Dehydrogenase orthologs and two of the Flavonol Synthases genes was also increased and decreased in overexpressed and suppressed transgenics, respectively. These findings suggest that PtabZIP1L mediates LR development and drought resistance through modulation of multiple metabolic pathways.« less

  11. Expression of a Heterologous S-Adenosylmethionine Decarboxylase cDNA in Plants Demonstrates That Changes in S-Adenosyl-l-Methionine Decarboxylase Activity Determine Levels of the Higher Polyamines Spermidine and Spermine1

    PubMed Central

    Thu-Hang, Pham; Bassie, Ludovic; Safwat, Gehan; Trung-Nghia, Pham; Christou, Paul; Capell, Teresa

    2002-01-01

    We posed the question of whether steady-state levels of the higher polyamines spermidine and spermine in plants can be influenced by overexpression of a heterologous cDNA involved in the later steps of the pathway, in the absence of any further manipulation of the two synthases that are also involved in their biosynthesis. Transgenic rice (Oryza sativa) plants engineered with the heterologous Datura stramonium S-adenosylmethionine decarboxylase (samdc) cDNA exhibited accumulation of the transgene steady-state mRNA. Transgene expression did not affect expression of the orthologous samdc gene. Significant increases in SAMDC activity translated to a direct increase in the level of spermidine, but not spermine, in leaves. Seeds recovered from a number of plants exhibited significant increases in spermidine and spermine levels. We demonstrate that overexpression of the D. stramonium samdc cDNA in transgenic rice is sufficient for accumulation of spermidine in leaves and spermidine and spermine in seeds. These findings suggest that increases in enzyme activity in one of the two components of the later parts of the pathway leading to the higher polyamines is sufficient to alter their levels mostly in seeds and, to some extent, in vegetative tissue such as leaves. Implications of our results on the design of rational approaches for the modulation of the polyamine pathway in plants are discussed in the general framework of metabolic pathway engineering. PMID:12177487

  12. Measles Virus Nucleocapsid (MVNP) Gene Expression and RANK Receptor Signaling in Osteoclast Precursors, Osteoclast Inhibitors Peptide Therapy for Pagets Disease

    DTIC Science & Technology

    2007-10-01

    OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a. REPORT U b. ABSTRACT U c . THIS PAGE U UU 27 19b. TELEPHONE NUMBER...and c -Jun kinase activity in osteoclast precursor cells (4). Our hypothesis is that MVNP expression in osteoclast precursors modulates the status...transcription factors such as c - Fos, NFATc1 critical for OCL differentiation were significantly decreased in OIP-1 transgenic mice derived preosteoclast cells

  13. Stacking transgenes in forest trees.

    PubMed

    Halpin, Claire; Boerjan, Wout

    2003-08-01

    Huge potential exists for improving plant raw materials and foodstuffs via metabolic engineering. To date, progress has mostly been limited to modulating the expression of single genes of well-studied pathways, such as the lignin biosynthetic pathway, in model species. However, a recent report illustrates a new level of sophistication in metabolic engineering by overexpressing one lignin enzyme while simultaneously suppressing the expression of another lignin gene in a tree, aspen. This novel approach to multi-gene manipulation has succeeded in concurrently improving several wood-quality traits.

  14. Increased expression of microRNA-29a in ALS mice: functional analysis of its inhibition.

    PubMed

    Nolan, Katie; Mitchem, Mollie R; Jimenez-Mateos, Eva M; Henshall, David C; Concannon, Caoimhín G; Prehn, Jochen H M

    2014-06-01

    Endoplasmic reticulum (ER) stress has been implicated in a number of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). MicroRNAs are small ribonucleic acids which can modulate protein expression by binding to the 3'UTR of target mRNAs. We recently identified increased miR-29a expression in response to ER stress in neurons, with members of the miR-29 family implicated in cancer and neurodegeneration. We found high expression of miR-29a in the mouse brain and spinal cord by quantitative PCR analysis and increased expression of miR-29a in the spinal cord of SOD1(G93A) transgenic mice, a mouse model of familial ALS. In situ hybridisation experiments revealed increased miR-29a expression in the lumbar spinal cord of SOD1(G93A) transgenic mice from postnatal day 70 onward when compared to wild-type mice. miR-29a knockdown was achieved in the CNS in vivo after a single intracerebroventricular injection of a miR-29a-specific antagomir. While analysis of disease progression and motor function could not identify a significant alteration in ALS disease manifestations, a trend towards increased lifespan was observed in male SOD1(G93A) mice. These findings demonstrate that miR-29a may act as a marker for disease progression in SOD1(G93A) mice, and provide first proof-of-concept for a therapeutic modulation of miR-29a function in ALS.

  15. Arrhenius analysis of the relationship between hyperthermia and Hsp70 promoter activation: a comparison between ex vivo and in vivo data.

    PubMed

    Deckers, Roel; Debeissat, Christelle; Fortin, Pierre-Yves; Moonen, Chrit T W; Couillaud, Franck

    2012-01-01

    Tight regulation of gene expression in the region where therapy is necessary and for the duration required to achieve a therapeutic effect and to minimise systemic toxicity is very important for clinical applications of gene therapy. Hyperthermia in combination with a temperature sensitive heat shock protein (Hsp70) promoter presents a unique approach allowing non-invasive spatio-temporal control of transgene expression. In this study we investigated the in vivo and ex vivo relationship between temperature and duration of thermal stress with respect to the resulting gene expression using an Arrhenius analysis. A transgenic mouse expressing the luciferase reporter gene under the transcriptional control of a thermosensitive promoter was used to assure identical genotype for in vivo (mouse leg) and ex vivo (bone marrow mononuclear and embryonic fibroblast cells) studies. The mouse leg and cells were heated at different temperatures and different exposure times. Bioluminescence imaging and in vitro enzymatic assay were used to measure the resulting transgene expression. We showed that temperature-induced Hsp70 promoter activation was modulated by both temperature as well as duration of hyperthermia. The relationship between temperature and duration of hyperthermia and the resulting reporter gene expression can be modelled by an Arrhenius analysis for both in vivo as well as ex vivo. However, the increase in reporter gene expression after elevating the temperature of the thermal stress with 1°C is not comparable for in vivo and ex vivo situations. This information may be valuable for optimising clinical gene therapy protocols.

  16. Na+/H+ exchanger isoform 1-induced osteopontin expression facilitates cardiac hypertrophy through p90 ribosomal S6 kinase.

    PubMed

    Abdulrahman, Nabeel; Jaspard-Vinassa, Beatrice; Fliegel, Larry; Jabeen, Aayesha; Riaz, Sadaf; Gadeau, Alain-Pierre; Mraiche, Fatima

    2018-05-01

    Cardiovascular diseases are the leading cause of death worldwide. One in three cases of heart failure is due to dilated cardiomyopathy. The Na + /H + exchanger isoform 1 (NHE1), a multifunctional protein and the key pH regulator in the heart, has been demonstrated to be increased in this condition. We have previously demonstrated that elevated NHE1 activity induced cardiac hypertrophy in vivo. Furthermore, the overexpression of active NHE1 elicited modulation of gene expression in cardiomyocytes including an upregulation of myocardial osteopontin (OPN) expression. To determine the role of OPN in inducing NHE1-mediated cardiomyocyte hypertrophy, double transgenic mice expressing active NHE1 and OPN knockout were generated and assessed by echocardiography and the cardiac phenotype. Our studies showed that hearts expressing active NHE1 exhibited cardiac remodeling indicated by increased systolic and diastolic left ventricular internal diameter and increased ventricular volume. Moreover, these hearts demonstrated impaired function with decreased fractional shortening and ejection fraction. Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) mRNA was upregulated, and there was an increase in heart cell cross-sectional area confirming the cardiac hypertrophic effect. Moreover, NHE1 transgenic mice also showed increased collagen deposition, upregulation of CD44 and phosphorylation of p90 ribosomal s6 kinase (RSK), effects that were regressed in OPN knockout mice. In conclusion, we developed an interesting comparative model of active NHE1 transgenic mouse lines which express a dilated hypertrophic phenotype expressing CD44 and phosphorylated RSK, effects which were regressed in absence of OPN.

  17. PU.1 regulates TCR expression by modulating GATA-3 activity

    PubMed Central

    Chang, Hua-Chen; Han, Ling; Jabeen, Rukhsana; Carotta, Sebastian; Nutt, Stephen L.; Kaplan, Mark H.

    2009-01-01

    The Ets transcription factor PU.1 is a master regulator for the development of multiple lineages during hematopoiesis. The expression pattern of PU.1 is dynamically regulated during early T lineage development in the thymus. We previously revealed that PU.1 delineates heterogeneity of effector Th2 populations. In this study, we further define the function of PU.1 on the Th2 phenotype using mice that specifically lack PU.1 in T cells using an lck-Cre transgene with a conditional Sfpi1 allele (Sfpi1lck-/-). While deletion of PU.1 by the lck-Cre transgene does not affect T cell development, Sfpi1lck-/- T cells have a lower activation threshold than wild type T cells. When TCR engagement is limiting, Sfpi1lck-/- T cells cultured in Th2 polarizing conditions secrete higher levels of Th2 cytokines and have greater cytokine homogeneity than wild type cells. We show that PU.1 modulates the levels of TCR expression in CD4+ T cells by regulating the DNA-binding activity of GATA-3 and limiting GATA-3 regulation of TCR gene expression. GATA-3 dependent regulation of TCR expression is also observed in Th1 and Th2 cells. In CD4+ T cells, PU.1 expression segregates into subpopulations of cells that have lower levels of surface TCR, suggesting that PU.1 contributes to the heterogeneity of TCR expression. Thus, we have identified a mechanism whereby increased GATA-3 function in the absence of the antagonizing activity of PU.1 leads to increased TCR expression, a reduced activation threshold and increased homogeneity in Th2 populations. PMID:19801513

  18. Divergent Regulation of CBF Regulon on Cold Tolerance and Plant Phenotype in Cassava Overexpressing Arabidopsis CBF3 Gene.

    PubMed

    An, Dong; Ma, Qiuxiang; Yan, Wei; Zhou, Wenzhi; Liu, Guanghua; Zhang, Peng

    2016-01-01

    Cassava is a tropical origin plant that is sensitive to chilling stress. In order to understand the CBF cold response pathway, a well-recognized regulatory mechanism in temperate plants, in cassava, overexpression of an Arabidopsis CBF3 gene is studied. This gene renders cassava increasingly tolerant to cold and drought stresses but is associated with retarded plant growth, leaf curling, reduced storage root yield, and reduced anthocyanin accumulation in a transcript abundance-dependent manner. Physiological analysis revealed that the transgenic cassava increased proline accumulation, reduced malondialdehyde production, and electrolyte leakage under cold stress. These transgenic lines also showed high relative water content when faced with drought. The expression of partial CBF-targeted genes in response to cold displayed temporal and spatial variations in the wild-type and transgenic plants: highly inducible in leaves and less altered in apical buds. In addition, anthocyanin accumulation was inhibited by downregulating the expression of genes involved in its biosynthesis and by interplaying between the CBF3 and the endogenous transcription factors. Thus, the heterologous CBF3 modulates the expression of stress-related genes and carries out a series of physiological adjustments under stressful conditions, showing a varied regulation pattern of CBF regulon from that of cassava CBFs.

  19. HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice.

    PubMed

    Ding, Bo; Bellizzi, Maria del Rosario; Ning, Yuese; Meyers, Blake C; Wang, Guo-Liang

    2012-09-01

    Histone acetylation and deacetylation play an important role in the modification of chromatin structure and regulation of gene expression in eukaryotes. Chromatin acetylation status is modulated antagonistically by histone acetyltransferases and histone deacetylases (HDACs). In this study, we characterized the function of histone deacetylase701 (HDT701), a member of the plant-specific HD2 subfamily of HDACs, in rice (Oryza sativa) innate immunity. Transcription of HDT701 is increased in the compatible reaction and decreased in the incompatible reaction after infection by the fungal pathogen Magnaporthe oryzae. Overexpression of HDT701 in transgenic rice leads to decreased levels of histone H4 acetylation and enhanced susceptibility to the rice pathogens M. oryzae and Xanthomonas oryzae pv oryzae (Xoo). By contrast, silencing of HDT701 in transgenic rice causes elevated levels of histone H4 acetylation and elevated transcription of pattern recognition receptor (PRR) and defense-related genes, increased generation of reactive oxygen species after pathogen-associated molecular pattern elicitor treatment, as well as enhanced resistance to both M. oryzae and Xoo. We also found that HDT701 can bind to defense-related genes to regulate their expression. Taken together, these results demonstrate that HDT701 negatively regulates innate immunity by modulating the levels of histone H4 acetylation of PRR and defense-related genes in rice.

  20. Melatonin ameliorates anxiety and depression-like behaviors and modulates proteomic changes in triple transgenic mice of Alzheimer's disease.

    PubMed

    Nie, Lulin; Wei, Gang; Peng, Shengming; Qu, Zhongsen; Yang, Ying; Yang, Qian; Huang, Xinfeng; Liu, Jianjun; Zhuang, Zhixiong; Yang, Xifei

    2017-07-08

    Alzheimer's disease (AD) is a devastating neurodegenerative disease accompanied by neuropsychiatric symptoms, such as anxiety and depression. The levels of melatonin decrease in brains of AD patients. The potential effect of melatonin on anxiety and depression behaviors in AD and the underlying mechanisms remain unclear. In this study, we treated 10-month-old triple transgenic mice of AD (3xTg-AD) with melatonin (10 mg/kg body weight/day) for 1 month and explored the effects of melatonin on anxiety and depression-like behaviors in 3xTg-AD mice and the protein expression of hippocampal tissues. The behavioral test showed that melatonin ameliorated anxiety and depression-like behaviors of 3xTg-AD mice as measured by open field test, elevated plus maze test, forced swimming test, and tail suspension test. By carrying out two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry, we revealed a total of 46 differentially expressed proteins in hippocampus between the wild-type (WT) mice and non-treated 3xTg-AD mice. A total of 21 differentially expressed proteins were revealed in hippocampus between melatonin-treated and non-treated 3xTg-AD mice. Among these differentially expressed proteins, glutathione S-transferase P 1 (GSTP1) (an anxiety-associated protein) and complexin-1 (CPLX1) (a depression-associated protein) were significantly down-regulated in hippocampus of 3xTg-AD mice compared with the WT mice. The expression of these two proteins was modulated by melatonin treatment. Our study suggested that melatonin could be used as a potential candidate drug to improve the neuropsychiatric behaviors in AD via modulating the expression of the proteins (i.e. GSTP1 and CPLX1) involved in anxiety and depression behaviors. © 2017 BioFactors, 43(4):593-611, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  1. Overexpression of PDX-II gene in potato (Solanum tuberosum L.) leads to the enhanced accumulation of vitamin B6 in tuber tissues and tolerance to abiotic stresses.

    PubMed

    Bagri, Deepak Singh; Upadhyaya, Devanshi Chandel; Kumar, Ashwani; Upadhyaya, Chandrama Prakash

    2018-07-01

    Vitamin B6 is a vital metabolite required for living organisms as a cofactor in several metabolic biochemical reactions and recognized as a potent antioxidant molecule which modulates the expression of the proteins responsible for the scavenging of cellular reactive oxygen species. It is well established that the microorganisms and plants can synthesize the B6 de novo, therefore, all the animals including humans must acquire it from the plant dietary resources. However, the bioavailability of the vitamin in the edible portions of the commonly consumed plants is insufficient to meet the daily recommended doses. Genetic engineering techniques have proven successful in increasing the vitamin B6 content in the model plants. Present study describe the development of transgenic potato (Solanum tuberosum L. cv. Kufri chipsona) overexpressing key vitamin B6 pathway gene, the PDXII (NCBI database Ref. ID- NM_125447.2) isolated from Arabidopsis thaliana under the control of CaMV 35S constitutive promoter. The stable integration and expression of transgene in the transgenic lines were confirmed by PCR, Southern blot and RT-PCR analysis. Transgenic tubers exhibited considerably improved vitamin B6 accumulation (up to 107-150%) in comparison to the untransformed controls potato. This increase in vitamin B6 was also correlated with the increased mRNA expression of PDXII gene. The prominent increase in the B6 content of transgenic potato was also associated with the capability to survive under abiotic stresses, therefore, the transgenic lines were able to withstand various abiotic stresses imposed by salinity (NaCl) or methyl viologen (MV). We thus demonstrated that overexpression of PDXII gene under the control of a constitutive promoter enhanced the accumulation of the vitamin B6 which also augmented the tolerance under various abiotic stresses in potato (Solanum tuberosum L.). Copyright © 2018 Elsevier B.V. All rights reserved.

  2. AAV-mediated pancreatic overexpression of Igf1 counteracts progression to autoimmune diabetes in mice.

    PubMed

    Mallol, Cristina; Casana, Estefania; Jimenez, Veronica; Casellas, Alba; Haurigot, Virginia; Jambrina, Claudia; Sacristan, Victor; Morró, Meritxell; Agudo, Judith; Vilà, Laia; Bosch, Fatima

    2017-07-01

    Type 1 diabetes is characterized by autoimmune destruction of β-cells leading to severe insulin deficiency. Although many improvements have been made in recent years, exogenous insulin therapy is still imperfect; new therapeutic approaches, focusing on preserving/expanding β-cell mass and/or blocking the autoimmune process that destroys islets, should be developed. The main objective of this work was to test in non-obese diabetic (NOD) mice, which spontaneously develop autoimmune diabetes, the effects of local expression of Insulin-like growth factor 1 (IGF1), a potent mitogenic and pro-survival factor for β-cells with immunomodulatory properties. Transgenic NOD mice overexpressing IGF1 specifically in β-cells (NOD-IGF1) were generated and phenotyped. In addition, miRT-containing, IGF1-encoding adeno-associated viruses (AAV) of serotype 8 (AAV8-IGF1-dmiRT) were produced and administered to 4- or 11-week-old non-transgenic NOD females through intraductal delivery. Several histological, immunological, and metabolic parameters were measured to monitor disease over a period of 28-30 weeks. In transgenic mice, local IGF1 expression led to long-term suppression of diabetes onset and robust protection of β-cell mass from the autoimmune insult. AAV-mediated pancreatic-specific overexpression of IGF1 in adult animals also dramatically reduced diabetes incidence, both when vectors were delivered before pathology onset or once insulitis was established. Transgenic NOD-IGF1 and AAV8-IGF1-dmiRT-treated NOD animals had much less islet infiltration than controls, preserved β-cell mass, and normal insulinemia. Transgenic and AAV-treated islets showed less expression of antigen-presenting molecules, inflammatory cytokines, and chemokines important for tissue-specific homing of effector T cells, suggesting IGF1 modulated islet autoimmunity in NOD mice. Local expression of Igf1 by AAV-mediated gene transfer counteracts progression to diabetes in NOD mice. This study suggests a therapeutic strategy for autoimmune diabetes in humans.

  3. Independent effects of apolipoprotein AV and apolipoprotein CIII on plasma triglyceride concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baroukh, Nadine N.; Bauge, Eric; Akiyama, Jennifer

    2003-08-15

    Both the apolipoprotein A5 and C3 genes have repeatedly been shown to play an important role in determining plasma triglyceride concentrations in humans and mice. In mice, transgenic and knockout experiments indicate that plasma triglyceride levels are negatively and positively correlated with APOA5 and APOC3 expression, respectively. In humans, common polymorphisms in both genes have also been associated with plasma triglyceride concentrations. The evolutionary relationship among these two apolipoprotein genes and their close proximity on human chromosome 11q23 have largely precluded the determination of their relative contribution to altered Both the apolipoprotein A5 and C3 genes have repeatedly been shownmore » to play an important role in determining plasma triglyceride concentrations in humans and mice. In mice, transgenic and knockout experiments indicate that plasma triglyceride levels are negatively and positively correlated with APOA5 and APOC3 expression, respectively. In humans, common polymorphisms in both genes have also been associated with plasma triglyceride concentrations. The evolutionary relationship among these two apolipoprotein genes and their close proximity on human chromosome 11q23 have largely precluded the determination of their relative contribution to altered triglycerides. To overcome these confounding factors and address their relationship, we generated independent lines of mice that either over-expressed (''double transgenic'') or completely lacked (''double knockout'') both apolipoprotein genes. We report that both ''double transgenic'' and ''double knockout'' mice display intermedia tetriglyceride concentrations compared to over-expression or deletion of either gene alone. Furthermore, we find that human ApoAV plasma protein levels in the ''double transgenic'' mice are approximately 500-fold lower than human ApoCIII levels, supporting ApoAV is a potent triglyceride modulator despite its low concentration. Together, these data indicate that APOA5 and APOC3 independently influence plasma triglyceride concentrations but in an opposing manner.« less

  4. Methods and compositions for altering lignin composition in plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Avinash C.; Tang, Yuhong; Blancaflor, Elison

    The invention provides methods for decreasing lignin content in plants by reducing expression of a folylpolyglutamate synthetase 1 (FPGS1) coding sequence in the plant. Also provided are methods for reducing lignin content in a plant by down-regulation of FPGS1 expression in the plant. Nucleic acid molecules for modulation of FPGS1 expression and transgenic plants the same are also provided. Plants described herein may be used, for example, as improved biofuel feedstock and as highly digestible forage crops. Methods for processing plant tissue and for producing biofuels by utilizing such plants are also provided.

  5. Highly Efficient Generation of Transgenic Sheep by Lentivirus Accompanying the Alteration of Methylation Status

    PubMed Central

    Liu, Chenxi; Wang, Liqin; Li, Wenrong; Zhang, Xuemei; Tian, Yongzhi; Zhang, Ning; He, Sangang; Chen, Tong; Huang, Juncheng; Liu, Mingjun

    2013-01-01

    Background Low efficiency of gene transfer and silence of transgene expression are the critical factors hampering the development of transgenic livestock. Recently, transfer of recombinant lentivirus has been demonstrated to be an efficient transgene delivery method in various animals. However, the lentiviral transgenesis and the methylation status of transgene in sheep have not been well addressed. Methodology/Principle Findings EGFP transgenic sheep were generated by injecting recombinant lentivirus into zygotes. Of the 13 lambs born, 8 carried the EGFP transgene, and its chromosomal integration was identified in all tested tissues. Western blotting showed that GFP was expressed in all transgenic founders and their various tissues. Analysis of CpG methylation status of CMV promoter by bisulfate sequencing unraveled remarkable variation of methylation levels in transgenic sheep. The average methylation levels ranged from 37.6% to 79.1% in the transgenic individuals and 34.7% to 83% in the tested tissues. Correlative analysis of methylation status with GFP expression revealed that the GFP expression level was inversely correlated with methylation density. The similar phenomenon was also observed in tested tissues. Transgene integration determined by Southern blotting presented multiple integrants ranging from 2 to 6 copies in the genome of transgenic sheep. Conclusions/Significance Injection of lentiviral transgene into zygotes could be a promising efficient gene delivery system to generate transgenic sheep and achieved widespread transgene expression. The promoter of integrants transferred by lentiviral vector was subjected to dramatic alteration of methylation status and the transgene expression level was inversely correlative with promoter methylation density. Our work illustrated for the first time that generation of transgenic sheep by injecting recombinant lentivirus into zygote could be an efficient tool to improve sheep performance by genetic modification. PMID:23382924

  6. Mono-allelic expression of variegating transgene locus in the mouse.

    PubMed

    Opsahl, Margaret L; Springbett, Anthea; Lathe, Richard; Colman, Alan; McClenaghan, Margaret; Whitelaw, C Bruce A

    2003-12-01

    We have generated transgenic mice which express an ovine beta-lactoglobulin transgene during lactation. In two transgenic lines, BLG/7 and BLG/45, beta-lactoglobulin protein levels vary between siblings, reflected at the cellular level by a mosaic transgene expression pattern in the mammary tissue that is reminiscent of position effect variegation. To investigate whether this variegating expression profile can be affected by the introduction of an identical variegating locus on the homologous chromosome, we compared the beta-lactoglobulin expression profiles in mice hemizygous or homozygous for the transgene locus. In BLG/45 mice, milk protein analysis revealed that transgene expression was effectively doubled in homozygous compared to hemizygous mice. In contrast, beta-lactoglobulin protein in hemizygous and homozygous BLG/7 mice displayed a similar range; although minimum expression levels were doubled in the homozygous population, the maximum level of expression was indistinguishable between the two populations. Fluorescent in situ hybridisation (FISH) for transgene mRNA indicated that for a given protein level, the extent of cellular expression is similar in both BLG/7 populations. In homozygous mice genomic DNA and nuclear RNA FISH demonstrated that only one of the two BLG/7 loci is active in expressing cells, while two transcription foci were present in BLG/45 homozygous mice. This mono-allelic transgene expression pattern is not inherited through the germline, as hemizygous mice bred from homozygous parents expressed at the expected hemizygous population level. We discuss these observations in the context of known epigenetic events such as imprinting and trans-inactivation.

  7. Influence of human lactoferrin expression on iron homeostasis, flavonoids, and antioxidants in transgenic tobacco.

    PubMed

    Kumar, Vinay; Gill, Tejpal; Grover, Sunita; Ahuja, Paramvir Singh; Yadav, Sudesh Kumar

    2013-02-01

    This study was aimed at to check the influence of human lactoferrin (hLF) expression on iron homeostasis, flavonoids, and antioxidants in transgenic tobacco. Transgenic tobacco expressing hLF cDNA under the control of a CaMV 35S promoter was produced. The iron content as well as chlorophyll content of transgenic tobacco was lower compared to mock and untransformed wild plants. Interestingly, hLF transgenic tobacco showed higher level of transcript expression for genes related to iron content regulation like iron transporter and metal transporter. While expression of genes related to iron storage such as ferritin 1 and ferritin 2 was downregulated. The transcript expression of genes encoding antioxidant enzymes such as glutathione reductase, glutathione-S-transferase, ascorbate peroxidase, and catalase was downregulated in hLF transgenic tobacco compared to controls. Further, the transcript expression of two important genes encoding dihydroflavonol reductase (DFR) and phenylalanine ammonia lyase regulatory enzymes of flavonoid biosynthesis pathway was analyzed. The expression of DFR was found to be downregulated, while PAL expression was upregulated in hLF transgenic tobacco compared to mock and untransformed wild plant. Total phenolics, flavonoids, and proanthocyanidins contents were found to be higher in hLF transgenic tobacco than the mock and untransformed wild plant. Results suggest that hLF expression in transgenic tobacco leads to iron deficiency, downregulation of antioxidant enzymes, and increase in total flavonoids.

  8. Airway-Specific Inducible Transgene Expression Using Aerosolized Doxycycline

    PubMed Central

    Tata, Purushothama Rao; Pardo-Saganta, Ana; Prabhu, Mythili; Vinarsky, Vladimir; Law, Brandon M.; Fontaine, Benjamin A.; Tager, Andrew M.

    2013-01-01

    Tissue-specific transgene expression using tetracycline (tet)-regulated promoter/operator elements has been used to revolutionize our understanding of cellular and molecular processes. However, because most tet-regulated mouse strains use promoters of genes expressed in multiple tissues, to achieve exclusive expression in an organ of interest is often impossible. Indeed, in the extreme case, unwanted transgene expression in other organ systems causes lethality and precludes the study of the transgene in the actual organ of interest. Here, we describe a novel approach to activating tet-inducible transgene expression solely in the airway by administering aerosolized doxycycline. By optimizing the dose and duration of aerosolized doxycycline exposure in mice possessing a ubiquitously expressed Rosa26 promoter–driven reverse tet-controlled transcriptional activator (rtTA) element, we induce transgene expression exclusively in the airways. We detect no changes in the cellular composition or proliferative behavior of airway cells. We used this newly developed method to achieve airway basal stem cell–specific transgene expression using a cytokeratin 5 (also known as keratin 5)–driven rtTA driver line to induce Notch pathway activation. We observed a more robust mucous metaplasia phenotype than in mice receiving doxycycline systemically. In addition, unwanted phenotypes outside of the lung that were evident when doxycycline was received systemically were now absent. Thus, our approach allows for rapid and efficient airway-specific transgene expression. After the careful strain by strain titration of the dose and timing of doxycycline inhalation, a suite of preexisting transgenic mice can now be used to study airway biology specifically in cases where transient transgene expression is sufficient to induce a phenotype. PMID:23848320

  9. Lipidomic and metabolic changes in the P4-type ATPase ATP10D deficient C57BL/6J wild type mice upon rescue of ATP10D function.

    PubMed

    Sigruener, Alexander; Wolfrum, Christian; Boettcher, Alfred; Kopf, Thomas; Liebisch, Gerhard; Orsó, Evelyn; Schmitz, Gerd

    2017-01-01

    Sequence variants near the human gene for P4-type ATPase, class V, type 10D (ATP10D) were shown to significantly associate with circulating hexosylceramide d18:1/16:0 and d18:1/24:1 levels, obesity, insulin resistance, plasma high density lipoprotein (HDL), coronary stenotic index and intracranial atherosclerotic index. In mice Atp10d is associated with HDL modulation and C57BL/6 mice expressing a truncated, non-functional form of ATP10D easily develop obesity and insulin resistance on high-fat diet. We analyzed metabolic differences of ATP10D deficient C57BL/6J wild type and ATP10D transgenic C57BL/6J BAC129 mice. ATP10D transgenic mice gain 25% less weight on high-fat diet concomitant with a reduced increase in fat cell mass but independent of adipocyte size change. ATP10D transgenic mice also had 26% lower triacylglycerol levels with approximately 76% bound to very low density lipoprotein while in ATP10D deficient wild type mice 57% are bound to low density lipoprotein. Furthermore increased oxygen consumption and CO2 production, 38% lower glucose and 69% lower insulin levels and better insulin sensitivity were observed in ATP10D transgenic mice. Besides decreased hexosylceramide species levels were detected. Part of these effects may be due to reduced hepatic stearoyl-CoA desaturase 1 (SCD1) expression in ATP10D transgenic mice, which was reflected by altered fatty acid and lipid species patterns. There was a significant decrease in the hepatic 18:1 to 18:0 free fatty acid ratio in transgenic mice. The ratio of 16:1 to 16:0 was not significantly different. Interestingly both ratios were significantly reduced in plasma total fatty acids. In summary we found that ATP10D reduces high-fat diet induced obesity and improves insulin sensitivity. ATP10D transgenic mice showed altered hepatic expression of lipid-metabolism associated genes, including Scd1, along with changes in hepatic and plasma lipid species and plasma lipoprotein pattern.

  10. Characterization of the Genetic Program Linked to the Development of Atrial Fibrillation in CREM-IbΔC-X Mice.

    PubMed

    Seidl, Matthias D; Stein, Juliane; Hamer, Sabine; Pluteanu, Florentina; Scholz, Beatrix; Wardelmann, Eva; Huge, Andreas; Witten, Anika; Stoll, Monika; Hammer, Elke; Völker, Uwe; Müller, Frank U

    2017-08-01

    Reduced expression of genes regulated by the transcription factors CREB/CREM (cAMP response element-binding protein/modulator) is linked to atrial fibrillation (AF) susceptibility in patients. Cardiomyocyte-directed expression of the inhibitory CREM isoform CREM-IbΔC-X in transgenic mice (TG) leads to spontaneous-onset AF preceded by atrial dilatation and conduction abnormalities. Here, we characterized the altered gene program linked to atrial remodeling and development of AF in CREM-TG mice. Atria of young (TGy, before AF onset) and old (TGo, after AF onset) TG mice were investigated by mRNA microarray profiling in comparison with age-matched wild-type controls (WTy/WTo). Proteomic alterations were profiled in young mice (8 TGy versus 8 WTy). Annotation of differentially expressed genes revealed distinct differences in biological functions and pathways before and after onset of AF. Alterations in metabolic pathways, some linked to altered peroxisome proliferator-activated receptor signaling, muscle contraction, and ion transport were already present in TGy. Electron microscopy revealed significant loss of sarcomeres and mitochondria and increased collagen and glycogen deposition in TG mice. Alterations in electrophysiological pathways became prominent in TGo, concomitant with altered gene expression of K + -channel subunits and ion channel modulators, relevant in human AF. The most prominent alterations of the gene program linked to CREM-induced atrial remodeling were identified in the expression of genes related to structure, metabolism, contractility, and electric activity regulation, suggesting that CREM transgenic mice are a valuable experimental model for human AF pathophysiology. © 2017 American Heart Association, Inc.

  11. Regulation of trichome development in tobacco by JcZFP8, a C2H2 zinc finger protein gene from Jatropha curcas L.

    PubMed

    Shi, Xiaodong; Gu, Yuxi; Dai, Tingwei; Wu, Yang; Wu, Peng; Xu, Ying; Chen, Fang

    2018-06-05

    Trichomes are epidermal outgrowths of plant tissues that can secrete or store large quantities of secondary metabolites, which contribute to plant defense responses against stress. The use of bioengineering methods for regulating the development of trichomes and metabolism is a widely researched topic. In the present study, we demonstrate that JcZFP8, a C2H2 zinc finger protein gene from Jatropha curcas L., can regulate trichome development in transgenic tobacco. To understand the underlying mechanisms, we performed transcriptome profiling of overexpression JcZFP8 transgenic plants and wild-type tobacco. Based on the analysis of differentially expressed genes, we determined that genes of the plant hormone signal transduction pathway was significantly enriched, suggesting that these pathways were modulated in the transgenic plants. In addition, the transcript levels of the known trichome-related genes in Arabidopsis were not significantly changed, whereas CycB2 and MYB genes were differentially expressed in the transgenic plants. Despite tobacco and Arabidopsis have different types of trichomes, all the pathways were associated with C2H2 zinc finger protein genes. Our findings help us to understand the regulation of multicellular trichome formation and suggest a new metabolic engineering method for the improvement of plants. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. GC-rich coding sequences reduce transposon-like, small RNA-mediated transgene silencing.

    PubMed

    Sidorenko, Lyudmila V; Lee, Tzuu-Fen; Woosley, Aaron; Moskal, William A; Bevan, Scott A; Merlo, P Ann Owens; Walsh, Terence A; Wang, Xiujuan; Weaver, Staci; Glancy, Todd P; Wang, PoHao; Yang, Xiaozeng; Sriram, Shreedharan; Meyers, Blake C

    2017-11-01

    The molecular basis of transgene susceptibility to silencing is poorly characterized in plants; thus, we evaluated several transgene design parameters as means to reduce heritable transgene silencing. Analyses of Arabidopsis plants with transgenes encoding a microalgal polyunsaturated fatty acid (PUFA) synthase revealed that small RNA (sRNA)-mediated silencing, combined with the use of repetitive regulatory elements, led to aggressive transposon-like silencing of canola-biased PUFA synthase transgenes. Diversifying regulatory sequences and using native microalgal coding sequences (CDSs) with higher GC content improved transgene expression and resulted in a remarkable trans-generational stability via reduced accumulation of sRNAs and DNA methylation. Further experiments in maize with transgenes individually expressing three crystal (Cry) proteins from Bacillus thuringiensis (Bt) tested the impact of CDS recoding using different codon bias tables. Transgenes with higher GC content exhibited increased transcript and protein accumulation. These results demonstrate that the sequence composition of transgene CDSs can directly impact silencing, providing design strategies for increasing transgene expression levels and reducing risks of heritable loss of transgene expression.

  13. Overexpression of Interleukin-4 in the Thyroid of Transgenic Mice Upregulates the Expression of Duox1 and the Anion Transporter Pendrin

    PubMed Central

    Achouri, Younes; Hahn, Stephan; Many, Marie-Christine; Craps, Julie; Refetoff, Samuel; Liao, Xiao-Hui; Dumont, Jacques E.; Van Sande, Jacqueline; Corvilain, Bernard; Miot, Françoise; De Deken, Xavier

    2016-01-01

    Background: The dual oxidases (Duox) are involved in hydrogen peroxide generation, which is essential for thyroid hormone synthesis, and therefore they are markers of thyroid function. During inflammation, cytokines upregulate DUOX gene expression in the airway and the intestine, suggesting a role for these proteins in innate immunity. It was previously demonstrated that interleukin-4 (IL-4) upregulates DUOX gene expression in thyrocytes. Although the role of IL-4 in autoimmune thyroid diseases has been studied extensively, the effects of IL-4 on thyroid physiology remain largely unknown. Therefore, a new animal model was generated to study the impact of IL-4 on thyroid function. Methods: Transgenic (Thyr-IL-4) mice with thyroid-targeted expression of murine IL-4 were generated. Transgene expression was verified at the mRNA and protein level in thyroid tissues and primary cultures. The phenotype of the Thyr-IL-4 animals was characterized by measuring serum thyroxine (T4) and thyrotropin levels and performing thyroid morphometric analysis, immunohistochemistry, whole transcriptome sequencing, quantitative reverse transcription polymerase chain reaction, and ex vivo thyroid function assays. Results: Thyrocytes from two Thyr-IL-4 mouse lines (#30 and #52) expressed IL-4, which was secreted into the extracellular space. Although 10-month-old transgenic animals had T4 and thyrotropin serum levels in the normal range, they had altered thyroid follicular structure with enlarged follicles composed of elongated thyrocytes containing numerous endocytic vesicles. These follicles were positive for T4 staining the colloid, indicating their capacity to produce thyroid hormones. RNA profiling of Thyr-IL-4 thyroid samples revealed modulation of multiple genes involved in inflammation, while no major leukocyte infiltration could be detected. Upregulated expression of Duox1, Duoxa1, and the pendrin anion exchanger gene (Slc26a4) was detected. In contrast, the iodide symporter gene Slc5a5 was markedly downregulated resulting in impaired iodide uptake and reduced thyroid hormone levels in transgenic thyroid tissue. Hydrogen peroxide production was increased in Thyr-IL-4 thyroid tissue compared with wild-type animals, but no significant oxidative stress could be detected. Conclusions: This is the first study to show that ectopic expression of IL-4 in thyroid tissue upregulates Duox1/Duoxa1 and Slc26a4 expression in the thyroid. The present data demonstrate that IL-4 could affect thyroid morphology and function, mainly by downregulating Slc5a5 expression, while maintaining a normal euthyroid phenotype. PMID:27599561

  14. Transgenic Muscle-Specific Nor-1 Expression Regulates Multiple Pathways That Effect Adiposity, Metabolism, and Endurance

    PubMed Central

    Pearen, Michael A.; Goode, Joel M.; Fitzsimmons, Rebecca L.; Eriksson, Natalie A.; Thomas, Gethin P.; Cowin, Gary J.; Wang, S.-C. Mary; Tuong, Zewen K.

    2013-01-01

    The mRNA encoding Nor-1/NR4A3 is rapidly and strikingly induced by β2-adrenergic signaling in glycolytic and oxidative skeletal muscle. In skeletal muscle cells, Nor-1 expression is important for the regulation of oxidative metabolism. Transgenic skeletal muscle-specific expression of activated Nor-1 resulted in the acquisition of an endurance phenotype, an increase in type IIA/X oxidative muscle fibers, and increased numbers of mitochondria. In the current study, we used dual-energy x-ray absorptiometry and magnetic resonance imaging analysis to demonstrate decreased adiposity in transgenic (Tg) Nor-1 mice relative to that in wild-type littermates. Furthermore, the Tg-Nor-1 mice were resistant to diet-induced weight gain and maintained fasting glucose at normoglycemic levels. Expression profiling and RT-quantitative PCR analysis revealed significant increases in genes involved in glycolysis, the tricarboxylic acid cycle, oxidative phosphorylation, fatty acid oxidation, and glycogen synthesis, in concordance with the lean phenotype. Moreover, expression profiling identified several Z-disc and sarcomeric binding proteins that modulate fiber type phenotype and endurance, eg, α-actinin-3. In addition, we demonstrated that the Tg-Nor-1 mouse line has significantly higher glycogen content in skeletal muscle relative to that in wild-type littermates. Finally, we identified a decreased NAD+/NADH ratio with a concordant increase in peroxisome proliferator-activated receptor γ coactivator-1α1 protein/mRNA expression. Increased NADH was associated with an induction of the genes involved in the malate-aspartate shuttle and a decrease in the glycerol 3-phosphate shuttle, which maximizes aerobic ATP production. In conclusion, skeletal muscle-specific Nor-1 expression regulates genes and pathways that regulate adiposity, muscle fiber type metabolic capacity, and endurance. PMID:24065705

  15. Matrix Metalloproteinase-20 Over-Expression Is Detrimental to Enamel Development: A Mus musculus Model

    PubMed Central

    Shin, Masashi; Hu, Yuanyuan; Tye, Coralee E.; Guan, Xiaomu; Deagle, Craig C.; Antone, Jerry V.; Smith, Charles E.; Simmer, James P.; Bartlett, John D.

    2014-01-01

    Background Matrix metalloproteinase-20 (Mmp20) ablated mice have enamel that is thin and soft with an abnormal rod pattern that abrades from the underlying dentin. We asked if introduction of transgenes expressing Mmp20 would revert this Mmp20 null phenotype back to normal. Unexpectedly, for transgenes expressing medium or high levels of Mmp20, we found opposite enamel phenotypes depending on the genetic background (Mmp20−/− or Mmp20+/+) in which the transgenes were expressed. Methodology/Principal Findings Amelx-promoter-Mmp20 transgenic founder mouse lines were assessed for transgene expression and those expressing low, medium or high levels of Mmp20 were selected for breeding into the Mmp20 null background. Regardless of expression level, each transgene brought the null enamel back to full thickness. However, the high and medium expressing Mmp20 transgenes in the Mmp20 null background had significantly harder more mineralized enamel than did the low transgene expresser. Strikingly, when the high and medium expressing Mmp20 transgenes were present in the wild-type background, the enamel was significantly less well mineralized than normal. Protein gel analysis of enamel matrix proteins from the high and medium expressing transgenes present in the wild-type background demonstrated that greater than normal amounts of cleavage products and smaller quantities of higher molecular weight proteins were present within their enamel matrices. Conclusions/Significance Mmp20 expression levels must be within a specific range for normal enamel development to occur. Creation of a normally thick enamel layer may occur over a wider range of Mmp20 expression levels, but acquisition of normal enamel hardness has a narrower range. Since over-expression of Mmp20 results in decreased enamel hardness, this suggests that a balance exists between cleaved and full-length enamel matrix proteins that are essential for formation of a properly hardened enamel layer. It also suggests that few feedback controls are present in the enamel matrix to prevent excessive MMP20 activity. PMID:24466234

  16. Transgenic rice plants expressing a Bacillus subtilis protoporphyrinogen oxidase gene are resistant to diphenyl ether herbicide oxyfluorfen.

    PubMed

    Lee, H J; Lee, S B; Chung, J S; Han, S U; Han, O; Guh, J O; Jeon, J S; An, G; Back, K

    2000-06-01

    Protoporphyrinogen oxidase (Protox), the penultimate step enzyme of the branch point for the biosynthetic pathway of Chl and hemes, is the target site of action of diphenyl ether (DPE) herbicides. However, Bacillus subtilis Protox is known to be resistant to the herbicides. In order to develop the herbicide-resistant plants, the transgenic rice plants were generated via expression of B. subtilis Protox gene under ubiquitin promoter targeted to the cytoplasm or to the plastid using Agrobacterium-mediated gene transformation. The integration and expression of the transgene were investigated at T0 generation by DNA and RNA blots. Most transgenic rice plants revealed one copy transgene insertion into the rice genome, but some with 3 copies. The expression levels of B. subtilis Protox mRNA appeared to correlate with the copy number. Furthermore, the plastidal transgenic lines exhibited much higher expression of the Protox mRNA than the cytoplasmic transgenic lines. The transgenic plants expressing the B. subtilis Protox gene at T0 generation were found to be resistant to oxyfluorfen when judged by cellular damage with respect to cellular leakage, Chl loss, and lipid peroxidation. The transgenic rice plants targeted to the plastid exhibited higher resistance to the herbicide than the transgenic plants targeted to the cytoplasm. In addition, possible resistance mechanisms in the transgenic plants to DPE herbicides are discussed.

  17. Transgenic plants expressing the AaIT/GNA fusion protein show increased resistance and toxicity to both chewing and sucking pests.

    PubMed

    Liu, Shu-Min; Li, Jie; Zhu, Jin-Qi; Wang, Xiao-Wei; Wang, Cheng-Shu; Liu, Shu-Sheng; Chen, Xue-Xin; Li, Sheng

    2016-04-01

    The adoption of pest-resistant transgenic plants to reduce yield losses and decrease pesticide use has been successful. To achieve the goal of controlling both chewing and sucking pests in a given transgenic plant, we generated transgenic tobacco, Arabidopsis, and rice plants expressing the fusion protein, AaIT/GNA, in which an insecticidal scorpion venom neurotoxin (Androctonus australis toxin, AaIT) is fused to snowdrop lectin (Galanthus nivalis agglutinin, GNA). Compared with transgenic tobacco and Arabidopsis plants expressing AaIT or GNA, transgenic plants expressing AaIT/GNA exhibited increased resistance and toxicity to one chewing pest, the cotton bollworm, Helicoverpa armigera. Transgenic tobacco and rice plants expressing AaIT/GNA showed increased resistance and toxicity to two sucking pests, the whitefly, Bemisia tabaci, and the rice brown planthopper, Nilaparvata lugens, respectively. Moreover, in the field, transgenic rice plants expressing AaIT/GNA exhibited a significant improvement in grain yield when infested with N. lugens. This study shows that expressing the AaIT/GNA fusion protein in transgenic plants can be a useful approach for controlling pests, particularly sucking pests which are not susceptible to the toxin in Bt crops. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  18. Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance.

    PubMed

    Tak, Himanshu; Negi, Sanjana; Ganapathi, T R

    2017-03-01

    Banana is an important fruit crop and its yield is hampered by multiple abiotic stress conditions encountered during its growth. The NAC (NAM, ATAF, and CUC) transcription factors are involved in plant response to biotic and abiotic stresses. In the present study, we studied the induction of banana NAC042 transcription factor in drought and high salinity conditions and its overexpression in transgenic banana to improve drought and salinity tolerance. MusaNAC042 expression was positively associated with stress conditions like salinity and drought and it encoded a nuclear localized protein. Transgenic lines of banana cultivar Rasthali overexpressing MusaNAC042 were generated by Agrobacterium-mediated transformation of banana embryogenic cells and T-DNA insertion was confirmed by PCR and Southern blot analysis. Our results using leaf disc assay indicated that transgenic banana lines were able to tolerate drought and high salinity stress better than the control plants and retained higher level of total chlorophyll and lower level of MDA content (malondialdehyde). Transgenic lines analyzed for salinity (250 mM NaCl) and drought (Soil gravimetric water content 0.15) tolerance showed higher proline content, better Fv/Fm ratio, and lower levels of MDA content than control suggesting that MusaNAC042 may be involved in responses to higher salinity and drought stresses in banana. Expression of several abiotic stress-related genes like those coding for CBF/DREB, LEA, and WRKY factors was altered in transgenic lines indicating that MusaNAC042 is an efficient modulator of abiotic stress response in banana.

  19. Unbiased screen identifies aripiprazole as a modulator of abundance of the polyglutamine disease protein, ataxin-3

    PubMed Central

    Costa, Maria do Carmo; Ashraf, Naila S.; Fischer, Svetlana; Yang, Yemen; Schapka, Emily; Joshi, Gnanada; McQuade, Thomas J.; Dharia, Rahil M.; Dulchavsky, Mark; Ouyang, Michelle; Cook, David; Sun, Duxin; Larsen, Martha J.; Gestwicki, Jason E.; Todi, Sokol V.; Ivanova, Magdalena I.; Paulson, Henry L.

    2016-01-01

    No disease-modifying treatment exists for the fatal neurodegenerative polyglutamine disease known both as Machado-Joseph disease and spinocerebellar ataxia type 3. As a potential route to therapy, we identified small molecules that reduce levels of the mutant disease protein, ATXN3. Screens of a small molecule collection, including 1250 Food and Drug Administration-approved drugs, in a novel cell-based assay, followed by secondary screens in brain slice cultures from transgenic mice expressing the human disease gene, identified the atypical antipsychotic aripiprazole as one of the hits. Aripiprazole increased longevity in a Drosophila model of Machado-Joseph disease and effectively reduced aggregated ATXN3 species in flies and in brains of transgenic mice treated for 10 days. The aripiprazole-mediated decrease in ATXN3 abundance may reflect a complex response culminating in the modulation of specific components of cellular protein homeostasis. Aripiprazole represents a potentially promising therapeutic drug for Machado-Joseph disease and possibly other neurological proteinopathies. PMID:27645800

  20. Improved production of genetically modified fetuses with homogeneous transgene expression after transgene integration site analysis and recloning in cattle.

    PubMed

    Bressan, Fabiana Fernandes; Dos Santos Miranda, Moyses; Perecin, Felipe; De Bem, Tiago Henrique; Pereira, Flavia Thomaz Verechia; Russo-Carbolante, Elisa Maria; Alves, Daiani; Strauss, Bryan; Bajgelman, Marcio; Krieger, José Eduardo; Binelli, Mario; Meirelles, Flavio Vieira

    2011-02-01

    Animal cloning by nuclear transfer (NT) has made the production of transgenic animals using genetically modified donor cells possible and ensures the presence of the gene construct in the offspring. The identification of transgene insertion sites in donor cells before cloning may avoid the production of animals that carry undesirable characteristics due to positional effects. This article compares blastocyst development and competence to establish pregnancies of bovine cloned embryos reconstructed with lentivirus-mediated transgenic fibroblasts containing either random integration of a transgene (random integration group) or nuclear transfer derived transgenic fibroblasts with known transgene insertion sites submitted to recloning (recloned group). In the random integration group, eGFP-expressing bovine fetal fibroblasts were selected by fluorescence activated cell sorting (FACS) and used as nuclei donor cells for NT. In the recloned group, a fibroblast cell line derived from a transgenic cloned fetus was characterized regarding transgene insertion and submitted to recloning. The recloned group had higher blastocyst production (25.38 vs. 14.42%) and higher percentage of 30-day pregnancies (14.29 vs. 2.56%) when compared to the random integration group. Relative eGFP expression analysis in fibroblasts derived from each cloned embryo revealed more homogeneous expression in the recloned group. In conclusion, the use of cell lines recovered from transgenic fetuses after identification of the transgene integration site allowed for the production of cells and fetuses with stable transgene expression, and recloning may improve transgenic animal yields.

  1. Stability of Lentiviral Vector-Mediated Transgene Expression in the Brain in the Presence of Systemic Antivector Immune Responses

    PubMed Central

    ABORDO-ADESIDA, EVELYN; FOLLENZI, ANTONIA; BARCIA, CARLOS; SCIASCIA, SANDRA; CASTRO, MARIA G.; NALDINI, LUIGI; LOWENSTEIN, PEDRO R.

    2009-01-01

    Lentiviral vectors are promising tools for gene therapy in the CNS. It is therefore important to characterize their interactions with the immune system in the CNS. This work characterizes transgene expression and brain inflammation in the presence or absence of immune responses generated after systemic immunization with lentiviral vectors. We characterized transduction with SIN-LV vectors in the CNS. A dose—response curve using SIN-LV-GFP demonstrated detectable transgene expression in the striatum at a dose of 102, and maximum expression at 106, transducing units of lentiviral vector, with minimal increase in inflammatory markers between the lowest and highest dose of vector injected. Our studies demonstrate that injection of a lentiviral vector into the CNS did not cause a measurable inflammatory response. Systemic immunization after CNS injection, with the lentiviral vector expressing the same transgene as a vector injected into the CNS, caused a decrease in transgene expression in the CNS, concomitantly with an infiltration of inflammatory cells into the CNS parenchyma at the injection site. However, peripheral immunization with a lentiviral vector carrying a different transgene did not diminish transgene expression, or cause CNS inflammation. Systemic immunization preceding injection of lentiviral vectors into the CNS determined that preexisting antilentiviral immunity, regardless of the transgene, did not affect transgene expression. Furthermore, we showed that the transgene, but not the virion or vector components, is responsible for providing antigenic epitopes to the activated immune system, on systemic immunization with lentivirus. Low immunogenicity and prolonged transgene expression in the presence of preexisting lentiviral immunity are encouraging data for the future use of lentiviral vectors in CNS gene therapy. In summary, the lentiviral vectors tested induced undetectable activation of innate immune responses, and stimulation of adaptive immune responses against lentiviral vectors was effective in causing a decrease in transgene expression only if the immune response was directed against the transgene. A systemic immune response against vector components alone did not cause brain inflammation, possibly because vector-derived epitopes were not being presented in the CNS. PMID:15960605

  2. [TSA improve transgenic porcine cloned embryo development and transgene expression].

    PubMed

    Kong, Qing-Ran; Zhu, Jiang; Huang, Bo; Huan, Yan-Jun; Wang, Feng; Shi, Yong-Qian; Liu, Zhong-Feng; Wu, Mei-Ling; Liu, Zhong-Hua

    2011-07-01

    Uncompleted epigenetic reprogramming is attributed to the low efficiency of producing transgenic cloned animals. Histone modification associated with epigenetics can directly influence the embryo development and transgene expression. Trichostatin A (TSA), as an inhibitor of histone deacetylase, can change the status of histone acetylation, improve somatic cell reprogramming, and enhance cloning efficiency. TSA prevents the chromatin structure from being condensed, so that transcription factor could binds to DNA sequence easily and enhance transgene expression. Our study established the optimal TSA treatment on porcine donor cells and cloned embryos, 250 nmol/L, 24 h and 40 nmol/L, 24 h, respectively. Furthermore, we found that both the cloned embryo and the donor cell treated by TSA resulted in the highest development efficiency. Meanwhile, TSA can improve transgene expression in donor cell and cloned embryo. In summary, TSA can significantly improve porcine reconstructed embryo development and transgene expression.

  3. The Class II Trehalose 6-phosphate Synthase Gene PvTPS9 Modulates Trehalose Metabolism in Phaseolus vulgaris Nodules

    PubMed Central

    Barraza, Aarón; Contreras-Cubas, Cecilia; Estrada-Navarrete, Georgina; Reyes, José L.; Juárez-Verdayes, Marco A.; Avonce, Nelson; Quinto, Carmen; Díaz-Camino, Claudia; Sanchez, Federico

    2016-01-01

    Legumes form symbioses with rhizobia, producing nitrogen-fixing nodules on the roots of the plant host. The network of plant signaling pathways affecting carbon metabolism may determine the final number of nodules. The trehalose biosynthetic pathway regulates carbon metabolism and plays a fundamental role in plant growth and development, as well as in plant-microbe interactions. The expression of genes for trehalose synthesis during nodule development suggests that this metabolite may play a role in legume-rhizobia symbiosis. In this work, PvTPS9, which encodes a Class II trehalose-6-phosphate synthase (TPS) of common bean (Phaseolus vulgaris), was silenced by RNA interference in transgenic nodules. The silencing of PvTPS9 in root nodules resulted in a reduction of 85% (± 1%) of its transcript, which correlated with a 30% decrease in trehalose contents of transgenic nodules and in untransformed leaves. Composite transgenic plants with PvTPS9 silenced in the roots showed no changes in nodule number and nitrogen fixation, but a severe reduction in plant biomass and altered transcript profiles of all Class II TPS genes. Our data suggest that PvTPS9 plays a key role in modulating trehalose metabolism in the symbiotic nodule and, therefore, in the whole plant. PMID:27847509

  4. Regulated Expression of a Calmodulin Isoform Alters Growth and Development in Potato

    NASA Technical Reports Server (NTRS)

    Poovaiah, B. W.; Takezawa, D.; An, G.; Han, T.-J.

    1996-01-01

    A transgene approach was taken to study the consequences of altered expression of a calmodutin iso-form on plant growth and development. Eight genomic clones of potato calmodulin (PCM 1 to 8) have been isolated and characterized. Among the potato calmodulin isoforms studied, PCM 1 differs from the other isoforms because of its unique amino acid substitutions. Transgenic potato plants were produced carrying sense construct of PCM 1 fused to the CAMV 35S promoter. Transgenic plants showing a moderate increase in PCM 1 MRNA exhibited strong apical dominance, produced elongated tubers, and were taller than the controls. Interestingly, the plants expressing the highest level of PCM 1 MRNA did not form underground tubers. Instead, these transgenic plants produced aerial tubers when allowed to grow for longer periods. The expression of different calmodulin isoforms (PCM 1, 5, 6, and 8) was studied in transgenic plants. Among the four potato calmodulin isoforms, only the expression of PCM 1 MRNA was altered in transgenic plants, while the expression of other isoforms was not significantly altered. Western analysis revealed increased PCM 1 protein in transgenic plants, indicating that the expression of both MRNA and protein are altered in transgenic plants. These results suggest that increasing the expression of PCM 1 alters growth and development in potato plants.

  5. Differential expression profiles of poplar MAP kinase kinases in response to abiotic stresses and plant hormones, and overexpression of PtMKK4 improves the drought tolerance of poplar.

    PubMed

    Wang, Lei; Su, Hongyan; Han, Liya; Wang, Chuanqi; Sun, Yanlin; Liu, Fenghong

    2014-07-15

    Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules that play essential roles in plant growth, development and stress response. MAPK kinases (MAPKKs), which link MAPKs and MAPKK kinases (MAPKKKs), are integral in mediating various stress responses in plants. However, to date few data about the roles of poplar MAPKKs in stress signal transduction are available. In this study, we performed a systemic analysis of poplar MAPKK gene family expression profiles in response to several abiotic stresses and stress-associated hormones. Furthermore, Populus trichocarpa MAPKK4 (PtMKK4) was chosen for functional characterization. Transgenic analysis showed that overexpression of the PtMKK4 gene remarkably enhanced drought stress tolerance in the transgenic poplar plants. The PtMKK4-overexpressing plants also exhibited much lower levels of H2O2 and higher antioxidant enzyme activity after exposure to drought stress compared to the wide type lines. Besides, some drought marker genes including PtP5CS, PtSUS3, PtLTP3 and PtDREB8 exhibited higher expression levels in the transgenic lines than in the wide type under drought conditions. This study provided valuable information for understanding the putative functions of poplar MAPKKs involved in important signaling pathways under different stress conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Agrobacterium rhizogenes rolB gene affects photosynthesis and chlorophyll content in transgenic tomato (Solanum lycopersicum L.) plants.

    PubMed

    Bettini, Priscilla P; Marvasi, Massimiliano; Fani, Fabiola; Lazzara, Luigi; Cosi, Elena; Melani, Lorenzo; Mauro, Maria Luisa

    2016-10-01

    Insertion of Agrobacterium rhizogenes rolB gene into plant genome affects plant development, hormone balance and defence. However, beside the current research, the overall transcriptional response and gene expression of rolB as a modulator in plant is unknown. Transformed rolB tomato plant (Solanum lycopersicum L.) cultivar Tondino has been used to investigate the differential expression profile. Tomato is a well-known model organism both at the genetic and molecular level, and one of the most important commercial food crops in the world. Through the construction and characterization of a cDNA subtracted library, we have investigated the differential gene expression between transgenic clones of rolB and control tomato and have evaluated genes specifically transcribed in transgenic rolB plants. Among the selected genes, five genes encoding for chlorophyll a/b binding protein, carbonic anhydrase, cytochrome b 6 /f complex Fe-S subunit, potassium efflux antiporter 3, and chloroplast small heat-shock protein, all involved in chloroplast function, were identified. Measurement of photosynthesis efficiency by the level of three different photosynthetic parameters (F v /F m , rETR, NPQ) showed rolB significant increase in non-photochemical quenching and a, b chlorophyll content. Our results point to highlight the role of rolB on plant fitness by improving photosynthesis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Selectivity and Efficiency of Late Transgene Expression by Transcriptionally Targeted Oncolytic Adenoviruses Are Dependent on the Transgene Insertion Strategy

    PubMed Central

    Quirin, Christina; Rohmer, Stanimira; Fernández-Ulibarri, Inés; Behr, Michael; Hesse, Andrea; Engelhardt, Sarah; Erbs, Philippe; Enk, Alexander H.

    2011-01-01

    Abstract Key challenges facing cancer therapy are the development of tumor-specific drugs and potent multimodal regimens. Oncolytic adenoviruses possess the potential to realize both aims by restricting virus replication to tumors and inserting therapeutic genes into the virus genome, respectively. A major effort in this regard is to express transgenes in a tumor-specific manner without affecting virus replication. Using both luciferase as a sensitive reporter and genetic prodrug activation, we show that promoter control of E1A facilitates highly selective expression of transgenes inserted into the late transcription unit. This, however, required multistep optimization of late transgene expression. Transgene insertion via internal ribosome entry site (IRES), splice acceptor (SA), or viral 2A sequences resulted in replication-dependent expression. Unexpectedly, analyses in appropriate substrates and with matching control viruses revealed that IRES and SA, but not 2A, facilitated indirect transgene targeting via tyrosinase promoter control of E1A. Transgene expression via SA was more selective (up to 1,500-fold) but less effective than via IRES. Notably, we also revealed transgene-dependent interference with splicing. Hence, the prodrug convertase FCU1 (a cytosine deaminase–uracil phosphoribosyltransferase fusion protein) was expressed only after optimizing the sequence surrounding the SA site and mutating a cryptic splice site within the transgene. The resulting tyrosinase promoter-regulated and FCU1-encoding adenovirus combined effective oncolysis with targeted prodrug activation therapy of melanoma. Thus, prodrug activation showed potent bystander killing and increased cytotoxicity of the virus up to 10-fold. We conclude that armed oncolytic viruses can be improved substantially by comparing and optimizing strategies for targeted transgene expression, thereby implementing selective and multimodal cancer therapies. PMID:20939692

  8. A transgenic approach to control hemipteran insects by expressing insecticidal genes under phloem-specific promoters.

    PubMed

    Javaid, Shaista; Amin, Imran; Jander, Georg; Mukhtar, Zahid; Saeed, Nasir A; Mansoor, Shahid

    2016-10-06

    The first generation transgenic crops used strong constitutive promoters for transgene expression. However, tissue-specific expression is desirable for more precise targeting of transgenes. Moreover, piercing/sucking insects, which are generally resistant to insecticidal Bacillus thuringiensis (Bt) proteins, have emerged as a major pests since the introduction of transgenic crops expressing these toxins. Phloem-specific promoters isolated from Banana bunchy top virus (BBTV) were used for the expression of two insecticidal proteins, Hadronyche versuta (Blue Mountains funnel-web spider) neurotoxin (Hvt) and onion leaf lectin, in tobacco (Nicotiana tabacum). Here we demonstrate that transgenic plants expressing Hvt alone or in combination with onion leaf lectin are resistant to Phenacoccus solenopsis (cotton mealybug), Myzus persicae (green peach aphids) and Bemisia tabaci (silver leaf whitefly). The expression of both proteins under different phloem-specific promoters resulted in close to 100% mortality and provided more rapid protection than Hvt alone. Our results suggest the employment of the Hvt and onion leaf lectin transgenic constructs at the commercial level will reduce the use of chemical pesticides for control of hemipteran insect pests.

  9. Role of heparanase on hepatic uptake of intestinal derived lipoprotein and fatty streak formation in mice.

    PubMed

    Planer, David; Metzger, Shulamit; Zcharia, Eyal; Wexler, Isaiah D; Vlodavsky, Israel; Chajek-Shaul, Tova

    2011-04-04

    Heparanase modulates the level of heparan sulfate proteoglycans (HSPGs) which have an important role in multiple cellular processes. Recent studies indicate that HSPGs have an important function in hepatic lipoprotein handling and processes involving removal of lipoprotein particles. To determine the effects of decreased HSPGs chain length on lipoprotein metabolism and atherosclerosis, transgenic mice over-expressing the human heparanase gene were studied. Hepatic lipid uptake in hpa-Tg mice were evaluated by giving transgenic mice oral fat loads and labeled retinol. Sections of aorta from mice over-expressing heparanase (hpa-Tg) and controls (C57/BL6) fed an atherogenic diet were examined for evidence of atherosclerosis. Heparanase over-expression results in reduced hepatic clearance of postprandial lipoproteins and higher levels of fasting and postprandial serum triglycerides. Heparanase over-expression also induces formation of fatty streaks in the aorta. The mean lesion cross-sectional area in heparanase over-expressing mice was almost 6 times higher when compared to control mice (23,984 µm(2)±5,922 vs. 4,189 µm(2)±1,130, p<0.001). Over-expression of heparanase demonstrates the importance of HSPGs for the uptake of intestinal derived lipoproteins and its role in the formation of fatty streaks.

  10. Role of Heparanase on Hepatic Uptake of Intestinal Derived Lipoprotein and Fatty Streak Formation in Mice

    PubMed Central

    Planer, David; Metzger, Shulamit; Zcharia, Eyal; Wexler, Isaiah D.; Vlodavsky, Israel; Chajek-Shaul, Tova

    2011-01-01

    Background Heparanase modulates the level of heparan sulfate proteoglycans (HSPGs) which have an important role in multiple cellular processes. Recent studies indicate that HSPGs have an important function in hepatic lipoprotein handling and processes involving removal of lipoprotein particles. Principal Findings To determine the effects of decreased HSPGs chain length on lipoprotein metabolism and atherosclerosis, transgenic mice over-expressing the human heparanase gene were studied. Hepatic lipid uptake in hpa-Tg mice were evaluated by giving transgenic mice oral fat loads and labeled retinol. Sections of aorta from mice over-expressing heparanase (hpa-Tg) and controls (C57/BL6) fed an atherogenic diet were examined for evidence of atherosclerosis. Heparanase over-expression results in reduced hepatic clearance of postprandial lipoproteins and higher levels of fasting and postprandial serum triglycerides. Heparanase over-expression also induces formation of fatty streaks in the aorta. The mean lesion cross-sectional area in heparanase over-expressing mice was almost 6 times higher when compared to control mice (23,984 µm2±5,922 vs. 4,189 µm2±1,130, p<0.001). Conclusions Over-expression of heparanase demonstrates the importance of HSPGs for the uptake of intestinal derived lipoproteins and its role in the formation of fatty streaks. PMID:21483695

  11. Oviduct-Specific Expression of Human Neutrophil Defensin 4 in Lentivirally Generated Transgenic Chickens

    PubMed Central

    Liu, Tongxin; Wu, Hanyu; Cao, Dainan; Li, Qingyuan; Zhang, Yaqiong; Li, Ning; Hu, Xiaoxiang

    2015-01-01

    The expression of oviduct-specific recombinant proteins in transgenic chickens is a promising technology for the production of therapeutic biologics in eggs. In this study, we constructed a lentiviral vector encoding an expression cassette for human neutrophil defensin 4 (HNP4), a compound that displays high activity against Escherichia coli, and produced transgenic chickens that expressed the recombinant HNP4 protein in egg whites. After the antimicrobial activity of the recombinant HNP4 protein was tested at the cellular level, a 2.8-kb ovalbumin promoter was used to drive HNP4 expression specifically in oviduct tissues. From 669 injected eggs, 218 chickens were successfully hatched. Ten G0 roosters, with semens identified as positive for the transgene, were mated with wild-type hens to generate G1 chickens. From 1,274 total offspring, fifteen G1 transgenic chickens were positive for the transgene, which was confirmed by PCR and Southern blotting. The results of the Southern blotting and genome walking indicated that a single copy of the HNP4 gene was integrated into chromosomes 1, 2, 3, 4, 6 and 24 of the chickens. As expected, HNP4 expression was restricted to the oviduct tissues, and the levels of both transcriptional and translational HNP4 expression varied greatly in transgenic chickens with different transgene insertion sites. The amount of HNP4 protein expressed in the eggs of G1 and G2 heterozygous transgenic chickens ranged from 1.65 μg/ml to 10.18 μg/ml. These results indicated that the production of transgenic chickens that expressed HNP4 protein in egg whites was successful. PMID:26020529

  12. Improvement of pest resistance in transgenic tobacco plants expressing dsRNA of an insect-associated gene EcR.

    PubMed

    Zhu, Jin-Qi; Liu, Shumin; Ma, Yao; Zhang, Jia-Qi; Qi, Hai-Sheng; Wei, Zhao-Jun; Yao, Qiong; Zhang, Wen-Qing; Li, Sheng

    2012-01-01

    The adoption of pest-resistant transgenic plants to reduce yield loss and pesticide utilization has been successful in the past three decades. Recently, transgenic plant expressing double-stranded RNA (dsRNA) targeting pest genes emerges as a promising strategy for improving pest resistance in crops. The steroid hormone, 20-hydroxyecdysone (20E), predominately controls insect molting via its nuclear receptor complex, EcR-USP. Here we report that pest resistance is improved in transgenic tobacco plants expressing dsRNA of EcR from the cotton bollworm, Helicoverpa armigera, a serious lepidopteran pest for a variety of crops. When H. armigera larvae were fed with the whole transgenic tobacco plants expressing EcR dsRNA, resistance to H. armigera was significantly improved in transgenic plants. Meanwhile, when H. armigera larvae were fed with leaves of transgenic tobacco plants expressing EcR dsRNA, its EcR mRNA level was dramatically decreased causing molting defects and larval lethality. In addition, the transgenic tobacco plants expressing H. armigera EcR dsRNA were also resistant to another lepidopteran pest, the beet armyworm, Spodoptera exigua, due to the high similarity in the nucleotide sequences of their EcR genes. This study provides additional evidence that transgenic plant expressing dsRNA targeting insect-associated genes is able to improve pest resistance.

  13. Intra-Amniotic rAAV-Mediated Microdystrophin Gene Transfer Improves Canine X-Linked Muscular Dystrophy and May Induce Immune Tolerance

    PubMed Central

    Hayashita-Kinoh, Hiromi; Yugeta, Naoko; Okada, Hironori; Nitahara-Kasahara, Yuko; Chiyo, Tomoko; Okada, Takashi; Takeda, Shin'ichi

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a severe congenital disease due to mutations in the dystrophin gene. Supplementation of dystrophin using recombinant adenoassociated virus vector has promise as a treatment of DMD, although therapeutic benefit of the truncated dystrophin still remains to be elucidated. Besides, host immune responses against the vector as well as transgene products have been denoted in the clinical gene therapy studies. Here, we transduced dystrophic dogs fetuses to investigate the therapeutic effects of an AAV vector expressing microdystrophin under conditions of immune tolerance. rAAV-CMV-microdystrophin and a rAAV-CAG-luciferase were injected into the amniotic fluid surrounding fetuses. We also reinjected rAAV9-CMV-microdystrophin into the jugular vein of an infant dystrophic dog to induce systemic expression of microdystrophin. Gait and cardiac function significantly improved in the rAAV-microdystrophin-injected dystrophic dog, suggesting that an adequate treatment of rAAV-microdystrophin with immune modulation induces successful long-term transgene expression to analyze improved dystrophic phenotype. PMID:25586688

  14. Persistence of transgene expression influences CD8+ T-cell expansion and maintenance following immunization with recombinant adenovirus.

    PubMed

    Finn, Jonathan D; Bassett, Jennifer; Millar, James B; Grinshtein, Natalie; Yang, Teng Chih; Parsons, Robin; Evelegh, Carole; Wan, Yonghong; Parks, Robin J; Bramson, Jonathan L

    2009-12-01

    Previous studies determined that the CD8(+) T-cell response elicited by recombinant adenovirus exhibited a protracted contraction phase that was associated with long-term presentation of antigen. To gain further insight into this process, a doxycycline-regulated adenovirus was constructed to enable controlled extinction of transgene expression in vivo. We investigated the impact of premature termination of transgene expression at various time points (day 3 to day 60) following immunization. When transgene expression was terminated before the maximum response had been attained, overall expansion was attenuated, yielding a small memory population. When transgene expression was terminated between day 13 and day 30, the memory population was not sustained, demonstrating that the early memory population was antigen dependent. Extinction of transgene expression at day 60 had no obvious impact on memory maintenance, indicating that maintenance of the memory population may ultimately become independent of transgene expression. Premature termination of antigen expression had significant but modest effects on the phenotype and cytokine profile of the memory population. These results offer new insights into the mechanisms of memory CD8(+) T-cell maintenance following immunization with a recombinant adenovirus.

  15. Field performance of transgenic citrus trees: assessment of the long-term expression of uidA and nptII transgenes and its impact on relevant agronomic and phenotypic characteristics.

    PubMed

    Pons, Elsa; Peris, Josep E; Peña, Leandro

    2012-07-15

    The future of genetic transformation as a tool for the improvement of fruit trees depends on the development of proper systems for the assessment of unintended effects in field-grown GM lines. In this study, we used eight transgenic lines of two different citrus types (sweet orange and citrange) transformed with the marker genes β-glucuronidase (uidA) and neomycin phosphotransferase II (nptII) as model systems to study for the first time in citrus the long-term stability of transgene expression and whether transgene-derived pleiotropic effects occur with regard to the morphology, development and fruit quality of orchard-grown GM citrus trees. The stability of the integration and expression of the transgenes was confirmed in 7-year-old, orchard-grown transgenic lines by Southern blot analysis and enzymatic assays (GUS and ELISA NPTII), respectively. Little seasonal variation was detected in the expression levels between plants of the same transgenic line in different organs and over the 3 years of analysis, confirming the absence of rearrangements and/or silencing of the transgenes after transferring the plants to field conditions. Comparisons between the GM citrus lines with their non-GM counterparts across the study years showed that the expression of these transgenes did not cause alterations of the main phenotypic and agronomic plant and fruit characteristics. However, when comparisons were performed between diploid and tetraploid transgenic citrange trees and/or between juvenile and mature transgenic sweet orange trees, significant and consistent differences were detected, indicating that factors other than their transgenic nature induced a much higher phenotypic variability. Our results indicate that transgene expression in GM citrus remains stable during long-term agricultural cultivation, without causing unexpected effects on crop characteristics. This study also shows that the transgenic citrus trees expressing the selectable marker genes that are most commonly used in citrus transformation were substantially equivalent to the non-transformed controls with regard to their overall agronomic performance, as based on the use of robust and powerful assessment techniques. Therefore, future studies of the possible pleiotropic effects induced by the integration and expression of transgenes in field-grown GM citrus may focus on the newly inserted trait(s) of biotechnological interest.

  16. Field performance of transgenic citrus trees: Assessment of the long-term expression of uidA and nptII transgenes and its impact on relevant agronomic and phenotypic characteristics

    PubMed Central

    2012-01-01

    Background The future of genetic transformation as a tool for the improvement of fruit trees depends on the development of proper systems for the assessment of unintended effects in field-grown GM lines. In this study, we used eight transgenic lines of two different citrus types (sweet orange and citrange) transformed with the marker genes β-glucuronidase (uidA) and neomycin phosphotransferase II (nptII) as model systems to study for the first time in citrus the long-term stability of transgene expression and whether transgene-derived pleiotropic effects occur with regard to the morphology, development and fruit quality of orchard-grown GM citrus trees. Results The stability of the integration and expression of the transgenes was confirmed in 7-year-old, orchard-grown transgenic lines by Southern blot analysis and enzymatic assays (GUS and ELISA NPTII), respectively. Little seasonal variation was detected in the expression levels between plants of the same transgenic line in different organs and over the 3 years of analysis, confirming the absence of rearrangements and/or silencing of the transgenes after transferring the plants to field conditions. Comparisons between the GM citrus lines with their non-GM counterparts across the study years showed that the expression of these transgenes did not cause alterations of the main phenotypic and agronomic plant and fruit characteristics. However, when comparisons were performed between diploid and tetraploid transgenic citrange trees and/or between juvenile and mature transgenic sweet orange trees, significant and consistent differences were detected, indicating that factors other than their transgenic nature induced a much higher phenotypic variability. Conclusions Our results indicate that transgene expression in GM citrus remains stable during long-term agricultural cultivation, without causing unexpected effects on crop characteristics. This study also shows that the transgenic citrus trees expressing the selectable marker genes that are most commonly used in citrus transformation were substantially equivalent to the non-transformed controls with regard to their overall agronomic performance, as based on the use of robust and powerful assessment techniques. Therefore, future studies of the possible pleiotropic effects induced by the integration and expression of transgenes in field-grown GM citrus may focus on the newly inserted trait(s) of biotechnological interest. PMID:22794278

  17. AtMYB12 expression in tomato leads to large scale differential modulation in transcriptome and flavonoid content in leaf and fruit tissues

    PubMed Central

    Pandey, Ashutosh; Misra, Prashant; Choudhary, Dharmendra; Yadav, Reena; Goel, Ridhi; Bhambhani, Sweta; Sanyal, Indraneel; Trivedi, Ritu; Kumar Trivedi, Prabodh

    2015-01-01

    Plants synthesize secondary metabolites, including flavonoids, which play important role during various stresses for their survival. These metabolites are also considered as health-protective components in functional foods. Flavonols, one of the important groups of flavonoids, apart from performing several roles in plants have been recognized as potent phytoceuticals for human health. Tomato fruits are deficient in this group of flavonoids and have been an important target for enhancing the accumulation of flavonols through genetic manipulations. In the present study, AtMYB12 transcription factor of the Arabidopsis has been expressed under constitutive promoter in tomato. Transgenic tomato lines exhibited enhanced accumulation of flavonols and chlorogenic acid (CGA) in leaf and fruit accompanied with elevated expression of phenylpropanoid pathway genes involved in flavonol biosynthesis. In addition, global gene expression analysis in leaf and fruit suggested that AtMYB12 modulates number of molecular processes including aromatic amino acid biosynthesis, phytohormone signaling and stress responses. Besides this, a differential modulation of the genes in fruits and leaves is reported in this study. Taken together, results demonstrate that modulation of primary carbon metabolism and other pathways by AtMYB12 in tomato may lead to sufficient substrate supply for enhanced content of phenolics in general and flavonols in particular. PMID:26206248

  18. Epidermal Expression of Intercellular Adhesion Molecule 1 is Not a Primary Inducer of Cutaneous Inflammation in Transgenic Mice

    NASA Astrophysics Data System (ADS)

    Williams, Ifor R.; Kupper, Thomas S.

    1994-10-01

    Keratinocytes at sites of cutaneous inflammation have increased expression of intercellular adhesion molecule 1 (ICAM-1), a cytokine-inducible adhesion molecule which binds the leukocyte integrins LFA-1 and Mac-1. Transgenic mice were prepared in which the expression of mouse ICAM-1 was targeted to basal keratinocytes by using the human K14 keratin promoter. The level of constitutive expression attained in the transgenic mice exceeded the peak level of ICAM-1 expression induced on nontransgenic mouse keratinocytes in vitro by optimal combinations of interferon γ and tumor necrosis factor α or in vivo by proinflammatory stimuli such as phorbol 12-myristate 13-acetate. In vitro adhesion assays demonstrated that cultured transgenic keratinocytes were superior to normal keratinocytes as a substrate for the LFA-1-dependent binding of mouse T cells, confirming that the transgene-encoded ICAM-1 was expressed in a functional form. However, the high level of constitutive ICAM-1 expression achieved on keratinocytes in vivo in these transgenic mice did not result in additional recruitment of CD45^+ leukocytes into transgenic epidermis, nor did it elicit dermal inflammation. Keratinocyte ICAM-1 expression also did not potentiate contact-hypersensitivity reactions to epicutaneous application of haptens. The absence of a spontaneous phenotype in these transgenic mice was not the result of increased levels of soluble ICAM-1, since serum levels of soluble ICAM-1 were equal in transgenic mice and controls. We conclude that elevated ICAM-1 expression on keratinocytes cannot act independently to influence leukocyte trafficking and elicit cutaneous inflammation.

  19. Recurrent selection for transgene expression levels in maize results in proxy selection for a native gene with the same promoter

    USDA-ARS?s Scientific Manuscript database

    High expression levels of a transgene can be very useful, making a transgene easier to evaluate for safety and efficacy. High expression levels can also increase the economic benefit of the production of high value proteins in transgenic plants. The goal of this research is to determine if recurre...

  20. Transgene Expression and Repression in Transgenic Rats Bearing the Phosphoenolpyruvate Carboxykinase-Simian Virus 40 T Antigen or the Phosphoenolpyruvate Carboxykinase-Transforming Growth Factor-α Constructs

    PubMed Central

    Haas, Michael J.; Dragan, Yvonne P.; Hikita, Hiroshi; Shimel, Randee; Takimoto, Koichi; Heath, Susan; Vaughan, Jennifer; Pitot, Henry C.

    1999-01-01

    Transgenic Sprague-Dawley rats expressing either human transforming growth factor-α (TGFα) or simian virus 40 large and small T antigen (TAg), each under the control of the phosphoenolpyruvate carboxykinase (PEPCK) promoter, were developed as an approach to the study of the promotion of hepatocarcinogenesis in the presence of a transgene regulatable by diet and/or hormones. Five lines of PEPCK-TGFα transgenic rats were established, each genetic line containing from one to several copies of the transgene per haploid genome. Two PEPCK-TAg transgenic founder rats were obtained, each with multiple copies of the transgene. Expression of the transgene was undetectable in the TGFα transgenic rats and could not be induced when the animals were placed on a high-protein, low-carbohydrate diet. The transgene was found to be highly methylated in all of these lines. No pathological alterations in the liver and intestine were observed at any time (up to 2 years) during the lives of these rats. One line of transgenic rats expressing the PEPCK-TAg transgene developed pancreatic islet cell hyperplasias and carcinomas, with few normal islets evident in the pancreas. This transgene is integrated as a hypomethylated tandem array of 10 to 12 copies on chromosome 8q11. Expression of large T antigen is highest in pancreatic neoplasms, but is also detectable in the normal brain, kidney, and liver. Mortality is most rapid in males, starting at 5 months of age and reaching 100% by 8 months. Morphologically, islet cell differentiation in the tumors ranges from poor to well differentiated, with regions of necrosis and fibrosis. Spontaneous metastasis of TAg-positive tumor cells to regional lymph nodes was observed. These studies indicate the importance of DNA methylation in the repression of specific transgenes in the rat. However, the expression of the PEPCK-TAg induces neoplastic transformation in islet cells, probably late in neuroendocrine cell differentiation. T antigen expression during neoplastic development may result in a pervasive change in the islet cell growth properties with selection of a transformed phenotype as a possible requirement for cell viability. PMID:10393850

  1. Brain selective transgene expression in zebrafish using an NRSE derived motif

    PubMed Central

    Bergeron, Sadie A.; Hannan, Markus C.; Codore, Hiba; Fero, Kandice; Li, Grace H.; Moak, Zachary; Yokogawa, Tohei; Burgess, Harold A.

    2012-01-01

    Transgenic technologies enable the manipulation and observation of circuits controlling behavior by permitting expression of genetically encoded reporter genes in neurons. Frequently though, neuronal expression is accompanied by transgene expression in non-neuronal tissues, which may preclude key experimental manipulations, including assessment of the contribution of neurons to behavior by ablation. To better restrict transgene expression to the nervous system in zebrafish larvae, we have used DNA sequences derived from the neuron-restrictive silencing element (NRSE). We find that one such sequence, REx2, when used in conjunction with several basal promoters, robustly suppresses transgene expression in non-neuronal tissues. Both in transient transgenic experiments and in stable enhancer trap lines, suppression is achieved without compromising expression within the nervous system. Furthermore, in REx2 enhancer trap lines non-neuronal expression can be de-repressed by knocking down expression of the NRSE binding protein RE1-silencing transcription factor (Rest). In one line, we show that the resulting pattern of reporter gene expression coincides with that of the adjacent endogenous gene, hapln3. We demonstrate that three common basal promoters are susceptible to the effects of the REx2 element, suggesting that this method may be useful for confining expression from many other promoters to the nervous system. This technique enables neural specific targeting of reporter genes and thus will facilitate the use of transgenic methods to manipulate circuit function in freely behaving larvae. PMID:23293587

  2. Regulated expression of a calmodulin isoform alters growth and development in potato.

    PubMed

    Poovaiah, B W; Takezawa, D; An, G; Han, T J

    1996-01-01

    A transgene approach was taken to study the consequences of altered expression of a calmodulin isoform on plant growth and development. Eight genomic clones of potato calmodulin (PCM1 to 8) have been isolated and characterized (Takezawa et al., 1995). Among the potato calmodulin isoforms studied, PCM1 differs from the other isoforms because of its unique amino acid substitutions. Transgenic potato plants were produced carrying sense construct of PCM1 fused to the CaMV 35S promoter. Transgenic plants showing a moderate increase in PCM1 mRNA exhibited strong apical dominance, produced elongated tubers, and were taller than the controls. Interestingly, the plants expressing the highest level of PCM1 mRNA did not form underground tubers. Instead, these transgenic plants produced aerial tubers when allowed to grow for longer periods. The expression of different calmodulin isoforms (PCM1, 5, 6, and 8) was studied in transgenic plants. Among the four potato calmodulin isoforms, only the expression of PCM1 mRNA was altered in transgenic plants, while the expression of other isoforms was not significantly altered. Western analysis revealed increased PCM1 protein in transgenic plants, indicating that the expression of both mRNA and protein are altered in transgenic plants. These results suggest that increasing the expression of PCM1 alters growth and development in potato plants.

  3. OsBIRH1, a DEAD-box RNA helicase with functions in modulating defence responses against pathogen infection and oxidative stress

    PubMed Central

    Li, Dayong; Liu, Huizhi; Zhang, Huijuan; Wang, Xiaoe; Song, Fengming

    2008-01-01

    DEAD-box proteins comprise a large protein family with members from all kingdoms and play important roles in all types of processes in RNA metabolism. In this study, a rice gene OsBIRH1, which encodes a DEAD-box RNA helicase protein, was cloned and characterized. The predicted OsBIRH1 protein contains a DEAD domain and all conserved motifs that are common characteristics of DEAD-box RNA helicases. Recombinant OsBIRH1 protein purified from Escherichia coli was shown to have both RNA-dependent ATPase and ATP-dependent RNA helicase activities in vitro. Expression of OsBIRH1 was activated in rice seedling leaves after treatment with defence-related signal chemicals, for example benzothiadiazole, salicylic acid, l-aminocyclopropane-1-carboxylic acid, and jasmonic acid, and was also up-regulated in an incompatible interaction between a resistant rice genotype and the blast fungus, Magnaporthe grisea. Transgenic Arabidopsis plants that overexpress the OsBIRH1 gene were generated. Disease resistance phenotype assays revealed that the OsBIRH1-overexpressing transgenic plants showed an enhanced disease resistance against Alternaria brassicicola and Pseudomonas syringae pv. tomato DC3000. Meanwhile, defence-related genes, for example PR-1, PR-2, PR-5, and PDF1.2, showed an up-regulated expression in the transgenic plants. Moreover, the OsBIRH1 transgenic Arabidopsis plants also showed increased tolerance to oxidative stress and elevated expression levels of oxidative defence genes, AtApx1, AtApx2, and AtFSD1. The results suggest that OsBIRH1 encodes a functional DEAD-box RNA helicase and plays important roles in defence responses against biotic and abiotic stresses. PMID:18441339

  4. Regulation of hippocampal synaptic plasticity thresholds and changes in exploratory and learning behavior in dominant negative NPR-B mutant rats

    PubMed Central

    Barmashenko, Gleb; Buttgereit, Jens; Herring, Neil; Bader, Michael; Özcelik, Cemil; Manahan-Vaughan, Denise; Braunewell, Karl H.

    2014-01-01

    The second messenger cyclic GMP affects synaptic transmission and modulates synaptic plasticity and certain types of learning and memory processes. The impact of the natriuretic peptide receptor B (NPR-B) and its ligand C-type natriuretic peptide (CNP), one of several cGMP producing signaling systems, on hippocampal synaptic plasticity and learning is, however, less well understood. We have previously shown that the NPR-B ligand CNP increases the magnitude of long-term depression (LTD) in hippocampal area CA1, while reducing the induction of long-term potentiation (LTP). We have extended this line of research to show that bidirectional plasticity is affected in the opposite way in rats expressing a dominant-negative mutant of NPR-B (NSE-NPR-BΔKC) lacking the intracellular guanylyl cyclase domain under control of a promoter for neuron-specific enolase. The brain cells of these transgenic rats express functional dimers of the NPR-B receptor containing the dominant-negative NPR-BΔKC mutant, and therefore show decreased CNP-stimulated cGMP-production in brain membranes. The NPR-B transgenic rats display enhanced LTP but reduced LTD in hippocampal slices. When the frequency-dependence of synaptic modification to afferent stimulation in the range of 1–100 Hz was assessed in transgenic rats, the threshold for both, LTP and LTD induction, was shifted to lower frequencies. In parallel, NPR-BΔKC rats exhibited an enhancement in exploratory and learning behavior. These results indicate that bidirectional plasticity and learning and memory mechanism are affected in transgenic rats expressing a dominant-negative mutant of NPR-B. Our data substantiate the hypothesis that NPR-B-dependent cGMP signaling has a modulatory role for synaptic information storage and learning. PMID:25520616

  5. QQS orphan gene regulates carbon and nitrogen partitioning across species via NF-YC interactions

    PubMed Central

    Li, Ling; Zheng, Wenguang; Zhu, Yanbing; Ye, Huaxun; Tang, Buyun; Arendsee, Zebulun W.; Jones, Dallas; Li, Ruoran; Ortiz, Diego; Zhao, Xuefeng; Du, Chuanlong; Nettleton, Dan; Scott, M. Paul; Salas-Fernandez, Maria G.; Yin, Yanhai; Wurtele, Eve Syrkin

    2015-01-01

    The allocation of carbon and nitrogen resources to the synthesis of plant proteins, carbohydrates, and lipids is complex and under the control of many genes; much remains to be understood about this process. QQS (Qua-Quine Starch; At3g30720), an orphan gene unique to Arabidopsis thaliana, regulates metabolic processes affecting carbon and nitrogen partitioning among proteins and carbohydrates, modulating leaf and seed composition in Arabidopsis and soybean. Here the universality of QQS function in modulating carbon and nitrogen allocation is exemplified by a series of transgenic experiments. We show that ectopic expression of QQS increases soybean protein independent of the genetic background and original protein content of the cultivar. Furthermore, transgenic QQS expression increases the protein content of maize, a C4 species (a species that uses 4-carbon photosynthesis), and rice, a protein-poor agronomic crop, both highly divergent from Arabidopsis. We determine that QQS protein binds to the transcriptional regulator AtNF-YC4 (Arabidopsis nuclear factor Y, subunit C4). Overexpression of AtNF-YC4 in Arabidopsis mimics the QQS-overexpression phenotype, increasing protein and decreasing starch levels. NF-YC, a component of the NF-Y complex, is conserved across eukaryotes. The NF-YC4 homologs of soybean, rice, and maize also bind to QQS, which provides an explanation of how QQS can act in species where it does not occur endogenously. These findings are, to our knowledge, the first insight into the mechanism of action of QQS in modulating carbon and nitrogen allocation across species. They have major implications for the emergence and function of orphan genes, and identify a nontransgenic strategy for modulating protein levels in crop species, a trait of great agronomic significance. PMID:26554020

  6. QQS orphan gene regulates carbon and nitrogen partitioning across species via NF-YC interactions.

    PubMed

    Li, Ling; Zheng, Wenguang; Zhu, Yanbing; Ye, Huaxun; Tang, Buyun; Arendsee, Zebulun W; Jones, Dallas; Li, Ruoran; Ortiz, Diego; Zhao, Xuefeng; Du, Chuanlong; Nettleton, Dan; Scott, M Paul; Salas-Fernandez, Maria G; Yin, Yanhai; Wurtele, Eve Syrkin

    2015-11-24

    The allocation of carbon and nitrogen resources to the synthesis of plant proteins, carbohydrates, and lipids is complex and under the control of many genes; much remains to be understood about this process. QQS (Qua-Quine Starch; At3g30720), an orphan gene unique to Arabidopsis thaliana, regulates metabolic processes affecting carbon and nitrogen partitioning among proteins and carbohydrates, modulating leaf and seed composition in Arabidopsis and soybean. Here the universality of QQS function in modulating carbon and nitrogen allocation is exemplified by a series of transgenic experiments. We show that ectopic expression of QQS increases soybean protein independent of the genetic background and original protein content of the cultivar. Furthermore, transgenic QQS expression increases the protein content of maize, a C4 species (a species that uses 4-carbon photosynthesis), and rice, a protein-poor agronomic crop, both highly divergent from Arabidopsis. We determine that QQS protein binds to the transcriptional regulator AtNF-YC4 (Arabidopsis nuclear factor Y, subunit C4). Overexpression of AtNF-YC4 in Arabidopsis mimics the QQS-overexpression phenotype, increasing protein and decreasing starch levels. NF-YC, a component of the NF-Y complex, is conserved across eukaryotes. The NF-YC4 homologs of soybean, rice, and maize also bind to QQS, which provides an explanation of how QQS can act in species where it does not occur endogenously. These findings are, to our knowledge, the first insight into the mechanism of action of QQS in modulating carbon and nitrogen allocation across species. They have major implications for the emergence and function of orphan genes, and identify a nontransgenic strategy for modulating protein levels in crop species, a trait of great agronomic significance.

  7. Growth enhancement in transgenic tilapia by ectopic expression of tilapia growth hormone.

    PubMed

    Martínez, R; Estrada, M P; Berlanga, J; Guillén, I; Hernández, O; Cabrera, E; Pimentel, R; Morales, R; Herrera, F; Morales, A; Piña, J C; Abad, Z; Sánchez, V; Melamed, P; Lleonart, R; de la Fuente, J

    1996-03-01

    The generation of transgenic fish with the transfer of growth hormone (GH) genes has opened new possibilities for the manipulation of growth in economically important fish species. The tilapia growth hormone (tiGH) cDNA was linked to the human cytomegalovirus (CMV) enhancer-promoter and used to generate transgenic tilapia by microinjection into one-cell embryos. Five transgenic tilapia were obtained from 40 injected embryos. A transgenic animal containing one copy of the transgene per cell was selected to establish a transgenic line. The transgene was stably transmitted to F1 and F2 generations in a Mendelian fashion. Ectopic, low-level expression of tiGH was detected in gonad and muscle cells of F1 transgenic tilapia by immunohystochemical analysis of tissue sections. Nine-month-old transgenic F1 progeny were 82% larger than nontransgenic fish at p = .001. These results showed that low-level ectopic expression of tiGH resulted in a growth acceleration in transgenic tilapia. Tilapia GH gene transfer is an alternative for growth acceleration in tilapia.

  8. The choroid plexus harbors a circadian oscillator modulated by estrogens.

    PubMed

    Quintela, Telma; Albuquerque, Tânia; Lundkvist, Gabriella; Carmine Belin, Andrea; Talhada, Daniela; Gonçalves, Isabel; Carro, Eva; Santos, Cecília R A

    2018-02-01

    The suprachiasmatic nucleus (SCN) of the hypothalamus is considered the master circadian oscillator in mammals. However, extra-SCN structures in the brain also display daily rhythms. Recently, we have demonstrated that the choroid plexus (CP) expresses core clock genes that are subjected to circadian regulation in a sex-dependent manner. By using CP explants cultured from female knock-in mice carrying the Period-luciferase transgene, we show that CP exhibits endogenous circadian rhythms of PERIOD2::LUCIFERASE expression. Furthermore, we demonstrate that estrogen declines following ovariectomy modulates the daily rhythm expression of Bmal1, Per1 and Per2 in female rat CP, corroborating data obtained in experiments where rat CP epithelial cell (CPEC) cultures were incubated with 17β-estradiol (E2). The molecular mechanism underlying these effects was also investigated, and we provide evidence that the estrogen receptor (ER) mediates the response of clock genes to E2. In conclusion, our study proves that the CP harbors a circadian oscillator that is modulated by estrogens and demonstrates that E2 regulation occurs through an estrogen-receptor-dependent mechanism.

  9. Doxycycline modulates VEGF-A expression: Failure of doxycycline-inducible lentivirus shRNA vector to knockdown VEGF-A expression in transgenic mice.

    PubMed

    Merentie, Mari; Rissanen, Riina; Lottonen-Raikaslehto, Line; Huusko, Jenni; Gurzeler, Erika; Turunen, Mikko P; Holappa, Lari; Mäkinen, Petri; Ylä-Herttuala, Seppo

    2018-01-01

    Vascular endothelial growth factor-A (VEGF-A) is the master regulator of angiogenesis, vascular permeability and growth. However, its role in mature blood vessels is still not well understood. To better understand the role of VEGF-A in the adult vasculature, we generated a VEGF-A knockdown mouse model carrying a doxycycline (dox)-regulatable short hairpin RNA (shRNA) transgene, which silences VEGF-A. The aim was to find the critical level of VEGF-A reduction for vascular well-being in vivo. In vitro, the dox-inducible lentiviral shRNA vector decreased VEGF-A expression efficiently and dose-dependently in mouse endothelial cells and cardiomyocytes. In the generated transgenic mice plasma VEGF-A levels decreased shortly after the dox treatment but returned back to normal after two weeks. VEGF-A expression decreased shortly after the dox treatment only in some tissues. Surprisingly, increasing the dox exposure time and dose led to elevated VEGF-A expression in some tissues of both wildtype and knockdown mice, suggesting that dox itself has an effect on VEGF-A expression. When the effect of dox on VEGF-A levels was further tested in naïve/non-transduced cells, the dox administration led to a decreased VEGF-A expression in endothelial cells but to an increased expression in cardiomyocytes. In conclusion, the VEGF-A knockdown was achieved in a dox-regulatable fashion with a VEGF-A shRNA vector in vitro, but not in the knockdown mouse model in vivo. Dox itself was found to regulate VEGF-A expression explaining the unexpected results in mice. The effect of dox on VEGF-A levels might at least partly explain its previously reported beneficial effects on myocardial and brain ischemia. Also, this effect on VEGF-A should be taken into account in all studies using dox-regulated vectors.

  10. Tudor-SN, a component of stress granules, regulates growth under salt stress by modulating GA20ox3 mRNA levels in Arabidopsis

    PubMed Central

    Yan, Chunxia; Yan, Zongyun; Wang, Yizheng; Yan, Xiaoyuan; Han, Yuzhen

    2014-01-01

    The Tudor-SN protein (TSN) is universally expressed and highly conserved in eukaryotes. In Arabidopsis, TSN is reportedly involved in stress adaptation, but the mechanism involved in this adaptation is not understood. Here, we provide evidence that TSN regulates the mRNA levels of GA20ox3, a key enzyme for gibberellin (GA) biosynthesis. The levels of GA20ox3 transcripts decreased in TSN1/TSN2 RNA interference (RNAi) transgenic lines and increased in TSN1 over-expression (OE) transgenic lines. The TSN1 OE lines displayed phenotypes that may be attributed to the overproduction of GA. No obvious defects were observed in the RNAi transgenic lines under normal conditions, but under salt stress conditions these lines displayed slower growth than wild-type (WT) plants. Two mutants of GA20ox3, ga20ox3-1 and -2, also showed slower growth under stress than WT plants. Moreover, a higher accumulation of GA20ox3 transcripts was observed under salt stress. The results of a western blot analysis indicated that higher levels of TSN1 accumulated after salt treatment than under normal conditions. Subcellular localization studies showed that TSN1 was uniformly distributed in the cytoplasm under normal conditions but accumulated in small granules and co-localized with RBP47, a marker protein for stress granules (SGs), in response to salt stress. The results of RNA immunoprecipitation experiments indicated that TSN1 bound GA20ox3 mRNA in vivo. On the basis of these findings, we conclude that TSN is a novel component of plant SGs that regulates growth under salt stress by modulating levels of GA20ox3 mRNA. PMID:25205572

  11. Development of diabetes does not alter behavioral and molecular circadian rhythms in a transgenic rat model of type 2 diabetes mellitus.

    PubMed

    Qian, Jingyi; Thomas, Anthony P; Schroeder, Analyne M; Rakshit, Kuntol; Colwell, Christopher S; Matveyenko, Aleksey V

    2017-08-01

    Metabolic state and circadian clock function exhibit a complex bidirectional relationship. Circadian disruption increases propensity for metabolic dysfunction, whereas common metabolic disorders such as obesity and type 2 diabetes (T2DM) are associated with impaired circadian rhythms. Specifically, alterations in glucose availability and glucose metabolism have been shown to modulate clock gene expression and function in vitro; however, to date, it is unknown whether development of diabetes imparts deleterious effects on the suprachiasmatic nucleus (SCN) circadian clock and SCN-driven outputs in vivo. To address this question, we undertook studies in aged diabetic rats transgenic for human islet amyloid polypeptide, an established nonobese model of T2DM (HIP rat), which develops metabolic defects closely recapitulating those present in patients with T2DM. HIP rats were also cross-bred with a clock gene reporter rat model (Per1:luciferase transgenic rat) to permit assessment of the SCN and the peripheral molecular clock function ex vivo. Utilizing these animal models, we examined effects of diabetes on 1 ) behavioral circadian rhythms, 2 ) photic entrainment of circadian activity, 3 ) SCN and peripheral tissue molecular clock function, and 4 ) melatonin secretion. We report that circadian activity, light-induced entrainment, molecular clockwork, as well as melatonin secretion are preserved in the HIP rat model of T2DM. These results suggest that despite the well-characterized ability of glucose to modulate circadian clock gene expression acutely in vitro, SCN clock function and key behavioral and physiological outputs appear to be preserved under chronic diabetic conditions characteristic of nonobese T2DM. Copyright © 2017 the American Physiological Society.

  12. Knockdown of a laccase in Populus deltoides confers altered cell wall chemistry and increased sugar release

    DOE PAGES

    Bryan, Anthony C.; Jawdy, Sara; Gunter, Lee; ...

    2016-04-15

    Plant laccases are thought to function in the oxidation of monolignols which leads to higher order lignin formation. Only a hand-full of laccases in plants have been functionally evaluated and as such little is known about the breadth of their impact on cell wall chemistry or structure. Here we describe a previously uncharacterized laccase from Populus, encoded by locus Potri.008G06400, whose reduced expression resulted in transgenic Populus trees with changes in syringyl/guaiacyl (S/G) ratios as well as altered sugar release phenotypes. These phenotypes are consistent with plant biomass exhibiting reduced recalcitrance. Interestingly, the transgene effect on recalcitrance is dependent onmore » a mild pretreatment prior to chemical extraction of sugars. Metabolite profiling suggests the transgene modulates phenolics that are associated with the cell wall structure. Finally, we propose a model in which this particular laccase has a range of functions related to oxidation of phenolics that interact with lignin in the cell wall.« less

  13. Knockdown of a laccase in Populus deltoides confers altered cell wall chemistry and increased sugar release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Anthony C.; Jawdy, Sara; Gunter, Lee

    Plant laccases are thought to function in the oxidation of monolignols which leads to higher order lignin formation. Only a hand-full of laccases in plants have been functionally evaluated and as such little is known about the breadth of their impact on cell wall chemistry or structure. Here we describe a previously uncharacterized laccase from Populus, encoded by locus Potri.008G06400, whose reduced expression resulted in transgenic Populus trees with changes in syringyl/guaiacyl (S/G) ratios as well as altered sugar release phenotypes. These phenotypes are consistent with plant biomass exhibiting reduced recalcitrance. Interestingly, the transgene effect on recalcitrance is dependent onmore » a mild pretreatment prior to chemical extraction of sugars. Metabolite profiling suggests the transgene modulates phenolics that are associated with the cell wall structure. Finally, we propose a model in which this particular laccase has a range of functions related to oxidation of phenolics that interact with lignin in the cell wall.« less

  14. Immunological thresholds in neurological gene therapy: highly efficient elimination of transduced cells might be related to the specific formation of immunological synapses between T cells and virus-infected brain cells

    PubMed Central

    Barcia, Carlos; Gerdes, Christian; Xiong, Wei-Dong; Thomas, Clare E.; Liu, Chunyan; Kroeger, Kurt M.; Castro, Maria G.; Lowenstein, Pedro R.

    2007-01-01

    First-generation adenovirus can be engineered with powerful promoters to drive expression of therapeutic transgenes. Numerous clinical trials for glioblastoma multiforme using first generation adenoviral vectors have either been performed or are ongoing, including an ongoing, Phase III, multicenter trial in Europe and Israel (Ark Therapeutics, Inc.). Although in the absence of anti-adenovirus immune responses expression in the brain lasts 6–18 months, systemic infection with adenovirus induces immune responses that inhibit dramatically therapeutic transgene expression from first generation adenoviral vectors, thus, potentially compromising therapeutic efficacy. Here, we show evidence of an immunization threshold for the dose that generates an immune response strong enough to eliminate transgene expression from the CNS. For the systemic immunization to eliminate transgene expression from the brain, ≥1 × 107 infectious units (iu) of adenovirus need to be used as immunogen. Furthermore, this immune response eliminates >90% of transgene expression from 1 × 107–1 × 10³ iu of vector injected into the striatum 60 days earlier. Importantly, elimination of transgene expression is independent of the nature of the promoter that drives transgene expression and is accompanied by brain infiltration of CD8+ T cells and macrophages. In conclusion, once the threshold for systemic immunization (i.e. 1 × 107 iu) is crossed, the immune response eliminates transgene expression by >90% even from brains that receive as little as 1000 iu of adenoviral vectors, independently of the type of promoter that drives expression. PMID:18084640

  15. Transgenic tobacco expressing Pinellia ternata agglutinin confers enhanced resistance to aphids.

    PubMed

    Yao, Jianhong; Pang, Yongzhen; Qi, Huaxiong; Wan, Bingliang; Zhao, Xiuyun; Kong, Weiwen; Sun, Xiaofen; Tang, Kexuan

    2003-12-01

    Tobacco leaf discs were transformed with a plasmid, pBIPTA, containing the selectable marker neomycin phosphotransferase gene (nptII) and Pinellia ternata agglutinin gene (pta) via Agrobacterium tumefaciens-mediated transformation. Thirty-two independent transgenic tobacco plants were regenerated. PCR and Southern blot analyses confirmed that the pta gene had integrated into the plant genome and northern blot analysis revealed transgene expression at various levels in transgenic plants. Genetic analysis confirmed Mendelian segregation of the transgene in T1 progeny. Insect bioassays showed that transgenic plants expressing PTA inhibited significantly the growth of peach potato aphid (Myzus persicae Sulzer). This is the first report that transgenic plants expressing pta confer enhanced resistance to aphids. Our study indicates that the pta gene can be used as a supplement to the snowdrop (Galanthus nivalis) lectin gene (gna) in the control of aphids, a sap-sucking insect pest causing significant yield losses of crops.

  16. Light exposure before learning improves memory consolidation at night

    PubMed Central

    Shan, Li-Li; Guo, Hao; Song, Ning-Ning; Jia, Zheng-Ping; Hu, Xin-Tian; Huang, Jing-Fei; Ding, Yu-Qiang; Richter-Levine, Gal; Zhou, Qi-Xin; Xu, Lin

    2015-01-01

    Light is recently recognized as a modulator able to activate the hippocampus and modulate memory processing, but little is known about the molecular mechanisms. Here, we report that in mice, a short pulse of white light before learning dramatically improves consolidation of contextual fear memory during the night. The light exposure increases hippocampal active p21-activated kinase 1 (PAK1) and CA1 long-term potentiation (LTP). These light effects are abolished in PAK1 knockout and dominant-negative transgenic mice, but preserved by expression of constitutively active PAK1 in the hippocampus. Our results indicate that light can act as a switch of PAK1 activity that modulate CA1 LTP and thereby memory consolidation without affecting learning and short-term memory. PMID:26493375

  17. Genetic element from human surfactant protein SP-C gene confers bronchiolar-alveolar cell specificity in transgenic mice.

    PubMed

    Glasser, S W; Korfhagen, T R; Wert, S E; Bruno, M D; McWilliams, K M; Vorbroker, D K; Whitsett, J A

    1991-10-01

    Transgenic mice bearing chimeric genes consisting of 5'-sequences derived from the human surfactant protein C (SP-C) gene and the bacterial chloramphenicol acetyltransferase (CAT) gene were generated. Analysis of CAT activity was utilized to demonstrate tissue-specific and developmental expression of chimeric genes containing 3.7 kb of sequences from the human SP-C gene. Lung-specific expression of the 3.7 SP-C-CAT transgene was observed in eight distinct transgenic mouse lines. Expression of the 3.7 SP-C-CAT transgene was first detected in fetal lung on day 11 of gestation and increased dramatically with advancing gestational age, reaching adult levels of activity before birth. In situ hybridization demonstrated that expression of 3.7 SP-C-CAT mRNA was confined to the distal respiratory epithelium. Antisense CAT hybridization was detected in bronchiolar and type II epithelial cells in the adult lung of the 3.7 SP-C-CAT transgenic mice. In situ hybridization of four distinct 3.7 SP-C-CAT transgenic mouse lines demonstrated bronchiolar-alveolar expression of the chimeric CAT gene, although the relative intensity of expression at each site varied within the lines studied. Glucocorticoids increased murine SP-C mRNA in fetal lung organ culture. Likewise, expression of 3.7 SP-C-CAT transgene increased during fetal lung organ or explant culture and was further enhanced by glucocorticoid in vitro. The 5'-regions of human SP-C conferred developmental, lung epithelial, and glucocorticoid-enhanced expression of bacterial CAT in transgenic mice. The increased expression of SP-C accompanying prenatal lung development and exposure to glucocorticoid is mediated, at least in part, at the transcriptional level, being influenced by cis-active elements contained within the 5'-flanking region of the human SP-C gene.

  18. A novel cold-inducible gene from Pak-choi (Brassica campestris ssp. chinensis), BcWRKY46, enhances the cold, salt and dehydration stress tolerance in transgenic tobacco.

    PubMed

    Wang, Feng; Hou, Xilin; Tang, Jun; Wang, Zhen; Wang, Shuming; Jiang, Fangling; Li, Ying

    2012-04-01

    WRKY TFs belong to one of the largest families of transcriptional regulators in plants and form integral parts of signaling webs that modulate many plant processes. BcWRKY46, a cDNA clone encoding a polypeptide of 284 amino acids and exhibited the structural features of group III of WRKY protein family, was isolated from the cold-treated leaves of Pak-choi (Brassica campestris ssp. chinensis Makino, syn. B. rapa ssp. chinensis) using the cDNA-AFLP technique. Expression of this gene was induced quickly and strongly in response to various environmental stresses, including low temperatures, ABA, salt and dehydration. Constitutive expression of BcWRKY46 in tobacco under the control of the CaMV35S promoter reduced the susceptibility of transgenic tobacco to freezing, ABA, salt and dehydration stresses. Our studies suggest that BcWRKY46 plays an important role in responding to ABA and abiotic stress.

  19. Arabidopsis DREB2C modulates ABA biosynthesis during germination.

    PubMed

    Je, Jihyun; Chen, Huan; Song, Chieun; Lim, Chae Oh

    2014-09-12

    Plant dehydration-responsive element binding factors (DREBs) are transcriptional regulators of the APETELA2/Ethylene Responsive element-binding Factor (AP2/ERF) family that control expression of abiotic stress-related genes. We show here that under conditions of mild heat stress, constitutive overexpression seeds of transgenic DREB2C overexpression Arabidopsis exhibit delayed germination and increased abscisic acid (ABA) content compared to untransformed wild-type (WT). Treatment with fluridone, an inhibitor of the ABA biosynthesis abrogated these effects. Expression of an ABA biosynthesis-related gene, 9-cis-epoxycarotenoid dioxygenase 9 (NCED9) was up-regulated in the DREB2C overexpression lines compared to WT. DREB2C was able to trans-activate expression of NCED9 in Arabidopsis leaf protoplasts in vitro. Direct and specific binding of DREB2C to a complete DRE on the NCED9 promoter was observed in electrophoretic mobility shift assays. Exogenous ABA treatment induced DREB2C expression in germinating seeds of WT. Vegetative growth of transgenic DREB2C overexpression lines was more strongly inhibited by exogenous ABA compared to WT. These results suggest that DREB2C is a stress- and ABA-inducible gene that acts as a positive regulator of ABA biosynthesis in germinating seeds through activating NCED9 expression. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Development of transgenic wheat (Triticum aestivum L.) expressing avidin gene conferring resistance to stored product insects.

    PubMed

    Abouseadaa, Heba H; Osman, Gamal H; Ramadan, Ahmed M; Hassanein, Sameh E; Abdelsattar, Mohamed T; Morsy, Yasser B; Alameldin, Hussien F; El-Ghareeb, Doaa K; Nour-Eldin, Hanan A; Salem, Reda; Gad, Adel A; Elkhodary, Soheir E; Shehata, Maher M; Mahfouz, Hala M; Eissa, Hala F; Bahieldin, Ahmed

    2015-07-22

    Wheat is considered the most important cereal crop all over the world. The wheat weevil Sitophilus granarius is a serious insect pests in much of the wheat growing area worldwide and is responsible for significant loss of yield. Avidin proteins has been proposed to function as plant defense agents against insect pests. A synthetic avidin gene was introduced into spring wheat (Triticum aestivum L.) cv. Giza 168 using a biolistic bombardment protocol. The presence and expression of the transgene in six selected T0 transgenic wheat lines were confirmed at the molecular level. Accumulation of avidin protein was detected in transgenic plants compared to non-transgenic plants. Avidin transgene was stably integrated, transcribed and translated as indicated by Southern blot, ELISA, and dot blot analyses, with a high level of expression in transgenic wheat seeds. However, no expression was detected in untransformed wheat seeds. Functional integrity of avidin was confirmed by insect bioassay. The results of bioassay using transgenic wheat plants challenged with wheat weevil revealed 100 % mortality of the insects reared on transgenic plants after 21 days. Transgenic wheat plants had improved resistance to Sitophilus granarius.

  1. [Breeding of transgenic mice expressing human tau isoform with P301L mutation and identification of homozygous transgenic mice].

    PubMed

    Wang, Yan-yan; Chen, Ru-zhui; Zhu, Xiao-nani; Liu, Jing; Li, Zhi-hui; Liu, Xiu-juan; Li, Zhi-hui; Na, Xin; Liang, Shan-shan; Qiu, Guo-guang; Zhang, Wei; Wang, Hai; Wang, Xue-lan

    2012-05-01

    To establish homozygous transgenic mouse strain expressing human tau isoform with P301L mutation. Five transgenic mice expressing human tau isoform with P301L mutation were obtained by microinjection into male nuclei. Homozygote and hemizygote were identified by PCR and real-time fluorescent quantitative PCR. Ninety five homozygous transgenic mice were selected, and the results indicated that homozygous transgenic mice were superior to hemizygote in simulating the changes of biological characteristics. Exogenous gene tau is able to stably transmit to next generation and the combination of SYBR Green real-time fluorescent quantitative PCR with the traditional mating is a fast, reliable and economical way to screen homozygous and hemizygous transgenic mice.

  2. Modulation of T-Cell Activation in an Experimental Model of Mammary Carcinoma

    DTIC Science & Technology

    1999-07-01

    depigmentation, reminiscent of the vitiligo that occurs in melanoma patients undergoing immunotherapy (3). In the transgenic prostate cancer model, we...extrusion in the hair follicles that is not observed in unaffected areas of the coat. This depigmentation is reminiscent of the vitiligo syndrome observed in...and a GM-CSF-expressing Vaccine. manuscript submitted. 3. Rosenberg, S.A., and D.E. White. 1996. Vitiligo in patients with melanoma: normal tissue

  3. Co-transfection of decorin and interleukin-10 modulates pro-fibrotic extracellular matrix gene expression in human tenocyte culture

    NASA Astrophysics Data System (ADS)

    Abbah, Sunny A.; Thomas, Dilip; Browne, Shane; O'Brien, Timothy; Pandit, Abhay; Zeugolis, Dimitrios I.

    2016-02-01

    Extracellular matrix synthesis and remodelling are driven by increased activity of transforming growth factor beta 1 (TGF-β1). In tendon tissue repair, increased activity of TGF-β1 leads to progressive fibrosis. Decorin (DCN) and interleukin 10 (IL-10) antagonise pathological collagen synthesis by exerting a neutralising effect via downregulation of TGF-β1. Herein, we report that the delivery of DCN and IL-10 transgenes from a collagen hydrogel system supresses the constitutive expression of TGF-β1 and a range of pro-fibrotic extracellular matrix genes.

  4. Novel Bioengineered Cassava Expressing an Archaeal Starch Degradation System and a Bacterial ADP-Glucose Pyrophosphorylase for Starch Self-Digestibility and Yield Increase

    PubMed Central

    Ligaba-Osena, Ayalew; Jones, Jenna; Donkor, Emmanuel; Chandrayan, Sanjeev; Pole, Farris; Wu, Chang-Hao; Vieille, Claire; Adams, Michael W. W.; Hankoua, Bertrand B.

    2018-01-01

    To address national and global low-carbon fuel targets, there is great interest in alternative plant species such as cassava (Manihot esculenta), which are high-yielding, resilient, and are easily converted to fuels using the existing technology. In this study the genes encoding hyperthermophilic archaeal starch-hydrolyzing enzymes, α-amylase and amylopullulanase from Pyrococcus furiosus and glucoamylase from Sulfolobus solfataricus, together with the gene encoding a modified ADP-glucose pyrophosphorylase (glgC) from Escherichia coli, were simultaneously expressed in cassava roots to enhance starch accumulation and its subsequent hydrolysis to sugar. A total of 13 multigene expressing transgenic lines were generated and characterized phenotypically and genotypically. Gene expression analysis using quantitative RT-PCR showed that the microbial genes are expressed in the transgenic roots. Multigene-expressing transgenic lines produced up to 60% more storage root yield than the non-transgenic control, likely due to glgC expression. Total protein extracted from the transgenic roots showed up to 10-fold higher starch-degrading activity in vitro than the protein extracted from the non-transgenic control. Interestingly, transgenic tubers released threefold more glucose than the non-transgenic control when incubated at 85°C for 21-h without exogenous application of thermostable enzymes, suggesting that the archaeal enzymes produced in planta maintain their activity and thermostability. PMID:29541080

  5. Novel Bioengineered Cassava Expressing an Archaeal Starch Degradation System and a Bacterial ADP-Glucose Pyrophosphorylase for Starch Self-Digestibility and Yield Increase.

    PubMed

    Ligaba-Osena, Ayalew; Jones, Jenna; Donkor, Emmanuel; Chandrayan, Sanjeev; Pole, Farris; Wu, Chang-Hao; Vieille, Claire; Adams, Michael W W; Hankoua, Bertrand B

    2018-01-01

    To address national and global low-carbon fuel targets, there is great interest in alternative plant species such as cassava ( Manihot esculenta ), which are high-yielding, resilient, and are easily converted to fuels using the existing technology. In this study the genes encoding hyperthermophilic archaeal starch-hydrolyzing enzymes, α-amylase and amylopullulanase from Pyrococcus furiosus and glucoamylase from Sulfolobus solfataricus , together with the gene encoding a modified ADP-glucose pyrophosphorylase ( glgC ) from Escherichia coli , were simultaneously expressed in cassava roots to enhance starch accumulation and its subsequent hydrolysis to sugar. A total of 13 multigene expressing transgenic lines were generated and characterized phenotypically and genotypically. Gene expression analysis using quantitative RT-PCR showed that the microbial genes are expressed in the transgenic roots. Multigene-expressing transgenic lines produced up to 60% more storage root yield than the non-transgenic control, likely due to glgC expression. Total protein extracted from the transgenic roots showed up to 10-fold higher starch-degrading activity in vitro than the protein extracted from the non-transgenic control. Interestingly, transgenic tubers released threefold more glucose than the non-transgenic control when incubated at 85°C for 21-h without exogenous application of thermostable enzymes, suggesting that the archaeal enzymes produced in planta maintain their activity and thermostability.

  6. A rice chloroplast transit peptide sequence does not alter the cytoplasmic localization of sheep serotonin N-acetyltransferase expressed in transgenic rice plants.

    PubMed

    Byeon, Yeong; Lee, Hyoung Yool; Lee, Kyungjin; Back, Kyoungwhan

    2014-09-01

    Ectopic overexpression of melatonin biosynthetic genes of animal origin has been used to generate melatonin-rich transgenic plants to examine the functional roles of melatonin in plants. However, the subcellular localization of these proteins expressed in the transgenic plants remains unknown. We studied the localization of sheep (Ovis aries) serotonin N-acetyltransferase (OaSNAT) and a translational fusion of a rice SNAT transit peptide to OaSNAT (TS:OaSNAT) in plants. Laser confocal microscopy analysis revealed that both OaSNAT and TS:OaSNAT proteins were localized to the cytoplasm even with the addition of the transit sequence to OaSNAT. Transgenic rice plants overexpressing the TS:OaSNAT fusion transgene exhibited high SNAT enzyme activity relative to untransformed wild-type plants, but lower activity than transgenic rice plants expressing the wild-type OaSNAT gene. Melatonin levels in both types of transgenic rice plant corresponded well with SNAT enzyme activity levels. The TS:OaSNAT transgenic lines exhibited increased seminal root growth relative to wild-type plants, but less than in the OaSNAT transgenic lines, confirming that melatonin promotes root growth. Seed-specific OaSNAT expression under the control of a rice prolamin promoter did not confer high levels of melatonin production in transgenic rice seeds compared with seeds from transgenic plants expressing OaSNAT under the control of the constitutive maize ubiquitin promoter. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Phaseolin expression in tobacco chloroplast reveals an autoregulatory mechanism in heterologous protein translation.

    PubMed

    De Marchis, Francesca; Bellucci, Michele; Pompa, Andrea

    2016-02-01

    Plastid DNA engineering is a well-established research area of plant biotechnology, and plastid transgenes often give high expression levels. However, it is still almost impossible to predict the accumulation rate of heterologous protein in transplastomic plants, and there are many cases of unsuccessful transgene expression. Chloroplasts regulate their proteome at the post-transcriptional level, mainly through translation control. One of the mechanisms to modulate the translation has been described in plant chloroplasts for the chloroplast-encoded subunits of multiprotein complexes, and the autoregulation of the translation initiation of these subunits depends on the availability of their assembly partners [control by epistasy of synthesis (CES)]. In Chlamydomonas reinhardtii, autoregulation of endogenous proteins recruited in the assembly of functional complexes has also been reported. In this study, we revealed a self-regulation mechanism triggered by the accumulation of a soluble recombinant protein, phaseolin, in the stroma of chloroplast-transformed tobacco plants. Immunoblotting experiments showed that phaseolin could avoid this self-regulation mechanism when targeted to the thylakoids in transplastomic plants. To inhibit the thylakoid-targeted phaseolin translation as well, this protein was expressed in the presence of a nuclear version of the phaseolin gene with a transit peptide. Pulse-chase and polysome analysis revealed that phaseolin mRNA translation on plastid ribosomes was repressed due to the accumulation in the stroma of the same soluble polypeptide imported from the cytosol. We suggest that translation autoregulation in chloroplast is not limited to heteromeric protein subunits but also involves at least some of the foreign soluble recombinant proteins, leading to the inhibition of plastome-encoded transgene expression in chloroplast. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Proteomic identification of OsCYP2, a rice cyclophilin that confers salt tolerance in rice (Oryza sativa L.) seedlings when overexpressed

    PubMed Central

    2011-01-01

    Background High Salinity is a major environmental stress influencing growth and development of rice. Comparative proteomic analysis of hybrid rice shoot proteins from Shanyou 10 seedlings, a salt-tolerant hybrid variety, and Liangyoupeijiu seedlings, a salt-sensitive hybrid variety, was performed to identify new components involved in salt-stress signaling. Results Phenotypic analysis of one protein that was upregulated during salt-induced stress, cyclophilin 2 (OsCYP2), indicated that OsCYP2 transgenic rice seedlings had better tolerance to salt stress than did wild-type seedlings. Interestingly, wild-type seedlings exhibited a marked reduction in maximal photochemical efficiency under salt stress, whereas no such change was observed for OsCYP2-transgenic seedlings. OsCYP2-transgenic seedlings had lower levels of lipid peroxidation products and higher activities of antioxidant enzymes than wild-type seedlings. Spatiotemporal expression analysis of OsCYP2 showed that it could be induced by salt stress in both Shanyou 10 and Liangyoupeijiu seedlings, but Shanyou 10 seedlings showed higher OsCYP2 expression levels. Moreover, circadian rhythm expression of OsCYP2 in Shanyou 10 seedlings occurred earlier than in Liangyoupeijiu seedlings. Treatment with PEG, heat, or ABA induced OsCYP2 expression in Shanyou 10 seedlings but inhibited its expression in Liangyoupeijiu seedlings. Cold stress inhibited OsCYP2 expression in Shanyou 10 and Liangyoupeijiu seedlings. In addition, OsCYP2 was strongly expressed in shoots but rarely in roots in two rice hybrid varieties. Conclusions Together, these data suggest that OsCYP2 may act as a key regulator that controls ROS level by modulating activities of antioxidant enzymes at translation level. OsCYP2 expression is not only induced by salt stress, but also regulated by circadian rhythm. Moreover, OsCYP2 is also likely to act as a key component that is involved in signal pathways of other types of stresses-PEG, heat, cold, or ABA. PMID:21324151

  9. A synthetic cGMP-sensitive gene switch providing Viagra(®)-controlled gene expression in mammalian cells and mice.

    PubMed

    Kim, Taeuk; Folcher, Marc; Charpin-El Hamri, Ghislaine; Fussenegger, Martin

    2015-05-01

    Cyclic guanosine monophosphate (cGMP) is a universal second messenger that is synthesized from guanosine triphosphate (GTP) by guanylyl cyclases (GCs) and hydrolyzed into guanosine monophosphate (GMP) by phosphodiesterases (PDEs). Small-molecule drugs that induce high cGMP levels in specialized tissues by boosting GC activity or inhibiting PDE activity have become the predominant treatment strategy for a wide range of medical conditions, including congestive heart failure, pulmonary hypertension, atherosclerosis-based claudication and erectile dysfunction. By fusing the cGMP receptor protein (CRP) of Rhodospirillum centenum to the Herpes simplex-derived transactivation domain VP16, we created a novel synthetic mammalian cGMP-sensing transcription factor (GTA) that activates synthetic promoters (PGTA) containing newly identified GTA-specific operator sites in a concentration-dependent manner. In cell lines expressing endogenous natriuretic peptide receptor A (NPR-A) (HeLa), GTA/PGTA-driven transgene expression was induced by B-type natriuretic peptide (BNP; Nesiritide(®)) in a concentration-dependent manner, which activated NPR-A׳s intracellular GC domain and triggered a corresponding cGMP surge. Ectopic expression of NPR-A in NPR-A-negative cell lines (HEK-293T) produced high cGMP levels and mediated maximum GTA/PGTA-driven transgene expression, which was suppressed by co-expression of PDEs (PDE-3A, PDE-5A and PDE-9A) and was re-triggered by the corresponding PDE inhibitor drugs (Pletal(®), Perfan(®), Primacor(®) (PDE-3A), Viagra(®), Levitra(®), Cialis(®) (PDE-5A) and BAY73-6691 (PDE-9A)). Mice implanted with microencapsulated designer cells co-expressing the GTA/PGTA device with NPR-A and PDE-5A showed control of blood SEAP levels through administration of sildenafil (Viagra(®)). Designer cells engineered for PDE inhibitor-modulated transgene expression may provide a cell-based PDE-targeting drug discovery platform and enable drug-adjusted gene- and cell-based therapies. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  10. Generation and Characterization of Human Heme Oxygenase-1 Transgenic Pigs

    PubMed Central

    Yang, Jaeseok; Cho, Bumrae; Hwang, Jong-Ik; Park, Sol Ji; Hurh, Sunghoon; Kim, Hwajung; Lee, Eun Mi; Ro, Han; Kang, Jung Taek; Kim, Su Jin; Won, Jae-Kyung; O'Connell, Philip J.; Kim, Hyunil; Surh, Charles D.; Lee, Byeong-Chun; Ahn, Curie

    2012-01-01

    Xenotransplantation using transgenic pigs as an organ source is a promising strategy to overcome shortage of human organ for transplantation. Various genetic modifications have been tried to ameliorate xenograft rejection. In the present study we assessed effect of transgenic expression of human heme oxygenase-1 (hHO-1), an inducible protein capable of cytoprotection by scavenging reactive oxygen species and preventing apoptosis caused by cellular stress during inflammatory processes, in neonatal porcine islet-like cluster cells (NPCCs). Transduction of NPCCs with adenovirus containing hHO-1 gene significantly reduced apoptosis compared with the GFP-expressing adenovirus control after treatment with either hydrogen peroxide or hTNF-α and cycloheximide. These protective effects were diminished by co-treatment of hHO-1 antagonist, Zinc protoporphyrin IX. We also generated transgenic pigs expressing hHO-1 and analyzed expression and function of the transgene. Human HO-1 was expressed in most tissues, including the heart, kidney, lung, pancreas, spleen and skin, however, expression levels and patterns of the hHO-1 gene are not consistent in each organ. We isolate fibroblast from transgenic pigs to analyze protective effect of the hHO-1. As expected, fibroblasts derived from the hHO-1 transgenic pigs were significantly resistant to both hydrogen peroxide damage and hTNF-α and cycloheximide-mediated apoptosis when compared with wild-type fibroblasts. Furthermore, induction of RANTES in response to hTNF-α or LPS was significantly decreased in fibroblasts obtained from the hHO-1 transgenic pigs. These findings suggest that transgenic expression of hHO-1 can protect xenografts when exposed to oxidative stresses, especially from ischemia/reperfusion injury, and/or acute rejection mediated by cytokines. Accordingly, hHO-1 could be an important candidate molecule in a multi-transgenic pig strategy for xenotransplantation. PMID:23071605

  11. Generation and characterization of human heme oxygenase-1 transgenic pigs.

    PubMed

    Yeom, Hye-Jung; Koo, Ok Jae; Yang, Jaeseok; Cho, Bumrae; Hwang, Jong-Ik; Park, Sol Ji; Hurh, Sunghoon; Kim, Hwajung; Lee, Eun Mi; Ro, Han; Kang, Jung Taek; Kim, Su Jin; Won, Jae-Kyung; O'Connell, Philip J; Kim, Hyunil; Surh, Charles D; Lee, Byeong-Chun; Ahn, Curie

    2012-01-01

    Xenotransplantation using transgenic pigs as an organ source is a promising strategy to overcome shortage of human organ for transplantation. Various genetic modifications have been tried to ameliorate xenograft rejection. In the present study we assessed effect of transgenic expression of human heme oxygenase-1 (hHO-1), an inducible protein capable of cytoprotection by scavenging reactive oxygen species and preventing apoptosis caused by cellular stress during inflammatory processes, in neonatal porcine islet-like cluster cells (NPCCs). Transduction of NPCCs with adenovirus containing hHO-1 gene significantly reduced apoptosis compared with the GFP-expressing adenovirus control after treatment with either hydrogen peroxide or hTNF-α and cycloheximide. These protective effects were diminished by co-treatment of hHO-1 antagonist, Zinc protoporphyrin IX. We also generated transgenic pigs expressing hHO-1 and analyzed expression and function of the transgene. Human HO-1 was expressed in most tissues, including the heart, kidney, lung, pancreas, spleen and skin, however, expression levels and patterns of the hHO-1 gene are not consistent in each organ. We isolate fibroblast from transgenic pigs to analyze protective effect of the hHO-1. As expected, fibroblasts derived from the hHO-1 transgenic pigs were significantly resistant to both hydrogen peroxide damage and hTNF-α and cycloheximide-mediated apoptosis when compared with wild-type fibroblasts. Furthermore, induction of RANTES in response to hTNF-α or LPS was significantly decreased in fibroblasts obtained from the hHO-1 transgenic pigs. These findings suggest that transgenic expression of hHO-1 can protect xenografts when exposed to oxidative stresses, especially from ischemia/reperfusion injury, and/or acute rejection mediated by cytokines. Accordingly, hHO-1 could be an important candidate molecule in a multi-transgenic pig strategy for xenotransplantation.

  12. Regulatory functions of SnRK1 in stress-responsive gene expression and in plant growth and development.

    PubMed

    Cho, Young-Hee; Hong, Jung-Woo; Kim, Eun-Chul; Yoo, Sang-Dong

    2012-04-01

    Sucrose-nonfermentation1-related protein kinase1 (SnRK1) is an evolutionarily conserved energy sensor protein that regulates gene expression in response to energy depletion in plants. Efforts to elucidate the functions and mechanisms of this protein kinase are hampered, however, by inherent growth defects of snrk1-null mutant plants. To overcome these limitations and study SnRK1 functions in vivo, we applied a method combining transient expression in leaf mesophyll protoplasts and stable expression in transgenic plants. We found that both rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) SnRK1 activities critically influence stress-inducible gene expression and the induction of stress tolerance. Genetic, molecular, and chromatin immunoprecipitation analyses further revealed that the nuclear SnRK1 modulated target gene transcription in a submergence-dependent manner. From early seedling development through late senescence, SnRK1 activities appeared to modulate developmental processes in the plants. Our findings offer insight into the regulatory functions of plant SnRK1 in stress-responsive gene regulation and in plant growth and development throughout the life cycle.

  13. Production of transgenic pigs over-expressing the antiviral gene Mx1.

    PubMed

    Yan, Quanmei; Yang, Huaqiang; Yang, Dongshan; Zhao, Bentian; Ouyang, Zhen; Liu, Zhaoming; Fan, Nana; Ouyang, Hongsheng; Gu, Weiwang; Lai, Liangxue

    2014-01-01

    The myxovirus resistance gene (Mx1) has a broad spectrum of antiviral activities. It is therefore an interesting candidate gene to improve disease resistance in farm animals. In this study, we report the use of somatic cell nuclear transfer (SCNT) to produce transgenic pigs over-expressing the Mx1 gene. These transgenic pigs express approximately 15-25 times more Mx1 mRNA than non-transgenic pigs, and the protein level of Mx1 was also markedly enhanced. We challenged fibroblast cells isolated from the ear skin of transgenic and control pigs with influenza A virus and classical swine fever virus (CFSV). Indirect immunofluorescence assay (IFA) revealed a profound decrease of influenza A proliferation in Mx1 transgenic cells. Growth kinetics showed an approximately 10-fold reduction of viral copies in the transgenic cells compared to non-transgenic controls. Additionally, we found that the Mx1 transgenic cells were more resistant to CSFV infection in comparison to non-transgenic cells. These results demonstrate that the Mx1 transgene can protect against viral infection in cells of transgenic pigs and indicate that the Mx1 transgene can be harnessed to develop disease-resistant pigs.

  14. Molecular breeding of transgenic rice plants expressing a bacterial chlorocatechol dioxygenase gene.

    PubMed

    Shimizu, Masami; Kimura, Tetsuya; Koyama, Takayoshi; Suzuki, Katsuhisa; Ogawa, Naoto; Miyashita, Kiyotaka; Sakka, Kazuo; Ohmiya, Kunio

    2002-08-01

    The cbnA gene encoding the chlorocatechol dioxygenase gene from Ralstonia eutropha NH9 was introduced into rice plants. The cbnA gene was expressed in transgenic rice plants under the control of a modified cauliflower mosaic virus 35S promoter. Western blot analysis using anti-CbnA protein indicated that the cbnA gene was expressed in leaf tissue, roots, culms, and seeds. Transgenic rice calluses expressing the cbnA gene converted 3-chlorocatechol to 2-chloromucote efficiently. Growth and morphology of the transgenic rice plants expressing the cbnA gene were not distinguished from those of control rice plants harboring only a Ti binary vector. It is thus possible to breed transgenic plants that degrade chloroaromatic compounds in soil and surface water.

  15. Transgene expression of green fluorescent protein and germ line transmission in cloned pigs derived from in vitro transfected adult fibroblasts.

    PubMed

    Brunetti, Dario; Perota, Andrea; Lagutina, Irina; Colleoni, Silvia; Duchi, Roberto; Calabrese, Fiorella; Seveso, Michela; Cozzi, Emanuele; Lazzari, Giovanna; Lucchini, Franco; Galli, Cesare

    2008-12-01

    The pig represents the xenogeneic donor of choice for future organ transplantation in humans for anatomical and physiological reasons. However, to bypass several immunological barriers, strong and stable human genes expression must occur in the pig's organs. In this study we created transgenic pigs using in vitro transfection of cultured cells combined with somatic cell nuclear transfer (SCNT) to evaluate the ubiquitous transgene expression driven by pCAGGS vector in presence of different selectors. pCAGGS confirmed to be a very effective vector for ubiquitous transgene expression, irrespective of the selector that was used. Green fluorescent protein (GFP) expression observed in transfected fibroblasts was also maintained after nuclear transfer, through pre- and postimplantation development, at birth and during adulthood. Germ line transmission without silencing of the transgene was demonstrated. The ubiquitous expression of GFP was clearly confirmed in several tissues including endothelial cells, thus making it a suitable vector for the expression of multiple genes relevant to xenotransplantation where tissue specificity is not required. Finally cotransfection of green and red fluorescence protein transgenes was performed in fibroblasts and after nuclear transfer blastocysts expressing both fluorescent proteins were obtained.

  16. Methylene Blue Modulates β-Secretase, Reverses Cerebral Amyloidosis, and Improves Cognition in Transgenic Mice*

    PubMed Central

    Mori, Takashi; Koyama, Naoki; Segawa, Tatsuya; Maeda, Masahiro; Maruyama, Nobuhiro; Kinoshita, Noriaki; Hou, Huayan; Tan, Jun; Town, Terrence

    2014-01-01

    Amyloid precursor protein (APP) proteolysis is required for production of amyloid-β (Aβ) peptides that comprise β-amyloid plaques in the brains of patients with Alzheimer disease (AD). Here, we tested whether the experimental agent methylene blue (MB), used for treatment of methemoglobinemia, might improve AD-like pathology and behavioral deficits. We orally administered MB to the aged transgenic PSAPP mouse model of cerebral amyloidosis and evaluated cognitive function and cerebral amyloid pathology. Beginning at 15 months of age, animals were gavaged with MB (3 mg/kg) or vehicle once daily for 3 months. MB treatment significantly prevented transgene-associated behavioral impairment, including hyperactivity, decreased object recognition, and defective spatial working and reference memory, but it did not alter nontransgenic mouse behavior. Moreover, brain parenchymal and cerebral vascular β-amyloid deposits as well as levels of various Aβ species, including oligomers, were mitigated in MB-treated PSAPP mice. These effects occurred with inhibition of amyloidogenic APP proteolysis. Specifically, β-carboxyl-terminal APP fragment and β-site APP cleaving enzyme 1 protein expression and activity were attenuated. Additionally, treatment of Chinese hamster ovary cells overexpressing human wild-type APP with MB significantly decreased Aβ production and amyloidogenic APP proteolysis. These results underscore the potential for oral MB treatment against AD-related cerebral amyloidosis by modulating the amyloidogenic pathway. PMID:25157105

  17. Transgenic pigeonpea events expressing Cry1Ac and Cry2Aa exhibit resistance to Helicoverpa armigera.

    PubMed

    Ghosh, Gourab; Ganguly, Shreeparna; Purohit, Arnab; Chaudhuri, Rituparna Kundu; Das, Sampa; Chakraborti, Dipankar

    2017-07-01

    Independent transgenic pigeonpea events were developed using two cry genes. Transgenic Cry2Aa-pigeonpea was established for the first time. Selected transgenic events demonstrated 100% mortality of Helicoverpa armigera in successive generations. Lepidopteran insect Helicoverpa armigera is the major yield constraint of food legume pigeonpea. The present study was aimed to develop H. armigera-resistant transgenic pigeonpea, selected on the basis of transgene expression and phenotyping. Agrobacterium tumefaciens-mediated transformation of embryonic axis explants of pigeonpea cv UPAS 120 was performed using two separate binary vectors carrying synthetic Bacillus thuringiensis insecticidal crystal protein genes, cry1Ac and cry2Aa. T 0 transformants were selected on the basis of PCR and protein expression profile. T 1 events were exclusively selected on the basis of expression and monogenic character for cry, validated through Western and Southern blot analyses, respectively. Independently transformed 12 Cry1Ac and 11 Cry2Aa single-copy events were developed. The level of Cry-protein expression in T 1 transgenic events was 0.140-0.175% of total soluble protein. Expressed Cry1Ac and Cry2Aa proteins in transgenic pigeonpea exhibited significant weight loss of second-fourth instar larvae of H. armigera and ultimately 80-100% mortality in detached leaf bioassay. Selected Cry-transgenic pigeonpea events, established at T 2 generation, inherited insect-resistant phenotype. Immunohistofluorescence localization in T 3 plants demonstrated constitutive accumulation of Cry1Ac and Cry2Aa in leaf tissues of respective transgenic events. This study is the first report of transgenic pigeonpea development, where stable integration, effective expression and biological activity of two Cry proteins were demonstrated in subsequent three generations (T 0 , T 1, and T 2 ). These studies will contribute to biotechnological breeding programmes of pigeonpea for its genetic improvement.

  18. A Transgenic Transcription Factor (TaDREB3) in Barley Affects the Expression of MicroRNAs and Other Small Non-Coding RNAs

    PubMed Central

    Hackenberg, Michael; Shi, Bu-Jun; Gustafson, Perry; Langridge, Peter

    2012-01-01

    Transcription factors (TFs), microRNAs (miRNAs), small interfering RNAs (siRNAs) and other functional non-coding small RNAs (sRNAs) are important gene regulators. Comparison of sRNA expression profiles between transgenic barley over-expressing a drought tolerant TF (TaDREB3) and non-transgenic control barley revealed many group-specific sRNAs. In addition, 42% of the shared sRNAs were differentially expressed between the two groups (|log2| >1). Furthermore, TaDREB3-derived sRNAs were only detected in transgenic barley despite the existence of homologous genes in non-transgenic barley. These results demonstrate that the TF strongly affects the expression of sRNAs and siRNAs could in turn affect the TF stability. The TF also affects size distribution and abundance of sRNAs including miRNAs. About half of the sRNAs in each group were derived from chloroplast. A sRNA derived from tRNA-His(GUG) encoded by the chloroplast genome is the most abundant sRNA, accounting for 42.2% of the total sRNAs in transgenic barley and 28.9% in non-transgenic barley. This sRNA, which targets a gene (TC245676) involved in biological processes, was only present in barley leaves but not roots. 124 and 136 miRNAs were detected in transgenic and non-transgenic barley, respectively. miR156 was the most abundant miRNA and up-regulated in transgenic barley, while miR168 was the most abundant miRNA and up-regulated in non-transgenic barley. Eight out of 20 predicted novel miRNAs were differentially expressed between the two groups. All the predicted novel miRNA targets were validated using a degradome library. Our data provide an insight into the effect of TF on the expression of sRNAs in barley. PMID:22870277

  19. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase.

    PubMed

    Ruiz, Oscar N; Alvarez, Derry; Gonzalez-Ruiz, Gloriene; Torres, Cesar

    2011-08-12

    The use of transgenic bacteria has been proposed as a suitable alternative for mercury remediation. Ideally, mercury would be sequestered by metal-scavenging agents inside transgenic bacteria for subsequent retrieval. So far, this approach has produced limited protection and accumulation. We report here the development of a transgenic system that effectively expresses metallothionein (mt-1) and polyphosphate kinase (ppk) genes in bacteria in order to provide high mercury resistance and accumulation. In this study, bacterial transformation with transcriptional and translational enhanced vectors designed for the expression of metallothionein and polyphosphate kinase provided high transgene transcript levels independent of the gene being expressed. Expression of polyphosphate kinase and metallothionein in transgenic bacteria provided high resistance to mercury, up to 80 μM and 120 μM, respectively. Here we show for the first time that metallothionein can be efficiently expressed in bacteria without being fused to a carrier protein to enhance mercury bioremediation. Cold vapor atomic absorption spectrometry analyzes revealed that the mt-1 transgenic bacteria accumulated up to 100.2 ± 17.6 μM of mercury from media containing 120 μM Hg. The extent of mercury remediation was such that the contaminated media remediated by the mt-1 transgenic bacteria supported the growth of untransformed bacteria. Cell aggregation, precipitation and color changes were visually observed in mt-1 and ppk transgenic bacteria when these cells were grown in high mercury concentrations. The transgenic bacterial system described in this study presents a viable technology for mercury bioremediation from liquid matrices because it provides high mercury resistance and accumulation while inhibiting elemental mercury volatilization. This is the first report that shows that metallothionein expression provides mercury resistance and accumulation in recombinant bacteria. The high accumulation of mercury in the transgenic cells could present the possibility of retrieving the accumulated mercury for further industrial applications.

  20. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase

    PubMed Central

    2011-01-01

    Background The use of transgenic bacteria has been proposed as a suitable alternative for mercury remediation. Ideally, mercury would be sequestered by metal-scavenging agents inside transgenic bacteria for subsequent retrieval. So far, this approach has produced limited protection and accumulation. We report here the development of a transgenic system that effectively expresses metallothionein (mt-1) and polyphosphate kinase (ppk) genes in bacteria in order to provide high mercury resistance and accumulation. Results In this study, bacterial transformation with transcriptional and translational enhanced vectors designed for the expression of metallothionein and polyphosphate kinase provided high transgene transcript levels independent of the gene being expressed. Expression of polyphosphate kinase and metallothionein in transgenic bacteria provided high resistance to mercury, up to 80 μM and 120 μM, respectively. Here we show for the first time that metallothionein can be efficiently expressed in bacteria without being fused to a carrier protein to enhance mercury bioremediation. Cold vapor atomic absorption spectrometry analyzes revealed that the mt-1 transgenic bacteria accumulated up to 100.2 ± 17.6 μM of mercury from media containing 120 μM Hg. The extent of mercury remediation was such that the contaminated media remediated by the mt-1 transgenic bacteria supported the growth of untransformed bacteria. Cell aggregation, precipitation and color changes were visually observed in mt-1 and ppk transgenic bacteria when these cells were grown in high mercury concentrations. Conclusion The transgenic bacterial system described in this study presents a viable technology for mercury bioremediation from liquid matrices because it provides high mercury resistance and accumulation while inhibiting elemental mercury volatilization. This is the first report that shows that metallothionein expression provides mercury resistance and accumulation in recombinant bacteria. The high accumulation of mercury in the transgenic cells could present the possibility of retrieving the accumulated mercury for further industrial applications. PMID:21838857

  1. A Novel Sphingomyelinase-Like Enzyme in Ixodes scapularis Tick Saliva Drives Host CD4+ T cells to Express IL-4

    PubMed Central

    Alarcon-Chaidez, F. J.; Boppana, V. D.; Hagymasi, A.T.; Adler, A. J.; Wikel, S. K.

    2009-01-01

    Tick feeding modulates host immune responses. Tick-induced skewing of host CD4+ T cells towards a Th2 cytokine profile facilitates transmission of tick-borne pathogens that would otherwise be neutralized by Th1 cytokines. Tick-derived factors that drive this Th2 response have not previously been characterized. In the current study, we examined an I. scapularis cDNA library prepared at 18-24 hours of feeding and identified and expressed a tick gene with homology to Loxosceles spider venom proteins with sphingomyelinase activity. This I. scapularis sphingomyelinase-like (IsSMase) protein is a Mg+2-dependent, neutral (pH 7.4) form of sphingomyelinase. Significantly, in an in vivo TCR transgenic adoptive transfer assay IsSMase programmed host CD4+ T cells to express the hallmark Th2 effector cytokine IL-4. IsSMase appears to directly program host CD4 T cell IL-4 expression (as opposed to its metabolic by-products) because induced IL-4 expression was not altered when enzymatic activity was neutralized. TCR transgenic CD4 T cell proliferation (CFSE-dilution) was also significantly increased by IsSMase. Furthermore, a Th2 response is superimposed onto a virally-primed Th1 response by IsSMase. Thus, IsSMase is the first identified tick molecule capable of programming host CD4+ T cells to express IL-4. PMID:19292772

  2. Inhibition of Shp2 suppresses mutant EGFR-induced lung tumors in transgenic mouse model of lung adenocarcinoma

    PubMed Central

    Schneeberger, Valentina E.; Ren, Yuan; Luetteke, Noreen; Huang, Qingling; Chen, Liwei; Lawrence, Harshani R.; Lawrence, Nicholas J.; Haura, Eric B.; Koomen, John M.; Coppola, Domenico; Wu, Jie

    2015-01-01

    Epidermal growth factor receptor (EGFR) mutants drive lung tumorigenesis and are targeted for therapy. However, resistance to EGFR inhibitors has been observed, in which the mutant EGFR remains active. Thus, it is important to uncover mediators of EGFR mutant-driven lung tumors to develop new treatment strategies. The protein tyrosine phosphatase (PTP) Shp2 mediates EGF signaling. Nevertheless, it is unclear if Shp2 is activated by oncogenic EGFR mutants in lung carcinoma or if inhibiting the Shp2 PTP activity can suppress EGFR mutant-induced lung adenocarcinoma. Here, we generated transgenic mice containing a doxycycline (Dox)-inducible PTP-defective Shp2 mutant (tetO-Shp2CSDA). Using the rat Clara cell secretory protein (CCSP)-rtTA-directed transgene expression in the type II lung pneumocytes of transgenic mice, we found that the Gab1-Shp2 pathway was activated by EGFRL858R in the lungs of transgenic mice. Consistently, the Gab1-Shp2 pathway was activated in human lung adenocarcinoma cells containing mutant EGFR. Importantly, Shp2CSDA inhibited EGFRL858R-induced lung adenocarcinoma in transgenic animals. Analysis of lung tissues showed that Shp2CSDA suppressed Gab1 tyrosine phosphorylation and Gab1-Shp2 association, suggesting that Shp2 modulates a positive feedback loop to regulate its own activity. These results show that inhibition of the Shp2 PTP activity impairs mutant EGFR signaling and suppresses EGFRL858R-driven lung adenocarcinoma. PMID:25730908

  3. Developmental and Wound-, Cold-, Desiccation-, Ultraviolet-B-Stress-Induced Modulations in the Expression of the Petunia Zinc Finger Transcription Factor Gene ZPT2-21

    PubMed Central

    van der Krol, Alexander R.; van Poecke, Remco M.P.; Vorst, Oscar F.J.; Voogt, Charlotte; van Leeuwen, Wessel; Borst-Vrensen, Tanja W.M.; Takatsuji, Hiroshi; van der Plas, Linus H.W.

    1999-01-01

    The ZPT2-2 gene belongs to the EPF gene family in petunia (Petunia hybrida), which encodes proteins with TFIIIA-type zinc-finger DNA-binding motifs. To elucidate a possible function for ZPT2-2, we analyzed its pattern of expression in relation to different developmental and physiological stress signals. The activity of the ZPT2-2 promoter was analyzed using a firefly luciferase (LUC) reporter gene, allowing for continuous measurements of transgene activity in planta. We show that ZPT2-2::LUC is active in all plant tissues, but is strongly modulated in cotyledons upon germination, in leaves in response to desiccation, cold treatment, wounding, or ultraviolet-B light, and in petal tissue in response to pollination of the stigma. Analysis of mRNA levels indicated that the modulations in ZPT2-2::LUC expression reflect modulations in endogenous ZPT2-2 gene expression. The change in ZPT2-2::LUC activity by cold treatment, wounding, desiccation, and ultraviolet-B light suggest that the phytohormones ethylene and jasmonic acid are involved in regulating the expression of ZPT2-2. Although up-regulation of expression of ZPT2-2 can be blocked by inhibitors of ethylene perception, expression in plants is not induced by exogenously applied ethylene. The application of jasmonic acid does result in an up-regulation of gene activity and, thus, ZPT2-2 may play a role in the realization of the jasmonic acid hormonal responses in petunia. PMID:10594102

  4. Insulators to improve expression of a 3(')IgH LCR-driven reporter gene in transgenic mouse models.

    PubMed

    Guglielmi, Laurence; Le Bert, Marc; Truffinet, Véronique; Cogné, Michel; Denizot, Yves

    2003-08-01

    A locus control region (LCR) containing four transcriptional enhancers lies downstream of the IgH chain locus. We studied transgenes carrying a 3(')IgH LCR-driven GFP reporter gene for expression and B cell differentiation stage specificity. We also compared transgenes that were or were not flanked by two copies of the beta-globin HS4 insulator, an element defined by its ability to protect transgenes from the influences of surrounding genes at the insertion site. Results indicate that insulators are instrumental in sustaining GFP expression in GFP-3(')LCR transgenic mice when they were included. Flow cytometry experiments reported a strictly B cell specific GFP expression from pre-B cells in bone marrow to mature B cells in spleen. Despite addition of 5(')HS4 insulators to the GFP-3(')LCR construct, complete transgene silencing occurred in some transgenic lines and was systematically observed in ageing animals from all lines.

  5. RNAi-Mediated Knockdown of IKK1 in Transgenic Mice Using a Transgenic Construct Containing the Human H1 Promoter

    PubMed Central

    Moreno-Maldonado, Rodolfo; Murillas, Rodolfo; Page, Angustias; Suarez-Cabrera, Cristian; Alameda, Josefa P.; Bravo, Ana; Casanova, M. Llanos

    2014-01-01

    Inhibition of gene expression through siRNAs is a tool increasingly used for the study of gene function in model systems, including transgenic mice. To achieve perdurable effects, the stable expression of siRNAs by an integrated transgenic construct is necessary. For transgenic siRNA expression, promoters transcribed by either RNApol II or III (such as U6 or H1 promoters) can be used. Relatively large amounts of small RNAs synthesis are achieved when using RNApol III promoters, which can be advantageous in knockdown experiments. To study the feasibility of H1 promoter-driven RNAi-expressing constructs for protein knockdown in transgenic mice, we chose IKK1 as the target gene. Our results indicate that constructs containing the H1 promoter are sensitive to the presence of prokaryotic sequences and to transgene position effects, similar to RNApol II promoters-driven constructs. We observed variable expression levels of transgenic siRNA among different tissues and animals and a reduction of up to 80% in IKK1 expression. Furthermore, IKK1 knockdown led to hair follicle alterations. In summary, we show that constructs directed by the H1 promoter can be used for knockdown of genes of interest in different organs and for the generation of animal models complementary to knockout and overexpression models. PMID:24523631

  6. Quantitative analysis of lentiviral transgene expression in mice over seven generations.

    PubMed

    Wang, Yong; Song, Yong-tao; Liu, Qin; Liu, Cang'e; Wang, Lu-lu; Liu, Yu; Zhou, Xiao-yang; Wu, Jun; Wei, Hong

    2010-10-01

    Lentiviral transgenesis is now recognized as an extremely efficient and cost-effective method to produce transgenic animals. Transgenes delivered by lentiviral vectors exhibited inheritable expression in many species including those which are refractory to genetic modification such as non-human primates. However, epigenetic modification was frequently observed in lentiviral integrants, and transgene expression found to be inversely correlated with methylation density. Recent data showed that about one-third lentiviral integrants exhibited hypermethylation and low expression, but did not demonstrate whether those integrants with high expression could remain constant expression and hypomethylated during long term germline transmission. In this study, using lentiviral eGFP transgenic mice as the experimental animals, lentiviral eGFP expression levels and its integrant numbers in genome were quantitatively analyzed by fluorescent quantitative polymerase-chain reaction (FQ-PCR), using the house-keeping gene ribosomal protein S18 (Rps18) and the single copy gene fatty acid binding protein of the intestine (Fabpi) as the internal controls respectively. The methylation densities of the integrants were quantitatively analyzed by bisulfite sequencing. We found that the lentiviral integrants with high expression exhibited a relative constant expression level per integrant over at least seven generations. Besides, the individuals containing these integrants exhibited eGFP expression levels which were positively and almost linearly correlated with the integrant numbers in their genomes, suggesting that no remarkable position effect on transgene expression of the integrants analyzed was observed. In addition, over seven generations the methylation density of these integrants did not increase, but rather decreased remarkably, indicating that these high expressing integrants were not subjected to de novo methylation during at least seven generations of germline transmission. Taken together, these data suggested that transgenic lines with long term stable expression and no position effect can be established by lentiviral transgenesis.

  7. RcRR1, a Rosa canina type-A response regulator gene, is involved in cytokinin-modulated rhizoid organogenesis.

    PubMed

    Gao, Bin; Fan, Lusheng; Li, Xingxing; Yang, Huifang; Liu, Fengluan; Wang, Ling; Xi, Lin; Ma, Nan; Zhao, Liangjun

    2013-01-01

    In vitro, a new protocol of plant regeneration in rose was achieved via protocorm-like bodies (PLBs) induced from the root-like organs named rhizoids that developed from leaf explants. The development of rhizoids is a critical stage for efficient regeneration, which is triggered by exogenous auxin. However, the role of cytokinin in the control of organogenesis in rose is as yet uncharacterized. The aim of this study was to elucidate the molecular mechanism of cytokinin-modulated rhizoid formation in Rosa canina. Here, we found that cytokinin is a key regulator in the formation of rhizoids. Treatment with cytokinin reduced callus activity and significantly inhibited rhizoid formation in Rosa canina. We further isolated the full-length cDNA of a type-A response regulator gene of cytokinin signaling, RcRR1, from which the deduced amino acid sequence contained the conserved DDK motif. Gene expression analysis revealed that RcRR1 was differentially expressed during rhizoid formation and its expression level was rapidly up-regulated by cytokinin. In addition, the functionality of RcRR1 was tested in Arabidopsis. RcRR1 was found to be localized to the nucleus in GFP-RcRR1 transgenic plants and overexpression of RcRR1 resulted in increased primary root length and lateral root density. More importantly, RcRR1 overexpression transgenic plants also showed reduced sensitivity to cytokinin during root growth; auxin distribution and the expression of auxin efflux carriers PIN genes were altered in RcRR1 overexpression plants. Taken together, these results demonstrate that RcRR1 is a functional type-A response regulator which is involved in cytokinin-regulated rhizoid formation in Rosa canina.

  8. RcRR1, a Rosa canina Type-A Response Regulator Gene, Is Involved in Cytokinin-Modulated Rhizoid Organogenesis

    PubMed Central

    Li, Xingxing; Yang, Huifang; Liu, Fengluan; Wang, Ling; Xi, Lin; Ma, Nan; Zhao, Liangjun

    2013-01-01

    In vitro, a new protocol of plant regeneration in rose was achieved via protocorm-like bodies (PLBs) induced from the root-like organs named rhizoids that developed from leaf explants. The development of rhizoids is a critical stage for efficient regeneration, which is triggered by exogenous auxin. However, the role of cytokinin in the control of organogenesis in rose is as yet uncharacterized. The aim of this study was to elucidate the molecular mechanism of cytokinin-modulated rhizoid formation in Rosa canina. Here, we found that cytokinin is a key regulator in the formation of rhizoids. Treatment with cytokinin reduced callus activity and significantly inhibited rhizoid formation in Rosa canina. We further isolated the full-length cDNA of a type-A response regulator gene of cytokinin signaling, RcRR1, from which the deduced amino acid sequence contained the conserved DDK motif. Gene expression analysis revealed that RcRR1 was differentially expressed during rhizoid formation and its expression level was rapidly up-regulated by cytokinin. In addition, the functionality of RcRR1 was tested in Arabidopsis. RcRR1 was found to be localized to the nucleus in GFP-RcRR1 transgenic plants and overexpression of RcRR1 resulted in increased primary root length and lateral root density. More importantly, RcRR1 overexpression transgenic plants also showed reduced sensitivity to cytokinin during root growth; auxin distribution and the expression of auxin efflux carriers PIN genes were altered in RcRR1 overexpression plants. Taken together, these results demonstrate that RcRR1 is a functional type-A response regulator which is involved in cytokinin-regulated rhizoid formation in Rosa canina. PMID:24009713

  9. α2-containing GABAA receptors expressed in hippocampal region CA3 control fast network oscillations

    PubMed Central

    Heistek, Tim S; Ruiperez-Alonso, Marta; Timmerman, A Jaap; Brussaard, Arjen B; Mansvelder, Huibert D

    2013-01-01

    GABAA receptors are critically involved in hippocampal oscillations. GABAA receptor α1 and α2 subunits are differentially expressed throughout the hippocampal circuitry and thereby may have distinct contributions to oscillations. It is unknown which GABAA receptor α subunit controls hippocampal oscillations and where these receptors are expressed. To address these questions we used transgenic mice expressing GABAA receptor α1 and/or α2 subunits with point mutations (H101R) that render these receptors insensitive to allosteric modulation at the benzodiazepine binding site, and tested how increased or decreased function of α subunits affects hippocampal oscillations. Positive allosteric modulation by zolpidem prolonged decay kinetics of hippocampal GABAergic synaptic transmission and reduced the frequency of cholinergically induced oscillations. Allosteric modulation of GABAergic receptors in CA3 altered oscillation frequency in CA1, while modulation of GABA receptors in CA1 did not affect oscillations. In mice having a point mutation (H101R) at the GABAA receptor α2 subunit, zolpidem effects on cholinergically induced oscillations were strongly reduced compared to wild-type animals, while zolpidem modulation was still present in mice with the H101R mutation at the α1 subunit. Furthermore, genetic knockout of α2 subunits strongly reduced oscillations, whereas knockout of α1 subunits had no effect. Allosteric modulation of GABAergic receptors was strongly reduced in unitary connections between fast spiking interneurons and pyramidal neurons in CA3 of α2H101R mice, but not of α1H101R mice, suggesting that fast spiking interneuron to pyramidal neuron synapses in CA3 contain α2 subunits. These findings suggest that α2-containing GABAA receptors expressed in the CA3 region provide the inhibition that controls hippocampal rhythm during cholinergically induced oscillations. PMID:23109109

  10. Assessment of long-term transgene expression in barley: Ds-mediated delivery of bar results in robust, stable, and heritable expression

    USDA-ARS?s Scientific Manuscript database

    The utility of transgenic plants for both experimental and practical agronomic purposes is highly dependent on stable, predictable, and heritable expression of the introduced genes. This requirement is frequently unfulfilled, and transgenes are frequently subject to silencing. Studies of the charact...

  11. Production of heterozygous alpha 1,3-galactosyltransferase (GGTA1) knock-out transgenic miniature pigs expressing human CD39.

    PubMed

    Choi, Kimyung; Shim, Joohyun; Ko, Nayoung; Eom, Heejong; Kim, Jiho; Lee, Jeong-Woong; Jin, Dong-Il; Kim, Hyunil

    2017-04-01

    Production of transgenic pigs for use as xenotransplant donors is a solution to the severe shortage of human organs for transplantation. The first barrier to successful xenotransplantation is hyperacute rejection, a rapid, massive humoral immune response directed against the pig carbohydrate GGTA1 epitope. Platelet activation, adherence, and clumping, all major features of thrombotic microangiopathy, are inevitable results of immune-mediated transplant rejection. Human CD39 rapidly hydrolyzes ATP and ADP to AMP; AMP is hydrolyzed by ecto-5'-nucleotidase (CD73) to adenosine, an anti-thrombotic and cardiovascular protective mediator. In this study, we developed a vector-based strategy for ablation of GGTA1 function and concurrent expression of human CD39 (hCD39). An hCD39 expression cassette was constructed to target exon 4 of GGTA1. We established heterozygous GGTA1 knock-out cell lines expressing hCD39 from pig ear fibroblasts for somatic cell nuclear transfer (SCNT). We also described production of heterozygous GGTA1 knock-out piglets expressing hCD39 and analyzed expression and function of the transgene. Human CD39 was expressed in heart, kidney and aorta. Human CD39 knock-in heterozygous ear fibroblast from transgenic cloned pigs, but not in non-transgenic pig's cells. Expression of GGTA1 gene was lower in the knock-in heterozygous ear fibroblast from transgenic pigs compared to the non-transgenic pig's cell. The peripheral blood mononuclear cells (PBMC) from the transgenic pigs were more resistant to lysis by pooled complement-preserved normal human serum than that from wild type (WT) pig. Accordingly, GGTA1 mutated piglets expressing hCD39 will provide a new organ source for xenotransplantation research.

  12. Levels of Lycopene β-Cyclase 1 Modulate Carotenoid Gene Expression and Accumulation in Daucus carota

    PubMed Central

    Moreno, Juan Camilo; Pizarro, Lorena; Fuentes, Paulina; Handford, Michael; Cifuentes, Victor; Stange, Claudia

    2013-01-01

    Plant carotenoids are synthesized and accumulated in plastids through a highly regulated pathway. Lycopene β-cyclase (LCYB) is a key enzyme involved directly in the synthesis of α-carotene and β-carotene through the cyclization of lycopene. Carotenoids are produced in both carrot (Daucus carota) leaves and reserve roots, and high amounts of α-carotene and β-carotene accumulate in the latter. In some plant models, the presence of different isoforms of carotenogenic genes is associated with an organ-specific function. D. carota harbors two Lcyb genes, of which DcLcyb1 is expressed in leaves and storage roots during carrot development, correlating with an increase in carotenoid levels. In this work, we show that DcLCYB1 is localized in the plastid and that it is a functional enzyme, as demonstrated by heterologous complementation in Escherichia coli and over expression and post transcriptional gene silencing in carrot. Transgenic plants with higher or reduced levels of DcLcyb1 had incremented or reduced levels of chlorophyll, total carotenoids and β-carotene in leaves and in the storage roots, respectively. In addition, changes in the expression of DcLcyb1 are accompanied by a modulation in the expression of key endogenous carotenogenic genes. Our results indicate that DcLcyb1 does not possess an organ specific function and modulate carotenoid gene expression and accumulation in carrot leaves and storage roots. PMID:23555569

  13. Expression of phytoene synthase1 and carotene desaturase crtI genes result in an increase in the total carotenoids content in transgenic elite wheat (Triticum aestivum L.).

    PubMed

    Cong, Ling; Wang, Cheng; Chen, Ling; Liu, Huijuan; Yang, Guangxiao; He, Guangyuan

    2009-09-23

    Dietary micronutrient deficiencies, such as the lack of vitamin A, are a major source of morbidity and mortality worldwide. Carotenoids in food can function as provitamin A in humans, while grains of Chinese elite wheat cultivars generally have low carotenoid contents. To increase the carotenoid contents in common wheat endosperm, transgenic wheat has been generated by expressing the maize y1 gene encoding phytoene synthase driven by a endosperm-specific 1Dx5 promoter in the elite wheat (Triticum aestivum L.) variety EM12, together with the bacterial phytoene desaturase crtI gene from Erwinia uredovora under the constitutive CaMV 35S promoter control. A clear increase of the carotenoid content was detected in the endosperms of transgenic wheat that visually showed a light yellow color. The total carotenoids content was increased up to 10.8-fold as compared with the nontransgenic EM12 cultivar. To test whether the variability of total carotenoid content in different transgenic lines was due to differences in the transgene copy number or expression pattern, Southern hybridization and semiquantitative reverse transcriptase polymerase chain reaction analyses were curried out. The results showed that transgene copy numbers and transcript levels did not associate well with carotenoid contents. The expression patterns of endogenous carotenoid genes, such as the phytoene synthases and carotene desaturases, were also investigated in wild-type and transgenic wheat lines. No significant changes in expression levels of these genes were detected in the transgenic endosperms, indicating that the increase in carotenoid transgenic wheat endosperms resulted from the expression of transgenes.

  14. Phytodegradation of organophosphorus compounds by transgenic plants expressing a bacterial organophosphorus hydrolase.

    PubMed

    Wang, Xiaoxue; Wu, Ningfeng; Guo, Jun; Chu, Xiaoyu; Tian, Jian; Yao, Bin; Fan, Yunliu

    2008-01-18

    Organophosphorus (OP) compounds are widely used as pesticides in agriculture but cause broad-area environmental pollution. In this work, we have expressed a bacterial organophosphorus hydrolase (OPH) gene in tobacco plants. An assay of enzyme activity showed that transgenic plants could secrete OPH into the growth medium. The transgenic plants were resistant to methyl parathion (Mep), an OP pesticide, as evidenced by a toxicity test showing that the transgenic plants produced greater shoot and root biomass than did the wild-type plants. Furthermore, at 0.02% (v/v) Mep, the transgenic plants degraded more than 99% of Mep after 14 days of growth. Our work indicates that transgenic plants expressing an OPH gene may provide a new strategy for decontaminating OP pollutants.

  15. An Evolutionarily Conserved DOF-CONSTANS Module Controls Plant Photoperiodic Signaling1[OPEN

    PubMed Central

    2015-01-01

    The response to daylength is a crucial process that evolved very early in plant evolution, entitling the early green eukaryote to predict seasonal variability and attune its physiological responses to the environment. The photoperiod responses evolved into the complex signaling pathways that govern the angiosperm floral transition today. The Chlamydomonas reinhardtii DNA-Binding with One Finger (CrDOF) gene controls transcription in a photoperiod-dependent manner, and its misexpression influences algal growth and viability. In short days, CrDOF enhances CrCO expression, a homolog of plant CONSTANS (CO), by direct binding to its promoter, while it reduces the expression of cell division genes in long days independently of CrCO. In Arabidopsis (Arabidopsis thaliana), transgenic plants overexpressing CrDOF show floral delay and reduced expression of the photoperiodic genes CO and FLOWERING LOCUS T. The conservation of the DOF-CO module during plant evolution could be an important clue to understanding diversification by the inheritance of conserved gene toolkits in key developmental programs. PMID:25897001

  16. Cotton Ascorbate Oxidase Promotes Cell Growth in Cultured Tobacco Bright Yellow-2 Cells through Generation of Apoplast Oxidation

    PubMed Central

    Li, Rong; Xin, Shan; Tao, Chengcheng; Jin, Xiang; Li, Hongbin

    2017-01-01

    Ascorbate oxidase (AO) plays an important role in cell growth through the modulation of reduction/oxidation (redox) control of the apoplast. Here, a cotton (Gossypium hirsutum) apoplastic ascorbate oxidase gene (GhAO1) was obtained from fast elongating fiber tissues. GhAO1 belongs to the multicopper oxidase (MCO) family and includes a signal peptide and several transmembrane regions. Analyses of quantitative real-time polymerase chain reaction (QRT-PCR) and enzyme activity showed that GhAO1 was expressed abundantly in 15-day post-anthesis (dpa) wild-type (WT) fibers in comparison with fuzzless-lintless (fl) mutant ovules. Subcellular distribution analysis in onion cells demonstrated that GhAO1 is localized in the cell wall. In transgenic tobacco bright yellow-2 (BY-2) cells with ectopic overexpression of GhAO1, the enhancement of cell growth with 1.52-fold increase in length versus controls was indicated, as well as the enrichment of both total ascorbate in whole-cells and dehydroascorbate acid (DHA) in apoplasts. In addition, promoted activities of AO and monodehydroascorbate reductase (MDAR) in apoplasts and dehydroascorbate reductase (DHAR) in whole-cells were displayed in transgenic tobacco BY-2 cells. Accumulation of H2O2, and influenced expressions of Ca2+ channel genes with the activation of NtMPK9 and NtCPK5 and the suppression of NtTPC1B were also demonstrated in transgenic tobacco BY-2 cells. Finally, significant induced expression of the tobacco NtAO gene in WT BY-2 cells under indole-3-acetic acid (IAA) treatment appeared; however, the sensitivity of the NtAO gene expression to IAA disappeared in transgenic BY-2 cells, revealing that the regulated expression of the AO gene is under the control of IAA. Taken together, these results provide evidence that GhAO1 plays an important role in fiber cell elongation and may promote cell growth by generating the oxidation of apoplasts, via the auxin-mediated signaling pathway. PMID:28644407

  17. Amino Acids Regulate Transgene Expression in MDCK Cells

    PubMed Central

    Torrente, Marta; Guetg, Adriano; Sass, Jörn Oliver; Arps, Lisa; Ruckstuhl, Lisa; Camargo, Simone M. R.; Verrey, François

    2014-01-01

    Gene expression and cell growth rely on the intracellular concentration of amino acids, which in metazoans depends on extracellular amino acid availability and transmembrane transport. To investigate the impact of extracellular amino acid concentrations on the expression of a concentrative amino acid transporter, we overexpressed the main kidney proximal tubule luminal neutral amino acid transporter B0AT1-collectrin (SLC6A19-TMEM27) in MDCK cell epithelia. Exogenously expressed proteins co-localized at the luminal membrane and mediated neutral amino acid uptake. However, the transgenes were lost over few cell culture passages. In contrast, the expression of a control transgene remained stable. To test whether this loss was due to inappropriately high amino acid uptake, freshly transduced MDCK cell lines were cultivated either with physiological amounts of amino acids or with the high concentration found in standard cell culture media. Expression of exogenous transporters was unaffected by physiological amino acid concentration in the media. Interestingly, mycoplasma infection resulted in a significant increase in transgene expression and correlated with the rapid metabolism of L-arginine. However, L-arginine metabolites were shown to play no role in transgene expression. In contrast, activation of the GCN2 pathway revealed by an increase in eIF2α phosphorylation may trigger transgene derepression. Taken together, high extracellular amino acid concentration provided by cell culture media appears to inhibit the constitutive expression of concentrative amino acid transporters whereas L-arginine depletion by mycoplasma induces the expression of transgenes possibly via stimulation of the GCN2 pathway. PMID:24797296

  18. Characterization of fructose-bisphosphate aldolase regulated by gibberellin in roots of rice seedling.

    PubMed

    Konishi, Hirosato; Yamane, Hisakazu; Maeshima, Masayoshi; Komatsu, Setsuko

    2004-12-01

    Fructose-bisphosphate aldolase is a glycolytic enzyme whose activity increases in rice roots treated with gibberellin (GA). To investigate the relationship between aldolase and root growth, GA-induced root aldolase was characterized. GA3 promoted an increase in aldolase accumulation when 0.1 microM GA3 was added exogenously to rice roots. Aldolase accumulated abundantly in roots, especially in the apical region. To examine the effect of aldolase function on root growth, transgenic rice plants expressing antisense aldolase were constructed. Root growth of aldolase-antisense transgenic rice was repressed compared with that of the vector control transgenic rice. Although aldolase activity increased by 25% in vector control rice roots treated with 0.1 microM GA3, FBPA activity increased very little by 0.1 microM GA3 treatment in the root of aldolase-antisense transgenic rice. Furthermore, aldolase co-immunoprecipitated with antibodies against vacuolar H+ -ATPase in rice roots. In the root of OsCDPK13-antisense transgenic rice, aldolase did not accumulate even after treatment with GA3. These results suggest that the activation of glycolytic pathway function accelerates root growth and that GA3-induced root aldolase may be modulated through OsCDPK13. Aldolase physically associates with vacuolar H-ATPase in roots and may regulate the vacuolar H-ATPase mediated control of cell elongation that determines root length.

  19. The Sox2 promoter-driven CD63-GFP transgenic rat model allows tracking of neural stem cell-derived extracellular vesicles.

    PubMed

    Yoshimura, Aya; Adachi, Naoki; Matsuno, Hitomi; Kawamata, Masaki; Yoshioka, Yusuke; Kikuchi, Hisae; Odaka, Haruki; Numakawa, Tadahiro; Kunugi, Hiroshi; Ochiya, Takahiro; Tamai, Yoshitaka

    2018-01-30

    Extracellular vesicles (EVs) can modulate microenvironments by transferring biomolecules, including RNAs and proteins derived from releasing cells, to target cells. To understand the molecular mechanisms maintaining the neural stem cell (NSC) niche through EVs, a new transgenic (Tg) rat strain that can release human CD63-GFP-expressing EVs from the NSCs was established. Human CD63-GFP expression was controlled under the rat Sox2 promoter (Sox2/human CD63-GFP), and it was expressed in undifferentiated fetal brains. GFP signals were specifically observed in in vitro cultured NSCs obtained from embryonic brains of the Tg rats. We also demonstrated that embryonic NSC (eNSC)-derived EVs were labelled by human CD63-GFP. Furthermore, when we examined the transfer of EVs, eNSC-derived EVs were found to be incorporated into astrocytes and eNSCs, thus implying an EV-mediated communication between different cell types around NSCs. This new Sox2/human CD63-GFP Tg rat strain should provide resources to analyse the cell-to-cell communication via EVs in NSC microenvironments. © 2018. Published by The Company of Biologists Ltd.

  20. Cortical Spreading Depression Causes Unique Dysregulation of Inflammatory Pathways in a Transgenic Mouse Model of Migraine.

    PubMed

    Eising, Else; Shyti, Reinald; 't Hoen, Peter A C; Vijfhuizen, Lisanne S; Huisman, Sjoerd M H; Broos, Ludo A M; Mahfouz, Ahmed; Reinders, Marcel J T; Ferrari, Michel D; Tolner, Else A; de Vries, Boukje; van den Maagdenberg, Arn M J M

    2017-05-01

    Familial hemiplegic migraine type 1 (FHM1) is a rare monogenic subtype of migraine with aura caused by mutations in CACNA1A that encodes the α 1A subunit of voltage-gated Ca V 2.1 calcium channels. Transgenic knock-in mice that carry the human FHM1 R192Q missense mutation ('FHM1 R192Q mice') exhibit an increased susceptibility to cortical spreading depression (CSD), the mechanism underlying migraine aura. Here, we analysed gene expression profiles from isolated cortical tissue of FHM1 R192Q mice 24 h after experimentally induced CSD in order to identify molecular pathways affected by CSD. Gene expression profiles were generated using deep serial analysis of gene expression sequencing. Our data reveal a signature of inflammatory signalling upon CSD in the cortex of both mutant and wild-type mice. However, only in the brains of FHM1 R192Q mice specific genes are up-regulated in response to CSD that are implicated in interferon-related inflammatory signalling. Our findings show that CSD modulates inflammatory processes in both wild-type and mutant brains, but that an additional unique inflammatory signature becomes expressed after CSD in a relevant mouse model of migraine.

  1. Down-regulation of transmembrane carbonic anhydrases in renal cell carcinoma cell lines by wild-type von Hippel-Lindau transgenes

    PubMed Central

    Ivanov, Sergey V.; Kuzmin, Igor; Wei, Ming-Hui; Pack, Svetlana; Geil, Laura; Johnson, Bruce E.; Stanbridge, Eric J.; Lerman, Michael I.

    1998-01-01

    To discover genes involved in von Hippel-Lindau (VHL)-mediated carcinogenesis, we used renal cell carcinoma cell lines stably transfected with wild-type VHL-expressing transgenes. Large-scale RNA differential display technology applied to these cell lines identified several differentially expressed genes, including an alpha carbonic anhydrase gene, termed CA12. The deduced protein sequence was classified as a one-pass transmembrane CA possessing an apparently intact catalytic domain in the extracellular CA module. Reintroduced wild-type VHL strongly inhibited the overexpression of the CA12 gene in the parental renal cell carcinoma cell lines. Similar results were obtained with CA9, encoding another transmembrane CA with an intact catalytic domain. Although both domains of the VHL protein contribute to regulation of CA12 expression, the elongin binding domain alone could effectively regulate CA9 expression. We mapped CA12 and CA9 loci to chromosome bands 15q22 and 17q21.2 respectively, regions prone to amplification in some human cancers. Additional experiments are needed to define the role of CA IX and CA XII enzymes in the regulation of pH in the extracellular microenvironment and its potential impact on cancer cell growth. PMID:9770531

  2. Helper-dependent adenovirus achieve more efficient and persistent liver transgene expression in non-human primates under immunosuppression.

    PubMed

    Unzu, C; Melero, I; Hervás-Stubbs, S; Sampedro, A; Mancheño, U; Morales-Kastresana, A; Serrano-Mendioroz, I; de Salamanca, R E; Benito, A; Fontanellas, A

    2015-11-01

    Helper-dependent adenoviral (HDA) vectors constitute excellent gene therapy tools for metabolic liver diseases. We have previously shown that an HDA vector encoding human porphobilinogen deaminase (PBGD) corrects acute intermittent porphyria mice. Now, six non-human primates were injected in the left hepatic lobe with the PBGD-encoding HDA vector to study levels and persistence of transgene expression. Intrahepatic administration of 5 × 10(12) viral particles kg(-1) (10(10) infective units kg(-1)) of HDA only resulted in transient (≈14 weeks) transgene expression in one out of three individuals. In contrast, a more prolonged 90-day immunosuppressive regimen (tacrolimus, mycophenolate, rituximab and steroids) extended meaningful transgene expression for over 76 weeks in two out of two cases. Transgene expression under immunosuppression (IS) reached maximum levels 6 weeks after HDA administration and gradually declined reaching a stable plateau within the therapeutic range for acute porphyria. The non-injected liver lobes also expressed the transgene because of vector circulation. IS controlled anticapsid T-cell responses and decreased the induction of neutralizing antibodies. Re-administration of HDA-hPBGD at week +78 achieved therapeutically meaningful transgene expression only in those animals receiving IS again at the time of this second vector exposure. Overall, immunity against adenoviral capsids poses serious hurdles for long-term HDA-mediated liver transduction, which can be partially circumvented by pharmacological IS.

  3. ФC31 Integrase-Mediated Isolation and Characterization of Novel Safe Harbors for Transgene Expression in the Pig Genome

    PubMed Central

    Bi, Yanzhen; Hua, Zaidong; Ren, Hongyan; Zhang, Liping; Xiao, Hongwei; Liu, Ximei; Hua, Wenjun; Mei, Shuqi; Molenaar, Adrian; Laible, Götz; Zheng, Xinmin

    2018-01-01

    Programmable nucleases have allowed the rapid development of gene editing and transgenics, but the technology still suffers from the lack of predefined genetic loci for reliable transgene expression and maintenance. To address this issue, we used ФC31 integrase to navigate the porcine genome and identify the pseudo attP sites suitable as safe harbors for sustained transgene expression. The combined ФC31 integrase mRNA and an enhanced green fluorescence protein (EGFP) reporter donor were microinjected into one-cell zygotes for transgene integration. Among the resulting seven EGFP-positive piglets, two had transgene integrations at pseudo attP sites, located in an intergenic region of chromosome 1 (chr1-attP) and the 6th intron of the TRABD2A gene on chromosome 3 (chr3-attP), respectively. The integration structure was determined by TAIL-PCR and Southern blotting. Primary fibroblast cells were isolated from the two piglets and examined using fluorescence-activated cell sorting (FACS) and enzyme-linked immunosorbent assay (ELISA), which demonstrated that the chr1-attP site was more potent than chr3-attP site in supporting the EGFP expression. Both piglets had green feet under the emission of UV light, and pelleted primary fibroblast cells were green-colored under natural light, corroborating that the two pseudo attP sites are beneficial to transgene expression. The discovery of these two novel safe harbors for robust and durable transgene expression will greatly facilitate the use of transgenic pigs for basic, biomedical and agricultural studies and applications. PMID:29300364

  4. Biglycan Overexpression on Tooth Enamel Formation in Transgenic Mice

    PubMed Central

    Wen, Xin; Zou, YanMing; Luo, Wen; Goldberg, Michel; Moats, Rex; Conti, Peter S.; Snead, Malcolm L.; Paine, Michael L.

    2008-01-01

    Previously it was shown that the volume of forming enamel of molar teeth in biglycan-null mice was greater than in genetically matched wild-type mice. This phenotypic change appeared to result from an increase in amelogenin expression, implying that biglycan directly influences amelogenin synthesis. To determine whether biglycan over-expression resulted in decreased amelogenin expression, we engineered transgenic mice to over-express biglycan in the enamel organ epithelium. Biglycan over-expression did not significantly affect the amelogenin expression in incisor and molar teeth in 3-day transgenic mice. In the transgenic animals we observed that the immature and mature enamel appeared normal. These results suggested that increasing the biglycan expression, in the cells that synthesize the precursor protein matrix for enamel, has a negligible influence on amelogenesis. PMID:18727043

  5. Stringent and reproducible tetracycline-regulated transgene expression by site-specific insertion at chromosomal loci with pre-characterised induction characteristics

    PubMed Central

    Brough, Rachel; Papanastasiou, Antigoni M; Porter, Andrew CG

    2007-01-01

    Background The ability to regulate transgene expression has many applications, mostly concerning the analysis of gene function. Desirable induction characteristics, such as low un-induced expression, high induced expression and limited cellular heterogeneity, can be seriously impaired by chromosomal position effects at the site of transgene integration. Many clones may therefore need to be screened before one with optimal induction characteristics is identified. Furthermore, such screens must be repeated for each new transgene investigated, and comparisons between clones with different transgenes is complicated by their different integration sites. Results To circumvent these problems we have developed a "screen and insert" strategy in which clones carrying a transgene for a fluorescent reporter are first screened for those with optimal induction characteristics. Site-specific recombination (SSR) is then be used repeatedly to insert any new transgene at the reporter transgene locus of such clones so that optimal induction characteristics are conferred upon it. Here we have tested in a human fibrosarcoma cell line (HT1080) two of many possible implementations of this approach. Clones (e.g. Rht14-10) in which a GFP reporter gene is very stringently regulated by the tetracycline (tet) transactivator (tTA) protein were first identified flow-cytometrically. Transgenes encoding luciferase, I-SceI endonuclease or Rad52 were then inserted by SSR at a LoxP site adjacent to the GFP gene resulting stringent tet-regulated transgene expression. In clone Rht14-10, increases in expression from essentially background levels (+tet) to more than 104-fold above background (-tet) were reproducibly detected after Cre-mediated insertion of either the luciferase or the I-SceI transgenes. Conclusion Although previous methods have made use of SSR to integrate transgenes at defined sites, none has effectively combined this with a pre-selection step to identify integration sites that support optimal regulatory characteristics. Rht14-10 and similar HT1080-derived clones can now be used in conjunction with a convenient delivery vector (pIN2-neoMCS), in a simple 3-step protocol leading to stringent and reproducible transgene regulation. This approach will be particularly useful for transgenes whose products are very active at low concentrations and/or for comparisons of multiple related transgenes. PMID:17493262

  6. Identification of Secretory Odontoblasts Using DMP1-GFP Transgenic Mice

    PubMed Central

    Balic, Anamaria; Mina, Mina

    2011-01-01

    Terminal differentiation of odontoblasts from dental papilla is a long process involving several intermediate steps and changes in the transcriptional profile and expression of proteins secreted by cells in the odontoblast lineage. Transgenic mouse lines in which GFP expression is under the control of tissue-and stage specific promoters have provided powerful experimental tools for identification and isolation of cells at specific stages of differentiation along a lineage. Our previous studies showed utilization of pOBCol3.6GFP and pOBCol2.3GFP animals for identification of odontoblasts at early and late stages of polarization respectively. In the present study we used the DMP1-GFP transgenic animal as an experimental model to examine its expression during the differentiation of odontoblasts from progenitor cells in vivo and in vitro. Our observations showed that DMP1-GFP transgene is first activated in secretory/functional odontoblasts engaged in secretion of predentin and then transiently expressed at high levels in newly differentiated odontoblasts. Expression of DMP1-GFP was down-regulated in highly differentiated odontoblasts. The temporal and spatial pattern of expression of DMP1-GFP transgene closely mimics the expression of endogenous DMP1. This transgenic animal will facilitate studies of gene expression and biological functions in secretory/functional odontoblasts. PMID:21172466

  7. Effects of growth hormone over-expression on reproduction in the common carp Cyprinus carpio L.

    PubMed

    Cao, Mengxi; Chen, Ji; Peng, Wei; Wang, Yaping; Liao, Lanjie; Li, Yongming; Trudeau, Vance L; Zhu, Zuoyan; Hu, Wei

    2014-01-01

    To study the complex interaction between growth and reproduction we have established lines of transgenic common carp (Cyprinus carpio) carrying a grass carp (Ctenopharyngodon idellus) growth hormone (GH) transgene. The GH-transgenic fish showed delayed gonadal development compared with non-transgenic common carp. To gain a better understanding of the phenomenon, we studied body growth, gonad development, changes of reproduction related genes and hormones of GH-transgenic common carp for 2years. Over-expression of GH elevated peripheral gh transcription, serum GH levels, and inhibited endogenous GH expression in the pituitary. Hormone analyses indicated that GH-transgenic common carp had reduced pituitary and serum level of luteinizing hormone (LH). Among the tested genes, pituitary lhβ was inhibited in GH-transgenic fish. Further analyses in vitro showed that GH inhibited lhβ expression. Localization of ghr with LH indicates the possibility of direct regulation of GH on gonadotrophs. We also found that GH-transgenic common carp had reduced pituitary sensitivity to stimulation by co-treatments with a salmon gonadotropin-releasing hormone (GnRH) agonist and a dopamine antagonist. Together these results suggest that the main cause of delayed reproductive development in GH transgenic common carp is reduced LH production and release. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Co-expression of NCED and ALO improves vitamin C level and tolerance to drought and chilling in transgenic tobacco and stylo plants.

    PubMed

    Bao, Gegen; Zhuo, Chunliu; Qian, Chunmei; Xiao, Ting; Guo, Zhenfei; Lu, Shaoyun

    2016-01-01

    Abscisic acid (ABA) regulates plant adaptive responses to various environmental stresses, while L-ascorbic acid (AsA) that is also named vitamin C is an important antioxidant and involves in plant stress tolerance and the immune system in domestic animals. Transgenic tobacco (Nicotiana tabacum L.) and stylo [Stylosanthes guianensis (Aublet) Swartz], a forage legume, plants co-expressing stylo 9-cis-epoxycarotenoid dioxygenase (SgNCED1) and yeast D-arabinono-1,4-lactone oxidase (ALO) genes were generated in this study, and tolerance to drought and chilling was analysed in comparison with transgenic tobacco overexpressing SgNCED1 or ALO and the wild-type plants. Compared to the SgNCED1 or ALO transgenic plants, in which only ABA or AsA levels were increased, both ABA and AsA levels were increased in transgenic tobacco and stylo plants co-expressing SgNCED1 and ALO genes. Compared to the wild type, an enhanced drought tolerance was observed in SgNCED1 transgenic tobacco plants with induced expression of drought-responsive genes, but not in ALO plants, while an enhanced chilling tolerance was observed in ALO transgenic tobaccos with induced expression of cold-responsive genes, but not in SgNCED1 plants. Co-expression of SgNCED1 and ALO genes resulted in elevated tolerance to both drought and chilling in transgenic tobacco and stylo plants with induced expression of both drought and cold-responsive genes. Our result suggests that co-expression of SgNCED1 and ALO genes is an effective way for use in forage plant improvement for increased tolerance to drought and chilling and nutrition quality. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Rational design of aptazyme riboswitches for efficient control of gene expression in mammalian cells

    PubMed Central

    Zhong, Guocai; Wang, Haimin; Bailey, Charles C; Gao, Guangping; Farzan, Michael

    2016-01-01

    Efforts to control mammalian gene expression with ligand-responsive riboswitches have been hindered by lack of a general method for generating efficient switches in mammalian systems. Here we describe a rational-design approach that enables rapid development of efficient cis-acting aptazyme riboswitches. We identified communication-module characteristics associated with aptazyme functionality through analysis of a 32-aptazyme test panel. We then developed a scoring system that predicts an aptazymes’s activity by integrating three characteristics of communication-module bases: hydrogen bonding, base stacking, and distance to the enzymatic core. We validated the power and generality of this approach by designing aptazymes responsive to three distinct ligands, each with markedly wider dynamic ranges than any previously reported. These aptayzmes efficiently regulated adeno-associated virus (AAV)-vectored transgene expression in cultured mammalian cells and mice, highlighting one application of these broadly usable regulatory switches. Our approach enables efficient, protein-independent control of gene expression by a range of small molecules. DOI: http://dx.doi.org/10.7554/eLife.18858.001 PMID:27805569

  10. Transgenic expression of phytase in wheat endosperm increases bioavailability of iron and zinc in grains.

    PubMed

    Abid, Nabeela; Khatoon, Asia; Maqbool, Asma; Irfan, Muhammad; Bashir, Aftab; Asif, Irsa; Shahid, Muhammad; Saeed, Asma; Brinch-Pedersen, Henrik; Malik, Kauser A

    2017-02-01

    Phytate is a major constituent of wheat seeds and chelates metal ions, thus reducing their bioavailability and so the nutritional value of grains. Transgenic plants expressing heterologous phytase are expected to enhance degradation of phytic acid stored in seeds and are proposed to increase the in vitro bioavailability of mineral nutrients. Wheat transgenic plants expressing Aspergillus japonicus phytase gene (phyA) in wheat endosperm were developed till T 3 generation. The transgenic lines exhibited 18-99 % increase in phytase activity and 12-76 % reduction of phytic acid content in seeds. The minimum phytic acid content was observed in chapatti (Asian bread) as compared to flour and dough. The transcript profiling of phyA mRNA indicated twofold to ninefold higher expression as compared to non transgenic controls. There was no significant difference in grain nutrient composition of transgenic and non-transgenic seeds. In vitro bioavailability assay for iron and zinc in dough and chapatti of transgenic lines revealed a significant increase in iron and zinc contents. The development of nutritionally enhanced cereals is a step forward to combat nutrition deficiency for iron and zinc in malnourished human population, especially women and children.

  11. PICALM modulates autophagy activity and tau accumulation

    PubMed Central

    Moreau, Kevin; Fleming, Angeleen; Imarisio, Sara; Lopez Ramirez, Ana; Mercer, Jacob L.; Jimenez-Sanchez, Maria; Bento, Carla F.; Puri, Claudia; Zavodszky, Eszter; Siddiqi, Farah; Lavau, Catherine P.; Betton, Maureen; O’Kane, Cahir J.; Wechsler, Daniel S.; Rubinsztein, David C.

    2014-01-01

    Genome-wide association studies have identified several loci associated with Alzheimer’s disease (AD), including proteins involved in endocytic trafficking such as PICALM/CALM (phosphatidylinositol binding clathrin assembly protein). It is unclear how these loci may contribute to AD pathology. Here we show that CALM modulates autophagy and alters clearance of tau, a protein which is a known autophagy substrate and which is causatively linked to AD, both in vitro and in vivo. Furthermore, altered CALM expression exacerbates tau-mediated toxicity in zebrafish transgenic models. CALM influences autophagy by regulating the endocytosis of SNAREs, such as VAMP2, VAMP3 and VAMP8, which have diverse effects on different stages of the autophagy pathway, from autophagosome formation to autophagosome degradation. This study suggests that the AD genetic risk factor CALM modulates autophagy, and this may affect disease in a number of ways including modulation of tau turnover. PMID:25241929

  12. Age and lesion-induced increases of GDNF transgene expression in brain following intracerebral injections of DNA nanoparticles.

    PubMed

    Yurek, D M; Hasselrot, U; Cass, W A; Sesenoglu-Laird, O; Padegimas, L; Cooper, M J

    2015-01-22

    In previous studies that used compacted DNA nanoparticles (DNP) to transfect cells in the brain, we observed higher transgene expression in the denervated striatum when compared to transgene expression in the intact striatum. We also observed that long-term transgene expression occurred in astrocytes as well as neurons. Based on these findings, we hypothesized that the higher transgene expression observed in the denervated striatum may be a function of increased gliosis. Several aging studies have also reported an increase of gliosis as a function of normal aging. In this study we used DNPs that encoded for human glial cell line-derived neurotrophic factor (hGDNF) and either a non-specific human polyubiquitin C (UbC) or an astrocyte-specific human glial fibrillary acidic protein (GFAP) promoter. The DNPs were injected intracerebrally into the denervated or intact striatum of young, middle-aged or aged rats, and glial cell line-derived neurotrophic factor (GDNF) transgene expression was subsequently quantified in brain tissue samples. The results of our studies confirmed our earlier finding that transgene expression was higher in the denervated striatum when compared to intact striatum for DNPs incorporating either promoter. In addition, we observed significantly higher transgene expression in the denervated striatum of old rats when compared to young rats following injections of both types of DNPs. Stereological analysis of GFAP+ cells in the striatum confirmed an increase of GFAP+ cells in the denervated striatum when compared to the intact striatum and also an age-related increase; importantly, increases in GFAP+ cells closely matched the increases in GDNF transgene levels. Thus neurodegeneration and aging may lay a foundation that is actually beneficial for this particular type of gene therapy while other gene therapy techniques that target neurons are actually targeting cells that are decreasing as the disease progresses. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. MicroRNA858 Is a Potential Regulator of Phenylpropanoid Pathway and Plant Development1

    PubMed Central

    Sharma, Deepika; Tiwari, Manish; Pandey, Ashutosh; Bhatia, Chitra; Sharma, Ashish; Trivedi, Prabodh Kumar

    2016-01-01

    MicroRNAs (miRNAs) are endogenous, noncoding small RNAs that function as critical regulators of gene expression. In plants, miRNAs have shown their potential as regulators of growth, development, signal transduction, and stress tolerance. Although the miRNA-mediated regulation of several processes is known, the involvement of miRNAs in regulating secondary plant product biosynthesis is poorly understood. In this study, we functionally characterized Arabidopsis (Arabidopsis thaliana) miR858a, which putatively targets R2R3-MYB transcription factors involved in flavonoid biosynthesis. Overexpression of miR858a in Arabidopsis led to the down-regulation of several MYB transcription factors regulating flavonoid biosynthesis. In contrast to the robust growth and early flowering of miR858OX plants, reduction of plant growth and delayed flowering were observed in Arabidopsis transgenic lines expressing an artificial miRNA target mimic (MIM858). Genome-wide expression analysis using transgenic lines suggested that miR858a targets a number of regulatory factors that modulate the expression of downstream genes involved in plant development and hormonal and stress responses. Furthermore, higher expression of MYBs in MIM858 lines leads to redirection of the metabolic flux towards the synthesis of flavonoids at the cost of lignin synthesis. Altogether, our study has established the potential role of light-regulated miR858a in flavonoid biosynthesis and plant growth and development. PMID:27208307

  14. Positive feedback regulation of a Lycium chinense-derived VDE gene by drought-induced endogenous ABA, and over-expression of this VDE gene improve drought-induced photo-damage in Arabidopsis.

    PubMed

    Guan, Chunfeng; Ji, Jing; Zhang, Xuqiang; Li, Xiaozhou; Jin, Chao; Guan, Wenzhu; Wang, Gang

    2015-03-01

    Violaxanthin de-epoxidase (VDE) plays an important role in protecting the photosynthetic apparatus from photo-damage by dissipating excessively absorbed light energy as heat, via the conversion of violaxanthin (V) to intermediate product antheraxanthin (A) and final product zeaxanthin (Z) under light stress. We have cloned a VDE gene (LcVDE) from Lycium chinense, a deciduous woody perennial halophyte, which can grow in a large variety of soil types. The amino acid sequence of LcVDE has high homology with VDEs in other plants. Under drought stress, relative expression of LcVDE and the de-epoxidation ratio (Z+0.5A)/(V+A+Z) increased rapidly, and non-photochemical quenching (NPQ) also rose. Interestingly, these elevations induced by drought stress were reduced by the topical administration of abamine SG, a potent ABA inhibitor via inhibition of NCED in the ABA synthesis pathway. Until now, little has been done to explore the relationship between endogenous ABA and the expression of VDE genes. Since V serves as a common precursor for ABA, these data support the possible involvement of endogenous ABA in the positive feedback regulation of LcVDE gene expression in L. chinense under drought stress. Moreover, the LcVDE may be involved in modulating the level of photosynthesis damage caused by drought stress. Furthermore, the ratio of (Z+0.5A)/(V+A+Z) and NPQ increased more in transgenic Arabidopsis over-expressing LcVDE gene than the wild types under drought stress. The maximum quantum yield of primary photochemistry of PSII (Fv/Fm) in transgenic Arabidopsis decreased more slowly during the stressed period than that in wild types under the same conditions. Furthermore, transgenic Arabidopsis over-expressing LcVDE showed increased tolerance to drought stress. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Complex genomic rearrangement in CCS-LacZ transgenic mice.

    PubMed

    Stroud, Dina Myers; Darrow, Bruce J; Kim, Sang Do; Zhang, Jie; Jongbloed, Monique R M; Rentschler, Stacey; Moskowitz, Ivan P G; Seidman, Jonathan; Fishman, Glenn I

    2007-02-01

    The cardiac conduction system (CCS)-lacZ insertional mouse mutant strain genetically labels the developing and mature CCS. This pattern of expression is presumed to reflect the site of transgene integration rather than regulatory elements within the transgene proper. We sought to characterize the genomic structure of the integration locus and identify nearby gene(s) that might potentially confer the observed CCS-specific transcription. We found rearrangement of chromosome 7 between regions D1 and E1 with altered transcription of multiple genes in the D1 region. Several lines of evidence suggested that regulatory elements from at least one gene, Slco3A1, influenced CCS-restricted reporter gene expression. In embryonic hearts, Slco3A1 was expressed in a spatial pattern similar to the CCS-lacZ transgene and was similarly neuregulin-responsive. At later stages, however, expression patterns of the transgene and Slco3A1 diverged, suggesting that the Slco3A1 locus may be necessary, but not sufficient to confer CCS-specific transgene expression in the CCS-lacZ line. (c) 2007 Wiley-Liss, Inc.

  16. Production of recombinant albumin by a herd of cloned transgenic cattle.

    PubMed

    Echelard, Yann; Williams, Jennifer L; Destrempes, Margaret M; Koster, Julie A; Overton, Susan A; Pollock, Daniel P; Rapiejko, Karen T; Behboodi, Esmail; Masiello, Nicholas C; Gavin, William G; Pommer, Jerry; Van Patten, Scott M; Faber, David C; Cibelli, Jose B; Meade, Harry M

    2009-06-01

    Purified plasma derived human albumin has been available as a therapeutic product since World War II. However, cost effective recombinant production of albumin has been challenging due to the amount needed and the complex folding pattern of the protein. In an effort to provide an abundant source of recombinant albumin, a herd of transgenic cows expressing high levels of rhA in their milk was generated. Expression cassettes efficiently targeting the secretion of human albumin to the lactating mammary gland were obtained and tested in transgenic mice. A high expressing transgene was transfected in primary bovine cell lines to produce karyoplasts for use in a somatic cell nuclear transfer program. Founder transgenic cows were produced from four independent cell lines. Expression levels varying from 1-2 g/l to more than 40 g/l of correctly folded albumin were observed. The animals expressing the highest levels of rhA exhibited shortened lactation whereas cows yielding 1-2 g/l had normal milk production. This herd of transgenic cattle is an easily scalable and well characterized source of rhA for biomedical uses.

  17. KLF4-dependent epigenetic remodeling modulates podocyte phenotypes and attenuates proteinuria

    PubMed Central

    Hayashi, Kaori; Sasamura, Hiroyuki; Nakamura, Mari; Azegami, Tatsuhiko; Oguchi, Hideyo; Sakamaki, Yusuke; Itoh, Hiroshi

    2014-01-01

    The transcription factor Kruppel-like factor 4 (KLF4) has the ability, along with other factors, to reprogram somatic cells into induced pluripotent stem (iPS) cells. Here, we determined that KLF4 is expressed in kidney glomerular podocytes and is decreased in both animal models and humans exhibiting a proteinuric. Transient restoration of KLF4 expression in podocytes of diseased glomeruli in vivo, either by gene transfer or transgenic expression, resulted in a sustained increase in nephrin expression and a decrease in albuminuria. In mice harboring podocyte-specific deletion of Klf4, adriamycin-induced proteinuria was substantially exacerbated, although these animals displayed minimal phenotypical changes prior to adriamycin administration. KLF4 overexpression in cultured human podocytes increased expression of nephrin and other epithelial markers and reduced mesenchymal gene expression. DNA methylation profiling and bisulfite genomic sequencing revealed that KLF4 expression reduced methylation at the nephrin promoter and the promoters of other epithelial markers; however, methylation was increased at the promoters of genes encoding mesenchymal markers, suggesting selective epigenetic regulation of podocyte gene expression. Together, these results suggest that KLF4 epigenetically modulates podocyte phenotype and function and that the podocyte epigenome can be targeted for direct intervention and reduction of proteinuria. PMID:24812666

  18. GENETIC MODIFICATION OF GIBBERELLIC ACID SIGNALING TO PROMOTE CARBON SEQUESTRATION IN TREE ROOTS AND STEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busov, Victor

    Semidwarfism has been used extensively in row crops and horticulture to promote yield, reduce lodging, and improve harvest index, and it might have similar benefits for trees for short-rotation forestry or energy plantations, reclamation, phytoremediation, or other applications. We studied the effects of the dominant semidwarfism transgenes GA Insensitive (GAI) and Repressor of GAI-Like, which affect gibberellin (GA) action, and the GA catabolic gene, GA 2-oxidase, in nursery beds and in 2-year-old high-density stands of hybrid poplar (Populus tremula - Populus alba). Twenty-nine traits were analyzed, including measures of growth, morphology, and physiology. Endogenous GA levels were modified in mostmore » transgenic events; GA(20) and GA(8), in particular, had strong inverse associations with tree height. Nearly all measured traits varied significantly among genotypes, and several traits interacted with planting density, including aboveground biomass, root-shoot ratio, root fraction, branch angle, and crown depth. Semidwarfism promoted biomass allocation to roots over shoots and substantially increased rooting efficiency with most genes tested. The increased root proportion and increased leaf chlorophyll levels were associated with changes in leaf carbon isotope discrimination, indicating altered water use efficiency. Semidwarf trees had dramatically reduced growth when in direct competition with wild-type trees, supporting the hypothesis that semidwarfism genes could be effective tools to mitigate the spread of exotic, hybrid, and transgenic plants in wild and feral populations. We modified gibberellin (GA) metabolism and signaling in transgenic poplars using dominant transgenes and studied their effects for 3 years under field conditions. The transgenes that we employed either reduced the bioactive GAs, or attenuated their signaling. The majority of transgenic trees had significant and in many cases dramatic changes in height, crown architecture, foliage morphology, flowering onset, floral structure, and vegetative phenology. Most transgenes elicited various levels of height reduction consistent with the roles of GA in elongation growth. Several other growth traits were proportionally reduced, including branch length, internode distance, and leaf length. In contrast to elongation growth, stem diameter growth was much less affected, suggesting that semi-dwarf trees in dense stands might provide high levels of biomass production and carbon sequestration. The severity of phenotypic effects was strongly correlated with transgene expression among independent transgenic events, but often in a non-linear manner, the form of which varied widely among constructs. The majority of semi-dwarfed, transgenic plants showed delayed bud flush and early bud set, and expression of a native GAI transgene accelerated first time flowering in the field. All of the phenotypic changes observed in multiple years were stable over the 3 years of field study. Our results suggest that transgenic modification of GA action may be useful for producing semi-dwarf trees with modified growth and morphology for horticulture and other uses. We studied the poplar C(19) gibberellin 2-oxidase (GA2ox) gene subfamily. We show that a set of paralogous gene pairs differentially regulate shoot and root development. ? PtGA2ox4 and its paralogous gene PtGA2ox5 are primarily expressed in aerial organs, and overexpression of PtGA2ox5 produced a strong dwarfing phenotype characteristic of GA deficiency. Suppression of PtGA2ox4 and PtGA2ox5 led to increased biomass growth, but had no effect on root development. By contrast, the PtGA2ox2 and PtGA2ox7 paralogous pair was predominantly expressed in roots, and when these two genes were RNAi-suppressed it led to a decrease of root biomass. ? The morphological changes in the transgenic plants were underpinned by tissue-specific increases in bioactive GAs that corresponded to the predominant native expression of the targeted paralogous gene pair. Although RNAi suppression of both paralogous pairs led to changes in wood development, they were much greater in the transgenics with suppressed PtGA2ox4 and PtGA2ox5. The degree of gene suppression in independent events was strongly associated with phenotypes, demonstrating dose-dependent control of growth by GA2ox RNA concentrations. ? The expression and transgenic modifications reported here show that shoot- and leaf-expressed PtGA2ox4 and PtGA2ox5 specifically restrain aerial shoot growth, while root-expressed PtGA2ox2 and PtGA2ox7 promote root development. Genes controlling plant growth and form are of considerable interest, because they affect survival and productivity traits, and are largely unknown or poorly characterized. The SHORT INTERNODES(SHI) gene is one of a 10-member SHI-RELATED SEQUENCE (SRS) gene family in Arabidopsis that includes important developmental regulators. ? Using comparative sequence analysis of the SRS gene families in poplar and Arabidopsis, we identified two poplar proteins that are most similar to SHI and its closely related gene STYLISH1 (STY1). The two poplar genes are very similar in sequence and expression and are therefore probably paralogs with redundant functions. ? RNAi suppression of the two Populus genes enhanced shoot and root growth, whereas the overexpression of Arabidopsis SHI in poplar reduced internode and petiole length. The suppression of the two genes increased fiber length and the proportion of xylem tissue, mainly through increased xylem cell proliferation. The transgenic modifications were also associated with significant changes in the concentrations of gibberellins and cytokinin. ? We conclude that Populus SHI-RELATED SEQUENCE (SRS) genes play an important role in the regulation of vegetative growth, including wood formation, and thus could be useful tools for the modification of biomass productivity, wood quality or plant form. We studied the effects on plant growth from insertion of five cisgenes that encode proteins involved in gibberellin metabolism or signalling. Intact genomic copies of PtGA20ox7, PtGA2ox2,Pt RGL1_1, PtRGL1_2 and PtGAI1 genes from the genome-sequenced Populus trichocarpa clone Nisqually-1 were transformed into Populus tremula - alba (clone INRA 717-1B4), and growth, morphology and xylem cell size characterized in the greenhouse. Each cisgene encompassed 1-2?kb of 5' and 1?kb of 3' flanking DNA, as well as all native exons and introns. Large numbers of independent insertion events per cisgene (19-38), including empty vector controls, were studied. Three of the cisgenic modifications had significant effects on plant growth rate, morphology or wood properties. The PtGA20ox7 cisgene increased rate of shoot regeneration in vitro, accelerated early growth, and variation in growth rate was correlated with PtGA20ox7 gene expression. PtRGL1_1 and PtGA2ox2 caused reduced growth, while PtRGL1_2 gave rise to plants that grew normally but had significantly longer xylem fibres. RT-PCR studies suggested that the lack of growth inhibition observed in PtRGL1_2 cisgenic plants was a result of co-suppression. PtGAI1 slowed regeneration rate and both PtGAI1 and PtGA20ox7 gave rise to increased variance among events for early diameter and volume index, respectively. Our work suggests that cisgenic insertion of additional copies of native genes involved in growth regulation may provide tools to help modify plant architecture, expand the genetic variance in plant architecture available to breeders and accelerate transfer of alleles between difficult-to-cross species. The role of gibberellins (GAs) in regulation of lateral root development is poorly understood. We show that GA-deficient (35S:PcGA2ox1) and GA-insensitive (35S:rgl1) transgenic Populus exhibited increased lateral root proliferation and elongation under in vitro and greenhouse conditions, and these effects were reversed by exogenous GA treatment. In addition, RNA interference suppression of two poplar GA 2-oxidases predominantly expressed in roots also decreased lateral root formation. GAs negatively affected lateral root formation by inhibiting lateral root primordium initiation. A whole-genome microarray analysis of root development in GA-modified transgenic plants revealed 2069 genes with significantly altered expression. The expression of 1178 genes, including genes that promote cell proliferation, growth, and cell wall loosening, corresponded to the phenotypic severity of the root traits when transgenic events with differential phenotypic expression were compared. The array data and direct hormone measurements suggested crosstalk of GA signaling with other hormone pathways, including auxin and abscisic acid. Transgenic modification of a differentially expressed gene encoding an auxin efflux carrier suggests that GA modulation of lateral root development is at least partly imparted by polar auxin transport modification. These results suggest a mechanism for GA-regulated modulation of lateral root proliferation associated with regulation of plant allometry during the stress response. Here we summarize progress in identification of three classes of genes useful for control of plant architecture: those affecting hormone metabolism and signaling; transcription and other regulatory factors; and the cell cycle. We focus on strong modifiers of stature and form that may be useful for directed modification of plant architecture, rather than the detailed mechanisms of gene action. Gibberellin (GA) metabolic and response genes are particularly attractive targets for manipulation because many act in a dose-dependent manner; similar phenotypic effects can be readily achieved in heterologous species; and induced pleiotropic effects--such as on nitrogen assimilation, photosynthesis, and lateral root production--are usually positive with respect to crop performance. Genes encoding transcription factors represent strong candidates for manipulation of plant architecture. For example, AINTEGUMENTA, ARGOS (auxin-regulated gene controlling organ size), and growth-regulating factors (GRFs) are strong modifiers of leaf and/or flower size. Plants overexpressing these genes had increased organ size and did not display negative pleiotropic effects in glasshouse environments. TCP-domain genes such as CINCINNATA, and the associated regulatory miRNAs such as miRJAW, may provide useful means to modulate leaf curvature and other foliage properties. There are considerable opportunities for comparative and translational genomics in nonmodel plant systems.« less

  19. The Role of AR- and VDR-Modulated miRNAs in Sensitization of Prostate Cancer Cells to Therapy

    DTIC Science & Technology

    2012-10-01

    detected elevated levels of the AR-V7 variant in VCaP xenografts after castration (109). Prostate epithelial markers, cytokeratin 8 and 18 , are expressed...OF: 17. LIMITATION OF ABSTRACT 18 . NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a. REPORT U b. ABSTRACT U c. THIS PAGE U...Author. 6) Gaupel AC1, Wang WLW1, Mordan-McCombs S, Lee ECY & Tenniswood M. Xenograft , transgenic and knockout models of prostate cancer. In: Conn

  20. AAV-Mediated Gene Transfer to Dorsal Root Ganglion.

    PubMed

    Yu, Hongwei; Fischer, Gregory; Hogan, Quinn H

    2016-01-01

    Transferring genetic molecules into the peripheral sensory nervous system to manipulate nociceptive pathophysiology is a powerful approach for experimental modulation of sensory signaling and potentially for translation into therapy for chronic pain. This can be efficiently achieved by the use of recombinant adeno-associated virus (rAAV) in conjunction with nociceptor-specific regulatory transgene cassettes. Among different routes of delivery, direct injection into the dorsal root ganglia (DRGs) offers the most efficient AAV-mediated gene transfer selectively into the peripheral sensory nervous system. Here, we briefly discuss the advantages and applications of intraganglionic microinjection, and then provide a detailed approach for DRG injection, including a list of the necessary materials and description of a method for performing DRG microinjection experiments. We also discuss our experience with several adeno-associated virus (AAV) options for in vivo transgene expression in DRG neurons.

  1. Simultaneous Expression of PDH45 with EPSPS Gene Improves Salinity and Herbicide Tolerance in Transgenic Tobacco Plants

    PubMed Central

    Garg, Bharti; Gill, Sarvajeet S.; Biswas, Dipul K.; Sahoo, Ranjan K.; Kunchge, Nandkumar S.; Tuteja, Renu; Tuteja, Narendra

    2017-01-01

    To cope with the problem of salinity- and weed-induced crop losses, a multi-stress tolerant trait is need of the hour but a combinatorial view of such traits is not yet explored. The overexpression of PDH45 (pea DNA helicase 45) and EPSPS (5-enoylpruvyl shikimate-3-phosphate synthase) genes have been reported to impart salinity and herbicide tolerance. Further, the understanding of mechanism and pathways utilized by PDH45 and EPSPS for salinity and herbicide tolerance will help to improve the crops of economical importance. In the present study, we have performed a comparative analysis of salinity and herbicide tolerance to check the biochemical parameters and antioxidant status of tobacco transgenic plants. Collectively, the results showed that PDH45 overexpressing transgenic lines display efficient tolerance to salinity stress, while PDH45+EPSPS transgenics showed tolerance to both the salinity and herbicide as compared to the control [wild type (WT) and vector control (VC)] plants. The activities of the components of enzymatic antioxidant machinery were observed to be higher in the transgenic plants indicating the presence of an efficient antioxidant defense system which helps to cope with the stress-induced oxidative-damages. Photosynthetic parameters also showed significant increase in PDH45 and PDH45+EPSPS overexpressing transgenic plants in comparison to WT, VC and EPSPS transgenic plants under salinity stress. Furthermore, PDH45 and PDH45+EPSPS synergistically modulate the jasmonic acid and salicylic acid mediated signaling pathways for combating salinity stress. The findings of our study suggest that pyramiding of the PDH45 gene with EPSPS gene renders host plants tolerant to salinity and herbicide by enhancing the antioxidant machinery thus photosynthesis. PMID:28392794

  2. Polycomb-group protein SlMSI1 represses the expression of fruit-ripening genes to prolong shelf life in tomato.

    PubMed

    Liu, Dan-Dan; Zhou, Li-Jie; Fang, Mou-Jing; Dong, Qing-Long; An, Xiu-Hong; You, Chun-Xiang; Hao, Yu-Jin

    2016-08-25

    Polycomb-group (PcG) protein MULTICOPY SUPPRESSOR OF IRA1 (MSI1) protein is an evolutionarily conserved developmental suppressor and plays a crucial role in regulating epigenetic modulations. However, the potential role and function of MSI1 in fleshy fruits remain unknown. In this study, SlMSI1 was cloned and transformed into tomato to explore its function. The quantitative real-time PCR results showed that SlMSI1 was highly expressed in flowers and fruits and that its transcript and protein levels were significantly decreased in fruits after the breaker stage. Additionally, SlMSI1-overexpressing transgenic tomatoes displayed abnormal non-ripening fruit formation, whereas its suppression promoted fruit ripening in transgenic tomatoes. Quantitative real-time PCR assays also showed that RIN and its regulons were decreased in SlMSI1 overexpression transgenic tomato fruits. Furthermore, RNA-seq analysis demonstrated that SlMSI1 inhibits fruit ripening by negatively regulating a large set of fruit-ripening genes in addition to RIN and its regulons. Finally, genetic manipulation of SlMSI1 and RIN successfully prolonged the fruit shelf life by regulating the fruit-ripening genes in tomato. Our findings reveal a novel regulatory function of SlMSI1 in fruit ripening and provide a new regulator that may be useful for genetic engineering and modification of fruit shelf life.

  3. Polycomb-group protein SlMSI1 represses the expression of fruit-ripening genes to prolong shelf life in tomato

    PubMed Central

    Liu, Dan-Dan; Zhou, Li-Jie; Fang, Mou-Jing; Dong, Qing-Long; An, Xiu-Hong; You, Chun-Xiang; Hao, Yu-Jin

    2016-01-01

    Polycomb-group (PcG) protein MULTICOPY SUPPRESSOR OF IRA1 (MSI1) protein is an evolutionarily conserved developmental suppressor and plays a crucial role in regulating epigenetic modulations. However, the potential role and function of MSI1 in fleshy fruits remain unknown. In this study, SlMSI1 was cloned and transformed into tomato to explore its function. The quantitative real-time PCR results showed that SlMSI1 was highly expressed in flowers and fruits and that its transcript and protein levels were significantly decreased in fruits after the breaker stage. Additionally, SlMSI1-overexpressing transgenic tomatoes displayed abnormal non-ripening fruit formation, whereas its suppression promoted fruit ripening in transgenic tomatoes. Quantitative real-time PCR assays also showed that RIN and its regulons were decreased in SlMSI1 overexpression transgenic tomato fruits. Furthermore, RNA-seq analysis demonstrated that SlMSI1 inhibits fruit ripening by negatively regulating a large set of fruit-ripening genes in addition to RIN and its regulons. Finally, genetic manipulation of SlMSI1 and RIN successfully prolonged the fruit shelf life by regulating the fruit-ripening genes in tomato. Our findings reveal a novel regulatory function of SlMSI1 in fruit ripening and provide a new regulator that may be useful for genetic engineering and modification of fruit shelf life. PMID:27558543

  4. Synthetic versions of firefly luciferase and Renilla luciferase reporter genes that resist transgene silencing in sugarcane

    PubMed Central

    2014-01-01

    Background Down-regulation or silencing of transgene expression can be a major hurdle to both molecular studies and biotechnology applications in many plant species. Sugarcane is particularly effective at silencing introduced transgenes, including reporter genes such as the firefly luciferase gene. Synthesizing transgene coding sequences optimized for usage in the host plant is one method of enhancing transgene expression and stability. Using specified design rules we have synthesised new coding sequences for both the firefly luciferase and Renilla luciferase reporter genes. We have tested these optimized versions for enhanced levels of luciferase activity and for increased steady state luciferase mRNA levels in sugarcane. Results The synthetic firefly luciferase (luc*) and Renilla luciferase (Renluc*) coding sequences have elevated G + C contents in line with sugarcane codon usage, but maintain 75% identity to the native firefly or Renilla luciferase nucleotide sequences and 100% identity to the protein coding sequences. Under the control of the maize pUbi promoter, the synthetic luc* and Renluc* genes yielded 60x and 15x higher luciferase activity respectively, over the native firefly and Renilla luciferase genes in transient assays on sugarcane suspension cell cultures. Using a novel transient assay in sugarcane suspension cells combining co-bombardment and qRT-PCR, we showed that synthetic luc* and Renluc* genes generate increased transcript levels compared to the native firefly and Renilla luciferase genes. In stable transgenic lines, the luc* transgene generated significantly higher levels of expression than the native firefly luciferase transgene. The fold difference in expression was highest in the youngest tissues. Conclusions We developed synthetic versions of both the firefly and Renilla luciferase reporter genes that resist transgene silencing in sugarcane. These transgenes will be particularly useful for evaluating the expression patterns conferred by existing and newly isolated promoters in sugarcane tissues. The strategies used to design the synthetic luciferase transgenes could be applied to other transgenes that are aggressively silenced in sugarcane. PMID:24708613

  5. Synthetic versions of firefly luciferase and Renilla luciferase reporter genes that resist transgene silencing in sugarcane.

    PubMed

    Chou, Ting-Chun; Moyle, Richard L

    2014-04-08

    Down-regulation or silencing of transgene expression can be a major hurdle to both molecular studies and biotechnology applications in many plant species. Sugarcane is particularly effective at silencing introduced transgenes, including reporter genes such as the firefly luciferase gene.Synthesizing transgene coding sequences optimized for usage in the host plant is one method of enhancing transgene expression and stability. Using specified design rules we have synthesised new coding sequences for both the firefly luciferase and Renilla luciferase reporter genes. We have tested these optimized versions for enhanced levels of luciferase activity and for increased steady state luciferase mRNA levels in sugarcane. The synthetic firefly luciferase (luc*) and Renilla luciferase (Renluc*) coding sequences have elevated G + C contents in line with sugarcane codon usage, but maintain 75% identity to the native firefly or Renilla luciferase nucleotide sequences and 100% identity to the protein coding sequences.Under the control of the maize pUbi promoter, the synthetic luc* and Renluc* genes yielded 60x and 15x higher luciferase activity respectively, over the native firefly and Renilla luciferase genes in transient assays on sugarcane suspension cell cultures.Using a novel transient assay in sugarcane suspension cells combining co-bombardment and qRT-PCR, we showed that synthetic luc* and Renluc* genes generate increased transcript levels compared to the native firefly and Renilla luciferase genes.In stable transgenic lines, the luc* transgene generated significantly higher levels of expression than the native firefly luciferase transgene. The fold difference in expression was highest in the youngest tissues. We developed synthetic versions of both the firefly and Renilla luciferase reporter genes that resist transgene silencing in sugarcane. These transgenes will be particularly useful for evaluating the expression patterns conferred by existing and newly isolated promoters in sugarcane tissues. The strategies used to design the synthetic luciferase transgenes could be applied to other transgenes that are aggressively silenced in sugarcane.

  6. Evaluation of Downstream Regulatory Element Antagonistic Modulator Gene in Human Multinodular Goiter

    PubMed Central

    Shinzato, Amanda; Lerario, Antonio M.; Lin, Chin J.; Danilovic, Debora S.; Marui, Suemi; Trarbach, Ericka B.

    2015-01-01

    Background DREAM (Downstream Regulatory Element Antagonistic Modulator) is a neuronal calcium sensor that was suggested to modulate TSH receptor activity and whose overexpression provokes an enlargement of the thyroid gland in transgenic mice. The aim of this study was to investigate somatic mutations and DREAM gene expression in human multinodular goiter (MNG). Material/Methods DNA and RNA samples were obtained from hyperplastic thyroid glands of 60 patients (54 females) with benign MNG. DREAM mutations were evaluated by PCR and direct automatic sequencing, whereas relative quantification of mRNA was performed by real-time PCR. Over- and under-expression were defined as a 2-fold increase and decrease in comparison to normal thyroid tissue, respectively. RQ M (relative quantification mean); SD (standard deviation). Results DREAM expression was detected in all nodules evaluated. DREAM mRNA was overexpressed in 31.7% of MNG (RQ M=6.26; SD=5.08), whereas 53.3% and 15% had either normal (RQ M=1.16; SD=0.46) or underexpression (RQ M=0.30; SD=0.10), respectively. Regarding DREAM mutations analysis, only previously described intronic polymorphisms were observed. Conclusions We report DREAM gene expression in the hyperplastic thyroid gland of MNG patients. However, DREAM expression did not vary significantly, and was somewhat underexpressed in most patients, suggesting that DREAM upregulation does not significantly affect nodular development in human goiter. PMID:26319784

  7. Ubiquitous LEA29Y Expression Blocks T Cell Co-Stimulation but Permits Sexual Reproduction in Genetically Modified Pigs.

    PubMed

    Bähr, Andrea; Käser, Tobias; Kemter, Elisabeth; Gerner, Wilhelm; Kurome, Mayuko; Baars, Wiebke; Herbach, Nadja; Witter, Kirsti; Wünsch, Annegret; Talker, Stephanie C; Kessler, Barbara; Nagashima, Hiroshi; Saalmüller, Armin; Schwinzer, Reinhard; Wolf, Eckhard; Klymiuk, Nikolai

    2016-01-01

    We have successfully established and characterized a genetically modified pig line with ubiquitous expression of LEA29Y, a human CTLA4-Ig derivate. LEA29Y binds human B7.1/CD80 and B7.2/CD86 with high affinity and is thus a potent inhibitor of T cell co-stimulation via this pathway. We have characterized the expression pattern and the biological function of the transgene as well as its impact on the porcine immune system and have evaluated the potential of these transgenic pigs to propagate via assisted breeding methods. The analysis of LEA29Y expression in serum and multiple organs of CAG-LEA transgenic pigs revealed that these animals produce a biologically active transgenic product at a considerable level. They present with an immune system affected by transgene expression, but can be maintained until sexual maturity and propagated by assisted reproduction techniques. Based on previous experience with pancreatic islets expressing LEA29Y, tissues from CAG-LEA29Y transgenic pigs should be protected against rejection by human T cells. Furthermore, their immune-compromised phenotype makes CAG-LEA29Y transgenic pigs an interesting large animal model for testing human cell therapies and will provide an important tool for further clarifying the LEA29Y mode of action.

  8. Reduced beta 2-microglobulin mRNA levels in transgenic mice expressing a designed hammerhead ribozyme.

    PubMed Central

    Larsson, S; Hotchkiss, G; Andäng, M; Nyholm, T; Inzunza, J; Jansson, I; Ahrlund-Richter, L

    1994-01-01

    We have generated three artificial hammerhead ribozymes, denoted 'Rz-b', 'Rz-c' and 'Rz-d', with different specificities for exon II of the mouse beta-2-microglobulin (beta 2M) mRNA. In this study we tested for ribozyme mediated reduction of beta 2M mRNA in a cell line and in transgenic mice. Transfections of either of the Rz-b, Rz-c or Rz-d plasmids into a mouse cell-line (NIH/3T3) revealed reductions of beta 2M mRNA substrate in each case. Ribozyme expression in individual transfected clones was accompanied with an up to 80% reduction of beta 2M mRNA levels. Rz-c was selected for a transgenic study. Seven Rz-c transgenic founder animals were identified from which three ribozyme expressing families were established and analysed. Expression of the ribozyme transgene was tested for and detected in lung, kidney and spleen. Expression was accompanied with reduction of the beta 2M mRNA levels of heterozygous (Rz+/-) animals compared to non-transgenic litter mates. The effect was most pronounced in lung with more than 90% beta 2M mRNA reduction in individual mice. In summary, expression of our ribozymes in a cell free system, in a cell-line and in transgenic mice were all accompanied with reductions of beta 2M mRNA levels. Images PMID:8036151

  9. Tissue-specific and hormonally regulated expression of a rat alpha 2u globulin gene in transgenic mice.

    PubMed Central

    Soares, V da C; Gubits, R M; Feigelson, P; Costantini, F

    1987-01-01

    To investigate the tissue-specific and hormonal regulation of the rat alpha 2u globulin gene family, we introduced one cloned member of the gene family into the mouse germ line and studied its expression in the resulting transgenic mice. Alpha 2u globulingene 207 was microinjected on a 7-kilobase DNA fragment, and four transgenic lines were analyzed. The transgene was expressed at very high levels, specifically in the liver and the preputial gland of adult male mice. The expression in male liver was first detected at puberty, and no expression was detected in female transgenic mice. This pattern of expression is similar to the expression of endogenous alpha 2u globulin genes in the rat but differs from the expression of the homologous mouse major urinary protein (MUP) gene family in that MUPs are synthesized in female liver and not in the male preputial gland. We conclude that these differences between rat alpha 2u globulin and mouse MUP gene expression are due to evolutionary differences in cis-acting regulatory elements. The expression of the alpha 2u globulin transgene in the liver was abolished by castration and fully restored after testosterone replacement. The expression could also be induced in the livers of female mice by treatment with either testosterone or dexamethasone, following ovariectomy and adrenalectomy. Therefore, the cis-acting elements responsible for regulation by these two hormones, as well as those responsible for tissue-specific expression, are closely linked to the alpha 2u globulin gene. Images PMID:2446121

  10. Expression of a maize Myb transcription factor driven by a putative silk-specific promoter significantly enhances resistance to Helicoverpa zea in transgenic maize.

    PubMed

    Johnson, Eric T; Berhow, Mark A; Dowd, Patrick F

    2007-04-18

    Hi II maize (Zea mays) plants were engineered to express maize p1 cDNA, a Myb transcription factor, controlled by a putative silk specific promoter, for secondary metabolite production and corn earworm resistance. Transgene expression did not enhance silk color, but about half of the transformed plant silks displayed browning when cut, which indicated the presence of p1-produced secondary metabolites. Levels of maysin, a secondary metabolite with insect toxicity, were highest in newly emerged browning silks. The insect resistance of transgenic silks was also highest at emergence, regardless of maysin levels, which suggests that other unidentified p1-induced molecules likely contributed to larval mortality. Mean survivor weights of corn earworm larvae fed mature browning transgenic silks were significantly lower than weights of those fed mature nonbrowning transgenic silks. Some transgenic pericarps browned with drying and contained similar molecules found in pericarps expressing a dominant p1 allele, suggesting that the promoter may not be silk-specific.

  11. Analyzing notochord segmentation and intervertebral disc formation using the twhh:gfp transgenic zebrafish model.

    PubMed

    Haga, Yutaka; Dominique, Vincent J; Du, Shao Jun

    2009-10-01

    To characterize the process of vertebral segmentation and disc formation in living animals, we analyzed tiggy-winkle hedgehog (twhh):green fluorescent protein (gfp) and sonic hedgehog (shh):gfp transgenic zebrafish models that display notochord-specific GFP expression. We found that they showed distinct patterns of expression in the intervertebral discs of late stage fish larvae and adult zebrafish. A segmented pattern of GFP expression was detected in the intervertebral disc of twhh:gfp transgenic fish. In contrast, little GFP expression was found in the intervertebral disc of shh:gfp transgenic fish. Treating twhh:gfp transgenic zebrafish larvae with exogenous retinoic acid (RA), a teratogenic factor on normal development, resulted in disruption of notochord segmentation and formation of oversized vertebrae. Histological analysis revealed that the oversized vertebrae are likely due to vertebral fusion. These studies demonstrate that the twhh:gfp transgenic zebrafish is a useful model for studying vertebral segmentation and disc formation, and moreover, that RA signaling may play a role in this process.

  12. Transgenic bovine as bioreactors: Challenges and perspectives

    PubMed Central

    Monzani, Paulo S.; Adona, Paulo R.; Ohashi, Otávio M.; Meirelles, Flávio V.; Wheeler, Matthew B.

    2016-01-01

    ABSTRACT The use of recombinant proteins has increased in diverse commercial sectors. Various systems for protein production have been used for the optimization of production and functional protein expression. The mammary gland is considered to be a very interesting system for the production of recombinant proteins due to its high level of expression and its ability to perform post-translational modifications. Cows produce large quantities of milk over a long period of lactation, and therefore this species is an important candidate for recombinant protein expression in milk. However, transgenic cows are more difficult to generate due to the inefficiency of transgenic methodologies, the long periods for transgene detection, recombinant protein expression and the fact that only a single calf is obtained at the end of each pregnancy. An increase in efficiency for transgenic methodologies for cattle is a big challenge to overcome. Promising methodologies have been proposed that can help to overcome this obstacle, enabling the use of transgenic cattle as bioreactors for protein production in milk for industry. PMID:27166649

  13. Fatty Acid Binding Protein 4 Regulates VEGF-Induced Airway Angiogenesis and Inflammation in a Transgenic Mouse Model

    PubMed Central

    Ghelfi, Elisa; Yu, Chen-Wei; Elmasri, Harun; Terwelp, Matthew; Lee, Chun G.; Bhandari, Vineet; Comhair, Suzy A.; Erzurum, Serpil C.; Hotamisligil, Gökhan S.; Elias, Jack A.; Cataltepe, Sule

    2014-01-01

    Neovascularization of the airways occurs in several inflammatory lung diseases, including asthma. Vascular endothelial growth factor (VEGF) plays an important role in vascular remodeling in the asthmatic airways. Fatty acid binding protein 4 (FABP4 or aP2) is an intracellular lipid chaperone that is induced by VEGF in endothelial cells. FABP4 exhibits a proangiogenic function in vitro, but whether it plays a role in modulation of angiogenesis in vivo is not known. We hypothesized that FABP4 promotes VEGF-induced airway angiogenesis and investigated this hypothesis with the use of a transgenic mouse model with inducible overexpression of VEGF165 under a CC10 promoter [VEGF-TG (transgenic) mice]. We found a significant increase in FABP4 mRNA levels and density of FABP4-expressing vascular endothelial cells in mouse airways with VEGF overexpression. FABP4−/− mouse airways showed a significant decrease in neovessel formation and endothelial cell proliferation in response to VEGF overexpression. These alterations in airway vasculature were accompanied by attenuated expression of proinflammatory mediators. Furthermore, VEGF-TG/FABP4−/− mice showed markedly decreased expression of endothelial nitric oxide synthase, a well-known mediator of VEGF-induced responses, compared with VEGF-TG mice. Finally, the density of FABP4-immunoreactive vessels in endobronchial biopsy specimens was significantly higher in patients with asthma than in control subjects. Taken together, these data unravel FABP4 as a potential target of pathologic airway remodeling in asthma. PMID:23391391

  14. Consumption of pasteurized human lysozyme transgenic goats’ milk alters serum metabolite profile in young pigs

    PubMed Central

    Brundige, Dottie R.; Maga, Elizabeth A.; Klasing, Kirk C.

    2009-01-01

    Nutrition, bacterial composition of the gastrointestinal tract, and general health status can all influence the metabolic profile of an organism. We previously demonstrated that feeding pasteurized transgenic goats’ milk expressing human lysozyme (hLZ) can positively impact intestinal morphology and modulate intestinal microbiota composition in young pigs. The objective of this study was to further examine the effect of consuming hLZ-containing milk on young pigs by profiling serum metabolites. Pigs were placed into two groups and fed a diet of solid food and either control (non-transgenic) goats’ milk or milk from hLZ-transgenic goats for 6 weeks. Serum samples were collected at the end of the feeding period and global metabolite profiling was performed. For a total of 225 metabolites (160 known, 65 unknown) semi-quantitative data was obtained. Levels of 18 known and 4 unknown metabolites differed significantly between the two groups with the direction of change in 13 of the 18 known metabolites being almost entirely congruent with improved health status, particularly in terms of the gastrointestinal tract health and immune response, with the effects of the other five being neutral or unknown. These results further support our hypothesis that consumption of hLZ-containing milk is beneficial to health. PMID:19847666

  15. Consumption of pasteurized human lysozyme transgenic goats' milk alters serum metabolite profile in young pigs.

    PubMed

    Brundige, Dottie R; Maga, Elizabeth A; Klasing, Kirk C; Murray, James D

    2010-08-01

    Nutrition, bacterial composition of the gastrointestinal tract, and general health status can all influence the metabolic profile of an organism. We previously demonstrated that feeding pasteurized transgenic goats' milk expressing human lysozyme (hLZ) can positively impact intestinal morphology and modulate intestinal microbiota composition in young pigs. The objective of this study was to further examine the effect of consuming hLZ-containing milk on young pigs by profiling serum metabolites. Pigs were placed into two groups and fed a diet of solid food and either control (non-transgenic) goats' milk or milk from hLZ-transgenic goats for 6 weeks. Serum samples were collected at the end of the feeding period and global metabolite profiling was performed. For a total of 225 metabolites (160 known, 65 unknown) semi-quantitative data was obtained. Levels of 18 known and 4 unknown metabolites differed significantly between the two groups with the direction of change in 13 of the 18 known metabolites being almost entirely congruent with improved health status, particularly in terms of the gastrointestinal tract health and immune response, with the effects of the other five being neutral or unknown. These results further support our hypothesis that consumption of hLZ-containing milk is beneficial to health.

  16. Transgenic APP expression during postnatal development causes persistent locomotor hyperactivity in the adult.

    PubMed

    Rodgers, Shaefali P; Born, Heather A; Das, Pritam; Jankowsky, Joanna L

    2012-06-18

    Transgenic mice expressing disease-associated proteins have become standard tools for studying human neurological disorders. Transgenes are often expressed using promoters chosen to drive continuous high-level expression throughout life rather than temporal and spatial fidelity to the endogenous gene. This approach has allowed us to recapitulate diseases of aging within the two-year lifespan of the laboratory mouse, but has the potential for creating aberrant phenotypes by mechanisms unrelated to the human disorder. We show that overexpression of the Alzheimer's-related amyloid precursor protein (APP) during early postnatal development leads to severe locomotor hyperactivity that can be significantly attenuated by delaying transgene onset until adulthood. Our data suggest that exposure to transgenic APP during maturation influences the development of neuronal circuits controlling motor activity. Both when matched for total duration of APP overexpression and when matched for cortical amyloid burden, animals exposed to transgenic APP as juveniles are more active in locomotor assays than animals in which APP overexpression was delayed until adulthood. In contrast to motor activity, the age of APP onset had no effect on thigmotaxis in the open field as a rough measure of anxiety, suggesting that the interaction between APP overexpression and brain development is not unilateral. Our findings indicate that locomotor hyperactivity displayed by the tet-off APP transgenic mice and several other transgenic models of Alzheimer's disease may result from overexpression of mutant APP during postnatal brain development. Our results serve as a reminder of the potential for unexpected interactions between foreign transgenes and brain development to cause long-lasting effects on neuronal function in the adult. The tet-off APP model provides an easy means of avoiding developmental confounds by allowing transgene expression to be delayed until the mice reach adulthood.

  17. Expression of Anthocyanins and Proanthocyanidins after Transformation of Alfalfa with Maize Lc12

    PubMed Central

    Ray, Heather; Yu, Min; Auser, Patricia; Blahut-Beatty, Laureen; McKersie, Brian; Bowley, Steve; Westcott, Neil; Coulman, Bruce; Lloyd, Alan; Gruber, Margaret Y.

    2003-01-01

    Three anthocyanin regulatory genes of maize (Zea mays; Lc, B-Peru, and C1) were introduced into alfalfa (Medicago sativa) in a strategy designed to stimulate the flavonoid pathway and alter the composition of flavonoids produced in forage. Lc constructs included a full-length gene and a gene with a shortened 5′-untranslated region. Lc RNA was strongly expressed in Lc transgenic alfalfa foliage, but accumulation of red-purple anthocyanin was observed only under conditions of high light intensity or low temperature. These stress conditions induced chalcone synthase and flavanone 3-hydroxylase expression in Lc transgenic alfalfa foliage compared with non-transformed plants. Genotypes containing the Lc transgene construct with a full-length 5′-untranslated region responded more quickly to stress conditions and with a more extreme phenotype. High-performance liquid chromatography analysis of field-grown tissue indicated that flavone content was reduced in forage of the Lc transgenic plants. Leucocyanidin reductase, the enzyme that controls entry of metabolites into the proanthocyanidin pathway, was activated both in foliage and in developing seeds of the Lc transgenic alfalfa genotypes. Proanthocyanidin polymer was accumulated in the forage, but (+)-catechin monomers were not detected. B-Peru transgenic and C1 transgenic populations displayed no visible phenotypic changes, although these transgenes were expressed at detectable levels. These results support the emerging picture of Lc transgene-specific patterns of expression in different recipient species. These results demonstrate that proanthocyanidin biosynthesis can be stimulated in alfalfa forage using an myc-like transgene, and they pave the way for the development of high quality, bloat-safe cultivars with ruminal protein bypass. PMID:12857826

  18. Hyperactive mutant of a wheat plasma membrane Na+/H+ antiporter improves the growth and salt tolerance of transgenic tobacco.

    PubMed

    Zhou, Yang; Lai, Zesen; Yin, Xiaochang; Yu, Shan; Xu, Yuanyuan; Wang, Xiaoxiao; Cong, Xinli; Luo, Yuehua; Xu, Haixia; Jiang, Xingyu

    2016-12-01

    Wheat SOS1 (TaSOS1) activity could be relieved upon deletion of the C-terminal 168 residues (the auto-inhibitory domain). This truncated form of wheat SOS1 (TaSOS1-974) was shown to increase compensation (compared to wild-type TaSOS1) for the salt sensitivity of a yeast mutant strain, AXT3K, via increased Na + transportation out of cells during salinity stress. Expression of the plasma membrane proteins TaSOS1-974 or TaSOS1 improved the growth of transgenic tobacco plants compared with wild-type plants under normal conditions. However, plants expressing TaSOS1-974 grew better than TaSOS1-transformed plants. Upon salinity stress, Na + efflux and K + influx rates in the roots of transgenic plants expressing TaSOS1-974 or TaSOS1 were greater than those of wild-type plants. Furthermore, compared to TaSOS1-transgenic plants, TaSOS1-974-expressing roots showed faster Na + efflux and K + influx, resulting in less Na + and more K + accumulation in TaSOS1-974-transgenic plants compared to TaSOS1-transgenic and wild-type plants. TaSOS1-974-expressing plants had the lowest MDA content and electrolyte leakage among all tested plants, indicating that TaSOS1-974 might protect the plasma membrane against oxidative damage generated by salt stress. Overall, TaSOS1-974 conferred higher salt tolerance in transgenic plants compared to TaSOS1. Consistent with this result, transgenic plants expressing TaSOS1-974 showed a better growth performance than TaSOS1-expressing and wild-type plants under saline conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Circadian and Brain State Modulation of Network Hyperexcitability in Alzheimer's Disease.

    PubMed

    Brown, Rosalind; Lam, Alice D; Gonzalez-Sulser, Alfredo; Ying, Andrew; Jones, Mary; Chou, Robert Chang-Chih; Tzioras, Makis; Jordan, Crispin Y; Jedrasiak-Cape, Izabela; Hemonnot, Anne-Laure; Abou Jaoude, Maurice; Cole, Andrew J; Cash, Sydney S; Saito, Takashi; Saido, Takaomi; Ribchester, Richard R; Hashemi, Kevan; Oren, Iris

    2018-01-01

    Network hyperexcitability is a feature of Alzheimer' disease (AD) as well as numerous transgenic mouse models of AD. While hyperexcitability in AD patients and AD animal models share certain features, the mechanistic overlap remains to be established. We aimed to identify features of network hyperexcitability in AD models that can be related to epileptiform activity signatures in AD patients. We studied network hyperexcitability in mice expressing amyloid precursor protein (APP) with mutations that cause familial AD, and compared a transgenic model that overexpresses human APP (hAPP) (J20), to a knock-in model expressing APP at physiological levels (APP NL/F ). We recorded continuous long-term electrocorticogram (ECoG) activity from mice, and studied modulation by circadian cycle, behavioral, and brain state. We report that while J20s exhibit frequent interictal spikes (IISs), APP NL/F mice do not. In J20 mice, IISs were most prevalent during daylight hours and the circadian modulation was associated with sleep. Further analysis of brain state revealed that IIS in J20s are associated with features of rapid eye movement (REM) sleep. We found no evidence of cholinergic changes that may contribute to IIS-circadian coupling in J20s. In contrast to J20s, intracranial recordings capturing IIS in AD patients demonstrated frequent IIS in non-REM (NREM) sleep. The salient differences in sleep-stage coupling of IIS in APP overexpressing mice and AD patients suggests that different mechanisms may underlie network hyperexcitability in mice and humans. We posit that sleep-stage coupling of IIS should be an important consideration in identifying mouse AD models that most closely recapitulate network hyperexcitability in human AD.

  20. Circadian and Brain State Modulation of Network Hyperexcitability in Alzheimer’s Disease

    PubMed Central

    Ying, Andrew; Jones, Mary; Chou, Robert Chang-Chih; Jordan, Crispin Y.; Jedrasiak-Cape, Izabela; Abou Jaoude, Maurice; Hashemi, Kevan

    2018-01-01

    Abstract Network hyperexcitability is a feature of Alzheimer’ disease (AD) as well as numerous transgenic mouse models of AD. While hyperexcitability in AD patients and AD animal models share certain features, the mechanistic overlap remains to be established. We aimed to identify features of network hyperexcitability in AD models that can be related to epileptiform activity signatures in AD patients. We studied network hyperexcitability in mice expressing amyloid precursor protein (APP) with mutations that cause familial AD, and compared a transgenic model that overexpresses human APP (hAPP) (J20), to a knock-in model expressing APP at physiological levels (APPNL/F). We recorded continuous long-term electrocorticogram (ECoG) activity from mice, and studied modulation by circadian cycle, behavioral, and brain state. We report that while J20s exhibit frequent interictal spikes (IISs), APPNL/F mice do not. In J20 mice, IISs were most prevalent during daylight hours and the circadian modulation was associated with sleep. Further analysis of brain state revealed that IIS in J20s are associated with features of rapid eye movement (REM) sleep. We found no evidence of cholinergic changes that may contribute to IIS-circadian coupling in J20s. In contrast to J20s, intracranial recordings capturing IIS in AD patients demonstrated frequent IIS in non-REM (NREM) sleep. The salient differences in sleep-stage coupling of IIS in APP overexpressing mice and AD patients suggests that different mechanisms may underlie network hyperexcitability in mice and humans. We posit that sleep-stage coupling of IIS should be an important consideration in identifying mouse AD models that most closely recapitulate network hyperexcitability in human AD. PMID:29780880

  1. The transgenic cloned pig population with integrated and controllable GH expression that has higher feed efficiency and meat production

    PubMed Central

    Ju, Huiming; Zhang, Jiaqing; Bai, Lijing; Mu, Yulian; Du, Yutao; Yang, Wenxian; Li, Yong; Sheng, Anzhi; Li, Kui

    2015-01-01

    Sustained expression of the GH gene has been shown to have detrimental effects on the health of animals. In the current study, transgenic founder pigs, with controllable pig growth hormone (pGH) expression, were cloned via the handmade cloning method (HMC), and pGH expression levels were examined at the cellular and organismal levels. The serum pGH levels in 3 founder male pigs were found to be significantly higher after induction with intramuscular injection of doxycycline (DOX) compared to baseline. A daily dose of DOX was administered via feed to these animals for a period of 65 to 155 days. The growth rate, feed efficiency and pGH serum concentration increased in the DOX-induced transgenic group compared with the other groups. 8 numbers of animals were euthanized and the dressing percentage, loin muscle and lean meat percentage were significantly higher in the DOX-induced F1 transgenic group compared with the other groups. In this study a large population of transgenic pigs, with integrated controllable expression of a transgene, was obtained. The transgenic pigs were healthy and normal in terms of reproductive capability. At the same time, feed efficiency was improved, production processes were accelerated and meat yield was increased. PMID:25959098

  2. The transgenic cloned pig population with integrated and controllable GH expression that has higher feed efficiency and meat production.

    PubMed

    Ju, Huiming; Zhang, Jiaqing; Bai, Lijing; Mu, Yulian; Du, Yutao; Yang, Wenxian; Li, Yong; Sheng, Anzhi; Li, Kui

    2015-05-11

    Sustained expression of the GH gene has been shown to have detrimental effects on the health of animals. In the current study, transgenic founder pigs, with controllable pig growth hormone (pGH) expression, were cloned via the handmade cloning method (HMC), and pGH expression levels were examined at the cellular and organismal levels. The serum pGH levels in 3 founder male pigs were found to be significantly higher after induction with intramuscular injection of doxycycline (DOX) compared to baseline. A daily dose of DOX was administered via feed to these animals for a period of 65 to 155 days. The growth rate, feed efficiency and pGH serum concentration increased in the DOX-induced transgenic group compared with the other groups. 8 numbers of animals were euthanized and the dressing percentage, loin muscle and lean meat percentage were significantly higher in the DOX-induced F1 transgenic group compared with the other groups. In this study a large population of transgenic pigs, with integrated controllable expression of a transgene, was obtained. The transgenic pigs were healthy and normal in terms of reproductive capability. At the same time, feed efficiency was improved, production processes were accelerated and meat yield was increased.

  3. Establishment of embryonic neuroepithelial cell lines exhibiting an epiplastic expression pattern of region specific markers.

    PubMed

    Nardelli, Jeannette; Catala, Martin; Charnay, Patrick

    2003-09-15

    Neuroepithelial b2T cells were derived from the hindbrain and the spinal cord of mouse transgenic embryos, which expressed SV40 T antigen under the control of a Hoxb2 enhancer. Strikingly, b2T cell lines of either origin exhibit a very similar gene expression pattern, including markers of the hindbrain and the spinal cord, such as Hox genes, but not of more anterior cephalic regions. In addition, the broad expression pattern of b2T cells, probably linked to culture conditions, appeared to be appropriately modulated when the cells were reimplanted at different longitudinal levels into chick host embryos, suggesting that these cells are responsive to exogenous signalling mechanisms. Further support for these allegations was obtained by culturing b2T cells in defined medium and by assessing the expression of Krox20, an odd-numbered rhombomere marker, which appeared to be modulated by a complex interplay between FGF, retinoic acid (RA), and noggin. With respect to these as yet unique properties, b2T cells constitute an original alternative tool to in vivo models for the analysis of molecular pathways involved in the patterning of the neural tube. Copyright 2003 Wiley-Liss, Inc.

  4. Transgenic nude mice ubiquitously expressing fluorescent proteins for color-coded imaging of the tumor microenvironment.

    PubMed

    Hoffman, Robert M

    2014-01-01

    We have developed a transgenic green fluorescent protein (GFP) nude mouse with ubiquitous GFP expression. The GFP nude mouse was obtained by crossing nontransgenic nude mice with the transgenic C57/B6 mouse in which the β-actin promoter drives GFP expression in essentially all tissues. In the adult mice, many organs brightly expressed GFP, including the spleen, heart, lungs, spleen, pancreas, esophagus, stomach, and duodenum as well as the circulatory system. The liver expressed GFP at a lesser level. The red fluorescent protein (RFP) transgenic nude mouse was obtained by crossing non-transgenic nude mice with the transgenic C57/B6 mouse in which the beta-actin promoter drives RFP (DsRed2) expression in essentially all tissues. In the RFP nude mouse, the organs all brightly expressed RFP, including the heart, lungs, spleen, pancreas, esophagus, stomach, liver, duodenum, the male and female reproductive systems; brain and spinal cord; and the circulatory system, including the heart, and major arteries and veins. The skinned skeleton highly expressed RFP. The bone marrow and spleen cells were also RFP positive. The cyan fluorescent protein (CFP) nude mouse was developed by crossing nontransgenic nude mice with the transgenic CK/ECFP mouse in which the β-actin promoter drives expression of CFP in almost all tissues. In the CFP nude mice, the pancreas and reproductive organs displayed the strongest fluorescence signals of all internal organs, which vary in intensity. The GFP, RFP, and CFP nude mice when transplanted with cancer cells of another color are powerful models for color-coded imaging of the tumor microenvironment (TME) at the cellular level.

  5. Intestinal Metabolites Are Profoundly Altered in the Context of HLA-B27 Expression and Functionally Modulate Disease in a Rat Model of Spondyloarthritis.

    PubMed

    Asquith, Mark; Davin, Sean; Stauffer, Patrick; Michell, Claire; Janowitz, Cathleen; Lin, Phoebe; Ensign-Lewis, Joe; Kinchen, Jason M; Koop, Dennis R; Rosenbaum, James T

    2017-10-01

    HLA-B27-associated spondyloarthritides are associated with an altered intestinal microbiota and bowel inflammation. We undertook this study to identify HLA-B27-dependent changes in both host and microbial metabolites in the HLA-B27/β 2 -microglobulin (β 2 m)-transgenic rat and to determine whether microbiota-derived metabolites could impact disease in this major model of spondyloarthritis. Cecal contents were collected from Fischer 344 33-3 HLA-B27/β 2 m-transgenic rats and wild-type controls at 6 weeks (before disease) and 16 weeks (with active bowel inflammation). Metabolomic profiling was performed by high-throughput gas and liquid chromatography-based mass spectrometry. HLA-B27/β 2 m-transgenic rats were treated with the microbial metabolites propionate or butyrate in drinking water for 10 weeks, and disease activity was subsequently assessed. Our screen identified 582 metabolites, of which more than half were significantly altered by HLA-B27 expression at 16 weeks. Both microbial and host metabolites were altered, with multiple pathways affected, including those for amino acid, carbohydrate, xenobiotic, and medium-chain fatty acid metabolism. Differences were even observed at 6 weeks, with up-regulation of histidine, tyrosine, spermidine, N-acetylmuramate, and glycerate in HLA-B27/β 2 m-transgenic rats. Administration of the short-chain fatty acid propionate significantly attenuated HLA-B27-associated inflammatory disease, although this was not associated with increased FoxP3+ T cell induction or with altered expression of the immunomodulatory cytokines interleukin-10 (IL-10) or IL-33 or of the tight junction protein zonula occludens 1. HLA-B27 expression was also associated with altered host expression of messenger RNA for the microbial metabolite receptors free fatty acid receptor 2 (FFAR2), FFAR3, and niacin receptor 1. HLA-B27 expression profoundly impacts the intestinal metabolome, with changes evident in rats even at age 6 weeks. Critically, we demonstrate that a microbial metabolite, propionate, attenuates development of HLA-B27-associated inflammatory disease. These and other microbiota-derived bioactive mediators may provide novel treatment modalities in HLA-B27-associated spondyloarthritides. © 2017, American College of Rheumatology.

  6. An E8 promoter-HSP terminator cassette promotes the high-level accumulation of recombinant protein predominantly in transgenic tomato fruits: a case study of miraculin.

    PubMed

    Kurokawa, Natsuko; Hirai, Tadayoshi; Takayama, Mariko; Hiwasa-Tanase, Kyoko; Ezura, Hiroshi

    2013-04-01

    The E8 promoter-HSP terminator expression cassette is a powerful tool for increasing the accumulation of recombinant protein in a ripening tomato fruit. Strong, tissue-specific transgene expression is a desirable feature in transgenic plants to allow the production of variable recombinant proteins. The expression vector is a key tool to control the expression level and site of transgene and recombinant protein expression in transgenic plants. The combination of the E8 promoter, a fruit-ripening specific promoter, and a heat shock protein (HSP) terminator, derived from heat shock protein 18.2 of Arabidopsis thaliana, produces the strong and fruit-specific accumulation of recombinant miraculin in transgenic tomato. Miraculin gene expression was driven by an E8 promoter and HSP terminator cassette (E8-MIR-HSP) in transgenic tomato plants, and the miraculin concentration was the highest in the ripening fruits, representing 30-630 μg miraculin of the gram fresh weight. The highest level of miraculin concentration among the transgenic tomato plant lines containing the E8-MIR-HSP cassette was approximately four times higher than those observed in a previous study using a constitutive 35S promoter and NOS terminator cassette (Hiwasa-Tanase et al. in Plant Cell Rep 30:113-124, 2011). These results demonstrate that the combination of the E8 promoter and HSP terminator cassette is a useful tool to increase markedly the accumulation of recombinant proteins in a ripening fruit-specific manner.

  7. A 3,387 bp 5'-flanking sequence of the goat alpha-S1-casein gene provides correct tissue-specific expression of human granulocyte colony-stimulating factor (hG-CSF) in the mammary gland of transgenic mice.

    PubMed

    Serova, Irina A; Dvoryanchikov, Gennady A; Andreeva, Ludmila E; Burkov, Ivan A; Dias, Luciene P B; Battulin, Nariman R; Smirnov, Alexander V; Serov, Oleg L

    2012-06-01

    A new expression vector containing the 1,944 bp 5'-flanking regulatory region together with exon 1 and intron 1 of the goat alpha-S1-casein gene (CSN1S1), the full-sized human granulocyte colony-stimulating factor gene (hGCSF) and the 3'-flanking sequence of the bovine CSN1S1, was created. The vector DNA was used for generation of four mouse transgenic lines. The transgene was integrated into chromosomes 8 and 12 of two founders as 2 and 5 copies, respectively. Tissue-specific secretion of hG-CSF into the milk of transgenic mice was in the range of 19-40 μg/ml. RT-PCR analysis of various tissues of the transgenic mice demonstrated that expression of hGCSF was detected in only the mammary gland in the progeny of all founders. Moreover, cells were shown to be positive for hG-CSF by immunofluorescent analysis in the mammary glands but not in any other tissues. There were no signs of mosaic expression in the mammary gland. Trace amounts of hG-CSF were detected in the serum of females of two transgenic lines during lactation only. However, no transgenic mice showed any changes in hematopoiesis based on the number of granulocytes in blood. Immunoblotting of hG-CSF in the milk of transgenic mice revealed two forms, presumably the glycosylated and non-glycosylated forms. The hematopoietic activity of hG-CSF in the milk of transgenic females is comparable to that of recombinant G-CSF. In general, the data obtained in this study show that the new expression vector is able to provide correct tissue-specific expression of hG-CSF with high biological activity in transgenic mice.

  8. MicroRNA166 Modulates Cadmium Tolerance and Accumulation in Rice.

    PubMed

    Ding, Yanfei; Gong, Shaohua; Wang, Yi; Wang, Feijuan; Bao, Hexigeduleng; Sun, Junwei; Cai, Chong; Yi, Keke; Chen, Zhixiang; Zhu, Cheng

    2018-06-20

    MicroRNAs (miRNAs) are 20- to 24-nucleotide small non-coding RNAs that regulate gene expression in eukaryotic organisms. Several plant miRNAs, such as miR166, have vital roles in plant growth, development and responses to environmental stresses. One such environmental stress encountered by crop plants is exposure to cadmium (Cd), an element highly toxic to most organisms, including humans and plants. In this study, we analyzed the role of miR166 in Cd accumulation and tolerance in rice (Oryza sativa). The expression levels of miR166 in both root and leaf tissues were significantly higher in the reproductive stage than in the seedling stage in rice. The expression of miR166 in the roots of rice seedlings was reduced after Cd treatment. Overexpression of miR166 in rice improved Cd tolerance, a result associated with the reduction of Cd-induced oxidative stress in transgenic rice plants. Furthermore, overexpression of miR166 reduced both Cd translocation from roots to shoots and Cd accumulation in the grains. miR166 targets genes encoding the class-III homeodomain-leucine zipper (HD-Zip) family proteins in plants. In rice, HOMEODOMAIN CONTAINING PROTEIN 4 (OsHB4) gene (Os03g43930), which encodes an HD-Zip protein, was up-regulated by Cd treatment but down-regulated by overexpression of miR166 in transgenic rice plants. Overexpression of OsHB4 increased Cd sensitivity and Cd accumulation in the leaves and grains of transgenic rice plants. By contrast, silencing OsHB4 by RNA interference enhanced Cd tolerance in transgenic rice plants. These results indicate a critical role for miR166 in Cd accumulation and tolerance through regulation of its target gene, OsHB4, in rice. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  9. Oil palm EgCBF3 conferred stress tolerance in transgenic tomato plants through modulation of the ethylene signaling pathway.

    PubMed

    Ebrahimi, Mortaza; Abdullah, Siti Nor Akmar; Abdul Aziz, Maheran; Namasivayam, Parameswari

    2016-09-01

    CBF/DREB1 is a group of transcription factors that are mainly involved in abiotic stress tolerance in plants. They belong to the AP2/ERF superfamily of plant-specific transcription factors. A gene encoding a new member of this group was isolated from ripening oil palm fruit and designated as EgCBF3. The oil palm fruit demonstrates the characteristics of a climacteric fruit like tomato, in which ethylene has a major impact on the ripening process. A transgenic approach was used for functional characterization of the EgCBF3, using tomato as the model plant. The effects of ectopic expression of EgCBF3 were analyzed based on expression profiling of the ethylene biosynthesis-related genes, anti-freeze proteins (AFPs), abiotic stress tolerance and plant growth and development. The EgCBF3 tomatoes demonstrated altered phenotypes compared to the wild type tomatoes. Delayed leaf senescence and flowering, increased chlorophyll content and abnormal flowering were the consequences of overexpression of EgCBF3 in the transgenic tomatoes. The EgCBF3 tomatoes demonstrated enhanced abiotic stress tolerance under in vitro conditions. Further, transcript levels of ethylene biosynthesis-related genes, including three SlACSs and two SlACOs, were altered in the transgenic plants' leaves and roots compared to that in the wild type tomato plant. Among the eight AFPs studied in the wounded leaves of the EgCBF3 tomato plants, transcript levels of SlOSM-L, SlNP24, SlPR5L and SlTSRF1 decreased, while expression of the other four, SlCHI3, SlPR1, SlPR-P2 and SlLAP2, were up-regulated. These findings indicate the possible functions of EgCBF3 in plant growth and development as a regulator of ethylene biosynthesis-related and AFP genes, and as a stimulator of abiotic stress tolerance. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Heterologous expression of wheat VERNALIZATION 2 (TaVRN2) gene in Arabidopsis delays flowering and enhances freezing tolerance.

    PubMed

    Diallo, Amadou; Kane, Ndjido; Agharbaoui, Zahra; Badawi, Mohamed; Sarhan, Fathey

    2010-01-13

    The vernalization gene 2 (VRN2), is a major flowering repressor in temperate cereals that is regulated by low temperature and photoperiod. Here we show that the gene from Triticum aestivum (TaVRN2) is also regulated by salt, heat shock, dehydration, wounding and abscissic acid. Promoter analysis indicates that TaVRN2 regulatory region possesses all the specific responsive elements to these stresses. This suggests pleiotropic effects of TaVRN2 in wheat development and adaptability to the environment. To test if TaVRN2 can act as a flowering repressor in species different from the temperate cereals, the gene was ectopically expressed in the model plant Arabidopsis. Transgenic plants showed no alteration in morphology, but their flowering time was significantly delayed compared to controls plants, indicating that TaVRN2, although having no ortholog in Brassicaceae, can act as a flowering repressor in these species. To identify the possible mechanism by which TaVRN2 gene delays flowering in Arabidopsis, the expression level of several genes involved in flowering time regulation was determined. The analysis indicates that the late flowering of the 35S::TaVRN2 plants was associated with a complex pattern of expression of the major flowering control genes, FCA, FLC, FT, FVE and SOC1. This suggests that heterologous expression of TaVRN2 in Arabidopsis can delay flowering by modulating several floral inductive pathways. Furthermore, transgenic plants showed higher freezing tolerance, likely due to the accumulation of CBF2, CBF3 and the COR genes. Overall, our data suggests that TaVRN2 gene could modulate a common regulator of the two interacting pathways that regulate flowering time and the induction of cold tolerance. The results also demonstrate that TaVRN2 could be used to manipulate flowering time and improve cold tolerance in other species.

  11. Cloning of transgenic tobacco BY-2 cells; an efficient method to analyse and reduce high natural heterogeneity of transgene expression.

    PubMed

    Nocarova, Eva; Fischer, Lukas

    2009-04-22

    Phenotypic characterization of transgenic cell lines, frequently used in plant biology studies, is complicated because transgene expression in individual cells is often heterogeneous and unstable. To identify the sources and to reduce this heterogeneity, we transformed tobacco (Nicotiana tabacum L.) BY-2 cells with a gene encoding green fluorescent protein (GFP) using Agrobacterium tumefaciens, and then introduced a simple cloning procedure to generate cell lines derived from the individual transformed cells. Expression of the transgene was monitored by analysing GFP fluorescence in the cloned lines and also in lines obtained directly after transformation. The majority ( approximately 90%) of suspension culture lines derived from calli that were obtained directly from transformation consisted of cells with various levels of GFP fluorescence. In contrast, nearly 50% of lines generated by cloning cells from the primary heterogeneous suspensions consisted of cells with homogenous GFP fluorescence. The rest of the lines exhibited "permanent heterogeneity" that could not be resolved by cloning. The extent of fluorescence heterogeneity often varied, even among genetically identical clones derived from the primary transformed lines. In contrast, the offspring of subsequent cloning of the cloned lines was uniform, showing GFP fluorescence intensity and heterogeneity that corresponded to the original clone. The results demonstrate that, besides genetic heterogeneity detected in some lines, the primary lines often contained a mixture of epigenetically different cells that could be separated by cloning. This indicates that a single integration event frequently results in various heritable expression patterns, which are probably accidental and become stabilized in the offspring of the primary transformed cells early after the integration event. Because heterogeneity in transgene expression has proven to be a serious problem, it is highly advisable to use transgenes tagged with a visual marker for BY-2 transformation. The cloning procedure can be used not only for efficient reduction of expression heterogeneity of such transgenes, but also as a useful tool for studies of transgene expression and other purposes.

  12. Pineal-specific expression of green fluorescent protein under the control of the serotonin-N-acetyltransferase gene regulatory regions in transgenic zebrafish.

    PubMed

    Gothilf, Yoav; Toyama, Reiko; Coon, Steven L; Du, Shao-Jun; Dawid, Igor B; Klein, David C

    2002-11-01

    Zebrafish serotonin-N-acetyltransferase-2 (zfAANAT-2) mRNA is exclusively expressed in the pineal gland (epiphysis) at the embryonic stage. Here, we have initiated an effort to study the mechanisms underlying tissue-specific expression of this gene. DNA constructs were prepared in which green fluorescent protein (GFP) is driven by regulatory regions of the zfAANAT-2 gene. In vivo transient expression analysis in zebrafish embryos indicated that in addition to the 5'-flanking region, a regulatory sequence in the 3'-flanking region is required for pineal-specific expression. This finding led to an effort to produce transgenic lines expressing GFP under the control of the 5' and 3' regulatory regions of the zfAANAT-2 gene. Embryos transiently expressing GFP were raised to maturity and tested for germ cell transmission of the transgene. Three transgenic lines were produced in which GFP fluorescence in the pineal was detected starting 1 to 2 days after fertilization. One line was crossed with mindbomb and floating head mutants that cause abnormal development of the pineal and an elevation or reduction of zfAANAT-2 mRNA levels, respectively. Homozygous mutant transgenic embryos exhibited similar effects on GFP expression in the pineal gland. These observations indicate that the transgenic lines described here will be useful in studying the development of the pineal gland and the mechanisms that determine pineal-specific gene expression in the zebrafish. Published 2002 Wiley-Liss, Inc.

  13. Transgenes expressing the Wnt-1 and int-2 proto-oncogenes cooperate during mammary carcinogenesis in doubly transgenic mice.

    PubMed Central

    Kwan, H; Pecenka, V; Tsukamoto, A; Parslow, T G; Guzman, R; Lin, T P; Muller, W J; Lee, F S; Leder, P; Varmus, H E

    1992-01-01

    The Wnt-1 and int-2 proto-oncogenes are transcriptionally activated by mouse mammary tumor virus insertion mutations in virus-induced tumors and encode secretory glycoproteins. To determine whether these two genes can cooperate during carcinogenesis, we have crossed two previously characterized lines of transgenic mice to obtain bitransgenic animals carrying both Wnt-1 and int-2 transgenes under the control of the mouse mammary tumor virus long terminal repeat. Mammary carcinomas appear earlier and with higher frequency in the bitransgenic animals, especially the males, than in either parental line. Nearly all bitransgenic males develop mammary neoplasms within 8 months of birth, whereas only 15% of Wnt-1 transgenic males and none of the int-2 transgenic males have tumors. In virgin bitransgenic females, tumors occur approximately 2 months earlier than in their Wnt-1 transgenic siblings; int-2 transgenic females rarely exhibit tumors. Preneoplastic glands from the bitransgenic animals of either sex demonstrate pronounced epithelial hyperplasia similar to that seen in Wnt-1 transgenic virgin females and males, and both transgenes are expressed in the hyperplastic glands and mammary tumors. RNA from the int-2 transgene is more abundant in mammary glands from bitransgenic animals than from int-2 transgenic animals; the increase is associated with high levels of RNA specific for keratin genes 14 and 18, suggesting that Wnt-1-induced epithelial hyperplasia is responsible for the observed increase in expression of the int-2 transgene. Images PMID:1530875

  14. Production of Multiple Transgenic Yucatan Miniature Pigs Expressing Human Complement Regulatory Factors, Human CD55, CD59, and H-Transferase Genes

    PubMed Central

    Jang, Gun-Hyuk; Jeong, Yeun-Ik; Hwang, In-Sung; Jeong, Yeon-woo; Kim, Yu-Kyung; Shin, Taeyoung; Kim, Nam-Hyung; Hyun, Sang-Hwan; Jeung, Eui-Bae; Hwang, Woo-Suk

    2013-01-01

    The present study was conducted to generate transgenic pigs coexpressing human CD55, CD59, and H-transferase (HT) using an IRES-mediated polycistronic vector. The study focused on hyperacute rejection (HAR) when considering clinical xenotransplantation as an alternative source for human organ transplants. In total, 35 transgenic cloned piglets were produced by somatic cell nuclear transfer (SCNT) and were confirmed for genomic integration of the transgenes from umbilical cord samples by PCR analysis. Eighteen swine umbilical vein endothelial cells (SUVEC) were isolated from umbilical cord veins freshly obtained from the piglets. We observed a higher expression of transgenes in the transgenic SUVEC (Tg SUVEC) compared with the human umbilical vein endothelial cells (HUVEC). Among these genes, HT and hCD59 were expressed at a higher level in the tested Tg organs compared with non-Tg control organs, but there was no difference in hCD55 expression between them. The transgenes in various organs of the Tg clones revealed organ-specific and spatial expression patterns. Using from 0 to 50% human serum solutions, we performed human complement-mediated cytolysis assays. The results showed that, overall, the Tg SUVEC tested had greater survival rates than did the non-Tg SUVEC, and the Tg SUVEC with higher HT expression levels tended to have more down-regulated α-Gal epitope expression, resulting in greater protection against cytotoxicity. By contrast, several Tg SUVEC with low CD55 expression exhibited a decreased resistance response to cytolysis. These results indicated that the levels of HT expression were inversely correlated with the levels of α-Gal epitope expression and that the combined expression of hCD55, hCD59, and HT proteins in SUVECs markedly enhances a protective response to human serum-mediated cytolysis. Taken together, these results suggest that combining a polycistronic vector system with SCNT methods provides a fast and efficient alternative for the generation of transgenic large animals with multiple genetic modifications. PMID:23704897

  15. Pathogenic bacteria induce colonic PepT1 expression: an implication in host defense response

    PubMed Central

    Nguyen, Hang Thi Thu; Dalmasso, Guillaume; Powell, Kimberly R.; Yan, Yutao; Bhatt, Shantanu; Kalman, Daniel; Sitaraman, Shanthi; Merlin, Didier

    2009-01-01

    Background & Aims Expression of the di/tripeptide transporter PepT1 has been observed in the colon under inflammatory conditions, however, the inducing factors and underlying mechanisms remain unknown. Here, we address the effects of pathogenic bacteria on colonic PepT1 expression together with its functional consequences. Methods Human colonic HT29-Cl.19A cells were infected with the attaching and effacing (A/E) enteropathogenic E. coli (EPEC). Wild-type and PepT1 transgenic mice or cultured colonic tissues derived from these mice were infected with Citrobacter rodentium, a murine A/E pathogen related to EPEC. Results EPEC induced PepT1 expression and activity in HT29-Cl.19A cells by intimately attaching to host cells through lipid rafts. Induction of PepT1 expression by EPEC required the transcription factor Cdx2. PepT1 expression reduced binding of EPEC to lipid rafts, as well as activation of NF-κB and MAP kinase and production of IL-8. Accordingly, ex vivo and in vivo experiments revealed that C. rodentium induced colonic PepT1 expression and that, compared to their wild-type counterparts, PepT1 transgenic mice infected with C. rodentium exhibited decreased bacterial colonization, production of pro-inflammatory cytokines, and neutrophil infiltration into the colon. Conclusions Our findings demonstrate a molecular mechanism underlying the regulation of colonic PepT1 expression under pathological conditions and reveal a novel role for PepT1 in host defense via its capacity to modulate bacterial-epithelial interactions and intestinal inflammation. PMID:19549526

  16. Quaternization enhances the transgene expression efficacy of aminoglycoside-derived polymers.

    PubMed

    Miryala, Bhavani; Feng, Yunpeng; Omer, Ala; Potta, Thrimoorthy; Rege, Kaushal

    2015-07-15

    The objective of the present study was to synthesize and investigate the transgene expression efficacy of quaternized derivatives of aminoglycoside polymers in different cancer cell lines. A series of glycidyltrimethylammonium chloride (GTMAC) derivatives of aminoglycoside polymers (GTMAC-AM polymers), containing varying degrees of quaternization (13-45%), were synthesized. The structures and properties of GTMAC-AM polymers were investigated using FT-IR and (1)H NMR spectroscopy. Physicochemical factors that influence transgene expression efficacy including DNA binding, hydrodynamic size, zeta potential and cytotoxicity, were determined. Formation of polymer-plasmid DNA complexes was also visualized using atomic force microscopy. GTMAC-AM polymers demonstrated higher transgene expression efficacies compared to their parent polymers, 25 kDa poly(ethyleneimine), as well as Lipofectamine-3000. Our results indicate that quaternization enhances the transgene expression efficacy and reduces the cytotoxicity of aminoglycoside-derived polymers, making it an attractive strategy for nucleic acid delivery with these new materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Bean Yellow Dwarf Virus replicons for high-level transgene expression in transgenic plants and cell cultures.

    PubMed

    Zhang, Xiuren; Mason, Hugh

    2006-02-05

    A novel stable transgenic plant expression system was developed using elements of the replication machinery of Bean Yellow Dwarf Virus (BeYDV). The system contains two transgenes: 1) The BeYDV replicon vector with an expression cassette flanked by cis-acting DNA elements of BeYDV, and 2) The viral replication initiator protein (Rep) controlled by an alcohol-inducible promoter. When Rep expression was triggered by treatment with ethanol, it induced release of the BeYDV replicon from stably integrated T-DNA and episomal replication to high copy number. Replicon amplification resulted in substantially increased transgene mRNA levels (up to 80-fold) and translation products (up to 10-fold) after induction of Rep expression by ethanol treatment in tobacco NT1 cells and leaves of whole potato plants. Thus, the BeYDV stable transformant replicon system is a powerful tool for plant-based production of recombinant proteins. (c) 2005 Wiley Periodicals, Inc.

  18. The food additive vanillic acid controls transgene expression in mammalian cells and mice.

    PubMed

    Gitzinger, Marc; Kemmer, Christian; Fluri, David A; El-Baba, Marie Daoud; Weber, Wilfried; Fussenegger, Martin

    2012-03-01

    Trigger-inducible transcription-control devices that reversibly fine-tune transgene expression in response to molecular cues have significantly advanced the rational reprogramming of mammalian cells. When designed for use in future gene- and cell-based therapies the trigger molecules have to be carefully chosen in order to provide maximum specificity, minimal side-effects and optimal pharmacokinetics in a mammalian organism. Capitalizing on control components that enable Caulobacter crescentus to metabolize vanillic acid originating from lignin degradation that occurs in its oligotrophic freshwater habitat, we have designed synthetic devices that specifically adjust transgene expression in mammalian cells when exposed to vanillic acid. Even in mice transgene expression was robust, precise and tunable in response to vanillic acid. As a licensed food additive that is regularly consumed by humans via flavoured convenience food and specific fresh vegetable and fruits, vanillic acid can be considered as a safe trigger molecule that could be used for diet-controlled transgene expression in future gene- and cell-based therapies.

  19. Transcriptional insulation of the human keratin 18 gene in transgenic mice.

    PubMed Central

    Neznanov, N; Thorey, I S; Ceceña, G; Oshima, R G

    1993-01-01

    Expression of the 10-kb human keratin 18 (K18) gene in transgenic mice results in efficient and appropriate tissue-specific expression in a variety of internal epithelial organs, including liver, lung, intestine, kidney, and the ependymal epithelium of brain, but not in spleen, heart, or skeletal muscle. Expression at the RNA level is directly proportional to the number of integrated K18 transgenes. These results indicate that the K18 gene is able to insulate itself both from the commonly observed cis-acting effects of the sites of integration and from the potential complications of duplicated copies of the gene arranged in head-to-tail fashion. To begin to identify the K18 gene sequences responsible for this property of transcriptional insulation, additional transgenic mouse lines containing deletions of either the 5' or 3' distal end of the K18 gene have been characterized. Deletion of 1.5 kb of the distal 5' flanking sequence has no effect upon either the tissue specificity or the copy number-dependent behavior of the transgene. In contrast, deletion of the 3.5-kb 3' flanking sequence of the gene results in the loss of the copy number-dependent behavior of the gene in liver and intestine. However, expression in kidney, lung, and brain remains efficient and copy number dependent in these transgenic mice. Furthermore, herpes simplex virus thymidine kinase gene expression is copy number dependent in transgenic mice when the gene is located between the distal 5'- and 3'-flanking sequences of the K18 gene. Each adult transgenic male expressed the thymidine kinase gene in testes and brain and proportionally to the number of integrated transgenes. We conclude that the characteristic of copy number-dependent expression of the K18 gene is tissue specific because the sequence requirements for transcriptional insulation in adult liver and intestine are different from those for lung and kidney. In addition, the behavior of the transgenic thymidine kinase gene in testes and brain suggests that the property of transcriptional insulation of the K18 gene may be conferred by the distal flanking sequences of the K18 gene and, additionally, may function for other genes. Images PMID:7681143

  20. Production of cloned embryos from caprine mammary epithelial cells expressing recombinant human β-defensin-3.

    PubMed

    Liu, Jun; Luo, Yan; Liu, Qingqing; Zheng, Liming; Yang, Zhongcai; Wang, Yongsheng; Su, Jianmin; Quan, Fusheng; Zhang, Yong

    2013-03-01

    Transgenic animals that express antimicrobial agents in their milk can inhibit bacterial pathogens that cause mastitis. Our objective was to produce human β-defensin-3 (HBD3) transgenic embryos by nuclear transfer using goat mammary epithelial cells (GMECs) as donor cells. Three GMEC lines (GMEC1, GMEC2, and GMEC3) were transfected with a HBD3 mammary-specific expression vector by electroporation. There was a difference (P < 0.05) in the rate of geneticin-resistant colony formation among cell lines GMEC1, GMEC2, and GMEC3 (39 and 47 vs. 19 colonies per 3 × 10(6) cells, respectively). After inducing expression, the mRNA and protein of HBD3 were detected by reverse transcription polymerase chain reaction and Western blot analysis in transgenic cells. Transgenic clonal cells expressing HBD3 were used as donor cells to investigate development of cloned embryos. There were no significant differences in rates of cleavage or blastocyst formation of cloned embryos from transgenic (GMEC1T2 and GMEC2T3) and nontransgenic (GMEC1 and GMEC2) GMECs (72.3 ± 5.0%, 69.5 ± 2.3%, 61.8 ± 4.8%, and 70.0 ± 2%; and 16.8 ± 0.5%, 17.5 ± 0.7%, 16.7 ± 0.9%, and 17.5 ± 0.6%, respectively). However, the fusion rate, cleavage rate, and blastocyst formation rate of cloned embryos from a transgenic clonal cell line (GMEC2T6, 50.7 ± 2.1%, 55.5 ± 2.0%, and 11.1 ± 0.6%) were lower than those of other groups (P < 0.05). We concluded that genetic modification of GMECs might not influence the in vitro development of cloned embryos, but that some of the transgenic clonal cells were not suitable for nuclear transfer to produce transgenic goats, because of low developmental rates. However, transgenic GMECs expressing HBD3 might be used as donor cells for producing transgenic goats that express increased concentrations of β-defensins in their milk. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Capsicum annuum homeobox 1 (CaHB1) is a nuclear factor that has roles in plant development, salt tolerance, and pathogen defense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Sang-Keun; Yoon, Joonseon; Choi, Gyung Ja

    Highlights: •The CaHB1 is a nuclear factor, belonging to HD-Zip proteins. •SA and ET, as signal molecules, modulate CaHB1-mediated responses. •Overexpression of CaHB1 in tomato resulted in a thicker cell wall. •CaHB1-transgenic tomato confers resistance to Phytophthora infestans. •CaHB1 enhanced tolerance to saline stress in tomato. -- Abstract: Homeodomain-leucine zipper (HD-Zip) family proteins are unique to plants, but little is known about their role in defense responses. CaHB1 is a nuclear factor in peppers, belonging to subfamily II of HD-Zip proteins. Here, we determined the role of CaHB1 in the defense response. CaHB1 expression was induced when pepper plants weremore » challenged with Phytophthora capsici, a plant pathogen to which peppers are susceptible, or environmental stresses such as drought and salt stimuli. CaHB1 was also highly expressed in pepper leaves following application of SA, whereas ethephon and MeJA had a moderate effect. To further investigate the function of CaHB1 in plants, we performed gain-of-function study by overexpression of CaHB1 in tomato. CaHB1-transgenic tomatoes showed significant growth enhancement including increased leaf thickness and enlarged cell size (1.8-fold larger than control plants). Microscopic analysis revealed that leaves from CaHB1-transgenic plants had thicker cell walls and cuticle layers than those from controls. Moreover, CaHB1-transgenic plants displayed enhanced resistance against Phytophthora infestans and increased tolerance to salt stress. Additionally, RT-PCR analysis of CaHB1-transgenic tomatoes revealed constitutive up-regulation of multiple genes involved in plant defense and osmotic stress. Therefore, our findings suggest roles for CaHB1 in development, salt stress, and pathogen defense.« less

  2. Establishment and characterization of CAG/EGFP transgenic rabbit line.

    PubMed

    Takahashi, Ri-ichi; Kuramochi, Takashi; Aoyagi, Kazuki; Hashimoto, Shu; Miyoshi, Ichiro; Kasai, Noriyuki; Hakamata, Yoji; Kobayashi, Eiji; Ueda, Masatsugu

    2007-02-01

    Cell marking is a very important procedure for identifying donor cells after cell and/or organ transplantation in vivo. Transgenic animals expressing marker proteins such as enhanced green fluorescent protein (EGFP) in their tissues are a powerful tool for research in fields of tissue engineering and regenerative medicine. The purpose of this study was to establish transgenic rabbit lines that ubiquitously express EGFP under the control of the cytomegalovirus immediate early enhancer/beta-actin promoter (CAG) to provide a fluorescent transgenic animal as a bioresource. We microinjected the EGFP expression vector into 945 rabbit eggs and 4 independent transgenic candidate pups were obtained. Two of them died before sexual maturation and one was infertile. One transgenic male candidate founder rabbit was obtained and could be bred by artificial insemination. The rabbit transmitted the transgene in a Mendelian manner. Using fluorescence in situ hybridization analysis, we detected the transgene at 7q11 on chromosome 7 as a large centromeric region in two F1 offspring (one female and one male). Eventually, one transgenic line was established. Ubiquitous EGFP fluorescence was confirmed in all examined organs. There were no gender-related differences in fluorescence. The established CAG/EGFP transgenic rabbit will be an important bioresource and a useful tool for various studies in tissue engineering and regenerative medicine.

  3. High-efficiency Agrobacterium rhizogenes-mediated transformation of heat inducible sHSP18.2-GUS in Nicotiana tabacum.

    PubMed

    Chen, Shih-Cheng; Liu, Hui-Wen; Lee, Kung-Ta; Yamakawa, Takashi

    2007-01-01

    The chimerical gene, Arabidopsis thaliana sHSP18.2 promoter fused to E. coli gusA gene, was Agrobacterium rhizogenes-mediated transformed into Nicotiana tabacum as a heat-regulatable model, and the thermo-inducible expression of GUS activity in N. tabacum transgenic hairy roots was profiled. An activation of A. rhizogenes with acetosyringone (AS) before cocultured with tobacco's leaf disc strongly promoted transgenic hairy roots formation. Transgenic hairy roots formation efficiency of A. rhizogenes precultured with 200 microM AS supplementation was 3.1-fold and 7.5-fold, respectively, compared to the formation efficiency obtained with and without AS supplementation in coculture. Transgenic hairy roots transformed with different AS concentration exhibited a similar pattern of thermo-inducibility after 10 min to 3 h heat treatments detected by GUS expression. The peak of expressed GUS specific activity, 399,530 pmol MUG per mg total protein per min, of the transgenic hairy roots was observed at 48 h after 3 h of 42 degrees C heat treatment, and the expressed GUS specific activity was 7-26 times more than that reported in A. thaliana, tobacco BY-2 cells and Nicotiana plumbaginifolia. Interference caused by AS supplementation on the growth of transgenic hairy roots, time-course of GUS expression and its expression level were not observed.

  4. The suppression of inflammatory macrophage-mediated cytotoxicity and proinflammatory cytokine production by transgenic expression of HLA-E.

    PubMed

    Maeda, Akira; Kawamura, Takuji; Ueno, Takehisa; Usui, Noriaki; Eguchi, Hiroshi; Miyagawa, Shuji

    2013-12-01

    Macrophages participate in xenogenic rejection and represent a major biological obstacle to successful xenotransplantation. The signal inhibitory regulatory protein α (SIRPα) receptor was reported to be a negative regulator of macrophage phagocytic activity via interaction with CD47, its ligand. Because a majority of human macrophages express the inhibitory receptor CD94/NKG2A, which binds specifically to the human leukocyte antigen (HLA)-E and contains immunoreceptor tyrosine-based inhibition motifs (ITIMs), the inhibitory function of HLA class I molecules, HLA-E, on macrophage-mediated cytolysis was examined. The suppressive effect against proinflammatory cytokine production by macrophages was also examined. Complementary DNA (cDNA) of HLA-E, and CD47 were prepared and transfected into swine endothelial cells (SEC). The expression of the modified genes was evaluated by flow cytometry and macrophage-mediated cytolysis was assessed using in vitro generated macrophages. Transgenic expression of HLA-E significantly suppressed the macrophage-mediated cytotoxicity. HLA-E transgenic expression demonstrated a significant suppression equivalent to CD47 transgenic expression. Furthermore, transgenic HLA-E suppressed the production of pro-inflammatory cytokines by inflammatory macrophages. These results indicate that generating transgenic HLA-E pigs might protect porcine grafts from, not only NK cytotoxicity, but also macrophage-mediated cytotoxicity. © 2013 Elsevier B.V. All rights reserved.

  5. The hrpZ Gene of Pseudomonas syringae pv. phaseolicola Enhances Resistance to Rhizomania Disease in Transgenic Nicotiana benthamiana and Sugar Beet

    PubMed Central

    Pavli, Ourania I.; Kelaidi, Georgia I.; Tampakaki, Anastasia P.; Skaracis, George N.

    2011-01-01

    To explore possible sources of transgenic resistance to the rhizomania-causing Beet necrotic yellow vein virus (BNYVV), Nicotiana benthamiana plants were constructed to express the harpin of Pseudomonas syringae pv. phaseolicola (HrpZPsph). The HrpZ protein was expressed as an N-terminal fusion to the PR1 signal peptide (SP/HrpZ) to direct harpin accumulation to the plant apoplast. Transgene integration was verified by mPCR in all primary transformants (T0), while immunoblot analysis confirmed that the protein HrpZPsph was produced and the signal peptide was properly processed. Neither T0 plants nor selfed progeny (T1) showed macroscopically visible necrosis or any other macroscopic phenotypes. However, plants expressing the SP/HrpZPsph showed increased vigor and grew faster in comparison with non-transgenic control plants. Transgenic resistance was assessed after challenge inoculation with BNYVV on T1 progeny by scoring of disease symptoms and by DAS-ELISA at 20 and 30 dpi. Transgenic and control lines showed significant differences in terms of the number of plants that became infected, the timing of infection and the disease symptoms displayed. Plants expressing the SP/HrpZPsph developed localized leaf necrosis in the infection area and had enhanced resistance upon challenge with BNYVV. In order to evaluate the SP/HrpZ-based resistance in the sugar beet host, A. rhizogenes-mediated root transformation was exploited as a transgene expression platform. Upon BNYVV inoculation, transgenic sugar beet hairy roots showed high level of BNYVV resistance. In contrast, the aerial non-transgenic parts of the same seedlings had virus titers that were comparable to those of the seedlings that were untransformed or transformed with wild type R1000 cells. These findings indicate that the transgenically expressed SP/HrpZ protein results in enhanced rhizomania resistance both in a model plant and sugar beet, the natural host of BNYVV. Possible molecular mechanisms underlying the enhanced resistance and plant growth phenotypes observed in SP/HrpZ transgenic plants are discussed. PMID:21394206

  6. The hrpZ gene of Pseudomonas syringae pv. phaseolicola enhances resistance to rhizomania disease in transgenic Nicotiana benthamiana and sugar beet.

    PubMed

    Pavli, Ourania I; Kelaidi, Georgia I; Tampakaki, Anastasia P; Skaracis, George N

    2011-03-04

    To explore possible sources of transgenic resistance to the rhizomania-causing Beet necrotic yellow vein virus (BNYVV), Nicotiana benthamiana plants were constructed to express the harpin of Pseudomonas syringae pv. phaseolicola (HrpZ(Psph)). The HrpZ protein was expressed as an N-terminal fusion to the PR1 signal peptide (SP/HrpZ) to direct harpin accumulation to the plant apoplast. Transgene integration was verified by mPCR in all primary transformants (T0), while immunoblot analysis confirmed that the protein HrpZ(Psph) was produced and the signal peptide was properly processed. Neither T0 plants nor selfed progeny (T1) showed macroscopically visible necrosis or any other macroscopic phenotypes. However, plants expressing the SP/HrpZ(Psph) showed increased vigor and grew faster in comparison with non-transgenic control plants. Transgenic resistance was assessed after challenge inoculation with BNYVV on T1 progeny by scoring of disease symptoms and by DAS-ELISA at 20 and 30 dpi. Transgenic and control lines showed significant differences in terms of the number of plants that became infected, the timing of infection and the disease symptoms displayed. Plants expressing the SP/HrpZ(Psph) developed localized leaf necrosis in the infection area and had enhanced resistance upon challenge with BNYVV. In order to evaluate the SP/HrpZ-based resistance in the sugar beet host, A. rhizogenes-mediated root transformation was exploited as a transgene expression platform. Upon BNYVV inoculation, transgenic sugar beet hairy roots showed high level of BNYVV resistance. In contrast, the aerial non-transgenic parts of the same seedlings had virus titers that were comparable to those of the seedlings that were untransformed or transformed with wild type R1000 cells. These findings indicate that the transgenically expressed SP/HrpZ protein results in enhanced rhizomania resistance both in a model plant and sugar beet, the natural host of BNYVV. Possible molecular mechanisms underlying the enhanced resistance and plant growth phenotypes observed in SP/HrpZ transgenic plants are discussed.

  7. Nuclear receptor TLX stimulates hippocampal neurogenesis and enhances learning and memory in a transgenic mouse model.

    PubMed

    Murai, Kiyohito; Qu, Qiuhao; Sun, GuoQiang; Ye, Peng; Li, Wendong; Asuelime, Grace; Sun, Emily; Tsai, Guochuan E; Shi, Yanhong

    2014-06-24

    The role of the nuclear receptor TLX in hippocampal neurogenesis and cognition has just begun to be explored. In this study, we generated a transgenic mouse model that expresses TLX under the control of the promoter of nestin, a neural precursor marker. Transgenic TLX expression led to mice with enlarged brains with an elongated hippocampal dentate gyrus and increased numbers of newborn neurons. Specific expression of TLX in adult hippocampal dentate gyrus via lentiviral transduction increased the numbers of BrdU(+) cells and BrdU(+)NeuN(+) neurons. Furthermore, the neural precursor-specific expression of the TLX transgene substantially rescued the neurogenic defects of TLX-null mice. Consistent with increased neurogenesis in the hippocampus, the TLX transgenic mice exhibited enhanced cognition with increased learning and memory. These results suggest a strong association between hippocampal neurogenesis and cognition, as well as significant contributions of TLX to hippocampal neurogenesis, learning, and memory.

  8. Discovery of Antibiotics-derived Polymers for Gene Delivery using Combinatorial Synthesis and Cheminformatics Modeling

    PubMed Central

    Potta, Thrimoorthy; Zhen, Zhuo; Grandhi, Taraka Sai Pavan; Christensen, Matthew D.; Ramos, James; Breneman, Curt M.; Rege, Kaushal

    2014-01-01

    We describe the combinatorial synthesis and cheminformatics modeling of aminoglycoside antibiotics-derived polymers for transgene delivery and expression. Fifty-six polymers were synthesized by polymerizing aminoglycosides with diglycidyl ether cross-linkers. Parallel screening resulted in identification of several lead polymers that resulted in high transgene expression levels in cells. The role of polymer physicochemical properties in determining efficacy of transgene expression was investigated using Quantitative Structure-Activity Relationship (QSAR) cheminformatics models based on Support Vector Regression (SVR) and ‘building block’ polymer structures. The QSAR model exhibited high predictive ability, and investigation of descriptors in the model, using molecular visualization and correlation plots, indicated that physicochemical attributes related to both, aminoglycosides and diglycidyl ethers facilitated transgene expression. This work synergistically combines combinatorial synthesis and parallel screening with cheminformatics-based QSAR models for discovery and physicochemical elucidation of effective antibiotics-derived polymers for transgene delivery in medicine and biotechnology. PMID:24331709

  9. Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes.

    PubMed

    Markstein, Michele; Pitsouli, Chrysoula; Villalta, Christians; Celniker, Susan E; Perrimon, Norbert

    2008-04-01

    A major obstacle to creating precisely expressed transgenes lies in the epigenetic effects of the host chromatin that surrounds them. Here we present a strategy to overcome this problem, employing a Gal4-inducible luciferase assay to systematically quantify position effects of host chromatin and the ability of insulators to counteract these effects at phiC31 integration loci randomly distributed throughout the Drosophila genome. We identify loci that can be exploited to deliver precise doses of transgene expression to specific tissues. Moreover, we uncover a previously unrecognized property of the gypsy retrovirus insulator to boost gene expression to levels severalfold greater than at most or possibly all un-insulated loci, in every tissue tested. These findings provide the first opportunity to create a battery of transgenes that can be reliably expressed at high levels in virtually any tissue by integration at a single locus, and conversely, to engineer a controlled phenotypic allelic series by exploiting several loci. The generality of our approach makes it adaptable to other model systems to identify and modify loci for optimal transgene expression.

  10. Transgenic plants expressing GLK1 and CCA1 having increased nitrogen assimilation capacity

    DOEpatents

    Coruzzi, Gloria [New York, NY; Gutierrez, Rodrigo A [Santiago, CL; Nero, Damion C [Woodside, NY

    2012-04-10

    Provided herein are compositions and methods for producing transgenic plants. In specific embodiments, transgenic plants comprise a construct comprising a polynucleotide encoding CCA1, GLK1 or bZIP1, operably linked to a plant-specific promote, wherein the CCA1, GLK1 or bZIP1 is ectopically overexpressed in the transgenic plants, and wherein the promoter is optionally a constitutive or inducible promoter. In other embodiments, transgenic plants in which express a lower level of CCA1, GLK1 or bZIP1 are provided. Also provided herein are commercial products (e.g., pulp, paper, paper products, or lumber) derived from the transgenic plants (e.g., transgenic trees) produced using the methods provided herein.

  11. Overexpression of OsRAA1 Causes Pleiotropic Phenotypes in Transgenic Rice Plants, including Altered Leaf, Flower, and Root Development and Root Response to Gravity1

    PubMed Central

    Ge, Lei; Chen, Hui; Jiang, Jia-Fu; Zhao, Yuan; Xu, Ming-Li; Xu, Yun-Yuan; Tan, Ke-hui; Xu, Zhi-Hong; Chong, Kang

    2004-01-01

    There are very few root genes that have been described in rice as a monocotyledonous model plant so far. Here, the OsRAA1 (Oryza sativa Root Architecture Associated 1) gene has been characterized molecularly. OsRAA1 encodes a 12.0-kD protein that has 58% homology to the AtFPF1 (Flowering Promoting Factor 1) in Arabidopsis, which has not been reported as modulating root development yet. Data of in situ hybridization and OsRAA1∷GUS transgenic plant showed that OsRAA1 expressed specifically in the apical meristem, the elongation zone of root tip, steles of the branch zone, and the young lateral root. Constitutive expression of OsRAA1 under the control of maize (Zea mays) ubiquitin promoter resulted in phenotypes of reduced growth of primary root, increased number of adventitious roots and helix primary root, and delayed gravitropic response of roots in seedlings of rice (Oryza sativa), which are similar to the phenotypes of the wild-type plant treated with auxin. With overexpression of OsRAA1, initiation and growth of adventitious root were more sensitive to treatment of auxin than those of the control plants, while their responses to 9-hydroxyfluorene-9-carboxylic acid in both transgenic line and wild type showed similar results. OsRAA1 constitutive expression also caused longer leaves and sterile florets at the last stage of plant development. Analysis of northern blot and GUS activity staining of OsRAA1∷GUS transgenic plants demonstrated that the OsRAA1 expression was induced by auxin. At the same time, overexpression of OsRAA1 also caused endogenous indole-3-acetic acid to increase. These data suggested that OsRAA1 as a new gene functions in the development of rice root systems, which are mediated by auxin. A positive feedback regulation mechanism of OsRAA1 to indole-3-acetic acid metabolism may be involved in rice root development in nature. PMID:15247372

  12. Migration and differentiation potential of stem cells in the cnidarian Hydractinia analysed in eGFP-transgenic animals and chimeras.

    PubMed

    Künzel, Timo; Heiermann, Reinhard; Frank, Uri; Müller, Werner; Tilmann, Wido; Bause, Markus; Nonn, Anja; Helling, Matthias; Schwarz, Ryan S; Plickert, Günter

    2010-12-01

    To analyse cell migration and the differentiation potential of migratory stem cells in Hydractinia, we generated animals with an eGFP reporter gene stably expressed and transmitted via the germline. The transgene was placed under the control of two different actin promoters and the promoter of elongation factor-1α. One actin promoter (Act-II) and the EF-1α promoter enabled expression of the transgene in all cells, the other actin promoter (Act-I) in epithelial and gametogenic cells, but not in the pluripotent migratory stem cells. We produced chimeric animals consisting of histocompatible wild type and transgenic parts. When the transgene was under the control of the epithelial cell specific actin-I promoter, non-fluorescent transgenic stem cells immigrated into wild type tissue, stopped migration and differentiated into epithelial cells which then commenced eGFP-expression. Migratory stem cells are therefore pluripotent and can give rise not only to germ cells, nematocytes and nerve cells, but also to epithelial cells. While in somatic cells expression of the act-I promoter was restricted to epithelial cells it became also active in gametogenesis. The act-I gene is expressed in spermatogonia, oogonia and oocytes. In males the expression pattern showed that migratory stem cells are the precursors of both the spermatogonia and their somatic envelopes. Comparative expression studies using the promoters of the actin-II gene and the elongation factor-1α gene revealed the potential of transgenic techniques to trace the development of the nervous system. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Arm-Gal4 inheritance influences development and lifespan in Drosophila melanogaster.

    PubMed

    Slade, F A; Staveley, B E

    2015-10-19

    The UAS-Gal4 ectopic expression system is a widely used and highly valued tool that allows specific gene expression in Drosophila melanogaster. Yeast transcription factor Gal4 can be directed using D. melanogaster transcriptional control elements, and is often assumed to have little effect on the organism. By evaluation of the consequences of maternal and paternal inheritance of a Gal4 transgene under the transcriptional regulation of armadillo control elements (arm-Gal4), we demonstrated that Gal4 expression could be detrimental to development and longevity. Male progeny expressing arm-Gal4 in the presence of UAS-lacZ transgene had reduced numbers and size of ommatidia, compared to flies expressing UAS-lacZ transgene under the control of other Gal4 transgenes. Aged at 25°C, the median life span of male flies with maternally inherited elav-Gal4 was 70 days, without a responding transgene or with UAS-lacZ. The median life span of maternally inherited arm-Gal4 male flies without a responding transgene was 48 days, and 40 days with the UAS-lacZ transgene. A partial rescue of this phenotype was observed with the expression of UAS-lacZ under paternal arm-Gal4 control, having an average median lifespan of 60 days. This data suggests that arm-Gal4 has detrimental effects on Drosophila development and lifespan that are directly dependent upon parental inheritance, and that the benign responder and reporter gene UAS-lacZ may influence D. melanogaster development. These findings should be taken into consideration during the design and execution of UAS-Gal4 expression experiments.

  14. Single-Construct Polycistronic Doxycycline-Inducible Vectors Improve Direct Cardiac Reprogramming and Can Be Used to Identify the Critical Timing of Transgene Expression.

    PubMed

    Umei, Tomohiko C; Yamakawa, Hiroyuki; Muraoka, Naoto; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Kurotsu, Shota; Tamura, Fumiya; Osakabe, Rina; Tani, Hidenori; Nara, Kaori; Miyoshi, Hiroyuki; Fukuda, Keiichi; Ieda, Masaki

    2017-08-19

    Direct reprogramming is a promising approach in regenerative medicine. Overexpression of the cardiac transcription factors Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Hand2 (GHMT) directly reprogram fibroblasts into cardiomyocyte-like cells (iCMs). However, the critical timing of transgene expression and the molecular mechanisms for cardiac reprogramming remain unclear. The conventional doxycycline (Dox)-inducible temporal transgene expression systems require simultaneous transduction of two vectors (pLVX-rtTA/pLVX-cDNA) harboring the reverse tetracycline transactivator (rtTA) and the tetracycline response element (TRE)-controlled transgene, respectively, leading to inefficient cardiac reprogramming. Herein, we developed a single-construct-based polycistronic Dox-inducible vector (pDox-cDNA) expressing both the rtTA and TRE-controlled transgenes. Fluorescence activated cell sorting (FACS) analyses, quantitative RT-PCR, and immunostaining revealed that pDox-GMT increased cardiac reprogramming three-fold compared to the conventional pLVX-rtTA/pLVX-GMT. After four weeks, pDox-GMT-induced iCMs expressed multiple cardiac genes, produced sarcomeric structures, and beat spontaneously. Co-transduction of pDox-Hand2 with retroviral pMX-GMT increased cardiac reprogramming three-fold compared to pMX-GMT alone. Temporal Dox administration revealed that Hand2 transgene expression is critical during the first two weeks of cardiac reprogramming. Microarray analyses demonstrated that Hand2 represses cell cycle-promoting genes and enhances cardiac reprogramming. Thus, we have developed an efficient temporal transgene expression system, which could be invaluable in the study of cardiac reprogramming.

  15. Single-Construct Polycistronic Doxycycline-Inducible Vectors Improve Direct Cardiac Reprogramming and Can Be Used to Identify the Critical Timing of Transgene Expression

    PubMed Central

    Umei, Tomohiko C.; Yamakawa, Hiroyuki; Muraoka, Naoto; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Kurotsu, Shota; Tamura, Fumiya; Osakabe, Rina; Tani, Hidenori; Nara, Kaori; Miyoshi, Hiroyuki; Fukuda, Keiichi; Ieda, Masaki

    2017-01-01

    Direct reprogramming is a promising approach in regenerative medicine. Overexpression of the cardiac transcription factors Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Hand2 (GHMT) directly reprogram fibroblasts into cardiomyocyte-like cells (iCMs). However, the critical timing of transgene expression and the molecular mechanisms for cardiac reprogramming remain unclear. The conventional doxycycline (Dox)-inducible temporal transgene expression systems require simultaneous transduction of two vectors (pLVX-rtTA/pLVX-cDNA) harboring the reverse tetracycline transactivator (rtTA) and the tetracycline response element (TRE)-controlled transgene, respectively, leading to inefficient cardiac reprogramming. Herein, we developed a single-construct-based polycistronic Dox-inducible vector (pDox-cDNA) expressing both the rtTA and TRE-controlled transgenes. Fluorescence activated cell sorting (FACS) analyses, quantitative RT-PCR, and immunostaining revealed that pDox-GMT increased cardiac reprogramming three-fold compared to the conventional pLVX-rtTA/pLVX-GMT. After four weeks, pDox-GMT-induced iCMs expressed multiple cardiac genes, produced sarcomeric structures, and beat spontaneously. Co-transduction of pDox-Hand2 with retroviral pMX-GMT increased cardiac reprogramming three-fold compared to pMX-GMT alone. Temporal Dox administration revealed that Hand2 transgene expression is critical during the first two weeks of cardiac reprogramming. Microarray analyses demonstrated that Hand2 represses cell cycle-promoting genes and enhances cardiac reprogramming. Thus, we have developed an efficient temporal transgene expression system, which could be invaluable in the study of cardiac reprogramming. PMID:28825623

  16. Lent-On-Plus Lentiviral vectors for conditional expression in human stem cells.

    PubMed

    Benabdellah, Karim; Muñoz, Pilar; Cobo, Marién; Gutierrez-Guerrero, Alejandra; Sánchez-Hernández, Sabina; Garcia-Perez, Angélica; Anderson, Per; Carrillo-Gálvez, Ana Belén; Toscano, Miguel G; Martin, Francisco

    2016-11-17

    Conditional transgene expression in human stem cells has been difficult to achieve due to the low efficiency of existing delivery methods, the strong silencing of the transgenes and the toxicity of the regulators. Most of the existing technologies are based on stem cells clones expressing appropriate levels of tTA or rtTA transactivators (based on the TetR-VP16 chimeras). In the present study, we aim the generation of Tet-On all-in-one lentiviral vectors (LVs) that tightly regulate transgene expression in human stem cells using the original TetR repressor. By using appropriate promoter combinations and shielding the LVs with the Is2 insulator, we have constructed the Lent-On-Plus Tet-On system that achieved efficient transgene regulation in human multipotent and pluripotent stem cells. The generation of inducible stem cell lines with the Lent-ON-Plus LVs did not require selection or cloning, and transgene regulation was maintained after long-term cultured and upon differentiation toward different lineages. To our knowledge, Lent-On-Plus is the first all-in-one vector system that tightly regulates transgene expression in bulk populations of human pluripotent stem cells and its progeny.

  17. Lent-On-Plus Lentiviral vectors for conditional expression in human stem cells

    PubMed Central

    Benabdellah, Karim; Muñoz, Pilar; Cobo, Marién; Gutierrez-Guerrero, Alejandra; Sánchez-Hernández, Sabina; Garcia-Perez, Angélica; Anderson, Per; Carrillo-Gálvez, Ana Belén; Toscano, Miguel G.; Martin, Francisco

    2016-01-01

    Conditional transgene expression in human stem cells has been difficult to achieve due to the low efficiency of existing delivery methods, the strong silencing of the transgenes and the toxicity of the regulators. Most of the existing technologies are based on stem cells clones expressing appropriate levels of tTA or rtTA transactivators (based on the TetR-VP16 chimeras). In the present study, we aim the generation of Tet-On all-in-one lentiviral vectors (LVs) that tightly regulate transgene expression in human stem cells using the original TetR repressor. By using appropriate promoter combinations and shielding the LVs with the Is2 insulator, we have constructed the Lent-On-Plus Tet-On system that achieved efficient transgene regulation in human multipotent and pluripotent stem cells. The generation of inducible stem cell lines with the Lent-ON-Plus LVs did not require selection or cloning, and transgene regulation was maintained after long-term cultured and upon differentiation toward different lineages. To our knowledge, Lent-On-Plus is the first all-in-one vector system that tightly regulates transgene expression in bulk populations of human pluripotent stem cells and its progeny. PMID:27853296

  18. Deletion of the Fcγ Receptor IIb in Thymic Stromal Lymphopoietin Transgenic Mice Aggravates Membranoproliferative Glomerulonephritis

    PubMed Central

    Mühlfeld, Anja S.; Segerer, Stephan; Hudkins, Kelly; Carling, Matthew D.; Wen, Min; Farr, Andrew G.; Ravetch, Jeffrey V.; Alpers, Charles E.

    2003-01-01

    Engagement of immunoglobulin-binding receptors (FcγR) on leukocytes and other cell types is one means by which immunoglobulins and immune complexes activate effector cells. One of these FcγRs, FcγRIIb, is thought to contribute to protection from autoimmune disease by down-regulation of B-cell responsiveness and myeloid cell activation. We assessed the role of FcγRIIb in a mouse model of cryoglobulin-associated membranoproliferative glomerulonephritis induced by overexpression of thymic stromal lymphopoietin (TSLP). TSLP transgenic mice were crossbred with animals deficient for FcγRIIb on the same genetic background (C57BL/6). Renal pathology was assessed in female and male animals (wild-type, FcγRIIb−/−, TSLP transgenic, and combined TSLP transgenic/FcγRIIb−/− mice) after 50 and 120 days, respectively. FcγRIIb−/− mice had no significant renal pathology, whereas overexpression of TSLP induced a membranoproliferative glomerulonephritis, as previously established. TSLP transgenic FcγRIIb−/− mice appeared sick with increased mortality. Kidney function was significantly impaired in male mice corresponding to aggravated glomerular pathology with increases in glomerular matrix and cellularity. This resulted from both a large influx of infiltrating macrophages and increased cellular proliferation. These results emphasize the important role of FcγRIIb in regulating immune responses and suggest that modulation of Fcγ receptor activation or expression may be a useful therapeutic approach for treating glomerular diseases. PMID:12937154

  19. The hydroxylated form of docosahexaenoic acid (DHA-H) modifies the brain lipid composition in a model of Alzheimer's disease, improving behavioral motor function and survival.

    PubMed

    Mohaibes, Raheem J; Fiol-deRoque, María A; Torres, Manuel; Ordinas, Margarita; López, David J; Castro, José A; Escribá, Pablo V; Busquets, Xavier

    2017-09-01

    We have compared the effect of the commonly used ω-3 fatty acid, docosahexaenoic acid ethyl ester (DHA-EE), and of its 2-hydroxylated DHA form (DHA-H), on brain lipid composition, behavior and lifespan in a new human transgenic Drosophila melanogaster model of Alzheimer's disease (AD). The transgenic flies expressed human Aβ42 and tau, and the overexpression of these human transgenes in the CNS of these flies produced progressive defects in motor function (antigeotaxic behavior) while reducing the animal's lifespan. Here, we demonstrate that both DHA-EE and DHA-H increase the longer chain fatty acids (≥18C) species in the heads of the flies, although only DHA-H produced an unknown chromatographic peak that corresponded to a non-hydroxylated lipid. In addition, only treatment with DHA-H prevented the abnormal climbing behavior and enhanced the lifespan of these transgenic flies. These benefits of DHA-H were confirmed in the well characterized transgenic PS1/APP mouse model of familial AD (5xFAD mice), mice that develop defects in spatial learning and in memory, as well as behavioral deficits. Hence, it appears that the modulation of brain lipid composition by DHA-H could have remedial effects on AD associated neurodegeneration. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017. Published by Elsevier B.V.

  20. Overexpression of a novel soybean gene modulating Na+ and K+ transport enhances salt tolerance in transgenic tobacco plants.

    PubMed

    Chen, Huatao; He, Hui; Yu, Deyue

    2011-01-01

    Salt is an important factor affecting the growth and development of soybean in saline soil. In this study, a novel soybean gene encoding a transporter (GmHKT1) was identified and its function analyzed using transgenic plants. GmHKT1 encoded a protein of 419 amino acids, with a potential molecular mass of 47.06 kDa and a predicted pI value of 8.59. Comparison of the genomic and cDNA sequences of GmHKT1 identified no intron. The deduced amino acid sequence of GmHKT1 showed 38-49% identity with other plant HKT-like sequences. RT-PCR analysis showed that the expression of GmHKT1 was upregulated by salt stress (150 mM NaCl) in roots and leaves but not in stems. Overexpression of GmHKT1 significantly enhanced the tolerance of transgenic tobacco plants to salt stress, compared with non-transgenic plants. To investigate the role of GmHKT1 in K(+) and Na(+) transport, we compared K(+) and Na(+) accumulation in roots and shoots of wild-type and transgenic tobacco plants. The results suggested that GmHKT1 is a transporter that affected K(+) and Na(+) transport in roots and shoots, and regulated Na(+) /K(+) homeostasis in these organs. Our findings suggest that GmHKT1 plays an important role in response to salt stress and would be useful in engineering crop plants for enhanced tolerance to salt stress. Copyright © Physiologia Plantarum 2010.

  1. UMG Lenti: novel lentiviral vectors for efficient transgene- and reporter gene expression in human early hematopoietic progenitors.

    PubMed

    Chiarella, Emanuela; Carrà, Giovanna; Scicchitano, Stefania; Codispoti, Bruna; Mega, Tiziana; Lupia, Michela; Pelaggi, Daniela; Marafioti, Maria G; Aloisio, Annamaria; Giordano, Marco; Nappo, Giovanna; Spoleti, Cristina B; Grillone, Teresa; Giovannone, Emilia D; Spina, Raffaella; Bernaudo, Francesca; Moore, Malcolm A S; Bond, Heather M; Mesuraca, Maria; Morrone, Giovanni

    2014-01-01

    Lentiviral vectors are widely used to investigate the biological properties of regulatory proteins and/or of leukaemia-associated oncogenes by stably enforcing their expression in hematopoietic stem and progenitor cells. In these studies it is critical to be able to monitor and/or sort the infected cells, typically via fluorescent proteins encoded by the modified viral genome. The most popular strategy to ensure co-expression of transgene and reporter gene is to insert between these cDNAs an IRES element, thus generating bi-cistronic mRNAs whose transcription is driven by a single promoter. However, while the product of the gene located upstream of the IRES is generally abundantly expressed, the translation of the downstream cDNA (typically encoding the reporter protein) is often inconsistent, which hinders the detection and the isolation of transduced cells. To overcome these limitations, we developed novel lentiviral dual-promoter vectors (named UMG-LV5 and -LV6) where transgene expression is driven by the potent UBC promoter and that of the reporter protein, EGFP, by the minimal regulatory element of the WASP gene. These vectors, harboring two distinct transgenes, were tested in a variety of human haematopoietic cell lines as well as in primary human CD34+ cells in comparison with the FUIGW vector that contains the expression cassette UBC-transgene-IRES-EGFP. In these experiments both UMG-LV5 and UMG-LV6 yielded moderately lower transgene expression than FUIGW, but dramatically higher levels of EGFP, thereby allowing the easy distinction between transduced and non-transduced cells. An additional construct was produced, in which the cDNA encoding the reporter protein is upstream, and the transgene downstream of the IRES sequence. This vector, named UMG-LV11, proved able to promote abundant expression of both transgene product and EGFP in all cells tested. The UMG-LVs represent therefore useful vectors for gene transfer-based studies in hematopoietic stem and progenitor cells, as well as in non-hematopoietic cells.

  2. Expression of hsrω-RNAi transgene prior to heat shock specifically compromises accumulation of heat shock-induced Hsp70 in Drosophila melanogaster.

    PubMed

    Singh, Anand K; Lakhotia, Subhash C

    2016-01-01

    A delayed organismic lethality was reported in Drosophila following heat shock when developmentally active and stress-inducible noncoding hsrω-n transcripts were down-regulated during heat shock through hs-GAL4-driven expression of the hsrω-RNAi transgene, despite the characteristic elevation of all heat shock proteins (Hsp), including Hsp70. Here, we show that hsrω-RNAi transgene expression prior to heat shock singularly prevents accumulation of Hsp70 in all larval tissues without affecting transcriptional induction of hsp70 genes and stability of their transcripts. Absence of the stress-induced Hsp70 accumulation was not due to higher levels of Hsc70 in hsrω-RNAi transgene-expressing tissues. Inhibition of proteasomal activity during heat shock restored high levels of the induced Hsp70, suggesting very rapid degradation of the Hsp70 even during the stress when hsrω-RNAi transgene was expressed ahead of heat shock. Unexpectedly, while complete absence of hsrω transcripts in hsrω (66) homozygotes (hsrω-null) did not prevent high accumulation of heat shock-induced Hsp70, hsrω-RNAi transgene expression in hsrω-null background blocked Hsp70 accumulation. Nonspecific RNAi transgene expression did not affect Hsp70 induction. These observations reveal that, under certain conditions, the stress-induced Hsp70 can be selectively and rapidly targeted for proteasomal degradation even during heat shock. In the present case, the selective degradation of Hsp70 does not appear to be due to down-regulation of the hsrω-n transcripts per se; rather, this may be an indirect effect of the expression of hsrω-RNAi transgene whose RNA products may titrate away some RNA-binding proteins which may also be essential for stability of the induced Hsp70.

  3. Enhanced transgene expression in rice following selection controlled by weak promoters.

    PubMed

    Zhou, Jie; Yang, Yong; Wang, Xuming; Yu, Feibo; Yu, Chulang; Chen, Juan; Cheng, Ye; Yan, Chenqi; Chen, Jianping

    2013-03-27

    Techniques that enable high levels of transgene expression in plants are attractive for the commercial production of plant-made recombinant pharmaceutical proteins or other gene transfer related strategies. The conventional way to increase the yield of desired transgenic products is to use strong promoters to control the expression of the transgene. Although many such promoters have been identified and characterized, the increase obtainable from a single promoter is ultimately limited to a certain extent. In this study, we report a method to magnify the effect of a single promoter by using a weak promoter-based selection system in transgenic rice. tCUP1, a fragment derived from the tobacco cryptic promoter (tCUP), was tested for its activity in rice by fusion to both a β-glucuronidase (GUS) reporter and a hygromycin phosphotransferase (HPT) selectable marker. The tCUP1 promoter allowed the recovery of transformed rice plants and conferred tissue specific expression of the GUS reporter, but was much weaker than the CaMV 35S promoter in driving a selectable marker for growth of resistant calli. However, in the resistant calli and regenerated transgenic plants selected by the use of tCUP1, the constitutive expression of green fluorescent protein (GFP) was dramatically increased as a result of the additive effect of multiple T-DNA insertions. The correlation between attenuated selection by a weak promoter and elevation of copy number and foreign gene expression was confirmed by using another relatively weak promoter from nopaline synthase (Nos). The use of weak promoter derived selectable markers leads to a high T-DNA copy number and then greatly increases the expression of the foreign gene. The method described here provides an effective approach to robustly enhance the expression of heterogenous transgenes through copy number manipulation in rice.

  4. Bioinspired Star-Shaped Poly(l-lysine) Polypeptides: Efficient Polymeric Nanocarriers for the Delivery of DNA to Mesenchymal Stem Cells.

    PubMed

    Walsh, David P; Murphy, Robert D; Panarella, Angela; Raftery, Rosanne M; Cavanagh, Brenton; Simpson, Jeremy C; O'Brien, Fergal J; Heise, Andreas; Cryan, Sally-Ann

    2018-05-07

    The field of tissue engineering is increasingly recognizing that gene therapy can be employed for modulating in vivo cellular response thereby guiding tissue regeneration. However, the field lacks a versatile and biocompatible gene delivery platform capable of efficiently delivering transgenes to mesenchymal stem cells (MSCs), a cell type often refractory to transfection. Herein, we describe the extensive and systematic exploration of three architectural variations of star-shaped poly(l-lysine) polypeptide (star-PLL) with varying number and length of poly(l-lysine) arms as potential nonviral gene delivery vectors for MSCs. We demonstrate that star-PLL vectors are capable of self-assembling with pDNA to form stable, cationic nanomedicines. Utilizing high content screening, live cell imaging, and mechanistic uptake studies we confirm the intracellular delivery of pDNA by star-PLLs to MSCs is a rapid process, which likely proceeds via a clathrin-independent mechanism. We identify a star-PLL composition with 64 poly(l-lysine) arms and five l-lysine subunits per arm as a particularly efficient vector that is capable of delivering both reporter genes and the therapeutic transgenes bone morphogenetic protein-2 and vascular endothelial growth factor to MSCs. This composition facilitated a 1000-fold increase in transgene expression in MSCs compared to its linear analogue, linear poly(l-lysine). Furthermore, it demonstrated comparable transgene expression to the widely used vector polyethylenimine using a lower pDNA dose with significantly less cytotoxicity. Overall, this study illustrates the ability of the star-PLL vectors to facilitate efficient, nontoxic nucleic acid delivery to MSCs thereby functioning as an innovative nanomedicine platform for tissue engineering applications.

  5. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production.

    PubMed

    Yan, Huiru; Jia, Haihong; Chen, Xiaobo; Hao, Lili; An, Hailong; Guo, Xingqi

    2014-12-01

    Drought and high salinity are two major environmental factors that significantly limit the productivity of agricultural crops worldwide. WRKY transcription factors play essential roles in the adaptation of plants to abiotic stresses. However, WRKY genes involved in drought and salt tolerance in cotton (Gossypium hirsutum) are largely unknown. Here, a group IId WRKY gene, GhWRKY17, was isolated and characterized. GhWRKY17 was found to be induced after exposure to drought, salt, H2O2 and ABA. The constitutive expression of GhWRKY17 in Nicotiana benthamiana remarkably reduced plant tolerance to drought and salt stress, as determined through physiological analyses of the germination rate, root growth, survival rate, leaf water loss and Chl content. GhWRKY17 transgenic plants were observed to be more sensitive to ABA-mediated seed germination and root growth. However, overexpressing GhWRKY17 in N. benthamiana impaired ABA-induced stomatal closure. Furthermore, we found that GhWRKY17 modulated the increased sensitivity of plants to drought by reducing the level of ABA, and transcript levels of ABA-inducible genes, including AREB, DREB, NCED, ERD and LEA, were clearly repressed under drought and salt stress conditions. Consistent with the accumulation of reactive oxygen species (ROS), reduced proline contents and enzyme activities, elevated electrolyte leakage and malondialdehyde, and lower expression of ROS-scavenging genes, including APX, CAT and SOD, the GhWRKY17 transgenic plants exhibited reduced tolerance to oxidative stress compared with wild-type plants. These results therefore indicate that GhWRKY17 responds to drought and salt stress through ABA signaling and the regulation of cellular ROS production in plants. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. FIN219/JAR1 and cryptochrome1 antagonize each other to modulate photomorphogenesis under blue light in Arabidopsis

    PubMed Central

    2018-01-01

    Plant development is affected by the integration of light and phytohormones, including jasmonates (JAs). To address the molecular mechanisms of possible interactions between blue light and JA signaling in Arabidopsis thaliana, we used molecular and transgenic approaches to understand the regulatory relationships between FAR-RED INSENSITIVE 219 (FIN219)/JASMONATE RESISTANT1 (JAR1) and the blue-light photoreceptor cryptochrome1 (CRY1). FIN219 overexpression in the wild type resulted in a short-hypocotyl phenotype under blue light. However, FIN219 overexpression in cry1, cry2 and cry1cry2 double mutant backgrounds resulted in phenotypes similar to their respective mutant backgrounds, which suggests that FIN219 function may require blue light photoreceptors. Intriguingly, FIN219 overexpression in transgenic plants harboring ectopic expression of the C terminus of CRY1 (GUS-CCT1), which exhibits a hypersensitive short-hypocotyl phenotype in all light conditions including darkness, led to a rescued phenotype under all light conditions except red light. Further expression studies showed mutual suppression between FIN219 and CRY1 under blue light. Strikingly, FIN219 overexpression in GUS-CCT1 transgenic lines (FIN219-OE/GUS-CCT1) abolished GUS-CCT1 fusion protein under blue light, whereas GUS-CCT1 fusion protein was stable in the fin219-2 mutant background (fin219-2/GUS-CCT1). Moreover, FIN219 strongly interacted with COP1 under blue light, and methyl JA (MeJA) treatment enhanced the interaction between FIN219 and GUS-CCT1 under blue light. Furthermore, FIN219 level affected GUS-CCT1 seedling responses such as anthocyanin accumulation and bacterial resistance under various light conditions and MeJA treatment. Thus, FIN219/JAR1 and CRY1 antagonize each other to modulate photomorphogenic development of seedlings and stress responses in Arabidopsis. PMID:29561841

  7. FIN219/JAR1 and cryptochrome1 antagonize each other to modulate photomorphogenesis under blue light in Arabidopsis.

    PubMed

    Chen, Huai-Ju; Fu, Tsu-Yu; Yang, Shao-Li; Hsieh, Hsu-Liang

    2018-03-01

    Plant development is affected by the integration of light and phytohormones, including jasmonates (JAs). To address the molecular mechanisms of possible interactions between blue light and JA signaling in Arabidopsis thaliana, we used molecular and transgenic approaches to understand the regulatory relationships between FAR-RED INSENSITIVE 219 (FIN219)/JASMONATE RESISTANT1 (JAR1) and the blue-light photoreceptor cryptochrome1 (CRY1). FIN219 overexpression in the wild type resulted in a short-hypocotyl phenotype under blue light. However, FIN219 overexpression in cry1, cry2 and cry1cry2 double mutant backgrounds resulted in phenotypes similar to their respective mutant backgrounds, which suggests that FIN219 function may require blue light photoreceptors. Intriguingly, FIN219 overexpression in transgenic plants harboring ectopic expression of the C terminus of CRY1 (GUS-CCT1), which exhibits a hypersensitive short-hypocotyl phenotype in all light conditions including darkness, led to a rescued phenotype under all light conditions except red light. Further expression studies showed mutual suppression between FIN219 and CRY1 under blue light. Strikingly, FIN219 overexpression in GUS-CCT1 transgenic lines (FIN219-OE/GUS-CCT1) abolished GUS-CCT1 fusion protein under blue light, whereas GUS-CCT1 fusion protein was stable in the fin219-2 mutant background (fin219-2/GUS-CCT1). Moreover, FIN219 strongly interacted with COP1 under blue light, and methyl JA (MeJA) treatment enhanced the interaction between FIN219 and GUS-CCT1 under blue light. Furthermore, FIN219 level affected GUS-CCT1 seedling responses such as anthocyanin accumulation and bacterial resistance under various light conditions and MeJA treatment. Thus, FIN219/JAR1 and CRY1 antagonize each other to modulate photomorphogenic development of seedlings and stress responses in Arabidopsis.

  8. Stomatal Density Influences Leaf Water and Leaf Wax D/H Values in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Lee, H.; Feakins, S. J.; Sternberg, L. O.

    2014-12-01

    The hydrogen isotopic composition (δD) of plant leaf wax is a powerful tool to study the hydrology of past and present environments. The δD value of leaf waxes is known to primarily reflect the δD value of source water, modified by biological fractionations commonly summarized as the 'net or apparent' fractionation. It remains a challenge, however, to quantitatively relate the isotopic composition of the end product (wax) back to that of the precursor (water) because multiple isotope effects contributing to the net fractionation are not yet well understood. Transgenic variants have heretofore unexplored potential to isolate individual isotope effects. Here we report the first hydrogen isotopic measurements from transgenic Arabidopsis thaliana plants with calculations of leaf water enrichment, net and biosynthetic fractionation values from measured δD of plant waters and leaf wax n-alkanes. We employed transgenic Arabidopsis leaves, engineered to have different stomatal density, by differential expression of the stomatal growth hormone stomagen. Comparison of variants and wild types allow us to isolate the effects of stomatal density on leaf water and the net fractionation expressed by leaf wax biomarkers. Results show that transgenic leaves with denser pores have more enriched leaf water and leaf wax δD values than wild type and even more so than transgenic leaves with sparse stomata (difference of 10 ‰). Our findings that stomatal density controls leaf water and leaf wax δD values adds insights into the cause of variations in net fractionations between species, as well as suggesting that geological variations in stomatal density may modulate the sedimentary leaf wax δD record. In nature, stomatal density varies between species and environments, and all other factors being equal, this will contribute to variations in fractionations observed. Over geological history, lower stomatal densities occur at times of elevated pCO2; our findings predict reduced leaf water isotopic enrichment and larger net fractionations during these greenhouse conditions. Future work involving transgenic plants holds considerable potential to isolate additional factors which may influence the net fractionation between source water and leaf waxes adding to our fundamental understanding of this proxy.

  9. Generation of α-1,3-galactosyltransferase knocked-out transgenic cloned pigs with knocked-in five human genes.

    PubMed

    Kwon, Dae-Jin; Kim, Dong-Hwan; Hwang, In-Sul; Kim, Dong-Ern; Kim, Hyung-Joo; Kim, Jang-Seong; Lee, Kichoon; Im, Gi-Sun; Lee, Jeong-Woong; Hwang, Seongsoo

    2017-02-01

    Recent progress in genetic manipulation of pigs designated for xenotransplantation ha6s shown considerable promise on xenograft survival in primates. However, genetic modification of multiple genes in donor pigs by knock-out and knock-in technologies, aiming to enhance immunological tolerance against transplanted organs in the recipients, has not been evaluated for health issues of donor pigs. We produced transgenic Massachusetts General Hospital piglets by knocking-out the α-1,3-galactosyltransferase (GT) gene and by simultaneously knocking-in an expression cassette containing five different human genes including, DAF, CD39, TFPI, C1 inhibitor (C1-INH), and TNFAIP3 (A20) [GT -(DAF/CD39/TFPI/C1-INH/TNFAIP3)/+ ] that are connected by 2A peptide cleavage sequences to release individual proteins from a single translational product. All five individual protein products were successfully produced as determined by western blotting of umbilical cords from the newborn transgenic pigs. Although gross observation and histological examination revealed no significant pathological abnormality in transgenic piglets, hematological examination found that the transgenic piglets had abnormally low numbers of platelets and WBCs, including neutrophils, eosinophils, basophils, and lymphocytes. However, transgenic piglets had similar numbers of RBC and values of parameters related to RBC compared to the control littermate piglets. These data suggest that transgenic expression of those human genes in pigs impaired hematopoiesis except for erythropoiesis. In conclusion, our data suggest that transgenic expression of up to five different genes can be efficiently achieved and provide the basis for determining optimal dosages of transgene expression and combinations of the transgenes to warrant production of transgenic donor pigs without health issues.

  10. OsACA6, a P-type IIB Ca²⁺ ATPase promotes salinity and drought stress tolerance in tobacco by ROS scavenging and enhancing the expression of stress-responsive genes.

    PubMed

    Huda, Kazi M K; Banu, M Sufara Akhter; Garg, Bharti; Tula, Suresh; Tuteja, Renu; Tuteja, Narendra

    2013-12-01

    Calcium (Ca²⁺) regulates several signalling pathways involved in growth, development and stress tolerance. Cellular Ca²⁺ homeostasis is achieved by the combined action of channels, pumps and antiporters, but direct evidence for a role of Ca²⁺ATPase pumps in stress tolerance is lacking. Here we report the characterization of a Ca²⁺ ATPase gene (OsACA6) from Oryza sativa, and elucidate its functions in stress tolerance. OsACA6 transcript levels are enhanced in response to salt, drought, abscisic acid and heat. In vivo localization identified plasma membranes as an integration site for the OsACA6-GFP fusion protein. Using transgenic tobacco lines, we demonstrate that over-expression of OsACA6 is triggered during salinity and drought stresses. The enhanced tolerance to these stresses was confirmed by changes in several physiological indices, including water loss rate, photosynthetic efficiency, cell membrane stability, germination, survival rate, malondialdehyde content, electrolyte leakage and increased proline accumulation. Furthermore, over-expressing lines also showed higher leaf chlorophyll and reduced accumulation of H₂O₂ and Na⁺ ions compared to the wild-type. Reduced accumulation of reactive oxygen species (ROS) was observed in transgenic lines. The increased proline accumulation and ROS scavenging enzyme activities in transgenic plants over-expressing OsACA6 efficiently modulate the ROS machinery and proline biosynthesis through an integrative mechanism. Transcriptional profiling of these plants revealed altered expression of genes encoding many transcription factors, stress- and disease-related proteins, as well as signalling components. These results suggest that Ca²⁺ ATPases have diverse roles as regulators of many stress signalling pathways, leading to plant growth, development and stress tolerance. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  11. Identification and overexpression of a knotted1-like transcription factor in switchgrass ( Panicum virgatum L.) for lignocellulosic feedstock improvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wuddineh, Wegi A.; Mazarei, Mitra; Zhang, Ji -Yi

    High biomass production and wide adaptation has made switchgrass ( Panicum virgatum L.) an important candidate lignocellulosic bioenergy crop. One major limitation of this and other lignocellulosic feedstocks is the recalcitrance of complex carbohydrates to hydrolysis for conversion to biofuels. Lignin is the major contributor to recalcitrance as it limits the accessibility of cell wall carbohydrates to enzymatic breakdown into fermentable sugars. Therefore, genetic manipulation of the lignin biosynthesis pathway is one strategy to reduce recalcitrance. Here, we identified a switchgrass Knotted1 transcription factor, PvKN1, with the aim of genetically engineering switchgrass for reduced biomass recalcitrance for biofuel production. Genemore » expression of the endogenous PvKN1 gene was observed to be highest in young inflorescences and stems. Ectopic overexpression of PvKN1 in switchgrass altered growth, especially in early developmental stages. Transgenic lines had reduced expression of most lignin biosynthetic genes accompanied by a reduction in lignin content suggesting the involvement of PvKN1 in the broad regulation of the lignin biosynthesis pathway. Moreover, the reduced expression of the Gibberellin 20-oxidase (GA20ox) gene in tandem with the increased expression of Gibberellin 2-oxidase (GA2ox) genes in transgenic PvKN1 lines suggest that PvKN1 may exert regulatory effects via modulation of GA signaling. Furthermore, overexpression of PvKN1 altered the expression of cellulose and hemicellulose biosynthetic genes and increased sugar release efficiency in transgenic lines. Our findings demonstrated that switchgrass PvKN1 is a putative ortholog of maize KN1 that is linked to plant lignification and cell wall and development traits as a major regulatory gene. Therefore, targeted overexpression of PvKN1 in bioenergy feedstocks may provide one feasible strategy for reducing biomass recalcitrance and simultaneously improving plant growth characteristics.« less

  12. Identification and overexpression of a knotted1-like transcription factor in switchgrass ( Panicum virgatum L.) for lignocellulosic feedstock improvement

    DOE PAGES

    Wuddineh, Wegi A.; Mazarei, Mitra; Zhang, Ji -Yi; ...

    2016-04-28

    High biomass production and wide adaptation has made switchgrass ( Panicum virgatum L.) an important candidate lignocellulosic bioenergy crop. One major limitation of this and other lignocellulosic feedstocks is the recalcitrance of complex carbohydrates to hydrolysis for conversion to biofuels. Lignin is the major contributor to recalcitrance as it limits the accessibility of cell wall carbohydrates to enzymatic breakdown into fermentable sugars. Therefore, genetic manipulation of the lignin biosynthesis pathway is one strategy to reduce recalcitrance. Here, we identified a switchgrass Knotted1 transcription factor, PvKN1, with the aim of genetically engineering switchgrass for reduced biomass recalcitrance for biofuel production. Genemore » expression of the endogenous PvKN1 gene was observed to be highest in young inflorescences and stems. Ectopic overexpression of PvKN1 in switchgrass altered growth, especially in early developmental stages. Transgenic lines had reduced expression of most lignin biosynthetic genes accompanied by a reduction in lignin content suggesting the involvement of PvKN1 in the broad regulation of the lignin biosynthesis pathway. Moreover, the reduced expression of the Gibberellin 20-oxidase (GA20ox) gene in tandem with the increased expression of Gibberellin 2-oxidase (GA2ox) genes in transgenic PvKN1 lines suggest that PvKN1 may exert regulatory effects via modulation of GA signaling. Furthermore, overexpression of PvKN1 altered the expression of cellulose and hemicellulose biosynthetic genes and increased sugar release efficiency in transgenic lines. Our findings demonstrated that switchgrass PvKN1 is a putative ortholog of maize KN1 that is linked to plant lignification and cell wall and development traits as a major regulatory gene. Therefore, targeted overexpression of PvKN1 in bioenergy feedstocks may provide one feasible strategy for reducing biomass recalcitrance and simultaneously improving plant growth characteristics.« less

  13. One- and two-photon states for quantum information

    NASA Astrophysics Data System (ADS)

    Peters, Nicholas A.

    To find expression stability among transgenic lines, the Recombinase Mediated Transgene Integration (RMTI) technology using the Cre/ lox-mediated site-specific gene integration system was used. The objectives were to develop an efficient method of site-specific transgene integration and to test the effectiveness of this method by assaying transgene expression in the RMTI lines. The RMTI technology allows the precise integration of a transgene in a previously placed target genomic location containing a lox site. The efficiency of CRE-mediated site-specific integration in rice by particle bombardment was found to vary from 3 to 28% in nine different experiments. Some hemizygous site-specific integration plants that were derived from homozygous target locus were found to undergo CRE-mediated reversion of the integration locus. No reversion was observed in callus; however, reverting cells may have been excluded due to selection pressure. The expression of the transgene gus was studied in all 40 callus lines, 12 regenerated T0 plants and the T1 and T2 progenies of 5 lines. The isogenic SC lines had an average expression level based on the activity of beta-glucuronidase of 158 +/- 9 units/mg protein (mean +/- SEM; n=3; variance within SC lines are expressed as standard error of the mean SEM) indicating a significantly higher level of expression, as compared to MC lines that had a much lower expression level 44 +/- 8 units/mg protein (mean +/- SEM; n=3) and the imprecise lines that had 22 +/- 8 units/mg protein (mean +/- SEM; n=3). Transgene expression in the callus cells of precise single copy lines varied by ˜3 fold, whereas that in multi-copy lines varied by ˜30 fold. Furthermore, precise single copy lines, on an average, contained ˜3.5 fold higher expression than multi-copy lines. Transgene expression in the plants of precise single-copy lines was highly variable, which was found to be due to the loss of the integration because of CRE-mediated reversion in the locus. (Abstract shortened by UMI.)

  14. Vector modifications to eliminate transposase expression following piggyBac-mediated transgenesis

    PubMed Central

    Chakraborty, Syandan; Ji, HaYeun; Chen, Jack; Gersbach, Charles A.; Leong, Kam W.

    2014-01-01

    Transgene insertion plays an important role in gene therapy and in biological studies. Transposon-based systems that integrate transgenes by transposase-catalyzed “cut-and-paste” mechanism have emerged as an attractive system for transgenesis. Hyperactive piggyBac transposon is particularly promising due to its ability to integrate large transgenes with high efficiency. However, prolonged expression of transposase can become a potential source of genotoxic effects due to uncontrolled transposition of the integrated transgene from one chromosomal locus to another. In this study we propose a vector design to decrease post-transposition expression of transposase and to eliminate the cells that have residual transposase expression. We design a single plasmid construct that combines the transposase and the transpositioning transgene element to share a single polyA sequence for termination. Consequently, the separation of the transposase element from the polyA sequence after transposition leads to its deactivation. We also co-express Herpes Simplex Virus thymidine kinase (HSV-tk) with the transposase. Therefore, cells having residual transposase expression can be eliminated by the administration of ganciclovir. We demonstrate the utility of this combination transposon system by integrating and expressing a model therapeutic gene, human coagulation Factor IX, in HEK293T cells. PMID:25492703

  15. The binding protein BiP attenuates stress-induced cell death in soybean via modulation of the N-rich protein-mediated signaling pathway.

    PubMed

    Reis, Pedro A A; Rosado, Gustavo L; Silva, Lucas A C; Oliveira, Luciana C; Oliveira, Lucas B; Costa, Maximiller D L; Alvim, Fátima C; Fontes, Elizabeth P B

    2011-12-01

    The molecular chaperone binding protein (BiP) participates in the constitutive function of the endoplasmic reticulum (ER) and protects the cell against stresses. In this study, we investigated the underlying mechanism by which BiP protects plant cells from stress-induced cell death. We found that enhanced expression of BiP in soybean (Glycine max) attenuated ER stress- and osmotic stress-mediated cell death. Ectopic expression of BiP in transgenic lines attenuated the leaf necrotic lesions that are caused by the ER stress inducer tunicamycin and also maintained shoot turgidity upon polyethylene glycol-induced dehydration. BiP-mediated attenuation of stress-induced cell death was confirmed by the decreased percentage of dead cell, the reduced induction of the senescence-associated marker gene GmCystP, and reduced DNA fragmentation in BiP-overexpressing lines. These phenotypes were accompanied by a delay in the induction of the cell death marker genes N-RICH PROTEIN-A (NRP-A), NRP-B, and GmNAC6, which are involved in transducing a cell death signal generated by ER stress and osmotic stress through the NRP-mediated signaling pathway. The prosurvival effect of BiP was associated with modulation of the ER stress- and osmotic stress-induced NRP-mediated cell death signaling, as determined in transgenic tobacco (Nicotiana tabacum) lines with enhanced (sense) and suppressed (antisense) BiP levels. Enhanced expression of BiP prevented NRP- and NAC6-mediated chlorosis and the appearance of senescence-associated markers, whereas silencing of endogenous BiP accelerated the onset of leaf senescence mediated by NRPs and GmNAC6. Collectively, these results implicate BiP as a negative regulator of the stress-induced NRP-mediated cell death response.

  16. The Binding Protein BiP Attenuates Stress-Induced Cell Death in Soybean via Modulation of the N-Rich Protein-Mediated Signaling Pathway1[C][W][OA

    PubMed Central

    Reis, Pedro A.A.; Rosado, Gustavo L.; Silva, Lucas A.C.; Oliveira, Luciana C.; Oliveira, Lucas B.; Costa, Maximiller D.L.; Alvim, Fátima C.; Fontes, Elizabeth P.B.

    2011-01-01

    The molecular chaperone binding protein (BiP) participates in the constitutive function of the endoplasmic reticulum (ER) and protects the cell against stresses. In this study, we investigated the underlying mechanism by which BiP protects plant cells from stress-induced cell death. We found that enhanced expression of BiP in soybean (Glycine max) attenuated ER stress- and osmotic stress-mediated cell death. Ectopic expression of BiP in transgenic lines attenuated the leaf necrotic lesions that are caused by the ER stress inducer tunicamycin and also maintained shoot turgidity upon polyethylene glycol-induced dehydration. BiP-mediated attenuation of stress-induced cell death was confirmed by the decreased percentage of dead cell, the reduced induction of the senescence-associated marker gene GmCystP, and reduced DNA fragmentation in BiP-overexpressing lines. These phenotypes were accompanied by a delay in the induction of the cell death marker genes N-RICH PROTEIN-A (NRP-A), NRP-B, and GmNAC6, which are involved in transducing a cell death signal generated by ER stress and osmotic stress through the NRP-mediated signaling pathway. The prosurvival effect of BiP was associated with modulation of the ER stress- and osmotic stress-induced NRP-mediated cell death signaling, as determined in transgenic tobacco (Nicotiana tabacum) lines with enhanced (sense) and suppressed (antisense) BiP levels. Enhanced expression of BiP prevented NRP- and NAC6-mediated chlorosis and the appearance of senescence-associated markers, whereas silencing of endogenous BiP accelerated the onset of leaf senescence mediated by NRPs and GmNAC6. Collectively, these results implicate BiP as a negative regulator of the stress-induced NRP-mediated cell death response. PMID:22007022

  17. Lentiviral vectors containing mouse Csf1r control elements direct macrophage-restricted expression in multiple species of birds and mammals

    PubMed Central

    Pridans, Clare; Lillico, Simon; Whitelaw, Bruce; Hume, David A

    2014-01-01

    The development of macrophages requires signaling through the lineage-restricted receptor Csf1r. Macrophage-restricted expression of transgenic reporters based upon Csf1r requires the highly conserved Fms-intronic regulatory element (FIRE). We have created a lentiviral construct containing mouse FIRE and promoter. The lentivirus is capable of directing macrophage-restricted reporter gene expression in mouse, rat, human, pig, cow, sheep, and even chicken. Rat bone marrow cells transduced with the lentivirus were capable of differentiating into macrophages expressing the reporter gene in vitro. Macrophage-restricted expression may be desirable for immunization or immune response modulation, and for gene therapy for lysosomal storage diseases and some immunodeficiencies. The small size of the Csf1r transcription control elements will allow the insertion of large “cargo” for applications in gene therapy and vaccine delivery. PMID:26015955

  18. Expression of hemagglutinin protein of Rinderpest virus in transgenic pigeon pea [Cajanus cajan (L.) Millsp.] plants.

    PubMed

    Satyavathi, V V; Prasad, V; Khandelwal, Abha; Shaila, M S; Sita, G Lakshmi

    2003-03-01

    Rinderpest virus is the causative agent of a devastating, often fatal disease in wild and domestic bovids that is endemic in Africa, the Middle East and South Asia. The existing live attenuated vaccine is heat-labile, and thus there is a need for the development of new strategies for vaccination. This paper reports the development of transgenic pigeon pea [ Cajanus cajun (L.) Millsp.] expressing one of the protective antigens, the hemagglutinin (H) protein of Rinderpest virus. A 2-kb fragment containing the coding region of the H protein was cloned into pBI121 and mobilized into Agrobacterium tumefaciensstrain EHA105. Embryonic axes and cotyledonary nodes from germinated seeds of pigeon pea were used for transformation. The presence of the transgene in transgenic plants was confirmed by Southern blots, and the specific transcription of the marker gene in the plants was demonstrated by reverse transcription-polymerase chain reaction. Integration of the H gene into the pigeon pea genome was confirmed by Southern hybridization. The expression of the H protein in the transgenic lines was confirmed by Western blot analysis using a polyclonal monospecific antibody to the H protein. The highest level of expression of the hemagglutinin protein in leaves of pigeon pea was 0.49% of the total soluble protein. The transgenic plants were fertile and the transgene expressed in the progeny.

  19. 5-Azacytidine mediated reactivation of silenced transgenes in potato (Solanum tuberosum) at the whole plant level.

    PubMed

    Tyč, Dimitrij; Nocarová, Eva; Sikorová, Lenka; Fischer, Lukáš

    2017-08-01

    Transient 5-azacytidine treatment of leaf explants from potato plants with transcriptionally silenced transgenes allows de novo regeneration of plants with restored transgene expression at the whole plant level. Transgenes introduced into plant genomes frequently become silenced either at the transcriptional or the posttranscriptional level. Transcriptional silencing is usually associated with DNA methylation in the promoter region. Treatments with inhibitors of maintenance DNA methylation were previously shown to allow reactivation of transcriptionally silenced transgenes in single cells or tissues, but not at the whole plant level. Here we analyzed the effect of DNA methylation inhibitor 5-azacytidine (AzaC) on the expression of two silenced reporter genes encoding green fluorescent protein (GFP) and neomycin phosphotransferase (NPTII) in potato plants. Whereas no obvious reactivation was observed in AzaC-treated stem cuttings, transient treatment of leaf segments with 10 μM AzaC and subsequent de novo regeneration of shoots on the selective medium with kanamycin resulted in the production of whole plants with clearly reactivated expression of previously silenced transgenes. Reactivation of nptII expression was accompanied by a decrease in cytosine methylation in the promoter region of the gene. Using the plants with reactivated GFP expression, we found that re-silencing of this transgene can be accidentally triggered by de novo regeneration. Thus, testing the incidence of transgene silencing during de novo regeneration could be a suitable procedure for negative selection of transgenic lines (insertion events) which have an inclination to be silenced. Based on our analysis of non-specific inhibitory effects of AzaC on growth of potato shoots in vitro, we estimated that AzaC half-life in the culture media is approximately 2 days.

  20. Germ-line transmission of lentiviral PGK-EGFP integrants in transgenic cattle: new perspectives for experimental embryology.

    PubMed

    Reichenbach, Myriam; Lim, Tiongti; Reichenbach, Horst-Dieter; Guengoer, Tuna; Habermann, Felix A; Matthiesen, Marieke; Hofmann, Andreas; Weber, Frank; Zerbe, Holm; Grupp, Thomas; Sinowatz, Fred; Pfeifer, Alexander; Wolf, Eckhard

    2010-08-01

    Lentiviral vectors are a powerful tool for the genetic modification of livestock species. We previously generated transgenic founder cattle with lentiviral integrants carrying enhanced green fluorescent protein (EGFP) under the control of the phosphoglycerate kinase (PGK) promoter. In this study, we investigated the transmission of LV-PGK-EGFP integrants through the female and male germ line in cattle. A transgenic founder heifer (#562, Kiki) was subjected to superovulation treatment and inseminated with semen from a non-transgenic bull. Embryos were recovered and transferred to synchronized recipient heifers, resulting in the birth of a healthy male transgenic calf expressing EGFP as detected by in vivo imaging. Semen from a transgenic founder bull (#561, Jojo) was used for in vitro fertilization (IVF) of in vitro matured (IVM) oocytes from non-transgenic cows. The rates of cleavage and development to blastocyst in vitro corresponded to 52.0 +/- 4.1 and 24.5 +/- 4.4%, respectively. Expression of EGFP was observed at blastocyst stage (day 7 after IVF) and was seen in 93.0% (281/302) of the embryos. 24 EGFP-expressing embryos were transferred to 9 synchronized recipients. Analysis of 2 embryos, flushed from the uterus on day 15, two fetuses recovered on day 45, and a healthy male transgenic calf revealed consistent high-level expression of EGFP in all tissues investigated. Our study shows for the first time transmission of lentiviral integrants through the germ line of female and male transgenic founder cattle. The pattern of inheritance was consistent with Mendelian rules. Importantly, high fidelity expression of EGFP in embryos, fetuses, and offspring of founder #561 provides interesting tools for developmental studies in cattle, including interactions of gametes, embryos and fetuses with their maternal environment.

  1. Conditional Expression of the Androgen Receptor Induces Oncogenic Transformation of the Mouse Prostate*

    PubMed Central

    Zhu, Chunfang; Luong, Richard; Zhuo, Ming; Johnson, Daniel T.; McKenney, Jesse K.; Cunha, Gerald R.; Sun, Zijie

    2011-01-01

    The androgen signaling pathway, mediated through the androgen receptor (AR), is critical in prostate tumorigenesis. However, the precise role of AR in prostate cancer development and progression still remains largely unknown. Specifically, it is unclear whether overexpression of AR is sufficient to induce prostate tumor formation in vivo. Here, we inserted the human AR transgene with a LoxP-stop-loxP (LSL) cassette into the mouse ROSA26 locus, permitting “conditionally” activated AR transgene expression through Cre recombinase-mediated removal of the LSL cassette. By crossing this AR floxed strain with Osr1-Cre (odd skipped related) mice, in which the Osr1 promoter activates at embryonic day 11.5 in urogenital sinus epithelium, we generated a conditional transgenic line, R26hARloxP:Osr1-Cre+. Expression of transgenic AR was detected in both prostatic luminal and basal epithelial cells and is resistant to castration. Approximately one-half of the transgenic mice displayed mouse prostatic intraepithelial neoplasia (mPIN) lesions. Intriguingly, four mice (10%) developed prostatic adenocarcinomas, with two demonstrating invasive diseases. Positive immunostaining of transgenic AR protein was observed in the majority of atypical and tumor cells in the mPIN and prostatic adenocarcinomas, providing a link between transgenic AR expression and oncogenic transformation. An increase in Ki67-positive cells appeared in all mPIN and prostatic adenocarcinoma lesions of the mice. Thus, we demonstrated for the first time that conditional activation of transgenic AR expression by Osr1 promoter induces prostate tumor formation in mice. This new AR transgenic mouse line mimics the human disease and can be used for study of prostate tumorigenesis and drug development. PMID:21795710

  2. Expression and characterization of bioactive recombinant human alpha-lactalbumin in the milk of transgenic cloned cows.

    PubMed

    Wang, J; Yang, P; Tang, B; Sun, X; Zhang, R; Guo, C; Gong, G; Liu, Y; Li, R; Zhang, L; Dai, Y; Li, N

    2008-12-01

    Improvement of the nutritional value of cow milk with transgenic expression of recombinant human alpha-lactalbumin (alpha-LA) has been previously attempted. However, the detailed characterization of the recombinant protein and analysis of the transgenic milk components are not explored yet. Here, we first report production of healthy transgenic cows by somatic cell nuclear transfer, in which expression of up to 1.55 g/L of recombinant human alpha-LA was achieved. The recombinant human alpha-LA was purified from transgenic milk and displayed physicochemical properties similar to its natural counterpart with respect to molecular weight, structure, and regulatory activity for beta-1,4-galactosyltransferase. Additionally, no N-glycosylation was found in the recombinant human alpha-LA, whereas the endogenous bovine alpha-LA was glycosylated at the unusual site (71)Asn-Ile-(73)Cys. Compared with milk from nontransgenic cows, expression of the transgene did not materially alter milk composition, such as fat and protein content. Our research thus provides scientific evidence supporting the feasibility of humanizing cow milk.

  3. Chromosome-wide mechanisms to decouple gene expression from gene dose during sex-chromosome evolution

    PubMed Central

    Wheeler, Bayly S; Anderson, Erika; Frøkjær-Jensen, Christian; Bian, Qian; Jorgensen, Erik; Meyer, Barbara J

    2016-01-01

    Changes in chromosome number impair fitness by disrupting the balance of gene expression. Here we analyze mechanisms to compensate for changes in gene dose that accompanied the evolution of sex chromosomes from autosomes. Using single-copy transgenes integrated throughout the Caenorhabditis elegans genome, we show that expression of all X-linked transgenes is balanced between XX hermaphrodites and XO males. However, proximity of a dosage compensation complex (DCC) binding site (rex site) is neither necessary to repress X-linked transgenes nor sufficient to repress transgenes on autosomes. Thus, X is broadly permissive for dosage compensation, and the DCC acts via a chromosome-wide mechanism to balance transcription between sexes. In contrast, no analogous X-chromosome-wide mechanism balances transcription between X and autosomes: expression of compensated hermaphrodite X-linked transgenes is half that of autosomal transgenes. Furthermore, our results argue against an X-chromosome dosage compensation model contingent upon rex-directed positioning of X relative to the nuclear periphery. DOI: http://dx.doi.org/10.7554/eLife.17365.001 PMID:27572259

  4. Laminin and collagen modulate expression of the small leucine-rich proteoglycan fibromodulin in rat anterior pituitary gland.

    PubMed

    Syaidah, Rahimi; Horiguchi, Kotaro; Fujiwara, Ken; Tsukada, Takehiro; Kikuchi, Motoshi; Yashiro, Takashi

    2013-11-01

    The anterior pituitary is a complex organ consisting of five types of hormone-producing cells, non–hormone-producing cells such as folliculostellate (FS) cells and vascular cells (endothelial cells and pericytes). We have previously shown that FS cells and pericytes produce fibromodulin, a small leucine-rich proteoglycan (SLRP). SLRPs are major proteoglycans of the extracellular matrix (ECM) and are important in regulating cell signaling pathways and ECM assembly. However, the mechanism regulating fibromodulin expression in the anterior pituitary has not been elucidated. Here, we investigate whether fibromodulin expression is modulated by major anterior pituitary ECM components such as laminin and type I collagen. Using transgenic rats expressing green fluorescent protein (GFP) specifically in FS cells, we examine fibromodulin expression in GFP-positive (FS cells) and GFP-negative cells (e.g., pericytes, endocrine cells and endothelial cells). Immunostaining and Western blot analysis were used to assess protein expression in the presence and absence of laminin or type I collagen. We confirmed fibromodulin expression in the pituitary and observed the up-regulation of fibromodulin in FS cells in the presence of ECM components. However, neither laminin nor type I collagen affected expression in GFP-negative cells. This suggests that laminin and type I collagen support the function of FS cells by increasing fibromodulin protein expression in the anterior pituitary.

  5. A 310-bp minimal promoter mediates smooth muscle cell-specific expression of telokin.

    PubMed

    Smith, A F; Bigsby, R M; Word, R A; Herring, B P

    1998-05-01

    A cell-specific promoter located in an intron of the smooth muscle myosin light chain kinase gene directs transcription of telokin exclusively in smooth muscle cells. Transgenic mice were generated in which a 310-bp rabbit telokin promoter fragment, extending from -163 to +147, was used to drive expression of simian virus 40 large T antigen. Smooth muscle-specific expression of the T-antigen transgene paralleled that of the endogenous telokin gene in all smooth muscle tissues except uterus. The 310-bp promoter fragment resulted in very low levels of transgene expression in uterus; in contrast, a transgene driven by a 2.4-kb fragment (-2250 to +147) resulted in high levels of transgene expression in uterine smooth muscle. Telokin expression levels correlate with the estrogen status of human myometrial tissues, suggesting that deletion of an estrogen response element (ERE) may account for the low levels of transgene expression driven by the 310-bp rabbit telokin promoter in uterine smooth muscle. Experiments in A10 smooth muscle cells directly showed that reporter gene expression driven by the 2.4-kb, but not 310-bp, promoter fragment could be stimulated two- to threefold by estrogen. This stimulation was mediated through an ERE located between -1447 and -1474. Addition of the ERE to the 310-bp fragment restored estrogen responsiveness in A10 cells. These data demonstrate that in addition to a minimal 310-bp proximal promoter at least one distal cis-acting regulatory element is required for telokin expression in uterine smooth muscle. The distal element may include an ERE between -1447 and -1474.

  6. Tetrahydroxystilbene glucoside modulates amyloid precursor protein processing via activation of AKT-GSK3β pathway in cells and in APP/PS1 transgenic mice.

    PubMed

    Yin, Xiaomin; Chen, Chen; Xu, Ting; Li, Lin; Zhang, Lan

    2018-01-01

    Alternative splicing of amyloid precursor protein (APP) exon 7 generates the isoforms containing a Kunitz protease inhibitor (KPI) domain. APP-KPI levels in the brain are correlated with amyloid beta (Aβ) production. Here, we determined the effect of Tetrahydroxystilbene glucoside (TSG) on the AKT-GSK3β pathway. We found GSK3β increased APP-KPI inclusion level and interacted with the splicing factor ASF. TSG was intragastrically administered to 5-month-old APP/PS1 transgenic mice for 12 months. We found that the activated the AKT-GSK3β signaling pathway suppressed APP-KPI inclusion. Moreover, TSG treatment attenuated amyloid deposition in APP/PS1 mice. This study demonstrates the neuroprotective effect of TSG on APP expression, suggesting that TSG may be beneficial for AD prevention and treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Expression and Chloroplast Targeting of Cholesterol Oxidase in Transgenic Tobacco Plants

    PubMed Central

    Corbin, David R.; Grebenok, Robert J.; Ohnmeiss, Thomas E.; Greenplate, John T.; Purcell, John P.

    2001-01-01

    Cholesterol oxidase represents a novel type of insecticidal protein with potent activity against the cotton boll weevil (Anthonomus grandis grandis Boheman). We transformed tobacco (Nicotiana tabacum) plants with the cholesterol oxidase choM gene and expressed cytosolic and chloroplast-targeted versions of the ChoM protein. Transgenic leaf tissues expressing cholesterol oxidase exerted insecticidal activity against boll weevil larvae. Our results indicate that cholesterol oxidase can metabolize phytosterols in vivo when produced cytosolically or when targeted to chloroplasts. The transgenic plants exhibiting cytosolic expression accumulated low levels of saturated sterols known as stanols, and displayed severe developmental aberrations. In contrast, the transgenic plants expressing chloroplast-targeted cholesterol oxidase maintained a greater accumulation of stanols, and appeared phenotypically and developmentally normal. These results are discussed within the context of plant sterol distribution and metabolism. PMID:11457962

  8. Comparative study of transgenic Brachypodium distachyon expressing sucrose:fructan 6-fructosyltransferases from wheat and timothy grass with different enzymatic properties.

    PubMed

    Tamura, Ken-Ichi; Sanada, Yasuharu; Tase, Kazuhiro; Kawakami, Akira; Yoshida, Midori; Yamada, Toshihiko

    2014-04-01

    Fructans can act as cryoprotectants and contribute to freezing tolerance in plant species, such as in members of the grass subfamily Pooideae that includes Triticeae species and forage grasses. To elucidate the relationship of freezing tolerance, carbohydrate composition and degree of polymerization (DP) of fructans, we generated transgenic plants in the model grass species Brachypodium distachyon that expressed cDNAs for sucrose:fructan 6-fructosyltransferases (6-SFTs) with different enzymatic properties: one cDNA encoded PpFT1 from timothy grass (Phleum pratense), an enzyme that produces high-DP levans; a second cDNA encoded wft1 from wheat (Triticum aestivum), an enzyme that produces low-DP levans. Transgenic lines expressing PpFT1 and wft1 showed retarded growth; this effect was particularly notable in the PpFT1 transgenic lines. When grown at 22 °C, both types of transgenic line showed little or no accumulation of fructans. However, after a cold treatment, wft1 transgenic plants accumulated fructans with DP = 3-40, whereas PpFT1 transgenic plants accumulated fructans with higher DPs (20 to the separation limit). The different compositions of the accumulated fructans in the two types of transgenic line were correlated with the differences in the enzymatic properties of the overexpressed 6-SFTs. Transgenic lines expressing PpFT1 accumulated greater amounts of mono- and disaccharides than wild type and wft1 expressing lines. Examination of leaf blades showed that after cold acclimation, PpFT1 overexpression increased tolerance to freezing; by contrast, the freezing tolerance of the wft1 expressing lines was the same as that of wild type plants. These results provide new insights into the relationship of the composition of water-soluble carbohydrates and the DP of fructans to freezing tolerance in plants.

  9. Expression of an engineered synthetic cry2Aa (D42/K63F/K64P) gene of Bacillus thuringiensis in marker free transgenic tobacco facilitated full-protection from cotton leaf worm (S. littoralis) at very low concentration.

    PubMed

    Gayen, Srimonta; Mandal, Chandi Charan; Samanta, Milan Kumar; Dey, Avishek; Sen, Soumitra Kumar

    2016-04-01

    Emergence of resistant insects limits the sustainability of Bacillus thuringiensis (Bt) transgenic crop plants for insect management. Beside this, the presence of unwanted marker gene(s) in the transgenic crops is also a major environmental and health concern. Thus, development of marker free transgenic crop plants expressing a new class of toxin having a different mortality mechanism is necessary for resistance management. In a previous study, we generated an engineered Cry2Aa (D42/K63F/K64P) toxin which has a different mortality mechanism as compared to first generation Bt toxin Cry1A, and this engineered toxin was found to enhance 4.1-6.6-fold toxicity against major lepidopteran insect pests of crop plants. In the present study, we have tested the potency of this engineered synthetic Cry2Aa (D42/K63F/K64P) toxin as a candidate in the development of insect resistant transgenic tobacco plants. Simultaneously, we have eliminated the selectable marker gene from the Cry2Aa (D42/K63F/K64P) expressing tobacco plants by exploiting the Cre/lox mediated recombination methodology, and successfully developed marker free T2 transgenic tobacco plants expressing the engineered Cry2Aa toxin. Realtime and western blot analysis demonstrated the expression of engineered toxin gene in transgenic plants. Insect feeding assays revealed that the marker free T2 progeny of transgenic plants expressing Cry2Aa (D42/K63F/K64P) toxin showed 82-92 and 52-61 % mortality to cotton leaf worm (CLW) and cotton bollworm (CBW) respectively. Thus, this engineered Cry2Aa toxin could be useful for the generation of insect resistant transgenic Bt lines which will protect the crop damages caused by different insect pests such as CLW and CBW.

  10. Enhanced Whitefly Resistance in Transgenic Tobacco Plants Expressing Double Stranded RNA of v-ATPase A Gene

    PubMed Central

    Thakur, Nidhi; Upadhyay, Santosh Kumar; Verma, Praveen C.; Chandrashekar, Krishnappa; Tuli, Rakesh; Singh, Pradhyumna K.

    2014-01-01

    Background Expression of double strand RNA (dsRNA) designed against important insect genes in transgenic plants have been shown to give protection against pests through RNA interference (RNAi), thus opening the way for a new generation of insect-resistant crops. We have earlier compared the efficacy of dsRNAs/siRNAs, against a number of target genes, for interference in growth of whitefly (Bemisia tabaci) upon oral feeding. The v-ATPase subunit A (v-ATPaseA) coding gene was identified as a crucial target. We now report the effectiveness of transgenic tobacco plants expressing siRNA to silence v-ATPaseA gene expression for the control of whitefly infestation. Methodology/Principal Findings Transgenic tobacco lines were developed for the expression of long dsRNA precursor to make siRNA and knock down the v-ATPaseA mRNA in whitefly. Molecular analysis and insecticidal properties of the transgenic plants established the formation of siRNA targeting the whitefly v-ATPaseA, in the leaves. The transcript level of v-ATPaseA in whiteflies was reduced up to 62% after feeding on the transgenic plants. Heavy infestation of whiteflies on the control plants caused significant loss of sugar content which led to the drooping of leaves. The transgenic plants did not show drooping effect. Conclusions/Significance Host plant derived pest resistance was achieved against whiteflies by genetic transformation of tobacco which generated siRNA against the whitefly v-ATPaseA gene. Transgenic tobacco lines expressing dsRNA of v-ATPaseA, delivered sufficient siRNA to whiteflies feeding on them, mounting a significant silencing response, leading to their mortality. The transcript level of the target gene was reduced in whiteflies feeding on transgenic plants. The strategy can be taken up for genetic engineering of plants to control whiteflies in field crops. PMID:24595215

  11. Mifepristone-inducible transgene expression in neural progenitor cells in vitro and in vivo

    PubMed Central

    Hjelm, BE; Grunseich, C; Gowing, G; Avalos, P; Tian, J; Shelley, BC; Mooney, M; Narwani, K; Shi, Y; Svendsen, CN; Wolfe, JH; Fischbeck, KH; Pierson, TM

    2016-01-01

    Numerous gene and cell therapy strategies are being developed for the treatment of neurodegenerative disorders. Many of these strategies use constitutive expression of therapeutic transgenic proteins, and although functional in animal models of disease, this method is less likely to provide adequate flexibility for delivering therapy to humans. Ligand-inducible gene expression systems may be more appropriate for these conditions, especially within the central nervous system (CNS). Mifepristone’s ability to cross the blood–brain barrier makes it an especially attractive ligand for this purpose. We describe the production of a mifepristone-inducible vector system for regulated expression of transgenes within the CNS. Our inducible system used a lentivirus-based vector platform for the ex vivo production of mifepristone-inducible murine neural progenitor cells that express our transgenes of interest. These cells were processed through a series of selection steps to ensure that the cells exhibited appropriate transgene expression in a dose-dependent and temporally controlled manner with minimal background activity. Inducible cells were then transplanted into the brains of rodents, where they exhibited appropriate mifepristone-inducible expression. These studies detail a strategy for regulated expression in the CNS for use in the development of safe and efficient gene therapy for neurological disorders. PMID:26863047

  12. Stress-Inducible Expression of an F-box Gene TaFBA1 from Wheat Enhanced the Drought Tolerance in Transgenic Tobacco Plants without Impacting Growth and Development.

    PubMed

    Kong, Xiangzhu; Zhou, Shumei; Yin, Suhong; Zhao, Zhongxian; Han, Yangyang; Wang, Wei

    2016-01-01

    E3 ligase plays an important role in the response to many environment stresses in plants. In our previous study, constitutive overexpression of an F-box protein gene TaFBA1 driven by 35S promoter improved the drought tolerance in transgenic tobacco plants, but the growth and development in transgenic plants was altered in normal conditions. In this study, we used stress-inducible promoter RD29A instead of 35S promoter, as a results, the stress-inducible transgenic tobacco plants exhibit a similar phenotype with wild type (WT) plants. However, the drought tolerance of the transgenic plants with stress-inducible expressed TaFBA1 was enhanced. The improved drought tolerance of transgenic plants was indicated by their higher seed germination rate and survival rate, greater biomass and photosynthesis than those of WT under water stress, which may be related to their greater water retention capability and osmotic adjustment. Moreover, the transgenic plants accumulated less reactive oxygen species, kept lower MDA content and membrane leakage under water stress, which may be related to their higher levels of antioxidant enzyme activity and upregulated gene expression of some antioxidant enzymes. These results suggest that stress induced expression of TaFBA1 confers drought tolerance via the improved water retention and antioxidative compete ability. Meanwhile, this stress-inducible expression strategy by RD29A promoter can minimize the unexpectable effects by 35S constitutive promoter on phenotypes of the transgenic plants.

  13. Creating Transgenic shRNA Mice by Recombinase-Mediated Cassette Exchange

    PubMed Central

    Premsrirut, Prem K.; Dow, Lukas E.; Park, Youngkyu; Hannon, Gregory J.; Lowe, Scott W.

    2014-01-01

    RNA interference (RNAi) enables sequence-specific, experimentally induced silencing of virtually any gene by tapping into innate regulatory mechanisms that are conserved among most eukaryotes. The principles that enable transgenic RNAi in cell lines can also be used to create transgenic animals, which express short-hairpin RNAs (shRNAs) in a regulated or tissue-specific fashion. However, RNAi in transgenic animals is somewhat more challenging than RNAi in cultured cells. The activities of promoters that are commonly used for shRNA expression in cell culture can vary enormously in different tissues, and founder lines also typically vary in transgene expression due to the effects of their single integration sites. There are many ways to produce mice carrying shRNA transgenes and the method described here uses recombinase-mediated cassette exchange (RMCE). RMCE permits insertion of the shRNA transgene into a well-characterized locus that gives reproducible and predictable expression in each founder and enhances the probability of potent expression in many cell types. This procedure is more involved and complex than simple pronuclear injection, but if even a few shRNA mice are envisioned, for example, to probe the functions of several genes, the effort of setting up the processes outlined below are well worthwhile. Note that when creating a transgenic mouse, one should take care to use the most potent shRNA possible. As a rule of thumb, the sequence chosen should provide >90% knockdown when introduced into cultured cells at single copy (e.g., on retroviral infection at a multiplicity of ≤0.3). PMID:24003198

  14. An Evolutionarily Conserved DOF-CONSTANS Module Controls Plant Photoperiodic Signaling.

    PubMed

    Lucas-Reina, Eva; Romero-Campero, Francisco J; Romero, José M; Valverde, Federico

    2015-06-01

    The response to daylength is a crucial process that evolved very early in plant evolution, entitling the early green eukaryote to predict seasonal variability and attune its physiological responses to the environment. The photoperiod responses evolved into the complex signaling pathways that govern the angiosperm floral transition today. The Chlamydomonas reinhardtii DNA-Binding with One Finger (CrDOF) gene controls transcription in a photoperiod-dependent manner, and its misexpression influences algal growth and viability. In short days, CrDOF enhances CrCO expression, a homolog of plant CONSTANS (CO), by direct binding to its promoter, while it reduces the expression of cell division genes in long days independently of CrCO. In Arabidopsis (Arabidopsis thaliana), transgenic plants overexpressing CrDOF show floral delay and reduced expression of the photoperiodic genes CO and FLOWERING LOCUS T. The conservation of the DOF-CO module during plant evolution could be an important clue to understanding diversification by the inheritance of conserved gene toolkits in key developmental programs. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. AsHSP17, a creeping bentgrass small heat shock protein modulates plant photosynthesis and ABA-dependent and independent signalling to attenuate plant response to abiotic stress.

    PubMed

    Sun, Xinbo; Sun, Chunyu; Li, Zhigang; Hu, Qian; Han, Liebao; Luo, Hong

    2016-06-01

    Heat shock proteins (HSPs) are molecular chaperones that accumulate in response to heat and other abiotic stressors. Small HSPs (sHSPs) belong to the most ubiquitous HSP subgroup with molecular weights ranging from 12 to 42 kDa. We have cloned a new sHSP gene, AsHSP17 from creeping bentgrass (Agrostis stolonifera) and studied its role in plant response to environmental stress. AsHSP17 encodes a protein of 17 kDa. Its expression was strongly induced by heat in both leaf and root tissues, and by salt and abscisic acid (ABA) in roots. Transgenic Arabidopsis plants constitutively expressing AsHSP17 exhibited enhanced sensitivity to heat and salt stress accompanied by reduced leaf chlorophyll content and decreased photosynthesis under both normal and stressed conditions compared to wild type. Overexpression of AsHSP17 also led to hypersensitivity to exogenous ABA and salinity during germination and post-germinative growth. Gene expression analysis indicated that AsHSP17 modulates expression of photosynthesis-related genes and regulates ABA biosynthesis, metabolism and ABA signalling as well as ABA-independent stress signalling. Our results suggest that AsHSP17 may function as a protein chaperone to negatively regulate plant responses to adverse environmental stresses through modulating photosynthesis and ABA-dependent and independent signalling pathways. © 2015 John Wiley & Sons Ltd.

  16. MURC, a Muscle-Restricted Coiled-Coil Protein That Modulates the Rho/ROCK Pathway, Induces Cardiac Dysfunction and Conduction Disturbance▿

    PubMed Central

    Ogata, Takehiro; Ueyama, Tomomi; Isodono, Koji; Tagawa, Masashi; Takehara, Naofumi; Kawashima, Tsuneaki; Harada, Koichiro; Takahashi, Tomosaburo; Shioi, Tetsuo; Matsubara, Hiroaki; Oh, Hidemasa

    2008-01-01

    We identified a novel muscle-restricted putative coiled-coil protein, MURC, which is evolutionarily conserved from frog to human. MURC was localized to the cytoplasm with accumulation in the Z-line of the sarcomere in the murine adult heart. MURC mRNA expression in the heart increased during the developmental process from the embryonic stage to adulthood. In response to pressure overload, MURC mRNA expression increased in the hypertrophied heart. Using the yeast two-hybrid system, we identified the serum deprivation response (SDPR) protein, a phosphatidylserine-binding protein, as a MURC-binding protein. MURC induced activation of the RhoA/ROCK pathway, which modulated serum response factor-mediated atrial natriuretic peptide (ANP) expression and myofibrillar organization. SDPR augmented MURC-induced transactivation of the ANP promoter in cardiomyocytes, and RNA interference of SDPR attenuated the action of MURC on the ANP promoter. Transgenic mice expressing cardiac-specific MURC (Tg-MURC) exhibited cardiac contractile dysfunction and atrioventricular (AV) conduction disturbances with atrial chamber enlargement, reduced thickness of the ventricular wall, and interstitial fibrosis. Spontaneous episodes of atrial fibrillation and AV block were observed in Tg-MURC mice. These findings indicate that MURC modulates RhoA signaling and that MURC plays an important role in the development of cardiac dysfunction and conduction disturbance with increased vulnerability to atrial arrhythmias. PMID:18332105

  17. MURC, a muscle-restricted coiled-coil protein that modulates the Rho/ROCK pathway, induces cardiac dysfunction and conduction disturbance.

    PubMed

    Ogata, Takehiro; Ueyama, Tomomi; Isodono, Koji; Tagawa, Masashi; Takehara, Naofumi; Kawashima, Tsuneaki; Harada, Koichiro; Takahashi, Tomosaburo; Shioi, Tetsuo; Matsubara, Hiroaki; Oh, Hidemasa

    2008-05-01

    We identified a novel muscle-restricted putative coiled-coil protein, MURC, which is evolutionarily conserved from frog to human. MURC was localized to the cytoplasm with accumulation in the Z-line of the sarcomere in the murine adult heart. MURC mRNA expression in the heart increased during the developmental process from the embryonic stage to adulthood. In response to pressure overload, MURC mRNA expression increased in the hypertrophied heart. Using the yeast two-hybrid system, we identified the serum deprivation response (SDPR) protein, a phosphatidylserine-binding protein, as a MURC-binding protein. MURC induced activation of the RhoA/ROCK pathway, which modulated serum response factor-mediated atrial natriuretic peptide (ANP) expression and myofibrillar organization. SDPR augmented MURC-induced transactivation of the ANP promoter in cardiomyocytes, and RNA interference of SDPR attenuated the action of MURC on the ANP promoter. Transgenic mice expressing cardiac-specific MURC (Tg-MURC) exhibited cardiac contractile dysfunction and atrioventricular (AV) conduction disturbances with atrial chamber enlargement, reduced thickness of the ventricular wall, and interstitial fibrosis. Spontaneous episodes of atrial fibrillation and AV block were observed in Tg-MURC mice. These findings indicate that MURC modulates RhoA signaling and that MURC plays an important role in the development of cardiac dysfunction and conduction disturbance with increased vulnerability to atrial arrhythmias.

  18. Modulation of organic acids and sugar content in tomato fruits by an abscisic acid-regulated transcription factor.

    PubMed

    Bastías, Adriana; López-Climent, María; Valcárcel, Mercedes; Rosello, Salvador; Gómez-Cadenas, Aurelio; Casaretto, José A

    2011-03-01

    Growing evidence suggests that the phytohormone abscisic acid (ABA) plays a role in fruit development. ABA signaling components of developmental programs and responses to stress conditions include the group of basic leucine zipper transcriptional activators known as ABA-response element binding factors (AREBs/ABFs). AREB transcription factors mediate ABA-regulated gene expression involved in desiccation tolerance and are expressed mainly in seeds and in vegetative tissues under stress; however, they are also expressed in some fruits such as tomato. In order to get an insight into the role of ABA signaling in fruit development, the expression of two AREB-like factors were investigated during different developmental stages. In addition, tomato transgenic lines that overexpress and downregulate one AREB-like transcription factor, SlAREB1, were used to determine its effect on the levels of some metabolites determining fruit quality. Higher levels of citric acid, malic acid, glutamic acid, glucose and fructose were observed in SlAREB1-overexpressing lines compared with those in antisense suppression lines in red mature fruit pericarp. The higher hexose concentration correlated with increased expression of genes encoding a vacuolar invertase (EC 3.2.1.26) and a sucrose synthase (EC 2.4.1.13). No significant changes were found in ethylene content which agrees with the normal ripening phenotype observed in transgenic fruits. These results suggest that an AREB-mediated ABA signal affects the metabolism of these compounds during the fruit developmental program. Copyright © Physiologia Plantarum 2010.

  19. Initial characterization of shade avoidance response suggests functional diversity between Populus phytochrome B genes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karve, Abhijit A; Weston, David; Jawdy, Sara

    2012-01-01

    Shade avoidance signaling in higher plants involves perception of the incident red/far-red (R/FR) light by phytochromes and the modulation of downstream transcriptional networks to regulate developmental plasticity in relation to heterogeneous light environments. In this study, we characterized the expression and functional features of Populus phytochrome (PHY) gene family as well as the transcriptional responses of Populus to the changes in R/FR light. Expression data indicated that PHYA is the predominant PHY in the dark grown Populus seedling whereas PHYBs are most abundant in mature tissue types. Out of three Populus PHYs, PHYA is light labile and localized to cytosolmore » in dark whereas both PHYB1 and PHYB2 are light stable and are localized to nucleus in mesophyll protoplasts. When expressed in Arabidopsis, PHYB1 rescued Arabidopsis phyB mutant phenotype whereas PHYB2 did not, suggesting functional diversification between these two gene family members. However, phenotypes of transgenic Populus lines with altered expression of PHYB1, PHYB2 or both and the expression of candidate shade response genes in these transgenic lines suggest that PHYB1 and PHYB2 may have distinct yet overlapping functions. The RNAseq results and analysis of Populus exposed to enriched-FR light indicate that genes associated in cell wall modification and brassinosteroid signaling were induced under far red light. Overall our data indicate that Populus transcriptional responses are at least partially conserved with Arabidopsis.« less

  20. Neurotrophin/receptor expression in urinary bladder of mice with overexpression of NGF in urothelium.

    PubMed

    Girard, Beatrice M; Malley, Susan E; Vizzard, Margaret A

    2011-02-01

    Urothelium-specific overexpression of nerve growth factor (NGF) in the urinary bladder of transgenic mice stimulates neuronal sprouting in the urinary bladder, produces increased voiding frequency, and results in increased referred somatic hypersensitivity. Additional NGF-mediated pleiotropic changes might contribute to the increased voiding frequency and pelvic hypersensitivity observed in these transgenic mice, such as modulation of other growth factor/receptor systems. Chronic overexpression of NGF in the urothelium was achieved through the use of a highly urothelium-specific uroplakin II promoter. In the present study, we examined NGF, brain-derived neurotrophic factor (BDNF), and associated receptor [p75(NTR), tyrosine kinase (Trk)A, TrkB] transcript and protein expression in urothelium and detrusor smooth muscle of NGF-overexpressing (OE) and littermate wild-type mice, using real-time quantitative reverse transcription-polymerase chain reaction, ELISAs, and semiquantitation of immunohistochemistry. We focused on these growth factor/receptors given the established roles of NGF/TrkA, NGF/p75(NTR), and BDNF/TrkB systems in bladder function. Increased voiding frequency in NGF-OE mice was confirmed by examining urination patterns. BDNF, TrkA, and TrkB protein expression was significantly (P ≤ 0.01) reduced and p75(NTR) protein expression was significantly (P ≤ 0.01) increased in urinary bladder of NGF-OE mice. The NGF-OE-induced changes in neurotrophic factor/receptor expression in urinary bladder may represent compensatory changes to reduce voiding frequency in the NGF-OE mouse.

  1. Gremlin-1 Overexpression in Mouse Lung Reduces Silica-Induced Lymphocyte Recruitment – A Link to Idiopathic Pulmonary Fibrosis through Negative Correlation with CXCL10 Chemokine

    PubMed Central

    Koli, Katri; Sutinen, Eva; Rönty, Mikko; Rantakari, Pia; Fortino, Vittorio; Pulkkinen, Ville; Greco, Dario; Sipilä, Petra; Myllärniemi, Marjukka

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by activation and injury of epithelial cells, the accumulation of connective tissue and changes in the inflammatory microenvironment. The bone morphogenetic protein (BMP) inhibitor protein gremlin-1 is associated with the progression of fibrosis both in human and mouse lung. We generated a transgenic mouse model expressing gremlin-1 in type II lung epithelial cells using the surfactant protein C (SPC) promoter and the Cre-LoxP system. Gremlin-1 protein expression was detected specifically in the lung after birth and did not result in any signs of respiratory insufficiency. Exposure to silicon dioxide resulted in reduced amounts of lymphocyte aggregates in transgenic lungs while no alteration in the fibrotic response was observed. Microarray gene expression profiling and analyses of bronchoalveolar lavage fluid cytokines indicated a reduced lymphocytic response and a downregulation of interferon-induced gene program. Consistent with reduced Th1 response, there was a downregulation of the mRNA and protein expression of the anti-fibrotic chemokine CXCL10, which has been linked to IPF. In human IPF patient samples we also established a strong negative correlation in the mRNA expression levels of gremlin-1 and CXCL10. Our results suggest that in addition to regulation of epithelial-mesenchymal crosstalk during tissue injury, gremlin-1 modulates inflammatory cell recruitment and anti-fibrotic chemokine production in the lung. PMID:27428020

  2. Gremlin-1 Overexpression in Mouse Lung Reduces Silica-Induced Lymphocyte Recruitment - A Link to Idiopathic Pulmonary Fibrosis through Negative Correlation with CXCL10 Chemokine.

    PubMed

    Koli, Katri; Sutinen, Eva; Rönty, Mikko; Rantakari, Pia; Fortino, Vittorio; Pulkkinen, Ville; Greco, Dario; Sipilä, Petra; Myllärniemi, Marjukka

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by activation and injury of epithelial cells, the accumulation of connective tissue and changes in the inflammatory microenvironment. The bone morphogenetic protein (BMP) inhibitor protein gremlin-1 is associated with the progression of fibrosis both in human and mouse lung. We generated a transgenic mouse model expressing gremlin-1 in type II lung epithelial cells using the surfactant protein C (SPC) promoter and the Cre-LoxP system. Gremlin-1 protein expression was detected specifically in the lung after birth and did not result in any signs of respiratory insufficiency. Exposure to silicon dioxide resulted in reduced amounts of lymphocyte aggregates in transgenic lungs while no alteration in the fibrotic response was observed. Microarray gene expression profiling and analyses of bronchoalveolar lavage fluid cytokines indicated a reduced lymphocytic response and a downregulation of interferon-induced gene program. Consistent with reduced Th1 response, there was a downregulation of the mRNA and protein expression of the anti-fibrotic chemokine CXCL10, which has been linked to IPF. In human IPF patient samples we also established a strong negative correlation in the mRNA expression levels of gremlin-1 and CXCL10. Our results suggest that in addition to regulation of epithelial-mesenchymal crosstalk during tissue injury, gremlin-1 modulates inflammatory cell recruitment and anti-fibrotic chemokine production in the lung.

  3. Mice expressing GFP and CreER in osteochondro progenitor cells in the periosteum.

    PubMed

    Kawanami, Aya; Matsushita, Takehiko; Chan, Yuk Yu; Murakami, Shunichi

    2009-08-28

    We generated Prx1CreER-GFP transgenic mice that express tamoxifen-inducible Cre recombinase and GFP under the control of a 2.4 kb Prx1 promoter. The transgene is expressed in osteochondro progenitor cells in the developing limb buds and in a subpopulation of periosteal cells that is closely associated with the cortical bone. GFP-expressing cells isolated from the diaphyses of long bones by cell sorting express multiple markers of periosteal cells, including Prx1, Fgf18, Tenascin-W, Periostin, and Thrombospondin 2. In addition, these cells undergo chondrogenic and osteogenic differentiation in culture upon induction. Cell fate analysis using the Rosa26 LacZ reporter indicated that transgene-expressing cells give rise to some of the chondrocytes and osteoblasts in the fracture callus. Collectively, these observations strongly suggest that the transgene-expressing cells are osteochondro progenitor cells in the periosteum. The established Prx1CreER-GFP mice would offer novel approaches for analyzing the functions of periosteal cells in vitro and in vivo.

  4. Retransformation of marker-free potato for enhanced resistance against fungal pathogens by pyramiding chitinase and wasabi defensin genes.

    PubMed

    Khan, Raham Sher; Darwish, Nader Ahmed; Khattak, Bushra; Ntui, Valentine Otang; Kong, Kynet; Shimomae, Kazuki; Nakamura, Ikuo; Mii, Masahiro

    2014-09-01

    Multi-auto-transformation vector system has been one of the strategies to produce marker-free transgenic plants without using selective chemicals and plant growth regulators and thus facilitating transgene stacking. In the study reported here, retransformation was carried out in marker-free transgenic potato CV. May Queen containing ChiC gene (isolated from Streptomyces griseus strain HUT 6037) with wasabi defensin (WD) gene (isolated from Wasabia japonica) to pyramid the two disease resistant genes. Molecular analyses of the developed shoots confirmed the existence of both the genes of interest (ChiC and WD) in transgenic plants. Co-expression of the genes was confirmed by RT-PCR, northern blot, and western blot analyses. Disease resistance assay of in vitro plants showed that the transgenic lines co-expressing both the ChiC and WD genes had higher resistance against the fungal pathogens, Fusarium oxysporum (Fusarium wilt) and Alternaria solani (early blight) compared to the non-transformed control and the transgenic lines expressing either of the ChiC or WD genes. The disease resistance potential of the transgenic plants could be increased by transgene stacking or multiple transformations.

  5. Transgenic expression of fungal accessory hemicellulases in Arabidopsis thaliana triggers transcriptional patterns related to biotic stress and defense response

    PubMed Central

    Tsai, Alex Yi-Lin; Chan, Kin; Ho, Chi-Yip; Canam, Thomas; Capron, Resmi; Master, Emma R.; Bräutigam, Katharina

    2017-01-01

    The plant cell wall is an abundant and renewable resource for lignocellulosic applications such as the production of biofuel. Due to structural and compositional complexities, the plant cell wall is, however, recalcitrant to hydrolysis and extraction of platform sugars. A cell wall engineering strategy to reduce this recalcitrance makes use of microbial cell wall modifying enzymes that are expressed directly in plants themselves. Previously, we constructed transgenic Arabidopsis thaliana constitutively expressing the fungal hemicellulases: Phanerochaete carnosa glucurnoyl esterase (PcGCE) and Aspergillus nidulans α-arabinofuranosidase (AnAF54). While the PcGCE lines demonstrated improved xylan extractability, they also displayed chlorotic leaves leading to the hypothesis that expression of such enzymes in planta resulted in plant stress. The objective of this study is to investigate the impact of transgenic expression of the aforementioned microbial hemicellulases in planta on the host arabidopsis. More specifically, we investigated transcriptome profiles by short read high throughput sequencing (RNAseq) from developmentally distinct parts of the plant stem. When compared to non-transformed wild-type plants, a subset of genes was identified that showed differential transcript abundance in all transgenic lines and tissues investigated. Intriguingly, this core set of genes was significantly enriched for those involved in plant defense and biotic stress responses. While stress and defense-related genes showed increased transcript abundance in the transgenic plants regardless of tissue or genotype, genes involved in photosynthesis (light harvesting) were decreased in their transcript abundance potentially reflecting wide-spread effects of heterologous microbial transgene expression and the maintenance of plant homeostasis. Additionally, an increase in transcript abundance for genes involved in salicylic acid signaling further substantiates our finding that transgenic expression of microbial cell wall modifying enzymes induces transcriptome responses similar to those observed in defense responses. PMID:28253318

  6. Ectopic expression of a fruit phytoene synthase from Citrus paradisi Macf. promotes abiotic stress tolerance in transgenic tobacco.

    PubMed

    Cidade, Luciana C; de Oliveira, Tahise M; Mendes, Amanda F S; Macedo, Amanda F; Floh, Eny I S; Gesteira, Abelmon S; Soares-Filho, Walter S; Costa, Marcio G C

    2012-12-01

    Abscisic acid (ABA) is an important regulator of plant responses to environmental stresses and an absolute requirement for stress tolerance. Recently, a third phytoene synthase (PSY3) gene paralog was identified in monocots and demonstrated to play a specialized role in stress-induced ABA formation, thus suggesting that the first committed step in carotenogenesis is a key limiting step in ABA biosynthesis. To examine whether the ectopic expression of PSY, other than PSY3, would similarly affect ABA level and stress tolerance, we have produced transgenic tobacco containing a fruit-specific PSY (CpPSY) of grapefruit (Citrus paradisi Macf.). The transgenic plants contained a single- or double-locus insertion and expressed CpPSY at varying transcript levels. In comparison with the wild-type plants, the CpPSY expressing transgenic plants showed a significant increase on root length and shoot biomass under PEG-, NaCl- and mannitol-induced osmotic stress. The enhanced stress tolerance of transgenic plants was correlated with the increased endogenous ABA level and expression of stress-responsive genes, which in turn was correlated with the CpPSY copy number and expression level in different transgenic lines. Collectively, these results provide further evidence that PSY is a key enzyme regulating ABA biosynthesis and that the altered expression of other PSYs in transgenic plants may provide a similar function to that of the monocot's PSY3 in ABA biosynthesis and stress tolerance. The results also pave the way for further use of CpPSY, as well as other PSYs, as potential candidate genes for engineering tolerance to drought and salt stress in crop plants.

  7. Ectopic expression of class 1 KNOX genes induce adventitious shoot regeneration and alter growth and development of tobacco (Nicotiana tabacum L) and European plum (Prunus domestica L).

    PubMed

    Srinivasan, C; Liu, Zongrang; Scorza, Ralph

    2011-04-01

    Transgenic plants of tobacco (Nicotiana tabacum L) and European plum (Prunus domestica L) were produced by transforming with the apple class 1 KNOX genes (MdKN1 and MdKN2) or corn KNOX1 gene. Transgenic tobacco plants were regenerated in vitro from transformed leaf discs cultured in a medium lacking cytokinin. Ectopic expression of KNOX genes retarded shoot growth by suppressing elongation of internodes in transgenic tobacco plants. Expression of each of the three KNOX1 genes induced malformation and extensive lobbing in tobacco leaves. In situ regeneration of adventitious shoots was observed from leaves and roots of transgenic tobacco plants expressing each of the three KNOX genes. In vitro culture of leaf explants and internode sections excised from in vitro grown MdKN1 expressing tobacco shoots regenerated adventitious shoots on MS (Murashige and Skoog 1962) basal medium in the absence of exogenous cytokinin. Transgenic plum plants that expressed the MdKN2 or corn KNOX1 gene grew normally but MdKN1 caused a significant reduction in plant height, leaf shape and size and produced malformed curly leaves. A high frequency of adventitious shoot regeneration (96%) was observed in cultures of leaf explants excised from corn KNOX1-expressing transgenic plum shoots. In contrast to KNOX1-expressing tobacco, leaf and internode explants of corn KNOX1-expressing plum required synthetic cytokinin (thidiazuron) in the culture medium to induce adventitious shoot regeneration. The induction of high-frequency regeneration of adventitious shoots in vitro from leaves and stem internodal sections of plum through the ectopic expression of a KNOX1 gene is the first such report for a woody perennial fruit trees.

  8. Developing tTA Transgenic Rats for Inducible and Reversible Gene Expression

    PubMed Central

    Zhou, Hongxia; Huang, Cao; Yang, Min; Landel, Carlisle P; Xia, Pedro Yuxing; Liu, Yong-Jian; Xia, Xu Gang

    2009-01-01

    To develop transgenic lines for conditional expression of desired genes in rats, we generated several lines of the transgenic rats carrying the tetracycline-controlled transactivator (tTA) gene. Using a vigorous, ubiquitous promoter to drive the tTA transgene, we obtained widespread expression of tTA in various tissues. Expression of tTA was sufficient to strongly activate its reporter gene, but was below the toxicity threshold. We examined the dynamics of Doxycycline (Dox)-regulated gene expression in transgenic rats. In the two transmittable lines, tTA-mediated activation of the reporter gene was fully subject to regulation by Dox. Dox dose-dependently suppressed tTA-activated gene expression. The washout time for the effects of Dox was dose-dependent. We tested a complex regime of Dox administration to determine the optimal effectiveness and washout duration. Dox was administered at a high dose (500 μg/ml in drinking water) for two days to reach the effective concentration, and then was given at a low dose (20 μg/ml) to maintain effectiveness. This regimen of Dox administration can achieve a quick switch between ON and OFF statuses of tTA-activated gene expression. In addition, administration of Dox to pregnant rats fully suppressed postnatal tTA-activated gene expression in their offspring. Sufficient levels of Dox are present in mother's milk to produce maximal efficacy in nursing neonates. Administration of Dox to pregnant or nursing rats can provide a continual suppression of tTA-dependent gene expression during embryonic and postnatal development. The tTA transgenic rat allows for inducible and reversible gene expression in the rat; this important tool will be valuable in the development of genetic rat models of human diseases. PMID:19214245

  9. Transgenic plants of Petunia hybrida harboring the CYP2E1 gene efficiently remove benzene and toluene pollutants and improve resistance to formaldehyde

    PubMed Central

    Zhang, Daoxiang; Xiang, Taihe; Li, Peihan; Bao, Lumin

    2011-01-01

    The CYP2E1 protein belongs to the P450 enzymes family and plays an important role in the metabolism of small molecular and organic pollutants. In this study we generated CYP2E1 transgenic plants of Petunia using Agrobacterium rhizogenes K599. PCR analysis confirmed that the regenerated plants contained the CYP2E1 transgene and the rolB gene of the Ri plasmid. Southern blotting revealed the presence of multiple copies of CYP2E1 in the genome of transgenic plants. Fluorescent quantitative PCR revealed exogenous CYP2E1 gene expression in CYP2E1 transgenic plants at various levels, whereas no like expression was detected in either GUS transgenic plants or wild-types. The absorption of benzene and toluene by transgenic plants was analyzed through quantitative gas chromatography. Transgenic plants with high CYP2E1 expression showed a significant increase in absorption capacity of environmental benzene and toluene, compared to control GUS transgenic and wild type plants. Furthermore, these plants also presented obvious improved resistance to formaldehyde. This study, besides being the first to reveal that the CYP2E1 gene enhances plant resistance to formaldehyde, also furnishes a new method for reducing pollutants, such as benzene, toluene and formaldehyde, by using transgenic flowering horticultural plants. PMID:22215968

  10. Effects of APC De-targeting and GAr modification on the duration of luciferase expression from plasmid DNA delivered to skeletal muscle.

    PubMed

    Subang, Maria C; Fatah, Rewas; Wu, Ying; Hannaman, Drew; Rice, Jason; Evans, Claire F; Chernajovsky, Yuti; Gould, David

    2015-01-01

    Immune responses to expressed foreign transgenes continue to hamper progress of gene therapy development. Translated foreign proteins with intracellular location are generally less accessible to the immune system, nevertheless they can be presented to the immune system through both MHC Class I and Class II pathways. When the foreign protein luciferase was expressed following intramuscular delivery of plasmid DNA in outbred mice, expression rapidly declined over 4 weeks. Through modifications to the expression plasmid and the luciferase transgene we examined the effect of detargeting expression away from antigen-presenting cells (APCs), targeting expression to skeletal muscle and fusion with glycine-alanine repeats (GAr) that block MHC-Class I presentation on the duration of luciferase expression. De-targeting expression from APCs with miR142-3p target sequences incorporated into the luciferase 3'UTR reduced the humoral immune response to both native and luciferase modified with a short GAr sequence but did not prolong the duration of expression. When a skeletal muscle specific promoter was combined with the miR target sequences the humoral immune response was dampened and luciferase expression persisted at higher levels for longer. Interestingly, fusion of luciferase with a longer GAr sequence promoted the decline in luciferase expression and increased the humoral immune response to luciferase. These studies demonstrate that expression elements and transgene modifications can alter the duration of transgene expression but other factors will need to overcome before foreign transgenes expressed in skeletal muscle are immunologically silent.

  11. Prolonged Expression of Secreted Enzymes in Dogs After Liver-Directed Delivery of Sleeping Beauty Transposons: Implications for Non-Viral Gene Therapy of Systemic Disease.

    PubMed

    Aronovich, Elena L; Hyland, Kendra A; Hall, Bryan C; Bell, Jason B; Olson, Erik R; Rusten, Myra Urness; Hunter, David W; Ellinwood, N Matthew; McIvor, R Scott; Hackett, Perry B

    2017-07-01

    The non-viral, integrating Sleeping Beauty (SB) transposon system is efficient in treating systemic monogenic disease in mice, including hemophilia A and B caused by deficiency of blood clotting factors and mucopolysaccharidosis types I and VII caused by α-L-iduronidase (IDUA) and β-glucuronidase (GUSB) deficiency, respectively. Modified approaches of the hydrodynamics-based procedure to deliver transposons to the liver in dogs were recently reported. Using the transgenic canine reporter secreted alkaline phosphatase (cSEAP), transgenic protein in the plasma was demonstrated for up to 6 weeks post infusion. This study reports that immunosuppression of dogs with gadolinium chloride (GdCl 3 ) prolonged the presence of cSEAP in the circulation up to 5.5 months after a single vector infusion. Transgene expression declined gradually but appeared to stabilize after about 2 months at approximately fourfold baseline level. Durability of transgenic protein expression in the plasma was inversely associated with transient increase of liver enzymes alanine transaminase and aspartate transaminase in response to the plasmid delivery procedure, which suggests a deleterious effect of hepatocellular toxicity on transgene expression. GdCl 3 treatment was ineffective for repeat vector infusions. In parallel studies, dogs were infused with potentially therapeutic transposons. Activities of transgenic IDUA and GUSB in plasma peaked at 50-350% of wildtype, but in the absence of immunosuppression lasted only a few days. Transposition was detectable by excision assay only when the most efficient transposase, SB100X, was used. Dogs infused with transposons encoding canine clotting factor IX (cFIX) were treated with GdCl 3 and showed expression profiles similar to those in cSEAP-infused dogs, with expression peaking at 40% wt (2 μg/mL). It is concluded that GdCl 3 can support extended transgene expression after hydrodynamic introduction of SB transposons in dogs, but that alternative regimens will be required to achieve therapeutic levels of transgene products.

  12. A soluble form of Siglec-9 provides an antitumor benefit against mammary tumor cells expressing MUC1 in transgenic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomioka, Yukiko, E-mail: ytomi@muses.tottori-u.ac.jp; Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553; Morimatsu, Masami, E-mail: mmorimat@vetmed.hokudai.ac.jp

    Highlights: • Tumor-associated antigen MUC1 binds to Siglec-9. • Soluble Siglec-9 reduced proliferation of MUC1-positive tumor in transgenic mice. • Soluble Siglec-9 and MUC1 on tumor cells were colocalized in transgenic mice. • MUC1 expression on tumor cells were reduced in soluble Siglec-9 transgenic mice. - Abstract: Tumor-associated MUC1 binds to Siglec-9, which is expected to mediate tumor cell growth and negative immunomodulation. We hypothesized that a soluble form of Siglec-9 (sSiglec-9) competitively inhibits a binding of MUC1 to its receptor molecules like human Siglec-9, leading to provide antitumor benefit against MUC1-expressing tumor, and generated transgenic mouse lines expressing sSiglec-9more » (sSiglec-9 Tg). When mammary tumor cells expressing MUC1 were intraperitoneally transplanted into sSiglec-9 Tg, tumor proliferation was slower with the lower histological malignancy as compared with non-transgenic mice. The sSiglec-9 was detected in the ascites caused by the tumor in the sSiglec-9 Tg, and sSiglec-9 and MUC1 were often colocalized on surfaces of the tumor cells. PCNA immunohistochemistry also revealed the reduced proliferation of the tumor cells in sSiglec-9 Tg. In sSiglec-9 Tg with remarkable suppression of tumor proliferation, MUC1 expressions were tend to be reduced. In the ascites of sSiglec-9 Tg bearing the tumor, T cells were uniformly infiltrated, whereas aggregations of degenerative T cells were often observed in the non-transgenic mice. These results suggest that sSiglec-9 has an antitumor benefit against MUC1-expressing tumor in the transgenic mice, which may avoid the negative immunomodulation and/or suppress tumor-associated MUC1 downstream signal transduction, and subsequent tumor proliferation.« less

  13. Molecular and functional characterization of cry1Ac transgenic pea lines.

    PubMed

    Teressa Negawo, Alemayehu; Baranek, Linda; Jacobsen, Hans-Jörg; Hassan, Fathi

    2016-10-01

    Transgenic pea lines transformed with the cry1Ac gene were characterized at molecular (PCR, RT-PCR, qRT-PCR and immunostrip assay) and functional levels (leaf paint and insect feeding bioassays). The results showed the presence, expression, inheritance and functionality of the introduced transgene at different progeny levels. Variation in the expression of the cry1Ac gene was observed among the different transgenic lines. In the insect bioassay studies using the larvae of Heliothis virescens, both larval survival and plant damage were highly affected on the different transgenic plants. Up to 100 % larval mortality was observed on the transgenic plants compared to 17.42 % on control plants. Most of the challenged transgenic plants showed very negligible to substantially reduced feeding damage indicating the insect resistance of the developed transgenic lines. Further analysis under field condition will be required to select promising lines for future uses.

  14. Molecular and functional characterization of cry1Ac transgenic pea lines

    PubMed Central

    Teressa Negawo, Alemayehu; Baranek, Linda; Jacobsen, Hans-Jörg; Hassan, Fathi

    2016-01-01

    ABSTRACT Transgenic pea lines transformed with the cry1Ac gene were characterized at molecular (PCR, RT-PCR, qRT-PCR and immunostrip assay) and functional levels (leaf paint and insect feeding bioassays). The results showed the presence, expression, inheritance and functionality of the introduced transgene at different progeny levels. Variation in the expression of the cry1Ac gene was observed among the different transgenic lines. In the insect bioassay studies using the larvae of Heliothis virescens, both larval survival and plant damage were highly affected on the different transgenic plants. Up to 100 % larval mortality was observed on the transgenic plants compared to 17.42 % on control plants. Most of the challenged transgenic plants showed very negligible to substantially reduced feeding damage indicating the insect resistance of the developed transgenic lines. Further analysis under field condition will be required to select promising lines for future uses. PMID:27764552

  15. [Construction of transgenic tobacco expressing popW and analysis of its biological phenotype].

    PubMed

    Wang, Cui; Liu, Hongxia; Cao, Jing; Wang, Chao; Guo, Jianhua

    2014-04-01

    In a previous study, we cloned popW from Ralstonia solanacearum strain ZJ3721, coding PopW, a new harpin protein. The procaryotically expressed PopW can induce resistance to Tobacco mosaic virus (TMV), enhance growth and improve quality of tobacco, when sprayed onto tobacco leaves. Here, we constructed an expression vector pB- popW by cloning popW into the bionary vector pBI121 and transformed it into Agrobacterium tumefaciens strain EHA105 via freeze-thaw method. Tobacco (Nicotiana tobacum cv. Xanthi nc.) transformation was conducted by infection of tobacco leaf discs with recombinant A. tumefaciens. After screening on MS medium containing kanamycin, PCR and RT-PCR analysis, 21 T3 lines were identified as positive transgenic. Genomic intergration and expression of the transferred gene were determined by PCR and RT-PCR. And GUS staining analysis indicated that the protein expressed in transgenic tobacco was bioactive and exhibited different expression levels among lines. Disease bioassays showed that the transgenic tobacco had enhanced resistance to TMV with biocontrol efficiency up to 54.25%. Transgenic tobacco also exhibited enhanced plant growth, the root length of 15 d old seedlings was 1.7 times longer than that of wild type tobacco. 60 d after transplanting to pots, the height, fresh weight and dry weight of transgenic tobacco were 1.4, 1.7, 1.8 times larger than that of wild type tobacco, respectively.

  16. Development of an Efficient Agrobacterium-Mediated Transformation System and Production of Herbicide-Resistant Transgenic Plants in Garlic (Allium sativum L.)

    PubMed Central

    Ahn, Yul-Kyun; Yoon, Moo-Kyoung; Jeon, Jong-Seong

    2013-01-01

    The genetic improvement of garlic plants (Allium sativum L.) with agronomical beneficial traits is rarely achieved due to the lack of an applicable transformation system. Here, we developed an efficient Agrobacterium-mediated transformation procedure with Danyang, an elite Korean garlic cultivar. Examination of sGFP (synthetic green fluorescence protein) expression revealed that treatment with 2-(N-morpholino) ethanesulfonic acid (MES), L-cysteine and/or dithiothreitol (DTT) gives the highest efficiency in transient gene transfer during Agrobacterium co-cultivation with calli derived from the roots of in vitro plantlets. To increase stable transformation efficiency, a two-step selection was employed on the basis of hygromycin resistance and sGFP expression. Of the hygromycin-resistant calli initially produced, only sGFP-expressing calli were subcultured for selection of transgenic calli. Transgenic plantlets produced from these calli were grown to maturity. The transformation efficiency increased up to 10.6% via our optimized procedure. DNA and RNA gel-blot analysis indicated that transgenic garlic plants stably integrated and expressed the phosphinothricin acetyltransferase (PAT) gene. A herbicide spraying assay demonstrated that transgenic plants of garlic conferred herbicide resistance, whilst non-transgenic plants and weeds died. These results indicate that our transformation system can be efficiently utilized to produce transgenic garlic plants with agronomic benefits. PMID:23832764

  17. Functional autonomy of distant-acting human enhancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visel, Axel; Akiyama, Jennifer A.; Shoukry, Malak

    2009-02-19

    Many human genes are associated with dispersed arrays of transcriptional enhancers that regulate their expression in time and space. Studies in invertebrate model systems have suggested that these elements function as discrete and independent regulatory units, but the in vivo combinatorial properties of vertebrate enhancers remain poorly understood. To explore the modularity and regulatory autonomy of human developmental enhancers, we experimentally concatenated up to four enhancers from different genes and used a transgenic mouse assay to compare the in vivo activity of these compound elements with that of the single modules. In all of the six different combinations of elementsmore » tested, the reporter gene activity patterns were additive without signs of interference between the individual modules, indicating that regulatory specificity was maintained despite the presence of closely-positioned heterologous enhancers. Even in cases where two elements drove expression in close anatomical proximity, such as within neighboring subregions of the developing limb bud, the compound patterns did not show signs of cross-inhibition between individual elements or novel expression sites. These data indicate that human developmental enhancers are highly modular and functionally autonomous and suggest that genomic enhancer shuffling may have contributed to the evolution of complex gene expression patterns in vertebrates« less

  18. Tetracycline-inducible system for regulation of skeletal muscle-specific gene expression in transgenic mice

    NASA Technical Reports Server (NTRS)

    Grill, Mischala A.; Bales, Mark A.; Fought, Amber N.; Rosburg, Kristopher C.; Munger, Stephanie J.; Antin, Parker B.

    2003-01-01

    Tightly regulated control of over-expression is often necessary to study one aspect or time point of gene function and, in transgenesis, may help to avoid lethal effects and complications caused by ubiquitous over-expression. We have utilized the benefits of an optimized tet-on system and a modified muscle creatine kinase (MCK) promoter to generate a skeletal muscle-specific, doxycycline (Dox) controlled over-expression system in transgenic mice. A DNA construct was generated in which the codon optimized reverse tetracycline transactivator (rtTA) was placed under control of a skeletal muscle-specific version of the mouse MCK promoter. Transgenic mice containing this construct expressed rtTA almost exclusively in skeletal muscles. These mice were crossed to a second transgenic line containing a bi-directional promoter centered on a tet responder element driving both a luciferase reporter gene and a tagged gene of interest; in this case the calpain inhibitor calpastatin. Compound hemizygous mice showed high level, Dox dependent muscle-specific luciferase activity often exceeding 10,000-fold over non-muscle tissues of the same mouse. Western and immunocytochemical analysis demonstrated similar Dox dependent muscle-specific induction of the tagged calpastatin protein. These findings demonstrate the effectiveness and flexibility of the tet-on system to provide a tightly regulated over-expression system in adult skeletal muscle. The MCKrtTA transgenic lines can be combined with other transgenic responder lines for skeletal muscle-specific over-expression of any target gene of interest.

  19. The presence of both negative and positive elements in the 5'-flanking sequence of the rat Na,K-ATPase alpha 3 subunit gene are required for brain expression in transgenic mice.

    PubMed Central

    Pathak, B G; Neumann, J C; Croyle, M L; Lingrel, J B

    1994-01-01

    The Na,K-ATPase is an integral plasma membrane protein consisting of alpha and beta subunits, each of which has discrete isoforms expressed in a tissue-specific manner. Of the three functional alpha isoform genes, the one encoding the alpha 3 isoform is the most tissue-restricted in its expression, being found primarily in the brain. To identify regions of the alpha 3 isoform gene that are involved in directing expression in the brain, a 1.6 kb 5'-flanking sequence was attached to a reporter gene, chloramphenicol acetyltransferase (CAT). The alpha 3-CAT chimeric gene construct was microinjected into fertilized mouse eggs, and transgenic mice were produced. Analysis of adult transgenic mice from different lines revealed that the transgene is expressed primarily in the brain. To further delineate regions that are needed for conferring expression in this tissue, systematic deletions of the 5'-flanking sequence of the alpha 3-CAT fusion constructs were made and analyzed, again using transgenic mice. The results from these analyses indicate that DNA sequences required for mediating brain-specific expression of the alpha 3 isoform gene are present within 210 bp upstream of the transcription initiation site. alpha 3-CAT promoter constructs containing scanning mutations in this region were also assayed in transgenic mice. These studies have identified both a functional neural-restrictive silencer element as well as a positively acting cis element. Images PMID:7984427

  20. Tissue-specific expression of human CD4 in transgenic mice.

    PubMed Central

    Gillespie, F P; Doros, L; Vitale, J; Blackwell, C; Gosselin, J; Snyder, B W; Wadsworth, S C

    1993-01-01

    The gene for the human CD4 glycoprotein, which serves as the receptor for human immunodeficiency virus type 1, along with approximately 23 kb of sequence upstream of the translational start site, was cloned. The ability of 5' flanking sequences to direct tissue-specific expression was tested in cell culture and in transgenic mice. A 5' flanking region of 6 kb was able to direct transcription of the CD4 gene in NIH 3T3 cells but did not result in detectable expression in the murine T-cell line EL4 or in four lines of transgenic mice. A larger 5' flanking region of approximately 23 kb directed high-level CD4 transcription in the murine T-cell line EL4 and in three independent lines of transgenic mice. Human CD4 expression in all tissues analyzed was tightly correlated with murine CD4 expression; the highest levels of human CD4 RNA expression were found in the thymus and spleen, with relatively low levels detected in other tissues. Expression of human CD4 protein in peripheral blood mononuclear cells was examined by flow cytometry in these transgenic animals and found to be restricted to the murine CD4+ subset of lymphocytes. Human CD4 protein, detected with an anti-human CD4 monoclonal antibody, was present on the surface of 45 to 50% of the peripheral blood mononuclear cells from all transgenic lines. Images PMID:8474453

  1. Exogenous expression of Drp1 plays neuroprotective roles in the Alzheimer's disease in the Aβ42 transgenic Drosophila model.

    PubMed

    Lv, Fengshou; Yang, Xiaopeng; Cui, Chuanju; Su, Chunhe

    2017-01-01

    Alzheimer's disease (AD) is one of the most common neurodegenerative disorders. Recent studies have shown that mitochondrial dysfunction is a causative factor of AD. Drp1 (Dynamin-related protein 1), a regulator of mitochondrial fission, shows neuroprotective effects on Parkinson's disease. In this study, we investigate the effect and mechanism of Drp1 on Aβ42 transgenic Drosophila. Elav-gal4/UAS>Aβ42 transgenic Drosophila model was constructed using Elav-gal4 promoter. The effects of Drp1 on the lifespan, motor ability and neuronal degeneration of the transgenic Drosophila were explored by over-expressing Drp1 in the Aβ42 transgenic Drosophila. ATP levels in the brain tissues of Aβ42 transgenic Drosophila were detected using high performance liquid chromatography (HPLC). Exogenous expression of Drp1 promoted crawling ability, reduced the levels of ATP in Drosophila brain and suppressed the neuronal degeneration. The protective effect of Drp1 on the Aβ42 transgenic Drosophila was achieved by protecting the mitochondrial function, suggesting that Drp1 may be a potential therapeutic strategies for AD.

  2. A modular toolset for recombination transgenesis and neurogenetic analysis of Drosophila.

    PubMed

    Wang, Ji-Wu; Beck, Erin S; McCabe, Brian D

    2012-01-01

    Transgenic Drosophila have contributed extensively to our understanding of nervous system development, physiology and behavior in addition to being valuable models of human neurological disease. Here, we have generated a novel series of modular transgenic vectors designed to optimize and accelerate the production and analysis of transgenes in Drosophila. We constructed a novel vector backbone, pBID, that allows both phiC31 targeted transgene integration and incorporates insulator sequences to ensure specific and uniform transgene expression. Upon this framework, we have built a series of constructs that are either backwards compatible with existing restriction enzyme based vectors or utilize Gateway recombination technology for high-throughput cloning. These vectors allow for endogenous promoter or Gal4 targeted expression of transgenic proteins with or without fluorescent protein or epitope tags. In addition, we have generated constructs that facilitate transgenic splice isoform specific RNA inhibition of gene expression. We demonstrate the utility of these constructs to analyze proteins involved in nervous system development, physiology and neurodegenerative disease. We expect that these reagents will facilitate the proficiency and sophistication of Drosophila genetic analysis in both the nervous system and other tissues.

  3. Development of insect resistant maize plants expressing a chitinase gene from the cotton leaf worm, Spodoptera littoralis

    PubMed Central

    Osman, Gamal H.; Assem, Shireen K.; Alreedy, Rasha M.; El-Ghareeb, Doaa K.; Basry, Mahmoud A.; Rastogi, Anshu; Kalaji, Hazem M.

    2015-01-01

    Due to the importance of chitinolytic enzymes for insect, nematode and fungal growth, they are receiving attention concerning their development as biopesticides or chemical defense proteins in transgenic plants and as microbial biocontrol agents. Targeting chitin associated with the extracellular matrices or cell wall by insect chitinases may be an effective approach for controlling pest insects and pathogenic fungi. The ability of chitinases to attack and digest chitin in the peritrophic matrix or exoskeleton raises the possibility to use them as insect control method. In this study, an insect chitinase cDNA from cotton leaf worm (Spodoptera littoralis) has been synthesized. Transgenic maize plant system was used to improve its tolerance against insects. Insect chitinase transcripts and proteins were expressed in transgenic maize plants. The functional integrity and expression of chitinase in progenies of the transgenic plants were confirmed by insect bioassays. The bioassays using transgenic corn plants against corn borer (Sesamia cretica) revealed that ~50% of the insects reared on transgenic corn plants died, suggesting that transgenic maize plants have enhanced resistance against S. cretica. PMID:26658494

  4. The high-level expression of human tissue plasminogen activator in the milk of transgenic mice with hybrid gene locus strategy.

    PubMed

    Zhou, Yanrong; Lin, Yanli; Wu, Xiaojie; Xiong, Fuyin; Lv, Yuemeng; Zheng, Tao; Huang, Peitang; Chen, Hongxing

    2012-02-01

    Transgene expression for the mammary gland bioreactor aimed at producing recombinant proteins requires optimized expression vector construction. Previously we presented a hybrid gene locus strategy, which was originally tested with human lactoferrin (hLF) as target transgene, and an extremely high-level expression of rhLF ever been achieved as to 29.8 g/l in mice milk. Here to demonstrate the broad application of this strategy, another 38.4 kb mWAP-htPA hybrid gene locus was constructed, in which the 3-kb genomic coding sequence in the 24-kb mouse whey acidic protein (mWAP) gene locus was substituted by the 17.4-kb genomic coding sequence of human tissue plasminogen activator (htPA), exactly from the start codon to the end codon. Corresponding five transgenic mice lines were generated and the highest expression level of rhtPA in the milk attained as to 3.3 g/l. Our strategy will provide a universal way for the large-scale production of pharmaceutical proteins in the mammary gland of transgenic animals.

  5. Endoribonuclease-Based Two-Component Repressor Systems for Tight Gene Expression Control in Plants

    DOE PAGES

    Liang, Yan; Richardson, Sarah; Yan, Jingwei; ...

    2017-01-17

    Tight control and multifactorial regulation of gene expression are important challenges in genetic engineering and are critical for the development of regulatory circuits. In meeting these challenges we will facilitate transgene expression regulation and support the fine-tuning of metabolic pathways to avoid the accumulation of undesired intermediates. By employing the endoribonuclease Csy4 and its recognition sequence from Pseudomonas aeruginosa and manipulating 5'UTR of mRNA, we developed a two-component expression–repression system to tightly control synthesis of transgene products. We demonstrated that this regulatory device was functional in monocotyledonous and dicotyledonous plant species, and showed that it can be used to repressmore » transgene expression by >400-fold and to synchronize transgene repression. In addition to tissue-specific transgene repression, this system offers stimuli-dependent expression control. Here, we identified 54 orthologous systems from various bacteria, using a bioinformatics approach and then validated in planta the activity for a few of those systems, demonstrating the potential diversity of such a two-component repressor system.« less

  6. Transgenic Cotton Plants Expressing the HaHR3 Gene Conferred Enhanced Resistance to Helicoverpa armigera and Improved Cotton Yield

    PubMed Central

    Han, Qiang; Wang, Zhenzhen; He, Yunxin; Xiong, Yehui; Lv, Shun; Li, Shupeng; Zhang, Zhigang; Qiu, Dewen; Zeng, Hongmei

    2017-01-01

    RNA interference (RNAi) has been developed as an efficient technology. RNAi insect-resistant transgenic plants expressing double-stranded RNA (dsRNA) that is ingested into insects to silence target genes can affect the viability of these pests or even lead to their death. HaHR3, a molt-regulating transcription factor gene, was previously selected as a target expressed in bacteria and tobacco plants to control Helicoverpa armigera by RNAi technology. In this work, we selected the dsRNA-HaHR3 fragment to silence HaHR3 in cotton bollworm for plant mediated-RNAi research. A total of 19 transgenic cotton lines expressing HaHR3 were successfully cultivated, and seven generated lines were used to perform feeding bioassays. Transgenic cotton plants expressing dsHaHR3 were shown to induce high larval mortality and deformities of pupation and adult eclosion when used to feed the newly hatched larvae, and 3rd and 5th instar larvae of H. armigera. Moreover, HaHR3 transgenic cotton also demonstrated an improved cotton yield when compared with controls. PMID:28867769

  7. Endoribonuclease-Based Two-Component Repressor Systems for Tight Gene Expression Control in Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Yan; Richardson, Sarah; Yan, Jingwei

    Tight control and multifactorial regulation of gene expression are important challenges in genetic engineering and are critical for the development of regulatory circuits. In meeting these challenges we will facilitate transgene expression regulation and support the fine-tuning of metabolic pathways to avoid the accumulation of undesired intermediates. By employing the endoribonuclease Csy4 and its recognition sequence from Pseudomonas aeruginosa and manipulating 5'UTR of mRNA, we developed a two-component expression–repression system to tightly control synthesis of transgene products. We demonstrated that this regulatory device was functional in monocotyledonous and dicotyledonous plant species, and showed that it can be used to repressmore » transgene expression by >400-fold and to synchronize transgene repression. In addition to tissue-specific transgene repression, this system offers stimuli-dependent expression control. Here, we identified 54 orthologous systems from various bacteria, using a bioinformatics approach and then validated in planta the activity for a few of those systems, demonstrating the potential diversity of such a two-component repressor system.« less

  8. Engineered selective plant male sterility through pollen-specific expression of the EcoRI restriction endonuclease.

    PubMed

    Millwood, Reginald J; Moon, Hong S; Poovaiah, Charleson R; Muthukumar, Balasubramaniam; Rice, John Hollis; Abercrombie, Jason M; Abercrombie, Laura L; Green, William Derek; Stewart, Charles Neal

    2016-05-01

    Unintended gene flow from transgenic plants via pollen, seed and vegetative propagation is a regulatory concern because of potential admixture in food and crop systems, as well as hybridization and introgression to wild and weedy relatives. Bioconfinement of transgenic pollen would help address some of these concerns and enable transgenic plant production for several crops where gene flow is an issue. Here, we demonstrate the expression of the restriction endonuclease EcoRI under the control of the tomato pollen-specific LAT52 promoter is an effective method for generating selective male sterility in Nicotiana tabacum (tobacco). Of nine transgenic events recovered, four events had very high bioconfinement with tightly controlled EcoRI expression in pollen and negligible-to-no expression other plant tissues. Transgenic plants had normal morphology wherein vegetative growth and reproductivity were similar to nontransgenic controls. In glasshouse experiments, transgenic lines were hand-crossed to both male-sterile and emasculated nontransgenic tobacco varieties. Progeny analysis of 16 000-40 000 seeds per transgenic line demonstrated five lines approached (>99.7%) or attained 100% bioconfinement for one or more generations. Bioconfinement was again demonstrated at or near 100% under field conditions where four transgenic lines were grown in close proximity to male-sterile tobacco, and 900-2100 seeds per male-sterile line were analysed for transgenes. Based upon these results, we conclude EcoRI-driven selective male sterility holds practical potential as a safe and reliable transgene bioconfinement strategy. Given the mechanism of male sterility, this method could be applicable to any plant species. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Heart-specific expression of laminopathic mutations in transgenic zebrafish.

    PubMed

    Verma, Ajay D; Parnaik, Veena K

    2017-07-01

    Lamins are key determinants of nuclear organization and function in the metazoan nucleus. Mutations in human lamin A cause a spectrum of genetic diseases that affect cardiac muscle and skeletal muscle as well as other tissues. A few laminopathies have been modeled using the mouse. As zebrafish is a well established model for the study of cardiac development and disease, we have investigated the effects of heart-specific lamin A mutations in transgenic zebrafish. We have developed transgenic lines of zebrafish expressing conserved lamin A mutations that cause cardiac dysfunction in humans. Expression of zlamin A mutations Q291P and M368K in the heart was driven by the zebrafish cardiac troponin T2 promoter. Homozygous mutant embryos displayed nuclear abnormalities in cardiomyocyte nuclei. Expression analysis showed the upregulation of genes involved in heart regeneration in transgenic mutant embryos and a cell proliferation marker was increased in adult heart tissue. At the physiological level, there was deviation of up to 20% from normal heart rate in transgenic embryos expressing mutant lamins. Adult homozygous zebrafish were fertile and did not show signs of early mortality. Our results suggest that transgenic zebrafish models of heart-specific laminopathies show cardiac regeneration and moderate deviations in heart rate during embryonic development. © 2017 International Federation for Cell Biology.

  10. Iron Biofortification and Homeostasis in Transgenic Cassava Roots Expressing the Algal Iron Assimilatory Gene, FEA1

    PubMed Central

    Ihemere, Uzoma E.; Narayanan, Narayanan N.; Sayre, Richard T.

    2012-01-01

    We have engineered the tropical root crop cassava (Manihot esculenta) to express the Chlamydomonas reinhardtii iron assimilatory gene, FEA1, in its storage roots with the objective of enhancing the root nutritional qualities. Iron levels in mature cassava storage roots were increased from 10 to 36 ppm in the highest iron accumulating transgenic lines. These iron levels are sufficient to meet the minimum daily requirement for iron in a 500 g meal. Significantly, the expression of the FEA1 gene in storage roots did not alter iron levels in leaves. Transgenic plants also had normal levels of zinc in leaves and roots consistent with the specific uptake of ferrous iron mediated by the FEA1 protein. Relative to wild-type plants, fibrous roots of FEA1 expressing plants had reduced Fe (III) chelate reductase activity consistent with the more efficient uptake of iron in the transgenic plants. We also show that multiple cassava genes involved in iron homeostasis have altered tissue-specific patterns of expression in leaves, stems, and roots of transgenic plants consistent with increased iron sink strength in transgenic roots. These results are discussed in terms of strategies for the iron biofortification of plants. PMID:22993514

  11. Transgenic expression of human heme oxygenase-1 in pigs confers resistance against xenograft rejection during ex vivo perfusion of porcine kidneys.

    PubMed

    Petersen, Björn; Ramackers, Wolf; Lucas-Hahn, Andrea; Lemme, Erika; Hassel, Petra; Queisser, Anna-Lisa; Herrmann, Doris; Barg-Kues, Brigitte; Carnwath, Joseph W; Klose, Johannes; Tiede, Andreas; Friedrich, Lars; Baars, Wiebke; Schwinzer, Reinhard; Winkler, Michael; Niemann, Heiner

    2011-01-01

    The major immunological hurdle to successful porcine-to-human xenotransplantation is the acute vascular rejection (AVR), characterized by endothelial cell (EC) activation and perturbation of coagulation. Heme oxygenase-1 (HO-1) and its derivatives have anti-apoptotic, anti-inflammatory effects and protect against reactive oxygen species, rendering HO-1 a promising molecule to control AVR. Here, we report the production and characterization of pigs transgenic for human heme oxygenase-1 (hHO-1) and demonstrate significant protection in porcine kidneys against xenograft rejection in ex vivo perfusion with human blood and transgenic porcine aortic endothelial cells (PAEC) in a TNF-α-mediated apoptosis assay. Transgenic and non-transgenic PAEC were tested in a TNF-α-mediated apoptosis assay. Expression of adhesion molecules (ICAM-1, VCAM-1, and E-selectin) was measured by real-time PCR. hHO-1 transgenic porcine kidneys were perfused with pooled and diluted human AB blood in an ex vivo perfusion circuit. MHC class-II up-regulation after induction with IFN-γ was compared between wild-type and hHO-1 transgenic PAEC. Cloned hHO-1 transgenic pigs expressed hHO-1 in heart, kidney, liver, and in cultured ECs and fibroblasts. hHO-1 transgenic PAEC were protected against TNF-α-mediated apoptosis. Real-time PCR revealed reduced expression of adhesion molecules like ICAM-1, VCAM-1, and E-selectin. These effects could be abrogated by the incubation of transgenic PAECs with the specific HO-1 inhibitor zinc protoporphorine IX (Zn(II)PPIX, 20 μm). IFN-γ induced up-regulation of MHC class-II molecules was significantly reduced in PAECs from hHO-1 transgenic pigs. hHO-1 transgenic porcine kidneys could successfully be perfused with diluted human AB-pooled blood for a maximum of 240 min (with and without C1 inh), while in wild-type kidneys, blood flow ceased after ∼60 min. Elevated levels of d-Dimer and TAT were detected, but no significant consumption of fibrinogen and antithrombin was determined. Microthrombi could not be detected histologically. These results are encouraging and warrant further studies on the biological function of heme oxygenase-I expression in hHO-1 transgenic pigs in the context of xenotransplantation. © 2011 John Wiley & Sons A/S.

  12. Expression of an osmotin-like protein from Solanum nigrum confers drought tolerance in transgenic soybean.

    PubMed

    Weber, Ricardo Luís Mayer; Wiebke-Strohm, Beatriz; Bredemeier, Christian; Margis-Pinheiro, Márcia; de Brito, Giovani Greigh; Rechenmacher, Ciliana; Bertagnolli, Paulo Fernando; de Sá, Maria Eugênia Lisei; Campos, Magnólia de Araújo; de Amorim, Regina Maria Santos; Beneventi, Magda Aparecida; Margis, Rogério; Grossi-de-Sa, Maria Fátima; Bodanese-Zanettini, Maria Helena

    2014-12-10

    Drought is by far the most important environmental factor contributing to yield losses in crops, including soybeans [Glycine max (L.) Merr.]. To address this problem, a gene that encodes an osmotin-like protein isolated from Solanum nigrum var. americanum (SnOLP) driven by the UBQ3 promoter from Arabidopsis thaliana was transferred into the soybean genome by particle bombardment. Two independently transformed soybean lines expressing SnOLP were produced. Segregation analyses indicated single-locus insertions for both lines. qPCR analysis suggested a single insertion of SnOLP in the genomes of both transgenic lines, but one copy of the hpt gene was inserted in the first line and two in the second line. Transgenic plants exhibited no remarkable phenotypic alterations in the seven analyzed generations. When subjected to water deficit, transgenic plants performed better than the control ones. Leaf physiological measurements revealed that transgenic soybean plants maintained higher leaf water potential at predawn, higher net CO2 assimilation rate, higher stomatal conductance and higher transpiration rate than non-transgenic plants. Grain production and 100-grain weight were affected by water supply. Decrease in grain productivity and 100-grain weight were observed for both transgenic and non-transgenic plants under water deficit; however, it was more pronounced for non-transgenic plants. Moreover, transgenic lines showed significantly higher 100-grain weight than non-transgenic plants under water shortage. This is the first report showing that expression of SnOLP in transgenic soybeans improved physiological responses and yield components of plants when subjected to water deficit, highlighting the potential of this gene for biotechnological applications.

  13. Vitamin D delays breast cancer progression in the PyVMT transgenic mouse model: local conversion of the precursor 25(OH)D3 into 1,25(OH)2D3 is safer and more effective than systemic administration of 1,25(OH)2D3

    USDA-ARS?s Scientific Manuscript database

    Metabolic activation of 1,25(OH)2D3 occurs at extra renal sites in several organs, including the breast. The purpose of this study was to determine if this local tumoral 25OHD3-1alphahydroxylase expression modulates any or all of the stages of breast tumor progression. For this purpose we used the...

  14. Development of a transgenic zebrafish model expressing GFP in the notochord, somite and liver directed by the hfe2 gene promoter.

    PubMed

    Bian, Yue-Hong; Xu, Cheng; Li, Junling; Xu, Jin; Zhang, Hongwei; Du, Shao Jun

    2011-08-01

    Hemojuvelin, also known as RGMc, is encoded by hfe2 gene that plays an important role in iron homeostasis. hfe2 is specifically expressed in the notochord, developing somite and skeletal muscles during development. The molecular regulation of hfe2 expression is, however, not clear. We reported here the characterization of hfe2 gene expression and the regulation of its tissue-specific expression in zebrafish embryos. We demonstrated that the 6 kb 5'-flanking sequence upstream of the ATG start codon in the zebrafish hfe2 gene could direct GFP specific expression in the notochord, somites, and skeletal muscle of zebrafish embryos, recapitulating the expression pattern of the endogenous gene. However, the Tg(hfe2:gfp) transgene is also expressed in the liver of fish embryos, which did not mimic the expression of the endogenous hfe2 at the early stage. Nevertheless, the Tg(hfe2:gfp) transgenic zebrafish provides a useful model to study liver development. Treating Tg(hfe2:gfp) transgenic zebrafish embryos with valproic acid, a liver development inhibitor, significantly inhibited GFP expression in zebrafish. Together, these data indicate that the tissue specific expression of hfe2 in the notochord, somites and muscles is regulated by regulatory elements within the 6 kb 5'-flanking sequence of the hfe2 gene. Moreover, the Tg(hfe2:gfp) transgenic zebrafish line provides a useful model system for analyzing liver development in zebrafish.

  15. Reduced striatal dopamine DA D2 receptor function in dominant-negative GSK-3 transgenic mice.

    PubMed

    Gomez-Sintes, Raquel; Bortolozzi, Analia; Artigas, Francesc; Lucas, José J

    2014-09-01

    Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase with constitutive activity involved in cellular architecture, gene expression, cell proliferation, fate decision and apoptosis, among others. GSK-3 expression is particularly high in brain where it may be involved in neurological and psychiatric disorders such as Alzheimer׳s disease, bipolar disorder and major depression. A link with schizophrenia is suggested by the antipsychotic drug-induced GSK-3 regulation and by the involvement of the Akt/GSK-3 pathway in dopaminergic neurotransmission. Taking advantage of the previous development of dominant negative GSK-3 transgenic mice (Tg) showing a selective reduction of GSK-3 activity in forebrain neurons but not in dopaminergic neurons, we explored the relationship between GSK-3 and dopaminergic neurotransmission in vivo. In microdialysis experiments, local quinpirole (DA D2-R agonist) in dorsal striatum reduced dopamine (DA) release significantly less in Tg mice than in wild-type (WT) mice. However, local SKF-81297 (selective DA D1-R agonist) in dorsal striatum reduced DA release equally in both control and Tg mice indicating a comparable function of DA D1-R in the direct striato-nigral pathway. Likewise, systemic quinpirole administration - acting preferentially on presynaptic DA D2- autoreceptors to modulate DA release-reduced striatal DA release similarly in both control and Tg mice. Quinpirole reduced locomotor activity and induced c-fos expression in globus pallidus (both striatal DA D2-R-mediated effects) significantly more in WT than in Tg mice. Taking together, the present results show that dominant negative GSK-3 transgenic mice show reduced DA D2-R-mediated function in striatum and further support a link between dopaminergic neurotransmission and GSK-3 activity. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  16. Isolation of Novel Synthetic Prion Strains by Amplification in Transgenic Mice Coexpressing Wild-Type and Anchorless Prion Proteins

    PubMed Central

    Raymond, Gregory J.; Race, Brent; Hollister, Jason R.; Offerdahl, Danielle K.; Moore, Roger A.; Kodali, Ravindra; Raymond, Lynne D.; Hughson, Andrew G.; Rosenke, Rebecca; Long, Dan; Dorward, David W.

    2012-01-01

    Mammalian prions are thought to consist of misfolded aggregates (protease-resistant isoform of the prion protein [PrPres]) of the cellular prion protein (PrPC). Transmissible spongiform encephalopathy (TSE) can be induced in animals inoculated with recombinant PrP (rPrP) amyloid fibrils lacking mammalian posttranslational modifications, but this induction is inefficient in hamsters or transgenic mice overexpressing glycosylphosphatidylinositol (GPI)-anchored PrPC. Here we show that TSE can be initiated by inoculation of misfolded rPrP into mice that express wild-type (wt) levels of PrPC and that synthetic prion strain propagation and selection can be affected by GPI anchoring of the host's PrPC. To create prions de novo, we fibrillized mouse rPrP in the absence of molecular cofactors, generating fibrils with a PrPres-like protease-resistant banding profile. These fibrils induced the formation of PrPres deposits in transgenic mice coexpressing wt and GPI-anchorless PrPC (wt/GPI−) at a combined level comparable to that of PrPC expression in wt mice. Secondary passage into mice expressing wt, GPI−, or wt plus GPI− PrPC induced TSE disease with novel clinical, histopathological, and biochemical phenotypes. Contrary to laboratory-adapted mouse scrapie strains, the synthetic prion agents exhibited a preference for conversion of GPI− PrPC and, in one case, caused disease only in GPI− mice. Our data show that novel TSE agents can be generated de novo solely from purified mouse rPrP after amplification in mice coexpressing normal levels of wt and anchorless PrPC. These observations provide insight into the minimal elements required to create prions in vitro and suggest that the PrPC GPI anchor can modulate the propagation of synthetic TSE strains. PMID:22915801

  17. NMDA Receptors Mediate Olfactory Learning and Memory in Drosophila

    PubMed Central

    Xia, Shouzhen; Miyashita, Tomoyuki; Fu, Tsai-Feng; Lin, Wei-Yong; Wu, Chia-Lin; Pyzocha, Lori; Lin, Inn-Ray; Saitoe, Minoru; Tully, Tim; Chiang, Ann-Shyn

    2011-01-01

    Summary Background Molecular and electrophysiological properties of NMDARs suggest that they may be the Hebbian “coincidence detectors” hypothesized to underlie associative learning. Because of the nonspecificity of drugs that modulate NMDAR function or the relatively chronic genetic manipulations of various NMDAR subunits from mammalian studies, conclusive evidence for such an acute role for NMDARs in adult behavioral plasticity, however, is lacking. Moreover, a role for NMDARs in memory consolidation remains controversial. Results The Drosophila genome encodes two NMDAR homologs, dNR1 and dNR2. When coexpressed in Xenopus oocytes or Drosophila S2 cells, dNR1 and dNR2 form functional NMDARs with several of the distinguishing molecular properties observed for vertebrate NMDARs, including voltage/Mg2+-dependent activation by glutamate. Both proteins are weakly expressed throughout the entire brain but show preferential expression in several neurons surrounding the dendritic region of the mushroom bodies. Hypomorphic mutations of the essential dNR1 gene disrupt olfactory learning, and this learning defect is rescued with wild-type transgenes. Importantly, we show that Pavlovian learning is disrupted in adults within 15 hr after transient induction of a dNR1 antisense RNA transgene. Extended training is sufficient to overcome this initial learning defect, but long-term memory (LTM) specifically is abolished under these training conditions. Conclusions Our study uses a combination of molecular-genetic tools to (1) generate genomic mutations of the dNR1 gene, (2) rescue the accompanying learning deficit with a dNR1+ transgene, and (3) rapidly and transiently knockdown dNR1+ expression in adults, thereby demonstrating an evolutionarily conserved role for the acute involvement of NMDARs in associative learning and memory. PMID:15823532

  18. Tamoxifen affects glucose and lipid metabolism parameters, causes browning of subcutaneous adipose tissue and transient body composition changes in C57BL/6NTac mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hesselbarth, Nico; Pettinelli, Chiara; Gericke, Martin

    Tamoxifen is a selective estrogen receptor (ER) modulator which is widely used to generate inducible conditional transgenic mouse models. Activation of ER signaling plays an important role in the regulation of adipose tissue (AT) metabolism. We therefore tested the hypothesis that tamoxifen administration causes changes in AT biology in vivo. 12 weeks old male C57BL/6NTac mice were treated with either tamoxifen (n = 18) or vehicle (n = 18) for 5 consecutive days. Tamoxifen treatment effects on body composition, energy homeostasis, parameters of AT biology, glucose and lipid metabolism were investigated up to an age of 18 weeks. We found that tamoxifen treatment causes: I)more » significantly increased HbA{sub 1c}, triglyceride and free fatty acid serum concentrations (p < 0.01), II) browning of subcutaneous AT and increased UCP-1 expression, III) increased AT proliferation marker Ki67 mRNA expression, IV) changes in adipocyte size distribution, and V) transient body composition changes. Tamoxifen may induce changes in body composition, whole body glucose and lipid metabolism and has significant effects on AT biology, which need to be considered when using Tamoxifen as a tool to induce conditional transgenic mouse models. Our data further suggest that tamoxifen-treated wildtype mice should be characterized in parallel to experimental transgenic models to control for tamoxifen administration effects. - Highlights: • Tamoxifen treatment causes significantly increased HbA{sub 1c}, triglyceride and free fatty acid serum concentrations. • Tamoxifen induces browning of subcutaneous AT and increased UCP-1 expression. • Tamoxifen changes adipocyte size distribution, and transient body composition.« less

  19. NMDA receptors mediate olfactory learning and memory in Drosophila.

    PubMed

    Xia, Shouzhen; Miyashita, Tomoyuki; Fu, Tsai-Feng; Lin, Wei-Yong; Wu, Chia-Lin; Pyzocha, Lori; Lin, Inn-Ray; Saitoe, Minoru; Tully, Tim; Chiang, Ann-Shyn

    2005-04-12

    Molecular and electrophysiological properties of NMDARs suggest that they may be the Hebbian "coincidence detectors" hypothesized to underlie associative learning. Because of the nonspecificity of drugs that modulate NMDAR function or the relatively chronic genetic manipulations of various NMDAR subunits from mammalian studies, conclusive evidence for such an acute role for NMDARs in adult behavioral plasticity, however, is lacking. Moreover, a role for NMDARs in memory consolidation remains controversial. The Drosophila genome encodes two NMDAR homologs, dNR1 and dNR2. When coexpressed in Xenopus oocytes or Drosophila S2 cells, dNR1 and dNR2 form functional NMDARs with several of the distinguishing molecular properties observed for vertebrate NMDARs, including voltage/Mg(2+)-dependent activation by glutamate. Both proteins are weakly expressed throughout the entire brain but show preferential expression in several neurons surrounding the dendritic region of the mushroom bodies. Hypomorphic mutations of the essential dNR1 gene disrupt olfactory learning, and this learning defect is rescued with wild-type transgenes. Importantly, we show that Pavlovian learning is disrupted in adults within 15 hr after transient induction of a dNR1 antisense RNA transgene. Extended training is sufficient to overcome this initial learning defect, but long-term memory (LTM) specifically is abolished under these training conditions. Our study uses a combination of molecular-genetic tools to (1) generate genomic mutations of the dNR1 gene, (2) rescue the accompanying learning deficit with a dNR1+ transgene, and (3) rapidly and transiently knockdown dNR1+ expression in adults, thereby demonstrating an evolutionarily conserved role for the acute involvement of NMDARs in associative learning and memory.

  20. Transgene Expression and Host Cell Responses to Replication-Defective, Single-Cycle, and Replication-Competent Adenovirus Vectors.

    PubMed

    Crosby, Catherine M; Barry, Michael A

    2017-02-18

    Most adenovirus (Ad) vectors are E1 gene deleted replication defective (RD-Ad) vectors that deliver one transgene to the cell and all expression is based on that one gene. In contrast, E1-intact replication-competent Ad (RC-Ad) vectors replicate their DNA and their transgenes up to 10,000-fold, amplifying transgene expression markedly higher than RD-Ad vectors. While RC-Ad are more potent, they run the real risk of causing adenovirus infections in vector recipients and those that administer them. To gain the benefits of transgene amplification, but avoid the risk of Ad infections, we developed "single cycle" Ad (SC-Ad) vectors. SC-Ads amplify transgene expression and generated markedly stronger and more persistent immune responses than RD-Ad as expected. However, they also unexpectedly generated stronger immune responses than RC-Ad vectors. To explore the basis of this potency here, we compared gene expression and the cellular responses to infection to these vectors in vitro and in vivo. In vitro, in primary human lung epithelial cells, SC- and RC-Ad amplified their genomes more than 400-fold relative to RD-Ad with higher replication by SC-Ad. This replication translated into higher green fluorescent protein (GFP) expression for 48 h by SC- and RC-Ad than by RD-Ad. In vitro, in the absence of an immune system, RD-Ad expression became higher by 72 h coincident with cell death mediated by SC- and RC-Ad and release of transgene product from the dying cells. When the vectors were compared in human THP-1 Lucia- interferon-stimulated gene (ISG) cells, which are a human monocyte cell line that have been modified to quantify ISG activity, RC-Ad6 provoked significantly stronger ISG responses than RD- or SC-Ad. In mice, intravenous or intranasal injection produced up to 100-fold genome replication. Under these in vivo conditions in the presence of the immune system, luciferase expression by RC and SC-Ad was markedly higher than that by RD-Ad. In immunodeficient mice, SC-Ad drove stronger luciferase expression than RC- or RD-Ad. These data demonstrate better transgene expression by SC- and RC-Ad in vitro and in vivo than RD-Ad. This higher expression by the replicating vectors results in a peak of expression within 1 to 2 days followed by cell death of infected cells and release of transgene products. While SC- and RC-Ad expression were similar in mice and in Syrian hamsters, RC-Ad provoked much stronger ISG induction which may explain in part SC-Ad's ability to generate stronger and more persistent immune responses than RC-Ad in Ad permissive hamsters.

  1. Genital herpes simplex virus type 2 infection in humanized HIV-transgenic mice triggers HIV shedding and is associated with greater neurological disease.

    PubMed

    Nixon, Briana; Fakioglu, Esra; Stefanidou, Martha; Wang, Yanhua; Dutta, Monica; Goldstein, Harris; Herold, Betsy C

    2014-02-15

    Epidemiological studies consistently demonstrate synergy between herpes simplex virus type 2 (HSV-2) and human immunodeficiency virus type 1 (HIV-1). Higher HIV-1 loads are observed in coinfected individuals, and conversely, HIV-1 is associated with more-severe herpetic disease. A small animal model of coinfection would facilitate identification of the biological mechanisms underlying this synergy and provide the opportunity to evaluate interventions. Mice transgenic for HIV-1 provirus and human cyclin T1 under the control of a CD4 promoter (JR-CSF/hu-cycT1) were intravaginally infected with HSV-2 and evaluated for disease progression, HIV shedding, and mucosal immune responses. HSV-2 infection resulted in higher vaginal HIV loads and genital tissue expression of HIV RNA, compared with HSV-uninfected JR-CSF/hu-cycT1 mice. There was an increase in genital tract inflammatory cells, cytokines, chemokines, and interferons in response to HSV-2, although the kinetics of the response were delayed in HIV-transgenic, compared with control mice. Moreover, the JR-CSF/hu-cycT1 mice exhibited earlier and more-severe neurological disease. The latter was associated with downregulation of secretory leukocyte protease inhibitor expression in neuronal tissue, a molecule with antiinflammatory, antiviral, and neuroprotective properties. JR-CSF/hu-cycT1 mice provide a valuable model to study HIV/HSV-2 coinfection and identify potential mechanisms by which HSV-2 facilitates HIV-1 transmission and HIV modulates HSV-2-mediated disease.

  2. Meta-Analysis of the Effect of Overexpression of Dehydration-Responsive Element Binding Family Genes on Temperature Stress Tolerance and Related Responses

    PubMed Central

    Dong, Chao; Ma, Yuanchun; Zheng, Dan; Wisniewski, Michael; Cheng, Zong-Ming

    2018-01-01

    Dehydration-responsive element binding proteins are transcription factors that play a critical role in plant response to temperature stress. Over-expression of DREB genes has been demonstrated to enhance temperature stress tolerance. A series of physiological and biochemical modifications occur in a complex and integrated way when plants respond to temperature stress, which makes it difficult to assess the mechanism underlying the DREB enhancement of stress tolerance. A meta-analysis was conducted of the effect of DREB overexpression on temperature stress tolerance and the various parameters modulated by overexpression that were statistically quantified in 75 published articles. The meta-analysis was conducted to identify the overall influence of DREB on stress-related parameters in transgenic plants, and to determine how different experimental variables affect the impact of DREB overexpression. Viewed across all the examined studies, 7 of the 8 measured plant parameters were significantly (p ≤ 0.05) modulated in DREB-transgenic plants when they were subjected to temperature stress, while 2 of the 8 parameters were significantly affected in non-stressed control plants. The measured parameters were modulated by 32% or more by various experimental variables. The modulating variables included, acclimated or non-acclimated, type of promoter, stress time and severity, source of the donor gene, and whether the donor and recipient were the same genus. These variables all had a significant effect on the observed impact of DREB overexpression. Further studies should be conducted under field conditions to better understand the role of DREB transcription factors in enhancing plant tolerance to temperature stress. PMID:29896212

  3. Expression of Folate Pathway Genes in the Cartilage of Hoxd4 and Hoxc8 Transgenic Mice

    PubMed Central

    Kruger, Claudia; Talmadge, Catherine; Kappen, Claudia

    2014-01-01

    BACKGROUND Hox transcription factors are well known for their role in skeletal patterning in vertebrates. They regulate gene expression during the development of cartilage, the precursor to mature bone. We previously reported that overexpression of the homeobox genes Hoxc8 and Hoxd4 results in severe cartilage defects, reduced proteoglycan content, accumulation of immature chondrocytes, and decreased maturation to hypertrophy. We have also shown that Hoxd4 transgenic mice whose diets were supplemented with folate had their skeletal development restored. Since folate is required for growth and differentiation of chondrocytes, we hypothesized that the beneficial effect of folate in Hoxd4 transgenic mice might indicate a local deficiency in folate utilization, possibly caused by deregulation of genes encoding folate transport proteins or folate metabolic enzymes. METHODS We assayed the prevalence of transcripts for 22 folate transport proteins and metabolizing enzymes, here collectively referred to as folate pathway genes. Quantitative real-time PCR was performed on cDNA samples derived from RNA isolated from primary chondrocytes of individual rib cartilages from Hoxd4 and Hoxc8 transgenic mice, respectively. RESULTS This study shows that the Hox transgenes produce overexpression of Hoxd4 and Hoxc8 in primary chondrocytes from perinatal transgenic mice. However, no differences were found in expression levels of the folate pathway genes in transgenic cells compared to littermate controls. CONCLUSIONS Our results provide evidence that folate pathway genes are only indirect targets of Hox transgene overexpression in our transgenic animals. These expression studies provide a baseline for future studies into the role of folate metabolism in chondrocyte differentiation. PMID:16586448

  4. Modified expression of alternative oxidase in transgenic tomato and petunia affects the level of tomato spotted wilt virus resistance.

    PubMed

    Ma, Hao; Song, Congfeng; Borth, Wayne; Sether, Diane; Melzer, Michael; Hu, John

    2011-10-20

    Tomato spotted wilt virus (TSWV) has a very wide host range, and is transmitted in a persistent manner by several species of thrips. These characteristics make this virus difficult to control. We show here that the over-expression of the mitochondrial alternative oxidase (AOX) in tomato and petunia is related to TSWV resistance. The open reading frame and full-length sequence of the tomato AOX gene LeAox1au were cloned and introduced into tomato 'Healani' and petunia 'Sheer Madness' using Agrobacterium-mediated transformation. Highly expressed AOX transgenic tomato and petunia plants were selfed and transgenic R1 seedlings from 10 tomato lines and 12 petunia lines were used for bioassay. For each assayed line, 22 to 32 tomato R1 progeny in three replications and 39 to 128 petunia progeny in 13 replications were challenged with TSWV. Enzyme-Linked Immunosorbent Assays showed that the TSWV levels in transgenic tomato line FKT4-1 was significantly lower than that of wild-type controls after challenge with TSWV. In addition, transgenic petunia line FKP10 showed significantly less lesion number and smaller lesion size than non-transgenic controls after inoculation by TSWV. In all assayed transgenic tomato lines, a higher percentage of transgenic progeny had lower TSWV levels than non-transgenic plants after challenge with TSWV, and the significantly increased resistant levels of tomato and petunia lines identified in this study indicate that altered expression levels of AOX in tomato and petunia can affect the levels of TSWV resistance.

  5. Modified expression of alternative oxidase in transgenic tomato and petunia affects the level of tomato spotted wilt virus resistance

    PubMed Central

    2011-01-01

    Background Tomato spotted wilt virus (TSWV) has a very wide host range, and is transmitted in a persistent manner by several species of thrips. These characteristics make this virus difficult to control. We show here that the over-expression of the mitochondrial alternative oxidase (AOX) in tomato and petunia is related to TSWV resistance. Results The open reading frame and full-length sequence of the tomato AOX gene LeAox1au were cloned and introduced into tomato 'Healani' and petunia 'Sheer Madness' using Agrobacterium-mediated transformation. Highly expressed AOX transgenic tomato and petunia plants were selfed and transgenic R1 seedlings from 10 tomato lines and 12 petunia lines were used for bioassay. For each assayed line, 22 to 32 tomato R1 progeny in three replications and 39 to 128 petunia progeny in 13 replications were challenged with TSWV. Enzyme-Linked Immunosorbent Assays showed that the TSWV levels in transgenic tomato line FKT4-1 was significantly lower than that of wild-type controls after challenge with TSWV. In addition, transgenic petunia line FKP10 showed significantly less lesion number and smaller lesion size than non-transgenic controls after inoculation by TSWV. Conclusion In all assayed transgenic tomato lines, a higher percentage of transgenic progeny had lower TSWV levels than non-transgenic plants after challenge with TSWV, and the significantly increased resistant levels of tomato and petunia lines identified in this study indicate that altered expression levels of AOX in tomato and petunia can affect the levels of TSWV resistance. PMID:22014312

  6. Nuclear receptor TLX stimulates hippocampal neurogenesis and enhances learning and memory in a transgenic mouse model

    PubMed Central

    Murai, Kiyohito; Qu, Qiuhao; Sun, GuoQiang; Ye, Peng; Li, Wendong; Asuelime, Grace; Sun, Emily; Tsai, Guochuan E.; Shi, Yanhong

    2014-01-01

    The role of the nuclear receptor TLX in hippocampal neurogenesis and cognition has just begun to be explored. In this study, we generated a transgenic mouse model that expresses TLX under the control of the promoter of nestin, a neural precursor marker. Transgenic TLX expression led to mice with enlarged brains with an elongated hippocampal dentate gyrus and increased numbers of newborn neurons. Specific expression of TLX in adult hippocampal dentate gyrus via lentiviral transduction increased the numbers of BrdU+ cells and BrdU+NeuN+ neurons. Furthermore, the neural precursor-specific expression of the TLX transgene substantially rescued the neurogenic defects of TLX-null mice. Consistent with increased neurogenesis in the hippocampus, the TLX transgenic mice exhibited enhanced cognition with increased learning and memory. These results suggest a strong association between hippocampal neurogenesis and cognition, as well as significant contributions of TLX to hippocampal neurogenesis, learning, and memory. PMID:24927526

  7. Expression of GAT1 in male reproductive system and its effects on reproduction in mice.

    PubMed

    Zhang, JinFu; Gui, YaPing; Yuan, Tao; Bian, CuiDong; Guo, LiHe

    2009-12-01

    The present study was carried out to identify GABA (gamma-aminobutyric acid) transport protein I (GAT1) in male reproductive organs and to study the effect of GAT1 overexpression on the male reproductive system in GAT1 transgenic mice (TG). Expression and location of GAT1 in testes, epididymis, and sperm of wild-type (WT) mice were identified by immunohistochemistry and western-blot. Histological changes of testes, epididymis, and sperm of transgenic mice overexpressing GAT1 were detected by immunofluorenscent staining and haematoxylin and eosin (HE) staining. GAT1 expression was detected in the testes, epididymis, and sperm of non-transgenic mice. Vacuolization and deformity of spermatogenic cells were observed in the transgenic mice, but the epididymis was unremarkable. Immunofluorenscent staining showed that the number of diastrophic and decapitated sperm increased significantly in transgenic mice to 46.9% from 7.3% in nontransgenic mice. These results suggest that abnormal expression of GAT1 could result in spermiogenesis function injury, sperm paramorphia and dysgenesis.

  8. Changes in oil content of transgenic soybeans expressing the yeast SLC1 gene.

    PubMed

    Rao, Suryadevara S; Hildebrand, David

    2009-10-01

    The wild type (Wt) and mutant form of yeast (sphingolipid compensation) genes, SLC1 and SLC1-1, have been shown to have lysophosphatidic acid acyltransferase (LPAT) activities (Nageic et al. in J Biol Chem 269:22156-22163, 1993). Expression of these LPAT genes was reported to increase oil content in transgenic Arabidopsis and Brassica napus. It is of interest to determine if the TAG content increase would also be seen in soybeans. Therefore, the wild type SLC1 was expressed in soybean somatic embryos under the control of seed specific phaseolin promoter. Some transgenic somatic embryos and in both T2 and T3 transgenic seeds showed higher oil contents. Compared to controls, the average increase in triglyceride values went up by 1.5% in transgenic somatic embryos. A maximum of 3.2% increase in seed oil content was observed in a T3 line. Expression of the yeast Wt LPAT gene did not alter the fatty acid composition of the seed oil.

  9. Estrogen and progesterone receptors have distinct roles in the establishment of the hyperplastic phenotype in PR-A transgenic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simian, Marina; Bissell, Mina J.; Barcellos-Hoff, Mary Helen

    2009-05-11

    Expression of the A and B forms of progesterone receptor (PR) in an appropriate ratio is critical for mammary development. Mammary glands of PR-A transgenic mice, carrying an additional A form of PR as a transgene, exhibit morphological features associated with the development of mammary tumors. Our objective was to determine the roles of estrogen (E) and progesterone (P) in the genesis of mammary hyperplasias/preneoplasias in PR-A transgenics. We subjected PR-A mice to hormonal treatments and analyzed mammary glands for the presence of hyperplasias and used BrdU incorporation to measure proliferation. Quantitative image analysis was carried out to compare levelsmore » of latency-associated peptide and transforming growth factor beta 1 (TGF{beta}1) between PR-A and PR-B transgenics. Basement membrane disruption was examined by immunofluorescence and proteolytic activity by zymography. The hyperplastic phenotype of PR-A transgenics is inhibited by ovariectomy, and is reversed by treatment with E + P. Studies using the antiestrogen ICI 182,780 or antiprogestins RU486 or ZK 98,299 show that the increase in proliferation requires signaling through E/estrogen receptor alpha but is not sufficient to give rise to hyperplasias, whereas signaling through P/PR has little impact on proliferation but is essential for the manifestation of hyperplasias. Increased proliferation is correlated with decreased TGF{beta}1 activation in the PR-A transgenics. Analysis of basement membrane integrity showed loss of laminin-5, collagen III and collagen IV in mammary glands of PR-A mice, which is restored by ovariectomy. Examination of matrix metalloproteases (MMPs) showed that total levels of MMP-2 correlate with the steady-state levels of PR, and that areas of laminin-5 loss coincide with those of activation of MMP-2 in PR-A transgenics. Activation of MMP-2 is dependent on treatment with E and P in ovariectomized wild-type mice, but is achieved only by treatment with P in PR-A mice. These data establish a link between hormonal response, proliferation, modulation of MMP activity and maintenance of basement membrane integrity that depend on a balance in the expression levels of PR-A and PR-B isoforms. Notably, concomitant increased proliferation, due to inhibition of TGF{beta}1 activation, and loss of basement membrane integrity, via increased MMP-2 activity, appear to be prerequisites for the PR-A hyperplastic phenotype.« less

  10. Expression of Notch pathway genes in mammalian epidermis and modulation by beta-catenin.

    PubMed

    Ambler, Carrie A; Watt, Fiona M

    2007-06-01

    The Notch pathway is required for hair follicle maintenance and is activated through beta-catenin induced transcription of the Notch ligand Jagged1. We show that hair follicles in the resting phase express low levels of Jagged1 and Hes1, and other Notch target genes are undetectable. In growing (anagen) follicles, Jagged1 and Hes1 expression increases, Hes5 and HeyL are expressed in distinct cell layers, and Hey2 is expressed in the dermal papilla. When beta-catenin is activated by means of an inducible transgene, Jagged1, Hes1, Hes5, HeyL, and Hey2 are up-regulated, the sites of expression being the same in beta-catenin induced ectopic follicles as in anagen follicles. beta-Catenin also induces Hey1 in dermal papilla cells. beta-Catenin-induced up-regulation of Jagged1 precedes induction of other Notch target genes. The different sites of expression of Hes and Hey genes suggest input from additional signaling pathways. Copyright 2007 Wiley-Liss, Inc.

  11. The Use of Transcription Terminators to Generate Transgenic Lines of Chinese Hamster Ovary Cells (CHO) with Stable and High Level of Reporter Gene Expression.

    PubMed

    Gasanov, N B; Toshchakov, S V; Georgiev, P G; Maksimenko, O G

    2015-01-01

    Mammalian cell lines are widely used to produce recombinant proteins. Stable transgenic cell lines usually contain many insertions of the expression vector in one genomic region. Transcription through transgene can be one of the reasons for target gene repression after prolonged cultivation of cell lines. In the present work, we used the known transcription terminators from the SV40 virus, as well as the human β- and γ-globin genes, to prevent transcription through transgene. The transcription terminators were shown to increase and stabilize the expression of the EGFP reporter gene in transgenic lines of Chinese hamster ovary (CHO) cells. Hence, transcription terminators can be used to create stable mammalian cells with a high and stable level of recombinant protein production.

  12. Mutually exclusive expression of human red and green visual pigment-reporter transgenes occurs at high frequency in murine cone photoreceptors.

    PubMed

    Wang, Y; Smallwood, P M; Cowan, M; Blesh, D; Lawler, A; Nathans, J

    1999-04-27

    This study examines the mechanism of mutually exclusive expression of the human X-linked red and green visual pigment genes in their respective cone photoreceptors by asking whether this expression pattern can be produced in a mammal that normally carries only a single X-linked visual pigment gene. To address this question, we generated transgenic mice that carry a single copy of a minimal human X chromosome visual pigment gene array in which the red and green pigment gene transcription units were replaced, respectively, by alkaline phosphatase and beta-galactosidase reporters. As determined by histochemical staining, the reporters are expressed exclusively in cone photoreceptor cells. In 20 transgenic mice carrying any one of three independent transgene insertion events, an average of 63% of expressing cones have alkaline phosphatase activity, 10% have beta-galactosidase activity, and 27% have activity for both reporters. Thus, mutually exclusive expression of red and green pigment transgenes can be achieved in a large fraction of cones in a dichromat mammal, suggesting a facile evolutionary path for the development of trichromacy after visual pigment gene duplication. These observations are consistent with a model of visual pigment expression in which stochastic pairing occurs between a locus control region and either the red or the green pigment gene promotor.

  13. The wheat Lr34 multipathogen resistance gene confers resistance to anthracnose and rust in sorghum.

    PubMed

    Schnippenkoetter, Wendelin; Lo, Clive; Liu, Guoquan; Dibley, Katherine; Chan, Wai Lung; White, Jodie; Milne, Ricky; Zwart, Alexander; Kwong, Eunjung; Keller, Beat; Godwin, Ian; Krattinger, Simon G; Lagudah, Evans

    2017-11-01

    The ability of the wheat Lr34 multipathogen resistance gene (Lr34res) to function across a wide taxonomic boundary was investigated in transgenic Sorghum bicolor. Increased resistance to sorghum rust and anthracnose disease symptoms following infection with the biotrophic pathogen Puccinia purpurea and the hemibiotroph Colletotrichum sublineolum, respectively, occurred in transgenic plants expressing the Lr34res ABC transporter. Transgenic sorghum lines that highly expressed the wheat Lr34res gene exhibited immunity to sorghum rust compared to the low-expressing single copy Lr34res genotype that conferred partial resistance. Pathogen-induced pigmentation mediated by flavonoid phytoalexins was evident on transgenic sorghum leaves following P. purpurea infection within 24-72 h, which paralleled Lr34res gene expression. Elevated expression of flavone synthase II, flavanone 4-reductase and dihydroflavonol reductase genes which control the biosynthesis of flavonoid phytoalexins characterized the highly expressing Lr34res transgenic lines 24-h post-inoculation with P. purpurea. Metabolite analysis of mesocotyls infected with C. sublineolum showed increased levels of 3-deoxyanthocyanidin metabolites were associated with Lr34res expression, concomitant with reduced symptoms of anthracnose. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Ars insulator identified in sea urchin possesses an activity to ensure the transgene expression in mouse cells.

    PubMed

    Tajima, Shoji; Shinohara, Keiko; Fukumoto, Maiko; Zaitsu, Reiko; Miyagawa, Junichi; Hino, Shinjiro; Fan, Jun; Akasaka, Koji; Matsuoka, Masao

    2006-04-01

    Sea urchin arylsulfatase (Ars) gene locus has features of an insulator, i.e., blocking of enhancer and promoter interaction, and protection of a transgene against positional effects [Akasaka et al. (1999) Cell. Mol. Biol. 45, 555-565]. To examine the effect of Ars insulator on long-term expression of a transgene, the insulator was inserted into LTR of retrovirus vector harboring hrGFP gene as a reporter, and then introduced into mouse myoblast cells. The isolated clones transduced with the reporter gene with or without Ars insulator were cultured for more than 20 wk in the absence of a selection reagent, and the expression of hrGFP was periodically determined. Expression of hrGFP in four clones transduced with the reporter gene without Ars insulator was completely silenced after 20 wk of culture. On the other hand, hrGFP was expressed in all clones with Ars insulator inserted in one of the two different orientations. Histone H3 deacetylation and DNA methylation of the 5'LTR promoter region, signs for heterochromatin and silencing, were suppressed in the clones that were expressing hrGFP. Ars insulator is effective in maintaining a transgene in mouse cells in an orientation-dependent manner, and will be a useful tool to ensure stable expression of a transgene.

  15. Bean alpha-amylase inhibitors in transgenic peas inhibit development of pea weevil larvae.

    PubMed

    de Sousa-Majer, Maria José; Hardie, Darryl C; Turner, Neil C; Higgins, Thomas J V

    2007-08-01

    This glasshouse study used an improved larval measurement procedure to evaluate the impact of transgenic pea, Pisum sativum L., seeds expressing a-amylase inhibitor (AI)-1 or -2 proteins on pea weevil, Bruchus pisorum L. Seeds of transgenic 'Laura' and 'Greenfeast' peas expressing alpha-(AI)-1 reduced pea weevil survival by 93-98%. Larval mortality occurred at an early instar. Conversely, in nontransgenic cultivars, approximately 98-99% of the pea weevils emerged as adults. By measuring the head capsule size, we determined that larvae died at the first to early third instar in alpha-(AI)-1 transgenic peas, indicating that this inhibitor is highly effective in controlling this insect. By contrast, transgenic Laura and 'Dundale' expressing alpha-(AI)-2 did not affect pea weevil survival, but they did delay larval development. After 77 d of development, the head capsule size indicated that the larvae were still at the third instar stage in transgenic alpha-(AI)-2 peas, whereas adult bruchids had developed in the nontransgenic peas.

  16. Expansion of the gateway multisite recombination cloning toolkit.

    PubMed

    Shearin, Harold K; Dvarishkis, Alisa R; Kozeluh, Craig D; Stowers, R Steven

    2013-01-01

    Precise manipulation of transgene expression in genetic model organisms has led to advances in understanding fundamental mechanisms of development, physiology, and genetic disease. Transgene construction is, however, a precondition of transgene expression, and often limits the rate of experimental progress. Here we report an expansion of the modular Gateway MultiSite recombination-cloning platform for high efficiency transgene assembly. The expansion includes two additional destination vectors and entry clones for the LexA binary transcription system, among others. These new tools enhance the expression levels possible with Gateway MultiSite generated transgenes and make possible the generation of LexA drivers and reporters with Gateway MultiSite cloning. In vivo data from transgenic Drosophila functionally validating each novel component are presented and include neuronal LexA drivers, LexAop2 red and green fluorescent synaptic vesicle reporters, TDC2 and TRH LexA, GAL4, and QF drivers, and LexAop2, UAS, and QUAS channelrhodopsin2 T159C reporters.

  17. Expansion of the Gateway MultiSite Recombination Cloning Toolkit

    PubMed Central

    Shearin, Harold K.; Dvarishkis, Alisa R.; Kozeluh, Craig D.; Stowers, R. Steven

    2013-01-01

    Precise manipulation of transgene expression in genetic model organisms has led to advances in understanding fundamental mechanisms of development, physiology, and genetic disease. Transgene construction is, however, a precondition of transgene expression, and often limits the rate of experimental progress. Here we report an expansion of the modular Gateway MultiSite recombination-cloning platform for high efficiency transgene assembly. The expansion includes two additional destination vectors and entry clones for the LexA binary transcription system, among others. These new tools enhance the expression levels possible with Gateway MultiSite generated transgenes and make possible the generation of LexA drivers and reporters with Gateway MultiSite cloning. In vivo data from transgenic Drosophila functionally validating each novel component are presented and include neuronal LexA drivers, LexAop2 red and green fluorescent synaptic vesicle reporters, TDC2 and TRH LexA, GAL4, and QF drivers, and LexAop2, UAS, and QUAS channelrhodopsin2 T159C reporters. PMID:24204935

  18. The HSP terminator of Arabidopsis thaliana induces a high level of miraculin accumulation in transgenic tomatoes.

    PubMed

    Hirai, Tadayoshi; Kurokawa, Natsuko; Duhita, Narendra; Hiwasa-Tanase, Kyoko; Kato, Kazuhisa; Kato, Ko; Ezura, Hiroshi

    2011-09-28

    High-level accumulation of the target recombinant protein is a significant issue in heterologous protein expression using transgenic plants. Miraculin, a taste-modifying protein, was accumulated in transgenic tomatoes using an expression cassette in which the miraculin gene was expressed by the cauliflower mosaic virus (CaMV) 35S promoter and the heat shock protein (HSP) terminator (MIR-HSP). The HSP terminator was derived from heat shock protein 18.2 in Arabidopsis thaliana . Using this HSP-containing cassette, the miraculin concentration in T0 transgenic tomato lines was 1.4-13.9% of the total soluble protein (TSP), and that in the T1 transgenic tomato line homozygous for the miraculin gene reached 17.1% of the TSP. The accumulation level of the target protein was comparable to levels observed with chloroplast transformation. The high-level accumulation of miraculin in T0 transgenic tomato lines achieved by the HSP terminator was maintained in the successive T1 generation, demonstrating the genetic stability of this accumulation system.

  19. The Ars insulator facilitates I-SceI meganuclease-mediated transgenesis in the sea urchin embryo.

    PubMed

    Ochiai, Hiroshi; Sakamoto, Naoaki; Suzuki, Kenichi; Akasaka, Koji; Yamamoto, Takashi

    2008-09-01

    For the efficient generation of transgenic sea urchins, we have adopted an I-SceI meganuclease-mediated transgenesis method. Several types of promoter-GFP gene constructs flanked by two I-SceI recognition sequences were co-injected with I-SceI into sea urchin fertilized eggs. Using cell-lineage-specific promoter constructs, the frequency of transgene expression was elevated, and their level of mozaicism was reduced. The addition of the Ars insulator sequence, which is known to block the enhancer activity and protect transgenes from position effects, led to a reduction in ectopic transgene expression and an elevation of transgene expression frequency in this I-SceI-mediated system. However, the magnitude of the effects of the Ars insulator was dependent upon the promoter constructs. QPCR analysis also showed that the Ars insulator increases the transgene copy number. These results suggest that the I-SceI-mediated method using the Ars insulator is advantageous for transgenesis in the sea urchin embryo.

  20. Comparative analysis of laparoscopic and ultrasound-guided biopsy methods for gene expression analysis in transgenic goats.

    PubMed

    Melo, C H; Sousa, F C; Batista, R I P T; Sanchez, D J D; Souza-Fabjan, J M G; Freitas, V J F; Melo, L M; Teixeira, D I A

    2015-07-31

    The present study aimed to compare laparoscopic (LP) and ultrasound-guided (US) biopsy methods to obtain either liver or splenic tissue samples for ectopic gene expression analysis in transgenic goats. Tissue samples were collected from human granulocyte colony stimulating factor (hG-CSF)-transgenic bucks and submitted to real-time PCR for the endogenous genes (Sp1, Baff, and Gapdh) and the transgene (hG-CSF). Both LP and US biopsy methods were successful in obtaining liver and splenic samples that could be analyzed by PCR (i.e., sufficient sample sizes and RNA yield were obtained). Although the number of attempts made to obtain the tissue samples was similar (P > 0.05), LP procedures took considerably longer than the US method (P = 0.03). Finally, transgene transcripts were not detected in spleen or liver samples. Thus, for the phenotypic characterization of a transgenic goat line, investigation of ectopic gene expression can be made successfully by LP or US biopsy, avoiding the traditional approach of euthanasia.

  1. Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4.

    PubMed

    Dale, James; James, Anthony; Paul, Jean-Yves; Khanna, Harjeet; Smith, Mark; Peraza-Echeverria, Santy; Garcia-Bastidas, Fernando; Kema, Gert; Waterhouse, Peter; Mengersen, Kerrie; Harding, Robert

    2017-11-14

    Banana (Musa spp.) is a staple food for more than 400 million people. Over 40% of world production and virtually all the export trade is based on Cavendish banana. However, Cavendish banana is under threat from a virulent fungus, Fusarium oxysporum f. sp. cubense tropical race 4 (TR4) for which no acceptable resistant replacement has been identified. Here we report the identification of transgenic Cavendish with resistance to TR4. In our 3-year field trial, two lines of transgenic Cavendish, one transformed with RGA2, a gene isolated from a TR4-resistant diploid banana, and the other with a nematode-derived gene, Ced9, remain disease free. Transgene expression in the RGA2 lines is strongly correlated with resistance. Endogenous RGA2 homologs are also present in Cavendish but are expressed tenfold lower than that in our most resistant transgenic line. The expression of these homologs can potentially be elevated through gene editing, to provide non-transgenic resistance.

  2. Redistribution of DAT/α-Synuclein Complexes Visualized by “In Situ” Proximity Ligation Assay in Transgenic Mice Modelling Early Parkinson's Disease

    PubMed Central

    Bellucci, Arianna; Navarria, Laura; Falarti, Elisa; Zaltieri, Michela; Bono, Federica; Collo, Ginetta; Grazia, Maria; Missale, Cristina; Spano, PierFranco

    2011-01-01

    Alpha-synuclein, the major component of Lewy bodies, is thought to play a central role in the onset of synaptic dysfunctions in Parkinson's disease (PD). In particular, α-synuclein may affect dopaminergic neuron function as it interacts with a key protein modulating dopamine (DA) content at the synapse: the DA transporter (DAT). Indeed, recent evidence from our “in vitro” studies showed that α-synuclein aggregation decreases the expression and membrane trafficking of the DAT as the DAT is retained into α-synuclein-immunopositive inclusions. This notwithstanding, “in vivo” studies on PD animal models investigating whether DAT distribution is altered by the pathological overexpression and aggregation of α-synuclein are missing. By using the proximity ligation assay, a technique which allows the “in situ” visualization of protein-protein interactions, we studied the occurrence of alterations in the distribution of DAT/α-synuclein complexes in the SYN120 transgenic mouse model, showing insoluble α-synuclein aggregates into dopaminergic neurons of the nigrostriatal system, reduced striatal DA levels and an altered distribution of synaptic proteins in the striatum. We found that DAT/α-synuclein complexes were markedly redistributed in the striatum and substantia nigra of SYN120 mice. These alterations were accompanied by a significant increase of DAT striatal levels in transgenic animals when compared to wild type littermates. Our data indicate that, in the early pathogenesis of PD, α-synuclein acts as a fine modulator of the dopaminergic synapse by regulating the subcellular distribution of key proteins such as the DAT. PMID:22163275

  3. A comparative study on pathological features of transgenic rat lines expressing either three or four repeat misfolded tau.

    PubMed

    Valachova, Bernadeta; Brezovakova, Veronika; Bugos, Ondrej; Jadhav, Santosh; Smolek, Tomas; Novak, Petr; Zilka, Norbert

    2018-08-01

    Human tauopathies represent a heterogeneous group of neurodegenerative disorders characterized by distinct clinical features, typical histopathological structures, and defined ratio(s) of three-repeat and four-repeat tau isoforms within pathological aggregates. How the optional microtubule-binding repeat of tau influences this differentiation of pathologies is understudied. We have previously generated and characterized transgenic rodent models expressing human truncated tau aa151-391 with either three (SHR24) or four microtubule-binding repeats (SHR72). Here, we compare the behavioral and neuropathological hallmarks of these two transgenic lines using a battery of tests for sensorimotor, cognitive, and neurological functions over the age range of 3.5-15 months. Progression of sensorimotor and neurological deficits was similar in both transgenic lines; however, the lifespan of transgenic line SHR72 expressing truncated four-repeat tau was markedly shorter than SHR24. Moreover, the expression of three or four-repeat tau induced distinct neurofibrillary pathology in these lines. Transgenic lines displayed different distribution of tau pathology and different type of neurofibrillary tangles. Our results suggest that three- and four-repeat isoforms of tau may display different modes of action in the diseased brain. © 2018 Wiley Periodicals, Inc.

  4. Human Matrix Attachment Regions Are Necessary for the Establishment but Not the Maintenance of Transgene Insulation in Drosophila melanogaster

    PubMed Central

    Namciu, Stephanie J.; Fournier, R. E. K.

    2004-01-01

    Human matrix attachment regions (MARs) can insulate transgene expression from chromosomal position effects in Drosophila melanogaster. To gain insight into the mechanism(s) by which chromosomal insulation occurs, we studied the expression phenotypes of Drosophila transformants expressing mini-white transgenes in which MAR sequences from the human apoB gene were arranged in a variety of ways. In agreement with previous reports, we found that a single copy of the insulating element was not sufficient for position-independent transgene expression; rather, two copies were required. However, the arrangement of the two elements within the transgene was unimportant, since chromosomal insulation was equally apparent when both copies of the insulator were upstream of the mini-white reporter as when the transcription unit was flanked by insulator elements. Moreover, experiments in which apoB 3′ MAR sequences were removed from integrated transgenes in vivo by site-specific recombination demonstrated that MAR sequences were required for the establishment but not for the maintenance of chromosomal insulation. These observations are not compatible with the chromosomal loop model in its simplest form. Alternate mechanisms for MAR function in this system are proposed. PMID:15542833

  5. A Novel 5-Enolpyruvylshikimate-3-Phosphate Synthase Shows High Glyphosate Tolerance in Escherichia coli and Tobacco Plants

    PubMed Central

    Zhang, Shengxue; Yang, Xuewen; Chen, Rongrong; Zhang, Yuwen; Lu, Wei; Liu, Yan; Wang, Jianhua; Lin, Min; Wang, Guoying

    2012-01-01

    A key enzyme in the shikimate pathway, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the primary target of the broad-spectrum herbicide glyphosate. Identification of new aroA genes coding for EPSPS with a high level of glyphosate tolerance is essential for the development of glyphosate-tolerant crops. In the present study, the glyphosate tolerance of five bacterial aroA genes was evaluated in the E. coli aroA-defective strain ER2799 and in transgenic tobacco plants. All five aroA genes could complement the aroA-defective strain ER2799, and AM79 aroA showed the highest glyphosate tolerance. Although glyphosate treatment inhibited the growth of both WT and transgenic tobacco plants, transgenic plants expressing AM79 aroA tolerated higher concentration of glyphosate and had a higher fresh weight and survival rate than plants expressing other aroA genes. When treated with high concentration of glyphosate, lower shikimate content was detected in the leaves of transgenic plants expressing AM79 aroA than transgenic plants expressing other aroA genes. These results suggest that AM79 aroA could be a good candidate for the development of transgenic glyphosate-tolerant crops. PMID:22715408

  6. UMG Lenti: Novel Lentiviral Vectors for Efficient Transgene- and Reporter Gene Expression in Human Early Hematopoietic Progenitors

    PubMed Central

    Chiarella, Emanuela; Carrà, Giovanna; Scicchitano, Stefania; Codispoti, Bruna; Mega, Tiziana; Lupia, Michela; Pelaggi, Daniela; Marafioti, Maria G.; Aloisio, Annamaria; Giordano, Marco; Nappo, Giovanna; Spoleti, Cristina B.; Grillone, Teresa; Giovannone, Emilia D.; Spina, Raffaella; Bernaudo, Francesca; Moore, Malcolm A. S.; Bond, Heather M.; Mesuraca, Maria; Morrone, Giovanni

    2014-01-01

    Lentiviral vectors are widely used to investigate the biological properties of regulatory proteins and/or of leukaemia-associated oncogenes by stably enforcing their expression in hematopoietic stem and progenitor cells. In these studies it is critical to be able to monitor and/or sort the infected cells, typically via fluorescent proteins encoded by the modified viral genome. The most popular strategy to ensure co-expression of transgene and reporter gene is to insert between these cDNAs an IRES element, thus generating bi-cistronic mRNAs whose transcription is driven by a single promoter. However, while the product of the gene located upstream of the IRES is generally abundantly expressed, the translation of the downstream cDNA (typically encoding the reporter protein) is often inconsistent, which hinders the detection and the isolation of transduced cells. To overcome these limitations, we developed novel lentiviral dual-promoter vectors (named UMG-LV5 and –LV6) where transgene expression is driven by the potent UBC promoter and that of the reporter protein, EGFP, by the minimal regulatory element of the WASP gene. These vectors, harboring two distinct transgenes, were tested in a variety of human haematopoietic cell lines as well as in primary human CD34+ cells in comparison with the FUIGW vector that contains the expression cassette UBC-transgene-IRES-EGFP. In these experiments both UMG-LV5 and UMG–LV6 yielded moderately lower transgene expression than FUIGW, but dramatically higher levels of EGFP, thereby allowing the easy distinction between transduced and non-transduced cells. An additional construct was produced, in which the cDNA encoding the reporter protein is upstream, and the transgene downstream of the IRES sequence. This vector, named UMG-LV11, proved able to promote abundant expression of both transgene product and EGFP in all cells tested. The UMG-LVs represent therefore useful vectors for gene transfer-based studies in hematopoietic stem and progenitor cells, as well as in non-hematopoietic cells. PMID:25502183

  7. Transgenic plants producing the bacterial pheromone N-acyl-homoserine lactone exhibit enhanced resistance to the bacterial phytopathogen Erwinia carotovora.

    PubMed

    Mäe, A; Montesano, M; Koiv, V; Palva, E T

    2001-09-01

    Bacterial pheromones, mainly different homoserine lactones, are central to a number of bacterial signaling processes, including those involved in plant pathogenicity. We previously demonstrated that N-oxoacyl-homoserine lactone (OHL) is essential for quorum sensing in the soft-rot phytopathogen Erwinia carotovora. In this pathogen, OHL controls the coordinate activation of genes encoding the main virulence determinants, extracellular plant cell wall degrading enzymes (PCWDEs), in a cell density-dependent manner. We suggest that E. carotovora employ quorum sensing to avoid the premature production of PCWDEs and subsequent activation of plant defense responses. To test whether modulating this sensory system would affect the outcome of a plant-pathogen interaction, we generated transgenic tobacco, producing OHL. This was accomplished by ectopic expression in tobacco of the E. carotovora gene expI, which is responsible for OHL biosynthesis. We show that expI-positive transgenic tobacco lines produced the active pheromone and partially complemented the avirulent phenotype of expI mutants. The OHL-producing tobacco lines exhibited enhanced resistance to infection by wild-type E. carotovora. The results were confirmed by exogenous addition of OHL to wild-type plants, which also resulted in increased resistance to E. carotovora.

  8. Over-Expression of Porcine Myostatin Missense Mutant Leads to A Gender Difference in Skeletal Muscle Growth between Transgenic Male and Female Mice.

    PubMed

    Ma, Dezun; Gao, Pengfei; Qian, Lili; Wang, Qingqing; Cai, Chunbo; Jiang, Shengwang; Xiao, Gaojun; Cui, Wentao

    2015-08-24

    Myostatin, a transforming growth factor-β family member, is a negative regulator of skeletal muscle development and growth. Piedmontese cattle breeds have a missense mutation, which results in a cysteine to tyrosine substitution in the mature myostatin protein (C313Y). This loss-of-function mutation in myostatin results in a double-muscled phenotype in cattle. Myostatin propeptide is an inhibitor of myostatin activity and is considered a potential agent to stimulate muscle growth in livestock. In this study, we generated transgenic mice overexpressing porcine myostatin missense mutant (pmMS), C313Y, and wild-type porcine myostatin propeptide (ppMS), respectively, to examine their effects on muscle growth in mice. Enhanced muscle growth was observed in both pmMS and ppMS transgenic female mice and also in ppMS transgenic male mice. However, there was no enhanced muscle growth observed in pmMS transgenic male mice. To explore why there is such a big difference in muscle growth between pmMS and ppMS transgenic male mice, the expression level of androgen receptor (AR) mutant AR45 was measured by Western blot. Results indicated that AR45 expression significantly increased in pmMS transgenic male mice while it decreased dramatically in ppMS transgenic male mice. Our data demonstrate that both pmMS and ppMS act as myostatin inhibitors in the regulation of muscle growth, but the effect of pmMS in male mice is reversed by an increased AR45 expression. These results provide useful insight and basic theory to future studies on improving pork quality by genetically manipulating myostatin expression or by regulating myostatin activity.

  9. Hepatic oxidative stress in ovariectomized transgenic mice expressing the hepatitis C virus polyprotein is augmented through suppression of adenosine monophosphate-activated protein kinase/proliferator-activated receptor gamma co-activator 1 alpha signaling.

    PubMed

    Tomiyama, Yasuyuki; Nishina, Sohji; Hara, Yuichi; Kawase, Tomoya; Hino, Keisuke

    2014-10-01

    Oxidative stress plays an important role in hepatocarcinogenesis of hepatitis C virus (HCV)-related chronic liver diseases. Despite the evidence of an increased proportion of females among elderly patients with HCV-related hepatocellular carcinoma (HCC), it remains unknown whether HCV augments hepatic oxidative stress in postmenopausal women. The aim of this study was to determine whether oxidative stress was augmented in ovariectomized (OVX) transgenic mice expressing the HCV polyprotein and to investigate its underlying mechanisms. OVX and sham-operated female transgenic mice expressing the HCV polyprotein and non-transgenic littermates were assessed for the production of reactive oxygen species (ROS), expression of inflammatory cytokines and antioxidant potential in the liver. Compared with OVX non-transgenic mice, OVX transgenic mice showed marked hepatic steatosis and ROS production without increased induction of inflammatory cytokines, but there was no increase in ROS-detoxifying enzymes such as superoxide dismutase 2 and glutathione peroxidase 1. In accordance with these results, OVX transgenic mice showed less activation of peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α), which is required for the induction of ROS-detoxifying enzymes, and no activation of adenosine monophosphate-activated protein kinase-α (AMPKα), which regulates the activity of PGC-1α. Our study demonstrated that hepatic oxidative stress was augmented in OVX transgenic mice expressing the HCV polyprotein by attenuation of antioxidant potential through inhibition of AMPK/PGC-1α signaling. These results may account in part for the mechanisms by which HCV-infected women are at high risk for HCC development when some period has passed after menopause. © 2013 The Japan Society of Hepatology.

  10. Expression of EGFP and NPTII protein is not associated with organ abnormalities in deceased transgenic cloned cattle.

    PubMed

    Liu, Yan; Wu, Qian; Cui, Huiting; Li, Qinghe; Zhao, Yiqiang; Luo, Juan; Liu, Qiuyue; Sun, Xiuzhu; Tang, Bo; Zhang, Lei; Dai, Yunping; Li, Ning

    2008-12-01

    Both enhanced green fluorescence protein (EGFP) and neomycin phosphotransferase type II enzyme (NPTII) are widely used in transgenic studies, but their side effects have not been extensively investigated. In this study, we evaluated the expression profiles of the two marker genes and the relationship between their expression and organ abnormalities. Eight transgenic cloned cattle were studied, four harboring both EGFP and NPTII, and four harboring only the NPTII gene. Four age-matched cloned cattle were used as controls. EGFP and NPTII expression were measured and detected by Q-PCR, Western blot, ELISA, and RIA in heart, liver, and lungs, and the values ranged from 0.3 to 5 microg/g. The expression profiles exhibited differential or mosaic pattern between the organs, the pathologic symptoms of which were identified, but were similar to those of age-matched cloned cattle. All data indicated that the expression of EGFP and NPTII is not associated with organ abnormalities in transgenic cloned cattle.

  11. Transplantation of bone marrow mononuclear cells modulates hippocampal expression of growth factors in chronically epileptic animals.

    PubMed

    Zanirati, Gabriele; Azevedo, Pamella Nunes; Marinowic, Daniel Rodrigo; Rodrigues, Felipe; de Oliveira Dias, Ana Christina; Venturin, Gianina Teribele; Greggio, Samuel; Simão, Fabrício; DaCosta, Jaderson Costa

    2015-05-01

    In previous studies, transplantation of bone marrow mononuclear cells (BMMCs) in epileptic animals has been found to be neuroprotective. However, the mechanism by which the BMMCs act remains unclear. We hypothesize that BMMCs may provide neuroprotection to the epileptic brain through trophic support. To test our hypothesis, we studied the temporal expression of neurotrophins after BMMC transplantation in the epileptic rat hippocampus. Chronically epileptic rats were intravenously transplanted with 1 × 10(7) BMMCs isolated from GFP transgenic mice. Expression levels of BDNF, GDNF, NGF, VEGF, and TGF-β1, and their receptors, were evaluated by ELISA and/or qRT-PCR analysis. Our data revealed increased protein expression of BDNF, GDNF, NGF, and VEGF and reduced levels of TGF-β1 in the hippocampus of transplanted epileptic animals. Additionally, an increase in the mRNA expression of BDNF, GDNF, and VEGF, a reduction in TGF-β1, and a decrease in mRNA levels of the TrkA and TGFR-β1 receptors were also observed. The gain provided by transplanted BMMCs in the epileptic brain may be related to the ability of these cells in modulating the network of neurotrophins and angiogenic signals. © 2015 John Wiley & Sons Ltd.

  12. Modulating lignin in plants

    DOEpatents

    Apuya, Nestor; Bobzin, Steven Craig; Okamuro, Jack; Zhang, Ke

    2013-01-29

    Materials and methods for modulating (e.g., increasing or decreasing) lignin content in plants are disclosed. For example, nucleic acids encoding lignin-modulating polypeptides are disclosed as well as methods for using such nucleic acids to generate transgenic plants having a modulated lignin content.

  13. Production of human CD59-transgenic pigs by embryonic germ cell nuclear transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Kwang Sung; Won, Ji Young; Park, Jin-Ki

    Research highlights: {yields} Human CD59 (hCD59) gene was introduced into porcine embryonic germ (EG) cells. {yields} hCD59-transgenic EG cells were resistant to hyperacute rejection in cytolytic assay. {yields} hCD59-transgenic pigs were produced by EG cell nuclear transfer. -- Abstract: This study was performed to produce transgenic pigs expressing the human complement regulatory protein CD59 (hCD59) using the nuclear transfer (NT) of embryonic germ (EG) cells, which are undifferentiated stem cells derived from primordial germ cells. Because EG cells can be cultured indefinitely in an undifferentiated state, they may provide an inexhaustible source of nuclear donor cells for NT to producemore » transgenic pigs. A total of 1980 NT embryos derived from hCD59-transgenic EG cells were transferred to ten recipients, resulting in the birth of fifteen piglets from three pregnancies. Among these offspring, ten were alive without overt health problems. Based on PCR analysis, all fifteen piglets were confirmed as hCD59 transgenic. The expression of the hCD59 transgene in the ten living piglets was verified by RT-PCR. Western analysis showed the expression of the hCD59 protein in four of the ten RT-PCR-positive piglets. These results demonstrate that hCD59-transgenic pigs could effectively be produced by EG cell NT and that such transgenic pigs may be used as organ donors in pig-to-human xenotransplantation.« less

  14. Preservation and Faithful Expression of Transgene via Artificial Seeds in Alfalfa

    PubMed Central

    Liu, Wenting; Liang, Zongsuo; Wang, Xinhua; Sibbald, Susan; Hunter, David; Tian, Lining

    2013-01-01

    Proper preservation of transgenes and transgenic materials is important for wider use of transgenic technology in plants. Here, we report stable preservation and faithful expression of a transgene via artificial seed technology in alfalfa. DNA constructs containing the uid reporter gene coding for β-glucuronidase (GUS) driven by a 35S promoter or a tCUP promoter were introduced into alfalfa via Agrobacterium-mediated genetic transformation. Somatic embryos were subsequently induced from transgenic alfalfa plants via in vitro technology. These embryos were treated with abscisic acid to induce desiccation tolerance and were subjected to a water loss process. After the desiccation procedure, the water content in dried embryos, or called artificial seeds, was about 12–15% which was equivalent to that in true seeds. Upon water rehydration, the dried somatic embryos showed high degrees of viability and exhibited normal germination. Full plants were subsequently developed and recovered in a greenhouse. The progeny plants developed from artificial seeds showed GUS enzyme activity and the GUS expression level was comparable to that of plants developed from somatic embryos without the desiccation process. Polymerase chain reaction analysis indicated that the transgene was well retained in the plants and Southern blot analysis showed that the transgene was stably integrated in plant genome. The research showed that the transgene and the new trait can be well preserved in artificial seeds and the progeny developed. The research provides a new method for transgenic germplasm preservation in different plant species. PMID:23690914

  15. Ameloblasts require active RhoA to generate normal dental enamel.

    PubMed

    Xue, Hui; Li, Yong; Everett, Eric T; Ryan, Kathleen; Peng, Li; Porecha, Rakhee; Yan, Yan; Lucchese, Anna M; Kuehl, Melissa A; Pugach, Megan K; Bouchard, Jessica; Gibson, Carolyn W

    2013-08-01

    RhoA plays a fundamental role in regulation of the actin cytoskeleton, intercellular attachment, and cell proliferation. During amelogenesis, ameloblasts (which produce the enamel proteins) undergo dramatic cytoskeletal changes and the RhoA protein level is up-regulated. Transgenic mice were generated that express a dominant-negative RhoA transgene in ameloblasts using amelogenin gene-regulatory sequences. Transgenic and wild-type (WT) molar tooth germs were incubated with sodium fluoride (NaF) or sodium chloride (NaCl) in organ culture. Filamentous actin (F-actin) stained with phalloidin was elevated significantly in WT ameloblasts treated with NaF compared with WT ameloblasts treated with NaCl or with transgenic ameloblasts treated with NaF, thereby confirming a block in the RhoA/Rho-associated protein kinase (ROCK) pathway in the transgenic mice. Little difference in quantitative fluorescence (an estimation of fluorosis) was observed between WT and transgenic incisors from mice provided with drinking water containing NaF. We subsequently found reduced transgene expression in incisors compared with molars. Transgenic molar teeth had reduced amelogenin, E-cadherin, and Ki67 compared with WT molar teeth. Hypoplastic enamel in transgenic mice correlates with reduced expression of the enamel protein, amelogenin, and E-cadherin and cell proliferation are regulated by RhoA in other tissues. Together these findings reveal deficits in molar ameloblast function when RhoA activity is inhibited. © 2013 Eur J Oral Sci.

  16. [Comparison between transgenic insect-resistant cotton expressing Cry1Ac protein and its parental variety in rhizospheric fungal diversity].

    PubMed

    Pan, Jian-Gang; Jiao, Hai-Hua; Bai, Zhi-Hui; Qi, Hong-Yan; Ma, An-Zhou; Zhuang, Guo-qiang; Zhang, Hong-xun

    2014-11-01

    The dynamics of rhizospheric fungal diversity and biomass at different sampling stages associated with two transgenic insectresistant cottons expressing Cry1Ac protein and their control varieties were studied under greenhouse conditions, followed by PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and quantitative real-time polymerase chain reaction (Q-PCR), in order to evaluate the ecological security of planting transgenic cotton expressing Cry1Ac protein. The results indicated that the fungal superior bands in rhizosphere of transgenic Bt cotton were similar with that of control cotton at four sampling stages, the more obvious difference in the blurred bands among transgenic Bt cotton, JM20 and SHIYUAN321 was detected. The rhizospheric fungal biomass of transgenic Bt cotton SGK321 was significantly lower than that of its parental control cotton at seedling stage, while the slight decrease in fungal biomass of transgenic Bt cotton XP188 was detected at boll forming stage, the ill-defined decrease, even growing tendency in two transgenic Bt cottons was detected at other stages. However, the difference of rhizospheric fungal community compositions and biomass was not only existed between transgenic cotton and its control, but also between SHIYUAN321 and JM20, and the same phenomenon was also detected between transgenic Bt cotton SGK321 and XP188. Hence, Bt protein is not the only incentive resulting in the difference in fungal community composition and diversity, the decrease in biomass between transgenic cotton and untransgenic cotton, different cotton varieties has an effect on them.

  17. Effect of BBX-B8 overexpression on development, body weight, silk protein synthesis and egg diapause of Bombyx mori.

    PubMed

    Zheng, Xiaojian; Gong, Yongchang; Kumar, Dhiraj; Chen, Fei; Kuan, Sulan; Liang, Zi; Hu, Xiaolong; Cao, Guangli; Xue, Renyu; Gong, Chengliang

    2016-08-01

    Bombyxin (BBX) is an insulin-like peptide exists in the silkworm Bombyx mori. Our previous studies on the effects of inhibiting BBX-B8 expression found that BBX-B8 is important for the development of organ, reproduction and trehalose metabolism in the silkworms. In this paper, we investigated the expression profile of the BBX-B8 gene and effect of BBX-B8 overexpression on the development, body weight, silk protein synthesis and egg diapause of B. mori to further understand BBX-B8 functions. BBX-B8 gene expression could be detected in the brains, midguts, anterior silkglands, ovaries, testes, fat bodies, hemolymph, malpighian tubules and embryos by RT-PCR, however it was mainly expressed in the brain. Western blots showed that the change in BBX-B8 expression was not obvious in the brain of 1- to 4-day-old larvae of fifth instar silkworms, but expression increased substantially at 5- to 6-day-old larvae of fifth instar silkworms. Transgenic silkworms overexpressing BBX-B8 were obtained by introducing non-transposon transgenic vector pIZT-B8 containing a BBX-B8 gene driven by Orgyia pseudotsugata nucleopolyhedrovirus IE2 promoter into the genome. Development duration of the transgenic silkworms was delayed by 2.5-3.5 days. Cocoon shell weight of transgenic silkworms was reduced by 4.79 % in females and 7.44 % in males, pupal weight of transgenic silkworms was reduced 6.75 % in females and 13.83 % in males compared to non-transgenic silkworms, and 5.56-14.29 % of transgenic moths laid nondiapausing eggs. All results indicated that BBX-B8 plays an important role in the development, silk protein synthesis and egg diapause of silkworm.

  18. Generation and characterization of gsuα:EGFP transgenic zebrafish for evaluating endocrine-disrupting effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Xiaoxia; University of Chinese Academy of Sciences, Beijing; Chen, Xiaowen

    The glycoprotein subunit α (gsuα) gene encodes the shared α subunit of the three pituitary heterodimeric glycoprotein hormones: follicle-stimulating hormone β (Fshβ), luteinizing hormone β (Lhβ) and thyroid stimulating hormone β (Tshβ). In our current study, we identified and characterized the promoter region of zebrafish gsuα and generated a stable gsuα:EGFP transgenic line, which recapitulated the endogenous gsuα expression in the early developing pituitary gland. A relatively conserved regulatory element set is presented in the promoter regions of zebrafish and three other known mammalian gsuα promoters. Our results also demonstrated that the expression patterns of the gsuα:EGFP transgene were allmore » identical to those expression patterns of the endogenous gsuα expression in the pituitary tissue when our transgenic fish were treated with various endocrine chemicals, including forskolin (FSK), SP600125, trichostatin A (TSA), KClO{sub 4}, dexamethasone (Dex), β-estradiol and progesterone. Thus, this gsuα:EGFP transgenic fish reporter line provides another valuable tool for investigating the lineage development of gsuα-expressing gonadotrophins and the coordinated regulation of various glycoprotein hormone subunit genes. These reporter fish can serve as a novel platform to perform screenings of endocrine-disrupting chemicals (EDCs) in vivo as well. - Highlights: • Identification of the promoter of zebrafish glycoprotein subunit α (gsuα) gene • Generation of stable transmission gsuα:EGFP transgenic zebrafish reporter • Demonstration of the recapitulation of the gsuα:EGFP and endogenous gsuα expression • Suggestion of the gsuα:EGFP transgenic zebrafish as a novel platform for EDC study.« less

  19. Gtl2lacZ, an insertional mutation on mouse chromosome 12 with parental origin-dependent phenotype.

    PubMed

    Schuster-Gossler, K; Simon-Chazottes, D; Guenet, J L; Zachgo, J; Gossler, A

    1996-01-01

    We have produced a transgenic mouse line, Gtl2lacZ (Gene trap locus 2), that carries an insertional mutation with a dominant modified pattern of inheritance:heterozygous Gtl2lacZ mice that inherited the transgene from the father show a proportionate dwarfism phenotype, whereas the penetrance and expressivity of the phenotype is strongly reduced in Gtl2lacZ mice that inherited the transgene from the mother. On a mixed genetic background this pattern of inheritance was reversible upon transmission of the transgene through the germ line of the opposite sex. On a predominantly 129/Sv genetic background, however, transgene passage through the female germ line modified the transgene effect, such that the penetrance of the mutation was drastically reduced and the phenotype was no longer obvious after subsequent male germ line transmission. Expression of the transgene, however, was neither affected by genetic background nor by parental legacy. Gtl2lacZ maps to mouse Chromosome 12 in a region that displays imprinting effects associated with maternal and paternal disomy. Our results suggest that the transgene insertion in Gtl2lacZ mice affects an endogenous gene(s) required for fetal and postnatal growth and that this gene(s) is predominantly paternally expressed.

  20. Maximizing the expression of transgenic traits into elite alfalfa germplasm using a supertransgene configuration in heterozygous conditions.

    PubMed

    Jozefkowicz, Cintia; Frare, Romina; Fox, Romina; Odorizzi, Ariel; Arolfo, Valeria; Pagano, Elba; Basigalup, Daniel; Ayub, Nicolas; Soto, Gabriela

    2018-05-01

    A novel process for the production of transgenic alfalfa varieties. Numerous species of legumes, including alfalfa, are critical factors for agroecosystems due to their ability to grow without nitrogen fertilizers derived from non-renewable fossil fuels, their contribution of organic nitrogen to the soil, and their increased nutritional value. Alfalfa is the main source of vegetable proteins in meat and milk production systems worldwide. Despite the economic and ecological importance of this autotetraploid and allogamous forage crop, little progress has been made in the incorporation of transgenic traits into commercial alfalfa. This is mainly due to the unusually strong transgene silencing and complex reproductive behavior of alfalfa, which limit the production of events with high transgene expression and the introgression of selected events within heterogeneous synthetic populations, respectively. In this report, we describe a novel procedure, called supertransgene process, where a glufosinate-tolerant alfalfa variety was developed using a single event containing the BAR transgene associated with an inversion. This approach can be used to maximize the expression of transgenic traits into elite alfalfa germplasm and to reduce the cost of production of transgenic alfalfa cultivars, contributing to the public improvement of this legume forage and other polyploid and outcrossing crop species.

  1. Stable expression of calpain 3 from a muscle transgene in vivo: Immature muscle in transgenic mice suggests a role for calpain 3 in muscle maturation

    PubMed Central

    Spencer, M. J.; Guyon, J. R.; Sorimachi, H.; Potts, A.; Richard, I.; Herasse, M.; Chamberlain, J.; Dalkilic, I.; Kunkel, L. M.; Beckmann, J. S.

    2002-01-01

    Limb-girdle muscular dystrophy, type 2A (LGMD 2A), is an autosomal recessive disorder that causes late-onset muscle-wasting, and is due to mutations in the muscle-specific protease calpain 3 (C3). Although LGMD 2A would be a feasible candidate for gene therapy, the reported instability of C3 in vitro raised questions about the potential of obtaining a stable, high-level expression of C3 from a transgene in vivo. We have generated transgenic (Tg) mice with muscle-specific overexpression of full-length C3 or C3 isoforms, which arise from alternative splicing, to test whether stable expression of C3 transgenes could occur in vivo. Unexpectedly, we found that full-length C3 can be overexpressed at high levels in vivo, without toxicity. In addition, we found that Tg expressing C3 lacking exon 6, an isoform expressed embryonically, have muscles that resemble regenerating or developing muscle. Tg expressing C3 lacking exon 15 shared this morphology in the soleus, but not other muscles. Assays of inflammation or muscle membrane damage indicated that the Tg muscles were not degenerative, suggesting that the immature muscle resulted from a developmental block rather than degeneration and regeneration. These studies show that C3 can be expressed stably in vivo from a transgene, and indicate that alternatively spliced C3 isoforms should not be used in gene-therapy applications because they impair proper muscle development. PMID:12084932

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, S.D.; Cooper, P.; Fung, J.

    Genetic factors affecting post-natal g-globin expression - a major modifier of the severity of both b-thalassemia and sickle cell anemia, have been difficult to study. This is especially so in mice, an organism lacking a globin gene with an expression pattern equivalent to that of human g-globin. To model the human b-cluster in mice, with the goal of screening for loci affecting human g-globin expression in vivo, we introduced a human b-globin cluster YAC transgene into the genome of FVB mice . The b-cluster contained a Greek hereditary persistence of fetal hemoglobin (HPFH) g allele resulting in postnatal expression ofmore » human g-globin in transgenic mice. The level of human g-globin for various F1 hybrids derived from crosses between the FVB transgenics and other inbred mouse strains was assessed. The g-globin level of the C3HeB/FVB transgenic mice was noted to be significantly elevated. To map genes affecting postnatal g-globin expression, a 20 centiMorgan (cM) genome scan of a C3HeB/F VB transgenics [prime] FVB backcross was performed, followed by high-resolution marker analysis of promising loci. From this analysis we mapped a locus within a 2.2 cM interval of mouse chromosome 1 at a LOD score of 4.2 that contributes 10.4% of variation in g-globin expression level. Combining transgenic modeling of the human b-globin gene cluster with quantitative trait analysis, we have identified and mapped a murine locus that impacts on human g-globin expression in vivo.« less

  3. Three-Dimensional Imaging of the Intracellular Fate of Plasmid DNA and Transgene Expression: ZsGreen1 and Tissue Clearing Method CUBIC Are an Optimal Combination for Multicolor Deep Imaging in Murine Tissues.

    PubMed

    Fumoto, Shintaro; Nishimura, Koyo; Nishida, Koyo; Kawakami, Shigeru

    2016-01-01

    Evaluation methods for determining the distribution of transgene expression in the body and the in vivo fate of viral and non-viral vectors are necessary for successful development of in vivo gene delivery systems. Here, we evaluated the spatial distribution of transgene expression using tissue clearing methods. After hydrodynamic injection of plasmid DNA into mice, whole tissues were subjected to tissue clearing. Tissue clearing followed by confocal laser scanning microscopy enabled evaluation of the three-dimensional distribution of transgene expression without preparation of tissue sections. Among the tested clearing methods (ClearT2, SeeDB, and CUBIC), CUBIC was the most suitable method for determining the spatial distribution of transgene expression in not only the liver but also other tissues such as the kidney and lung. In terms of the type of fluorescent protein, the observable depth for green fluorescent protein ZsGreen1 was slightly greater than that for red fluorescent protein tdTomato. We observed a depth of ~1.5 mm for the liver and 500 μm for other tissues without preparation of tissue sections. Furthermore, we succeeded in multicolor deep imaging of the intracellular fate of plasmid DNA in the murine liver. Thus, tissue clearing would be a powerful approach for determining the spatial distribution of plasmid DNA and transgene expression in various murine tissues.

  4. An efficient strategy for producing a stable, replaceable, highly efficient transgene expression system in silkworm, Bombyx mori

    PubMed Central

    Long, Dingpei; Lu, Weijian; Zhang, Yuli; Bi, Lihui; Xiang, Zhonghuai; Zhao, Aichun

    2015-01-01

    We developed an efficient strategy that combines a method for the post-integration elimination of all transposon sequences, a site-specific recombination system, and an optimized fibroin H-chain expression system to produce a stable, replaceable, highly efficient transgene expression system in the silkworm (Bombyx mori) that overcomes the disadvantages of random insertion and post-integration instability of transposons. Here, we generated four different transgenic silkworm strains, and of one the transgenic strains, designated TS1-RgG2, with up to 16% (w/w) of the target protein in the cocoons, was selected. The subsequent elimination of all the transposon sequences from TS1-RgG2 was completed by the heat-shock-induced expression of the transposase in vivo. The resulting transgenic silkworm strain was designated TS3-g2 and contained only the attP-flanked optimized fibroin H-chain expression cassette in its genome. A phiC31/att-system-based recombinase-mediated cassette exchange (RMCE) method could be used to integrate other genes of interest into the same genome locus between the attP sites in TS3-g2. Controlling for position effects with phiC31-mediated RMCE will also allow the optimization of exogenous protein expression and fine gene function analyses in the silkworm. The strategy developed here is also applicable to other lepidopteran insects, to improve the ecological safety of transgenic strains in biocontrol programs. PMID:25739894

  5. Analysis of transgenic wheat (Triticum aestivum L.) harboring a maize (Zea mays L.) gene for plastid EF-Tu: segregation pattern, expression and effects of the transgene.

    PubMed

    Fu, Jianming; Ristic, Zoran

    2010-06-01

    We previously reported that transgenic wheat (Triticum aestivum L.) carrying a maize (Zea mays L.) gene (Zmeftu1) for chloroplast protein synthesis elongation factor, EF-Tu, displays reduced thermal aggregation of leaf proteins, reduced injury to photosynthetic membranes (thylakoids), and enhanced rate of CO(2) fixation following exposure to heat stress (18 h at 45 degrees C) [Fu et al. in Plant Mol Biol 68:277-288, 2008]. In the current study, we investigated the segregation pattern and expression of the transgene Zmeftu1 and determined the grain yield of transgenic plants after exposure to a brief heat stress (18 h at 45 degrees C). We also assessed thermal aggregation of soluble leaf proteins in transgenic plants, testing the hypothesis that increased levels of EF-Tu will lead to a non-specific protection of leaf proteins against thermal aggregation. The transgenic wheat displayed a single-gene pattern of segregation of Zmeftu1. Zmeftu1 was expressed, and the transgenic plants synthesized and accumulated three anti-EF-Tu cross-reacting polypeptides of similar molecular mass but different pI, suggesting the possibility of posttranslational modification of this protein. The transgenic plants also showed better grain yield after exposure to heat stress compared with their non-transgenic counterparts. Soluble leaf proteins of various molecular masses displayed lower thermal aggregation in transgenic than in non-transgenic wheat. The results suggest that overexpression of chloroplast EF-Tu can be beneficial to wheat tolerance to heat stress. Moreover, the results also support the hypothesis that EF-Tu contributes to heat tolerance by acting as a molecular chaperone and protecting heat-labile proteins from thermal aggregation in a non-specific manner.

  6. Optimization of Acidothermus Celluloyticus Endoglucanase (E1) Production in Transgenic Tobacco Plants by Transcriptional, Post-transcription and Post-Translational Modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Ziyu; Hooker, Brian S.; Quesenberry, Ryan D.

    2005-10-01

    Biochemical characteristics of Acidothermus cellulolyticus endoglucanase (E1) and its physiological effects in transgenic tobacco (Nicotiana tabacum) has been studied previously. In an attempt to obtain a high level of production of intact E1 in transgenic plants, the E1 gene was expressed under the control of strong Mac promoter (a hybrid promoter of manopine synthase promoter and cauliflower mosaic virus 35S promoter enhancer region) or tomato Rubisco small subunit (RbcS-3C) promoter with different 5’ untranslated leader (UTL) sequence and targeted to different subcellular comartmentations with various transit peptides. The expression of E1 protein in transgenic tobacco plants was determined via E1more » activity, protein immunobloting, and RNA gel-blotting analyses. Effects of different transit peptides on E1 protein production and its stability were examined in transgenic tobacco plants carrying one of six transgene expression vectors with the same (Mac) promoter and transcription terminator (Tmas). Transgenic tobacco plants with apoplast transit peptide (Mm-apo) had the highest average E1 activity and protein accumulation , while E1 protein was more stable in transgenic plants with no transit peptide (Mm) than others. The E1 expression under tomato RbcS-3C promoter was higher than that under Mac promoter based on the average E1 activity, E1 protein accumulation, and RNA gel-blotting. The E1 expression was increased more than two fold when the 5’-UTL of alfalfa mosaic virus RNA4 gene replaced the UTL of RbcS-3C promoter, while the UTL of alfalfa mosaic virus RNA4 gene was less effective than the UTL of Mac promoter. The optimal combination of promoter, 5’-UTL, and subcellular compartmentation (transit peptide) for E1 protein production in transgenic tobacco plants are discussed.« less

  7. Stress Inducible Expression of AtDREB1A Transcription Factor in Transgenic Peanut (Arachis hypogaea L.) Conferred Tolerance to Soil-Moisture Deficit Stress

    PubMed Central

    Sarkar, Tanmoy; Thankappan, Radhakrishnan; Kumar, Abhay; Mishra, Gyan P.; Dobaria, Jentilal R.

    2016-01-01

    Peanut, an important oilseed crop, is gaining priority for the development of drought tolerant genotypes in recent times, since the area under drought is constantly on the rise. To achieve this, one of the important strategies is to genetically engineer the ruling peanut varieties using transcription factor regulating the expression of several downstream, abiotic-stress responsive gene(s). In this study, eight independent transgenic peanut (cv. GG20) lines were developed using AtDREB1A gene, encoding for a transcription factor, through Agrobacterium-mediated genetic transformation. The transgene insertion was confirmed in (T0) using PCR and Dot-blot analysis, while copy-number(s) was ascertained using Southern-blot analysis. The inheritance of AtDREB1A gene in individual transgenic plants (T1 and T2) was confirmed using PCR. In homozygous transgenic plants (T2), under soil-moisture deficit stress, elevated level of AtDREB1A transgene expression was observed by RT-PCR assay. The transgenic plants at 45-d or reproductive growth stage showed tolerance to severe soil-moisture deficit stress. Physio-biochemical parameters such as proline content, osmotic potential, relative water content, electrolytic leakage, and total-chlorophyll content were found positively correlated with growth-related traits without any morphological abnormality, when compared to wild-type. qPCR analysis revealed consistent increase in expression of AtDREB1A gene under progressive soil-moisture deficit stress in two homozygous transgenic plants. The transgene expression showed significant correlation with improved physio-biochemical traits. The improvement of drought-stress tolerance in combination with improved growth-related traits is very essential criterion for a premium peanut cultivar like GG20, so that marginal farmers of India can incur the economic benefits during seasonal drought and water scarcity. PMID:27446163

  8. Generation and phenotypic analysis of a transgenic line of rabbits secreting active recombinant human erythropoietin in the milk.

    PubMed

    Mikus, Tomás; Poplstein, Martin; Sedláková, Jirina; Landa, Vladimír; Jeníkova, Gabriela; Trefil, Pavel; Lidický, Jan; Malý, Petr

    2004-10-01

    Production of recombinant human erythropoietin (rhEPO) for therapeutic purposes relies on its expression in selected clones of transfected mammalian cells. Alternatively, this glycoprotein can be produced by targeted secretion into the body fluid of transgenic mammals. Here, we report on the generation of a transgenic rabbits producing rhEPO in the lactating mammary gland. Transgenic individuals are viable, fertile and transmit the rhEPO gene to the offspring. Northern blot data indicated that the expression of the transgene in the mammary gland is controlled by whey acidic protien (WAP) regulatory sequences during the period of lactation. While the hybridization with total RNA revealed the expression only in the lactating mammary gland, the highly sensitive combinatory approach using RT-PCR/hybridization technique detected a minor ectopic expression. The level of rhEPO secretion in the founder female, measured in the period of lactation, varied in the range of 60-178 and 60-162 mIU/ml in the milk and blood plasma, respectively. Biological activity of the milk rhEPO was confirmed by a standard [3H]-thymidine incorporation test. Thus, we describe the model of a rhEPO-transgenic rabbit, valuable for studies of rhEPO glycosylation and function, which can be useful for the development of transgenic approaches designed for the preparation of recombinant proteins by alternative biopharmaceutical production.

  9. Establishment of a Transgenic Zebrafish Line for Superficial Skin Ablation and Functional Validation of Apoptosis Modulators In Vivo

    PubMed Central

    Chen, Chi-Fang; Chu, Che-Yu; Chen, Te-Hao; Lee, Shyh-Jye; Shen, Chia-Ning; Hsiao, Chung-Der

    2011-01-01

    Background Zebrafish skin is composed of enveloping and basal layers which form a first-line defense system against pathogens. Zebrafish epidermis contains ionocytes and mucous cells that aid secretion of acid/ions or mucous through skin. Previous studies demonstrated that fish skin is extremely sensitive to external stimuli. However, little is known about the molecular mechanisms that modulate skin cell apoptosis in zebrafish. Methodology/Principal Findings This study aimed to create a platform to conduct conditional skin ablation and determine if it is possible to attenuate apoptotic stimuli by overexpressing potential apoptosis modulating genes in the skin of live animals. A transgenic zebrafish line of Tg(krt4:NTR-hKikGR)cy17 (killer line), which can conditionally trigger apoptosis in superficial skin cells, was first established. When the killer line was incubated with the prodrug metrodinazole, the superficial skin displayed extensive apoptosis as judged by detection of massive TUNEL- and active caspase 3-positive signals. Great reductions in NTR-hKikGR+ fluorescent signals accompanied epidermal cell apoptosis. This indicated that NTR-hKikGR+ signal fluorescence can be utilized to evaluate apoptotic events in vivo. After removal of metrodinazole, the skin integrity progressively recovered and NTR-hKikGR+ fluorescent signals gradually restored. In contrast, either crossing the killer line with testing lines or transiently injecting the killer line with testing vectors that expressed human constitutive active Akt1, mouse constitutive active Stat3, or HPV16 E6 element displayed apoptosis-resistant phenotypes to cytotoxic metrodinazole as judged by the loss of reduction in NTR-hKikGR+ fluorescent signaling. Conclusion/Significance The killer/testing line binary system established in the current study demonstrates a nitroreductase/metrodinazole system that can be utilized to conditionally perform skin ablation in a real-time manner, and provides a valuable tool to visualize and quantify the anti-apoptotic potential of interesting target genes in vivo. The current work identifies a potential use for transgenic zebrafish as a high-throughput platform to validate potential apoptosis modulators in vivo. PMID:21655190

  10. An efficient transgenic system by TA cloning vectors and RNAi for C. elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gengyo-Ando, Keiko; CREST, JST, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012; Yoshina, Sawako

    2006-11-03

    In the nematode, transgenic analyses have been performed by microinjection of DNA from various sources into the syncytium gonad. To expedite these transgenic analyses, we solved two potential problems in this work. First, we constructed an efficient TA-cloning vector system which is useful for any promoter. By amplifying the genomic DNA fragments which contain regulatory sequences with or without the coding region, we could easily construct plasmids expressing fluorescent protein fusion without considering restriction sites. We could dissect motor neurons with three colors in a single animal. Second, we used feeding RNAi to isolate transgenic strains which express lag-2::venus fusionmore » gene. We found that the fusion protein is toxic when ectopically expressed in embryos but is functional to rescue a loss of function mutant in the lag-2 gene. Thus, the transgenic system described here should be useful to examine the protein function in the nematode.« less

  11. Transgenic expression of medicago truncatula PR10 and PR5 promoters in alfalfa shows pathogen-induced up-regulation of transgene expression

    USDA-ARS?s Scientific Manuscript database

    Genetic modification of alfalfa to introduce novel traits requires promoters for controlling gene expression. Promoters that are constitutively activated for expression of genes that enhance disease resistance pose a great energy load on the plant and exert a strong selective pressure on the pathoge...

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okita, T.W.

    Part 1 of this research focuses on patterns of gene expression of ADPG-pyrophosphorylase in native and transgenic potato plants. To elucidate the mechanism controlling AGP expression during plant development, the expression of the potato tuber AGP small subunit (sAGP) gene was analyzed in transgenic potato plants using a promoter-{beta}-glucuronidase expression system. Part II evaluated the structure-function relationships of AGP.

  13. Overexpression of the A-FABP gene facilitates intermuscular fat deposition in transgenic mice.

    PubMed

    Liu, Z W; Fan, H L; Liu, X F; Ding, X B; Wang, T; Sui, G N; Li, G P; Guo, H

    2015-03-31

    Adipocyte fatty acid-binding protein (A-FABP), the most abundant FABP in adipocytes, controls fatty acid uptake, transport, and metabolism in fat cells. We constructed a transgenic mice model that overexpressed the cattle A-FABP gene to investigate the relationship between A-FABP expression and intermuscular fat deposition. There was no significant difference in body weight and serum biochemical indexes between transgenic and wild-type mice. Further, there were no significant differences in intermuscular triglyceride content and A-FABP expression levels over three generations of transgenic mice. However, abdominal adipose rate, A-FABP protein content, and intermuscular triglyceride levels of transgenic mice were significantly higher than those of wild-type mice. In addition, triglycerides were remarkably higher in the skeletal muscle but lower in the myocardium of transgenic mice. Thus, overexpression of cattle A-FABP gene promoted fat deposition in the skeletal muscle of transgenic mice.

  14. Mouse and human BAC transgenes recapitulate tissue-specific expression of the vitamin D receptor in mice and rescue the VDR-null phenotype.

    PubMed

    Lee, Seong Min; Bishop, Kathleen A; Goellner, Joseph J; O'Brien, Charles A; Pike, J Wesley

    2014-06-01

    The biological actions of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) are mediated by the vitamin D receptor (VDR), which is expressed in numerous target tissues in a cell type-selective manner. Recent studies using genomic analyses and recombineered bacterial artificial chromosomes (BACs) have defined the specific features of mouse and human VDR gene loci in vitro. In the current study, we introduced recombineered mouse and human VDR BACs as transgenes into mice and explored their expression capabilities in vivo. Individual transgenic mouse strains selectively expressed BAC-derived mouse or human VDR proteins in appropriate vitamin D target tissues, thereby recapitulating the tissue-specific expression of endogenous mouse VDR. The mouse VDR transgene was also regulated by 1,25(OH)2D3 and dibutyryl-cAMP. When crossed into a VDR-null mouse background, both transgenes restored wild-type basal as well as 1,25(OH)2D3-inducible gene expression patterns in the appropriate tissues. This maneuver resulted in the complete rescue of the aberrant phenotype noted in the VDR-null mouse, including systemic features associated with altered calcium and phosphorus homeostasis and disrupted production of parathyroid hormone and fibroblast growth factor 23, and abnormalities associated with the skeleton, kidney, parathyroid gland, and the skin. This study suggests that both mouse and human VDR transgenes are capable of recapitulating basal and regulated expression of the VDR in the appropriate mouse tissues and restore 1,25(OH)2D3 function. These results provide a baseline for further dissection of mechanisms integral to mouse and human VDR gene expression and offer the potential to explore the consequence of selective mutations in VDR proteins in vivo.

  15. Ubiquitin fusion expression and tissue-dependent targeting of hG-CSF in transgenic tobacco

    PubMed Central

    2011-01-01

    Background Human granulocyte colony-stimulating factor (hG-CSF) is an important human cytokine which has been widely used in oncology and infection protection. To satisfy clinical needs, expression of recombinant hG-CSF has been studied in several organisms, including rice cell suspension culture and transient expression in tobacco leaves, but there was no published report on its expression in stably transformed plants which can serve as a more economical expression platform with potential industrial application. Results In this study, hG-CSF expression was investigated in transgenic tobacco leaves and seeds in which the accumulation of hG-CSF could be enhanced through fusion with ubiquitin by up to 7 fold in leaves and 2 fold in seeds, leading to an accumulation level of 2.5 mg/g total soluble protein (TSP) in leaves and 1.3 mg/g TSP in seeds, relative to hG-CSF expressed without a fusion partner. Immunoblot analysis showed that ubiquitin was processed from the final protein product, and ubiquitination was up-regulated in all transgenic plants analyzed. Driven by CaMV 35S promoter and phaseolin signal peptide, hG-CSF was observed to be secreted into apoplast in leaves but deposited in protein storage vacuole (PSV) in seeds, indicating that targeting of the hG-CSF was tissue-dependent in transgenic tobacco. Bioactivity assay showed that hG-CSF expressed in both seeds and leaves was bioactive to support the proliferation of NFS-60 cells. Conclusions In this study, the expression of bioactive hG-CSF in transgenic plants was improved through ubiquitin fusion strategy, demonstrating that protein expression can be enhanced in both plant leaves and seeds through fusion with ubiquitin and providing a typical case of tissue-dependent expression of recombinant protein in transgenic plants. PMID:21985646

  16. Vernonia DGATs can complement the disrupted oil and protein metabolism in epoxygenase-expressing soybean seeds.

    PubMed

    Li, Runzhi; Yu, Keshun; Wu, Yongmei; Tateno, Mizuki; Hatanaka, Tomoko; Hildebrand, David F

    2012-01-01

    Plant oils can be useful chemical feedstocks such as a source of epoxy fatty acids. High seed-specific expression of a Stokesia laevis epoxygenase (SlEPX) in soybeans only results in 3-7% epoxide levels. SlEPX-transgenic soybean seeds also exhibited other phenotypic alterations, such as altered seed fatty acid profiles, reduced oil accumulation, and variable protein levels. SlEPX-transgenic seeds showed a 2-5% reduction in total oil content and protein levels of 30.9-51.4%. To address these pleiotrophic effects of SlEPX expression on other traits, transgenic soybeans were developed to co-express SlEPX and DGAT (diacylglycerol acyltransferase) genes (VgDGAT1 & 2) isolated from Vernonia galamensis, a high accumulator of epoxy fatty acids. These side effects of SlEPX expression were largely overcome in the DGAT co-expressing soybeans. Total oil and protein contents were restored to the levels in non-transgenic soybeans, indicating that both VgDGAT1 and VgDGAT2 could complement the disrupted phenotypes caused by over-expression of an epoxygenase in soybean seeds. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. The dynamics of long-term transgene expression in engrafted neural stem cells.

    PubMed

    Lee, Jean-Pyo; Tsai, David J; In Park, Kook; Harvey, Alan R; Snyder, Evan Y

    2009-07-01

    To assess the dynamics and confounding variables that influence transgene expression in neural stem cells (NSCs), we generated distinct NSC clones from the same pool of cells, carrying the same reporter gene transcribed from the same promoter, transduced by the same retroviral vector, and transplanted similarly at the same differentiation state, at the same time and location, into the brains of newborn mouse littermates, and monitored in parallel for over a year in vivo (without immunosuppression). Therefore, the sole variables were transgene chromosomal insertion site and copy number. We then adapted and optimized a technique that tests, at the single cell level, persistence of stem cell-mediated transgene expression in vivo based on correlating the presence of the transgene in a given NSC's nucleus (by fluorescence in situ hybridization [FISH]) with the frequency of that transgene's product within the same cell (by combined immunohistochemistry [IHC]). Under the above-stated conditions, insertion site is likely the most contributory variable dictating transgene downregulation in an NSC after 3 months in vivo. We also observed that this obstacle could be effectively and safely counteracted by simple serial infections (as few as three) inserting redundant copies of the transgene into the prospective donor NSC. (The preservation of normal growth control mechanisms and an absence of tumorigenic potential can be readily screened and ensured ex vivo prior to transplantation.) The combined FISH/IHC strategy employed here for monitoring the dynamics of transgene expression at the single cell level in vivo may be used for other types of therapeutic and housekeeping genes in endogenous and exogenous stem cells of many organs and lineages. Copyright 2009 Wiley-Liss, Inc.

  18. Transgenic potato plants expressing cry3A gene confer resistance to Colorado potato beetle.

    PubMed

    Mi, Xiaoxiao; Ji, Xiangzhuo; Yang, Jiangwei; Liang, Lina; Si, Huaijun; Wu, Jiahe; Zhang, Ning; Wang, Di

    2015-07-01

    The Colorado potato beetle (Leptinotarsa decemlineata Say, CPB) is a fatal pest, which is a quarantine pest in China. The CPB has now invaded the Xinjiang Uygur Autonomous Region and is constantly spreading eastward in China. In this study, we developed transgenic potato plants expressing cry3A gene. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the cry3A gene expressed in leaves, stems and roots of the transgenic plants under the control of CaMV 35S promoter, while they expressed only in leaves and stems under the control of potato leaf and stem-specific promoter ST-LS1. The mortality of the larvae was higher (28% and 36%) on the transgenic plant line 35S1 on the 3rd and 4th days, and on ST3 (48%) on the 5th day after inoculation with instar larvae. Insect biomass accumulation on the foliage of the transgenic plant lines 35S1, 35S2 and ST3 was significantly lower (0.42%, 0.43% and 0.42%). Foliage consumption was lowest on transgenic lines 35S8 and ST2 among all plant foliage (7.47 mg/larvae/day and 12.46 mg/larvae/day). The different transgenic plant foliages had varied inhibition to larval growth. The survivors on the transgenic lines obviously were smaller than their original size and extremely weak. The transgenic potato plants with CPB resistance could be used to develop germplasms or varieties for controlling CPB damage and halting its spread in China. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  19. Cell cycle distribution, cellular viability and mRNA expression of hGCase-gene-transfected cells in dairy goat.

    PubMed

    Zhang, Yan-Li; Wan, Yong-Jie; Wang, Zi-Yu; Qi, Wei-Wei; Zhou, Zheng-Rong; Huang, Rong; Wang, Feng

    2010-05-07

    Nuclear transfer using transgenic donor cells is an efficient way of generating transgenic goats, wherein the preparation of competent transgenic donor cells is the pivotal upstream step. We have measured the efficiency of transfection with a plasmid containing hGCase (human lysosomal acid beta-glucosidase) gene into goat FFC (fetal-derived fibroblast cells), MEC (mammary epithelial cells) and AEFC (adult ear skin-derived fibroblast cells), and the characteristics of cell cycle, apoptosis and chromosome abnormalities after transfection. The expression of genes involved in imprinting [IGF2 (insulin-like growth factor 2), IGF2R (IGF2 receptor)], apoptosis (Bax), stress (heat-shock protein, Hsp70.1), cellular connections [Cx43 (connexin 43)] and DNA methylation [DNMT1 (DNA methyltransferase 1)] in transgenic fetal cells has been investigated. The hGCase transgene was successfully detected in the transfected cell lines, and chromosomal stability remained similar in FFC and transgenic FFC (70.9 compared with 66.8%), whereas a smaller percentage (P<0.05) of cells at G(0)/G(1) in the transgenic FFC, MEC and AEFC (T-FFC, T-MEC and T-AEFC), and higher percentage (P<0.05) of apoptotic cells in T-FFC than the non-transfected controls were detected by flow cytometric analysis. Among the genes tested, the relative expressions of IGF2, IGF2R and transcripts of Cx43 were significantly higher (P<0.05) in T-FFC compared with non-transfected FFC. These novel findings on gene expression in transgenic fetal cells may have certain implications in the biopharming industry and in our understanding the low efficiency of transgenic cloning.

  20. Perspective on the combined use of an independent transgenic sexing and a multifactorial reproductive sterility system to avoid resistance development against transgenic Sterile Insect Technique approaches

    PubMed Central

    2014-01-01

    Background The Sterile Insect Technique (SIT) is an accepted species-specific genetic control approach that acts as an insect birth control measure, which can be improved by biotechnological engineering to facilitate its use and widen its applicability. First transgenic insects carrying a single killing system have already been released in small scale trials. However, to evade resistance development to such transgenic approaches, completely independent ways of transgenic killing should be established and combined. Perspective Most established transgenic sexing and reproductive sterility systems are based on the binary tTA expression system that can be suppressed by adding tetracycline to the food. However, to create 'redundant killing' an additional independent conditional expression system is required. Here we present a perspective on the use of a second food-controllable binary expression system - the inducible Q system - that could be used in combination with site-specific recombinases to generate independent transgenic killing systems. We propose the combination of an already established transgenic embryonic sexing system to meet the SIT requirement of male-only releases based on the repressible tTA system together with a redundant male-specific reproductive sterility system, which is activated by Q-system controlled site-specific recombination and is based on a spermatogenesis-specifically expressed endonuclease acting on several species-specific target sites leading to chromosome shredding. Conclusion A combination of a completely independent transgenic sexing and a redundant reproductive male sterility system, which do not share any active components and mediate the induced lethality by completely independent processes, would meet the 'redundant killing' criteria for suppression of resistance development and could therefore be employed in large scale long-term suppression programs using biotechnologically enhanced SIT. PMID:25471733

  1. Establishment of a Conditional Transgenic Mouse Model Recapitulating EML4-ALK-Positive Human Non-Small Cell Lung Cancer.

    PubMed

    Pyo, Kyoung Ho; Lim, Sun Min; Kim, Hye Ryun; Sung, Young Hoon; Yun, Mi Ran; Kim, Sung-Moo; Kim, Hwan; Kang, Han Na; Lee, Ji Min; Kim, Sang Gyun; Park, Chae Won; Chang, Hyun; Shim, Hyo Sup; Lee, Han-Woong; Cho, Byoung Chul

    2017-03-01

    Anaplastic lymphoma receptor tyrosine kinase gene (ALK) fusion is a distinct molecular subclassification of NSCLC that is targeted by anaplastic lymphoma kinase (ALK) inhibitors. We established a transgenic mouse model that expresses tumors highly resembling human NSCLC harboring echinoderm microtubule associated protein like 4 gene (EML)-ALK fusion. We aimed to test an EML4-ALK transgenic mouse model as a platform for assessing the efficacy of ALK inhibitors and examining mechanisms of acquired resistance to ALK inhibitors. Transgenic mouse lines harboring LoxP-STOP-LoxP-FLAGS-tagged human EML4-ALK (variant 1) transgene was established by using C57BL/6N mice. The transgenic mouse model with highly lung-specific, inducible expression of echinoderm microtubule associated protein like 4-ALK fusion protein was established by crossing the EML4-ALK transgenic mice with mice expressing Cre-estrogen receptor fusion protein under the control of surfactant protein C gene (SPC). Expression of EML4-ALK transgene was induced by intraperitoneally injecting mice with tamoxifen. When the lung tumor of the mice treated with the ALK inhibitor crizotinib for 2 weeks was measured, tumor shrinkage was observed. EML4-ALK tumor developed after 1 week of tamoxifen treatment. Echinoderm microtubule associated protein like 4-ALK was strongly expressed in the lung but not in other organs. ALK and FLAGS expressions were observed by immunohistochemistry. Treatment of EML4-ALK tumor-bearing mice with crizotinib for 2 weeks induced dramatic shrinkage of tumors with no signs of toxicity. Furthermore, prolonged treatment with crizotinib led to acquired resistance in tumors, resulting in regrowth and disease progression. The resistant tumor nodules revealed acquired ALK G1202R mutations. An EML4-ALK transgenic mouse model for study of drug resistance was successfully established with short duration of tumorigenesis. This model should be a strong preclinical model for testing efficacy of ALK TKIs, providing a useful tool for investigating the mechanisms of acquired resistance and pursuing novel treatment strategies in ALK-positive lung cancer. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  2. A Modular Toolset for Recombination Transgenesis and Neurogenetic Analysis of Drosophila

    PubMed Central

    Wang, Ji-Wu; Beck, Erin S.; McCabe, Brian D.

    2012-01-01

    Transgenic Drosophila have contributed extensively to our understanding of nervous system development, physiology and behavior in addition to being valuable models of human neurological disease. Here, we have generated a novel series of modular transgenic vectors designed to optimize and accelerate the production and analysis of transgenes in Drosophila. We constructed a novel vector backbone, pBID, that allows both phiC31 targeted transgene integration and incorporates insulator sequences to ensure specific and uniform transgene expression. Upon this framework, we have built a series of constructs that are either backwards compatible with existing restriction enzyme based vectors or utilize Gateway recombination technology for high-throughput cloning. These vectors allow for endogenous promoter or Gal4 targeted expression of transgenic proteins with or without fluorescent protein or epitope tags. In addition, we have generated constructs that facilitate transgenic splice isoform specific RNA inhibition of gene expression. We demonstrate the utility of these constructs to analyze proteins involved in nervous system development, physiology and neurodegenerative disease. We expect that these reagents will facilitate the proficiency and sophistication of Drosophila genetic analysis in both the nervous system and other tissues. PMID:22848718

  3. Perturbation of auxin homeostasis by overexpression of wild-type IAA15 results in impaired stem cell differentiation and gravitropism in roots.

    PubMed

    Yan, Da-Wei; Wang, Jing; Yuan, Ting-Ting; Hong, Li-Wei; Gao, Xiang; Lu, Ying-Tang

    2013-01-01

    Aux/IAAs interact with auxin response factors (ARFs) to repress their transcriptional activity in the auxin signaling pathway. Previous studies have focused on gain-of-function mutations of domain II and little is known about whether the expression level of wild-type Aux/IAAs can modulate auxin homeostasis. Here we examined the perturbation of auxin homeostasis by ectopic expression of wild-type IAA15. Root gravitropism and stem cell differentiation were also analyzed. The transgenic lines were less sensitive to exogenous auxin and exhibited low-auxin phenotypes including failures in gravity response and defects in stem cell differentiation. Overexpression lines also showed an increase in auxin concentration and reduced polar auxin transport. These results demonstrate that an alteration in the expression of wild-type IAA15 can disrupt auxin homeostasis.

  4. The homeodomain transcription factor Cdx1 does not behave as an oncogene in normal mouse intestine.

    PubMed

    Crissey, Mary Ann S; Guo, Rong-Jun; Fogt, Franz; Li, Hong; Katz, Jonathan P; Silberg, Debra G; Suh, Eun Ran; Lynch, John P

    2008-01-01

    The Caudal-related homeobox genes Cdx1 and Cdx2 are intestine-specific transcription factors that regulate differentiation of intestinal cell types. Previously, we have shown Cdx1 to be antiproliferative and to promote cell differentiation. However, other studies have suggested that Cdx1 may be an oncogene. To test for oncogenic behavior, we used the murine villin promoter to ectopically express Cdx1 in the small intestinal villi and colonic surface epithelium. No changes in intestinal architecture, cell differentiation, or lineage selection were observed with expression of the transgene. Classic oncogenes enhance proliferation and induce tumors when ectopically expressed. However, the Cdx1 transgene neither altered intestinal proliferation nor induced spontaneous intestinal tumors. In a murine model for colitis-associated cancer, the Cdx1 transgene decreased, rather than increased, the number of adenomas that developed. In the polyps, the expression of the endogenous and the transgenic Cdx1 proteins was largely absent, whereas endogenous Villin expression was retained. This suggests that transgene silencing was specific and not due to a general Villin inactivation. In conclusion, neither the ectopic expression of Cdx1 was associated with changes in intestinal cell proliferation or differentiation nor was there increased intestinal cancer susceptibility. Our results therefore suggest that Cdx1 is not an oncogene in normal intestinal epithelium.

  5. Chromosomal position effects in chicken lysozyme gene transgenic mice are correlated with suppression of DNase I hypersensitive site formation.

    PubMed Central

    Huber, M C; Bosch, F X; Sippel, A E; Bonifer, C

    1994-01-01

    The complete chicken lysozyme gene locus is expressed copy number dependently and at a high level in macrophages of transgenic mice. Gene expression independent of genomic position can only be achieved by the concerted action of all cis regulatory elements located on the lysozyme gene domain. Position independency of expression is lost if one essential cis regulatory region is deleted. Here we compared the DNase I hypersensitive site (DHS) pattern formed on the chromatin of position independently and position dependently expressed transgenes in order to assess the influence of deletions within the gene domain on active chromatin formation. We demonstrate, that in position independently expressed transgene all DHSs are formed with the authentic relative frequency on all genes. This is not the case for position dependently expressed transgenes. Our results show that the formation of a DHS during cellular differentiation does not occur autonomously. In case essential regulatory elements of the chicken lysozyme gene domain are lacking, the efficiency of DHS formation on remaining cis regulatory elements during myeloid differentiation is reduced and influenced by the chromosomal position. Hence, no individual regulatory element on the lysozyme domain is capable of organizing the chromatin structure of the whole locus in a dominant fashion. Images PMID:7937145

  6. BAC-mediated transgenic expression of fluorescent autophagic protein Beclin 1 reveals a role for Beclin 1 in lymphocyte development.

    PubMed

    Arsov, I; Li, X; Matthews, G; Coradin, J; Hartmann, B; Simon, A K; Sealfon, S C; Yue, Z

    2008-09-01

    Beclin 1/Atg6 is an essential component of the evolutionary conserved PtdIns(3)-kinase (Vps34) protein complex that regulates macroautophagy (autophagy) in eukaryotic cells and also interacts with antiapoptotic Bcl-2 family members, Bcl-2, and Bcl-x(L). To elucidate the physiological function of Beclin 1, we generated transgenic mice producing a green fluorescent Beclin 1 protein (Beclin 1-GFP) under Beclin 1 endogenous regulation. The beclin 1-GFP transgene is functional because it completely rescues early embryonic lethality in beclin 1-deficient mice. The transgenic mice appear normal, with undetected change in basal autophagy levels in different tissues, despite the additional expression of functional Beclin 1-GFP. Staining of Beclin 1-GFP shows mostly diffuse cytoplasmic distribution in various tissues. Detailed analysis of the transgene expression by flow cytometry reveals a Bcl-2-like biphasic expression pattern in developing T and B cells, as well as differential regulation of expression in mature versus immature thymocytes following in vitro stimulation. Moreover, thymocytes expressing high Beclin 1-GFP levels appear increasingly sensitive to glucocorticoid-induced apoptosis in vitro. Our results, therefore, support a role for Beclin 1 in lymphocyte development involving cross talk between autophagy and apoptosis.

  7. Metabolic Engineering of Glycyrrhizin Pathway by Over-Expression of Beta-amyrin 11-Oxidase in Transgenic Roots of Glycyrrhiza glabra.

    PubMed

    Shirazi, Zahra; Aalami, Ali; Tohidfar, Masoud; Sohani, Mohammad Mehdi

    2018-06-01

    Glycyrrhiza glabra is one of the most important and well-known medicinal plants which produces various triterpene saponins such as glycyrrhizin. Beta-amyrin 11-oxidase (CYP88D6) plays a key role in engineering pathway of glycyrrhizin production and converts an intermediated beta-amyrin compound to glycyrrhizin. In this study, pBI121 GUS-9 :CYP88D6 construct was transferred to G. glabra using Agrobacterium rhizogene ATCC 15834. The quantitation of transgene was measured in putative transgenic hairy roots using qRT-PCR. The amount of glycyrrhizin production was measured by HPLC in transgenic hairy root lines. Gene expression analysis demonstrated that CYP88D6 was over-expressed only in one of transgenic hairy root lines and was reduced in two others. Beta-amyrin 24-hydroxylase (CYP93E6) was significantly expressed in one of the control hairy root lines. The amount of glycyrrhizin metabolite in over-expressed line was more than or similar to that of control hairy root lines. According to the obtained results, it would be recommended that multi-genes of glycyrrhizin biosynthetic pathway be transferred simultaneously to the hairy root in order to increase glycyrrhizin content.

  8. Effects of a petunia scaffold/matrix attachment region on copy number dependency and stability of transgene expression in Nicotiana tabacum.

    PubMed

    Dietz-Pfeilstetter, Antje; Arndt, Nicola; Manske, Ulrike

    2016-04-01

    Transgenes in genetically modified plants are often not reliably expressed during development or in subsequent generations. Transcriptional gene silencing (TGS) as well as post-transcriptional gene silencing (PTGS) have been shown to occur in transgenic plants depending on integration pattern, copy number and integration site. In an effort to reduce position effects, to prevent read-through transcription and to provide a more accessible chromatin structure, a P35S-ß-glucuronidase (P35S-gus) transgene flanked by a scaffold/matrix attachment region from petunia (Petun-SAR), was introduced in Nicotiana tabacum plants by Agrobacterium tumefaciens mediated transformation. It was found that Petun-SAR mediates enhanced expression and copy number dependency up to 2 gene copies, but did not prevent gene silencing in transformants with multiple and rearranged gene copies. However, in contrast to the non-SAR transformants where silencing was irreversible and proceeded during long-term vegetative propagation and in progeny plants, gus expression in Petun-SAR plants was re-established in the course of development. Gene silencing was not necessarily accompanied by DNA methylation, while the gus transgene could still be expressed despite considerable CG methylation within the coding region.

  9. Transgenic Cotton Plants Expressing Double-stranded RNAs Target HMG-CoA Reductase (HMGR) Gene Inhibits the Growth, Development and Survival of Cotton Bollworms

    PubMed Central

    Tian, Geng; Cheng, Linlin; Qi, Xuewei; Ge, Zonghe; Niu, Changying; Zhang, Xianlong; Jin, Shuangxia

    2015-01-01

    RNA interference (RNAi) has been developed as a powerful technique in the research of functional genomics as well as plant pest control. In this report, double-stranded RNAs (dsRNA) targeting 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene, which catalyze a rate-limiting enzymatic reaction in the mevalonate pathway of juvenile hormone (JH) synthesis in cotton bollworm, was expressed in cotton plants via Agrobacterium tumefaciens-mediated transformation. PCR and Sothern analysis revealed the integration of HMGR gene into cotton genome. RT-PCR and qRT-PCR confirmed the high transcription level of dsHMGR in transgenic cotton lines. The HMGR expression both in transcription and translation level was significantly downregulated in cotton bollworms (helicoverpa armigera) larvae after feeding on the leaves of HMGR transgenic plants. The transcription level of HMGR gene in larvae reared on transgenic cotton leaves was as much as 80.68% lower than that of wild type. In addition, the relative expression level of vitellogenin (Vg, crucial source of nourishment for offspring embryo development) gene was also reduced by 76.86% when the insect larvae were fed with transgenic leaves. The result of insect bioassays showed that the transgenic plant harboring dsHMGR not only inhibited net weight gain but also delayed the growth of cotton bollworm larvae. Taken together, transgenic cotton plant expressing dsRNAs successfully downregulated HMGR gene and impaired the development and survival of target insect, which provided more option for plant pest control. PMID:26435695

  10. Suppression of glucose-6-phosphate-isomerase induced arthritis by oral administration of transgenic rice seeds expressing altered peptide ligands of glucose-6-phosphate-isomerase.

    PubMed

    Hirota, Tomoya; Tsuboi, Hiroto; Iizuka-Koga, Mana; Takahashi, Hiroyuki; Asashima, Hiromitsu; Yokosawa, Masahiro; Kondo, Yuya; Ohta, Masaru; Wakasa, Yuhya; Matsumoto, Isao; Takaiwa, Fumio; Sumida, Takayuki

    2017-05-01

    To investigate the effects of transgenic rice seeds expressing the altered peptide ligand (APL) of human glucose-6-phosphate-isomerase (hGPI 325-339 ) in mice model of GPI-induced arthritis (GIA). We generated transgenic rice expressing T-cell epitope of hGPI 325-339 and APL12 contained in the seed endosperm. The transgenic rice seeds were orally administered prophylactically before the induction of GIA. The severity of arthritis and titers of serum anti-GPI antibodies were evaluated. We examined for IL-17 production in splenocytes and inguinal lymph node (iLN) cells, and analyzed the expression levels of functional molecules in splenocytes. Prophylactic treatment of GIA mice with APL12 transgenic (APL12-TG) rice seeds significantly reduced the severity of arthritis and titers of serum anti-GPI antibodies compared with non-transgenic (Non-TG) rice-treated mice. APL12-TG and hGPI 325-339 transgenic (hGPI 325-339 -TG) rice seeds improved the histopathological arthritis scores and decreased IL-17 production compared with non-TG rice-treated mice. APL12-TG rice-treated GIA mice showed upregulation of Foxp3 and GITR protein in CD4  +  CD25  +  Foxp3 +  cells in the spleen compared with non-TG rice- and hGPI 325-339 -TG rice-treated mice. APL12-TG rice seeds improved the severity of GIA through a decrease in production of IL-17 and anti-GPI antibodies via upregulation of Foxp3 and GITR expression on Treg cells in spleen.

  11. Expression of the Galanthus nivalis agglutinin (GNA) gene in transgenic potato plants confers resistance to aphids.

    PubMed

    Mi, Xiaoxiao; Liu, Xue; Yan, Haolu; Liang, Lina; Zhou, Xiangyan; Yang, Jiangwei; Si, Huaijun; Zhang, Ning

    2017-01-01

    Aphids, the largest group of sap-sucking pests, cause significant yield losses in agricultural crops worldwide every year. The massive use of pesticides to combat this pest causes severe damage to the environment, putting in risk the human health. In this study, transgenic potato plants expressing Galanthus nivalis agglutinin (GNA) gene were developed using CaMV 35S and ST-LS1 promoters generating six transgenic lines (35S1-35S3 and ST1-ST3 corresponding to the first and second promoter, respectively). Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the GNA gene was expressed in leaves, stems and roots of transgenic plants under the control of the CaMV 35S promoter, while it was only expressed in leaves and stems under the control of the ST-LS1 promoter. The levels of aphid mortality after 5 days of the inoculation in the assessed transgenic lines ranged from 20 to 53.3%. The range of the aphid population in transgenic plants 15 days after inoculation was between 17.0±1.43 (ST2) and 36.6±0.99 (35S3) aphids per plant, which corresponds to 24.9-53.5% of the aphid population in non-transformed plants. The results of our study suggest that GNA expressed in transgenic potato plants confers a potential tolerance to aphid attack, which appears to be an alternative against the use of pesticides in the future. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  12. Cell-Specific Actions of a Human LHX3 Gene Enhancer During Pituitary and Spinal Cord Development

    PubMed Central

    Park, Soyoung; Mullen, Rachel D.

    2013-01-01

    The LIM class of homeodomain protein 3 (LHX3) transcription factor is essential for pituitary gland and nervous system development in mammals. In humans, mutations in the LHX3 gene underlie complex pediatric syndromes featuring deficits in anterior pituitary hormones and defects in the nervous system. The mechanisms that control temporal and spatial expression of the LHX3 gene are poorly understood. The proximal promoters of the human LHX3 gene are insufficient to guide expression in vivo and downstream elements including a conserved enhancer region appear to play a role in tissue-specific expression in the pituitary and nervous system. Here we characterized the activity of this downstream enhancer region in regulating gene expression at the cellular level during development. Human LHX3 enhancer-driven Cre reporter transgenic mice were generated to facilitate studies of enhancer actions. The downstream LHX3 enhancer primarily guides gene transcription in α-glycoprotein subunit -expressing cells secreting the TSHβ, LHβ, or FSHβ hormones and expressing the GATA2 and steroidogenic factor 1 transcription factors. In the developing nervous system, the enhancer serves as a targeting module active in V2a interneurons. These results demonstrate that the downstream LHX3 enhancer is important in specific endocrine and neural cell types but also indicate that additional regulatory elements are likely involved in LHX3 gene expression. Furthermore, these studies revealed significant gonadotrope cell heterogeneity during pituitary development, providing insights into the cellular physiology of this key reproductive regulatory cell. The human LHX3 enhancer-driven Cre reporter transgenic mice also provide a valuable tool for further developmental studies of cell determination and differentiation in the pituitary and nervous system. PMID:24100213

  13. [New advances in animal transgenic technology].

    PubMed

    Sun, Zhen-Hong; Miao, Xiang-Yang; Zhu, Rui-Liang

    2010-06-01

    Animal transgenic technology is one of the fastest growing biotechnology in the 21st century. It is used to integrate foreign genes into the animal genome by genetic engineering technology so that foreign genes can be expressed and inherited to the offspring. The transgenic efficiency and precise control of gene expression are the key limiting factors on preparation of transgenic animals. A variety of transgenic techniques are available, each of which has its own advantages and disadvantages and still needs further study because of unresolved technical and safety issues. With the in-depth research, the transgenic technology will have broad application prospects in the fields of exploration of gene function, animal genetic improvement, bioreactor, animal disease models, organ transplantation and so on. This article reviews the recently developed animal gene transfer techniques, including germline stem cell mediated method to improve the efficiency, gene targeting to improve the accuracy, RNA interference (RNAi)-mediated gene silencing technology, and the induced pluripotent stem cells (iPS) transgenic technology. The new transgenic techniques can provide a better platform for the study of trans-genic animals and promote the development of medical sciences, livestock production, and other fields.

  14. Recent advances in the development of new transgenic animal technology.

    PubMed

    Miao, Xiangyang

    2013-03-01

    Transgenic animal technology is one of the fastest growing biotechnology areas. It is used to integrate exogenous genes into the animal genome by genetic engineering technology so that these genes can be inherited and expressed by offspring. The transgenic efficiency and precise control of gene expression are the key limiting factors in the production of transgenic animals. A variety of transgenic technologies are available. Each has its own advantages and disadvantages and needs further study because of unresolved technical and safety issues. Further studies will allow transgenic technology to explore gene function, animal genetic improvement, bioreactors, animal disease models, and organ transplantation. This article reviews the recently developed animal transgenic technologies, including the germ line stem cell-mediated method to improve efficiency, gene targeting to improve accuracy, RNA interference-mediated gene silencing technology, zinc-finger nuclease gene targeting technology and induced pluripotent stem cell technology. These new transgenic techniques can provide a better platform to develop transgenic animals for breeding new animal varieties and promote the development of medical sciences, livestock production, and other fields.

  15. Expression of human cationic trypsinogen (PRSS1) in murine acinar cells promotes pancreatitis and apoptotic cell death

    PubMed Central

    Athwal, T; Huang, W; Mukherjee, R; Latawiec, D; Chvanov, M; Clarke, R; Smith, K; Campbell, F; Merriman, C; Criddle, D; Sutton, R; Neoptolemos, J; Vlatković, N

    2014-01-01

    Hereditary pancreatitis (HP) is an autosomal dominant disease that displays the features of both acute and chronic pancreatitis. Mutations in human cationic trypsinogen (PRSS1) are associated with HP and have provided some insight into the pathogenesis of pancreatitis, but mechanisms responsible for the initiation of pancreatitis have not been elucidated and the role of apoptosis and necrosis has been much debated. However, it has been generally accepted that trypsinogen, prematurely activated within the pancreatic acinar cell, has a major role in the initiation process. Functional studies of HP have been limited by the absence of an experimental system that authentically mimics disease development. We therefore developed a novel transgenic murine model system using wild-type (WT) human PRSS1 or two HP-associated mutants (R122H and N29I) to determine whether expression of human cationic trypsinogen in murine acinar cells promotes pancreatitis. The rat elastase promoter was used to target transgene expression to pancreatic acinar cells in three transgenic strains that were generated: Tg(Ela-PRSS1)NV, Tg(Ela-PRSS1*R122H)NV and Tg(Ela-PRSS1*N29I)NV. Mice were analysed histologically, immunohistochemically and biochemically. We found that transgene expression is restricted to pancreatic acinar cells and transgenic PRSS1 proteins are targeted to the pancreatic secretory pathway. Animals from all transgenic strains developed pancreatitis characterised by acinar cell vacuolisation, inflammatory infiltrates and fibrosis. Transgenic animals also developed more severe pancreatitis upon treatment with low-dose cerulein than controls, displaying significantly higher scores for oedema, inflammation and overall histopathology. Expression of PRSS1, WT or mutant, in acinar cells increased apoptosis in pancreatic tissues and isolated acinar cells. Moreover, studies of isolated acinar cells demonstrated that transgene expression promotes apoptosis rather than necrosis. We therefore conclude that expression of WT or mutant human PRSS1 in murine acinar cells induces apoptosis and is sufficient to promote spontaneous pancreatitis, which is enhanced in response to cellular insult. PMID:24722290

  16. Production of transgenic cattle highly expressing human serum albumin in milk by phiC31 integrase-mediated gene delivery.

    PubMed

    Luo, Yan; Wang, Yongsheng; Liu, Jun; Lan, Hui; Shao, Minghao; Yu, Yuan; Quan, Fusheng; Zhang, Yong

    2015-10-01

    Transgenic cattle expressing high levels of recombinant human serum albumin (HSA) in their milk may as an alternative source for commercial production. Our objective was to produce transgenic cattle highly expressing HSA in milk by using phiC31 integrase system and somatic cell nuclear transfer (SCNT). The mammary-specific expression plasmid pIACH(-), containing the attB recognition site for phiC31 integrase, were co-transfected with integrase expression plasmid pCMVInt into bovine fetal fibroblast cells (BFFs). PhiC31 integrase-mediated integrations in genome of BFFs were screened by nested inverse PCR. After analysis of sequence of the PCR products, 46.0% (23/50) of the both attB-genome junction sites (attL and attR) were confirmed, and four pseudo attP sites were identified. The integration rates in BF3, BF11, BF19 and BF4 sites were 4.0% (2/50), 6.0% (3/50), 16.0% (8/50) and 20.0% (10/50), respectively. BF3 is located in the bovine chromosome 3 collagen alpha-3 (VI) chain isomer 2 gene, while the other three sites are located in the non-coding region. The transgenic cell lines from BF11, BF19 and BF4 sites were used as donors for SCNT. Two calves from transgenic cells BF19 were born, one died within a few hours after birth, and another calf survived healthy. PCR and Southern blot analysis revealed integration of the transgene in the genome of cloned calves. The nested reverse PCR confirmed that the integration site in cloned calves was identical to the donor cells. The western blotting assessment indicated that recombinant HSA was expressed in the milk of transgenic cattle and the expression level was about 4-8 mg/mL. The present study demonstrated that phiC31 integrase system was an efficient and safety gene delivery tool for producing HSA transgenic cattle. The production of recombinant HSA in the milk of cattle may provide a large-scale and cost-effective resource.

  17. Salicylate and catechol levels are maintained in nahG transgenic poplar

    Treesearch

    Alison M. Morse; Timothy J. Tschaplinski; Christopher Dervinis; Paula M. Pijut; Eric A. Schmelz; Wendy Day; John M. Davis

    2007-01-01

    Metabolic profiling was used to investigate the molecular phenotypes of a transgenic Populus tremula × P. alba hybrid expressing the nahG transgene, a bacterial gene encoding salicylate hydroxylase that converts salicylic acid to catechol. Despite the efficacy of this transgenic approach to reduce...

  18. Enhanced resistance to citrus canker in transgenic mandarin expressing Xa21 from rice.

    PubMed

    Omar, Ahmad A; Murata, Mayara M; El-Shamy, Hesham A; Graham, James H; Grosser, Jude W

    2018-04-01

    Genetic engineering approaches offer an alternative method to the conventional breeding of Citrus sp. 'W. Murcott' mandarin (a hybrid of 'Murcott' and an unknown pollen parent) is one of the most commercially important cultivars grown in many regions around the world. Transformation of 'W. Murcott' mandarin was achieved by direct DNA uptake using a protoplast transformation system. DNA construct (pAO3), encoding Green Fluorescent Protein (GFP) and the cDNA of Xa21, a Xanthomonas resistance gene from rice, was used to transform protoplasts of 'W. Murcott' mandarin. Following citrus protoplast culture and regeneration, transformed micro calli were microscopically designated via GFP expression, physically isolated from non-transformed tissue, and cultured on somatic embryogenesis induction medium. More than 150 transgenic embryos were recovered and from them, ten transgenic lines were regenerated and cultured on rooting medium for shoot elongation. Transgenic shoots were micrografted and established in the greenhouse with 3-5 replicates per line. The insertion of Xa21 and GFP was confirmed by PCR and southern blot analysis. GFP expression was verified by fluorescence microscopy and western blot analysis revealed expression of Xa21 although it was variable among transgenic lines, as shown by RT-qPCR. Transgenic plants challenged with the citrus canker pathogen by syringe inoculation showed a reduction in lesion number and bacterial populations within lesions compared to non-transgenic control plants. Transgenic 'W. Murcott' mandarin lines with improved canker resistance via protoplast transformation from embryogenic callus with the Xa21 gene from rice are being evaluated under field conditions to validate the level of resistance.

  19. Expression pattern of the pre-prothaumatin II gene under the control of the CaMV 35S promoter in transgenic cucumber (Cucumis sativus L.) flower buds and fruits.

    PubMed

    Szwacka, M; Siedlecka, E; Zawirska-Wojtasiak, R; Wiśniewski, Ł; Malepszy, S

    2009-01-01

    Thaumatin II is an extremely sweet-tasting protein produced by fruits of the West African shrub Thaumatococcus daniellii Benth, so it can be used in biotechnology to improve the tastes of various plant products. This study is concerned with the spatial and temporal aspects of expression of the 35S-pre-prothaumatin II chimeric gene in flower buds and fruits of transgenic cucumber (Cucumis sativus L.) line 225. The activity of the 35S promoter in organs of line 225 was compared with its activity in 2 other transgenic lines. The accumulation of recombinant thaumatin varied spatially in flower bud tissues of transgenic lines. We found that these differences in the spatial accumulation of transgenic protein concerned the ovary of female buds and the perianth of male buds. In contrast to flower parts, recombinant thaumatin was found in nearly all parts of the young fruit from the transgenic plants. The pre-prothaumatin II gene expression was detected at a very early developmental stage in male buds, and its pattern was rather conserved as the buds aged. The expression of the transgene was also detected in vascular tissues of examined organs but was undetectable in pollen grains, in agreement with the generally held view that the CaMV 35S promoter is virtually silent in pollen. Immunocytochemical analyses of sections of control organs revealed endogenous homolog(s) of thaumatin when using polyclonal antisera, but not when using monoclonal antibodies for recombinant thaumatin detection in transgenic cucumber.

  20. Obesity and altered glucose metabolism impact HDL composition in CETP transgenic mice: a role for ovarian hormones[S

    PubMed Central

    Martinez, Melissa N.; Emfinger, Christopher H.; Overton, Matthew; Hill, Salisha; Ramaswamy, Tara S.; Cappel, David A.; Wu, Ke; Fazio, Sergio; McDonald, W. Hayes; Hachey, David L.; Tabb, David L.; Stafford, John M.

    2012-01-01

    Mechanisms underlying changes in HDL composition caused by obesity are poorly defined, partly because mice lack expression of cholesteryl ester transfer protein (CETP), which shuttles triglyceride and cholesteryl ester between lipoproteins. Because menopause is associated with weight gain, altered glucose metabolism, and changes in HDL, we tested the effect of feeding a high-fat diet (HFD) and ovariectomy (OVX) on glucose metabolism and HDL composition in CETP transgenic mice. After OVX, female CETP-expressing mice had accelerated weight gain with HFD-feeding and impaired glucose tolerance by hyperglycemic clamp techniques, compared with OVX mice fed a low-fat diet (LFD). Sham-operated mice (SHAM) did not show HFD-induced weight gain and had less glucose intolerance than OVX mice. Using shotgun HDL proteomics, HFD-feeding in OVX mice had a large effect on HDL composition, including increased levels of apoA2, apoA4, apoC2, and apoC3, proteins involved in TG metabolism. These changes were associated with decreased hepatic expression of SR-B1, ABCA1, and LDL receptor, proteins involved in modulating the lipid content of HDL. In SHAM mice, there were minimal changes in HDL composition with HFD feeding. These studies suggest that the absence of ovarian hormones negatively influences the response to high-fat feeding in terms of glucose tolerance and HDL composition. CETP-expressing mice may represent a useful model to define how metabolic changes affect HDL composition and function. PMID:22215797

  1. Altered Expression of the Malate-Permeable Anion Channel OsALMT4 Reduces the Growth of Rice Under Low Radiance

    PubMed Central

    Liu, Jie; Xu, Muyun; Estavillo, Gonzalo M.; Delhaize, Emmanuel; White, Rosemary G.; Zhou, Meixue; Ryan, Peter R.

    2018-01-01

    We examined the function of OsALMT4 in rice (Oryza sativa L.) which is a member of the aluminum-activated malate transporter family. Previous studies showed that OsALMT4 localizes to the plasma membrane and that expression in transgenic rice lines results in a constitutive release of malate from the roots. Here, we show that OsALMT4 is expressed widely in roots, shoots, flowers, and grain but not guard cells. Expression was also affected by ionic and osmotic stress, light and to the hormones ABA, IAA, and salicylic acid. Malate efflux from the transgenic plants over-expressing OsALMT4 was inhibited by niflumate and salicylic acid. Growth of transgenic lines with either increased OsALMT4 expression or reduced expression was measured in different environments. Light intensity caused significant differences in growth between the transgenic lines and controls. When day-time light was reduced from 700 to 300 μmol m-2s-1 independent transgenic lines with either increased or decreased OsALMT4 expression accumulated less biomass compared to their null controls. This response was not associated with differences in photosynthetic capacity, stomatal conductance or sugar concentrations in tissues. We propose that by disrupting malate fluxes across the plasma membrane carbon partitioning and perhaps signaling are affected which compromises growth under low light. We conclude that OsALMT4 is expressed widely in rice and facilitates malate efflux from different cell types. Altering OsALMT4 expression compromises growth in low-light environments. PMID:29774038

  2. Embryo-specific expression of a visual reporter gene as a selection system for citrus transformation

    PubMed Central

    Zambon, Flavia T.; Erpen, Lígia; Soriano, Leonardo; Grosser, Jude

    2018-01-01

    The embryo-specific Dc3 gene promoter driving the VvMybA1 anthocyanin regulatory gene was used to develop a visual selection system for the genetic transformation of citrus. Agrobacterium-mediated transformation of cell suspension cultures resulted in the production of purple transgenic somatic embryos that could be easily separated from the green non-transgenic embryos. The somatic embryos produced phenotypically normal plants devoid of any visual purple coloration. These results were also confirmed using protoplast transformation. There was minimal gene expression in unstressed one-year-old transgenic lines. Cold and drought stress did not have any effect on gene expression, while exogenous ABA and NaCl application resulted in a minor change in gene expression in several transgenic lines. When gas exchange was measured in intact leaves, the transgenic lines were similar to controls under the same environment. Our results provide conclusive evidence for the utilization of a plant-derived, embryo-specific visual reporter system for the genetic transformation of citrus. Such a system could aid in the development of an all-plant, consumer-friendly GM citrus tree. PMID:29293649

  3. Cloning of the transgenic pigs expressing human decay accelerating factor and N-acetylglucosaminyltransferase III.

    PubMed

    Fujimura, Tatsuya; Kurome, Mayuko; Murakami, Hiroshi; Takahagi, Yoichi; Matsunami, Katsuyoshi; Shimanuki, Shinichi; Suzuki, Kohei; Miyagawa, Shuji; Shirakura, Ryota; Shigehisa, Tamotsu; Nagashima, Hiroshi

    2004-01-01

    The present paper describes production of cloned pigs from fibroblast cells of transgenic pigs expressing human decay accelerating factor (DAF, CD55) and N-acetylglucosaminyltransferase III (GnT-III) that remodels sugar-chain biosynthesis. Two nuclear transfer protocols were used: a two-step activation (TA) method and a delayed activation (DA) method. Enucleated in vitro-matured oocytes and donor cells were electrically fused in a calcium-containing medium by TA method or in a calcium-free medium by DA method, followed by electrical activation 1-1.5 h later, respectively. In vitro blastocyst formation rates of nuclear transferred embryos reconstructed by TA and DA method were 8% and 14%, respectively. As a result of embryo transfer of the reconstructed embryos made by each method into recipient pigs, both gave rise to cloned piglets. These cloned pigs expressed transgene as much as their nuclear donor cells. In conclusions, (1) pig cloning can be carried out by TA or DA nuclear transfer methods, (2) expression of transgenes can be maintained to cloned pigs from the nuclear donor cells derived from transgenic animals.

  4. A heterologous hormone response element enhances expression of rat beta-casein promoter-driven chloramphenicol acetyltransferase fusion genes in the mammary gland of transgenic mice.

    PubMed

    Greenberg, N M; Reding, T V; Duffy, T; Rosen, J M

    1991-10-01

    Previous studies have demonstrated that the entire rat beta-casein (R beta C) gene and a -524/+490 R beta C fragment-chloramphenicol acetyltransferase (CAT) fusion gene are expressed preferentially in the mammary gland of transgenic mice in a developmentally regulated fashion. However, transgene expression was infrequent, less than 1% of that observed for the endogenous gene, and varied as much as 500-fold, presumably due to the site of chromosomal integration. To determine whether a heterologous hormone-responsive enhancer could be used to increase both the level and frequency of expression in the mammary gland, a fragment derived from the mouse mammary tumor virus long terminal repeat containing four hormone response elements (HREs) was inserted into the R beta C promoter at a site not known to contain transcriptional regulatory elements. Transgenic mice generated which carried HRE-enhanced R beta C-CAT fusion genes expressed CAT activity in the mammary glands of all founder lines examined at levels that were on average 13-fold greater than for lines generated with similar constructs not carrying HREs. In the highest expressing line, the level of HRE-enhanced transgene expression was found to be developmentally regulated, increasing 14-fold in the mammary gland from virgin to day 10 of lactation. In this line, expression was also observed in the thymus and spleen; however, the level of CAT activity was 4-fold lower than in the mammary gland and was not developmentally regulated. In adrenalectomized mice, the administration of dexamethasone stimulated CAT expression in the mammary gland but not in the thymus and spleen. These studies demonstrate that in the context of the R beta C promoter, the HRE functions in the mammary gland to increase both the frequency and level of transgene expression.

  5. Generation of a neurodegenerative disease mouse model using lentiviral vectors carrying an enhanced synapsin I promoter.

    PubMed

    Matsuzaki, Yasunori; Oue, Miho; Hirai, Hirokazu

    2014-02-15

    Certain inherited progressive neurodegenerative disorders, such as spinocerebellar ataxia (SCA), affect neurons in large areas of the central nervous system (CNS). The selective expression of disease-causing and therapeutic genes in susceptible regions and cell types is critical for the generation of animal models and development of gene therapies for these diseases. Previous studies have demonstrated the advantages of the short synapsin I (SynI) promoter (0.5 kb) as a neuron-specific promoter for robust transgene expression. However, the short SynI promoter has also shown some promoter activity in glia and a lack of transgene expression in significant areas of the CNS. New methods: To improve the SynI promoter, we used a SynI promoter that is twice as long (1.0 kb) as the short SynI promoter and incorporated a minimal CMV (minCMV) sequence. We observed that the 1.0 kb rat SynI promoter with minCMV [rSynI(1.0)-minCMV] exhibited robust promoter strength, excellent neuronal specificity and wide-ranging transgene expression throughout the CNS. Comparison with existing methods: Compared with the two previously reported short (0.5 kb) promoters, the new promoter was superior with respect to neuronal specificity and more efficiently transduced neurons. Moreover, transgenic mice expressing the mutant protein ATXN1[Q98], which causes SCA type 1 (SCA1), under the control of the rSynI(1.0)-minCMV promoter showed robust transgene expression specifically in neurons throughout the CNS and exhibited progressive ataxia. rSynI(1.0)-minCMV drives robust and neuron-specific transgene expression throughout the CNS and is therefore useful for viral vector-mediated neuron-specific gene delivery and generation of neuron-specific transgenic animals. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Transgenic expression of fungal accessory hemicellulases in Arabidopsis thaliana triggers transcriptional patterns related to biotic stress and defense response

    DOE PAGES

    Tsai, Alex Yi-Lin; Chan, Kin; Ho, Chi-Yip; ...

    2017-03-02

    The plant cell wall is an abundant and renewable resource for lignocellulosic applications such as the production of biofuel. Due to structural and compositional complexities, the plant cell wall is, however, recalcitrant to hydrolysis and extraction of platform sugars. A cell wall engineering strategy to reduce this recalcitrance makes use of microbial cell wall modifying enzymes that are expressed directly in plants themselves. Previously, we constructed transgenic Arabidopsis thaliana constitutively expressing the fungal hemicellulases: Phanerochaete carnosa glucurnoyl esterase (PcGCE) and Aspergillus nidulans α-arabinofuranosidase (AnAF54). While the PcGCE lines demonstrated improved xylan extractability, they also displayed chlorotic leaves leading to themore » hypothesis that expression of such enzymes in planta resulted in plant stress. The objective of this study is to investigate the impact of transgenic expression of the aforementioned microbial hemicellulases in planta on the host arabidopsis. More specifically, we investigated transcriptome profiles by short read high throughput sequencing (RNAseq) from developmentally distinct parts of the plant stem. When compared to non-transformed wild-type plants, a subset of genes was identified that showed differential transcript abundance in all transgenic lines and tissues investigated. Intriguingly, this core set of genes was significantly enriched for those involved in plant defense and biotic stress responses. While stress and defense-related genes showed increased transcript abundance in the transgenic plants regardless of tissue or genotype, genes involved in photosynthesis (light harvesting) were decreased in their transcript abundance potentially reflecting wide-spread effects of heterologous microbial transgene expression and the maintenance of plant homeostasis. Additionally, an increase in transcript abundance for genes involved in salicylic acid signaling further substantiates our finding that transgenic expression of microbial cell wall modifying enzymes induces transcriptome responses similar to those observed in defense responses.« less

  7. Transgenic expression of fungal accessory hemicellulases in Arabidopsis thaliana triggers transcriptional patterns related to biotic stress and defense response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Alex Yi-Lin; Chan, Kin; Ho, Chi-Yip

    The plant cell wall is an abundant and renewable resource for lignocellulosic applications such as the production of biofuel. Due to structural and compositional complexities, the plant cell wall is, however, recalcitrant to hydrolysis and extraction of platform sugars. A cell wall engineering strategy to reduce this recalcitrance makes use of microbial cell wall modifying enzymes that are expressed directly in plants themselves. Previously, we constructed transgenic Arabidopsis thaliana constitutively expressing the fungal hemicellulases: Phanerochaete carnosa glucurnoyl esterase (PcGCE) and Aspergillus nidulans α-arabinofuranosidase (AnAF54). While the PcGCE lines demonstrated improved xylan extractability, they also displayed chlorotic leaves leading to themore » hypothesis that expression of such enzymes in planta resulted in plant stress. The objective of this study is to investigate the impact of transgenic expression of the aforementioned microbial hemicellulases in planta on the host arabidopsis. More specifically, we investigated transcriptome profiles by short read high throughput sequencing (RNAseq) from developmentally distinct parts of the plant stem. When compared to non-transformed wild-type plants, a subset of genes was identified that showed differential transcript abundance in all transgenic lines and tissues investigated. Intriguingly, this core set of genes was significantly enriched for those involved in plant defense and biotic stress responses. While stress and defense-related genes showed increased transcript abundance in the transgenic plants regardless of tissue or genotype, genes involved in photosynthesis (light harvesting) were decreased in their transcript abundance potentially reflecting wide-spread effects of heterologous microbial transgene expression and the maintenance of plant homeostasis. Additionally, an increase in transcript abundance for genes involved in salicylic acid signaling further substantiates our finding that transgenic expression of microbial cell wall modifying enzymes induces transcriptome responses similar to those observed in defense responses.« less

  8. Wheat TaPUB1 modulates plant drought stress resistance by improving antioxidant capability.

    PubMed

    Zhang, Guangqiang; Zhang, Meng; Zhao, Zhongxian; Ren, Yuanqing; Li, Qinxue; Wang, Wei

    2017-08-08

    E3 ligases play significant roles in plant stress tolerance by targeting specific substrate proteins for post-translational modification. In a previous study, we cloned TaPUB1 from Triticum aestivum L., which encodes a U-box E3 ligase. Real-time polymerase chain reaction revealed that the gene was up-regulated under drought stress. To investigate the function of TaPUB1 in the response of plants to drought, we generated transgenic Nicotiana benthamiana (N. benthamiana) plants constitutively expressing TaPUB1 under the CaMV35S promoter. Compared to wild type (WT), the transgenic plants had higher germination and seedling survival rates as well as higher photosynthetic rate and water retention, suggesting that the overexpression of TaPUB1 enhanced the drought tolerance of the TaPUB1 overexpressing (OE) plants. Moreover, less accumulation of reactive oxygen species (ROS) and stronger antioxidant capacity were detected in the OE plants than in the WT plants. To characterize the mechanisms involved, methyl viologen (MV) was used to induce oxidative stress conditions and we identified the functions of this gene in the plant tolerance to oxidative stress. Our results suggest that TaPUB1 positively modulates plant drought stress resistance potential by improving their antioxidant capacity.

  9. Secretion of a recombinant protein without a signal peptide by the exocrine glands of transgenic rabbits

    PubMed Central

    Iski, Gergely; Lipták, Nándor; Gócza, Elen; Kues, Wilfried A.; Bősze, Zsuzsanna

    2017-01-01

    Transgenic rabbits carrying mammary gland specific gene constructs are extensively used for excreting recombinant proteins into the milk. Here, we report refined phenotyping of previously generated Venus transposon-carrying transgenic rabbits with particular emphasis on the secretion of the reporter protein by exocrine glands, such as mammary, salivary, tear and seminal glands. The Sleeping Beauty (SB) transposon transgenic construct contains the Venus fluorophore cDNA, but without a signal peptide for the secretory pathway, driven by the ubiquitous CAGGS (CAG) promoter. Despite the absence of a signal peptide, the fluorophore protein was readily detected in milk, tear, saliva and seminal fluids. The expression pattern was verified by Western blot analysis. Mammary gland epithelial cells of SB-CAG-Venus transgenic lactating does also showed Venus-specific expression by tissue histology and fluorescence microscopy. In summary, the SB-CAG-Venus transgenic rabbits secrete the recombinant protein by different glands. This finding has relevance not only for the understanding of the biological function of exocrine glands, but also for the design of constructs for expression of recombinant proteins in dairy animals. PMID:29077768

  10. A 5′ Noncoding Exon Containing Engineered Intron Enhances Transgene Expression from Recombinant AAV Vectors in vivo

    PubMed Central

    Lu, Jiamiao; Williams, James A.; Luke, Jeremy; Zhang, Feijie; Chu, Kirk; Kay, Mark A.

    2017-01-01

    We previously developed a mini-intronic plasmid (MIP) expression system in which the essential bacterial elements for plasmid replication and selection are placed within an engineered intron contained within a universal 5′ UTR noncoding exon. Like minicircle DNA plasmids (devoid of bacterial backbone sequences), MIP plasmids overcome transcriptional silencing of the transgene. However, in addition MIP plasmids increase transgene expression by 2 and often >10 times higher than minicircle vectors in vivo and in vitro. Based on these findings, we examined the effects of the MIP intronic sequences in a recombinant adeno-associated virus (AAV) vector system. Recombinant AAV vectors containing an intron with a bacterial replication origin and bacterial selectable marker increased transgene expression by 40 to 100 times in vivo when compared with conventional AAV vectors. Therefore, inclusion of this noncoding exon/intron sequence upstream of the coding region can substantially enhance AAV-mediated gene expression in vivo. PMID:27903072

  11. Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit.

    PubMed

    Ruf, S; Hermann, M; Berger, I J; Carrer, H; Bock, R

    2001-09-01

    Transgenic chloroplasts offer unique advantages in plant biotechnology, including high-level foreign protein expression, absence of epigenetic effects, and gene containment due to the lack of transgene transmission through pollen. However, broad application of plastid genome engineering in biotechnology has been largely hampered by both the lack of chloroplast transformation systems for major crop plants and the usually low plastid gene expression levels in nongreen tissues such as fruits, tubers, and other storage organs. Here we describe the development of a plastid transformation system for tomato, Lycopersicon esculentum. This is the first report on the generation of fertile transplastomic plants in a food crop with an edible fruit. We show that chromoplasts in the tomato fruit express the transgene to approximately 50% of the expression levels in leaf chloroplasts. Given the generally very high foreign protein accumulation rates that can be achieved in transgenic chloroplasts (>40% of the total soluble protein), this system paves the way to efficient production of edible vaccines, pharmaceuticals, and antibodies in tomato.

  12. Expression of fungal pectin methylesterase in transgenic tobacco leads to alteration in cell wall metabolism and a dwarf phenotype.

    PubMed

    Hasunuma, Tomohisa; Fukusaki, Ei-ichiro; Kobayashi, Akio

    2004-08-05

    A transgenic tobacco plant (Nicotiana tabacum L.) expressing a fungal pectin methylesterase (PME; EC 3.1.1.11) gene derived from a black filamentous fungus, Aspergillus niger was created. Fungal PME should have a wider range of adaptability to substrate pectin compared with plant PME. As expected, the proportion of methyl esters in pectin was reduced in the transgenic tobacco. Consequently, the transgenic plant showed short internodes, small leaves and a dwarf phenotype. At a cellular level, the longitudinal lengths of stem epidermal cells were shorter than those of control plants. This is the first report that fungal PME promotes dwarfism in plants. It is worth noting that in the PME-expressing dwarf plant, the expression levels of cell wall metabolism related genes that included endo-1,4-beta-glucanase, cellulose synthase, endo-xyloglucan transferase and expansin gene were decreased. These results suggest that the expression of fungal PME in plants affects the cell wall metabolism.

  13. A transgenic Plasmodium falciparum NF54 strain that expresses GFP-luciferase throughout the parasite life cycle.

    PubMed

    Vaughan, Ashley M; Mikolajczak, Sebastian A; Camargo, Nelly; Lakshmanan, Viswanathan; Kennedy, Mark; Lindner, Scott E; Miller, Jessica L; Hume, Jen C C; Kappe, Stefan H I

    2012-12-01

    Plasmodium falciparum is the pathogenic agent of the most lethal of human malarias. Transgenic P. falciparum parasites expressing luciferase have been created to study drug interventions of both asexual and sexual blood stages but luciferase-expressing mosquito stage and liver stage parasites have not been created which has prevented the easy quantification of mosquito stage development (e.g. for transmission blocking interventions) and liver stage development (for interventions that prevent infection). To overcome this obstacle, we have created a transgenic P. falciparum NF54 parasite that expresses a GFP-luciferase transgene throughout the life cycle. Luciferase expression is robust and measurable at all life cycle stages, including midgut oocyst, salivary gland sporozoites and liver stages, where in vivo development is easily measurable using humanized mouse infections in conjunction with an in vivo imaging system. This parasite reporter strain will accelerate testing of interventions against pre-erythrocytic life cycle stages. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Transgenic soybean plants expressing Spb18S dsRNA exhibit enhanced resistance to the soybean pod borer Leguminivora glycinivorella (Lepidoptera: Olethreutidae).

    PubMed

    Wang, Zhanchun; Li, Tianyu; Ni, Hejia; Wang, Guoyue; Liu, Xinxin; Cao, Yingxue; Li, Wenbin; Meng, Fanli

    2018-06-01

    The soybean pod borer [SPB; Leguminivora glycinivorella (Mats.) Obraztsov] is a major soybean pest in northeastern Asia. A useful method for addressing this problem is the generation of transgenic plants producing double-stranded RNA (dsRNA) that target essential insect genes. In this study, we confirmed that 18S ribosomal RNA is critical for SPB development. Downregulated Spb18S expression induced by dsRNA injection increased larval mortality rates and resulted in early pupation. We also assessed whether Spb18S is silenced in SPB larvae fed on transgenic soybean expressing Spb18S dsRNA. Transgenic plants downregulated Spb18S expression levels and second-instar larval survival rates. Moreover, such plants were less damaged by SPB larvae than control plants under field conditions. © 2018 Wiley Periodicals, Inc.

  15. Creation of an In vivo cytosensor using engineered mesangial cells. Automatic sensing of glomerular inflammation controls transgene activity.

    PubMed

    Kitamura, M; Kawachi, H

    1997-09-15

    Automatic control over exogenous gene expression in response to the activity of disease is a crucial hurdle for gene transfer-based therapies. Towards achieving this goal, we created a "cytosensor" that perceives local inflammatory states and subsequently regulates foreign gene expression. alpha-Smooth muscle actin is known to be expressed in glomerular mesangial cells exclusively in pathologic situations. CArG box element, the crucial regulatory sequence of the alpha-smooth muscle actin promoter, was used as a sensor for glomerular inflammation. Rat mesangial cells were stably transfected with an expression plasmid that introduces a beta-galactosidase gene under the control of CArG box elements. In vitro, the established cells expressed beta-galactosidase exclusively after stimulation with serum. To examine whether the cells are able to automatically control transgene activity in vivo, serum-stimulated or unstimulated cells were transferred into normal rat glomeruli or glomeruli subjected to anti-Thy 1 glomerulonephritis. When stimulated cells were transferred into the normal glomeruli, beta-galactosidase expression was switched off in vivo within 3 d. In contrast, when unstimulated cells were transferred into the nephritic glomeruli, transgene expression was substantially induced. These data indicate the feasibility of using the CArG box element as a molecular sensor for glomerular injury. In the context of advanced forms of gene therapy, this approach provides a novel concept for automatic regulation of local transgene expression where the transgene is required to be activated during inflammation and deactivated when the inflammation has subsided.

  16. Memory Impairment in Transgenic Alzheimer Mice Requires Cellular Prion Protein

    PubMed Central

    Gimbel, David A.; Nygaard, Haakon B.; Coffey, Erin E.; Gunther, Erik C.; Laurén, Juha; Gimbel, Zachary A.; Strittmatter, Stephen M.

    2012-01-01

    Soluble oligomers of the amyloid-β (Aβ) peptide are thought to play a key role in the pathophysiology of Alzheimer’s disease (AD). Recently, we reported that synthetic Aβ oligomers bind to cellular prion protein (PrPC) and that this interaction is required for suppression of synaptic plasticity in hippocampal slices by oligomeric Aβ peptide. We hypothesized that PrPC is essential for the ability of brain-derived Aβ to suppress cognitive function. Here, we crossed familial AD transgenes encoding APPswe and PSen1ΔE9 into Prnp−/− mice to examine the necessity of PrPC for AD-related phenotypes. Neither APP expression nor Aβ level is altered by PrPC absence in this transgenic AD model, and astrogliosis is unchanged. However, deletion of PrPC expression rescues 5-HT axonal degeneration, loss of synaptic markers, and early death in APPswe/PSen1ΔE9 transgenic mice. The AD transgenic mice with intact PrPC expression exhibit deficits in spatial learning and memory. Mice lacking PrPC, but containing Aβ plaque derived from APPswe/PSen1ΔE9 transgenes, show no detectable impairment of spatial learning and memory. Thus, deletion of PrPC expression dissociates Aβ accumulation from behavioral impairment in these AD mice, with the cognitive deficits selectively requiring PrPC. PMID:20445063

  17. Characterization of bioactive recombinant human lysozyme expressed in milk of cloned transgenic cattle.

    PubMed

    Yang, Bin; Wang, Jianwu; Tang, Bo; Liu, Yufang; Guo, Chengdong; Yang, Penghua; Yu, Tian; Li, Rong; Zhao, Jianmin; Zhang, Lei; Dai, Yunping; Li, Ning

    2011-03-16

    There is great potential for using transgenic technology to improve the quality of cow milk and to produce biopharmaceuticals within the mammary gland. Lysozyme, a bactericidal protein that protects human infants from microbial infections, is highly expressed in human milk but is found in only trace amounts in cow milk. We have produced 17 healthy cloned cattle expressing recombinant human lysozyme using somatic cell nuclear transfer. In this study, we just focus on four transgenic cattle which were natural lactation. The expression level of the recombinant lysozyme was up to 25.96 mg/L, as measured by radioimmunoassay. Purified recombinant human lysozyme showed the same physicochemical properties, such as molecular mass and bacterial lysis, as its natural counterpart. Moreover, both recombinant and natural lysozyme had similar conditions for reactivity as well as for pH and temperature stability during in vitro simulations. The gross composition of transgenic and non-transgenic milk, including levels of lactose, total protein, total fat, and total solids were not found significant differences. Thus, our study not only describes transgenic cattle whose milk offers the similar nutritional benefits as human milk but also reports techniques that could be further refined for production of active human lysozyme on a large scale.

  18. Increased gene dosage for β- and κ-casein in transgenic cattle improves milk composition through complex effects

    PubMed Central

    Laible, Götz; Smolenski, Grant; Wheeler, Thomas; Brophy, Brigid

    2016-01-01

    We have previously generated transgenic cattle with additional copies of bovine β- and κ casein genes. An initial characterisation of milk produced with a hormonally induced lactation from these transgenic cows showed an altered milk composition with elevated β-casein levels and twofold increased κ-casein content. Here we report the first in-depth characterisation of the composition of the enriched casein milk that was produced through a natural lactation. We have analyzed milk from the high expressing transgenic line TG3 for milk composition at early, peak, mid and late lactation. The introduction of additional β- and κ-casein genes resulted in the expected expression of the transgene derived proteins and an associated reduction in the size of the casein micelles. Expression of the transgenes was associated with complex changes in the expression levels of other milk proteins. Two other major milk components were affected, namely fat and micronutrients. In addition, the sialic acid content of the milk was increased. In contrast, the level of lactose remained unchanged. This novel milk with its substantially altered composition will provide insights into the regulatory processes synchronizing the synthesis and assembly of milk components, as well as production of potentially healthier milk with improved dairy processing characteristics. PMID:27876865

  19. Characterization of Bioactive Recombinant Human Lysozyme Expressed in Milk of Cloned Transgenic Cattle

    PubMed Central

    Yang, Bin; Wang, Jianwu; Tang, Bo; Liu, Yufang; Guo, Chengdong; Yang, Penghua; Yu, Tian; Li, Rong; Zhao, Jianmin; Zhang, Lei; Dai, Yunping; Li, Ning

    2011-01-01

    Background There is great potential for using transgenic technology to improve the quality of cow milk and to produce biopharmaceuticals within the mammary gland. Lysozyme, a bactericidal protein that protects human infants from microbial infections, is highly expressed in human milk but is found in only trace amounts in cow milk. Methodology/Principal Findings We have produced 17 healthy cloned cattle expressing recombinant human lysozyme using somatic cell nuclear transfer. In this study, we just focus on four transgenic cattle which were natural lactation. The expression level of the recombinant lysozyme was up to 25.96 mg/L, as measured by radioimmunoassay. Purified recombinant human lysozyme showed the same physicochemical properties, such as molecular mass and bacterial lysis, as its natural counterpart. Moreover, both recombinant and natural lysozyme had similar conditions for reactivity as well as for pH and temperature stability during in vitro simulations. The gross composition of transgenic and non-transgenic milk, including levels of lactose, total protein, total fat, and total solids were not found significant differences. Conclusions/Significance Thus, our study not only describes transgenic cattle whose milk offers the similar nutritional benefits as human milk but also reports techniques that could be further refined for production of active human lysozyme on a large scale. PMID:21436886

  20. Development of an efficient Agrobacterium-mediated transformation system and production of herbicide-resistant transgenic plants in garlic (Allium sativum L.).

    PubMed

    Ahn, Yul-Kyun; Yoon, Moo-Kyoung; Jeon, Jong-Seong

    2013-08-01

    The genetic improvement of garlic plants (Allium sativum L.) with agronomical beneficial traits is rarely achieved due to the lack of an applicable transformation system. Here, we developed an efficient Agrobacterium-mediated transformation procedure with Danyang, an elite Korean garlic cultivar. Examination of sGFP (synthetic green fluorescence protein) expression revealed that treatment with 2-(N-morpholino) ethanesulfonic acid (MES), L-cysteine and/or dithiothreitol (DTT) gives the highest efficiency in transient gene transfer during Agrobacterium co-cultivation with calli derived from the roots of in vitro plantlets. To increase stable transformation efficiency, a two-step selection was employed on the basis of hygromycin resistance and sGFP expression. Of the hygromycin-resistant calli initially produced, only sGFP-expressing calli were subcultured for selection of transgenic calli. Transgenic plantlets produced from these calli were grown to maturity. The transformation efficiency increased up to 10.6% via our optimized procedure. DNA and RNA gel-blot analysis indicated that transgenic garlic plants stably integrated and expressed the phosphinothricin acetyltransferase (PAT) gene. A herbicide spraying assay demonstrated that transgenic plants of garlic conferred herbicide resistance, whilst nontransgenic plants and weeds died. These results indicate that our transformation system can be efficiently utilized to produce transgenic garlic plants with agronomic benefits.

  1. Protective effects of positive lysosomal modulation in Alzheimer's disease transgenic mouse models.

    PubMed

    Butler, David; Hwang, Jeannie; Estick, Candice; Nishiyama, Akiko; Kumar, Saranya Santhosh; Baveghems, Clive; Young-Oxendine, Hollie B; Wisniewski, Meagan L; Charalambides, Ana; Bahr, Ben A

    2011-01-01

    Alzheimer's disease (AD) is an age-related neurodegenerative pathology in which defects in proteolytic clearance of amyloid β peptide (Aβ) likely contribute to the progressive nature of the disorder. Lysosomal proteases of the cathepsin family exhibit up-regulation in response to accumulating proteins including Aβ(1-42). Here, the lysosomal modulator Z-Phe-Ala-diazomethylketone (PADK) was used to test whether proteolytic activity can be enhanced to reduce the accumulation events in AD mouse models expressing different levels of Aβ pathology. Systemic PADK injections in APP(SwInd) and APPswe/PS1ΔE9 mice caused 3- to 8-fold increases in cathepsin B protein levels and 3- to 10-fold increases in the enzyme's activity in lysosomal fractions, while neprilysin and insulin-degrading enzyme remained unchanged. Biochemical analyses indicated the modulation predominantly targeted the active mature forms of cathepsin B and markedly changed Rab proteins but not LAMP1, suggesting the involvement of enhanced trafficking. The modulated lysosomal system led to reductions in both Aβ immunostaining as well as Aβ(x-42) sandwich ELISA measures in APP(SwInd) mice of 10-11 months. More extensive Aβ deposition in 20-22-month APPswe/PS1ΔE9 mice was also reduced by PADK. Selective ELISAs found that a corresponding production of the less pathogenic Aβ(1-38) occurs as Aβ(1-42) levels decrease in the mouse models, indicating that PADK treatment leads to Aβ truncation. Associated with Aβ clearance was the elimination of behavioral and synaptic protein deficits evident in the two transgenic models. These findings indicate that pharmacologically-controlled lysosomal modulation reduces Aβ(1-42) accumulation, possibly through intracellular truncation that also influences extracellular deposition, and in turn offsets the defects in synaptic composition and cognitive functions. The selective modulation promotes clearance at different levels of Aβ pathology and provides proof-of-principle for small molecule therapeutic development for AD and possibly other protein accumulation disorders.

  2. Pyramiding of transgenic Pm3 alleles in wheat results in improved powdery mildew resistance in the field.

    PubMed

    Koller, Teresa; Brunner, Susanne; Herren, Gerhard; Hurni, Severine; Keller, Beat

    2018-04-01

    The combined effects of enhanced total transgene expression level and allele-specificity combination in transgenic allele-pyramided Pm3 wheat lines result in improved powdery mildew field resistance without negative pleiotropic effects. Allelic Pm3 resistance genes of wheat confer race-specific resistance to powdery mildew (Blumeria graminis f. sp. tritici, Bgt) and encode nucleotide-binding domain, leucine-rich repeat (NLR) receptors. Transgenic wheat lines overexpressing alleles Pm3a, b, c, d, f, and g have previously been generated by transformation of cultivar Bobwhite and tested in field trials, revealing varying degrees of powdery mildew resistance conferred by the transgenes. Here, we tested four transgenic lines each carrying two pyramided Pm3 alleles, which were generated by crossbreeding of lines transformed with single Pm3 alleles. All four allele-pyramided lines showed strongly improved powdery mildew resistance in the field compared to their parental lines. The improved resistance results from the two effects of enhanced total transgene expression levels and allele-specificity combinations. In contrast to leaf segment tests on greenhouse-grown seedlings, no allelic suppression was observed in the field. Plant development and yield scores of the pyramided lines were similar to the mean scores of the corresponding parental lines, and thus, the allele pyramiding did not cause any negative effects. On the contrary, in pyramided line, Pm3b × Pm3f normal plant development was restored compared to the delayed development and reduced seed set of parental line Pm3f. Allele-specific RT qPCR revealed additive transgene expression levels of the two Pm3 alleles in the pyramided lines. A positive correlation between total transgene expression level and powdery mildew field resistance was observed. In summary, allele pyramiding of Pm3 transgenes proved to be successful in enhancing powdery mildew field resistance.

  3. Laboratory evaluation of transgenic Populus davidiana×Populus bolleana expressing Cry1Ac + SCK, Cry1Ah3, and Cry9Aa3 genes against gypsy moth and fall webworm.

    PubMed

    Ding, Liping; Chen, Yajuan; Wei, Xiaoli; Ni, Mi; Zhang, Jiewei; Wang, Hongzhi; Zhu, Zhen; Wei, Jianhua

    2017-01-01

    Transgenic poplar lines 'Shanxin' (Populus davidiana×Populus bolleana) were generated via Agrobacterium-mediated transformation. The transgenic lines carried the expression cassettes of Cry1Ac + SCK, Cry1Ah3, and Cry9Aa3, respectively. The expression levels of the exogenous insect resistance genes in the transgenic lines were determined by Q-PCR and Western blot. Leaves of the transgenic lines were used for insect feeding bioassays on first instar larvae of the gypsy moth (Lymantria dispar) and fall webworm (Hyphantria cunea). At 5 d of feeding, the mean mortalities of larvae feeding on Cry1Ac + SCK and Cry1Ah3 transgenic poplars leaves were 97% and 91%, while mortality on Cry9Aa3 transgenic lines was about 49%. All gypsy moth and fall webworm larvae were killed in 7-9 days after feeding on leaves from Cry1Ac + SCK or Cry1Ah3 transgenic poplars, while all the fall webworm larvae were killed in 11 days and about 80% of gypsy moth larvae were dead in 14 days after feeding on those from Cry9Aa3 transgenic lines. It was concluded that the transgenic lines of Cry1Ac + SCK and Cry1Ah3 were highly toxic to larvae of both insect species while lines with Cry9Aa3 had lower toxicity,and H. cunea larvae are more sensitive to the insecticidal proteins compared to L. dispar. Transgenic poplar lines toxic to L. dispar and H. cunea could be used to provide Lepidoptera pest resistance to selected strains of poplar trees.

  4. Bidirectional Modulation of Intrinsic Excitability in Rat Prelimbic Cortex Neuronal Ensembles and Non-Ensembles after Operant Learning.

    PubMed

    Whitaker, Leslie R; Warren, Brandon L; Venniro, Marco; Harte, Tyler C; McPherson, Kylie B; Beidel, Jennifer; Bossert, Jennifer M; Shaham, Yavin; Bonci, Antonello; Hope, Bruce T

    2017-09-06

    Learned associations between environmental stimuli and rewards drive goal-directed learning and motivated behavior. These memories are thought to be encoded by alterations within specific patterns of sparsely distributed neurons called neuronal ensembles that are activated selectively by reward-predictive stimuli. Here, we use the Fos promoter to identify strongly activated neuronal ensembles in rat prelimbic cortex (PLC) and assess altered intrinsic excitability after 10 d of operant food self-administration training (1 h/d). First, we used the Daun02 inactivation procedure in male FosLacZ-transgenic rats to ablate selectively Fos-expressing PLC neurons that were active during operant food self-administration. Selective ablation of these neurons decreased food seeking. We then used male FosGFP-transgenic rats to assess selective alterations of intrinsic excitability in Fos-expressing neuronal ensembles (FosGFP + ) that were activated during food self-administration and compared these with alterations in less activated non-ensemble neurons (FosGFP - ). Using whole-cell recordings of layer V pyramidal neurons in an ex vivo brain slice preparation, we found that operant self-administration increased excitability of FosGFP + neurons and decreased excitability of FosGFP - neurons. Increased excitability of FosGFP + neurons was driven by increased steady-state input resistance. Decreased excitability of FosGFP - neurons was driven by increased contribution of small-conductance calcium-activated potassium (SK) channels. Injections of the specific SK channel antagonist apamin into PLC increased Fos expression but had no effect on food seeking. Overall, operant learning increased intrinsic excitability of PLC Fos-expressing neuronal ensembles that play a role in food seeking but decreased intrinsic excitability of Fos - non-ensembles. SIGNIFICANCE STATEMENT Prefrontal cortex activity plays a critical role in operant learning, but the underlying cellular mechanisms are unknown. Using the chemogenetic Daun02 inactivation procedure, we found that a small number of strongly activated Fos-expressing neuronal ensembles in rat PLC play an important role in learned operant food seeking. Using GFP expression to identify Fos-expressing layer V pyramidal neurons in prelimbic cortex (PLC) of FosGFP-transgenic rats, we found that operant food self-administration led to increased intrinsic excitability in the behaviorally relevant Fos-expressing neuronal ensembles, but decreased intrinsic excitability in Fos - neurons using distinct cellular mechanisms. Copyright © 2017 the authors 0270-6474/17/378845-12$15.00/0.

  5. Transgenic cattle produced by nuclear transfer of fetal fibroblasts carrying Ipr1 gene at a specific locus.

    PubMed

    Wang, Yong Sheng; He, Xiaoning; Du, Yue; Su, Jianmin; Gao, Mingqing; Ma, Yefei; Hua, Song; Quan, Fusheng; Liu, Jun; Zhang, Yong

    2015-09-01

    This study aimed to assess the effects of the intracellular pathogen resistance 1 (Ipr1) transgene on preventing infection of Mycobacterium bovis in cattle. A specific expression vector for the Ipr1 gene was constructed and inserted in the genome between surfactant protein A and methionine adenosyltransferase I of bovine fetal fibroblasts. After SCNT, cleavage (86.9% vs. 87.4%, P > 0.05) and blastocyst developmental rates (34.6% vs. 33.5%, P > 0.05) were similar between transgenic and nontransgenic bovine fetal fibroblasts. Four surviving and one dead Ipr1-transgenic female cattle were produced by transfer of the SCNT blastocysts. Polymerase chain reaction and Southern blot analyses confirmed that the Ipr1 transgene of the cattle was located at the expected site. Inserting Ipr1 gene did not affect the expression of the surrounding genes. Main death modality of M bovis-infected peripheral blood mononuclear cells (PBMCs) derived from Ipr1-transgenic cattle was apoptosis, whereas that of PBMCs from control cattle was necrosis. In addition, the number of colony-forming units in PBMCs of Ipr1-transgenic cattle was significantly lower than that of the control cattle (P < 0.05). The finding that expression of Ipr1 transgene in PBMCs significantly increased anti-M bovis activity suggested breeding anti-M bovis cattle population by the transgenic SCNT technique could be a feasible strategy. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Genetically engineered flavonol enriched tomato fruit modulates chondrogenesis to increase bone length in growing animals.

    PubMed

    Choudhary, Dharmendra; Pandey, Ashutosh; Adhikary, Sulekha; Ahmad, Naseer; Bhatia, Chitra; Bhambhani, Sweta; Trivedi, Prabodh Kumar; Trivedi, Ritu

    2016-02-26

    Externally visible body and longitudinal bone growth is a result of proliferation of chondrocytes. In growth disorder, there is delay in the age associated increase in height. The present study evaluates the effect of extract from transgenic tomato fruit expressing AtMYB12 transcription factor on bone health including longitudinal growth. Constitutive expression of AtMYB12 in tomato led to a significantly enhanced biosynthesis of flavonoids in general and the flavonol biosynthesis in particular. Pre-pubertal ovary intact BALB/c mice received daily oral administration of vehicle and ethanolic extract of wild type (WT-TOM) and transgenic AtMYB12-tomato (MYB12-TOM) fruits for six weeks. Animal fed with MYB12-TOM showed no inflammation in hepatic tissues and normal sinusoidal Kupffer cell morphology. MYB12-TOM extract significantly increased tibial and femoral growth and subsequently improved the bone length as compared to vehicle and WT-TOM. Histomorphometry exhibited significantly wider distal femoral and proximal tibial growth plate, increased number and size of hypertrophic chondrocytes in MYB12-TOM which corroborated with micro-CT and expression of BMP-2 and COL-10, marker genes for hypertrophic cells. We conclude that metabolic reprogramming of tomato by AtMYB12 has the potential to improve longitudinal bone growth thus helping in achievement of greater peak bone mass during adolescence.

  7. Csf1r-mApple Transgene Expression and Ligand Binding In Vivo Reveal Dynamics of CSF1R Expression within the Mononuclear Phagocyte System.

    PubMed

    Hawley, Catherine A; Rojo, Rocio; Raper, Anna; Sauter, Kristin A; Lisowski, Zofia M; Grabert, Kathleen; Bain, Calum C; Davis, Gemma M; Louwe, Pieter A; Ostrowski, Michael C; Hume, David A; Pridans, Clare; Jenkins, Stephen J

    2018-03-15

    CSF1 is the primary growth factor controlling macrophage numbers, but whether expression of the CSF1 receptor differs between discrete populations of mononuclear phagocytes remains unclear. We have generated a Csf1r -mApple transgenic fluorescent reporter mouse that, in combination with lineage tracing, Alexa Fluor 647-labeled CSF1-Fc and CSF1, and a modified Δ Csf1- enhanced cyan fluorescent protein (ECFP) transgene that lacks a 150 bp segment of the distal promoter, we have used to dissect the differentiation and CSF1 responsiveness of mononuclear phagocyte populations in situ. Consistent with previous Csf1r- driven reporter lines, Csf1r -mApple was expressed in blood monocytes and at higher levels in tissue macrophages, and was readily detectable in whole mounts or with multiphoton microscopy. In the liver and peritoneal cavity, uptake of labeled CSF1 largely reflected transgene expression, with greater receptor activity in mature macrophages than monocytes and tissue-specific expression in conventional dendritic cells. However, CSF1 uptake also differed between subsets of monocytes and discrete populations of tissue macrophages, which in macrophages correlated with their level of dependence on CSF1 receptor signaling for survival rather than degree of transgene expression. A double Δ Csf1r -ECFP- Csf1r -mApple transgenic mouse distinguished subpopulations of microglia in the brain, and permitted imaging of interstitial macrophages distinct from alveolar macrophages, and pulmonary monocytes and conventional dendritic cells. The Csf1r- mApple mice and fluorescently labeled CSF1 will be valuable resources for the study of macrophage and CSF1 biology, which are compatible with existing EGFP-based reporter lines. Copyright © 2018 The Authors.

  8. Transient development of ovotestes in XX Sox9 transgenic mice

    PubMed Central

    Gregoire, Elodie P.; Lavery, Rowena; Chassot, Anne-Amandine; Akiyama, Haruhiko; Treier, Mathias; Behringer, Richard R.; Chaboissier, Marie-Christine

    2010-01-01

    The sex of an individual results from the paternal transmission of the SRY gene located on the Y chromosome. In turn, SRY initiates Sox9 expression, a transcription factor required for testicular differentiation. Ectopic activation of SOX9 in XX Wt1:Sox9 transgenic mice, induces female-to-male sex reversal in adult mice. Here we show that complete sex reversal is preceded by a transient phase of ovotestis differentiation with XX Wt1:Sox9 transgenic gonads containing a testicular central region and one or both ovarian poles indicating that Wt1:Sox9 is not as efficient as Sry to induce male development. In XX Wt1:Sox9Tg/+ gonads, transgenic Sox9 is expressed earlier than Sox9 in XY gonads, and is able to induce the expression of EGFP, knocked into the 3′ UTR of Sox9 indicating that SOX9 is involved in the initiation and maintenance of its own expression. However, the delayed onset of expression of endogenous Sox9-EGFP suggests that this activation requires other factors, whose expression depends on SOX9. In the testicular regions of the XX Wt1:Sox9 ovotestes, proliferation of the XX foetal germ cells is hampered and they differentiate as pro-spermatogonia. This indicates that XX germ cells are not competent to respond to proliferative signals released from a testicular environment. In the ovarian regions, despite the continuous mRNA expression of the WT1:Sox9 transgene, the SOX9 protein does not accumulate suggesting that regulation of this gene in ovarian cells involves post-transcriptional mechanisms. Finally, ovarian cells of the XX Wt1:Sox9 ovotestis undergo apoptosis during late embryogenesis leading to complete female-to-male sex reversal of the transgenic mice at birth. PMID:20965161

  9. Regulation of COL1A1 expression in type I collagen producing tissues: identification of a 49 base pair region which is required for transgene expression in bone of transgenic mice

    NASA Technical Reports Server (NTRS)

    Bedalov, A.; Salvatori, R.; Dodig, M.; Kronenberg, M. S.; Kapural, B.; Bogdanovic, Z.; Kream, B. E.; Woody, C. O.; Clark, S. H.; Mack, K.; hide

    1995-01-01

    Previous deletion studies using a series of COL1A1-CAT fusion genes have indicated that the 625 bp region of the COL1A1 upstream promoter between -2295 and -1670 bp is required for high levels of expression in bone, tendon, and skin of transgenic mice. To further define the important sequences within this region, a new series of deletion constructs extending to -1997, -1794, -1763, and -1719 bp has been analyzed in transgenic mice. Transgene activity, determined by measuring CAT activity in tissue extracts of 6- to 8-day-old transgenic mouse calvariae, remains high for all the new deletion constructs and drops to undetectable levels in calvariae containing the -1670 bp construct. These results indicate that the 49 bp region of the COL1A1 promoter between -1719 and -1670 bp is required for high COL1A1 expression in bone. Although deletion of the same region caused a substantial reduction of promoter activity in tail tendon, the construct extending to -1670 bp is still expressed in this tissue. However, further deletion of the promoter to -944 bp abolished activity in tendon. Gel mobility shift studies identified a protein in calvarial nuclear extracts that is not found in tendon nuclear extracts, which binds within this 49 bp region. Our study has delineated sequences in the COL1A1 promoter required for expression of the COL1A1 gene in high type I collagen-producing tissues, and suggests that different cis elements control expression of the COL1A1 gene in bone and tendon.

  10. Safeguarding Stem Cell-Based Regenerative Therapy against Iatrogenic Cancerogenesis: Transgenic Expression of DNASE1, DNASE1L3, DNASE2, DFFB Controlled By POLA1 Promoter in Proliferating and Directed Differentiation Resisting Human Autologous Pluripotent Induced Stem Cells Leads to their Death

    PubMed Central

    Malecki, Marek; LaVanne, Christine; Alhambra, Dominique; Dodivenaka, Chaitanya; Nagel, Sarah; Malecki, Raf

    2014-01-01

    Introduction The worst possible complication of using stem cells for regenerative therapy is iatrogenic cancerogenesis. The ultimate goal of our work is to develop a self-triggering feedback mechanism aimed at causing death of all stem cells, which resist directed differentiation, keep proliferating, and can grow into tumors. Specific aim The specific aim was threefold: (1) to genetically engineer the DNA constructs for the human, recombinant DNASE1, DNASE1L3, DNASE2, DFFB controlled by POLA promoter; (2) to bioengineer anti-SSEA-4 antibody guided vectors delivering transgenes to human undifferentiated and proliferating pluripotent stem cells; (3) to cause death of proliferating and directed differentiation resisting stem cells by transgenic expression of the human recombinant the DNases (hrDNases). Methods The DNA constructs for the human, recombinant DNASE1, DNASE1L3, DNASE2, DFFB controlled by POLA promoter were genetically engineered. The vectors targeting specifically SSEA-4 expressing stem cells were bioengineered. The healthy volunteers’ bone marrow mononuclear cells (BMMCs) were induced into human, autologous, pluripotent stem cells with non-integrating plasmids. Directed differentiation of the induced stem cells into endothelial cells was accomplished with EGF and BMP. The anti-SSEA 4 antibodies’ guided DNA vectors delivered the transgenes for the human recombinant DNases’ into proliferating stem cells. Results Differentiation of the pluripotent induced stem cells into the endothelial cells was verified by highlighting formation of tight and adherens junctions through transgenic expression of recombinant fluorescent fusion proteins: VE cadherin, claudin, zona occludens 1, and catenin. Proliferation of the stem cells was determined through highlighting transgenic expression of recombinant fluorescent proteins controlled by POLA promoter, while also reporting expression of the transgenes for the hrDNases. Expression of the transgenes for the DNases resulted in complete collapse of the chromatin architecture and degradation of the proliferating cells’ genomic DNA. The proliferating stem cells, but not the differentiating ones, were effectively induced to die. Conclusion Herein, we describe attaining the proof-of-concept for the strategy, whereby transgenic expression of the genetically engineered human recombinant DNases in proliferating and directed differentiation resisting stem cells leads to their death. This novel strategy reduces the risk of iatrogenic neoplasms in stem cell therapy. PMID:25045589

  11. Persistent hyperplastic primary vitreous in transgenic mice expressing IE180 of the pseudorabies virus.

    PubMed

    Taharaguchi, Satoshi; Yoshida, Kazuhiko; Tomioka, Yukiko; Yoshino, Saori; Uede, Toshimitsu; Ono, Etsuro

    2005-05-01

    Pseudorabies virus (PRV), a representative member of the alpha-herpesvirus family, causes nervous symptoms and ocular lesions, such as keratoconjunctivitis and retinal degeneration in piglets. The immediate-early protein IE180 of the PRV is known to be essential, not only in viral gene expression, but also in the cellular gene expression in host cells. The purpose of this study was to examine the effect of IE180 on the development of the mouse eye, by using transgenic technology. Transgenic mice expressing IE180 were generated and their eyes analyzed by histology, immunocytochemistry, and the bromodeoxyuridine cell proliferation assay. A fibrovascular retrolental tissue analogous to persistent hyperplastic primary vitreous (PHPV) in humans was observed in a transgenic mouse line expressing IE180. The gross anatomy of the eye showed white pupils. Analysis of hematoxylin and eosin-stained sections revealed that the retrolental tissue adhered to the neuroretina, the inner nuclear and ganglion cell layers were disorganized, and rosettelike arrangements of dysplastic photoreceptor cells were present. Bromodeoxyuridine-positive cells were detected in the retrolental tissues of postnatal day (P)1, P7, and P14 mice. The retrolental mass in the P7 transgenic mouse was composed of melanocytes and endothelial cells, which were detected by a cocktail of antibodies against endoglin, CD31, and VEGF receptor-2. The observation that the eye disease in transgenic mice is similar to that in PHPV in humans raises the possibility that expression of the immediate-early gene of alpha-herpesviruses may contribute to PHPV.

  12. Generation of Transgenic Mouse Fluorescent Reporter Lines for Studying Hematopoietic Development

    PubMed Central

    Vacaru, Andrei M.; Vitale, Joseph; Nieves, Johnathan; Baron, Margaret H.

    2015-01-01

    During the development of the hematopoietic system, at least 8 distinct lineages are generated in the mouse embryo. Transgenic mice expressing fluorescent proteins at various points in the hematopoietic hierarchy, from hematopoietic stem cell to multipotent progenitors to each of the final differentiated cell types, have provided valuable tools for tagging, tracking, and isolating these cells. In this chapter, we discuss general considerations in designing a transgene, survey available fluorescent probes, and methods for confirming and analyzing transgene expression in the hematopoietic systems of the embryo, fetus, and postnatal/adult animal. PMID:25064110

  13. Effects of transgenic expression of Brevibacterium linens methionine gamma lyase (MGL) on accumulation of Tylenchulus semipenetrans and key aminoacid contents in Carrizo citrange.

    PubMed

    Castillo, Elenor; Martinelli, Federico; Zakharov-Negre, Florence; Ebeler, Susan E; Buzo, Tom R; McKenry, Michael V; Dandekar, Abhaya M

    2017-11-01

    Carrizo transgenic plants overexpressing methionine-gamma-lyase produced dimethyl sulfide. The transgenic plants displayed more resistance to nematode attacks (Tylenculus semipenetrans) and may represent an innovative strategy for nematode control. Tylenchulus semipenetrans is a nematode pest of many citrus varieties that causes extensive damage to commercial crops worldwide. Carrizo citrange vr. (Citrus sinensis L. Usb × Poncirus trifoliate L. Raf) plants overexpressing Brevibacterium linens methionine-gamma-lyase (BlMGL) produced the sulfur volatile compound dimethyl sulfide (DMS). The aim of this work was to determine if transgenic citrus plants expressing BlMGL showed increased tolerance to T. semipenetrans infestation and to determine the effect on the content of key amino acids. While transgenic lines emitted dimethyl sulfide from leaves and roots, no sulfur-containing volatiles were detectable in wild-type Carrizo in the same tissues. Significant changes detected some key amino acids from leaves of transgenic plants such as aspartate, lysine, glycine, leucine and threonine with no changes in the amounts of methionine and α-ketobutyrate. In roots only glycine showed significant changes across all transgenic lines in comparison to wild-type plants. Transgenic plants expressing BlMGL and emitting DMS had less T. semipenetrans aggregation and more biomass than infected WT control plants, indicating that they may represent an innovative management alternative to pesticide/nematicide-based remedies.

  14. Generation of marker-free Bt transgenic indica rice and evaluation of its yellow stem borer resistance.

    PubMed

    Kumar, S; Arul, L; Talwar, D

    2010-01-01

    We report on generation of marker-free (‘clean DNA’) transgenic rice (Oryza sativa), carrying minimal gene-expression-cassettes of the genes of interest, and evaluation of its resistance to yellow stem borer Scirpophaga incertulas (Lepidoptera: Pyralidae). The transgenic indica rice harbours a translational fusion of 2 different Bacillus thuringiensis (Bt) genes, namely cry1B-1Aa, driven by the green-tissue-specific phosphoenol pyruvate carboxylase (PEPC) promoter. Mature seed-derived calli of an elite indica rice cultivar Pusa Basmati-1 were co-bombarded with gene-expression-cassettes (clean DNA fragments) of the Bt gene and the marker hpt gene, to generate marker-free transgenic rice plants. The clean DNA fragments for bombardment were obtained by restriction digestion and gel extraction. Through biolistic transformation, 67 independent transformants were generated. Transformation frequency reached 3.3%, and 81% of the transgenic plants were co-transformants. Stable integration of the Bt gene was confirmed, and the insert copy number was determined by Southern analysis. Western analysis and ELISA revealed a high level of Bt protein expression in transgenic plants. Progeny analysis confirmed stable inheritance of the Bt gene according to the Mendelian (3:1) ratio. Insect bioassays revealed complete protection of transgenic plants from yellow stem borer infestation. PCR analysis of T2 progeny plants resulted in the recovery of up to 4% marker-free transgenic rice plants.

  15. Engineering high Zn in tomato shoots through expression of AtHMA4 involves tissue-specific modification of endogenous genes.

    PubMed

    Kendziorek, Maria; Klimecka, Maria; Barabasz, Anna; Borg, Sören; Rudzka, Justyna; Szczęsny, Paweł; Antosiewicz, Danuta Maria

    2016-08-12

    To increase the Zn level in shoots, AtHMA4 was ectopically expressed in tomato under the constitutive CaMV 35S promoter. However, the Zn concentration in the shoots of transgenic plants failed to increase at all tested Zn levels in the medium. Modification of Zn root/shoot distribution in tomato expressing 35S::AtHMA4 depended on the concentration of Zn in the medium, thus indicating involvement of unknown endogenous metal-homeostasis mechanisms. To determine these mechanisms, those metal-homeostasis genes that were expressed differently in transgenic and wild-type plants were identified by microarray and RT-qPCR analysis using laser-assisted microdissected RNA isolated from two root sectors: (epidermis + cortex and stele), and leaf sectors (upper epidermis + palisade parenchyma and lower epidermis + spongy parenchyma). Zn-supply-dependent modification of Zn root/shoot distribution in AtHMA4-tomato (increase at 5 μM Zn, no change at 0.5 μM Zn) involved tissue-specific, distinct from that in the wild type, expression of tomato endogenous genes. First, it is suggested that an ethylene-dependent pathway underlies the detected changes in Zn root/shoot partitioning, as it was induced in transgenic plants in a distinct way depending on Zn exposure. Upon exposure to 5 or 0.5 μM Zn, in the epidermis + cortex of the transgenics' roots the expression of the Strategy I Fe-uptake system (ethylene-dependent LeIRT1 and LeFER) was respectively lower or higher than in the wild type and was accompanied by respectively lower or higher expression of the identified ethylene genes (LeNR, LeACO4, LeACO5) and of LeChln. Second, the contribution of LeNRAMP2 expression in the stele is shown to be distinct for wild-type and transgenic plants at both Zn exposures. Ethylene was also suggested as an important factor in a pathway induced in the leaves of transgenic plants by high Zn in the apoplast, which results in the initiation of loading of the excess Zn into the mesophyll of "Zn accumulating cells". In transgenic tomato plants, the export activity of ectopically expressed AtHMA4 changes the cellular Zn status, which induces coordinated tissue-specific responses of endogenous ethylene-related genes and metal transporters. These changes constitute an important mechanism involved in the generation of the metal-related phenotype of transgenic tomato expressing AtHMA4.

  16. Expression of nitrous oxide reductase from Pseudomonas stutzeri in transgenic tobacco roots using the root-specific rolD promoter from Agrobacterium rhizogenes

    PubMed Central

    Wan, Shen; Johnson, Amanda M; Altosaar, Illimar

    2012-01-01

    The nitrous oxide (N2O) reduction pathway from a soil bacterium, Pseudomonas stutzeri, was engineered in plants to reduce N2O emissions. As a proof of principle, transgenic plants expressing nitrous oxide reductase (N2OR) from P. stutzeri, encoded by the nosZ gene, and other transgenic plants expressing N2OR along with the more complete operon from P. stutzeri, encoded by nosFLZDY, were generated. Gene constructs were engineered under the control of a root-specific promoter and with a secretion signal peptide. Expression and rhizosecretion of the transgene protein were achieved, and N2OR from transgenic Nicotiana tabacum proved functional using the methyl viologen assay. Transgenic plant line 1.10 showed the highest specific activity of 16.7 µmol N2O reduced min−1 g−1 root protein. Another event, plant line 1.9, also demonstrated high specific activity of N2OR, 13.2 µmol N2O reduced min−1 g−1 root protein. The availability now of these transgenic seed stocks may enable canopy studies in field test plots to monitor whole rhizosphere N flux. By incorporating one bacterial gene into genetically modified organism (GMO) crops (e.g., cotton, corn, and soybean) in this way, it may be possible to reduce the atmospheric concentration of N2O that has continued to increase linearly (about 0.26% year−1) over the past half-century. PMID:22423324

  17. Neurodegeneration caused by expression of human truncated tau leads to progressive neurobehavioural impairment in transgenic rats.

    PubMed

    Hrnkova, Miroslava; Zilka, Norbert; Minichova, Zuzana; Koson, Peter; Novak, Michal

    2007-01-26

    Human truncated tau protein is an active constituent of the neurofibrillary degeneration in sporadic Alzheimer's disease. We have shown that modified tau protein, when expressed as a transgene in rats, induced AD characteristic tau cascade consisting of tau hyperphosphorylation, formation of argyrophilic tangles and sarcosyl-insoluble tau complexes. These pathological changes led to the functional impairment characterized by a variety of neurobehavioural symptoms. In the present study we have focused on the behavioural alterations induced by transgenic expression of human truncated tau. Transgenic rats underwent a battery of behavioural tests involving cognitive- and sensorimotor-dependent tasks accompanied with neurological assessment at the age of 4.5, 6 and 9 months. Behavioural examination of these rats showed altered spatial navigation in Morris water maze resulting in less time spent in target quadrant (p<0.05) and fewer crossings over previous platform position (p<0.05) during probe trial. Spontaneous locomotor activity and anxiety in open field was not influenced by transgene expression. However beam walking test revealed that transgenic rats developed progressive sensorimotor disturbances related to the age of tested animals. The disturbances were most pronounced at the age of 9 months (p<0.01). Neurological alterations indicating impaired reflex responses were other added features of behavioural phenotype of this novel transgenic rat. These results allow us to suggest that neurodegeneration, caused by the non-mutated human truncated tau derived from sporadic human AD, result in the neuronal dysfunction consequently leading to the progressive neurobehavioural impairment.

  18. Alu sequence involvement in transcriptional insulation of the keratin 18 gene in transgenic mice.

    PubMed Central

    Thorey, I S; Ceceña, G; Reynolds, W; Oshima, R G

    1993-01-01

    The human keratin 18 (K18) gene is expressed in a variety of adult simple epithelial tissues, including liver, intestine, lung, and kidney, but is not normally found in skin, muscle, heart, spleen, or most of the brain. Transgenic animals derived from the cloned K18 gene express the transgene in appropriate tissues at levels directly proportional to the copy number and independently of the sites of integration. We have investigated in transgenic mice the dependence of K18 gene expression on the distal 5' and 3' flanking sequences and upon the RNA polymerase III promoter of an Alu repetitive DNA transcription unit immediately upstream of the K18 promoter. Integration site-independent expression of tandemly duplicated K18 transgenes requires the presence of either an 825-bp fragment of the 5' flanking sequence or the 3.5-kb 3' flanking sequence. Mutation of the RNA polymerase III promoter of the Alu element within the 825-bp fragment abolishes copy number-dependent expression in kidney but does not abolish integration site-independent expression when assayed in the absence of the 3' flanking sequence of the K18 gene. The characteristics of integration site-independent expression and copy number-dependent expression are separable. In addition, the formation of the chromatin state of the K18 gene, which likely restricts the tissue-specific expression of this gene, is not dependent upon the distal flanking sequences of the 10-kb K18 gene but rather may depend on internal regulatory regions of the gene. Images PMID:7692231

  19. Identification of prostate cancer modifier pathways using parental strain expression mapping

    PubMed Central

    Xu, Qing; Majumder, Pradip K.; Ross, Kenneth; Shim, Yeonju; Golub, Todd R.; Loda, Massimo; Sellers, William R.

    2007-01-01

    Inherited genetic risk factors play an important role in cancer. However, other than the Mendelian fashion cancer susceptibility genes found in familial cancer syndromes, little is known about risk modifiers that control individual susceptibility. Here we developed a strategy, parental strain expression mapping, that utilizes the homogeneity of inbred mice and genome-wide mRNA expression analyses to directly identify candidate germ-line modifier genes and pathways underlying phenotypic differences among murine strains exposed to transgenic activation of AKT1. We identified multiple candidate modifier pathways and, specifically, the glycolysis pathway as a candidate negative modulator of AKT1-induced proliferation. In keeping with the findings in the murine models, in multiple human prostate expression data set, we found that enrichment of glycolysis pathways in normal tissues was associated with decreased rates of cancer recurrence after prostatectomy. Together, these data suggest that parental strain expression mapping can directly identify germ-line modifier pathways of relevance to human disease. PMID:17978178

  20. Cloning of B cell-specific membrane tetraspanning molecule BTS possessing B cell proliferation-inhibitory function.

    PubMed

    Suenaga, Tadahiro; Arase, Hisashi; Yamasaki, Sho; Kohno, Masayuki; Yokosuka, Tadashi; Takeuchi, Arata; Hattori, Takamichi; Saito, Takashi

    2007-11-01

    Lymphocyte proliferation is regulated by signals through antigen receptors, co-stimulatory receptors, and other positive and negative modulators. Several membrane tetraspanning molecules are also involved in the regulation of lymphocyte growth and death. We cloned a new B cell-specific tetraspanning (BTS) membrane molecule, which is similar to CD20 in terms of expression, structure and function. BTS is specifically expressed in the B cell line and its expression is increased after the pre-B cell stage. BTS is expressed in intracellular granules and on the cell surface. Overexpression of BTS in immature B cell lines induces growth retardation through inhibition of cell cycle progression and cell size increase without inducing apoptosis. This inhibitory function is mediated predominantly by the N terminus of BTS. The development of mature B cells is inhibited in transgenic mice expressing BTS, suggesting that BTS is involved in the in vivo regulation of B cells. These results indicate that BTS plays a role in the regulation of cell division and B cell growth.

  1. Physiological responses of wild type and putrescine-overproducing transgenic cells of poplar to variations in the form and concentration of nitrogen in the medium

    Treesearch

    Rakesh Minocha; Jae Soon Lee; Stephanie Long; Pratiksha Bhatnagar; Subhash C. Minocha

    2004-01-01

    We determined: (a) the physiological consequences of overproduction of putrescine in transgenic poplar (Populus nigra x mnrimoviczir) cells expressing an omithine decarboxylase transgene; and (b) effects of variation in nitrogen (N) concentration of the medium on cellular polyamine concentration in transgenic and non-transgenic cells. Cells grown in...

  2. Transgenic tomatoes expressing human beta-amyloid for use as a vaccine against Alzheimer's disease.

    PubMed

    Youm, Jung Won; Jeon, Jae Heung; Kim, Hee; Kim, Young Ho; Ko, Kisung; Joung, Hyouk; Kim, Hyunsoon

    2008-10-01

    Human beta-amyloid (Abeta) is believed to be one of the main components of Alzheimer's disease, so reduction of Abeta is considered a key therapeutic target. Using Agrobacterium-mediated nuclear transformation, we generated transgenic tomatoes for Abeta with tandem repeats. Integration of the human Abeta gene into the tomato genome and its transcription were detected by PCR and Northern blot, respectively. Expression of the Abeta protein was confirmed by western blot and ELISA, and then the transgenic tomato line expressing the highest protein level was selected for vaccination. Mice immunized orally with total soluble extracts from the transgenic tomato plants elicited an immune response after receiving a booster. The results indicate that tomato plants may provide a useful system for the production of human Abeta antigen.

  3. FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type IIa.

    PubMed

    Shimada, Takashi; Urakawa, Itaru; Yamazaki, Yuji; Hasegawa, Hisashi; Hino, Rieko; Yoneya, Takashi; Takeuchi, Yasuhiro; Fujita, Toshiro; Fukumoto, Seiji; Yamashita, Takeyoshi

    2004-02-06

    Fibroblast growth factor (FGF)-23 was identified as a causative factor of tumor-induced osteomalacia and also as a responsible gene for autosomal dominant hypophosphatemic rickets. To clarify the pathophysiological roles of FGF-23 in these diseases, we generated its transgenic mice. The transgenic mice expressing human FGF-23 reproduced the common clinical features of these diseases such as hypophosphatemia probably due to increased renal phosphate wasting, inappropriately low serum 1,25-dihydroxyvitamin D level, and rachitic bone. The renal phosphate wasting in the transgenic mice was accompanied by the reduced expression of sodium phosphate cotransporter type IIa in renal proximal tubules. These results reinforce the notion that the excessive action of FGF-23 plays a causative role in the development of several hypophosphatemic rickets/osteomalacia.

  4. Degeneration of oxidative muscle fibers in HTLV-1 tax transgenic mice.

    PubMed

    Nerenberg, M I; Wiley, C A

    1989-12-01

    The HTLV-1 tax gene under control of the HTLV-1 long terminal repeat (LTR) was introduced into transgenic mice. Previously tax protein expression in the muscle and peripheral nerves of three independent mouse lines was reported. Here the localization of this transgenic protein at a cellular and subcellular level is described. Tax protein was expressed in oxidative muscle fibers that developed severe progressive atrophy. It localized to the cytoplasma where it was associated with structures resembling degenerating Z bands. This pattern of muscle fiber involvement is similar to that observed in human retroviral associated myopathy. This transgenic mouse model suggests that preferential expression of the HTLV-1 viral promoter in oxidative muscle fibers may explain the productive infection of these fibers in HTLV-1 myopathy.

  5. Expression levels of antimicrobial peptide tachyplesin I in transgenic Ornithogalum lines affect the resistance to Pectobacterium infection.

    PubMed

    Lipsky, Alexander; Joshi, Janak Raj; Carmi, Nir; Yedidia, Iris

    2016-11-20

    The genus Ornithogalum includes several ornamental species that suffer substantial losses from bacterial soft rot caused by Pectobacteria. The absence of effective control measures for use against soft rot bacteria led to the initiation of a project in which a small antimicrobial peptide from an Asian horseshoe crab, tachyplesin (tpnI), was introduced into two commercial cultivars: O. dubium and O. thyrsoides. Disease severity and bacterial colonization were examined in transgenic lines expressing this peptide. Disease resistance was evaluated in six lines of each species by measuring bacterial proliferation in the plant tissue. Three transgenic lines of each species were subjected to further analysis in which the expression level of the transgene was evaluated using RT-PCR and qRT-PCR. The development of disease symptoms and bacterial colonization of the plant tissue were also examined using GFP-expressing strain of P. carotovorum subsp. brasiliense Pcb3. Confocal-microscopy imaging revealed significantly reduced quantities of bacterial cells in the transgenic plant lines that had been challenged with the bacterium. The results clearly demonstrate that tpnI expression reduces bacterial proliferation, colonization and disease symptom (reduced by 95-100%) in the transgenic plant tissues. The quantity of tpnI transcripts, as measured by qRT-PCR, was negatively correlated with the protection afforded to the plants, as measured by the reduced severity of disease symptoms in the tissue. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Stable expression and phenotypic impact of attacin E transgene in orchard grown apple trees over a 12 year period.

    PubMed

    Borejsza-Wysocka, Ewa; Norelli, John L; Aldwinckle, Herb S; Malnoy, Mickael

    2010-06-03

    Transgenic trees currently are being produced by Agrobacterium-mediated transformation and biolistics. The future use of transformed trees on a commercial basis depends upon thorough evaluation of the potential environmental and public health risk of the modified plants, transgene stability over a prolonged period of time and the effect of the gene on tree and fruit characteristics. We studied the stability of expression and the effect on resistance to the fire blight disease of the lytic protein gene, attacin E, in the apple cultivar 'Galaxy' grown in the field for 12 years. Using Southern and western blot analysis, we compared transgene copy number and observed stability of expression of this gene in the leaves and fruit in several transformed lines during a 12 year period. No silenced transgenic plant was detected. Also the expression of this gene resulted in an increase in resistance to fire blight throughout 12 years of orchard trial and did not affect fruit shape, size, acidity, firmness, weight or sugar level, tree morphology, leaf shape or flower morphology or color compared to the control. Overall, these results suggest that transgene expression in perennial species, such as fruit trees, remains stable in time and space, over extended periods and in different organs. This report shows that it is possible to improve a desirable trait in apple, such as the resistance to a pathogen, through genetic engineering, without adverse alteration of fruit characteristics and tree shape.

  7. Expression and purification of recombinant human serum albumin from selectively terminable transgenic rice.

    PubMed

    Zhang, Qing; Yu, Hui; Zhang, Feng-zhen; Shen, Zhi-cheng

    2013-10-01

    Human serum albumin (HSA) is widely utilized for medical purposes and biochemical research. Transgenic rice has proved to be an attractive bioreactor for mass production of recombinant HSA (rHSA). However, transgene spread is a major environmental and food safety concern for transgenic rice expressing proteins of medical value. This study aimed to develop a selectively terminable transgenic rice line expressing HSA in rice seeds, and a simple process for recovery and purification of rHSA for economical manufacture. An HSA expression cassette was inserted into a T-DNA vector encoding an RNA interference (RNAi) cassette suppressing the CYP81A6 gene. This gene detoxifies the herbicide bentazon and is linked to the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) cassette which confers glyphosate tolerance. ANX Sepharose Fast Flow (ANX FF) anion exchange chromatography coupled with Butyl Sepharose High Performance (Butyl HP) hydrophobic interaction chromatography was used to purify rHSA. A transgenic rice line, HSA-84, was obtained with stable expression of rHSA of up to 0.72% of the total dry weight of the dehusked rice seeds. This line also demonstrated high sensitivity to bentazon, and thus could be killed selectively by a spray of bentazon. A two-step chromatography purification scheme was established to purify the rHSA from rice seeds to a purity of 99% with a recovery of 62.4%. Results from mass spectrometry and N-terminus sequencing suggested that the purified rHSA was identical to natural plasma-derived HSA. This study provides an alternative strategy for large-scale production of HSA with a built-in transgene safety control mechanism.

  8. Application of Mutated miR-206 Target Sites Enables Skeletal Muscle-specific Silencing of Transgene Expression of Cardiotropic AAV9 Vectors

    PubMed Central

    Geisler, Anja; Schön, Christian; Größl, Tobias; Pinkert, Sandra; Stein, Elisabeth A; Kurreck, Jens; Vetter, Roland; Fechner, Henry

    2013-01-01

    Insertion of completely complementary microRNA (miR) target sites (miRTS) into a transgene has been shown to be a valuable approach to specifically repress transgene expression in non-targeted tissues. miR-122TS have been successfully used to silence transgene expression in the liver following systemic application of cardiotropic adeno-associated virus (AAV) 9 vectors. For miR-206–mediated skeletal muscle-specific silencing of miR-206TS–bearing AAV9 vectors, however, we found this approach failed due to the expression of another member (miR-1) of the same miR family in heart tissue, the intended target. We introduced single-nucleotide substitutions into the miR-206TS and searched for those which prevented miR-1–mediated cardiac repression. Several mutated miR-206TS (m206TS), in particular m206TS-3G, were resistant to miR-1, but remained fully sensitive to miR-206. All these variants had mismatches in the seed region of the miR/m206TS duplex in common. Furthermore, we found that some m206TS, containing mismatches within the seed region or within the 3′ portion of the miR-206, even enhanced the miR-206– mediated transgene repression. In vivo expression of m206TS-3G– and miR-122TS–containing transgene of systemically applied AAV9 vectors was strongly repressed in both skeletal muscle and the liver but remained high in the heart. Thus, site-directed mutagenesis of miRTS provides a new strategy to differentiate transgene de-targeting of related miRs. PMID:23439498

  9. Transcriptome Profiling Reveals the Negative Regulation of Multiple Plant Hormone Signaling Pathways Elicited by Overexpression of C-Repeat Binding Factors.

    PubMed

    Li, Aixin; Zhou, Mingqi; Wei, Donghui; Chen, Hu; You, Chenjiang; Lin, Juan

    2017-01-01

    C-repeat binding factors (CBF) are a subfamily of AP2 transcription factors that play critical roles in the regulation of plant cold tolerance and growth in low temperature. In the present work, we sought to perform a detailed investigation into global transcriptional regulation of plant hormone signaling associated genes in transgenic plants engineered with CBF genes. RNA samples from Arabidopsis thaliana plants overexpressing two CBF genes, CBF2 and CBF3 , were subjected to Illumina HiSeq 2000 RNA sequencing (RNA-Seq). Our results showed that more than half of the hormone associated genes that were differentially expressed in CBF2 or CBF3 transgenic plants were related to auxin signal transduction and metabolism. Most of these alterations in gene expression could lead to repression of auxin signaling. Accordingly, the IAA content was significantly decreased in young tissues of plants overexpressing CBF2 and CBF3 compared with wild type. In addition, genes associated with the biosynthesis of Jasmonate (JA) and Salicylic acid (SA), as well as the signal sensing of Brassinolide (BR) and SA, were down-regulated, while genes associated with Gibberellin (GA) deactivation were up-regulated. In general, overexpression of CBF2 and CBF3 negatively affects multiple plant hormone signaling pathways in Arabidopsis . The transcriptome analysis using CBF2 and CBF3 transgenic plants provides novel and integrated insights into the interaction between CBFs and plant hormones, particularly the modulation of auxin signaling, which may contribute to the improvement of crop yields under abiotic stress via molecular engineering using CBF genes.

  10. Transcriptome Profiling Reveals the Negative Regulation of Multiple Plant Hormone Signaling Pathways Elicited by Overexpression of C-Repeat Binding Factors

    PubMed Central

    Li, Aixin; Zhou, Mingqi; Wei, Donghui; Chen, Hu; You, Chenjiang; Lin, Juan

    2017-01-01

    C-repeat binding factors (CBF) are a subfamily of AP2 transcription factors that play critical roles in the regulation of plant cold tolerance and growth in low temperature. In the present work, we sought to perform a detailed investigation into global transcriptional regulation of plant hormone signaling associated genes in transgenic plants engineered with CBF genes. RNA samples from Arabidopsis thaliana plants overexpressing two CBF genes, CBF2 and CBF3, were subjected to Illumina HiSeq 2000 RNA sequencing (RNA-Seq). Our results showed that more than half of the hormone associated genes that were differentially expressed in CBF2 or CBF3 transgenic plants were related to auxin signal transduction and metabolism. Most of these alterations in gene expression could lead to repression of auxin signaling. Accordingly, the IAA content was significantly decreased in young tissues of plants overexpressing CBF2 and CBF3 compared with wild type. In addition, genes associated with the biosynthesis of Jasmonate (JA) and Salicylic acid (SA), as well as the signal sensing of Brassinolide (BR) and SA, were down-regulated, while genes associated with Gibberellin (GA) deactivation were up-regulated. In general, overexpression of CBF2 and CBF3 negatively affects multiple plant hormone signaling pathways in Arabidopsis. The transcriptome analysis using CBF2 and CBF3 transgenic plants provides novel and integrated insights into the interaction between CBFs and plant hormones, particularly the modulation of auxin signaling, which may contribute to the improvement of crop yields under abiotic stress via molecular engineering using CBF genes. PMID:28983312

  11. Ectopically expressing MdPIP1;3, an aquaporin gene, increased fruit size and enhanced drought tolerance of transgenic tomatoes.

    PubMed

    Wang, Lin; Li, Qing-Tian; Lei, Qiong; Feng, Chao; Zheng, Xiaodong; Zhou, Fangfang; Li, Lingzi; Liu, Xuan; Wang, Zhi; Kong, Jin

    2017-12-19

    Water deficit severely reduces apple growth and production, is detrimental to fruit quality and size. This problem is exacerbated as global warming is implicated in producing more severe drought stress. Thus water-efficiency has becomes the major target for apple breeding. A desired apple tree can absorb and transport water efficiently, which not only confers improved drought tolerance, but also guarantees fruit size for higher income returns. Aquaporins, as water channels, control water transportation across membranes and can regulate water flow by changing their amount and activity. The exploration of molecular mechanism of water efficiency and the gene wealth will pave a way for molecular breeding of drought tolerant apple tree. In the current study, we screened out a drought inducible aquaporin gene MdPIP1;3, which specifically enhanced its expression during fruit expansion in 'Fuji' apple (Malus domestica Borkh. cv. Red Fuji). It localized on plasma membranes and belonged to PIP1 subfamily. The tolerance to drought stress enhanced in transgenic tomato plants ectopically expressing MdPIP1;3, showing that the rate of losing water in isolated transgenic leaves was slower than wild type, and stomata of transgenic plants closed sensitively to respond to drought compared with wild type. Besides, length and diameter of transgenic tomato fruits increased faster than wild type, and in final, fruit sizes and fresh weights of transgenic tomatoes were bigger than wild type. Specially, in cell levels, fruit cell size from transgenic tomatoes was larger than wild type, showing that cell number per mm 2 in transgenic fruits was less than wild type. Altogether, ectopically expressing MdPIP1;3 enhanced drought tolerance of transgenic tomatoes partially via reduced water loss controlled by stomata closure in leaves. In addition, the transgenic tomato fruits are larger and heavier with larger cells via more efficient water transportation across membranes. Our research will contribute to apple production, by engineering apples with big fruits via efficient water transportation when well watered and enhanced drought tolerance in transgenic apples under water deficit.

  12. Overexpression of wheat lipid transfer protein gene TaLTP5 increases resistances to Cochliobolus sativus and Fusarium graminearum in transgenic wheat.

    PubMed

    Zhu, Xiuliang; Li, Zhao; Xu, Huijun; Zhou, Miaoping; Du, Lipu; Zhang, Zengyan

    2012-08-01

    The fungus Cochliobolus sativus is the main pathogen of common root rot, a serious soil-borne disease of wheat (Triticum aestivum L.). The fungus Fusarium graminearum is the primary pathogen of Fusarium head blight, a devastating disease of wheat worldwide. In this study, the wheat lipid transfer protein gene, TaLTP5, was cloned and evaluated for its ability to suppress disease development in transgenic wheat. TaLTP5 expression was induced after C. sativus infection. The TaLTP5 expression vector, pA25-TaLTP5, was constructed and bombarded into Chinese wheat variety Yangmai 18. Six TaLTP5 transgenic wheat lines were established and characterized. PCR and Southern blot analyses indicated that the introduced TaLTP5 gene was integrated into the genomes of six transgenic wheat lines by distinct patterns, and heritable. RT-PCR and real-time quantitative RT-PCR revealed that the TaLTP5 gene was over-expressed in the transgenic wheat lines compared to segregants lacking the transgene and wild-type wheat plants. Following challenge with C. sativus or F. graminearum, all six transgenic lines overexpressing TaLTP5 exhibited significantly enhanced resistance to both common root rot and Fusarium head blight compared to the untransformed wheat Yangmai 18.

  13. A novel 5-enolpyruvoylshikimate-3-phosphate (EPSP) synthase transgene for glyphosate resistance stimulates growth and fecundity in weedy rice (Oryza sativa) without herbicide

    PubMed Central

    Wang, Wei; Xia, Hui; Yang, Xiao; Xu, Ting; Si, Hong Jiang; Cai, Xing Xing; Wang, Feng; Su, Jun; Snow, Allison A; Lu, Bao-Rong

    2014-01-01

    Understanding evolutionary interactions among crops and weeds can facilitate effective weed management. For example, gene flow from crops to their wild or weedy relatives can lead to rapid evolution in recipient populations. In rice (Oryza sativa), transgenic herbicide resistance is expected to spread to conspecific weedy rice (Oryza sativa f. spontanea) via hybridization. Here, we studied fitness effects of transgenic over-expression of a native 5-enolpyruvoylshikimate-3-phosphate synthase (epsps) gene developed to confer glyphosate resistance in rice. Controlling for genetic background, we examined physiological traits and field performance of crop–weed hybrid lineages that segregated for the presence or absence of this novel epsps transgene. Surprisingly, we found that transgenic F2 crop–weed hybrids produced 48–125% more seeds per plant than nontransgenic controls in monoculture- and mixed-planting designs without glyphosate application. Transgenic plants also had greater EPSPS protein levels, tryptophan concentrations, photosynthetic rates, and per cent seed germination compared with nontransgenic controls. Our findings suggest that over-expression of a native rice epsps gene can lead to fitness advantages, even without exposure to glyphosate. We hypothesize that over-expressed epsps may be useful to breeders and, if deployed, could result in fitness benefits in weedy relatives following transgene introgression. PMID:23905647

  14. A novel transgenic chimaeric mouse system for the rapid functional evaluation of genes encoding secreted proteins

    PubMed Central

    Kakitani, Makoto; Oshima, Takeshi; Horikoshi, Kaori; Yoshitome, Tetsuo; Ueda, Akiko; Kajikawa, Miwa; Iba, Yumi; Ozone, Yoshinao; Ijima, Yuki; Yoshino, Tohko; Itoh, Mikiko; Seki, Sachiko; Aoki, Ayako; Ishihara, Toshie; Shionoya, Michiyo; Makino, Utako; Kitada, Rina; Ohguma, Atsuko; Ohta, Takami; Yoshida, Yoshimasa; Kudoh, Hiroe; Hanaoka, Kazunori; Sibuya, Kazunori; Ishida, Isao; Kakeda, Minoru; Yagi, Mikio; Yoneya, Takashi; Tomizuka, Kazuma

    2005-01-01

    A major challenge of the post-genomic era is the functional characterization of anonymous open reading frames (ORFs) identified by the Human Genome Project. In this context, there is a strong requirement for the development of technologies that enhance our ability to analyze gene functions at the level of the whole organism. Here, we describe a rapid and efficient procedure to generate transgenic chimaeric mice that continuously secrete a foreign protein into the systemic circulation. The transgene units were inserted into the genomic site adjacent to the endogenous immunoglobulin (Ig) κ locus by homologous recombination, using a modified mouse embryonic stem (ES) cell line that exhibits a high frequency of homologous recombination at the Igκ region. The resultant ES clones were injected into embryos derived from a B-cell-deficient host strain, thus producing chimaerism-independent, B-cell-specific transgene expression. This feature of the system eliminates the time-consuming breeding typically implemented in standard transgenic strategies and allows for evaluating the effect of ectopic transgene expression directly in the resulting chimaeric mice. To demonstrate the utility of this system we showed high-level protein expression in the sera and severe phenotypes in human EPO (hEPO) and murine thrombopoietin (mTPO) transgenic chimaeras. PMID:15914664

  15. Development and bioassay of transgenic Chinese cabbage expressing potato proteinase inhibitor II gene

    PubMed Central

    Zhang, Junjie; Liu, Fan; Yao, Lei; Luo, Chen; Yin, Yue; Wang, Guixiang; Huang, Yubi

    2012-01-01

    Lepidopteran larvae are the most injurious pests of Chinese cabbage production. We attempted the development of transgenic Chinese cabbage expressing the potato proteinase inhibitor II gene (pinII) and bioassayed the pest-repelling ability of these transgenic plants. Cotyledons with petioles from aseptic seedlings were used as explants for Agrobacterium-mediated in vitro transformation. Agrobacterium tumefaciens C58 contained the binary vector pBBBasta-pinII-bar comprising pinII and bar genes. Plants showing vigorous PPT resistance were obtained by a series concentration selection for PPT resistance and subsequent regeneration of leaf explants dissected from the putative chimera. Transgenic plants were confirmed by PCR and genomic Southern blotting, which showed that the bar and pinII genes were integrated into the plant genome. Double haploid homozygous transgenic plants were obtained by microspore culture. The pinII expression was detected using quantitative real time polymerase chain reaction (qRT-PCR) and detection of PINII protein content in the transgenic homozygous lines. Insect-feeding trials using the larvae of cabbage worm (Pieris rapae) and the larvae of the diamondback moth (Plutella xylostella) showed higher larval mortality, stunted larval development, and lower pupal weights, pupation rates, and eclosion rates in most of the transgenic lines in comparison with the corresponding values in the non-transformed wild-type line. PMID:23136521

  16. A Modular Plasmid Assembly Kit for Multigene Expression, Gene Silencing and Silencing Rescue in Plants

    PubMed Central

    Binder, Andreas; Lambert, Jayne; Morbitzer, Robert; Popp, Claudia; Ott, Thomas; Lahaye, Thomas; Parniske, Martin

    2014-01-01

    The Golden Gate (GG) modular assembly approach offers a standardized, inexpensive and reliable way to ligate multiple DNA fragments in a pre-defined order in a single-tube reaction. We developed a GG based toolkit for the flexible construction of binary plasmids for transgene expression in plants. Starting from a common set of modules, such as promoters, protein tags and transcribed regions of interest, synthetic genes are assembled, which can be further combined to multigene constructs. As an example, we created T-DNA constructs encoding multiple fluorescent proteins targeted to distinct cellular compartments (nucleus, cytosol, plastids) and demonstrated simultaneous expression of all genes in Nicotiana benthamiana, Lotus japonicus and Arabidopsis thaliana. We assembled an RNA interference (RNAi) module for the construction of intron-spliced hairpin RNA constructs and demonstrated silencing of GFP in N. benthamiana. By combination of the silencing construct together with a codon adapted rescue construct into one vector, our system facilitates genetic complementation and thus confirmation of the causative gene responsible for a given RNAi phenotype. As proof of principle, we silenced a destabilized GFP gene (dGFP) and restored GFP fluorescence by expression of a recoded version of dGFP, which was not targeted by the silencing construct. PMID:24551083

  17. Recombinant avian adeno-associated virus: transgene expression in vivo and enhancement of expression in vitro.

    PubMed

    Estevez, Carlos; Villegas, Pedro

    2006-06-01

    Recombinant avian adeno-associated viruses coding for the LacZ gene were used to inoculate embryonating chicken eggs, to assess the usefulness of the system for the expression of a transgene in vivo. The results obtained indicate significantly higher levels of expression of the reporter gene at various time intervals in the embryos inoculated with the recombinant virus in comparison with the mock-inoculated controls. At the embryo level, significant differences were evident at 120 hr postinoculation; hatched chicks showed transgene expression up to 14 days of age. In a second experiment, different cell-line cultures were transfected with plasmids encoding for a reporter gene flanked by the avian adeno-associated virus inverted terminal repeats (ITR), either alone or in the presence of the major nonstructural proteins of the virus (Rep 78/68) to assess the ability of these proteins and DNA elements to enhance gene expression. Results indicate that the inclusion of the viral ITR alone or during coexpression of the Rep proteins significantly enhances the expression of the transgene in all cell lines tested, as evidenced by the detection of the beta-galacrosidase protein through chemiluminescence reactions and staining of transfected monolayers.

  18. Increase methylmercury accumulation in Arabidopsis thaliana expressing bacterial broad-spectrum mercury transporter MerE

    PubMed Central

    2013-01-01

    The bacterial merE gene derived from the Tn21 mer operon encodes a broad-spectrum mercury transporter that governs the transport of methylmercury and mercuric ions across bacterial cytoplasmic membranes, and this gene is a potential molecular tool for improving the efficiency of methylmercury phytoremediation. A transgenic Arabidopsis engineered to express MerE was constructed and the impact of expression of MerE on methylmercury accumulation was evaluated. The subcellular localization of transiently expressed GFP-tagged MerE was examined in Arabidopsis suspension-cultured cells. The GFP-MerE was found to localize to the plasma membrane and cytosol. The transgenic Arabidopsis expressing MerE accumulated significantly more methymercury and mercuric ions into plants than the wild-type Arabidopsis did. The transgenic plants expressing MerE was significantly more resistant to mercuric ions, but only showed more resistant to methylmercury compared with the wild type Arabidopsis. These results demonstrated that expression of the bacterial mercury transporter MerE promoted the transport and accumulation of methylmercury in transgenic Arabidopsis, which may be a useful method for improving plants to facilitate the phytoremediation of methylmercury pollution. PMID:24004544

  19. A novel positive transcriptional feedback loop in midbrain-hindbrain boundary development is revealed through analysis of the zebrafish pax2.1 promoter in transgenic lines.

    PubMed

    Picker, Alexander; Scholpp, Steffen; Böhli, Heike; Takeda, Hiroyuki; Brand, Michael

    2002-07-01

    The pax2.1 gene encodes a paired-box transcription factor that is one of the earliest genes to be specifically activated in development of the midbrain and midbrain-hindbrain boundary (MHB), and is required for the development and organizer activity of this territory. To understand how this spatially restricted transcriptional activity of pax2.1 is achieved, we have isolated and characterized the pax2.1-promoter using a lacZ and a GFP reporter gene in transient injection assays and transgenic lines. Stable transgenic expression of this reporter gene shows that a 5.3-kb fragment of the 5' region contains most, but not all, elements required for driving pax2.1 expression. The expressing tissues include the MHB, hindbrain, spinal cord, ear and pronephros. Transgene activation in the pronephros and developing ear suggests that these pax2.1-expressing tissues are composed of independently regulated subdomains. In addition, ectopic but spatially restricted activation of the reporter genes in rhombomeres 3 and 5 and in the forebrain, which do not normally express endogenous pax2.1, demonstrates the importance of negative regulation of pax2.1. Comparison of transgene expression in wild-type and homozygous pax2.1 mutant no isthmus (noi) embryos reveals that the transgene contains control element(s) for a novel, positive transcriptional feedback loop in MHB development. Transcription of endogenous pax2.1 at the MHB is known to be initially Pax2.1 independent, during activation in late gastrulation. In contrast, transgene expression requires the endogenous Pax2.1 function. Transplantations, mRNA injections and morpholino knock-down experiments show that this feedback regulation of pax2.1 transcription occurs cell-autonomously, and that it requires eng2 and eng3 as known targets for Pax2.1 regulation. We suggest that this novel feedback loop may allow continuation of pax2.1 expression, and hence development of the MHB organizer, to become independent of the patterning machinery of the gastrula embryo.

  20. Development of Transgenic Minipigs with Expression of Antimorphic Human Cryptochrome 1

    PubMed Central

    Liu, Chunxin; Bolund, Lars; Vajta, Gábor; Dou, Hongwei; Yang, Wenxian; Xu, Ying; Luan, Jing; Wang, Jun; Yang, Huanming; Staunstrup, Nicklas Heine; Du, Yutao

    2013-01-01

    Minipigs have become important biomedical models for human ailments due to similarities in organ anatomy, physiology, and circadian rhythms relative to humans. The homeostasis of circadian rhythms in both central and peripheral tissues is pivotal for numerous biological processes. Hence, biological rhythm disorders may contribute to the onset of cancers and metabolic disorders including obesity and type II diabetes, amongst others. A tight regulation of circadian clock effectors ensures a rhythmic expression profile of output genes which, depending on cell type, constitute about 3–20% of the transcribed mammalian genome. Central to this system is the negative regulator protein Cryptochrome 1 (CRY1) of which the dysfunction or absence has been linked to the pathogenesis of rhythm disorders. In this study, we generated transgenic Bama-minipigs featuring expression of the Cys414-Ala antimorphic human Cryptochrome 1 mutant (hCRY1AP). Using transgenic donor fibroblasts as nuclear donors, the method of handmade cloning (HMC) was used to produce reconstructed embryos, subsequently transferred to surrogate sows. A total of 23 viable piglets were delivered. All were transgenic and seemingly healthy. However, two pigs with high transgene expression succumbed during the first two months. Molecular analyzes in epidermal fibroblasts demonstrated disturbances to the expression profile of core circadian clock genes and elevated expression of the proinflammatory cytokines IL-6 and TNF-α, known to be risk factors in cancer and metabolic disorders. PMID:24146819

Top