DOE Office of Scientific and Technical Information (OSTI.GOV)
Pursley, Jennifer, E-mail: jpursley@mgh.harvard.edu; Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA; Damato, Antonio L.
The purpose of this study was to investigate class solutions using RapidArc volumetric-modulated arc therapy (VMAT) planning for ipsilateral and bilateral head and neck (H&N) irradiation, and to compare dosimetric results with intensity-modulated radiotherapy (IMRT) plans. A total of 14 patients who received ipsilateral and 10 patients who received bilateral head and neck irradiation were retrospectively replanned with several volumetric-modulated arc therapy techniques. For ipsilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the contralateral parotid, two 260° or 270° arcs, and two 210° arcs. For bilateral neck irradiation, themore » volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the shoulders, and 3 arcs. All patients had a sliding-window-delivery intensity-modulated radiotherapy plan that was used as the benchmark for dosimetric comparison. For ipsilateral neck irradiation, a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid was dosimetrically comparable to intensity-modulated radiotherapy, with improved conformity (conformity index = 1.22 vs 1.36, p < 0.04) and lower contralateral parotid mean dose (5.6 vs 6.8 Gy, p < 0.03). For bilateral neck irradiation, 3-arc volumetric-modulated arc therapy techniques were dosimetrically comparable to intensity-modulated radiotherapy while also avoiding irradiation through the shoulders. All volumetric-modulated arc therapy techniques required fewer monitor units than sliding-window intensity-modulated radiotherapy to deliver treatment, with an average reduction of 35% for ipsilateral plans and 67% for bilateral plans. Thus, for ipsilateral head and neck irradiation a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid is recommended. For bilateral neck irradiation, 2- or 3-arc techniques are dosimetrically comparable to intensity-modulated radiotherapy, but more work is needed to determine the optimal approaches by disease site.« less
Pursley, Jennifer; Damato, Antonio L; Czerminska, Maria A; Margalit, Danielle N; Sher, David J; Tishler, Roy B
2017-01-01
The purpose of this study was to investigate class solutions using RapidArc volumetric-modulated arc therapy (VMAT) planning for ipsilateral and bilateral head and neck (H&N) irradiation, and to compare dosimetric results with intensity-modulated radiotherapy (IMRT) plans. A total of 14 patients who received ipsilateral and 10 patients who received bilateral head and neck irradiation were retrospectively replanned with several volumetric-modulated arc therapy techniques. For ipsilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the contralateral parotid, two 260° or 270° arcs, and two 210° arcs. For bilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the shoulders, and 3 arcs. All patients had a sliding-window-delivery intensity-modulated radiotherapy plan that was used as the benchmark for dosimetric comparison. For ipsilateral neck irradiation, a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid was dosimetrically comparable to intensity-modulated radiotherapy, with improved conformity (conformity index = 1.22 vs 1.36, p < 0.04) and lower contralateral parotid mean dose (5.6 vs 6.8Gy, p < 0.03). For bilateral neck irradiation, 3-arc volumetric-modulated arc therapy techniques were dosimetrically comparable to intensity-modulated radiotherapy while also avoiding irradiation through the shoulders. All volumetric-modulated arc therapy techniques required fewer monitor units than sliding-window intensity-modulated radiotherapy to deliver treatment, with an average reduction of 35% for ipsilateral plans and 67% for bilateral plans. Thus, for ipsilateral head and neck irradiation a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid is recommended. For bilateral neck irradiation, 2- or 3-arc techniques are dosimetrically comparable to intensity-modulated radiotherapy, but more work is needed to determine the optimal approaches by disease site. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
CT reconstruction from portal images acquired during volumetric-modulated arc therapy
NASA Astrophysics Data System (ADS)
Poludniowski, G.; Thomas, M. D. R.; Evans, P. M.; Webb, S.
2010-10-01
Volumetric-modulated arc therapy (VMAT), a form of intensity-modulated arc therapy (IMAT), has become a topic of research and clinical activity in recent years. As a form of arc therapy, portal images acquired during the treatment fraction form a (partial) Radon transform of the patient. We show that these portal images, when used in a modified global cone-beam filtered backprojection (FBP) algorithm, allow a surprisingly recognizable CT-volume to be reconstructed. The possibility of distinguishing anatomy in such VMAT-CT reconstructions suggests that this could prove to be a valuable treatment position-verification tool. Further, some potential for local-tomography techniques to improve image quality is shown.
Matuszak, Martha M; Steers, Jennifer M; Long, Troy; McShan, Daniel L; Fraass, Benedick A; Romeijn, H Edwin; Ten Haken, Randall K
2013-07-01
To introduce a hybrid volumetric modulated arc therapy/intensity modulated radiation therapy (VMAT/IMRT) optimization strategy called FusionArc that combines the delivery efficiency of single-arc VMAT with the potentially desirable intensity modulation possible with IMRT. A beamlet-based inverse planning system was enhanced to combine the advantages of VMAT and IMRT into one comprehensive technique. In the hybrid strategy, baseline single-arc VMAT plans are optimized and then the current cost function gradients with respect to the beamlets are used to define a metric for predicting which beam angles would benefit from further intensity modulation. Beams with the highest metric values (called the gradient factor) are converted from VMAT apertures to IMRT fluence, and the optimization proceeds with the mixed variable set until convergence or until additional beams are selected for conversion. One phantom and two clinical cases were used to validate the gradient factor and characterize the FusionArc strategy. Comparisons were made between standard IMRT, single-arc VMAT, and FusionArc plans with one to five IMRT∕hybrid beams. The gradient factor was found to be highly predictive of the VMAT angles that would benefit plan quality the most from beam modulation. Over the three cases studied, a FusionArc plan with three converted beams achieved superior dosimetric quality with reductions in final cost ranging from 26.4% to 48.1% compared to single-arc VMAT. Additionally, the three beam FusionArc plans required 22.4%-43.7% fewer MU∕Gy than a seven beam IMRT plan. While the FusionArc plans with five converted beams offer larger reductions in final cost--32.9%-55.2% compared to single-arc VMAT--the decrease in MU∕Gy compared to IMRT was noticeably smaller at 12.2%-18.5%, when compared to IMRT. A hybrid VMAT∕IMRT strategy was implemented to find a high quality compromise between gantry-angle and intensity-based degrees of freedom. This optimization method will allow patients to be simultaneously planned for dosimetric quality and delivery efficiency without switching between delivery techniques. Example phantom and clinical cases suggest that the conversion of only three VMAT segments to modulated beams may result in a good combination of quality and efficiency.
NASA Astrophysics Data System (ADS)
Moshiri Sedeh, Nader
Intensity Modulated Radiation Therapy (IMRT) is a well-known type of external beam radiation therapy. The advancement in technology has had an inevitable influence in radiation oncology as well that has led to a newer and faster dose delivery technique called Volumetric Modulated Arc Therapy (VMAT). Since the presence of the VMAT modality in clinics in the late 2000, there have been many studies in order to compare the results of the VMAT modality with the current popular modality IMRT for various tumor sites in the body such as brain, prostate, head and neck, cervix and anal carcinoma. This is the first study to compare VMAT with IMRT for breast cancer. The results show that the RapidArc technique in Eclipse version 11 does not improve all aspects of the treatment plans for the breast cases automatically and easily, but it needs to be manipulated by extra techniques to create acceptable plans thus further research is needed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riegel, Adam C.; Antone, Jeffrey; Schwartz, David L., E-mail: dschwartz3@nshs.edu
2013-04-01
To compare relative carotid and normal tissue sparing using volumetric-modulated arc therapy (VMAT) or intensity-modulated radiation therapy (IMRT) for early-stage larynx cancer. Seven treatment plans were retrospectively created on 2 commercial treatment planning systems for 11 consecutive patients with T1-2N0 larynx cancer. Conventional plans consisted of opposed-wedged fields. IMRT planning used an anterior 3-field beam arrangement. Two VMAT plans were created, a full 360° arc and an anterior 180° arc. Given planning target volume (PTV) coverage of 95% total volume at 95% of 6300 cGy and maximum spinal cord dose below 2500 cGy, mean carotid artery dose was pushed asmore » low as possible for each plan. Deliverability was assessed by comparing measured and planned planar dose with the gamma (γ) index. Full-arc planning provided the most effective carotid sparing but yielded the highest mean normal tissue dose (where normal tissue was defined as all soft tissue minus PTV). Static IMRT produced next-best carotid sparing with lower normal tissue dose. The anterior half-arc produced the highest carotid artery dose, in some cases comparable with conventional opposed fields. On the whole, carotid sparing was inversely related to normal tissue dose sparing. Mean γ indexes were much less than 1, consistent with accurate delivery of planned treatment. Full-arc VMAT yields greater carotid sparing than half-arc VMAT. Limited-angle IMRT remains a reasonable alternative to full-arc VMAT, given its ability to mediate the competing demands of carotid and normal tissue dose constraints. The respective clinical significance of carotid and normal tissue sparing will require prospective evaluation.« less
A modular approach to intensity-modulated arc therapy optimization with noncoplanar trajectories
NASA Astrophysics Data System (ADS)
Papp, Dávid; Bortfeld, Thomas; Unkelbach, Jan
2015-07-01
Utilizing noncoplanar beam angles in volumetric modulated arc therapy (VMAT) has the potential to combine the benefits of arc therapy, such as short treatment times, with the benefits of noncoplanar intensity modulated radiotherapy (IMRT) plans, such as improved organ sparing. Recently, vendors introduced treatment machines that allow for simultaneous couch and gantry motion during beam delivery to make noncoplanar VMAT treatments possible. Our aim is to provide a reliable optimization method for noncoplanar isocentric arc therapy plan optimization. The proposed solution is modular in the sense that it can incorporate different existing beam angle selection and coplanar arc therapy optimization methods. Treatment planning is performed in three steps. First, a number of promising noncoplanar beam directions are selected using an iterative beam selection heuristic; these beams serve as anchor points of the arc therapy trajectory. In the second step, continuous gantry/couch angle trajectories are optimized using a simple combinatorial optimization model to define a beam trajectory that efficiently visits each of the anchor points. Treatment time is controlled by limiting the time the beam needs to trace the prescribed trajectory. In the third and final step, an optimal arc therapy plan is found along the prescribed beam trajectory. In principle any existing arc therapy optimization method could be incorporated into this step; for this work we use a sliding window VMAT algorithm. The approach is demonstrated using two particularly challenging cases. The first one is a lung SBRT patient whose planning goals could not be satisfied with fewer than nine noncoplanar IMRT fields when the patient was treated in the clinic. The second one is a brain tumor patient, where the target volume overlaps with the optic nerves and the chiasm and it is directly adjacent to the brainstem. Both cases illustrate that the large number of angles utilized by isocentric noncoplanar VMAT plans can help improve dose conformity, homogeneity, and organ sparing simultaneously using the same beam trajectory length and delivery time as a coplanar VMAT plan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Q.
In memory of the significant contribution of Dr. Jacques Ovadia to electron beam techniques, this session will review recent, advanced techniques which are reinvigorating the science of electron beam radiation therapy. Recent research efforts in improving both the applicability and quality of the electron beam therapy will be discussed, including modulated electron beam radiotherapy (MERT) and dynamic electron arc radiotherapy (DEAR). Learning Objectives: To learn about recent advances in electron beam therapy, including modulated electron beam therapy and dynamic electron arc therapy (DEAR). Put recent advances in the context of work that Dr. Ovadia pursued during his career in medicalmore » physics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onal, Cem, E-mail: hcemonal@hotmail.com; Arslan, Gungor; Dolek, Yemliha
2016-01-01
The aim of this study is to evaluate the incidental testicular doses during prostate radiation therapy with intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc radiotherapy (VMAT) at different energies. Dosimetric data of 15 patients with intermediate-risk prostate cancer who were treated with radiotherapy were analyzed. The prescribed dose was 78 Gy in 39 fractions. Dosimetric analysis compared testicular doses generated by 7-field intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy with a single arc at 6, 10, and 15 MV energy levels. Testicular doses calculated from the treatment planning system and doses measured from the detectors were analyzed. Mean testicular doses from themore » intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy per fraction calculated in the treatment planning system were 16.3 ± 10.3 cGy vs 21.5 ± 11.2 cGy (p = 0.03) at 6 MV, 13.4 ± 10.4 cGy vs 17.8 ± 10.7 cGy (p = 0.04) at 10 MV, and 10.6 ± 8.5 cGy vs 14.5 ± 8.6 cGy (p = 0.03) at 15 MV, respectively. Mean scattered testicular doses in the phantom measurements were 99.5 ± 17.2 cGy, 118.7 ± 16.4 cGy, and 193.9 ± 14.5 cGy at 6, 10, and 15 MV, respectively, in the intensity-modulated radiotherapy plans. In the volumetric-modulated arc radiotherapy plans, corresponding testicular doses per course were 90.4 ± 16.3 cGy, 103.6 ± 16.4 cGy, and 139.3 ± 14.6 cGy at 6, 10, and 15 MV, respectively. In conclusions, this study was the first to measure the incidental testicular doses by intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy plans at different energy levels during prostate-only irradiation. Higher photon energy and volumetric-modulated arc radiotherapy plans resulted in higher incidental testicular doses compared with lower photon energy and intensity-modulated radiotherapy plans.« less
Clinical utility of RapidArc™ radiotherapy technology
Infusino, Erminia
2015-01-01
RapidArc™ is a radiation technique that delivers highly conformal dose distributions through the complete rotation (360°) and speed variation of the linear accelerator gantry. This technique, called volumetric modulated arc therapy (VMAT), compared with conventional radiotherapy techniques, can achieve high-target volume coverage and sparing damage to normal tissues. RapidArc delivers precise dose distribution and conformity similar to or greater than intensity-modulated radiation therapy in a short time, generally a few minutes, to which image-guided radiation therapy is added. RapidArc has become a currently used technology in many centers, which use RapidArc technology to treat a large number of patients. Large and small hospitals use it to treat the most challenging cases, but more and more frequently for the most common cancers. The clinical use of RapidArc and VMAT technology is constantly growing. At present, a limited number of clinical data are published, mostly concerning planning and feasibility studies. Clinical outcome data are increasing for a few tumor sites, even if only a little. The purpose of this work is to discuss the current status of VMAT techniques in clinical use through a review of the published data of planning systems and clinical outcomes in several tumor sites. The study consisted of a systematic review based on analysis of manuscripts retrieved from the PubMed, BioMed Central, and Scopus databases by searching for the keywords “RapidArc”, “Volumetric modulated arc radiotherapy”, and “Intensity-modulated radiotherapy”. PMID:26648755
Valakh, Vladimir; Chan, Philip; D'Adamo, Karen; Micaily, Bizhan
2013-10-01
In the present article we review on the use of Volumetric Modulated Arc Therapy (VMAT) for a small lung nodule that was centrally located in close proximity to the mediastinal structures. An inoperable patient with central, clinical stage IA adenocarcinoma of the right lung was treated with external-beam radiation therapy of 52.5 Gy in 15 factions. A single 360° coplanar arc VMAT plan (360-VMAT) was used for treatment and compared to step-and-shoot Intensity Modulation Radiotherapy (IMRT) and a single 180° ipsilateral partial arc VMAT plan (180-VMAT). Planning Target Volume (PTV) coverage was not different, and 360-VMAT had the highest dose homogeneity. Both 360-VMAT and 180-VMAT reduced esophageal dose compared to IMRT. While IMRT had the lowest lung dose, all 3 plans achieved acceptable sparing of the lung. 180-VMAT had the highest dose conformity. Both 360-VMAT and 180-VMAT improved esophageal sparing compared to IMRT. Use of VMAT in early-stage, centrally located NSCLC is a promising treatment approach and merits additional investigation.
Choi, Kyu Hye; Kim, Jina; Lee, Sea-Won; Kang, Young-Nam; Jang, HongSeok
2018-03-01
The objective of this study was to compare dosimetric characteristics of three-dimensional conformal radiotherapy (3D-CRT) and two types of intensity-modulated radiotherapy (IMRT) which are step-and-shoot intensity modulated radiotherapy (s-IMRT) and modulated arc therapy (mARC) for thoracic esophageal cancer and analyze whether IMRT could reduce organ-at-risk (OAR) dose. We performed 3D-CRT, s-IMRT, and mARC planning for ten patients with thoracic esophageal cancer. The dose-volume histogram for each plan was extracted and the mean dose and clinically significant parameters were analyzed. Analysis of target coverage showed that the conformity index (CI) and conformation number (CN) in mARC were superior to the other two plans (CI, p = 0.050; CN, p = 0.042). For the comparison of OAR, lung V 5 was lowest in s-IMRT, followed by 3D-CRT, and mARC (p = 0.033). s-IMRT and mARC had lower values than 3D-CRT for heart V 30 (p = 0.039), V 40 (p = 0.040), and V 50 (p = 0.032). Effective conservation of the lung and heart in thoracic esophageal cancer could be expected when using s-IMRT. The mARC was lower in lung V 10 , V 20 , and V 30 than in 3D-CRT, but could not be proven superior in lung V 5 . In conclusion, low-dose exposure to the lung and heart were expected to be lower in s-IMRT, reducing complications such as radiation pneumonitis or heart-related toxicities.
Ko, Young Eun; Cho, Byungchul; Kim, Su Ssan; Song, Si Yeol; Choi, Eun Kyung; Ahn, Seung Do; Yi, Byongyong
2016-01-01
Purpose To develop a simplified volumetric modulated arc therapy (VMAT) technique for more accurate dose delivery in thoracic stereotactic body radiation therapy (SBRT). Methods and Materials For each of the 22 lung SBRT cases treated with respiratory-gated VMAT, a dose rate modulated arc therapy (DrMAT) plan was retrospectively generated. A dynamic conformal arc therapy plan with 33 adjoining coplanar arcs was designed and their beam weights were optimized by an inverse planning process. All sub-arc beams were converted into a series of control points with varying MLC segment and dose rates and merged into an arc beam for a DrMAT plan. The plan quality of original VMAT and DrMAT was compared in terms of target coverage, compactness of dose distribution, and dose sparing of organs at risk. To assess the delivery accuracy, the VMAT and DrMAT plans were delivered to a motion phantom programmed with the corresponding patients’ respiratory signal; results were compared using film dosimetry with gamma analysis. Results The plan quality of DrMAT was equivalent to that of VMAT in terms of target coverage, dose compactness, and dose sparing for the normal lung. In dose sparing for other critical organs, DrMAT was less effective than VMAT for the spinal cord, heart, and esophagus while being well within the limits specified by the Radiation Therapy Oncology Group. Delivery accuracy of DrMAT to a moving target was similar to that of VMAT using a gamma criterion of 2%/2mm but was significantly better using a 2%/1mm criterion, implying the superiority of DrMAT over VMAT in SBRT for thoracic/abdominal tumors with respiratory movement. Conclusion We developed a DrMAT technique for SBRT that produces plans of a quality similar to that achieved with VMAT but with better delivery accuracy. This technique is well-suited for small tumors with motion uncertainty. PMID:27333199
Chen, Hua; Wang, Hao; Gu, Hengle; Shao, Yan; Cai, Xuwei; Fu, Xiaolong; Xu, Zhiyong
2017-10-27
This study aimed to investigate the dosimetric differences and lung sparing between volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) in the treatment of upper thoracic esophageal cancer with T3N0M0 for preoperative radiotherapy by auto-planning (AP). Sixteen patient cases diagnosed with upper thoracic esophageal cancer T3N0M0 for preoperative radiotherapy were retrospectively studied, and 3 plans were generated for each patient: full arc VMAT AP plan with double arcs, partial arc VMAT AP plan with 6 partial arcs, and conventional IMRT AP plan. A simultaneous integrated boost with 2 levels was planned in all patients. Target coverage, organ at risk sparing, treatment parameters including monitor units and treatment time (TT) were evaluated. Wilcoxon signed-rank test was used to check for significant differences (p < 0.05) between datasets. VMAT plans (pVMAT and fVMAT) significantly reduced total lung volume treated above 20 Gy (V 20 ), 25 Gy (V 25 ), 30 Gy (V 30 ), 35 Gy (V 35 ), 40 Gy (V 40 ), and without increasing the value of V 10 , V 13 , and V 15 . For V 5 of total lung value, pVMAT was similar to aIMRT, and it was better than fVMAT. Both pVMAT and fVMAT improved the target dose coverage and significantly decreased maximum dose for the spinal cord, monitor unit, and TT. No significant difference was observed with respect to V 10 and V 15 of body. VMAT AP plan was a good option for treating upper thoracic esophageal cancer with T3N0M0, especially partial arc VMAT AP plan. It had the potential to effectively reduce lung dose in a shorter TT and with superior target coverage and dose homogeneity. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Elith, Craig A; Dempsey, Shane E; Warren-Forward, Helen M
2013-01-01
Introduction The primary aim of this study is to compare intensity modulated radiation therapy (IMRT) to volumetric modulated arc therapy (VMAT) for the radical treatment of prostate cancer using version 10.0 (v10.0) of Varian Medical Systems, RapidArc radiation oncology system. Particular focus was placed on plan quality and the implications on departmental resources. The secondary objective was to compare the results in v10.0 to the preceding version 8.6 (v8.6). Methods Twenty prostate cancer cases were retrospectively planned using v10.0 of Varian's Eclipse and RapidArc software. Three planning techniques were performed: a 5-field IMRT, VMAT using one arc (VMAT-1A), and VMAT with two arcs (VMAT-2A). Plan quality was assessed by examining homogeneity, conformity, the number of monitor units (MUs) utilized, and dose to the organs at risk (OAR). Resource implications were assessed by examining planning and treatment times. The results obtained using v10.0 were also compared to those previously reported by our group for v8.6. Results In v10.0, each technique was able to produce a dose distribution that achieved the departmental planning guidelines. The IMRT plans were produced faster than VMAT plans and displayed improved homogeneity. The VMAT plans provided better conformity to the target volume, improved dose to the OAR, and required fewer MUs. Treatments using VMAT-1A were significantly faster than both IMRT and VMAT-2A. Comparison between versions 8.6 and 10.0 revealed that in the newer version, VMAT planning was significantly faster and the quality of the VMAT dose distributions produced were of a better quality. Conclusion VMAT (v10.0) using one or two arcs provides an acceptable alternative to IMRT for the treatment of prostate cancer. VMAT-1A has the greatest impact on reducing treatment time. PMID:26229615
Sandrini, Emmily Santos; da Silva, Ademir Xavier; da Silva, Claudia Menezes
2018-05-25
The collimator in volumetric modulated arc therapy (VMAT) planning is rotated to minimize tongue-and-groove effect and interleaf leakage. The aim of this study was to evaluate the effect of collimator angle on the dosimetric results of VMAT plan for patients with lung cancer undergoing stereotactic body radiation therapy (SBRT) treatment. In the present investigation discrepancies between the calculated dose distributions with different collimators rotations have been studied. Six different collimators rotations (0, 10, 20, 30, 45 and 90 degrees), 6 MV x-ray non-flattened from a TrueBeam accelerator equipped with High-Definition 120MLC were used, as well as two planning technique: One full arc and two half arcs. For rotation between 10 and 45 degrees there were not found a significant variation meanwhile collimator rotation of 0 and 90° may impact on dose distribution resulting in unexpected dose variation. The homogeneity, conformity and gradient indexes as well as dose in organs at risk reached their best values with the half arcs technique and collimator angle between 20° and 45°. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Luna, J. A.; Rojas, J. I.
2016-07-01
All prostate cancer patients from Centro Médico Radioterapia Siglo XXI receive Volumetric Modulated Arc Therapy (VMAT). This therapy uses image-guided radiotherapy (IGRT) with the Cone Beam Computed Tomography (CBCT). This study compares the planned dose in the reference CT image against the delivered dose recalculate in the CBCT image. The purpose of this study is to evaluate the anatomic changes and related dosimetric effect based on weekly CBCT directly for patients with prostate cancer undergoing volumetric modulated arc therapy (VMAT) treatment. The collected data were analyzed using one-way ANOVA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Y; Ozawa, S; Tsegmed, U
2014-06-01
Purpose: To verify volumetric modulated arc therapy (VMAT) using flattening filter free (FFF) mode with jaw tracking (JT) feature for single breath hold as long as 15 s per arc in liver stereotactic body radiation therapy (SBRT) against intensity modulated radiation therapy (IMRT) FFF-JT. Methods: Ten hepatocellular carcinoma (HCC) cases were planned with 10 MV FFF using Pinnacle3 treatment planning system which delivered by TrueBeam to administer 48 Gy/ 4 fractions. Eight non-coplanar beams were assigned to IMRT using step-and-shoot technique. For VMAT, two or three non-coplanar partial arcs (up to 180 degrees) were further divided into subarcs with gantrymore » rotation less than 80 degrees to limit delivery time within 15 s. Dose distributions were verified using OCTAVIUS II system and pass rates were evaluated using gamma analysis with criteria of 3%/3 mm at threshold of 5% to the maximum dose. The actual irradiation time was measured. Results: The VMAT-FFF-JT of partial-arcs with sub-divided arcs was able to produce a highly conformal plan as well as IMRT-FFF-JT. Isodose lines and DVH showed slight improvement in dosimetry when JT was employed for both IMRT and VMAT. Consequently, VMAT-FFF-JT was superior in reducing the dose to liver minus gross tumor volume. VMAT-FFF-JT has shorter total treatment time compared with 3D conformal radiation therapy (3D-CRT) FFF because the gantry was rotated simultaneously with the beam delivery in VMAT. Moreover, due to the small and regular shape of HCC, VMAT-FFF-JT offered less multileaf collimator motion, thus the interplay effect is expected to be reduced. The patient specific QA of IMRT and VMAT acquired the pass rates higher than 90%. Conclusion: VMAT-FFF-JT could be a promising technique for liver SBRT as the sub-divided arcs method was able to accommodate a single breath hold irradiation time of less than 15 s without deterioration of the dose distribution compared with IMRT-FFF-JT.« less
Prah, Douglas; Ahunbay, Ergun; Li, X. Allen
2016-01-01
“Burst‐mode” modulated arc therapy (hereafter referred to as “mARC”) is a form of volumetric‐modulated arc therapy characterized by variable gantry rotation speed, static MLCs while the radiation beam is on, and MLC repositioning while the beam is off. We present our clinical experience with the planning techniques and plan quality assurance measurements of mARC delivery. Clinical mARC plans for five representative cases (prostate, low‐dose‐rate brain, brain with partial‐arc vertex fields, pancreas, and liver SBRT) were generated using a Monte Carlo–based treatment planning system. A conventional‐dose‐rate flat 6 MV and a high‐dose‐rate non‐flat 7 MV beam are available for planning and delivery. mARC plans for intact‐prostate cases can typically be created using one 360° arc, and treatment times per fraction seldom exceed 6 min using the flat beam; using the nonflat beam results in slightly higher MU per fraction, but also in delivery times less than 4 min and with reduced mean dose to distal organs at risk. mARC also has utility in low‐dose‐rate brain irradiation; mARC fields can be designed which deliver a uniform 20 cGy dose to the PTV in approximately 3‐minute intervals, making it a viable alternative to conventional 3D CRT. For brain cases using noncoplanar arcs, delivery time is approximately six min using the nonflat beam. For pancreas cases using the nonflat beam, two overlapping 360° arcs are required, and delivery times are approximately 10 min. For liver SBRT, the time to deliver 800 cGy per fraction is at least 12 min. Plan QA measurements indicate that the mARC delivery is consistent with the plan calculation for all cases. mARC has been incorporated into routine practice within our clinic; currently, on average approximately 15 patients per day are treated using mARC; and with the exception of LDR brain cases, all are treated using the nonflat beam. PACS number(s): 87.55.D‐, 87.55.K‐, 87.53.Ay. 87.56.N‐ PMID:27685123
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivakumar, R; Janardhan, N; Bhavani, P
Purpose: To compare the plan quality and performance of Simultaneous Integrated Boost (SIB) Treatment plan between Seven field (7F) and Nine field(9F) Intensity Modulated Radiotherapies and Single Arc (SA) and Dual Arc (DA) Volumetric Modulated Arc Therapy( VMAT). Methods: Retrospective planning study of 16 patients treated in Elekta Synergy Platform (mlci2) by 9F-IMRT were replanned with 7F-IMRT, Single Arc VMAT and Dual Arc VMAT using CMS, Monaco Treatment Planning System (TPS) with Monte Carlo simulation. Target delineation done as per Radiation Therapy Oncology Protocols (RTOG 0225&0615). Dose Prescribed as 70Gy to Planning Target Volumes (PTV70) and 61Gy to PTV61 inmore » 33 fraction as a SIB technique. Conformity Index(CI), Homogeneity Index(HI) were used as analysis parameter for Target Volumes as well as Mean dose and Max dose for Organ at Risk(OAR,s).Treatment Delivery Time(min), Monitor unit per fraction (MU/fraction), Patient specific quality assurance were also analysed. Results: A Poor dose coverage and Conformity index (CI) was observed in PTV70 by 7F-IMRT among other techniques. SA-VMAT achieved poor dose coverage in PTV61. No statistical significance difference observed in OAR,s except Spinal cord (P= 0.03) and Right optic nerve (P=0.03). DA-VMAT achieved superior target coverage, higher CI (P =0.02) and Better HI (P=0.03) for PTV70 other techniques (7F-IMRT/9F-IMRT/SA-VMAT). A better dose spare for Parotid glands and spinal cord were seen in DA-VMAT. The average treatment delivery time were 5.82mins, 6.72mins, 3.24mins, 4.3mins for 7F-IMRT, 9F-IMRT, SA-VMAT and DA-VMAT respectively. Significance difference Observed in MU/fr (P <0.001) and Patient quality assurance pass rate were >95% (Gamma analysis (Γ3mm, 3%). Conclusion: DA-VAMT showed better target dose coverage and achieved better or equal performance in sparing OARs among other techniques. SA-VMAT offered least Treatment Time than other techniques but achieved poor target coverage. DA-VMAT offered shorter delivery time than 7F-IMRT and 9F-IMRT without compromising the plan quality.« less
Recent advances in intensity modulated radiotherapy and proton therapy for esophageal cancer.
Xi, Mian; Lin, Steven H
2017-07-01
Radiotherapy is an important component of the standard of care for esophageal cancer. In the past decades, significant improvements in the planning and delivery of radiation techniques have led to better dose conformity to the target volume and improved normal tissue sparing. Areas covered: This review focuses on the advances in radiotherapy techniques and summarizes the availably dosimetric and clinical outcomes of intensity-modulated radiation therapy (IMRT), volumetric modulated arc therapy, proton therapy, and four-dimensional radiotherapy for esophageal cancer, and discusses the challenges and future development of proton therapy. Expert commentary: Although three-dimensional conformal radiotherapy is the standard radiotherapy technique in esophageal cancer, the retrospectively comparative studies strongly suggest that the dosimetric advantage of IMRT over three-dimensional conformal radiotherapy can translate into improved clinical outcomes, despite the lack of prospective randomized evidence. As a novel form of conventional IMRT technique, volumetric modulated arc therapy can produce equivalent or superior dosimetric quality with significantly higher treatment efficiency in esophageal cancer. Compared with photon therapy, proton therapy has the potential to achieve further clinical improvement due to their physical properties; however, prospective clinical data, long-term results, and cost-effectiveness are needed.
Ishii, Kentaro; Okada, Wataru; Ogino, Ryo; Kubo, Kazuki; Kishimoto, Shun; Nakahara, Ryuta; Kawamorita, Ryu; Ishii, Yoshie; Tada, Takuhito; Nakajima, Toshifumi
2016-01-01
The purpose of this study was to determine appropriate beam arrangement for volumetric-modulated arc therapy (VMAT)-based stereotactic body radiation therapy (SBRT) in the treatment of patients with centrally located lung tumors. Fifteen consecutive patients with centrally located lung tumors treated at our institution were enrolled. For each patient, three VMAT plans were generated using two coplanar partial arcs (CP VMAT), two non-coplanar partial arcs (NCP VMAT), and one coplanar full arc (Full VMAT). All plans were designed to deliver 70 Gy in 10 fractions. Target coverage and sparing of organs at risk (OARs) were compared across techniques. PTV coverage was almost identical for all approaches. The whole lung V10Gy was significantly lower with CP VMAT plans than with NCP VMAT plans, whereas no significant differences in the mean lung dose, V5Gy, V20Gy or V40Gy were observed. Full VMAT increased mean contralateral lung V5Gy by 12.57% and 9.15% when compared with NCP VMAT and CP VMAT, respectively. Although NCP VMAT plans best achieved the dose–volume constraints for mediastinal OARs, the absolute differences in dose were small when compared with CP VMAT. These results suggest that partial-arc VMAT may be preferable to minimize unnecessary exposure to the contralateral lung, and use of NCP VMAT should be considered when the dose–volume constraints are not achieved by CP VMAT. PMID:26951076
Dosimetric evaluation of the interplay effect in respiratory-gated RapidArc radiation therapy.
Riley, Craig; Yang, Yong; Li, Tianfang; Zhang, Yongqian; Heron, Dwight E; Huq, M Saiful
2014-01-01
Volumetric modulated arc therapy (VMAT) with gating capability has had increasing adoption in many clinics in the United States. In this new technique, dose rate, gantry rotation speed, and the leaf motion speed of multileaf collimators (MLCs) are modulated dynamically during gated beam delivery to achieve highly conformal dose coverage of the target and normal tissue sparing. Compared with the traditional gated intensity-modulated radiation therapy technique, this complicated beam delivery technique may result in larger dose errors due to the intrafraction tumor motion. The purpose of this work is to evaluate the dosimetric influence of the interplay effect for the respiration-gated VMAT technique (RapidArc, Varian Medical Systems, Palo Alto, CA). Our work consisted of two parts: (1) Investigate the interplay effect for different target residual errors during gated RapidArc delivery using a one-dimensional moving phantom capable of producing stable sinusoidal movement; (2) Evaluate the dosimetric influence in ten clinical patients' treatment plans using a moving phantom driven with a patient-specific respiratory curve. For the first part of this study, four plans were created with a spherical target for varying residual motion of 0.25, 0.5, 0.75, and 1.0 cm. Appropriate gating windows were applied for each. The dosimetric effect was evaluated using EDR2 film by comparing the gated delivery with static delivery. For the second part of the project, ten gated lung stereotactic body radiotherapy cases were selected and reoptimized to be delivered by the gated RapidArc technique. These plans were delivered to a phantom, and again the gated treatments were compared to static deliveries by the same methods. For regular sinusoidal motion, the dose delivered to the target was not substantially affected by the gating windows when evaluated with the gamma statistics, suggesting the interplay effect has a small role in respiratory-gated RapidArc therapy. Varied results were seen when gated therapy was performed on the patient plans that could only be attributed to differences in patient respiratory patterns. Patients whose plans had the largest percentage of pixels failing the gamma statistics exhibited irregular breathing patterns including substantial interpatient variation in depth of respiration. The interplay effect has a limited impact on gated RapidArc therapy when evaluated with a linear phantom. Variations in patient breathing patterns, however, are of much greater clinical significance. Caution must be taken when evaluating patients' respiratory efforts for gated arc therapy.
Chi, Alexander; Ma, Pan; Fu, Guishan; Hobbs, Gerry; Welsh, James S.; Nguyen, Nam P.; Jang, Si Young; Dai, Jinrong; Jin, Jing; Komaki, Ritsuko
2013-01-01
Background Helical tomotherapy (HT) and volumetric modulated arc therapy (VMAT) are both advanced techniques of delivering intensity-modulated radiotherapy (IMRT). Here, we conduct a study to compare HT and partial-arc VMAT in their ability to spare organs at risk (OARs) when stereotactic ablative radiotherapy (SABR) is delivered to treat centrally located early stage non-small-cell lung cancer or lung metastases. Methods 12 patients with centrally located lung lesions were randomly chosen. HT, 2 & 8 arc (Smart Arc, Pinnacle v9.0) plans were generated to deliver 70 Gy in 10 fractions to the planning target volume (PTV). Target and OAR dose parameters were compared. Each technique’s ability to meet dose constraints was further investigated. Results HT and VMAT plans generated essentially equivalent PTV coverage and dose conformality indices, while a trend for improved dose homogeneity by increasing from 2 to 8 arcs was observed with VMAT. Increasing the number of arcs with VMAT also led to some improvement in OAR sparing. After normalizing to OAR dose constraints, HT was found to be superior to 2 or 8-arc VMAT for optimal OAR sparing (meeting all the dose constraints) (p = 0.0004). All dose constraints were met in HT plans. Increasing from 2 to 8 arcs could not help achieve optimal OAR sparing for 4 patients. 2/4 of them had 3 immediately adjacent structures. Conclusion HT appears to be superior to VMAT in OAR sparing mainly in cases which require conformal dose avoidance of multiple immediately adjacent OARs. For such cases, increasing the number of arcs in VMAT cannot significantly improve OAR sparing. PMID:23577071
Cora, Stefania; Khan, Ehsan Ullah
2017-01-01
Abstract Volumetric-modulated arc therapy (VMAT) is an efficient form of radiotherapy used to deliver intensity-modulated radiotherapy beams. The aim of this study was to investigate the relative insensitivity of VMAT plan quality to gantry angle spacing (GS). Most previous VMAT planning and dosimetric work for GS resolution has been conducted for single arc VMAT. In this work, a quantitative comparison of dose–volume indices (DIs) was made for partial-, single- and double-arc VMAT plans optimized at 2°, 3° and 4° GS, representing a large variation in deliverable multileaf collimator segments. VMAT plans of six prostate cancer and six head-and-neck cancer patients were simulated for an Elekta SynergyS® Linac (Elekta Ltd, Crawley, UK), using the SmartArc™ module of Pinnacle³ TPS, (version 9.2, Philips Healthcare). All optimization techniques generated clinically acceptable VMAT plans, except for the single-arc for the head-and-neck cancer patients. Plan quality was assessed by comparing the DIs for the planning target volume, organs at risk and normal tissue. A GS of 2°, with finest resolution and consequently highest intensity modulation, was considered to be the reference, and this was compared with GS 3° and 4°. The differences between the majority of reference DIs and compared DIs were <2%. The metrics, such as treatment plan optimization time and pretreatment (phantom) dosimetric calculation time, supported the use of a GS of 4°. The ArcCHECK™ phantom–measured dosimetric agreement verifications resulted in a >95.0% passing rate, using the criteria for γ (3%, 3 mm). In conclusion, a GS of 4° is an optimal choice for minimal usage of planning resources without compromise of plan quality. PMID:27974507
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonier, Marcus, E-mail: Marcus.Sonier@bccancer.bc.ca; Chu, William; Department of Radiation Oncology, University of Toronto, Toronto, ON
To develop a volumetric modulated arc therapy (VMAT) treatment planning solution in the treatment of primary renal cell carcinoma and oligometastatic adrenal lesions with stereotactic body radiation therapy. Single-arc VMAT plans (n = 5) were compared with clinically delivered step-and-shoot intensity-modulated radiotherapy (IMRT) with planning target volume coverage normalized between techniques. Target volume conformity, organ-at-risk (OAR) dose, treatment time, and monitor units were compared. A VMAT planning solution, created from a combination of arc settings and optimization constraints, auto-generated treatment plans in a single optimization. The treatment planning solution was evaluated on 15 consecutive patients receiving kidney and adrenal stereotacticmore » body radiation therapy. Treatment time was reduced from 13.0 ± 2.6 to 4.0 ± 0.9 minutes for IMRT and VMAT, respectively. The VMAT planning solution generated treatment plans with increased target homogeneity, improved 95% conformity index, and a reduced maximum point dose to nearby OARs but with increased intermediate dose to distant OARs. The conformity of the 95% isodose improved from 1.32 ± 0.39 to 1.12 ± 0.05 for IMRT and VMAT treatment plans, respectively. Evaluation of the planning solution showed clinically acceptable dose distributions for 13 of 15 cases with tight conformity of the prescription isodose to the planning target volume of 1.07 ± 0.04, delivering minimal dose to OARs. The introduction of a stereotactic body radiation therapy VMAT treatment planning solution improves the efficiency of planning and delivery time, producing treatment plans of comparable or superior quality to IMRT in the case of primary renal cell carcinoma and oligometastatic adrenal lesions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Jieming; Atwood, Todd; Eyben, Rie von
2015-08-01
Purpose: To develop planning and delivery capabilities for linear accelerator–based nonisocentric trajectory modulated arc therapy (TMAT) and to evaluate the benefit of TMAT for accelerated partial breast irradiation (APBI) with the patient in prone position. Methods and Materials: An optimization algorithm for volumetrically modulated arc therapy (VMAT) was generalized to allow for user-defined nonisocentric TMAT trajectories combining couch rotations and translations. After optimization, XML scripts were automatically generated to program and subsequently deliver the TMAT plans. For 10 breast patients in the prone position, TMAT and 6-field noncoplanar intensity modulated radiation therapy (IMRT) plans were generated under equivalent objectives andmore » constraints. These plans were compared with regard to whole breast tissue volume receiving more than 100%, 80%, 50%, and 20% of the prescription dose. Results: For TMAT APBI, nonisocentric collision-free horizontal arcs with large angular span (251.5 ± 7.9°) were optimized and delivered with delivery time of ∼4.5 minutes. Percentage changes of whole breast tissue volume receiving more than 100%, 80%, 50%, and 20% of the prescription dose for TMAT relative to IMRT were −10.81% ± 6.91%, −27.81% ± 7.39%, −14.82% ± 9.67%, and 39.40% ± 10.53% (P≤.01). Conclusions: This is a first demonstration of end-to-end planning and delivery implementation of a fully dynamic APBI TMAT. Compared with IMRT, TMAT resulted in marked reduction of the breast tissue volume irradiated at high doses.« less
Gao, Min; Li, Qilin; Ning, Zhonghua; Gu, Wendong; Huang, Jin; Mu, Jinming; Pei, Honglei
2016-01-01
To compare and analyze the dosimetric characteristics of volumetric modulated arc therapy (VMAT) vs step-shoot intensity-modulated radiation therapy (sIMRT) for upper thoracic and cervical esophageal carcinoma. Single-arc VMAT (VMAT1), dual-arc VMAT (VMAT2), and 7-field sIMRT plans were designed for 30 patients with upper thoracic or cervical esophageal carcinoma. Planning target volume (PTV) was prescribed to 50.4Gy in 28 fractions, and PTV1 was prescribed to 60Gy in 28 fractions. The parameters evaluated included dose homogeneity and conformality, dose to organs at risk (OARs), and delivery efficiency. (1) In comparison to sIMRT, VMAT provided a systematic improvement in PTV1 coverage. The homogeneity index of VMAT1 was better than that of VMAT2. There were no significant differences among sIMRT, VMAT1, and VMAT2 in PTV coverage. (2) VMAT1 and VMAT2 reduced the maximum dose of spinal cord as compared with sIMRT (p < 0.05). The rest dose-volume characteristics of OARs were similar. (3) Monitor units of VMAT2 and VMAT1 were more than sIMRT. However, the treatment time of VMAT1, VMAT2, and sIMRT was (2.0 ± 0.2), (2.8 ± 0.3), and (9.8 ± 0.8) minutes, respectively. VMAT1 was the fastest, and the difference was statistically significant. In the treatment of upper thoracic and cervical esophageal carcinoma by the AXESSE linac, compared with 7-field sIMRT, VMAT showed better PTV1 coverage and superior spinal cord sparing. Single-arc VMAT had similar target volume coverage and the sparing of OAR to dual-arc VMAT, with shortest treatment time and highest treatment efficiency in the 3 kinds of plans. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Min; Li, Qilin; Ning, Zhonghua
2016-07-01
To compare and analyze the dosimetric characteristics of volumetric modulated arc therapy (VMAT) vs step-shoot intensity-modulated radiation therapy (sIMRT) for upper thoracic and cervical esophageal carcinoma. Single-arc VMAT (VMAT1), dual-arc VMAT (VMAT2), and 7-field sIMRT plans were designed for 30 patients with upper thoracic or cervical esophageal carcinoma. Planning target volume (PTV) was prescribed to 50.4 Gy in 28 fractions, and PTV1 was prescribed to 60 Gy in 28 fractions. The parameters evaluated included dose homogeneity and conformality, dose to organs at risk (OARs), and delivery efficiency. (1) In comparison to sIMRT, VMAT provided a systematic improvement in PTV1 coverage.more » The homogeneity index of VMAT1 was better than that of VMAT2. There were no significant differences among sIMRT, VMAT1, and VMAT2 in PTV coverage. (2) VMAT1 and VMAT2 reduced the maximum dose of spinal cord as compared with sIMRT (p < 0.05). The rest dose-volume characteristics of OARs were similar. (3) Monitor units of VMAT2 and VMAT1 were more than sIMRT. However, the treatment time of VMAT1, VMAT2, and sIMRT was (2.0 ± 0.2), (2.8 ± 0.3), and (9.8 ± 0.8) minutes, respectively. VMAT1 was the fastest, and the difference was statistically significant. In the treatment of upper thoracic and cervical esophageal carcinoma by the AXESSE linac, compared with 7-field sIMRT, VMAT showed better PTV1 coverage and superior spinal cord sparing. Single-arc VMAT had similar target volume coverage and the sparing of OAR to dual-arc VMAT, with shortest treatment time and highest treatment efficiency in the 3 kinds of plans.« less
Volumetric modulated arc therapy vs. IMRT for the treatment of distal esophageal cancer.
Van Benthuysen, Liam; Hales, Lee; Podgorsak, Matthew B
2011-01-01
Several studies have demonstrated that volumetric modulated arc therapy (VMAT) has the ability to reduce monitor units and treatment time when compared with intensity-modulated radiation therapy (IMRT). This study aims to demonstrate that VMAT is able to provide adequate organs at risk (OAR) sparing and planning target volume (PTV) coverage for adenocarcinoma of the distal esophagus while reducing monitor units and treatment time. Fourteen patients having been treated previously for esophageal cancer were planned using both VMAT and IMRT techniques. Dosimetric quality was evaluated based on doses to several OARs, as well as coverage of the PTV. Treatment times were assessed by recording the number of monitor units required for dose delivery. Body V(5) was also recorded to evaluate the increased volume of healthy tissue irradiated to low doses. Dosimetric differences in OAR sparing between VMAT and IMRT were comparable. PTV coverage was similar for the 2 techniques but it was found that IMRT was capable of delivering a slightly more homogenous dose distribution. Of the 14 patients, 12 were treated with a single arc and 2 were treated with a double arc. Single-arc plans reduced monitor units by 42% when compared with the IMRT plans. Double-arc plans reduced monitor units by 67% when compared with IMRT. The V(5) for the body was found to be 18% greater for VMAT than for IMRT. VMAT has the capability to decrease treatment times over IMRT while still providing similar OAR sparing and PTV coverage. Although there will be a smaller risk of patient movement during VMAT treatments, this advantage comes at the cost of delivering small doses to a greater volume of the patient. Copyright © 2011 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Andreozzi, Jacqueline M.; Zhang, Rongxiao; Glaser, Adam K.; Gladstone, David J.; Jarvis, Lesley A.; Pogue, Brian W.
2016-03-01
External beam radiotherapy utilizes high energy radiation to target cancer with dynamic, patient-specific treatment plans. The otherwise invisible radiation beam can be observed via the optical Cherenkov photons emitted from interaction between the high energy beam and tissue. Using a specialized camera-system, the Cherenkov emission can thus be used to track the radiation beam on the surface of the patient in real-time, even for complex cases such as volumetric modulated arc therapy (VMAT). Two patients undergoing VMAT of the head and neck were imaged and analyzed, and the viability of the system to provide clinical feedback was established.
Didona, Annamaria; Lancellotta, Valentina; Zucchetti, Claudio; Panizza, Bianca Moira; Frattegiani, Alessandro; Iacco, Martina; Di Pilato, Anna Concetta; Saldi, Simonetta; Aristei, Cynthia
2018-01-01
Intensity-modulated radiotherapy (IMRT) improves dose distribution in head and neck (HN) radiation therapy. Volumetric-modulated arc therapy (VMAT), a new form of IMRT, delivers radiation in single or multiple arcs, varying dose rates (VDR-VMAT) and gantry speeds, has gained considerable attention. Constant dose rate VMAT (CDR-VMAT) associated with a fixed gantry speed does not require a dedicated linear accelerator like VDR-VMAT. The present study explored the feasibility, efficiency and delivery accuracy of CDR-VMAT, by comparing it with IMRT and VDR-VMAT in treatment planning for HN cancer. Step and shoot IMRT (SS-IMRT), CDR-VMAT and VDR-VMAT plans were created for 15 HN cancer patients and were generated by Pinnacle 3 TPS (v 9.8) using 6 MV photon energy. Three PTVs were defined to receive respectively prescribed doses of 66 Gy, 60 Gy and 54 Gy, in 30 fractions. Organs at risk (OARs) included the mandible, spinal cord, brain stem, parotids, salivary glands, esophagus, larynx and thyroid. SS-IMRT plans were based on 7 co-planar beams at fixed gantry angles. CDR-VMAT and VDR-VMAT plans, generated by the SmartArc module, used a 2-arc technique: one clockwise from 182° to 178° and the other one anti-clockwise from 178° to 182°. Comparison parameters included dose distribution to PTVs ( D mean , D 2% , D 50% , D 95% , D 98% and Homogeneity Index), maximum or mean doses to OARs, specific dose-volume data, the monitor units and treatment delivery times. Compared with SS-IMRT, CDR-VMAT significantly reduced the maximum doses to PTV1 and PTV2 and significantly improved all PTV3 parameters, except D 98% and D 95% . It significantly spared parotid and submandibular glands and was associated with a lower D mean to the larynx. Compared with VDR-VMAT, CDR-VMAT was linked to a significantly better D mean , to the PTV3 but results were worse for the parotids, left submandibular gland, esophagus and mandible. Furthermore, the D mean to the larynx was also worse. Compared with SS-IMRT and VDR-VMAT, CDR-VMAT was associated with higher average monitor unit values and significantly shorter average delivery times. CDR-VMAT appeared to be a valid option in Radiation Therapy Centers that lack a dedicated linear accelerator for volumetric arc therapy with variable dose-rates and gantry velocities, and are unwilling or unable to sanction major expenditure at present but want to adopt volumetric techniques.
Volumetric modulated arc therapy vs. c-IMRT for the treatment of upper thoracic esophageal cancer.
Zhang, Wu-Zhe; Zhai, Tian-Tian; Lu, Jia-Yang; Chen, Jian-Zhou; Chen, Zhi-Jian; Li, De-Rui; Chen, Chuang-Zhen
2015-01-01
To compare plans using volumetric-modulated arc therapy (VMAT) with conventional sliding window intensity-modulated radiation therapy (c-IMRT) to treat upper thoracic esophageal cancer (EC). CT datasets of 11 patients with upper thoracic EC were identified. Four plans were generated for each patient: c-IMRT with 5 fields (5F) and VMAT with a single arc (1A), two arcs (2A), or three arcs (3A). The prescribed doses were 64 Gy/32 F for the primary tumor (PTV64). The dose-volume histogram data, the number of monitoring units (MUs) and the treatment time (TT) for the different plans were compared. All of the plans generated similar dose distributions for PTVs and organs at risk (OARs), except that the 2A- and 3A-VMAT plans yielded a significantly higher conformity index (CI) than the c-IMRT plan. The CI of the PTV64 was improved by increasing the number of arcs in the VMAT plans. The maximum spinal cord dose and the planning risk volume of the spinal cord dose for the two techniques were similar. The 2A- and 3A-VMAT plans yielded lower mean lung doses and heart V50 values than the c-IMRT. The V20 and V30 for the lungs in all of the VMAT plans were lower than those in the c-IMRT plan, at the expense of increasing V5, V10 and V13. The VMAT plan resulted in significant reductions in MUs and TT. The 2A-VMAT plan appeared to spare the lungs from moderate-dose irradiation most effectively of all plans, at the expense of increasing the low-dose irradiation volume, and also significantly reduced the number of required MUs and the TT. The CI of the PTVs and the OARs was improved by increasing the arc-number from 1 to 2; however, no significant improvement was observed using the 3A-VMAT, except for an increase in the TT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, L; Sarkar, V; Spiessens, S
2014-06-01
Purpose: The latest clinical implementation of the Siemens Artiste linac allows for delivery of modulated arcs (mARC) using full-field flattening filter free (FFF) photon beams. The maximum doserate of 2000 MU/min is well suited for high dose treatments such as SBRT. We tested and report on the performance of a prototype Eclipse TPS module supporting mARC capability on the Artiste platform. Method: our spine SBRT patients originally treated with 12/13 field static-gantry IMRT (SGIMRT) were chosen for this study. These plans were designed to satisfy RTOG0631 guidelines with a prescription of 16Gy in a single fraction. The cases were re-plannedmore » as mARC plans in the prototype Eclipse module using the 7MV FFF beam and required to satisfy RTOG0631 requirements. All plans were transferred from Eclipse, delivered on a Siemens Artiste linac and dose-validated using the Delta4 system. Results: All treatment plans were straightforwardly developed, in timely fashion, without challenge or inefficiency using the prototype module. Due to the limited number of segments in a single arc, mARC plans required 2-3 full arcs to yield plan quality comparable to SGIMRT plans containing over 250 total segments. The average (3%/3mm) gamma pass-rate for all arcs was 98.5±1.1%, thus demonstrating both excellent dose prediction by the AAA dose algorithm and excellent delivery fidelity. Mean delivery times for the mARC plans(10.5±1.7min) were 50-70% lower than the SGIMRT plans(26±2min), with both delivered at 2000 MU/min. Conclusion: A prototype Eclipse module capable of planning for Burst Mode modulated arc delivery on the Artiste platform has been tested and found to perform efficiently and accurately for treatment plan development and delivered-dose prediction. Further investigation of more treatment sites is being carried out and data will be presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teoh, May, E-mail: m.teoh@nhs.net; Beveridge, Sabeena; Wood, Katie
2013-04-01
Fluorine-18-fluorodeoxyglucose-positron emission tomography ({sup 18}F-FDG-PET)–guided focal dose escalation in oropharyngeal cancer may potentially improve local control. We evaluated the feasibility of this approach using volumetric-modulated arc therapy (RapidArc) and compared these plans with fixed-field intensity-modulated radiotherapy (IMRT) focal dose escalation plans. Materials and methods: An initial study of 20 patients compared RapidArc with fixed-field IMRT using standard dose prescriptions. From this cohort, 10 were included in a dose escalation planning study. Dose escalation was applied to {sup 18}F-FDG-PET–positive regions in the primary tumor at dose levels of 5% (DL1), 10% (DL2), and 15% (DL3) above standard radical dose (65 Gymore » in 30 fractions). Fixed-field IMRT and double-arc RapidArc plans were generated for each dataset. Dose-volume histograms were used for plan evaluation and comparison. The Paddick conformity index (CI{sub Paddick}) and monitor units (MU) for each plan were recorded and compared. Both IMRT and RapidArc produced clinically acceptable plans and achieved planning objectives for target volumes. Dose conformity was significantly better in the RapidArc plans, with lower CI{sub Paddick} scores in both primary (PTV1) and elective (PTV2) planning target volumes (largest difference in PTV1 at DL3; 0.81 ± 0.03 [RapidArc] vs. 0.77 ± 0.07 [IMRT], p = 0.04). Maximum dose constraints for spinal cord and brainstem were not exceeded in both RapidArc and IMRT plans, but mean doses were higher with RapidArc (by 2.7 ± 1 Gy for spinal cord and 1.9 ± 1 Gy for brainstem). Contralateral parotid mean dose was lower with RapidArc, which was statistically significant at DL1 (29.0 vs. 29.9 Gy, p = 0.01) and DL2 (29.3 vs. 30.3 Gy, p = 0.03). MU were reduced by 39.8–49.2% with RapidArc (largest difference at DL3, 641 ± 94 vs. 1261 ± 118, p < 0.01). {sup 18}F-FDG-PET–guided focal dose escalation in oropharyngeal cancer is feasible with RapidArc. Compared with conventional fixed-field IMRT, RapidArc can achieve better dose conformity, improve contralateral parotid sparing, and uses fewer MU.« less
Kumar, S.A. Syam; Holla, Raghavendra; Sukumar, Prabakar; Padmanaban, Sriram; Vivekanandan, Nagarajan
2012-01-01
Aim To compare and evaluate the performance of two different volumetric modulated arc therapy delivery techniques. Background Volumetric modulated arc therapy is a novel technique that has recently been made available for clinical use. Planning and dosimetric comparison study was done for Elekta VMAT and Varian RapidArc for different treatment sites. Materials and methods Ten patients were selected for the planning comparison study. This includes 2 head and neck, 2 oesophagus, 1 bladder, 3 cervix and 2 rectum cases. Total dose of 50 Gy was given for all the plans. All plans were done for RapidArc using Eclipse and for Elekta VMAT with Monaco treatment planning system. All plans were generated with 6 MV X-rays for both RapidArc and Elekta VMAT. Plans were evaluated based on the ability to meet the dose volume histogram, dose homogeneity index, radiation conformity index, estimated radiation delivery time, integral dose and monitor units needed to deliver the prescribed dose. Results RapidArc plans achieved the best conformity (CI95% = 1.08 ± 0.07) while Elekta VMAT plans were slightly inferior (CI95% = 1.10 ± 0.05). The in-homogeneity in the PTV was highest with Elekta VMAT with HI equal to 0.12 ± 0.02 Gy when compared to RapidArc with 0.08 ± 0.03. Significant changes were observed between the RapidArc and Elekta VMAT plans in terms of the healthy tissue mean dose and integral dose. Elekta VMAT plans show a reduction in the healthy tissue mean dose (6.92 ± 2.90) Gy when compared to RapidArc (7.83 ± 3.31) Gy. The integral dose is found to be inferior with Elekta VMAT (11.50 ± 6.49) × 104 Gy cm3 when compared to RapidArc (13.11 ± 7.52) × 104 Gy cm3. Both Varian RapidArc and Elekta VMAT respected the planning objective for all organs at risk. Gamma analysis result for the pre-treatment quality assurance shows good agreement between the planned and delivered fluence for 3 mm DTA, 3% DD for all the evaluated points inside the PTV, for both VMAT and RapidArc techniques. Conclusion The study concludes that a variable gantry speed with variable dose rate is important for efficient arc therapy delivery. RapidArc presents a slight improvement in the OAR sparing with better target coverage when compared to Elekta VMAT. Trivial differences were noted in all the plans for organ at risk but the two techniques provided satisfactory conformal avoidance and conformation. PMID:24416535
Tatsumi, Daisaku; Nakada, Ryosei; Ienaga, Akinori; Yomoda, Akane; Inoue, Makoto; Ichida, Takao; Hosono, Masako
2012-01-01
The tolerance of the Backup diaphragm (Backup JAW) setting in Elekta linac was specified as 2 mm according to the AAPM TG-142 report. However, the tolerance and the quality assurance procedure for volumetric modulated arc therapy (VMAT) was not provided. This paper describes positional accuracy and quality assurance procedure of the Backup JAWs required for VMAT. It was found that a gap-width error of the Backup JAW by a sliding window test needed to be less than 1.5 mm for prostate VMAT delivery. It was also confirmed that the gap-widths had been maintained with an error of 0.2 mm during the past one year.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ming, X; Zhang, Y; Yale University, New Haven, CT, US
2014-06-01
Purpose: The cardiac toxicity for lung cancer patients, each treated with dynamic conformal arc therapy (DAT), intensity-modulated radiation therapy (IMRT), or volumetric modulated arc therapy (VMAT) is investigated. Methods: 120 lung patients were selected for this study: 25 treated with DAT, 50 with IMRT and 45 with VMAT. For comparison, all plans were generated in the same treatment planning system, normalized such that the 100% isodose lines encompassed 95% of planning target volume. The plan quality was evaluated in terms of homogeneity index (HI) and 95% conformity index (%95 CI) for target dose coverage and mean dose, maximum dose, V{submore » 30} Gy as well as V{sub 5} Gy for cardiac toxicity analysis. Results: When all the plans were analyzed, the VMAT plans offered the best target coverage with 95% CI = 0.992 and HI = 1.23. The DAT plans provided the best heart sparing with mean heart dose = 2.3Gy and maximum dose = 11.6Gy, as compared to 5.7 Gy and 31.1 Gy by IMRT as well as 4.6 Gy and 30.9 Gy by VMAT. The mean V30Gy and V5Gy of the heart in the DAT plans were up to 11.7% lower in comparison to the IMRT and VMAT plans. When the tumor volume was considered, the VMAT plans spared up to 70.9% more doses to the heart when the equivalent diameter of the tumor was larger than 4cm. Yet the maximum dose to the heart was reduced the most in the DAT plans with up to 139.8% less than that of the other two plans. Conclusion: Overall, the VMAT plans achieved the best target coverage among the three treatment modalities, and would spare the heart the most for the larger tumors. The DAT plans appeared advantageous in delivering the least maximum dose to the heart as compared to the IMRT and VMAT plans.« less
Evans, J; Chen, Q; Wuthrick, E; Weldon, M; Rong, Y
2012-06-01
Several planning strategies are available for hippocampal- avoidance whole-brain radiotherapy (HA-WBRT) following RTOG protocol 0933, but have yet to be compared on a common set of patient data. In this inter-institutional investigation, we evaluate three modalities likely to be employed by protocol participants; step-and-shoot IMRT, volumetric modulated arc therapy, and helical tomotherapy. A common set of patients is used for comparison, including credentialing and successfully accrued patients. Eight patient datasets were selected and de-identified prior to planning. Structures were contoured by physicians per protocol using fused MRI datasets. Three plans were generated for each dataset: Philips Pinnacle 9-field non-coplanar IMRT using protocol recommended beam parameters, Varian's RapidArc using two coplanar arcs, and Accuray's TomoTherapy using a 1cm jaw width. With the goal of meeting the compliance criteria outlined in RTOG 0933 (target coverage and dose limits to the hippocampus and optic structures), three planners independently planned each modality without prior knowledge of the patient's other plans to reduce bias. The three plans for each patient were compared according to the protocol's dosimetric compliance criteria. A homogeneity index was also computed to compare target dose uniformity. All plans achieved the protocol dose criteria, except for one RapidArc plan with slightly inferior dose to the optic chiasm. TomoTherapy offered superior dose homogeneity for all patients. For the two linac based methods, RapidArc was found to provide dose homogeneity at least as good as, and in most cases superior to, 9-field step-and-shoot IMRT. Helical TomoTherapy offers superior dose homogeneity for HA-WBRT following RTOG 0933. Compared to step-and-shoot IMRT, volumetric modulated arc techniques, such as RapidArc, can offer improved homogeneity for HA- WBRT and are generally more efficient/expeditious to deliver than the noncoplanar 9-field arrangement recommended by the protocol, which uses 7 separate couch angles. © 2012 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giri, U; Sarkar, B; Kaur, H
Purpose: To choose appropriate gantry starting angle for partial left breast irradiation using volumetric modulated arc therapy (VMAT). Methods: A random patient of left breast carcinoma was selected for this study. The slice which was selected for this mathematical formulation was having maximum breast thickness and maximum medial and lateral tangential distance. After this appropriate isocenter was chosen on that CT slice. The distances between various points were measured by the measuring tool in Monaco 5.00.04. Using the various trigonometric equations, a final equation was derived which shows the relationship between Gantry start angle, isocenter Location and tissue thickness. Results:more » The final equation for gantry start for right medial tangential arc is given asStarting angle = 270°+tan^(−1)(sin(θ)/(x-1/x-2 +cosθ))The above equation was tested for 10 cases and it was found to be appropriate for all the cases. Conclusion: Gantry starting angle for partial arc irradiation depends upon Breast thickness, Distance between Medial and lateral tangent and isocenter location.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldib, A; Al-Azhar University, Cairo; Jin, L
2014-06-15
Purpose: Electron arc therapy has long been proposed as the most suitable technique for the treatment of superficial tumors that follow circularly curved surfaces. However it was challenged by unsuitability of the conventional applicators and the lack of adequate 3-D dose calculation tools for arc electron beams in the treatment planning systems (TPS). Now with the availability of an electron specific multi-leaf collimator (eMLC) and an in-house Monte Carlo (MC) based TPS, we were motivated to investigate more advanced modulated electron arc (MeARC) therapy and its beneficial outcome. Methods: We initiated the study by a film measurement conducted in amore » head and neck phantom, where we delivered electron arcs in a step and shoot manner using the light field as a guide to avoid fields abutments. This step was done to insure enough clearance for the arcs with eMLC. MCBEAM and MCPLAN MC codes were used for the treatment head simulation and phantom dose calculation, respectively. Treatment plans were generated for targets drawn in real patient CTs and head and neck phantom. We utilized beams eye view available from a commercial planning system to create beamlets having same isocenter and adjoined at the scalp surface. Then dose-deposition coefficients from those beamlets were calculated for all electron energies using MCPLAN. An in-house optimization code was then used to find the optimum weights needed from individual beamlets. Results: MeARC showed a nicely tailored dose distribution around the circular curved target on the scalp. Some hot spots were noticed and could be attributed to fields abutment problem owing to the bulging nature of electron profiles. Brain dose was shown to be at lower levels compared to photon treatment. Conclusion: MeARC was shown to be a promising modality for treating scalp cases and could be beneficial to all superficial tumors with a circular curvature.« less
Kaviarasu, Karunakaran; Nambi Raj, N Arunai; Hamid, Misba; Giri Babu, A Ananda; Sreenivas, Lingampally; Murthy, Kammari Krishna
2017-01-01
The purpose of this study is to verify the accuracy of the commissioning of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) based on the recommendation of the American Association of Physicists in Medicine Task Group 119 (TG-119). TG-119 proposes a set of clinical test cases to verify the accuracy of IMRT planning and delivery system. For these test cases, we generated two sets of treatment plans, the first plan using 7-9 IMRT fields and a second plan utilizing two-arc VMAT technique for both 6 MV and 15 MV photon beams. The template plans of TG-119 were optimized and calculated by Varian Eclipse Treatment Planning System (version 13.5). Dose prescription and planning objectives were set according to the TG-119 goals. The point dose (mean dose to the contoured chamber volume) at the specified positions/locations was measured using compact (CC-13) ion chamber. The composite planar dose was measured with IMatriXX Evaluation 2D array with OmniPro IMRT Software (version 1.7b). The per-field relative gamma was measured using electronic portal imaging device in a way similar to the routine pretreatment patient-specific quality assurance. Our planning results are compared with the TG-119 data. Point dose and fluence comparison data where within the acceptable confident limit. From the obtained data in this study, we conclude that the commissioning of IMRT and VMAT delivery were found within the limits of TG-119.
Kaviarasu, Karunakaran; Nambi Raj, N. Arunai; Hamid, Misba; Giri Babu, A. Ananda; Sreenivas, Lingampally; Murthy, Kammari Krishna
2017-01-01
Aim: The purpose of this study is to verify the accuracy of the commissioning of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) based on the recommendation of the American Association of Physicists in Medicine Task Group 119 (TG-119). Materials and Methods: TG-119 proposes a set of clinical test cases to verify the accuracy of IMRT planning and delivery system. For these test cases, we generated two sets of treatment plans, the first plan using 7–9 IMRT fields and a second plan utilizing two-arc VMAT technique for both 6 MV and 15 MV photon beams. The template plans of TG-119 were optimized and calculated by Varian Eclipse Treatment Planning System (version 13.5). Dose prescription and planning objectives were set according to the TG-119 goals. The point dose (mean dose to the contoured chamber volume) at the specified positions/locations was measured using compact (CC-13) ion chamber. The composite planar dose was measured with IMatriXX Evaluation 2D array with OmniPro IMRT Software (version 1.7b). The per-field relative gamma was measured using electronic portal imaging device in a way similar to the routine pretreatment patient-specific quality assurance. Results: Our planning results are compared with the TG-119 data. Point dose and fluence comparison data where within the acceptable confident limit. Conclusion: From the obtained data in this study, we conclude that the commissioning of IMRT and VMAT delivery were found within the limits of TG-119. PMID:29296041
MO-G-BRD-01: Point/Counterpoint Debate: Arc Based Techniques Will Make Conventional IMRT Obsolete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shepard, D; Popple, R; Balter, P
2014-06-15
A variety of intensity modulated radiation therapy (IMRT) delivery techniques have been developed that have provided clinicians with the ability to deliver highly conformal dose distributions. The delivery techniques include compensators, step-and-shoot IMRT, sliding window IMRT, volumetric modulated arc therapy (VMAT), and tomotherapy. A key development in the field of IMRT was the introduction of new planning algorithms and delivery control systems in 2007 that made it possible to coordinate the gantry rotation speed, dose rate, and multileaf collimator leaf positions during the delivery of arc therapy. With these developments, VMAT became a routine clinical tool. The use of VMATmore » has continued to grow in recent years and some would argue that this will soon make conventional IMRT obsolete, and this is the premise of this debate. To introduce the debate, David Shepard, Ph.D. will provide an overview of IMRT delivery techniques including historical context and how they are being used today. The debate will follow with Richard Popple, Ph.D. arguing FOR the Proposition and Peter Balter, Ph.D. arguing AGAINST it. Learning Objectives: Understand the different delivery techniques for IMRT. Understand the potential benefits of conventional IMRT. Understand the potential benefits of arc-based IMRT delivery.« less
Oliver, M; McConnell, D; Romani, M; McAllister, A; Pearce, A; Andronowski, A; Wang, X; Leszczynski, K
2012-01-01
Objective The primary purpose of this study was to assess the practical trade-offs between intensity-modulated radiation therapy (IMRT) and dual-arc volumetric-modulated arc therapy (DA-VMAT) for locally advanced head and neck cancer (HNC). Methods For 15 locally advanced HNC data sets, nine-field step-and-shoot IMRT plans and two full-rotation DA-VMAT treatment plans were created in the Pinnacle3 v. 9.0 (Philips Medical Systems, Fitchburg, WI) treatment planning environment and then delivered on a Clinac iX (Varian Medical Systems, Palo Alto, CA) to a cylindrical detector array. The treatment planning goals were organised into four groups based on their importance: (1) spinal cord, brainstem, optical structures; (2) planning target volumes; (3) parotids, mandible, larynx and brachial plexus; and (4) normal tissues. Results Compared with IMRT, DA-VMAT plans were of equal plan quality (p>0.05 for each group), able to be delivered in a shorter time (3.1 min vs 8.3 min, p<0.0001), delivered fewer monitor units (on average 28% fewer, p<0.0001) and produced similar delivery accuracy (p>0.05 at γ2%/2mm and γ3%/3mm). However, the VMAT plans took more planning time (28.9 min vs 7.7 min per cycle, p<0.0001) and required more data for a three-dimensional dose (20 times more, p<0.0001). Conclusions Nine-field step-and-shoot IMRT and DA-VMAT are both capable of meeting the majority of planning goals for locally advanced HNC. The main trade-offs between the techniques are shorter treatment time for DA-VMAT but longer planning time and the additional resources required for implementation of a new technology. Based on this study, our clinic has incorporated DA-VMAT for locally advanced HNC. Advances in knowledge DA-VMAT is a suitable alternative to IMRT for locally advanced HNC. PMID:22806619
DOE Office of Scientific and Technical Information (OSTI.GOV)
Studenski, Matthew T., E-mail: matthew.studenski@jeffersonhospital.org; Shen, Xinglei; Yu, Yan
2013-04-01
Craniospinal irradiation (CSI) poses a challenging planning process because of the complex target volume. Traditional 3D conformal CSI does not spare any critical organs, resulting in toxicity in patients. Here the dosimetric advantages of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) are compared with classic conformal planning in adults for both cranial and spine fields to develop a clinically feasible technique that is both effective and efficient. Ten adult patients treated with CSI were retrospectively identified. For the cranial fields, 5-field IMRT and dual 356° VMAT arcs were compared with opposed lateral 3D conformal radiotherapy (3D-CRT) fields. Formore » the spine fields, traditional posterior-anterior (PA) PA fields were compared with isocentric 5-field IMRT plans and single 200° VMAT arcs. Two adult patients have been treated using this IMRT technique to date and extensive quality assurance, especially for the junction regions, was performed. For the cranial fields, the IMRT technique had the highest planned target volume (PTV) maximum and was the least efficient, whereas the VMAT technique provided the greatest parotid sparing with better efficiency. 3D-CRT provided the most efficient delivery but with the highest parotid dose. For the spine fields, VMAT provided the best PTV coverage but had the highest mean dose to all organs at risk (OAR). 3D-CRT had the highest PTV and OAR maximum doses but was the most efficient. IMRT provides the greatest OAR sparing but the longest delivery time. For those patients with unresectable disease that can benefit from a higher, definitive dose, 3D-CRT–opposed laterals are the most clinically feasible technique for cranial fields and for spine fields. Although inefficient, the IMRT technique is the most clinically feasible because of the increased mean OAR dose with the VMAT technique. Quality assurance of the beams, especially the junction regions, is essential.« less
Ming, Xin; Feng, Yuanming; Liu, Huan; Zhang, Ying; Zhou, Li; Deng, Jun
2015-01-01
Purpose To retrospectively evaluate the cardiac exposure in three cohorts of lung cancer patients treated with dynamic conformal arc therapy (DCAT), intensity-modulated radiotherapy (IMRT), or volumetric modulated arc therapy (VMAT) at our institution in the past seven years. Methods and Materials A total of 140 lung cancer patients were included in this institutional review board approved study: 25 treated with DCAT, 70 with IMRT and 45 with VMAT. All plans were generated in a same commercial treatment planning system and have been clinically accepted and delivered. The dose distribution to the heart and the effects of tumor laterality, the irradiated heart volume and the beam-to-heart distance on the cardiac exposure were investigated. Results The mean dose to the heart among all 140 plans was 4.5 Gy. Specifically, the heart received on average 2.3, 5.2 and 4.6 Gy in the DCAT, IMRT and VMAT plans, respectively. The mean heart doses for the left and right lung tumors were 4.1 and 4.8 Gy, respectively. No patients died with evidence of cardiac disease. Three patients (2%) with preexisting cardiac condition developed cardiac disease after treatment. Furthermore, the cardiac exposure was found to increase linearly with the irradiated heart volume while decreasing exponentially with the beam-to-heart distance. Conclusions Compared to old technologies for lung cancer treatment, modern radiotherapy treatment modalities demonstrated better heart sparing. But the heart dose in lung cancer radiotherapy is still higher than that in the radiotherapy of breast cancer and Hodgkin’s disease where cardiac complications have been extensively studied. With strong correlations of mean heart dose with beam-to-heart distance and irradiated heart volume, cautions should be exercised to avoid long-term cardiac toxicity in the lung cancer patients undergoing radiotherapy. PMID:26630566
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kainz, K; Lawton, C; Li, X
2015-06-15
Purpose: To compare the dosimetry and delivery of burst-mode modulated arc radiotherapy using flattening-filter-free (FFF) and flattening-filtered (FF) beams. Methods: Burst-mode modulated arc therapy (mARC, Siemens) plans were generated for six prostate cases with FFF and FF beam models, using the Elekta Monaco v. 5.00 planning system. One 360-degree arc was used for five cases, and for one case two 360-degree coplanar arcs were used. The maximum number of optimization points (OPs) per arc was set to 91, and OPs with less than 4 MU were disregarded. All plans were delivered on the Siemens Artiste linear accelerator with 6MV FFmore » (300 MU/min) and comparable-energy FFF (2000 MU/min, labeled as 7UF) beams. Results: For all cases studied, the plans with FFF beams exhibited DVHs for the PTV, rectum, and bladder that were nearly identical to those for the plans with FF beams. The FFF plan yielded reduced dose to the right femoral head for 5 cases, and lower mean dose to the left femoral head for 4 cases. For all but the two-arc case, the FFF and FF plans resulted in an identical number of segments. The total number of MUs was slightly lower for the FF plans for five cases. The total delivery time per fraction was substantially lower for the FFF plans, ranging from 25 to 50 percent among all cases, as compared to the FF plans. Conclusion: For mARC plans, FFF and FF beams provided comparable PTV coverage and rectum and bladder sparing. For the femoral heads, the mean dose was slightly lower in most cases when using the FFF beam. Although the flat beam plans typically required slightly fewer MUs, FFF beams required substantially less time to deliver a plan of similar quality. This work was supported by Siemens Medical Solutions and the MCW Cancer Center Fotsch Foundation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jia-Fu; Yeh, Dah-Cherng; Yeh, Hui-Ling, E-mail: hlyeh@vghtc.gov.tw
2015-10-01
To compare the dosimetric performance of 3 different treatment techniques: hybrid volumetric-modulated arc therapy (hybrid-VMAT), pure-VMAT, and fixed-field intensity-modulated radiation therapy (F-IMRT) for whole-breast irradiation of left-sided early breast cancer. The hybrid-VMAT treatment technique and 2 other treatment techniques—pure-VMAT and F-IMRT—were compared retrospectively in 10 patients with left-sided early breast cancer. The treatment plans of these patients were replanned using the same contours based on the original computed tomography (CT) data sets. Dosimetric parameters were calculated to evaluate plan quality. Total monitor units (MUs) and delivery time were also recorded and evaluated. The hybrid-VMAT plan generated the best results inmore » dose coverage of the target and the dose uniformity inside the target (p < 0.0001 for conformal index [CI]; p = 0.0002 for homogeneity index [HI] of planning target volume [PTV]{sub 50.4} {sub Gy} and p < 0.0001 for HI of PTV{sub 62} {sub Gy}). Volumes of ipsilateral lung irradiated to doses of 20 Gy (V{sub 20} {sub Gy}) and 5 Gy (V{sub 5} {sub Gy}) by the hybrid-VMAT plan were significantly less than those of the F-IMRT and the pure-VMAT plans. The volume of ipsilateral lung irradiated to a dose of 5 Gy was significantly less using the hybrid-VMAT plan than that using the F-IMRT or the pure-VMAT plan. The total mean MUs for the hybrid-VMAT plan were significantly less than those for the F-IMRT or the pure-VMAT plan. The mean machine delivery time was 3.23 ± 0.29 minutes for the hybrid-VMAT plans, which is longer than that for the pure-VMAT plans but shorter than that for the F-IMRT plans. The hybrid-VMAT plan is feasible for whole-breast irradiation of left-sided early breast cancer.« less
The NCS code of practice for the quality assurance and control for volumetric modulated arc therapy
NASA Astrophysics Data System (ADS)
Mans, Anton; Schuring, Danny; Arends, Mark P.; Vugts, Cornelia A. J. M.; Wolthaus, Jochem W. H.; Lotz, Heidi T.; Admiraal, Marjan; Louwe, Rob J. W.; Öllers, Michel C.; van de Kamer, Jeroen B.
2016-10-01
In 2010, the NCS (Netherlands Commission on Radiation Dosimetry) installed a subcommittee to develop guidelines for quality assurance and control for volumetric modulated arc therapy (VMAT) treatments. The report (published in 2015) has been written by Dutch medical physicists and has therefore, inevitably, a Dutch focus. This paper is a condensed version of these guidelines, the full report in English is freely available from the NCS website www.radiationdosimetry.org. After describing the transition from IMRT to VMAT, the paper addresses machine quality assurance (QA) and treatment planning system (TPS) commissioning for VMAT. The final section discusses patient specific QA issues such as the use of class solutions, measurement devices and dose evaluation methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliver, Mike; Gladwish, Adam; Craig, Jeff
2008-07-15
Purpose and background: Intensity modulated arc therapy (IMAT) is a rotational variant of Intensity modulated radiation therapy (IMRT) that is achieved by allowing the multileaf collimator (MLC) positions to vary as the gantry rotates around the patient. This work describes a method to generate an IMAT plan through the use of a fast ray tracing technique based on dosimetric and geometric information for setting initial MLC leaf positions prior to final IMAT optimization. Methods and materials: Three steps were used to generate an IMAT plan. The first step was to generate arcs based on anatomical contours. The second step wasmore » to generate ray importance factor (RIF) maps by ray tracing the dose distribution inside the planning target volume (PTV) to modify the MLC leaf positions of the anatomical arcs to reduce the maximum dose inside the PTV. The RIF maps were also segmented to create a new set of arcs to improve the dose to low dose voxels within the PTV. In the third step, the MLC leaf positions from all arcs were put through a leaf position optimization (LPO) algorithm and brought into a fast Monte Carlo dose calculation engine for a final dose calculation. The method was applied to two phantom cases, a clinical prostate case and the Radiological Physics Center (RPC)'s head and neck phantom. The authors assessed the plan improvements achieved by each step and compared plans with and without using RIF. They also compared the IMAT plan with an IMRT plan for the RPC phantom. Results: All plans that incorporated RIF and LPO had lower objective function values than those that incorporated LPO only. The objective function value was reduced by about 15% after the generation of RIF arcs and 52% after generation of RIF arcs and leaf position optimization. The IMAT plan for the RPC phantom had similar dose coverage for PTV1 and PTV2 (the same dose volume histogram curves), however, slightly lower dose to the normal tissues compared to a six-field IMRT plan. Conclusion: The use of a ray importance factor can generate initial IMAT arcs efficiently for further MLC leaf position optimization to obtain more favorable IMAT plan.« less
NASA Astrophysics Data System (ADS)
Vazquez-Quino, L. A.; Huerta-Hernandez, C. I.; Rangaraj, D.
2017-05-01
MobiusFX, an add-on software module from Mobius Medical Systems for IMRT and VMAT QA, uses measurements in linac treatment logs to calculate and verify the 3D dose delivered to patients. In this study, 10 volumetric-modulated arc therapy (VMAT) prostate plans were planned and delivered in a Varian TrueBeam linac. The plans consisted of beams with 6 and 10 MV energy and 2 to 3 arcs per plan. The average gamma value with criterion of 3% and 3mm MobiusFX and TPS: 99.96%, 2% and 2mm MobiusFX and TPS: 98.70 %. Further comparison with ArcCheck measurements was conducted.
Cost Analysis of Complex Radiation Therapy for Patients With Head and Neck Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perrier, Lionel; Morelle, Magali; Department of Clinical Research and Innovation, Leon Berard Cancer Centre, Lyon
2016-06-01
Purpose: This cost analysis aimed to prospectively assess differences in costs between TomoTherapy and volumetric modulated arc therapy (VMAT) in patients with head and neck cancer. Methods and Materials: Economic data were gathered from a multicenter study. However, randomization was not possible due to the availability of equipment. Costs were calculated using the microcosting technique from the hospital's perspective (in 2013 euros), and the time horizon was radiation therapy. Only resources that entered the hospital production process and which were likely to vary between the strategies being compared were considered. Acute adverse events observed within the time horizon were alsomore » assessed. Results: The cost analysis was based on a total of 173 patient treatments given between 2010 and 2012 in 14 French cancer centers: 73 patients were treated with TomoTherapy, 92 with VMAT RapidArc, and 8 with VMAT SmartArc. Estimated costs of SmartArc were removed from the comparison due to the small sample size. The mean ± SD cost per patient of the treatment planning phase was €314 (±€214) for TomoTherapy and €511 (±€590) for RapidArc. Mean costs ± SD per patient of irradiation reached €3144 (±€565) for TomoTherapy and €1350 (±€299) for RapidArc. The most sensitive parameter of irradiation was the annual operating time of accelerators. Ninety-five percent confidence intervals for the mean costs of irradiation were €3016 to €3272 for TomoTherapy and €1281 to €1408 for RapidArc. The number of acute adverse events during radiation therapy was not significantly different between strategies. Conclusions: TomoTherapy appeared to be more expensive than RapidArc mainly due to the higher price of the accelerator, the higher costs of maintenance, and the longer duration of treatment sessions. Because strategies were not significantly different in clinical effect, RapidArc appeared to be the strategy to be recommended at this stage of knowledge.« less
Cost Analysis of Complex Radiation Therapy for Patients With Head and Neck Cancer.
Perrier, Lionel; Morelle, Magali; Pommier, Pascal; Boisselier, Pierre; Coche-Dequeant, Bernard; Gallocher, Olivier; Alfonsi, Marc; Bardet, Etienne; Rives, Michel; Calugaru, Valentin; Chajon, Enrique; Noel, Georges; Mecellem, Hinda; Pérol, David; Dussart, Sophie; Giraud, Philippe
2016-06-01
This cost analysis aimed to prospectively assess differences in costs between TomoTherapy and volumetric modulated arc therapy (VMAT) in patients with head and neck cancer. Economic data were gathered from a multicenter study. However, randomization was not possible due to the availability of equipment. Costs were calculated using the microcosting technique from the hospital's perspective (in 2013 euros), and the time horizon was radiation therapy. Only resources that entered the hospital production process and which were likely to vary between the strategies being compared were considered. Acute adverse events observed within the time horizon were also assessed. The cost analysis was based on a total of 173 patient treatments given between 2010 and 2012 in 14 French cancer centers: 73 patients were treated with TomoTherapy, 92 with VMAT RapidArc, and 8 with VMAT SmartArc. Estimated costs of SmartArc were removed from the comparison due to the small sample size. The mean ± SD cost per patient of the treatment planning phase was €314 (±€214) for TomoTherapy and €511 (±€590) for RapidArc. Mean costs ± SD per patient of irradiation reached €3144 (±€565) for TomoTherapy and €1350 (±€299) for RapidArc. The most sensitive parameter of irradiation was the annual operating time of accelerators. Ninety-five percent confidence intervals for the mean costs of irradiation were €3016 to €3272 for TomoTherapy and €1281 to €1408 for RapidArc. The number of acute adverse events during radiation therapy was not significantly different between strategies. TomoTherapy appeared to be more expensive than RapidArc mainly due to the higher price of the accelerator, the higher costs of maintenance, and the longer duration of treatment sessions. Because strategies were not significantly different in clinical effect, RapidArc appeared to be the strategy to be recommended at this stage of knowledge. Copyright © 2016 Elsevier Inc. All rights reserved.
Determination of MLC model parameters for Monaco using commercial diode arrays.
Kinsella, Paul; Shields, Laura; McCavana, Patrick; McClean, Brendan; Langan, Brian
2016-07-08
Multileaf collimators (MLCs) need to be characterized accurately in treatment planning systems to facilitate accurate intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT). The aim of this study was to examine the use of MapCHECK 2 and ArcCHECK diode arrays for optimizing MLC parameters in Monaco X-ray voxel Monte Carlo (XVMC) dose calculation algorithm. A series of radiation test beams designed to evaluate MLC model parameters were delivered to MapCHECK 2, ArcCHECK, and EBT3 Gafchromic film for comparison. Initial comparison of the calculated and ArcCHECK-measured dose distributions revealed it was unclear how to change the MLC parameters to gain agreement. This ambiguity arose due to an insufficient sampling of the test field dose distributions and unexpected discrepancies in the open parts of some test fields. Consequently, the XVMC MLC parameters were optimized based on MapCHECK 2 measurements. Gafchromic EBT3 film was used to verify the accuracy of MapCHECK 2 measured dose distributions. It was found that adjustment of the MLC parameters from their default values resulted in improved global gamma analysis pass rates for MapCHECK 2 measurements versus calculated dose. The lowest pass rate of any MLC-modulated test beam improved from 68.5% to 93.5% with 3% and 2 mm gamma criteria. Given the close agreement of the optimized model to both MapCHECK 2 and film, the optimized model was used as a benchmark to highlight the relatively large discrepancies in some of the test field dose distributions found with ArcCHECK. Comparison between the optimized model-calculated dose and ArcCHECK-measured dose resulted in global gamma pass rates which ranged from 70.0%-97.9% for gamma criteria of 3% and 2 mm. The simple square fields yielded high pass rates. The lower gamma pass rates were attributed to the ArcCHECK overestimating the dose in-field for the rectangular test fields whose long axis was parallel to the long axis of the ArcCHECK. Considering ArcCHECK measurement issues and the lower gamma pass rates for the MLC-modulated test beams, it was concluded that MapCHECK 2 was a more suitable detector than ArcCHECK for the optimization process. © 2016 The Authors
Volumetric modulated arc therapy: a review of current literature and clinical use in practice
Teoh, M; Clark, C H; Wood, K; Whitaker, S; Nisbet, A
2011-01-01
Volumetric modulated arc therapy (VMAT) is a novel radiation technique, which can achieve highly conformal dose distributions with improved target volume coverage and sparing of normal tissues compared with conventional radiotherapy techniques. VMAT also has the potential to offer additional advantages, such as reduced treatment delivery time compared with conventional static field intensity modulated radiotherapy (IMRT). The clinical worldwide use of VMAT is increasing significantly. Currently the majority of published data on VMAT are limited to planning and feasibility studies, although there is emerging clinical outcome data in several tumour sites. This article aims to discuss the current use of VMAT techniques in practice and review the available data from planning and clinical outcome studies in various tumour sites including prostate, pelvis (lower gastrointestinal, gynaecological), head and neck, thoracic, central nervous system, breast and other tumour sites. PMID:22011829
Jiang, Runqing
2013-01-01
This study investigates the dosimetry and radiobiological model variation when a second photon arc was added to prostate volumetric‐modulated arc therapy (VMAT) using the single‐arc technique. Dosimetry and radiobiological model comparison between the single‐arc and double‐arc prostate VMAT plans were performed on five patients with prostate volumes ranging from 29−68.1 cm3. The prescription dose was 78 Gy/39 fractions and the photon beam energy was 6 MV. Dose‐volume histogram, mean and maximum dose of targets (planning and clinical target volume) and normal tissues (rectum, bladder and femoral heads), dose‐volume criteria in the treatment plan (D99% of PTV; D30%,D50%,V17Gy and V35Gy of rectum and bladder; D5% of femoral heads), and dose profiles along the vertical and horizontal axis crossing the isocenter were determined using the single‐arc and double‐arc VMAT technique. For comparison, the monitor unit based on the RapidArc delivery method, prostate tumor control probability (TCP), and rectal normal tissue complication probability (NTCP) based on the Lyman‐Burman‐Kutcher algorithm were calculated. It was found that though the double‐arc technique required almost double the treatment time than the single‐arc, the double‐arc plan provided a better rectal and bladder dose‐volume criteria by shifting the delivered dose in the patient from the anterior–posterior direction to the lateral. As the femoral head was less radiosensitive than the rectum and bladder, the double‐arc technique resulted in a prostate VMAT plan with better prostate coverage and rectal dose‐volume criteria compared to the single‐arc. The prostate TCP of the double‐arc plan was found slightly increased (0.16%) compared to the single‐arc. Therefore, when the rectal dose‐volume criteria are very difficult to achieve in a single‐arc prostate VMAT plan, it is worthwhile to consider the double‐arc technique. PACS number: 87.55.D‐, 87.55.dk, 87.55.K‐, 87.55.Qr
Volumetric Modulated Arc Therapy vs. c-IMRT for the Treatment of Upper Thoracic Esophageal Cancer
Lu, Jia-Yang; Chen, Jian-Zhou; Chen, Zhi-Jian; Li, De-Rui; Chen, Chuang-Zhen
2015-01-01
Objective To compare plans using volumetric-modulated arc therapy (VMAT) with conventional sliding window intensity-modulated radiation therapy (c-IMRT) to treat upper thoracic esophageal cancer (EC). Methods CT datasets of 11 patients with upper thoracic EC were identified. Four plans were generated for each patient: c-IMRT with 5 fields (5F) and VMAT with a single arc (1A), two arcs (2A), or three arcs (3A). The prescribed doses were 64 Gy/32 F for the primary tumor (PTV64). The dose-volume histogram data, the number of monitoring units (MUs) and the treatment time (TT) for the different plans were compared. Results All of the plans generated similar dose distributions for PTVs and organs at risk (OARs), except that the 2A- and 3A-VMAT plans yielded a significantly higher conformity index (CI) than the c-IMRT plan. The CI of the PTV64 was improved by increasing the number of arcs in the VMAT plans. The maximum spinal cord dose and the planning risk volume of the spinal cord dose for the two techniques were similar. The 2A- and 3A-VMAT plans yielded lower mean lung doses and heart V50 values than the c-IMRT. The V20 and V30 for the lungs in all of the VMAT plans were lower than those in the c-IMRT plan, at the expense of increasing V5, V10 and V13. The VMAT plan resulted in significant reductions in MUs and TT. Conclusion The 2A-VMAT plan appeared to spare the lungs from moderate-dose irradiation most effectively of all plans, at the expense of increasing the low-dose irradiation volume, and also significantly reduced the number of required MUs and the TT. The CI of the PTVs and the OARs was improved by increasing the arc-number from 1 to 2; however, no significant improvement was observed using the 3A-VMAT, except for an increase in the TT. PMID:25815477
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, W; Wu, L; Lu, J
2015-06-15
Purpose: To compare plans using volumetric-modulated arc therapy (VMAT) with conventional sliding window intensity-modulated radiation therapy (c-IMRT) to treat upper thoracic esophageal cancer (EC). Methods: CT datasets of 11 patients with upper thoracic EC were identified. Four plans were generated for each patient: c-IMRT with 5 fields (5F) and VMAT with a single arc (1A), two arcs (2A), or three arcs (3A). The prescribed doses were 64 Gy/32 F for the primary tumor (planning target volume 64, PTV64). The dose-volume histogram data, the number of monitoring units (MUs) and the treatment time (TT) for the different plans were compared. Results:more » All of the plans generated similar dose distributions for PTVs and organs at risk (OARs), except that the 2A- and 3A-VMAT plans yielded a significantly higher conformity index (CI) than the c-IMRT plan. The CI of the PTV64 was improved by increasing the number of arcs in the VMAT plans. The maximum spinal cord dose and the planning risk volume of the spinal cord dose for the two techniques were similar. The 2A- and 3A-VMAT plans yielded lower mean lung doses and heart V50 than the c-IMRT. The V20 and V30 for the lungs in all of the VMAT plans were lower than those in the c-IMRT plan, at the expense of increasing V5, V10 and V13. The VMAT plan resulted in significant reductions in MUs and TT. Conclusion: The 2A-VMAT plan appeared to spare the lungs from moderate-dose irradiation most effectively of all plans, at the expense of increasing the low-dose irradiation volume, and also significantly reduced the number of required MUs and the TT. The CI of the PTVs and the OARs was improved by increasing the arc-number from 1 to 2. however, no significant improvement was observed using the 3A-VMAT, except for an increase in the TT. This work was sponsored by Shantou University Medical College Clinical Research Enhancement Initiative(NO.201424)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Katrina, E-mail: Trinabena23@gmail.com; Lenards, Nishele; Holson, Janice
The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient's neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to themore » hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient's data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, D; Salmon, H; Pavan, G
2014-06-01
Purpose: Evaluate and compare retrospective prostate treatment plan using Volumetric Modulated Arc Therapy (RapidArc™ - Varian) technique with single or double arcs at COI Group. Methods: Ten patients with present prostate and seminal vesicle neoplasia were replanned as a target treatment volume and a prescribed dose of 78 Gy. A baseline planning, using single arc, was developed for each case reaching for the best result on PTV, in order to minimize the dose on organs at risk (OAR). Maintaining the same optimization objectives used on baseline plan, two copies for optimizing single and double arcs, have been developed. The plansmore » were performed with 10 MV photon beam energy on Eclipse software, version 11.0, making use of Trilogy linear accelerator with Millenium HD120 multileaf collimator. Comparisons on PTV have been performed, such as: maximum, minimum and mean dose, gradient dose, as well as the quantity of monitor units, treatment time and homogeneity and conformity index. OARs constrains dose have been evaluated, comparing both optimizations. Results: Regarding PTV coverage, the difference of the minimum, maximum and mean dose were 1.28%, 0.7% and 0.2% respectively higher for single arc. When analyzed the index of homogeneity found a difference of 0.99% higher when compared with double arcs. However homogeneity index was 0.97% lower on average by using single arc. The doses on the OARs, in both cases, were in compliance to the recommended limits RTOG 0415. With the use of single arc, the quantity of monitor units was 10,1% lower, as well as the Beam-On time, 41,78%, when comparing double arcs, respectively. Conclusion: Concerning the optimization of patients with present prostate and seminal vesicle neoplasia, the use of single arc reaches similar objectives, when compared to double arcs, in order to decrease the treatment time and the quantity of monitor units.« less
NASA Astrophysics Data System (ADS)
Cheong, Kwang-Ho; Lee, Me-Yeon; Kang, Sei-Kwon; Yoon, Jai-Woong; Park, Soah; Hwang, Taejin; Kim, Haeyoung; Kim, Kyoung Ju; Han, Tae Jin; Bae, Hoonsik
2015-07-01
The aim of this study is to set up statistical quality control for monitoring the volumetric modulated arc therapy (VMAT) delivery error by using the machine's log data. Eclipse and a Clinac iX linac with the RapidArc system (Varian Medical Systems, Palo Alto, USA) are used for delivery of the VMAT plan. During the delivery of the RapidArc fields, the machine determines the delivered monitor units (MUs) and the gantry angle's position accuracy and the standard deviations of the MU ( σMU: dosimetric error) and the gantry angle ( σGA: geometric error) are displayed on the console monitor after completion of the RapidArc delivery. In the present study, first, the log data were analyzed to confirm its validity and usability; then, statistical process control (SPC) was applied to monitor the σMU and the σGA in a timely manner for all RapidArc fields: a total of 195 arc fields for 99 patients. The MU and the GA were determined twice for all fields, that is, first during the patient-specific plan QA and then again during the first treatment. The sMU and the σGA time series were quite stable irrespective of the treatment site; however, the sGA strongly depended on the gantry's rotation speed. The σGA of the RapidArc delivery for stereotactic body radiation therapy (SBRT) was smaller than that for the typical VMAT. Therefore, SPC was applied for SBRT cases and general cases respectively. Moreover, the accuracy of the potential meter of the gantry rotation is important because the σGA can change dramatically due to its condition. By applying SPC to the σMU and σGA, we could monitor the delivery error efficiently. However, the upper and the lower limits of SPC need to be determined carefully with full knowledge of the machine and log data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, I; Quinn, K; Seebach, A
2015-06-15
Purpose: This study evaluates the dosimetric differences using volumetric modulated arc therapy (VMAT) in patients previously treated with intensity modulated radiation therapy IMRT for stereotactic body radiotherapy (SBRT) in early stage lung cancer. Methods: We evaluated 9 consecutive medically inoperable lung cancer patients at the start of the SBRT program who were treated with IMRT from November 2010 to October 2011. These patients were treated using 6 MV energy. The 9 cases were then re-planned with VMAT performed with arc therapy using 6 MV flattening filter free (FFF) energy with the same organs at risk (OARS) constraints. Data collected formore » the treatment plans included target coverage, beam on time, dose to OARS and gamma pass rate. Results: Five patients were T1N0 and four patients were T2N0 with all tumors less than 5 cm. The average GTV was 13.02 cm3 (0.83–40.87) and average PTV was 44.65 cm3 (14.06–118.08). The IMRT plans had a mean of 7.2 angles (6–9) and 5.4 minutes (3.6–11.1) per plan. The VMAT plans had a mean of 2.8 arcs (2–3) and 4.0 minutes (2.2–6.0) per plan. VMAT had slightly more target coverage than IMRT with average increase in D95 of 2.68% (1.24–5.73) and D99 of 3.65% (0.88–8.77). VMAT produced lower doses to all OARs. The largest reductions were in maximum doses to the spinal cord with an average reduction of 24.1%, esophagus with an average reduction of 22.1%, and lung with an average reduction in the V20 of 16.3% The mean gamma pass rate was 99.8% (99.2–100) at 3 mm and 3% for VMAT with comparable values for IMRT. Conclusion: These findings suggest that using VMAT for SBRT in early stage lung cancer is superior to IMRT in terms of dose coverage, OAR dose and a lower treatment delivery time with a similar gamma pass rate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, E; Hoppe, R; Million, L
2015-06-15
Purpose: Integration of coordinated robotic table motion with inversely-planned arc delivery has the potential to resolve table-top delivery limitations of large-field treatments such as Total Body Irradiation (TBI), Total Lymphoid Irradiation (TLI), and Cranial-Spinal Irradiation (CSI). We formulate the foundation for Trajectory Modulated Arc Therapy (TMAT), and using Varian Developer Mode capabilities, experimentally investigate its practical implementation for such techniques. Methods: A MATLAB algorithm was developed for inverse planning optimization of the table motion, MLC positions, and gantry motion under extended-SSD geometry. To maximize the effective field size, delivery trajectories for TMAT TBI were formed with the table rotated atmore » 270° IEC and dropped vertically to 152.5cm SSD. Preliminary testing of algorithm parameters was done through retrospective planning analysis. Robotic delivery was programmed using custom XML scripting on the TrueBeam Developer Mode platform. Final dose was calculated using the Eclipse AAA algorithm. Initial verification of delivery accuracy was measured using OSLDs on a solid water phantom of varying thickness. Results: A comparison of DVH curves demonstrated that dynamic couch motion irradiation was sufficiently approximated by static control points spaced in intervals of less than 2cm. Optimized MLC motion decreased the average lung dose to 68.5% of the prescription dose. The programmed irradiation integrating coordinated table motion was deliverable on a TrueBeam STx linac in 6.7 min. With the couch translating under an open 10cmx20cm field angled at 10°, OSLD measurements along the midline of a solid water phantom at depths of 3, 5, and 9cm were within 3% of the TPS AAA algorithm with an average deviation of 1.2%. Conclusion: A treatment planning and delivery system for Trajectory Modulated Arc Therapy of extended volumes has been established and experimentally demonstrated for TBI. Extension to other treatment techniques such as TLI and CSI is readily achievable through the developed platform. Grant Funding by Varian Medical Systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kan, Monica W.K., E-mail: kanwkm@ha.org.hk; Department of Physics and Materials Science, City University of Hong Kong, Hong Kong; Leung, Lucullus H.T.
2013-01-01
Purpose: To assess the dosimetric implications for the intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy with RapidArc (RA) of nasopharyngeal carcinomas (NPC) due to the use of the Acuros XB (AXB) algorithm versus the anisotropic analytical algorithm (AAA). Methods and Materials: Nine-field sliding window IMRT and triple-arc RA plans produced for 12 patients with NPC using AAA were recalculated using AXB. The dose distributions to multiple planning target volumes (PTVs) with different prescribed doses and critical organs were compared. The PTVs were separated into components in bone, air, and tissue. The change of doses by AXB duemore » to air and bone, and the variation of the amount of dose changes with number of fields was also studied using simple geometric phantoms. Results: Using AXB instead of AAA, the averaged mean dose to PTV{sub 70} (70 Gy was prescribed to PTV{sub 70}) was found to be 0.9% and 1.2% lower for IMRT and RA, respectively. It was approximately 1% lower in tissue, 2% lower in bone, and 1% higher in air. The averaged minimum dose to PTV{sub 70} in bone was approximately 4% lower for both IMRT and RA, whereas it was approximately 1.5% lower for PTV{sub 70} in tissue. The decrease in target doses estimated by AXB was mostly contributed from the presence of bone, less from tissue, and none from air. A similar trend was observed for PTV{sub 60} (60 Gy was prescribed to PTV{sub 60}). The doses to most serial organs were found to be 1% to 3% lower and to other organs 4% to 10% lower for both techniques. Conclusions: The use of the AXB algorithm is highly recommended for IMRT and RapidArc planning for NPC cases.« less
Vanetti, Eugenio; Nicolini, Giorgia; Nord, Janne; Peltola, Jarkko; Clivio, Alessandro; Fogliata, Antonella; Cozzi, Luca
2011-11-01
The RapidArc volumetric modulated arc therapy (VMAT) planning process is based on a core engine, the so-called progressive resolution optimizer (PRO). This is the optimization algorithm used to determine the combination of field shapes, segment weights (with dose rate and gantry speed variations), which best approximate the desired dose distribution in the inverse planning problem. A study was performed to assess the behavior of two versions of PRO. These two versions mostly differ in the way continuous variables describing the modulated arc are sampled into discrete control points, in the planning efficiency and in the presence of some new features. The analysis aimed to assess (i) plan quality, (ii) technical delivery aspects, (iii) agreement between delivery and calculations, and (iv) planning efficiency of the two versions. RapidArc plans were generated for four groups of patients (five patients each): anal canal, advanced lung, head and neck, and multiple brain metastases and were designed to test different levels of planning complexity and anatomical features. Plans from optimization with PRO2 (first generation of RapidArc optimizer) were compared against PRO3 (second generation of the algorithm). Additional plans were optimized with PRO3 using new features: the jaw tracking, the intermediate dose and the air cavity correction options. Results showed that (i) plan quality was generally improved with PRO3 and, although not for all parameters, some of the scored indices showed a macroscopic improvement with PRO3. (ii) PRO3 optimization leads to simpler patterns of the dynamic parameters particularly for dose rate. (iii) No differences were observed between the two algorithms in terms of pretreatment quality assurance measurements and (iv) PRO3 optimization was generally faster, with a time reduction of a factor approximately 3.5 with respect to PRO2. These results indicate that PRO3 is either clinically beneficial or neutral in terms of dosimetric quality while it showed significant advantages in speed and technical aspects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, T; Chen, J; Zhang, G
2015-06-15
Purpose: To compare and analyze the characteristics of intensity-modulated arc therapy(IMAT) versus fixed-gantry intensity-modulated radiotherapy(IMRT) in treatment of non-small-cell lung cancer. Methods: Twelve patients treated in our radiotherapy center were selected for this study. The patient subsequently underwent 4D-CT simulation.Margins of 5mm and 10mm were added to the ITV to generate the CTV and PTV respectively. Three treatment plans (IMRT,one single arc (RA1),double arcs (RA2))were generated with Eclipse ver.8.6 planning systems. Using a dose level of 75Gy in 15fractions to the ITV,60Gy in 15fractions to the CTV and 45Gy in 15fractions to the PTV respectively. The target and normol tissuemore » volumes were compared,as were the dosimetry parameters. Results: There were no significant differences in CI of ITV,PTV,HI of ITV,CTV and PTV, V5,V10,V15,V20,V25,V30,V45,V50 of total-lung and mean lung dose (all p>0.05). However, the differences were significant in terms of CI of CTV,V5 of B-P (all p<0.05). On the MU, IMRT=1540MU,RA1=1006 MU and RA2=1096 MU. (F=12.00,P=0.000).On the treatment time, IMRT= 13.5min,RA1= 1.5min,and RA2=2.5 min (F= 30.11,P=0.000 ). Conclusion: IMAT is equal to IMRT in dosimetril evaluation. Due to much less Mu and delivery time,IMAT is an ideal technique in treating patients by reduceing the uncomfortable influnce which could effect the treatment.« less
Miura, Hideharu; Ozawa, Shuichi; Nagata, Yasushi
2017-09-01
This study investigated position dependence in planning target volume (PTV)-based and robust optimization plans using full-arc and partial-arc volumetric modulated arc therapy (VMAT). The gantry angles at the periphery, intermediate, and center CTV positions were 181°-180° (full-arc VMAT) and 181°-360° (partial-arc VMAT). A PTV-based optimization plan was defined by 5 mm margin expansion of the CTV to a PTV volume, on which the dose constraints were applied. The robust optimization plan consisted of a directly optimized dose to the CTV under a maximum-uncertainties setup of 5 mm. The prescription dose was normalized to the CTV D 99% (the minimum relative dose that covers 99% of the volume of the CTV) as an original plan. The isocenter was rigidly shifted at 1 mm intervals in the anterior-posterior (A-P), superior-inferior (S-I), and right-left (R-L) directions from the original position to the maximum-uncertainties setup of 5 mm in the original plan, yielding recalculated dose distributions. It was found that for the intermediate and center positions, the uncertainties in the D 99% doses to the CTV for all directions did not significantly differ when comparing the PTV-based and robust optimization plans (P > 0.05). For the periphery position, uncertainties in the D 99% doses to the CTV in the R-L direction for the robust optimization plan were found to be lower than those in the PTV-based optimization plan (P < 0.05). Our study demonstrated that a robust optimization plan's efficacy using partial-arc VMAT depends on the periphery CTV position. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Sukumar, Prabakar; Padmanaban, Sriram; Jeevanandam, Prakash; Syam Kumar, S.A.; Nagarajan, Vivekanandan
2011-01-01
Aim In this study, the dosimetric properties of the electronic portal imaging device were examined and the quality assurance testing of Volumetric Modulated Arc Therapy was performed. Background RapidArc involves the variable dose rate, leaf speed and the gantry rotation. The imager was studied for the effects like dose, dose rate, field size, leaf speed and sag during gantry rotation. Materials and methods A Varian RapidArc machine equipped with 120 multileaf collimator and amorphous silicon detector was used for the study. The characteristics that are variable in RapidArc treatment were studied for the portal imager. The accuracy of a dynamic multileaf collimator position at different gantry angles and during gantry rotation was examined using the picket fence test. The control of the dose rate and gantry speed was verified using a test field irradiating seven strips of the same dose with different dose rate and gantry speeds. The control over leaf speed during arc was verified by irradiating four strips of different leaf speeds with the same dose in each strip. To verify the results, the RapidArc test procedure was compared with the X-Omat film and verified for a period of 6 weeks using EPID. Results The effect of gantry rotation on leaf accuracy was minimal. The dose in segments showed good agreement with mean deviation of 0.8% for dose rate control and 1.09% for leaf speed control over different gantry speeds. Conclusion The results provided a precise control of gantry speed, dose rate and leaf speeds during RapidArc delivery and were consistent over 6 weeks. PMID:24376989
Elith, Craig A; Dempsey, Shane E; Warren-Forward, Helen M
2014-01-01
Introduction This study compared four different volumetric modulated arc therapy (VMAT) beam arrangements for the treatment of early-stage prostate cancer examining plan quality and the impact on a radiotherapy department's resources. Methods Twenty prostate cases were retrospectively planned using four VMAT beam arrangements (1) a partial arc (PA), (2) one arc (1A), (3) one arc plus a partial arc (1A + PA) and (4) two arcs (2A). The quality of the dose distributions generated were compared by examining the overall plan quality, the homogeneity and conformity to the planning target volume (PTV), the number of monitor units and the dose delivered to the organs at risk. Departmental resources were considered by recording the planning time and beam delivery time. Results Each technique produced a plan of similar quality that was considered adequate for treatment; though some differences were noted. The 1A, 1A + PA and 2A plans demonstrated a better conformity to the PTV which correlated to improved sparing of the rectum in the 60–70 Gy range for the 1A + PA and 2A techniques. The time needed to generate the plans was different for each technique ranging from 13.1 min for 1A + PA to 17.8 min for 1A. The PA beam delivery time was fastest with a mean time of 0.9 min. Beam-on times then increased with an increase in the number of arcs up to an average of 2.2 min for the 2A technique. Conclusion Which VMAT technique is best suited for clinical implementation for the treatment of prostate cancer may be dictated by the individual patient and the availability of departmental resources. PMID:26229643
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekici, Kemal, E-mail: drkemal06@hotmail.com; Pepele, Eda K.; Yaprak, Bahaddin
2016-01-01
Various radiotherapy planning methods for T1N0 laryngeal cancer have been proposed to decrease normal tissue toxicity. We compare helical tomotherapy (HT), linac-based intensity-modulated radiation therapy (IMRT), volumetric-modulated arc therapy (VMAT), and 3-D conformal radiotherapy (3D-CRT) techniques for T1N0 laryngeal cancer. Overall, 10 patients with T1N0 laryngeal cancer were selected and evaluated. Furthermore, 10 radiotherapy treatment plans have been created for all 10 patients, including HT, IMRT, VMAT, and 3D-CRT. IMRT, VMAT, and HT plans vs 3D-CRT plans consistently provided superior planning target volume (PTV) coverage. Similar target coverage was observed between the 3 IMRT modalities. Compared with 3D-CRT, IMRT, HT,more » and VMAT significantly reduced the mean dose to the carotid arteries. VMAT resulted in the lowest mean dose to the submandibular and thyroid glands. Compared with 3D-CRT, IMRT, HT, and VMAT significantly increased the maximum dose to the spinal cord It was observed that the 3 IMRT modalities studied showed superior target coverage with less variation between each plan in comparison with 3D-CRT. The 3D-CRT plans performed better at the D{sub max} of the spinal cord. Clinical investigation is warranted to determine if these treatment approaches would translate into a reduction in radiation therapy–induced toxicities.« less
Lee, Katrina; Lenards, Nishele; Holson, Janice
2016-01-01
The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient׳s neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient׳s data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Linac-based total body irradiation (TBI) with volumetric modulated arc therapy (VMAT)
NASA Astrophysics Data System (ADS)
Tas, B.; Durmus, I. F.; Okumus, A.; Uzel, O. E.
2017-02-01
To evaluate dose distribution of Volumetric modulated arc therapy (VMAT) planning tecnique using Versa HD® lineer accelerator to deliver Total Body Irradiation (TBI) on the coach. Eight TBI patient's Treatment Planning System (TPS) were performed with dual arc VMAT for each patient. The VMAT-TBI consisted of three isocentres and three dual overlapping arcs. The prescribed dose was 12 Gy. Mean dose to lung and kidney were restricted less than 10 Gy and max. dose to lens were restricted less than 6 Gy. The plans were verified using 2D array and ion chamber. The comparison between calculation and measurement were made by γ-index analysis and absolute dose. An average total delivery time was determined 923±34 seconds and an average MU was determined 2614±228 MUs for dual arc VMAT. Mean dose to lungs was 9.7±0.2 Gy, mean dose to kidneys was 8.8±0.3 Gy, max. dose to lens was 5.5±0.3 Gy and max. dose was 14.6±0.3 Gy, HI of PTV was 1.13±0.2, mean dose to PTV was 12.6±1.5 Gy and mean γ-index pass rate was %97.1±1.9. The results show that the tecnique for TBI using VMAT on the treatment coach is feasible.
Modulation indices for volumetric modulated arc therapy.
Park, Jong Min; Park, So-Yeon; Kim, Hyoungnyoun; Kim, Jin Ho; Carlson, Joel; Ye, Sung-Joon
2014-12-07
The aim of this study is to present a modulation index (MI) for volumetric modulated arc therapy (VMAT) based on the speed and acceleration analysis of modulating-parameters such as multi-leaf collimator (MLC) movements, gantry rotation and dose-rate, comprehensively. The performance of the presented MI (MIt) was evaluated with correlation analyses to the pre-treatment quality assurance (QA) results, differences in modulating-parameters between VMAT plans versus dynamic log files, and differences in dose-volumetric parameters between VMAT plans versus reconstructed plans using dynamic log files. For comparison, the same correlation analyses were performed for the previously suggested modulation complexity score (MCS(v)), leaf travel modulation complexity score (LTMCS) and MI by Li and Xing (MI Li&Xing). In the two-tailed unpaired parameter condition, p values were acquired. The Spearman's rho (r(s)) values of MIt, MCSv, LTMCS and MI Li&Xing to the local gamma passing rate with 2%/2 mm criterion were -0.658 (p < 0.001), 0.186 (p = 0.251), 0.312 (p = 0.05) and -0.455 (p = 0.003), respectively. The values of rs to the modulating-parameter (MLC positions) differences were 0.917, -0.635, -0.857 and 0.795, respectively (p < 0.001). For dose-volumetric parameters, MIt showed higher statistically significant correlations than the conventional MIs. The MIt showed good performance for the evaluation of the modulation-degree of VMAT plans.
Treatment of extensive scalp lesions with segmental intensity-modulated photon therapy.
Bedford, James L; Childs, Peter J; Hansen, Vibeke Nordmark; Warrington, Alan P; Mendes, Ruheena L; Glees, John P
2005-08-01
To compare static electron therapy, electron arc therapy, and photon intensity-modulated radiation therapy (IMRT) for treatment of extensive scalp lesions and to examine the dosimetric accuracy of the techniques. A retrospective treatment-planning study was performed to evaluate the relative merits of static electron fields, arcing electron fields, and five-field photon IMRT. Thermoluminescent dosimeters (TLD) were used to verify the accuracy of the techniques. The required thickness of bolus was investigated, and an anthropomorphic phantom was also used to examine the effects of air gaps between the wax bolus used for the IMRT technique and the patient's scalp. Neither static nor arcing electron techniques were able to provide a reliable coverage of the planning target volume (PTV), owing to obliquity of the fields in relation to the scalp. The IMRT technique considerably improved PTV dose uniformity, though it irradiated a larger volume of brain. Either 0.5 cm or 1.0 cm of wax bolus was found to be suitable. Air gaps of up to 1 cm between the bolus and the patient's scalp were correctly handled by the treatment-planning system and had negligible influence on the dose to the scalp. Photon IMRT provides a feasible alternative to electron techniques for treatment of large scalp lesions, resulting in improved homogeneity of dose to the PTV but with a moderate increase in dose to the brain.
Mazzola, Rosario; Ricchetti, Francesco; Fiorentino, Alba; Levra, Niccolò Giaj; Fersino, Sergio; Di Paola, Gioacchino; Ruggieri, Ruggero; Alongi, Filippo
2017-06-01
To evaluate the feasibility and clinical preliminary results of weekly cisplatin and volumetric-modulated arc therapy to the pelvis with simultaneous integrated boost to macroscopic disease in a cohort of elderly patients. Inclusion criteria of this prospective study were age ≥70 years, Karnofsky performance status 70 to 100, locally advanced histologically proven squamous cervical carcinoma, and patients unable to undergo brachytherapy. Radiation doses prescribed were 66 Gy to the macroscopic disease and 54 Gy to the pelvic nodes in 30 fractions. Weekly cisplatin dose was 40 mg/mq. A total of 30 patients were recruited. Median follow-up was 32 months (range: 8-48 months). Median age was 72 years (range: 70-84 years). The 3-year overall survival and local control were 93% and 80%, respectively. The median time to progression was 24 months (range: 6-30 months). Analyzing clinical outcome grouping based on the stage of disease, II versus III, the 3-year overall survival was 100% and 85%, respectively. The 3-year local control was 91% for stage II and 67% for stage III. Acute and late toxicities were acceptable without severe events. Weekly cisplatin and volumetric-modulated arc therapy-simultaneous integrated boost for radical treatment of advanced cervical cancer in the current cohort of elderly patients were feasible. Long-term results and prospective randomized trials are advocated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Kham, E-mail: khamdiep@gmail.com; UT MD Anderson Cancer Center, School of Health Professions—Unit 2, Houston, TX; Cummings, David
The purpose of this study was to evaluate the differences between volumetric modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) in the treatment of nasal cavity carcinomas. The treatment of 10 patients, who had completed IMRT treatment for resected tumors of the nasal cavity, was replanned with the Philips Pinnacle{sup 3} Version 9 treatment-planning system. The IMRT plans used a 9-beam technique whereas the VMAT (known as SmartArc) plans used a 3-arc technique. Both types of plans were optimized using Philips Pinnacle{sup 3} Direct Machine Parameter Optimization algorithm. IMRT and VMAT plans' quality was compared by evaluating the maximum,more » minimum, and mean doses to the target volumes and organs at risk, monitor units (MUs), and the treatment delivery time. Our results indicate that VMAT is capable of greatly reducing treatment delivery time and MUs compared with IMRT. The reduction of treatment delivery time and MUs can decrease the effects of intrafractional uncertainties that can occur because of patient movement during treatment delivery. VMAT's plans further reduce doses to critical structures that are in close proximity to the target volume.« less
Zieminski, Stephen; Khandekar, Melin; Wang, Yi
2018-03-01
This study compared the dosimetric performance of (a) volumetric modulated arc therapy (VMAT) with standard optimization (STD) and (b) multi-criteria optimization (MCO) to (c) intensity modulated radiation therapy (IMRT) with MCO for hippocampal avoidance whole brain radiation therapy (HA-WBRT) in RayStation treatment planning system (TPS). Ten HA-WBRT patients previously treated with MCO-IMRT or MCO-VMAT on an Elekta Infinity accelerator with Agility multileaf collimators (5-mm leaves) were re-planned for the other two modalities. All patients received 30 Gy in 15 fractions to the planning target volume (PTV), namely, PTV30 expanded with a 2-mm margin from the whole brain excluding hippocampus with margin. The patients all had metastatic lesions (up to 12) of variable sizes and proximity to the hippocampus, treated with an additional 7.5 Gy from a simultaneous integrated boost (SIB) to PTV37.5. The IMRT plans used eight to eleven non-coplanar fields, whereas the VMAT plans used two coplanar full arcs and a vertex half arc. The averaged target coverage, dose to organs-at-risk (OARs) and monitor unit provided by the three modalities were compared, and a Wilcoxon signed-rank test was performed. MCO-VMAT provided statistically significant reduction of D100 of hippocampus compared to STD-VMAT, and Dmax of cochleas compared to MCO-IMRT. With statistical significance, MCO-VMAT improved V30 of PTV30 by 14.2% and 4.8%, respectively, compared to MCO-IMRT and STD-VMAT. It also raised D95 of PTV37.5 by 0.4 Gy compared to both MCO-IMRT and STD-VMAT. Improved plan quality parameters such as a decrease in overall plan Dmax and total monitor units (MU) were also observed for MCO-VMAT. MCO-VMAT is found to be the optimal modality for HA-WBRT in terms of PTV coverage, OAR sparing and delivery efficiency, compared to MCO-IMRT or STD-VMAT. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
A comprehensive formulation for volumetric modulated arc therapy planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Dan; Lyu, Qihui; Ruan, Dan
2016-07-15
Purpose: Volumetric modulated arc therapy (VMAT) is a widely employed radiation therapy technique, showing comparable dosimetry to static beam intensity modulated radiation therapy (IMRT) with reduced monitor units and treatment time. However, the current VMAT optimization has various greedy heuristics employed for an empirical solution, which jeopardizes plan consistency and quality. The authors introduce a novel direct aperture optimization method for VMAT to overcome these limitations. Methods: The comprehensive VMAT (comVMAT) planning was formulated as an optimization problem with an L2-norm fidelity term to penalize the difference between the optimized dose and the prescribed dose, as well as an anisotropicmore » total variation term to promote piecewise continuity in the fluence maps, preparing it for direct aperture optimization. A level set function was used to describe the aperture shapes and the difference between aperture shapes at adjacent angles was penalized to control MLC motion range. A proximal-class optimization solver was adopted to solve the large scale optimization problem, and an alternating optimization strategy was implemented to solve the fluence intensity and aperture shapes simultaneously. Single arc comVMAT plans, utilizing 180 beams with 2° angular resolution, were generated for a glioblastoma multiforme case, a lung (LNG) case, and two head and neck cases—one with three PTVs (H&N{sub 3PTV}) and one with foue PTVs (H&N{sub 4PTV})—to test the efficacy. The plans were optimized using an alternating optimization strategy. The plans were compared against the clinical VMAT (clnVMAT) plans utilizing two overlapping coplanar arcs for treatment. Results: The optimization of the comVMAT plans had converged within 600 iterations of the block minimization algorithm. comVMAT plans were able to consistently reduce the dose to all organs-at-risk (OARs) as compared to the clnVMAT plans. On average, comVMAT plans reduced the max and mean OAR dose by 6.59% and 7.45%, respectively, of the prescription dose. Reductions in max dose and mean dose were as high as 14.5 Gy in the LNG case and 15.3 Gy in the H&N{sub 3PTV} case. PTV coverages measured by D95, D98, and D99 were within 0.25% of the prescription dose. By comprehensively optimizing all beams, the comVMAT optimizer gained the freedom to allow some selected beams to deliver higher intensities, yielding a dose distribution that resembles a static beam IMRT plan with beam orientation optimization. Conclusions: The novel nongreedy VMAT approach simultaneously optimizes all beams in an arc and then directly generates deliverable apertures. The single arc VMAT approach thus fully utilizes the digital Linac’s capability in dose rate and gantry rotation speed modulation. In practice, the new single VMAT algorithm generates plans superior to existing VMAT algorithms utilizing two arcs.« less
TU-E-BRB-08: Dual Gated Volumetric Modulated Arc Therapy.
Wu, J; Fahimian, B; Wu, H; Xing, L
2012-06-01
Gated Volumetric Modulated Arc Therapy (VMAT) is an emerging treatment modality for Stereotactic Body Radiotherapy (SBRT). However, gating significantly prolongs treatment time. In order to enhance treatment efficiency, a novel dual gated VMAT, in which dynamic arc deliveries are executed sequentially in alternating exhale and inhale phases, is proposed and evaluated experimentally. The essence of dual gated VMAT is to take advantage of the natural pauses that occur at inspiration and exhalation by alternatively delivering the dose at the two phases, instead of the exhale window only. The arc deliveries at the two phases are realized by rotating gantry forward at the exhale window and backward at the inhale in an alternative fashion. Custom XML scripts were developed in Varian's TrueBeam STx Developer Mode to enable dual gated VMAT delivery. RapidArc plans for a lung case were generated for both inhale and exhale phases. The two plans were then combined into a dual gated arc by interleaving the arc treatment nodes of the two RapidArc plans. The dual gated plan was delivered in the development mode of TrueBeam LINAC onto a motion phantom and the delivery was measured by using pinpoint chamber/film/diode array (delta 4). The measured dose distribution was compared with that computed using Eclipse AAA algorithm. The treatment delivery time was recorded and compared with the corresponding single gated plans. Relative to the corresponding single gated delivery, it was found that treatment time efficiency was improved by 95.5% for the case studied here. Pinpoint chamber absolute dose measurement agreed the calculation to within 0.7%. Diode chamber array measurements revealed that 97.5% of measurement points of dual gated RapidArc delivery passed the 3% and 3mm gamma-test criterion. A dual gated VMAT treatment has been developed and implemented successfully with nearly doubled treatment delivery efficiency. © 2012 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Jeffrey M.; Handorf, Elizabeth A.; Price, Robert A.
A small decrease in testosterone level has been documented after prostate irradiation, possibly owing to the incidental dose to the testes. Testicular doses from prostate external beam radiation plans with either intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT) were calculated to investigate any difference. Testicles were contoured for 16 patients being treated for localized prostate cancer. For each patient, 2 plans were created: 1 with IMRT and 1 with VMAT. No specific attempt was made to reduce testicular dose. Minimum, maximum, and mean doses to the testicles were recorded for each plan. Of the 16 patients, 4 receivedmore » a total dose of 7800 cGy to the prostate alone, 7 received 8000 cGy to the prostate alone, and 5 received 8000 cGy to the prostate and pelvic lymph nodes. The mean (range) of testicular dose with an IMRT plan was 54.7 cGy (21.1 to 91.9) and 59.0 cGy (25.1 to 93.4) with a VMAT plan. In 12 cases, the mean VMAT dose was higher than the mean IMRT dose, with a mean difference of 4.3 cGy (p = 0.019). There was a small but statistically significant increase in mean testicular dose delivered by VMAT compared with IMRT. Despite this, it unlikely that there is a clinically meaningful difference in testicular doses from either modality.« less
Kim, Jung-in; Choi, Chang Heon; Wu, Hong-Gyun; Kim, Jin Ho; Kim, Kyubo; Park, Jong Min
2017-01-01
The aim of this work was to investigate correlations between 2D and quasi-3D gamma passing rates. A total of 20 patients (10 prostate cases and 10 head and neck cases, H&N) were retrospectively selected. For each patient, both intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans were generated. For each plan, 2D gamma evaluation with radiochromic films and quasi-3D gamma evaluation with fluence measurements were performed with both 2%/2 mm and 3%/3 mm criteria. Gamma passing rates were grouped together according to delivery techniques and treatment sites. Statistical analyses were performed to examine the correlation between 2D and quasi-3D gamma evaluations. Statistically significant difference was observed between delivery techniques only in the quasi-3D gamma passing rates with 2%/2 mm. Statistically significant differences were observed between treatment sites in the 2D gamma passing rates (differences of less than 8%). No statistically significant correlations were observed between 2D and quasi-3D gamma passing rates except the VMAT group and the group including both IMRT and VMAT with 3%/3 mm (r = 0.564 with p = 0.012 for theVMAT group and r = 0.372 with p = 0.020 for the group including both IMRT and VMAT), however, those were not strong. No strong correlations were observed between 2D and quasi-3D gamma evaluations. PMID:27690300
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorayski, Peter; Fitzgerald, Rhys; Barry, Tamara
Cutaneous squamous cell carcinoma with large nerve perineural (LNPN) infiltration of the base of skull is a radiotherapeutic challenge given the complex target volumes to nearby organs at risk (OAR). A comparative planning study was undertaken to evaluate dosimetric differences between volumetric modulated arc therapy (VMAT) versus intensity modulated radiation therapy (IMRT) in the treatment of LNPN. Five consecutive patients previously treated with IMRT for LNPN were selected. VMAT plans were generated for each case using the same planning target volumes (PTV), dose prescriptions and OAR constraints as IMRT. Comparative parameters used to assess target volume coverage, conformity and homogeneitymore » included V95 of the PTV (volume encompassed by the 95% isodose), conformity index (CI) and homogeneity index (HI). In addition, OAR maximum point doses, V20, V30, non-target tissue (NTT) point max doses, NTT volume above reference dose, monitor units (MU) were compared. IMRT and VMAT plans generated were comparable for CI (P = 0.12) and HI (P = 0.89). VMAT plans achieved better V95 (P = < 0.001) and reduced V20 and V30 by 652 cubic centimetres (cc) (28.5%) and 425.7 cc (29.1%), respectively. VMAT increased MU delivered by 18% without a corresponding increase in NTT dose. Compared with IMRT plans for LNPN, VMAT achieved comparable HI and CI.« less
Zhao, Yaqin; Chen, Lu; Zhang, Shu; Wu, Qiang; Jiang, Xiaoqin; Zhu, Hong; Wang, Jin; Li, Zhiping; Xu, Yong; Zhang, Ying Jie; Bai, Sen; Xu, Feng
2015-01-01
Radiation pneumonitis (RP) is a common side reaction in radiotherapy for esophageal cancer. There are few reports about RP in esophageal cancer patients receiving postoperative intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). This study aims to analyze clinical or dosimetric factors associated with RP, and provides data for radiotherapy planning. We reviewed 68 postoperative esophageal cancer patients who were treated with radiotherapy at the West China Hospital from October 2010 to November 2012 to identify any correlation between the clinical or dosimetric parameters and acute radiation pneumonitis (ARP) or severe acute radiation pneumonitis (SARP) by t-test, chi-square test, and logistic regression analysis. Of the 68 patients, 33 patients (48.5%) developed ARP, 13 of which (19.1%) developed SARP. Of these 33 patients, 8 (11.8%), 12 (17.6%), 11 (16.2%), and 2 (2.9%) patients were grade 1, 2, 3, and 4 ARP, respectively. Univariate analysis showed that lung infection during radiotherapy, use of VMAT, mean lung dose (MLD), and dosimetric parameters (e.g. V20, V30) are significantly correlated with RP. Multivariate analysis found that lung infection during radiotherapy, MLD ≥ 12 Gy, and V30 ≥ 13% are significantly correlated with an increased risk of RP. Lung infection during radiotherapy and low radiation dose volume distribution were predictive factors associated with RP and should be accounted for during radiation planning.
NASA Astrophysics Data System (ADS)
Mahnam, Mehdi; Gendreau, Michel; Lahrichi, Nadia; Rousseau, Louis-Martin
2017-07-01
In this paper, we propose a novel heuristic algorithm for the volumetric-modulated arc therapy treatment planning problem, optimizing the trade-off between delivery time and treatment quality. We present a new mixed integer programming model in which the multi-leaf collimator leaf positions, gantry speed, and dose rate are determined simultaneously. Our heuristic is based on column generation; the aperture configuration is modeled in the columns and the dose distribution and time restriction in the rows. To reduce the number of voxels and increase the efficiency of the master model, we aggregate similar voxels using a clustering technique. The efficiency of the algorithm and the treatment quality are evaluated on a benchmark clinical prostate cancer case. The computational results show that a high-quality treatment is achievable using a four-thread CPU. Finally, we analyze the effects of the various parameters and two leaf-motion strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forde, Elizabeth, E-mail: eforde@tcd.ie; Kneebone, Andrew; Northern Clinical School, University of Sydney, New South Wales
2013-10-01
The purpose of this study was to compare postprostatectomy planning for volumetric-modulated arc therapy (VMAT) with both single arc (SA) and double arcs (DA) against dynamic sliding window intensity-modulated radiotherapy (IMRT). Ten cases were planned with IMRT, SA VMAT, and DA VMAT. All cases were planned to achieve a minimum dose of 68 Gy to 95% of the planning target volume (PTV) and goals to limit rectal volume >40 Gy to 35% and >65 Gy to 17%, and bladder volumes >40 Gy to 50% and >65 Gy to 25%. Plans were averaged across the 10 patients and compared for meanmore » dose, conformity, homogeneity, rectal and bladder doses, and monitor units. The mean dose to the clinical target volume and PTV was significantly higher (p<0.05) for SA compared with DA or IMRT. The homogeneity index was not significantly different: SA = 0.09; DA = 0.08; and IMRT = 0.07. The rectal V40 was lowest for the DA plan. The rectal V20 was significantly lower (p<0.05) for both the VMAT plans compared with IMRT. There were no significant differences for bladder V40 or rectal and bladder V65. The IMRT plans required 1400 MU compared with 745 for DA and 708 for SA. This study shows that for equivalent dose coverage, SA and DA VMAT plans result in higher mean doses to the clinical target volume and PTV. This greater dose heterogeneity is balanced by improved low-range rectal doses and halving of the monitor units.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, X; Yi, J; Xie, C
Purpose: To evaluate the impact of complexity indices on the plan quality and deliverability of volumetric modulated arc therapy (VMAT), and to determine the most significant parameters in the generation of an ideal VMAT plan. Methods: A multi-dimensional exploratory statistical method, canonical correlation analysis (CCA) was adopted to study the correlations between VMAT parameters of complexity, quality and deliverability, as well as their contribution weights with 32 two-arc VMAT nasopharyngeal cancer (NPC) patients and 31 one-arc VMAT prostate cancer patients. Results: The MU per arc (MU/Arc) and MU per control point (MU/CP) of NPC were 337.8±25.2 and 3.7±0.3, respectively, whichmore » were significantly lower than those of prostate cancer patients (MU/Arc : 506.9±95.4, MU/CP : 5.6±1.1). The plan complexity indices indicated that two-arc VMAT plans were more complex than one-arc VMAT plans. Plan quality comparison confirmed that one-arc VMAT plans had a high quality than two-arc VMAT plans. CCA results implied that plan complexity parameters were highly correlated with plan quality with the first two canonical correlations of 0.96, 0.88 (both p<0.001) and significantly correlated with deliverability with the first canonical correlation of 0.79 (p<0.001), plan quality and deliverability was also correlated with the first canonical correlation of 0.71 (p=0.02). Complexity parameters of MU/CP, segment area (SA) per CP, percent of MU/CP less 3 and planning target volume (PTV) were weighted heavily in correlation with plan quality and deliveability . Similar results obtained from individual NPC and prostate CCA analysis. Conclusion: Relationship between complexity, quality, and deliverability parameters were investigated with CCA. MU, SA related parameters and PTV volume were found to have strong effect on the plan quality and deliverability. The presented correlation among different quantified parameters could be used to improve the plan quality and the efficiency of the radiotherapy process when creating a complex VMAT plan.« less
Wong, Wicger; Leung, Lucullus H.T.; Yu, Peter K.N.; So, Ronald W.K.; Cheng, Ashley C.K.
2012-01-01
The purpose of this study was to investigate the potential benefits of using triple‐arc volumetric‐intensity modulated arc radiotherapy (RapidArc (RA)) for the treatment of early‐stage nasopharyngeal carcinoma (NPC). A comprehensive evaluation was performed including plan quality, integral doses, and peripheral doses. Twenty cases of stage I or II NPC were selected for this study. Nine‐field sliding window IMRT, double‐arc, and triple‐arc RA treatment plans were compared with respect to target coverage, dose conformity, critical organ sparing, and integral doses. Measurement of peripheral doses was performed using thermoluminescent dosimeters in an anthropomorphic phantom. While similar conformity and target coverage were achieved by the three types of plans, triple‐arc RA produced better sparing of parotid glands and spinal cord than double‐arc RA or IMRT. Double‐arc RA plans produced slightly inferior parotid sparing and dose homogeneity than the other two delivery methods. The monitor units (MU) required for triple‐arc were about 50% less than those of IMRT plans, while there was no significant difference in the required MUs between triple‐arc and double‐arc RA plans. The peripheral dose in triple‐arc RA was found to be 50% less compared to IMRT near abdominal and pelvic region. Triple‐arc RA improves both the plan quality and treatment efficiency compared with IMRT for the treatment of early stage NPC. It has become the preferred choice of treatment delivery method for early stage NPC at our center. PACS numbers: 87.53.Bn, 87.55.D, 87.55.de, 87.55.dk, 87.56.ng PMID:23149781
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasciuti, Katia, E-mail: k.pasciuti@virgilio.it; Kuthpady, Shrinivas; Anderson, Anne
To examine tumor's and organ's response when different radiotherapy plan techniques are used. Ten patients with confirmed bladder tumors were first treated using 3-dimensional conformal radiotherapy (3DCRT) and subsequently the original plans were re-optimized using the intensity-modulated radiation treatment (IMRT) and volumetric-modulated arc therapy (VMAT)-techniques. Targets coverage in terms of conformity and homogeneity index, TCP, and organs' dose limits, including integral dose analysis were evaluated. In addition, MUs and treatment delivery times were compared. Better minimum target coverage (1.3%) was observed in VMAT plans when compared to 3DCRT and IMRT ones confirmed by a statistically significant conformity index (CI) results.more » Large differences were observed among techniques in integral dose results of the femoral heads. Even if no statistically significant differences were reported in rectum and tissue, a large amount of energy deposition was observed in 3DCRT plans. In any case, VMAT plans provided better organs and tissue sparing confirmed also by the normal tissue complication probability (NTCP) analysis as well as a better tumor control probability (TCP) result. Our analysis showed better overall results in planning using VMAT techniques. Furthermore, a total time reduction in treatment observed among techniques including gantry and collimator rotation could encourage using the more recent one, reducing target movements and patient discomfort.« less
Jia, Pengfei; Xu, Jun; Zhou, Xiaoxi; Chen, Jian; Tang, Lemin
2017-12-01
The aim of this study is to compare the planning quality and delivery efficiency between dynamic intensity modulated radiation therapy (d-IMRT) and dual arc volumetric modulated arc therapy (VMAT) systematically for nasopharyngeal carcinoma (NPC) patients with multi-prescribed dose levels, and to analyze the correlations between target volumes and plan qualities. A total of 20 patients of NPC with 4-5 prescribed dose levels to achieve simultaneous integrated boost (SIB) treated by sliding window d-IMRT in our department from 2014 to 2015 were re-planned with dual arc VMAT. All optimization objectives for each VMAT plan were as the same as the corresponding d-IMRT plan. The dose parameters for targets and organ at risk (OAR), the delivery time and monitor units (MU) in two sets of plans were compared respectively. The treatment accuracy was tested by three dimensional dose validation system. Finally, the correlations between the difference of planning quality and the volume of targets were discussed. The conform indexes (CIs) of planning target volumes (PTVs) in VMAT plans were obviously high than those in d-IMRT plans ( P < 0.05), but no significant correlations between the difference of CIs and the volume of targets were discovered ( P > 0.05). The target coverage and heterogeneity indexes (HIs) of PTV 1 and PGTV nd and PTV 3 in two sets of plans were consistent. The doses of PTV 2 decreased and HIs were worse in VMAT plans. VMAT could provide better spinal cord and brainstem sparing, but increase mean dose of parotids. The average number of MUs and delivery time for d-IMRT were 3.32 and 2.19 times of that for VMAT. The γ-index (3 mm, 3%) analysis for each plans was more than 97% in COMPASS ® measurement for quality assurance (QA). The results show that target dose coverages in d-IMRT and VMAT plans are similar for NPC with multi-prescribed dose levels. VMAT could improve the the CIs of targets, but reduce the dose to the target volume in neck except for PGTV nd . The biggest advantages of VMAT over d-IMRT are delivery efficiency and QA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kainz, K; Prah, D; Ahunbay, E
2014-06-01
Purpose: A novel modulated arc therapy technique, mARC, enables superposition of step-and-shoot IMRT segments upon a subset of the optimization points (OPs) of a continuous-arc delivery. We compare two approaches to mARC planning: one with the number of OPs fixed throughout optimization, and another where the planning system determines the number of OPs in the final plan, subject to an upper limit defined at the outset. Methods: Fixed-OP mARC planning was performed for representative cases using Panther v. 5.01 (Prowess, Inc.), while variable-OP mARC planning used Monaco v. 5.00 (Elekta, Inc.). All Monaco planning used an upper limit of 91more » OPs; those OPs with minimal MU were removed during optimization. Plans were delivered, and delivery times recorded, on a Siemens Artiste accelerator using a flat 6MV beam with 300 MU/min rate. Dose distributions measured using ArcCheck (Sun Nuclear Corporation, Inc.) were compared with the plan calculation; the two were deemed consistent if they agreed to within 3.5% in absolute dose and 3.5 mm in distance-to-agreement among > 95% of the diodes within the direct beam. Results: Example cases included a prostate and a head-and-neck planned with a single arc and fraction doses of 1.8 and 2.0 Gy, respectively. Aside from slightly more uniform target dose for the variable-OP plans, the DVHs for the two techniques were similar. For the fixed-OP technique, the number of OPs was 38 and 39, and the delivery time was 228 and 259 seconds, respectively, for the prostate and head-and-neck cases. For the final variable-OP plans, there were 91 and 85 OPs, and the delivery time was 296 and 440 seconds, correspondingly longer than for fixed-OP. Conclusion: For mARC, both the fixed-OP and variable-OP approaches produced comparable-quality plans whose delivery was successfully verified. To keep delivery time per fraction short, a fixed-OP planning approach is preferred.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, X; Sun, T; Yin, Y
Purpose: To study the dosimetric impact of intensity-modulated radiotherapy (IMRT), hybrid intensity-modulated radiotherapy (h-IMRT) and volumetric modulated arc therapy(VMAT) for whole-brain radiotherapy (WBRT) with simultaneous integrated boost in patients with multiple brain metastases. Methods: Ten patients with multiple brain metastases were included in this analysis. The prescribed dose was 45 Gy to the whole brain (PTVWBRT) and 55 Gy to individual brain metastases (PTVboost) delivered simultaneously in 25 fractions. Three treatment techniques were designed: the 7 equal spaced fields IMRT plan, hybrid IMRT plan and VMAT with two 358°arcs. In hybrid IMRT plan, two fields(90°and 270°) were planned to themore » whole brain. This was used as a base dose plan. Then 5 fields IMRT plan was optimized based on the two fields plan. The dose distribution in the target, the dose to the organs at risk and total MU in three techniques were compared. Results: For the target dose, conformity and homogeneity in PTV, no statistically differences were observed in the three techniques. For the maximum dose in bilateral lens and the mean dose in bilateral eyes, IMRT and h-IMRT plans showed the highest and lowest value respectively. No statistically significant differences were observed in the dose of optic nerve and brainstem. For the monitor units, IMRT and VMAT plans showed the highest and lowest value respectively. Conclusion: For WBRT with simultaneous integrated boost in patients with multiple brain metastases, hybrid IMRT could reduce the doses to lens and eyes. It is feasible for patients with brain metastases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pair, Matthew L.; Du, Weiliang; Rojas, Hector D.
Weight loss or gain during the course of radiation therapy for prostate cancer can alter the planned dose to the target volumes and critical organs. Typically, source-to-surface distance (SSD) measurements are documented by therapists on a weekly basis to ensure that patients' exterior surface and isocenter-to-skin surface distances remain stable. The radiation oncology team then determines whether the patient has undergone a physical change sufficient to require a new treatment plan. The effect of weight change (SSD increase or decrease) on intensity-modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT) dosimetry is not well known, and it is unclearmore » when rescanning or replanning is needed. The purpose of this study was to determine the effects of weight change (SSD increase or decrease) on IMRT or VMAT dose delivery in patients with prostate cancer and to determine the SSD change threshold for replanning. Whether IMRT or VMAT provides better dose stability under weight change conditions was also determined. We generated clinical IMRT and VMAT prostate and seminal vesicle treatment plans for varying SSDs for 10 randomly selected patients with prostate cancer. The differences due to SSD change were quantified by a specific dose change for a specified volume of interest. The target mean dose, decreased or increased by 2.9% per 1-cm SSD decrease or increase in IMRT and by 3.6% in VMAT. If the SSD deviation is more than 1 cm, the radiation oncology team should determine whether to continue treatment without modifications, to adjust monitor units, or to resimulate and replan.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rachit; Wild, Aaron T.; Ziegler, Mark A.
2013-10-01
Stereotactic body radiation therapy (SBRT) achieves excellent local control for locally advanced pancreatic cancer (LAPC), but may increase late duodenal toxicity. Volumetric-modulated arc therapy (VMAT) delivers intensity-modulated radiation therapy (IMRT) with a rotating gantry rather than multiple fixed beams. This study dosimetrically evaluates the feasibility of implementing duodenal constraints for SBRT using VMAT vs IMRT. Non–duodenal sparing (NS) and duodenal-sparing (DS) VMAT and IMRT plans delivering 25 Gy in 1 fraction were generated for 15 patients with LAPC. DS plans were constrained to duodenal D{sub max} of<30 Gy at any point. VMAT used 1 360° coplanar arc with 4° spacingmore » between control points, whereas IMRT used 9 coplanar beams with fixed gantry positions at 40° angles. Dosimetric parameters for target volumes and organs at risk were compared for DS planning vs NS planning and VMAT vs IMRT using paired-sample Wilcoxon signed rank tests. Both DS VMAT and DS IMRT achieved significantly reduced duodenal D{sub mean}, D{sub max}, D{sub 1cc}, D{sub 4%}, and V{sub 20} {sub Gy} compared with NS plans (all p≤0.002). DS constraints compromised target coverage for IMRT as demonstrated by reduced V{sub 95%} (p = 0.01) and D{sub mean} (p = 0.02), but not for VMAT. DS constraints resulted in increased dose to right kidney, spinal cord, stomach, and liver for VMAT. Direct comparison of DS VMAT and DS IMRT revealed that VMAT was superior in sparing the left kidney (p<0.001) and the spinal cord (p<0.001), whereas IMRT was superior in sparing the stomach (p = 0.05) and the liver (p = 0.003). DS VMAT required 21% fewer monitor units (p<0.001) and delivered treatment 2.4 minutes faster (p<0.001) than DS IMRT. Implementing DS constraints during SBRT planning for LAPC can significantly reduce duodenal point or volumetric dose parameters for both VMAT and IMRT. The primary consequence of implementing DS constraints for VMAT is increased dose to other organs at risk, whereas for IMRT it is compromised target coverage. These findings suggest clinical situations where each technique may be most useful if DS constraints are to be employed.« less
Censor, Yair; Unkelbach, Jan
2011-01-01
In this paper we look at the development of radiation therapy treatment planning from a mathematical point of view. Historically, planning for Intensity-Modulated Radiation Therapy (IMRT) has been considered as an inverse problem. We discuss first the two fundamental approaches that have been investigated to solve this inverse problem: Continuous analytic inversion techniques on one hand, and fully-discretized algebraic methods on the other hand. In the second part of the paper, we review another fundamental question which has been subject to debate from the beginning of IMRT until the present day: The rotation therapy approach versus fixed angle IMRT. This builds a bridge from historic work on IMRT planning to contemporary research in the context of Intensity-Modulated Arc Therapy (IMAT). PMID:21616694
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bojechko, C.; Ploquin, N.; University of Calgary, Department of Oncology, Tom Baker Cancer Center, Calgary AB
2014-08-15
HybridArc is a relatively novel radiation therapy technique which combines optimized dynamic conformai arcs (DCA) and intensity modulated radiation therapy (IMRT). HybridArc has possible dosimetry and efficiency advantages over stand alone DCA and IMRT treatments and can be readily implemented on any linac capable of DCA and IMRT, giving strong motivation to commission the modality. The Delta4 phantom (Scandidos, Uppsala, Sweden) has been used for IMRT and VMAT clinical dosimetric verification making it a candidate for HybridArc commissioning. However the HybridArc modality makes use of several non co-planar arcs which creates setup issues due to the geometry of the Delta4,more » resulting in possible phantom gantry collisions for plans with non-zero couch angles. An analysis was done determining the feasibility of using the Delta4 fixed at 0° couch angle compared with results obtained using Gafchromic ETB2 film (Ashland, Covington Kentucky) in an anthropomorphic phantom at the planned couch angles. A gamma index analysis of the measured and planned dose distributions was done using Delta4 and DoseLab Pro (Mobius Medical Systems, Houston Texas) software. For both arc and IMRT sub-fields there is reasonable correlation between the gamma index found from the Delta4 and Gafchromic film. All results show the feasibility of using the Delta4 for HybridArc commissioning.« less
TH-C-12A-04: Dosimetric Evaluation of a Modulated Arc Technique for Total Body Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsiamas, P; Czerminska, M; Makrigiorgos, G
2014-06-15
Purpose: A simplified Total Body Irradiation (TBI) was developed to work with minimal requirements in a compact linac room without custom motorized TBI couch. Results were compared to our existing fixed-gantry double 4 MV linac TBI system with prone patient and simultaneous AP/PA irradiation. Methods: Modulated arc irradiates patient positioned in prone/supine positions along the craniocaudal axis. A simplified inverse planning method developed to optimize dose rate as a function of gantry angle for various patient sizes without the need of graphical 3D treatment planning system. This method can be easily adapted and used with minimal resources. Fixed maximum fieldmore » size (40×40 cm2) is used to decrease radiation delivery time. Dose rate as a function of gantry angle is optimized to result in uniform dose inside rectangular phantoms of various sizes and a custom VMAT DICOM plans were generated using a DICOM editor tool. Monte Carlo simulations, film and ionization chamber dosimetry for various setups were used to derive and test an extended SSD beam model based on PDD/OAR profiles for Varian 6EX/ TX. Measurements were obtained using solid water phantoms. Dose rate modulation function was determined for various size patients (100cm − 200cm). Depending on the size of the patient arc range varied from 100° to 120°. Results: A PDD/OAR based beam model for modulated arc TBI therapy was developed. Lateral dose profiles produced were similar to profiles of our existing TBI facility. Calculated delivery time and full arc depended on the size of the patient (∼8min/ 100° − 10min/ 120°, 100 cGy). Dose heterogeneity varied by about ±5% − ±10% depending on the patient size and distance to the surface (buildup region). Conclusion: TBI using simplified modulated arc along craniocaudal axis of different size patients positioned on the floor can be achieved without graphical / inverse 3D planning.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagerwaard, Frank J.; Hoorn, Elles A.P. van der; Verbakel, Wilko
2009-09-01
Purpose: Volumetric modulated arc therapy (RapidArc [RA]; Varian Medical Systems, Palo Alto, CA) allows for the generation of intensity-modulated dose distributions by use of a single gantry rotation. We used RA to plan and deliver whole-brain radiotherapy (WBRT) with a simultaneous integrated boost in patients with multiple brain metastases. Methods and Materials: Composite RA plans were generated for 8 patients, consisting of WBRT (20 Gy in 5 fractions) with an integrated boost, also 20 Gy in 5 fractions, to Brain metastases, and clinically delivered in 3 patients. Summated gross tumor volumes were 1.0 to 37.5 cm{sup 3}. RA plans weremore » measured in a solid water phantom by use of Gafchromic films (International Specialty Products, Wayne, NJ). Results: Composite RA plans could be generated within 1 hour. Two arcs were needed to deliver the mean of 1,600 monitor units with a mean 'beam-on' time of 180 seconds. RA plans showed excellent coverage of planning target volume for WBRT and planning target volume for the boost, with mean volumes receiving at least 95% of the prescribed dose of 100% and 99.8%, respectively. The mean conformity index was 1.36. Composite plans showed much steeper dose gradients outside Brain metastases than plans with a conventional summation of WBRT and radiosurgery. Comparison of calculated and measured doses showed a mean gamma for double-arc plans of 0.30, and the area with a gamma larger than 1 was 2%. In-room times for clinical RA sessions were approximately 20 minutes for each patient. Conclusions: RA treatment planning and delivery of integrated plans of WBRT and boosts to multiple brain metastases is a rapid and accurate technique that has a higher conformity index than conventional summation of WBRT and radiosurgery boost.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Raymond W., E-mail: rwc3b@alumni.virginia.edu; Podgorsak, Matthew B.
Recent research has shown treating pancreatic cancer with volumetric-modulated arc therapy (VMAT) to be superior to either intensity-modulated radiation therapy or 3-dimensional conformal radiotherapy (3D-CRT), with respect to reducing normal tissue toxicity, monitor units, and treatment time. Furthermore, using avoidance sectors with RapidArc planning can further reduce normal tissue dose while maintaining target conformity. This study looks at the methods in reducing dose to the ipsilateral kidney, in pancreatic head cases, while observing dose received by other critical organs using avoidance sectors. Overall, 10 patients were retrospectively analyzed. Each patient had preoperative/unresectable pancreatic tumor and were selected based on themore » location of the right kidney being situated within the traditional 3D-CRT treatment field. The target planning target volume (286.97 ± 85.17 cm{sup 3}) was prescribed to 50.4 Gy using avoidance sectors of 30°, 40°, and 50° and then compared with VMAT as well as 3D-CRT. Analysis of the data shows that the mean dose to the right kidney was reduced by 11.6%, 15.5%, and 21.9% for avoidance angles of 30°, 40°, and 50°, respectively, over VMAT. The mean dose to the total kidney also decreased by 6.5%, 8.5%, and 11.0% for the same increasing angles. Spinal cord maximum dose, however, increased as a function of angle by 3.7%, 4.8%, and 6.1% compared with VMAT. Employing avoidance sector angles as a complement to VMAT planning can significantly reduce high dose to the ipsilateral kidney while not greatly overdosing other critical organs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xin; Li, Guangjun; Zhang, Yingjie
2013-01-01
To compare the dosimetric differences between the single-arc volumetric-modulated arc therapy (sVMAT), 3-dimensional conformal radiotherapy (3D-CRT), and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for gastric cancer as adjuvant radiotherapy. Twelve patients were retrospectively analyzed. In each patient's case, the parameters were compared based on the dose-volume histogram (DVH) of the sVMAT, 3D-CRT, and IMRT plans, respectively. Three techniques showed similar target dose coverage. The maximum and mean doses of the target were significantly higher in the sVMAT plans than that in 3D-CRT plans and in the 3D-CRT/IMRT plans, respectively, but these differences were clinically acceptable. The IMRT and sVMATmore » plans successfully achieved better target dose conformity, reduced the V{sub 20/30}, and mean dose of the left kidney, as well as the V{sub 20/30} of the liver, compared with the 3D-CRT plans. And the sVMAT technique reduced the V{sub 20} of the liver much significantly. Although the maximum dose of the spinal cord were much higher in the IMRT and sVMAT plans, respectively (mean 36.4 vs 39.5 and 40.6 Gy), these data were still under the constraints. Not much difference was found in the analysis of the parameters of the right kidney, intestine, and heart. The IMRT and sVMAT plans achieved similar dose distribution to the target, but superior to the 3D-CRT plans, in adjuvant radiotherapy for gastric cancer. The sVMAT technique improved the dose sparings of the left kidney and liver, compared with the 3D-CRT technique, but showed few dosimetric advantages over the IMRT technique. Studies are warranted to evaluate the clinical benefits of the VMAT treatment for patients with gastric cancer after surgery in the future.« less
Shen, Lanxiao; Chen, Shan; Zhu, Xiaoyang; Han, Ce; Zheng, Xiaomin; Deng, Zhenxiang; Zhou, Yongqiang; Gong, Changfei; Xie, Congying; Jin, Xiance
2018-03-01
A multidimensional exploratory statistical method, canonical correlation analysis (CCA), was applied to evaluate the impact of complexity parameters on the plan quality and deliverability of volumetric-modulated arc therapy (VMAT) and to determine parameters in the generation of an ideal VMAT plan. Canonical correlations among complexity, quality and deliverability parameters of VMAT, as well as the contribution weights of different parameters were investigated with 71 two-arc VMAT nasopharyngeal cancer (NPC) patients, and further verified with 28 one-arc VMAT prostate cancer patients. The average MU and MU per control point (MU/CP) for two-arc VMAT plans were 702.6 ± 55.7 and 3.9 ± 0.3 versus 504.6 ± 99.2 and 5.6 ± 1.1 for one-arc VMAT plans, respectively. The individual volume-based 3D gamma passing rates of clinical target volume (γCTV) and planning target volume (γPTV) for NPC and prostate cancer patients were 85.7% ± 9.0% vs 92.6% ± 7.8%, and 88.0% ± 7.6% vs 91.2% ± 7.7%, respectively. Plan complexity parameters of NPC patients were correlated with plan quality (P = 0.047) and individual volume-based 3D gamma indices γ(IV) (P = 0.01), in which, MU/CP and segment area (SA) per control point (SA/CP) were weighted highly in correlation with γ(IV) , and SA/CP, percentage of CPs with SA < 5 × 5 cm2 (%SA < 5 × 5 cm2) and PTV volume were weighted highly in correlation with plan quality with coefficients of 0.98, 0.68 and -0.99, respectively. Further verification with one-arc VMAT plans demonstrated similar results. In conclusion, MU, SA-related parameters and PTV volume were found to have strong effects on the plan quality and deliverability.
Shen, Lanxiao; Chen, Shan; Zhu, Xiaoyang; Han, Ce; Zheng, Xiaomin; Deng, Zhenxiang; Zhou, Yongqiang; Gong, Changfei; Jin, Xiance
2018-01-01
Abstract A multidimensional exploratory statistical method, canonical correlation analysis (CCA), was applied to evaluate the impact of complexity parameters on the plan quality and deliverability of volumetric-modulated arc therapy (VMAT) and to determine parameters in the generation of an ideal VMAT plan. Canonical correlations among complexity, quality and deliverability parameters of VMAT, as well as the contribution weights of different parameters were investigated with 71 two-arc VMAT nasopharyngeal cancer (NPC) patients, and further verified with 28 one-arc VMAT prostate cancer patients. The average MU and MU per control point (MU/CP) for two-arc VMAT plans were 702.6 ± 55.7 and 3.9 ± 0.3 versus 504.6 ± 99.2 and 5.6 ± 1.1 for one-arc VMAT plans, respectively. The individual volume-based 3D gamma passing rates of clinical target volume (γCTV) and planning target volume (γPTV) for NPC and prostate cancer patients were 85.7% ± 9.0% vs 92.6% ± 7.8%, and 88.0% ± 7.6% vs 91.2% ± 7.7%, respectively. Plan complexity parameters of NPC patients were correlated with plan quality (P = 0.047) and individual volume-based 3D gamma indices γ(IV) (P = 0.01), in which, MU/CP and segment area (SA) per control point (SA/CP) were weighted highly in correlation with γ(IV) , and SA/CP, percentage of CPs with SA < 5 × 5 cm2 (%SA < 5 × 5 cm2) and PTV volume were weighted highly in correlation with plan quality with coefficients of 0.98, 0.68 and −0.99, respectively. Further verification with one-arc VMAT plans demonstrated similar results. In conclusion, MU, SA-related parameters and PTV volume were found to have strong effects on the plan quality and deliverability. PMID:29415196
Wang, Iris Z.; Kumaraswamy, Lalith K.; Podgorsak, Matthew B.
2016-01-01
Background This study is to report 1) the sensitivity of intensity modulated radiation therapy (IMRT) QA method for clinical volumetric modulated arc therapy (VMAT) plans with multi-leaf collimator (MLC) leaf errors that will not trigger MLC interlock during beam delivery; 2) the effect of non-beam-hold MLC leaf errors on the quality of VMAT plan dose delivery. Materials and methods. Eleven VMAT plans were selected and modified using an in-house developed software. For each control point of a VMAT arc, MLC leaves with the highest speed (1.87-1.95 cm/s) were set to move at the maximal allowable speed (2.3 cm/s), which resulted in a leaf position difference of less than 2 mm. The modified plans were considered as ‘standard’ plans, and the original plans were treated as the ‘slowing MLC’ plans for simulating ‘standard’ plans with leaves moving at relatively lower speed. The measurement of each ‘slowing MLC’ plan using MapCHECK®2 was compared with calculated planar dose of the ‘standard’ plan with respect to absolute dose Van Dyk distance-to-agreement (DTA) comparisons using 3%/3 mm and 2%/2 mm criteria. Results All ‘slowing MLC’ plans passed the 90% pass rate threshold using 3%/3 mm criteria while one brain and three anal VMAT cases were below 90% with 2%/2 mm criteria. For ten out of eleven cases, DVH comparisons between ‘standard’ and ‘slowing MLC’ plans demonstrated minimal dosimetric changes in targets and organs-at-risk. Conclusions For highly modulated VMAT plans, pass rate threshold (90%) using 3%/3mm criteria is not sensitive in detecting MLC leaf errors that will not trigger the MLC leaf interlock. However, the consequential effects of non-beam hold MLC errors on target and OAR doses are negligible, which supports the reliability of current patient-specific IMRT quality assurance (QA) method for VMAT plans. PMID:27069458
Volumetric modulated arc radiotherapy for esophageal cancer.
Vivekanandan, Nagarajan; Sriram, Padmanaban; Kumar, S A Syam; Bhuvaneswari, Narayanan; Saranya, Kamalakannan
2012-01-01
A treatment planning study was performed to evaluate the performance of volumetric arc modulation with RapidArc (RA) against 3D conformal radiation therapy (3D-CRT) and conventional intensity-modulated radiation therapy (IMRT) techniques for esophageal cancer. Computed tomgraphy scans of 10 patients were included in the study. 3D-CRT, 4-field IMRT, and single-arc and double-arc RA plans were generated with the aim to spare organs at risk (OAR) and healthy tissue while enforcing highly conformal target coverage. The planning objective was to deliver 54 Gy to the planning target volume (PTV) in 30 fractions. Plans were evaluated based on target conformity and dose-volume histograms of organs at risk (lung, spinal cord, and heart). The monitor unit (MU) and treatment delivery time were also evaluated to measure the treatment efficiency. The IMRT plan improves target conformity and spares OAR when compared with 3D-CRT. Target conformity improved with RA plans compared with IMRT. The mean lung dose was similar in all techniques. However, RA plans showed a reduction in the volume of the lung irradiated at V(₂₀Gy) and V(₃₀Gy) dose levels (range, 4.62-17.98%) compared with IMRT plans. The mean dose and D(₃₅%) of heart for the RA plans were better than the IMRT by 0.5-5.8%. Mean V(₁₀Gy) and integral dose to healthy tissue were almost similar in all techniques. But RA plans resulted in a reduced low-level dose bath (15-20 Gy) in the range of 14-16% compared with IMRT plans. The average MU needed to deliver the prescribed dose by RA technique was reduced by 20-25% compared with IMRT technique. The preliminary study on RA for esophageal cancers showed improvements in sparing OAR and healthy tissue with reduced beam-on time, whereas only double-arc RA offered improved target coverage compared with IMRT and 3D-CRT plans. Copyright © 2012 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, S; Chin, E; Xing, L
Purpose: The integration of couch motion during arc delivery is necessitated to enable irradiation trajectories such as coronal arcs, and to enhance the geometrical sampling for dynamic deliveries to the highest extent. To enable such capability, a platform of Trajectory Modulated Arc Therapy (TMAT) is developed in conjunction with standardized noncollisional dynamic path-set for irradiation of intracranial lesions. Methods: A generalized path-set was constructed through the combination of sagittal arcs (45 degrees from the CAX), axial arcs, and coronal arcs produced through modulation of the dynamic rotation of couch. The standardized path was implemented in a contiguous manner enabling themore » formation of fully automated sub-trajectories to provide maximal geometrical convergence with minimal number of arcs. Progressive sampling technique is used for direct aperture optimization of the MLCs and the selection of couch positions across the control points. Dosimetry of the resulting plans was assessed relative to clinically delivered plans. Using the TrueBeam Developer Mode, plan deliverability was tested. Results: Treatment planning of TMAT sub-trajectories for central, anterior and posterior tumor sites with volumes ranging from 4.75cc to 107cc demonstrated radically reduced doses to the critical OARs when compared to the clinically treated VMAT. Specifically, percentage reduction in mean dose for critical organs such as brainstem, cochlea, and optic nerve are found to be as low as 74±15%, 50±26% and 74±30% respectively as compared to VMAT. Conformity Index, defined as the ratio of tumor volume (VPTV) and 100% dose volume (V(D100%)), was reduced up to 12% while the Gradient Index, defined as V(D100%)/V(D50%), was concurrently improved by up to 14%. Conclusion: An automated standardized trajectory with dynamically modulated couch-gantry arcs has been developed for intracranial radiotherapy. Through the incorporation of coronal arcs, it is demonstrated that significantly reduced OAR doses can be achieved relative to clinically treated patient plans via VMAT. Research Grant Funding Support by Varian Medical Systems.« less
Chen, Huixiao; Winey, Brian A; Daartz, Juliane; Oh, Kevin S; Shin, John H; Gierga, David P
2015-01-01
To evaluate plan quality and delivery efficiency gains of volumetric modulated arc therapy (VMAT) versus a multicriteria optimization-based intensity modulated radiation therapy (MCO-IMRT) for stereotactic radiosurgery of spinal metastases. MCO-IMRT plans (RayStation V2.5; RaySearch Laboratories, Stockholm, Sweden) of 10 spinal radiosurgery cases using 7-9 beams were developed for clinical delivery, and patients were replanned using VMAT with partial arcs. The prescribed dose was 18 Gy, and target coverage was maximized such that the maximum dose to the planning organ-at-risk volume (PRV) of the spinal cord was 10 or 12 Gy. Dose-volume histogram (DVH) constraints from the clinically acceptable MCO-IMRT plans were utilized for VMAT optimization. Plan quality and delivery efficiency with and without collimator rotation for MCO-IMRT and VMAT were compared and analyzed based upon DVH, planning target volume coverage, homogeneity index, conformity number, cord PRV sparing, total monitor units (MU), and delivery time. The VMAT plans were capable of matching most DVH constraints from the MCO-IMRT plans. The ranges of MU were 4808-7193 for MCO-IMRT without collimator rotation, 3509-5907 for MCO-IMRT with collimator rotation, 4444-7309 for VMAT without collimator rotation, and 3277-5643 for VMAT with collimator of 90 degrees. The MU for the VMAT plans were similar to their corresponding MCO-IMRT plans, depending upon the complexity of the target and PRV geometries, but had a larger range. The delivery times of the MCO-IMRT and VMAT plans, both with collimator rotation, were 18.3 ± 2.5 minutes and 14.2 ± 2.0 minutes, respectively (P < .05). The MCO-IMRT and VMAT can create clinically acceptable plans for spinal radiosurgery. The MU for MCO-IMRT and VMAT can be reduced significantly by utilizing a collimator rotation following the orientation of the spinal cord. Plan quality for VMAT is similar to MCO-IMRT, with similar MU for both modalities. Delivery times can be reduced by nominally 25% with VMAT. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Nicolini, G; Abraham, S; Fogliata, A; Jordaan, A; Clivio, A; Vanetti, E; Cozzi, L
2013-03-01
To evaluate the use of volumetric-modulated arc therapy [VMAT, RapidArc® (RA); Varian Medical Systems, Palo Alto, CA] for the treatment of cutaneous Kaposi's sarcoma (KS) of lower extremities with adequate target coverage and high bone sparing, and to compare VMAT with electron beam therapy. 10 patients were planned with either RA or electron beams. The dose was prescribed to 30 Gy, 10 fractions, to mean the planning target volume (PTV), and significant maximum dose to bone was limited to 30 Gy. Plans were designed for 6-MV photon beams for RA and 6 MeV for electrons. Dose distributions were computed with AcurosXB® (Varian Medical Systems) for photons and with a Monte Carlo algorithm for electrons. V(90%) was 97.3±1.2 for RA plans and 78.2±2.6 for electrons; similarly, V(107%) was 2.5±2.2 and 37.7±3.4, respectively. RA met coverage criteria. Concerning bone sparing, D(2%) was 29.6±1.1 for RA and 31.0±2.4 for electrons. Although acceptable for bone involvement, pronounced target coverage violations were obtained for electron plans. Monitor units were similar for electrons and RA, although for the latter they increased when superior bone sparing was imposed. Delivery times were 12.1±4.0 min for electrons and 4.8±1.3 min for the most modulated RA plans. High plan quality was shown for KS in the lower extremities using VMAT, and this might simplify their management in comparison with the more conventional usage of electrons, particularly in institutes with limited staff resources and heavy workloads. VMAT is also dosimetrically extremely advantageous in a typology of treatments where electron beam therapy is mainly considered to be effective owing to the limited penetration of the beams.
Mazzola, Rosario; Ricchetti, Francesco; Fiorentino, Alba; Levra, Niccolò Giaj; Fersino, Sergio; Di Paola, Gioacchino; Ruggieri, Ruggero
2016-01-01
Background: To evaluate the feasibility and clinical preliminary results of weekly cisplatin and volumetric-modulated arc therapy to the pelvis with simultaneous integrated boost to macroscopic disease in a cohort of elderly patients. Materials and Methods: Inclusion criteria of this prospective study were age ≥70 years, Karnofsky performance status 70 to 100, locally advanced histologically proven squamous cervical carcinoma, and patients unable to undergo brachytherapy. Radiation doses prescribed were 66 Gy to the macroscopic disease and 54 Gy to the pelvic nodes in 30 fractions. Weekly cisplatin dose was 40 mg/mq. Results: A total of 30 patients were recruited. Median follow-up was 32 months (range: 8-48 months). Median age was 72 years (range: 70-84 years). The 3-year overall survival and local control were 93% and 80%, respectively. The median time to progression was 24 months (range: 6-30 months). Analyzing clinical outcome grouping based on the stage of disease, II versus III, the 3-year overall survival was 100% and 85%, respectively. The 3-year local control was 91% for stage II and 67% for stage III. Acute and late toxicities were acceptable without severe events. Conclusion: Weekly cisplatin and volumetric-modulated arc therapy–simultaneous integrated boost for radical treatment of advanced cervical cancer in the current cohort of elderly patients were feasible. Long-term results and prospective randomized trials are advocated. PMID:27402633
NASA Astrophysics Data System (ADS)
Koh, Eui Kwan; Seo, Jungju; Baek, Tae Seong; Chung, Eun Ji; Yoon, Myonggeun; Lee, Hyun-ho
2013-07-01
The aim of this study is to assess and compare the excess absolute risks (EARs) of radiation-induced cancers following conformal (3D-CRT), fixed-field intensity-modulated (IMRT) and volumetric modulated arc (RapidArc) radiation therapy in patients with breast cancer. 3D-CRT, IMRT and RapidArc were planned for 10 breast cancer patients. The organ-specific EAR for cancer induction was estimated using the organ equivalent dose (OED) based on computed dose volume histograms (DVHs) and the secondary doses measured at various points from the field edge. The average secondary dose per Gy treatment dose from 3D-CRT, measured 10 to 50 cm from the field edge, ranged from 8.27 to 1.04 mGy. The secondary doses per Gy from IMRT and RapidArc, however, ranged between 5.86 and 0.54 mGy, indicating that IMRT and RapidArc are associated with smaller doses of secondary radiation than 3D-CRT. The organ specific EARs for out-of-field organs, such as the thyroid, liver and colon, were higher with 3D-CRT than with IMRT or RapidArc. In contrast, EARs for in-field organs were much lower with 3D-CRT than with IMRT or RapidArc. The overall estimate of EAR indicated that the radiation-induced cancer risk was 1.8-2.0 times lower with 3D-CRT than with IMRT or RapidArc. Comparisons of EARs during breast irradiation suggested that the predicted risk of secondary cancers was lower with 3D-CRT than with IMRT or RapidArc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossi, Maddalena M.G.; Peulen, Heike M.U.; Belderbos, Josè S.A.
Purpose: Stereotactic body radiation therapy (SBRT) for early-stage inoperable non-small cell lung cancer (NSCLC) patients delivers high doses that require high-precision treatment. Typically, image guidance is used to minimize day-to-day target displacement, but intrafraction position variability is often not corrected. Currently, volumetric modulated arc therapy (VMAT) is replacing intensity modulated radiation therapy (IMRT) in many departments because of its shorter delivery time. This study aimed to evaluate whether intrafraction variation in VMAT patients is reduced in comparison with patients treated with IMRT. Methods and Materials: NSCLC patients (197 IMRT and 112 VMAT) treated with a frameless SBRT technique to amore » prescribed dose of 3 × 18 Gy were evaluated. Image guidance for both techniques was identical: pretreatment cone beam computed tomography (CBCT) (CBCT{sub precorr}) for setup correction followed immediately before treatment by postcorrection CBCT (CBCT{sub postcorr}) for verification. Then, after either a noncoplanar IMRT technique or a VMAT technique, a posttreatment (CBCT{sub postRT}) scan was acquired. The CBCT{sub postRT} and CBCT{sub postcorr} scans were then used to evaluate intrafraction motion. Treatment delivery times, systematic (Σ) and random (σ) intrafraction variations, and associated planning target volume (PTV) margins were calculated. Results: The median treatment delivery time was significantly reduced by 20 minutes (range, 32-12 minutes) using VMAT compared with noncoplanar IMRT. Intrafraction tumor motion was significantly larger for IMRT in all directions up to 0.5 mm systematic (Σ) and 0.7 mm random (σ). The required PTV margins for IMRT and VMAT differed by less than 0.3 mm. Conclusion: VMAT-based SBRT for NSCLC was associated with significantly shorter delivery times and correspondingly smaller intrafraction motion compared with noncoplanar IMRT. However, the impact on the required PTV margin was small.« less
Yang, Hao; Feng, Cong; Cai, Bo-Ning; Yang, Jun; Liu, Hai-Xia; Ma, Lin
2017-02-01
The aim of this study was to evaluate the effectiveness and toxicities of three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), and volumetric-modulated arc therapy (VMAT) in patients with cervical esophageal cancer. Specifically, we asked whether technological advances conferred an advantage with respect to the clinical curative effect. Seventy-eight patients with cervical esophageal cancer treated with definitive radiotherapy with or without concomitant chemotherapy at our institution between 2007 and 2014 were enrolled in the study: 26 received 3DCRT, 30 were treated with IMRT, and 22 underwent VMAT. Kaplan-Meier analysis and the Cox proportional hazard model were used to analyze overall survival (OS) and failure-free survival (FFS). Treatment-related toxicity was also assessed. For all patients, the 2-year OS and FFS rates were 56.2 and 53.9%, respectively. The 2-year OS for the 3DCRT, IMRT, and VMAT groups was 53.6, 55.6, and 60.6%, respectively (P = 0.965). The corresponding 2-year FFS rates were 49.5, 56.7, and 60.1% (P = 0.998). A univariate analysis of the complete response to treatment showed an advantage of treatment modality with respect to OS (P < 0.001). The development of acute hematologic toxicity was not significantly different among the three groups. The survival rates of patients treated with IMRT and VMAT were comparable to the survival of patients administered 3DCRT, while lower lung mean dose, V20, maximum dose of brachial plexus and spinal cord. Grade 1 radiation pneumonitis occurred significantly less in patients treated with IMRT and VMAT than with 3DCRT (P = 0.011). A complete response was the most important prognostic factor of the patients with cervical esophageal cancer. © 2016 International Society for Diseases of the Esophagus.
Wu, Qixue; Snyder, Karen Chin; Liu, Chang; Huang, Yimei; Zhao, Bo; Chetty, Indrin J; Wen, Ning
2016-09-30
Treatment of patients with multiple brain metastases using a single-isocenter volumetric modulated arc therapy (VMAT) has been shown to decrease treatment time with the tradeoff of larger low dose to the normal brain tissue. We have developed an efficient Projection Summing Optimization Algorithm to optimize the treatment geometry in order to reduce dose to normal brain tissue for radiosurgery of multiple metastases with single-isocenter VMAT. The algorithm: (a) measures coordinates of outer boundary points of each lesion to be treated using the Eclipse Scripting Application Programming Interface, (b) determines the rotations of couch, collimator, and gantry using three matrices about the cardinal axes, (c) projects the outer boundary points of the lesion on to Beam Eye View projection plane, (d) optimizes couch and collimator angles by selecting the least total unblocked area for each specific treatment arc, and (e) generates a treatment plan with the optimized angles. The results showed significant reduction in the mean dose and low dose volume to normal brain, while maintaining the similar treatment plan qualities on the thirteen patients treated previously. The algorithm has the flexibility with regard to the beam arrangements and can be integrated in the treatment planning system for clinical application directly.
Lin, C-Y; Huang, W-Y; Jen, Y-M; Chen, C-M; Su, Y-F; Chao, H-L; Lin, C-S
2014-08-01
The aim of this study was to compare high-dose volumetric modulated arc therapy (VMAT) and fixed-field intensity-modulated radiotherapy (ff-IMRT) plans for the treatment of patients with middle-thoracic esophageal cancer. Eight patients with cT2-3N0M0 middle-thoracic esophageal cancer were enrolled. The treatment planning system was the version 9 of the Pinnacle(3) with SmartArc (Philips Healthcare, Fitchburg, WI, USA). VMAT and ff-IMRT treatment plans were generated for each case, and both techniques were used to deliver 50 Gy to the planning target volume (PTV(50)) and then provided a 16-Gy boost (PTV(66)). The VMAT plans provided superior PTV(66) coverage compared with the ff-IMRT plans (P = 0.034), whereas the ff-IMRT plans provided more appropriate dose homogeneity to the PTV(50) (P = 0.017). In the lung, the V(5) and V(10) were lower for the ff-IMRT plans than for the VMAT plans, whereas the V(20) was lower for the VMAT plans. The delivery time was significantly shorter for the VMAT plans than for the ff-IMRT plans (P = 0.012). In addition, the VMAT plans delivered fewer monitor units. The VMAT technique required a shorter planning time than the ff-IMRT technique (3.8 ± 0.8 hours vs. 5.4 ± 0.6 hours, P = 0.011). The major advantages of VMAT plans are higher efficiency and an approximately 50% reduction in delivery time compared with the ff-IMRT plans, with comparable plan quality. Further clinical investigations to evaluate the use of high-dose VMAT for the treatment of esophageal cancer are warranted. © 2013 Wiley Periodicals, Inc. and the International Society for Diseases of the Esophagus.
Lin, Jang-Chun; Tsai, Jo-Ting; Chang, Chih-Chieh; Jen, Yee-Min; Li, Ming-Hsien; Liu, Wei-Hsiu
2015-05-01
The aim of this study was to compare treatment plans of volumetric modulated arc therapy (VMAT) with intensity-modulated radiotherapy (IMRT) for all esophageal cancer (EC) tumor locations.This retrospective study from July 2009 to June 2014 included 20 patients with EC who received definitive concurrent chemoradiotherapy with radiation doses >50.4 Gy. Version 9.2 of Pinnacle with SmartArc was used for treatment planning. Dosimetric quality was evaluated based on doses to several organs at risk, including the spinal cord, heart, and lung, over the same coverage of gross tumor volume.In upper thoracic EC, the IMRT treatment plan had a lower lung mean dose (P = 0.0126) and lung V5 (P = 0.0037) compared with VMAT; both techniques had similar coverage of the planning target volumes (PTVs) (P = 0.3575). In middle thoracic EC, a lower lung mean dose (P = 0.0010) and V5 (P = 0.0145), but higher lung V20 (P = 0.0034), spinal cord Dmax (P = 0.0262), and heart mean dose (P = 0.0054), were observed for IMRT compared with VMAT; IMRT provided better PTV coverage. Patients with lower thoracic ECs had a lower lung mean dose (P = 0.0469) and V5 (P = 0.0039), but higher spinal cord Dmax (P = 0.0301) and heart mean dose (P = 0.0020), with IMRT compared with VMAT. PTV coverage was similar (P = 0.0858) for the 2 techniques.IMRT provided a lower mean dose and lung V5 in upper thoracic EC compared with VMAT, but exhibited different advantages and disadvantages in patients with middle or lower thoracic ECs. Thus, choosing different techniques for different EC locations is warranted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xianfeng; Yang, Yong; Jin, Fu
This article is aimed to compare the dosimetric differences between volumetric modulated arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) for Stage I-II nasal natural killer/T-cell lymphoma (NNKTL). Ten patients with Stage I-II NNKTL treated with IMRT were replanned with VMAT (2 arcs). The prescribed dose of the planning target volume (PTV) was 50 Gy in 25 fractions. The VMAT plans with the Anisotropic Analytical Algorithm (Version 8.6.15) were based on an Eclipse treatment planning system; the monitor units (MUs) and treatment time (T) were scored to measure the expected treatment efficiency. All the 10 patients under the study were subjectmore » to comparisons regarding the quality of target coverage, the efficiency of delivery, and the exposure of normal adjacent organs at risk (OARs). The study shows that VMAT was associated with a better conformal index (CI) and homogeneity index (HI) (both p < 0.05) but slightly higher dose to OARs than IMRT. The MUs with VMAT (650.80 ± 24.59) were fewer than with IMRT (1300.10 ± 57.12) (relative reduction of 49.94%, p = 0.00) when using 2-Gy dose fractions. The treatment time with VMAT (3.20 ± 0.02 minutes) was shorter than with IMRT (7.38 ± 0.18 minutes) (relative reduction of 56.64%, p = 0.00). We found that VMAT and IMRT both provide satisfactory target dosimetric coverage and OARs sparing clinically. Likely to deliver a bit higher dose to OARs, VMAT in comparison with IMRT, is still a better choice for treatment of patients with Stage I-II NNKTL, thanks to better dose distribution, fewer MUs, and shorter delivery time.« less
Volumetric Modulated Arc (Radio) Therapy in Pets Treatment: The “La Cittadina Fondazione” Experience
Dolera, Mario; Malfassi, Luca; Carrara, Nancy; Finesso, Sara; Marcarini, Silvia; Mazza, Giovanni; Pavesi, Simone; Sala, Massimo; Urso, Gaetano
2018-01-01
Volumetric Modulated Arc Therapy (VMAT) is a modern technique, widely used in human radiotherapy, which allows a high dose to be delivered to tumor volumes and low doses to the surrounding organs at risk (OAR). Veterinary clinics takes advantage of this feature due to the small target volumes and distances between the target and the OAR. Sparing the OAR permits dose escalation, and hypofractionation regimens reduce the number of treatment sessions with a simpler manageability in the veterinary field. Multimodal volumes definition is mandatory for the small volumes involved and a positioning device precisely reproducible with a setup confirmation is needed before each session for avoiding missing the target. Additionally, the elaborate treatment plan must pursue hard constraints and objectives, and its feasibility must be evaluated with a per patient quality control. The aim of this work is to report results with regard to brain meningiomas and gliomas, trigeminal nerve tumors, brachial plexus tumors, adrenal tumors with vascular invasion and rabbit thymomas, in comparison with literature to determine if VMAT is a safe and viable alternative to surgery or chemotherapy alone, or as an adjuvant therapy in pets. PMID:29364837
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, J; Xu, Z; Baker, J
Purpose: To compare three-dimensional conformal radiotherapy (3D CRT) and volumetric-modulated arc therapy (VMAT) in lung stereotactic body radiation therapy (SBRT) Methods: A retrospective study of clinically treated lung SBRT cases treated between 2010 and 2015 at our hospital was performed. All treatment modalities were included in this evaluation (VMAT, 3D CRT, static IMRT, and dynamic conformal arc therapy). However, the majority of treatment modalities were either VMAT or 3D CRT. Treatment times of patients and dosimetric plan quality metrics were compared. Treatment times were calculated based on the time the therapist opened and closed the patient’s treatment plan. This treatmentmore » time closely approximates the utilization time of the treatment room. The dosimetric plan quality metrics evaluated include ICRU conformity index, the volume of 105% prescribed dose outside PTV, the ratio of volume of 50% prescribed dose to the volume of PTV, the percentage of maximum dose at 2 cm away from PTV to the prescribed dose, and the V20 (percentage of lung volume receiving 20 Gy or more). Results: Treatment time comparisons show that on average VMAT has shorter treatment times than 3D CRT. Dose conformity, defined by the ICRU conformity index, and high dose spillage, defined by the volume of 105% dose outside the PTV, is reduced when using VMAT compared to 3D CRT. V20 and intermediate dose spillage/fall-off metrics of VMAT and 3D are not significantly different. Conclusion: Clinically treated lung SBRT cases indicate VMAT is superior to 3D with regard to shorter treatment times, plan dose conformity, and plan high dose spillage.« less
Yoshio, Kotaro; Mitsuhashi, Toshiharu; Wakita, Akihisa; Kitayama, Takahiro; Hisazumi, Kento; Inoue, Daisaku; Shiode, Tsuyoki; Akaki, Shiro; Kanazawa, Susumu
2018-01-04
To compare the plans of 4-arc and 6-arc noncoplanar volumetric modulated arc stereotactic radiotherapy (VMA-SRT) for multiple brain metastases and to investigate the cutoff value for the tumor number and volume for 6-arc rather than 4-arc VMA-SRT. We identified 24 consecutive multiple-target cases (3 to 19 targets in each case) with 189 total targets. We constructed plans using both 4- and 6-arc noncoplanar VMA-SRT. The prescribed dose was 36 Gy/6 fr, and it was delivered to 95% of the planning target volume (PTV). The plans were evaluated for the dose conformity using the Radiation Therapy Oncology Group and Paddick conformity indices (RCI and PCI), fall-off (Paddick gradient index [PGI]), and the normal brain dose. The median (range) RCI, PCI, and PGI was 0.94 (0.92 to 0.99), 0.89 (0.77 to 0.94), and 3.75 (2.24 to 6.54) for the 4-arc plan and 0.94 (0.91 to 0.98), 0.89 (0.76 to 0.94), and 3.65 (2.24 to 6.5) for the 6-arc plan, respectively. The median (range) of the normal brain dose was 910.3 cGy (381.4 to 1268.9) for the 4-arc plan and 898.8 cGy (377 to 1252.9) for the 6-arc plan. The PGI of the 6-arc plan was significantly superior to that of the 4-arc plan (p = 0.0076), and the optimal cutoff values for the tumor number and volume indicative of 6-arc (and not 4-arc) VMA-SRT were cases with ≥ 5 metastases and a PTV of ≥ 12.9 mL, respectively. The PCI values, however, showed no significant difference between the 2 plans. We believe these results will help in considering the use of 6-arc VMA-SRT for multiple brain metastases. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Park, Jong Min; Park, So-Yeon; Choi, Chang Heon; Chun, Minsoo; Kim, Jin Ho; Kim, Jung-In
2017-01-01
To investigate the plan quality of tri-Co-60 intensity-modulated radiation therapy (IMRT) with magnetic-resonance image-guided radiation therapy compared with volumetric-modulated arc therapy (VMAT) for prostate cancer. Twenty patients with intermediate-risk prostate cancer, who received radical VMAT were selected. Additional tri-Co-60 IMRT plans were generated for each patient. Both primary and boost plans were generated with tri-Co-60 IMRT and VMAT techniques. The prescription doses of the primary and boost plans were 50.4 Gy and 30.6 Gy, respectively. The primary and boost planning target volumes (PTVs) of the tri-Co-60 IMRT were generated with 3 mm margins from the primary clinical target volume (CTV, prostate + seminal vesicle) and a boost CTV (prostate), respectively. VMAT had a primary planning target volume (primary CTV + 1 cm or 2 cm margins) and a boost PTV (boost CTV + 0.7 cm margins), respectively. For both tri-Co-60 IMRT and VMAT, all the primary and boost plans were generated that 95% of the target volumes would be covered by the 100% of the prescription doses. Sum plans were generated by summation of primary and boost plans. In sum plans, the average values of V70 Gy of the bladder of tri-Co-60 IMRT vs. VMAT were 4.0% ± 3.1% vs. 10.9% ± 6.7%, (p < 0.001). Average values of V70 Gy of the rectum of tri-Co-60 IMRT vs. VMAT were 5.2% ± 1.8% vs. 19.1% ± 4.0% (p < 0.001). The doses of tri-Co-60 IMRT delivered to the bladder and rectum were smaller than those of VMAT while maintaining identical target coverage in both plans. PMID:29207634
Censor, Yair; Unkelbach, Jan
2012-04-01
In this paper we look at the development of radiation therapy treatment planning from a mathematical point of view. Historically, planning for Intensity-Modulated Radiation Therapy (IMRT) has been considered as an inverse problem. We discuss first the two fundamental approaches that have been investigated to solve this inverse problem: Continuous analytic inversion techniques on one hand, and fully-discretized algebraic methods on the other hand. In the second part of the paper, we review another fundamental question which has been subject to debate from the beginning of IMRT until the present day: The rotation therapy approach versus fixed angle IMRT. This builds a bridge from historic work on IMRT planning to contemporary research in the context of Intensity-Modulated Arc Therapy (IMAT). Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lai, Lu-Han; Chuang, Keh-Shih; Lin, Hsin-Hon; Liu, Yi-Chi; Kuo, Chiung-Wen; Lin, Jao-Perng
2017-11-01
The in-vivo dose distributions of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT), a newly developed technique, for head and neck cancer have been investigated for several years. The present study used a head-and-neck RANDO phantom to simulate the clinical conditions of nasopharyngeal carcinoma and compare the radiation doses between VMAT and IMRT. Three types of planning target volume (PTV) profiles were targeted by reducing the PTV surface margin by 0, 3, and 5 mm. An optically stimulated luminescence dosimeter was used to measure the surface doses. The results revealed that VMAT provided on average 16.8-13.8% lower surface doses within the PTV target areas than IMRT. When the PTV margin was reduced by 0 mm, the surface doses for IMRT reached their maximum value, accounting for 75.1% of its prescribed dose (Dp); however, the Dp value of VMAT was only 61.1%. When the PTV margin was reduced by 3 or 5 mm, the surface doses decreased considerably. The observed surface doses were insufficient when the tumours invaded the body surface; however, VMAT exerted larger skin-sparing effects than IMRT when the tumours away from the skin. These results suggest that the skin doses for these two techniques are insufficient for surface tumours. Notably, VMAT can provide lower skin doses for deep tumours.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S; Zhang, H; Zhang, B
2015-06-15
Purpose: To clinically evaluate the differences in volumetric modulated arc therapy (VMAT) treatment plan and delivery between two commercial treatment planning systems. Methods: Two commercial VMAT treatment planning systems with different VMAT optimization algorithms and delivery approaches were evaluated. This study included 16 clinical VMAT plans performed with the first system: 2 spine, 4 head and neck (HN), 2 brain, 4 pancreas, and 4 pelvis plans. These 16 plans were then re-optimized with the same number of arcs using the second treatment planning system. Planning goals were invariant between the two systems. Gantry speed, dose rate modulation, MLC modulation, planmore » quality, number of monitor units (MUs), VMAT quality assurance (QA) results, and treatment delivery time were compared between the 2 systems. VMAT QA results were performed using Mapcheck2 and analyzed with gamma analysis (3mm/3% and 2mm/2%). Results: Similar plan quality was achieved with each VMAT optimization algorithm, and the difference in delivery time was minimal. Algorithm 1 achieved planning goals by highly modulating the MLC (total distance traveled by leaves (TL) = 193 cm average over control points per plan), while maintaining a relatively constant dose rate (dose-rate change <100 MU/min). Algorithm 2 involved less MLC modulation (TL = 143 cm per plan), but greater dose-rate modulation (range = 0-600 MU/min). The average number of MUs was 20% less for algorithm 2 (ratio of MUs for algorithms 2 and 1 ranged from 0.5-1). VMAT QA results were similar for all disease sites except HN plans. For HN plans, the average gamma passing rates were 88.5% (2mm/2%) and 96.9% (3mm/3%) for algorithm 1 and 97.9% (2mm/2%) and 99.6% (3mm/3%) for algorithm 2. Conclusion: Both VMAT optimization algorithms achieved comparable plan quality; however, fewer MUs were needed and QA results were more robust for Algorithm 2, which more highly modulated dose rate.« less
NASA Astrophysics Data System (ADS)
Schnell, Erich; Herman, Tania De La Fuente; Young, Julie; Hildebrand, Kim; Algan, Ozer; Syzek, Elizabeth; Herman, Terence; Ahmad, Salahuddin
2012-10-01
This study aims to evaluate treatment plans generated by Step-and-Shoot (SS), Sliding Window (SW) and Volumetric Modulated Arc Therapy (VMAT) in order to assess the differences in dose volume histograms of planning target volume (PTV) and organs at risk (OAR), conformity indices, radiobiological evaluations, and plan quality for prostate cancer cases. Six prostate cancer patients treated in our center were selected for this retrospective study. Treatment plans were generated with Eclipse version 8.9 using 10 MV photon beams. For VMAT, Varian Rapid Arc with 1 or 2 arcs, and for SS and SW IMRT, 7-9 fields were used. Each plan had three PTVs with prescription doses of 81, 59.4, and 45 Gy to prostate, to prostate and lymph nodes, and to pelvis, respectively. Doses to PTV and OAR and the conformal indices (COIN) were compared among three techniques. The equivalent uniform dose (EUD), tumor control probability (TCP) and normal tissue complication probability (NTCP) were calculated and compared. The mean doses to the PTV prostate on average were 83 Gy and the percent differences of mean dose among all techniques were below 0.28. For bladder and rectum, the percent differences of mean dose among all techniques were below 2.2. The COIN did not favour any particular delivery method over the other. The TCP was higher with SS and SW for four patients and higher with VMAT for two patients. The NTCP for the rectum was the lowest with VMAT in five out of the six patients. The results show similar target coverage in general.
VMAT testing for an Elekta accelerator
Sweeney, Larry E.; Marshall, Edward I.; Mahendra, Saikanth
2012-01-01
Volumetric‐modulated arc therapy (VMAT) has been shown to be able to deliver plans equivalent to intensity‐modulated radiation therapy (IMRT) in a fraction of the treatment time. This improvement is important for patient immobilization/ localization compliance due to comfort and treatment duration, as well as patient throughput. Previous authors have suggested commissioning methods for this modality. Here, we extend the methods reported for the Varian RapidArc system (which tested individual system components) to the Elekta linear accelerator, using custom files built using the Elekta iComCAT software. We also extend the method reported for VMAT commissioning of the Elekta accelerator by verifying maximum values of parameters (gantry speed, multileaf collimator (MLC) speed, and backup jaw speed), investigating: 1) beam profiles as a function of dose rate during an arc, 2) over/under dosing due to MLC reversals, and 3) over/under dosing at changing dose rate junctions. Equations for construction of the iComCAT files are given. Results indicate that the beam profile for lower dose rates varies less than 3% from that of the maximum dose rate, with no difference during an arc. The gantry, MLC, and backup jaw maximum speed are internally consistent. The monitor unit chamber is stable over the MUs and gantry movement conditions expected. MLC movement and position during VMAT delivery are within IMRT tolerances. Dose rate, gantry speed, and MLC speed are accurately controlled. Over/under dosing at junctions of MLC reversals or dose rate changes are within clinical acceptability. PACS numbers: 87.55.de, 87.55.Qr, 87.56.bd PMID:22402389
Andrevska, Adriana; Knight, Kellie A; Sale, Charlotte A
2014-12-01
Radiotherapy management of patients with brain metastases most commonly involve a whole-brain radiation therapy (WBRT) regime, as well as newer techniques such as stereotactic radiosurgery (SRS) and intensity modulated radiotherapy (IMRT). The long treatment times incurred by these techniques indicates the need for a novel technique that has shorter treatment times, whilst still producing highly conformal treatment with the potential to deliver escalated doses to the target area. Volumetric modulated arc therapy (VMAT) is a dynamic, highly conformal technique that may deliver high doses of radiation through a single gantry arc and reduce overall treatment times. The aim of this systematic review is to determine the feasibility and benefits of VMAT treatment in regard to overall survival rates and local control in patients with brain metastases, in comparison with patients treated with WBRT, SRS and IMRT. A search of the literature identified 23 articles for the purpose of this review. Articles were included on the basis they were human-based studies, with sample sizes of more than five patients who were receiving treatment for 1-10 metastatic brain lesions. VMAT was found to be highly conformal, have a reduced treatment delivery time and incurred no significant toxicities in comparison with WBRT, SRS and IMRT. Compared to other treatment techniques, VMAT proved to have fewer toxicities than conventional WBRT, shorter treatment times than SRS and similar dose distributions to IMRT plans. Future prospective studies are needed to accurately assess the prognostic benefits of VMAT as well as the occurrence of late toxicities.
Volumetric modulated arc therapy for treatment of solid tumors: current insights
Macchia, Gabriella; Deodato, Francesco; Cilla, Savino; Cammelli, Silvia; Guido, Alessandra; Ferioli, Martina; Siepe, Giambattista; Valentini, Vincenzo; Morganti, Alessio Giuseppe; Ferrandina, Gabriella
2017-01-01
Aim This article discusses the current use of volumetric modulated arc therapy (VMAT) techniques in clinical practice and reviews the available data from clinical outcome studies in different clinical settings. An overview of available literature about clinical outcomes with VMAT stereotactic/radiosurgical treatment is also reported. Materials and methods All published manuscripts reporting the use of VMAT in a clinical setting from 2009 to November 2016 were identified. The search was carried out in December 2016 using the National Library of Medicine (PubMed/Medline). The following words were searched: “volumetric arc therapy”[All Fields] OR “vmat”[All Fields] OR “rapidarc”[All Fields], AND “radiotherapy”[All Fields] AND “Clinical Trial”[All Fields]. Results Overall, 37 studies (21 prospective and 16 retrospective) fulfilling inclusion criteria and thus included in the review evaluated 2,029 patients treated with VMAT; of these patients, ~30.8% had genitourinary (GU) tumors (81% prostate, 19% endometrial), 26.2% head-and-neck cancer (H&NC), 13.9% oligometastases, 11.2% had anorectal cancer, 10.6% thoracic neoplasms (81% breast, 19% lung), and 7.0% brain metastases (BMs). Six different clinical scenarios for VMAT use were identified: 1) BMs, 2) H&NC, 3) thoracic neoplasms, 4) GU cancer, 5) anorectal tumor, and 6) stereotactic body radiation therapy (SBRT) performed by VMAT technique in the oligometastatic patient setting. Conclusion The literature addressing the clinical appropriateness of VMAT is scarce. Current literature suggests that VMAT, especially when used as simultaneous integrated boost or SBRT strategy, is an effective safe modality for all cancer types. PMID:28794640
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaly, B; Hoover, D; Mitchell, S
2014-08-15
During volumetric modulated arc therapy (VMAT) of head and neck cancer, some patients lose weight which may result in anatomical deviations from the initial plan. If these deviations are substantial a new treatment plan can be designed for the remainder of treatment (i.e., adaptive planning). Since the adaptive treatment process is resource intensive, one possible approach to streamlining the quality assurance (QA) process is to use the electronic portal imaging device (EPID) to measure the integrated fluence for the adapted plans instead of the currently-used ArcCHECK device (Sun Nuclear). Although ArcCHECK is recognized as the clinical standard for patient-specific VMATmore » plan QA, it has limited length (20 cm) for most head and neck field apertures and has coarser detector spacing than the EPID (10 mm vs. 0.39 mm). In this work we compared measurement of the integrated fluence using the EPID with corresponding measurements from the ArcCHECK device. In the past year nine patients required an adapted plan. Each of the plans (the original and adapted) is composed of two arcs. Routine clinical QA was performed using the ArcCHECK device, and the same plans were delivered to the EPID (individual arcs) in integrated mode. The dose difference between the initial plan and adapted plan was compared for ArcCHECK and EPID. In most cases, it was found that the EPID is more sensitive in detecting plan differences. Therefore, we conclude that EPID provides a viable alternative for QA of the adapted head and neck plans and should be further explored.« less
Thomas, Evan M; Popple, Richard A; Wu, Xingen; Clark, Grant M; Markert, James M; Guthrie, Barton L; Yuan, Yu; Dobelbower, Michael C; Spencer, Sharon A; Fiveash, John B
2014-10-01
Volumetric modulated arc therapy (VMAT) has been shown to be feasible for radiosurgical treatment of multiple cranial lesions with a single isocenter. To investigate whether equivalent radiosurgical plan quality and reduced delivery time could be achieved in VMAT for patients with multiple intracranial targets previously treated with Gamma Knife (GK) radiosurgery. We identified 28 GK treatments of multiple metastases. These were replanned for multiarc and single-arc, single-isocenter VMAT (RapidArc) in Eclipse. The prescription for all targets was standardized to 18 Gy. Each plan was normalized for 100% prescription dose to 99% to 100% of target volume. Plan quality was analyzed by target conformity (Radiation Therapy Oncology Group and Paddick conformity indices [CIs]), dose falloff (area under the dose-volume histogram curve), as well as the V4.5, V9, V12, and V18 isodose volumes. Other end points included beam-on and treatment time. Compared with GK, multiarc VMAT improved median plan conformity (CIVMAT = 1.14, CIGK = 1.65; P < .001) with no significant difference in median dose falloff (P = .269), 12 Gy isodose volume (P = .500), or low isodose spill (P = .49). Multiarc VMAT plans were associated with markedly reduced treatment time. A predictive model of the 12 Gy isodose volume as a function of tumor number and volume was also developed. For multiple target stereotactic radiosurgery, 4-arc VMAT produced clinically equivalent conformity, dose falloff, 12 Gy isodose volume, and low isodose spill, and reduced treatment time compared with GK. Because of its similar plan quality and increased delivery efficiency, single-isocenter VMAT radiosurgery may constitute an attractive alternative to multi-isocenter radiosurgery for some patients.
MO-AB-BRA-01: A Global Level Set Based Formulation for Volumetric Modulated Arc Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, D; Lyu, Q; Ruan, D
2016-06-15
Purpose: The current clinical Volumetric Modulated Arc Therapy (VMAT) optimization is formulated as a non-convex problem and various greedy heuristics have been employed for an empirical solution, jeopardizing plan consistency and quality. We introduce a novel global direct aperture optimization method for VMAT to overcome these limitations. Methods: The global VMAT (gVMAT) planning was formulated as an optimization problem with an L2-norm fidelity term and an anisotropic total variation term. A level set function was used to describe the aperture shapes and adjacent aperture shapes were penalized to control MLC motion range. An alternating optimization strategy was implemented to solvemore » the fluence intensity and aperture shapes simultaneously. Single arc gVMAT plans, utilizing 180 beams with 2° angular resolution, were generated for a glioblastoma multiforme (GBM), lung (LNG), and 2 head and neck cases—one with 3 PTVs (H&N3PTV) and one with 4 PTVs (H&N4PTV). The plans were compared against the clinical VMAT (cVMAT) plans utilizing two overlapping coplanar arcs. Results: The optimization of the gVMAT plans had converged within 600 iterations. gVMAT reduced the average max and mean OAR dose by 6.59% and 7.45% of the prescription dose. Reductions in max dose and mean dose were as high as 14.5 Gy in the LNG case and 15.3 Gy in the H&N3PTV case. PTV coverages (D95, D98, D99) were within 0.25% of the prescription dose. By globally considering all beams, the gVMAT optimizer allowed some beams to deliver higher intensities, yielding a dose distribution that resembles a static beam IMRT plan with beam orientation optimization. Conclusions: The novel VMAT approach allows for the search of an optimal plan in the global solution space and generates deliverable apertures directly. The single arc VMAT approach fully utilizes the digital linacs’ capability in dose rate and gantry rotation speed modulation. Varian Medical Systems, NIH grant R01CA188300, NIH grant R43CA183390.« less
Superior Volumetric Modulated Arc Therapy Planning Solution for Prostate Patients
2013-04-01
co-workers from the University of Chicago for provid- ing them with the reconstruction from their data using their implementation of their ASD-POCS...1245 (2000). 8D. M. Shepard , M. A. Earl, X. A. Li, S. Naqvi, and C. Yu, “Direct aperture optimization: A turnkey solution for step-and-shoot IMRT
Applying the technique of volume-modulated arc radiotherapy to upper esophageal carcinoma.
Ma, Pan; Wang, Xiaozhen; Xu, Yingjie; Dai, Jianrong; Wang, Luhua
2014-05-08
This study aims to evaluate the possibility of using the technique of volume-modulated arc therapy (VMAT) to combine the advantages of simplified intensity-modulated radiation therapy (sIMRT) with that of regular intensity-modulated radiation therapy (IMRT) in upper esophageal cancer. Ten patients with upper esophageal carcinoma were randomly chosen in this retrospective study. sIMRT, IMRT, and VMAT plans were generated to deliver 60 Gy in 30 fractions to the planning target volume (PTV). For each patient, with the same clinical requirements (target dose prescription, and dose/dose-volume constraints to organs at risk (OARs)), three plans were designed for sIMRT (five equispaced coplanar beams), IMRT (seven equispaced coplanar beams), and VMAT (two complete arcs). Comparisons were performed for dosimetric parameters of PTV and of OARs (lungs, spinal cord PRV, heart and normal tissue (NT)). All the plans were delivered to a phantom to evaluate the treatment time. The Wilcoxon matched-pairs, signed-rank test was used for intragroup comparison. For all patients, compared to sIMRT plans, VMAT plans statistically provide: a) significant improvement in HI and CI for PTV; b) significant decrease in delivery time, lung V20, MLD, heart V30 and spinal cord PRV D1cc; c) significant increase in NT V5; and d) no significant reduction in lung V5, V10, and heart MD. For all patients, compared to IMRT plans, VMAT plans statistically provide: a) significant improvement in CI for PTV; b) significant decrease in delivery time, lung V20, MLD, NT and spinal cord PRV D1cc; c) significant increase in NT V5; and d) no significant reduction in HI for PTV, lung V5, V10, heart V30 and heart MD. For patients with upper esophageal carcinoma, using VMAT significantly reduces the delivery time and the dose to the lungs compared with IMRT, and consequently saves as much treatment time as sIMRT. Considering those significant advantages, compared to sIMRT and IMRT, VMAT is the first choice of radiotherapy techniques for upper esophageal carcinoma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barten, Danique L. J., E-mail: d.barten@vumc.nl; Tol, Jim P.; Dahele, Max
Purpose: Proton radiotherapy for head-and-neck cancer (HNC) aims to improve organ-at-risk (OAR) sparing over photon radiotherapy. However, it may be less robust for setup and range uncertainties. The authors investigated OAR sparing and plan robustness for spot-scanning proton planning techniques and compared these with volumetric modulated arc therapy (VMAT) photon plans. Methods: Ten HNC patients were replanned using two arc VMAT (RapidArc) and spot-scanning proton techniques. OARs to be spared included the contra- and ipsilateral parotid and submandibular glands and individual swallowing muscles. Proton plans were made using Multifield Optimization (MFO, using three, five, and seven fields) and Single-field Optimizationmore » (SFO, using three fields). OAR sparing was evaluated using mean dose to composite salivary glands (Comp{sub Sal}) and composite swallowing muscles (Comp{sub Swal}). Plan robustness was determined for setup and range uncertainties (±3 mm for setup, ±3% HU) evaluating V95% and V107% for clinical target volumes. Results: Averaged over all patients Comp{sub Sal}/Comp{sub Swal} mean doses were lower for the three-field MFO plans (14.6/16.4 Gy) compared to the three-field SFO plans (20.0/23.7 Gy) and VMAT plans (23.0/25.3 Gy). Using more than three fields resulted in differences in OAR sparing of less than 1.5 Gy between plans. SFO plans were significantly more robust than MFO plans. VMAT plans were the most robust. Conclusions: MFO plans had improved OAR sparing but were less robust than SFO and VMAT plans, while SFO plans were more robust than MFO plans but resulted in less OAR sparing. Robustness of the MFO plans did not increase with more fields.« less
Dickey, Mike; Roa, Wilson; Drodge, Suzanne; Ghosh, Sunita; Murray, Brad; Scrimger, Rufus; Gabos, Zsolt
2015-01-01
The primary objective of this study was to compare dosimetric variables as well as treatment times of multiple static fields (MSFs), conformal arcs (CAs), and volumetric modulated arc therapy (VMAT) techniques for the treatment of early stage lung cancer using stereotactic body radiotherapy (SBRT). Treatments of 23 patients previously treated with MSF of 48Gy to 95% of the planning target volume (PTV) in 4 fractions were replanned using CA and VMAT techniques. Dosimetric parameters of the Radiation Therapy Oncology Group (RTOG) 0915 trial were evaluated, along with the van׳t Riet conformation number (CN), monitor units (MUs), and actual and calculated treatment times. Paired t-tests for noninferiority were used to compare the 3 techniques. CA had significant dosimetric improvements over MSF for the ratio of the prescription isodose volume to PTV (R100%, p < 0.0001), the maximum dose 2cm away from the PTV (D2cm, p = 0.005), and van׳t Riet CN (p < 0.0001). CA was not statistically inferior to MSF for the 50% prescription isodose volume to PTV (R50%, p = 0.05). VMAT was significantly better than CA for R100% (p < 0.0001), R50% (p < 0.0001), D2cm (p = 0.006), and CN (p < 0.0001). CA plans had significantly shorter treatment times than those of VMAT (p < 0.0001). Both CA and VMAT planning showed significant dosimetric improvements and shorter treatment times over those of MSF. VMAT showed the most favorable dosimetry of all 3 techniques; however, the dosimetric effect of tumor motion was not evaluated. CA plans were significantly faster to treat, and minimize the interplay of tumor motion and dynamic multileaf collimator (MLC) motion effects. Given these results, CA has become the treatment technique of choice at our facility. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Pardo-Montero, Juan; Fenwick, John D
2010-06-01
The purpose of this work is twofold: To further develop an approach to multiobjective optimization of rotational therapy treatments recently introduced by the authors [J. Pardo-Montero and J. D. Fenwick, "An approach to multiobjective optimization of rotational therapy," Med. Phys. 36, 3292-3303 (2009)], especially regarding its application to realistic geometries, and to study the quality (Pareto optimality) of plans obtained using such an approach by comparing them with Pareto optimal plans obtained through inverse planning. In the previous work of the authors, a methodology is proposed for constructing a large number of plans, with different compromises between the objectives involved, from a small number of geometrically based arcs, each arc prioritizing different objectives. Here, this method has been further developed and studied. Two different techniques for constructing these arcs are investigated, one based on image-reconstruction algorithms and the other based on more common gradient-descent algorithms. The difficulty of dealing with organs abutting the target, briefly reported in previous work of the authors, has been investigated using partial OAR unblocking. Optimality of the solutions has been investigated by comparison with a Pareto front obtained from inverse planning. A relative Euclidean distance has been used to measure the distance of these plans to the Pareto front, and dose volume histogram comparisons have been used to gauge the clinical impact of these distances. A prostate geometry has been used for the study. For geometries where a blocked OAR abuts the target, moderate OAR unblocking can substantially improve target dose distribution and minimize hot spots while not overly compromising dose sparing of the organ. Image-reconstruction type and gradient-descent blocked-arc computations generate similar results. The Pareto front for the prostate geometry, reconstructed using a large number of inverse plans, presents a hockey-stick shape comprising two regions: One where the dose to the target is close to prescription and trade-offs can be made between doses to the organs at risk and (small) changes in target dose, and one where very substantial rectal sparing is achieved at the cost of large target underdosage. Plans computed following the approach using a conformal arc and four blocked arcs generally lie close to the Pareto front, although distances of some plans from high gradient regions of the Pareto front can be greater. Only around 12% of plans lie a relative Euclidean distance of 0.15 or greater from the Pareto front. Using the alternative distance measure of Craft ["Calculating and controlling the error of discrete representations of Pareto surfaces in convex multi-criteria optimization," Phys. Medica (to be published)], around 2/5 of plans lie more than 0.05 from the front. Computation of blocked arcs is quite fast, the algorithms requiring 35%-80% of the running time per iteration needed for conventional inverse plan computation. The geometry-based arc approach to multicriteria optimization of rotational therapy allows solutions to be obtained that lie close to the Pareto front. Both the image-reconstruction type and gradient-descent algorithms produce similar modulated arcs, the latter one perhaps being preferred because it is more easily implementable in standard treatment planning systems. Moderate unblocking provides a good way of dealing with OARs which abut the PTV. Optimization of geometry-based arcs is faster than usual inverse optimization of treatment plans, making this approach more rapid than an inverse-based Pareto front reconstruction.
Abraham, S; Fogliata, A; Jordaan, A; Clivio, A; Vanetti, E; Cozzi, L
2013-01-01
Objective: To evaluate the use of volumetric-modulated arc therapy [VMAT, RapidArc® (RA); Varian Medical Systems, Palo Alto, CA] for the treatment of cutaneous Kaposi’s sarcoma (KS) of lower extremities with adequate target coverage and high bone sparing, and to compare VMAT with electron beam therapy. Methods: 10 patients were planned with either RA or electron beams. The dose was prescribed to 30 Gy, 10 fractions, to mean the planning target volume (PTV), and significant maximum dose to bone was limited to 30 Gy. Plans were designed for 6-MV photon beams for RA and 6 MeV for electrons. Dose distributions were computed with AcurosXB® (Varian Medical Systems) for photons and with a Monte Carlo algorithm for electrons. Results: V90% was 97.3±1.2 for RA plans and 78.2±2.6 for electrons; similarly, V107% was 2.5±2.2 and 37.7±3.4, respectively. RA met coverage criteria. Concerning bone sparing, D2% was 29.6±1.1 for RA and 31.0±2.4 for electrons. Although acceptable for bone involvement, pronounced target coverage violations were obtained for electron plans. Monitor units were similar for electrons and RA, although for the latter they increased when superior bone sparing was imposed. Delivery times were 12.1±4.0 min for electrons and 4.8±1.3 min for the most modulated RA plans. Conclusion: High plan quality was shown for KS in the lower extremities using VMAT, and this might simplify their management in comparison with the more conventional usage of electrons, particularly in institutes with limited staff resources and heavy workloads. Advances in knowledge: VMAT is also dosimetrically extremely advantageous in a typology of treatments where electron beam therapy is mainly considered to be effective owing to the limited penetration of the beams. PMID:23392192
Fogliata, Antonella; Scorsetti, Marta; Navarria, Piera; Catalano, Maddalena; Clivio, Alessandro; Cozzi, Luca; Lobefalo, Francesca; Nicolini, Giorgia; Palumbo, Valentina; Pellegrini, Chiara; Reggiori, Giacomo; Roggio, Antonella; Vanetti, Eugenio; Alongi, Filippo; Pentimalli, Sara; Mancosu, Pietro
2013-04-01
To appraise the potential of volumetric modulated arc therapy (VMAT, RapidArc) and proton beams to simultaneously achieve target coverage and enhanced sparing of bone tissue in the treatment of soft-tissue sarcoma with adequate target coverage. Ten patients presenting with soft-tissue sarcoma of the leg were collected for the study. Dose was prescribed to 66.5 Gy in 25 fractions to the planning target volume (PTV) while significant maximum dose to the bone was constrained to 50 Gy. Plans were optimised according to the RapidArc technique with 6 MV photon beams or for intensity modulated protons. RapidArc photon plans were computed with: 1) AAA; 2) Acuros XB as dose to medium; and 3) Acuros XB as dose to water. All plans acceptably met the criteria of target coverage (V95% >90-95%) and bone sparing (D(1 cm3) <50 Gy). Significantly higher PTV dose homogeneity was found for proton plans. Near-to-maximum dose to bone was similar for RapidArc and protons, while volume receiving medium/low dose levels was minimised with protons. Similar results were obtained for the remaining normal tissue. Dose distributions calculated with the dose to water option resulted ~5% higher than corresponding ones computed as dose to medium. High plan quality was demonstrated for both VMAT and proton techniques when applied to soft-tissue sarcoma.
VMAT optimization with dynamic collimator rotation.
Lyu, Qihui; O'Connor, Daniel; Ruan, Dan; Yu, Victoria; Nguyen, Dan; Sheng, Ke
2018-04-16
Although collimator rotation is an optimization variable that can be exploited for dosimetric advantages, existing Volumetric Modulated Arc Therapy (VMAT) optimization uses a fixed collimator angle in each arc and only rotates the collimator between arcs. In this study, we develop a novel integrated optimization method for VMAT, accounting for dynamic collimator angles during the arc motion. Direct Aperture Optimization (DAO) for Dynamic Collimator in VMAT (DC-VMAT) was achieved by adding to the existing dose fidelity objective an anisotropic total variation term for regulating the fluence smoothness, a binary variable for forming simple apertures, and a group sparsity term for controlling collimator rotation. The optimal collimator angle for each beam angle was selected using the Dijkstra's algorithm, where the node costs depend on the estimated fluence map at the current iteration and the edge costs account for the mechanical constraints of multi-leaf collimator (MLC). An alternating optimization strategy was implemented to solve the DAO and collimator angle selection (CAS). Feasibility of DC-VMAT using one full-arc with dynamic collimator rotation was tested on a phantom with two small spherical targets, a brain, a lung and a prostate cancer patient. The plan was compared against a static collimator VMAT (SC-VMAT) plan using three full arcs with 60 degrees of collimator angle separation in patient studies. With the same target coverage, DC-VMAT achieved 20.3% reduction of R50 in the phantom study, and reduced the average max and mean OAR dose by 4.49% and 2.53% of the prescription dose in patient studies, as compared with SC-VMAT. The collimator rotation co-ordinated with the gantry rotation in DC-VMAT plans for deliverability. There were 13 beam angles in the single-arc DC-VMAT plan in patient studies that requires slower gantry rotation to accommodate multiple collimator angles. The novel DC-VMAT approach utilizes the dynamic collimator rotation during arc delivery. In doing so, DC-VMAT affords more sophisticated intensity modulation, alleviating the limitation previously imposed by the square beamlet from the MLC leaf thickness and achieves higher effective modulation resolution. Consequently, DC-VMAT with a single arc manages to achieve superior dosimetry than SC-VMAT with three full arcs. © 2018 American Association of Physicists in Medicine.
Ng, Sweet Ping; Tran, Thu; Moloney, Philip; Sale, Charlotte; Mathlum, Maitham; Ong, Grace; Lynch, Rod
2015-12-01
Cases of synchronous prostate and colorectal adenocarcinomas have been sporadically reported. There are case reports on patients with synchronous prostate and rectal cancers treated with external beam radiotherapy alone or combined with high-dose rate brachytherapy boost to the prostate. Here, we illustrate a patient with synchronous prostate and rectal cancers treated using the volumetric arc therapy (VMAT) technique. The patient was treated with radical radiotherapy to 50.4 Gy in 28 fractions to the pelvis, incorporating the involved internal iliac node and the prostate. A boost of 24 Gy in 12 fractions was delivered to the prostate only, using VMAT. Treatment-related toxicities and follow-up prostate-specific antigen and carcinoembryonic antigen were collected for data analysis. At 12 months, the patient achieved complete response for both rectal and prostate cancers without significant treatment-related toxicities.
Improving a scissor-action couch for conformal arc radiotherapy and radiosurgery.
Li, Kaile; Yu, Cedric X; Ma, Lijun
2004-01-01
We have developed a method to improve the setup accuracy of a Varian Clinac 6/100 couch for delivering conformal arc therapy using a tertiary micro multileaf collimator (MLC) system. Several immobilization devices have been developed to improve the mechanical stability and isocenter alignment of the couch: turn-knob harnesses, double-track alignment plates, and a drop-in rod that attaches the couch to the concrete floor. These add-on components minimize the intercomponent motion of the couch's scissor elevator, which allows consistent treatment setup. The accuracy of our isocenter couch alignment is an improvement over the above devices, within 1 mm of their accuracy. The couch has been used with over 15 patients and with over 50 modulated conformal arc treatment deliveries at our institution.
de Bartolomeis, Andrea; Iasevoli, Felice; Marmo, Federica; Buonaguro, Elisabetta Filomena; Avvisati, Livia; Latte, Gianmarco; Tomasetti, Carmine
2018-04-01
Caffeine and nicotine are widely used by schizophrenia patients and may worsen psychosis and affect antipsychotic therapies. However, they have also been accounted as augmentation strategies in treatment-resistant schizophrenia. Despite both substances are known to modulate dopamine and glutamate transmission, little is known about the molecular changes induced by these compounds in association to antipsychotics, mostly at the level of the postsynaptic density (PSD), a site of dopamine-glutamate interplay. Here we investigated whether caffeine and nicotine, alone or combined with haloperidol, elicited significant changes in the levels of both transcripts and proteins of the PSD members Homer1 and Arc, which have been implicated in synaptic plasticity, schizophrenia pathophysiology, and antipsychotics molecular action. Homer1a mRNA expression was significantly reduced by caffeine and nicotine, alone or combined with haloperidol, compared to haloperidol. Haloperidol induced significantly higher Arc mRNA levels than both caffeine and caffeine plus haloperidol in the striatum. Arc mRNA expression was significantly higher by nicotine plus haloperidol vs. haloperidol in the cortex, while in striatum gene expression by nicotine was significantly lower than that by both haloperidol and nicotine plus haloperidol. Both Homer1a and Arc protein levels were significantly increased by caffeine, nicotine, and nicotine plus haloperidol. Homer1b mRNA expression was significantly increased by nicotine and nicotine plus haloperidol, while protein levels were unaffected. Locomotor activity was not significantly affected by caffeine, while it was reduced by nicotine. These data indicate that both caffeine and nicotine trigger relevant molecular changes in PSD sites when given in association with haloperidol. Copyright © 2018 Elsevier B.V. and ECNP. All rights reserved.
Balderson, Michael; Brown, Derek; Johnson, Patricia; Kirkby, Charles
2016-01-01
The purpose of this work was to compare static gantry intensity-modulated radiation therapy (IMRT) with volume-modulated arc therapy (VMAT) in terms of tumor control probability (TCP) under scenarios involving large geometric misses, i.e., those beyond what are accounted for when margin expansion is determined. Using a planning approach typical for these treatments, a linear-quadratic-based model for TCP was used to compare mean TCP values for a population of patients who experiences a geometric miss (i.e., systematic and random shifts of the clinical target volume within the planning target dose distribution). A Monte Carlo approach was used to account for the different biological sensitivities of a population of patients. Interestingly, for errors consisting of coplanar systematic target volume offsets and three-dimensional random offsets, static gantry IMRT appears to offer an advantage over VMAT in that larger shift errors are tolerated for the same mean TCP. For example, under the conditions simulated, erroneous systematic shifts of 15mm directly between or directly into static gantry IMRT fields result in mean TCP values between 96% and 98%, whereas the same errors on VMAT plans result in mean TCP values between 45% and 74%. Random geometric shifts of the target volume were characterized using normal distributions in each Cartesian dimension. When the standard deviations were doubled from those values assumed in the derivation of the treatment margins, our model showed a 7% drop in mean TCP for the static gantry IMRT plans but a 20% drop in TCP for the VMAT plans. Although adding a margin for error to a clinical target volume is perhaps the best approach to account for expected geometric misses, this work suggests that static gantry IMRT may offer a treatment that is more tolerant to geometric miss errors than VMAT. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boer, Johan de; Wolf, Anne Lisa; Szeto, Yenny Z.
2015-04-01
Purpose: Rotations of the prostate gland induce considerable geometric uncertainties in prostate cancer radiation therapy. Collimator and gantry angle adjustments can correct these rotations in intensity modulated radiation therapy. Modern volumetric modulated arc therapy (VMAT) treatments, however, include a wide range of beam orientations that differ in modulation, and corrections require dynamic collimator rotations. The aim of this study was to implement a rotation correction strategy for VMAT dose delivery and validate it for left-right prostate rotations. Methods and Materials: Clinical VMAT treatment plans of 5 prostate cancer patients were used. Simulated left-right prostate rotations between +15° and −15° weremore » corrected by collimator rotations. We compared corrected and uncorrected plans by dose volume histograms, minimum dose (D{sub min}) to the prostate, bladder surface receiving ≥78 Gy (S78) and rectum equivalent uniform dose (EUD; n=0.13). Each corrected plan was delivered to a phantom, and its deliverability was evaluated by γ-evaluation between planned and delivered dose, which was reconstructed from portal images acquired during delivery. Results: On average, clinical target volume minimum dose (D{sub min}) decreased up to 10% without corrections. Negative left-right rotations were corrected almost perfectly, whereas D{sub min} remained within 4% for positive rotations. Bladder S78 and rectum EUD of the corrected plans matched those of the original plans. The average pass rate for the corrected plans delivered to the phantom was 98.9% at 3% per 3 mm gamma criteria. The measured dose in the planning target volume approximated the original dose, rotated around the simulated left-right angle, well. Conclusions: It is feasible to dynamically adjust the collimator angle during VMAT treatment delivery to correct for prostate rotations. This technique can safely correct for left-right prostate rotations up to 15°.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goksel, E; Bilge, H; Yildiz, Yarar
2014-06-01
Purpose: Dosimetric feasibility of cranio-spinal irradiation with volumetric modulated arc therapy (VMAT-CSI) technique in terms of dose distribution accuracy was investigated using a humanlike phantom. Methods: The OARs and PTV volumes for the Rando phantom were generated on supine CT images. Eclipse (version 8.6) TPS with AAA algorithm was used to create the treatment plan with VMAT-CSI technique. RapidArc plan consisted of cranial, upper spinal (US) and lower spinal (LS) regions that were optimized in the same plan. US field was overlapped by 3cm with cranial and LS fields. Three partial arcs for cranium and 1 full arc for eachmore » US and LS region were used. The VMAT-CSI dose distribution inside the Rando phantom was measured with thermoluminescent detectors (TLD) and film dosimetry, and was compared to the calculated doses of field junctions, target and OARs. TLDs were placed at 24 positions throughout the phantom. The measured TLD doses were compared to the calculated point doses. Planar doses for field junctions were verified with Gafchromic films. Films were analyzed in PTW Verisoft application software using gamma analysis method with the 4 mm distance to agreement (DTA) and 4% dose agreement criteria. Results: TLD readings demonstrated accurate dose delivery, with a median dose difference of -0.3% (range: -8% and 12%) when compared with calculated doses for the areas inside the treatment portal. The maximum dose difference was 12% higher in testicals that are outside the treatment region and 8% lower in lungs where the heterogeinity was higher. All planar dose verifications for field junctions passed the gamma analysis and measured planar dose distributions demonstrated average 97% agreement with calculated doses. Conclusion: The dosimetric data verified with TLD and film dosimetry shows that VMAT-CSI technique provides accurate dose distribution and can be delivered safely.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, T; Lin, X; Yin, Y
Purpose: To compare the dosimetric differences among fixed field intensity-modulated radiotherapy (IMRT) and double-arc volumetricmodulated arc therapy (VMAT) plans with simultaneous integrated boost in rectal cancer. Methods: Ten patients with rectal cancer previously treated with IMRT were included in this analysis. For each patient, two treatment techniques were designed for each patient: the fixed 7 fields IMRT and double-arc VMAT with RapidArc technique. The treatment plan was designed to deliver in one process with simultaneous integrated boost (SIB). The prescribed doses to the planning target volume of the subclinical disease (PTV1) and the gross disease (PTV2) were 45 Gy andmore » 55 Gy in 25 fractions, respectively. The dose distribution in the target, the dose to the organs at risk, total MU and the delivery time in two techniques were compared to explore the dosimetric differences. Results: For the target dose and homogeneity in PTV1 and PTV2, no statistically differences were observed in the two plans. VMAT plans showed a better conformity in PTV1. VMAT plans reduced the mean dose to bladder, small bowel, femur heads and iliac wings. For iliac wings, VMAT plans resulted in a statistically significant reduction in irradiated volume of 15 Gy, 20 Gy, 30 Gy but increased the 10 Gy irradiated volume. VMAT plans reduced the small bowel irradiated volume of 20 Gy and 30 Gy. Compared with IMRT plans, VMAT plans showed a significant reduction of monitor units by nearly 30% and reduced treatment time by an average of 70% Conclusion: Compared to IMRT plans, VMAT plans showed the similar target dose and reduced the dose of the organs at risk, especially for small bowel and iliac wings. For rectal cancer, VMAT with simultaneous integrated boost can be carried out with high quality and efficiency.« less
SU-G-BRC-04: Collimator Angle Optimization in Volumetric Modulated Arc Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, A; Johnson, C; Bartlett, G
2016-06-15
Purpose: Volumetric modulated arc therapy (VMAT) has revolutionized radiation treatment by decreasing treatment time and monitor units, thus reducing scattered and whole body radiation dose. As the collimator angle changes the apparent leaf gap becomes larger which can impact plan quality, organ at risk (OAR) sparing as well as IMRT QA passing rate which is investigated. Methods: Two sites (prostate and head and neck) that have maximum utilization of VMAT were investigated. Two previously treated VMAT patients were chosen. For each patient 10 plans were created by maintaining constant optimization constraints while varying collimator angles from 0-90 deg at anmore » interval of 10 degrees for the first arc and the appropriate complimentary angle for the second arc. Plans were created with AAA algorithm using 6 MV beam on a Varian IX machine with Millennium 120 MLC. The dose-volume histogram (DVH) for each plan was exported and dosimetric parameters (D98, D95, D50, D2) as well homogeneity index (HI) and conformity index (CI) were computed. Each plan was validated for QA using ArcCheck with gamma index passing criteria of 2%/2 mm and 3%/3 mm. Additionally, normal tissue complication probability (NTCP) for each OAR was computed using Uzan-Nahum software. Results: The CI values for both sites had no impact as target volume coverage in every collimator angle were the same since it was optimized for adequate coverage. The HI which is representative of DVH gradient or dose uniformity in PTV showed a clear trend in both sites. The NTCP for OAR (brain and cochlea) in H&N plan and (bladder and rectum) in prostate plan showed a distinct superiority for collimator angles between 15-30 deg. The gamma passing rates were not correlated with angle. Conclusion: Based on CI, HI, NTCP and gamma passing index, it can be concluded that collimator angles should be maintained within 15–30 deg.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X; Tejani, M; Jiang, X
2016-06-15
Purpose: The purpose of this study is to investigate a volumetric modulated arc therapy (VMAT) treatment planning technique for supine craniospinal irradiation (CSI). Evaluate the suitability of VMAT for CSI with dosimetric measurements and compare it to 3D conformal planning using specific plan metrics such as dose conformity, homogeneity, and dose of organs at risk (OAR). Methods: Ten CSI patients treated with conventional 3D technique were re-planned with VMAT. The PTV was contoured to include the whole contents of the brain and spinal canal with a uniform margin of 5 mm. VMAT plans were generated with two partial arcs coveringmore » the brain, two partial arcs for the superior portion of the spinal cord and two partial arcs covering the remaining inferior portion of the spinal cord. Conformity index (CI), heterogeneity indexes (HI) and max and mean doses of OAR were compared to 3D plans. VMAT plans were delivered onto an anthropomorphic phantom loaded with Gafchromic films and OSLDs placed at specific positions to evaluate the plan dose at the junctions and as well as the plan dose distributions. Results: This VMAT technique was validated with a clinical study of 10 patients. The average CI was 1.03±0.02 for VMAT plans and 1.96±0.32 for conformal plans. And the average HI was 1.15±0.01 for VMAT plans and 1.51±0.21 for conformal plans. The mean and max doses to the all OARs for VMAT plans were significantly lower than conformal plans. The measured dose in phantom for VAMT plans was comparable to the calculated dose in Eclipse and the doses at junctions were verified. Conclusion: VMAT CSI was able to achieve better dose conformity and heterogeneity as well as significantly reducing the dose to Heart, esophagus and larynx. VMAT CSI appears to be a dosimterically advantageous, faster delivery, has better reproducibility CSI treatment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acar, H; Cebe, M; Mabhouti, H
Purpose: Stereotactic body radiosurgery (SBRT) for spine metastases involves irradiation using a single high dose fraction. The purpose of this study was to investigate a Hybrid VMAT/IMRT technique which combines volumetric modulated arc therapy (VMAT) and intensity modulated radiation therapy (IMRT) for spine SBRT in terms of its dosimetric quality and treatment efficiency using Radiation Therapy Oncology Group (RTOG) 0631 guidelines. Methods: 7 fields IMRT, 2 full arcs VMAT and Hybrid VMAT/IMRT were created for ten previously treated patients. The Hybrid VMAT/IMRT technique consisted of 1 full VMAT arc and 5 IMRT fields. Hybrid VMAT/IMRT plans were compared with IMRTmore » and VMAT plans in terms of the dose distribution, spinal cord sparing, homogeneity, conformity and gradient indexies, monitor unit (MU) and beam on time (BOT). RTOG 0631 recommendations were applied for treatment planning. All plans were normalized and prescribed to deliver 18.0 Gy in a single fraction to 90% of the target volume. Results: The Hybrid VMAT/IMRT technique significantly improved target dose homogeneity and conformity compared with IMRT and VMAT techniques. Providing sharp dose gradient Hybrid VMAT/IMRT plans spare the spinal cord and healthy tissue more effectively. Although, both MU and BOT slightly increased in Hybrid VMAT/IMRT plans there is no statistically meaningful difference between VMAT and Hybrid VMAT/IMRT plans. Conclusion: In IMRT, a smaller volume of healthy tissue can be irradiated in the low dose region, VMAT plans provide better target volume coverage, favorable dose gradient, conformity and better OAR sparing and also they require a much smaller number of MUs and thus a shorter treatment time than IMRT plans. Hybrid plan offers a sinergy through combination of these two techniques with slightly increased number of MU and thus more treatment time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Shuying; Oliver, Michael; Wang, Xiaofang
2014-08-15
Stereotactic body radiation therapy (SBRT), due to its high precision for target localizing, has become widely used to treat tumours at various locations, including the lungs. Lung SBRT program was started at our institution a year ago. Eighteen patients with peripheral lesions up to 3 cm diameter have been treated with 48 Gy in 4 fractions. Based on four-dimensional computed tomography (4DCT) simulation, internal target volume (ITV) was delineated to encompass the respiratory motion of the lesion. A margin of 5 mm was then added to create the planning target volume (PTV) for setup uncertainties. There was no expansion frommore » gross tumour volume (GTV) to clinical target volume (CTV). Pinnacle 9.6 was used as the primary treatment planning system. Volumetric modulated arc therapy (VMAT) technique, with one or two coplanar arcs, generally worked well. For quality assurance (QA), each plan was exported to Eclipse 10 and dose calculation was repeated. Dose volume histograms (DVHs) of the targets and organs at risk (OARs) were then compared between the two treatment planning systems. Winston-Lutz tests were carried out as routine machine QA. Patient-specific QA included ArcCheck measurement with an insert, where an ionization chamber was placed at the centre to measure dose at the isocenter. For the first several patients, and subsequently for the plans with extremely strong modulation, Gafchromic film dosimetry was also employed. For each patient, a mock setup was scheduled prior to treatments. Daily pre- and post-CBCT were acquired for setup and assessment of intra-fractional motion, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGlade, J; Kassaee, A
2015-06-15
Purpose: To evaluate planning methods for anal canal cancer and compare the results of 9-field Intensity Modulated Radiotherapy (IMRT), Volumetric Modulated Arc Therapy (Varian, RapidArc), and Proton Pencil Beam Scanning (PBS). Methods: We generated plans with IMRT, RapidArc (RA) and PBS for twenty patients for both initial phase including nodes and cone down phase of treatment using Eclipe (Varian). We evaluated the advantage of each technique for each phase. RA plans used 2 to 4 arcs and various collimator orientations. PBS used two posterior oblique fields. We evaluated the plans comparing dose volume histogram (DVH), locations of hot spots, andmore » PTV dose conformity. Results: Due to complex shape of target, for RA plans, multiple arcs (>2) are required to achieve optimal PTV conformity. When the PTV exceeds 15 cm in the superior-inferior direction, limitations of deliverability start to dominate. The PTV should be divided into a superior and an inferior structure. The optimization is performed with fixed jaws for each structure and collimator set to 90 degrees for the inferior PTV. Proton PBS plans show little advantage in small bowel sparing when treating the nodes. However, PBS plan reduces volumetric dose to the bladder at the cost of higher doses to the perineal skin. IMRT plans provide good target conformity, but they generate hot spots outside of the target volume. Conclusion: When using one planning technique for entire course of treatment, Multiple arc (>2) RA plans are better as compared to IMRT and PBS plans. When combining techniques, RA for the initial phase in combination with PBS for the cone down phase results in the most optimal plans.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Audet, Chantal; Poffenbarger, Brett A.; Chang, Pauling
2011-11-15
Purpose: To evaluate a commercial volumetric modulated arc therapy (VMAT), using multiple noncoplanar arcs, for linac-based cranial radiosurgery, as well as evaluate the combined accuracy of the VMAT dose calculations and delivery. Methods: Twelve patients with cranial lesions of variable size (0.1-29 cc) and two multiple metastases patients were planned (Eclipse RapidArc AAA algorithm, v8.6.15) using VMAT (1-6 noncoplanar arcs), dynamic conformal arc (DCA, {approx}4 arcs), and IMRT (nine static fields). All plans were evaluated according to a conformity index (CI), healthy brain tissue doses and volumes, and the dose to organs at risk. A 2D dose distribution was measuredmore » (Varian Novalis Tx, HD120 MLC, 1000 MU/min, 6 MV beam) for the {approx}4 arc VMAT treatment plans using calibrated film dosimetry. Results: The CI (0-1 best) average for all plans was best for {approx}4 noncoplanar arc VMAT at 0.86 compared with {approx}0.78 for IMRT and a single arc VMAT and 0.68 for DCA. The volumes of healthy brain receiving 50% of the prescribed target coverage dose or more (V{sub 50%}) were lowest for the four arc VMAT [RA(4)] and DCA plans. The average ratio of the V{sub 50%} for the other plans to the RA(4) V{sub 50%} were 1.9 for a single noncoplanar arc VMAT [RA(1nc)], 1.4 for single full coplanar arc VMAT [RA(1f)] and 1.3 for IMRT. The V{sub 50%} improved significantly for single isocenter multiple metastases plan when two noncoplanar VMAT arcs were added to a full single coplanar one. The maximum dose to 5 cc of the outer 1 cm rim of healthy brain which one may want to keep below nonconsequential doses of 300-400 cGy, was 2-3 times greater for IMRT, RA(1nc) and RA(1f) plans compared with the multiple noncoplanar arc DCA and RA(4) techniques. Organs at risk near (0-4 mm) to targets were best spared by (i) single noncoplanar arcs when the targets are lateral to the organ at risk and (ii) by skewed nonvertical planes of IMRT fields when the targets are not lateral to the organ at risk. The highest dose gradient observed between an organ at risk and a target at the edge of a VMAT arc plane or plane of IMRT fields was 17%/mm. The average absolute percent difference between the measured and calculated central axis dose for all the VMAT plans was 3.6 {+-} 2.2%. The measured perpendicular profile widths and shifts were on average within 0.5 mm of planned values. The average total MUs for VMAT plans was double the DCA average and similar to the IMRT average. Conclusions: For the aforementioned planning and delivery system and cranial lesions greater than 7 mm in diameter, multiple noncoplanar arc VMAT consistently provides accurate and high quality cranial radiosurgery dose distributions with low doses to healthy brain tissue and high dose conformity to the target. These qualities may make multiple noncoplanar arc VMAT suitable for a greater range of prescription doses or larger and more irregular lesions. For smaller and/or rounder lesions there are other clinically acceptable treatment techniques that may involve fewer couch angles or arcs and reduce treatment times.« less
Radhakrishnan, Sivakumar; Chandrasekaran, Anuradha; Sarma, Yugandhar; Balakrishnan, Saranganathan; Nandigam, Janardhan
2017-01-01
Backround: Plan quality and performance of dual arc (DA) volumetric modulated arc therapy (VMAT), single arc (SA) VMAT and nine field (9F) intensity modulated radiotherapy were compared using a simultaneous integrated boost (SIB) technique. Methods: Twelve patients treated in Elekta Synergy Platform (mlci2) by 9F-IMRT were replanned with SA/DA-VMAT using a CMS Monaco Treatment Planning System (TPS) with Monte Carlo simulation. Target delineation was conducted as per Radiation Therapy Oncology Protocols (RTOG0225 and 0615). A 70Gy dose prescribed to PTV70 and 61Gy to PTV61 in 33 fractions was applied for the SIB technique. The conformity index (CI) and homogeneity index (HI) for targets and the mean dose and maximum dose for OAR’s, treatment delivery time (min), monitor units (MUs) per fraction, normal tissue integral dose and patient specific quality assurance were analysed. Results: Acceptable target coverage was achieved for PTV70 and PTV61 with all the planning techniques. No significant differences were observed except for D98 (PTV61), CI(PTV70) and HI(PTV61). Maximum dose (Dmax) to the spinal cord was lower in DA-VMAT than 9F-IMRT (p=0.002) and SA-VMAT (p=0.001). D50 (%) of parotid glands was better controlled by 9F-IMRT (p=0.001) and DA-VMAT (p=0.001) than SA-VMAT. A lower mean dose to the larynx was achieved with 9F-IMRT (P=0.001) and DA-VMAT (p=0.001) than with SA-VMAT. DA-VMAT achieved higher CI of PTV70 (P= 0.005) than SA-VMAT. For PTV61, DA-VMAT (P=0.001) and 9F-IMRT (P=0.001) achieved better HI than SA-VMAT. The average treatment delivery times were 7.67mins, 3.35 mins, 4.65 mins for 9F-IMRT, SA-VMAT and DA-VMAT, respectively. No significant difference were observed in MU/fr (p=0.9) and NTID (P=0.90) and the patient quality assurance pass rates were >95% (gamma analysis I3mm, 3%). Conclusion: DA-VMAT showed better conformity over target dose and spared the OARs better or equal to IMRT. SA-VMAT could not spare the OARs well. DA-VMAT offered shorter delivery time than IMRT without compromising the plan quality. PMID:28612593
Radhakrishnan, Sivakumar; Chandrasekaran, Anuradha; Sarma, Yugandhar; Balakrishnan, Saranganathan; Nandigam, Janardhan
2017-05-01
Backround: Plan quality and performance of dual arc (DA) volumetric modulated arc therapy (VMAT) , single arc (SA) VMAT and nine field (9F) intensity modulated radiotherapy were compared using a simultaneous integrated boost (SIB) technique. Methods: Twelve patients treated in Elekta Synergy Platform (mlci2) by 9F-IMRT were replanned with SA/DA-VMAT using a CMS Monaco Treatment Planning System (TPS) with Monte Carlo simulation. Target delineation was conducted as per Radiation Therapy Oncology Protocols (RTOG0225 and 0615). A 70Gy dose prescribed to PTV70 and 61Gy to PTV61 in 33 fractions was applied for the SIB technique. The conformity index (CI) and homogeneity index (HI) for targets and the mean dose and maximum dose for OAR’s, treatment delivery time (min), monitor units (MUs) per fraction, normal tissue integral dose and patient specific quality assurance were analysed. Results: Acceptable target coverage was achieved for PTV70 and PTV61 with all the planning techniques. No significant differences were observed except for D98 (PTV61), CI(PTV70) and HI(PTV61). Maximum dose (Dmax) to the spinal cord was lower in DA-VMAT than 9F-IMRT (p=0.002) and SA-VMAT (p=0.001). D50 (%) of parotid glands was better controlled by 9F-IMRT (p=0.001) and DA-VMAT (p=0.001) than SA-VMAT. A lower mean dose to the larynx was achieved with 9F-IMRT (P=0.001) and DA-VMAT (p=0.001) than with SA-VMAT. DA-VMAT achieved higher CI of PTV70 (P= 0.005) than SA-VMAT. For PTV61, DA-VMAT (P=0.001) and 9F-IMRT (P=0.001) achieved better HI than SA-VMAT. The average treatment delivery times were 7.67mins, 3.35 mins, 4.65 mins for 9F- IMRT, SA-VMAT and DA-VMAT, respectively. No significant difference were observed in MU/fr (p=0.9) and NTID (P=0.90) and the patient quality assurance pass rates were >95% (gamma analysis Ґ3mm, 3%). Conclusion: DA-VMAT showed better conformity over target dose and spared the OARs better or equal to IMRT. SA-VMAT could not spare the OARs well. DA-VMAT offered shorter delivery time than IMRT without compromising the plan quality. Creative Commons Attribution License
Ghandour, Sarah; Matzinger, Oscar
2015-01-01
The purpose of this work is to evaluate the volumetric‐modulated arc therapy (VMAT) multicriteria optimization (MCO) algorithm clinically available in the RayStation treatment planning system (TPS) and its ability to reduce treatment planning time while providing high dosimetric plan quality. Nine patients with localized prostate cancer who were previously treated with 78 Gy in 39 fractions using VMAT plans and rayArc system based on the direct machine parameter optimization (DMPO) algorithm were selected and replanned using the VMAT‐MCO system. First, the dosimetric quality of the plans was evaluated using multiple conformity metrics that account for target coverage and sparing of healthy tissue, used in our departmental clinical protocols. The conformity and homogeneity index, number of monitor units, and treatment planning time for both modalities were assessed. Next, the effects of the technical plan parameters, such as constraint leaf motion CLM (cm/°) and maximum arc delivery time T (s), on the accuracy of delivered dose were evaluated using quality assurance passing rates (QAs) measured using the Delta4 phantom from ScandiDos. For the dosimetric plan's quality analysis, the results show that the VMAT‐MCO system provides plans comparable to the rayArc system with no statistical difference for V95% (p<0.01), D1% (p<0.01), CI (p<0.01), and HI (p<0.01) of the PTV, bladder (p<0.01), and rectum (p<0.01) constraints, except for the femoral heads and healthy tissues, for which a dose reduction was observed using MCO compared with rayArc (p<0.01). The technical parameter study showed that a combination of CLM equal to 0.5 cm/degree and a maximum delivery time of 72 s allowed the accurate delivery of the VMAT‐MCO plan on the Elekta Versa HD linear accelerator. Planning evaluation and dosimetric measurements showed that VMAT‐MCO can be used clinically with the advantage of enhanced planning process efficiency by reducing the treatment planning time without impairing dosimetric quality. PACS numbers: 87.55.D, 87.55.de, 87.55.Qr PMID:26103500
Colodro, Juan Fernando Mata; Berná, Alfredo Serna; Puchades, Vicente Puchades; Amores, David Ramos; Baños, Miguel Alcaraz
2017-01-01
The aim of this work is to verify the use of radiochromic film in the quality assurance (QA) of volumetric-modulated arc therapy (VMAT) lung stereotactic body radiation therapy (SBRT) plans and compare the results with those obtained using an ion chamber array. QA was performed for 14 plans using a two-dimensional-array seven29 and EBT3 film. Dose values per session ranged between 7.5 Gy and 18 Gy. The multichannel method was used to obtain a dose map for film. The results obtained were compared with treatment planning system calculated profiles through gamma analysis. Passing criteria were 3%/3 mm, 2%/2 mm and 3%/1.5 mm with maximum and local dose (LD) normalization. Mean gamma passing rate (GPR) (percentage of points presenting a gamma function value of <1) was obtained and compared. Calibration curves were obtained for each color channel within the dose range 0-16 Gy. Mean GPR values for film were >98.9% for all criteria when normalizing per maximum dose. When using LD, normalization was >92.7%. GPR values for the array were lower for all criteria; this difference being statistically significant when normalizing at LD, reaching 12% for the 3%/1.5 mm criterion. Both detectors provide satisfactory results for the QA of plans for VMAT lung SBRT. The film provided greater mean GPR values, afforded greater spatial resolution and was more efficient overall.
Colodro, Juan Fernando Mata; Berná, Alfredo Serna; Puchades, Vicente Puchades; Amores, David Ramos; Baños, Miguel Alcaraz
2017-01-01
Introduction: The aim of this work is to verify the use of radiochromic film in the quality assurance (QA) of volumetric-modulated arc therapy (VMAT) lung stereotactic body radiation therapy (SBRT) plans and compare the results with those obtained using an ion chamber array. Materials and Methods: QA was performed for 14 plans using a two-dimensional-array seven29 and EBT3 film. Dose values per session ranged between 7.5 Gy and 18 Gy. The multichannel method was used to obtain a dose map for film. Results: The results obtained were compared with treatment planning system calculated profiles through gamma analysis. Passing criteria were 3%/3 mm, 2%/2 mm and 3%/1.5 mm with maximum and local dose (LD) normalization. Mean gamma passing rate (GPR) (percentage of points presenting a gamma function value of <1) was obtained and compared. Calibration curves were obtained for each color channel within the dose range 0–16 Gy. Mean GPR values for film were >98.9% for all criteria when normalizing per maximum dose. When using LD, normalization was >92.7%. GPR values for the array were lower for all criteria; this difference being statistically significant when normalizing at LD, reaching 12% for the 3%/1.5 mm criterion. Conclusion: Both detectors provide satisfactory results for the QA of plans for VMAT lung SBRT. The film provided greater mean GPR values, afforded greater spatial resolution and was more efficient overall. PMID:28974858
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penoncello, Gregory P.; Ding, George X., E-mail: george.ding@vanderbilt.edu
The purpose of this study was (1) to evaluate dose to skin between volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) treatment techniques for target sites in the head and neck, pelvis, and brain and (2) to determine if the treatment dose and fractionation regimen affect the skin dose between traditional sequential boost and integrated boost regimens for patients with head and neck cancer. A total of 19 patients and 48 plans were evaluated. The Eclipse (v11) treatment planning system was used to plan therapy in 9 patients with head and neck cancer, 5 patients with prostate cancer, andmore » 5 patients with brain cancer with VMAT and static-field IMRT. The mean skin dose and the maximum dose to a contiguous volume of 2 cm{sup 3} for head and neck plans and brain plans and a contiguous volume of 5 cm{sup 3} for pelvis plans were compared for each treatment technique. Of the 9 patients with head and neck cancer, 3 underwent an integrated boost regimen. One integrated boost plan was replanned with IMRT and VMAT using a traditional boost regimen. For target sites located in the head and neck, VMAT reduced the mean dose and contiguous hot spot most noticeably in the shoulder region by 5.6% and 5.4%, respectively. When using an integrated boost regimen, the contiguous hot spot skin dose in the shoulder was larger on average than a traditional boost pattern by 26.5% and the mean skin dose was larger by 1.7%. VMAT techniques largely decrease the contiguous hot spot in the skin in the pelvis by an average of 36% compared with IMRT. For the same target coverage, VMAT can reduce the skin dose in all the regions of the body, but more noticeably in the shoulders in patients with head and neck and pelvis cancer. We also found that using integrated boost regimens in patients with head and neck cancer leads to higher shoulder skin doses compared with traditional boost regimens.« less
NASA Astrophysics Data System (ADS)
Lee, Rena; Kim, Kyubo; Cho, Samju; Lim, Sangwook; Lee, Suk; Shim, Jang Bo; Huh, Hyun Do; Lee, Sang Hoon; Ahn, Sohyun
2017-11-01
This study applied statistical process control to set and verify the quality assurances (QA) tolerance standard for our hospital's characteristics with the criteria standards that are applied to all the treatment sites with this analysis. Gamma test factor of delivery quality assurances (DQA) was based on 3%/3 mm. Head and neck, breast, prostate cases of intensity modulated radiation therapy (IMRT) or volumetric arc radiation therapy (VMAT) were selected for the analysis of the QA treatment sites. The numbers of data used in the analysis were 73 and 68 for head and neck patients. Prostate and breast were 49 and 152 by MapCHECK and ArcCHECK respectively. C p value of head and neck and prostate QA were above 1.0, C pml is 1.53 and 1.71 respectively, which is close to the target value of 100%. C pml value of breast (IMRT) was 1.67, data values are close to the target value of 95%. But value of was 0.90, which means that the data values are widely distributed. C p and C pml of breast VMAT QA were respectively 1.07 and 2.10. This suggests that the VMAT QA has better process capability than the IMRT QA. Consequently, we should pay more attention to planning and QA before treatment for breast Radiotherapy.
Richmond, Neil; Tulip, Rachael; Walker, Chris
2016-01-01
The aim of this work was to determine, by measurement and independent monitor unit (MU) check, the optimum method for determining collimator scatter for an Elekta Synergy linac with an Agility multileaf collimator (MLC) within Radcalc, a commercial MU calculation software package. The collimator scatter factors were measured for 13 field shapes defined by an Elekta Agility MLC on a Synergy linac with 6MV photons. The value of the collimator scatter associated with each field was also calculated according to the equation Sc=Sc(mlc)+Sc(corr)(Sc(open)-Sc(mlc)) with Sc(corr) varied between 0 and 1, where Sc(open) is the value of collimator scatter calculated from the rectangular collimator-defined field and Sc(mlc) the value using only the MLC-defined field shape by applying sector integration. From this the optimum value of the correction was determined as that which gives the minimum difference between measured and calculated Sc. Single (simple fluence modulation) and dual-arc (complex fluence modulation) treatment plans were generated on the Monaco system for prostate volumetric modulated-arc therapy (VMAT) delivery. The planned MUs were verified by absolute dose measurement in phantom and by an independent MU calculation. The MU calculations were repeated with values of Sc(corr) between 0 and 1. The values of the correction yielding the minimum MU difference between treatment planning system (TPS) and check MU were established. The empirically derived value of Sc(corr) giving the best fit to the measured collimator scatter factors was 0.49. This figure however was not found to be optimal for either the single- or dual-arc prostate VMAT plans, which required 0.80 and 0.34, respectively, to minimize the differences between the TPS and independent-check MU. Point dose measurement of the VMAT plans demonstrated that the TPS MUs were appropriate for the delivered dose. Although the value of Sc(corr) may be obtained by direct comparison of calculation with measurement, the efficacy of the value determined for VMAT-MU calculations are very much dependent on the complexity of the MLC delivery. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lo, Ching-Jung; Yang, Pei-Ying; Chao, Tsi-Chian; Tu, Shu-Ju
2015-06-01
In the treatment planning of radiation therapy, patients may be administrated with contrast media in CT scanning to assist physicians for accurate delineation of the target or organs. However, contrast media are not used in patients during the treatment delivery. In particular, contrast media contain materials with high atomic numbers and dosimetric variations may occur between scenarios where contrast media are present in treatment planning and absent in treatment delivery. In this study we evaluate the effect of contrast media on the dosimetry and biological consequence. An analytical phantom based on AAPM TG 119 and five sets of CT images from clinical patients are included. Different techniques of treatment planning are considered, including 1-field AP, 2-field AP+PA, 4-field box, 7-field IMRT, and RapidArc. RapidArc is a recent technique of volumetric modulated arc therapy and is used in our study of contrast media in clinical scenarios. The effect of RapidArc on dosimetry and biological consequence for administration of contrast media in radiotherapy is not discussed previously in literature. It is shown that dose difference is reduced as the number of external beams is increased, suggesting RapidArc may be favored to be used in the treatment planning enhanced by contrast media. Linear trend lines are fitted for assessment of percent dose differences in the planning target volume versus concentrations of contrast media between plans where contrast media are present and absent, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, X; Li, X; Zhang, J
Purpose: To develop a delivery-efficient proton spot-scanning arc therapy technique with robust plan quality. Methods: We developed a Scanning Proton Arc(SPArc) optimization algorithm integrated with (1)Control point re-sampling by splitting control point into adjacent sub-control points; (2)Energy layer re-distribution by assigning the original energy layers to the new sub-control points; (3)Energy layer filtration by deleting low MU weighting energy layers; (4)Energy layer re-sampling by sampling additional layers to ensure the optimal solution. A bilateral head and neck oropharynx case and a non-mobile lung target case were tested. Plan quality and total estimated delivery time were compared to original robust optimizedmore » multi-field step-and-shoot arc plan without SPArc optimization (Arcmulti-field) and standard robust optimized Intensity Modulated Proton Therapy(IMPT) plans. Dose-Volume-Histograms (DVH) of target and Organ-at-Risks (OARs) were analyzed along with all worst case scenarios. Total delivery time was calculated based on the assumption of a 360 degree gantry room with 1 RPM rotation speed, 2ms spot switching time, beam current 1nA, minimum spot weighting 0.01 MU, energy-layer-switching-time (ELST) from 0.5 to 4s. Results: Compared to IMPT, SPArc delivered less integral dose(−14% lung and −8% oropharynx). For lung case, SPArc reduced 60% of skin max dose, 35% of rib max dose and 15% of lung mean dose. Conformity Index is improved from 7.6(IMPT) to 4.0(SPArc). Compared to Arcmulti-field, SPArc reduced number of energy layers by 61%(276 layers in lung) and 80%(1008 layers in oropharynx) while kept the same robust plan quality. With ELST from 0.5s to 4s, it reduced 55%–60% of Arcmulti-field delivery time for the lung case and 56%–67% for the oropharynx case. Conclusion: SPArc is the first robust and delivery-efficient proton spot-scanning arc therapy technique which could be implemented in routine clinic. For modern proton machine with ELST close to 0.5s, SPArc would be a popular treatment option for both single and multi-room center.« less
Comparison of anatomy-based, fluence-based and aperture-based treatment planning approaches for VMAT
NASA Astrophysics Data System (ADS)
Rao, Min; Cao, Daliang; Chen, Fan; Ye, Jinsong; Mehta, Vivek; Wong, Tony; Shepard, David
2010-11-01
Volumetric modulated arc therapy (VMAT) has the potential to reduce treatment times while producing comparable or improved dose distributions relative to fixed-field intensity-modulated radiation therapy. In order to take full advantage of the VMAT delivery technique, one must select a robust inverse planning tool. The purpose of this study was to evaluate the effectiveness and efficiency of VMAT planning techniques of three categories: anatomy-based, fluence-based and aperture-based inverse planning. We have compared these techniques in terms of the plan quality, planning efficiency and delivery efficiency. Fourteen patients were selected for this study including six head-and-neck (HN) cases, and two cases each of prostate, pancreas, lung and partial brain. For each case, three VMAT plans were created. The first VMAT plan was generated based on the anatomical geometry. In the Elekta ERGO++ treatment planning system (TPS), segments were generated based on the beam's eye view (BEV) of the target and the organs at risk. The segment shapes were then exported to Pinnacle3 TPS followed by segment weight optimization and final dose calculation. The second VMAT plan was generated by converting optimized fluence maps (calculated by the Pinnacle3 TPS) into deliverable arcs using an in-house arc sequencer. The third VMAT plan was generated using the Pinnacle3 SmartArc IMRT module which is an aperture-based optimization method. All VMAT plans were delivered using an Elekta Synergy linear accelerator and the plan comparisons were made in terms of plan quality and delivery efficiency. The results show that for cases of little or modest complexity such as prostate, pancreas, lung and brain, the anatomy-based approach provides similar target coverage and critical structure sparing, but less conformal dose distributions as compared to the other two approaches. For more complex HN cases, the anatomy-based approach is not able to provide clinically acceptable VMAT plans while highly conformal dose distributions were obtained using both aperture-based and fluence-based inverse planning techniques. The aperture-based approach provides improved dose conformity than the fluence-based technique in complex cases.
Gas Tungsten Arc Welding. Welding Module 6. Instructor's Guide.
ERIC Educational Resources Information Center
Missouri Univ., Columbia. Instructional Materials Lab.
This guide is intended to assist vocational educators in teaching a three-unit module in gas tungsten arc welding. The module has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The basic principles involved in gas tungsten arc welding, supplies, and applications are covered. The materials included…
NASA Astrophysics Data System (ADS)
Zhang, Pengpeng; Hunt, Margie; Happersett, Laura; Yang, Jie; Zelefsky, Michael; Mageras, Gig
2013-11-01
To develop an optimization algorithm for volumetric modulated arc therapy which incorporates an electromagnetic tracking (EMT) guided gating strategy and is robust to residual intra-fractional motion uncertainties. In a computer simulation, intra-fractional motion traces from prior treatments with EMT were converted to a probability distribution function (PDF), truncated using a patient specific action volume that encloses allowed deviations from the planned position, and renormalized to yield a new PDF with EMT-gated interventions. In lieu of a conventional planning target volume (PTV), multiple instances of clinical target volume (CTV) and organs at risk (OARs) were replicated and displaced to extreme positions inside the action volume representing possible delivery scenarios. When optimizing the volumetric modulated arc therapy plan, doses to the CTV and OARs were calculated as a sum of doses to the replicas weighted by the PDF to account for motion. A treatment plan meeting the clinical constraints was produced and compared to the counterpart conventional margin (PTV) plan. EMT traces from a separate testing database served to simulate motion during gated delivery. Dosimetric end points extracted from dose accumulations for each motion trace were utilized to evaluate potential clinical benefit. Five prostate cases from a hypofractionated protocol (42.5 Gy in 5 fractions) were retrospectively investigated. The patient specific gating window resulted in tight anterior and inferior action levels (∼1 mm) to protect rectal wall and bladder wall, and resulted in an average of four beam interruptions per fraction in the simulation. The robust-optimized plans achieved the same average CTV D95 coverage of 40.5 Gy as the PTV-optimized plans, but with reduced patient-averaged rectum wall D1cc by 2.2 Gy (range 0.7 to 4.7 Gy) and bladder wall mean dose by 2.9 Gy (range 2.0 to 3.4 Gy). Integration of an intra-fractional motion management strategy into the robust optimization process is feasible and may yield improved OAR sparing compared to the standard margin approach.
Zhang, Pengpeng; Hunt, Margie; Happersett, Laura; Yang, Jie; Zelefsky, Michael; Mageras, Gig
2013-11-07
To develop an optimization algorithm for volumetric modulated arc therapy which incorporates an electromagnetic tracking (EMT) guided gating strategy and is robust to residual intra-fractional motion uncertainties. In a computer simulation, intra-fractional motion traces from prior treatments with EMT were converted to a probability distribution function (PDF), truncated using a patient specific action volume that encloses allowed deviations from the planned position, and renormalized to yield a new PDF with EMT-gated interventions. In lieu of a conventional planning target volume (PTV), multiple instances of clinical target volume (CTV) and organs at risk (OARs) were replicated and displaced to extreme positions inside the action volume representing possible delivery scenarios. When optimizing the volumetric modulated arc therapy plan, doses to the CTV and OARs were calculated as a sum of doses to the replicas weighted by the PDF to account for motion. A treatment plan meeting the clinical constraints was produced and compared to the counterpart conventional margin (PTV) plan. EMT traces from a separate testing database served to simulate motion during gated delivery. Dosimetric end points extracted from dose accumulations for each motion trace were utilized to evaluate potential clinical benefit. Five prostate cases from a hypofractionated protocol (42.5 Gy in 5 fractions) were retrospectively investigated. The patient specific gating window resulted in tight anterior and inferior action levels (~1 mm) to protect rectal wall and bladder wall, and resulted in an average of four beam interruptions per fraction in the simulation. The robust-optimized plans achieved the same average CTV D95 coverage of 40.5 Gy as the PTV-optimized plans, but with reduced patient-averaged rectum wall D1cc by 2.2 Gy (range 0.7 to 4.7 Gy) and bladder wall mean dose by 2.9 Gy (range 2.0 to 3.4 Gy). Integration of an intra-fractional motion management strategy into the robust optimization process is feasible and may yield improved OAR sparing compared to the standard margin approach.
Oechsner, Markus; Odersky, Leonhard; Berndt, Johannes; Combs, Stephanie Elisabeth; Wilkens, Jan Jakob; Duma, Marciana Nona
2015-12-01
The purpose of this study was to assess the impact on dose to the planning target volume (PTV) and organs at risk (OAR) by using four differently generated CT datasets for dose calculation in stereotactic body radiotherapy (SBRT) of lung and liver tumors. Additionally, dose differences between 3D conformal radiotherapy and volumetric modulated arc therapy (VMAT) plans calculated on these CT datasets were determined. Twenty SBRT patients, ten lung cases and ten liver cases, were retrospectively selected for this study. Treatment plans were optimized on average intensity projection (AIP) CTs using 3D conformal radiotherapy (3D-CRT) and volumetric modulated arc therapy (VMAT). Afterwards, the plans were copied to the planning CTs (PCT), maximum intensity projection (MIP) and mid-ventilation (MidV) CT datasets and dose was recalculated keeping all beam parameters and monitor units unchanged. Ipsilateral lung and liver volumes and dosimetric parameters for PTV (Dmean, D2, D98, D95), ipsilateral lung and liver (Dmean, V30, V20, V10) were determined and statistically analysed using Wilcoxon test. Significant but small mean differences were found for PTV dose between the CTs (lung SBRT: ≤2.5 %; liver SBRT: ≤1.6 %). MIPs achieved the smallest lung and the largest liver volumes. OAR mean doses in MIP plans were distinctly smaller than in the other CT datasets. Furthermore, overlapping of tumors with the diaphragm results in underestimated ipsilateral lung dose in MIP plans. Best agreement was found between AIP and MidV (lung SBRT). Overall, differences in liver SBRT were smaller than in lung SBRT and VMAT plans achieved slightly smaller differences than 3D-CRT plans. Only small differences were found for PTV parameters between the four CT datasets. Larger differences occurred for the doses to organs at risk (ipsilateral lung, liver) especially for MIP plans. No relevant differences were observed between 3D-CRT or VMAT plans. MIP CTs are not appropriate for OAR dose assessment. PCT, AIP and MidV resulted in similar doses. If a 4DCT is acquired PCT can be omitted using AIP or MidV for treatment planning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karthikeyan, N; Ganesh, K M; Vikraman, S
2014-06-15
Purpose: To evaluate the angular dependence correction for Matrix Evolution 2D array detector in quality assurance of volumetric modulated arc therapy(VMAT). Methods: Total ten patients comprising of different sites were planned for VMAT and taken for the study. Each plan was exposed on Matrix Evolution 2D array detector with Omnipro IMRT software based on the following three different methods using 6MV photon beams from Elekta Synergy linear accelerator. First method, VMAT plan was delivered on Matrix Evolution detector as it gantry mounted with dedicated holder with build-up of 2.3cm. Second, the VMAT plan was delivered with the static gantry anglemore » on to the table mounted setup. Third, the VMAT plan was delivered with actual gantry angle on Matrix Evolution detector fixed in Multicube phantom with gantry angle sensor and angular dependence correction were applied to quantify the plan quality. For all these methods, the corresponding QA plans were generated in TPS and the dose verification was done for both point and 2D fluence analysis with pass criteria of 3% dose difference and 3mm distance to agreement. Results: The measured point dose variation for the first method was observed as 1.58±0.6% of mean and SD with TPS calculated. For second and third method, the mean and standard deviation(SD) was observed as 1.67±0.7% and 1.85±0.8% respectively. The 2D fluence analysis of measured and TPS calculated has the mean and SD of 97.9±1.1%, 97.88±1.2% and 97.55±1.3% for first, second and third methods respectively. The calculated two-tailed Pvalue for point dose and 2D fluence analysis shows the insignificance with values of 0.9316 and 0.9015 respectively, among the different methods of QA. Conclusion: The qualitative evaluation of angular dependence correction for Matrix Evolution 2D array detector shows its competency in accuracy of quality assurance measurement of composite dose distribution of volumetric modulated arc therapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, Jay; Hood, Rodney; Yin, Fang-Fang
2016-01-01
Previous work demonstrated improved dosimetry of single isocenter volumetric modulated arc therapy (VMAT) of multiple intracranial targets when they are located ≤ 4 cm from isocenter because of narrower multileaf collimators (MLCs). In follow-up, we sought to determine if decreasing isocenter-target distance (d{sub iso}) by using 2 to 3 isocenters would improve dosimetry for spatially dispersed targets. We also investigated the effect of a maximum dose constraint during VMAT optimization, and the dosimetric effect of the number of VMAT arcs used for a larger number of targets (i.e., 7 to 9). We identified radiosurgery cases that had multiple intracranial targetsmore » with d{sub iso} of at least 1 target > 5 cm. A single isocenter VMAT plan was created using a standardized 4-arc technique with 18 Gy per target. Each case was then replanned (1) using 2 to 3 isocenters, (2) including a maximum dose constraint per target, and in the case of 7 to 9 targets, (3) using 3 to 6 arcs. Dose evaluation included brain V{sub 6} {sub Gy} and V{sub 12} {sub Gy}, and conformity index (CI), gradient index (GI), and heterogeneity index (HI) per target. Two isocenters were sufficient to limit d{sub iso} to ≤ 4 cm and ≤ 5 cm for 11/15 and 13/15 cases, respectively; after replanning with 2 to 3 isocenters, d{sub iso} decreased from 5.8 ± 2.8 cm (2.3 14.9) to 2.5 ± 1.4 cm (0 5.2). All dose statistics improved on average, albeit modestly: V{sub 6} {sub Gy} = 6.9 ± 7.1%, V{sub 12} {sub Gy} = 0.9% ± 4.4%, CI = 2.6% ± 4.6%, GI = 0.9% ± 12.7%, and HI = 2.6% ± 5.2%; however, the number of arcs doubled and monitor units increase by nearly 2-fold. A maximum dose constraint had a negative effect on all dose indices, increasing V{sub 12} {sub Gy} by 9.7 ± 6.9%. For ≥ 7 targets, increasing number of arcs to > 3 improved CI, V{sub 12} {sub Gy}, and V{sub 6} {sub Gy}. A single isocenter is likely sufficient for VMAT radiosurgery of multiple intracranial metastases. Optimal treatment plan quality is achieved when no constraint is placed on the maximum target dose; for cases with many targets at least 4 arcs are needed for optimal plan quality.« less
He, Longbiao; Yang, Ping; Li, Luming; Wu, Minsheng
2014-12-01
To solve the difficulty of introducing traditional ultrasonic transducers to welding molten pool, high frequency current is used to modulate plasma arc and ultrasonic wave is excited successfully. The characteristics of the excited ultrasonic field are studied. The results show that the amplitude-frequency response of the ultrasonic emission is flat. The modulating current is the main factor influencing the ultrasonic power and the sound pressure depends on the variation of arc plasma stream force. Experimental study of the welding structure indicates grain refinement by the ultrasonic emission of the modulated arc and the test results showed there should be an energy region for the arc ultrasonic to get best welding joints. Copyright © 2014 Elsevier B.V. All rights reserved.
Han, Eun Young; Paudel, Nava; Sung, Jiwon; Yoon, Myonggeun; Chung, Weon Kuu; Kim, Dong Wook
2016-04-19
The risk of secondary cancer from radiation treatment remains a concern for long-term breast cancer survivors, especially those treated with radiation at the age younger than 45 years. Treatment modalities optimally maximize the dose delivery to the tumor while minimizing radiation doses to neighboring organs, which can lead to secondary cancers. A new TomoTherapy treatment machine, TomoHDATM, can treat an entire breast with two static but intensity-modulated beams in a slice-by-slice fashion. This feature could reduce scattered and leakage radiation doses. We compared the plan quality and lifetime attributable risk (LAR) of a second malignancy among five treatment modalities: three-dimensional conformal radiation therapy, field-in-field forward-planned intensity-modulated radiation therapy, inverse-planned intensity-modulated radiation therapy (IMRT), volumetric modulated arc therapy, and TomoDirect mode on the TomoHDA system. Ten breast cancer patients were selected for retrospective analysis. Organ equivalent doses, plan characteristics, and LARs were compared. Out-of-field organ doses were measured with radio-photoluminescence glass dosimeters. Although the IMRT plan provided overall better plan quality, including the lowest probability of pneumonitis, it caused the second highest LAR. The TomoTherapy plan provided plan quality comparable to the IMRT plan and posed the lowest total LAR to neighboring organs. Therefore, it can be a better treatment modality for younger patients who have a longer life expectancy.
NASA Astrophysics Data System (ADS)
Crowe, S. B.; Kairn, T.; Middlebrook, N.; Sutherland, B.; Hill, B.; Kenny, J.; Langton, C. M.; Trapp, J. V.
2015-03-01
This study aimed to provide a detailed evaluation and comparison of a range of modulated beam evaluation metrics, in terms of their correlation with QA testing results and their variation between treatment sites, for a large number of treatments. Ten metrics including the modulation index (MI), fluence map complexity, modulation complexity score (MCS), mean aperture displacement (MAD) and small aperture score (SAS) were evaluated for 546 beams from 122 intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) treatment plans targeting the anus, rectum, endometrium, brain, head and neck and prostate. The calculated sets of metrics were evaluated in terms of their relationships to each other and their correlation with the results of electronic portal imaging based quality assurance (QA) evaluations of the treatment beams. Evaluation of the MI, MAD and SAS suggested that beams used in treatments of the anus, rectum, head and neck were more complex than the prostate and brain treatment beams. Seven of the ten beam complexity metrics were found to be strongly correlated with the results from QA testing of the IMRT beams (p < 0.00008). For example, values of SAS (with multileaf collimator apertures narrower than 10 mm defined as ‘small’) less than 0.2 also identified QA passing IMRT beams with 100% specificity. However, few of the metrics are correlated with the results from QA testing of the VMAT beams, whether they were evaluated as whole 360° arcs or as 60° sub-arcs. Select evaluation of beam complexity metrics (at least MI, MCS and SAS) is therefore recommended, as an intermediate step in the IMRT QA chain. Such evaluation may also be useful as a means of periodically reviewing VMAT planning or optimiser performance.
Dosimetric comparison of photon and proton treatment techniques for chondrosarcoma of thoracic spine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Poonam, E-mail: yadav@humonc.wisc.edu; Department of Medical Physics, University of Wisconsin, Madison, WI; University of Wisconsin Riverview Cancer Center, Wisconsin Rapids, WI
2013-10-01
Chondrosarcomas are relatively radiotherapy resistant, and also delivering high radiation doses is not feasible owing to anatomic constraints. In this study, the feasibility of helical tomotherapy for treatment of chondrosarcoma of thoracic spine is explored and compared with other available photon and proton radiotherapy techniques in the clinical setting. A patient was treated for high-grade chondrosarcoma of the thoracic spine using tomotherapy. Retrospectively, the tomotherapy plan was compared with intensity-modulated radiation therapy, dynamic arc photon therapy, and proton therapy. Two primary comparisons were made: (1) comparison of normal tissue sparing with comparable target volume coverage (plan-1), and (2) comparison ofmore » target volume coverage with a constrained maximum dose to the cord center (plan-2). With constrained target volume coverage, proton plans were found to yield lower mean doses for all organs at risk (spinal cord, esophagus, heart, and both lungs). Tomotherapy planning resulted in the lowest mean dose to all organs at risk amongst photon-based methods. For cord dose constrained plans, the static-field intensity-modulated radiation therapy and dynamic arc plans resulted target underdosing in 20% and 12% of planning target volume2 volumes, respectively, whereas both proton and tomotherapy plans provided clinically acceptable target volume coverage with no portion of planning target volume2 receiving less than 90% of the prescribed dose. Tomotherapy plans are comparable to proton plans and produce superior results compared with other photon modalities. This feasibility study suggests that tomotherapy is an attractive alternative to proton radiotherapy for delivering high doses to lesions in the thoracic spine.« less
Zhang, Rui; Heins, David; Sanders, Mary; Guo, Beibei; Hogstrom, Kenneth
2018-05-10
The purpose of this study was to assess the potential benefits and limitations of a mixed beam therapy, which combined bolus electron conformal therapy (BECT) with intensity modulated photon radiotherapy (IMRT) and volumetric modulated photon arc therapy (VMAT), for left-sided post-mastectomy breast cancer patients. Mixed beam treatment plans were produced for nine post-mastectomy radiotherapy (PMRT) patients previously treated at our clinic with VMAT alone. The mixed beam plans consisted of 40 Gy to the chest wall area using BECT, 40 Gy to the supraclavicular area using parallel opposed IMRT, and 10 Gy to the total planning target volume (PTV) by optimizing VMAT on top of the BECT+IMRT dose distribution. The treatment plans were created in a commercial treatment planning system (TPS), and all plans were evaluated based on PTV coverage, dose homogeneity index (DHI), conformity index (CI), dose to organs at risk (OARs), normal tissue complication probability (NTCP), and secondary cancer complication probability (SCCP). The standard VMAT alone planning technique was used as the reference for comparison. Both techniques produced clinically acceptable PMRT plans but with a few significant differences: VMAT showed significantly better CI (0.70 vs. 0.53, p < 0.001) and DHI (0.12 vs. 0.20, p < 0.001) over mixed beam therapy. For normal tissues, mixed beam therapy showed better OAR sparing and significantly reduced NTCP for cardiac mortality (0.23% vs. 0.80%, p = 0.01) and SCCP for contralateral breast (1.7% vs. 3.1% based on linear model, and 1.2% vs. 1.9% based on linear-exponential model, p < 0.001 in both cases), but showed significantly higher mean (50.8 Gy vs. 49.3 Gy, p < 0.001) and maximum skin doses (59.7 Gy vs. 53.3 Gy, p < 0.001) compared with VMAT. Patients with more tissue (minimum distance between the distal PTV surface and lung approximately > 0.5 cm and volume of tissue between the distal PTV surface and heart or lung approximately > 250 cm 3 ) between distal PTV surface and lung may benefit the most from mixed beam therapy. This work has demonstrated that mixed beam therapy (BECT+IMRT : VMAT = 4 : 1) produces clinically acceptable plans having reduced OAR doses and risks of side effects compared with VMAT. Even though VMAT alone produces more homogenous and conformal dose distributions, mixed beam therapy remains as a viable option for treating post-mastectomy patients, possibly leading to reduced normal tissue complications. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Jodda, Agata; Urbański, Bartosz; Piotrowski, Tomasz; Malicki, Julian
2016-03-01
Background: The paper shows the methodology of an in-phantom study of the protection level of the bone marrow in patients with cervical or endometrial cancer for three radiotherapy techniques: three-dimensional conformal radiotherapy, intensity modulated radiotherapy, and volumetric modulated arc therapy, preceded by the procedures of image guidance. Methods/Design: The dosimetric evaluation of the doses will be performed in an in-house multi-element anthropomorphic phantom of the female pelvic area created by three-dimensional printing technology. The volume and position of the structures will be regulated according to the guidelines from the Bayesian network. The input data for the learning procedure of the model will be obtained from the retrospective analysis of imaging data obtained for 96 patients with endometrial cancer or cervical cancer treated with radiotherapy in our centre in 2008-2013. Three anatomical representations of the phantom simulating three independent clinical cases will be chosen. Five alternative treatment plans (1 × three-dimensional conformal radiotherapy, 2 × intensity modulated radiotherapy and 2 × volumetric modulated arc therapy) will be created for each representation. To simulate image-guided radiotherapy, ten specific recombinations will be designated, for each anatomical representation separately, reflecting possible changes in the volume and position of the phantom components. Discussion: The comparative analysis of planned measurements will identify discrepancies between calculated doses and doses that were measured in the phantom. Finally, differences between the doses cumulated in the hip plates performed by different techniques simulating the gynaecological patients' irradiation of dose delivery will be established. The results of this study will form the basis of the prospective clinical trial that will be designed for the assessment of hematologic toxicity and its correlation with the doses cumulated in the hip plates, for gynaecologic patients undergoing radiation therapy.
Feasibility study of volumetric modulated arc therapy with constant dose rate for endometrial cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ruijie; Wang, Junjie, E-mail: junjiewang47@yahoo.com; Xu, Feng
2013-10-01
To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. The nine-field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry run was performed to assess the dosimetric accuracy with MatriXX from IBA. Compared with IMRT, the VMAT-CDRmore » plans delivered a slightly greater V{sub 20} of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fakir, H.; Gaede, S.; Mulligan, M.
Purpose: To design a versatile, nonhomogeneous insert for the dose verification phantom ArcCHECK{sup Trade-Mark-Sign} (Sun Nuclear Corp., FL) and to demonstrate its usefulness for the verification of dose distributions in inhomogeneous media. As an example, we demonstrate it can be used clinically for routine quality assurance of two volumetric modulated arc therapy (VMAT) systems for lung stereotactic body radiation therapy (SBRT): SmartArc{sup Registered-Sign} (Pinnacle{sup 3}, Philips Radiation Oncology Systems, Fitchburg, WI) and RapidArc{sup Registered-Sign} (Eclipse{sup Trade-Mark-Sign }, Varian Medical Systems, Palo Alto, CA). Methods: The cylindrical detector array ArcCHECK{sup Trade-Mark-Sign} has a retractable homogeneous acrylic insert. In this work, wemore » designed and manufactured a customized heterogeneous insert with densities that simulate soft tissue, lung, bone, and air. The insert offers several possible heterogeneity configurations and multiple locations for point dose measurements. SmartArc{sup Registered-Sign} and RapidArc{sup Registered-Sign} plans for lung SBRT were generated and copied to ArcCHECK{sup Trade-Mark-Sign} for each inhomogeneity configuration. Dose delivery was done on a Varian 2100 ix linac. The evaluation of dose distributions was based on gamma analysis of the diode measurements and point doses measurements at different positions near the inhomogeneities. Results: The insert was successfully manufactured and tested with different measurements of VMAT plans. Dose distributions measured with the homogeneous insert showed gamma passing rates similar to our clinical results ({approx}99%) for both treatment-planning systems. Using nonhomogeneous inserts decreased the passing rates by up to 3.6% in the examples studied. Overall, SmartArc{sup Registered-Sign} plans showed better gamma passing rates for nonhomogeneous measurements. The discrepancy between calculated and measured point doses was increased up to 6.5% for the nonhomogeneous insert depending on the inhomogeneity configuration and measurement location. SmartArc{sup Registered-Sign} and RapidArc{sup Registered-Sign} plans had similar plan quality but RapidArc{sup Registered-Sign} plans had significantly higher monitor units (up to 70%). Conclusions: A versatile, nonhomogeneous insert was developed for ArcCHECK{sup Trade-Mark-Sign} for an easy and quick evaluation of dose calculations with nonhomogeneous media and for comparison of different treatment planning systems. The device was tested for SmartArc{sup Registered-Sign} and RapidArc{sup Registered-Sign} plans for lung SBRT, showing the uncertainties of dose calculations with inhomogeneities. The new insert combines the convenience of the ArcCHECK{sup Trade-Mark-Sign} and the possibility of assessing dose distributions in inhomogeneous media.« less
Inoue, Tatsuya; Widder, Joachim; van Dijk, Lisanne V; Takegawa, Hideki; Koizumi, Masahiko; Takashina, Masaaki; Usui, Keisuke; Kurokawa, Chie; Sugimoto, Satoru; Saito, Anneyuko I; Sasai, Keisuke; Van't Veld, Aart A; Langendijk, Johannes A; Korevaar, Erik W
2016-11-01
To investigate the impact of setup and range uncertainties, breathing motion, and interplay effects using scanning pencil beams in robustly optimized intensity modulated proton therapy (IMPT) for stage III non-small cell lung cancer (NSCLC). Three-field IMPT plans were created using a minimax robust optimization technique for 10 NSCLC patients. The plans accounted for 5- or 7-mm setup errors with ±3% range uncertainties. The robustness of the IMPT nominal plans was evaluated considering (1) isotropic 5-mm setup errors with ±3% range uncertainties; (2) breathing motion; (3) interplay effects; and (4) a combination of items 1 and 2. The plans were calculated using 4-dimensional and average intensity projection computed tomography images. The target coverage (TC, volume receiving 95% of prescribed dose) and homogeneity index (D2 - D98, where D2 and D98 are the least doses received by 2% and 98% of the volume) for the internal clinical target volume, and dose indexes for lung, esophagus, heart and spinal cord were compared with that of clinical volumetric modulated arc therapy plans. The TC and homogeneity index for all plans were within clinical limits when considering the breathing motion and interplay effects independently. The setup and range uncertainties had a larger effect when considering their combined effect. The TC decreased to <98% (clinical threshold) in 3 of 10 patients for robust 5-mm evaluations. However, the TC remained >98% for robust 7-mm evaluations for all patients. The organ at risk dose parameters did not significantly vary between the respective robust 5-mm and robust 7-mm evaluations for the 4 error types. Compared with the volumetric modulated arc therapy plans, the IMPT plans showed better target homogeneity and mean lung and heart dose parameters reduced by about 40% and 60%, respectively. In robustly optimized IMPT for stage III NSCLC, the setup and range uncertainties, breathing motion, and interplay effects have limited impact on target coverage, dose homogeneity, and organ-at-risk dose parameters. Copyright © 2016 Elsevier Inc. All rights reserved.
Randomized algorithms for high quality treatment planning in volumetric modulated arc therapy
NASA Astrophysics Data System (ADS)
Yang, Yu; Dong, Bin; Wen, Zaiwen
2017-02-01
In recent years, volumetric modulated arc therapy (VMAT) has been becoming a more and more important radiation technique widely used in clinical application for cancer treatment. One of the key problems in VMAT is treatment plan optimization, which is complicated due to the constraints imposed by the involved equipments. In this paper, we consider a model with four major constraints: the bound on the beam intensity, an upper bound on the rate of the change of the beam intensity, the moving speed of leaves of the multi-leaf collimator (MLC) and its directional-convexity. We solve the model by a two-stage algorithm: performing minimization with respect to the shapes of the aperture and the beam intensities alternatively. Specifically, the shapes of the aperture are obtained by a greedy algorithm whose performance is enhanced by random sampling in the leaf pairs with a decremental rate. The beam intensity is optimized using a gradient projection method with non-monotonic line search. We further improve the proposed algorithm by an incremental random importance sampling of the voxels to reduce the computational cost of the energy functional. Numerical simulations on two clinical cancer date sets demonstrate that our method is highly competitive to the state-of-the-art algorithms in terms of both computational time and quality of treatment planning.
2012-01-01
Background SBRT is a safe and efficient strategy to locally control multiple metastatic sites. While research in the physics domain for Flattening Filter Free Beams (FFF) beams is increasing, there are few clinical data of FFF beams in clinical practice. Here we reported dosimentric and early clinical data of SBRT and FFF delivery in isolated lymph node oligometastatic patients. Methods Between October 2010 and March 2012, 34 patients were treated with SBRT for oligometastatic lymph node metastasis on a Varian TrueBeamTM treatment machine using Volumetric Modulated Arc Therapy (RapidArc). We retrospectively evaluated a total of 25 patients for isolated lymph node metastases in abdomen and/or pelvis treated with SBRT and FFF (28 treatments). Acute toxicity was recorded. Local control evaluation was scored by means of CT scan and/or PET scan. Results All dosimetric results are in line with what published for the same type of stereotactic abdominal lymph node metastases treatments and fractionation, using RapidArc. All 25 FFF SBRT patients completed the treatment. Acute gastrointestinal toxicity was minimal: one patient showed Grade 1 gastrointestinal toxicity. Three other patients presented Grade 2 toxicity. No Grade 3 or higher was recorded. All toxicities were recovered within one week. The preliminary clinical results at the median follow up of 195 days are: complete response in 12 cases, partial response in 11, stable disease in 5, with an overall response rate of 82%; no local progression was recorded. Conclusions Data of dosimetrical findings and acute toxicity are excellent for patients treated with SBRT with VMAT using FFF beams. Preliminary clinical results showed a high rate of local control in irradiated lesion. Further data and longer follow up are needed to assess late toxicity and definitive clinical outcomes. PMID:23216821
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J; Lu, B; Yan, G
Purpose: To identify the weakness of dose calculation algorithm in a treatment planning system for volumetric modulated arc therapy (VMAT) and sliding window (SW) techniques using a two-dimensional diode array. Methods: The VMAT quality assurance(QA) was implemented with a diode array using multiple partial arcs that divided from a VMAT plan; each partial arc has the same segments and the original monitor units. Arc angles were less than ± 30°. Multiple arcs delivered through consecutive and repetitive gantry operating clockwise and counterclockwise. The source-toaxis distance setup with the effective depths of 10 and 20 cm were used for a diodemore » array. To figure out dose errors caused in delivery of VMAT fields, the numerous fields having the same segments with the VMAT field irradiated using different delivery techniques of static and step-and-shoot. The dose distributions of the SW technique were evaluated by creating split fields having fine moving steps of multi-leaf collimator leaves. Calculated doses using the adaptive convolution algorithm were analyzed with measured ones with distance-to-agreement and dose difference of 3 mm and 3%.. Results: While the beam delivery through static and step-and-shoot techniques showed the passing rate of 97 ± 2%, partial arc delivery of the VMAT fields brought out passing rate of 85%. However, when leaf motion was restricted less than 4.6 mm/°, passing rate was improved up to 95 ± 2%. Similar passing rate were obtained for both 10 and 20 cm effective depth setup. The calculated doses using the SW technique showed the dose difference over 7% at the final arrival point of moving leaves. Conclusion: Error components in dynamic delivery of modulated beams were distinguished by using the suggested QA method. This partial arc method can be used for routine VMAT QA. Improved SW calculation algorithm is required to provide accurate estimated doses.« less
Modeling the target dose fall-off in IMRT and VMAT planning techniques for cervical SBRT.
Brito Delgado, A; Cohen, D; Eng, T Y; Stanley, D N; Shi, Z; Charlton, M; Gutiérrez, A N
2018-01-01
There has been growing interest in the use of stereotactic body radiotherapy (SBRT) technique for the treatment of cervical cancer. The purpose of this study was to characterize dose distributions as well as model the target dose fall-off for intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) delivery techniques using 6 and 10 MV photon beam energies. Fifteen (n = 15) patients with non-bulky cervical tumors were planned in Pinnacle 3 with a Varian Novalis Tx (HD120 MLC) using 6 and 10 MV photons with the following techniques: (1) IMRT with 10 non-coplanar beams (2) dual, coplanar 358° VMAT arcs (4° spacing), and (3) triple, non-coplanar VMAT arcs. Treatment volumes and dose prescriptions were segmented according to University of Texas Southwestern (UTSW) Phase II study. All plans were normalized such that 98% of the planning target volume (PTV) received 28 Gy (4 fractions). For the PTV, the following metrics were evaluated: homogeneity index, conformity index, D 2cc , D mean , D max , and dose fall-off parameters. For the organs at risk (OARs), D 2cc , D 15cc , D 0.01cc , V 20 , V 40 , V 50 , V 60 , and V 80 were evaluated for the bladder, bowel, femoral heads, rectum, and sigmoid. Statistical differences were evaluated using a Friedman test with a significance level of 0.05. To model dose fall-off, expanding 2-mm-thick concentric rings were created around the PTV, and doses were recorded. Statistically significant differences (p < 0.05) were noted in the dose fall-off when using 10 MV and VMAT 3-arc , as compared with IMRT. VMAT 3-arc improved the bladder V 40 , V 50 , and V 60 , and the bowel V 20 and V 50 . All fitted regressions had an R 2 ≥ 0.98. For cervical SBRT plans, a VMAT 3-arc approach offers a steeper dose fall-off outside of the target volume. Faster dose fall-off was observed in smaller targets as opposed to medium and large targets, denoting that OAR sparing is dependent on target size. These improvements are further pronounced with the use of 10-MV photons. Published by Elsevier Inc.
Michiels, Steven; Poels, Kenneth; Crijns, Wouter; Delombaerde, Laurence; De Roover, Robin; Vanstraelen, Bianca; Haustermans, Karin; Nuyts, Sandra; Depuydt, Tom
2018-05-05
Linac improvements in gantry speed, leaf speed and dose rate may increase the time-efficiency of volumetric modulated arc therapy (VMAT) delivery. The plan quality achievable with faster VMAT however remains to be investigated. In this study, a fast-rotating O-ring linac with fast-moving leaves is compared with a C-arm linac in terms of plan quality and delivery time for VMAT of head-and-neck cancer (HNC). For 30 patients with HNC, treatment planning was performed using dual-arc (HA2) and triple-arc (HA3) VMAT on a Halcyon fast-rotating O-ring linac and using dual-arc VMAT on a TrueBeam C-arm linac (TB2). Target coverage metrics and complication probabilities were compared. Plan delivery was verified using 3%/3 mm gamma-index analysis of helical diode array measurements. Volumetric image acquisition and plan delivery times were compared. All studied VMAT-techniques fulfilled the target coverage objectives. D 2% to the boost volume was higher for HA2 (median 103.7%, 1st-3rd quartile [103.5%;104.0%]) and HA3 (103.2% [103.0%;103.7%)] than for TB2 (102.6% [102.3%;103.0%)], resulting in an increased boost target dose heterogeneity for HA2 and HA3. Complication probabilities were comparable between HA2 and TB2, while HA3 showed a xerostomia probability reduction (0.8% [0.2%;1.8%]) and dysphagia probability reduction (1.0% [0.2%;1.8%]) compared with TB2. Gamma-index agreement scores were never below 93.0% for HA2, HA3 and TB2. Volumetric imaging and plan delivery time was shorter for HA2 (1 m 24 s ± 1 s) and HA3 (1 m 54 s ± 1 s) than for TB2 (2 m 47 s ± 1 s). For VMAT of HNC, the fast-rotating O-ring linac at least maintains the plan quality of two arcs on a C-arm linac while reducing the image acquisition and plan delivery time. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kairn, Tanya, E-mail: t.kairn@gmail.com; School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane; Papworth, Daniel
2016-10-01
Cancer often metastasizes to the vertebra, and such metastases can be treated successfully using simple, static posterior or opposed-pair radiation fields. However, in some cases, including when re-irradiation is required, spinal cord avoidance becomes necessary and more complex treatment plans must be used. This study evaluated 16 sample intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) treatment plans designed to treat 6 typical vertebral and paraspinal volumes using a standard prescription, with the aim of investigating the advantages and limitations of these treatment techniques and providing recommendations for their optimal use in vertebral treatments. Treatment plan quality and beammore » complexity metrics were evaluated using the Treatment And Dose Assessor (TADA) code. A portal-imaging–based quality assurance (QA) system was used to evaluate treatment delivery accuracy, and radiochromic film measurements were used to provide high-resolution verification of treatment plan dose accuracy, especially in the steep dose gradient regions between each vertebral target and spinal cord. All treatment modalities delivered approximately the same doses and the same levels of dose heterogeneity to each planning target volume (PTV), although the minimum PTV doses in the vertebral plans were substantially lower than the prescription, because of the requirement that the plans meet a strict constraint on the dose to the spinal cord and cord planning risk volume (PRV). All plans met required dose constraints on all organs at risk, and all measured PTV-cord dose gradients were steeper than planned. Beam complexity analysis suggested that the IMRT treatment plans were more deliverable (less complex, leading to greater QA success) than the VMAT treatment plans, although the IMRT plans also took more time to deliver. The accuracy and deliverability of VMAT treatment plans were found to be substantially increased by limiting the number of monitor units (MU) per beam at the optimization stage, and thereby limiting beam modulation complexity. The VMAT arcs that were optimized with MU limitation had higher QA pass rates as well as higher modulation complexity scores (less complexity), lower modulation indices (less modulation), lower MU per beam, larger beam segments, and fewer small apertures than the VMAT arcs that were optimized without MU limitation. It is recommended that VMAT treatments for vertebral volumes, where the PTV abuts or surrounds the spinal cord, should be optimized with MU limitation. IMRT treatments may be preferable to the VMAT treatments, for dosimetry and deliverability reasons, but may be inappropriate for some patients because of their increased treatment delivery time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, Jin Aun; Institute of Medical Physics, School of Physics, University of Sydney, New South Wales; Booth, Jeremy T.
2012-12-01
Purpose: Most linear accelerators purchased today are equipped with a gantry-mounted kilovoltage X-ray imager which is typically used for patient imaging prior to therapy. A novel application of the X-ray system is kilovoltage intrafraction monitoring (KIM), in which the 3-dimensional (3D) tumor position is determined during treatment. In this paper, we report on the first use of KIM in a prospective clinical study of prostate cancer patients undergoing intensity modulated arc therapy (IMAT). Methods and Materials: Ten prostate cancer patients with implanted fiducial markers undergoing conventionally fractionated IMAT (RapidArc) were enrolled in an ethics-approved study of KIM. KIM involves acquiringmore » kV images as the gantry rotates around the patient during treatment. Post-treatment, markers in these images were segmented to obtain 2D positions. From the 2D positions, a maximum likelihood estimation of a probability density function was used to obtain 3D prostate trajectories. The trajectories were analyzed to determine the motion type and the percentage of time the prostate was displaced {>=}3, 5, 7, and 10 mm. Independent verification of KIM positional accuracy was performed using kV/MV triangulation. Results: KIM was performed for 268 fractions. Various prostate trajectories were observed (ie, continuous target drift, transient excursion, stable target position, persistent excursion, high-frequency excursions, and erratic behavior). For all patients, 3D displacements of {>=}3, 5, 7, and 10 mm were observed 5.6%, 2.2%, 0.7% and 0.4% of the time, respectively. The average systematic accuracy of KIM was measured at 0.46 mm. Conclusions: KIM for prostate IMAT was successfully implemented clinically for the first time. Key advantages of this method are (1) submillimeter accuracy, (2) widespread applicability, and (3) a low barrier to clinical implementation. A disadvantage is that KIM delivers additional imaging dose to the patient.« less
NASA Astrophysics Data System (ADS)
Nicolini, Giorgia; Vanetti, Eugenio; Clivio, Alessandro; Fogliata, Antonella; Cozzi, Luca
2010-06-01
A study was carried out to evaluate the possibility of delivering volumetric modulated arc therapy with the RapidArc technology under respiratory-gated conditions. The experiments were performed in the framework of a non-clinically released environment. Plans of six patients, all realized for a single arc, were used for the experiments. The Real-time Position Management™ (RPM) respiratory gating system from Varian was used to generate gate-open signals of different durations. Arcs were delivered applying the different gates creating sequences of beam-hold/beam-on during the dose delivery: the average number of interruptions for a single arc ranged from 0 to 45. Dose prescription was set to 2 Gy and different gate-open periods of 30, 15 and 5 s to keep gantry speed constant at maximum. 5 Gy and 15 Gy doses were then applied to gate-open signals of 5 and 8 s, respectively, to mimic the most challenging conditions of slow gantry rotation and high-frequency interruptions. The 5 and 15 Gy experiments represent dose conditions of clinical interest for stereotactic treatments. For each patient and gating condition, pre-treatment 2D verification measurements were performed using the PTW-729 array in conjunction with the Octavius phantom (PTW, Freiburg); measurements were performed on different days (one per patient, with the complete setup of phantom and detectors every time), while each gating experiment was repeated seven consecutive times for reproducibility (without a new setup of the measurement equipment). Measurements were compared with dose calculations in the treatment planning system (performed without any gating) to appraise the dosimetric impact of the presence of gating and the eventual dependence from the number of interruptions during a single arc. Analysis of machine-registered log files in terms of average deviations between actual and expected positions (from automatic measurements every 50 ms) resulted in mean ΔMU (monitor units) <0.02% for all gating conditions. Δ(Gantry angle) = 0.38 ± 0.01° for 2 Gy (all gate periods), 0.24 ± 0.01° for 5 Gy, and 0.10 ± 0.01° for 15 Gy deliveries. Average deviations for multileaf collimator (MLC) positions (root mean square over all 120 leaves) were 0.45 ± 0.01 mm for 2 Gy (all gate periods), 0.32 ± 0.01 mm for 5 Gy and 0.14 ± 0.01 mm for 15 Gy. Results in terms of dose measurements confirmed that the application of gating to RapidArc delivery does not affect the quality of the dose delivery. With criteria of ΔD = 3%, DTA = 3 mm, the gamma test was passing in a range of 99 to 100% of the measured points for most of the cases (with maximum number of interruptions of about 20 per arc) and from 97 to 98% for the extreme case of 15 Gy and 8 s gate-open signal (corresponding to almost 50 interruptions per arc). In conclusion, RapidArc delivery proved, in a pre-clinical phase and non-clinically released framework, to be reliable and dosimetrically accurate also when applied in conjunction with gating procedures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiao, L; Deng, G; Xie, J
2015-06-15
Purpose: To compare the dosimetric characteristics of volumetric-modulated arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for left-sided breast cancer patients with modified radical mastectomy. Methods: Twenty-four left-sided breast cancer patients treated with modified radical mastectomy were selected in this study. The planning target volume (PTV) was generated by using 7-mm uniform expansion of the clinical target volume (CTV) in all direction except the skin surface. The organs at risk (OARs) included heart, left lung, right lung, and right breast. Dose volume histograms (DVHs) were utilized to evaluate the dose distribution in PTV and OARs. Results: Bothmore » VMAT and IMRT plans met the requirement of PTV coverage. VMAT was superior to IMRT in terms of conformity, with a statistically significant difference (p=0.024). Mean doses, V5 and V10 of heart and both lungs in VMAT plans were significantly decreased compared to IMRT plans (P<0.05), but in terms of heart volume irradiated by high doses (V30 and V45), no significant differences were observed (P>0.05). For right breast, VMAT showed the reduction of V5 in comparison with IMRT (P<0.05). Additionally, the mean number of monitor units (MU) and treatment time in VMAT (357.21, 3.62 min) were significantly less than those in IMRT (1132.85, 8.74 min). Conclusion: VMAT showed similar PTV coverage and significant advantage in OARs sparing compared with IMRT, especially in terms of decreased volumes irradiated by low doses, while significantly reducing the treatment time and MU number.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, X. Sharon, E-mail: xqi@mednet.ucla.edu; Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado; Stinauer, Michelle
Purpose: To compare volumetric modulated arc therapy (VMAT) with 3-dimensional conformal radiation therapy (3D-CRT) in the treatment of localized intracranial germinoma. We modeled the effect of the dosimetric differences on intelligence quotient (IQ). Method and Materials: Ten children with intracranial germinomas were used for planning. The prescription doses were 23.4 Gy to the ventricles followed by 21.6 Gy to the tumor located in the pineal region. For each child, a 3D-CRT and full arc VMAT was generated. Coverage of the target was assessed by computing a conformity index and heterogeneity index. We also generated VMAT plans with explicit temporal lobemore » sparing and with smaller ventricular margin expansions. Mean dose to the temporal lobe was used to estimate IQ 5 years after completion of radiation, using a patient age of 10 years. Results: Compared with the 3D-CRT plan, VMAT improved conformality (conformity index 1.10 vs 1.85), with slightly higher heterogeneity (heterogeneity index 1.09 vs 1.06). The averaged mean doses for left and right temporal lobes were 31.3 and 31.7 Gy, respectively, for VMAT plans and 37.7 and 37.6 Gy for 3D-CRT plans. This difference in mean temporal lobe dose resulted in an estimated IQ difference of 3.1 points at 5 years after radiation therapy. When the temporal lobes were explicitly included in the VMAT optimization, the mean temporal lobe dose was reduced 5.6-5.7 Gy, resulting in an estimated IQ difference of an additional 3 points. Reducing the ventricular margin from 1.5 cm to 0.5 cm decreased mean temporal lobe dose 11.4-13.1 Gy, corresponding to an estimated increase in IQ of 7 points. Conclusion: For treatment of children with intracranial pure germinomas, VMAT compared with 3D-CRT provides increased conformality and reduces doses to normal tissue. This may result in improvements in IQ in these children.« less
Penoncello, Gregory P; Ding, George X
2016-01-01
The purpose of this study was (1) to evaluate dose to skin between volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) treatment techniques for target sites in the head and neck, pelvis, and brain and (2) to determine if the treatment dose and fractionation regimen affect the skin dose between traditional sequential boost and integrated boost regimens for patients with head and neck cancer. A total of 19 patients and 48 plans were evaluated. The Eclipse (v11) treatment planning system was used to plan therapy in 9 patients with head and neck cancer, 5 patients with prostate cancer, and 5 patients with brain cancer with VMAT and static-field IMRT. The mean skin dose and the maximum dose to a contiguous volume of 2cm(3) for head and neck plans and brain plans and a contiguous volume of 5cm(3) for pelvis plans were compared for each treatment technique. Of the 9 patients with head and neck cancer, 3 underwent an integrated boost regimen. One integrated boost plan was replanned with IMRT and VMAT using a traditional boost regimen. For target sites located in the head and neck, VMAT reduced the mean dose and contiguous hot spot most noticeably in the shoulder region by 5.6% and 5.4%, respectively. When using an integrated boost regimen, the contiguous hot spot skin dose in the shoulder was larger on average than a traditional boost pattern by 26.5% and the mean skin dose was larger by 1.7%. VMAT techniques largely decrease the contiguous hot spot in the skin in the pelvis by an average of 36% compared with IMRT. For the same target coverage, VMAT can reduce the skin dose in all the regions of the body, but more noticeably in the shoulders in patients with head and neck and pelvis cancer. We also found that using integrated boost regimens in patients with head and neck cancer leads to higher shoulder skin doses compared with traditional boost regimens. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Chaswal, Vibha; Weldon, Michael; Gupta, Nilendu; Chakravarti, Arnab; Rong, Yi
2014-07-08
We present commissioning and comprehensive evaluation for ArcCHECK as a QA equipment for volumetric-modulated arc therapy (VMAT), using the 6 MV photon beam with and without the flattening filter, and the SNC patient software (version 6.2). In addition to commissioning involving absolute dose calibration, array calibration, and PMMA density verification, ArcCHECK was evaluated for its response dependency on linac dose rate, instantaneous dose rate, radiation field size, beam angle, and couch insertion. Scatter dose characterization, consistency and symmetry of response, and dosimetry accuracy evaluation for fixed aperture arcs and clinical VMAT patient plans were also investigated. All the evaluation tests were performed with the central plug inserted and the homogeneous PMMA density value. Results of gamma analysis demonstrated an overall agreement between ArcCHECK-measured and TPS-calculated reference doses. The diode based field size dependency was found to be within 0.5% of the reference. The dose rate-based dependency was well within 1% of the TPS reference, and the angular dependency was found to be ± 3% of the reference, as tested for BEV angles, for both beams. Dosimetry of fixed arcs, using both narrow and wide field widths, resulted in clinically acceptable global gamma passing rates on the 3%/3mm level and 10% threshold. Dosimetry of narrow arcs showed an improvement over published literature. The clinical VMAT cases demonstrated high level of dosimetry accuracy in gamma passing rates.
Range optimization for mono- and bi-energetic proton modulated arc therapy with pencil beam scanning
NASA Astrophysics Data System (ADS)
Sanchez-Parcerisa, Daniel; Kirk, Maura; Fager, Marcus; Burgdorf, Brendan; Stowe, Malorie; Solberg, Tim; Carabe, Alejandro
2016-11-01
The development of rotational proton therapy plans based on a pencil-beam-scanning (PBS) system has been limited, among several other factors, by the energy-switching time between layers, a system-dependent parameter that ranges between a fraction of a second and several seconds. We are investigating mono- and bi-energetic rotational proton modulated arc therapy (PMAT) solutions that would not be affected by long energy switching times. In this context, a systematic selection of the optimal proton energy for each arc is vital. We present a treatment planning comparison of four different range selection methods, analyzing the dosimetric outcomes of the resulting treatment plans created with the ranges obtained. Given the patient geometry and arc definition (gantry and couch trajectories, snout elevation) our in-house treatment planning system (TPS) FoCa was used to find the maximum, medial and minimum water-equivalent thicknesses (WETs) of the target viewed from all possible field orientations. Optimal ranges were subsequently determined using four methods: (1) by dividing the max/min WET interval into equal steps, (2) by taking the average target midpoints from each field, (3) by taking the average WET of all voxels from all field orientations, and (4) by minimizing the fraction of the target which cannot be reached from any of the available angles. After the range (for mono-energetic plans) or ranges (for bi-energetic plans) were selected, the commercial clinical TPS in use in our institution (Varian Eclipse™) was used to produce the PMAT plans using multifield optimization. Linear energy transfer (LET) distributions of all plans were also calculated using FoCa and compared among the different methods. Mono- and bi-energetic PMAT plans, composed of a single 180° arc, were created for two patient geometries: a C-shaped target located in the mediastinal area of a thoracic tissue-equivalent phantom and a small brain tumor located directly above the brainstem. All plans were optimized using the same procedure to (1) achieve target coverage, (2) reduce dose to OAR and (3) limit dose hot spots in the target. Final outcomes were compared in terms of the resulting dose and LET distributions. Data shows little significant differences among the four studied methods, with superior results obtained with mono-energetic plans. A streamlined systematic method has been implemented in an in-house TPS to find the optimal range to maximize target coverage with rotational mono- or bi-energetic PBS rotational plans by minimizing the fraction of the target that cannot be reached by any direction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, X; Witztum, A; Liang, X
2014-06-15
Purpose: To present a novel technique to deliver passive-scattering proton beam with fixed range and modulation using a 3D printed patient-specific bolus for proton stereotactic radiosurgery and radiotherapy. Methods: A CIRS head phantom was used to simulate a patient with a small brain lesion. A custom bolus was created in the Eclipse Treatment Planning System (TPS) to compensate for the different water equivalent depths from the patient surface to the target from multiple beam directions. To simulate arc therapy, a plan was created on the initial CT using three passive-scattering proton beams with a fixed range and modulations irradiating frommore » different angles. The DICOM-RT structure file of the bolus was exported from the TPS and converted to STL format for 3D printing. The phantom was rescanned with the printed custom bolus and head cup to verify the dose distribution comparing to the initial plan. EBT3 films were placed in the sagital plane of the target to verify the delivered dose distribution. The relative stopping power of the printing material(ABSplus-P430) was measured using the Zebra multi-plate ion chamber. Results: The relative stopping power of the 3D printing material, ABSplus-P430 was 1.05 which is almost water equivalent. The dose difference between verification CT and Initial CT is almost negligible. Film measurement also confirmed the accuracy for this new proton delivery technique. Conclusion: Our method using 3D printed range modifiers simplify the treatment delivery of multiple passive-scattering beams in treatment of small lesion in brain. This technique makes delivery of multiple beam more efficient and can be extended to allow arc therapy with proton beams. The ability to create and construct complex patient specific bolus structures provides a new dimension in creating optimized quality treatment plans not only for proton therapy but also for electron and photon therapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohatt, D; Malhotra, H
Purpose: To evaluate and verify the accuracy of alternative treatment modalities for stereotactic lung therapy with end-to-end testing. We compared three dimensional conformal therapy (3DCRT), dynamic conformal arc therapy (DCAT), intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) treatment using 6 MV, 6 MV flattening filter free (FFF) and 10 MV FFF photons. Methods: A QUASAR respiratory motion phantom was utilized with custom ion chamber and gafchromatic EBT2 film inserts. The phantom contained a low density lung medium with a cylindrical polystyrene tumor (35 cc). Pseudo representative structures for various organs at risk (OAR) were created. Allmore » treatment plans were created using Eclipse ver. 11 using the same image and structure sets, and delivered via Varian TrueBeam STx linear accelerator equipped with high definition MLC. Evaluation of plan quality followed ROTG 0813 criterion for conformity index (CI100%), high dose spillage, D2cm, and R50%. Results: All treatment plans met the OAR dose constraints per protocol and could be delivered without any beam hold offs or other interlocks and hence were deemed clinically safe. For equivalent beam energies, target conformity was improved for all modalities when switching to FFF mode. Treatment efficiency increased for VMAT FFF by a factor of 3–4 over IMRT, and up to factor of 7 when compared to 3DCRT. Pass rates were > 97% for all treatment using gamma criteria of 3%, 3mm. Absolute dose at iso-center was verified with ion chamber, and found to be within 2% of the treatment planning system. Conclusion: The higher dose rate associated with FFF not only reduces delivery times, but in most cases enhances plan quality. The one modality with succeeding best results for all RTOG criterions was VMAT 6 MV FFF. This end-to-end testing provides necessary confidence in the entire dose delivery chain for lung SBRT patients.« less
Liang, Yun; Kim, Gwe-Ya; Pawlicki, Todd; Mundt, Arno J; Mell, Loren K
2013-03-04
The purpose of this study was to develop dosimetry verification procedures for volumetric-modulated arc therapy (VMAT)-based total marrow irradiation (TMI). The VMAT based TMI plans were generated for three patients: one child and two adults. The planning target volume (PTV) was defined as bony skeleton, from head to mid-femur, with a 3 mm margin. The plan strategy similar to published studies was adopted. The PTV was divided into head and neck, chest, and pelvic regions, with separate plans each of which is composed of 2-3 arcs/fields. Multiple isocenters were evenly distributed along the patient's axial direction. The focus of this study is to establish a dosimetry quality assurance procedure involving both two-dimensional (2D) and three-dimensional (3D) volumetric verifications, which is desirable for a large PTV treated with multiple isocenters. The 2D dose verification was performed with film for gamma evaluation and absolute point dose was measured with ion chamber, with attention to the junction between neighboring plans regarding hot/cold spots. The 3D volumetric dose verification used commercial dose reconstruction software to reconstruct dose from electronic portal imaging devices (EPID) images. The gamma evaluation criteria in both 2D and 3D verification were 5% absolute point dose difference and 3 mm of distance to agreement. With film dosimetry, the overall average gamma passing rate was 98.2% and absolute dose difference was 3.9% in junction areas among the test patients; with volumetric portal dosimetry, the corresponding numbers were 90.7% and 2.4%. A dosimetry verification procedure involving both 2D and 3D was developed for VMAT-based TMI. The initial results are encouraging and warrant further investigation in clinical trials.
Hegazy, Mohamed W; Mahmood, Rana I; Al Otaibi, Mohammed F; Khalil, Ehab M
2016-06-01
To assess feasibility, toxicity and biochemical relapse-free survival (b-RFS) for a group of organ confined (OC) Saudi prostate cancer patients treated by hypo-fractionated Volumetric Modulated Arc Radiation Therapy (VMAT) Simultaneous Integrated Boost (SIB) Elective Nodal Irradiation (ENI) whole pelvic radiotherapy (WPRT). Between March 2009 and January 2014, 29 OC prostate cancer patients; median age 64years, PS 0-1 were treated in King Faisal Specialist Hospital - Riyadh, Kingdom of Saudi Arabia using VMAT-SIB-ENI-WPRT, to a total dose of 70Gy in 28 fractions. Twenty Four patients (83%) were treated with neo-adjuvant; concurrent androgen deprivation therapy (ADT). Median follow-up (FU) was 42months (range: 18-72months). The 3-year actuarial b-RFS for low/intermediate and high risk groups were 100%, and 48%, respectively (p=0.09) with a median FU period of 34months (range: 14-53months). Gleason Score (p=0.02), and pretreatment PSA (p=0.01) were predictive for biochemical failure on univariate analysis; with no observed prostate cancer-related deaths. Grade 2 acute/late GI and GU toxicities were 28%/0% and 17%/10% respectively with no reported grade 3/4 toxicities. Four (50%) out of the 8 patients with baseline partial potency, retained sexual function on long term follow-up. Hypo-fractionation dose escalation VMAT-SIB-ENI-WPRT using 2 arcs is a feasible technique for intermediate/high risk OC prostate cancer patients, with acceptable rates of acute/late toxicities, much favorable planning target volume (PTV) coverage, and shorter overall treatment time. Prospective randomized controlled trials are encouraged to confirm its equivalence to other fractionation schemes. Copyright © 2016 National Cancer Institute, Cairo University. Production and hosting by Elsevier B.V. All rights reserved.
Shielded Metal Arc Welding. Welding Module 4. Instructor's Guide.
ERIC Educational Resources Information Center
Missouri Univ., Columbia. Instructional Materials Lab.
This guide is intended to assist vocational educators in teaching an eight-unit module in shielded metal arc welding. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The following topics are covered in the module: safety; theory, power sources, and…
Diwanji, Tejan P.; Mohindra, Pranshu; Vyfhuis, Melissa; Snider, James W.; Kalavagunta, Chaitanya; Mossahebi, Sina; Yu, Jen; Feigenberg, Steven
2017-01-01
The 21st century has seen several paradigm shifts in the treatment of non-small cell lung cancer (NSCLC) in early-stage inoperable disease, definitive locally advanced disease, and the postoperative setting. A key driver in improvement of local disease control has been the significant evolution of radiation therapy techniques in the last three decades, allowing for delivery of definitive radiation doses while limiting exposure of normal tissues. For patients with locally-advanced NSCLC, the advent of volumetric imaging techniques has allowed a shift from 2-dimensional approaches to 3-dimensional conformal radiation therapy (3DCRT). The next generation of 3DCRT, intensity-modulated radiation therapy and volumetric-modulated arc therapy (VMAT), have enabled even more conformal radiation delivery. Clinical evidence has shown that this can improve the quality of life for patients undergoing definitive management of lung cancer. In the early-stage setting, conventional fractionation led to poor outcomes. Evaluation of altered dose fractionation with the previously noted technology advances led to advent of stereotactic body radiation therapy (SBRT). This technique has dramatically improved local control and expanded treatment options for inoperable, early-stage patients. The recent development of proton therapy has opened new avenues for improving conformity and the therapeutic ratio. Evolution of newer proton therapy techniques, such as pencil-beam scanning (PBS), could improve tolerability and possibly allow reexamination of dose escalation. These new progresses, along with significant advances in systemic therapies, have improved survival for lung cancer patients across the spectrum of non-metastatic disease. They have also brought to light new challenges and avenues for further research and improvement. PMID:28529896
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, R; Wang, J
2014-06-01
Purpose: To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. Methods: The nine-Field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry Run was performed to assess the dosimetric accuracy with MatriXX from IBA. Results: Compared withmore » IMRT, the VMAT-CDR plans delivered a slightly greater V20 of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs Decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. Conclusion: VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability. This work is supported by the grant project, National Natural; Science Foundation of China (No. 81071237)« less
Log file-based patient dose calculations of double-arc VMAT for head-and-neck radiotherapy.
Katsuta, Yoshiyuki; Kadoya, Noriyuki; Fujita, Yukio; Shimizu, Eiji; Majima, Kazuhiro; Matsushita, Haruo; Takeda, Ken; Jingu, Keiichi
2018-04-01
The log file-based method cannot display dosimetric changes due to linac component miscalibration because of the insensitivity of log files to linac component miscalibration. The purpose of this study was to supply dosimetric changes in log file-based patient dose calculations for double-arc volumetric-modulated arc therapy (VMAT) in head-and-neck cases. Fifteen head-and-neck cases participated in this study. For each case, treatment planning system (TPS) doses were produced by double-arc and single-arc VMAT. Miscalibration-simulated log files were generated by inducing a leaf miscalibration of ±0.5 mm into the log files that were acquired during VMAT irradiation. Subsequently, patient doses were estimated using the miscalibration-simulated log files. For double-arc VMAT, regarding planning target volume (PTV), the change from TPS dose to miscalibration-simulated log file dose in D mean was 0.9 Gy and that for tumor control probability was 1.4%. As for organ-at-risks (OARs), the change in D mean was <0.7 Gy and normal tissue complication probability was <1.8%. A comparison between double-arc and single-arc VMAT for PTV showed statistically significant differences in the changes evaluated by D mean and radiobiological metrics (P < 0.01), even though the magnitude of these differences was small. Similarly, for OARs, the magnitude of these changes was found to be small. Using the log file-based method for PTV and OARs, the log file-based method estimate of patient dose using the double-arc VMAT has accuracy comparable to that obtained using the single-arc VMAT. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duggar, William Neil, E-mail: wduggar@umc.edu; Nguyen, Alex; Stanford, Jason
This study is to demonstrate the importance and a method of properly modeling the treatment couch for dose calculation in patient treatment using arc therapy. The 2 treatment couch tops—Aktina AK550 and Elekta iBEAM evo—of Elekta LINACs were scanned using Philips Brilliance Big Bore CT Simulator. Various parts of the couch tops were contoured, and their densities were measured and recorded on the Pinnacle treatment planning system (TPS) using the established computed tomography density table. These contours were saved as organ models to be placed beneath the patient during planning. Relative attenuation measurements were performed following procedures outlined by TG-176more » as well as absolute dose comparison of static fields of 10 × 10 cm{sup 2} that were delivered through the couch tops with that calculated in the TPS with the couch models. A total of 10 random arc therapy treatment plans (5 volumetric-modulated arc therapy [VMAT] and 5 stereotactic body radiation therapy [SBRT]), using 24 beams, were selected for this study. All selected plans were calculated with and without couch modeling. Each beam was evaluated using the Delta{sup 4} dosimetry system (Delta{sup 4}). The Student t-test was used to determine statistical significance. Independent reviews were exploited as per the Imaging and Radiation Oncology Core head and neck credentialing phantom. The selected plans were calculated on the actual patient anatomies with and without couch modeling to determine potential clinical effects. Large relative beam attenuations were noted dependent on which part of the couch top beams were passing through. Substantial improvements were also noted for static fields both calculated with the TPS and delivered physically when the couch models were included in the calculation. A statistically significant increase in agreement was noted for dose difference, distance to agreement, and γ-analysis with the Delta{sup 4} on VMAT and SBRT plans. A credentialing review showed improvement in treatment delivery after couch modeling with both thermoluminescent dosimeter doses and film analysis. Furthermore, analysis of treatment plans with and without using the couch model showed a statistically significant reduction in planning target volume coverage and increase in skin dose. In conclusion, ignoring the treatment couch, a common practice when generating a patient treatment plan, can overestimate the dose delivered especially for arc therapy. This work shows that explicitly modeling the couch during planning can meaningfully improve the agreement between calculated and measured dose distributions. Because of this project, we have implemented the couch models clinically across all treatment plans.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Yuchuan; Deng, Min; Zhou, Xiaojuan
To evaluate the lung sparing in intensity-modulated radiation therapy (IMRT) for patients with upper thoracic esophageal tumors extending inferiorly to the thorax by different beam arrangement. Overall, 15 patient cases with cancer of upper thoracic esophagus were selected for a retrospective treatment-planning study. Intensity-modulated radiation therapy plans using 4, 5, and 7 beams (4B, 5B, and 7B) were developed for each patient by direct machine parameter optimization (DMPO). All plans were evaluated with respect to dose volumes to irradiated targets and normal structures, with statistical comparisons made between 4B with 5B and 7B intensity-modulated radiation therapy plans. Differences among plansmore » were evaluated using a two-tailed Friedman test at a statistical significance of p < 0.05. The maximum dose, average dose, and the conformity index (CI) of planning target volume 1 (PTV1) were similar for 3 plans for each case. No significant difference of coverage for planning target volume 1 and maximum dose for spinal cords were observed among 3 plans in present study (p > 0.05). The average V{sub 5}, V{sub 13}, V{sub 20}, mean lung dose, and generalized equivalent uniform dose (gEUD) for the total lung were significantly lower in 4B-plans than those data in 5B-plans and 7B-plans (p < 0.01). Although the average V{sub 30} for the total lung were significantly higher in 4B-plans than those in 5B-plans and 7B-plans (p < 0.05). In addition, when comparing with the 4B-plans, the conformity/heterogeneity index of the 5B- and 7B-plans were significantly superior (p < 0.05). The 4B-intensity-modulated radiation therapy plan has advantage to address the specialized problem of lung sparing to low- and intermediate-dose exposure in the thorax when dealing with relative long tumors extended inferiorly to the thoracic esophagus for upper esophageal carcinoma with the cost for less conformity. Studies are needed to compare the superiority of volumetric modulated arc therapy with intensity-modulated radiation therapy technique.« less
McIntyre, Christa K; Miyashita, Teiko; Setlow, Barry; Marjon, Kristopher D; Steward, Oswald; Guzowski, John F; McGaugh, James L
2005-07-26
Activation of beta-adrenoceptors in the basolateral complex of the amygdala (BLA) modulates memory storage processes and long-term potentiation in downstream targets of BLA efferents, including the hippocampus. Here, we show that this activation also increases hippocampal levels of activity-regulated cytoskeletal protein (Arc), an immediate-early gene (also termed Arg 3.1) implicated in hippocampal synaptic plasticity and memory consolidation processes. Infusions of the beta-adrenoreceptor agonist, clenbuterol, into the BLA immediately after training on an inhibitory avoidance task enhanced memory tested 48 h later. The same dose of clenbuterol significantly increased Arc protein levels in the dorsal hippocampus. Additionally, posttraining intra-BLA infusions of a memory-impairing dose of lidocaine significantly reduced Arc protein levels in the dorsal hippocampus. Increases in Arc protein levels were not accompanied by increases in Arc mRNA, suggesting that amygdala modulation of Arc protein and synaptic plasticity in efferent brain regions occurs at a posttranscriptional level. Finally, infusions of Arc antisense oligodeoxynucleotides into the dorsal hippocampus impaired performance of an inhibitory avoidance task, indicating that the changes in Arc protein expression are related to the observed changes in memory performance.
McIntyre, Christa K.; Miyashita, Teiko; Setlow, Barry; Marjon, Kristopher D.; Steward, Oswald; Guzowski, John F.; McGaugh, James L.
2005-01-01
Activation of β-adrenoceptors in the basolateral complex of the amygdala (BLA) modulates memory storage processes and long-term potentiation in downstream targets of BLA efferents, including the hippocampus. Here, we show that this activation also increases hippocampal levels of activity-regulated cytoskeletal protein (Arc), an immediate-early gene (also termed Arg 3.1) implicated in hippocampal synaptic plasticity and memory consolidation processes. Infusions of the β-adrenoreceptor agonist, clenbuterol, into the BLA immediately after training on an inhibitory avoidance task enhanced memory tested 48 h later. The same dose of clenbuterol significantly increased Arc protein levels in the dorsal hippocampus. Additionally, posttraining intra-BLA infusions of a memory-impairing dose of lidocaine significantly reduced Arc protein levels in the dorsal hippocampus. Increases in Arc protein levels were not accompanied by increases in Arc mRNA, suggesting that amygdala modulation of Arc protein and synaptic plasticity in efferent brain regions occurs at a posttranscriptional level. Finally, infusions of Arc antisense oligodeoxynucleotides into the dorsal hippocampus impaired performance of an inhibitory avoidance task, indicating that the changes in Arc protein expression are related to the observed changes in memory performance. PMID:16020527
[Technological innovations in radiation oncology require specific quality controls].
Lenaerts, E; Mathot, M
2014-01-01
During the last decade, the field of radiotherapy has benefited from major technological innovations and continuously improving treatment efficacy, comfort and safety of patients. This mainly concerns the imaging techniques that allow 4D CT scan recording the respiratory phases, on-board imaging on linear accelerators that ensure perfect positioning of the patient for treatment and irradiation techniques that reduce very significantly the duration of treatment sessions without compromising quality of the treatment plan, including IMRT (Intensity Modulated Radiation Therapy) and VMAT (Volumetric Modulated Arc therapy). In this context of rapid technological change, it is the responsibility of medical physicists to regularly and precisely monitor the perfect functioning of new techniques to ensure patient safety. This requires the use of specific quality control equipment best suited to these new techniques. We will briefly describe the measurement system Delta4 used to control individualized treatment plan for each patient treated with VMAT technology.
Radiation therapy for breast cancer: Literature review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balaji, Karunakaran, E-mail: karthik.balaji85@gmail.com; School of Advanced Sciences, VIT University, Vellore; Subramanian, Balaji
Concave shape with variable size target volume makes treatment planning for the breast/chest wall a challenge. Conventional techniques used for the breast/chest wall cancer treatment provided better sparing of organs at risk (OARs), with poor conformity and uniformity to the target volume. Advanced technologies such as intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) improve the target coverage at the cost of higher low dose volumes to OARs. Novel hybrid techniques present promising results in breast/chest wall irradiation in terms of target coverage as well as OARs sparing. Several published data compared these technologies for the benefit ofmore » the breast/chest wall with or without nodal volumes. The aim of this article is to review relevant data and identify the scope for further research in developing optimal treatment plan for breast/chest wall cancer treatment.« less
Tseng, Hsien-Chun; Pan, Lung-Kang; Chen, Hsin-Yu; Liu, Wen-Shan; Hsu, Chang-Chieh; Chen, Chien-Yi
2015-01-01
This study is the first to use 10- to 90-kg tissue-equivalent phantoms as patient surrogates to measure peripheral skin doses (Dskin) in lung cancer treatment through Volumetric Modulated Arc Therapy of the Axesse linac. Five tissue-equivalent and Rando phantoms were used to simulate lung cancer patients using the thermoluminescent dosimetry (TLD-100H) approach. TLD-100H was calibrated using 6 MV photons coming from the Axesse linac. Then it was inserted into phantom positions that closely corresponded with the position of the represented organs and tissues. TLDs were measured using the Harshaw 3500 TLD reader. The ICRP 60 evaluated the mean Dskin to the lung cancer for 1 fraction (7 Gy) undergoing VMAT. The Dskin of these phantoms ranged from 0.51±0.08 (10-kg) to 0.22±0.03 (90-kg) mSv/Gy. Each experiment examined the relationship between the Dskin and the distance from the treatment field. These revealed strong variations in positions close to the tumor center. The correlation between Dskin and body weight was Dskin (mSv) = -0.0034x + 0.5296, where x was phantom's weight in kg. R2 is equal to 0.9788. This equation can be used to derive an equation for lung cancer in males. Finally, the results are compared to other published research. These findings are pertinent to patients, physicians, radiologists, and the public.
Dipasquale, Giovanna; Nouet, Philippe; Rouzaud, Michel; Dubouloz, Angèle; Miralbell, Raymond; Zilli, Thomas
2014-06-01
To assess in vivo dose distribution using cone-beam computed tomography scans (CBCTs) and thermoluminescent dosimeters (TLDs) in patients with anal or rectal cancer treated with volumetric modulated arc therapy (VMAT). Intracavitary (IC) in vivo dosimetry (IVD) was performed in 11 patients using adapted endorectal probes containing TLDs, with extra measurements at the perianal skin (PS) for anal margin tumors. Measured doses were compared to calculated ones obtained from image fusion of CBCT with CT treatments plans. A total of 55 IC and 6 PS measurements were analyzed. IC TLD median planned and measured doses were 1.81 Gy (range, 0.25-2.02 Gy) and 1.82 Gy (range, 0.19-2.12 Gy), respectively. In comparison to the planned doses all IC TLD dose measurements differed by a median dose of 0.02 Gy (range, -0.11/+0.19 Gy, p=0.102) (median difference of 1.1%, range -6.1%/+10.6%). Overall, 95% of IC measurements were within ±7.7% of the expected percentage doses and only 1 value was above +10%. For PS measurements, only one was not within ±7.7% of expected values (i.e., -8.9%). Image guidance using CBCT for IVD with TLDs is helpful to validate the delivered doses in patients treated with VMAT for ano-rectal tumors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Plasma Cutting and Carbon-Arc Cutting. Welding Module 8. Instructor's Guide.
ERIC Educational Resources Information Center
Missouri Univ., Columbia. Instructional Materials Lab.
This guide is intended to assist vocational educators in teaching the two units of a module in operating plasma cutting and carbon-arc cutting equipment. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The materials included in the module have been…
Gas Metal Arc Welding. Welding Module 5. Instructor's Guide.
ERIC Educational Resources Information Center
Missouri Univ., Columbia. Instructional Materials Lab.
This guide is intended to assist vocational educators in teaching an eight-unit module in gas metal arc welding. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The following topics are covered in the module: safety and testing, gas metal arc…
Chaswal, Vibha; Weldon, Michael; Gupta, Nilendu; Chakravarti, Arnab
2014-01-01
We present commissioning and comprehensive evaluation for ArcCHECK as a QA equipment for volumetric‐modulated arc therapy (VMAT), using the 6 MV photon beam with and without the flattening filter, and the SNC patient software (version 6.2). In addition to commissioning involving absolute dose calibration, array calibration, and PMMA density verification, ArcCHECK was evaluated for its response dependency on linac dose rate, instantaneous dose rate, radiation field size, beam angle, and couch insertion. Scatter dose characterization, consistency and symmetry of response, and dosimetry accuracy evaluation for fixed aperture arcs and clinical VMAT patient plans were also investigated. All the evaluation tests were performed with the central plug inserted and the homogeneous PMMA density value. Results of gamma analysis demonstrated an overall agreement between ArcCHECK‐measured and TPS‐calculated reference doses. The diode based field size dependency was found to be within 0.5% of the reference. The dose rate‐based dependency was well within 1% of the TPS reference, and the angular dependency was found to be ± 3% of the reference, as tested for BEV angles, for both beams. Dosimetry of fixed arcs, using both narrow and wide field widths, resulted in clinically acceptable global gamma passing rates on the 3%/3 mm level and 10% threshold. Dosimetry of narrow arcs showed an improvement over published literature. The clinical VMAT cases demonstrated high level of dosimetry accuracy in gamma passing rates. PACS numbers: 87.56.Fc, 87.55.kh, 87.55.Qr PMID:25207411
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beninati, G; Barbiere, J; Godfrey, L
2016-06-15
Purpose: To demonstrate that Volumetric Modulated Arc Therapy (VMAT) can be an alternative technique to Brachytherapy Accelerated Partial Breast Irradiation (APBI) for treating large breasted women. The non-coplanar VMAT technique uses a commercially available couch and a small number of angles. This technique with the patient in the prone position can reduce high skin and critical structure doses in large breasted women, which are usually associated with Brachytherapy APBI. Methods: Philips Pinnacle treatment planning system with Smart Arc was used to plan a left sided laterally located excision cavity on a standard prone breast patient setup. Three thirty-degree arcs enteredmore » from the lateral side at respective couch angles of 345, 0, and 15 degrees. A fourth thirty degree arc beam entered from the medial side at a couch angle of 0 degrees. The arcs were selected to avoid critical structures as much as possible. A test run was then performed to verify that the beams did not collide with the patient nor support structures. NSABP B-39/RTOG 0413 protocol guidelines were used for dose prescription, normal tissue, and target definition. Results: Dose Volume Histogram analysis indicated that all parameters were equal or better than RTOG recommendations. Of particular note regarding the plan quality:1.(a) For a prescribed dose of 3850cGy the PTV-EVAL target volume receiving 100 percent of the dose(V100) was 93; protocol recommendation is V90 > 90 percent. (b) Maximum dose was 110 percent versus the allowed 120 percent .2. Uninvolved percentage of normal breast V100 and V50 were 17 and 47 versus allowed 35 and 60 percent respectively.3. For the skin, V100 was 5.7cc and the max dose to 0.1 cc was 4190cGy. Conclusion: Prone Breast non-coplanar VMAT APBI can achieve better skin cosmesis and lower critical structure doses than Brachytherapy APBI.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossain, S; Hildebrand, K; Ahmad, S
Purpose: Intensity modulated arc beams have been newly reported for treating multiple brain metastases. The purpose of this study was to determine the variations in the normal brain doses with increasing number of arc beams for multiple brain metastases treatments via the TrueBeam Rapidarc system (Varian Oncology, Palo Alto, CA). Methods: A patient case with 12 metastatic brain lesions previously treated on the Leksell Gamma Knife Perfexion (GK) was used for the study. All lesions and organs at risk were contoured by a senior radiation oncologist and treatment plans for a subset of 3, 6, 9 and all 12 targetsmore » were developed for the TrueBeam Rapidarc system via 3 to 7 intensity modulated arc-beams with each target covered by at least 99% of the prescribed dose of 20 Gy. The peripheral normal brain isodose volumes as well as the total beam-on time were analyzed with increasing number of arc beams for these targets. Results: All intensisty modulated arc-beam plans produced efficient treatment delivery with the beam-on time averaging 0.6–1.5 min per lesion at an output of 1200 MU/min. With increasing number of arc beams, the peripheral normal brain isodose volumes such as the 12-Gy isodose line enclosed normal brain tissue volumes were on average decreased by 6%, 11%, 18%, and 28% for the 3-, 6-, 9-, 12-target treatment plans respectively. The lowest normal brain isodose volumes were consistently found for the 7-arc treatment plans for all the cases. Conclusion: With nearly identical beam-on times, the peripheral normal brain dose was notably decreased when the total number of intensity modulated arc beams was increased when treating multiple brain metastases. Dr Sahgal and Dr Ma are currently serving on the board of international society of stereotactic radiosurgery.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Xuanfeng; Dionisi, Francesco; Tang, Shikui
With traditional photon therapy to treat large postoperative pancreatic target volume, it often leads to poor tolerance of the therapy delivered and may contribute to interrupted treatment course. This study was performed to evaluate the potential advantage of using passive-scattering (PS) and modulated-scanning (MS) proton therapy (PT) to reduce normal tissue exposure in postoperative pancreatic cancer treatment. A total of 11 patients with postoperative pancreatic cancer who had been previously treated with PS PT in University of Pennsylvania Roberts Proton Therapy Center from 2010 to 2013 were identified. The clinical target volume (CTV) includes the pancreatic tumor bed as wellmore » as the adjacent high-risk nodal areas. Internal (iCTV) was generated from 4-dimensional (4D) computed tomography (CT), taking into account target motion from breathing cycle. Three-field and 4-field 3D conformal radiation therapy (3DCRT), 5-field intensity-modulated radiation therapy, 2-arc volumetric-modulated radiation therapy, and 2-field PS and MS PT were created on the patients’ average CT. All the plans delivered 50.4 Gy to the planning target volume (PTV). Overall, 98% of PTV was covered by 95% of the prescription dose and 99% of iCTV received 98% prescription dose. The results show that all the proton plans offer significant lower doses to the left kidney (mean and V{sub 18} {sub Gy}), stomach (mean and V{sub 20} {sub Gy}), and cord (maximum dose) compared with all the photon plans, except 3-field 3DCRT in cord maximum dose. In addition, MS PT also provides lower doses to the right kidney (mean and V{sub 18} {sub Gy}), liver (mean dose), total bowel (V{sub 20} {sub Gy} and mean dose), and small bowel (V{sub 15} {sub Gy} absolute volume ratio) compared with all the photon plans and PS PT. The dosimetric advantage of PT points to the possibility of treating tumor bed and comprehensive nodal areas while providing a more tolerable treatment course that could be used for dose escalation and combining with radiosensitizing chemotherapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inoue, Tatsuya; Widder, Joachim; Dijk, Lisanne V. van
2016-11-01
Purpose: To investigate the impact of setup and range uncertainties, breathing motion, and interplay effects using scanning pencil beams in robustly optimized intensity modulated proton therapy (IMPT) for stage III non-small cell lung cancer (NSCLC). Methods and Materials: Three-field IMPT plans were created using a minimax robust optimization technique for 10 NSCLC patients. The plans accounted for 5- or 7-mm setup errors with ±3% range uncertainties. The robustness of the IMPT nominal plans was evaluated considering (1) isotropic 5-mm setup errors with ±3% range uncertainties; (2) breathing motion; (3) interplay effects; and (4) a combination of items 1 and 2.more » The plans were calculated using 4-dimensional and average intensity projection computed tomography images. The target coverage (TC, volume receiving 95% of prescribed dose) and homogeneity index (D{sub 2} − D{sub 98}, where D{sub 2} and D{sub 98} are the least doses received by 2% and 98% of the volume) for the internal clinical target volume, and dose indexes for lung, esophagus, heart and spinal cord were compared with that of clinical volumetric modulated arc therapy plans. Results: The TC and homogeneity index for all plans were within clinical limits when considering the breathing motion and interplay effects independently. The setup and range uncertainties had a larger effect when considering their combined effect. The TC decreased to <98% (clinical threshold) in 3 of 10 patients for robust 5-mm evaluations. However, the TC remained >98% for robust 7-mm evaluations for all patients. The organ at risk dose parameters did not significantly vary between the respective robust 5-mm and robust 7-mm evaluations for the 4 error types. Compared with the volumetric modulated arc therapy plans, the IMPT plans showed better target homogeneity and mean lung and heart dose parameters reduced by about 40% and 60%, respectively. Conclusions: In robustly optimized IMPT for stage III NSCLC, the setup and range uncertainties, breathing motion, and interplay effects have limited impact on target coverage, dose homogeneity, and organ-at-risk dose parameters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, W; Patel, S; Shen, J
Purpose: Lack of plan robustness may contribute to local failure in volumetric-modulated arc therapy (VMAT) to treat head and neck (H&N) cancer. Thus we compared plan robustness of VMAT with intensity-modulated radiation therapy (IMRT). Methods: VMAT and IMRT plans were created for 9 H&N cancer patients. For each plan, six new perturbed dose distributions were computed — one each for ± 3mm setup deviations along the S-I, A-P and L-R directions. We used three robustness quantification tools: (1) worst-case analysis (WCA); (2) dose-volume histograms (DVHs) band (DVHB); and (3) root-mean-square-dose deviation (RMSD) volume histogram (DDVH). DDVH represents the relative volumemore » (y) on the vertical axis and the RMSD (x) on the horizontal axis. Similar to DVH, this means that y% of the volume of the indicated structure has the RMSD at least x Gy[RBE].The width from the first two methods at different target DVH indices (such as D95 and D5) and the area under the DDVH curves (AUC) for the target were used to indicate plan robustness. In these robustness quantification tools, the smaller the value, the more robust the plan is. Plan robustness evaluation metrics were compared using Wilcoxon test. Results: DVHB showed the width at D95 from IMRT to be larger than from VMAT (unit Gy) [1.59 vs 1.18 (p=0.49)], while the width at D5 from IMRT was found to be slightly larger than from VMAT [0.59 vs 0.54 (p=0.84)]. WCA showed similar results [D95: 3.28 vs 3.00 (p=0.56); D5: 1.68 vs 1.95 (p=0.23)]. DDVH showed the AUC from IMRT to be slightly smaller than from VMAT [1.13 vs 1.15 (p=0.43)]. Conclusion: VMAT plan robustness is comparable to IMRT plan robustness. The plan robustness conclusions from WCA and DVHB are DVH parameter dependent. On the other hand DDVH captures the overall effect of uncertainties on the dose to a volume of interest. NIH/NCI K25CA168984; Eagles Cancer Research Career Development; The Lawrence W. and Marilyn W. Matteson Fund for Cancer Research Mayo ASU Seed Grant; The Kemper Marley Foundation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heins, D; Zhang, R; Hogstrom, K
2016-06-15
Purpose: To determine if bolus electron conformal therapy (Bolus-ECT) combined with intensity modulated x-ray therapy (IMXT) and flattening filter free volumetric modulated arc therapy (FFF-VMAT (6x and 10x)) can maintain equal or better dose coverage than standard volumetric modulated arc therapy (Std-VMAT) while reducing doses to organs at risk (OARs). Methods: Bolus-ECT with IMXT, FFF-VMAT, and Std-VMAT treatment plans were produced for ten post-mastectomy radiotherapy (PMRT) patients previously treated at our clinic. The treatment plans were created on commercially available treatment planning system (TPS) and all completed treatment plans were reviewed and approved by a radiation oncologist. The plans weremore » evaluated based on planning target volume (PTV) coverage, tumor control probability (TCP), dose homogeneity index (DHI), conformity index (CI), and dose to organs at risk (OAR). Results: All techniques produced clinically acceptable PMRT plans. Overall, Bolus-ECT with IMXT exhibited higher maximum dose compared to all VMAT techniques. Bolus-ECT with IMXT and FFF-VMAT10x had slightly improved TCP over FFF-VMAT6x and Std-VMAT. However, all VMAT techniques showed improved CI and DHI over Bolus-ECT with IMXT. All techniques showed very similar mean lung dose. Bolus-ECT with IMXT exhibited a reduced mean heart dose over Std-VMAT. Both FFF-VMAT techniques had higher mean heart dose compared to Std-VMAT. In addition, Bolus-ECT with IMXT was able to reduce mean dose to the contralateral breast compared to Std-VMAT and both FFF-VMAT techniques had comparable but slightly reduced dose compared to Std-VMAT. Conclusion: This work has shown that Bolus-ECT with IMXT produces clinically acceptable plans while reducing OAR doses. Both FFF-VMAT techniques are comparable to Std-VMAT with slight improvements. Even though all VMAT techniques produce more homogenous and conformal dose distributions, Bolus-ECT with IMXT is a viable option for treating post-mastectomy patients possibly leading to reduced risks of normal tissue complications.« less
TH-AB-BRB-01: Trajectory Modulated Arc Therapy: Application to Partial Breast Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hristov, D.
2016-06-15
Current state-of-the art digital C-arm medical linear accelerators are capable of delivering radiation treatments with high level of automation, which affords coordinated motions of gantry, couch, and multileaf collimator (MLC) with dose rate modulations. The new machine capacity has shown the potential to bring substantially improved radiation dosimetry and/or delivery efficiency to many challenging diseases. Combining an integrated beam orientation optimization algorithm with automated machine navigation, markedly improved dose conformity has been achieved using 4ρ therapy. Trajectory modulated radiation therapy (TMAT) can be used to deliver highly conformal dose to partial breast or to carve complex dose distribution for therapymore » involving extended volumes such as total marrow and total lymph node treatment. Dynamic electron arc radiotherapy (DEAR) not only overcomes the deficiencies of conventional electron therapy in dose conformity and homogeneity but also achieves so without patient-specific shields. The combination of MLC and couch tracking provides improved motion management of thoracic and abdominal tumors. A substantial body of work has been done in these technological advances for clinical translation. The proposed symposium will provide a timely review of these exciting opportunities. Learning Objectives: Recognize the potential of using digitally controlled linacs for clinically significant improvements in delivered dose distributions for various treatment sites. Identify existing approaches to treatment planning, optimization and delivery for treatment techniques utilizing the advanced functions of digital linacs and venues for further development and improvement. Understand methods for testing and validating delivery system performance. Identify tools available on current delivery systems for implementation and control for such treatments. Obtain the update in clinical applications, trials and regulatory approval. K. Sheng, NIH U19AI067769, NIH R43CA183390, NIH R01CA188300, Varian Medical Systems V. Yu, Varian Medical Systems, AAPM Summer Undergraduate Fellowship, NSF graduate fellowship S. Nill, Elekta AB. Cancer Research UK under Programme C33589/A19727, NIHR Biomedical Research Centre at The Royal Marsden and The Institute of Cancer Research.« less
Quality assurance of dynamic parameters in volumetric modulated arc therapy.
Manikandan, A; Sarkar, B; Holla, R; Vivek, T R; Sujatha, N
2012-07-01
The purpose of this study was to demonstrate quality assurance checks for accuracy of gantry speed and position, dose rate and multileaf collimator (MLC) speed and position for a volumetric modulated arc treatment (VMAT) modality (Synergy S; Elekta, Stockholm, Sweden), and to check that all the necessary variables and parameters were synchronous. Three tests (for gantry position-dose delivery synchronisation, gantry speed-dose delivery synchronisation and MLC leaf speed and positions) were performed. The average error in gantry position was 0.5° and the average difference was 3 MU for a linear and a parabolic relationship between gantry position and delivered dose. In the third part of this test (sawtooth variation), the maximum difference was 9.3 MU, with a gantry position difference of 1.2°. In the sweeping field method test, a linear relationship was observed between recorded doses and distance from the central axis, as expected. In the open field method, errors were encountered at the beginning and at the end of the delivery arc, termed the "beginning" and "end" errors. For MLC position verification, the maximum error was -2.46 mm and the mean error was 0.0153 ±0.4668 mm, and 3.4% of leaves analysed showed errors of >±1 mm. This experiment demonstrates that the variables and parameters of the Synergy S are synchronous and that the system is suitable for delivering VMAT using a dynamic MLC.
Superior Volumetic Modulated Arc Therapy Planning Solution for Prostate Patients
2014-07-01
narrow; it was selected to enhance the visibility of the small low-contrast tumors. The width of this window corresponds to about 13.5 Hounsfield units ...1R01EB013118-01 from the National Institute of Health. In order to obtain relative stopping power (RSP), Hounsfield units (i.e. units of x-ray...attenuation used in x-ray CT) are trans- formed using a calibration curve. However, there is no unique relationship between Hounsfield units and RSP, especially
2010-03-01
is to develop a novel clinical useful delivered-dose verification protocol for modern prostate VMAT using Electronic Portal Imaging Device (EPID...technique. A number of important milestones have been accomplished, which include (i) calibrated CBCT HU vs. electron density curve; (ii...prostate VMAT using Electronic Portal Imaging Device (EPID) and onboard Cone beam Computed Tomography (CBCT). The specific aims of this project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edgington, Samantha; Cotter, Christopher; Busse, Paul
Purpose: To report the first experiences and perspectives in using direct multicriteria optimization (MCO) on volumetric-modulated arc therapy (VMAT) for head and neck (H&N) cancer. Methods: Ten prior patients with tumors in representative H&N regions were selected to evaluate direct MCO-VMAT in RayStation v5.0 beta. The patients were previously treated by intensity-modulated radiation therapy (IMRT) with MCO on an Elekta linear accelerator with Agility multileaf collimator. To avoid radiating eyes and shoulders, MCO-VMAT required one to three partial-arc groups, with each group consisting of single or dual arcs. All MCO-VMAT plans were approved by a radiation oncologist. The MCO-VMAT andmore » MCO-IMRT plans were compared using V{sub 100}, D{sub 5}, homogeneity index (HI) and conformity index (CI) for planning target volume (PTV), D{sub mean} and D{sub 50} for six parallel organs and D{sub max} for five serial organs. Patient-specific quality assurance (QA) was performed using ArcCHECK for MCO-VMAT and Matrixx for MCO-IMRT with results analyzed using gamma criteria of 3%/3mm. Results: MCO-VMAT provided better V{sub 100} (+0.8%) lower D{sub 5}(− 0.3 Gy), lower HI (−0.27) and comparable CI (+0.05). MCO-VMAT decreased D{sub mean} and D{sub 50} for multiple parallel organs in seven of the ten patients. On average the reduction ranged from 2.1 (larynx) to 7.6 Gy (esophagus). For the nasal cavity and nasopharynx plans significant reduction in D{sub max} was observed for optics (up to 11 Gy) brainstem (6.4 Gy), cord (2.1 Gy) and mandible (6.7 Gy). All MCO-VMAT and -IMRT plans passed clinical QA. MCO-VMAT required slightly longer planning time due to the more complex VMAT optimization. The net beam-on time for the MCO-VMAT plans ranged from 80 to 242 seconds, up to 9 minutes shorter than MCO-IMRT. Conclusion: With similar target coverage, reduced organ dose, comparable planning time, and significantly faster treatment, MCO-VMAT is very likely to become the modality of choice in RayStation v5.0 for H&N cancer.« less
Use of volumetric-modulated arc therapy for treatment of Hodgkin lymphoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Young K., E-mail: Young.Lee@rmh.nhs.uk; Bedford, James L.; Taj, Mary
To evaluate volumetric-modulated arc therapy (VMAT) for treatment of Hodgkin lymphoma (HL) in patients where conventional radiotherapy was not deliverable. A planning computed tomography (CT) scan was acquired for a twelve-year-old boy with Stage IIIB nodular sclerosing HL postchemotherapy with positive positron emission tomography scan. VMAT was used for Phase 1 (19.8 Gy in 11 fractions) and Phase 2 (10.8 Gy in 6 fractions) treatment plans. Single anticlockwise arc plans were constructed using SmartArc (Philips Radiation Oncology Systems, Fitchburg, WI) with control points spaced at 4°. The inverse-planning objectives were to uniformly irradiate the planning target volume (PTV) with themore » prescription dose while keeping the volume of lung receiving greater than 20 Gy (V{sub 20} {sub Gy}) to less than 30% and minimize the dose to the other adjacent organs at risk (OAR). Pretreatment verification was conducted and the treatment delivery was on an MLCi Synergy linear accelerator (Elekta Ltd, Crawley, UK). The planning results were retrospectively confirmed in a further 4 patients using a single PTV with a prescribed dose of 19.8 Gy in 11 fractions. Acceptable dose coverage and homogeneity were achieved for both Phase 1 and 2 plans while keeping the lung V{sub 20} {sub Gy} at 22.5% for the composite plan. The beam-on times for Phase 1 and Phase 2 plans were 109 and 200 seconds, respectively, and the total monitor units were 337.2 MU and 292.5 MU, respectively. The percentage of measured dose points within 3% and 3 mm for Phase 1 and Phase 2 were 92% and 98%, respectively. Both plans were delivered successfully. The retrospective planning study showed that VMAT improved PTV dose uniformity and reduced the irradiated volume of heart and lung, although the volume of lung irradiated to low doses increased. Two-phased VMAT offers an attractive option for large volume sites, such as HL, giving a high level of target coverage and significant OAR sparing together with efficient delivery.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Y; Cho, B; Kwak, J
2014-06-01
Purpose: We implemented the Gafchromic film-based patient specific QA of volumetric modulated arc therapy (VMAT) with flattening-filter free (FFF) beams for spine metastases and validated the accuracy of fast arc delivery. Methods: EBT3 films and a homemade cylindrical QA phantom were employed for dosimetric verification of VMATs. For 14 FFF VMAT plans (10 with 10-MV FFF beams and 4 with 6-MV FFF beams), the doses were recalculated on the phantom and delivered by a TrueBeam STx accelerator equipped with a high-definition 120 leaf MLC. The EBT3 films were scanned using an Epson 10000XL scanner through the FilmQA Pro software. Allmore » the irradiated film images were converted to dose map using a calibration response curve. The resulting dose map of film measurement was compared with treatment plan and evaluated using gamma analysis with dose tolerance of 2% within 2 mm. In addition, the point-dose measurement in the phantom using an ion chamber was evaluated as a reference in a ratio of measured and planned doses. Results: The gamma pass rates averaged over all FFF plans for composite-field measurements were 96.0 ± 3.6% (88.9%–99.5%). When adopting a tolerance level of 3% - 3 mm, the gamma pass rates were improved with the ranges from 98% to 100%. In addition, dose profiles and dose distributions showed that spinal cord was protected by the rapid dose fall-off and by delivering the treatment with high precision. In point-dose measurements, the average differences between the measured and planned doses were 0.5% ± 1.0% of the prescription dose. Conclusion: We demonstrated that Gafchromic EBT3 film would be an effective patient-specific QA tool, especially for VMAT of spine SBRT with treatment of small fields and highly gradient dose distributions. The results of film QA verified that the dosimetric accuracy of spine SBRT utilizing RapidArc with FFF beams in our institution is reliable.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouyang, L; Folkerts, M; Lee, H
2015-06-15
Purpose: To perform a dosimetric evaluation on a new developed volumetric modulated arc therapy based total body irradiation (VMAT-TBI). Methods: Three patients were CT scanned with an indexed rotatable body frame to get whole body CT images. Concatenated CT images were imported in Pinnacle treatment planning system and whole body and lung were contoured as PTV and organ at risk, respectively. Treatment plans were generated by matching multiple isocenter volumetric modulated arc (VMAT) fields of the upper body and multiple isocenter parallel-opposed fields of the lower body. For each plan, 1200 cGy in 8 fractions was prescribed to the wholemore » body volume and the lung dose was constrained to a mean dose of 750 cGy. Such a two-level dose plan was achieved by inverse planning of the torso VMAT fields. For comparison, conventional standing TBI (cTBI) plans were generated on the same whole body CT images at an extended SSD (550cm).The shape of compensators and lung blocks are simulated using body segments and lung contours Compensation was calculated based on the patient CT images, in mimic of the standing TBI treatment. The whole body dose distribution of cTBI plans were calculated with a home-developed GPU Monte Carlo dose engine. Calculated cTBI dose distribution was prescribed to the mid-body point at umbilical level. Results: The VMAT-TBI treatment plans of three patients’ plans achieved 80.2%±5.0% coverage of the total body volume within ±10% of the prescription dose, while cTBI treatment plans achieved 72.2%±4.0% coverage of the total body volume. The averaged mean lung dose of all three patients is lower for VMAT-TBI (7.48 cGy) than for cTBI (8.96 cGy). Conclusion: The proposed patient comfort-oriented VMAT-TBI technique provides for a uniform dose distribution within the total body while reducing the dose to the lungs.« less
Quan, Kimmen; Xu, Karen M.; Lalonde, Ron; Horne, Zachary D.; Bernard, Mark E.; McCoy, Chuck; Clump, David A.; Burton, Steven A.; Heron, Dwight E.
2015-01-01
The aim of this study is to provide a practical approach to the planning technique and evaluation of plan quality for the multi-lesion, single-isocenter stereotactic ablative radiotherapy (SABR) of the lung. Eleven patients with two or more lung lesions underwent single-isocenter volumetric-modulated arc therapy (VMAT) radiosurgery or IMRS. All plans were normalized to the target maximum dose. For each plan, all targets were treated to the same dose. Plan conformity and dose gradient were maximized with dose-control tuning structures surrounding targets. For comparison, multi-isocenter plans were retrospectively created for four patients. Conformity index (CI), homogeneity index (HI), gradient index (GI), and gradient distance (GD) were calculated for each plan. V5, V10, and V20 of the lung and organs at risk (OARs) were collected. Treatment time and total monitor units (MUs) were also recorded. One patient had four lesions and the remainder had two lesions. Six patients received VMAT and five patients received intensity-modulated radiosurgery (IMRS). For those treated with VMAT, two patients received 3-arc VMAT and four received 2-arc VMAT. For those treated with IMRS, two patients were treated with 10 and 11 beams, respectively, and the rest received 12 beams. Prescription doses ranged from 30 to 54 Gy in three to five fractions. The median prescribed isodose line was 84% (range: 80–86%). The median maximum dose was 57.1 Gy (range: 35.7–65.1 Gy). The mean combined PTV was 49.57 cm3 (range: 14.90–87.38 cm3). For single-isocenter plans, the median CI was 1.15 (range: 0.97–1.53). The median HI was 1.19 (range: 1.16–1.28). The median GI was 4.60 (range: 4.16–7.37). The median maximum radiation dose (Dmax) to total lung was 55.6 Gy (range: 35.7–62.0 Gy). The median mean radiation dose to the lung (Dmean) was 4.2 Gy (range: 1.1–9.3 Gy). The median lung V5 was 18.7% (range: 3.8–41.3%). There was no significant difference in CI, HI, GI, GD, V5, V10, and V20 (lung, heart, trachea, esophagus, and spinal cord) between single-isocenter and multi-isocenter plans. This multi-lesion, single-isocenter lung SABR planning technique demonstrated excellent plan quality and clinical efficiency and is recommended for radiosurgical treatment of two or more lung targets for well-suited patients. PMID:26500888
Patni, Nidhi; Burela, Nagarjuna; Pasricha, Rajesh; Goyal, Jaishree; Soni, Tej Prakash; Kumar, T Senthil; Natarajan, T
2017-01-01
To achieve the best possible therapeutic ratio using high-precision techniques (image-guided radiation therapy/volumetric modulated arc therapy [IGRT/VMAT]) of external beam radiation therapy in cases of carcinoma cervix using kilovoltage cone-beam computed tomography (kV-CBCT). One hundred and five patients of gynecological malignancies who were treated with IGRT (IGRT/VMAT) were included in the study. CBCT was done once a week for intensity-modulated radiation therapy and daily in IGRT/VMAT. These images were registered with the planning CT scan images and translational errors were applied and recorded. In all, 2078 CBCT images were studied. The margins of planning target volume were calculated from the variations in the setup. The setup variation was 5.8, 10.3, and 5.6 mm in anteroposterior, superoinferior, and mediolateral direction. This allowed adequate dose delivery to the clinical target volume and the sparing of organ at risks. Daily kV-CBCT is a satisfactory method of accurate patient positioning in treating gynecological cancers with high-precision techniques. This resulted in avoiding geographic miss.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camingue, Pamela; Christian, Rochelle; Ng, Davin
The purpose of this study was to compare 4 different external beam radiation therapy treatment techniques for the treatment of T1-2, N0, M0 glottic cancers: traditional lateral beams with wedges (3D), 5-field intensity-modulated radiation therapy (IMRT), volumetric modulated arc therapy (VMAT), and proton therapy. Treatment plans in each technique were created for 10 patients using consistent planning parameters. The photon treatment plans were optimized using Philips Pinnacle{sub 3} v.9 and the IMRT and VMAT plans used the Direct Machine Parameter Optimization algorithm. The proton treatment plans were optimized using Varian Eclipse Proton v.8.9. The prescription used for each plan wasmore » 63 Gy in 28 fractions. The contours for spinal cord, right carotid artery, left carotid artery, and normal tissue were created with respect to the patient's bony anatomy so that proper comparisons of doses could be made with respect to volume. An example of the different isodose distributions will be shown. The data collection for comparison purposes includes: clinical treatment volume coverage, dose to spinal cord, dose to carotid arteries, and dose to normal tissue. Data comparisons will be displayed graphically showing the maximum, mean, median, and ranges of doses.« less
Toyota, Masahiko; Saigo, Yasumasa; Higuchi, Kenta; Fujimura, Takuya; Koriyama, Chihaya; Yoshiura, Takashi; Akiba, Suminori
2017-11-01
Intensity-modulated radiation therapy (IMRT) can deliver high and homogeneous doses to the target area while limiting doses to organs at risk. We used a pediatric phantom to simulate the treatment of a head and neck tumor in a child. The peripheral doses were examined for three different IMRT techniques [dynamic multileaf collimator (DMLC), segmental multileaf collimator (SMLC) and volumetric modulated arc therapy (VMAT)]. Peripheral doses were evaluated taking thyroid, breast, ovary and testis as the points of interest. Doses were determined using a radio-photoluminescence glass dosemeter, and the COMPASS system was used for three-dimensional dose evaluation. VMAT achieved the lowest peripheral doses because it had the highest monitor unit efficiency. However, doses in the vicinity of the irradiated field, i.e. the thyroid, could be relatively high, depending on the VMAT collimator angle. DMLC and SMLC had a large area of relatively high peripheral doses in the breast region. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A review of stereotactic body radiotherapy – is volumetric modulated arc therapy the answer?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sapkaroski, Daniel, E-mail: daniel.sapkaroski@gmail.com; Osborne, Catherine; Knight, Kellie A
2015-06-15
Stereotactic body radiotherapy (SBRT) is a high precision radiotherapy technique used for the treatment of small to moderate extra-cranial tumours. Early studies utilising SBRT have shown favourable outcomes. However, major disadvantages of static field SBRT include long treatment times and toxicity complications. Volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) may potentially mitigate these disadvantages. This review aims to assess the feasibility of emerging VMAT and IMRT-based SBRT treatment techniques and qualify which offers the best outcome for patients, whilst identifying any emerging and advantageous SBRT planning trends. A review and synthesis of data from current literature upmore » to September 2013 was conducted on EMBASE, Medline, PubMed, Science Direct, Proquest central, Google Scholar and the Cochrane Database of Systematic reviews. Only full text papers comparing VMAT and or IMRT and or Static SBRT were included. Ten papers were identified that evaluated the results of VMAT/IMRT SBRT. Five related to medically inoperable stage 1 and 2 non-small-cell lung cancer (NSCLC), three to spinal metastasis, one related to abdominal lymph node malignancies, with the final one looking at pancreatic adenocarcinoma. Overall treatment times with VMAT were reduced by 66–70% for lung, 46–58% for spine, 42% and 21% for lymph node and pancreatic metastasis respectively, planning constraints were met with several studies showing improved organs at risk sparing with IMRT/VMAT to static SBRT. Both IMRT and VMAT were able to meet all planning constraints in the studies reviewed, with VMAT offering the greatest treatment efficiency. Early clinical outcomes with VMAT and IMRT SBRT have demonstrated excellent local control and favourable survival outcomes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kendall, E; Higby, C; Algan, O
2016-06-15
Purpose: To compare the treatment plan quality and dose gradient near the hippocampus between VMAT (RapidArc) and IMRT delivery techniques for whole brain radiation therapy. Methods: Fifteen patients were evaluated in this retrospective study. All treatments were planned on Varian Eclipse TPS, using 3-Arc VMAT and 9-Field IMRT, following NRG Oncology protocol NRG-CC001 guidelines evaluated by a single radiation oncologist. Prescribed doses in all plans were 30 Gy delivered over 10 fractions normalized to a minimum of 100% of the dose covering 95% of the target volume. Identical contour sets and dose-volume constraints following protocol guidelines were also applied inmore » all plans. A paired t-test analysis was used to compare VMAT and IMRT plans. Results: NRG-CC001 protocol dose-volume constraints were met for all VMAT and IMRT plans. For the planning target volume (PTV), the average values for D2% and D98% were 6% lower and 4% higher in VMAT than in IMRT, respectively. The average mean and maximum hippocampus doses in Gy for VMAT vs IMRT plans were (11.85±0.81 vs. 12.24±0.56, p=0.10) and (16.27±0.78 vs. 16.59±0.71, p=0.24), respectively. In VMAT, the average mean and maximum chiasm doses were 3% and 1% higher than in IMRT plans, respectively. For the left optic nerve, the average mean and maximum doses were 10% and 5% higher in VMAT than in IMRT plans, respectively. These values were 12% and 3% for the right optic nerve. The average percentage of dose gradient around the hippocampus in the 0–5mm and 5–10mm abutted regions for VMAT vs. IMRT were (4.42%±2.22% /mm vs. 3.95%±2.61% /mm, p=0.43) and (4.54%±1.50% /mm vs. 4.39%±1.28% /mm, p=0.73), respectively. Conclusion: VMAT plans can achieve higher hippocampus sparing with a faster dose fall-off than IMRT plans. Though statistically insignificant, VMAT offers better PTV coverage with slightly higher doses to OARs.« less
Eekers, Daniëlle B P; Roelofs, Erik; Jelen, Urszula; Kirk, Maura; Granzier, Marlies; Ammazzalorso, Filippo; Ahn, Peter H; Janssens, Geert O R J; Hoebers, Frank J P; Friedmann, Tobias; Solberg, Timothy; Walsh, Sean; Troost, Esther G C; Kaanders, Johannes H A M; Lambin, Philippe
2016-12-01
In this multicentric in silico trial we compared photon, proton, and carbon-ion radiotherapy plans for re-irradiation of patients with squamous cell carcinoma of the head and neck (HNSCC) regarding dose to tumour and doses to surrounding organs at risk (OARs). Twenty-five HNSCC patients with a second new or recurrent cancer after previous irradiation (70Gy) were included. Intensity-modulated proton therapy (IMPT) and ion therapy (IMIT) re-irradiation plans to a second subsequent dose of 70Gy were compared to photon therapy delivered with volumetric modulated arc therapy (VMAT). When comparing IMIT and IMPT to VMAT, the mean dose to all investigated 22 OARs was significantly reduced for IMIT and to 15 out of 22 OARs (68%) using IMPT. The maximum dose to 2% volume (D 2 ) of the brainstem and spinal cord were significantly reduced using IMPT and IMIT compared to VMAT. The data are available on www.cancerdata.org. In this ROCOCO in silico trial, a reduction in mean dose to OARs was achieved using particle therapy compared to photons in the re-irradiation of HNSCC. There was a dosimetric benefit favouring carbon-ions above proton therapy. These dose reductions may potentially translate into lower severe complication rates related to the re-irradiation. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
SU-F-T-443: Quantification of Dosimetric Effects of Dental Metallic Implant On VMAT Plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, C; Jiang, W; Feng, Y
Purpose: To evaluate the dosimetric impact of metallic implant that correlates with the size of targets and metallic implants and distance in between on volumetric-modulated arc therapy (VMAT) plans for head and neck (H&N) cancer patients with dental metallic implant. Methods: CT images of H&N cancer patients with dental metallic implant were used. Target volumes with different sizes and locations were contoured. Metal artifact regions excluding surrounding critical organs were outlined and assigned with CT numbers close to water (0HU). VMAT plans with half-arc, one-full-arc and two-full-arcs were constructed and same plans were applied to structure sets with and withoutmore » CT number assignment of metal artifact regions and compared. D95% was utilized to investigate PTV dose coverage and SNC Patient− Software was used for the analysis of dose distribution difference slice by slice. Results: For different targets sizes, variation of PTV dose coverage (Delta-D95%) with and without CT number replacement reduced with larger target volume for all half-arc, one-arc and two-arc VMAT plans even though there were no clinically significant differences. Additionally, there were no significant variations of the maximum percent difference (max.%diff) of dose distribution. With regard to the target location, Delta-D95% and max. %diff dropped with increasing distance between target and metallic implant. Furthermore, half-arc plans showed greater impact than one-arc plans, and two-arc plans had smallest influence for PTV dose coverage and dose distribution. Conclusion: The target size has less correlation of doseimetric impact than the target location relative to metallic implants. Plans with more arcs alleviate the dosimetric effect of metal artifact because of less contribution to the target dose from beams going through the regions with metallic artifacts. Incorrect CT number causes inaccurate dose distribution, therefore appropriately overwriting metallic artifact regions with reasonable CT numbers is recommended. More patient data are collected and under further analysis.« less
A Systematic Analysis of 2 Monoisocentric Techniques for the Treatment of Multiple Brain Metastases.
Narayanasamy, Ganesh; Stathakis, Sotirios; Gutierrez, Alonso N; Pappas, Evangelos; Crownover, Richard; Floyd, John R; Papanikolaou, Niko
2017-10-01
In this treatment planning study, we compare the plan quality and delivery parameters for the treatment of multiple brain metastases using 2 monoisocentric techniques: the Multiple Metastases Element from Brainlab and the RapidArc volumetric-modulated arc therapy from Varian Medical Systems. Eight patients who were treated in our institution for multiple metastases (3-7 lesions) were replanned with Multiple Metastases Element using noncoplanar dynamic conformal arcs. The same patients were replanned with the RapidArc technique in Eclipse using 4 noncoplanar arcs. Both techniques were designed using a single isocenter. Plan quality metrics (conformity index, homogeneity index, gradient index, and R 50% ), monitor unit, and the planning time were recorded. Comparison of the Multiple Metastases Element and RapidArc plans was performed using Shapiro-Wilk test, paired Student t test, and Wilcoxon signed rank test. A paired Wilcoxon signed rank test between Multiple Metastases Element and RapidArc showed comparable plan quality metrics and dose to brain. Mean ± standard deviation values of conformity index were 1.8 ± 0.7 and 1.7 ± 0.6, homogeneity index were 1.3 ± 0.1 and 1.3 ± 0.1, gradient index were 5.0 ± 1.8 and 5.1 ± 1.9, and R 50% were 4.9 ± 1.8 and 5.0 ± 1.9 for Multiple Metastases Element and RapidArc plans, respectively. Mean brain dose was 2.3 and 2.7 Gy for Multiple Metastases Element and RapidArc plans, respectively. The mean value of monitor units in Multiple Metastases Element plan was 7286 ± 1065, which is significantly lower than the RapidArc monitor units of 9966 ± 1533 ( P < .05). For the planning of multiple brain lesions to be treated with stereotactic radiosurgery, Multiple Metastases Element planning software produced equivalent conformity, homogeneity, dose falloff, and brain V 12 Gy but required significantly lower monitor units, when compared to RapidArc plans.
A Systematic Analysis of 2 Monoisocentric Techniques for the Treatment of Multiple Brain Metastases
Stathakis, Sotirios; Gutierrez, Alonso N.; Pappas, Evangelos; Crownover, Richard; Floyd, John R.; Papanikolaou, Niko
2016-01-01
Background: In this treatment planning study, we compare the plan quality and delivery parameters for the treatment of multiple brain metastases using 2 monoisocentric techniques: the Multiple Metastases Element from Brainlab and the RapidArc volumetric-modulated arc therapy from Varian Medical Systems. Methods: Eight patients who were treated in our institution for multiple metastases (3-7 lesions) were replanned with Multiple Metastases Element using noncoplanar dynamic conformal arcs. The same patients were replanned with the RapidArc technique in Eclipse using 4 noncoplanar arcs. Both techniques were designed using a single isocenter. Plan quality metrics (conformity index, homogeneity index, gradient index, and R50%), monitor unit, and the planning time were recorded. Comparison of the Multiple Metastases Element and RapidArc plans was performed using Shapiro-Wilk test, paired Student t test, and Wilcoxon signed rank test. Results: A paired Wilcoxon signed rank test between Multiple Metastases Element and RapidArc showed comparable plan quality metrics and dose to brain. Mean ± standard deviation values of conformity index were 1.8 ± 0.7 and 1.7 ± 0.6, homogeneity index were 1.3 ± 0.1 and 1.3 ± 0.1, gradient index were 5.0 ± 1.8 and 5.1 ± 1.9, and R50% were 4.9 ± 1.8 and 5.0 ± 1.9 for Multiple Metastases Element and RapidArc plans, respectively. Mean brain dose was 2.3 and 2.7 Gy for Multiple Metastases Element and RapidArc plans, respectively. The mean value of monitor units in Multiple Metastases Element plan was 7286 ± 1065, which is significantly lower than the RapidArc monitor units of 9966 ± 1533 (P < .05). Conclusion: For the planning of multiple brain lesions to be treated with stereotactic radiosurgery, Multiple Metastases Element planning software produced equivalent conformity, homogeneity, dose falloff, and brain V12 Gy but required significantly lower monitor units, when compared to RapidArc plans. PMID:27612917
SU-E-T-548: How To Decrease Spine Dose In Patients Who Underwent Sterotactic Spine Radiosurgery?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acar, H; Altinok, A; Kucukmorkoc, E
2014-06-01
Purpose: Stereotactic radiosurgery for spine metastases involves irradiation using a single high dose fraction. The purpose of this study was to dosimetrically compare stereotactic spine radiosurgery(SRS) plans using a recently new volumetric modulated arc therapy(VMAT) technique against fix-field intensity-modulated radiotherapy(IMRT). Plans were evaluated for target conformity and spinal cord sparing. Methods: Fifteen previously treated patients were replanned using the Eclipse 10.1 TPS AAA calculation algorithm. IMRT plans with 7 fields were generated. The arc plans used 2 full arc configurations. Arc and IMRT plans were normalized and prescribed to deliver 16.0 Gy in a single fraction to 90% of themore » planning target volume(PTV). PTVs consisted of the vertebral body expanded by 3mm, excluding the PRV-cord, where the cord was expanded by 2mm.RTOG 0631 recommendations were applied for treatment planning. Partial spinal cord volume was defined as 5mm above and below the radiosurgery target volume. Plans were compared for conformity and gradient index as well as spinal cord sparing. Results: The conformity index values of fifteen patients for two different treatment planning techniques were shown in table 1. Conformity index values for 2 full arc planning (average CI=0.84) were higher than that of IMRT planning (average CI=0.79). The gradient index values of fifteen patients for two different treatment planning techniques were shown in table 2. Gradient index values for 2 full arc planning (average GI=3.58) were higher than that of IMRT planning (average GI=2.82).The spinal cord doses of fifteen patients for two different treatment planning techniques were shown in table 3. D0.35cc, D0.03cc and partial spinal cord D10% values in 2 full arc plannings (average D0.35cc=819.3cGy, D0.03cc=965.4cGy, 10%partial spinal=718.1cGy) were lower than IMRT plannings (average D0.35cc=877.4cGy, D0.03c=1071.4cGy, 10%partial spinal=805.1cGy). Conclusions: The two arc VMAT technique is superior to 7 field IMRT technique in terms of both spinal cord sparing and better conformity and gradient indexes.« less
ERIC Educational Resources Information Center
Espy, John; Selleck, Ben
This second in a series of ten modules for a course titled Welding Inspection describes the key features of the oxyacetylene and shielded metal arc welding process. The apparatus, process techniques, procedures, applications, associated defects, and inspections are presented. The module follows a typical format that includes the following…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, S; Kyung Hee University Hospital at Gangdong, Gangdong-gu; Kim, D
2015-06-15
Purpose: The hippocampus sparing during the cranial irradiation has become interesting because it may mitigate radiation-induced neurocognitive toxicity. Herein we report our preliminary study for sparing the hippocampus with and without tilling condition for patient with brain metastases. Methods: Ten patients previously treated with whole brain were reviewed. Five patients tilted the head to around 30 degrees and others were treated without tilting. Treatment plans of linear accelerator (Linac)-based volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) were generated for prescription dose of 30 Gy in 15 fractions. Hippocampal avoidance regions were created with 5-mm volumetric expansion aroundmore » the hippocampus. Whole brain, hippocampus and hippocampal avoidance volume were 1372cm3, 6cm3 and 30cm3 and hippocampal avoidance volume was 2.2% of the whole brain planned target volume in average. Organs at risk (OARs) are hippocampus, eyes, lens, and cochleae. Coverage index (CVI), conformity index (CI), homogeneity index (HI) and mean dose to OARs were used to compare dose characteristic of tilted and non-tilted cases. Results: In IMRT, when CI, CVI and HI of whole brain were 0.88, 0.09 and 0.98 in both tilted and non-tilted cases, absorbed dose of hippocampal avoidance volume in tilted cases were 10% lower than non-tilted cases. Doses in other OARs such as eyes, lens, and cochleae were also decreased about 20% when tilting the head. When CI, HI and CVI in VMAT were 0.9, 0.08 and 0.99, the dose-decreased ratio of OARs in both with and without tilting cases were almost the same with IMRT. But absolute dose of hippocampal avoidance volume in VMAT was 30% lower than IMRT. Conclusion: This study confirms that dose to hippocampus decreases if patients tilt the head. When treating the whole brain with head tilted, patients can acquire the same successful treatment Result and also preserve their valuable memory.« less
Khan, Muhammad Isa; Jiang, Runqing; Kiciak, Alexander; ur Rehman, Jalil; Afzal, Muhammad; Chow, James C. L.
2016-01-01
This study reviewed prostate volumetric-modulated arc therapy (VMAT) plans with intensity-modulated radiotherapy (IMRT) plans after prostate IMRT technique was replaced by VMAT in an institution. Characterizations of dosimetry and radiobiological variation in prostate were determined based on treatment plans of 40 prostate IMRT patients (planning target volume = 77.8–335 cm3) and 50 VMAT patients (planning target volume = 120–351 cm3) treated before and after 2013, respectively. Both IMRT and VMAT plans used the same dose-volume criteria in the inverse planning optimization. Dose-volume histogram, mean doses of target and normal tissues (rectum, bladder and femoral heads), dose-volume points (D99% of planning target volume; D30%, D50%, V30 Gy and V35 Gy of rectum and bladder; D5%, V14 Gy, V22 Gy of femoral heads), conformity index (CI), homogeneity index (HI), gradient index (GI), prostate tumor control probability (TCP), and rectal normal tissue complication probability (NTCP) based on the Lyman-Burman-Kutcher algorithm were calculated for each IMRT and VMAT plan. From our results, VMAT plan was found better due to its higher (1.05%) CI, lower (0.83%) HI and (0.75%) GI than IMRT. Comparing doses in normal tissues between IMRT and VMAT, it was found that IMRT mostly delivered higher doses of about 1.05% to the normal tissues than VMAT. Prostate TCP and rectal NTCP were found increased (1%) for VMAT than IMRT. It is seen that VMAT technique can decrease the dose-volume evaluation criteria for the normal tissues. Based on our dosimetric and radiobiological results in treatment plans, it is concluded that our VMAT implementation could produce comparable or slightly better target coverage and normal tissue sparing with a faster treatment time in prostate radiotherapy. PMID:27651562
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muralidhar, K Raja; Pangam, S; Kolla, J
2015-06-15
Purpose: To develop a method for verification of dose distribution in a patient during treatment using multiple isocentric Intensity modulated and volumetric modulated arc therapy techniques with portal dosimetry. Methods: Varian True Beam accelerator, equipped with an aS1000 megavoltage electronic portal imaging device (EPID) has an integrated image mode for portal dosimetry (PD). The source-to-imager distance was taken at 150 cm to avoid collision to the table. Fourteen fractions were analyzed for this study. During shift in a single plan from one isocenter to another isocenter, EPID also shifted longitudinally for each field by taking the extent of divergence ofmore » beam into the consideration for EPID distance of 150cm. Patients were given treatment everyday with EPID placed in proper position for each field. Several parameters were obtained by comparing the dose distribution between fractions to fraction. The impact of the intra-fraction and inter-fraction of the patient in combination with isocenter shift of the beams were observed. Results: During treatment, measurements were performed by EPID and were evaluated by the gamma method. Analysis was done between fractions for multiple isocenter treatments. The pass rates of the gamma analysis with a criterion of 3% and 3 mm for the 14 fractions were over 97.8% with good consistency. Whereas maximum gamma exceeded the criteria in few fractions (in<1 cc vol). Average gamma was observed in the criteria of 0.5%. Maximum dose difference and average dose differences were less than 0.22 CU and 0.01 CU for maximum tolerance of 1.0 CU and 0.2 CU respectively. Conclusion: EPID with extended distance is ideal method to verify the multiple isocentric dose distribution in patient during treatment, especially cold and hot spots in junction dose. Verification of shifts as well as the dose differences between each fraction due to inter-fraction and intra-fraction of the patient can be derived.« less
Park, So-Yeon; Kim, Il Han; Ye, Sung-Joon; Carlson, Joel; Park, Jong Min
2014-11-01
Texture analysis on fluence maps was performed to evaluate the degree of modulation for volumetric modulated arc therapy (VMAT) plans. A total of six textural features including angular second moment, inverse difference moment, contrast, variance, correlation, and entropy were calculated for fluence maps generated from 20 prostate and 20 head and neck VMAT plans. For each of the textural features, particular displacement distances (d) of 1, 5, and 10 were adopted. To investigate the deliverability of each VMAT plan, gamma passing rates of pretreatment quality assurance, and differences in modulating parameters such as multileaf collimator (MLC) positions, gantry angles, and monitor units at each control point between VMAT plans and dynamic log files registered by the Linac control system during delivery were acquired. Furthermore, differences between the original VMAT plan and the plan reconstructed from the dynamic log files were also investigated. To test the performance of the textural features as indicators for the modulation degree of VMAT plans, Spearman's rank correlation coefficients (rs) with the plan deliverability were calculated. For comparison purposes, conventional modulation indices for VMAT including the modulation complexity score for VMAT, leaf travel modulation complexity score, and modulation index supporting station parameter optimized radiation therapy (MISPORT) were calculated, and their correlations were analyzed in the same way. There was no particular textural feature which always showed superior correlations with every type of plan deliverability. Considering the results comprehensively, contrast (d = 1) and variance (d = 1) generally showed considerable correlations with every type of plan deliverability. These textural features always showed higher correlations to the plan deliverability than did the conventional modulation indices, except in the case of modulating parameter differences. The rs values of contrast to the global gamma passing rates with criteria of 2%/2 mm, 2%/1 mm, and 1%/2 mm were 0.536, 0.473, and 0.718, respectively. The respective values for variance were 0.551, 0.481, and 0.688. In the case of local gamma passing rates, the rs values of contrast were 0.547, 0.578, and 0.620, respectively, and those of variance were 0.519, 0.527, and 0.569. All of the rs values in those cases were statistically significant (p < 0.003). In the cases of global and local gamma passing rates, MISPORT showed the highest correlations among the conventional modulation indices. For global passing rates, rs values of MISPORT were -0.420, -0.330, and -0.632, respectively, and those for local passing rates were -0.455, -0.490 and -0.502. The values of rs of contrast, variance, and MISPORT with the MLC errors were -0.863, -0.828, and 0.795, respectively, all with statistical significances (p < 0.001). The correlations with statistical significances between variance and dose-volumetric differences were observed more frequently than the others. The contrast (d = 1) and variance (d = 1) calculated from fluence maps of VMAT plans showed considerable correlations with the plan deliverability, indicating their potential use as indicators for assessing the degree of modulation of VMAT plans. Both contrast and variance consistently showed better performance than the conventional modulation indices for VMAT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Jong-Han, E-mail: jonghanho@gmail.com; Hagler, Shane; Lujano, Carrie
Cancer is a global health issue that disproportionately kills based on stage of disease, cellular pathology, and genetics, to name a few. Another variable to consider in this ongoing fight is treatment machine complexity that leads to elevated development and purchasing cost, leading to a reduced use. Reducing the complexity (in hopes of lowering costs) would benefit underdeveloped, low- and middle-income countries by introducing newer treatment technology, as their currently accepted standards do not meet standards of more advanced, developed countries. In this study, unilateral head and neck (H&N), and prostate cases using volumetric modulated arc therapy (VMAT) were testedmore » with multiple segment widths of 5, 10, 15, and 20 mm to create treatable plans. Pinnacle 9.10v was used for planning purposes. A total of 12 cases were planned with varying multileaf collimator (MLC) widths. Treatment plans were evaluated retrospectively. Results show that altering the MLC widths from 5 through 20 mm produces both comparable and treatable plans up to 99% and 98% target coverage for H&N and prostate, respectively, albeit clinically significant hot spots were shown to increase with increasing segment width. Furthermore, the results show that increasing widths can produce comparable treatment plans as measured against our current Food and Drug Administration (FDA)–approved treatment devices—leading to an increase in treatment efficacy in economically underdeveloped countries.« less
Pasler, Marlies; Kaas, Jochem; Perik, Thijs; Geuze, Job; Dreindl, Ralf; Künzler, Thomas; Wittkamper, Frits; Georg, Dietmar
2015-12-01
To systematically evaluate machine specific quality assurance (QA) for volumetric modulated arc therapy (VMAT) based on log files by applying a dynamic benchmark plan. A VMAT benchmark plan was created and tested on 18 Elekta linacs (13 MLCi or MLCi2, 5 Agility) at 4 different institutions. Linac log files were analyzed and a delivery robustness index was introduced. For dosimetric measurements an ionization chamber array was used. Relative dose deviations were assessed by mean gamma for each control point and compared to the log file evaluation. Fourteen linacs delivered the VMAT benchmark plan, while 4 linacs failed by consistently terminating the delivery. The mean leaf error (±1SD) was 0.3±0.2 mm for all linacs. Large MLC maximum errors up to 6.5 mm were observed at reversal positions. Delivery robustness index accounting for MLC position correction (0.8-1.0) correlated with delivery time (80-128 s) and depended on dose rate performance. Dosimetric evaluation indicated in general accurate plan reproducibility with γ(mean)(±1 SD)=0.4±0.2 for 1 mm/1%. However single control point analysis revealed larger deviations and attributed well to log file analysis. The designed benchmark plan helped identify linac related malfunctions in dynamic mode for VMAT. Log files serve as an important additional QA measure to understand and visualize dynamic linac parameters. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Fu, Yuchuan; Deng, Min; Zhou, Xiaojuan; Lin, Qiang; Du, Bin; Tian, Xue; Xu, Yong; Wang, Jin; Lu, You; Gong, Youling
2017-01-01
To evaluate the lung sparing in intensity-modulated radiation therapy (IMRT) for patients with upper thoracic esophageal tumors extending inferiorly to the thorax by different beam arrangement. Overall, 15 patient cases with cancer of upper thoracic esophagus were selected for a retrospective treatment-planning study. Intensity-modulated radiation therapy plans using 4, 5, and 7 beams (4B, 5B, and 7B) were developed for each patient by direct machine parameter optimization (DMPO). All plans were evaluated with respect to dose volumes to irradiated targets and normal structures, with statistical comparisons made between 4B with 5B and 7B intensity-modulated radiation therapy plans. Differences among plans were evaluated using a two-tailed Friedman test at a statistical significance of p < 0.05. The maximum dose, average dose, and the conformity index (CI) of planning target volume 1 (PTV1) were similar for 3 plans for each case. No significant difference of coverage for planning target volume 1 and maximum dose for spinal cords were observed among 3 plans in present study (p > 0.05). The average V 5 , V 13 , V 20 , mean lung dose, and generalized equivalent uniform dose (gEUD) for the total lung were significantly lower in 4B-plans than those data in 5B-plans and 7B-plans (p < 0.01). Although the average V 30 for the total lung were significantly higher in 4B-plans than those in 5B-plans and 7B-plans (p < 0.05). In addition, when comparing with the 4B-plans, the conformity/heterogeneity index of the 5B- and 7B-plans were significantly superior (p < 0.05). The 4B-intensity-modulated radiation therapy plan has advantage to address the specialized problem of lung sparing to low- and intermediate-dose exposure in the thorax when dealing with relative long tumors extended inferiorly to the thoracic esophagus for upper esophageal carcinoma with the cost for less conformity. Studies are needed to compare the superiority of volumetric modulated arc therapy with intensity-modulated radiation therapy technique. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Crowe, Scott B; Kairn, Tanya; Middlebrook, Nigel; Hill, Brendan; Christie, David R H; Knight, Richard T; Kenny, John; Langton, Christian M; Trapp, Jamie V
2013-01-01
Introduction This study examines and compares the dosimetric quality of radiotherapy treatment plans for prostate carcinoma across a cohort of 163 patients treated across five centres: 83 treated with three-dimensional conformal radiotherapy (3DCRT), 33 treated with intensity modulated radiotherapy (IMRT) and 47 treated with volumetric modulated arc therapy (VMAT). Methods Treatment plan quality was evaluated in terms of target dose homogeneity and organs at risk (OAR), through the use of a set of dose metrics. These included the mean, maximum and minimum doses; the homogeneity and conformity indices for the target volumes; and a selection of dose coverage values that were relevant to each OAR. Statistical significance was evaluated using two-tailed Welch's T-tests. The Monte Carlo DICOM ToolKit software was adapted to permit the evaluation of dose metrics from DICOM data exported from a commercial radiotherapy treatment planning system. Results The 3DCRT treatment plans offered greater planning target volume dose homogeneity than the other two treatment modalities. The IMRT and VMAT plans offered greater dose reduction in the OAR: with increased compliance with recommended OAR dose constraints, compared to conventional 3DCRT treatments. When compared to each other, IMRT and VMAT did not provide significantly different treatment plan quality for like-sized tumour volumes. Conclusions This study indicates that IMRT and VMAT have provided similar dosimetric quality, which is superior to the dosimetric quality achieved with 3DCRT. PMID:26229621
Grams, Michael P; Fong de Los Santos, Luis E; Antolak, John A; Brinkmann, Debra H; Clarke, Michelle J; Park, Sean S; Olivier, Kenneth R; Whitaker, Thomas J
2016-01-01
To assess the accuracy of the Eclipse Analytical Anisotropic Algorithm when calculating dose for spine stereotactic body radiation therapy treatments involving surgically implanted titanium hardware. A human spine was removed from a cadaver, cut sagittally along the midline, and then separated into thoracic and lumbar sections. The thoracic section was implanted with titanium stabilization hardware; the lumbar section was not implanted. Spine sections were secured in a water phantom and simulated for treatment planning using both standard and extended computed tomography (CT) scales. Target volumes were created on both spine sections. Dose calculations were performed using (1) the standard CT scale with relative electron density (RED) override of image artifacts and hardware, (2) the extended CT scale with RED override of image artifacts only, and (3) the standard CT scale with no RED overrides for hardware or artifacts. Plans were delivered with volumetric modulated arc therapy using a 6-MV beam with and without a flattening filter. A total of 3 measurements for each plan were made with Gafchromic film placed between the spine sections and compared with Eclipse dose calculations using gamma analysis with a 2%/2 mm passing criteria. A single measurement in a homogeneous phantom was made for each plan before actual delivery. Gamma passing rates for measurements in the homogeneous phantom were 99.6% or greater. Passing rates for measurements made in the lumbar spine section without hardware were 99.3% or greater; measurements made in the thoracic spine containing titanium were 98.6 to 99.5%. Eclipse Analytical Anisotropic Algorithm can adequately model the effects of titanium implants for spine stereotactic body radiation therapy treatments using volumetric modulated arc therapy. Calculations with standard or extended CT scales give similarly accurate results. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Filippi, Andrea Riccardo; Ragona, Riccardo; Piva, Cristina; Scafa, Davide; Fiandra, Christian; Fusella, Marco; Giglioli, Francesca Romana; Lohr, Frank; Ricardi, Umberto
2015-05-01
The purpose of this study was to evaluate the risks of second cancers and cardiovascular diseases associated with an optimized volumetric modulated arc therapy (VMAT) planning solution in a selected cohort of stage I/II Hodgkin lymphoma (HL) patients treated with either involved-node or involved-site radiation therapy in comparison with 3-dimensional conformal radiation therapy (3D-CRT). Thirty-eight patients (13 males and 25 females) were included. Disease extent was mediastinum alone (n=8, 21.1%); mediastinum plus unilateral neck (n=19, 50%); mediastinum plus bilateral neck (n=11, 29.9%). Prescription dose was 30 Gy in 2-Gy fractions. Only 5 patients had mediastinal bulky disease at diagnosis (13.1%). Anteroposterior 3D-CRT was compared with a multiarc optimized VMAT solution. Lung, breast, and thyroid cancer risks were estimated by calculating a lifetime attributable risk (LAR), with a LAR ratio (LAR(VMAT)-to-LAR(3D-CRT)) as a comparative measure. Cardiac toxicity risks were estimated by calculating absolute excess risk (AER). The LAR ratio favored 3D-CRT for lung cancer induction risk in mediastinal alone (P=.004) and mediastinal plus unilateral neck (P=.02) presentations. LAR ratio for breast cancer was lower for VMAT in mediastinal plus bilateral neck presentations (P=.02), without differences for other sites. For thyroid cancer, no significant differences were observed, regardless of anatomical presentation. A significantly lower AER of cardiac (P=.038) and valvular diseases (P<.0001) was observed for VMAT regardless of disease extent. In a cohort of patients with favorable characteristics in terms of disease extent at diagnosis (large prevalence of nonbulky presentations without axillary involvement), optimized VMAT reduced heart disease risk with comparable risks of thyroid and breast cancer, with an increase in lung cancer induction probability. The results are however strongly influenced by the different anatomical presentations, supporting an individualized approach. Copyright © 2015 Elsevier Inc. All rights reserved.
TH-AB-201-12: Using Machine Log-Files for Treatment Planning and Delivery QA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanhope, C; Liang, J; Drake, D
2016-06-15
Purpose: To determine the segment reduction and dose resolution necessary for machine log-files to effectively replace current phantom-based patient-specific quality assurance, while minimizing computational cost. Methods: Elekta’s Log File Convertor R3.2 records linac delivery parameters (dose rate, gantry angle, leaf position) every 40ms. Five VMAT plans [4 H&N, 1 Pulsed Brain] comprised of 2 arcs each were delivered on the ArcCHECK phantom. Log-files were reconstructed in Pinnacle on the phantom geometry using 1/2/3/4° control point spacing and 2/3/4mm dose grid resolution. Reconstruction effectiveness was quantified by comparing 2%/2mm gamma passing rates of the original and log-file plans. Modulation complexity scoresmore » (MCS) were calculated for each beam to correlate reconstruction accuracy and beam modulation. Percent error in absolute dose for each plan-pair combination (log-file vs. ArcCHECK, original vs. ArcCHECK, log-file vs. original) was calculated for each arc and every diode greater than 10% of the maximum measured dose (per beam). Comparing standard deviations of the three plan-pair distributions, relative noise of the ArcCHECK and log-file systems was elucidated. Results: The original plans exhibit a mean passing rate of 95.1±1.3%. The eight more modulated H&N arcs [MCS=0.088±0.014] and two less modulated brain arcs [MCS=0.291±0.004] yielded log-file pass rates most similar to the original plan when using 1°/2mm [0.05%±1.3% lower] and 2°/3mm [0.35±0.64% higher] log-file reconstructions respectively. Log-file and original plans displayed percent diode dose errors 4.29±6.27% and 3.61±6.57% higher than measurement. Excluding the phantom eliminates diode miscalibration and setup errors; log-file dose errors were 0.72±3.06% higher than the original plans – significantly less noisy. Conclusion: For log-file reconstructed VMAT arcs, 1° control point spacing and 2mm dose resolution is recommended, however, less modulated arcs may allow less stringent reconstructions. Following the aforementioned reconstruction recommendations, the log-file technique is capable of detecting delivery errors with equivalent accuracy and less noise than ArcCHECK QA. I am funded by an Elekta Research Grant.« less
Jin, X; Yan, H; Han, C; Zhou, Y; Yi, J; Xie, C
2015-03-01
To investigate comparatively the percentage gamma passing rate (%GP) of two-dimensional (2D) and three-dimensional (3D) pre-treatment volumetric modulated arc therapy (VMAT) dosimetric verification and their correlation and sensitivity with percentage dosimetric errors (%DE). %GP of 2D and 3D pre-treatment VMAT quality assurance (QA) with different acceptance criteria was obtained by ArcCHECK® (Sun Nuclear Corporation, Melbourne, FL) for 20 patients with nasopharyngeal cancer (NPC) and 20 patients with oesophageal cancer. %DE were calculated from planned dose-volume histogram (DVH) and patients' predicted DVH calculated by 3DVH® software (Sun Nuclear Corporation). Correlation and sensitivity between %GP and %DE were investigated using Pearson's correlation coefficient (r) and receiver operating characteristics (ROCs). Relatively higher %DE on some DVH-based metrics were observed for both patients with NPC and oesophageal cancer. Except for 2%/2 mm criterion, the average %GPs for all patients undergoing VMAT were acceptable with average rates of 97.11% ± 1.54% and 97.39% ± 1.37% for 2D and 3D 3%/3 mm criteria, respectively. The number of correlations for 3D was higher than that for 2D (21 vs 8). However, the general correlation was still poor for all the analysed metrics (9 out of 26 for 3D 3%/3 mm criterion). The average area under the curve (AUC) of ROCs was 0.66 ± 0.12 and 0.71 ± 0.21 for 2D and 3D evaluations, respectively. There is a lack of correlation between %GP and %DE for both 2D and 3D pre-treatment VMAT dosimetric evaluation. DVH-based dose metrics evaluation obtained from 3DVH will provide more useful analysis. Correlation and sensitivity of %GP with %DE for VMAT QA were studied for the first time.
Zhang, Pengpeng; Happersett, Laura; Ravindranath, Bosky; Zelefsky, Michael; Mageras, Gig; Hunt, Margie
2016-01-01
Purpose: Robust detection of implanted fiducials is essential for monitoring intrafractional motion during hypofractionated treatment. The authors developed a plan optimization strategy to ensure clear visibility of implanted fiducials and facilitate 3D localization during volumetric modulated arc therapy (VMAT). Methods: Periodic kilovoltage (kV) images were acquired at 20° gantry intervals and paired with simultaneously acquired 4.4° short arc megavoltage digital tomosynthesis (MV-DTS) to localize three fiducials during VMAT delivery for hypofractionated prostate cancer treatment. Beginning with the original optimized plan, control point segments where fiducials were consistently blocked by multileaf collimator (MLC) within each 4.4° MV-DTS interval were first identified. For each segment, MLC apertures were edited to expose the fiducial that led to the least increase in the cost function. Subsequently, MLC apertures of all control points not involved with fiducial visualization were reoptimized to compensate for plan quality losses and match the original dose–volume histogram. MV dose for each MV-DTS was also kept above 0.4 MU to ensure acceptable image quality. Different imaging (gantry) intervals and visibility margins around fiducials were also evaluated. Results: Fiducials were consistently blocked by the MLC for, on average, 36% of the imaging control points for five hypofractionated prostate VMAT plans but properly exposed after reoptimization. Reoptimization resulted in negligible dosimetric differences compared with original plans and outperformed simple aperture editing: on average, PTV D98 recovered from 87% to 94% of prescription, and PTV dose homogeneity improved from 9% to 7%. Without violating plan objectives and compromising delivery efficiency, the highest imaging frequency and largest margin that can be achieved are a 10° gantry interval, and 15 mm, respectively. Conclusions: VMAT plans can be made to accommodate MV-kV imaging of fiducials. Fiducial visualization rate and workflow efficiency are significantly improved with an automatic modification and reoptimization approach. PMID:27147314
Jin, X; Yan, H; Han, C; Zhou, Y; Yi, J
2015-01-01
Objective: To investigate comparatively the percentage gamma passing rate (%GP) of two-dimensional (2D) and three-dimensional (3D) pre-treatment volumetric modulated arc therapy (VMAT) dosimetric verification and their correlation and sensitivity with percentage dosimetric errors (%DE). Methods: %GP of 2D and 3D pre-treatment VMAT quality assurance (QA) with different acceptance criteria was obtained by ArcCHECK® (Sun Nuclear Corporation, Melbourne, FL) for 20 patients with nasopharyngeal cancer (NPC) and 20 patients with oesophageal cancer. %DE were calculated from planned dose–volume histogram (DVH) and patients' predicted DVH calculated by 3DVH® software (Sun Nuclear Corporation). Correlation and sensitivity between %GP and %DE were investigated using Pearson's correlation coefficient (r) and receiver operating characteristics (ROCs). Results: Relatively higher %DE on some DVH-based metrics were observed for both patients with NPC and oesophageal cancer. Except for 2%/2 mm criterion, the average %GPs for all patients undergoing VMAT were acceptable with average rates of 97.11% ± 1.54% and 97.39% ± 1.37% for 2D and 3D 3%/3 mm criteria, respectively. The number of correlations for 3D was higher than that for 2D (21 vs 8). However, the general correlation was still poor for all the analysed metrics (9 out of 26 for 3D 3%/3 mm criterion). The average area under the curve (AUC) of ROCs was 0.66 ± 0.12 and 0.71 ± 0.21 for 2D and 3D evaluations, respectively. Conclusions: There is a lack of correlation between %GP and %DE for both 2D and 3D pre-treatment VMAT dosimetric evaluation. DVH-based dose metrics evaluation obtained from 3DVH will provide more useful analysis. Advances in knowledge: Correlation and sensitivity of %GP with %DE for VMAT QA were studied for the first time. PMID:25494412
Pancreatic cancer planning: Complex conformal vs modulated therapies.
Chapman, Katherine L; Witek, Matthew E; Chen, Hongyu; Showalter, Timothy N; Bar-Ad, Voichita; Harrison, Amy S
2016-01-01
To compare the roles of intensity-modulated radiation therapy (IMRT) and volumetric- modulated arc therapy (VMAT) therapy as compared to simple and complex 3-dimensional chemoradiotherpy (3DCRT) planning for resectable and borderline resectable pancreatic cancer. In all, 12 patients who received postoperative radiotherapy (8) or neoadjuvant concurrent chemoradiotherapy (4) were evaluated retrospectively. Radiotherapy planning was performed for 4 treatment techniques: simple 4-field box, complex 5-field 3DCRT, 5 to 6-field IMRT, and single-arc VMAT. All volumes were approved by a single observer in accordance with Radiation Therapy Oncology Group (RTOG) Pancreas Contouring Atlas. Plans included tumor/tumor bed and regional lymph nodes to 45Gy; with tumor/tumor bed boosted to 50.4Gy, at least 95% of planning target volume (PTV) received the prescription dose. Dose-volume histograms (DVH) for multiple end points, treatment planning, and delivery time were assessed. Complex 3DCRT, IMRT, and VMAT plans significantly (p < 0.05) decreased mean kidney dose, mean liver dose, liver (V30, V35), stomach (D10%), stomach (V45), mean right kidney dose, and right kidney (V15) as compared with the simple 4-field plans that are most commonly reported in the literature. IMRT plans resulted in decreased mean liver dose, liver (V35), and left kidney (V15, V18, V20). VMAT plans decreased small bowel (D10%, D15%), small bowel (V35, V45), stomach (D10%, D15%), stomach (V35, V45), mean liver dose, liver (V35), left kidney (V15, V18, V20), and right kidney (V18, V20). VMAT plans significantly decreased small bowel (D10%, D15%), left kidney (V20), and stomach (V45) as compared with IMRT plans. Treatment planning and delivery times were most efficient for simple 4-field box and VMAT. Excluding patient setup and imaging, average treatment delivery was within 10minutes for simple and complex 3DCRT, IMRT, and VMAT treatments. This article shows significant improvements in 3D plan performance with complex planning over the more frequently compared 3- or 4-field simple 3D planning techniques. VMAT plans continue to demonstrate potential for the most organ sparing. However, further studies are required to identify if dosimetric benefits associated with inverse optimized planning can be translated into clinical benefits and if these treatment techniques are value-added therapies for this group of patients with cancer. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobler, Matt; Watson, Gordon; Leavitt, Dennis
Radiotherapy plays a key role in the definitive or adjuvant management of patients with mesothelioma of the pleural surface. Many patients are referred for radiation with intact lung following biopsy or subtotal pleurectomy. Delivery of efficacious doses of radiation to the pleural lining while avoiding lung parenchyma toxicity has been a difficult technical challenge. Using opposed photon fields produce doses in lung that result in moderate-to-severe pulmonary toxicity in 100% of patients treated. Combined photon-electron beam treatment, at total doses of 4250 cGy to the pleural surface, results in two-thirds of the lung volume receiving over 2100 cGy. We havemore » developed a technique using intensity-modulated photon arc therapy (IMRT) that significantly improves the dose distribution to the pleural surface with concomitant decrease in dose to lung parenchyma compared to traditional techniques. IMRT treatment of the pleural lining consists of segments of photon arcs that can be intensity modulated with varying beam weights and multileaf positions to produce a more uniform distribution to the pleural surface, while at the same time reducing the overall dose to the lung itself. Computed tomography (CT) simulation is critical for precise identification of target volumes as well as critical normal structures (lung and heart). Rotational arc trajectories and individual leaf positions and weightings are then defined for each CT plane within the patient. This paper will describe the proposed rotational IMRT technique and, using simulated isodose distributions, show the improved potential for sparing of dose to the critical structures of the lung, heart, and spinal cord.« less
Yin, Yong; Chen, Jinhu; Xing, Ligang; Dong, Xiaoling; Liu, Tonghai; Lu, Jie; Yu, Jinming
2011-01-13
This study aimed to compare fixed-field, intensity-modulated radiotherapy (f-IMRT) with intensity-modulated arc therapy (IMAT) treatment plans in dosimetry and practical application for cervical esophageal carcinoma. For ten cervical esophageal carcinoma cases, f-IMRT plan (seven fixed-fields) and two IMAT plans, namely RA (coplanar 360° arcs) and RAx (coplanar 360° arcs without sectors from 80° to 110°, and 250° to 280°), were generated. DVHs were adopted for the statistics of above parameters, as well as conformal index (CI), homogeneity index (HI), dose-volumetric parameters of normal tissues, total accelerator output MUs and total treatment time. There were differences between RAx and f-IMRT, as well as RA in PTV parameters such as HI, V(95%) and V(110%), but not in CI. RAx reduced lung V₅ from (50.9% ± 9.8% in f-IMRT and (51.4% ± 10.8% in RA to (49.3% ± 10.4% in RAx (p < 0.05). However, lung V₃₀, V₄₀, V₅₀ and MLD increased in RAx. There was no difference in the mean heart dose in three plans. Total MU was reduced from 1174.8 ± 144.6 in f-IMRT to 803.8 ± 122.2 in RA and 736.2 ± 186.9 in RAx (p < 0.05). Compared with f-IMRT, IMAT reduced low dose volumes of lung and total MU on the basis of meeting clinical requirements.
Quality assurance of dynamic parameters in volumetric modulated arc therapy
Manikandan, A; Sarkar, B; Holla, R; Vivek, T R; Sujatha, N
2012-01-01
Objectives The purpose of this study was to demonstrate quality assurance checks for accuracy of gantry speed and position, dose rate and multileaf collimator (MLC) speed and position for a volumetric modulated arc treatment (VMAT) modality (Synergy® S; Elekta, Stockholm, Sweden), and to check that all the necessary variables and parameters were synchronous. Methods Three tests (for gantry position–dose delivery synchronisation, gantry speed–dose delivery synchronisation and MLC leaf speed and positions) were performed. Results The average error in gantry position was 0.5° and the average difference was 3 MU for a linear and a parabolic relationship between gantry position and delivered dose. In the third part of this test (sawtooth variation), the maximum difference was 9.3 MU, with a gantry position difference of 1.2°. In the sweeping field method test, a linear relationship was observed between recorded doses and distance from the central axis, as expected. In the open field method, errors were encountered at the beginning and at the end of the delivery arc, termed the “beginning” and “end” errors. For MLC position verification, the maximum error was −2.46 mm and the mean error was 0.0153 ±0.4668 mm, and 3.4% of leaves analysed showed errors of >±1 mm. Conclusion This experiment demonstrates that the variables and parameters of the Synergy® S are synchronous and that the system is suitable for delivering VMAT using a dynamic MLC. PMID:22745206
ERIC Educational Resources Information Center
Espy, John
This third in a series of ten modules for a course titled Welding Inspection presents the apparatus, process techniques, procedures, applications, associated defects, and inspection for the tungsten inert gas, metal inert gas, and submerged arc welding processes. The module follows a typical format that includes the following sections: (1)…
Assessing dose rate distributions in VMAT plans
NASA Astrophysics Data System (ADS)
Mackeprang, P.-H.; Volken, W.; Terribilini, D.; Frauchiger, D.; Zaugg, K.; Aebersold, D. M.; Fix, M. K.; Manser, P.
2016-04-01
Dose rate is an essential factor in radiobiology. As modern radiotherapy delivery techniques such as volumetric modulated arc therapy (VMAT) introduce dynamic modulation of the dose rate, it is important to assess the changes in dose rate. Both the rate of monitor units per minute (MU rate) and collimation are varied over the course of a fraction, leading to different dose rates in every voxel of the calculation volume at any point in time during dose delivery. Given the radiotherapy plan and machine specific limitations, a VMAT treatment plan can be split into arc sectors between Digital Imaging and Communications in Medicine control points (CPs) of constant and known MU rate. By calculating dose distributions in each of these arc sectors independently and multiplying them with the MU rate, the dose rate in every single voxel at every time point during the fraction can be calculated. Independently calculated and then summed dose distributions per arc sector were compared to the whole arc dose calculation for validation. Dose measurements and video analysis were performed to validate the calculated datasets. A clinical head and neck, cranial and liver case were analyzed using the tool developed. Measurement validation of synthetic test cases showed linac agreement to precalculated arc sector times within ±0.4 s and doses ±0.1 MU (one standard deviation). Two methods for the visualization of dose rate datasets were developed: the first method plots a two-dimensional (2D) histogram of the number of voxels receiving a given dose rate over the course of the arc treatment delivery. In similarity to treatment planning system display of dose, the second method displays the dose rate as color wash on top of the corresponding computed tomography image, allowing the user to scroll through the variation over time. Examining clinical cases showed dose rates spread over a continuous spectrum, with mean dose rates hardly exceeding 100 cGy min-1 for conventional fractionation. A tool to analyze dose rate distributions in VMAT plans with sub-second accuracy was successfully developed and validated. Dose rates encountered in clinical VMAT test cases show a continuous spectrum with a mean less than or near 100 cGy min-1 for conventional fractionation.
Glaser, Adam K; Zhang, Rongxiao; Gladstone, David J; Pogue, Brian W
2014-07-21
Recent studies have proposed that light emitted by the Cherenkov effect may be used for a number of radiation therapy dosimetry applications. There is a correlation between the captured light and expected dose under certain conditions, yet discrepancies have also been observed and a complete examination of the theoretical differences has not been done. In this study, a fundamental comparison between the Cherenkov emission and absorbed dose was explored for x-ray photons, electrons, and protons using both a theoretical and Monte Carlo-based analysis. Based on the findings of where dose correlates with Cherenkov emission, it was concluded that for x-ray photons the light emission would be optimally suited for narrow beam stereotactic radiation therapy and surgery validation studies, for verification of dynamic intensity-modulated and volumetric modulated arc therapy treatment plans in water tanks, near monoenergetic sources (e.g., Co-60 and brachy therapy sources) and also for entrance and exit surface imaging dosimetry of both narrow and broad beams. For electron use, Cherenkov emission was found to be only suitable for surface dosimetry applications. Finally, for proton dosimetry, there exists a fundamental lack of Cherenkov emission at the Bragg peak, making the technique of little use, although post-irradiation detection of light emission from radioisotopes could prove to be useful.
Total dural irradiation: RapidArc versus static-field IMRT: A case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Paul J., E-mail: paulj.kelly@hse.ie; Mannarino, Edward; Lewis, John Henry
2012-07-01
The purpose of this study was to compare conventional fixed-gantry angle intensity-modulated radiation therapy (IMRT) with RapidArc for total dural irradiation. We also hypothesize that target volume-individualized collimator angles may produce substantial normal tissue sparing when planning with RapidArc. Five-, 7-, and 9-field fixed-gantry angle sliding-window IMRT plans were generated for comparison with RapidArc plans. Optimization and normal tissue constraints were constant for all plans. All plans were normalized so that 95% of the planning target volume (PTV) received at least 100% of the dose. RapidArc was delivered using 350 Degree-Sign clockwise and counterclockwise arcs. Conventional collimator angles of 45more » Degree-Sign and 315 Degree-Sign were compared with 90 Degree-Sign on both arcs. Dose prescription was 59.4 Gy in 33 fractions. PTV metrics used for comparison were coverage, V{sub 107}%, D1%, conformality index (CI{sub 95}%), and heterogeneity index (D{sub 5}%-D{sub 95}%). Brain dose, the main challenge of this case, was compared using D{sub 1}%, Dmean, and V{sub 5} Gy. Dose to optic chiasm, optic nerves, globes, and lenses was also compared. The use of unconventional collimator angles (90 Degree-Sign on both arcs) substantially reduced dose to normal brain. All plans achieved acceptable target coverage. Homogeneity was similar for RapidArc and 9-field IMRT plans. However, heterogeneity increased with decreasing number of IMRT fields, resulting in unacceptable hotspots within the brain. Conformality was marginally better with RapidArc relative to IMRT. Low dose to brain, as indicated by V5Gy, was comparable in all plans. Doses to organs at risk (OARs) showed no clinically meaningful differences. The number of monitor units was lower and delivery time was reduced with RapidArc. The case-individualized RapidArc plan compared favorably with the 9-field conventional IMRT plan. In view of lower monitor unit requirements and shorter delivery time, RapidArc was selected as the optimal solution. Individualized collimator angle solutions should be considered by RapidArc dosimetrists for OARs dose reduction. RapidArc should be considered as a treatment modality for tumors that extensively involve in the skull, dura, or scalp.« less
McCowan, Peter M; Asuni, Ganiyu; Van Uytven, Eric; VanBeek, Timothy; McCurdy, Boyd M C; Loewen, Shaun K; Ahmed, Naseer; Bashir, Bashir; Butler, James B; Chowdhury, Amitava; Dubey, Arbind; Leylek, Ahmet; Nashed, Maged
2017-04-01
To report findings from an in vivo dosimetry program implemented for all stereotactic body radiation therapy patients over a 31-month period and discuss the value and challenges of utilizing in vivo electronic portal imaging device (EPID) dosimetry clinically. From December 2013 to July 2016, 117 stereotactic body radiation therapy-volumetric modulated arc therapy patients (100 lung, 15 spine, and 2 liver) underwent 602 EPID-based in vivo dose verification events. A developed model-based dose reconstruction algorithm calculates the 3-dimensional dose distribution to the patient by back-projecting the primary fluence measured by the EPID during treatment. The EPID frame-averaging was optimized in June 2015. For each treatment, a 3%/3-mm γ comparison between our EPID-derived dose and the Eclipse AcurosXB-predicted dose to the planning target volume (PTV) and the ≥20% isodose volume were performed. Alert levels were defined as γ pass rates <85% (lung and liver) and <80% (spine). Investigations were carried out for all fractions exceeding the alert level and were classified as follows: EPID-related, algorithmic, patient setup, anatomic change, or unknown/unidentified errors. The percentages of fractions exceeding the alert levels were 22.6% for lung before frame-average optimization and 8.0% for lung, 20.0% for spine, and 10.0% for liver after frame-average optimization. Overall, mean (± standard deviation) planning target volume γ pass rates were 90.7% ± 9.2%, 87.0% ± 9.3%, and 91.2% ± 3.4% for the lung, spine, and liver patients, respectively. Results from the clinical implementation of our model-based in vivo dose verification method using on-treatment EPID images is reported. The method is demonstrated to be valuable for routine clinical use for verifying delivered dose as well as for detecting errors. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haertl, Petra M., E-mail: petra.haertl@klinik.uni-regensburg.de; Pohl, Fabian; Weidner, Karin
2013-04-01
This case study presents a rare case of left-sided breast cancer in a patient with funnel chest, which is a technical challenge for radiation therapy planning. To identify the best treatment technique for this case, 3 techniques were compared: conventional tangential fields (3D conformal radiotherapy [3D-CRT]), intensity-modulated radiotherapy (IMRT), and volumetric-modulated arc therapy (VMAT). The plans were created for a SynergyS® (Elekta, Ltd, Crawley, UK) linear accelerator with a BeamModulator™ head and 6-MV photons. The planning system was Oncentra Masterplan® v3.3 SP1 (Nucletron BV, Veenendal, Netherlands). Calculations were performed with collapsed cone algorithm. Dose prescription was 50.4 Gy to themore » average of the planning target volume (PTV). PTV coverage and homogeneity was comparable for all techniques. VMAT allowed reducing dose to the ipsilateral organs at risk (OAR) and the contralateral breast compared with IMRT and 3D-CRT: The volume of the left lung receiving 20 Gy was 19.3% for VMAT, 26.1% for IMRT, and 32.4% for 3D-CRT. In the heart, a D{sub 15%} of 9.7 Gy could be achieved with VMAT compared with 14 Gy for IMRT and 46 Gy for 3D-CRT. In the contralateral breast, D{sub 15%} was 6.4 Gy for VMAT, 8.8 Gy for IMRT, and 10.2 Gy for 3D-CRT. In the contralateral lung, however, the lowest dose was achieved with 3D-CRT with D{sub 10%} of 1.7 Gy for 3D-CRT, and 6.7 Gy for both IMRT and VMAT. The lowest number of monitor units (MU) per 1.8-Gy fraction was required by 3D-CRT (192 MU) followed by VMAT (518 MU) and IMRT (727 MU). Treatment time was similar for 3D-CRT (3 min) and VMAT (4 min) but substantially increased for IMRT (13 min). VMAT is considered the best treatment option for the presented case of a patient with funnel chest. It allows reducing dose in most OAR without compromising target coverage, keeping delivery time well below 5 minutes.« less
Evaluation of a commercial automatic treatment planning system for prostate cancers.
Nawa, Kanabu; Haga, Akihiro; Nomoto, Akihiro; Sarmiento, Raniel A; Shiraishi, Kenshiro; Yamashita, Hideomi; Nakagawa, Keiichi
2017-01-01
Recent developments in Radiation Oncology treatment planning have led to the development of software packages that facilitate automated intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) planning. Such solutions include site-specific modules, plan library methods, and algorithm-based methods. In this study, the plan quality for prostate cancer generated by the Auto-Planning module of the Pinnacle 3 radiation therapy treatment planning system (v9.10, Fitchburg, WI) is retrospectively evaluated. The Auto-Planning module of Pinnacle 3 uses a progressive optimization algorithm. Twenty-three prostate cancer cases, which had previously been planned and treated without lymph node irradiation, were replanned using the Auto-Planning module. Dose distributions were statistically compared with those of manual planning by the paired t-test at 5% significance level. Auto-Planning was performed without any manual intervention. Planning target volume (PTV) dose and dose to rectum were comparable between Auto-Planning and manual planning. The former, however, significantly reduced the dose to the bladder and femurs. Regression analysis was performed to examine the correlation between volume overlap between bladder and PTV divided by the total bladder volume and resultant V70. The findings showed that manual planning typically exhibits a logistic way for dose constraint, whereas Auto-Planning shows a more linear tendency. By calculating the Akaike information criterion (AIC) to validate the statistical model, a reduction of interoperator variation in Auto-Planning was shown. We showed that, for prostate cancer, the Auto-Planning module provided plans that are better than or comparable with those of manual planning. By comparing our results with those previously reported for head and neck cancer treatment, we recommend the homogeneous plan quality generated by the Auto-Planning module, which exhibits less dependence on anatomic complexity. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
3D treatment planning systems.
Saw, Cheng B; Li, Sicong
2018-01-01
Three-dimensional (3D) treatment planning systems have evolved and become crucial components of modern radiation therapy. The systems are computer-aided designing or planning softwares that speed up the treatment planning processes to arrive at the best dose plans for the patients undergoing radiation therapy. Furthermore, the systems provide new technology to solve problems that would not have been considered without the use of computers such as conformal radiation therapy (CRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT). The 3D treatment planning systems vary amongst the vendors and also the dose delivery systems they are designed to support. As such these systems have different planning tools to generate the treatment plans and convert the treatment plans into executable instructions that can be implemented by the dose delivery systems. The rapid advancements in computer technology and accelerators have facilitated constant upgrades and the introduction of different and unique dose delivery systems than the traditional C-arm type medical linear accelerators. The focus of this special issue is to gather relevant 3D treatment planning systems for the radiation oncology community to keep abreast of technology advancement by assess the planning tools available as well as those unique "tricks or tips" used to support the different dose delivery systems. Copyright © 2018 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
The dosimetric effects of photon energy on the quality of prostate volumetric modulated arc therapy.
Mattes, Malcolm D; Tai, Cyril; Lee, Alvin; Ashamalla, Hani; Ikoro, N C
2014-01-01
Studies comparing the dosimetric effects of high- and low-energy photons to treat prostate cancer using 3-dimensional conformal and intensity modulated radiation therapy have yielded mixed results. With the advent of newer radiation delivery systems like volumetric modulated arc therapy (VMAT), the impact of changing photon energy is readdressed. Sixty-five patients treated for prostate cancer at our institution from 2011 to 2012 underwent CT simulation. A target volume encompassing the prostate and entire seminal vesicles was treated to 50.4 Gy, followed by a boost to the prostate and proximal seminal vesicles to a total dose of 81 Gy. The VMAT plans were generated for 6-MV and 10-MV photons under identical optimization conditions using the Eclipse system version 8.6 (Varian Medical Systems, Palo Alto, CA). The analytical anisotropic algorithm was used for all dose calculations. Plans were normalized such that 98% of the planning target volume (PTV) received 100% of the prescribed dose. Dose-volumetric data from the treatment planning system was recorded for both 6-MV and 10-MV plans, which were compared for both the entire cohort and subsets of patients stratified according to the anterior-posterior separation. Plans using 10-MV photons had statistically significantly lower relative integral dose (4.1%), gradient measure (4.1%), skin Dmax (16.9%), monitor units (13.0%), and bladder V(30) (3.1%) than plans using 6-MV photons (P < .05). There was no difference in rectal dose, high-dose-region bladder dose, PTV coverage, or conformity index. The benefit of 10-MV photons was more pronounced for thicker patients (anterior-posterior separation >21 cm) for most parameters, with statistically significant differences in bladder V(30), bladder V(65), integral dose, conformity index, and monitor units. The main dosimetric benefits of 10-MV as compared with 6-MV photons are seen in thicker patients, though for the entire cohort 10-MV plans resulted in a lower integral dose, gradient measure, skin Dmax, monitor units, and bladder V(30), possibly at the expense of higher rectum V(81). Copyright © 2014 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, So-Yeon; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 110-744; Biomedical Research Institute, Seoul National University College of Medicine, Seoul 110-744
Purpose: Texture analysis on fluence maps was performed to evaluate the degree of modulation for volumetric modulated arc therapy (VMAT) plans. Methods: A total of six textural features including angular second moment, inverse difference moment, contrast, variance, correlation, and entropy were calculated for fluence maps generated from 20 prostate and 20 head and neck VMAT plans. For each of the textural features, particular displacement distances (d) of 1, 5, and 10 were adopted. To investigate the deliverability of each VMAT plan, gamma passing rates of pretreatment quality assurance, and differences in modulating parameters such as multileaf collimator (MLC) positions, gantrymore » angles, and monitor units at each control point between VMAT plans and dynamic log files registered by the Linac control system during delivery were acquired. Furthermore, differences between the original VMAT plan and the plan reconstructed from the dynamic log files were also investigated. To test the performance of the textural features as indicators for the modulation degree of VMAT plans, Spearman’s rank correlation coefficients (r{sub s}) with the plan deliverability were calculated. For comparison purposes, conventional modulation indices for VMAT including the modulation complexity score for VMAT, leaf travel modulation complexity score, and modulation index supporting station parameter optimized radiation therapy (MI{sub SPORT}) were calculated, and their correlations were analyzed in the same way. Results: There was no particular textural feature which always showed superior correlations with every type of plan deliverability. Considering the results comprehensively, contrast (d = 1) and variance (d = 1) generally showed considerable correlations with every type of plan deliverability. These textural features always showed higher correlations to the plan deliverability than did the conventional modulation indices, except in the case of modulating parameter differences. The r{sub s} values of contrast to the global gamma passing rates with criteria of 2%/2 mm, 2%/1 mm, and 1%/2 mm were 0.536, 0.473, and 0.718, respectively. The respective values for variance were 0.551, 0.481, and 0.688. In the case of local gamma passing rates, the r{sub s} values of contrast were 0.547, 0.578, and 0.620, respectively, and those of variance were 0.519, 0.527, and 0.569. All of the r{sub s} values in those cases were statistically significant (p < 0.003). In the cases of global and local gamma passing rates, MI{sub SPORT} showed the highest correlations among the conventional modulation indices. For global passing rates, r{sub s} values of MI{sub SPORT} were −0.420, −0.330, and −0.632, respectively, and those for local passing rates were −0.455, −0.490 and −0.502. The values of r{sub s} of contrast, variance, and MI{sub SPORT} with the MLC errors were −0.863, −0.828, and 0.795, respectively, all with statistical significances (p < 0.001). The correlations with statistical significances between variance and dose-volumetric differences were observed more frequently than the others. Conclusions: The contrast (d = 1) and variance (d = 1) calculated from fluence maps of VMAT plans showed considerable correlations with the plan deliverability, indicating their potential use as indicators for assessing the degree of modulation of VMAT plans. Both contrast and variance consistently showed better performance than the conventional modulation indices for VMAT.« less
Feasibility of the partial-single arc technique in RapidArc planning for prostate cancer treatment
Rana, Suresh; Cheng, ChihYao
2013-01-01
The volumetric modulated arc therapy (VMAT) technique, in the form of RapidArc, is widely used to treat prostate cancer. The full-single arc (f-SA) technique in RapidArc planning for prostate cancer treatment provides efficient treatment, but it also delivers a higher radiation dose to the rectum. This study aimed to compare the dosimetric results from the new partial-single arc (p-SA) technique with those from the f-SA technique in RapidArc planning for prostate cancer treatment. In this study, 10 patients with low-risk prostate cancer were selected. For each patient, two sets of RapidArc plans (f-SA and p-SA) were created in the Eclipse treatment planning system. The f-SA plan was created using one full arc, and the p-SA plan was created using planning parameters identical to those of the f-SA plan but with anterior and posterior avoidance sectors. Various dosimetric parameters of the f-SA and p-SA plans were evaluated and compared for the same target coverage and identical plan optimization parameters. The f-SA and p-SA plans showed an average difference of ±1% for the doses to the planning target volume (PTV), and there were no clear differences in dose homogeneity or plan conformity. In comparison to the f-SA technique, the p-SA technique reduced the doses to the rectum by approximately 6.1% to 21.2%, to the bladder by approximately 10.3% to 29.5%, and to the penile bulb by approximately 2.2%. In contrast, the dose to the femoral heads, the integral dose, and the number of monitor units were higher in the p-SA plans by approximately 34.4%, 7.7%, and 9.2%, respectively. In conclusion, it is feasible to use the p-SA technique for RapidArc planning for prostate cancer treatment. For the same PTV coverage and identical plan optimization parameters, the p-SA technique is better in sparing the rectum and bladder without compromising plan conformity or target homogeneity when compared to the f-SA technique. PMID:23845140
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiahao, E-mail: mashenglin@medmail.com.cn; Li, Xiadong; Deng, Qinghua
2015-10-01
The purposes of this article were to compare the biophysical dosimetry for postmastectomy left-sided breast cancer using 4 different radiotherapy (RT) techniques. In total, 30 patients with left-sided breast cancer were randomly selected for this treatment planning study. They were planned using 4 RT techniques, including the following: (1) 3-dimensional conventional tangential fields (TFs), (2) tangential intensity-modulated therapy (T-IMRT), (3) 4 fields IMRT (4F-IMRT), and (4) single arc volumetric-modulated arc therapy (S-VMAT). The planning target volume (PTV) dose was prescribed 50 Gy, the comparison of target dose distribution, conformity index, homogeneity index, dose to organs at risk (OARs), tumor controlmore » probability (TCP), normal tissue complication probability (NTCP), and number of monitor units (MUs) between 4 plans were investigated for their biophysical dosimetric difference. The target conformity and homogeneity of S-VMAT were better than the other 3 kinds of plans, but increased the volume of OARs receiving low dose (V{sub 5}). TCP of PTV and NTCP of the left lung showed no statistically significant difference in 4 plans. 4F-IMRT plan was superior in terms of target coverage and protection of OARs and demonstrated significant advantages in decreasing the NTCP of heart by 0.07, 0.03, and 0.05 compared with TFs, T-IMRT, and S-VMAT plan. Compared with other 3 plans, TFs reduced the average number of MUs. Of the 4 techniques studied, this analysis supports 4F-IMRT as the most appropriate balance of target coverage and normal tissue sparing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C; Zhang, W; Lu, J
2015-06-15
Purpose: To compare the dosimetry of post modified radical mastectomy radiotherapy (PMRMRT) for left-sided breast cancer using 3-dimensional conformal radiotherapy (3DCRT), intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). Methods: We created ten sets of PMRMRT plans for ten consecutive patients and utilized two tangential and one or two supraclavicular beams in 3DCRT, a total of 5 beams in IMRT and two optimized partial arcs in VMAT. The difference in results between any two of the three new plans, between new and previous 3DCRT plans were compared and analyzed by ANOVA (α =0.05) and paired-sample t-test respectively. Pmore » values less than 0.05 were considered statistically significant. Results: Both IMRT and VMAT plans had similar PTV coverage, hotspot area and conformity (all p>0.05), and significantly higher PTV coverage compared with new 3DCRT (both p<0.001). IMRT plans had significantly less heart and left lung radiation exposure compared with VMAT (all p<0.05). The 3DCRT plans with larger estimated CTV displacement had better target coverage but worse OARs sparing compared to those with smaller one. Conclusion: IMRT has dosimetrical advantages over the other two techniques in PMRMRT for left-sided breast cancer. Individually quantifying and minimizing CTV displacement can significantly improve dosage distribution. This work was supported by the Medical Scientific Research Foundation of Guangdong Procvince (A2014455 to Changchun Ma)« less
Tanooka, Masao; Doi, Hiroshi; Miura, Hideharu; Inoue, Hiroyuki; Niwa, Yasue; Takada, Yasuhiro; Fujiwara, Masayuki; Sakai, Toshiyuki; Sakamoto, Kiyoshi; Kamikonya, Norihiko; Hirota, Shozo
2013-11-01
We validated 3D radiochromic film dosimetry for volumetric modulated arc therapy (VMAT) using a newly developed spiral water phantom. The phantom consists of a main body and an insert box, each of which has an acrylic wall thickness of 3 mm and is filled with water. The insert box includes a spiral film box used for dose-distribution measurement, and a film holder for positioning a radiochromic film. The film holder has two parallel walls whose facing inner surfaces are equipped with spiral grooves in a mirrored configuration. The film is inserted into the spiral grooves by its side edges and runs along them to be positioned on a spiral plane. Dose calculation was performed by applying clinical VMAT plans to the spiral water phantom using a commercial Monte Carlo-based treatment-planning system, Monaco, whereas dose was measured by delivering the VMAT beams to the phantom. The calculated dose distributions were resampled on the spiral plane, and the dose distributions recorded on the film were scanned. Comparisons between the calculated and measured dose distributions yielded an average gamma-index pass rate of 87.0% (range, 91.2-84.6%) in nine prostate VMAT plans under 3 mm/3% criteria with a dose-calculation grid size of 2 mm. The pass rates were increased beyond 90% (average, 91.1%; range, 90.1-92.0%) when the dose-calculation grid size was decreased to 1 mm. We have confirmed that 3D radiochromic film dosimetry using the spiral water phantom is a simple and cost-effective approach to VMAT dose verification.
Dolera, Mario; Malfassi, Luca; Marcarini, Silvia; Mazza, Giovanni; Carrara, Nancy; Pavesi, Simone; Sala, Massimo; Finesso, Sara; Urso, Gaetano
2018-06-08
The aim of this prospective pilot study was to evaluate the feasibility and effectiveness of curative intent high dose hypofractionated frameless volumetric modulated arc radiotherapy for treatment of canine trigeminal peripheral nerve sheath tumors. Client-owned dogs with a presumptive imaging-based diagnosis of trigeminal peripheral nerve sheath tumor were recruited for the study during the period of February 2010 to December 2013. Seven dogs were enrolled and treated with high dose hypofractionated volumetric modulated arc radiotherapy delivered by a 6 MV linear accelerator equipped with a micro-multileaf beam collimator. The plans were computed using a Monte Carlo algorithm with a prescription dose of 37 Gy delivered in five fractions on alternate days. Overall survival was estimated using a Kaplan-Meier curve analysis. Magnetic resonance imaging (MRI) follow-up examinations revealed complete response in one dog, partial response in four dogs, and stable disease in two dogs. Median overall survival was 952 days with a 95% confidence interval of 543-1361 days. Volumetric modulated arc radiotherapy was demonstrated to be feasible and effective for trigeminal peripheral nerve sheath tumor treatment in this sample of dogs. The technique required few sedations and spared organs at risk. Even though larger studies are required, these preliminary results supported the use of high dose hypofractionated volumetric modulated arc radiotherapy as an alternative to other treatment modalities. © 2018 American College of Veterinary Radiology.
Aitkenhead, A H; Rowbottom, C G; Mackay, R I
2013-10-07
We report on the design of Marvin, a Model Anatomy for Radiotherapy Verification and audit In the head and Neck and present results demonstrating its use in the development of the Elekta volumetric modulated arc therapy (VMAT) technique at the Christie, and in the audit of TomoTherapy and Varian RapidArc at other institutions. The geometry of Marvin was generated from CT datasets of eight male and female patients lying in the treatment position, with removable inhomogeneities modelling the sinuses and mandible. A modular system allows the phantom to be used with a range of detectors, with the locations of the modules being based on an analysis of a range of typical treatment plans (27 in total) which were mapped onto the phantom geometry. Results demonstrate the use of Gafchromic EBT2/EBT3 film for measurement of relative dose in a plane through the target and organs-at-risk, and the use of a small-volume ionization chamber for measurement of absolute dose in the target and spinal cord. Measurements made during the development of the head and neck VMAT protocol at the Christie quantified the improvement in plan delivery resulting from the installation of the Elekta Integrity upgrade (which permits an effectively continuously variable dose rate), with plans delivered before and after the upgrade having 88.5 ± 9.4% and 98.0 ± 2.2% respectively of points passing a gamma analysis (at 4%, 4 mm, global). Audits of TomoTherapy and Varian RapidArc neck techniques at other institutions showed a similar quality of plan delivery as for post-Integrity Elekta VMAT: film measurements for both techniques had >99% of points passing a gamma analysis at the clinical criteria of 4%, 4 mm, global, and >95% of points passing at tighter criteria of 3%, 3 mm, global; and absolute dose measurements in the PTV and spinal cord were within 1.5% and 3.5% of the planned doses respectively for both techniques. The results demonstrate that Marvin is an efficient and effective means of assessing the quality of delivery of complex radiotherapy in the head and neck, and is a useful tool to assist development and audit of these techniques.
Marvin: an anatomical phantom for dosimetric evaluation of complex radiotherapy of the head and neck
NASA Astrophysics Data System (ADS)
Aitkenhead, A. H.; Rowbottom, C. G.; Mackay, R. I.
2013-10-01
We report on the design of Marvin, a Model Anatomy for Radiotherapy Verification and audit In the head and Neck and present results demonstrating its use in the development of the Elekta volumetric modulated arc therapy (VMAT) technique at the Christie, and in the audit of TomoTherapy and Varian RapidArc at other institutions. The geometry of Marvin was generated from CT datasets of eight male and female patients lying in the treatment position, with removable inhomogeneities modelling the sinuses and mandible. A modular system allows the phantom to be used with a range of detectors, with the locations of the modules being based on an analysis of a range of typical treatment plans (27 in total) which were mapped onto the phantom geometry. Results demonstrate the use of Gafchromic EBT2/EBT3 film for measurement of relative dose in a plane through the target and organs-at-risk, and the use of a small-volume ionization chamber for measurement of absolute dose in the target and spinal cord. Measurements made during the development of the head and neck VMAT protocol at the Christie quantified the improvement in plan delivery resulting from the installation of the Elekta Integrity upgrade (which permits an effectively continuously variable dose rate), with plans delivered before and after the upgrade having 88.5 ± 9.4% and 98.0 ± 2.2% respectively of points passing a gamma analysis (at 4%, 4 mm, global). Audits of TomoTherapy and Varian RapidArc neck techniques at other institutions showed a similar quality of plan delivery as for post-Integrity Elekta VMAT: film measurements for both techniques had >99% of points passing a gamma analysis at the clinical criteria of 4%, 4 mm, global, and >95% of points passing at tighter criteria of 3%, 3 mm, global; and absolute dose measurements in the PTV and spinal cord were within 1.5% and 3.5% of the planned doses respectively for both techniques. The results demonstrate that Marvin is an efficient and effective means of assessing the quality of delivery of complex radiotherapy in the head and neck, and is a useful tool to assist development and audit of these techniques.
Park, Jong Min; Park, So-Yeon; Wu, Hong-Gyun; Kim, Jung-In
2018-02-01
To investigate the changes in quality of the volumetric modulated arc therapy (VMAT) plans with couch-shift between arcs by half of a multi-leaf collimator (MLC) leaf width. A total of 22 patients with head-and-neck cancer were retrospectively selected. Since the smallest MLC leaf width was 5 mm in this study, the couch was shifted by 2.5 mm in the longitudinal-direction between arcs to increase the resolution of fluence map. A total of three types of VMAT plans were generated for each patient; the three types of plans were a two-full-arc plan without couch-shift (NS plan), a two-half-arc-pair plan with couch-shift (HAS plan), and a two-full-arc pair plan with couch-shift (FAS plan). Changes in the dose-volumetric parameters were investigated. The FAS plan showed the best plan quality for the target volumes and organs at risk compared to the NS and HAS plans. However, the magnitudes of differences among the three types of plans were minimal, and every plan was clinically acceptable. The average integral doses of the NS, HAS, and FAS plans were 160,549 ± 37,600 Gy-cc, 147,828 ± 33,343 Gy-cc, and 156,030 ± 36,263 Gy-cc, respectively. The average monitor unit of the NS, HAS, and FAS plans were 717 ± 120 MU, 648 ± 100 MU, and 763 ± 158 MU, respectively. The HAS plan was better than the others in terms of normal tissue sparing and plan efficiency. By shifting the couch by half of the MLC leaf width in the longitudinal direction between arcs, the VMAT plan quality could be improved. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Evaluation of the clinical usefulness of modulated arc treatment
NASA Astrophysics Data System (ADS)
Lee, Young Kyu; Jang, Hong Seok; Kim, Yeon Sil; Choi, Byung Ock; Kang, Young-Nam; Nam, Sang Hee; Park, Hyeong Wook; Kim, Shin Wook; Shin, Hun Joo; Lee, Jae Choon; Kim, Ji Na; Park, Sung Kwang; Kim, Jin Young
2015-07-01
The purpose of this study is to evaluate the clinical usefulness of modulated arc (mARC) treatment techniques. The mARC treatment plans for non-small-cell lung cancer (NSCLC) patients were made in order to verify the clinical usefulness of mARC. A pre-study was conducted to find the best plan condition for mARC treatment, and the usefulness of the mARC treatment plan was evaluated by comparing it with other Arc treatment plans such as tomotherapy and RapidArc plans. In the case of mARC, the optimal condition for the mARC plan was determined by comparing the dosimetric performance of the mARC plans developed by using various parameters, which included the photon energy (6 MV, 10 MV), the optimization point angle (6°- 10°intervals), and the total number of segments (36 - 59 segments). The best dosimetric performance of mARC was observed at a 10 MV photon energy, a point angle 6 degrees, and 59 segments. The treatment plans for the three different techniques were compared by using the following parameters: the conformity index (CI), homogeneity index (HI), the target coverage, the dose to the OARs, the number of monitor units (MU), the beam on time, and the normal tissue complication probability (NTCP). As a result, the three different treatment techniques showed similar target coverages. The mARC plan had the lowest V20 (volume of lung receiving > 20 Gy) and MU per fraction compared with both the RapidArc and the tomotherapy plans. The mARC plan reduced the beam on time as well. Therefore, the results of this study provide satisfactory evidence that the mARC technique can be considered as a useful clinical technique for radiation treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eley, J; Mehta, M; Molitoris, J
Purpose: The purpose of this study was to propose a method to implement arc therapy that is compatible with existing particle therapy systems having gantries and pencil-beam scanning capacities. Furthermore, we sought to demonstrate expected benefits of this method for selected clival chordoma patients. Methods: We propose that a desired particle arc treatment plan can be discretized into a finite number of fixed beams and that only one (or a subset) of these beams be delivered in any single treatment fraction; the target should receive uniform dose during each fraction. For 3 clival-chordoma patients, robust-optimized, scanned proton beams were simulatedmore » to deliver 78 Gy (RBE) to clinical target volumes (CTVs), using either a single-field plan with a posterior-anterior (PA) beam or a discrete-arc plan with 16 beams that were equally spaced throughout a 360-degree axial arc. Dose-volume metrics were compared with emphasis on the brainstem, since risk of radiation necrosis there can often restrict application of tumoricidal doses for chordomas. Results: The mean volume of brainstem receiving a dose of 60 Gy (RBE) or higher (V60Gy) was 10.3±0.9 cm{sup 3} for the single-field plan and 4.7±1.8 cm{sup 3} for the discrete-arc plan, a reduction of 55% in favor of arcs. The mean dose to the brainstem was also reduced using arcs, by 18%, while the maximum dose was nearly identical for both methods. For the whole brain, V60Gy was reduced by 23%, in favor of arcs. Mean dose to the CTVs were nearly identical for both strategies, within 0.3%. Conclusion: Discrete arc treatments can be implemented using existing scanned particle-beam facilities. Aside from the physical advantages, the biological uncertainties of particle therapy, particularly high in the distal edge, can be reduced by arc therapy via rotational smearing, which may be of benefit for tumors near the brainstem.« less
Dose rate mapping of VMAT treatments
NASA Astrophysics Data System (ADS)
Podesta, Mark; Antoniu Popescu, I.; Verhaegen, Frank
2016-06-01
Human tissues exhibit a varying response to radiation dose depending on the dose rate and fractionation scheme used. Dose rate effects have been reported for different radiations, and tissue types. The literature indicates that there is not a significant difference in response for low-LET radiation when using dose rates between 1 Gy min-1 and 12 Gy min-1 but lower dose rates have an observable sparing effect on tissues and a differential effect between tissues. In intensity-modulated radiotherapy such as volumetric modulated arc therapy (VMAT) the dose can be delivered with a wide range of dose rates. In this work we developed a method based on time-resolved Monte Carlo simulations to quantify the dose rate frequency distribution for clinical VMAT treatments for three cancer sites, head and neck, lung, and pelvis within both planning target volumes (PTV) and normal tissues. The results show a wide range of dose rates are used to deliver dose in VMAT and up to 75% of the PTV can have its dose delivered with dose rates <1 Gy min-1. Pelvic plans on average have a lower mean dose rate within the PTV than lung or head and neck plans but a comparable mean dose rate within the organs at risk. Two VMAT plans that fulfil the same dose objectives and constraints may be delivered with different dose rate distributions, particularly when comparing single arcs to multiple arc plans. It is concluded that for dynamic plans, the dose rate range used varies to a larger degree than previously assumed. The effect of the dose rate range in VMAT on clinical outcome is unknown.
Aviation Maintenance Technology. Airframe. A204. Aircraft Welding. Instructor Material.
ERIC Educational Resources Information Center
Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This teacher's guide is designed to aid teachers in leading students through a module on aircraft welding on airframes. The module contains four units that cover the following topics: (1) gas welding and cutting; (2) brazing and soldering; (3) shielded metal arc welding; and (4) gas tungsten arc welding. Each unit follows a standardized format…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Runqing; Zhan, Lixin; Osei, Ernest
2014-08-15
Volumetric modulated arc therapy (VMAT) allows fast delivery of stereotactic radiotherapy. However, the discrepancies between the calculated and delivered dose distributions due to respiratory motion and dynamic multileaf collimators (MLCs) interplay are not avoidable. The purpose of this study is to investigate RapidArc lung SBRT treatment delivered by the flattening filter-free (FFF) beam and flattened beam with Varian TrueBeam machine. CIRS Dynamic Thorax Phantom with in-house made lung tumor insertion was CT scanned both in free breathing and 4DCT. 4DCT was used to determine the internal target volume. The free breathing CT scan was used for treatment planning. A 5more » mm margin was given to ITV to generate a planning target volume. Varian Eclipse treatment planning was used to generate RapidArc plans based on the 6 MV flattened beam and 6MV FFF beam. The prescription dose was 48 Gy in 4 fractions. At least 95% of PTV was covered by the prescribed dose. The RapidArc plans with 6 MV flattened beam and 6MV FFF beam were delivered with Varian TrueBeam machine. The dosimetric measurements were performed with Gafchromic XR-RV3 film, which was placed in the lung tumor insertion. The interplay between the dynamic MLC-based delivery of VMAT and the respiratory motion of the tumor degraded target coverage and created undesired hot or cold dose spots inside the lung tumor. Lung SBRT RapidArc treatments delivered by the FFF beam of TrueBeam linear accelerator is superior to the flattened beam. Further investigation will be performed by Monte Carlo simulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, L; Qian, J; Gonzales, R
Purpose: To investigate the accuracy, sensitivity and constancy of integral quality monitor (IQM), a new system for in vivo dosimetry of conventional intensity modulated radiation therapy (IMRT) or rotational volumetric modulated arc therapy (VMAT) Methods: A beta-version IQM system was commissioned on an Elekta Infinity LINAC equipped with 160-MLCs Agility head. The stationary and rotational dosimetric constancy of IQM was evaluated, using five-field IMRT and single-or double-arc VMAT plans for prostate and head-and-neck (H&N) patients. The plans were delivered three times over three days to assess the constancy of IQM response. Picket fence (PF) fields were used to evaluate themore » sensitivity of detecting MLC leaf errors. A single leaf offset was intentionally introduced during delivery of various PF fields with segment apertures of 3×1, 5×1, 10×1, and 24×1cm2. Both 2mm and 5mm decrease in the field width were used. Results: Repeated IQM measurements of prostate and H&N IMRT deliveries showed 0.4 and 0.5% average standard deviation (SD) for segment-by-segment comparison and 0.1 and 0.2% for cumulative comparison. The corresponding SDs for VMAT deliveries were 6.5, 9.4% and 0.7, 1.3%, respectively. Statistical analysis indicates that the dosimetric differences detected by IQM were significant (p < 0.05) in all PF test deliveries. The largest average IQM signal response of a 2 mm leaf error was found to be 2.1% and 5.1% by a 5mm leaf error for 3×1 cm2 field size. The same error in 24×1 cm2 generates a 0.7% and 1.4% difference in the signal. Conclusion: IQM provides an effective means for real-time dosimetric verification of IMRT/ VMAT treatment delivery. For VMAT delivery, the cumulative dosimetry of IQM needs to be used in clinical practice.« less
Applicator-guided volumetric-modulated arc therapy for low-risk endometrial cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cilla, Savino, E-mail: savinocilla@gmail.com; Macchia, Gabriella; Sabatino, Domenico
2013-04-01
The aim of this study was to report the feasibility of volumetric-modulated arc therapy (VMAT) in the postoperative irradiation of the vaginal vault. Moreover, the VMAT technique was compared with 3D conformal radiotherapy (3D-CRT) and fixed-field intensity-modulated radiotherapy (IMRT), in terms of target coverage and organs at risk sparing. The number of monitor units and the delivery time were analyzed to score the treatment efficiency. All plans were verified in a dedicated solid water phantom using a 2D array of ionization chambers. Twelve patients with endometrial carcinoma who underwent radical hystero-adenexectomy and fixed-field IMRT treatments were retrospectively included in thismore » analysis; for each patient, plans were compared in terms of dose-volume histograms, homogeneity index, and conformity indexes. All techniques met the prescription goal for planning target volume coverage, with VMAT showing the highest level of conformity at all dose levels. VMAT resulted in significant reduction of rectal and bladder volumes irradiated at all dose levels compared with 3D-CRT. No significant differences were found with respect to IMRT. Moreover, a significant improvement of the dose conformity was reached by VMAT technique not only at the 95% dose level (0.74 vs. 0.67 and 0.62) but also at 50% and 75% levels of dose prescription. In addition, VMAT plans showed a significant reduction of monitor units by nearly 28% with respect to IMRT, and reduced treatment time from 11 to <3 minutes for a single 6-Gy fraction. In conclusion, VMAT plans can be planned and carried out with high quality and efficiency for the irradiation of vaginal vault alone, providing similar or better sparing of organs at risk to fixed-field IMRT and resulting in the most efficient treatment option. VMAT is currently our standard approach for radiotherapy of low-risk endometrial cancer.« less
Wang, Bu-Hai; Hua, Wei; Gu, Xiang; Wang, Xiao-Lei; Li, Jun; Liu, Li-Qin; Huang, Yu-Xiang
2015-12-01
The purpose of this study was to compare the dosimetric characteristics for hippocampal avoidance (HA) between the treatment plans based on fused CT and MRI imaging during whole brain radiotherapy (WBRT) pertaining to: (1) 3-dimensional conformal radiotherapy (3D-CRT), (2) dynamic intensity modulated radiation therapy (dIMRT), and (3) RapidArc for patients with brain metastases. In our study, HA was defined as hippocampus beyond 5 mm, and planning target volume (PTV) was obtained subtracting HA volume from the volume of whole brain. There were 10 selected patients diagnosed with brain metastases receiving WBRT. These patients received plans for 3D-CRT (two fields), dIMRT (seven non-coplanar fields) and RapidArc (dual arc). The prescribed dose 30 Gy in 10 fractions was delivered to the whole-brain clinical target volume of patients. On the premise of meeting the clinical requirements, we compared target dose distribution, target coverage (TC), homogeneity index (HI), dose of organs at risk (OARs), monitor units (MU) and treatment time between the above three radiotherapy plans. V90 %, V95 % and TC of PTV for 3D-CRT plan were lowest of the three plans. V90 %, V95 % and HI of PTV in RapidArc plan were superior to the other two plans. TC of PTV in RapidArc plan was similar with dIMRT plan (P > 0.05). 3D-CRT was the optimal plan in the three plans for hippocampal protection. The median dose (Dmedian) and the maximum doses (Dmax) of hippocampus in 3D-CRT were 4.95, 10.87 Gy, which were lowest among the three planning approaches (P < 0.05). Dmedian and Dmax of hippocampus in dIMRT were 10.68, 14.11 Gy. Dmedian and Dmax of hippocampus in RapidArc were 10.30 gGy, 13.92 Gy. These parameters of the last two plans pertain to no significant difference (P > 0.05). When WBRT (30 Gy,10F) was equivalent to single dose 2 Gy,NTDmean of hippocampus in 3D-CRT, dIMRT and RapidArc were reduced to 3.60, 8.47, 8.20 Gy2, respectively. In addition, compared with dIMRT, MU of RapidArc was reduced and the treatment time was shortened by nearly 25 %. All three radiotherapy planning approaches in our study can meet the clinical requirements of HA. Although TC in 3D-CRT was lowest, hippocampus was protected best by this plan. So many radiation fields and the design of non-coplanar fields lead to the complication of dIMRT. TC and HI in RapidArc were superior to the other two plans with the precise of meeting the clinical requirements. The difference in protection for hippocampus between dIMRT and RapidArc was statistically significant. In addition, RapidArc can remarkably reduce MU and the treatment time.
[Investigation of Elekta linac characteristics for VMAT].
Luo, Guangwen; Zhang, Kunyi
2012-01-01
The aim of this study is to investigate the characteristics of Elekta delivery system for volumetric modulated arc therapy (VMAT). Five VMAT plans were delivered in service mode and dose rates, and speed of gantry and MLC leaves were analyzed by log files. Results showed that dose rates varied between 6 dose rates. Gantry and MLC leaf speed dynamically varied during delivery. The technique of VMAT requires linac to dynamically control more parameters, and these key dynamic variables during VMAT delivery can be checked by log files. Quality assurance procedure should be carried out for VMAT related parameter.
Troussier, I; Huguet, F; Servagi-Vernat, S; Benahim, C; Khalifa, J; Darmon, I; Ortholan, C; Krebs, L; Dejean, C; Fenoglietto, P; Vieillot, S; Bensadoun, R-J; Thariat, J
2015-04-01
The standard treatment of locally advanced (stage II and III) squamous cell carcinoma of the anal canal consists of concurrent chemoradiotherapy (two cycles of 5-fluoro-uracil, mitomycin C, on a 28-day cycle), with a dose of 45 Gy in 1.8 Gy per fraction in the prophylactic planning target volume and additional 14 to 20 Gy in the boost planning target volume (5 days per week) with a possibility of 15 days gap period between the two sequences. While conformal irradiation may only yield suboptimal tumor coverage using complex photon/electron field junctions (especially on nodal areas), intensity modulated radiation therapy techniques (segmented static, dynamic, volumetric modulated arc therapy and helical tomotherapy) allow better tumour coverage while sparing organs at risk from intermediate/high doses (small intestine, perineum/genitalia, bladder, pelvic bone, etc.). Such dosimetric advantages result in fewer severe acute toxicities and better potential to avoid a prolonged treatment break that increases risk of local failure. These techniques also allow a reduction in late gastrointestinal and skin toxicities of grade 3 or above, as well as better functional conservation of anorectal sphincter. The technical achievements (simulation, contouring, prescription dose, treatment planning, control quality) of volumetric modulated arctherapy are discussed. Copyright © 2015 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakanaka, Katsuyuki; Mizowaki, Takashi, E-mail: mizo@kuhp.kyoto-u.ac.jp; Sato, Sayaka
This study evaluated the dosimetric difference between volumetric-modulated arc therapy (VMAT) and conventional fixed-field intensity-modulated radiotherapy (cIMRT) in whole-ventricular irradiation. Computed tomography simulation data for 13 patients were acquired to create plans for VMAT and cIMRT. In both plans, the same median dose (100% = 24 Gy) was prescribed to the planning target volume (PTV), which comprised a tumor bed and whole ventricles. During optimization, doses to the normal brain and body were reduced, provided that the dose constraints of the target coverage were satisfied. The dose-volume indices of the PTV, normal brain, and body as well as monitor unitsmore » were compared between the 2 techniques by using paired t-tests. The results showed no significant difference in the homogeneity index (0.064 vs 0.065; p = 0.824) of the PTV and conformation number (0.78 vs 0.77; p = 0.065) between the 2 techniques. In the normal brain and body, the dose-volume indices showed no significant difference between the 2 techniques, except for an increase in the volume receiving a low dose in VMAT; the absolute volume of the normal brain and body receiving 1 Gy of radiation significantly increased in VMAT by 1.6% and 8.3%, respectively, compared with that in cIMRT (1044 vs 1028 mL for the normal brain and 3079.2 vs 2823.3 mL for the body; p<0.001). The number of monitor units to deliver a 2.0-Gy fraction was significantly reduced in VMAT compared with that in cIMRT (354 vs 873, respectively; p<0.001). In conclusion, VMAT delivers IMRT to complex target volumes such as whole ventricles with fewer monitor units, while maintaining target coverage and conformal isodose distribution comparable to cIMRT; however, in addition to those characteristics, the fact that the volume of the normal brain and body receiving a low dose would increase in VMAT should be considered.« less
Rounded leaf end modeling in Pinnacle VMAT treatment planning for fixed jaw linacs
Yang, Fei; Cao, Ning; Meyer, Juergen
2016-01-01
During volume‐modulated arc therapies (VMAT), dosimetric errors are introduced by multiple open dynamic leaf gaps that are present in fixed diaphragm linear accelerators. The purpose of this work was to develop a methodology for adjusting the rounded leaf end modeling parameters to improve out‐of‐field dose agreement in SmartArc VMAT treatment plans delivered by fixed jaw linacs where leaf gap dose is not negligible. Leaf gap doses were measured for an Elekta beam modulator linac with 0.4 cm micro‐multileaf collimators (MLC) using an A16 micro‐ionization chamber, a MatriXX ion chamber detector array, and Kodak EDR2 film dosimetry in a solid water phantom. The MLC offset and rounded end tip radius were adjusted in the Pinnacle treatment planning system (TPS) to iteratively arrive at the optimal configuration for 6 MV and 10 MV photon energies. Improvements in gamma index with a 3%/3 mm acceptance criteria and an inclusion threshold of 5% of maximum dose were measured, analyzed, and validated using an ArcCHECK diode detector array for field sizes ranging from 1.6 to 14 cm square field arcs and Task Group (TG) 119 VMAT test cases. The best results were achieved for a rounded leaf tip radius of 13 cm with a 0.1 cm MLC offset. With the optimized MLC model, measured gamma indices ranged between 99.9% and 91.7% for square field arcs with sizes between 3.6 cm and 1.6 cm, with a maximum improvement of 42.7% for the 1.6 cm square field size. Gamma indices improved up to 2.8% in TG‐119 VMAT treatment plans. Imaging and Radiation Oncology Core (IROC) credentialing of a VMAT plan with the head and neck phantom passed with a gamma index of 100%. Fine‐tune adjustments to MLC rounded leaf ends may improve patient‐specific QA pass rates and provide more accurate predictions of dose deposition to avoidance structures. PACS number(s): 87.55.D‐, 87.55.kd, 87.55.kh PMID:27929490
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maraldo, Maja V., E-mail: dra.maraldo@gmail.com; Dabaja, Bouthaina S.; Filippi, Andrea R.
Purpose: Early-stage Hodgkin lymphoma (HL) is a rare disease, and the location of lymphoma varies considerably between patients. Here, we evaluate the variability of radiation therapy (RT) plans among 5 International Lymphoma Radiation Oncology Group (ILROG) centers with regard to beam arrangements, planning parameters, and estimated doses to the critical organs at risk (OARs). Methods: Ten patients with stage I-II classic HL with masses of different sizes and locations were selected. On the basis of the clinical information, 5 ILROG centers were asked to create RT plans to a prescribed dose of 30.6 Gy. A postchemotherapy computed tomography scan with precontouredmore » clinical target volume (CTV) and OARs was provided for each patient. The treatment technique and planning methods were chosen according to each center's best practice in 2013. Results: Seven patients had mediastinal disease, 2 had axillary disease, and 1 had disease in the neck only. The median age at diagnosis was 34 years (range, 21-74 years), and 5 patients were male. Of the resulting 50 treatment plans, 15 were planned with volumetric modulated arc therapy (1-4 arcs), 16 with intensity modulated RT (3-9 fields), and 19 with 3-dimensional conformal RT (2-4 fields). The variations in CTV-to-planning target volume margins (5-15 mm), maximum tolerated dose (31.4-40 Gy), and plan conformity (conformity index 0-3.6) were significant. However, estimated doses to OARs were comparable between centers for each patient. Conclusions: RT planning for HL is challenging because of the heterogeneity in size and location of disease and, additionally, to the variation in choice of treatment techniques and field arrangements. Adopting ILROG guidelines and implementing universal dose objectives could further standardize treatment techniques and contribute to lowering the dose to the surrounding OARs.« less
A class solution for volumetric-modulated arc therapy planning in postprostatectomy radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forde, Elizabeth, E-mail: eforde@tcd.ie; Bromley, Regina; Institute of Medical Physics, School of Physics, University of Sydney, New South Wales
This study is aimed to test a postprostatectomy volumetric-modulated arc therapy (VMAT) planning class solution. The solution applies to both the progressive resolution optimizer algorithm version 2 (PRO 2) and the algorithm version 3 (PRO 3), addressing the effect of an upgraded algorithm. A total of 10 radical postprostatectomy patients received 68 Gy to 95% of the planning target volume (PTV), which was planned using VMAT. Each case followed a set of planning instructions; including contouring, field setup, and predetermined optimization parameters. Each case was run through both algorithms only once, with no user interaction. Results were averaged and comparedmore » against Radiation Therapy Oncology Group (RTOG) 0534 end points. In addition, the clinical target volume (CTV) D{sub 100}, PTV D{sub 99}, and PTV mean doses were recorded, along with conformity indices (CIs) (95% and 98%) and the homogeneity index. All cases satisfied PTV D{sub 95} of 68 Gy and a maximum dose < 74.8 Gy. The average result for the PTV D{sub 99} was 64.1 Gy for PRO 2 and 62.1 Gy for PRO 3. The average PTV mean dose for PRO 2 was 71.4 Gy and 71.5 Gy for PRO 3. The CTV D{sub 100} average dose was 67.7 and 68.0 Gy for PRO 2 and PRO 3, respectively. The mean homogeneity index for both algorithms was 0.08. The average 95% CI was 1.17 for PRO 2 and 1.19 for PRO 3. For 98%, the average results were 1.08 and 1.12 for PRO 2 and PRO 3, respectively. All cases for each algorithm met the RTOG organs at risk dose constraints. A successful class solution has been established for prostate bed VMAT radiotherapy regardless of the algorithm used.« less
Pancreatic cancer planning: Complex conformal vs modulated therapies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, Katherine L.; Witek, Matthew E.; Chen, Hongyu
To compare the roles of intensity-modulated radiation therapy (IMRT) and volumetric- modulated arc therapy (VMAT) therapy as compared to simple and complex 3-dimensional chemoradiotherpy (3DCRT) planning for resectable and borderline resectable pancreatic cancer. In all, 12 patients who received postoperative radiotherapy (8) or neoadjuvant concurrent chemoradiotherapy (4) were evaluated retrospectively. Radiotherapy planning was performed for 4 treatment techniques: simple 4-field box, complex 5-field 3DCRT, 5 to 6-field IMRT, and single-arc VMAT. All volumes were approved by a single observer in accordance with Radiation Therapy Oncology Group (RTOG) Pancreas Contouring Atlas. Plans included tumor/tumor bed and regional lymph nodes to 45more » Gy; with tumor/tumor bed boosted to 50.4 Gy, at least 95% of planning target volume (PTV) received the prescription dose. Dose-volume histograms (DVH) for multiple end points, treatment planning, and delivery time were assessed. Complex 3DCRT, IMRT, and VMAT plans significantly (p < 0.05) decreased mean kidney dose, mean liver dose, liver (V{sub 30}, V{sub 35}), stomach (D{sub 10}%), stomach (V{sub 45}), mean right kidney dose, and right kidney (V{sub 15}) as compared with the simple 4-field plans that are most commonly reported in the literature. IMRT plans resulted in decreased mean liver dose, liver (V{sub 35}), and left kidney (V{sub 15}, V{sub 18}, V{sub 20}). VMAT plans decreased small bowel (D{sub 10}%, D{sub 15}%), small bowel (V{sub 35}, V{sub 45}), stomach (D{sub 10}%, D{sub 15}%), stomach (V{sub 35}, V{sub 45}), mean liver dose, liver (V{sub 35}), left kidney (V{sub 15}, V{sub 18}, V{sub 20}), and right kidney (V{sub 18}, V{sub 20}). VMAT plans significantly decreased small bowel (D{sub 10}%, D{sub 15}%), left kidney (V{sub 20}), and stomach (V{sub 45}) as compared with IMRT plans. Treatment planning and delivery times were most efficient for simple 4-field box and VMAT. Excluding patient setup and imaging, average treatment delivery was within 10 minutes for simple and complex 3DCRT, IMRT, and VMAT treatments. This article shows significant improvements in 3D plan performance with complex planning over the more frequently compared 3- or 4-field simple 3D planning techniques. VMAT plans continue to demonstrate potential for the most organ sparing. However, further studies are required to identify if dosimetric benefits associated with inverse optimized planning can be translated into clinical benefits and if these treatment techniques are value-added therapies for this group of patients with cancer.« less
A novel method for routine quality assurance of volumetric-modulated arc therapy.
Wang, Qingxin; Dai, Jianrong; Zhang, Ke
2013-10-01
Volumetric-modulated arc therapy (VMAT) is delivered through synchronized variation of gantry angle, dose rate, and multileaf collimator (MLC) leaf positions. The delivery dynamic nature challenges the parameter setting accuracy of linac control system. The purpose of this study was to develop a novel method for routine quality assurance (QA) of VMAT linacs. ArcCheck is a detector array with diodes distributing in spiral pattern on cylindrical surface. Utilizing its features, a QA plan was designed to strictly test all varying parameters during VMAT delivery on an Elekta Synergy linac. In this plan, there are 24 control points. The gantry rotates clockwise from 181° to 179°. The dose rate, gantry speed, and MLC positions cover their ranges commonly used in clinic. The two borders of MLC-shaped field seat over two columns of diodes of ArcCheck when the gantry rotates to the angle specified by each control point. The ratio of dose rate between each of these diodes and the diode closest to the field center is a certain value and sensitive to the MLC positioning error of the leaf crossing the diode. Consequently, the positioning error can be determined by the ratio with the help of a relationship curve. The time when the gantry reaches the angle specified by each control point can be acquired from the virtual inclinometer that is a feature of ArcCheck. The gantry speed between two consecutive control points is then calculated. The aforementioned dose rate is calculated from an acm file that is generated during ArcCheck measurements. This file stores the data measured by each detector in 50 ms updates with each update in a separate row. A computer program was written in MATLAB language to process the data. The program output included MLC positioning errors and the dose rate at each control point as well as the gantry speed between control points. To evaluate this method, this plan was delivered for four consecutive weeks. The actual dose rate and gantry speed were compared with the QA plan specified. Additionally, leaf positioning errors were intentionally introduced to investigate the sensitivity of this method. The relationship curves were established for detecting MLC positioning errors during VMAT delivery. For four consecutive weeks measured, 98.4%, 94.9%, 89.2%, and 91.0% of the leaf positioning errors were within ± 0.5 mm, respectively. For the intentionally introduced leaf positioning systematic errors of -0.5 and +1 mm, the detected leaf positioning errors of 20 Y1 leaf were -0.48 ± 0.14 and 1.02 ± 0.26 mm, respectively. The actual gantry speed and dose rate closely followed the values specified in the VMAT QA plan. This method can assess the accuracy of MLC positions and the dose rate at each control point as well as the gantry speed between control points at the same time. It is efficient and suitable for routine quality assurance of VMAT.
NASA Astrophysics Data System (ADS)
Flynn, Ryan
2007-12-01
The distribution of biological characteristics such as clonogen density, proliferation, and hypoxia throughout tumors is generally non-uniform, therefore it follows that the optimal dose prescriptions should also be non-uniform and tumor-specific. Advances in intensity modulated x-ray therapy (IMXT) technology have made the delivery of custom-made non-uniform dose distributions possible in practice. Intensity modulated proton therapy (IMPT) has the potential to deliver non-uniform dose distributions as well, while significantly reducing normal tissue and organ at risk dose relative to IMXT. In this work, a specialized treatment planning system was developed for the purpose of optimizing and comparing biologically based IMXT and IMPT plans. The IMXT systems of step-and-shoot (IMXT-SAS) and helical tomotherapy (IMXT-HT) and the IMPT systems of intensity modulated spot scanning (IMPT-SS) and distal gradient tracking (IMPT-DGT), were simulated. A thorough phantom study was conducted in which several subvolumes, which were contained within a base tumor region, were boosted or avoided with IMXT and IMPT. Different boosting situations were simulated by varying the size, proximity, and the doses prescribed to the subvolumes, and the size of the phantom. IMXT and IMPT were also compared for a whole brain radiation therapy (WBRT) case, in which a brain metastasis was simultaneously boosted and the hippocampus was avoided. Finally, IMXT and IMPT dose distributions were compared for the case of non-uniform dose prescription in a head and neck cancer patient that was based on PET imaging with the Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone (Cu-ATSM) hypoxia marker. The non-uniform dose distributions within the tumor region were comparable for IMXT and IMPT. IMPT, however, was capable of delivering the same non-uniform dose distributions within a tumor using a 180° arc as for a full 360° rotation, which resulted in the reduction of normal tissue integral dose by a factor of up to three relative to IMXT, and the complete sparing of organs at risk distal to the tumor region.
Alongi, Filippo; Liardo, Rocco L E; Iftode, Cristina; Lopci, Egesta; Villa, Elisa; Comito, Tiziana; Tozzi, Angelo; Navarria, Pierina; Ascolese, Anna M; Mancosu, Pietro; Tomatis, Stefano; Bellorofonte, Carlo; Arturo, Chiti; Scorsetti, Marta
2014-10-01
The purpose of this work was to evaluate tolerance, feasibility and acute toxicity in patients undergoing salvage radiotherapy after high-intensity focused ultrasound (HIFU) failure. From 2005 to 2011 a total of 15 patients were treated with HIFU as primary radical treatment. Between July 2011 and February 2013, all 15 patients presented biochemical relapse after HIFU and 11C choline PET documenting intrapostatic-only failure. Salvage EBRT was performed with moderate hypofractionation schedule in 28 fractions with volumetric modulation arc therapy (VMAT). Genito-urinary (GU) and rectal and bowel toxicity were scored by common terminology criteria for adverse events version 4 (CTCAE V.4) scale. Biochemical response was assessed by ASTRO Phoenix criteria. Median age of patients was 67 years (range: 53-85). The median Gleason score was 7 (range: 6-9). The median prostate specific antigen (PSA) at the time of biochemical relapse after HIFU was 5.2 ng/mL (range: 2-64.2). Seven of the 15 patients received androgen deprivation therapy (ADT) started after HIFU failure, interrupted before 11C choline PET and radiotherapy. Median prescribed dose was 71.4 Gy (range: 71.4-74.2 Gy) in 28 fractions. No radiation related major upper gastrointestinal (GI), rectal and GU toxicity were experienced. GU, acute grade 1 and grade 2 toxicities were recorded in 7/15 and 4/15 respectively; bowel acute grade 1 and grade 2 toxicities in 4/15 and 1/15; rectal acute grade 1 and grade 2 toxicities in 3/15 and 2/15 respectively. No grade 3 or greater acute or late toxicities occurred. Biochemical control was assessed in 12/15 (80%) patients. With a median follow up of 12 months, three out of 15 patients, with biochemical relapse, showed lymph-nodal recurrence. Our early clinical results and biochemical data confirm the feasibility and show a good tolerance of the 11C choline PET guided salvage radiation therapy after HIFU failure. The findings of low acute toxicity is encouraging, but longer follow-up is needed to assess late toxicity and definitive outcomes.
Dobler, Barbara; Obermeier, Tina; Hautmann, Matthias G; Khemissi, Amine; Koelbl, Oliver
2017-07-05
The aim of this study was to investigate if the flattening filter free (FFF) irradiation mode of a linear accelerator (linac) is advantageous as compared to the flat beam (FF) irradiation mode in intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) for carcinoma of the hypopharynx / larynx. Four treatment plans were created for each of 10 patients for an Elekta Synergy linac with Agility collimating device, a dual arc VMAT and a nine field step and shoot IMRT each with and without flattening filter. Plan quality was compared considering target coverage and dose to the organs at risk. All plans were verified by a 2D-ionization-chamber-array and delivery times were compared. Peripheral point doses were determined as a measure of second cancer risk. The Wilcoxon test was used for statistical analysis with a significance level of 0.05. Plan quality was similar for all four treatment plans without statistically significant differences of clinical relevance. The clinical goals were met in all plans for the PTV-SIB (V 95% > 95%), the spinal cord (D 1ccm < 45 Gy) and the brain stem (D 1ccm < 48 Gy). For the parotids, the goal of D 50% < 30 Gy was met in 70% and 60% of the plans for the left and right parotid respectively, and the V 95% of the SIB reached an average of 94%. Delivery times were similar for FF and FFF and significantly decreased by around 70% for VMAT as compared to IMRT. Peripheral doses were significantly reduced by 18% in FFF mode as compared to FF and by 26% for VMAT as compared to IMRT. Lowest peripheral doses were found for VMAT FFF, followed by VMAT FF. The FFF mode of a linear accelerator is advantageous for the treatment of hypopharynx/larynx carcinoma only with respect to reduction of second cancer induction in peripheral organs for the combination of Elekta Synergy linacs and Oncentra® External Beam v4.5 treatment planning system. This might be of interest in a therapy with curative intent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kendall, E; Ahmad, S; Algan, O
2016-06-15
Purpose: To compare biophysical indices of Volumetric Modulated Arc Therapy (VMAT) and Intensity Modulated Radiation Therapy (IMRT) treatment plans for whole brain radiation therapy following the NRG-CC001 protocol. Methods: In this retrospective study, a total of fifteen patients were planned with Varian Eclipse Treatment Planning System using VMAT (RapidArc) and IMRT techniques. The planning target volume (PTV) was defined as the whole brain volume excluding a uniform three-dimensional 5mm expansion of the hippocampus volume. Prescribed doses in all plans were 30 Gy delivered over 10 fractions normalized to a minimum of 95% of the target volume receiving 100% of themore » prescribed dose. The NRG Oncology protocol guidelines were followed for contouring and dose-volume constraints. A single radiation oncologist evaluated all treatment plans. Calculations of statistical significance were performed using Student’s paired t-test. Results: All VMAT and IMRT plans met the NRG-CC001 protocol dose-volume criteria. The average equivalent uniform dose (EUD) for the PTV for VMAT vs. IMRT was respectively (19.05±0.33 Gy vs. 19.38±0.47 Gy) for α/β of 2 Gy and (19.47±0.30 Gy vs. 19.84±0.42 Gy) for α/β of 10 Gy. For the PTV, the average mean and maximum doses were 2% and 5% lower in VMAT plans than in IMRT plans, respectively. The average EUD and the normal tissue complication probability (NTCP) for the hippocampus in VMAT vs. IMRT plans were (15.28±1.35 Gy vs. 15.65±0.99 Gy, p=0.18) and (0.305±0.012 Gy vs. 0.308±0.008 Gy, p=0.192), respectively. The average EUD and NTCP for the optic chiasm were both 2% higher in VMAT than in IMRT plans. Conclusion: Though statistically insignificant, VMAT plans indicate a lower hippocampus EUD than IMRT plans. Also, a small variation in NTCP was found between plans.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippi, Andrea Riccardo, E-mail: andreariccardo.filippi@unito.it; Ragona, Riccardo; Piva, Cristina
Purpose: The purpose of this study was to evaluate the risks of second cancers and cardiovascular diseases associated with an optimized volumetric modulated arc therapy (VMAT) planning solution in a selected cohort of stage I/II Hodgkin lymphoma (HL) patients treated with either involved-node or involved-site radiation therapy in comparison with 3-dimensional conformal radiation therapy (3D-CRT). Methods and Materials: Thirty-eight patients (13 males and 25 females) were included. Disease extent was mediastinum alone (n=8, 21.1%); mediastinum plus unilateral neck (n=19, 50%); mediastinum plus bilateral neck (n=11, 29.9%). Prescription dose was 30 Gy in 2-Gy fractions. Only 5 patients had mediastinal bulkymore » disease at diagnosis (13.1%). Anteroposterior 3D-CRT was compared with a multiarc optimized VMAT solution. Lung, breast, and thyroid cancer risks were estimated by calculating a lifetime attributable risk (LAR), with a LAR ratio (LAR{sub VMAT}-to-LAR{sub 3D-CRT}) as a comparative measure. Cardiac toxicity risks were estimated by calculating absolute excess risk (AER). Results: The LAR ratio favored 3D-CRT for lung cancer induction risk in mediastinal alone (P=.004) and mediastinal plus unilateral neck (P=.02) presentations. LAR ratio for breast cancer was lower for VMAT in mediastinal plus bilateral neck presentations (P=.02), without differences for other sites. For thyroid cancer, no significant differences were observed, regardless of anatomical presentation. A significantly lower AER of cardiac (P=.038) and valvular diseases (P<.0001) was observed for VMAT regardless of disease extent. Conclusions: In a cohort of patients with favorable characteristics in terms of disease extent at diagnosis (large prevalence of nonbulky presentations without axillary involvement), optimized VMAT reduced heart disease risk with comparable risks of thyroid and breast cancer, with an increase in lung cancer induction probability. The results are however strongly influenced by the different anatomical presentations, supporting an individualized approach.« less
Buonaguro, Elisabetta F; Tomasetti, Carmine; Chiodini, Paolo; Marmo, Federica; Latte, Gianmarco; Rossi, Rodolfo; Avvisati, Livia; Iasevoli, Felice; de Bartolomeis, Andrea
2017-04-01
In this study, we investigated whether minocycline, a second-generation tetracycline proposed as an add-on to antipsychotics in treatment-resistant schizophrenia (TRS), may affect the expression of Homer and Arc postsynaptic density (PSD) transcripts, implicated in synaptic regulation. Minocycline was administered alone or with haloperidol in rats exposed or not to ketamine, mimicking acute glutamatergic psychosis or naturalistic conditions, respectively. Arc expression was significantly reduced by minocycline compared with controls. Minocycline in combination with haloperidol also significantly reduced Arc expression compared with both controls and haloperidol alone. Moreover, haloperidol/minocycline combination significantly affected Arc expression in cortical regions, while haloperidol alone was ineffective on cortical gene expression. These results suggest that minocycline may strongly affect the expression of Arc as mediated by haloperidol, both in terms of quantitative levels and of topography of haloperidol-related expression. It is noteworthy that no significant pre-treatment effect was found, suggesting that pre-exposure to ketamine did not grossly affect gene expression. Minocycline was not found to significantly affect haloperidol-related Homer1a expression. No significant changes in Homer1b/c expression were observed. These results are consistent with previous observations that minocycline may modulate postsynaptic glutamatergic transmission, affecting distinct downstream pathways initiated by N-methyl-D-aspartate (NMDA) receptor modulation, i.e. Arc-mediated but not Homer1a-mediated pathways.
SU-F-BRB-04: Comparison of Coplanar VMAT, Non-Coplanar VMAT, and 4π Treatment Plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, K; Nguyen, D; Tran, A
2015-06-15
Purpose: The 4π non-coplanar radiotherapy delivery technique has demonstrated significantly better normal tissue sparing and dose conformality than the clinically used volumetric modulated arc therapy (VMAT). It is unclear whether this is a fundamental limitation of VMAT delivery or the coplanar nature of its typical clinical plans. The non-coplanar basis of 4π is incorporated into VMAT treatment planning to compare its effect on plan quality. Methods: Clinical stereotactic body radiation therapy plans for 9 liver patients treated with 30–60 Gy using coplanar VMAT (cVMAT) were re-planned using non-coplanar VMAT (nVMAT) with 3 arcs and 4 π with 20 intensity-modulated non-coplanarmore » fields. All plans were optimized to deliver 100% of the prescribed dose to 95% of the planning target volume (PTV), and nVMAT and 4π plans were tailored to match the maximum and mean PTV dose from the clinical plan. The conformality index (CI), 50% dose spillage volume (R50), normal liver volume receiving >15 Gy (VL>15), and doses to organs at risk (OARs) were compared for all three treatment plans. Results: Compared to cVMAT, the nVMAT and 4π plans reduced VL>15 by an average of 30.6 cm3 and 96.3 cm3, respectively. The average CI was also reduced from 1.22 (cVMAT) to 1.17 (nVMAT) and 1.14 (4π), indicating higher conformality in the same order. Similarly, R50 was reduced from 3.87 (cVMAT) to 3.58 (nVMAT) and 2.74 (4π). With the exception of the mean right kidney dose, which increased by an average of only 0.6 Gy for nVMAT, the dose differences to OARs were not statistically significant between the two VMAT plans. 4π plans either significantly decreased or maintained OAR doses. Conclusion: While the manual selection of intuitive non-coplanar arcs does show some improvement over coplanar VMAT, the automated beam selection for 4π still results in superior plan quality. This project is supported in part by Varian Medical Systems and NIH R43 CA183390.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, K; Fujimoto, S; Akagi, Y
2014-06-01
Purpose: The aim of this dosimetric study was to develop 3D dose verification system for volumetric modulated arc therapy (VMAT) using polyacrylamide-based gel (PAGAT) dosimeter improved the sensitivity by magnesium chloride (MgCl{sub 2}). Methods: PAGAT gel containing MgCl{sub 2} as a sensitizer was prepared in this study. Methacrylic-acid-based gel (MAGAT) was also prepared to compare the dosimetric characteristics with PAGAT gel. The cylindrical glass vials (4 cm diameter, 12 cm length) filled with each polymer gel were irradiated with 6 MV photon beam using Novalis Tx linear accelerator (Varian/BrainLAB). The irradiated polymer gel dosimeters were scanned with Signa 1.5 Tmore » MRI system (GE), and dose calibration curves were obtained using T{sub 2} relaxation rate (R{sub 2} = 1/T{sub 2}). Dose rate (100-600 MU min{sup −1}) and fractionation (1-8 fractions) were varied. In addition, a cubic acrylic phantom (10 × 10 × 10 cm{sup 3}) filled with improved PAGAT gel inserted into the IMRT phantom (IBA) was irradiated with VMAT (RapidArc). C-shape structure was used for the VMAT planning by the Varian Eclipse treatment planning system (TPS). The dose comparison of TPS and measurements with the polymer gel dosimeter was accomplished by the gamma index analysis, overlaying the dose profiles for a set of data on selected planes using in-house developed software. Results: Dose rate and fractionation dependence of improved PAGAT gel were smaller than MAGAT gel. A high similarity was found by overlaying the dose profiles measured with improved PAGAT gel dosimeter and the TPS dose, and the mean pass rate of the gamma index analysis using 3%/3 mm criteria was achieved 90% on orthogonal planes for VMAT using improved PAGAT gel dosimeter. Conclusion: In-house developed 3D dose verification system using improved polyacrylamide-based gel dosimeter had a potential as an effective tool for VMAT QA.« less
A fast optimization approach for treatment planning of volumetric modulated arc therapy.
Yan, Hui; Dai, Jian-Rong; Li, Ye-Xiong
2018-05-30
Volumetric modulated arc therapy (VMAT) is widely used in clinical practice. It not only significantly reduces treatment time, but also produces high-quality treatment plans. Current optimization approaches heavily rely on stochastic algorithms which are time-consuming and less repeatable. In this study, a novel approach is proposed to provide a high-efficient optimization algorithm for VMAT treatment planning. A progressive sampling strategy is employed for beam arrangement of VMAT planning. The initial beams with equal-space are added to the plan in a coarse sampling resolution. Fluence-map optimization and leaf-sequencing are performed for these beams. Then, the coefficients of fluence-maps optimization algorithm are adjusted according to the known fluence maps of these beams. In the next round the sampling resolution is doubled and more beams are added. This process continues until the total number of beams arrived. The performance of VMAT optimization algorithm was evaluated using three clinical cases and compared to those of a commercial planning system. The dosimetric quality of VMAT plans is equal to or better than the corresponding IMRT plans for three clinical cases. The maximum dose to critical organs is reduced considerably for VMAT plans comparing to those of IMRT plans, especially in the head and neck case. The total number of segments and monitor units are reduced for VMAT plans. For three clinical cases, VMAT optimization takes < 5 min accomplished using proposed approach and is 3-4 times less than that of the commercial system. The proposed VMAT optimization algorithm is able to produce high-quality VMAT plans efficiently and consistently. It presents a new way to accelerate current optimization process of VMAT planning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cassidy, R.J., E-mail: richardjcassidy@emory.edu; Yang, X.; Liu, T.
Purpose: Sexual dysfunction after radiotherapy for prostate cancer remains an important late adverse toxicity. The neurovascular bundles (NVB) that lie posterolaterally to the prostate are typically spared during prostatectomy, but in traditional radiotherapy planning they are not contoured as an organ-at-risk with dose constraints. Our goal was to determine the dosimetric feasibility of “NVB-sparing” prostate radiotherapy while still delivering adequate dose to the prostate. Methods: Twenty-five consecutive patients with prostate cancer (with no extraprostatic disease on pelvic magnetic resonance imaging [MRI]) who that were treated with external beam radiotherapy, with the same primary planning target volume margins, to a dosemore » of 79.2 Gy were evaluated. Pelvic MRI and simulation computed tomography scans were registered using dedicated software to allow for bilateral NVB target delineation on T2-weighted MRI. A volumetric modulated arc therapy plan was generated using the NVB bilaterally with 2 mm margin as an organ to spare and compared to the patient’s previously delivered plan. Dose-volume histogram endpoints for NVB, rectum, bladder, and planning target volume 79.2 were compared between the 2 plans using a 2-tailed paired t-test. Results: The V70 for the NVB was significantly lower on the NVB-sparing plan (p <0.01), while rectum and bladder endpoints were similar. Target V100% was similar but V{sub 105%} was higher for the NVB-sparing plans (p <0.01). Conclusions: “NVB-sparing” radiotherapy is dosimetrically feasible using CT-MRI registration, and for volumetric modulated arc therapy technology — target coverage is acceptable without increased dose to other normal structures, but with higher target dose inhomogeneity. The clinical impact of “NVB-sparing” radiotherapy is currently under study at our institution.« less
Ultrafast treatment plan optimization for volumetric modulated arc therapy (VMAT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Men Chunhua; Romeijn, H. Edwin; Jia Xun
2010-11-15
Purpose: To develop a novel aperture-based algorithm for volumetric modulated arc therapy (VMAT) treatment plan optimization with high quality and high efficiency. Methods: The VMAT optimization problem is formulated as a large-scale convex programming problem solved by a column generation approach. The authors consider a cost function consisting two terms, the first enforcing a desired dose distribution and the second guaranteeing a smooth dose rate variation between successive gantry angles. A gantry rotation is discretized into 180 beam angles and for each beam angle, only one MLC aperture is allowed. The apertures are generated one by one in a sequentialmore » way. At each iteration of the column generation method, a deliverable MLC aperture is generated for one of the unoccupied beam angles by solving a subproblem with the consideration of MLC mechanic constraints. A subsequent master problem is then solved to determine the dose rate at all currently generated apertures by minimizing the cost function. When all 180 beam angles are occupied, the optimization completes, yielding a set of deliverable apertures and associated dose rates that produce a high quality plan. Results: The algorithm was preliminarily tested on five prostate and five head-and-neck clinical cases, each with one full gantry rotation without any couch/collimator rotations. High quality VMAT plans have been generated for all ten cases with extremely high efficiency. It takes only 5-8 min on CPU (MATLAB code on an Intel Xeon 2.27 GHz CPU) and 18-31 s on GPU (CUDA code on an NVIDIA Tesla C1060 GPU card) to generate such plans. Conclusions: The authors have developed an aperture-based VMAT optimization algorithm which can generate clinically deliverable high quality treatment plans at very high efficiency.« less
Mazzola, R; Ricchetti, F; Fiorentino, A; Di Paola, G; Fersino, S; Giaj Levra, N; Ruggieri, R; Alongi, F
2016-06-01
Cancer cachexia is a syndrome characterized by weight loss (WL) and sarcopenia. Aim of the study was to assess the impact of cachexia on head and neck changes during definitive cisplatin and image-guided volumetric-modulated arc radiation therapy in a series of locally advanced oropharyngeal cancer. Volume variations of sternocleidomastoid muscle (SCM) were considered as surrogate of muscle changes related to sarcopenia. Two head and neck diameters, encompassing the cranial limits of II and III nodal levels (defined as 'head diameter' and 'neck diameter', respectively), were measured. All parameters were defined retrospectively by means of on-board cone beam computed tomography images at 1-8th to 15-22th and at last fraction (fx) of radiotherapy (RT). Cachexia was defined as WL >5% during treatment. Analysis was conducted correlating the parameter changes with three WL ranges: <5, 5-9 and>10%. Thirty patients were evaluated. One hundred and fifty contoured SCMs and three hundred diameters were collected. Median WL was 6.5% (range, 0-16%). The most significant SCM shrinkage was recorded at 15th fx (mean 1.6 cc) related to WL 5-9% and WL >10% (P 0.001). For 'head diameter', the peak reduction was recorded at the 15th fx (mean 8 mm), statistically correlated to WL >10% (P 0.001). The peak reduction in 'neck diameter' was registered at the 22th fx (mean 6 mm), with a gradual reduction until the end of treatment for WL >5%. In a homogeneous cohort of patients, present study quantified the impact of cachexia on head and neck changes. Present data could provide adaptive RT implications for further investigations.
Impacts of lung and tumor volumes on lung dosimetry for nonsmall cell lung cancer.
Lei, Weijie; Jia, Jing; Cao, Ruifen; Song, Jing; Hu, Liqin
2017-09-01
The purpose of this study was to determine the impacts of lung and tumor volumes on normal lung dosimetry in three-dimensional conformal radiotherapy (3DCRT), step-and-shoot intensity-modulated radiotherapy (ssIMRT), and single full-arc volumetric-modulated arc therapy (VMAT) in treatment of nonsmall cell lung cancers (NSCLC). All plans were designed to deliver a total dose of 66 Gy in 33 fractions to PTV for the 32 NSCLC patients with various total (bilateral) lung volumes, planning target volumes (PTVs), and PTV locations. The ratio of the lung volume (total lung volume excluding the PTV volume) to the PTV volume (LTR) was evaluated to represent the impacts in three steps. (a) The least squares method was used to fit mean lung doses (MLDs) to PTVs or LTRs with power-law function in the population cohort (N = 32). (b) The population cohort was divided into three groups by LTRs based on first step and then by PTVs, respectively. The MLDs were compared among the three techniques in each LTR group (LG) and each PTV group (PG). (c) The power-law correlation was tested by using the adaptive radiation therapy (ART) planning data of individual patients in the individual cohort (N = 4). Different curves of power-law function with high R 2 values were observed between averaged LTRs and averaged MLDs for 3DCRT, ssIMRT, and VMAT, respectively. In the individual cohort, high R 2 values of fitting curves were also observed in individual patients in ART, although the trend was highly patient-specific. There was a more obvious correlation between LTR and MLD than that between PTV and MLD. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Hayashi, Naoki; Malmin, Ryan L; Watanabe, Yoichi
2014-05-01
Several tools are used for the dosimetric verification of intensity-modulated arc therapy (IMAT) treatment delivery. However, limited information is available for composite on-line evaluation of these tools. The purpose of this study was to evaluate the dosimetric verification of IMAT treatment plans using a 2D diode array detector (2D array), radiochromic film (RCF) and radiosensitive polymer gel dosimeter (RPGD). The specific verification plans were created for IMAT for two prostate cancer patients by use of the clinical treatment plans. Accordingly, the IMAT deliveries were performed with the 2D array on a gantry-mounting device, RCF in a cylindrical acrylic phantom, and the RPGD in two cylindrical phantoms. After the irradiation, the planar dose distributions from the 2D array and the RCFs, and the 3D dose distributions from the RPGD measurements were compared with the calculated dose distributions using the gamma analysis method (3% dose difference and 3-mm distance-to-agreement criterion), dose-dependent dose difference diagrams, dose difference histograms, and isodose distributions. The gamma passing rates of 2D array, RCFs and RPGD for one patient were 99.5%, 96.5% and 93.7%, respectively; the corresponding values for the second patient were 97.5%, 92.6% and 92.9%. Mean percentage differences between the RPGD measured and calculated doses in 3D volumes containing PTVs were -0.29 ± 7.1% and 0.97 ± 7.6% for the two patients, respectively. In conclusion, IMAT prostate plans can be delivered with high accuracy, although the 3D measurements indicated less satisfactory agreement with the treatment plans, mainly due to the dosimetric inaccuracy in low-dose regions of the RPGD measurements.
Tanooka, Masao; Doi, Hiroshi; Miura, Hideharu; Inoue, Hiroyuki; Niwa, Yasue; Takada, Yasuhiro; Fujiwara, Masayuki; Sakai, Toshiyuki; Sakamoto, Kiyoshi; Kamikonya, Norihiko; Hirota, Shozo
2013-01-01
We validated 3D radiochromic film dosimetry for volumetric modulated arc therapy (VMAT) using a newly developed spiral water phantom. The phantom consists of a main body and an insert box, each of which has an acrylic wall thickness of 3 mm and is filled with water. The insert box includes a spiral film box used for dose-distribution measurement, and a film holder for positioning a radiochromic film. The film holder has two parallel walls whose facing inner surfaces are equipped with spiral grooves in a mirrored configuration. The film is inserted into the spiral grooves by its side edges and runs along them to be positioned on a spiral plane. Dose calculation was performed by applying clinical VMAT plans to the spiral water phantom using a commercial Monte Carlo-based treatment-planning system, Monaco, whereas dose was measured by delivering the VMAT beams to the phantom. The calculated dose distributions were resampled on the spiral plane, and the dose distributions recorded on the film were scanned. Comparisons between the calculated and measured dose distributions yielded an average gamma-index pass rate of 87.0% (range, 91.2–84.6%) in nine prostate VMAT plans under 3 mm/3% criteria with a dose-calculation grid size of 2 mm. The pass rates were increased beyond 90% (average, 91.1%; range, 90.1–92.0%) when the dose-calculation grid size was decreased to 1 mm. We have confirmed that 3D radiochromic film dosimetry using the spiral water phantom is a simple and cost-effective approach to VMAT dose verification. PMID:23685667
Franzese, C; Fogliata, A; D'Agostino, G R; Di Brina, L; Comito, T; Navarria, P; Cozzi, L; Scorsetti, M
2017-07-01
The optimal treatment for unfavourable intermediate/high-risk prostate cancer is still debated. In the present study, the pattern of toxicity and early clinical outcome of patients with localized prostate cancer was analyzed. A cohort of 90 patients treated on pelvic lymph nodes from 2010 to 2015 was selected. All patients were treated with Volumetric Modulated Arc Therapy (VMAT), and Simultaneous integrated boost (SIB) in 28 fractions; the prostate, the seminal vesicle and the pelvic lymph node received total doses of 74.2, 65.5, and 51.8 Gy, respectively. End points were the detection of acute and late toxicities graded according to the Common Toxicity Criteria CTCAE version 3, evaluating the rectal, genito-urinary and gastro-intestinal toxicity. Correlation of OARs dose parameters and related toxicities was explored. Preliminary overall survival and Progression-free survival (PFS) were evaluated. With a median follow-up of 25 months, no interruptions for treatment-related toxicity were recorded. Univariate analysis among dosimetric data and acute toxicities showed no correlations. Regarding late toxicity: the dose received by a rectal volume of 90 cm 3 was found to be significant for toxicity prediction (p = 0.024). PFS was 90.6% and 60.2% at 2 and 4 years, respectively. PFS correlates with age (p = 0.011) and Gleason score (p = 0.011). Stratifying the PSA nadir in quartiles, its value was significant (p = 0.016) in predicting PFS, showing a reduction of PFS of 2 months for each PSA-nadir increase of 0.1 ng/ml. HRT with VMAT and SIB on the whole pelvis in unfavourable prostate cancer patients is effective with a mild pattern of toxicity.
Park, Jong In; Park, Jong Min; Kim, Jung-In; Park, So-Yeon; Ye, Sung-Joon
2015-12-01
The aim of this study was to investigate the sensitivity of the gamma-index method according to various gamma criteria for volumetric modulated arc therapy (VMAT). Twenty head and neck (HN) and twenty prostate VMAT plans were retrospectively selected for this study. Both global and local 2D gamma evaluations were performed with criteria of 3%/3 mm, 2%/2 mm, 1%/2 mm and 2%/1 mm. In this study, the global and local gamma-index calculated the differences in doses relative to the maximum dose and the dose at the current measurement point, respectively. Using log files acquired during delivery, the differences in parameters at every control point between the VMAT plans and the log files were acquired. The differences in dose-volumetric parameters between reconstructed VMAT plans using the log files and the original VMAT plans were calculated. The Spearman's rank correlation coefficients (rs) were calculated between the passing rates and those differences. Considerable correlations with statistical significances were observed between global 1%/2 mm, local 1%/2 mm and local 2%/1 mm and the MLC position differences (rs = -0.712, -0.628 and -0.581). The numbers of rs values with statistical significance between the passing rates and the changes in dose-volumetric parameters were largest in global 2%/2 mm (n = 16), global 2%/1 mm (n = 15) and local 2%/1 mm (n = 13) criteria. Local gamma-index method with 2%/1 mm generally showed higher sensitivity to detect deviations between a VMAT plan and the delivery of the VMAT plan. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Assessment of Volumetric-Modulated Arc Therapy for Constant and Variable Dose Rates
De Ornelas-Couto, Mariluz; Mihaylov, Ivaylo; Dogan, Nesrin
2017-01-01
Purpose: The aim of this study is to compare the effects of dose rate on volumetric-modulated arc therapy plans to determine optimal dose rates for prostate and head and neck (HN) cases. Materials and Methods: Ten prostate and ten HN cases were retrospectively studied. For each case, seven plans were generated: one variable dose rate (VDR) and six constant dose rate (CDR) (100–600 monitor units [MUs]/min) plans. Prescription doses were: 80 Gy to planning target volume (PTV) for the prostate cases, and 70, 60, and 54 Gy to PTV1, PTV2, and PTV3, respectively, for HN cases. Plans were normalized to 95% of the PTV and PTV1, respectively, with the prescription dose. Plans were assessed using Dose-Volume-Histogram metrics, homogeneity index, conformity index, MUs, and delivery time. Results: For the prostate cases, significant differences were found for rectum D35 between VDR and all CDR plans, except CDR500. Furthermore, VDR was significantly different than CDR100 and 200 for bladder D50. Delivery time for all CDR plans and MUs for CDR400–600 were significantly higher when compared to VDR. HN cases showed significant differences between VDR and CDR100, 500 and 600 for D2 to the cord and brainstem. Significant differences were found for delivery time and MUs for all CDR plans, except CDR100 for number of MUs. Conclusion: The most significant differences were observed in delivery time and number of MUs. All-in-all, the best CDR for prostate cases was found to be 300 MUs/min and 200 or 300 MUs/min for HN cases. However, VDR plans are still the choice in terms of MU efficiency and plan quality. PMID:29296033
Sonmez, S; Erbay, G; Guler, O C; Arslan, G
2014-01-01
Objective: This study compared the dosimetry of volumetric-arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) with a dynamic multileaf collimator using the Monte Carlo algorithm in the treatment of prostate cancer with and without simultaneous integrated boost (SIB) at different energy levels. Methods: The data of 15 biopsy-proven prostate cancer patients were evaluated. The prescribed dose was 78 Gy to the planning target volume (PTV78) including the prostate and seminal vesicles and 86 Gy (PTV86) in 39 fractions to the intraprostatic lesion, which was delineated by MRI or MR-spectroscopy. Results: PTV dose homogeneity was better for IMRT than VMAT at all energy levels for both PTV78 and PTV86. Lower rectum doses (V30–V50) were significantly higher with SIB compared with PTV78 plans in both IMRT and VMAT plans at all energy levels. The bladder doses at high dose level (V60–V80) were significantly higher in IMRT plans with SIB at all energy levels compared with PTV78 plans, but no significant difference was observed in VMAT plans. VMAT plans resulted in a significant decrease in the mean monitor units (MUs) for 6, 10, and 15 MV energy levels both in plans with and those without SIB. Conclusion: Dose escalation to intraprostatic lesions with 86 Gy is safe without causing serious increase in organs at risk (OARs) doses. VMAT is advantageous in sparing OARs and requiring less MU than IMRT. Advances in knowledge: VMAT with SIB to intraprostatic lesion is a feasible method in treating prostate cancer. Additionally, no dosimetric advantage of higher energy is observed. PMID:24319009
Mani, Karthick Raj; Upadhayay, Sagar; Das, K J Maria
2017-03-01
To Study the dosimetric advantage of the Jaw tracking technique in intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) for Head and Neck Cancers. We retrospectively selected 10 previously treated head and neck cancer patients stage (T1/T2, N1, M0) in this study. All the patients were planned for IMRT and VMAT with simultaneous integrated boost technique. IMRT and VMAT plans were performed with jaw tracking (JT) and with static jaw (SJ) technique by keeping the same constraints and priorities for a particular patient. Target conformity, dose to the critical structures and low dose volumes were recorded and analyzed for IMRT and VMAT plans with and without JT for all the patients. The conformity index average of all patients followed by standard deviation ([Formula: see text] ± [Formula: see text]) of the JT-IMRT, SJ-IMRT, JT-VMAT, and SJ-VMAT were 1.72 ± 0.56, 1.67 ± 0.57, 1.83 ± 0.65, and 1.85 ± 0.64, and homogeneity index were 0.059 ± 0.05, 0.064 ± 0.05, 0.064 ± 0.04, and 0.064 ± 0.05. JT-IMRT shows significant mean reduction in right parotid and left parotid shows of 7.64% (p < 0.001) and 7.45% (p < 0.001) compare to SJ-IMRT. JT-IMRT plans also shows considerable dose reduction to thyroid, inferior constrictors, spinal cord and brainstem compared to the SJ-IMRT plans. Significant dose reductions were observed for critical structure in the JT-IMRT compared to SJ-IMRT technique. In JT-VMAT plans dose reduction to the critical structure were not significant compared to the SJ-IMRT due to relatively lesser monitor units.
Comparison between DCA - SSO - VDR and VMAT dose delivery techniques for 15 SRS/SRT patients
NASA Astrophysics Data System (ADS)
Tas, B.; Durmus, I. F.
2018-02-01
To evaluate dose delivery between Dynamic Conformal Arc (DCA) - Segment Shape Optimization (SSO) - Variation Dose Rate (VDR) and Volumetric Modulated Arc Therapy (VMAT) techniques for fifteen SRS patients using Versa HD® lineer accelerator. Fifteen SRS / SRT patient's optimum treatment planning were performed using Monaco5.11® treatment planning system (TPS) with 1 coplanar and 3 non-coplanar fields for VMAT technique, then the plans were reoptimized with the same optimization parameters for DCA - SSO - VDR technique. The advantage of DCA - SSO - VDR technique were determined less MUs and beam on time, also larger segments decrease dosimetric uncertainities of small fields quality assurance. The advantage of VMAT technique were determined a little better GI, CI, PCI, brain V12Gy and brain mean dose. The results show that the clinical objectives and plans for both techniques satisfied all organs at risks (OARs) dose constraints. Depends on the shape and localization of target, we could choose one of these techniques for linear accelerator based SRS / SRT treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Matthew Christopher, E-mail: wardm3@ccf.org; Pham, Yvonne D.; Kotecha, Rupesh
2016-04-01
Conventional parallel-opposed radiotherapy (PORT) is the established standard technique for early-stage glottic carcinoma. However, case reports have reported the utility of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) with or without image guidance (image-guided radiotherapy, IGRT) in select patients. The proposed advantages of IMRT/VMAT include sparing of the carotid artery, thyroid gland, and the remaining functional larynx, although these benefits remain unclear. The following case study presents a patient with multiple vascular comorbidities treated with VMAT for early-stage glottic carcinoma. A detailed explanation of the corresponding treatment details, dose-volume histogram (DVH) analysis, and a review of the relevant literaturemore » are provided. Conventional PORT remains the standard of care for early-stage glottic carcinoma. IMRT or VMAT may be beneficial for select patients, although great care is necessary to avoid a geographical miss. Clinical data supporting the benefit of CRT are lacking. Therefore, these techniques should be used with caution and only in selected patients.« less
Deep Inspiration Breath Hold—Based Radiation Therapy: A Clinical Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boda-Heggemann, Judit, E-mail: judit.boda-heggemann@umm.de; Knopf, Antje-Christin; Simeonova-Chergou, Anna
Several recent developments in linear accelerator–based radiation therapy (RT) such as fast multileaf collimators, accelerated intensity modulation paradigms like volumeric modulated arc therapy and flattening filter-free (FFF) high-dose-rate therapy have dramatically shortened the duration of treatment fractions. Deliverable photon dose distributions have approached physical complexity limits as a consequence of precise dose calculation algorithms and online 3-dimensional image guided patient positioning (image guided RT). Simultaneously, beam quality and treatment speed have continuously been improved in particle beam therapy, especially for scanned particle beams. Applying complex treatment plans with steep dose gradients requires strategies to mitigate and compensate for motion effectsmore » in general, particularly breathing motion. Intrafractional breathing-related motion results in uncertainties in dose delivery and thus in target coverage. As a consequence, generous margins have been used, which, in turn, increases exposure to organs at risk. Particle therapy, particularly with scanned beams, poses additional problems such as interplay effects and range uncertainties. Among advanced strategies to compensate breathing motion such as beam gating and tracking, deep inspiration breath hold (DIBH) gating is particularly advantageous in several respects, not only for hypofractionated, high single-dose stereotactic body RT of lung, liver, and upper abdominal lesions but also for normofractionated treatment of thoracic tumors such as lung cancer, mediastinal lymphomas, and breast cancer. This review provides an in-depth discussion of the rationale and technical implementation of DIBH gating for hypofractionated and normofractionated RT of intrathoracic and upper abdominal tumors in photon and proton RT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, J; Kim, J; Eom, K
Purpose: The purpose of this study is to determine the optimal treatment planning strategy among the different arc arrangements for prostate stereotactic body radiotherapy (SBRT) plans with volumetric modulated arc therapy (VMAT). Methods: Ten patients with prostate cancer were selected. The SBRT-VMAT plans for each patient were generated with single-full (181° to 179°; 1FA), single-partial (240° to 120°; 1PA), double-full (181° to 179° and 179° to 181°; 2FA), and double-partial (240° to 120° and 120° to 240°; 2PA) arc arrangements. The prescription dose was 42.7 Gy in 7 fractions. Dose distribution was calculated using a 10-MV flattening-filter-free beam and themore » Acuros XB algorithm. Dosimetric parameters of target volume and organs at risk (OARs) were evaluated from cumulative dose-volume histograms on prostate SBRT-VMAT plans between single-arc (1FA and 1PA) and double-arc (2FA and 2PA) arrangements. Results: All plans using four arc arrangements were highly conformal with conformity index (CI)<1.05 and conformation number (CN)=0.91, and the doses to target volume were homogeneous (homogeneity index (HI)= 0.09 0.12). Pertaining to the dose to the OARs, there were significant differences in the rectum, left and right femoral head doses while having no difference in the bladder dose. The partial-arc (1PA and 2PA) had relatively high reductions for the mean rectum dose compared to full-arc (1FA and 2FA). The near-to-maximum dose (D2%) and mean dose of the left and right femoral head were always lower on prostate SBRT-VMAT plan using the full-arc, when compared to the partial-arc arrangement. Conclusion: This study confirmed that prostate SBRT-VMAT using 1PA was feasible fast delivery time and produced equivalent target coverage and better rectum sparing, although the D2% and mean dose of the left and right femoral head increased slightly. Therefore, the results of this study suggest that the use of 1PA is an attractive choice for delivering prostate SBRT-VMAT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Xuanfeng, E-mail: Xuanfeng.ding@beaumont.org; Li, Xiaoqiang; Zhang, J. Michele
Purpose: To present a novel robust and delivery-efficient spot-scanning proton arc (SPArc) therapy technique. Methods and Materials: A SPArc optimization algorithm was developed that integrates control point resampling, energy layer redistribution, energy layer filtration, and energy layer resampling. The feasibility of such a technique was evaluated using sample patients: 1 patient with locally advanced head and neck oropharyngeal cancer with bilateral lymph node coverage, and 1 with a nonmobile lung cancer. Plan quality, robustness, and total estimated delivery time were compared with the robust optimized multifield step-and-shoot arc plan without SPArc optimization (Arc{sub multi-field}) and the standard robust optimized intensity modulatedmore » proton therapy (IMPT) plan. Dose-volume histograms of target and organs at risk were analyzed, taking into account the setup and range uncertainties. Total delivery time was calculated on the basis of a 360° gantry room with 1 revolutions per minute gantry rotation speed, 2-millisecond spot switching time, 1-nA beam current, 0.01 minimum spot monitor unit, and energy layer switching time of 0.5 to 4 seconds. Results: The SPArc plan showed potential dosimetric advantages for both clinical sample cases. Compared with IMPT, SPArc delivered 8% and 14% less integral dose for oropharyngeal and lung cancer cases, respectively. Furthermore, evaluating the lung cancer plan compared with IMPT, it was evident that the maximum skin dose, the mean lung dose, and the maximum dose to ribs were reduced by 60%, 15%, and 35%, respectively, whereas the conformity index was improved from 7.6 (IMPT) to 4.0 (SPArc). The total treatment delivery time for lung and oropharyngeal cancer patients was reduced by 55% to 60% and 56% to 67%, respectively, when compared with Arc{sub multi-field} plans. Conclusion: The SPArc plan is the first robust and delivery-efficient proton spot-scanning arc therapy technique, which could potentially be implemented into routine clinical practice.« less
Statistical process control analysis for patient-specific IMRT and VMAT QA.
Sanghangthum, Taweap; Suriyapee, Sivalee; Srisatit, Somyot; Pawlicki, Todd
2013-05-01
This work applied statistical process control to establish the control limits of the % gamma pass of patient-specific intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) quality assurance (QA), and to evaluate the efficiency of the QA process by using the process capability index (Cpml). A total of 278 IMRT QA plans in nasopharyngeal carcinoma were measured with MapCHECK, while 159 VMAT QA plans were undertaken with ArcCHECK. Six megavolts with nine fields were used for the IMRT plan and 2.5 arcs were used to generate the VMAT plans. The gamma (3%/3 mm) criteria were used to evaluate the QA plans. The % gamma passes were plotted on a control chart. The first 50 data points were employed to calculate the control limits. The Cpml was calculated to evaluate the capability of the IMRT/VMAT QA process. The results showed higher systematic errors in IMRT QA than VMAT QA due to the more complicated setup used in IMRT QA. The variation of random errors was also larger in IMRT QA than VMAT QA because the VMAT plan has more continuity of dose distribution. The average % gamma pass was 93.7% ± 3.7% for IMRT and 96.7% ± 2.2% for VMAT. The Cpml value of IMRT QA was 1.60 and VMAT QA was 1.99, which implied that the VMAT QA process was more accurate than the IMRT QA process. Our lower control limit for % gamma pass of IMRT is 85.0%, while the limit for VMAT is 90%. Both the IMRT and VMAT QA processes are good quality because Cpml values are higher than 1.0.
NASA Astrophysics Data System (ADS)
Hälg, R. A.; Besserer, J.; Boschung, M.; Mayer, S.; Lomax, A. J.; Schneider, U.
2014-05-01
In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small.
Hälg, R A; Besserer, J; Boschung, M; Mayer, S; Lomax, A J; Schneider, U
2014-05-21
In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small.
Dosimetric impact of a change in breathing period on VMAT stereotactic ablative body radiotherapy
NASA Astrophysics Data System (ADS)
Olding, T.; Alexander, KM
2017-05-01
The dosimetric impact of a change in breathing period during treatment was assessed for a volumetric modulated arc therapy (VMAT) stereotactic ablative radiotherapy (SABR) lung plan optimized according to our centre’s planning protocol. Plan delivery was evaluated at three breathing rates ranging from 7 to 23 breaths-per-minute (BPM) against the planning anatomy (15 BPM) calculated dose. Dynamic ion chamber, EBT3 film and Fricke-xylenol orange-gelatin (FXG) gel measurements were acquired using a motion phantom with appropriate inserts for each dosimeter. The results show good agreement between measured and calculated plan dose within the internal gross tumour volume (IGTV) target.
Shimer, D.W.; Lange, A.C.
1995-05-23
A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.
Shimer, Daniel W.; Lange, Arnold C.
1995-01-01
A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.
E-beam high voltage switching power supply
Shimer, Daniel W.; Lange, Arnold C.
1997-01-01
A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.
E-beam high voltage switching power supply
Shimer, D.W.; Lange, A.C.
1997-03-11
A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360{degree}/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs.
The ArcB Leucine Zipper Domain Is Required for Proper ArcB Signaling
Nuñez Oreza, Luis Alberto; Alvarez, Adrián F.; Arias-Olguín, Imilla I.; Torres Larios, Alfredo; Georgellis, Dimitris
2012-01-01
The Arc two-component system modulates the expression of numerous genes in response to respiratory growth conditions. This system comprises ArcA as the response regulator and ArcB as the sensor kinase. ArcB is a tripartite histidine kinase whose activity is regulated by the oxidation of two cytosol-located redox-active cysteine residues that participate in intermolecular disulfide bond formation. Here, we report that the ArcB protein segment covering residues 70–121, fulfills the molecular characteristics of a leucine zipper containing coiled coil structure. Also, mutational analyses of this segment reveal three different phenotypical effects to be distributed along the coiled coil structure of ArcB, demonstrating that this motif is essential for proper ArcB signaling. PMID:22666479
SU-E-T-367: Optimization of DLG Using TG-119 Test Cases and a Weighted Mean Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sintay, B; Vanderstraeten, C; Terrell, J
2014-06-01
Purpose: Optimization of the dosimetric leaf gap (DLG) is an important step in commissioning the Eclipse treatment planning system for sliding window intensity-modulated radiation therapy (SW-IMRT) and RapidArc. Often the values needed for optimal dose delivery differ markedly from those measured at commissioning. We present a method to optimize this value using the AAPM TG-119 test cases. Methods: For SW-IMRT and RapidArc, TG-119 based test plans were created using a water-equivalent phantom. Dose distributions measured on film and ion chamber (IC) readings taken in low-gradient regions within the targets were analyzed separately. Since DLG is a single value per energy,more » SW-IMRT and RapidArc must be considered simultaneously. Plans were recalculated using a linear sweep from 0.02cm (the minimum DLG) to 0.3 cm. The calculated point doses were compared to the measured doses for each plan, and based on these comparisons an optimal DLG value was computed for each plan. TG-119 cases are designed to push the system in various ways, thus, a weighted mean of the DLG was computed where the relative importance of each type of plan was given a score from 0.0 to 1.0. Finally, SW-IMRT and RapidArc are assigned an overall weight based on clinical utilization. Our routine patient-QA (PQA) process was performed as independent validation. Results: For a Varian TrueBeam, the optimized DLG varied with σ = 0.044cm for SW-IMRT and σ = 0.035cm for RapidArc. The difference between the weighted mean SW-IMRT and RapidArc value was 0.038cm. We predicted utilization of 25% SW-IMRT and 75% RapidArc. The resulting DLG was ~1mm different than that found by commissioning and produced an average error of <1% for SW-IMRT and RapidArc PQA test cases separately. Conclusion: The weighted mean method presented is a useful tool for determining an optimal DLG value for commissioning Eclipse.« less
2011-01-01
Purpose To verify the dose distribution and number of monitor units (MU) for dynamic treatment techniques like volumetric modulated single arc radiation therapy - Rapid Arc - each patient treatment plan has to be verified prior to the first treatment. The purpose of this study was to develop a patient related treatment plan verification protocol using a two dimensional ionization chamber array (MatriXX, IBA, Schwarzenbruck, Germany). Method Measurements were done to determine the dependence between response of 2D ionization chamber array, beam direction, and field size. Also the reproducibility of the measurements was checked. For the patient related verifications the original patient Rapid Arc treatment plan was projected on CT dataset of the MatriXX and the dose distribution was calculated. After irradiation of the Rapid Arc verification plans measured and calculated 2D dose distributions were compared using the gamma evaluation method implemented in the measuring software OmniPro (version 1.5, IBA, Schwarzenbruck, Germany). Results The dependence between response of 2D ionization chamber array, field size and beam direction has shown a passing rate of 99% for field sizes between 7 cm × 7 cm and 24 cm × 24 cm for measurements of single arc. For smaller and larger field sizes than 7 cm × 7 cm and 24 cm × 24 cm the passing rate was less than 99%. The reproducibility was within a passing rate of 99% and 100%. The accuracy of the whole process including the uncertainty of the measuring system, treatment planning system, linear accelerator and isocentric laser system in the treatment room was acceptable for treatment plan verification using gamma criteria of 3% and 3 mm, 2D global gamma index. Conclusion It was possible to verify the 2D dose distribution and MU of Rapid Arc treatment plans using the MatriXX. The use of the MatriXX for Rapid Arc treatment plan verification in clinical routine is reasonable. The passing rate should be 99% than the verification protocol is able to detect clinically significant errors. PMID:21342509
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guy, Jean-Baptiste; Falk, Alexander T.; Auberdiac, Pierre
Introduction: For patients with cervical cancer, intensity-modulated radiation therapy (IMRT) improves target coverage and allows dose escalation while reducing the radiation dose to organs at risk (OARs). In this study, we compared dosimetric parameters among 3-dimensional conformal radiotherapy (3D-CRT), “step-and-shoot” IMRT, and volumetric intensity-modulated arc radiotherapy (VMAT) in a series of patients with cervical cancer receiving definitive radiotherapy. Computed tomography (CT) scans of 10 patients with histologically proven cervical cancer treated with definitive radiation therapy (RT) from December 2008 to March 2010 at our department were selected for this study. The gross tumor volume (GTV) and clinical target volume (CTV)more » were delineated following the guidelines of the Gyn IMRT consortium that included cervix, uterus, parametrial tissues, and the pelvic nodes including presacral. The median age was 57 years (range: 30 to 85 years). All 10 patients had squamous cell carcinoma with Federation of Gynecology and Obstetrics (FIGO) stage IB-IIIB. All patients were treated by VMAT. OAR doses were significantly reduced for plans with intensity-modulated technique compared with 3D-CRT except for the dose to the vagina. Between the 2 intensity-modulated techniques, significant difference was observed for the mean dose to the small intestine, to the benefit of VMAT (p < 0.001). There was no improvement in terms of OARs sparing for VMAT although there was a tendency for a slightly decreased average dose to the rectum: − 0.65 Gy but not significant (p = 0.07). The intensity modulation techniques have many advantages in terms of quality indexes, and particularly OAR sparing, compared with 3D-CRT. Following the ongoing technologic developments in modern radiotherapy, it is essential to evaluate the intensity-modulated techniques on prospective studies of a larger scale.« less
Hansen, Christian Rønn; Nielsen, Morten; Bertelsen, Anders Smedegaard; Hazell, Irene; Holtved, Eva; Zukauskaite, Ruta; Bjerregaard, Jon Kroll; Brink, Carsten; Bernchou, Uffe
2017-11-01
The quality of radiotherapy planning has improved substantially in the last decade with the introduction of intensity modulated radiotherapy. The purpose of this study was to analyze the plan quality and efficacy of automatically (AU) generated VMAT plans for inoperable esophageal cancer patients. Thirty-two consecutive inoperable patients with esophageal cancer originally treated with manually (MA) generated volumetric modulated arc therapy (VMAT) plans were retrospectively replanned using an auto-planning engine. All plans were optimized with one full 6MV VMAT arc giving 60 Gy to the primary target and 50 Gy to the elective target. The planning techniques were blinded before clinical evaluation by three specialized oncologists. To supplement the clinical evaluation, the optimization time for the AU plan was recorded along with DVH parameters for all plans. Upon clinical evaluation, the AU plan was preferred for 31/32 patients, and for one patient, there was no difference in the plans. In terms of DVH parameters, similar target coverage was obtained between the two planning methods. The mean dose for the spinal cord increased by 1.8 Gy using AU (p = .002), whereas the mean lung dose decreased by 1.9 Gy (p < .001). The AU plans were more modulated as seen by the increase of 12% in mean MUs (p = .001). The median optimization time for AU plans was 117 min. The AU plans were in general preferred and showed a lower mean dose to the lungs. The automation of the planning process generated esophageal cancer treatment plans quickly and with high quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pursley, J; Gueorguiev, G; Prichard, H
Purpose: To demonstrate the commissioning of constant dose rate volumetric modulated arc therapy (VMAT) in the Raystation treatment planning system for a Varian Clinac iX with Exact couch. Methods: Constant dose rate (CDR) VMAT is an option in the Raystation treatment planning system, enabling VMAT delivery on Varian linacs without a RapidArc upgrade. Raystation 4.7 was used to commission CDR-VMAT for a Varian Clinac iX. Raystation arc model parameters were selected to match machine deliverability characteristics. A Varian Exact couch model was added to Raystation 4.7 and commissioned for use in VMAT optimization. CDR-VMAT commissioning checks were performed on themore » linac, including patient-specific QA measurements for 10 test patients using both the ArcCHECK from Sun Nuclear Corporation and COMPASS from IBA Dosimetry. Multi-criteria optimization (MCO) in Raystation was used for CDR-VMAT planning. Results: Raystation 4.7 generated clinically acceptable and deliverable CDR-VMAT plans for the Varian Clinac. VMAT plans were optimized including a model of the Exact couch with both rails in the out positions. CDR-VMAT plans generated with MCO in Raystation were dosimetrically comparable to Raystation MCO-generated IMRT plans. Patient-specific QA measurements with the ArcCHECK on the couch showed good agreement with the treatment planning system prediction. Patient-specific, structure-specific, multi-statistical parameter 3D QA measurements with gantry-mounted COMPASS also showed good agreement. Conclusion: Constant dose rate VMAT was successfully modeled in Raystation 4.7 for a Varian Clinac iX, and Raystation’s multicriteria optimization generated constant dose rate VMAT plans which were deliverable and dosimetrically comparable to IMRT plans.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyde, Derek; Robinson, Mark; Araujo, Cynthia
2016-08-15
Purpose: Lung SABR patients are treated using Volumetrically Modulated Arc Therapy (VMAT), utilizing 2 arcs with Conebeam CT (CBCT) image-guidance prior to each arc. Intra-fraction imaging can prolong treatment time (up to 20%), and the aim of this study is to determine if it is necessary. Methods: We utilize an in-house abdominal compression device to minimize respiratory motion, 4DCT to define the ITV, a 5 mm PTV margin and a 2–3 mm PRV margin. We treated 23 patients with VMAT, fifteen were treated to 48 Gy in 4 fractions, while eight were treated with up to 60 Gy in 8more » fractions. Intrafraction motion was assessed by the translational errors recorded for the second CBCT. Results: There was no significant difference (t-test, p=0.93) in the intra-fraction motion between the patients treated with 4 and 8 fractions, or between the absolute translations in each direction (ANOVA, p=0.17). All 124 intra-fraction CBCT images were analysed and 95% remained localized within the 5 mm PTV margin The mean magnitude of the vector displacement was 1.8 mm. Conclusions: For patients localized with an abdominal compression device, the intrafraction CBCT image may not be necessary, if it is only the tumor coverage that is of concern, as the patients are typically well within the 5 mm PTV margin. On the other hand, if there is a structure with a smaller PRV margin, an intrafraction CBCT is recommended to ensure that the dose limit for the organ at risk is not exceeded.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kranen, Simon van; Hamming-Vrieze, Olga; Wolf, Annelisa
Purpose: We set out to investigate loss of target coverage from anatomy changes in head and neck cancer patients as a function of applied safety margins and to verify a cone beam computed tomography (CBCT)–based adaptive strategy with an average patient anatomy to overcome possible target underdosage. Methods and Materials: For 19 oropharyngeal cancer patients, volumetric modulated arc therapy treatment plans (2 arcs; simultaneous integrated boost, 70 and 54.25 Gy; 35 fractions) were automatically optimized with uniform clinical target volume (CTV)–to–planning target volume margins of 5, 3, and 0 mm. We applied b-spline CBCT–to–computed tomography (CT) deformable registration to allow recalculation ofmore » the dose on modified CT scans (planning CT deformed to daily CBCT following online positioning) and dose accumulation in the planning CT scan. Patients with deviations in primary or elective CTV coverage >2 Gy were identified as candidates for adaptive replanning. For these patients, a single adaptive intervention was simulated with an average anatomy from the first 10 fractions. Results: Margin reduction from 5 mm to 3 mm to 0 mm generally led to an organ-at-risk (OAR) mean dose (D{sub mean}) sparing of approximately 1 Gy/mm. CTV shrinkage was mainly seen in the elective volumes (up to 10%), likely related to weight loss. Despite online repositioning, substantial systematic errors were present (>3 mm) in lymph node CTV, the parotid glands, and the larynx. Nevertheless, the average increase in OAR dose was small: maximum of 1.2 Gy (parotid glands, D{sub mean}) for all applied margins. Loss of CTV coverage >2 Gy was found in 1, 3, and 7 of 73 CTVs, respectively. Adaptive intervention in 0-mm plans substantially improved coverage: in 5 of 7 CTVs (in 6 patients) to <2 Gy of initially planned. Conclusions: Volumetric modulated arc therapy head and neck cancer treatment plans with 5-mm margins are robust for anatomy changes and show a modest increase in OAR dose. Margin reduction improves OAR sparing with approximately 1 Gy/mm at the expense of target coverage in a subgroup of patients. Patients at risk of CTV underdosage >2 Gy in 0-mm plans may be identified early in treatment using dose accumulation. A single intervention with an average anatomy derived from CBCT effectively mitigates discrepancies.« less
PRESAGE® as a solid 3-D radiation dosimeter: A review article
NASA Astrophysics Data System (ADS)
Khezerloo, Davood; Nedaie, Hassan Ali; Takavar, Abbas; Zirak, Alireza; Farhood, Bagher; Movahedinejhad, Hadi; Banaee, Nooshin; Ahmadalidokht, Isa; Knuap, Courtney
2017-12-01
Radiation oncology has been rapidly improved by the application of new equipment and techniques. With the advent of new complex and precise radiotherapy techniques such as intensity modulated radiotherapy, stereotactic radiosurgery, and volumetric modulated arc therapy, the demand for an accurate and feasible three-dimensional (3-D) dosimetry system has increased. The most important features of a 3-D dosimeter, apart from being precise, accurate and reproducible, include also its low cost, feasibility, and availability. In 2004 a new generation of solid plastic dosimeters which demonstrate a radiochromic response to ionizing radiation was introduced. PRESAGE® plastic dosimeter lacks the limitations of previous Ferric and polymer plastic 3-D dosimeters such as diffusion, sensitivity to oxygen, fabrication problems, scanning and read out challenges. In this decade, a large number of efforts have been carried out to enhance PRESAGE® structure and scanning methods. This article attempts to review and reflect on the results of these investigations.
Dynamic 3D measurement of modulated radiotherapy: a scintillator-based approach
NASA Astrophysics Data System (ADS)
Archambault, Louis; Rilling, Madison; Roy-Pomerleau, Xavier; Thibault, Simon
2017-05-01
With the rise of high-conformity dynamic radiotherapy, such as volumetric modulated arc therapy and robotic radiosurgery, the temporal dimension of dose measurement is becoming increasingly important. It must be possible to tell both ‘where’ and ‘when’ a discrepancy occurs between the plan and its delivery. A 3D scintillation-based dosimetry system could be ideal for such a thorough, end-to-end verification; however, the challenge lies in retrieving the volumetric information of the light-emitting volume. This paper discusses the motivation, from an optics point of view, of using the images acquired with a plenoptic camera, or light field imager, of an irradiated plastic scintillator volume to reconstruct the delivered 3D dose distribution. Current work focuses on the optimization of the optical design as well as the data processing that is involved in the ongoing development of a clinically viable, second generation dosimetry system.
NASA Astrophysics Data System (ADS)
McCurdy, B. M. C.
2013-06-01
An overview is provided of the use of amorphous silicon electronic portal imaging devices (EPIDs) for dosimetric purposes in radiation therapy, focusing on 3D patient dose estimation. EPIDs were originally developed to provide on-treatment radiological imaging to assist with patient setup, but there has also been a natural interest in using them as dosimeters since they use the megavoltage therapy beam to form images. The current generation of clinically available EPID technology, amorphous-silicon (a-Si) flat panel imagers, possess many characteristics that make them much better suited to dosimetric applications than earlier EPID technologies. Features such as linearity with dose/dose rate, high spatial resolution, realtime capability, minimal optical glare, and digital operation combine with the convenience of a compact, retractable detector system directly mounted on the linear accelerator to provide a system that is well-suited to dosimetric applications. This review will discuss clinically available a-Si EPID systems, highlighting dosimetric characteristics and remaining limitations. Methods for using EPIDs in dosimetry applications will be discussed. Dosimetric applications using a-Si EPIDs to estimate three-dimensional dose in the patient during treatment will be overviewed. Clinics throughout the world are implementing increasingly complex treatments such as dynamic intensity modulated radiation therapy and volumetric modulated arc therapy, as well as specialized treatment techniques using large doses per fraction and short treatment courses (ie. hypofractionation and stereotactic radiosurgery). These factors drive the continued strong interest in using EPIDs as dosimeters for patient treatment verification.
Abbas, Ahmar S; Moseley, Douglas; Kassam, Zahra; Kim, Sun Mo; Cho, Charles
2013-05-06
Recently, volumetric-modulated arc therapy (VMAT) has demonstrated the ability to deliver radiation dose precisely and accurately with a shorter delivery time compared to conventional intensity-modulated fixed-field treatment (IMRT). We applied the hypothesis of VMAT technique for the treatment of thoracic esophageal carcinoma to determine superior or equivalent conformal dose coverage for a large thoracic esophageal planning target volume (PTV) with superior or equivalent sparing of organs-at-risk (OARs) doses, and reduce delivery time and monitor units (MUs), in comparison with conventional fixed-field IMRT plans. We also analyzed and compared some other important metrics of treatment planning and treatment delivery for both IMRT and VMAT techniques. These metrics include: 1) the integral dose and the volume receiving intermediate dose levels between IMRT and VMATI plans; 2) the use of 4D CT to determine the internal motion margin; and 3) evaluating the dosimetry of every plan through patient-specific QA. These factors may impact the overall treatment plan quality and outcomes from the individual planning technique used. In this study, we also examined the significance of using two arcs vs. a single-arc VMAT technique for PTV coverage, OARs doses, monitor units and delivery time. Thirteen patients, stage T2-T3 N0-N1 (TNM AJCC 7th edn.), PTV volume median 395 cc (range 281-601 cc), median age 69 years (range 53 to 85), were treated from July 2010 to June 2011 with a four-field (n = 4) or five-field (n = 9) step-and-shoot IMRT technique using a 6 MV beam to a prescribed dose of 50 Gy in 20 to 25 F. These patients were retrospectively replanned using single arc (VMATI, 91 control points) and two arcs (VMATII, 182 control points). All treatment plans of the 13 study cases were evaluated using various dose-volume metrics. These included PTV D99, PTV D95, PTV V9547.5Gy(95%), PTV mean dose, Dmax, PTV dose conformity (Van't Riet conformation number (CN)), mean lung dose, lung V20 and V5, liver V30, and Dmax to the spinal canal prv3mm. Also examined were the total plan monitor units (MUs) and the beam delivery time. Equivalent target coverage was observed with both VMAT single and two-arc plans. The comparison of VMATI with fixed-field IMRT demonstrated equivalent target coverage; statistically no significant difference were found in PTV D99 (p = 0.47), PTV mean (p = 0.12), PTV D95 and PTV V9547.5Gy (95%) (p = 0.38). However, Dmax in VMATI plans was significantly lower compared to IMRT (p = 0.02). The Van't Riet dose conformation number (CN) was also statistically in favor of VMATI plans (p = 0.04). VMATI achieved lower lung V20 (p = 0.05), whereas lung V5 (p = 0.35) and mean lung dose (p = 0.62) were not significantly different. The other OARs, including spinal canal, liver, heart, and kidneys showed no statistically significant differences between the two techniques. Treatment time delivery for VMATI plans was reduced by up to 55% (p = 5.8E-10) and MUs reduced by up to 16% (p = 0.001). Integral dose was not statistically different between the two planning techniques (p = 0.99). There were no statistically significant differences found in dose distribution of the two VMAT techniques (VMATI vs. VMATII) Dose statistics for both VMAT techniques were: PTV D99 (p = 0.76), PTV D95 (p = 0.95), mean PTV dose (p = 0.78), conformation number (CN) (p = 0.26), and MUs (p = 0.1). However, the treatment delivery time for VMATII increased significantly by two-fold (p = 3.0E-11) compared to VMATI. VMAT-based treatment planning is safe and deliverable for patients with thoracic esophageal cancer with similar planning goals, when compared to standard IMRT. The key benefit for VMATI was the reduction in treatment delivery time and MUs, and improvement in dose conformality. In our study, we found no significant difference in VMATII over single-arc VMATI for PTV coverage or OARs doses. However, we observed significant increase in delivery time for VMATII compared to VMATI.
NASA Astrophysics Data System (ADS)
Wang, Lijun; Zhang, Xiao; Huang, Xiaolong; Jia, Shenli
2017-11-01
In the process of vacuum arc breaking, the energy injected into the anode will cause anode melting, evaporation, and deformation, resulting in the formation of the anode melting pool. The anode activities have great influence on the arc behavior. When the arc current is large enough, even the influence of axial magnetic field is considered, the arc column still is in contraction state, which means the arc burns only on a part of the electrode. In this paper, the model of anode melting pool deformation and rotation is used, and the model includes anode melting and solidification module, magneto-hydro-dynamic module of the anode melting pool, the volume of fraction method, and the current continuity equation. In this paper, the diffuse arc area is selected as 100%, 75%, and 50%, respectively. The anode temperature and deformation, the anode melting layer thickness, and the rotational velocity of the anode melting pool are obtained. The results show that when the current is at 17.5 kA (rms) and the diffuse arc area is 100%, the anode's maximum temperature is 1477 K and the crater depth is 0.83 mm. But when the diffuse arc areas are 75% and 50%, the anode's maximum temperatures reach 1500 K and 1761 K, and the crater depths reach 1.2 mm and 3 mm, respectively. Arc contraction will lead to more serious anode deformation. A similar result is obtained when the simulation current is 12.5 kA. Under the similar situation, the simulation results in the crater depth, the residual melt layer thickness, the rotational speed of the melting pool, and the maximum temperature of the anode at current zero are in good agreement with the experimental results.
Dosimetry for audit and clinical trials: challenges and requirements
NASA Astrophysics Data System (ADS)
Kron, T.; Haworth, A.; Williams, I.
2013-06-01
Many important dosimetry audit networks for radiotherapy have their roots in clinical trial quality assurance (QA). In both scenarios it is essential to test two issues: does the treatment plan conform with the clinical requirements and is the plan a reasonable representation of what is actually delivered to a patient throughout their course of treatment. Part of a sound quality program would be an external audit of these issues with verification of the equivalence of plan and treatment typically referred to as a dosimetry audit. The increasing complexity of radiotherapy planning and delivery makes audits challenging. While verification of absolute dose delivered at a reference point was the standard of external dosimetry audits two decades ago this is often deemed inadequate for verification of treatment approaches such as Intensity Modulated Radiation Therapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT). As such, most dosimetry audit networks have successfully introduced more complex tests of dose delivery using anthropomorphic phantoms that can be imaged, planned and treated as a patient would. The new challenge is to adapt this approach to ever more diversified radiotherapy procedures with image guided/adaptive radiotherapy, motion management and brachytherapy being the focus of current research.
NASA Astrophysics Data System (ADS)
Krongkietlearts, K.; Tangboonduangjit, P.; Paisangittisakul, N.
2016-03-01
In order to improve the life's quality for a cancer patient, the radiation techniques are constantly evolving. Especially, the two modern techniques which are intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) are quite promising. They comprise of many small beam sizes (beamlets) with various intensities to achieve the intended radiation dose to the tumor and minimal dose to the nearby normal tissue. The study investigates whether the microDiamond detector (PTW manufacturer), a synthetic single crystal diamond detector, is suitable for small field output factor measurement. The results were compared with those measured by the stereotactic field detector (SFD) and the Monte Carlo simulation (EGSnrc/BEAMnrc/DOSXYZ). The calibration of Monte Carlo simulation was done using the percentage depth dose and dose profile measured by the photon field detector (PFD) of the 10×10 cm2 field size with 100 cm SSD. Comparison of the values obtained from the calculations and measurements are consistent, no more than 1% difference. The output factors obtained from the microDiamond detector have been compared with those of SFD and Monte Carlo simulation, the results demonstrate the percentage difference of less than 2%.
SU-G-BRC-14: Multi-Lesion, Multi-Rx, Brain Radiosurgery with Novel Single Isocenter Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honig, N; Alani, S; Schlocker, A
Purpose: There is a strong trend to treat multiple brain metastases with radiosurgery rather than whole brain irradiation. This feasibility study investigates a novel planning technique for radio-surgical treatment of multiple brain lesions with differing dose prescriptions, a single isocenter, and dynamic conformal arcs. The novel technique will be compared to the well-established single-isocenter volumetric modulated arc therapy (VMAT) technique commonly used for treating brain lesions. Methods: Six patients with metastatic brain lesions were selected for a prospective treatment planning study to evaluate Interdigitating MLC Dynamic Conformal Arc (IMDCA) technique. Arcs were planned for simultaneous irradiation to maximize beam deliverymore » efficiency. To accommodate varying PTV dose prescriptions, selected arcs were re-irradiated in reverse. Beam weights were adjusted until all prescription constraints were met. The number of lesions ranged between 2 to 4 (mode = 3). For comparison, SRS VMAT plans were generated utilizing an established single-isocenter, 3 arc planning template. All plans were compared by means of Paddick conformity index (PCI), RTOG Conformity Index (RCI), gradient index (GI), and the normal brain volume receiving 10% (V10) of the highest prescription dose. The monitor units and delivery time were tabulated for each plan. Results: IMDCA achieved conformal plans (PCI = 0.72±0.03, RCI = 1.33±0.03) with steep dose fall-off (GI = 3.79±0.03) on average for all of the plans evaluated. The VMAT plans had slightly better conformity (PCI = 0.85 ± 0.03, RCI = 1.13 ± 0.03) than IMDCA, but overall worse GI (4.29 ± 0.06). IMDCA plans had lower V10% values, required 50% fewer MUs, and had 34% shorter beam delivery time on average compared to VMAT plans. Conclusion: IMDCA plans with varying dose prescriptions for multiple lesions, had comparable dosimetric coverage as VMAT plans, but were obtained with significantly lower integral dose, fewer monitor units, and quicker delivery time.« less
Wink, Krista C J; Roelofs, Erik; Simone, Charles B; Dechambre, David; Santiago, Alina; van der Stoep, Judith; Dries, Wim; Smits, Julia; Avery, Stephen; Ammazzalorso, Filippo; Jansen, Nicolas; Jelen, Urszula; Solberg, Timothy; de Ruysscher, Dirk; Troost, Esther G C
2018-03-12
To compare dose to organs at risk (OARs) and dose-escalation possibility for 24 stage I non-small cell lung cancer (NSCLC) patients in a ROCOCO (Radiation Oncology Collaborative Comparison) trial. For each patient, 3 photon plans [Intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT) and CyberKnife], a double scattered proton (DSP) and an intensity-modulated carbon-ion (IMIT) therapy plan were created. Dose prescription was 60 Gy (equivalent) in 8 fractions. The mean dose and dose to 2% of the clinical target volume (CTV) were lower for protons and ions compared with IMRT (p < 0.01). Doses to the lungs, heart, and mediastinal structures were lowest with IMIT (p < 0.01), doses to the spinal cord were lowest with DSP (p < 0.01). VMAT and CyberKnife allowed for reduced doses to most OARs compared with IMRT. Dose escalation was possible for 8 patients. Generally, the mediastinum was the primary dose-limiting organ. On average, the doses to the OARs were lowest using particles, with more homogenous CTV doses. Given the ability of VMAT and CyberKnife to limit doses to OARs compared with IMRT, the additional benefit of particles may only be clinically relevant in selected patients and thus should be carefully weighed for every individual patient. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, J; Wang, Y; Ding, X
Purpose: To optimize VMAT beam parameters in PPBI to minimize treatment time. We investigate the coverage and organs at risk (OR) avoidance capability of shorter arcs with shorter treatment times. Methods: We evaluated the treatment plans for eleven previously treated PPBI patients. Each patient received 46Gy (2Gy×23) to the initial target and an additional 14Gy (2Gy×7) as a sequential boost. Each daily 2-Gy fraction was delivered as ten 0.2-Gy pulses separated by 3-minute intervals using VMAT. Each pulse was delivered using the same arc and covered at least 95% of the PTV with at least 95% of the prescription dose.more » To optimize the VMAT beam angle, an initial 360° full-arc VMAT plan was implemented. Beam control points and their corresponding dose rates were exported. A curve of the product of control point and dose rate was plotted against treatment beam angle. The optimum angle range was determined from this relationship. We chose the minimum continuous angle range that covered 85% of the area under the curve. Planning parameters, including treatment time for each pulse (T-pulse), PTV coverage, maximum dose (Dmax), homogeneity index (HI=D5/D95), R50 (50%IDL/PTV), and Dmax to ORs, were compared. Results: Mean PTV volume was 364.1±181.5cc. Mean T-pulse of partial-arc beams was 34.3±10.6s, vs. 63.0±1.7s (p<0.001) for that of full-arc beams. No significant differences were found for PTV V95, Dmax and R50, 99.4%±1.2% vs. 99.7%±0.5% (p=0.066), 108.0%±1.2% vs. 107.5%±1.1% (p=0.107), 2.95±0.38 vs. 2.87±0.35 (p=0.165), for the plans with partial-arc and full-arc beams, respectively. However, plans using full-arc do provide better PTV V100 and HI, 96.0%±3.0% vs. 97.2%±2.0% (p=0.025) and 1.06±0.03 vs. 1.04±0.01 (p=0.009). No significant difference was found on Dmax to ORs. Conclusion: PPBI with optimized partial-arc plans are clinically comparable to full-arc plans, while treatment time be significantly reduced, average saving of 287s for a 10-pulse treatment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, L; Dong, P; Larson, D
Purpose: To investigate a new modulated beam orientation optimization (MBOO) approach maximizing treatment planning quality for the state-of-the-art flattening filter free (FFF) beam that has enabled rapid treatments of multiple brain targets. Methods: MBOO selects and optimizes a large number of intensity-modulated beams (400 or more) from all accessible beam angles surrounding a patient’s skull. The optimization algorithm was implemented on a standalone system that interfaced with the 3D Dicom images and structure sets. A standard published data set that consisted of 1 to 12 metastatic brain tumor combinations was selected for MBOO planning. The planning results from various coplanarmore » and non-coplanar configurations via MBOO were then compared with the results obtained from a clinical volume modulated arc therapy (VMAT) delivery system (Truebeam RapidArc, Varian Oncology). Results: When planning a few number of targets (n<4), MBOO produced results equivalent to non-coplanar multi-arc VMAT planning in terms of target volume coverage and normal tissue sparing. For example, the 12-Gy and 4-Gy normal brain volumes for the 3-target plans differed by less than 1 mL ( 3.0 mLvs 3.8 mL; and 35.2 mL vs 36.3 mL, respectively) for MBOO versus VMAT. However, when planning a larger number of targets (n≥4), MBOO significantly reduced the dose to the normal brain as compared to VMAT, though the target volume coverage was equivalent. For example, the 12-Gy and 4-Gy normal brain volumes for the 12-target plans were 10.8 mL vs. 18.0 mL and 217.9 mL vs. 390.0 mL, respectively for the non-coplanar MBOO versus the non-coplanar VMAT treatment plans, yielding a reduction in volume of more than 60% for the case. Conclusion: MBOO is a unique approach for maximizing normal tissue sparing when treating a large number (n≥4) of brain tumors with FFF linear accelerators. Dr Ma and Dr Sahgal are currently on the board of international society of stereotactic radiosurgery. Dr Sahgal has received support for educational presentations from Elekta company.« less
Alvarez, Adrián F.; Rodriguez, Claudia
2013-01-01
The Arc two-component system, comprising the ArcB sensor kinase and the ArcA response regulator, modulates the expression of numerous genes in response to respiratory growth conditions. Under aerobic growth conditions, the ubiquinone electron carriers were proposed to silence the kinase activity of ArcB by oxidizing two cytosol-located redox-active cysteine residues that participate in intermolecular disulfide bond formation. Here, we confirm the role of the ubiquinone electron carriers as the silencing signal of ArcB in vivo, we show that the redox potential of ArcB is about −41 mV, and we demonstrate that the menaquinols are required for proper ArcB activation upon a shift from aerobic to anaerobic growth conditions. Thus, an essential link in the Arc signal transduction pathway connecting the redox state of the quinone pool to the transcriptional apparatus is elucidated. PMID:23645604
Monaco and film dosimetry of 3D CRT, IMRT and VMAT cases in a realistic pelvic prosthetic phantom
NASA Astrophysics Data System (ADS)
Ade, Nicholas; du Plessis, F. C. P.
2018-04-01
The dosimetry of patients with metallic hip implants during irradiation of pelvic lesions is challenging due to dose distortions caused by implants. This work presents a dosimetric comparison of various multi-field photon-beam dose distributions in the presence of unilateral hip titanium prosthesis (UHTiP) embedded in a unique pelvic phantom made out of water-equivalent nylon slices. The impact of the UHTiP on the accuracy of dose calculations from a Monaco TPS (treatment planning system) using the X-ray voxel Monte Carlo (XVMC) algorithm was benchmarked against measured dose data using Gafchromic EBT3 film. Multi-field beam arrangements including a 4-field box, 5-field 3DCRT (three-dimensional conformal radiation therapy), 6-field IMRT (intensity modulated radiation therapy) and a single-arc VMAT (volumetric modulated arc therapy) plan were set up for 6 MV and 15 MV beams. These plans were generated for the pelvic phantom that contains the prosthesis with film inserted. Compared to Monaco TPS dose calculations, film measurements showed enhanced dose in the prosthesis which was not predicted by Monaco due to its limitation in relative density assignment. The enhanced prosthesis dose increased with increase in beam energy and decreased with the complexity of the treatment plans, with VMAT giving the least escalated dose. The dose increased between 5% and 19% for 6 MV and between 6% and 21% for 15 MV. A gamma index analysis showed that 70-92% of dose points (excluding the prosthesis) were within 3% discrepancy. Increasing the number of treatment fields increases target dose coverage and improves the agreement between film and Monaco. When the relative electron density (RED) in the prosthesis was varied between 3.72 and 15 the dose discrepancy between film and Monaco increased from 30% to 57% for 6 MV and from 30% to 50% for 15 MV. The study indicates that beam weights for fields that pass through the prosthesis should be minimised and its RED must be correct for accurate dose calculation on Monaco.
Ueda, Yoshihiro; Fukunaga, Jun-Ichi; Kamima, Tatsuya; Adachi, Yumiko; Nakamatsu, Kiyoshi; Monzen, Hajime
2018-03-20
The aim of this study was to evaluate the performance of a commercial knowledge-based planning system, in volumetric modulated arc therapy for prostate cancer at multiple radiation therapy departments. In each institute, > 20 cases were assessed. For the knowledge-based planning, the estimated dose (ED) based on geometric and dosimetric information of plans was generated in the model. Lower and upper limits of estimated dose were saved as dose volume histograms for each organ at risk. To verify whether the models performed correctly, KBP was compared with manual optimization planning in two cases. The relationships between the EDs in the models and the ratio of the OAR volumes overlapping volume with PTV to the whole organ volume (V overlap /V whole ) were investigated. There were no significant dosimetric differences in OARs and PTV between manual optimization planning and knowledge-based planning. In knowledge-based planning, the difference in the volume ratio of receiving 90% and 50% of the prescribed dose (V90 and V50) between institutes were more than 5.0% and 10.0%, respectively. The calculated doses with knowledge-based planning were between the upper and lower limits of ED or slightly under the lower limit of ED. The relationships between the lower limit of ED and V overlap /V whole were different among the models. In the V90 and V50 for the rectum, the maximum differences between the lower limit of ED among institutes were 8.2% and 53.5% when V overlap /V whole for the rectum was 10%. In the V90 and V50 for the bladder, the maximum differences of the lower limit of ED among institutes were 15.1% and 33.1% when V overlap /V whole for the bladder was 10%. Organs' upper and lower limits of ED in the models correlated closely with the V overlap /V whole . It is important to determine whether the models in KBP match a different institute's plan design before the models can be shared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCowan, Peter M., E-mail: pmccowan@cancercare.mb.ca; Asuni, Ganiyu; Van Uytven, Eric
Purpose: To report findings from an in vivo dosimetry program implemented for all stereotactic body radiation therapy patients over a 31-month period and discuss the value and challenges of utilizing in vivo electronic portal imaging device (EPID) dosimetry clinically. Methods and Materials: From December 2013 to July 2016, 117 stereotactic body radiation therapy–volumetric modulated arc therapy patients (100 lung, 15 spine, and 2 liver) underwent 602 EPID-based in vivo dose verification events. A developed model-based dose reconstruction algorithm calculates the 3-dimensional dose distribution to the patient by back-projecting the primary fluence measured by the EPID during treatment. The EPID frame-averaging was optimized in Junemore » 2015. For each treatment, a 3%/3-mm γ comparison between our EPID-derived dose and the Eclipse AcurosXB–predicted dose to the planning target volume (PTV) and the ≥20% isodose volume were performed. Alert levels were defined as γ pass rates <85% (lung and liver) and <80% (spine). Investigations were carried out for all fractions exceeding the alert level and were classified as follows: EPID-related, algorithmic, patient setup, anatomic change, or unknown/unidentified errors. Results: The percentages of fractions exceeding the alert levels were 22.6% for lung before frame-average optimization and 8.0% for lung, 20.0% for spine, and 10.0% for liver after frame-average optimization. Overall, mean (± standard deviation) planning target volume γ pass rates were 90.7% ± 9.2%, 87.0% ± 9.3%, and 91.2% ± 3.4% for the lung, spine, and liver patients, respectively. Conclusions: Results from the clinical implementation of our model-based in vivo dose verification method using on-treatment EPID images is reported. The method is demonstrated to be valuable for routine clinical use for verifying delivered dose as well as for detecting errors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jun; Department of Oncology, First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui, Henan, 453100; Ma, Lin
2016-07-01
To investigate the dosimetric characteristics of 4 SBRT-capable dose delivery systems, CyberKnife (CK), Helical TomoTherapy (HT), Volumetric Modulated Arc Therapy (VMAT) by Varian RapidArc (RA), and segmental step-and-shoot intensity-modulated radiation therapy (IMRT) by Elekta, on isolated thoracic spinal lesions. CK, HT, RA, and IMRT planning were performed simultaneously for 10 randomly selected patients with 6 body types and 6 body + pedicle types with isolated thoracic lesions. The prescription was set with curative intent and dose of either 33 Gy in 3 fractions (3F) or 40 Gy in 5F to cover at least 90% of the planning target volume (PTV),more » correspondingly. Different dosimetric indices, beam-on time, and monitor units (MUs) were evaluated to compare the advantages/disadvantages of each delivery modality. In ensuring the dose-volume constraints for cord and esophagus of the premise, CK, HT, and RA all achieved a sharp conformity index (CI) and a small penumbra volume compared to IMRT. RA achieved a CI comparable to those from CK, HT, and IMRT. CK had a heterogeneous dose distribution in the target as its radiosurgical nature with less dose uniformity inside the target. CK had the longest beam-on time and the largest MUs, followed by HT and RA. IMRT presented the shortest beam-on time and the least MUs delivery. For the body-type lesions, CK, HT, and RA satisfied the target coverage criterion in 6 cases, but the criterion was satisfied in only 3 (50%) cases with the IMRT technique. For the body + pedicle-type lesions, HT satisfied the criterion of the target coverage of ≥90% in 4 of the 6 cases, and reached a target coverage of 89.0% in another case. However, the criterion of the target coverage of ≥90% was reached in 2 cases by CK and RA, and only in 1 case by IMRT. For curative-intent SBRT of isolated thoracic spinal lesions, RA is the first choice for the body-type lesions owing to its delivery efficiency (time); the second choice is CK or HT; HT is the preferential choice for the body + pedicle-type lesions. This study suggests further clinical investigations with longer follow-up for these studied cases.« less
Maier, Johannes; Knott, Bernadette; Maerz, Manuel; Loeschel, Rainer; Koelbl, Oliver; Dobler, Barbara
2016-08-31
The aim of the study was to compare the two irradiation modes with (FF) and without flattening filter (FFF) for three different treatment techniques for simultaneous integrated boost radiation therapy of patients with right sided breast cancer. An Elekta Synergy linac with Agility collimating device is used to simulate the treatment of 10 patients. Six plans were generated in Monaco 5.0 for each patient treating the whole breast and a simultaneous integrated boost (SIB) volume: intensity modulated radiation therapy (IMRT), volumetric modulated arc therapy (VMAT) and a tangential arc VMAT (tVMAT), each with and without flattening filter. Plan quality was assessed considering target coverage, sparing of the contralateral breast, the lungs, the heart and the normal tissue. All plans were verified by a 2D-ionisation-chamber-array and delivery times were measured and compared. The Wilcoxon test was used for statistical analysis with a significance level of 0.05. Significantly best target coverage and homogeneity was achieved using VMAT FFF with V95% = (98.7 ± 0.8) % and HI = (8.2 ± 0.9) % for the SIB and V95% = (98.3 ± 0.7) % for the PTV, whereas tVMAT showed significantly lowest doses to the contralateral organs at risk with a Dmean of (0.7 ± 0.1) Gy for the contralateral lung, (1.0 ± 0.2) Gy for the contralateral breast and (1.4 ± 0.2) Gy for the heart. All plans passed the gamma evaluation with a mean passing rate of (99.2 ± 0.8) %. Delivery times were significantly reduced for VMAT and tVMAT but increased for IMRT, when FFF was used. Lowest delivery times were observed for tVMAT FFF with (1:20 ± 0:07) min. Balancing target coverage, OAR sparing and delivery time, VMAT FFF and tVMAT FFF are considered the preferable of the investigated treatment options in simultaneous integrated boost irradiation of right sided breast cancer for the combination of an Elekta Synergy linac with Agility and the treatment planning system Monaco 5.0.
Volumetric-modulated arc therapy vs c-IMRT in esophageal cancer: A treatment planning comparison
Yin, Li; Wu, Hao; Gong, Jian; Geng, Jian-Hao; Jiang, Fan; Shi, An-Hui; Yu, Rong; Li, Yong-Heng; Han, Shu-Kui; Xu, Bo; Zhu, Guang-Ying
2012-01-01
AIM: To compare the volumetric-modulated arc therapy (VMAT) plans with conventional sliding window intensity-modulated radiotherapy (c-IMRT) plans in esophageal cancer (EC). METHODS: Twenty patients with EC were selected, including 5 cases located in the cervical, the upper, the middle and the lower thorax, respectively. Five plans were generated with the eclipse planning system: three using c-IMRT with 5 fields (5F), 7 fields (7F) and 9 fields (9F), and two using VMAT with a single arc (1A) and double arcs (2A). The treatment plans were designed to deliver a dose of 60 Gy to the planning target volume (PTV) with the same constrains in a 2.0 Gy daily fraction, 5 d a week. Plans were normalized to 95% of the PTV that received 100% of the prescribed dose. We examined the dose-volume histogram parameters of PTV and the organs at risk (OAR) such as lungs, spinal cord and heart. Monitor units (MU) and normal tissue complication probability (NTCP) of OAR were also reported. RESULTS: Both c-IMRT and VMAT plans resulted in abundant dose coverage of PTV for EC of different locations. The dose conformity to PTV was improved as the number of field in c-IMRT or rotating arc in VMAT was increased. The doses to PTV and OAR in VMAT plans were not statistically different in comparison with c-IMRT plans, with the following exceptions: in cervical and upper thoracic EC, the conformity index (CI) was higher in VMAT (1A 0.78 and 2A 0.8) than in c-IMRT (5F 0.62, 7F 0.66 and 9F 0.73) and homogeneity was slightly better in c-IMRT (7F 1.09 and 9F 1.07) than in VMAT (1A 1.1 and 2A 1.09). Lung V30 was lower in VMAT (1A 12.52 and 2A 12.29) than in c-IMRT (7F 14.35 and 9F 14.81). The humeral head doses were significantly increased in VMAT as against c-IMRT. In the middle and lower thoracic EC, CI in VMAT (1A 0.76 and 2A 0.74) was higher than in c-IMRT (5F 0.63 Gy and 7F 0.67 Gy), and homogeneity was almost similar between VMAT and c-IMRT. V20 (2A 21.49 Gy vs 7F 24.59 Gy and 9F 24.16 Gy) and V30 (2A 9.73 Gy vs 5F 12.61 Gy, 7F 11.5 Gy and 9F 11.37 Gy) of lungs in VMAT were lower than in c-IMRT, but low doses to lungs (V5 and V10) were increased. V30 (1A 48.12 Gy vs 5F 59.2 Gy, 7F 58.59 Gy and 9F 57.2 Gy), V40 and V50 of heart in VMAT was lower than in c-IMRT. MUs in VMAT plans were significantly reduced in comparison with c-IMRT, maximum doses to the spinal cord and mean doses of lungs were similar between the two techniques. NTCP of spinal cord was 0 for all cases. NTCP of lungs and heart in VMAT were lower than in c-IMRT. The advantage of VMAT plan was enhanced by doubling the arc. CONCLUSION: Compared with c-IMRT, VMAT, especially the 2A, slightly improves the OAR dose sparing, such as lungs and heart, and reduces NTCP and MU with a better PTV coverage. PMID:23066322
Volumetric-modulated arc therapy vs. c-IMRT in esophageal cancer: a treatment planning comparison.
Yin, Li; Wu, Hao; Gong, Jian; Geng, Jian-Hao; Jiang, Fan; Shi, An-Hui; Yu, Rong; Li, Yong-Heng; Han, Shu-Kui; Xu, Bo; Zhu, Guang-Ying
2012-10-07
To compare the volumetric-modulated arc therapy (VMAT) plans with conventional sliding window intensity-modulated radiotherapy (c-IMRT) plans in esophageal cancer (EC). Twenty patients with EC were selected, including 5 cases located in the cervical, the upper, the middle and the lower thorax, respectively. Five plans were generated with the eclipse planning system: three using c-IMRT with 5 fields (5F), 7 fields (7F) and 9 fields (9F), and two using VMAT with a single arc (1A) and double arcs (2A). The treatment plans were designed to deliver a dose of 60 Gy to the planning target volume (PTV) with the same constrains in a 2.0 Gy daily fraction, 5 d a week. Plans were normalized to 95% of the PTV that received 100% of the prescribed dose. We examined the dose-volume histogram parameters of PTV and the organs at risk (OAR) such as lungs, spinal cord and heart. Monitor units (MU) and normal tissue complication probability (NTCP) of OAR were also reported. Both c-IMRT and VMAT plans resulted in abundant dose coverage of PTV for EC of different locations. The dose conformity to PTV was improved as the number of field in c-IMRT or rotating arc in VMAT was increased. The doses to PTV and OAR in VMAT plans were not statistically different in comparison with c-IMRT plans, with the following exceptions: in cervical and upper thoracic EC, the conformity index (CI) was higher in VMAT (1A 0.78 and 2A 0.8) than in c-IMRT (5F 0.62, 7F 0.66 and 9F 0.73) and homogeneity was slightly better in c-IMRT (7F 1.09 and 9F 1.07) than in VMAT (1A 1.1 and 2A 1.09). Lung V30 was lower in VMAT (1A 12.52 and 2A 12.29) than in c-IMRT (7F 14.35 and 9F 14.81). The humeral head doses were significantly increased in VMAT as against c-IMRT. In the middle and lower thoracic EC, CI in VMAT (1A 0.76 and 2A 0.74) was higher than in c-IMRT (5F 0.63 Gy and 7F 0.67 Gy), and homogeneity was almost similar between VMAT and c-IMRT. V20 (2A 21.49 Gy vs. 7F 24.59 Gy and 9F 24.16 Gy) and V30 (2A 9.73 Gy vs. 5F 12.61 Gy, 7F 11.5 Gy and 9F 11.37 Gy) of lungs in VMAT were lower than in c-IMRT, but low doses to lungs (V5 and V10) were increased. V30 (1A 48.12 Gy vs. 5F 59.2 Gy, 7F 58.59 Gy and 9F 57.2 Gy), V40 and V50 of heart in VMAT was lower than in c-IMRT. MUs in VMAT plans were significantly reduced in comparison with c-IMRT, maximum doses to the spinal cord and mean doses of lungs were similar between the two techniques. NTCP of spinal cord was 0 for all cases. NTCP of lungs and heart in VMAT were lower than in c-IMRT. The advantage of VMAT plan was enhanced by doubling the arc. Compared with c-IMRT, VMAT, especially the 2A, slightly improves the OAR dose sparing, such as lungs and heart, and reduces NTCP and MU with a better PTV coverage.
Non-scaling fixed field alternating gradient permanent magnet cancer therapy accelerator
Trbojevic, Dejan
2017-05-23
A non-scaling fixed field alternating gradient accelerator includes a racetrack shape including a first straight section connected to a first arc section, the first arc section connected to a second straight section, the second straight section connected to a second arc section, and the second arc section connected to the first straight section; an matching cells configured to match particle orbits between the first straight section, the first arc section, the second straight section, and the second arc section. The accelerator includes the matching cells and an associated matching procedure enabling the particle orbits at varying energies between an arc section and a straight section in the racetrack shape.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cilla, Savino, E-mail: savinocilla@gmail.com; Deodato, Francesco; Macchia, Gabriella
We reported our initial experience in using Elekta volumetric modulated arc therapy (VMAT) and an anatomy-based treatment planning system (TPS) for single high-dose radiosurgery (SRS-VMAT) of liver metastases. This study included a cohort of 12 patients treated with a 26-Gy single fraction. Single-arc VMAT plans were generated with Ergo++ TPS. The prescription isodose surface (IDS) was selected to fulfill the 2 following criteria: 95% of planning target volume (PTV) reached 100% of the prescription dose and 99% of PTV reached a minimum of 90% of prescription dose. A 1-mm multileaf collimator (MLC) block margin was added around the PTV. Formore » a comparison of dose distributions with literature data, several conformity indexes (conformity index [CI], conformation number [CN], and gradient index [GI]) were calculated. Treatment efficiency and pretreatment dosimetric verification were assessed. Early clinical data were also reported. Our results reported that target and organ-at-risk objectives were met for all patients. Mean and maximum doses to PTVs were on average 112.9% and 121.5% of prescribed dose, respectively. A very high degree of dose conformity was obtained, with CI, CN, and GI average values equal to 1.29, 0.80, and 3.63, respectively. The beam-on-time was on average 9.3 minutes, i.e., 0.36 min/Gy. The mean number of monitor units was 3162, i.e., 121.6 MU/Gy. Pretreatment verification (3%-3 mm) showed an optimal agreement with calculated values; mean γ value was 0.27 and 98.2% of measured points resulted with γ < 1. With a median follow-up of 16 months complete response was observed in 12/14 (86%) lesions; partial response was observed in 2/14 (14%) lesions. No radiation-induced liver disease (RILD) was observed in any patients as well no duodenal ulceration or esophagitis or gastric hemorrhage. In conclusion, this analysis demonstrated the feasibility and the appropriateness of high-dose single-fraction SRS-VMAT in liver metastases performed with Elekta VMAT and Ergo++ TPS. Preliminary clinical outcomes showed a high rate of local control and minimum incidence of acute toxicity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amoush, A; Djemil, T; Subedi, L
2014-06-01
Purpose: To study the dosimetric impact of MLC leaf width in patients treated with Volumetric Modulated Arc Therapy (VMAT) for spine Stereotactic Body radiation Therapy (SBRT). Methods: Twelve spine SBRT patients were retrospectively selected for this study. The patients were treated with IMRT following the RTOG-0631 of spine metastasis. The prescription dose was 16 Gy in one fraction to 90% of the target volume (V16 > 90%). The maximum spinal cord dose of 14 Gy and 10% of the cord receiving < 10 Gy (V10) were set as dose constraints. For purpose of this study, three dual arc VMAT plansmore » were created for each patient using three different MLC leaf widths: 2.5 mm, 4mm, and 5mm. The compliance to RTOG 0631, conformal index (CI), dose gradient index (DGI), and number of monitor units (MUs) were compared. Results: The average V16 of the target was 91.91±1.36%, 93.73±2.38%, and 92.25±2.49% for 2.5 mm, 4 mm, and 5 mm leaf widths, respectively (p=0.39). Accordingly, the average CI was 1.36±0.39, 1.36±0.34, and 1.41±0.3 (0.96), respectively. The average DGI was 0.24 ± 0.05, 0.22 ± 0.05, and 0.23 ± 0.04, respectively (p=0.86). The average spinal cord maximum dose was 12.10 ± 0.88 Gy, 12.52 ± 1.15 Gy, and 12.05 ± 1.12 (p=0.75) and V10 was 2.69 ± 1.71 cc, 5.43 ± 2.16 cc, and 3.71 ± 2.34 cc (p=0.15) for 2.5 mm, 4 mm, and 5 mm leaf widths, respectively. According, the average number of MUs was 4255 ± 431 MU, 5049 ± 1036 MU, and 4231 ± 580 MU respectively (p=0.17). Conclusion: The use of 2.5 mm, 4 mm, and 5 mm MLCs achieved similar VMAT plan quality as recommended by RTOG-0631. The dosimetric parameters were also comparable for the three MLCs.« less
Improving plan quality for prostate volumetric-modulated arc therapy.
Wright, Katrina; Ferrari-Anderson, Janet; Barry, Tamara; Bernard, Anne; Brown, Elizabeth; Lehman, Margot; Pryor, David
2017-01-01
We critically evaluated the quality and consistency of volumetric-modulated arc therapy (VMAT) prostate planning at a single institution to quantify objective measures for plan quality and establish clear guidelines for plan evaluation and quality assurance. A retrospective analysis was conducted on 34 plans generated on the Pinnacle 3 version 9.4 and 9.8 treatment planning system to deliver 78 Gy in 39 fractions to the prostate only using VMAT. Data were collected on contoured structure volumes, overlaps and expansions, planning target volume (PTV) and organs at risk volumes and relationship, dose volume histogram, plan conformity, plan homogeneity, low-dose wash, and beam parameters. Standard descriptive statistics were used to describe the data. Despite a standardized planning protocol, we found variability was present in all steps of the planning process. Deviations from protocol contours by radiation oncologists and radiation therapists occurred in 12% and 50% of cases, respectively, and the number of optimization parameters ranged from 12 to 27 (median 17). This contributed to conflicts within the optimization process reflected by the mean composite objective value of 0.07 (range 0.01 to 0.44). Methods used to control low-intermediate dose wash were inconsistent. At the PTV rectum interface, the dose-gradient distance from the 74.1 Gy to 40 Gy isodose ranged from 0.6 cm to 2.0 cm (median 1.0 cm). Increasing collimator angle was associated with a decrease in monitor units and a single full 6 MV arc was sufficient for the majority of plans. A significant relationship was found between clinical target volume-rectum distance and rectal tolerances achieved. A linear relationship was determined between the PTV volume and volume of 40 Gy isodose. Objective values and composite objective values were useful in determining plan quality. Anatomic geometry and overlap of structures has a measurable impact on the plan quality achieved for prostate patients being treated with VMAT. By evaluating multiple planning variables, we have been able to determine important factors influencing plan quality and develop predictive models for quality metrics that have been incorporated into our new protocol and will be tested and refined in future studies. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Maroney, Susan A; McCool, Mary Jane; Geter, Kenneth D; James, Angela M
2007-01-01
The internet is used increasingly as an effective means of disseminating information. For the past five years, the United States Department of Agriculture (USDA) Veterinary Services (VS) has published animal health information in internet-based map server applications, each oriented to a specific surveillance or outbreak response need. Using internet-based technology allows users to create dynamic, customised maps and perform basic spatial analysis without the need to buy or learn desktop geographic information systems (GIS) software. At the same time, access can be restricted to authorised users. The VS internet mapping applications to date are as follows: Equine Infectious Anemia Testing 1972-2005, National Tick Survey tick distribution maps, the Emergency Management Response System-Mapping Module for disease investigations and emergency outbreaks, and the Scrapie mapping module to assist with the control and eradication of this disease. These services were created using Environmental Systems Research Institute (ESRI)'s internet map server technology (ArcIMS). Other leading technologies for spatial data dissemination are ArcGIS Server, ArcEngine, and ArcWeb Services. VS is prototyping applications using these technologies, including the VS Atlas of Animal Health Information using ArcGIS Server technology and the Map Kiosk using ArcEngine for automating standard map production in the case of an emergency.
Comparison of four commercial devices for RapidArc and sliding window IMRT QA
Chandraraj, Varatharaj; Manickam, Ravikumar; Esquivel, Carlos; Supe, Sanjay S.; Papanikolaou, Nikos
2011-01-01
For intensity‐modulated radiation therapy, evaluation of the measured dose against the treatment planning calculated dose is essential in the context of patient‐specific quality assurance. The complexity of volumetric arc radiotherapy delivery attributed to its dynamic and synchronization nature require new methods and potentially new tools for the quality assurance of such techniques. In the present study, we evaluated and compared the dosimetric performance of EDR2 film and three other commercially available quality assurance devices: IBA I'MatriXX array, PTW Seven29 array and the Delta 4 array. The evaluation of these dosimetric systems was performed for RapidArc and IMRT deliveries using a Varian NovalisTX linear accelerator. The plans were generated using the Varian Eclipse treatment planning system. Our results showed that all four QA techniques yield equivalent results. All patient QAs passed our institutional clinical criteria of gamma index based on a 3% dose difference and 3 mm distance to agreement. In addition, the Bland‐Altman analysis was performed which showed that all the calculated gamma values of all three QA devices were within 5% from those of the film. The results showed that the four QA systems used in this patient‐specific IMRT QA analysis are equivalent. We concluded that the dosimetric systems under investigation can be used interchangeably for routine patient specific QA. PACS numbers: 87.55.Qr, 87.56.Fc
Feasibility study of an intensity-modulated radiation model for the study of erectile dysfunction.
Koontz, Bridget F; Yan, Hui; Kimura, Masaki; Vujaskovic, Zeljko; Donatucci, Craig; Yin, Fang-Fang
2011-02-01
Preclinical studies of radiotherapy (RT) induced erectile dysfunction (ED) have been limited by radiation toxicity when using large fields. To develop a protocol of rat prostate irradiation using techniques mimicking the current clinical standard of intensity modulated radiotherapy (IMRT). Quality assurance (QA) testing of plan accuracy, animal health 9 weeks after RT, and intracavernosal pressure (ICP) measurement on cavernosal nerve stimulation. Computed tomography-based planning was used to develop a stereotactic radiosurgery (SRS) treatment plan for five young adult male Sprague-Dawley rats. Two treatment planning strategies were utilized to deliver 20 Gy in a single fraction: three-dimensional dynamic conformal arc and intensity-modulated arc (RapidArc). QA testing was performed for each plan type. Treatment was delivered using a NovalisTX (Varian Medical Systems) with high-definition multi-leaf collimators using on-board imaging prior to treatment. Each animal was evaluated for ED 2 months after treatment by nerve stimulation and ICP measurement. The mean prostate volume and target volume (5 mm expansion of prostate) for the five animals was 0.36 and 0.66 cm3, respectively. Both conformal and RapidArc plans provided at least 95% coverage of the target volume, with rapid dose fall-off. QA plans demonstrated strong agreement between doses of calculated and delivered plans, although the conformal arc plan was more homogenous in treatment delivery. Treatment was well tolerated by the animals with no toxicity out to 9 weeks. Compared with control animals, significant reduction in ICP/mean arterial pressure, maximum ICP, and ICP area under the curve were noted. Tightly conformal dynamic arc prostate irradiation is feasible and results in minimal toxicity and measurable changes in erectile function. © 2010 International Society for Sexual Medicine.
SU-E-T-56: Brain Metastasis Treatment Plans for Contrast-Enhanced Synchrotron Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obeid, L; Adam, J; Tessier, A
2014-06-01
Purpose: Iodine-enhanced radiotherapy is an innovative treatment combining the selective accumulation of an iodinated contrast agent in brain tumors with irradiations using monochromatic medium energy x-rays. The aim of this study is to compare dynamic stereotactic arc-therapy and iodineenhanced SSRT. Methods: Five patients bearing brain metastasis received a standard helical 3D-scan without iodine. A second scan was acquired 13 min after an 80 g iodine infusion. Two SSRT treatment plans (with/without iodine) were performed for each patient using a dedicated Monte Carlo (MC) treatment planning system (TPS) based on the ISOgray TPS. Ten coplanar beams (6×6 cm2, shaped with collimator)more » were simulated. MC statistical error objective was less than 5% in the 50% isodose. The dynamic arc-therapy plan was achieved on the Iplan Brainlab TPS. The treatment plan validation criteria were fixed such that 100% of the prescribed dose is delivered at the beam isocentre and the 70% isodose contains the whole target volume. The comparison elements were the 70% isodose volume, the average and maximum doses delivered to organs at risk (OAR): brainstem, optical nerves, chiasma, eyes, skull bone and healthy brain parenchyma. Results: The stereotactic dynamic arc-therapy remains the best technique in terms of dose conformation. Iodine-enhanced SSRT presents similar performances to dynamic arc-therapy with increased brainstem and brain parenchyma sparing. One disadvantage of SSRT is the high dose to the skull bone. Iodine accumulation in metastasis may increase the dose by 20–30%, allowing a normal tissue sparing effect at constant prescribed dose. Treatment without any iodine enhancement (medium-energy stereotactic radiotherapy) is not relevant with degraded HDVs (brain, parenchyma and skull bone) comparing to stereotactic dynamic arc-therapy. Conclusion: Iodine-enhanced SSRT exhibits a good potential for brain metastasis treatment regarding the dose distribution and OAR criteria.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Chengyu, E-mail: shicy1974@yahoo.com; Chen, Yong; Fang, Deborah
2015-04-01
Liver stereotactic body radiation therapy (SBRT) is a feasible treatment method for the nonoperable, patient with early-stage liver cancer. Treatment planning for the SBRT is very important and has to consider the simulation accuracy, planning time, treatment efficiency effects etc. The modified dynamic conformal arc (MDCA) technique is a 3-dimensional conformal arc planning method, which has been proposed for liver SBRT planning at our center. In this study, we compared the MDCA technique with the RapidArc technique in terms of planning target volume (PTV) coverage and sparing of organs at risk (OARs). The results show that the MDCA technique hasmore » comparable plan quality to RapidArc considering PTV coverage, hot spots, heterogeneity index, and effective liver volume. For the 5 PTVs studied among 4 patients, the MDCA plan, when compared with the RapidArc plan, showed 9% more hot spots, more heterogeneity effect, more sparing of OARs, and lower liver effective volume. The monitor unit (MU) number for the MDCA plan is much lower than for the RapidArc plans. The MDCA plan has the advantages of less planning time, no-collision treatment, and a lower MU number.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopp, Robert W.; Duff, Michael, E-mail: mduff@cancercarewny.com; Catalfamo, Frank
2011-01-01
We compared normal tissue radiation dose for the treatment of prostate cancer using 2 different radiation therapy delivery methods: volumetric modulated arc therapy (VMAT) vs. fixed-field intensity-modulated radiation therapy (IMRT). Radiotherapy plans for 292 prostate cancer patients treated with VMAT to a total dose of 7740 cGy were analyzed retrospectively. Fixed-angle, 7-field IMRT plans were created using the same computed tomography datasets and contours. Radiation doses to the planning target volume (PTV) and organs at risk (bladder, rectum, penile bulb, and femoral heads) were measured, means were calculated for both treatment methods, and dose-volume comparisons were made with 2-tailed, pairedmore » t-tests. The mean dose to the bladder was lower with VMAT at all measured volumes: 5, 10, 15, 25, 35, and 50% (p < 0.05). The mean doses to 5 and 10% of the rectum, the high-dose regions, were lower with VMAT (p < 0.05). The mean dose to 15% of the rectal volume was not significantly different (p = 0.95). VMAT exposed larger rectal volumes (25, 35, and 50%) to more radiation than fixed-field IMRT (p < 0.05). Average mean dose to the penile bulb (p < 0.05) and mean dose to 10% of the femoral heads (p < 0.05) were lower with VMAT. VMAT therapy for prostate cancer has dosimetric advantages for critical structures, notably for high-dose regions compared with fixed-field IMRT, without compromising PTV coverage. This may translate into reduced acute and chronic toxicity.« less
NASA Astrophysics Data System (ADS)
Penniston-Dorland, S.; Stern, R. J.; Edwards, B. R.; Kincaid, C. R.
2014-12-01
The NSF-MARGINS Program funded a decade of research on continental margin processes. The NSF-GeoPRISMS Mini-lesson Project, funded by NSF-TUES, is designed to integrate fundamental results from the MARGINS program into open-source college-level curriculum. Three Subduction Factory (SubFac) mini-lessons were developed as part of this project. These include hands-on examinations of data sets representing 3 key components of the subduction zone system: 1) Heat transfer in the subducted slab; 2) Metamorphic processes happening at the plate interface; and 3) Typical magmatic products of arc systems above subduction zones. Module 1: "Slab Temperatures Control Melting in Subduction Zones, What Controls Slab Temperature?" allows students to work in groups using beads rolling down slopes as an analog for the mathematics of heat flow. Using this hands-on, exploration-based approach, students develop an intuition for the mathematics of heatflow and learn about heat conduction and advection in the subduction zone environment. Module 2: "Subduction zone metamorphism" introduces students to the metamorphic rocks that form as the subducted slab descends and the mineral reactions that characterize subduction-related metamorphism. This module includes a suite of metamorphic rocks available for instructors to use in a lab, and exercises in which students compare pressure-temperature estimates obtained from metamorphic rocks to predictions from thermal models. Module 3: "Central American Arc Volcanoes, Petrology and Geochemistry" introduces students to basic concepts in igneous petrology using the Central American volcanic arc, a MARGINS Subduction Factory focus site, as an example. The module relates data from two different volcanoes - basaltic Cerro Negro (Nicaragua) and andesitic Ilopango (El Salvador) including hand sample observations and major element geochemistry - to explore processes of mantle and crustal melting and differentiation in arc volcanism.
Mastwal, Surjeet; Cao, Vania; Wang, Kuan Hong
2016-01-01
Mental functions involve coordinated activities of specific neuronal ensembles that are embedded in complex brain circuits. Aberrant neuronal ensemble dynamics is thought to form the neurobiological basis of mental disorders. A major challenge in mental health research is to identify these cellular ensembles and determine what molecular mechanisms constrain their emergence and consolidation during development and learning. Here, we provide a perspective based on recent studies that use activity-dependent gene Arc/Arg3.1 as a cellular marker to identify neuronal ensembles and a molecular probe to modulate circuit functions. These studies have demonstrated that the transcription of Arc is activated in selective groups of frontal cortical neurons in response to specific behavioral tasks. Arc expression regulates the persistent firing of individual neurons and predicts the consolidation of neuronal ensembles during repeated learning. Therefore, the Arc pathway represents a prototypical example of activity-dependent genetic feedback regulation of neuronal ensembles. The activation of this pathway in the frontal cortex starts during early postnatal development and requires dopaminergic (DA) input. Conversely, genetic disruption of Arc leads to a hypoactive mesofrontal dopamine circuit and its related cognitive deficit. This mutual interaction suggests an auto-regulatory mechanism to amplify the impact of neuromodulators and activity-regulated genes during postnatal development. Such a mechanism may contribute to the association of mutations in dopamine and Arc pathways with neurodevelopmental psychiatric disorders. As the mesofrontal dopamine circuit shows extensive activity-dependent developmental plasticity, activity-guided modulation of DA projections or Arc ensembles during development may help to repair circuit deficits related to neuropsychiatric disorders.
E-beam high voltage switching power supply
Shimer, D.W.; Lange, A.C.
1996-10-15
A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 figs.
E-beam high voltage switching power supply
Shimer, Daniel W.; Lange, Arnold C.
1996-01-01
A high-power power supply produces a controllable, constant high voltage put under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.
Compact, maintainable 80-KeV neutral beam module
Fink, Joel H.; Molvik, Arthur W.
1980-01-01
A compact, maintainable 80-keV arc chamber, extractor module for a neutral beam system immersed in a vacuum of <10.sup.-2 Torr, incorporating a nested 60-keV gradient shield located midway between the high voltage ion source and surrounding grounded frame. The shield reduces breakdown or arcing path length without increasing the voltage gradient, tends to keep electric fields normal to conducting surfaces rather than skewed and reduces the peak electric field around irregularities on the 80-keV electrodes. The arc chamber or ion source is mounted separately from the extractor or ion accelerator to reduce misalignment of the accelerator and to permit separate maintenance to be performed on these systems. The separate mounting of the ion source provides for maintaining same without removing the ion accelerator.
NASA Astrophysics Data System (ADS)
Park, So-Hyun; Lee, Dong-Soo; Lee, Yun-Hee; Lee, Seu-Ran; Kim, Min-Ju; Suh, Tae-Suk
2015-09-01
The aim of this work is to demonstrate both the physical and the biological quality assurance (QA) aspects as pretreatment QA of the head and neck (H&N) cancer plan for the volumetric modulated arc therapy (VMAT). Ten H&N plans were studied. The COMPASS® dosimetry analysis system and the tumor control probability (TCP) and the normal tissue complication probability (NTCP) calculation free program were used as the respective measurement and calculation tools. The reliability of these tools was verified by a benchmark study in accordance with the TG-166 report. For the physical component of QA, the gamma passing rates and the false negative cases between the calculated and the measured data were evaluated. The biological component of QA was performed based on the equivalent uniform dose (EUD), TCP and NTCP values. The evaluation was performed for the planning target volumes (PTVs) and the organs at risks (OARs), including the eyes, the lens, the parotid glands, the esophagus, the spinal cord, and the brainstem. All cases had gamma passing rates above 95% at an acceptance tolerance level with the 3%/3 mm criteria. In addition, the false negative instances were presented for the PTVs and OARs. The gamma passing rates exhibited a weak correlation with false negative cases. For the biological QA, the physical dose errors affect the EUD and the TCP for the PTVs, but no linear correlation existed between them. The EUD and NTCP for the OARs were shown the random differences that could not be attributed to the dose errors from the physical QA. The differences in the EUD and NTCP between the calculated and the measured results were mainly demonstrated for the parotid glands. This study describes the importance and the necessity of improved QA to accompany both the physical and the biological aspects for accurate radiation treatment.
Kuang, Yu; Wu, Lili; Hirata, Emily; Miyazaki, Kyle; Sato, Miles; Kwee, Sandi A
2015-04-01
This study evaluated expected tumor control and normal tissue toxicity for prostate volumetric modulated arc therapy (VMAT) with and without radiation boosts to an intraprostatically dominant lesion (IDL), defined by (18)F-choline positron emission tomography/computed tomography (PET/CT). Thirty patients with localized prostate cancer underwent (18)F-choline PET/CT before treatment. Two VMAT plans, plan79 Gy and plan100-105 Gy, were compared for each patient. The whole-prostate planning target volume (PTVprostate) prescription was 79 Gy in both plans, but plan100-105 Gy added simultaneous boost doses of 100 Gy and 105 Gy to the IDL, defined by 60% and 70% of maximum prostatic uptake on (18)F-choline PET (IDLsuv60% and IDLsuv70%, respectively, with IDLsuv70% nested inside IDLsuv60% to potentially enhance tumor specificity of the maximum point dose). Plan evaluations included histopathological correspondence, isodose distributions, dose-volume histograms, tumor control probability (TCP), and normal tissue complication probability (NTCP). Planning objectives and dose constraints proved feasible in 30 of 30 cases. Prostate sextant histopathology was available for 28 cases, confirming that IDLsuv60% adequately covered all tumor-bearing prostate sextants in 27 cases and provided partial coverage in 1 case. Plan100-105 Gy had significantly higher TCP than plan79 Gy across all prostate regions for α/β ratios ranging from 1.5 Gy to 10 Gy (P<.001 for each case). There were no significant differences in bladder and femoral head NTCP between plans and slightly lower rectal NTCP (endpoint: grade ≥ 2 late toxicity or rectal bleeding) was found for plan100-105 Gy. VMAT can potentially increase the likelihood of tumor control in primary prostate cancer while observing normal tissue tolerances through simultaneous delivery of a steep radiation boost to a (18)F-choline PET-defined IDL. Copyright © 2015 Elsevier Inc. All rights reserved.
Gafchromic EBT-XD film: Dosimetry characterization in high-dose, volumetric-modulated arc therapy.
Miura, Hideharu; Ozawa, Shuichi; Hosono, Fumika; Sumida, Naoki; Okazue, Toshiya; Yamada, Kiyoshi; Nagata, Yasushi
2016-11-08
Radiochromic films are important tools for assessing complex dose distributions. Gafchromic EBT-XD films have been designed for optimal performance in the 40-4,000 cGy dose range. We investigated the dosimetric characteristics of these films, including their dose-response, postexposure density growth, and dependence on scanner orientation, beam energy, and dose rate with applications to high-dose volumetric-modulated arc therapy (VMAT) verification. A 10 MV beam from a TrueBeam STx linear accelerator was used to irradiate the films with doses in the 0-4,000 cGy range. Postexposure coloration was analyzed at postirradiation times ranging from several minutes to 48 h. The films were also irradiated with 6 MV (dose rate (DR): 600 MU/min), 6 MV flattening filter-free (FFF) (DR: 1,400 MU/ min), and 10 MV FFF (DR: 2,400 MU/min) beams to determine the energy and dose-rate dependence. For clinical examinations, we compared the dose distribu-tion measured with EBT-XD films and calculated by the planning system for four VMAT cases. The red channel of the EBT-XD film exhibited a wider dynamic range than the green and blue channels. Scanner orientation yielded a variation of ~ 3% in the net optical density (OD). The difference between the film front and back scan orientations was negligible, with variation of ~ 1.3% in the net OD. The net OD increased sharply within the first 6 hrs after irradiation and gradually afterwards. No significant difference was observed for the beam energy and dose rate, with a variation of ~ 1.5% in the net OD. The gamma passing rates (at 3%, 3 mm) between the film- measured and treatment planning system (TPS)-calculated dose distributions under a high dose VMAT plan in the absolute dose mode were more than 98.9%. © 2016 The Authors.
A novel technique for VMAT QA with EPID in cine mode on a Varian TrueBeam linac
NASA Astrophysics Data System (ADS)
Liu, Bo; Adamson, Justus; Rodrigues, Anna; Zhou, Fugen; Yin, Fang-fang; Wu, Qiuwen
2013-10-01
Volumetric modulated arc therapy (VMAT) is a relatively new treatment modality for dynamic photon radiation therapy. Pre-treatment quality assurance (QA) is necessary and many efforts have been made to apply electronic portal imaging device (EPID)-based IMRT QA methods to VMAT. It is important to verify the gantry rotation speed during delivery as this is a new variable that is also modulated in VMAT. In this paper, we present a new technique to perform VMAT QA using an EPID. The method utilizes EPID cine mode and was tested on Varian TrueBeam in research mode. The cine images were acquired during delivery and converted to dose matrices after profile correction and dose calibration. A sub-arc corresponding to each cine image was extracted from the original plan and its portal image prediction was calculated. Several analyses were performed including 3D γ analysis (2D images + gantry angle axis), 2D γ analysis, and other statistical analyses. The method was applied to 21 VMAT photon plans of 3 photon energies. The accuracy of the cine image information was investigated. Furthermore, this method's sensitivity to machine delivery errors was studied. The pass rate (92.8 ± 1.4%) for 3D γ analysis was comparable to those from Delta4 system (99.9 ± 0.1%) under similar criteria (3%, 3 mm, 5% threshold and 2° angle to agreement) at 6 MV. The recorded gantry angle and start/stop MUs were found to have sufficient accuracy for clinical QA. Machine delivery errors can be detected through combined analyses of 3D γ, gantry angle, and percentage dose difference. In summary, we have developed and validated a QA technique that can simultaneously verify the gantry angle and delivered MLC fluence for VMAT treatment.This technique is efficient and its accuracy is comparable to other QA methods.
Treatment planning for spinal radiosurgery : A competitive multiplatform benchmark challenge.
Moustakis, Christos; Chan, Mark K H; Kim, Jinkoo; Nilsson, Joakim; Bergman, Alanah; Bichay, Tewfik J; Palazon Cano, Isabel; Cilla, Savino; Deodato, Francesco; Doro, Raffaela; Dunst, Jürgen; Eich, Hans Theodor; Fau, Pierre; Fong, Ming; Haverkamp, Uwe; Heinze, Simon; Hildebrandt, Guido; Imhoff, Detlef; de Klerck, Erik; Köhn, Janett; Lambrecht, Ulrike; Loutfi-Krauss, Britta; Ebrahimi, Fatemeh; Masi, Laura; Mayville, Alan H; Mestrovic, Ante; Milder, Maaike; Morganti, Alessio G; Rades, Dirk; Ramm, Ulla; Rödel, Claus; Siebert, Frank-Andre; den Toom, Wilhelm; Wang, Lei; Wurster, Stefan; Schweikard, Achim; Soltys, Scott G; Ryu, Samuel; Blanck, Oliver
2018-05-25
To investigate the quality of treatment plans of spinal radiosurgery derived from different planning and delivery systems. The comparisons include robotic delivery and intensity modulated arc therapy (IMAT) approaches. Multiple centers with equal systems were used to reduce a bias based on individual's planning abilities. The study used a series of three complex spine lesions to maximize the difference in plan quality among the various approaches. Internationally recognized experts in the field of treatment planning and spinal radiosurgery from 12 centers with various treatment planning systems participated. For a complex spinal lesion, the results were compared against a previously published benchmark plan derived for CyberKnife radiosurgery (CKRS) using circular cones only. For two additional cases, one with multiple small lesions infiltrating three vertebrae and a single vertebra lesion treated with integrated boost, the results were compared against a benchmark plan generated using a best practice guideline for CKRS. All plans were rated based on a previously established ranking system. All 12 centers could reach equality (n = 4) or outperform (n = 8) the benchmark plan. For the multiple lesions and the single vertebra lesion plan only 5 and 3 of the 12 centers, respectively, reached equality or outperformed the best practice benchmark plan. However, the absolute differences in target and critical structure dosimetry were small and strongly planner-dependent rather than system-dependent. Overall, gantry-based IMAT with simple planning techniques (two coplanar arcs) produced faster treatments and significantly outperformed static gantry intensity modulated radiation therapy (IMRT) and multileaf collimator (MLC) or non-MLC CKRS treatment plan quality regardless of the system (mean rank out of 4 was 1.2 vs. 3.1, p = 0.002). High plan quality for complex spinal radiosurgery was achieved among all systems and all participating centers in this planning challenge. This study concludes that simple IMAT techniques can generate significantly better plan quality compared to previous established CKRS benchmarks.
Gafchromic EBT‐XD film: Dosimetry characterization in high‐dose, volumetric‐modulated arc therapy
Ozawa, Shuichi; Hosono, Fumika; Sumida, Naoki; Okazue, Toshiya; Yamada, Kiyoshi; Nagata, Yasushi
2016-01-01
Radiochromic films are important tools for assessing complex dose distributions. Gafchromic EBT‐XD films have been designed for optimal performance in the 40–4,000 cGy dose range. We investigated the dosimetric characteristics of these films, including their dose‐response, postexposure density growth, and dependence on scanner orientation, beam energy, and dose rate with applications to high‐dose volumetric‐modulated arc therapy (VMAT) verification. A 10 MV beam from a TrueBeam STx linear accelerator was used to irradiate the films with doses in the 0–4,000 cGy range. Postexposure coloration was analyzed at postirradiation times ranging from several minutes to 48 h. The films were also irradiated with 6 MV (dose rate (DR): 600 MU/min), 6 MV flattening filter‐free (FFF) (DR: 1,400 MU/ min), and 10 MV FFF (DR: 2,400 MU/min) beams to determine the energy and dose‐rate dependence. For clinical examinations, we compared the dose distribution measured with EBT‐XD films and calculated by the planning system for four VMAT cases. The red channel of the EBT‐XD film exhibited a wider dynamic range than the green and blue channels. Scanner orientation yielded a variation of ∼3% in the net optical density (OD). The difference between the film front and back scan orientations was negligible, with variation of ∼1.3% in the net OD. The net OD increased sharply within the first 6 hrs after irradiation and gradually afterwards. No significant difference was observed for the beam energy and dose rate, with a variation of ∼1.5% in the net OD. The gamma passing rates (at 3%, 3 mm) between the film‐ measured and treatment planning system (TPS)‐calculated dose distributions under a high dose VMAT plan in the absolute dose mode were more than 98.9%. PACS number(s): 87.56 Fc PMID:27929504
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, W; Zhang, J; Lu, J
Purpose: To compare the dosimetric difference of volumetric modulated arc therapy(VMAT) for preoperative radiotherapy rectal cancer using 6MV X-ray flattening filter free(FFF) and flattening filter(FF) modes. Methods: FF-VMAT and FFF-VMAT plans were designed to 15 rectal cancer patients with preoperative radiotherapy by planning treatment system(Eclipse 10.0),respectively. Dose prescription was 50 Gy in 25 fractions. All plans were normalized to 50 Gy to 95% of PTV. The Dose Volume Histogram (DVH), target and risk organ doses, conformity indexes (CI), homogeneity indexes (HI), low dose volume of normal tissue(BP), monitor units(MU) and treatment time (TT) were compared between the two kinds ofmore » plans. Results: FF-VMAT provided the lower Dmean, V105, HI, and higher CI as compared with FFF-VMAT. The small intestine of D5, Bladder of D5, Dmean, V40, V50, L-femoral head of V40, R-femoral head of Dmean were lower in FF-VMAT than in FFF-VMAT. FF-VMAT had higher BP of V5, but no significantly different of V10, V15, V20, V30 as compared with FFF-VMAT. FF-VMAT reduceed the monitor units(MU) by 21%(P<0.05), as well as the treatment time(TT) was no significantly different(P>0.05), as compared with FFF-VMAT. Conclusion: The plan qualities of FF and FFF VMAT plans were comparable and both clinically acceptable. FF-VMAT as compared with FFF-VMAT, showing better target coverage, some of OARs sparing, the MUs of FFF-VMAT were higher than FF-VMAT, yet were delivered within the same time. This work was supported by the Medical Scientific Research Foundation of Guangdong Procvince (A2014455 to Changchun Ma)« less
TH-EF-BRB-11: Volumetric Modulated Arc Therapy for Total Body Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouyang, L; Folkerts, M; Hrycushko, B
Purpose: To develop a modern, patient-comfortable total body irradiation (TBI) technique suitable for standard-sized linac vaults. Methods: An indexed rotatable immobilization system (IRIS) was developed to make possible total-body CT imaging and radiation delivery on conventional couches. Treatment consists of multi-isocentric volumetric modulated arc therapy (VMAT) to the upper body and parallel-opposed fields to the lower body. Each isocenter is indexed to the couch and includes a 180° IRIS rotation between the upper and lower body fields. VMAT fields are optimized to satisfy lung dose objectives while achieving a uniform therapeutic dose to the torso. End-to-end tests with a randomore » phantom were used to verify dosimetric characteristics. Treatment plan robustness regarding setup uncertainty was assessed by simulating global and regional isocenter setup shifts on patient data sets. Dosimetric comparisons were made with conventional extended distance, standing TBI (cTBI) plans using a Monte Carlo-based calculation. Treatment efficiency was assessed for eight courses of patient treatment. Results: The IRIS system is level and orthogonal to the scanned CT image plane, with lateral shifts <2mm following rotation. End-to-end tests showed surface doses within ±10% of the prescription dose, field junction doses within ±15% of prescription dose. Plan robustness tests showed <15% changes in dose with global setup errors up to 5mm in each direction. Local 5mm relative setup errors in the chest resulted in < 5% dose changes. Local 5mm shift errors in the pelvic and upper leg junction resulted in <10% dose changes while a 10mm shift error causes dose changes up to 25%. Dosimetric comparison with cTBI showed VMAT-TBI has advantages in preserving chest wall dose with flexibility in leveraging the PTV-body and PTV-lung dose. Conclusion: VMAT-TBI with the IRIS system was shown clinically feasible as a cost-effective approach to TBI for standard-sized linac vaults.« less
Li, Guangjun; Wu, Kui; Peng, Guang; Zhang, Yingjie; Bai, Sen
2014-01-01
Volumetric-modulated arc therapy (VMAT) is now widely used clinically, as it is capable of delivering a highly conformal dose distribution in a short time interval. We retrospectively analyzed patient-specific quality assurance (QA) of VMAT and examined the relationships between the planning parameters and the QA results. A total of 118 clinical VMAT cases underwent pretreatment QA. All plans had 3-dimensional diode array measurements, and 69 also had ion chamber measurements. Dose distribution and isocenter point dose were evaluated by comparing the measurements and the treatment planning system (TPS) calculations. In addition, the relationship between QA results and several planning parameters, such as dose level, control points (CPs), monitor units (MUs), average field width, and average leaf travel, were also analyzed. For delivered dose distribution, a gamma analysis passing rate greater than 90% was obtained for all plans and greater than 95% for 100 of 118 plans with the 3%/3-mm criteria. The difference (mean ± standard deviation) between the point doses measured by the ion chamber and those calculated by TPS was 0.9% ± 2.0% for all plans. For all cancer sites, nasopharyngeal carcinoma and gastric cancer have the lowest and highest average passing rates, respectively. From multivariate linear regression analysis, the dose level (p = 0.001) and the average leaf travel (p < 0.001) showed negative correlations with the passing rate, and the average field width (p = 0.003) showed a positive correlation with the passing rate, all indicating a correlation between the passing rate and the plan complexity. No statistically significant correlation was found between MU or CP and the passing rate. Analysis of the results of dosimetric pretreatment measurements as a function of VMAT plan parameters can provide important information to guide the plan parameter setting and optimization in TPS. Copyright © 2014 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, K; Chen, X; Wang, J
Purpose: To incorporate dose volume histogram (DVH) prediction into Auto-Planning for volumetric-modulated arc therapy (VMAT) treatment planning and investigate the benefit of this new technique for rectal cancer. Methods: Ninety clinically accepted VMAT plans for patients with rectal cancer were selected and trained in the RapidPlan for DVH prediction. Both internal and external validations were performed before implementing the prediction model. A new VMAT planning method (hybrid-VMAT) was created with combining the DVH prediction and Auto-Planning. For each new patient, the DVH will be predicted and individual DVH constrains will be obtained and were exported as the original optimization parametersmore » to the Auto-Planning (Pinnacle3 treatment planning system, v9.10) for planning. A total of 20 rectal cancer patients previously treated with manual VMAT (manual-VMAT) plans were replanned using this new method. Dosimetric comparisons were performed between manual VMAT and new method plans. Results: Hybrid-VMAT shows similar PTV coverage to manual-VMAT in D2%, D98% and HI (p>0.05) and superior coverage in CI (p=0.000). For the bladder, the means of V40 and mean dose are 36.0% and 35.6Gy for hybrid-VMAT and 42% and 38.0Gy for the manual-VMAT. For the left (right) femur, the means of V30 and mean dose are 10.6% (11.6%) and 17.9Gy (19.2Gy) for the hybrid-VMAT and 25.6% (24.1%) and 27.3Gy (26.2Gy) for the manual-VMAT. The hybrid-VMAT has significantly improved the organs at risk sparing. Conclusion: The integration of DVH prediction and Auto-Planning significantly improve the VMAT plan quality in the rectal cancer radiotherapy. Our results show the benefit of the new method and will be further investigated in other tumor sites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samuvel, K; Yadav, G; Bhushan, M
2016-06-15
Purpose: To quantify the dosimetric accuracy of junction dose in double isocenter flattened and flatten filter free(FFF) intensity modulated radiation therapy(IMRT) and volumetric modulated arc therapy(VMAT) plan delivery using pelvis phantom. Methods: Five large field pelvis patients were selected for this study. Double isocenter IMRT and VMAT treatment plans were generated in Eclipse Treatment planning System (V.11.0) using 6MV FB and FFF beams. For all the plans same distance 17.0cm was kept between one isocenter to another isocenter. IMRT Plans were made with 7 coplanar fields and VMAT plans were made with full double arcs. Dose calculation was performed usingmore » AAA algorithms with dose grid size of 0.25 cm. Verification plans were calculated on Scanditronix Wellhofer pelvis slab phantom. Measurement point was selected and calculated, where two isocenter plan fields are overlapping, this measurement point was kept at distance 8.5cm from both isocenter. The plans were delivered using Varian TrueBeamTM machine on pelvis slab phantom. Point dose measurements was carried out using CC13 ion chamber volume of 0.13cm3. Results: The measured junction point dose are compared with TPS calculated dose. The mean difference observed was 4.5%, 6.0%, 4.0% and 7.0% for IMRT-FB,IMRT-FFF, VMAT-FB and VMAT-FFF respectively. The measured dose results shows closer agreement with calculated dose in Flatten beam planning in both IMRT and VMAT, whereas in FFF beam plan dose difference are more compared with flatten beam plan. Conclusion: Dosimetry accuracy of Large Field junction dose difference was found less in Flatten beam compared with FFF beam plan delivery. Even though more dosimetric studies are required to analyse junction dose for FFF beam planning using multiple point dose measurements and fluence map verification in field junction area.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbiero, Sara; Specialty School in Medical Physics, University of Pisa, Pisa; Rink, Alexandra
2016-01-01
Purpose: To report on single-fraction stereotactic body radiotherapy (RT) (SBRT) with flattening filter (FF)–free (FFF) volumetric modulated arc therapy (VMAT) for lung cancer and to compare dosimetric results with VMAT with FF. Methods and materials: Overall, 25 patients were treated with 6-MV FFF VMAT (Varian TrueBeam STx LINAC) to a prescribed dose of 24 Gy in a single fraction. Treatment plans were recreated using FF VMAT. Dose-volume indices, monitor units (MU), and treatment times were compared between FFF and FF VMAT techniques. Results: Dose constraints to PTV, spinal cord, and lungs were reached in FFF and FF plans. In FFFmore » plans, average conformity index was 1.13 (95% CI: 1.07 to1.38). Maximum doses to spinal cord, heart, esophagus, and trachea were 2.9 Gy (95% CI: 0.4 to 6.7 Gy), 0.8 Gy (95% CI: 0 to 3.6 Gy), 3.3 Gy (95% CI: 0.02 to 13.9 Gy), and 1.5 Gy (95% CI: 0 to 4.9 Gy), respectively. Average V7 Gy, V7.4 Gy, and mean dose to the healthy lung were 126.5 cc (95% CI: 41.3 to 248.9 cc), 107.3 cc (95% CI: 18.7 to 232.8 cc), and 1.1 Gy (95% CI: 0.3 to 2.2 Gy), respectively. No statistically significant differences were found in dosimetric results and MU between FF and FFF treatments. Treatment time was reduced by an average factor of 2.31 (95% CI: 2.15 to 2.43) from FF treatments to FFF, and the difference was statistically significant. Conclusions: FFF VMAT for lung SBRT provides equivalent dosimetric results to the target and organs at risk as FF VMAT while significantly reducing treatment time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Guangjun; Wu, Kui; Peng, Guang
2014-01-01
Volumetric-modulated arc therapy (VMAT) is now widely used clinically, as it is capable of delivering a highly conformal dose distribution in a short time interval. We retrospectively analyzed patient-specific quality assurance (QA) of VMAT and examined the relationships between the planning parameters and the QA results. A total of 118 clinical VMAT cases underwent pretreatment QA. All plans had 3-dimensional diode array measurements, and 69 also had ion chamber measurements. Dose distribution and isocenter point dose were evaluated by comparing the measurements and the treatment planning system (TPS) calculations. In addition, the relationship between QA results and several planning parameters,more » such as dose level, control points (CPs), monitor units (MUs), average field width, and average leaf travel, were also analyzed. For delivered dose distribution, a gamma analysis passing rate greater than 90% was obtained for all plans and greater than 95% for 100 of 118 plans with the 3%/3-mm criteria. The difference (mean ± standard deviation) between the point doses measured by the ion chamber and those calculated by TPS was 0.9% ± 2.0% for all plans. For all cancer sites, nasopharyngeal carcinoma and gastric cancer have the lowest and highest average passing rates, respectively. From multivariate linear regression analysis, the dose level (p = 0.001) and the average leaf travel (p < 0.001) showed negative correlations with the passing rate, and the average field width (p = 0.003) showed a positive correlation with the passing rate, all indicating a correlation between the passing rate and the plan complexity. No statistically significant correlation was found between MU or CP and the passing rate. Analysis of the results of dosimetric pretreatment measurements as a function of VMAT plan parameters can provide important information to guide the plan parameter setting and optimization in TPS.« less
Yang, Tsong-Shing; Chi, Ching-Chi; Wang, Shu-Hui; Lin, Jing-Chi; Lin, Ko-Ming
2016-10-01
Biologic therapies are more effective but more costly than conventional therapies in treating psoriatic arthritis. To evaluate the cost-efficacy of etanercept, adalimumab and golimumab therapies in treating active psoriatic arthritis in a Taiwanese setting. We conducted a meta-analysis of randomized placebo-controlled trials to calculate the incremental efficacy of etanercept, adalimumab and golimumab, respectively, in achieving Psoriatic Arthritis Response Criteria (PsARC) and a 20% improvement in the American College of Rheumatology score (ACR20). The base, best, and worst case incremental cost-effectiveness ratios (ICERs) for one subject to achieve PsARC and ACR20 were calculated. The annual ICER per PsARC responder were US$27 047 (best scenario US$16 619; worst scenario US$31 350), US$39 339 (best scenario US$31 846; worst scenario US$53 501) and US$27 085 (best scenario US$22 716; worst scenario US$33 534) for etanercept, adalimumab and golimumab, respectively. The annual ICER per ACR20 responder were US$27 588 (best scenario US$20 900; worst scenario US$41 800), US$39 339 (best scenario US$25 236; worst scenario US$83 595) and US$33 534 (best scenario US$27 616; worst scenario US$44 013) for etanercept, adalimumab and golimumab, respectively. In a Taiwanese setting, etanercept had the lowest annual costs per PsARC and ACR20 responder, while adalimumab had the highest annual costs per PsARC and ACR responder. © 2015 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.
Sze, Robert C.; Bigio, Irving J.
2003-07-15
A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.
Sprayed shielding of plastic-encapsulated electronic modules
NASA Technical Reports Server (NTRS)
Muller, A. N.
1969-01-01
Metallic coating directly sprayed on electronic modules provides simple and reliable lightweight protection against radio frequency interference. A plasma arc may be used. Aluminum and copper are the most effective metals.
SU-E-T-430: Modeling MLC Leaf End in 2D for Sliding Window IMRT and Arc Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, X; Zhu, T
2014-06-01
Purpose: To develop a 2D geometric model for MLC accounting for leaf end dose leakage for dynamic IMRT and Rapidarc therapy. Methods: Leaf-end dose leakage is one of the problems for MLC dose calculation and modeling. Dosimetric leaf gap used to model the MLC and to count for leakage in dose calculation, but may not be accurate for smaller leaf gaps. We propose another geometric modeling method to compensate for the MLC round-shape leaf ends dose leakage, and improve the accuracy of dose calculation and dose verification. A triangular function is used to geometrically model the MLC leaf end leakagemore » in the leaf motion direction, and a step function is used in the perpendicular direction. Dose measurements with different leaf gap, different window width, and different window height were conducted, and the results were used to fit the analytical model to get the model parameters. Results: Analytical models have been obtained for stop-and-shoot and dynamic modes for MLC motion. Parameters a=0.4, lw'=5.0 mm for 6X and a=0.54, lw'=4.1 mm for 15x were obtained from the fitting process. The proposed MLC leaf end model improves the dose profile at the two ends of the sliding window opening. This improvement is especially significant for smaller sliding window openings, which are commonly used for highly modulated IMRT plans and arc therapy plans. Conclusion: This work models the MLC round leaf end shape and movement pattern for IMRT dose calculation. The theory, as well as the results in this work provides a useful tool for photon beam IMRT dose calculation and verification.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amoush, Ahmad, E-mail: aamoush@augusta.edu; Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195; Long, Huang
This work aimed to study the dosimetric effect of multileaf collimator (MLC) leaf widths in treatment plans for patients receiving volumetric modulated arc therapy (VMAT) for spine stereotactic body radiation therapy (SBRT). Thirteen patients treated with spine SBRT were retrospectively selected for this study. The patients were treated following the protocol of the Radiation Therapy Oncology Group 0631 (RTOG 0631) for spine metastasis. The prescription dose was 16 Gy in 1 fraction to 90% of the target volume (V16 > 90%). The maximum spinal cord dose of 14 Gy and 10% of the spinal cord receiving < 10 Gy (V10) were the acceptable tolerance doses. For themore » purpose of this study, 2 dual-arc VMAT plans were created for each patient using 3 different MLC leaf widths: 2.5 mm, 4 mm, and 5 mm. The compliance with the RTOG 0631 protocol, conformity index (CI), dose gradient index (DGI), and number of monitor units (MUs) were compared. The average V16Gy of the targets was 91.8 ± 1.2%, 92.2 ± 2.1%, and 91.7 ± 2.3% for 2.5-mm, 4-mm, and 5-mm leaf widths, respectively (p = 0.78). Accordingly, the average CI was 1.45 ± 0.4, 1.47 ± 0.29, and 1.47 ± 0.31 (p = 0.98), respectively. The average DGI was 0.22 ± 0.04, 0.20 ± 0.06, and 0.22 ± 0.05, respectively (p = 0.77). The average maximum dose to the spinal cord was 12.45 ± 1.0 Gy, 12.80 ± 1.0 Gy, and 12.48 ± 1.1 (p = 0.62) and V10% of the spinal cord was 3.6 ± 2.1%, 5.6 ± 2.8%, and 5.5 ± 3.0% (p = 0.11) for 2.5-mm, 4-mm, and 5-mm leaf widths, respectively. Accordingly, the average number of MUs was 4341 ± 500 MU, 5019 ± 834 MU, and 4606 ± 691 MU, respectively (p = 0.053). The use of 2.5-mm, 4-mm, and 5-mm MLCs achieved similar VMAT plan quality as recommended by the RTOG 0631. The dosimetric parameters were also comparable for the 3 MLCs. In general, any of these leaf widths can be used for spine SBRT using VMAT.« less
Second cancer risk after 3D-CRT, IMRT and VMAT for breast cancer.
Abo-Madyan, Yasser; Aziz, Muhammad Hammad; Aly, Moamen M O M; Schneider, Frank; Sperk, Elena; Clausen, Sven; Giordano, Frank A; Herskind, Carsten; Steil, Volker; Wenz, Frederik; Glatting, Gerhard
2014-03-01
Second cancer risk after breast conserving therapy is becoming more important due to improved long term survival rates. In this study, we estimate the risks for developing a solid second cancer after radiotherapy of breast cancer using the concept of organ equivalent dose (OED). Computer-tomography scans of 10 representative breast cancer patients were selected for this study. Three-dimensional conformal radiotherapy (3D-CRT), tangential intensity modulated radiotherapy (t-IMRT), multibeam intensity modulated radiotherapy (m-IMRT), and volumetric modulated arc therapy (VMAT) were planned to deliver a total dose of 50 Gy in 2 Gy fractions. Differential dose volume histograms (dDVHs) were created and the OEDs calculated. Second cancer risks of ipsilateral, contralateral lung and contralateral breast cancer were estimated using linear, linear-exponential and plateau models for second cancer risk. Compared to 3D-CRT, cumulative excess absolute risks (EAR) for t-IMRT, m-IMRT and VMAT were increased by 2 ± 15%, 131 ± 85%, 123 ± 66% for the linear-exponential risk model, 9 ± 22%, 82 ± 96%, 71 ± 82% for the linear and 3 ± 14%, 123 ± 78%, 113 ± 61% for the plateau model, respectively. Second cancer risk after 3D-CRT or t-IMRT is lower than for m-IMRT or VMAT by about 34% for the linear model and 50% for the linear-exponential and plateau models, respectively. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Prostate Cancer Radiation Therapy: What Do Clinicians Have to Know?
Van Limbergen, Evert J.; van Lin, Emile N.; van Roermund, Joep G. H.; Lambin, Philippe
2016-01-01
Radiotherapy (RT) for prostate cancer (PC) has steadily evolved over the last decades, with improving biochemical disease-free survival. Recently population based research also revealed an association between overall survival and doses ≥ 75.6 Gray (Gy) in men with intermediate- and high-risk PC. Examples of improved RT techniques are image-guided RT, intensity-modulated RT, volumetric modulated arc therapy, and stereotactic ablative body RT, which could facilitate further dose escalation. Brachytherapy is an internal form of RT that also developed substantially. New devices such as rectum spacers and balloons have been developed to spare rectal structures. Newer techniques like protons and carbon ions have the intrinsic characteristics maximising the dose on the tumour while minimising the effect on the surrounding healthy tissue, but clinical data are needed for confirmation in randomised phase III trials. Furthermore, it provides an overview of an important discussion issue in PC treatment between urologists and radiation oncologists: the comparison between radical prostatectomy and RT. Current literature reveals that all possible treatment modalities have the same cure rate, but a different toxicity pattern. We recommend proposing the possible different treatment modalities with their own advantages and side-effects to the individual patient. Clinicians and patients should make treatment decisions together (shared decision-making) while using patient decision aids. PMID:28116302
The influence of plan modulation on the interplay effect in VMAT liver SBRT treatments.
Hubley, Emily; Pierce, Greg
2017-08-01
Volumetric modulated arc therapy (VMAT) uses multileaf collimator (MLC) leaves, gantry speed, and dose rate to modulate beam fluence, producing the highly conformal doses required for liver radiotherapy. When targets that move with respiration are treated with a dynamic fluence, there exists the possibility for interplay between the target and leaf motions. This study employs a novel motion simulation technique to determine if VMAT liver SBRT plans with an increase in MLC leaf modulation are more susceptible to dosimetric differences in the GTV due to interplay effects. For ten liver SBRT patients, two VMAT plans with different amounts of MLC leaf modulation were created. Motion was simulated using a random starting point in the respiratory cycle for each fraction. To isolate the interplay effect, motion was also simulated using four specific starting points in the respiratory cycle. The dosimetric differences caused by different starting points were examined by subtracting resultant dose distributions from each other. When motion was simulated using random starting points for each fraction, or with specific starting points, there were significantly more dose differences in the GTV (maximum 100cGy) for more highly modulated plans, but the overall plan quality was not adversely affected. Plans with more MLC leaf modulation are more susceptible to interplay effects, but dose differences in the GTV are clinically negligible in magnitude. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Optical arc sensor using energy harvesting power source
NASA Astrophysics Data System (ADS)
Choi, Kyoo Nam; Rho, Hee Hyuk
2016-06-01
Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.
A simpler method for total scalp irradiation: the multijaw-size concave arc technique.
Inoue, Minoru; Konno, Masahiro; Ogawa, Hirofumi; Harada, Hideyuki; Asakura, Hirofumi; Fuji, Hiroshi; Murayama, Shigeyuki; Nishimura, Tetsuo
2014-07-08
The lateral electron-photon technique (LEPT) and intensity-modulated radiation therapy (IMRT) are commonly used for total scalp irradiation. However, the treatment planning and irradiation are laborious and time-consuming. We herein present the multijaw-size concave arc technique (MCAT) as a total scalp irradiation method that overcomes these problems. CT datasets for eight patients previously treated for angiosarcoma of the scalp were replanned using MCAT, LEPT, and IMRT. The MCAT was designed with a dynamic conformal arc for the total scalp, with a multileaf collimator to shield the brain. Two additional conformal arcs with a decreased upper-jaw position of the first dynamic conformal arc were used to reduce the cranial hotspots. The prescribed dose was 40 Gy (2 Gy/fraction) to 95% of the planning target volume (PTV, defined as the total scalp plus a 4 mm margin). MCAT was compared with LEPT and IMRT with respect to the PTV dose homogeneity (D5%-95%), underdosage (V < 90%), overdosage (V > 110%), doses to the brain, and the delivery time and monitor units (MUs) for single irradiation. We were able to formulate treatment plans for all three techniques that could deliver the prescription dose in all patients. MCAT was significantly superior to LEPT with respect to PTV dose homogeneity, overdosage, and underdosage, although MCAT was inferior to IMRT with respect to dose homogeneity and overdosage. The mean brain dose and high-dosage volume of all three techniques were low, but IMRT provided larger volume to the brain than did the other two techniques in the low dosage region. In MCAT, the mean delivery time could be reduced by approximately half or more, and the mean MUs could be reduced by at least 100 compared to the other two techniques. MCAT can achieve total scalp irradiation with substantially fewer MUs and a shorter delivery time than LEPT and IMRT.
A simpler method for total scalp irradiation: the multijaw‐size concave arc technique
Konno, Masahiro; Ogawa, Hirofumi; Harada, Hideyuki; Asakura, Hirofumi; Fuji, Hiroshi; Murayama, Shigeyuki; Nishimura, Tetsuo
2014-01-01
The lateral electron‐photon technique (LEPT) and intensity‐modulated radiation therapy (IMRT) are commonly used for total scalp irradiation. However, the treatment planning and irradiation are laborious and time‐consuming. We herein present the multijaw‐size concave arc technique (MCAT) as a total scalp irradiation method that overcomes these problems. CT datasets for eight patients previously treated for angiosarcoma of the scalp were replanned using MCAT, LEPT, and IMRT. The MCAT was designed with a dynamic conformal arc for the total scalp, with a multileaf collimator to shield the brain. Two additional conformal arcs with a decreased upper‐jaw position of the first dynamic conformal arc were used to reduce the cranial hotspots. The prescribed dose was 40 Gy (2 Gy/fraction) to 95% of the planning target volume (PTV, defined as the total scalp plus a 4 mm margin). MCAT was compared with LEPT and IMRT with respect to the PTV dose homogeneity (D5%–95%), underdosage (V < 90%), overdosage (V > 110%), doses to the brain, and the delivery time and monitor units (MUs) for single irradiation. We were able to formulate treatment plans for all three techniques that could deliver the prescription dose in all patients. MCAT was significantly superior to LEPT with respect to PTV dose homogeneity, overdosage, and underdosage, although MCAT was inferior to IMRT with respect to dose homogeneity and overdosage. The mean brain dose and high‐dosage volume of all three techniques were low, but IMRT provided larger volume to the brain than did the other two techniques in the low dosage region. In MCAT, the mean delivery time could be reduced by approximately half or more, and the mean MUs could be reduced by at least 100 compared to the other two techniques. MCAT can achieve total scalp irradiation with substantially fewer MUs and a shorter delivery time than LEPT and IMRT. PACS number: 87.55.D‐ PMID:25207405
Solar array module plasma interactions experiment (SAMPIE) - Science and technology objectives
NASA Technical Reports Server (NTRS)
Hillard, G. B.; Ferguson, Dale C.
1993-01-01
The solar array module plasma interactions experiment (SAMPIE) is an approved NASA flight experiment manifested for Shuttle deployment in early 1994. The SAMPIE experiment is designed to investigate the interaction of high voltage space power systems with ionospheric plasma. To study the behavior of solar cells, a number of solar cell coupons (representing design technologies of current interest) will be biased to high voltages to measure both arcing and current collection. Various theories of arc suppression will be tested by including several specially modified cell coupons. Finally, SAMPIE will include experiments to study the basic nature of arcing and current collection. This paper describes the rationale for a space flight experiment, the measurements to be made, and the significance of the expected results. A future paper will present a detailed discussion of the engineering design.
NASA Astrophysics Data System (ADS)
Kim, Hojin; Li, Ruijiang; Lee, Rena; Xing, Lei
2015-03-01
Conventional VMAT optimizes aperture shapes and weights at uniformly sampled stations, which is a generalization of the concept of a control point. Recently, rotational station parameter optimized radiation therapy (SPORT) has been proposed to improve the plan quality by inserting beams to the regions that demand additional intensity modulations, thus formulating non-uniform beam sampling. This work presents a new rotational SPORT planning strategy based on reweighted total-variation (TV) minimization (min.), using beam’s-eye-view dosimetrics (BEVD) guided beam selection. The convex programming based reweighted TV min. assures the simplified fluence-map, which facilitates single-aperture selection at each station for single-arc delivery. For the rotational arc treatment planning and non-uniform beam angle setting, the mathematical model needs to be modified by additional penalty term describing the fluence-map similarity and by determination of appropriate angular weighting factors. The proposed algorithm with additional penalty term is capable of achieving more efficient and deliverable plans adaptive to the conventional VMAT and SPORT planning schemes by reducing the dose delivery time about 5 to 10 s in three clinical cases (one prostate and two head-and-neck (HN) cases with a single and multiple targets). The BEVD guided beam selection provides effective and yet easy calculating methodology to select angles for denser, non-uniform angular sampling in SPORT planning. Our BEVD guided SPORT treatment schemes improve the dose sparing to femoral heads in the prostate and brainstem, parotid glands and oral cavity in the two HN cases, where the mean dose reduction of those organs ranges from 0.5 to 2.5 Gy. Also, it increases the conformation number assessing the dose conformity to the target from 0.84, 0.75 and 0.74 to 0.86, 0.79 and 0.80 in the prostate and two HN cases, while preserving the delivery efficiency, relative to conventional single-arc VMAT plans.
Kan, Monica W K; Leung, Lucullus H T; Yu, Peter K N
2013-11-04
A new version of progressive resolution optimizer (PRO) with an option of air cavity correction has been implemented for RapidArc volumetric-modulated arc therapy (RA). The purpose of this study was to compare the performance of this new PRO with the use of air cavity correction option (PRO10_air) against the one without the use of the air cavity correction option (PRO10_no-air) for RapidArc planning in targets with low-density media of different sizes and complexities. The performance of PRO10_no-air and PRO10_air was initially compared using single-arc plans created for four different simple heterogeneous phantoms with virtual targets and organs at risk. Multiple-arc planning of 12 real patients having nasopharyngeal carcinomas (NPC) and ten patients having non-small cell lung cancer (NSCLC) were then performed using the above two options for further comparison. Dose calculations were performed using both the Acuros XB (AXB) algorithm with the dose to medium option and the analytical anisotropic algorithm (AAA). The effect of using intermediate dose option after the first optimization cycle in PRO10_air and PRO10_no-air was also investigated and compared. Plans were evaluated and compared using target dose coverage, critical organ sparing, conformity index, and dose homogeneity index. For NSCLC cases or cases for which large volumes of low-density media were present in or adjacent to the target volume, the use of the air cavity correction option in PRO10 was shown to be beneficial. For NPC cases or cases for which small volumes of both low- and high-density media existed in the target volume, the use of air cavity correction in PRO10 did not improve the plan quality. Based on the AXB dose calculation results, the use of PRO10_air could produce up to 18% less coverage to the bony structures of the planning target volumes for NPC cases. When the intermediate dose option in PRO10 was used, there was negligible difference observed in plan quality between optimizations with and without using the air cavity correction option.
Moseley, Douglas; Kassam, Zahra; Kim, Sun Mo; Cho, Charles
2013-01-01
Recently, volumetric‐modulated arc therapy (VMAT) has demonstrated the ability to deliver radiation dose precisely and accurately with a shorter delivery time compared to conventional intensity‐modulated fixed‐field treatment (IMRT). We applied the hypothesis of VMAT technique for the treatment of thoracic esophageal carcinoma to determine superior or equivalent conformal dose coverage for a large thoracic esophageal planning target volume (PTV) with superior or equivalent sparing of organs‐at‐risk (OARs) doses, and reduce delivery time and monitor units (MUs), in comparison with conventional fixed‐field IMRT plans. We also analyzed and compared some other important metrics of treatment planning and treatment delivery for both IMRT and VMAT techniques. These metrics include: 1) the integral dose and the volume receiving intermediate dose levels between IMRT and VMATI plans; 2) the use of 4D CT to determine the internal motion margin; and 3) evaluating the dosimetry of every plan through patient‐specific QA. These factors may impact the overall treatment plan quality and outcomes from the individual planning technique used. In this study, we also examined the significance of using two arcs vs. a single‐arc VMAT technique for PTV coverage, OARs doses, monitor units and delivery time. Thirteen patients, stage T2‐T3 N0‐N1 (TNM AJCC 7th edn.), PTV volume median 395 cc (range 281–601 cc), median age 69 years (range 53 to 85), were treated from July 2010 to June 2011 with a four‐field (n=4) or five‐field (n=9) step‐and‐shoot IMRT technique using a 6 MV beam to a prescribed dose of 50 Gy in 20 to 25 F. These patients were retrospectively replanned using single arc (VMATI, 91 control points) and two arcs (VMATII, 182 control points). All treatment plans of the 13 study cases were evaluated using various dose‐volume metrics. These included PTV D99, PTV D95, PTV V9547.5Gy(95%), PTV mean dose, Dmax, PTV dose conformity (Van't Riet conformation number (CN)), mean lung dose, lung V20 and V5, liver V30, and Dmax to the spinal canal prv3mm. Also examined were the total plan monitor units (MUs) and the beam delivery time. Equivalent target coverage was observed with both VMAT single and two‐arc plans. The comparison of VMATI with fixed‐field IMRT demonstrated equivalent target coverage; statistically no significant difference were found in PTV D99 (p=0.47), PTV mean (p=0.12), PTV D95 and PTV V9547.5Gy (95%) (p=0.38). However, Dmax in VMATI plans was significantly lower compared to IMRT (p=0.02). The Van't Riet dose conformation number (CN) was also statistically in favor of VMATI plans (p=0.04). VMATI achieved lower lung V20 (p=0.05), whereas lung V5 (p=0.35) and mean lung dose (p=0.62) were not significantly different. The other OARs, including spinal canal, liver, heart, and kidneys showed no statistically significant differences between the two techniques. Treatment time delivery for VMATI plans was reduced by up to 55% (p=5.8E−10) and MUs reduced by up to 16% (p=0.001). Integral dose was not statistically different between the two planning techniques (p=0.99). There were no statistically significant differences found in dose distribution of the two VMAT techniques (VMATI vs. VMATII) Dose statistics for both VMAT techniques were: PTV D99 (p=0.76), PTV D95 (p=0.95), mean PTV dose (p=0.78), conformation number (CN) (p=0.26), and MUs (p=0.1). However, the treatment delivery time for VMATII increased significantly by two‐fold (p=3.0E−11) compared to VMATI. VMAT‐based treatment planning is safe and deliverable for patients with thoracic esophageal cancer with similar planning goals, when compared to standard IMRT. The key benefit for VMATI was the reduction in treatment delivery time and MUs, and improvement in dose conformality. In our study, we found no significant difference in VMATII over single‐arc VMATI for PTV coverage or OARs doses. However, we observed significant increase in delivery time for VMATII compared to VMATI. PACS number: 87.53.Kn, 87.55.‐x PMID:23652258
Teubner, Brett J.W.; Leitner, Claudia; Thomas, Michael A.; Ryu, Vitaly; Bartness, Timothy J.
2015-01-01
Seasonal responses of many animal species are triggered by changes in daylength and its transduction into a neuroendocrine signal by the pineal gland through the nocturnal duration of melatonin (MEL) release. The precise central sites necessary to receive, transduce, and relay the short day (SD) fall-winter MEL signals into seasonal responses and changes in physiology and behavior are unclear. In Siberian hamsters, SDs trigger decreases in body and lipid mass, testicular regression and pelage color changes. Several candidate genes and their central sites of expression have been proposed as components of the MEL transduction system with considerable recent focus on the arcuate nucleus (ARC) and its component, the dorsomedial posterior arcuate nucleus (dmpARC). This site has been postulated as a critical relay of SD information through the modulation of a variety of neurochemicals/receptors important for the control of energy balance. Here the necessity of an intact dmpARC for SD responses was tested by making electrolytic lesions of the Siberian hamster dmpARC and then exposing them to either long days (LD) or SDs for 12 weeks. The SD typical decreases in body and fat mass, food intake, testicular volume, serum testosterone concentrations, pelage color change and increased UCP-1 protein expression (a proxy for brown adipose tissue thermogenesis) all occurred despite the lack of an intact dmpARC. Although the Siberian hamster dmpARC contains photoperiod-modulated constituents, these data demonstrate that an intact dmpARC is not necessary for SD responses and not integral to the seasonal energy- and reproductive-related responses measured here. PMID:25647158
Manigandan, Durai; Karrthick, Karukkupalayam Palaniappan; Sambasivaselli, Raju; Senniandavar, Vellaingiri; Ramu, Mahendran; Rajesh, Thiyagarajan; Lutz, Muller; Muthukumaran, Manavalan; Karthikeyan, Nithyanantham; Tejinder, Kataria
2014-01-01
The purpose of this study was to evaluate quantitatively the patient‐specific 3D dosimetry tool COMPASS with 2D array MatriXX detector for stereotactic volumetric‐modulated arc delivery. Twenty‐five patients CT images and RT structures from different sites (brain, head & neck, thorax, abdomen, and spine) were taken from CyberKnife Multiplan planning system for this study. All these patients underwent radical stereotactic treatment in CyberKnife. For each patient, linac based volumetric‐modulated arc therapy (VMAT) stereotactic plans were generated in Monaco TPS v3.1 using Elekta Beam Modulator MLC. Dose prescription was in the range of 5–20 Gy per fraction. Target prescription and critical organ constraints were tried to match the delivered treatment plans. Each plan quality was analyzed using conformity index (CI), conformity number (CN), gradient Index (GI), target coverage (TC), and dose to 95% of volume (D95). Monaco Monte Carlo (MC)‐calculated treatment plan delivery accuracy was quantitatively evaluated with COMPASS‐calculated (CCA) dose and COMPASS indirectly measured (CME) dose based on dose‐volume histogram metrics. In order to ascertain the potential of COMPASS 3D dosimetry for stereotactic plan delivery, 2D fluence verification was performed with MatriXX using MultiCube phantom. Routine quality assurance of absolute point dose verification was performed to check the overall delivery accuracy. Quantitative analyses of dose delivery verification were compared with pass and fail criteria of 3 mm and 3% distance to agreement and dose differences. Gamma passing rate was compared with 2D fluence verification from MatriXX with MultiCube. Comparison of COMPASS reconstructed dose from measured fluence and COMPASS computed dose has shown a very good agreement with TPS calculated dose. Each plan was evaluated based on dose volume parameters for target volumes such as dose at 95% of volume (D95) and average dose. For critical organs dose at 20% of volume (D20), dose at 50% of volume (D50), and maximum point doses were evaluated. Comparison was carried out using gamma analysis with passing criteria of 3 mm and 3%. Mean deviation of 1.9%±1% was observed for dose at 95% of volume (D95) of target volumes, whereas much less difference was noticed for critical organs. However, significant dose difference was noticed in two cases due to the smaller tumor size. Evaluation of this study revealed that the COMPASS 3D dosimetry is efficient and easy to use for patient‐specific QA of VMAT stereotactic delivery. 3D dosimetric QA with COMPASS provides additional degrees of freedom to check the high‐dose modulated stereotactic delivery with very high precision on patient CT images. PACS numbers: 87.55.Qr, 87.56.Fc PMID:25679152
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freund, D; Zhang, R; Sanders, M
Purpose: Post-irradiation cerebral necrosis (PICN) is a severe late effect that can Result from brain cancers treatment using radiation therapy. The purpose of this study was to compare the treatment plans and predicted risk of PICN after volumetric modulated arc therapy (VMAT) to the risk after passively scattered proton therapy (PSPT) and intensity modulated proton therapy (IMPT) in a cohort of pediatric patients. Methods: Thirteen pediatric patients with varying age and sex were selected for this study. A clinical treatment volume (CTV) was constructed for 8 glioma patients and 5 ependymoma patients. Prescribed dose was 54 Gy over 30 fractionsmore » to the planning volume. Dosimetric endpoints were compared between VMAT and proton plans. The normal tissue complication probability (NTCP) following VMAT and proton therapy planning was also calculated using PICN as the biological endpoint. Sensitivity tests were performed to determine if predicted risk of PICN was sensitive to positional errors, proton range errors and selection of risk models. Results: Both PSPT and IMPT plans resulted in a significant increase in the maximum dose and reduction in the total brain volume irradiated to low doses compared with the VMAT plans. The average ratios of NTCP between PSPT and VMAT were 0.56 and 0.38 for glioma and ependymoma patients respectively and the average ratios of NTCP between IMPT and VMAT were 0.67 and 0.68 for glioma and ependymoma plans respectively. Sensitivity test revealed that predicted ratios of risk were insensitive to range and positional errors but varied with risk model selection. Conclusion: Both PSPT and IMPT plans resulted in a decrease in the predictive risk of necrosis for the pediatric plans studied in this work. Sensitivity analysis upheld the qualitative findings of the risk models used in this study, however more accurate models that take into account dose and volume are needed.« less
Variable dose rate single-arc IMAT delivered with a constant dose rate and variable angular spacing
NASA Astrophysics Data System (ADS)
Tang, Grace; Earl, Matthew A.; Yu, Cedric X.
2009-11-01
Single-arc intensity-modulated arc therapy (IMAT) has gained worldwide interest in both research and clinical implementation due to its superior plan quality and delivery efficiency. Single-arc IMAT techniques such as the Varian RapidArc™ deliver conformal dose distributions to the target in one single gantry rotation, resulting in a delivery time in the order of 2 min. The segments in these techniques are evenly distributed within an arc and are allowed to have different monitor unit (MU) weightings. Therefore, a variable dose-rate (VDR) is required for delivery. Because the VDR requirement complicates the control hardware and software of the linear accelerators (linacs) and prevents most existing linacs from delivering IMAT, we propose an alternative planning approach for IMAT using constant dose-rate (CDR) delivery with variable angular spacing. We prove the equivalence by converting VDR-optimized RapidArc plans to CDR plans, where the evenly spaced beams in the VDR plan are redistributed to uneven spacing such that the segments with larger MU weighting occupy a greater angular interval. To minimize perturbation in the optimized dose distribution, the angular deviation of the segments was restricted to <=± 5°. This restriction requires the treatment arc to be broken into multiple sectors such that the local MU fluctuation within each sector is reduced, thereby lowering the angular deviation of the segments during redistribution. The converted CDR plans were delivered with a single gantry sweep as in the VDR plans but each sector was delivered with a different value of CDR. For four patient cases, including two head-and-neck, one brain and one prostate, all CDR plans developed with the variable spacing scheme produced similar dose distributions to the original VDR plans. For plans with complex angular MU distributions, the number of sectors increased up to four in the CDR plans in order to maintain the original plan quality. Since each sector was delivered with a different dose rate, extra mode-up time (xMOT) was needed between the transitions of the successive sectors during delivery. On average, the delivery times of the CDR plans were approximately less than 1 min longer than the treatment times of the VDR plans, with an average of about 0.33 min of xMOT per sector transition. The results have shown that VDR may not be necessary for single-arc IMAT. Using variable angular spacing, VDR RapidArc plans can be implemented into the clinics that are not equipped with the new VDR-enabled machines without compromising the plan quality or treatment efficiency. With a prospective optimization approach using variable angular spacing, CDR delivery times can be further minimized while maintaining the high delivery efficiency of single-arc IMAT treatment.
Toward a web-based real-time radiation treatment planning system in a cloud computing environment.
Na, Yong Hum; Suh, Tae-Suk; Kapp, Daniel S; Xing, Lei
2013-09-21
To exploit the potential dosimetric advantages of intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT), an in-depth approach is required to provide efficient computing methods. This needs to incorporate clinically related organ specific constraints, Monte Carlo (MC) dose calculations, and large-scale plan optimization. This paper describes our first steps toward a web-based real-time radiation treatment planning system in a cloud computing environment (CCE). The Amazon Elastic Compute Cloud (EC2) with a master node (named m2.xlarge containing 17.1 GB of memory, two virtual cores with 3.25 EC2 Compute Units each, 420 GB of instance storage, 64-bit platform) is used as the backbone of cloud computing for dose calculation and plan optimization. The master node is able to scale the workers on an 'on-demand' basis. MC dose calculation is employed to generate accurate beamlet dose kernels by parallel tasks. The intensity modulation optimization uses total-variation regularization (TVR) and generates piecewise constant fluence maps for each initial beam direction in a distributed manner over the CCE. The optimized fluence maps are segmented into deliverable apertures. The shape of each aperture is iteratively rectified to be a sequence of arcs using the manufacture's constraints. The output plan file from the EC2 is sent to the simple storage service. Three de-identified clinical cancer treatment plans have been studied for evaluating the performance of the new planning platform with 6 MV flattening filter free beams (40 × 40 cm(2)) from the Varian TrueBeam(TM) STx linear accelerator. A CCE leads to speed-ups of up to 14-fold for both dose kernel calculations and plan optimizations in the head and neck, lung, and prostate cancer cases considered in this study. The proposed system relies on a CCE that is able to provide an infrastructure for parallel and distributed computing. The resultant plans from the cloud computing are identical to PC-based IMRT and VMAT plans, confirming the reliability of the cloud computing platform. This cloud computing infrastructure has been established for a radiation treatment planning. It substantially improves the speed of inverse planning and makes future on-treatment adaptive re-planning possible.
Toward a web-based real-time radiation treatment planning system in a cloud computing environment
NASA Astrophysics Data System (ADS)
Hum Na, Yong; Suh, Tae-Suk; Kapp, Daniel S.; Xing, Lei
2013-09-01
To exploit the potential dosimetric advantages of intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT), an in-depth approach is required to provide efficient computing methods. This needs to incorporate clinically related organ specific constraints, Monte Carlo (MC) dose calculations, and large-scale plan optimization. This paper describes our first steps toward a web-based real-time radiation treatment planning system in a cloud computing environment (CCE). The Amazon Elastic Compute Cloud (EC2) with a master node (named m2.xlarge containing 17.1 GB of memory, two virtual cores with 3.25 EC2 Compute Units each, 420 GB of instance storage, 64-bit platform) is used as the backbone of cloud computing for dose calculation and plan optimization. The master node is able to scale the workers on an ‘on-demand’ basis. MC dose calculation is employed to generate accurate beamlet dose kernels by parallel tasks. The intensity modulation optimization uses total-variation regularization (TVR) and generates piecewise constant fluence maps for each initial beam direction in a distributed manner over the CCE. The optimized fluence maps are segmented into deliverable apertures. The shape of each aperture is iteratively rectified to be a sequence of arcs using the manufacture’s constraints. The output plan file from the EC2 is sent to the simple storage service. Three de-identified clinical cancer treatment plans have been studied for evaluating the performance of the new planning platform with 6 MV flattening filter free beams (40 × 40 cm2) from the Varian TrueBeamTM STx linear accelerator. A CCE leads to speed-ups of up to 14-fold for both dose kernel calculations and plan optimizations in the head and neck, lung, and prostate cancer cases considered in this study. The proposed system relies on a CCE that is able to provide an infrastructure for parallel and distributed computing. The resultant plans from the cloud computing are identical to PC-based IMRT and VMAT plans, confirming the reliability of the cloud computing platform. This cloud computing infrastructure has been established for a radiation treatment planning. It substantially improves the speed of inverse planning and makes future on-treatment adaptive re-planning possible.
NASA Astrophysics Data System (ADS)
Murray, Louise J.; Thompson, Christopher M.; Lilley, John; Cosgrove, Vivian; Franks, Kevin; Sebag-Montefiore, David; Henry, Ann M.
2015-02-01
Risks of radiation-induced second primary cancer following prostate radiotherapy using 3D-conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), flattening filter free (FFF) and stereotactic ablative radiotherapy (SABR) were evaluated. Prostate plans were created using 10 MV 3D-CRT (78 Gy in 39 fractions) and 6 MV 5-field IMRT (78 Gy in 39 fractions), VMAT (78 Gy in 39 fractions, with standard flattened and energy-matched FFF beams) and SABR (42.7 Gy in 7 fractions with standard flattened and energy-matched FFF beams). Dose-volume histograms from pelvic planning CT scans of three prostate patients, each planned using all 6 techniques, were used to calculate organ equivalent doses (OED) and excess absolute risks (EAR) of second rectal and bladder cancers, and pelvic bone and soft tissue sarcomas, using mechanistic, bell-shaped and plateau models. For organs distant to the treatment field, chamber measurements recorded in an anthropomorphic phantom were used to calculate OEDs and EARs using a linear model. Ratios of OED give relative radiation-induced second cancer risks. SABR resulted in lower second cancer risks at all sites relative to 3D-CRT. FFF resulted in lower second cancer risks in out-of-field tissues relative to equivalent flattened techniques, with increasing impact in organs at greater distances from the field. For example, FFF reduced second cancer risk by up to 20% in the stomach and up to 56% in the brain, relative to the equivalent flattened technique. Relative to 10 MV 3D-CRT, 6 MV IMRT or VMAT with flattening filter increased second cancer risks in several out-of-field organs, by up to 26% and 55%, respectively. For all techniques, EARs were consistently low. The observed large relative differences between techniques, in absolute terms, were very low, highlighting the importance of considering absolute risks alongside the corresponding relative risks, since when absolute risks are very low, large relative risks become less meaningful. A calculated relative radiation-induced second cancer risk benefit from SABR and FFF techniques was theoretically predicted, although absolute radiation-induced second cancer risks were low for all techniques, and absolute differences between techniques were small.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subramanian, Sai; Srinivas, Chilukuri; Ramalingam, K.
2012-03-01
Purpose: To evaluate, with a dosimetric and clinical feasibility study, RapidArc (a volumetric modulated arc technique) for hypofractionated stereotactic radiotherapy treatment of large arteriovenous malformations (AVMs). Methods and Materials: Nine patients were subject to multimodality imaging (magnetic resonance, computed tomography, and digital subtraction angiography) to determine nidus and target volumes, as well as involved organs at risk (optical structures, inner ear, brain stem). Plans for multiple intensity-modulated arcs with a single isocenter were optimized for a fractionation of 25 Gy in 5 fractions. All plans were optimized for 6-MV photon beams. Dose-volume histograms were analyzed to assess plan quality. Deliverymore » parameters were reported to appraise technical features of RapidArc, and pretreatment quality assurance measurements were carried out to report on quality of delivery. Results: Average size of AVM nidus was 26.2 cm{sup 3}, and RapidArc plans provided complete target coverage with minimal overdosage (V{sub 100%} = 100% and V{sub 110%} < 1%) and excellent homogeneity (<6%). Organs at risk were highly spared. The D{sub 1%} to chiasm, eyes, lenses, optic nerves, and brainstem (mean {+-} SD) was 6.4 {+-} 8.3, 1.9 {+-} 3.8, 2.3 {+-} 2.2, 0.7 {+-} 0.9, 4.4 {+-} 7.2, 12.2 {+-} 9.6 Gy, respectively. Conformity index (CI{sub 95%}) was 2.2 {+-} 0.1. The number of monitor units per gray was 277 {+-} 45, total beam-on time was 2.5 {+-} 0.3 min. Planning vs. delivery {gamma} pass rate was 98.3% {+-} 0.9%. None of the patients developed acute toxicity. With a median follow-up of 9 months, 3 patients presented with deterioration of symptoms and were found to have postradiation changes but responded symptomatically to steroids. These patients continue to do well on follow-up. One patient developed headache and seizures, which was attributed to intracranial bleed, confirmed on imaging. Conclusion: Hypofractionated stereotactic radiotherapy can be successfully delivered using the RapidArc form of volumetric arc technology for intracranial AVMs. The quality of delivery and calculated parameters are in agreement with each other and are in line with published reports for other sites.« less
Affordable and Lightweight High-Resolution X-ray Optics for Astronomical Missions
NASA Technical Reports Server (NTRS)
Zhang, W. W.; Biskach, M. P.; Bly, V. T.; Carter, J. M.; Chan, K. W.; Gaskin, J. A.; Hong, M.; Hohl, B. R.; Jones, W. D.; Kolodziejczak, J. J.
2014-01-01
Future x-ray astronomical missions require x-ray mirror assemblies that provide both high angular resolution and large photon collecting area. In addition, as x-ray astronomy undertakes more sensitive sky surveys, a large field of view is becoming increasingly important as well. Since implementation of these requirements must be carried out in broad political and economical contexts, any technology that meets these performance requirements must also be financially affordable and can be implemented on a reasonable schedule. In this paper we report on progress of an x-ray optics development program that has been designed to address all of these requirements. The program adopts the segmented optical design, thereby is capable of making both small and large mirror assemblies for missions of any size. This program has five technical elements: (1) fabrication of mirror substrates, (2) coating, (3) alignment, (4) bonding, and (5) mirror module systems engineering and testing. In the past year we have made progress in each of these five areas, advancing the angular resolution of mirror modules from 10.8 arc-seconds half-power diameter reported (HPD) a year ago to 8.3 arc-seconds now. These mirror modules have been subjected to and passed all environmental tests, including vibration, acoustic, and thermal vacuum. As such this technology is ready for implementing a mission that requires a 10-arc-second mirror assembly. Further development in the next two years would make it ready for a mission requiring a 5-arc-second mirror assembly. We expect that, by the end of this decade, this technology would enable the x-ray astrophysical community to compete effectively for a major x-ray mission in the 2020s that would require one or more 1-arc-second mirror assemblies for imaging, spectroscopic, timing, and survey studies.
Optical arc sensor using energy harvesting power source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Kyoo Nam, E-mail: knchoi@inu.ac.kr; Rho, Hee Hyuk, E-mail: rdoubleh0902@inu.ac.kr
Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arcmore » energy levels, with a resolution below 17 J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Samantha, E-mail: samantha.warren@oncology.ox.ac.uk; Partridge, Mike; Bolsi, Alessandra
Purpose: Planning studies to compare x-ray and proton techniques and to select the most suitable technique for each patient have been hampered by the nonequivalence of several aspects of treatment planning and delivery. A fair comparison should compare similarly advanced delivery techniques from current clinical practice and also assess the robustness of each technique. The present study therefore compared volumetric modulated arc therapy (VMAT) and single-field optimization (SFO) spot scanning proton therapy plans created using a simultaneous integrated boost (SIB) for dose escalation in midesophageal cancer and analyzed the effect of setup and range uncertainties on these plans. Methods andmore » Materials: For 21 patients, SIB plans with a physical dose prescription of 2 Gy or 2.5 Gy/fraction in 25 fractions to planning target volume (PTV){sub 50Gy} or PTV{sub 62.5Gy} (primary tumor with 0.5 cm margins) were created and evaluated for robustness to random setup errors and proton range errors. Dose–volume metrics were compared for the optimal and uncertainty plans, with P<.05 (Wilcoxon) considered significant. Results: SFO reduced the mean lung dose by 51.4% (range 35.1%-76.1%) and the mean heart dose by 40.9% (range 15.0%-57.4%) compared with VMAT. Proton plan robustness to a 3.5% range error was acceptable. For all patients, the clinical target volume D{sub 98} was 95.0% to 100.4% of the prescribed dose and gross tumor volume (GTV) D{sub 98} was 98.8% to 101%. Setup error robustness was patient anatomy dependent, and the potential minimum dose per fraction was always lower with SFO than with VMAT. The clinical target volume D{sub 98} was lower by 0.6% to 7.8% of the prescribed dose, and the GTV D{sub 98} was lower by 0.3% to 2.2% of the prescribed GTV dose. Conclusions: The SFO plans achieved significant sparing of normal tissue compared with the VMAT plans for midesophageal cancer. The target dose coverage in the SIB proton plans was less robust to random setup errors and might be unacceptable for certain patients. Robust optimization to ensure adequate target coverage of SIB proton plans might be beneficial.« less
Warren, Samantha; Partridge, Mike; Bolsi, Alessandra; Lomax, Anthony J.; Hurt, Chris; Crosby, Thomas; Hawkins, Maria A.
2016-01-01
Purpose Planning studies to compare x-ray and proton techniques and to select the most suitable technique for each patient have been hampered by the nonequivalence of several aspects of treatment planning and delivery. A fair comparison should compare similarly advanced delivery techniques from current clinical practice and also assess the robustness of each technique. The present study therefore compared volumetric modulated arc therapy (VMAT) and single-field optimization (SFO) spot scanning proton therapy plans created using a simultaneous integrated boost (SIB) for dose escalation in midesophageal cancer and analyzed the effect of setup and range uncertainties on these plans. Methods and Materials For 21 patients, SIB plans with a physical dose prescription of 2 Gy or 2.5 Gy/fraction in 25 fractions to planning target volume (PTV)50Gy or PTV62.5Gy (primary tumor with 0.5 cm margins) were created and evaluated for robustness to random setup errors and proton range errors. Dose–volume metrics were compared for the optimal and uncertainty plans, with P<.05 (Wilcoxon) considered significant. Results SFO reduced the mean lung dose by 51.4% (range 35.1%-76.1%) and the mean heart dose by 40.9% (range 15.0%-57.4%) compared with VMAT. Proton plan robustness to a 3.5% range error was acceptable. For all patients, the clinical target volume D98 was 95.0% to 100.4% of the prescribed dose and gross tumor volume (GTV) D98 was 98.8% to 101%. Setup error robustness was patient anatomy dependent, and the potential minimum dose per fraction was always lower with SFO than with VMAT. The clinical target volume D98 was lower by 0.6% to 7.8% of the prescribed dose, and the GTV D98 was lower by 0.3% to 2.2% of the prescribed GTV dose. Conclusions The SFO plans achieved significant sparing of normal tissue compared with the VMAT plans for midesophageal cancer. The target dose coverage in the SIB proton plans was less robust to random setup errors and might be unacceptable for certain patients. Robust optimization to ensure adequate target coverage of SIB proton plans might be beneficial. PMID:27084641
Warren, Samantha; Partridge, Mike; Bolsi, Alessandra; Lomax, Anthony J; Hurt, Chris; Crosby, Thomas; Hawkins, Maria A
2016-05-01
Planning studies to compare x-ray and proton techniques and to select the most suitable technique for each patient have been hampered by the nonequivalence of several aspects of treatment planning and delivery. A fair comparison should compare similarly advanced delivery techniques from current clinical practice and also assess the robustness of each technique. The present study therefore compared volumetric modulated arc therapy (VMAT) and single-field optimization (SFO) spot scanning proton therapy plans created using a simultaneous integrated boost (SIB) for dose escalation in midesophageal cancer and analyzed the effect of setup and range uncertainties on these plans. For 21 patients, SIB plans with a physical dose prescription of 2 Gy or 2.5 Gy/fraction in 25 fractions to planning target volume (PTV)50Gy or PTV62.5Gy (primary tumor with 0.5 cm margins) were created and evaluated for robustness to random setup errors and proton range errors. Dose-volume metrics were compared for the optimal and uncertainty plans, with P<.05 (Wilcoxon) considered significant. SFO reduced the mean lung dose by 51.4% (range 35.1%-76.1%) and the mean heart dose by 40.9% (range 15.0%-57.4%) compared with VMAT. Proton plan robustness to a 3.5% range error was acceptable. For all patients, the clinical target volume D98 was 95.0% to 100.4% of the prescribed dose and gross tumor volume (GTV) D98 was 98.8% to 101%. Setup error robustness was patient anatomy dependent, and the potential minimum dose per fraction was always lower with SFO than with VMAT. The clinical target volume D98 was lower by 0.6% to 7.8% of the prescribed dose, and the GTV D98 was lower by 0.3% to 2.2% of the prescribed GTV dose. The SFO plans achieved significant sparing of normal tissue compared with the VMAT plans for midesophageal cancer. The target dose coverage in the SIB proton plans was less robust to random setup errors and might be unacceptable for certain patients. Robust optimization to ensure adequate target coverage of SIB proton plans might be beneficial. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Li, H. Harold; Rodriguez, Vivian L.; Green, Olga L.; Hu, Yanle; Kashani, Rojano; Wooten, H. Omar; Yang, Deshan; Mutic, Sasa
2014-01-01
Purpose This work describes a patient-specific dosimetry quality assurance (QA) program for intensity modulated radiation therapy (IMRT) using ViewRay, the first commercial magnetic resonance imaging guided radiation therapy device. Methods and materials The program consisted of the following components: 1) one-dimensional multipoint ionization chamber measurement using a customized 15 cm3 cubic phantom, 2) two-dimensional (2D) radiographic film measurement using a 30×30×20 cm3 phantom with multiple inserted ionization chambers, 3) quasi- three-dimensional (3D) diode array (ArcCHECK) measurement with a centrally inserted ionization chamber, 4) 2D fluence verification using machine delivery log files, and 5) 3D Monte-Carlo (MC) dose reconstruction with machine delivery files and phantom CT. Results The ionization chamber measurements agreed well with treatment planning system (TPS) computed doses in all phantom geometries where the mean difference (mean ± SD) was 0.0% ± 1.3% (n=102, range, −3.0 % to 2.9%). The film measurements also showed excellent agreement with the TPS computed 2D dose distributions where the mean passing rate using 3% relative/3 mm gamma criteria was 94.6% ± 3.4% (n=30, range, 87.4% to 100%). For ArcCHECK measurements, the mean passing rate using 3% relative/3 mm gamma criteria was 98.9% ± 1.1% (n=34, range, 95.8% to 100%). 2D fluence maps with a resolution of 1×1 mm2 showed 100% passing rates for all plan deliveries (n=34). The MC reconstructed doses to the phantom agreed well with planned 3D doses where the mean passing rate using 3% absolute/3 mm gamma criteria was 99.0% ± 1.0% (n=18, range, 97.0% to100%), demonstrating the feasibility of evaluating the QA results in the patient geometry. Conclusions We have developed a dosimetry program for ViewRay’s patient-specific IMRT QA. The methodology will be useful for other ViewRay users. The QA results presented here can assist the RT community to establish appropriate tolerance and action limits for ViewRay’s IMRT QA. PMID:25442343
Arzamendi, Dabit; Dandachli, Firas; Théorêt, Jean-François; Ducrocq, Gregory; Chan, Mark; Mourad, Walid; Gilbert, James C; Schaub, Robert G; Tanguay, Jean-François; Merhi, Yahye
2011-01-01
The von Willebrand factor (vWF) aptamer, ARC1779 that blocks the binding of vWF A1-domain to platelet glycoprotein 1b (GPIb) at high shear, may deliver a site-specific antithrombotic effect. We investigated the efficiency of ARC1779 on platelet function in patients with coronary artery disease (CAD) on double antiplatelet therapy. Blood from patients taking aspirin and clopidogrel and from normal volunteers was treated ex vivo with ARC1779 or abciximab, either prior to perfusion (pretherapy) or 10 minutes following the initiation of perfusion (posttherapy) on damaged arteries. Under pre- but not posttherapy, platelet adhesion was significantly reduced by ARC1779 at 83 and 250 nmol/L and by abciximab (100 nmol/L) versus placebo (4.8, 3.8, and 2.9 vs 7.3 platelets × 10(6)/cm(2), P < .05). In contrast to abciximab, ARC1779 did not significantly affect platelet aggregation, P-selectin expression, and platelet-leukocyte binding. These proof-of-concept data may constitute the framework for randomized clinical investigations of this novel antiplatelet therapy among patients with CAD.
Kim, Eun Seok; Yeo, Seung-Gu
2014-06-01
Previous studies on advanced radiotherapy (RT) techniques for early stage glottic cancer have focused on sparing the carotid artery. However, the aim of the present study was to evaluate the dosimetric advantages of volumetric modulated arc therapy (VMAT) in terms of sparing the thyroid gland in early-stage glottic cancer patients. In total, 15 cT1N0M0 glottic cancer patients treated with definitive RT using VMAT were selected, and for dosimetric comparison, a conventional RT plan comprising opposed-lateral wedged fields was generated for each patient. The carotid artery, thyroid gland and spinal cord were considered organs at risk. The prescription dose was 63 Gy at 2.25 Gy per fraction. For the thyroid gland and carotid artery, all compared parameters were significantly lower with VMAT compared with conventional RT. For the thyroid gland, the median reduction rates of the mean dose (D mean ), the volume receiving ≥30% of the prescription dose (V 30 ) and the V 50 were 32.6, 40.9 and 46.0%, respectively. The D mean was 14.7±2.6 Gy when using VMAT compared with 22.2±3.9 Gy when using conventional RT. The differences between the techniques in terms of planning target volume coverage and dose homogeneity were not significant. When considering a recent normal tissue complication probability model, which indicated the mean thyroid gland dose as the most significant predictor of radiation-induced hypothyroidism, the dosimetric advantage shown in this study may be valuable in reducing hypothyroidism following RT for early stage glottic cancer patients.
Real-time 3D internal marker tracking during arc radiotherapy by the use of combined MV kV imaging
NASA Astrophysics Data System (ADS)
Liu, W.; Wiersma, R. D.; Mao, W.; Luxton, G.; Xing, L.
2008-12-01
To minimize the adverse dosimetric effect caused by tumor motion, it is desirable to have real-time knowledge of the tumor position throughout the beam delivery process. A promising technique to realize the real-time image guided scheme in external beam radiation therapy is through the combined use of MV and onboard kV beam imaging. The success of this MV-kV triangulation approach for fixed-gantry radiation therapy has been demonstrated. With the increasing acceptance of modern arc radiotherapy in the clinics, a timely and clinically important question is whether the image guidance strategy can be extended to arc therapy to provide the urgently needed real-time tumor motion information. While conceptually feasible, there are a number of theoretical and practical issues specific to the arc delivery that need to be resolved before clinical implementation. The purpose of this work is to establish a robust procedure of system calibration for combined MV and kV imaging for internal marker tracking during arc delivery and to demonstrate the feasibility and accuracy of the technique. A commercially available LINAC equipped with an onboard kV imager and electronic portal imaging device (EPID) was used for the study. A custom built phantom with multiple ball bearings was used to calibrate the stereoscopic MV-kV imaging system to provide the transformation parameters from imaging pixels to 3D world coordinates. The accuracy of the fiducial tracking system was examined using a 4D motion phantom capable of moving in accordance with a pre-programmed trajectory. Overall, spatial accuracy of MV-kV fiducial tracking during the arc delivery process for normal adult breathing amplitude and period was found to be better than 1 mm. For fast motion, the results depended on the imaging frame rates. The RMS error ranged from ~0.5 mm for the normal adult breathing pattern to ~1.5 mm for more extreme cases with a low imaging frame rate of 3.4 Hz. In general, highly accurate real-time tracking of implanted markers using hybrid MV-kV imaging is achievable and the technique should be useful to improve the beam targeting accuracy of arc therapy.
Real-time 3D internal marker tracking during arc radiotherapy by the use of combined MV-kV imaging.
Liu, W; Wiersma, R D; Mao, W; Luxton, G; Xing, L
2008-12-21
To minimize the adverse dosimetric effect caused by tumor motion, it is desirable to have real-time knowledge of the tumor position throughout the beam delivery process. A promising technique to realize the real-time image guided scheme in external beam radiation therapy is through the combined use of MV and onboard kV beam imaging. The success of this MV-kV triangulation approach for fixed-gantry radiation therapy has been demonstrated. With the increasing acceptance of modern arc radiotherapy in the clinics, a timely and clinically important question is whether the image guidance strategy can be extended to arc therapy to provide the urgently needed real-time tumor motion information. While conceptually feasible, there are a number of theoretical and practical issues specific to the arc delivery that need to be resolved before clinical implementation. The purpose of this work is to establish a robust procedure of system calibration for combined MV and kV imaging for internal marker tracking during arc delivery and to demonstrate the feasibility and accuracy of the technique. A commercially available LINAC equipped with an onboard kV imager and electronic portal imaging device (EPID) was used for the study. A custom built phantom with multiple ball bearings was used to calibrate the stereoscopic MV-kV imaging system to provide the transformation parameters from imaging pixels to 3D world coordinates. The accuracy of the fiducial tracking system was examined using a 4D motion phantom capable of moving in accordance with a pre-programmed trajectory. Overall, spatial accuracy of MV-kV fiducial tracking during the arc delivery process for normal adult breathing amplitude and period was found to be better than 1 mm. For fast motion, the results depended on the imaging frame rates. The RMS error ranged from approximately 0.5 mm for the normal adult breathing pattern to approximately 1.5 mm for more extreme cases with a low imaging frame rate of 3.4 Hz. In general, highly accurate real-time tracking of implanted markers using hybrid MV-kV imaging is achievable and the technique should be useful to improve the beam targeting accuracy of arc therapy.
Standard and Nonstandard Craniospinal Radiotherapy Using Helical TomoTherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, William, E-mail: william@medphys.mcgill.c; Brodeur, Marylene; Roberge, David
2010-07-01
Purpose: To show the advantages of planning and delivering craniospinal radiotherapy with helical TomoTherapy (TomoTherapy Inc., Madison, WI) by presenting 4 cases treated at our institution. Methods and Materials: We first present a standard case of craniospinal irradiation in a patient with recurrent myxopapillary ependymoma (MPE) and follow this with 2 cases requiring differential dosing to multiple target volumes. One of these, a patient with recurrent medulloblastoma, required a lower dose to be delivered to the posterior fossa because the patient had been previously irradiated to the full dose, and the other required concurrent boosts to leptomeningeal metastases as partmore » of his treatment for newly diagnosed MPE. The final case presented is a patient with pronounced scoliosis who required spinal irradiation for recurrent MPE. Results: The four cases presented were planned and treated successfully with Helical Tomotherapy. Conclusions: Helical TomoTherapy delivers continuous arc-based intensity-modulated radiotherapy that gives high conformality and excellent dose homogeneity for the target volumes. Increased healthy tissue sparing is achieved at higher doses albeit at the expense of larger volumes of tissue receiving lower doses. Helical TomoTherapy allows for differential dosing of multiple targets, resulting in very elegant dose distributions. Daily megavoltage computed tomography imaging allows for precision of patient positioning, permitting a reduction in planning margins and increased healthy tissue sparing in comparison with standard techniques.« less
WE-A-BRD-01: Innovation in Radiation Therapy Planning I: Knowledge Guided Treatment Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Q; Olsen, L
2014-06-15
Intensity modulated radiation therapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT) offer the capability of normal tissues and organs sparing. However, the exact amount of sparing is often unknown until the plan is complete. This lack of prior guidance has led to the iterative, trial and-error approach in current planning practice. Even with this effort the search for patient-specific optimal organ sparing is still strongly influenced by planner's experience. While experience generally helps in maximizing the dosimetric advantages of IMRT/VMAT, there have been several reports showing unnecessarily high degree of plan quality variability at individual institutions and amongst different institutions,more » even with a large amount of experience and the best available tools. Further, when physician and physicist evaluate a plan, the dosimetric quality of the plan is often compared with a standard protocol that ignores individual patient anatomy and tumor characteristic variations. In recent years, developments of knowledge models for clinical IMRT/VMAT planning guidance have shown promising clinical potentials. These knowledge models extract past expert clinical experience into mathematical models that predict dose sparing references at patient-specific level. For physicians and planners, these references provide objective values that reflect best achievable dosimetric constraints. For quality assurance, applying patient-specific dosimetry requirements will enable more quantitative and objective assessment of protocol compliance for complex IMRT planning. Learning Objectives: Modeling and representation of knowledge for knowledge-guided treatment planning. Demonstrations of knowledge-guided treatment planning with a few clinical caanatomical sites. Validation and evaluation of knowledge models for cost and quality effective standardization of plan optimization.« less
Influence of metallic dental implants and metal artefacts on dose calculation accuracy.
Maerz, Manuel; Koelbl, Oliver; Dobler, Barbara
2015-03-01
Metallic dental implants cause severe streaking artefacts in computed tomography (CT) data, which inhibit the correct representation of shape and density of the metal and the surrounding tissue. The aim of this study was to investigate the impact of dental implants on the accuracy of dose calculations in radiation therapy planning and the benefit of metal artefact reduction (MAR). A second aim was to determine the treatment technique which is less sensitive to the presence of metallic implants in terms of dose calculation accuracy. Phantoms consisting of homogeneous water equivalent material surrounding dental implants were designed. Artefact-containing CT data were corrected using the correct density information. Intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans were calculated on corrected and uncorrected CT data and compared to 2-dimensional dose measurements using GafChromic™ EBT2 films. For all plans the accuracy of dose calculations is significantly higher if performed on corrected CT data (p = 0.015). The agreement of calculated and measured dose distributions is significantly higher for VMAT than for IMRT plans for calculations on uncorrected CT data (p = 0.011) as well as on corrected CT data (p = 0.029). For IMRT and VMAT the application of metal artefact reduction significantly increases the agreement of dose calculations with film measurements. VMAT was found to provide the highest accuracy on corrected as well as on uncorrected CT data. VMAT is therefore preferable over IMRT for patients with metallic implants, if plan quality is comparable for the two techniques.
Influence of (11)C-choline PET/CT on radiotherapy planning in prostate cancer.
López, Escarlata; Lazo, Antonio; Gutiérrez, Antonio; Arregui, Gregorio; Núñez, Isabel; Sacchetti, Antonio
2015-01-01
To evaluate the influence of (11)C-choline PET/CT on radiotherapy planning in prostate cancer patients. Precise information on the extension of prostate cancer is crucial for the choice of an appropriate therapeutic strategy. (11)C-choline positron emission tomography ((11)C-choline PET/CT) has two roles in radiation oncology (RT): (1) patient selection for treatment and (2) target volume selection and delineation. In conjunction with high-accuracy techniques, it might offer an opportunity of dose escalation and better tumour control while sparing healthy tissues. We carried out a retrospective study in order to analyse RT planning modification based on (11)C-choline PET/CT in 16 prostate cancer patients. Patients were treated with hypofractionated step-and-shoot Intensity Modulated Radiotherapy (IMRT), or Volumetric Modulated Arc Therapy (VMAT), and a daily cone-beam CT for Image Guided Radiation Therapy (IGRT). All patients underwent a (11)C-choline-PET/CT scan prior to radiotherapy. In 37.5% of cases, a re-delineation and new dose prescription occurred. Data show good preliminary clinical results in terms of biochemical control and toxicity. No gastrointestinal (GI)/genitourinary (GU) grade III toxicities were observed after a median follow-up of 9.5 months. In our experience, concerning the treatment of prostate cancer (PCa), (11)C-choline PET/CT may be helpful in radiotherapy planning, either for dose escalation or exclusion of selected sites.
Plan averaging for multicriteria navigation of sliding window IMRT and VMAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craft, David, E-mail: dcraft@partners.org; Papp, Dávid; Unkelbach, Jan
2014-02-15
Purpose: To describe a method for combining sliding window plans [intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT)] for use in treatment plan averaging, which is needed for Pareto surface navigation based multicriteria treatment planning. Methods: The authors show that by taking an appropriately defined average of leaf trajectories of sliding window plans, the authors obtain a sliding window plan whose fluence map is the exact average of the fluence maps corresponding to the initial plans. In the case of static-beam IMRT, this also implies that the dose distribution of the averaged plan is the exact dosimetricmore » average of the initial plans. In VMAT delivery, the dose distribution of the averaged plan is a close approximation of the dosimetric average of the initial plans. Results: The authors demonstrate the method on three Pareto optimal VMAT plans created for a demanding paraspinal case, where the tumor surrounds the spinal cord. The results show that the leaf averaged plans yield dose distributions that approximate the dosimetric averages of the precomputed Pareto optimal plans well. Conclusions: The proposed method enables the navigation of deliverable Pareto optimal plans directly, i.e., interactive multicriteria exploration of deliverable sliding window IMRT and VMAT plans, eliminating the need for a sequencing step after navigation and hence the dose degradation that is caused by such a sequencing step.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, B; Roy, S; Munshi, A
2015-06-15
Purpose: To evaluate the comparative dosimetric efficacy between field and field 3DCRT(FnF), multiple field Intensity modulated radiotherapy (SnS IMRT) and, partial arc volumetric modulated arc therapy (VMAT) in case of post operative left side breast and chest wall irradiation. Methods: CT study set of fifteen post-operative left breast and chest wall patient was tested for a treatment plan of 50Gy in 25 fraction using partial arc VMAT, SnSIMRT and tangential beam 3DCRT . 3DCRT FnF gantry angle was ranging for left medial tangential 290±17{sup 0} and Lt lateral tangential l14°±12{sup 0}. For IMRT four fixed beam at gantry angle G130{supmore » 0} G110{sup 0} G300{sup 0} and G330{sup 0} was used, in case of insufficient dose another beam G150{sup 0} was added. In case of partial arc VMAT, lateral tangential arc G130{sup 0}-G100{sup 0} and medial tangential arc G280{sup 0}-G310{sup 0}. Inverse optimization was opted to cover at least 95%PTV by 95% prescription dose (RxD) and a strong weightage on reduction of heart and lung dose. PTV coverage was evaluated for it’s clinically acceptability depending on the tumor spatial location and its quadrant. Out of the three plans, any one was used for the actual patient treatment. Results: Dosimetric analysis done for breast PTV, left lung, heart and the opposite breast. PTV mean dose and maximum dose was 5129.8±214.8cGy, 4749.0±329.7cGy, 5024.6±73.4cGy and 5855.2±510.7cGy, 5340.7±146.1cGy, 5347.2±196.8cGy for FnF, VMAT and IMRT respectively. Ipsilateral lung volume receiving 20Gy and 5Gy was 23.6±9.5cGy and 32.7±10.3cGy for FnF, 18.6±8.7cGy and 38.8±15.2cGy for VMAT and 25.7±9.6cGy and 50.7±8.4cGy for IMRT respectively. Heart mean and 2cc dose was 867.9±456.7cGy and 5038.5±184.3cGy for FnF, 532.6±263cGy and 3632.1±990.6 for VMAT, 711±229.9cGy and 4421±463.7cGy for IMRT respectively. VMAT shows minimum contralateral breast dose 168±113.8cGy. Conclusion: VMAT shows a better tumor conformity, minimum heart, ipsilateral lung and opposite breast dose. Cardiac Toxicity and risk of contralateral breast cancer can be reduce using VMAT.« less
Cusumano, Zachary T.; Watson, Michael E.
2014-01-01
A bacterium's ability to acquire nutrients from its host during infection is an essential component of pathogenesis. For the Gram-positive pathogen Streptococcus pyogenes, catabolism of the amino acid arginine via the arginine deiminase (ADI) pathway supplements energy production and provides protection against acid stress in vitro. Its expression is enhanced in murine models of infection, suggesting an important role in vivo. To gain insight into the function of the ADI pathway in pathogenesis, the virulence of mutants defective in each of its enzymes was examined. Mutants unable to use arginine (ΔArcA) or citrulline (ΔArcB) were attenuated for carriage in a murine model of asymptomatic mucosal colonization. However, in a murine model of inflammatory infection of cutaneous tissue, the ΔArcA mutant was attenuated but the ΔArcB mutant was hyperattenuated, revealing an unexpected tissue-specific role for citrulline metabolism in pathogenesis. When mice defective for the arginine-dependent production of nitric oxide (iNOS−/−) were infected with the ΔArcA mutant, cutaneous virulence was rescued, demonstrating that the ability of S. pyogenes to utilize arginine was dispensable in the absence of nitric oxide-mediated innate immunity. This work demonstrates the importance of arginine and citrulline catabolism and suggests a novel mechanism of virulence by which S. pyogenes uses its metabolism to modulate innate immunity through depletion of an essential host nutrient. PMID:24144727
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ware, S; Clouser, E
2014-06-01
Purpose: To determine the out of field response of Microstar ii OSLDs as a function of field modulation and distance in VMAT plan delivery. This work has potential application in fetal dose monitoring or measurements on cardiac pacemakers Methods: VMAT plans were created in Eclipse and optimized to varying degrees of modulation. Three plans were chosen to represent low, medium and high degrees of modulation (modulation factors as defined by MU/cGy). Plans were delivered to slabs of solid water with dimensions 60cm length, 30cm width, and 10cm height. For each modulation factor, 2 OSLDs were placed at 1cm depth withmore » out of field distances of 1, 2, 3, 5, 8 and 10cm and the plan delivered isocentrically to a depth of 5cm. This technique was repeated for a Farmer Chamber by incrementing the table by the appropriate distance. The charge readings for the Farmer Chamber were converted to dose and the ratios taken as functions of modulation factors and distances out of field Results: Examination of the results as a function of out of field distance shows a trend of increasing OSLD/Farmer Chamber ratios for all modulation factors. The slopes appear to be roughly equivalent for all modulation factors investigated. Results as a function of modulation showed a downward trend for all out of field distances, with the greatest differences seen at 5cm and 8cm Conclusion: This study demonstrates that the response of OSLD dosimeters change as a function of out of field distance and modulation. The differences seen are within the stated accuracy of the system for the out of field distances and modulations investigated. Additional investigation is warranted to see if the OSLD response changes appreciably with longer out of field distances or wider ranges of modulation.« less
Remote electrical arc suppression by laser filamentation.
Schubert, Elise; Mongin, Denis; Kasparian, Jérôme; Wolf, Jean-Pierre
2015-11-02
We investigate the interaction of narrow plasma channels formed in the filamentation of ultrashort laser pulses, with a DC high voltage. The laser filaments prevent electrical arcs by triggering corona that neutralize the high-voltage electrodes. This phenomenon, that relies on the electric field modulation and free electron release around the filament, opens new prospects to lightning and over-voltage mitigation.
Riegel, Adam C; Chen, Yu; Kapur, Ajay; Apicello, Laura; Kuruvilla, Abraham; Rea, Anthony J; Jamshidi, Abolghassem; Potters, Louis
Optically stimulated luminescent dosimeters (OSLDs) are utilized for in vivo dosimetry (IVD) of modern radiation therapy techniques such as intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). Dosimetric precision achieved with conventional techniques may not be attainable. In this work, we measured accuracy and precision for a large sample of clinical OSLD-based IVD measurements. Weekly IVD measurements were collected from 4 linear accelerators for 2 years and were expressed as percent differences from planned doses. After outlier analysis, 10,224 measurements were grouped in the following way: overall, modality (photons, electrons), treatment technique (3-dimensional [3D] conformal, field-in-field intensity modulation, inverse-planned IMRT, and VMAT), placement location (gantry angle, cardinality, and central axis positioning), and anatomical site (prostate, breast, head and neck, pelvis, lung, rectum and anus, brain, abdomen, esophagus, and bladder). Distributions were modeled via a Gaussian function. Fitting was performed with least squares, and goodness-of-fit was assessed with the coefficient of determination. Model means (μ) and standard deviations (σ) were calculated. Sample means and variances were compared for statistical significance by analysis of variance and the Levene tests (α = 0.05). Overall, μ ± σ was 0.3 ± 10.3%. Precision for electron measurements (6.9%) was significantly better than for photons (10.5%). Precision varied significantly among treatment techniques (P < .0001) with field-in-field lowest (σ = 7.2%) and IMRT and VMAT highest (σ = 11.9% and 13.4%, respectively). Treatment site models with goodness-of-fit greater than 0.90 (6 of 10) yielded accuracy within ±3%, except for head and neck (μ = -3.7%). Precision varied with treatment site (range, 7.3%-13.0%), with breast and head and neck yielding the best and worst precision, respectively. Placement on the central axis of cardinal gantry angles yielded more precise results (σ = 8.5%) compared with other locations (range, 10.5%-11.4%). Accuracy of ±3% was achievable. Precision ranged from 6.9% to 13.4% depending on modality, technique, and treatment site. Simple, standardized locations may improve IVD precision. These findings may aid development of patient-specific tolerances for OSLD-based IVD. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Volumetric Modulated Arc Radiotherapy for Vestibular Schwannomas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagerwaard, Frank J.; Meijer, Otto W.M.; Hoorn, Elles A.P. van der
2009-06-01
Purpose: To evaluate volumetric modulated arc radiotherapy (RapidArc [RA]), a novel approach allowing for rapid treatment delivery, for the treatment of vestibular schwannoma (VS). Methods and Materials: The RA plans were generated for a small (0.5 cm{sup 3}), intermediate (2.8 cm{sup 3}), and large (14.8 cm{sup 3}) VS. The prescription dose was 12.5 Gy to the encompassing 80% isodose. The RA plans were compared with conventional radiosurgery plans using both a single dynamic conformal arc (1DCA) and five noncoplanar dynamic conformal arcs (5DCA). Conformity indices (CI) and dose-volume histograms of critical organs were compared. The RA plan for the medium-sizedmore » VS was measured in a phantom using Gafchromic EBT films and compared with calculated dose distributions. Results: The RA planning was completed within 30 min in all cases, and calculated treatment delivery time (after patient setup) was 5 min vs. 20 min for 5DCA. A superior CI was achieved with RA, with a substantial decrease in low-dose irradiation of the normal brain achieved relative to 5DCA plans. Maximum doses to critical organs were similar for RA and 5DCA but were higher for 1DCA. Film measurements showed the differences between calculated and measured doses to be smaller than 1.5% in the high-dose area and smaller than 3% in the low-dose area. Conclusion: The RA plans consistently achieved a higher CI and decrease in areas of low-dose irradiation. This, together with shorter treatment delivery times, has led to RA replacing our conventional five-arc radiosurgery technique for VS.« less
Toth, Csaba; Funke, Sarah; Nitsche, Vanessa; Liverts, Anna; Zlachevska, Viktoriya; Gasis, Marcia; Wiek, Constanze; Hanenberg, Helmut; Mahotka, Csaba; Schirmacher, Peter; Heikaus, Sebastian
2017-05-02
Renal cell carcinomas (RCCs) display broad resistance against conventional radio- and chemotherapies, which is due at least in part to impairments in both extrinsic and intrinsic apoptotic pathways. One important anti-apoptotic factor that is strongly overexpressed in RCCs and known to inhibit both apoptotic pathways is ARC (apoptosis repressor with a CARD domain). Expression and subcellular distribution of ARC in RCC tissue samples and RCC cell lines were determined by immunohistochemistry and fluorescent immunohistochemistry, respectively. Extrinsic and intrinsic apoptosis signalling were induced by TRAIL (TNF-related apoptosis-inducing ligand), ABT-263 or topotecan. ARC knock-down was performed in clearCa-12 cells using lentiviral transduction of pGIPZ. shRNAmir constructs. Extrinsic respectively intrinsic apoptosis were induced by TRAIL (TNF-related apoptosis-inducing ligand), ABT263 or topotecan. Potential synergistic effects were tested by pre-treatment with topotecan and subsequent treatment with ABT263. Activation of different caspases and mitochondrial depolarisation (JC-1 staining) were analysed by flow cytometry. Protein expression of Bcl-2 family members and ARC in RCC cell lines was measured by Western blotting. Statistical analysis was performed by Student's t-test. Regarding the extrinsic pathway, ARC knockdown strongly enhanced TRAIL-induced apoptosis by increasing the activation level of caspase-8. Regarding the intrinsic pathway, ARC, which was only weakly expressed in the nuclei of RCCs in vivo, exerted its anti-apoptotic effect by impairing mitochondrial activation rather than inhibiting p53. Topotecan- and ABT-263-induced apoptosis was strongly enhanced following ARC knockdown in RCC cell lines. In addition, topotecan pre-treatment enhanced ABT-263-induced apoptosis and this effect was amplified in ARC-knockdown cells. Taken together, our results are the first to demonstrate the importance of ARC protein in the inhibition of both the extrinsic and intrinsic pathways of apoptosis in RCCs. In this context, ARC cooperates with anti-apoptotic Bcl-2 family members to exert its strong anti-apoptotic effects and is therefore an important factor not only in the therapeutic resistance but also in future therapy strategies (i.e., Bcl-2 inhibitors) in RCC. In sum, targeting of ARC may enhance the therapeutic response in combination therapy protocols.
Fear extinction requires Arc/Arg3.1 expression in the basolateral amygdala.
Onoue, Kousuke; Nakayama, Daisuke; Ikegaya, Yuji; Matsuki, Norio; Nomura, Hiroshi
2014-04-23
Prolonged re-exposure to a fear-eliciting cue in the absence of an aversive event extinguishes the fear response to the cue, and has been clinically used as an exposure therapy. Arc (also known as Arg3.1) is implicated in synaptic and experience-dependent plasticity. Arc is regulated by the transcription factor cAMP response element binding protein, which is upregulated with and necessary for fear extinction. Because Arc expression is also activated with fear extinction, we hypothesized that Arc expression is required for fear extinction. Extinction training increased the proportion of Arc-labeled cells in the basolateral amygdala (BLA). Arc was transcribed during latter part of extinction training, which is possibly associated with fear extinction, as well as former part of extinction training. Intra-BLA infusions of Arc antisense oligodeoxynucleotide (ODN) before extinction training impaired long-term but not short-term extinction memory. Intra-BLA infusions of Arc antisense ODN 3 h after extinction training had no effect on fear extinction. Our findings demonstrate that Arc is required for long-term extinction of conditioned fear and contribute to the understanding of extinction as a therapeutic manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J; Li, X; Ding, X
Purpose: We performed a retrospective dosimetric comparison study between the robustness optimized Intensity Modulated Proton Therapy (RO-IMPT), volumetric-modulated arc therapy (VMAT), and the non-coplanar 4? intensity modulated radiation therapy (IMRT). These methods represent the most advanced radiation treatment methods clinically available. We compare their dosimetric performance for head and neck cancer treatments with special focus on the OAR sparing near the tumor volumes. Methods: A total of 11 head and neck cases, which include 10 recurrent cases and one bilateral case, were selected for the study. Different dose levels were prescribed to tumor target depending on disease and location. Threemore » treatment plans were created on commercial TPS systems for a novel noncoplanar 4π method (20 beams), VMAT, and RO-IMPT technique (maximum 4 fields). The maximum patient positioning error was set to 3 mm and the maximum proton range uncertainty was set to 3% for the robustness optimization. Line dose profiles were investigated for OARs close to tumor volumes. Results: All three techniques achieved 98% coverage of the CTV target and most photon plans had less than 110% of the hot spots. The RO-IMPT plans show superior tumor dose homogeneity than 4? and VMAT plans. Although RO-IMPT has greater R50 dose spillage to the surrounding normal tissue than 4π and VMAT, the RO-IMPT plans demonstrate better or comparable OAR (parotid, mandible, carotid, oral cavity, pharynx, and etc.) sparing for structures closely abutting tumor targets. Conclusion: The RO-IMPT’s ability of OAR sparing is benchmarked against the C-arm linac based non-coplanar 4π technique and the standard VMAT method. RO-IMPT consistently shows better or comparable OAR sparing even for tissue structures closely abutting treatment target volume. RO-IMPT further reduces treatment uncertainty associated with proton therapy and delivers robust treatment plans to both unilateral and bilateral head and neck cancer patients with desirable treatment time.« less
NASA Astrophysics Data System (ADS)
Schyns, Lotte E. J. R.; Persoon, Lucas C. G. G.; Podesta, Mark; van Elmpt, Wouter J. C.; Verhaegen, Frank
2016-05-01
The aim of this work is to compare time-resolved (TR) and time-integrated (TI) portal dosimetry, focussing on the role of an object’s position with respect to the isocenter in volumetric modulated arc therapy (VMAT). Portal dose images (PDIs) are simulated and measured for different cases: a sphere (1), a bovine bone (2) and a patient geometry (3). For the simulated case (1) and the experimental case (2), several transformations are applied at different off-axis positions. In the patient case (3), three simple plans with different isocenters are created and pleural effusion is simulated in the patient. The PDIs before and after the sphere transformations, as well as the PDIs with and without simulated pleural effusion, are compared using a TI and TR gamma analysis. In addition, the performance of the TI and TR gamma analyses for the detection of real geometric changes in patients treated with clinical plans is investigated and a correlation analysis is performed between gamma fail rates and differences in dose volume histogram (DVH) metrics. The TI gamma analysis can show large differences in gamma fail rates for the same transformation at different off-axis positions (or for different plan isocenters). The TR gamma analysis, however, shows consistent gamma fail rates. For the detection of real geometric changes in patients treated with clinical plans, the TR gamma analysis has a higher sensitivity than the TI gamma analysis. However, the specificity for the TR gamma analysis is lower than for the TI gamma analysis. Both the TI and TR gamma fail rates show no correlation with changes in DVH metrics. This work shows that TR portal dosimetry is fundamentally superior to TI portal dosimetry, because it removes the strong dependence of the gamma fail rate on the off-axis position/plan isocenter. However, for 2D TR portal dosimetry, it is still difficult to interpret gamma fail rates in terms of changes in DVH metrics for patients treated with VMAT.
NASA Astrophysics Data System (ADS)
Kim, Yong Ho; Park, Dahl; Park, Ha Ryung; Kim, Won Taek; Kim, Dong Hyun; Bae, Jin Suk; Jeon, Gye Rok; Ro, Jung Hoon; Ki, Yongkan
2017-03-01
In volumetric modulated arc therapy (VMAT) planning, usually the collimator is rotated to minimize interleaf leakage and the tongue-and-groove effect. The objective of this study was to evaluate the effect of collimator angle on the dosimetric results of VMAT plans for patients with a locally-advanced nasopharyngeal carcinoma (LA-NPC). VMAT treatment planning sets were generated using the same planning parameters, but with different collimator angles for 11 LA-NPC patients. Each set was composed of 10 plans with collimator angles at 0, 5, 10, 15, 20, 25, 35, 40, and 45 degrees. Dosimetric parameters, such as target coverage, organs at risk (OAR), and dose conformity, were analyzed at various collimator angles. With increasing collimator angles, the absorbed doses to the optic apparatus were increased by up to 35% comparing to that at a collimator angle of 0°. The best value of the conformity index (CI) was 0.971 ± 0.023 at collimator angles of 20° and 30°. The worst value of CI was 0.917 ± 0.051 at a collimator angle of 0°. The homogeneity index (HI)95 and HI98 had the best values of 0.106 ± 0.040 and 0.079 ± 0.031, respectively, at a collimator angle of 25°. The worst values of HI95 and HI98 were 0.136 ± 0.039 and 0.105 ± 0.032, respectively, at a collimator angle of of 0°. The maximum doses for some OARs (body, ear, parotid gland, mandible, and brainstem) and the HI did not show any statistically significant differences. However, the mean doses had positive correlations ( r = 0.449 0.773, p<0.001) with the irradiated volume. The CI had a weak positive correlation ( r = 0.316, p<0.001) with the irradiated volume. Other comparison parameters were evaluated as functions of the collimator angle. These findings will give useful information for choosing the collimator angle in VMAT plans for patients with a LA-NPC.
Penalization of aperture complexity in inversely planned volumetric modulated arc therapy
Younge, Kelly C.; Matuszak, Martha M.; Moran, Jean M.; McShan, Daniel L.; Fraass, Benedick A.; Roberts, Donald A.
2012-01-01
Purpose: Apertures obtained during volumetric modulated arc therapy (VMAT) planning can be small and irregular, resulting in dosimetric inaccuracies during delivery. Our purpose is to develop and integrate an aperture-regularization objective function into the optimization process for VMAT, and to quantify the impact of using this objective function on dose delivery accuracy and optimized dose distributions. Methods: An aperture-based metric (“edge penalty”) was developed that penalizes complex aperture shapes based on the ratio of MLC side edge length and aperture area. To assess the utility of the metric, VMAT plans were created for example paraspinal, brain, and liver SBRT cases with and without incorporating the edge penalty in the cost function. To investigate the dose calculation accuracy, Gafchromic EBT2 film was used to measure the 15 highest weighted apertures individually and as a composite from each of two paraspinal plans: one with and one without the edge penalty applied. Films were analyzed using a triple-channel nonuniformity correction and measurements were compared directly to calculations. Results: Apertures generated with the edge penalty were larger, more regularly shaped and required up to 30% fewer monitor units than those created without the edge penalty. Dose volume histogram analysis showed that the changes in doses to targets, organs at risk, and normal tissues were negligible. Edge penalty apertures that were measured with film for the paraspinal plan showed a notable decrease in the number of pixels disagreeing with calculation by more than 10%. For a 5% dose passing criterion, the number of pixels passing in the composite dose distributions for the non-edge penalty and edge penalty plans were 52% and 96%, respectively. Employing gamma with 3% dose/1 mm distance criteria resulted in a 79.5% (without penalty)/95.4% (with penalty) pass rate for the two plans. Gradient compensation of 3%/1 mm resulted in 83.3%/96.2% pass rates. Conclusions: The use of the edge penalty during optimization has the potential to markedly improve dose delivery accuracy for VMAT plans while still maintaining high quality optimized dose distributions. The penalty regularizes aperture shape and improves delivery efficiency. PMID:23127107
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouyang, L; Lee, H; Wang, J
2014-06-01
Purpose: To evaluate a moving-blocker-based approach in estimating and correcting megavoltage (MV) and kilovoltage (kV) scatter contamination in kV cone-beam computed tomography (CBCT) acquired during volumetric modulated arc therapy (VMAT). Methods: XML code was generated to enable concurrent CBCT acquisition and VMAT delivery in Varian TrueBeam developer mode. A physical attenuator (i.e., “blocker”) consisting of equal spaced lead strips (3.2mm strip width and 3.2mm gap in between) was mounted between the x-ray source and patient at a source to blocker distance of 232mm. The blocker was simulated to be moving back and forth along the gantry rotation axis during themore » CBCT acquisition. Both MV and kV scatter signal were estimated simultaneously from the blocked regions of the imaging panel, and interpolated into the un-blocked regions. Scatter corrected CBCT was then reconstructed from un-blocked projections after scatter subtraction using an iterative image reconstruction algorithm based on constraint optimization. Experimental studies were performed on a Catphan 600 phantom and an anthropomorphic pelvis phantom to demonstrate the feasibility of using moving blocker for MV-kV scatter correction. Results: MV scatter greatly degrades the CBCT image quality by increasing the CT number inaccuracy and decreasing the image contrast, in addition to the shading artifacts caused by kV scatter. The artifacts were substantially reduced in the moving blocker corrected CBCT images in both Catphan and pelvis phantoms. Quantitatively, CT number error in selected regions of interest reduced from 377 in the kV-MV contaminated CBCT image to 38 for the Catphan phantom. Conclusions: The moving-blockerbased strategy can successfully correct MV and kV scatter simultaneously in CBCT projection data acquired with concurrent VMAT delivery. This work was supported in part by a grant from the Cancer Prevention and Research Institute of Texas (RP130109) and a grant from the American Cancer Society (RSG-13-326-01-CCE)« less
Kubo, Kazuki; Monzen, Hajime; Tamura, Mikoto; Hirata, Makoto; Ishii, Kentaro; Okada, Wataru; Nakahara, Ryuta; Kishimoto, Shun; Kawamorita, Ryu; Nishimura, Yasumasa
2018-03-01
It is important to improve the magnitude of dose variation that is caused by the interplay effect. The aim of this study was to investigate the impact of the number of breaths (NBs) to the dose variation for VMAT-SBRT to lung cancer. Data on respiratory motion and multileaf collimator (MLC) sequence were collected from the cases of 30 patients who underwent radiotherapy with VMAT-SBRT for lung cancer. The NBs in the total irradiation time with VMAT and the maximum craniocaudal amplitude of the target were calculated. The MLC sequence complexity was evaluated using the modulation complexity score for VMAT (MCSv). Static and dynamic measurements were performed using a cylindrical respiratory motion phantom and a micro ionization chamber. The 1 standard deviation which were obtained from 10 dynamic measurements for each patient were defined as dose variation caused by the interplay effect. The dose distributions were also verified with radiochromic film to detect undesired hot and cold dose spot. Dose measurements were also performed with different NBs in the same plan for 16 patients in 30 patients. The correlations between dose variations and parameters assessed for each treatment plan including NBs, MCSv, the MCSv/amplitude quotient (TMMCSv), and the MCSv/amplitude quotient × NBs product (IVS) were evaluated. Dose variation was decreased with increasing NBs, and NBs of >40 times maintained the dose variation within 3% in 15 cases. The correlation between dose variation and IVS which were considered NBs was shown stronger (R 2 = 0.43, P < 0.05) than TMMCSv (R 2 = 0.32, P < 0.05). The NBs is an important factor to reduce the dose variation. The patient who breathes >40 times during irradiation of two partial arcs VMAT (i.e., NBs = 16 breaths per minute) may be suitable for VMAT-SBRT for lung cancer. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Automatic planning on hippocampal avoidance whole-brain radiotherapy.
Wang, Shuo; Zheng, Dandan; Zhang, Chi; Ma, Rongtao; Bennion, Nathan R; Lei, Yu; Zhu, Xiaofeng; Enke, Charles A; Zhou, Sumin
2017-01-01
Mounting evidence suggests that radiation-induced damage to the hippocampus plays a role in neurocognitive decline for patients receiving whole-brain radiotherapy (WBRT). Hippocampal avoidance whole-brain radiotherapy (HA-WBRT) has been proposed to reduce the putative neurocognitive deficits by limiting the dose to the hippocampus. However, urgency of palliation for patients as well as the complexities of the treatment planning may be barriers to protocol enrollment to accumulate further clinical evidence. This warrants expedited quality planning of HA-WBRT. Pinnacle 3 Automatic treatment planning was designed to increase planning efficiency while maintaining or improving plan quality and consistency. The aim of the present study is to evaluate the performance of the Pinnacle 3 Auto-Planning on HA-WBRT treatment planning. Ten patients previously treated for brain metastases were selected. Hippocampal volumes were contoured on T1 magnetic resonance (MR) images, and planning target volumes (PTVs) were generated based on RTOG0933. The following 2 types of plans were generated by Pinnacle 3 Auto-Planning: the one with 2 coplanar volumetric modulated arc therapy (VMAT) arcs and the other with 9-field noncoplanar intensity-modulated radiation therapy (IMRT). D 2% and D 98% of PTV were used to calculate homogeneity index (HI). HI and Paddick Conformity index (CI) of PTV as well as D 100% and D max of the hippocampus were used to evaluate the plan quality. All the auto-plans met the dose coverage and constraint objectives based on RTOG0933. The auto-plans eliminated the necessity of generating pseudostructures by the planners, and it required little manual intervention which expedited the planning process. IMRT quality assurance (QA) results also suggest that all the auto-plans are practically acceptable on delivery. Pinnacle 3 Auto-Planning generates acceptable plans by RTOG0933 criteria without time-consuming planning process. The expedited quality planning achieved by Auto-Planning (AP) may facilitate protocol enrollment of patients to further investigate the hippocampal-sparing effect and be used to ensure timely start of palliative treatment in future clinical practice. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Kim, Kyung Su; Wee, Chan Woo; Seok, Jin-Yong; Hong, Joo Wan; Chung, Jin-Beom; Eom, Keun-Yong; Kim, Jae-Sung; Kim, Chae-Yong; Park, Young Ho; Kim, Yu Jung; Kim, In Ah
2018-02-20
We hypothesized that hippocampal-sparing radiotherapy via volumetric modulated arc therapy (VMAT) could preserve the neurocognitive function (NCF) of patients with primary brain tumors treated with radiotherapy. We reviewed data from patients with primary brain tumors who underwent hippocampal-sparing brain radiotherapy via VMAT between February 2014 and December 2015. The optimization criteria for the contralateral hippocampus was a maximum dose (D max ) of less than 17 Gy. For NCF evaluations, the Seoul Verbal Learning Test for total recall, delayed recall, and recognition (SVLT-TR, DR, and Recognition) was performed at baseline and at seven months after radiotherapy. A total of 26 patients underwent NCF testing seven months after radiotherapy. Their median age was 49.5 years (range 26-77 years), and 14 (53.8%) had grade III/IV tumors. The median D max to the contralateral hippocampus was 16.4 Gy (range 3.5-63.4). The median mean dose to the contralateral hippocampus, expressed as equivalent to a 2-Gy dose (EQD 2/2 ), was 7.4 Gy 2 (0.7-13.1). The mean relative changes in SVLT-TR, SVLT-DR, and SVLT-Recognition at seven months compared to the baseline were - 7.7% (95% confidence interval [CI], - 19.6% to 4.2%), - 9.2% (95% CI, - 25.4% to 7.0%), and - 3.4% (- 12.7% to 5.8%), respectively. Two patients (7.7%) showed deteriorated NCF in the SVLT-TR and SVLT-DR, and three (11.5%) in the SVLT-Recognition. The mean dose of the left hippocampus and bilateral hippocampi were significantly higher in patients showing deterioration of the SVLT-TR and SVLT-Recognition than in those without deterioration. The contralateral hippocampus could be effectively spared in patients with primary brain tumor via VMAT to preserve the verbal memory function. Further investigation is needed to identify those patients who will most benefit from hippocampal-sparing radiotherapy of the primary brain tumor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, S; Roa, D; Hanna, N
2015-06-15
Purpose: Flattening Filter Free (FFF) beams offer the potential for higher dose rates, short treatment time, and lower out of field dose. Therefore, the aim of this study was to investigate the dosimetric effects and out of field dose of Volumetric Modulated Arc Therapy (VMAT) plans using FFF vs Flattening Filtering (FF) beams for partial brain irradiation. Methods: Ten brain patients treated with a 6FF beam from a Truebeam STX were analyzed retrospectively for this study. These plans (46Gy at 2 Gy per fraction) were re-optimized for 6FFF beams using the same dose constraints as the original plans. PTV coverage,more » PTV Dmax, total MUs, and mean dose to organs-at-risk (OAR) were evaluated. In addition, the out-of-field dose for 6FF and 6FFF plans for one patient was measured on an anthropomorphic phantom. TLDs were placed inside (central axis) and outside (surface) the phantom at distances ranging from 0.5 cm to 17 cm from the field edge. Paired T-test was used for statistical analysis. Results: PTV coverage and PTV Dmax were comparable for the FF and FFF plans with 95.9% versus 95.6% and 111.2% versus 111.9%, respectively. Mean dose to the OARs were 3.7% less for FFF than FF plans (p<0.0001). Total MUs were, on average, 12.5% greater for FFF than FF plans with 481±55 MU (FFF) versus 429±50 MU (FF), p=0.0003. On average, the measured out of field dose was 24% less for FFF compared to FF, p<0.0001. A similar beam-on time was observed for the FFF and FF treatment. Conclusion: It is beneficial to use 6FFF beams for regular fractionated brain VMAT treatments. VMAT treatment plans using FFF beams can achieve comparable PTV coverage but with more OAR sparing. The out of field dose is significant less with mean reduction of 24%.« less
Yang, Ruijie; Zhao, Nan; Liao, Anyan; Wang, Hao; Qu, Ang
2016-01-01
To investigate the dosimetric and radiobiological differences among volumetric modulated arc therapy (VMAT), high-dose rate (HDR) brachytherapy, and low-dose rate (LDR) permanent seeds implant for localized prostate cancer. A total of 10 patients with localized prostate cancer were selected for this study. VMAT, HDR brachytherapy, and LDR permanent seeds implant plans were created for each patient. For VMAT, planning target volume (PTV) was defined as the clinical target volume plus a margin of 5mm. Rectum, bladder, urethra, and femoral heads were considered as organs at risk. A 78Gy in 39 fractions were prescribed for PTV. For HDR and LDR plans, the dose prescription was D90 of 34Gy in 8.5Gy per fraction, and 145Gy to clinical target volume, respectively. The dose and dose volume parameters were evaluated for target, organs at risk, and normal tissue. Physical dose was converted to dose based on 2-Gy fractions (equivalent dose in 2Gy per fraction, EQD2) for comparison of 3 techniques. HDR and LDR significantly reduced the dose to rectum and bladder compared with VMAT. The Dmean (EQD2) of rectum decreased 22.36Gy in HDR and 17.01Gy in LDR from 30.24Gy in VMAT, respectively. The Dmean (EQD2) of bladder decreased 6.91Gy in HDR and 2.53Gy in LDR from 13.46Gy in VMAT. For the femoral heads and normal tissue, the mean doses were also significantly reduced in both HDR and LDR compared with VMAT. For the urethra, the mean dose (EQD2) was 80.26, 70.23, and 104.91Gy in VMAT, HDR, and LDR brachytherapy, respectively. For localized prostate cancer, both HDR and LDR brachytherapy were clearly superior in the sparing of rectum, bladder, femoral heads, and normal tissue compared with VMAT. HDR provided the advantage in sparing of urethra compared with VMAT and LDR. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Automatic planning on hippocampal avoidance whole-brain radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shuo, E-mail: shuo0220@gmail.com; Zheng, Dandan; Zhang, Chi
Mounting evidence suggests that radiation-induced damage to the hippocampus plays a role in neurocognitive decline for patients receiving whole-brain radiotherapy (WBRT). Hippocampal avoidance whole-brain radiotherapy (HA-WBRT) has been proposed to reduce the putative neurocognitive deficits by limiting the dose to the hippocampus. However, urgency of palliation for patients as well as the complexities of the treatment planning may be barriers to protocol enrollment to accumulate further clinical evidence. This warrants expedited quality planning of HA-WBRT. Pinnacle{sup 3} Automatic treatment planning was designed to increase planning efficiency while maintaining or improving plan quality and consistency. The aim of the present studymore » is to evaluate the performance of the Pinnacle{sup 3} Auto-Planning on HA-WBRT treatment planning. Ten patients previously treated for brain metastases were selected. Hippocampal volumes were contoured on T1 magnetic resonance (MR) images, and planning target volumes (PTVs) were generated based on RTOG0933. The following 2 types of plans were generated by Pinnacle{sup 3} Auto-Planning: the one with 2 coplanar volumetric modulated arc therapy (VMAT) arcs and the other with 9-field noncoplanar intensity-modulated radiation therapy (IMRT). D{sub 2%} and D{sub 98%} of PTV were used to calculate homogeneity index (HI). HI and Paddick Conformity index (CI) of PTV as well as D{sub 100%} and D{sub max} of the hippocampus were used to evaluate the plan quality. All the auto-plans met the dose coverage and constraint objectives based on RTOG0933. The auto-plans eliminated the necessity of generating pseudostructures by the planners, and it required little manual intervention which expedited the planning process. IMRT quality assurance (QA) results also suggest that all the auto-plans are practically acceptable on delivery. Pinnacle{sup 3} Auto-Planning generates acceptable plans by RTOG0933 criteria without time-consuming planning process. The expedited quality planning achieved by Auto-Planning (AP) may facilitate protocol enrollment of patients to further investigate the hippocampal-sparing effect and be used to ensure timely start of palliative treatment in future clinical practice.« less
Li, H Harold; Rodriguez, Vivian L; Green, Olga L; Hu, Yanle; Kashani, Rojano; Wooten, H Omar; Yang, Deshan; Mutic, Sasa
2015-01-01
This work describes a patient-specific dosimetry quality assurance (QA) program for intensity modulated radiation therapy (IMRT) using ViewRay, the first commercial magnetic resonance imaging-guided RT device. The program consisted of: (1) a 1-dimensional multipoint ionization chamber measurement using a customized 15-cm(3) cube-shaped phantom; (2) 2-dimensional (2D) radiographic film measurement using a 30- × 30- × 20-cm(3) phantom with multiple inserted ionization chambers; (3) quasi-3D diode array (ArcCHECK) measurement with a centrally inserted ionization chamber; (4) 2D fluence verification using machine delivery log files; and (5) 3D Monte Carlo (MC) dose reconstruction with machine delivery files and phantom CT. Ionization chamber measurements agreed well with treatment planning system (TPS)-computed doses in all phantom geometries where the mean ± SD difference was 0.0% ± 1.3% (n=102; range, -3.0%-2.9%). Film measurements also showed excellent agreement with the TPS-computed 2D dose distributions where the mean passing rate using 3% relative/3 mm gamma criteria was 94.6% ± 3.4% (n=30; range, 87.4%-100%). For ArcCHECK measurements, the mean ± SD passing rate using 3% relative/3 mm gamma criteria was 98.9% ± 1.1% (n=34; range, 95.8%-100%). 2D fluence maps with a resolution of 1 × 1 mm(2) showed 100% passing rates for all plan deliveries (n=34). The MC reconstructed doses to the phantom agreed well with planned 3D doses where the mean passing rate using 3% absolute/3 mm gamma criteria was 99.0% ± 1.0% (n=18; range, 97.0%-100%), demonstrating the feasibility of evaluating the QA results in the patient geometry. We developed a dosimetry program for ViewRay's patient-specific IMRT QA. The methodology will be useful for other ViewRay users. The QA results presented here can assist the RT community to establish appropriate tolerance and action limits for ViewRay's IMRT QA. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ruijie, E-mail: ruijyang@yahoo.com; Zhao, Nan; Liao, Anyan
To investigate the dosimetric and radiobiological differences among volumetric modulated arc therapy (VMAT), high-dose rate (HDR) brachytherapy, and low-dose rate (LDR) permanent seeds implant for localized prostate cancer. A total of 10 patients with localized prostate cancer were selected for this study. VMAT, HDR brachytherapy, and LDR permanent seeds implant plans were created for each patient. For VMAT, planning target volume (PTV) was defined as the clinical target volume plus a margin of 5 mm. Rectum, bladder, urethra, and femoral heads were considered as organs at risk. A 78 Gy in 39 fractions were prescribed for PTV. For HDR andmore » LDR plans, the dose prescription was D{sub 90} of 34 Gy in 8.5 Gy per fraction, and 145 Gy to clinical target volume, respectively. The dose and dose volume parameters were evaluated for target, organs at risk, and normal tissue. Physical dose was converted to dose based on 2-Gy fractions (equivalent dose in 2 Gy per fraction, EQD{sub 2}) for comparison of 3 techniques. HDR and LDR significantly reduced the dose to rectum and bladder compared with VMAT. The D{sub mean} (EQD{sub 2}) of rectum decreased 22.36 Gy in HDR and 17.01 Gy in LDR from 30.24 Gy in VMAT, respectively. The D{sub mean} (EQD{sub 2}) of bladder decreased 6.91 Gy in HDR and 2.53 Gy in LDR from 13.46 Gy in VMAT. For the femoral heads and normal tissue, the mean doses were also significantly reduced in both HDR and LDR compared with VMAT. For the urethra, the mean dose (EQD{sub 2}) was 80.26, 70.23, and 104.91 Gy in VMAT, HDR, and LDR brachytherapy, respectively. For localized prostate cancer, both HDR and LDR brachytherapy were clearly superior in the sparing of rectum, bladder, femoral heads, and normal tissue compared with VMAT. HDR provided the advantage in sparing of urethra compared with VMAT and LDR.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandecasteele, Katrien, E-mail: Katrien.Vandecasteele@uzgent.be; Tummers, Philippe; Makar, Amin
2012-10-01
Purpose: To report on toxicity after postoperative intensity-modulated arc therapy (IMAT) for cervical (CC) and endometrial cancer (EC). Methods and Materials: Twenty-four CC and 41 EC patients were treated with postoperative IMAT. If indicated, para-aortic lymph node irradiation (preventive or when affected, PALN) and/or concomitant cisplatin (40 mg/m Superscript-Two , weekly) was administered. The prescribed dose for IMAT was 45 Gy (CC, 25 fractions) and 46 Gy (EC, 23 fractions), followed by a brachytherapeutic boost if possible. Radiation-related toxicity was assessed prospectively. The effect of concomitant cisplatin and PALN irradiation was evaluated. Results: Regarding acute toxicity (n = 65), Grademore » 3 and 2 acute gastrointestinal toxicity was observed in zero and 63% of patients (79% CC, 54% EC), respectively. Grade 3 and 2 acute genitourinary toxicity was observed in 1% and 18% of patients, respectively. Grade 2 (21%) and 3 (12%) hematologic toxicity (n = 41) occurred only in CC patients. Seventeen percent of CC patients and 2% of EC patients experienced Grade 2 fatigue and skin toxicity, respectively. Adding cisplatin led to an increase in Grade >2 nausea (57% vs. 9%; p = 0.01), Grade 2 nocturia (24% vs. 4%; p = 0.03), Grade {>=}2 hematologic toxicity (38% vs. nil, p = 0.003), Grade {>=}2 leukopenia (33% vs. nil, p = 0.009), and a strong trend toward more fatigue (14% vs. 2%; p = 0.05). Para-aortic lymph node irradiation led to an increase of Grade 2 nocturia (31% vs. 4%, p = 0.008) and a strong trend toward more Grade >2 nausea (44% vs. 18%; p = 0.052). Regarding late toxicity (n = 45), no Grade 3 or 4 late toxicity occurred. Grade 2 gastrointestinal toxicity, genitourinary toxicity, and fatigue occurred in 4%, 9%, and 1% of patients. Neither concomitant cisplatin nor PALN irradiation increased late toxicity rates. Conclusions: Postoperative IMAT for EC or CC is associated with low acute and late toxicity. Concomitant chemotherapy and PALN irradiation influences acute but not late toxicity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, R; Xiaomei, F; Bai, W
2015-06-15
Purpose: To compare and evaluate the performance of two different multileaf collimators(MLCi2 and Agility) delivery with volumetric modulated arc therapy techniques. Methods: Treatment plans were graded four (Low, Moderate, Moderate-High and High complexity) accorrding to the complexity. This includes 1 Low complexity(brain metastasis), 2 Moderate complexity(Lung and Liver), 1 Moderate-High complexity(prostate) and 1 High complexity ( head and neck) cases. Total dose of 60 Gy was given for all the plans. All cases were desigined two VMAT plans, one with MLCi2(group A) and the other with Agility(group B). All plans were done on Elekta VMAT with Monaco treatment planning system.more » All plans were generated with 6 MV X-rays for both Plan A and Plan B. Plans were evaluated based on the ability to meet the dose volume histogram, radiation conformity index, estimated radiation delivery time, dose homogeneity index(HI) and monitor units(MU) needed to deliver the prescribed dose. Results: Plans of group B achieved the best HI (HI = 1.05 Vs. 1.06) at the Low complexity cases while plans of group A were slightly better at the high complexity cases (HI = 1.12 Vs. 1.14). Faster VMAT plan delivery with Agility than with MLCi2 as plan complexity increased (Low complexity:52s Vs.52s, Moderate complexity:58s Vs. 55s, Moderate-High complexity: 171s Vs.152s, High complexity : 326s Vs. 202s ), especially for the most complex paradigms delivered time can be decresed 38%. No Significant changes were observed between the group B and group A plans in terms of the healthy tissue mean dose and MU. Both plans respected the planning objective for all organs at risk. Conclusion: The study concludes that VMAT plans with the novel Agility MLC can significant decrease the delivering time at the high complexity cases, while a slight compromise in the dose homogeneity index should be noted. This work was supported by The Medical Science Foundation of The health department of Hebei Province (No. 20130253)« less
Dose verification for respiratory-gated volumetric modulated arc therapy (VMAT)
Qian, Jianguo; Xing, Lei; Liu, Wu; Luxton, Gary
2011-01-01
A novel commercial medical linac system (TrueBeam™, Varian Medical Systems, Palo Alto, CA) allows respiratory-gated volumetric modulated arc therapy (VMAT), a new modality for treating moving tumors with high precision and improved accuracy by allowing for regular motion associated with a patient's breathing during VMAT delivery. The purpose of this work is to adapt a previously-developed dose reconstruction technique to evaluate the fidelity of VMAT treatment during gated delivery under clinic-relevant periodic motion related to patient breathing. A Varian TrueBeam system was used in this study. VMAT plans were created for three patients with lung or pancreas tumors. Conventional 6 MV and 15 MV beams with flattening filter and high dose-rate 10 MV beams with no flattening filter were used in these plans. Each patient plan was delivered to a phantom first without gating and then with gating for three simulated respiratory periods (3, 4.5 and 6 seconds). Using the adapted log file-based dose reconstruction procedure supplemented with ion chamber array (Seven29™, PTW, Freiburg, Germany) measurements, the delivered dose was used to evaluate the fidelity of gated VMAT delivery. Comparison of Seven29 measurements with and without gating showed good agreement with gamma-index passing rates above 99% for 1%/1mm dose accuracy/distance-to-agreement criteria. With original plans as reference, gamma-index passing rates were 100% for the reconstituted plans (1%/1 mm criteria) and 93.5–100% for gated Seven29 measurements (3%/3 mm criteria). In the presence of leaf error deliberately introduced into the gated delivery of a pancreas patient plan, both dose reconstruction and Seven29 measurement consistently indicated substantial dosimetric differences from the original plan. In summary, a dose reconstruction procedure was demonstrated for evaluating the accuracy of respiratory-gated VMAT delivery. This technique showed that under clinical operation, the TrueBeam system faithfully realized treatment plans with gated delivery. This methodology affords a useful tool for machine and patient-specific quality assurance of the newly available respiratory-gated VMAT. PMID:21753232
Properties of the welded joints of manganese steel made by low-frequency pulsed arc welding
NASA Astrophysics Data System (ADS)
Saraev, Yu. N.; Bezborodov, V. P.; Gladovskii, S. V.; Golikov, N. I.
2017-04-01
The structure, the mechanical properties, the impact toughness, and the fracture mechanisms of the welded joints made of steel 09G2S plates by direct current welding and pulsed arc welding with a modulated arc current in the frequency range 0.25-5.0 Hz are studied. The application of low-frequency pulsed arc welding allowed us to form welded joints with a fine-grained structure in the weld metal and the heat-affected zone and to achieve a higher impact toughness and a longer cyclic fatigue life as compared to the welded joints fabricated by direct current welding. The achieved effect manifests itself over the entire testing range from 20 to-60°C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Y; National Cancer Center, Kashiwa, Chiba; Tachibana, H
Purpose: Total body irradiation (TBI) and total marrow irradiation (TMI) using Tomotherapy have been reported. A gantry-based linear accelerator uses one isocenter during one rotational irradiation. Thus, 3–5 isocenter points should be used for a whole plan of TBI-VMAT during smoothing out the junctional dose distribution. IGRT provides accurate and precise patient setup for the multiple junctions, however it is evident that some setup errors should occur and affect accuracy of dose distribution in the area. In this study, we evaluated the robustness for patient’s setup error in VMAT-TBI. Methods: VMAT-TBI Planning was performed in an adult whole-body human phantommore » using Eclipse. Eight full arcs with four isocenter points using 6MV-X were used to cover the entire whole body. Dose distribution was optimized using two structures of patient’s body as PTV and lung. The two arcs were shared with one isocenter and the two arcs were 5 cm-overlapped with the other two arcs. Point absolute dose using ionization-chamber and planer relative dose distribution using film in the junctional regions were performed using water-equivalent slab phantom. In the measurements, several setup errors of (+5∼−5mm) were added. Results: The result of the chamber measurement shows the deviations were within ±3% when the setup errors were within ±3 mm. In the planer evaluation, the pass ratio of gamma evaluation (3%/2mm) shows more than 90% if the errors within ±3 mm. However, there were hot/cold areas in the edge of the junction even with acceptable gamma pass ratio. 5 mm setup error caused larger hot and cold areas and the dosimetric acceptable areas were decreased in the overlapped areas. Conclusion: It can be clinically acceptable for VMAT-TBI when patient setup error is within ±3mm. Averaging effects from patient random error would be helpful to blur the hot/cold area in the junction.« less
Leung, Lucullus H.T.; Yu, Peter K.N.
2013-01-01
A new version of progressive resolution optimizer (PRO) with an option of air cavity correction has been implemented for RapidArc volumetric‐modulated arc therapy (RA). The purpose of this study was to compare the performance of this new PRO with the use of air cavity correction option (PRO10_air) against the one without the use of the air cavity correction option (PRO10_no‐air) for RapidArc planning in targets with low‐density media of different sizes and complexities. The performance of PRO10_no‐air and PRO10_air was initially compared using single‐arc plans created for four different simple heterogeneous phantoms with virtual targets and organs at risk. Multiple‐arc planning of 12 real patients having nasopharyngeal carcinomas (NPC) and ten patients having non‐small cell lung cancer (NSCLC) were then performed using the above two options for further comparison. Dose calculations were performed using both the Acuros XB (AXB) algorithm with the dose to medium option and the analytical anisotropic algorithm (AAA). The effect of using intermediate dose option after the first optimization cycle in PRO10_air and PRO10_no‐air was also investigated and compared. Plans were evaluated and compared using target dose coverage, critical organ sparing, conformity index, and dose homogeneity index. For NSCLC cases or cases for which large volumes of low‐density media were present in or adjacent to the target volume, the use of the air cavity correction option in PROIO was shown to be beneficial. For NPC cases or cases for which small volumes of both low‐ and high‐density media existed in the target volume, the use of air cavity correction in PRO10 did not improve the plan quality. Based on the AXB dose calculation results, the use of PRO10_air could produce up to 18% less coverage to the bony structures of the planning target volumes for NPC cases. When the intermediate dose option in PRO10 was used, there was negligible difference observed in plan quality between optimizations with and without using the air cavity correction option. PACS number: 87.55.D‐, 87.55.de, 87.56.N‐
Modular hybrid plasma reactor and related systems and methods
Kong, Peter C.; Grandy, Jon D.; Detering, Brent A.
2010-06-22
A device, method and system for generating a plasma is disclosed wherein an electrical arc is established and the movement of the electrical arc is selectively controlled. In one example, modular units are coupled to one another to collectively define a chamber. Each modular unit may include an electrode and a cathode spaced apart and configured to generate an arc therebetween. A device, such as a magnetic or electromagnetic device, may be used to selectively control the movement of the arc about a longitudinal axis of the chamber. The arcs of individual modules may be individually controlled so as to exhibit similar or dissimilar motions about the longitudinal axis of the chamber. In another embodiment, an inlet structure may be used to selectively define the flow path of matter introduced into the chamber such that it travels in a substantially circular or helical path within the chamber.
Ziemann, Christian; Stille, Maik; Cremers, Florian; Buzug, Thorsten M; Rades, Dirk
2018-04-17
Metal artifacts caused by high-density implants lead to incorrectly reconstructed Hounsfield units in computed tomography images. This can result in a loss of accuracy in dose calculation in radiation therapy. This study investigates the potential of the metal artifact reduction algorithms, Augmented Likelihood Image Reconstruction and linear interpolation, in improving dose calculation in the presence of metal artifacts. In order to simulate a pelvis with a double-sided total endoprosthesis, a polymethylmethacrylate phantom was equipped with two steel bars. Artifacts were reduced by applying the Augmented Likelihood Image Reconstruction, a linear interpolation, and a manual correction approach. Using the treatment planning system Eclipse™, identical planning target volumes for an idealized prostate as well as structures for bladder and rectum were defined in corrected and noncorrected images. Volumetric modulated arc therapy plans have been created with double arc rotations with and without avoidance sectors that mask out the prosthesis. The irradiation plans were analyzed for variations in the dose distribution and their homogeneity. Dosimetric measurements were performed using isocentric positioned ionization chambers. Irradiation plans based on images containing artifacts lead to a dose error in the isocenter of up to 8.4%. Corrections with the Augmented Likelihood Image Reconstruction reduce this dose error to 2.7%, corrections with linear interpolation to 3.2%, and manual artifact correction to 4.1%. When applying artifact correction, the dose homogeneity was slightly improved for all investigated methods. Furthermore, the calculated mean doses are higher for rectum and bladder if avoidance sectors are applied. Streaking artifacts cause an imprecise dose calculation within irradiation plans. Using a metal artifact correction algorithm, the planning accuracy can be significantly improved. Best results were accomplished using the Augmented Likelihood Image Reconstruction algorithm. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
New Language and Old Problems in Breast Cancer Radiotherapy.
Chiricuţă, Ion Christian
2017-01-01
New developments in breast cancer radiotherapy make possible new standards in treatment recommandations based on international guidelines. Developments in radiotherapy irradiation techniques from 2D to 3D-Conformal RT and to IMRT (Intensity Modulated Arc Therapy) make possible to reduce the usual side effects on the organs at risk as: skin, lung, miocard, bone, esophagus and brahial plexus. Dispite of all these progresses acute and late side effects are present. Side effects are as old as the radiotherapy was used. New solutions are available now by improving irradiation techniques. New techniques as sentinel node procedure (SNP) or partial breast irradiation (PBRT) and immediate breast reconstruction with silicon implants (IBRIS) make necessary new considerations regarding the target volume delineations. A new language for definition of gross tumor volume (GTV), clinical target volume (CTV) based on the new diagnostic methods as PET/CT,nonaparticle MRI will have real impact on target delineation and irradiation techniques. "The new common language in breast cancer therapy" would be the first step to improve the endresults and finally the quality of life of the patients. Celsius.
Grain Refinement of Freeform Fabricated Ti-6Al-4V Alloy Using Beam/Arc Modulation
NASA Technical Reports Server (NTRS)
Mitzner, Scott; Liu, Stephen; Domack, Marcia S.; Hafley, Robert A.
2012-01-01
Grain refinement can significantly improve the mechanical properties of freeform-fabricated Ti-6Al-4V alloy, promoting increased strength and enhanced isotropy compared with coarser grained material. Large beta-grains can lead to a segregated microstructure, in regard to both alpha-phase morphology and alpha-lath orientation. Beam modulation, which has been used in conventional fusion welding to promote grain refinement, is explored in this study for use in additive manufacturing processes including electron beam freeform fabrication (EBF(sup 3)) and gas-tungsten arc (GTA) deposition to alter solidification behavior and produce a refined microstructure. The dynamic molten pool size induced by beam modulation causes rapid heat flow variance and results in a more competitive grain growth environment, reducing grain size. Consequently, improved isotropy and strength can be achieved with relatively small adjustments to deposition parameters.
NASA Astrophysics Data System (ADS)
Lee, Suk; Cao, Yuan Jie; Chang, Kyung Hwan; Shim, Jang Bo; Kim, Kwang Hyeon; Lee, Nam Kwon; Park, Young Je; Kim, Chul Yong; Cho, Sam Ju; Lee, Sang Hoon; Min, Chul Kee; Kim, Woo Chul; Cho, Kwang Hwan; Huh, Hyun Do; Lim, Sangwook; Shin, Dongho
2015-07-01
The purpose of this study was to use various dosimetrical indices to determine the best intensitymodulated radiation therapy (IMRT) modality - for treating patients with prostate cancer. Ten patients with prostate cancer were included in this study. IMRT plans were designed to include different modalities, including the linac step and shoot, tomotherapy, RapidArc, and proton systems. Various dosimetrical indices, like the prescription isodose to target volume (PITV) ratio, conformity index (CI), homogeneity index (HI), target coverage index (TCI), modified dose homogeneity index (MHI), conformation number (CN), critical organ scoring index (COSI), and quality factor (QF), were determined to compare the different treatment plans. Biological indices, such as the generalized equivalent uniform dose (gEUD) based the tumor control probability (TCP), and the normal tissue complication probability (NTCP), were also calculated and used to compare the treatment plans. The RapidArc plan attained better PTV coverage, as evidenced by its superior PITV, CI, TCI, MHI, and CN values. Regarding organ at risks (OARs), proton therapy exhibited superior dose sparing for the rectum and the bowel in low dose volumes, whereas the tomotherapy and RapidArc plans achieved better dose sparing in high dose volumes. The QF scores showed no significant difference among these plans (p = 0.701). The average TCPs for prostate tumors in the RapidArc, linac and proton plans were higher than the average TCP for Tomotherapy (98.79%, 98.76%, and 98.75% vs. 98.70%, respectively). Regarding the rectum NTCP, RapidArc showed the most favorable result (0.09%) whereas linac resulted in the best bladder NTCP (0.08%).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, J; Zheng, X; Liu, H
Purpose: This study is to evaluate the feasibility of simultaneously integrated boost (SIB) to hypoxic subvolume (HTV) in nasopharyngeal carcinomas under the guidance of 18F-Fluoromisonidazole (FMISO) PET/CT using a novel non-uniform volumetric modulated arc therapy (VMAT)technique. Methods: Eight nasopharyngeal carcinoma patients treated with conventional uniform VMAT were retrospectively analyzed. For each treatment, actual conventional uniform VMAT plan with two or more arcs (2–2.5 arcs, totally rotating angle < 1000o) was designed with dose boost to hopxic subvolume (total dose, 84Gy) in the gross tumor volme (GTV) under the guidance of 18F- FMISO PET/CT. Based on the same dataset, experimental singlemore » arc non-uniform VAMT plans were generated with the same dose prescription using customized software tools. Dosimetric parameters, quality assurance and the efficiency of the treatment delivery were compared between the uniform and non-uniform VMAT plans. Results: To develop the non-uniform VMAT technique, a specific optimization model was successfully established. Both techniques generate high-quality plans with pass rate (>98%) with the 3mm, 3% criterion. HTV received dose of 84.1±0.75Gy and 84.1±1.2Gy from uniform and non-uniform VMAT plans, respectively. In terms of target coverage and dose homogeneity, there was no significant statistical difference between actual and experimental plans for each case. However, for critical organs at risk (OAR), including the parotids, oral cavity and larynx, dosimetric difference was significant with better dose sparing form experimental plans. Regarding plan implementation efficiency, the average machine time was 3.5 minutes for the actual VMAT plans and 3.7 minutes for the experimental nonuniform VMAT plans (p>0.050). Conclusion: Compared to conventional VMAT technique, the proposed non-uniform VMAT technique has the potential to produce efficient and safe treatment plans, especially in cases with complicated anatomical structures and demanding dose boost to subvolumes.« less
Sung, Wonmo; Park, Jong In; Kim, Jung-in; Carlson, Joel; Ye, Sung-Joon
2017-01-01
This study investigated the potential of a newly proposed scattering foil free (SFF) electron beam scanning technique for the treatment of skin cancer on the irregular patient surfaces using Monte Carlo (MC) simulation. After benchmarking of the MC simulations, we removed the scattering foil to generate SFF electron beams. Cylindrical and spherical phantoms with 1 cm boluses were generated and the target volume was defined from the surface to 5 mm depth. The SFF scanning technique with 6 MeV electrons was simulated using those phantoms. For comparison, volumetric modulated arc therapy (VMAT) plans were also generated with two full arcs and 6 MV photon beams. When the scanning resolution resulted in a larger separation between beams than the field size, the plan qualities were worsened. In the cylindrical phantom with a radius of 10 cm, the conformity indices, homogeneity indices and body mean doses of the SFF plans (scanning resolution = 1°) vs. VMAT plans were 1.04 vs. 1.54, 1.10 vs. 1.12 and 5 Gy vs. 14 Gy, respectively. Those of the spherical phantom were 1.04 vs. 1.83, 1.08 vs. 1.09 and 7 Gy vs. 26 Gy, respectively. The proposed SFF plans showed superior dose distributions compared to the VMAT plans. PMID:28493940
Sung, Wonmo; Park, Jong In; Kim, Jung-In; Carlson, Joel; Ye, Sung-Joon; Park, Jong Min
2017-01-01
This study investigated the potential of a newly proposed scattering foil free (SFF) electron beam scanning technique for the treatment of skin cancer on the irregular patient surfaces using Monte Carlo (MC) simulation. After benchmarking of the MC simulations, we removed the scattering foil to generate SFF electron beams. Cylindrical and spherical phantoms with 1 cm boluses were generated and the target volume was defined from the surface to 5 mm depth. The SFF scanning technique with 6 MeV electrons was simulated using those phantoms. For comparison, volumetric modulated arc therapy (VMAT) plans were also generated with two full arcs and 6 MV photon beams. When the scanning resolution resulted in a larger separation between beams than the field size, the plan qualities were worsened. In the cylindrical phantom with a radius of 10 cm, the conformity indices, homogeneity indices and body mean doses of the SFF plans (scanning resolution = 1°) vs. VMAT plans were 1.04 vs. 1.54, 1.10 vs. 1.12 and 5 Gy vs. 14 Gy, respectively. Those of the spherical phantom were 1.04 vs. 1.83, 1.08 vs. 1.09 and 7 Gy vs. 26 Gy, respectively. The proposed SFF plans showed superior dose distributions compared to the VMAT plans.
Hoffmans-Holtzer, Nienke A; Hoffmans, Daan; Dahele, Max; Slotman, Ben J; Verbakel, Wilko F A R
2015-03-01
The purpose of this work was to investigate whether adapting gantry and collimator angles can compensate for roll and pitch setup errors during volumetric modulated arc therapy (VMAT) delivery. Previously delivered clinical plans for locally advanced head-and-neck (H&N) cancer (n = 5), localized prostate cancer (n = 2), and whole brain with simultaneous integrated boost to 5 metastases (WB + 5M, n = 1) were used for this study. Known rigid rotations were introduced in the planning CT scans. To compensate for these, in-house software was used to adapt gantry and collimator angles in the plan. Doses to planning target volumes (PTV) and critical organs at risk (OAR) were calculated with and without compensation and compared with the original clinical plan. Measurements in the sagittal plane in a polystyrene phantom using radiochromic film were compared by gamma (γ) evaluation for 2 H&N cancer patients. For H&N plans, the introduction of 2°-roll and 3°-pitch rotations reduced mean PTV coverage from 98.7 to 96.3%. This improved to 98.1% with gantry and collimator compensation. For prostate plans respective figures were 98.4, 97.5, and 98.4%. For WB + 5M, compensation worked less well, especially for smaller volumes and volumes farther from the isocenter. Mean comparative γ evaluation (3%, 1 mm) between original and pitched plans resulted in 86% γ < 1. The corrected plan restored the mean comparison to 96% γ < 1. Preliminary data suggest that adapting gantry and collimator angles is a promising way to correct roll and pitch set-up errors of < 3° during VMAT for H&N and prostate cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rehman, Jalil ur, E-mail: jalil_khanphy@yahoo.com; Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, TX; Tailor, Ramesh C.
2015-04-01
This study evaluated the secondary cancer risk from volumetric-modulated arc therapy (VMAT) for spine radiotherapy compared with intensity-modulated radiotherapy (IMRT) and 3-dimensional conformal radiotherapy (3DCRT). Computed tomography images of an Radiological Physics Center spine anthropomorphic phantom were exported to a treatment planning system (Pinnacle{sup 3}, version 9.4). Radiation treatment plans for spine were prepared using VMAT (dual-arc), 7-field IMRT (beam angles: 110°, 130°, 150°, 180°, 210°, 230°, and 250°), and 4-field 3DCRT technique. The mean and maximum doses, dose-volume histograms, and volumes receiving more than 2 and 4 Gy to organs at risk (OARs) were calculated and compared. The lifetimemore » risk for secondary cancers was estimated according to the National Cancer Registry Programme Report 116. VMAT delivered the lowest maximum dose to the esophagus (4.03 Gy), bone (8.11 Gy), heart (2.11 Gy), spinal cord (6.45 Gy), and whole lung (5.66 Gy) as compared with other techniques (IMRT and 3DCRT). The volumes of OAR (esophagus) receiving more than 4 Gy were 0% for VMAT, 27.06% for IMRT, and up to 32.35% for 3DCRT. The estimated risk for secondary cancer in the respective OAR is considerably lower in VMAT compared with other techniques. The results of maximum doses and volumes of OARs suggest that the risk of secondary cancer induction for the spine in VMAT is lower than IMRT and 3DCRT, whereas VMAT has the best target coverage compared with the other techniques.« less
Comparing Treatment Plan in All Locations of Esophageal Cancer
Lin, Jang-Chun; Tsai, Jo-Ting; Chang, Chih-Chieh; Jen, Yee-Min; Li, Ming-Hsien; Liu, Wei-Hsiu
2015-01-01
Abstract The aim of this study was to compare treatment plans of volumetric modulated arc therapy (VMAT) with intensity-modulated radiotherapy (IMRT) for all esophageal cancer (EC) tumor locations. This retrospective study from July 2009 to June 2014 included 20 patients with EC who received definitive concurrent chemoradiotherapy with radiation doses >50.4 Gy. Version 9.2 of Pinnacle3 with SmartArc was used for treatment planning. Dosimetric quality was evaluated based on doses to several organs at risk, including the spinal cord, heart, and lung, over the same coverage of gross tumor volume. In upper thoracic EC, the IMRT treatment plan had a lower lung mean dose (P = 0.0126) and lung V5 (P = 0.0037) compared with VMAT; both techniques had similar coverage of the planning target volumes (PTVs) (P = 0.3575). In middle thoracic EC, a lower lung mean dose (P = 0.0010) and V5 (P = 0.0145), but higher lung V20 (P = 0.0034), spinal cord Dmax (P = 0.0262), and heart mean dose (P = 0.0054), were observed for IMRT compared with VMAT; IMRT provided better PTV coverage. Patients with lower thoracic ECs had a lower lung mean dose (P = 0.0469) and V5 (P = 0.0039), but higher spinal cord Dmax (P = 0.0301) and heart mean dose (P = 0.0020), with IMRT compared with VMAT. PTV coverage was similar (P = 0.0858) for the 2 techniques. IMRT provided a lower mean dose and lung V5 in upper thoracic EC compared with VMAT, but exhibited different advantages and disadvantages in patients with middle or lower thoracic ECs. Thus, choosing different techniques for different EC locations is warranted. PMID:25929910
2013-01-01
Objective To investigate the anatomic and dosimetric variations of volumetric modulated arc therapy (VMAT) in the treatment of nasopharyngeal cancer (NPC) patients based on weekly cone beam CT (CBCT). Materials and methods Ten NPC patients treated by VMAT with weekly CBCT for setup corrections were reviewed retrospectively. Deformed volumes of targets and organs at risk (OARs) in the CBCT were compared with those in the planning CT. Delivered doses were recalculated based on weekly CBCT and compared with the planned doses. Results No significant volumetric changes on targets, brainstem, and spinal cord were observed. The average volumes of right and left parotid measured from the fifth CBCT were about 4.4 and 4.5 cm3 less than those from the first CBCT, respectively. There were no significant dose differences between average planned and delivered doses for targets, brainstem and spinal cord. For right parotid, the delivered mean dose was 10.5 cGy higher (p = 0.004) than the planned value per fraction, and the V26 and V32 increased by 7.5% (p = 0.002) and 7.4% (p = 0.01), respectively. For the left parotid, the D50 (dose to the 50% volume) was 8.8 cGy higher (p = 0.03) than the planned values per fraction, and the V26 increased by 8.8% (p = 0.002). Conclusion Weekly CBCTs were applied directly to study the continuous volume changes and resulting dosimetric variations of targets and OARs for NPC patients undergoing VMAT. Significant volumetric and dosimetric variations were observed for parotids. Replanning after 30 Gy will benefit the protection on parotids. PMID:24289312
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozzarini, Cesare, E-mail: cozzarini.cesare@hsr.it; Chiorda, Barbara Noris; Sini, Carla
Purpose: To address the thus-far poorly investigated severity and duration of hematologic toxicity from whole-pelvis radiation therapy (WPRT) in a cohort of chemo-naïve patients treated with postprostatectomy radiation therapy including WPRT with different intensity modulated radiation therapy (IMRT) techniques, doses, and fractionations. Methods and Materials: This analysis pertains to 125 patients (70 from a pilot study and 55 from an observational protocol) for whom 1 baseline and at least 3 subsequent blood samples (median 6), obtained at irradiation midpoint and end, and thereafter at 3, 6, and 12 months, were available. Patients were treated with adjuvant (n=73) or salvage intent; static-fieldmore » IMRT (n=19); volumetric modulated arc therapy (n=60) or helical Tomotherapy (n=46); and conventional (n=39) or moderately hypofractionated (median 2.35 Gy per fraction, n=86) regimens. The median 2-Gy equivalent dose (EQD2) to the prostatic bed was 70.4 Gy with a lymph-nodal planning target volume of 50.2 Gy. Clinical and dosimetric data were collected. Results: Both leukopenia and thrombocytopenia were significant (median nadir count 65% and 67% of baseline, respectively), with leukopenia also persisting (1-year median count 75% of baseline). Lymphopenia was the major contributor to the severity and 1-year persistence of leukopenia; all patients developed acute grade ≥1 lymphopenia (61% and 26% grade 2 and ≥3, respectively), whereas 1-year grade ≥2 lymphopenia was still present in 16%. In addition to an independent predictive role of corresponding baseline values, multivariable analyses highlighted that higher EQD2 doses to lymph nodal planning target volume increased risk of acute neutropenia and hypofractionation for acute thrombocytopenia. Of note, patients of older age were at higher risk for acute grade 2 lymphopenia, and interestingly, increased risk of grade >2 lymphopenia for those who smoked at least one year. No role for different IMRT techniques indicated. Conclusions: Leukopenia and lymphopenia after postprostatectomy WPRT were found to be less negligible and more prolonged than expected. A number of radiation-related and clinical factors favoring hematologic toxicity, whose awareness may be crucial when prescribing WPRT, in particular if concomitant to chemotherapy, were identified.« less
NASA Astrophysics Data System (ADS)
Reisgen, Uwe; Schleser, Markus; Mokrov, Oleg; Zabirov, Alexander
2011-06-01
A two dimensional transient numerical analysis and computational module for simulation of electrical and thermal characteristics during electrode melting and metal transfer involved in Gas-Metal-Arc-Welding (GMAW) processes is presented. Solution of non-linear transient heat transfer equation is carried out using a control volume finite difference technique. The computational module also includes controlling and regulation algorithms of industrial welding power sources. The simulation results are the current and voltage waveforms, mean voltage drops at different parts of circuit, total electric power, cathode, anode and arc powers and arc length. We describe application of the model for normal process (constant voltage) and for pulsed processes with U/I and I/I-modulation modes. The comparisons with experimental waveforms of current and voltage show that the model predicts current, voltage and electric power with a high accuracy. The model is used in simulation package SimWeld for calculation of heat flux into the work-piece and the weld seam formation. From the calculated heat flux and weld pool sizes, an equivalent volumetric heat source according to Goldak model, can be generated. The method was implemented and investigated with the simulation software SimWeld developed by the ISF at RWTH Aachen University.
Han, Yo-Han; Kee, Ji-Ye; Park, Jinbong; Kim, Hye-Lin; Jeong, Mi-Young; Kim, Dae-Seung; Jeon, Yong-Deok; Jung, Yunu; Youn, Dong-Hyun; Kang, JongWook; So, Hong-Seob; Park, Raekil; Lee, Jong-Hyun; Shin, Soyoung; Kim, Su-Jin; Um, Jae-Young; Hong, Seung-Heon
2016-09-01
Although arctigenin (ARC) has been reported to have some pharmacological effects such as anti-inflammation, anti-cancer, and antioxidant, there have been no reports on the anti-obesity effect of ARC. The aim of this study is to investigate whether ARC has an anti-obesity effect and mediates the AMP-activated protein kinase (AMPK) pathway. We investigated the anti-adipogenic effect of ARC using 3T3-L1 pre-adipocytes and human adipose tissue-derived mesenchymal stem cells (hAMSCs). In high-fat diet (HFD)-induced obese mice, whether ARC can inhibit weight gain was investigated. We found that ARC reduced weight gain, fat pad weight, and triglycerides in HFD-induced obese mice. ARC also inhibited the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα) in in vitro and in vivo. Furthermore, ARC induced the AMPK activation resulting in down-modulation of adipogenesis-related factors including PPARγ, C/EBPα, fatty acid synthase, adipocyte fatty acid-binding protein, and lipoprotein lipase. This study demonstrates that ARC can reduce key adipogenic factors by activating the AMPK in vitro and in vivo and suggests a therapeutic implication of ARC for obesity treatment. J. Cell. Biochem. 117: 2067-2077, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Wang, Lilie; Ding, George X.
2014-07-01
The out-of-field dose can be clinically important as it relates to the dose of the organ-at-risk, although the accuracy of its calculation in commercial radiotherapy treatment planning systems (TPSs) receives less attention. This study evaluates the uncertainties of out-of-field dose calculated with a model based dose calculation algorithm, anisotropic analytical algorithm (AAA), implemented in a commercial radiotherapy TPS, Varian Eclipse V10, by using Monte Carlo (MC) simulations, in which the entire accelerator head is modeled including the multi-leaf collimators. The MC calculated out-of-field doses were validated by experimental measurements. The dose calculations were performed in a water phantom as well as CT based patient geometries and both static and highly modulated intensity-modulated radiation therapy (IMRT) fields were evaluated. We compared the calculated out-of-field doses, defined as lower than 5% of the prescription dose, in four H&N cancer patients and two lung cancer patients treated with volumetric modulated arc therapy (VMAT) and IMRT techniques. The results show that the discrepancy of calculated out-of-field dose profiles between AAA and the MC depends on the depth and is generally less than 1% for in water phantom comparisons and in CT based patient dose calculations for static field and IMRT. In cases of VMAT plans, the difference between AAA and MC is <0.5%. The clinical impact resulting from the error on the calculated organ doses were analyzed by using dose-volume histograms. Although the AAA algorithm significantly underestimated the out-of-field doses, the clinical impact on the calculated organ doses in out-of-field regions may not be significant in practice due to very low out-of-field doses relative to the target dose.
Lafond, Caroline; Chiavassa, Sophie; Bertaut, Cindy; Boussion, Nicolas; Chapel, Nathalie; Chapron, Lucie; Coste, Frédéric; Crespin, Sylvain; Dy, Gilles; Faye, Papa Abdoulaye; Leleu, Cyril; Bouvier, Jeanne; Madec, Ludovic; Mesgouez, Jérôme; Palisson, Jérémy; Vela, Anthony; Delpon, Grégory
2016-05-01
Static beam intensity-modulated-radiation-therapy (IMRT) and/or Volumetric-Modulated-Arc-Therapy (VMAT) are now available in many regional radiotherapy departments. The aim of this multi-institutional audit was to design a new methodology based on radiochromic films to perform an independent quality control. A set of data were sent to all participating centres for two clinical localizations: prostate and Head and Neck (H&N) cancers. The agreement between calculations and measurements was verified in the Octavius phantom (PTW) by point measurements using ionization chambers and by 2D measurements using EBT3 radiochromic films. Due to uncertainties in the whole procedure, criteria were set to 5% and 3% in local dose and 3mm in distance excluding doses lower than 10% of the maximum doses. No normalization point or area was used for the quantitative analysis. 13 radiotherapy centres participated in this audit involving 28 plans (12 IMRT, 16 VMAT). For point measurements, mean errors were -0.18±1.54% and 0.00±1.58% for prostate and H&N cases respectively. For 2D measurements with 5%/3mm criteria, gamma map analysis showed a pixel pass rate higher than 95% for prostate and H&N. Mean gamma index was lower than 0.4 for prostate and 0.5 for H&N. Both techniques yielded similar results. This study showed the feasibility of an independent quality control by peers for conventional IMRT and VMAT. Results from all participating centres were found to be in good agreement. This regional study demonstrated the feasibility of our new methodology based on radiochromic films without dose normalization on a specific point. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Mazzola, R; Ricchetti, F; Fiorentino, A; Fersino, S; Giaj Levra, N; Naccarato, S; Sicignano, G; Albanese, S; Di Paola, G; Alterio, D; Ruggieri, R
2014-01-01
Objective: Dysphagia remains a side effect influencing the quality of life of patients with head and neck cancer (HNC) after radiotherapy. We evaluated the relationship between planned dose involvement and acute and late dysphagia in patients with HNC treated with intensity-modulated radiation therapy (IMRT), after a recontouring of constrictor muscles (PCs) and the cricopharyngeal muscle (CM). Methods: Between December 2011 and December 2013, 56 patients with histologically proven HNC were treated with IMRT or volumetric-modulated arc therapy. The PCs and CM were recontoured. Correlations between acute and late toxicity and dosimetric parameters were evaluated. End points were analysed using univariate logistic regression. Results: An increasing risk to develop acute dysphagia was observed when constraints to the middle PCs were not respected [mean dose (Dmean) ≥50 Gy, maximum dose (Dmax) >60 Gy, V50 >70% with a p = 0.05]. The superior PC was not correlated with acute toxicity but only with late dysphagia. The inferior PC was not correlated with dysphagia; for the CM only, Dmax >60 Gy was correlated with acute dysphagia ≥ grade 2. Conclusion: According to our analysis, the superior PC has a major role, being correlated with dysphagia at 3 and 6 months after treatments; the middle PC maintains this correlation only at 3 months from the beginning of radiotherapy, but it does not have influence on late dysphagia. The inferior PC and CM have a minimum impact on swallowing symptoms. Advances in knowledge: We used recent guidelines to define dose constraints of the PCs and CM. Two results emerge in the present analysis: the superior PC influences late dysphagia, while the middle PC influences acute dysphagia. PMID:25348370
Cheng, ChihYao; Zheng, Yuanshui; Hsi, Wen; Zeidan, Omar; Schreuder, Niek; Vargas, Carlos; Larson, Gary
2014-01-01
The main purposes of this study were to 1) investigate the dosimetric quality of uniform scanning proton therapy planning (USPT) for prostate cancer patients with a metal hip prosthesis, and 2) compare the dosimetric results of USPT with that of volumetric‐modulated arc therapy (VMAT). Proton plans for prostate cancer (four cases) were generated in XiO treatment planning system (TPS). The beam arrangement in each proton plan consisted of three fields (two oblique fields and one lateral or slightly angled field), and the proton beams passing through a metal hip prosthesis was avoided. Dose calculations in proton plans were performed using the pencil beam algorithm. From each proton plan, planning target volume (PTV) coverage value (i.e., relative volume of the PTV receiving the prescription dose of 79.2 CGE) was recorded. The VMAT prostate planning was done using two arcs in the Eclipse TPS utilizing 6 MV X‐rays, and beam entrance through metallic hip prosthesis was avoided. Dose computation in the VMAT plans was done using anisotropic analytical algorithm, and calculated VMAT plans were then normalized such that the PTV coverage in the VMAT plan was the same as in the proton plan of the corresponding case. The dose‐volume histograms of calculated treatment plans were used to evaluate the dosimetric quality of USPT and VMAT. In comparison to the proton plans, on average, the maximum and mean doses to the PTV were higher in the VMAT plans by 1.4% and 0.5%, respectively, whereas the minimum PTV dose was lower in the VMAT plans by 3.4%. The proton plans had lower (or better) average homogeneity index (HI) of 0.03 compared to the one for VMAT (HI = 0.04). The relative rectal volume exposed to radiation was lower in the proton plan, with an average absolute difference ranging from 0.1% to 32.6%. In contrast, using proton planning, the relative bladder volume exposed to radiation was higher at high‐dose region with an average absolute difference ranging from 0.4% to 0.8%, and lower at low‐ and medium‐dose regions with an average absolute difference ranging from 2.7% to 10.1%. The average mean dose to the rectum and bladder was lower in the proton plans by 45.1% and 22.0%, respectively, whereas the mean dose to femoral head was lower in VMAT plans by an average difference of 79.6%. In comparison to the VMAT, the proton planning produced lower equivalent uniform dose (EUD) for the rectum (43.7 CGE vs. 51.4 Gy) and higher EUD for the femoral head (16.7 CGE vs. 9.5 Gy), whereas both the VMAT and proton planning produced comparable EUDs for the prostate tumor (76.2 CGE vs. 76.8 Gy) and bladder (50.3 CGE vs. 51.1 Gy). The results presented in this study show that the combination of lateral and oblique fields in USPT planning could potentially provide dosimetric advantage over the VMAT for prostate cancer involving a metallic hip prosthesis. PACS number: 87.55.D‐, 87.55.ne, 87.55.dk PMID:24892333
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, H; Cho, S; Jeong, C
2016-06-15
Purpose: Actual delivered dose of moving tumors treated with gated volumetric arc therapy (VMAT) may significantly differ from the planned dose assuming static target. In this study, we developed a method which reconstructs actual delivered dose distribution of moving target by taking into account both tumor motion and dynamic beam delivery of gated VMAT, and applied to abdominal tumors. Methods: Fifteen dual-arc VMAT plans (Eclipse, Varian Medical Systems) for 5 lung, 5 pancreatic, and 5 liver cancer patients treated with gated VMAT stereotactic body radiotherapy (SBRT) were studied. For reconstruction of the delivered dose distribution, we divided each original arcmore » beam into control-point-wise sub-beams, and applied beam isocenter shifting to each sub-beam to reflect the tumor motion. The tumor positions as a function of beam delivery were estimated by synchronizing the beam delivery with the respiratory signal which acquired during treatment. For this purpose, an in-house program (MATLAB, Mathworks) was developed to convert the original DICOM plan data into motion-involved treatment plan. The motion-involved DICOM plan was imported into Eclipse for dose calculation. The reconstructed delivered dose was compared to the plan dose using the dose coverage of gross tumor volume (GTV) and dose distribution of organs at risk (OAR). Results: The mean GTV dose coverage difference between the reconstructed delivered dose and the plan dose was 0.2 % in lung and pancreas cases, and no difference in liver cases. Mean D1000cc of ipsilateral lungs was reduced (0.8 ± 1.4cGy). Conclusion: We successfully developed a method of delivered dose reconstruction taking into account both respiratory tumor motion and dynamic beam delivery, and applied it to abdominal tumors treated with gated VAMT. No significant deterioration of delivered dose distribution indicates that interplay effect would be minimal even in the case of gated SBRT. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2015038710)« less
Chao, Pei‐Ju; Ting, Hui‐Min; Lo, Su‐Hua; Wang, Yu‐Wen; Tuan, Chiu‐Ching; Fang, Fu‐Min
2011-01-01
The purpose of this study was to evaluate and quantify the planning performance of SmartArc‐based volumetric‐modulated arc radiotherapy (VMAT) versus fixed‐beam intensity‐modulated radiotherapy (IMRT) for nasopharyngeal carcinoma (NPC) using a sequential mode treatment plan. The plan quality and performance of dual arc‐VMAT (DA‐VMAT) using the Pinnacle3 Smart‐Arc system (clinical version 9.0; Philips, Fitchburg, WI, USA) were evaluated and compared with those of seven‐field (7F)‐IMRT in 18 consecutive NPC patients. Analysis parameters included the conformity index (CI) and homogeneity index (HI) for the planning target volume (PTV), maximum and mean dose, normal tissue complication probability (NTCP) for the specified organs at risk (OARs), and comprehensive quality index (CQI) for an overall evaluation in the 11 OARs. Treatment delivery time, monitor units per fraction (MU/fr), and gamma (Γ3mm,3%) evaluations were also analyzed. DA‐VMAT achieved similar target coverage and slightly better homogeneity than conventional 7F‐IMRT with a similar CI and HI. NTCP values were only significantly lower in the left parotid gland (for xerostomia) for DA‐VMAT plans. The mean value of CQI at 0.98±0.02 indicated a 2% benefit in sparing OARs by DA‐VMAT. The MU/fr used and average delivery times appeared to show improved efficiencies in DA‐VMAT. Each technique demonstrated high accuracy in dose delivery in terms of a high‐quality assurance (QA) passing rate (>98%) of the (Γ3mm,3%) criterion. The major difference between DA‐VMAT and 7F‐IMRT using a sequential mode for treating NPC cases appears to be improved efficiency, resulting in a faster delivery time and the use of fewer MU/fr. PACS number: 87.53.Tf, 87.55.x, 87.55.D, 87.55.dk PMID:22089015
Appearance of ionization instability in a low-voltage arc
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobelevskii, A.V.; Nastoyashchii, A.F.
1986-09-01
The conditions for the appearance of the ionization instability in a low-voltage arc are examined. On the basis of the model of a Knudsen arc a criterion is obtained for the appearance of the instability and the possible types of dispersion relations are analyzed. The possibility of ionization instability in a short arc in cesium vapor is discussed. The results of a numerical investigation of the appearance of ionization instability, including the nonlinear stage, in a two-dimensional formulation of the problem are presented. When the fluctuations in the elec tron temperature are in antiphase with the density fluctuations, stable (long-lived)more » two-dimensional structures, which are characterized by a high degree of modulation of the degree of ionization of the gas, can form.« less
NASA Astrophysics Data System (ADS)
Yoon, Jihyung; Heins, David; Zhao, Xiaodong; Sanders, Mary; Zhang, Rui
2017-12-01
More and more advanced radiotherapy techniques have been adopted for post-mastectomy radiotherapies (PMRT). Patient dose reconstruction is challenging for these advanced techniques because they increase the low out-of-field dose area while the accuracy of out-of-field dose calculations by current commercial treatment planning systems (TPSs) is poor. We aim to measure and model the out-of-field radiation doses from various advanced PMRT techniques. PMRT treatment plans for an anthropomorphic phantom were generated, including volumetric modulated arc therapy with standard and flattening-filter-free photon beams, mixed beam therapy, 4-field intensity modulated radiation therapy (IMRT), and tomotherapy. We measured doses in the phantom where the TPS calculated doses were lower than 5% of the prescription dose using thermoluminescent dosimeters (TLD). The TLD measurements were corrected by two additional energy correction factors, namely out-of-beam out-of-field (OBOF) correction factor K OBOF and in-beam out-of-field (IBOF) correction factor K IBOF, which were determined by separate measurements using an ion chamber and TLD. A simple analytical model was developed to predict out-of-field dose as a function of distance from the field edge for each PMRT technique. The root mean square discrepancies between measured and calculated out-of-field doses were within 0.66 cGy Gy-1 for all techniques. The IBOF doses were highly scattered and should be evaluated case by case. One can easily combine the measured out-of-field dose here with the in-field dose calculated by the local TPS to reconstruct organ doses for a specific PMRT patient if the same treatment apparatus and technique were used.
Vector-model-supported approach in prostate plan optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Eva Sau Fan; Department of Health Technology and Informatics, The Hong Kong Polytechnic University; Wu, Vincent Wing Cheung
Lengthy time consumed in traditional manual plan optimization can limit the use of step-and-shoot intensity-modulated radiotherapy/volumetric-modulated radiotherapy (S&S IMRT/VMAT). A vector model base, retrieving similar radiotherapy cases, was developed with respect to the structural and physiologic features extracted from the Digital Imaging and Communications in Medicine (DICOM) files. Planning parameters were retrieved from the selected similar reference case and applied to the test case to bypass the gradual adjustment of planning parameters. Therefore, the planning time spent on the traditional trial-and-error manual optimization approach in the beginning of optimization could be reduced. Each S&S IMRT/VMAT prostate reference database comprised 100more » previously treated cases. Prostate cases were replanned with both traditional optimization and vector-model-supported optimization based on the oncologists' clinical dose prescriptions. A total of 360 plans, which consisted of 30 cases of S&S IMRT, 30 cases of 1-arc VMAT, and 30 cases of 2-arc VMAT plans including first optimization and final optimization with/without vector-model-supported optimization, were compared using the 2-sided t-test and paired Wilcoxon signed rank test, with a significance level of 0.05 and a false discovery rate of less than 0.05. For S&S IMRT, 1-arc VMAT, and 2-arc VMAT prostate plans, there was a significant reduction in the planning time and iteration with vector-model-supported optimization by almost 50%. When the first optimization plans were compared, 2-arc VMAT prostate plans had better plan quality than 1-arc VMAT plans. The volume receiving 35 Gy in the femoral head for 2-arc VMAT plans was reduced with the vector-model-supported optimization compared with the traditional manual optimization approach. Otherwise, the quality of plans from both approaches was comparable. Vector-model-supported optimization was shown to offer much shortened planning time and iteration number without compromising the plan quality.« less
NASA Astrophysics Data System (ADS)
Moteabbed, Maryam; Yock, Torunn I.; Paganetti, Harald
2014-06-01
The incidence of second malignant tumors is a clinically observed adverse late effect of radiation therapy, especially in organs close to the treatment site, receiving medium to high doses (>2.5 Gy). For pediatric patients, choosing the least toxic radiation modality is of utmost importance, due to their high radiosensitivity and small size. This study aims to evaluate the risk of second cancer incidence in the vicinity of the primary radiation field, for pediatric patients with brain/head and neck tumors and compare four treatment modalities: passive scattering and pencil beam scanning proton therapy (PPT and PBS), intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). For a cohort of six pediatric patients originally treated with PPT, additional PBS, IMRT and VMAT plans were created. Dose distributions from these plans were used to calculate the excess absolute risk (EAR) and lifetime attributable risk (LAR) for developing a second tumor in soft tissue and skull. A widely used risk assessment formalism was employed and compared with a linear model based on recent clinical findings. In general, LAR was found to range between 0.01%-2.8% for PPT/PBS and 0.04%-4.9% for IMRT/VMAT. PBS was associated with the lowest risk for most patients using carcinoma and sarcoma models, whereas IMRT and VMAT risks were comparable and the highest among all modalities. The LAR for IMRT/VMAT relative to PPT ranged from 1.3-4.6 for soft tissue and from 3.5-9.5 for skull. Larger absolute LAR was observed for younger patients and using linear risk models. The number of fields used in proton therapy and IMRT had minimal effect on the risk. When planning treatments and deciding on the treatment modality, the probability of second cancer incidence should be carefully examined and weighed against the possibility of developing acute side effects for each patient individually.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiandra, Christian; Fusella, Marco; Filippi, Andrea Riccardo
2013-08-15
Purpose: Patient-specific quality assurance in volumetric modulated arc therapy (VMAT) brain stereotactic radiosurgery raises specific issues on dosimetric procedures, mainly represented by the small radiation fields associated with the lack of lateral electronic equilibrium, the need of small detectors and the high dose delivered (up to 30 Gy). Gafchromic{sup TM} EBT2 and EBT3 films may be considered the dosimeter of choice, and the authors here provide some additional data about uniformity correction for this new generation of radiochromic films.Methods: A new analysis method using blue channel for marker dye correction was proposed for uniformity correction both for EBT2 and EBT3more » films. Symmetry, flatness, and field-width of a reference field were analyzed to provide an evaluation in a high-spatial resolution of the film uniformity for EBT3. Absolute doses were compared with thermoluminescent dosimeters (TLD) as baseline. VMAT plans with multiple noncoplanar arcs were generated with a treatment planning system on a selected pool of eleven patients with cranial lesions and then recalculated on a water-equivalent plastic phantom by Monte Carlo algorithm for patient-specific QA. 2D quantitative dose comparison parameters were calculated, for the computed and measured dose distributions, and tested for statistically significant differences.Results: Sensitometric curves showed a different behavior above dose of 5 Gy for EBT2 and EBT3 films; with the use of inhouse marker-dye correction method, the authors obtained values of 2.5% for flatness, 1.5% of symmetry, and a field width of 4.8 cm for a 5 × 5 cm{sup 2} reference field. Compared with TLD and selecting a 5% dose tolerance, the percentage of points with ICRU index below 1 was 100% for EBT2 and 83% for EBT3. Patients analysis revealed statistically significant differences (p < 0.05) between EBT2 and EBT3 in the percentage of points with gamma values <1 (p= 0.009 and p= 0.016); the percent difference as well as the mean difference between calculated and measured isodoses (20% and 80%) were found not to be significant (p= 0.074, p= 0.185, and p= 0.57).Conclusions: Excellent performances in terms of dose homogeneity were obtained using a new blue channel method for marker-dye correction on both EBT2 and EBT3 Gafchromic{sup TM} films. In comparison with TLD, the passing rates for the EBT2 film were higher than for EBT3; a good agreement with estimated data by Monte Carlo algorithm was found for both films, with some statistically significant differences again in favor of EBT2. These results suggest that the use of Gafchromic{sup TM} EBT2 and EBT3 films is appropriate for dose verification measurements in VMAT stereotactic radiosurgery; taking into account the uncertainty associated with Gafchromic film dosimetry, the use of adequate action levels is strongly advised, in particular, for EBT3.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, J; McDonald, D; Ashenafi, M
2014-06-01
Purpose: Complex intensity modulated arc therapy tends to spread low dose to normal tissue(NT)regions to obtain improved target conformity and homogeneity and OAR sparing.This work evaluates the trade-offs between PTV homogeneity and reduction of the maximum dose(Dmax)spread to NT while planning of IMRT,VMAT and Tomotherapy. Methods: Ten prostate patients,previously planned with step-and-shoot IMRT,were selected.To fairly evaluate how PTV homogeneity was affected by NT Dmax constraints,original IMRT DVH objectives for PTV and OARs(femoral heads,and rectal and bladder wall)applied to 2 VMAT plans in Pinnacle(V9.0), and Tomotherapy(V4.2).The only constraint difference was the NT which was defined as body contours excluding targets,OARs andmore » dose rings.NT Dmax constraint for 1st VMAT was set to the prescription dose(Dp).For 2nd VMAT(VMAT-NT)and Tomotherapy,it was set to the Dmax achieved in IMRT(~70-80% of Dp).All NT constraints were set to the lowest priority.Three common homogeneity indices(HI),RTOG-HI=Dmax/Dp,moderated-HI=D95%/D5% and complex-HI=(D2%-D98%)/Dp*100 were calculated. Results: All modalities with similar dosimetric endpoints for PTV and OARs.The complex-HI shows the most variability of indices,with average values of 5.9,4.9,9.3 and 6.1 for IMRT,VMAT,VMAT-NT and Tomotherapy,respectively.VMAT provided the best PTV homogeneity without compromising any OAR/NT sparing.Both VMAT-NT and Tomotherapy,planned with more restrictive NT constraints,showed reduced homogeneity,with VMAT-NT showing the worst homogeneity(P<0.0001)for all HI.Tomotherapy gave the lowest NT Dmax,with slightly decreased homogeneity compared to VMAT. Finally, there was no significant difference in NT Dmax or Dmean between VMAT and VMAT-NT. Conclusion: PTV HI is highly dependent on permitted NT constraints. Results demonstrated that VMAT-NT with more restrictive NT constraints does not reduce Dmax NT,but significantly receives higher Dmax and worse target homogeneity.Therefore, it is critical that planners do not use too restrictive NT constraints during VMAT optimization.Tomotherapy plan was not as sensitive to NT constraints,however,care shall be taken to ensure NT is not pushed too hard.These results are relevant for clinical practice.The biological effect of higher Dmax and increased target heterogeneity needs further study.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokhrel, Damodar, E-mail: damodar.pokhrel@uky.edu; Sood, Sumit; McClinton, Christopher
To retrospectively evaluate quality, efficiency, and delivery accuracy of volumetric-modulated arc therapy (VMAT) plans for single-fraction treatment of thoracic vertebral metastases using image-guided stereotactic body radiosurgery (SBRS) after RTOG 0631 dosimetric compliance criteria. After obtaining credentialing for MD Anderson spine phantom irradiation validation, 10 previously treated patients with thoracic vertebral metastases with noncoplanar hybrid arcs using 1 to 2 3D-conformal partial arcs plus 7 to 9 intensity-modulated radiation therapy beams were retrospectively re-optimized with VMAT using 3 full coplanar arcs. Tumors were located between T2 and T12. Contrast-enhanced T1/T2-weighted magnetic resonance images were coregistered with planning computed tomography and planningmore » target volumes (PTV) were between 14.4 and 230.1 cc (median = 38.0 cc). Prescription dose was 16 Gy in 1 fraction with 6 MV beams at Novalis-TX linear accelerator consisting of micro multileaf collimators. Each plan was assessed for target coverage using conformality index, the conformation number, the ratio of the volume receiving 50% of the prescription dose over PTV, R50%, homogeneity index (HI), and PTV-1600 coverage per RTOG 0631 requirements. Organs-at-risk doses were evaluated for maximum doses to spinal cord (D{sub 0.03} {sub cc}, D{sub 0.35} {sub cc}), partial spinal cord (D{sub 10%}), esophagus (D{sub 0.03} {sub cc} and D{sub 5} {sub cc}), heart (D{sub 0.03} {sub cc} and D{sub 15} {sub cc}), and lung (V{sub 5}, V{sub 10}, and maximum dose to 1000 cc of lung). Dose delivery efficiency and accuracy of each VMAT-SBRS plan were assessed using quality assurance (QA) plan on MapCHECK device. Total beam-on time was recorded during QA procedure, and a clinical gamma index (2%/2 mm and 3%/3 mm) was used to compare agreement between planned and measured doses. All 10 VMAT-SBRS plans met RTOG 0631 dosimetric requirements for PTV coverage. The plans demonstrated highly conformal and homogenous coverage of the vertebral PTV with mean HI, conformality index, conformation number, and R{sub 50%} values of 0.13 ± 0.03 (range: 0.09 to 0.18), 1.03 ± 0.04 (range: 0.98 to 1.09), 0.81 ± 0.06 (range: 0.72 to 0.89), and 4.2 ± 0.94 (range: 2.7 to 5.4), respectively. All 10 patients met protocol guidelines with maximum dose to spinal cord (average: 8.83 ± 1.9 Gy, range: 5.9 to 10.9 Gy); dose to 0.35 cc of spinal cord (average: 7.62 ± 1.7 Gy, range: 5.4 to 9.6 Gy); and dose to 10% of partial spinal cord (average 6.31 ± 1.5 Gy, range: 3.5 to 8.5 Gy) less than 14, 10, and 10 Gy, respectively. For all 10 patients, the maximum dose to esophagus (average: 9.41 ± 4.3 Gy, range: 1.5 to 14.9 Gy) and dose to 5 cc of esophagus (average: 7.43 ± 3.8 Gy, range: 1.1 to 11.8 Gy) were kept less than protocol requirements 16 Gy and 11.9 Gy, respectively. In a similar manner, all 10 patients met protocol compliance criteria with maximum dose to heart (average: 4.62 ± 3.5 Gy, range: 1.3 to 10.2 Gy) and dose to 15 cc of heart (average: 2.23 ± 1.8 Gy, range: 0.3 to 5.6 Gy) less than 22 and 16 Gy, respectively. The dose to the lung was retained much lower than protocol guidelines for all 10 patients. The total number of monitor units was, on average, 6919 ± 1187. The average beam-on time was 11.5 ± 2.0 minutes. The VMAT plans demonstrated dose delivery accuracy of 95.8 ± 0.7%, on average, for clinical gamma passing rate with 2%/2 mm criteria and 98.3 ± 0.8%, on average, with 3%/3 mm criteria. All VMAT-SBRS plans were considered clinically acceptable per RTOG 0631 dosimetric compliance criteria. VMAT planning provided highly conformal and homogenous dose distributions for the lower-dose vertebral PTV and the spinal cord as well as organs-at-risk such as esophagus, heart, and lung. Higher QA pass rates and shorter beam-on time suggest that VMAT-SBRS is a clinically feasible, fast, and effective treatment option for patients with thoracic vertebral metastases.« less
Arc restores juvenile plasticity in adult mouse visual cortex
Jenks, Kyle R.; Kim, Taekeun; Pastuzyn, Elissa D.; Okuno, Hiroyuki; Taibi, Andrew V.; Bear, Mark F.
2017-01-01
The molecular basis for the decline in experience-dependent neural plasticity over age remains poorly understood. In visual cortex, the robust plasticity induced in juvenile mice by brief monocular deprivation during the critical period is abrogated by genetic deletion of Arc, an activity-dependent regulator of excitatory synaptic modification. Here, we report that augmenting Arc expression in adult mice prolongs juvenile-like plasticity in visual cortex, as assessed by recordings of ocular dominance (OD) plasticity in vivo. A distinguishing characteristic of juvenile OD plasticity is the weakening of deprived-eye responses, believed to be accounted for by the mechanisms of homosynaptic long-term depression (LTD). Accordingly, we also found increased LTD in visual cortex of adult mice with augmented Arc expression and impaired LTD in visual cortex of juvenile mice that lack Arc or have been treated in vivo with a protein synthesis inhibitor. Further, we found that although activity-dependent expression of Arc mRNA does not change with age, expression of Arc protein is maximal during the critical period and declines in adulthood. Finally, we show that acute augmentation of Arc expression in wild-type adult mouse visual cortex is sufficient to restore juvenile-like plasticity. Together, our findings suggest a unifying molecular explanation for the age- and activity-dependent modulation of synaptic sensitivity to deprivation. PMID:28790183
Künzler, Thomas; Fotina, Irina; Stock, Markus; Georg, Dietmar
2009-12-21
The dosimetric performance of a Monte Carlo algorithm as implemented in a commercial treatment planning system (iPlan, BrainLAB) was investigated. After commissioning and basic beam data tests in homogenous phantoms, a variety of single regular beams and clinical field arrangements were tested in heterogeneous conditions (conformal therapy, arc therapy and intensity-modulated radiotherapy including simultaneous integrated boosts). More specifically, a cork phantom containing a concave-shaped target was designed to challenge the Monte Carlo algorithm in more complex treatment cases. All test irradiations were performed on an Elekta linac providing 6, 10 and 18 MV photon beams. Absolute and relative dose measurements were performed with ion chambers and near tissue equivalent radiochromic films which were placed within a transverse plane of the cork phantom. For simple fields, a 1D gamma (gamma) procedure with a 2% dose difference and a 2 mm distance to agreement (DTA) was applied to depth dose curves, as well as to inplane and crossplane profiles. The average gamma value was 0.21 for all energies of simple test cases. For depth dose curves in asymmetric beams similar gamma results as for symmetric beams were obtained. Simple regular fields showed excellent absolute dosimetric agreement to measurement values with a dose difference of 0.1% +/- 0.9% (1 standard deviation) at the dose prescription point. A more detailed analysis at tissue interfaces revealed dose discrepancies of 2.9% for an 18 MV energy 10 x 10 cm(2) field at the first density interface from tissue to lung equivalent material. Small fields (2 x 2 cm(2)) have their largest discrepancy in the re-build-up at the second interface (from lung to tissue equivalent material), with a local dose difference of about 9% and a DTA of 1.1 mm for 18 MV. Conformal field arrangements, arc therapy, as well as IMRT beams and simultaneous integrated boosts were in good agreement with absolute dose measurements in the heterogeneous phantom. For the clinical test cases, the average dose discrepancy was 0.5% +/- 1.1%. Relative dose investigations of the transverse plane for clinical beam arrangements were performed with a 2D gamma-evaluation procedure. For 3% dose difference and 3 mm DTA criteria, the average value for gamma(>1) was 4.7% +/- 3.7%, the average gamma(1%) value was 1.19 +/- 0.16 and the mean 2D gamma-value was 0.44 +/- 0.07 in the heterogeneous phantom. The iPlan MC algorithm leads to accurate dosimetric results under clinical test conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Jian-Jian; Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai
2014-07-01
The purpose is to dosimetrically compare the following 3 delivery techniques: 3-dimensional conformal radiation therapy (3D-CRT), intensity-modulated arc therapy (IMRT), and volumetric-modulated arc therapy (V-MAT) in the treatment of accelerated partial-breast irradiation (APBI). Overall, 16 patients with T1/2N0 breast cancer were treated with 3D-CRT (multiple, noncoplanar photon fields) on the RTOG 0413 partial-breast trial. These cases were subsequently replanned using static gantry IMRT and V-MAT technology to understand dosimetric differences among these 3 techniques. Several dosimetric parameters were used in plan quality evaluation, including dose conformity index (CI) and dose-volume histogram analysis of normal tissue coverage. Quality assurance studies includingmore » gamma analysis were performed to compare the measured and calculated dose distributions. The IMRT and V-MAT plans gave more conformal target dose distributions than the 3D-CRT plans (p < 0.05 in CI). The volume of ipsilateral breast receiving 5 and 10 Gy was significantly less using the V-MAT technique than with either 3D-CRT or IMRT (p < 0.05). The maximum lung dose and the ipsilateral lung volume receiving 10 (V{sub 10}) or 20 Gy (V{sub 20}) were significantly less with both V-MAT and IMRT (p < 0.05). The IMRT technique was superior to 3D-CRT and V-MAT of low dose distributions in ipsilateral lung (p < 0.05 in V{sub 5} and D{sub 5}). The total mean monitor units (MUs) for V-MAT (621.0 ± 111.9) were 12.2% less than those for 3D-CRT (707.3 ± 130.9) and 46.5% less than those for IMRT (1161.4 ± 315.6) (p < 0.05). The average machine delivery time was 1.5 ± 0.2 minutes for the V-MAT plans, 7.0 ± 1.6 minutes for the 3D-CRT plans, and 11.5 ± 1.9 minutes for the IMRT plans, demonstrating much less delivery time for V-MAT. Based on this preliminary study, V-MAT and IMRT techniques offer improved dose conformity as compared with 3D-CRT techniques without increasing dose to the ipsilateral lung. In terms of MU and delivery time, V-MAT is significantly more efficient for APBI than for conventional 3D-CRT and static-beam IMRT.« less
Design, Construction, and Testing of Lightweight X-ray Mirror Modules
NASA Technical Reports Server (NTRS)
McClelland, Ryan S.; Biskach, Michael P.; Chan, Kai-Wing; Espina, Rebecca A.; Hohl, Bruce R.; Matson, Elizabeth A.; Saha, Timo C.; Zhang, William W.
2013-01-01
Lightweight and high resolution optics are needed for future space-based X-ray telescopes to achieve advances in high-energy astrophysics. The Next Generation X-ray Optics (NGXO) team at NASA GSFC is nearing mission readiness for a 10 arc-second Half Power Diameter (HPD) slumped glass mirror technology while laying the groundwork for a future 1-2 arc-second technology based on polished silicon mirrors. Technology Development Modules (TDMs) have been designed, fabricated, integrated with mirrors segments, and extensively tested to demonstrate technology readiness. Tests include X-ray performance, thermal vacuum, acoustic load, and random vibration. The thermal vacuum and acoustic load environments have proven relatively benign, while the random vibration environment has proven challenging due to large input amplification at frequencies above 500 Hz. Epoxy selection, surface preparation, and larger bond area have increased bond strength while vibration isolation has decreased vibration amplification allowing for space launch requirements to be met in the near term. The next generation of TDMs, which demonstrates a lightweight structure supporting more mirror segments, is currently being fabricated. Analysis predicts superior performance characteristics due to the use of E-60 Beryllium-Oxide Metal Matrix Composite material, with only a modest cost increase. These TDMs will be larger, lighter, stiffer, and stronger than the current generation. Preliminary steps are being taken to enable mounting and testing of 1-2 arc-second mirror segments expected to be available in the future. A Vertical X-ray Test Facility (VXTF) will minimize module gravity distortion and allow for less constrained mirror mounts, such as fully kinematic mounts. Permanent kinematic mounting into a modified TDM has been demonstrated to achieve 2 arc-second level distortion free alignment.
Shen, Jin; Bender, Edward; Yaparpalvi, Ravindra; Kuo, Hsiang-Chi; Basavatia, Amar; Hong, Linda; Bodner, William; Garg, Madhur K; Kalnicki, Shalom; Tomé, Wolfgang A
2015-01-01
An efficient and simple class solution is proposed for hippocampal-avoidance whole-brain radiation therapy (HA-WBRT) planning using the Volumetric Arc Therapy (VMAT) delivery technique following the NRG Oncology protocol NRG-CC001 treatment planning guidelines. The whole-brain planning target volume (PTV) was subdivided into subplanning volumes that lie in plane and out of plane with the hippocampal-avoidance volume. To further improve VMAT treatment plans, a partial-field dual-arc technique was developed. Both the arcs were allowed to overlap on the in-plane subtarget volume, and in addition, one arc covered the superior out-of-plane sub-PTV, while the other covered the inferior out-of-plane subtarget volume. For all plans (n = 20), the NRG-CC001 protocol dose-volume criteria were met. Mean values of volumes for the hippocampus and the hippocampal-avoidance volume were 4.1 cm(3) ± 1.0 cm(3) and 28.52 cm(3) ± 3.22 cm(3), respectively. For the PTV, the average values of D(2%) and D(98%) were 36.1 Gy ± 0.8 Gy and 26.2 Gy ± 0.6 Gy, respectively. The hippocampus D(100%) mean value was 8.5 Gy ± 0.2 Gy and the maximum dose was 15.7 Gy ± 0.3 Gy. The corresponding plan quality indices were 0.30 ± 0.01 (homogeneity index), 0.94 ± 0.01 (target conformality), and 0.75 ± 0.02 (confirmation number). The median total monitor unit (MU) per fraction was 806 MU (interquartile range [IQR]: 792 to 818 MU) and the average beam total delivery time was 121.2 seconds (IQR: 120.6 to 121.35 seconds). All plans passed the gamma evaluation using the 5-mm, 4% criteria, with γ > 1 of not more than 9.1% data points for all fields. An efficient and simple planning class solution for HA-WBRT using VMAT has been developed that allows all protocol constraints of NRG-CC001 to be met. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Park, Dan M.; Akhtar, Md. Sohail; Ansari, Aseem Z.; Landick, Robert; Kiley, Patricia J.
2013-01-01
Despite the importance of maintaining redox homeostasis for cellular viability, how cells control redox balance globally is poorly understood. Here we provide new mechanistic insight into how the balance between reduced and oxidized electron carriers is regulated at the level of gene expression by mapping the regulon of the response regulator ArcA from Escherichia coli, which responds to the quinone/quinol redox couple via its membrane-bound sensor kinase, ArcB. Our genome-wide analysis reveals that ArcA reprograms metabolism under anaerobic conditions such that carbon oxidation pathways that recycle redox carriers via respiration are transcriptionally repressed by ArcA. We propose that this strategy favors use of catabolic pathways that recycle redox carriers via fermentation akin to lactate production in mammalian cells. Unexpectedly, bioinformatic analysis of the sequences bound by ArcA in ChIP-seq revealed that most ArcA binding sites contain additional direct repeat elements beyond the two required for binding an ArcA dimer. DNase I footprinting assays suggest that non-canonical arrangements of cis-regulatory modules dictate both the length and concentration-sensitive occupancy of DNA sites. We propose that this plasticity in ArcA binding site architecture provides both an efficient means of encoding binding sites for ArcA, σ70-RNAP and perhaps other transcription factors within the same narrow sequence space and an effective mechanism for global control of carbon metabolism to maintain redox homeostasis. PMID:24146625
Ahamed, Shabbir; Singh, Navin; Gudipudi, Deleep; Mulinti, Suneetha; Talluri, Anil; Soubhagya, Bhudevi; Sresty, Madhusudhana
2017-03-01
To quantify relative merit of MU deprived plans against freely optimized plans in terms of plan quality and report changes induced by progressive resolution optimizer algorithm (PRO3) to the dynamic parameters of RapidArc. Ten cases of carcinoma hypopharynx were retrospectively planned in three phases without using MU tool. Replicas of these baseline plans were reoptimized using "Intermediate dose" feature and "MU tool" to reduce MUs by 20%, 35%, and 50%. Overall quality indices for target and OAR, integral dose, dose-volume spread were assessed. All plans were appraised for changes induced in RapidArc dynamic parameters and pre-treatment quality assurance (QA). With increasing MU reduction strength (MURS), MU/Gy values reduced, for all phases with an overall range of 8.6-34.7%; mean dose rate decreased among plans of each phase, phase3 plans recorded greater reductions. MURS20% showed good trade-off between MUs and plan quality. Dose-volume spread below 5Gy was higher for baseline plans while lower between 20 and 35Gy. Integral dose was lower for MURS0%, not exceeding 1.0%, compared against restrained plans. Mean leaf aperture and control point areas increased systematically, correlated negatively with increasing MURS. Absolute delta dose rate variations were least for MURS0%. MU deprived plans exhibited GAI (>93%), better than MURS0% plans. Baseline plans are superior to MU restrained plans. However, MURS20% offers equivalent and acceptable plan quality with mileage of MUs, improved GAI for complex cases. MU tool may be adopted to tailor treatment plans using PRO3. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Alignment and Integration of Lightweight Mirror Segments
NASA Technical Reports Server (NTRS)
Evans, Tyler; Biskach, Michael; Mazzarella, Jim; McClelland, Ryan; Saha, Timo; Zhang, Will; Chan, Kai-Wing
2011-01-01
The optics for the International X-Ray Observatory (IXO) require alignment and integration of about fourteen thousand thin mirror segments to achieve the mission goal of 3.0 square meters of effective area at 1.25 keV with an angular resolution of five arc-seconds. These mirror segments are 0.4 mm thick, and 200 to 400 mm in size, which makes it difficult not to impart distortion at the sub-arc-second level. This paper outlines the precise alignment, permanent bonding, and verification testing techniques developed at NASA's Goddard Space Flight Center (GSFC). Improvements in alignment include new hardware and automation software. Improvements in bonding include two module new simulators to bond mirrors into, a glass housing for proving single pair bonding, and a Kovar module for bonding multiple pairs of mirrors. Three separate bonding trials were x-ray tested producing results meeting the requirement of sub ten arc-second alignment. This paper will highlight these recent advances in alignment, testing, and bonding techniques and the exciting developments in thin x-ray optic technology development.
Electrode assemblies, plasma generating apparatuses, and methods for generating plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Peter C.; Grandy, Jon D.; Detering, Brent A.
Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating membermore » to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.« less
Kong, Peter C; Grandy, Jon D; Detering, Brent A; Zuck, Larry D
2013-09-17
Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.
IMRT and RapidArc commissioning of a TrueBeam linear accelerator using TG-119 protocol cases.
Wen, Ning; Zhao, Bo; Kim, Jinkoo; Chin-Snyder, Karen; Bellon, Maria; Glide-Hurst, Carri; Barton, Kenneth; Chen, Daiquan; Chetty, Indrin J
2014-09-08
The purpose of this study is to evaluate the overall accuracy of intensity-modulated radiation therapy (IMRT) and RapidArc delivery using both flattening filter (FF) and flattening filter-free (FFF) modalities based on test cases developed by AAPM Task Group 119. Institutional confidence limits (CLs) were established as the baseline for patient specific treatment plan quality assurance (QA). The effects of gantry range, gantry speed, leaf speed, dose rate, as well as the capability to capture intentional errors, were evaluated by measuring a series of Picket Fence (PF) tests using the electronic portal imaging device (EPID) and EBT3 films. Both IMRT and RapidArc plans were created in a Solid Water phantom (30 × 30 × 15 cm3) for the TG-119 test cases representative of normal clinical treatment sites for all five photon energies (6X, 10X, 15X, 6X-FFF, 10X-FFF) and the Exact IGRT couch was included in the dose calculation. One high-dose point in the PTV and one low-dose point in the avoidance structure were measured with an ion chamber in each case for each energy. Similarly, two GAFCHROMIC EBT3 films were placed in the coronal planes to measure planar dose distributions in both high- and low-dose regions. The confidence limit was set to have 95% of the measured data fall within the tolerance. The mean of the absolute dose deviation for variable dose rate and gantry speed during RapidArc delivery was within 0.5% for all energies. The corresponding results for leaf speed tests were all within 0.4%. The combinations of dynamic leaf gap (DLG) and MLC transmission factor were optimized based on the ion chamber measurement results of RapidArc delivery for each energy. The average 95% CLs for the high-dose point in the PTV were 0.030 ± 0.007 (range, 0.022-0.038) for the IMRT plans and 0.029 ± 0.011 (range, 0.016-0.043) for the RapidArc plans. For low-point dose in the avoidance structures, the CLs were 0.029 ± 0.006 (range, 0.024-0.039) for the IMRT plans and 0.027 ± 0.013 (range, 0.017-0.047) for the RapidArc plans. The average 95% CLs using 3%/3 mm gamma criteria in the high-dose region were 5.9 ± 2.7 (range, 1.4-8.6) and 3.9 ± 2.9 (range, 1.5-8.8) for IMRT and RapidArc plans, respectively. The average 95% CLs in the low-dose region were 5.3 ± 2.6 (range, 1.2-7.4) and 3.7 ± 2.8 (range, 1.8-8.3) for IMRT and RapidArc plans, respectively. Based on ion chamber, as well as film measurements, we have established CLs values to ensure the high precision of IMRT and RapidArc delivery for both FF and FFF modalities.
Electron arc therapy for bilateral chest wall irradiation: treatment planning and dosimetric study.
Sharma, P K; Jamema, S V; Kaushik, K; Budrukkar, A; Jalali, R; Deshpande, D D; Tambe, C M; Sarin, R; Munshi, A
2011-04-01
The treatment of patients with synchronous bilateral breast cancer is a challenge. We present a report of dosimetric data of patients with bilateral chest walls as the target treated with electron arc therapy. Ten consecutive patients who had undergone electron arc therapy to the bilateral chest wall for breast cancer were analysed. After positioning and immobilisation, patients underwent computed tomography scans from the neck to the upper abdomen. Electron arc plans were generated using the PLATO RTS (V1.8.2 Nucletron) treatment planning system. Electron energy was chosen depending upon the depth and thickness of the planning target volume (PTV). For all patients, the arc angle ranged between 80 and 280° (start angle 80°, stop angle 280°). The homogeneity index, coverage index and doses to organs at risk were evaluated. The patient-specific output factor and thermoluminescence dosimetry (TLD) measurements were carried out for all patients. The total planned dose to the PTV was 50Gy/25 fractions/5 weeks. The mean PTV (± standard deviation) was 568.9 (±116)cm(3). The mean PTV coverage was 89 (±5.8)% of the prescribed dose. For the right lung, the mean values of D(1) and D(10) were 46 (±7.6) and 30 (±9)Gy, respectively. For the left lung, the mean values of D(1) and D(10) were 45 (±7) and 27 (±8)Gy, respectively. For the heart, the mean values of D(1), D(5) and D(10) were 21 (±15), 13.5 (±12) and 9 (±9)Gy, respectively. The mean values of TLD at various pre-specified locations on the chest wall surface were 1.84, 1.82, 1.82, 1.89 and 1.78Gy, respectively The electron arc technique for treating the bilateral chest wall is a feasible and pragmatic technique. This technique has the twin advantages of adequate coverage of the target volume and sparing of adjacent normal structures. However, compared with other techniques, it needs a firm quality assurance protocol for dosimetry and treatment delivery. Copyright © 2010 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Complexity metric based on fraction of penumbra dose - initial study
NASA Astrophysics Data System (ADS)
Bäck, A.; Nordström, F.; Gustafsson, M.; Götstedt, J.; Karlsson Hauer, A.
2017-05-01
Volumetric modulated arc therapy improve radiotherapy outcome for many patients compared to conventional three dimensional conformal radiotherapy but require a more extensive, most often measurement based, quality assurance. Multi leaf collimator (MLC) aperture-based complexity metrics have been suggested to be used to distinguish complex treatment plans unsuitable for treatment without time consuming measurements. This study introduce a spatially resolved complexity score that correlate to the fraction of penumbra dose and will give information on the spatial distribution and the clinical relevance of the calculated complexity. The complexity metric is described and an initial study on the correlation between the complexity score and the difference between measured and calculated dose for 30 MLC openings is presented. The result of an analysis of the complexity scores were found to correlate to differences between measurements and calculations with a Pearson’s r-value of 0.97.
Glisson, Charles; Schoenwald, Sonja K
2005-12-01
This paper reviews the implications of organizational and community intervention research for the implementation of effective mental health treatments in usual community practice settings. The paper describes an organizational and community intervention model named ARC for Availability, Responsiveness and Continuity, that was designed to support the improvement of social and mental health services for children. The ARC model incorporates intervention components from organizational development, interorganizational domain development, the diffusion of innovation, and technology transfer that target social, strategic, and technological factors in effective children's services. This paper also describes a current NIMH-funded study that is using the ARC intervention model to support the implementation of an evidence-based treatment, Multisystemic Therapy (MST), for delinquent youth in extremely rural, impoverished communities in the Appalachian Mountains of East Tennessee.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Damien C., E-mail: damien.weber@unige.ch; Zilli, Thomas; Vallee, Jean Paul
2012-11-01
Purpose: Rectal toxicity is a serious adverse effect in early-stage prostate cancer patients treated with curative radiation therapy (RT). Injecting a spacer between Denonvilliers' fascia increases the distance between the prostate and the anterior rectal wall and may thus decrease the rectal radiation-induced toxicity. We assessed the dosimetric impact of this spacer with advanced delivery RT techniques, including intensity modulated RT (IMRT), volumetric modulated arc therapy (VMAT), and intensity modulated proton beam RT (IMPT). Methods and Materials: Eight prostate cancer patients were simulated for RT with or without spacer. Plans were computed for IMRT, VMAT, and IMPT using the Eclipsemore » treatment planning system using both computed tomography spacer+ and spacer- data sets. Prostate {+-} seminal vesicle planning target volume [PTV] and organs at risk (OARs) dose-volume histograms were calculated. The results were analyzed using dose and volume metrics for comparative planning. Results: Regardless of the radiation technique, spacer injection decreased significantly the rectal dose in the 60- to 70-Gy range. Mean V{sub 70Gy} and V{sub 60Gy} with IMRT, VMAT, and IMPT planning were 5.3 {+-} 3.3%/13.9 {+-} 10.0%, 3.9 {+-} 3.2%/9.7 {+-} 5.7%, and 5.0 {+-} 3.5%/9.5 {+-} 4.7% after spacer injection. Before spacer administration, the corresponding values were 9.8 {+-} 5.4% (P=.012)/24.8 {+-} 7.8% (P=.012), 10.1 {+-} 3.0% (P=.002)/17.9 {+-} 3.9% (P=.003), and 9.7 {+-} 2.6% (P=.003)/14.7% {+-} 2.7% (P=.003). Importantly, spacer injection usually improved the PTV coverage for IMRT. With this technique, mean V{sub 70.2Gy} (P=.07) and V{sub 74.1Gy} (P=0.03) were 100 {+-} 0% to 99.8 {+-} 0.2% and 99.1 {+-} 1.2% to 95.8 {+-} 4.6% with and without Spacer, respectively. As a result of spacer injection, bladder doses were usually higher but not significantly so. Only IMPT managed to decrease the rectal dose after spacer injection for all dose levels, generally with no observed increase to the bladder dose. Conclusions: Regardless of the radiation technique, a substantial decrease of rectal dose was observed after spacer injection for curative RT to the prostate.« less
Initial experience of ArcCHECK and 3DVH software for RapidArc treatment plan verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Infusino, Erminia; Mameli, Alessandra, E-mail: e.infusino@unicampus.it; Conti, Roberto
2014-10-01
The purpose of this study was to perform delivery quality assurance with ArcCHECK and 3DVH system (Sun Nuclear, FL) and to evaluate the suitability of this system for volumetric-modulated arc therapy (VMAT) (RapidArc [RA]) verification. This software calculates the delivered dose distributions in patients by perturbing the calculated dose using errors detected in fluence or planar dose measurements. The device is tested to correlate the gamma passing rate (%GP) and the composite dose predicted by 3DVH software. A total of 28 patients with prostate cancer who were treated with RA were analyzed. RA treatments were delivered to a diode arraymore » phantom (ArcCHECK), which was used to create a planned dose perturbation (PDP) file. The 3DVH analysis used the dose differences derived from comparing the measured dose with the treatment planning system (TPS)-calculated doses to perturb the initial TPS-calculated dose. The 3DVH then overlays the resultant dose on the patient's structures using the resultant “PDP” beams. Measured dose distributions were compared with the calculated ones using the gamma index (GI) method by applying the global (Van Dyk) normalization and acceptance criteria, i.e., 3%/3 mm. Paired differences tests were used to estimate statistical significance of the differences between the composite dose calculated using 3DVH and %GP. Also, statistical correlation by means of logistic regression analysis has been analyzed. Dose-volume histogram (DVH) analysis for patient plans revealed small differences between treatment plan calculations and 3DVH results for organ at risk (OAR), whereas planning target volume (PTV) of the measured plan was systematically higher than that predicted by the TPS. The t-test results between the planned and the estimated DVH values showed that mean values were incomparable (p < 0.05). The quality assurance (QA) gamma analysis 3%/3 mm showed that in all cases there were only weak-to-moderate correlations (Pearson r: 0.12 to 0.74). Moreover, clinically relevant differences increased with increasing QA passing rate, indicating that some of the largest dose differences occurred in the cases of high QA passing rates, which may be called “false negatives.” The clinical importance of any disagreement between the measured and the calculated dose is often difficult to interpret; however, beam errors (either in delivery or in TPS calculation) can affect the effectiveness of the patient dose. Further research is needed to determinate the role of a PDP-type algorithm to accurately estimate patient dose effect.« less
Keall, Paul J; Colvill, Emma; O'Brien, Ricky; Caillet, Vincent; Eade, Thomas; Kneebone, Andrew; Hruby, George; Poulsen, Per R; Zwan, Benjamin; Greer, Peter B; Booth, Jeremy
2018-06-01
To report on the primary and secondary outcomes of a prospective clinical trial of electromagnetic-guided multileaf collimator (MLC) tracking radiation therapy for prostate cancer. Twenty-eight men with prostate cancer were treated with electromagnetic-guided MLC tracking with volumetric modulated arc therapy. A total of 858 fractions were delivered, with the dose per fraction ranging from 2 to 13.75 Gy. The primary outcome was feasibility, with success determined if >95% of fractions were successfully delivered. The secondary outcomes were (1) the improvement in beam-target geometric alignment, (2) the improvement in dosimetric coverage of the prostate and avoidance of critical structures, and (3) no acute grade ≥3 genitourinary or gastrointestinal toxicity. All 858 planned fractions were successfully delivered with MLC tracking, demonstrating the primary outcome of feasibility (P < .001). MLC tracking improved the beam-target geometric alignment from 1.4 to 0.90 mm (root-mean-square error). MLC tracking improved the dosimetric coverage of the prostate and reduced the daily variation in dose to critical structures. No acute grade ≥3 genitourinary or gastrointestinal toxicity was observed. Electromagnetic-guided MLC tracking radiation therapy for prostate cancer is feasible. The patients received improved geometric targeting and delivered dose distributions that were closer to those planned than they would have received without electromagnetic-guided MLC tracking. No significant acute toxicity was observed. Copyright © 2018 Elsevier Inc. All rights reserved.
Influence of multiple brain metastases’ size and number on the quality of SRS - VMAT dose delivery
NASA Astrophysics Data System (ADS)
Prentou, G.; Koutsouveli, E.; Pantelis, E.; Papagiannis, P.; Georgiou, E.; Karaiskos, P.
2017-11-01
Stereotactic radiosurgery with volumetric modulated arc therapy (SRS-VMAT) has recently been introduced for treatment of multiple brain metastases with a single isocenter. The technique’s high efficiency is nevertheless dependent of metastatic tumors’ characteristics such as size and number. In this work the impact of the metastases’ size and number on the plan quality indices clinically used for plan evaluation and acceptance is investigated. Fifteen targets with a diameter of 1 cm and average volume of 0.7 cm3 and ten targets with a diameter of 2 cm and average volume of 6.5 cm3 were contoured on an anonymized patient CT dataset, in Monaco (Elekta) treatment planning system. VMAT plans for different target volumes (1 and 2 cm in diameter) and various target numbers (1-15) were generated using four non-coplanar arcs and the Agility (Elekta) linear accelerator (5 mm MLC width) using a Monte Carlo dose calculation algorithm and 1mm dose calculation grid resolution. Conformity index (CI), gradient index (GI) and heterogeneity index (HI) were determined for each target. High quality plans were created for both 1 cm and 2 cm in diameter targets for limited (<6) number of targets per plan. For increased number of irradiated targets (>6) both CI and GI, clinically used for plan evaluation and acceptance, were found to deteriorate.
Sriram, Padmanaban; Syamkumar, S A; Kumar, J Sam Deva; Prabakar, Sukumar; Dhanabalan, Rajasekaran; Vivekanandan, Nagarajan
2012-10-01
To assess the potential of cone beam CT (CBCT) derived adaptive RapidArc treatment for esophageal cancers in reducing the dose to organs at risk (OAR). Ten patients with esophageal cancer were CT scanned in free breathing pattern. The PTV is generated by adding a 3D margin of 1 cm to the CTV as per ICRU 62 recommendations. The double arc RapidArc plan (Clin_RA) was generated for the PTV. Patients were setup using kV orthogonal images and kV-CBCT scan was acquired daily during first week of therapy, then weekly. These images were exported to the Eclipse TPS. The adaptive CTV which includes tumor and involved nodes was delineated in each CBCT image set for the length of the PTV. The composite CTV from first week CBCT was generated using Boolean union operator and 5 mm margin was added circumferentially to generate adaptive PTV (PTV1). Adaptive RapidArc plan (Adap_RA) was generated. NTCP and DVH of the OARs of the two plans were compared. Similarly, PTV2 was generated from weekly CBCT. PTV2 was evaluated for the coverage of 95% isodose of Adap_RA plan. The PTV1 and PTV2 volumes covered by 95% isodose in adaptive plans were 93.51 ± 1.17% and 94.59 ± 1.43% respectively. The lung V(10Gy,)V(20Gy) and mean dose in Adap_RA plan was reduced by 17.43% (p = 0.0012), 34.64% (p = 0.0019) and 16.50% (p = 0.0002) respectively compared to Clin_RA. The Adap_RA plan reduces the heart D(35%) and mean dose by 17.35% (p = 0.0011) and 17.16% (p = 0.0012). No significant reduction in spinal cord and liver doses were observed. NTCP for the lung (0.42% vs. 0.08%) and heart (1.39% vs. 0.090%) was reduced significantly in adaptive plans. The adaptive re-planning strategy based on the first week CBCT dataset significantly reduces the doses and NTCP to OARs. Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Liming; Hao, Xinfeng
2009-11-01
In the previous work, low-power laser/arc hybrid welding technique is used to weld magnesium alloy and high-quality weld joints are obtained. In order to make clear the interactions between low-power laser pulse and arc plasma, the effect of arc plasma on laser pulse is studied in this article. The result shows that the penetration of low-power laser welding with the assistance of TIG arc is more than two times deeper than that of laser welding alone and laser welding transforms from thermal-conduction mode to keyhole mode. The plasma behaviors and spectra during the welding process are studied, and the transition mechanism of laser-welding mode is analyzed in detail. It is also found that with the assistance of arc plasma, the threshold value of average power density to form keyhole welding for YAG laser is only 3.3×10 4 W/cm 2, and the average peak power density is 2.6×10 5 W/cm 2 in the present experiment. Moreover, the distribution of energy density during laser pulse is modulated to improve the formation and stability of laser keyholes.
Multicentre knowledge sharing and planning/dose audit on flattening filter free beams for SBRT lung
NASA Astrophysics Data System (ADS)
Hansen, C. R.; Sykes, J. R.; Barber, J.; West, K.; Bromley, R.; Szymura, K.; Fisher, S.; Sim, J.; Bailey, M.; Chrystal, D.; Deshpande, S.; Franji, I.; Nielsen, T. B.; Brink, C.; Thwaites, D. I.
2015-01-01
When implementing new technology into clinical practice, there will always be a need for large knowledge gain. The aim of this study was twofold, (I) audit the treatment planning and dose delivery of Flattening Filter Free (FFF) beam technology for Stereotactic Body Radiation Therapy (SBRT) of lung tumours across a range of treatment planning systems compared to the conventional Flatting Filter (FF) beams, (II) investigate how sharing knowledge between centres of different experience can improve plan quality. All vendor/treatment planning system (TPS) combinations investigated were able to produce acceptable treatment plans and the dose accuracy was clinically acceptable for all plans. By sharing knowledge between the different centres, the minor protocol violations (MPV) could be significantly reduced, from an average of 1.9 MPV per plan to 0.6 after such sharing of treatment planning knowledge. In particular, for the centres with less SBRT and/or volumetric- modulated arc therapy (VMAT) experience the MPV average per plan improved. All vendor/TPS combinations were also able to successfully deliver the FF and FFF SBRT VMAT plans. The plan quality and dose accuracy were found to be clinically acceptable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jie; Lang, Jinyi; Wang, Pei
2014-01-01
Reirradiation of patients who were previously treated with radiotherapy is vastly challenging. Pulsed low–dose rate (PLDR) external beam radiotherapy has the potential to reduce normal tissue toxicities while providing significant tumor control for recurrent cancers. This work investigates treatment planning techniques for intensity-modulated radiation therapy (IMRT)-based PLDR treatment of various sites, including cases with pancreatic and prostate cancer. A total of 20 patients with clinical recurrence were selected for this study, including 10 cases with pancreatic cancer and 10 with prostate cancer. Large variations in the target volume were included to test the ability of IMRT using the existing treatmentmore » planning system and optimization algorithm to deliver uniform doses in individual gantry angles/fields for PLDR treatments. Treatment plans were generated with 10 gantry angles using the step-and-shoot IMRT delivery technique, which can be delivered in 3-minute intervals to achieve an effective low dose rate of 6.7 cGy/min. Instead of dose constraints on critical structures, ring structures were mainly used in PLDR-IMRT optimization. In this study, the PLDR-IMRT plans were compared with the PLDR-3-dimensional conformal radiation therapy (3DCRT) plans and the PLDR-RapidArc plans. For the 10 cases with pancreatic cancer that were investigated, the mean planning target volume (PTV) dose for each gantry angle in the PLDR-IMRT plans ranged from 17.6 to 22.4 cGy. The maximum doses ranged between 22.9 and 34.8 cGy. The minimum doses ranged from 8.2 to 17.5 cGy. For the 10 cases with prostate cancer that were investigated, the mean PTV doses for individual gantry angles ranged from 18.8 to 22.6 cGy. The maximum doses per gantry angle were between 24.0 and 34.7 cGy. The minimum doses per gantry angle ranged from 4.4 to 17.4 cGy. A significant reduction in the organ at risk (OAR) dose was observed with the PLDR-IMRT plan when compared with that using the PLDR-3DCRT plan. The volume receiving an 18-Gy (V{sub 18}) dose for the left and right kidneys was reduced by 10.6% and 12.5%, respectively, for the pancreatic plans. The volume receiving a 45-Gy (V{sub 45}) dose for the small bowel decreased from 65.3% to 45.5%. For the cases with prostate cancer, the volume receiving a 40-Gy (V{sub 40}) dose for the bladder and the rectum was reduced significantly by 25.1% and 51.2%, respectively. When compared with the RapidArc technique, the volume receiving a 30-Gy (V{sub 30}) dose for the left and the right kidneys was lower in the IMRT plans. For most OARs, no significant differences were observed between the PLDR-IMRT and the PLDR-RapidArc plans. These results clearly demonstrated that the PLDR-IMRT plan was suitable for PLDR pancreatic and prostate cancer treatments in terms of the overall plan quality. A significant reduction in the OAR dose was achieved with the PLDR-IMRT plan when compared with that using the PLDR-3DCRT plan. For most OARs, no significant differences were observed between the PLDR-IMRT and the PLDR-RapidArc plans. When compared with the PLDR-3DCRT plan, the PLDR-IMRT plan could provide superior target coverage and normal tissue sparing for PLDR reirradiation of recurrent pancreatic and prostate cancers. The PLDR-IMRT plan is an effective treatment choice for recurrent cancers in most cancer centers.« less
2014-06-12
distribution is unlimited. Ballistic-Failure Mechanisms in Gas Metal Arc Welds of Mil A46100 Armor-Grade Steel : A Computational Investigation The views...Welds of Mil A46100 Armor-Grade Steel : A Computational Investigation Report Title In our recent work, a multi-physics computational model for the...introduction of the sixth module in the present work in recognition of the fact that in thick steel GMAW weldments, the overall ballistic performance
Bailey, Lane B; Thigpen, Charles A; Hawkins, Richard J; Beattie, Paul F; Shanley, Ellen
Baseball players displaying deficits in shoulder range of motion (ROM) are at increased risk of arm injury. Currently, there is a lack of consensus regarding the best available treatment options to restore shoulder ROM. Instrumented manual therapy with self-stretching will result in clinically significant deficit reductions when compared with self-stretching alone. Controlled laboratory study. Shoulder ROM and humeral torsion were assessed in 60 active baseball players (mean age, 19 ± 2 years) with ROM deficits (nondominant - dominant, ≥15°). Athletes were randomly assigned to receive a single treatment of instrumented manual therapy plus self-stretching (n = 30) or self-stretching only (n = 30). Deficits in internal rotation, horizontal adduction, and total arc of motion were compared between groups immediately before and after a single treatment session. Treatment effectiveness was determined by mean comparison data, and a number-needed-to-treat (NNT) analysis was used for assessing the presence of ROM risk factors. Prior to intervention, players displayed significant ( P < 0.001) dominant-sided deficits in internal rotation (-26°), total arc of motion (-18°), and horizontal adduction (-17°). After the intervention, both groups displayed significant improvements in ROM, with the instrumented manual therapy plus self-stretching group displaying greater increases in internal rotation (+5°, P = 0.010), total arc of motion (+6°, P = 0.010), and horizontal adduction (+7°, P = 0.004) compared with self-stretching alone. For horizontal adduction deficits, the added use of instrumented manual therapy with self-stretching decreased the NNT to 2.2 (95% CI, 2.1-2.4; P = 0.010). Instrumented manual therapy with self-stretching significantly reduces ROM risk factors in baseball players with motion deficits when compared with stretching alone. The added benefits of manual therapy may help to reduce ROM deficits in clinical scenarios where stretching alone is ineffective.
Zhang, M; Westerly, D C; Mackie, T R
2011-08-07
With on-line image guidance (IG), prostate shifts relative to the bony anatomy can be corrected by realigning the patient with respect to the treatment fields. In image guided intensity modulated proton therapy (IG-IMPT), because the proton range is more sensitive to the material it travels through, the realignment may introduce large dose variations. This effect is studied in this work and an on-line adaptive procedure is proposed to restore the planned dose to the target. A 2D anthropomorphic phantom was constructed from a real prostate patient's CT image. Two-field laterally opposing spot 3D-modulation and 24-field full arc distal edge tracking (DET) plans were generated with a prescription of 70 Gy to the planning target volume. For the simulated delivery, we considered two types of procedures: the non-adaptive procedure and the on-line adaptive procedure. In the non-adaptive procedure, only patient realignment to match the prostate location in the planning CT was performed. In the on-line adaptive procedure, on top of the patient realignment, the kinetic energy for each individual proton pencil beam was re-determined from the on-line CT image acquired after the realignment and subsequently used for delivery. Dose distributions were re-calculated for individual fractions for different plans and different delivery procedures. The results show, without adaptive, that both the 3D-modulation and the DET plans experienced delivered dose degradation by having large cold or hot spots in the prostate. The DET plan had worse dose degradation than the 3D-modulation plan. The adaptive procedure effectively restored the planned dose distribution in the DET plan, with delivered prostate D(98%), D(50%) and D(2%) values less than 1% from the prescription. In the 3D-modulation plan, in certain cases the adaptive procedure was not effective to reduce the delivered dose degradation and yield similar results as the non-adaptive procedure. In conclusion, based on this 2D phantom study, by updating the proton pencil beam energy from the on-line image after realignment, this on-line adaptive procedure is necessary and effective for the DET-based IG-IMPT. Without dose re-calculation and re-optimization, it could be easily incorporated into the clinical workflow.
NASA Astrophysics Data System (ADS)
Zhang, M.; Westerly, D. C.; Mackie, T. R.
2011-08-01
With on-line image guidance (IG), prostate shifts relative to the bony anatomy can be corrected by realigning the patient with respect to the treatment fields. In image guided intensity modulated proton therapy (IG-IMPT), because the proton range is more sensitive to the material it travels through, the realignment may introduce large dose variations. This effect is studied in this work and an on-line adaptive procedure is proposed to restore the planned dose to the target. A 2D anthropomorphic phantom was constructed from a real prostate patient's CT image. Two-field laterally opposing spot 3D-modulation and 24-field full arc distal edge tracking (DET) plans were generated with a prescription of 70 Gy to the planning target volume. For the simulated delivery, we considered two types of procedures: the non-adaptive procedure and the on-line adaptive procedure. In the non-adaptive procedure, only patient realignment to match the prostate location in the planning CT was performed. In the on-line adaptive procedure, on top of the patient realignment, the kinetic energy for each individual proton pencil beam was re-determined from the on-line CT image acquired after the realignment and subsequently used for delivery. Dose distributions were re-calculated for individual fractions for different plans and different delivery procedures. The results show, without adaptive, that both the 3D-modulation and the DET plans experienced delivered dose degradation by having large cold or hot spots in the prostate. The DET plan had worse dose degradation than the 3D-modulation plan. The adaptive procedure effectively restored the planned dose distribution in the DET plan, with delivered prostate D98%, D50% and D2% values less than 1% from the prescription. In the 3D-modulation plan, in certain cases the adaptive procedure was not effective to reduce the delivered dose degradation and yield similar results as the non-adaptive procedure. In conclusion, based on this 2D phantom study, by updating the proton pencil beam energy from the on-line image after realignment, this on-line adaptive procedure is necessary and effective for the DET-based IG-IMPT. Without dose re-calculation and re-optimization, it could be easily incorporated into the clinical workflow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kung, Shiris Wai Sum; Wu, Vincent Wing Cheung; Kam, Michael Koon Ming, E-mail: kamkm@yahoo.co
2011-01-01
Purpose: Locally recurrent nasopharyngeal carcinoma (NPC) patients can be salvaged by reirradiation with a substantial degree of radiation-related complications. Stereotactic radiotherapy (SRT) is widely used in this regard because of its rapid dose falloff and high geometric precision. The aim of this study was to examine whether the newly developed intensity-modulated stereotactic radiotherapy (IMSRT) has any dosimetric advantages over three other stereotactic techniques, including circular arc (CARC), static conformal beam (SmMLC), and dynamic conformal arc (mARC), in treating locally recurrent NPC. Methods and Materials: Computed tomography images of 32 patients with locally recurrent NPC, previously treated with SRT, were retrievedmore » from the stereotactic planning system for contouring and computing treatment plans. Treatment planning of each patient was performed for the four treatment techniques: CARC, SmMLC, mARC, and IMSRT. The conformity index (CI) and homogeneity index (HI) of the planning target volume (PTV) and doses to the organs at risk (OARs) and normal tissue were compared. Results: All four techniques delivered adequate doses to the PTV. IMSRT, SmMLC, and mARC delivered reasonably conformal and homogenous dose to the PTV (CI <1.47, HI <0.53), but not for CARC (p < 0.05). IMSRT presented with the smallest CI (1.37) and HI (0.40). Among the four techniques, IMSRT spared the greatest number of OARs, namely brainstem, temporal lobes, optic chiasm, and optic nerve, and had the smallest normal tissue volume in the low-dose region. Conclusion: Based on the dosimetric comparison, IMSRT was optimal for locally recurrent NPC by delivering a conformal and homogenous dose to the PTV while sparing OARs.« less
Aguilar-Arredondo, Andrea; López-Hernández, Fernanda; García-Velázquez, Lizbeth; Arias, Clorinda; Zepeda, Angélica
2017-02-01
Kainic acid-induced (KA) hippocampal damage leads to neuronal death and further synaptic plasticity. Formation of aberrant as well as of functional connections after such procedure has been documented. However, the impact of such structural plasticity on cell activation along time after damage and in face of a behavioral demand has not been explored. We evaluated if the mRNA and protein levels of plasticity-related protein synaptophysin (Syp and SYP, respectively) and activity-regulated cytoskeleton-associated protein mRNA and protein levels (Arc and Arc, respectively) in the dentate gyrus were differentially modulated in time in response to a spatial-exploratory task after KA-induced hippocampal damage. In addition, we analyzed Arc+/NeuN+ immunopositive cells in the different experimental conditions. We infused KA intrahippocampally to young-adult rats and 10 or 30 days post-lesion (dpl) animals performed a hippocampus-activating spatial-exploratory task. Our results show that Syp mRNA levels significantly increase at 10dpl and return to control levels after 30dpl, whereas SYP protein levels are diminished at 10dpl, but significantly increase at 30dpl, as compared to 10dpl. Arc mRNA and protein levels are both increased at 30dpl as compared to sham. Also the number of NeuN+/Arc+ cells significantly increases at 30dpl in the group with a spatial-exploratory demand. These results provide information on the long-term modifications associated to structural plasticity and neuronal activation in the dentate gyrus after excitotoxic damage and in face of a spatial-exploratory behavior. Anat Rec, 300:425-432, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Sarkar, B; Pradhan, A; Munshi, A
2016-01-01
Linear accelerator (Linac) based stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) using volumetric modulated arc therapy (VMAT) has been used for treating small intracranial lesions. Recent development in the Linacs such as inbuilt micro multileaf collimator (MLC) and flattening filter free (FFF) beam are intended to provide a better dose conformity and faster delivery when using VMAT technique. This study was aimed to compare the dosimetric outcomes and monitor units (MUs) of the stereotactic treatment plans for different commercially available MLC models and beam profiles. Ten patients having 12 planning target volume (PTV)/gross target volume's (GTVs) who received the SRS/SRT treatment in our clinic using Axesse Linac (considered reference arm gold standard) were considered for this study. The test arms comprised of plans using Elekta Agility with FFF, Elekta Agility with the plane beam, Elekta APEX, Varian Millennium 120, Varian Millennium 120HD, and Elekta Synergy in Monaco treatment planning system. Planning constraints and calculation grid spacing were not altered in the test plans. To objectively evaluate the efficacy of MLC-beam model, the resultant dosimetric outcomes were subtracted from the reference arm parameters. V95%, V100%, V105%, D1%, maximum dose, and mean dose of PTV/GTV showed a maximum inter MLC - beam model variation of 1.5% and 2% for PTV and GTV, respectively. Average PTV conformity index and heterogeneity index shows a variation in the range 0.56-0.63 and 1.08-1.11, respectively. Mean dose difference (excluding Axesse) for all organs varied between 1.1 cGy and 74.8 cGy (mean dose = 6.1 cGy standard deviation [SD] = 26.9 cGy) and 1.7 cGy-194.5 cGy (mean dose 16.1 cGy SD = 57.2 cGy) for single and multiple fraction, respectively. The dosimetry of VMAT-based SRS/SRT treatment plan had minimal dependence on MLC and beam model variations. All tested MLC and beam model could fulfil the desired PTV coverage and organs at risk dose constraints. The only notable difference was the halving of the MU for FFF beam as compared to the plane beam. This has the potential to reduce the total patient on couch time by 15% (approximately 2 min).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, J-Y; Huang, B-T; Zhang, J-Y
2015-06-15
Purpose: To compare volumetric modulated arc radiotherapy (VMAT) technique with fixed-gantry intensity-modulated radiotherapy (IMRT) technique for locally recurrent nasopharyngeal carcinoma. Methods: CT datasets of eleven nasopharyngeal-carcinoma patients were included. Dual-arc VMAT and seven-field IMRT plans were created for each case, and were then compared in terms of conformity index (CI), homogeneity index (HI) of the planning target volume (PTV), organ-at-risk (OAR) sparing, monitor unit (MU) and delivery time. Results: The D98% (near-minimal dose) of PTV in the VMAT plans was slightly lower than that of the IMRT plans (P < 0.05), while the CI was higher than that of themore » IMRT plans (P < 0.05). No significant difference was found in the HI between the two plans (P > 0.05). Compared with the IMRT plans, the VMAT plans demonstrated lower Dmean (mean dose) of the bilateral temporal lobes and the whole surrounding normal tissue (P < 0.05), but slightly higher Dmean of brainstem (P < 0.05). In terms of the other OARs, no significant differences were found (P > 0.05). The MUs of the VMAT plans (672 ± 112) was significantly lower than that of the IMRT plans (917 ± 206), by 25 ± 13% (P < 0.05). The average delivery time of the VMAT plans (2.3 ± 0.1 min) was less than that of the IMRT plans (5.1 ± 0.4 min), by 54 ± 3%. Conclusion: For locally recurrent nasopharyngeal carcinoma, the VMAT technique could achieve equivalent or superior dose distribution of the target and better protect the bilateral temporal lobes, compared with the IMRT technique. Moreover, it could reduce the MU and delivery time effectively.« less
Increased Risk of Ischemic Stroke in Young Nasopharyngeal Carcinoma Patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ching-Chih; Department of Otolaryngology, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan; Tumor Center, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan
Purpose: Radiation/chemoradiotherapy-induced carotid stenosis and cerebrovascular events in patients with nasopharyngeal carcinoma (NPC) can cause severe disability and even death. This study aimed to estimate the risk of ischemic stroke in this patient population over more than 10 years of follow-up. Methods and Materials: The study cohorts consisted of all patients hospitalized with a principal diagnosis of NPC (n = 1094), whereas patients hospitalized for an appendectomy during 1997 and 1998 (n = 4376) acted as the control group and surrogate for the general population. Cox proportional hazard model was performed as a means of comparing the stroke-free survival ratemore » between the two cohorts after adjusting for possible confounding and risk factors. Results: Of the 292 patients with ischemic strokes, 62 (5.7%) were from the NPC cohort and 230 (5.3%) were from the control group. NPC patients ages 35-54 had a 1.66 times (95% CI, 1.16-2.86; p = 0.009) higher risk of ischemic stroke after adjusting for patient characteristics, comorbidities, geographic region, urbanization level of residence, and socioeconomic status. There was no statistical difference in ischemic stroke risk between the NPC patients and appendectomy patients ages 55-64 years (hazard ratio = 0.87; 95% CI, 0.56-1.33; p = 0.524) after adjusting for other factors. Conclusions: Young NPC patients carry a higher risk for ischemic stroke than the general population. Besides regular examinations of carotid duplex, different irradiation strategies or using new technique of radiotherapy, such as intensity modulated radiation therapy or volumetric modulated arc therapy, should be considered in young NPC patients.« less
Recent advances in radiation oncology.
Garibaldi, Cristina; Jereczek-Fossa, Barbara Alicja; Marvaso, Giulia; Dicuonzo, Samantha; Rojas, Damaris Patricia; Cattani, Federica; Starzyńska, Anna; Ciardo, Delia; Surgo, Alessia; Leonardi, Maria Cristina; Ricotti, Rosalinda
2017-01-01
Radiotherapy (RT) is very much a technology-driven treatment modality in the management of cancer. RT techniques have changed significantly over the past few decades, thanks to improvements in engineering and computing. We aim to highlight the recent developments in radiation oncology, focusing on the technological and biological advances. We will present state-of-the-art treatment techniques, employing photon beams, such as intensity-modulated RT, volumetric-modulated arc therapy, stereotactic body RT and adaptive RT, which make possible a highly tailored dose distribution with maximum normal tissue sparing. We will analyse all the steps involved in the treatment: imaging, delineation of the tumour and organs at risk, treatment planning and finally image-guidance for accurate tumour localisation before and during treatment delivery. Particular attention will be given to the crucial role that imaging plays throughout the entire process. In the case of adaptive RT, the precise identification of target volumes as well as the monitoring of tumour response/modification during the course of treatment is mainly based on multimodality imaging that integrates morphological, functional and metabolic information. Moreover, real-time imaging of the tumour is essential in breathing adaptive techniques to compensate for tumour motion due to respiration. Brief reference will be made to the recent spread of particle beam therapy, in particular to the use of protons, but also to the yet limited experience of using heavy particles such as carbon ions. Finally, we will analyse the latest biological advances in tumour targeting. Indeed, the effectiveness of RT has been improved not only by technological developments but also through the integration of radiobiological knowledge to produce more efficient and personalised treatment strategies.
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.; Hillard, G. Barry
1994-01-01
SAMPIE, the Solar Array Module Plasma Interactions Experiment, flew in the Space Shuttle Columbia payload bay as part of the OAST-2 mission on STS-62, March, 1994. SAMPIE biased samples of solar arrays and space power materials to varying potentials with respect to the surrounding space plasma, and recorded the plasma currents collected and the arcs which occurred, along with a set of plasma diagnostics data. A large set of high quality data was obtained on the behavior of solar arrays and space power materials in the space environment. This paper is the first report on the data SAMPIE telemetered to the ground during the mission. It will be seen that the flight data promise to help determine arcing thresholds, snapover potentials and floating potentials for arrays and spacecraft in LEO.