NASA Astrophysics Data System (ADS)
Chahal, Balwinder Singh; Singh, Manpreet; Shalini; Saini, N. S.
2018-02-01
We present an investigation for the nonlinear dust ion acoustic wave modulation in a plasma composed of charged dust grains, two temperature (cold and hot) nonextensive electrons and ions. For this purpose, the multiscale reductive perturbation technique is used to obtain a nonlinear Schrödinger equation. The critical wave number, which indicates where the modulational instability sets in, has been determined precisely for various regimes. The influence of plasma background nonextensivity on the growth rate of modulational instability is discussed. The modulated wavepackets in the form of either bright or dark type envelope solitons may exist. Formation of rogue waves from bright envelope solitons is also discussed. The investigation indicates that the structural characteristics of these envelope excitations (width, amplitude) are significantly affected by nonextensivity, dust concentration, cold electron-ion density ratio and temperature ratio.
NASA Astrophysics Data System (ADS)
Perlwitz, J. P.; Knopf, D. A.; Fridlind, A. M.; Miller, R. L.; Pérez García-Pando, C.; DeMott, P. J.
2016-12-01
The effect of aerosol particles on the radiative properties of clouds, the so-called, indirect effect of aerosols, is recognized as one of the largest sources of uncertainty in climate prediction. The distribution of water vapor, precipitation, and ice cloud formation are influenced by the atmospheric ice formation, thereby modulating cloud albedo and thus climate. It is well known that different particle types possess different ice formation propensities with mineral dust being a superior ice nucleating particle (INP) compared to soot particles. Furthermore, some dust mineral types are more proficient INP than others, depending on temperature and relative humidity.In recent work, we have presented an improved dust aerosol module in the NASA GISS Earth System ModelE2 with prognostic mineral composition of the dust aerosols. Thus, there are regional variations in dust composition. We evaluated the predicted mineral fractions of dust aerosols by comparing them to measurements from a compilation of about 60 published literature references. Additionally, the capability of the model to reproduce the elemental composition of the simulated dusthas been tested at Izana Observatory at Tenerife, Canary Islands, which is located off-shore of Africa and where frequent dust events are observed. We have been able to show that the new approach delivers a robust improvement of the predicted mineral fractions and elemental composition of dust.In the current study, we use three-dimensional dust mineral fields and thermodynamic conditions, which are simulated using GISS ModelE, to calculate offline the INP concentrations derived using different ice nucleation parameterizations that are currently discussed. We evaluate the calculated INP concentrations from the different parameterizations by comparing them to INP concentrations from field measurements.
Boundary Layer Regimes Conducive to Formation of Dust Devils on Mars
NASA Astrophysics Data System (ADS)
Williams, B.; Nair, U. S.
2014-12-01
Dust devils on Mars contribute to maintenance of background atmospheric aerosol loading and thus dust radiative forcing, which is an important modulator of Martian climate. Dust devils also cause surface erosion and change in surface albedo which impacts radiative energy budget. Thus there is a need for parameterizing dust devil impacts in Martian climate models. In this context it is important to understand environmental conditions that are favorable for formation of dust devils on Mars and associated implications for diurnal, seasonal, and geographical variation of dust devil occurrence. On earth, prior studies show that thresholds of ratio of convective and friction scale velocities may be used to identify boundary layer regimes that are conducive to formation of dust devils. On earth, a w*/u* ratio in excess of 5 is found to be conducive for formation of dust devils. In this study, meteorological observations collected during the Viking Lander mission are used to constrain Martian boundary layer model simulations, which is then used to estimate w*/u* ratio. The w*/u* ratio is computed for several case days during which dust devil occurrence was detected. A majority of dust devils occurred in convective boundary layer regimes characterized by w*/u* ratios exceeding 10. The above described analysis is being extended to other mars mission landing sites and results from the extended analysis will also be presented.
NASA Technical Reports Server (NTRS)
Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Brecht, A. S.; Urata, R.
2015-01-01
The dust and water cycles are critical to the current Martian climate, and they interact with each other through cloud formation. Dust modulates the thermal structure of the atmosphere and thus greatly influences atmospheric circulation. Clouds provide radiative forcing and control the net hemispheric transport of water through the alteration of the vertical distributions of water and dust. Recent advancements in the quality and sophistication of both climate models and observations enable an increased understanding of how the coupling between the dust and water cycles (through cloud formation) impacts the dust and water cycles. We focus here on the effects of clouds on the vertical distributions of dust and water and how those vertical distributions control the net meridional transport of water. We utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) and the NASA ARC Mars Global Climate Model (MGCM) to show that the magnitude and nature of the hemispheric exchange of water during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. Further, we investigate how clouds influence atmospheric temperatures and thus the vertical structure of the cloud belt. Our goal is to isolate and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.
NASA Astrophysics Data System (ADS)
Kahre, Melinda A.; Haberle, Robert M.; Hollingsworth, Jeffery L.; Brecht, Amanda S.; Urata, Richard A.
2015-11-01
The dust and water cycles are critical to the current Martian climate, and they interact with each other through cloud formation. Dust modulates the thermal structure of the atmosphere and thus greatly influences atmospheric circulation. Clouds provide radiative forcing and control the net hemispheric transport of water through the alteration of the vertical distributions of water and dust. Recent advancements in the quality and sophistication of both climate models and observations enable an increased understanding of how the coupling between the dust and water cycles (through cloud formation) impacts the dust and water cycles. We focus here on the effects of clouds on the vertical distributions of dust and water and how those vertical distributions control the net meridional transport of water. We utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) and the NASA ARC Mars Global Climate Model (MGCM) to show that the magnitude and nature of the hemispheric exchange of water during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. Further, we investigate how clouds influence atmospheric temperatures and thus the vertical structure of the cloud belt. Our goal is to isolate and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.
Gas, dust, stars, star formation, and their evolution in M 33 at giant molecular cloud scales
NASA Astrophysics Data System (ADS)
Komugi, Shinya; Miura, Rie E.; Kuno, Nario; Tosaki, Tomoka
2018-06-01
We report on a multi-parameter analysis of giant molecular clouds (GMCs) in the nearby spiral galaxy M 33. A catalog of GMCs identifed in 12CO(J = 3-2) was used to compile associated 12CO(J = 1-0), dust, stellar mass, and star formation rate. Each of the 58 GMCs are categorized by their evolutionary stage. Applying the principal component analysis on these parameters, we construct two principal components, PC1 and PC2, which retain 75% of the information from the original data set. PC1 is interpreted as expressing the total interstellar matter content, and PC2 as the total activity of star formation. Young (< 10 Myr) GMCs occupy a distinct region in the PC1-PC2 plane, with lower interstellar medium (ISM) content and star formation activity compared to intermediate-age and older clouds. Comparison of average cloud properties in different evolutionary stages imply that GMCs may be heated or grow denser and more massive via aggregation of diffuse material in their first ˜ 10 Myr. The PCA also objectively identified a set of tight relations between ISM and star formation. The ratio of the two CO lines is nearly constant, but weakly modulated by massive star formation. Dust is more strongly correlated with the star formation rate than the CO lines, supporting recent findings that dust may trace molecular gas better than CO. Stellar mass contributes weakly to the star formation rate, reminiscent of an extended form of the Schmidt-Kennicutt relation with the molecular gas term substituted by dust.
Gas, dust, stars, star formation, and their evolution in M 33 at giant molecular cloud scales
NASA Astrophysics Data System (ADS)
Komugi, Shinya; Miura, Rie E.; Kuno, Nario; Tosaki, Tomoka
2018-04-01
We report on a multi-parameter analysis of giant molecular clouds (GMCs) in the nearby spiral galaxy M 33. A catalog of GMCs identifed in 12CO(J = 3-2) was used to compile associated 12CO(J = 1-0), dust, stellar mass, and star formation rate. Each of the 58 GMCs are categorized by their evolutionary stage. Applying the principal component analysis on these parameters, we construct two principal components, PC1 and PC2, which retain 75% of the information from the original data set. PC1 is interpreted as expressing the total interstellar matter content, and PC2 as the total activity of star formation. Young (< 10 Myr) GMCs occupy a distinct region in the PC1-PC2 plane, with lower interstellar medium (ISM) content and star formation activity compared to intermediate-age and older clouds. Comparison of average cloud properties in different evolutionary stages imply that GMCs may be heated or grow denser and more massive via aggregation of diffuse material in their first ˜ 10 Myr. The PCA also objectively identified a set of tight relations between ISM and star formation. The ratio of the two CO lines is nearly constant, but weakly modulated by massive star formation. Dust is more strongly correlated with the star formation rate than the CO lines, supporting recent findings that dust may trace molecular gas better than CO. Stellar mass contributes weakly to the star formation rate, reminiscent of an extended form of the Schmidt-Kennicutt relation with the molecular gas term substituted by dust.
Pickles, C A
2010-07-15
Electric arc furnace dust is generated when automobile scrap, containing galvanized steel, is remelted in an electric arc furnace. This dust is considered as a hazardous waste in most countries. Zinc is a major component of the dust and can be of significant commercial value. Typically, the majority of the zinc exists as zinc oxide (ZnO) and as a zinc-manganese ferrite spinel ((Zn(x)Mn(y)Fe(1-x-y))Fe(2)O(4)). The recovery of the zinc from the dust in metal recycling and recovery processes, particularly in the hydrometallurgical extraction processes, is often hindered by the presence of the mixed ferrite spinel. However, there is a paucity of information available in the literature on the formation of this spinel. Therefore, in the present research, the equilibrium module of HSC Chemistry 6.1 was utilized to investigate the thermodynamics of the formation of the spinel and the effect of variables on the amount and the composition of the mixed ferrite spinel. It is proposed that the mixed ferrite spinel forms due to the reaction of iron-manganese particulates with both gaseous oxygen and zinc, at the high temperatures in the freeboard of the furnace above the steel melt. Based on the thermodynamic predictions, methods are proposed for minimizing the formation of the mixed ferrite spinel. 2010 Elsevier B.V. All rights reserved.
An analysis of the dust deposition on solar photovoltaic modules.
Styszko, Katarzyna; Jaszczur, Marek; Teneta, Janusz; Hassan, Qusay; Burzyńska, Paulina; Marcinek, Ewelina; Łopian, Natalia; Samek, Lucyna
2018-03-29
Solid particles impair the performance of the photovoltaic (PV) modules. This results in power losses which lower the efficiency of the system as well as the increases of temperature which additionally decreases the performance and lifetime. The deposited dust chemical composition, concentration and formation of a dust layer on the PV surface differ significantly in reference to time and location. In this study, an evaluation of dust deposition on the PV front cover glass during the non-heating season in one of the most polluted European cities, Kraków, was performed. The time-dependent particle deposition and its correlation to the air pollution with particulate matter were analysed. Dust deposited on several identical PV modules during variable exposure periods (from 1 day up to 1 week) and the samples of total suspended particles (TSP) on quartz fibre filters using a low volume sampler were collected during the non-heating season in the period of 5 weeks. The concentration of TSP in the study period ranged between 12.5 and 60.05 μg m -3 while the concentration of PM10 observed in the Voivodeship Inspectorate of Environmental Protection traffic station, located 1.2 km from the TSP sampler, ranged from 14 to 47 μg m -3 . It was revealed that dust deposition density on a PV surface ranged from 7.5 to 42.1 mg m -2 for exposure periods of 1 day while the measured weekly dust deposition densities ranged from 25.8 to 277.0 mg m -2 . The precipitation volume and its intensity as well as humidity significantly influence the deposited dust. The rate of dust accumulation reaches approximately 40 mg m -2 day -1 in the no-precipitation period and it was at least two times higher than fluxes calculated on the basis of PM10 and TSP concentrations which suggest that additional forces such as electrostatic forces significantly influence dust deposition.
Variable-delay Polarization Modulators (VPMs) for Far-infrared through Millimeter Astronomy
NASA Technical Reports Server (NTRS)
Chuss, David T.
2008-01-01
This viewgraph presentation reviews the use of Variable-delay Polarization Modulators (VPMs) for Far-infrared through Millimeter Astronomy. The two science goals are to use polarized emission from the partially-aligned dust that provides a probe of the role of magnetic fields in star formation and to use the polarization of the cosmic microwave background radiation CMB to test theories of the very early universe and provide a probe of fundamental physics.
Development of a high resolution interstellar dust engineering model - overview of the project
NASA Astrophysics Data System (ADS)
Sterken, V. J.; Strub, P.; Soja, R. H.; Srama, R.; Krüger, H.; Grün, E.
2013-09-01
Beyond 3 AU heliocentric distance, the flow of interstellar dust through the solar system is a dominant component of the total dust population. The modulation of this flux with the solar cycle and the position in the solar system has been predicted by theoretical studies since the seventies. The modulation was proven to exist by matching dust trajectory simulations with real spacecraft data from Ulysses in 1998. The modulations were further analyzed and studies in detail in 2012. The current ESA interplanetary meteoroid model IMEM includes an interstellar dust component, but this component was modelled only with straight line trajectories through the solar system. For the new ESA IMEX model, a high-resolution interstellar dust component is implemented separately from a dust streams module. The dust streams module focuses on dust in streams that was released from comets (cf. Abstract R. Soja). Parallel processing techniques are used to improve computation time (cf. Abstract P. Strub). The goal is to make predictions for the interstellar dust flux as close to the Sun as 1 AU or closer, for future space mission design.
Orbitally modulated dust formation by the WC7+O5 colliding-wind binary WR140
NASA Astrophysics Data System (ADS)
Williams, P. M.; Marchenko, S. V.; Marston, A. P.; Moffat, A. F. J.; Varricatt, W. P.; Dougherty, S. M.; Kidger, M. R.; Morbidelli, L.; Tapia, M.
2009-05-01
We present high-resolution infrared (2-18 μm) images of the archetypal periodic dust-making Wolf-Rayet binary system WR140 (HD 193793) taken between 2001 and 2005, and multi-colour (J - [19.5]) photometry observed between 1989 and 2001. The images resolve the dust cloud formed by WR140 in 2001, allowing us to track its expansion and cooling, while the photometry allows tracking the average temperature and total mass of the dust. The combination of the two data sets constrains the optical properties of the dust, and suggests that they differ from those of the dust made by the WC9 dust-makers, including the classical `pinwheel', WR104. The photometry of individual dust emission features shows them to be significantly redder in (nbL'-[3.99]), but bluer in ([7.9]-[12.5]), than the binary, as expected from the spectra of heated dust and the stellar wind of a Wolf-Rayet star. The most persistent dust features, two concentrations at the ends of a `bar' of emission to the south of the star, were observed to move with constant proper motions of 324 +/- 8 and 243 +/- 7 mas yr-1. Longer wavelength (4.68 and 12.5 μm) images show dust emission from the corresponding features from the previous (1993) periastron passage and dust formation episode, showing that the dust expanded freely in a low-density void for over a decade, with dust features repeating from one cycle to the next. A third persistent dust concentration to the east of the binary (the `arm') was found to have a proper motion ~320 mas yr-1, and a dust mass about one-quarter that of the `bar'. Extrapolation of the motions of the concentrations back to the binary suggests that the eastern `arm' began expansion four to five months earlier than those in the southern `bar', consistent with the projected rotation of the binary axis and wind-collision region (WCR) on the sky. A comparison of model dust images and the observations constrains the intervals when the WCR was producing sufficiently compressed wind for dust nucleation in the WCR, and suggests that the distribution of this material was not uniform about the axis of the WCR, but more abundant in the following edge in the orbital plane.
On the Effect of Dust Particles on Global Cloud Condensation Nuclei and Cloud Droplet Number
NASA Technical Reports Server (NTRS)
Karydis, V. A.; Kumar, P.; Barahona, D.; Sokolik, I. N.; Nenes, A.
2011-01-01
Aerosol-cloud interaction studies to date consider aerosol with a substantial fraction of soluble material as the sole source of cloud condensation nuclei (CCN). Emerging evidence suggests that mineral dust can act as good CCN through water adsorption onto the surface of particles. This study provides a first assessment of the contribution of insoluble dust to global CCN and cloud droplet number concentration (CDNC). Simulations are carried out with the NASA Global Modeling Initiative chemical transport model with an online aerosol simulation, considering emissions from fossil fuel, biomass burning, marine, and dust sources. CDNC is calculated online and explicitly considers the competition of soluble and insoluble CCN for water vapor. The predicted annual average contribution of insoluble mineral dust to CCN and CDNC in cloud-forming areas is up to 40 and 23.8%, respectively. Sensitivity tests suggest that uncertainties in dust size distribution and water adsorption parameters modulate the contribution of mineral dust to CDNC by 23 and 56%, respectively. Coating of dust by hygroscopic salts during the atmospheric aging causes a twofold enhancement of the dust contribution to CCN; the aged dust, however, can substantially deplete in-cloud supersaturation during the initial stages of cloud formation and can eventually reduce CDNC. Considering the hydrophilicity from adsorption and hygroscopicity from solute is required to comprehensively capture the dust-warm cloud interactions. The framework presented here addresses this need and can be easily integrated in atmospheric models.
Large impacts around a solar-analog star in the era of terrestrial planet formation.
Meng, Huan Y A; Su, Kate Y L; Rieke, George H; Stevenson, David J; Plavchan, Peter; Rujopakarn, Wiphu; Lisse, Carey M; Poshyachinda, Saran; Reichart, Daniel E
2014-08-29
The final assembly of terrestrial planets occurs via massive collisions, which can launch copious clouds of dust that are warmed by the star and glow in the infrared. We report the real-time detection of a debris-producing impact in the terrestrial planet zone around a 35-million-year-old solar-analog star. We observed a substantial brightening of the debris disk at a wavelength of 3 to 5 micrometers, followed by a decay over a year, with quasi-periodic modulations of the disk flux. The behavior is consistent with the occurrence of a violent impact that produced vapor out of which a thick cloud of silicate spherules condensed that were then ground into dust by collisions. These results demonstrate how the time domain can become a new dimension for the study of terrestrial planet formation. Copyright © 2014, American Association for the Advancement of Science.
Interstellar Magnetic Fields and Polarimetry of Dust Emission
NASA Technical Reports Server (NTRS)
Dowell, Darren
2010-01-01
Magnetic fields are an important ingredient in the stormy cosmos. Magnetic fields: (1) are intimately involved with winds from Active Galactic Nuclei (AGN) and stars (2) create at least some of the structures observed in the ISM (3) modulate the formation of clouds, cores, and stars within a turbulent medium (4) may be dynamically important in protostellar accretion disks (5) smooth weak shocks (C-shocks).
How Do Martian Dust Devils Vary Throughout the Sol?
NASA Astrophysics Data System (ADS)
Chapman, R.; Lewis, S.; Balme, M. R.; Steele, L.
2016-12-01
Dust devils are vortices of air made visible by entrained dust particles. Dust devils have been observed on Earth and captured in many Mars lander and orbiter images. Martian dust devils may be important to the global climate and are parameterised within Mars Global Circulation Models (MGCMs). We show that the dust devil parameterisation in use within most MGCMs results in an unexpectedly high level of dust devil activity during morning hours. In contrast to expectations, based on the observed behaviour of terrestrial dust devils and the diurnal maximum thermal contrast at the surface, we find that large areas of the modelled Martian surface experience dust devil activity during the morning as well as in the afternoon, and that many locations experience a peak in dust devil activity before mid-sol. Using the UK MGCM, we study the amount of surface dust lifted by dust devils throughout the diurnal cycle as a proxy for the level of dust devil activity occurring. We compare the diurnal variation in dust devil activity with the diurnal variation of the variables included in the dust devil parameterisation. We find that the diurnal variation in dust devil activity is strongly modulated by near-surface wind speeds. Within the range of daylight hours, higher wind speeds tend to produce more dust devil activity, rather than the activity simply being governed by the availability of heat at the planet's surface, which peaks in early afternoon. We compare our results with observations of Martian dust devil timings and obtain a good match with the majority of surface-based surveys. We do not find such a good match with orbital observations, but these data tend to be biased in their temporal coverage. We propose that the generally accepted description of dust devil behaviour on Mars is incomplete, and that theories of dust devil formation may need to be modified specifically for the Martian environment. Further dust devil observations are required to support any such modifications.
How the Assumed Size Distribution of Dust Minerals Affects the Predicted Ice Forming Nuclei
NASA Technical Reports Server (NTRS)
Perlwitz, Jan P.; Fridlind, Ann M.; Garcia-Pando, Carlos Perez; Miller, Ron L.; Knopf, Daniel A.
2015-01-01
The formation of ice in clouds depends on the availability of ice forming nuclei (IFN). Dust aerosol particles are considered the most important source of IFN at a global scale. Recent laboratory studies have demonstrated that the mineral feldspar provides the most efficient dust IFN for immersion freezing and together with kaolinite for deposition ice nucleation, and that the phyllosilicates illite and montmorillonite (a member of the smectite group) are of secondary importance.A few studies have applied global models that simulate mineral specific dust to predict the number and geographical distribution of IFN. These studies have been based on the simple assumption that the mineral composition of soil as provided in data sets from the literature translates directly into the mineral composition of the dust aerosols. However, these tables are based on measurements of wet-sieved soil where dust aggregates are destroyed to a large degree. In consequence, the size distribution of dust is shifted to smaller sizes, and phyllosilicates like illite, kaolinite, and smectite are only found in the size range 2 m. In contrast, in measurements of the mineral composition of dust aerosols, the largest mass fraction of these phyllosilicates is found in the size range 2 m as part of dust aggregates. Conversely, the mass fraction of feldspar is smaller in this size range, varying with the geographical location. This may have a significant effect on the predicted IFN number and its geographical distribution.An improved mineral specific dust aerosol module has been recently implemented in the NASA GISS Earth System ModelE2. The dust module takes into consideration the disaggregated state of wet-sieved soil, on which the tables of soil mineral fractions are based. To simulate the atmospheric cycle of the minerals, the mass size distribution of each mineral in aggregates that are emitted from undispersed parent soil is reconstructed. In the current study, we test the null-hypothesis that simulating the presence of a large mass fraction of phyllosilicates in dust aerosols in the size range 2 m, in comparison to a simple model assumption where this is neglected, does not yield a significant effect on the magnitude and geographical distribution of the predicted IFN number. Results from sensitivity experiments are presented as well.
Periodic climate change on Mars: Review of evidence and effects on distribution of volatiles
Carr, M.H.
1982-01-01
The polar regions of Mars preserve, in both their layering and their topography, a record of recent climate changes. Because of the coincidence of the growth of the northern seasonal cap with global dust storms, dust may be currently accumulating on the northern cap, but conditions at the poles will alternate with the precessional cycle. Deposition is also modulated by changes in eccentricity and obliquity, which interact complexly, affecting initiation of global dust storms, the stability of volatiles at the surface, and global wind regimes. Formation of spiral valleys and low undulations on the surface of the layered deposits may result from prefential sublimation of volatiles on sunward-facing slopes and condensation on the adjacent flats, with the rates also modulated by astronomically caused insolation variations. Lack of impact craters on the surface and lack of interruption of the layers by impact scars suggest that the polar deposits are no more than a few million years old. Older deposits may have been periodically removed, as indicated by etch-pitted terrain at the south pole and by superposition relations around the periphery of the present layered deposits. Evidence of ancient periodic climate changes that occurred before formation of the present layered terrain is fragmentary but includes pedestal craters, parallel moraine-like ridges, and etched ground at high latitudes. Perturbation of the orbital motions also results in adsorption and desorption of volatiles in the regolith, which leads to variations in atmospheric pressure and partial dehydration of the equatorial near-surface materials. ?? 1982.
Sensitivity of surface characteristics on the simulation of wind-blown-dust source in North America
NASA Astrophysics Data System (ADS)
Park, S. H.; Gong, S. L.; Gong, W.; Makar, P. A.; Moran, M. D.; Stroud, C. A.; Zhang, J.
Recently, a wind-blown-dust-emission module has been built based on a state-of-the-art wind erosion theory and evaluated in a regional air-quality model to simulate a North American dust storm episode in April 2001 (see Park, S.H., Gong, S.L., Zhao, T.L., Vet, R.J., Bouchet, V.S., Gong, W., Makar, P.A., Moran, M.D., Stroud, C., Zhang, J. 2007. Simulation of entrainment and transport of dust particles within North America in April 2001 ("Red Dust episode"). J. Geophys. Res. 112, D20209, doi:10.1029/2007JD008443). A satisfactorily detailed assessment of that module, however, was not possible because of a lack of information on some module inputs, especially soil moisture content. In this paper, the wind-blown-dust emission was evaluated for two additional dust storms using improved soil moisture inputs. The surface characteristics of the wind-blown-dust source areas in southwestern North America were also investigated, focusing on their implications for wind-blown-dust emissions. The improved soil moisture inputs enabled the sensitivity of other important surface characteristics, the soil grain size distribution and the land-cover, to dust emission to be investigated with more confidence. Simulations of the two 2003 dust storm episodes suggested that wind-blown-dust emissions from the desert areas in southwestern North America are dominated by emissions from dry playas covered with accumulated alluvial deposits whose particle size is much smaller than usual desert sands. As well, the source areas in the northwestern Texas region were indicated to be not desert but rather agricultural lands that were "activated" as a wind-blown-dust sources after harvest. This finding calls for revisions to the current wind-blown-dust-emission module, in which "desert" is designated to be the only land-cover category that can emit wind-blown dust.
Rapid formation of large dust grains in the luminous supernova 2010jl.
Gall, Christa; Hjorth, Jens; Watson, Darach; Dwek, Eli; Maund, Justyn R; Fox, Ori; Leloudas, Giorgos; Malesani, Daniele; Day-Jones, Avril C
2014-07-17
The origin of dust in galaxies is still a mystery. The majority of the refractory elements are produced in supernova explosions, but it is unclear how and where dust grains condense and grow, and how they avoid destruction in the harsh environments of star-forming galaxies. The recent detection of 0.1 to 0.5 solar masses of dust in nearby supernova remnants suggests in situ dust formation, while other observations reveal very little dust in supernovae in the first few years after explosion. Observations of the spectral evolution of the bright SN 2010jl have been interpreted as pre-existing dust, dust formation or no dust at all. Here we report the rapid (40 to 240 days) formation of dust in its dense circumstellar medium. The wavelength-dependent extinction of this dust reveals the presence of very large (exceeding one micrometre) grains, which resist destruction. At later times (500 to 900 days), the near-infrared thermal emission shows an accelerated growth in dust mass, marking the transition of the dust source from the circumstellar medium to the ejecta. This provides the link between the early and late dust mass evolution in supernovae with dense circumstellar media.
Investigation of dust formations in the atmosphere on the basis of satellite observations
NASA Astrophysics Data System (ADS)
Ivanchik, M. V.; Kliushnikov, S. I.; Krovotyntsev, V. A.; Serebrennikov, A. N.
1984-06-01
A method for the computer processing of space photographs is described which makes it possible to determine dust formations in the atmosphere. Dust formations are identified according to the character of contrast-density distribution. Processed images are compared with actinometric data collected in a dust storm area (Conakry, Guinea, May 1983).
Formation of planetesimals in the Solar Nebula
NASA Astrophysics Data System (ADS)
Hueso, R.; Guillot, T.
2001-11-01
We study the evolution of protoplanetary disks with gas and embedded particles using a classical alpha-disk model. Solid matter entrained in the gas is incorporated following the formalism of Stepinski and Valageas (A&A, 1996, 1997). Dust grains coagulate into larger particles until they eventually decouple from the gas. The coagulation process is modulated by the evaporation and condensation of dust in the disk. We simultaneously consider grains of ices and rock, which allows us to study the amount of different solid material available to form the different planets. In particular, we present consequences for the development of planetesimals in the Uranus and Neptune region. This is interesting in the light of interior models of these planets, which naturally tend to predict a low rock to ice ratio. We will also discuss the consequences of these results on the standard core-accretion formation scenario. Acknowledgements: This work has been supported by Programme National du Planetologie. R. Hueso acknowledges a post-doctoral fellowship from Gobierno Vasco.
Dust Destruction in the ISM: A Re-Evaluation of Dust Lifetimes
NASA Technical Reports Server (NTRS)
Jones, A. P.; Nuth, J. A., III
2011-01-01
There is a long-standing conundrum in interstellar dust studies relating to the discrepancy between the time-scales for dust formation from evolved stars and the apparently more rapid destruction in supernova-generated shock waves. Aims. We re-examine some of the key issues relating to dust evolution and processing in the interstellar medium. Methods. We use recent and new constraints from observations, experiments, modelling and theory to re-evaluate dust formation in the interstellar medium (ISM). Results. We find that the discrepancy between the dust formation and destruction time-scales may not be as significant as has previously been assumed because of the very large uncertainties involved. Conclusions. The derived silicate dust lifetime could be compatible with its injection time-scale, given the inherent uncertainties in the dust lifetime calculation. The apparent need to re-form significant quantities of silicate dust in the tenuous interstellar medium may therefore not be a strong requirement. Carbonaceous matter, on the other hand, appears to be rapidly recycled in the ISM and, in contrast to silicates, there are viable mechanisms for its re-formation in the ISM.
NASA Technical Reports Server (NTRS)
Mancini, D.; Bussoletti, E.; Mennella, V.; Vittone, A. A.; Colangeli, L.; Mirra, C.; Stephens, J.; Nuth, J.; Lilleleht, L.; Furgeson, F.
1992-01-01
The first results of the STARDUST project, aimed at producing and analyzing cosmic-dust analog materials in microgravity conditions, are summarized. The discussion covers the purpose of the investigation, cosmic-dust formation and properties, previous simulations of cosmic-dust formation, the current approach, the microgravity experimental apparatus, and potential advantages of studying dust formation under microgravity conditions.
Frequency clusters in self-excited dust density waves
NASA Astrophysics Data System (ADS)
Menzel, Kristoffer O.; Arp, Oliver; Piel, Alexander
2010-11-01
Self-excited dust density waves were studied under microgravity conditions. Their non-sinusoidal shape and high degrees of modulation suggests that nonlinear effects play an important role in their spatio-temporal dynamics. The resulting complex wave pattern is analyzed in great detail by means of the Hilbert transform, which provides instantaneous wave attributes, such as the phase and the frequency. Our analysis showed that the spatial frequency distribution of the DDWs is usually not constant over the dust cloud. In contrast, the wave field is divided into regions of different but almost constant frequencies [1]. The boundaries of these so-called frequency clusters coincide with the locations of phase defects in the wave field. It is found that the size of the clusters depends on the strength of spatial gradients in the plasma parameters. We attribute the formation of frequency clusters to synchronization phenomena as a consequence of the nonlinear character of the wave.[1] K. O. Menzel, O. Arp, A.Piel, Phys. Rev. Lett. 104, 235002 (2010)
NASA Astrophysics Data System (ADS)
Park, S.; Gong, S.
2010-12-01
A new wind-blown-dust emissions module was recently implemented into AURAMS, a Canadian regional air quality model (Park et al., 2009; Park et al., 2007), to investigate the relative impact of wind-blown dust vs. anthropogenic fugitive dust on air quality in North America. In order to apply the wind-blown dust emissions module to the entire North American continent, a soil-grain-size-distribution map was developed using the outputs of four monthly runs of AURAMS for 2002 and available PM2.5 dust-content observations. The simulation results using the new soil-grain-size-distribution map showed that inclusion of wind-blown dust emissions is essential to predict the impact of dust aerosols on air quality in North America, especially in the western U.S.. The wind-blown dust emissions varied widely by season, whereas the anthropogenic fugitive dust emissions did not change significantly. In the spring (April), the continental monthly average emissions rate of wind-blown dust was much higher than that of anthropogenic fugitive dust. The total amount of wind-blown dust emissions in North America predicted by the model for 2002 was comparable to that of anthropogenic fugitive dust emissions. Even with the inclusion of wind-blown dust emissions, however, the model still had difficulty simulating dust concentrations. Further improvements are needed, in terms of both limitations of the wind-blown-dust emission module and uncertainties in the anthropogenic fugitive dust emissions inventories, for improved dust modelling. References Park, S.H., S.L. Gong, W. Gong, P.A. Makar, M.D. Moran, C.A. Stroud, and J. Zhang, Sensitivity of surface characteristics on the simulation of wind-blown dust source in North America, Atmospheric Environment, 43 (19), 3122-3129, 2009. Park, S.H., S.L. Gong, T.L. Zhao, R.J. Vet, V.S. Bouchet, W. Gong, P.A. Makar, M.D. Moran, C. Stroud, and J. Zhang, Simulation of entrainment and transport of dust particles within North America in April 2001 ("Red Dust Episode"), Journal of Geophysical Research, 112, D20209, doi:10.1029/2007JD008443, 2007.
Jaszczur, Marek; Teneta, Janusz; Styszko, Katarzyna; Hassan, Qusay; Burzyńska, Paulina; Marcinek, Ewelina; Łopian, Natalia
2018-04-20
The maximisation of the efficiency of the photovoltaic system is crucial in order to increase the competitiveness of this technology. Unfortunately, several environmental factors in addition to many alterable and unalterable factors can significantly influence the performance of the PV system. Some of the environmental factors that depend on the site have to do with dust, soiling and pollutants. In this study conducted in the city centre of Kraków, Poland, characterised by high pollution and low wind speed, the focus is on the evaluation of the degradation of efficiency of polycrystalline photovoltaic modules due to natural dust deposition. The experimental results that were obtained demonstrated that deposited dust-related efficiency loss gradually increased with the mass and that it follows the exponential. The maximum dust deposition density observed for rainless exposure periods of 1 week exceeds 300 mg/m 2 and the results in efficiency loss were about 2.1%. It was observed that efficiency loss is not only mass-dependent but that it also depends on the dust properties. The small positive effect of the tiny dust layer which slightly increases in surface roughness on the module performance was also observed. The results that were obtained enable the development of a reliable model for the degradation of the efficiency of the PV module caused by dust deposition. The novelty consists in the model, which is easy to apply and which is dependent on the dust mass, for low and moderate naturally deposited dust concentration (up to 1 and 5 g/m 2 and representative for many geographical regions) and which is applicable to the majority of cases met in an urban and non-urban polluted area can be used to evaluate the dust deposition-related derating factor (efficiency loss), which is very much sought after by the system designers, and tools used for computer modelling and system malfunction detection.
Astrophysical dust grains in stars, the interstellar medium, and the solar system
NASA Technical Reports Server (NTRS)
Gehrz, Robert D.
1991-01-01
Studies of astrophysical dust grains in circumstellar shells, the interstellar medium, and the solar system may provide information about stellar evolution and about physical conditions in the primitive solar nebula. The following subject areas are covered: (1) the cycling of dust in stellar evolution and the formation of planetary systems; (2) astrophysical dust grains in circumstellar environments; (3) circumstellar grain formation and mass loss; (4) interstellar dust grains; (5) comet dust and the zodiacal cloud; (6) the survival of dust grains during stellar evolution; and (7) establishing connections between stardust and dust in the solar system.
Probing Dust Formation Around Evolved Stars with Near-Infrared Interferometry
NASA Astrophysics Data System (ADS)
Sargent, B.; Srinivasan, S.; Riebel, D.; Meixner, M.
2014-09-01
Near-infrared interferometry holds great promise for advancing our understanding of the formation of dust around evolved stars. For example, the Magdalena Ridge Observatory Interferometer (MROI), which will be an optical/near-infrared interferometer with down to submilliarcsecond resolution, includes studying stellar mass loss as being of interest to its Key Science Mission. With facilities like MROI, many questions relating to the formation of dust around evolved stars may be probed. How close to an evolved star such as an asymptotic giant branch (AGB) or red supergiant (RSG) star does a dust grain form? Over what temperature ranges will such dust form? How does dust formation temperature and distance from star change as a function of the dust composition (carbonaceous versus oxygen-rich)? What are the ranges of evolved star dust shell geometries, and does dust shell geometry for AGB and RSG stars correlate with dust composition, similar to the correlation seen for planetary nebula outflows? At what point does the AGB star become a post-AGB star, when dust formation ends and the dust shell detaches? Currently we are conducting studies of evolved star mass loss in the Large Magellanic Cloud using photometry from the Surveying the Agents of a Galaxy's Evolution (SAGE; PI: M. Meixner) Spitzer Space Telescope Legacy program. We model this mass loss using the radiative transfer program 2Dust to create our Grid of Red supergiant and Asymptotic giant branch ModelS (GRAMS). For simplicity, we assume spherical symmetry, but 2Dust does have the capability to model axisymmetric, non-spherically-symmetric dust shell geometries. 2Dust can also generate images of models at specified wavelengths. We discuss possible connections of our GRAMS modeling using 2Dust of SAGE data of evolved stars in the LMC and also other data on evolved stars in the Milky Way's Galactic Bulge to near-infrared interferometric studies of such stars. By understanding the origins of dust around evolved stars, we may learn more about the later parts of the life of stardust; e.g., its residence in the interstellar medium, its time spent in molecular clouds, and its inclusion into solid bodies in future planetary systems.
Dust formation at low metallicity
NASA Astrophysics Data System (ADS)
Ferrarotti, A. S.; Gail, H.-P.
Stars between 3Modot and 25Modot reach their final stages of stellar evolution either as AGB (asymptotic giant branch) stars and finally become white dwarfs, or end in a supernova explosion. The last evolutionary stages, shortly before the final state, are regularly accompanied by stellar winds which lead to substantial mass loss and develop optically very thick dust shells. Mass loss for smaller and medium sized stars higher up on the AGB depends predominantly on the metallicity of the star. For Pop I metallicity, the mass loss is caused by dust condensation. This process is not possible for stars of small Z. Thus, their final evolution strongly depends on the possibility of dust formation. Our research focuses on the dependence of dust formation of the first stellar generation on Z and on the initial mass of the star. Furthermore, we investigate when dust formation becomes possible in stellar winds and the effects this process has on the evolution of the star at the final evolutionary stages. With synthetic AGB evolution models some important issues in stellar evolution can tried to be answered: (1) mass loss on the AGB, (2) the shift of the limit (γ>1) for the onset of dust driven winds with Z and (3) the critical Z when dust formation becomes possible.
A Post-AGB Star in the Small Magellanic Cloud Observed with the Spitzer Infrared Spectrograph
2006-10-23
spectral features, MSX SMC 029, in the Small Magellanic Cloud (SMC) usimg the low-resolution modules of the Infrared Spectrograph on the Spitzer Space ...029, in the Small Magellanic Cloud (SMC) using the low-resolution modules of the Infrared Spectrograph on the Spitzer Space Telescope. A cool dust... outer atmosphere expands and pulsates, pushing gas away from the star where it can cool and condense into dust grains. The resulting circumstellar dust
The physics of wind-blown sand and dust.
Kok, Jasper F; Parteli, Eric J R; Michaels, Timothy I; Karam, Diana Bou
2012-10-01
The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This paper presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan.
The physics of wind-blown sand and dust
NASA Astrophysics Data System (ADS)
Kok, Jasper F.; Parteli, Eric J. R.; Michaels, Timothy I.; Karam, Diana Bou
2012-10-01
The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This paper presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan.
NASA Astrophysics Data System (ADS)
Sakarapunthip, Nattakarn; Chenvidhya, Dhirayut; Chuangchote, Surawut; Kirtikara, Krissanapong; Chenvidhya, Tanokkorn; Onreabroy, Wandee
2017-08-01
Thailand is an agricultural country, with rice, sugar, and cassava as the major export products. Production of rice, sugar cane, and cassava entails agricultural activities that give rise to significant airborne dusts. In this work, five photovoltaic (PV) units (one solar rooftop and four power plants) are selected for the study. From the study of dust accumulation on glass surface located near rice farms, it was found that opaque areas due to the deposition of dust are 11-14% after 1-2-week exposure. As a consequence, PV system performance is affected. Performance ratio was calculated to determine these effects. Overall results reveal that during the dry and hot seasons, dust deposition significantly affects the performance ratio. The performance ratio reduces by 1.6-3% for 1-month dust accumulation and reduces by 6-8% for 2-month dust accumulation. After cleaning the dust accumulated, the performance ratio greatly increases, resulting in the increase in the energy output by 10%. This increase provides economic and cost benefits of PV cleaning. The performance ratio is not significantly changed during the rainy season, which PV modules are relatively clean as the dust is washed away by rain. It was also found that most of the solar power plants in Thailand still rely on manual cleaning of PV modules with washing water followed by wiping. However, only one power plant, employs a machine for cleaning, resulting in lower cleaning costs.
General Circulation Model Simulations of the Annual Cycle of Martian Climate
NASA Astrophysics Data System (ADS)
Wilson, R.; Richardson, M.; Rodin, A.
Observations of the martian atmosphere have revealed a strong annual modulation of global mean atmospheric temperature that has been attributed to the pronounced seasonal asymmetry in solar radiation and the highly variable distribution of aerosol. These observations indicate little interannual variability during the relatively cool aphelion season and considerable variability in the perihelion season that is associated with the episodic occurrence of regional and major dust storms. The atmospheric circulation responds to the evolving spatial distribution of aerosol-induced heating and, in turn, plays a major role in determining the sources, sinks, and transport of radiatively active aerosol. We will present simulations employing the GFDL Mars General Circulation Model (MGCM) that show that aspects of the seasonally evolving climate may be simulated in a self-consistent manner using simple dust source parameterizations that represent the effects of lifting associated with local dust storms, dust devil activity, and other processes. Aerosol transport is accomplished, in large part, by elements of the large-scale circulation such as the Hadley circulation, baroclinic storms, tides, etc. A seasonal cycle of atmospheric opacity and temperature results from the variation in the strength and distribution of dust sources as well as from seasonal variations in the efficiency of atmospheric transport associated with changes in the circulation between solstice and equinox, and between perihelion and aphelion. We examine the efficiency of atmospheric transport of dust lifted along the perimeter of the polar caps to gauge the influence of these storms on the global circulation. We also consider the influence of water, as the formation of water ice clouds on dust nuclei may also affect the vertical distribution of dust and strongly influence the aerosol radiative properties.
Probing Cosmic Infrared Sources: A Computer Modeling Approach
1992-06-01
developed to study various physical phenomena involving dust grains, e.g., molecule formation on grains, grain formation in expanding circumstellar...EVALUATION OF METHODS OF ANALYSIS IN INFRARED ASTR9?NOMY 16 4.0 THEORETICAL STUDIES INVOLVING DUST GRAINS., 16 4.1 Theory of Molecule Formation on Dust Grains...17 4.2 Modeling Grain Formation in Stellar Outflows 7 18 4.3 Infrared Emission from Fractal Grains * 19 4.4 Photochemistry in Circumstellar Envelopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazmerski, Lawrence L.; Diniz, Antonia Sonia A. C.; Maia, Cristiana Brasil
Photovoltaic (PV) module soiling is a growing area of concern for performance and reliability. This paper provides evaluations of the fundamental interactions of dust/soiling particles with several PV module surfaces. The purpose is to investigate the basic mechanisms involving the chemistry, morphology, and resulting particle adhesion to the first photon-incident surface. The evaluation and mapping of the chemistry and composition of single dust particles collected from operating PV module surfaces are presented. The first correlated direct measurements of the adhesive force of individual grains from field-operating collectors on identical PV module glass are reported, including correlations with specific compositions. Specialmore » microscale atomic force microscopy techniques are adapted to determine the force between the particle and the module glass surface. Results are presented for samples under dry and moisture-exposed conditions, confirming the effects of cementation for surfaces having soluble mineral and/or organic concentrations. Additionally, the effects of hydrocarbon fuels on the enhanced bonding of soiling particles to surfaces are determined for samples from urban and highly trafficked regions. Comparisons between glass and dust-mitigating superhydrophobic and superhydrophilic coatings are presented. Potential limitations of this proximal probe technique are discussed in terms of results and initial proof-of-concept experiments.« less
Shi, Zongbo; Krom, Michael D; Bonneville, Steeve; Baker, Alex R; Jickells, Timothy D; Benning, Liane G
2009-09-01
The formation of iron (Fe) nanoperticles and increase in Fe reactivity in mineral dust during simulated cloud processing was investigated using high-resolution microscopy and chemical extraction methods. Cloud processing of dust was experimentally simulated via an alternation of acidic (pH 2) and circumneutral conditions (pH 5-6) over periods of 24 h each on presieved (<20 microm) Saharan soil and goethite suspensions. Microscopic analyses of the processed soil and goethite samples reveal the neo-formation of Fe-rich nanoparticle aggregates, which were not found initially. Similar Fe-rich nanoparticles were also observed in wet-deposited Saharen dusts from the western Mediterranean but not in dry-deposited dust from the eastern Mediterranean. Sequential Fe extraction of the soil samples indicated an increase in the proportion of chemically reactive Fe extractable by an ascorbate solution after simulated cloud processing. In addition, the sequential extractions on the Mediterranean dust samples revealed a higher content of reactive Fe in the wet-deposited dust compared to that of the dry-deposited dust These results suggestthat large variations of pH commonly reported in aerosol and cloud waters can trigger neo-formation of nanosize Fe particles and an increase in Fe reactivity in the dust
Reading the climate record of the martian polar layered deposits
Hvidberg, C.S.; Fishbaugh, K.E.; Winstrup, M.; Svensson, A.; Byrne, S.; Herkenhoff, K. E.
2012-01-01
The martian polar regions have layered deposits of ice and dust. The stratigraphy of these deposits is exposed within scarps and trough walls and is thought to have formed due to climate variations in the past. Insolation has varied significantly over time and caused dramatic changes in climate, but it has remained unclear whether insolation variations could be linked to the stratigraphic record. We present a model of layer formation based on physical processes that expresses polar deposition rates of ice and dust in terms of insolation. In this model, layer formation is controlled by the insolation record, and dust-rich layers form by two mechanisms: (1) increased summer sublimation during high obliquity, and (2) variations in the polar deposition of dust modulated by obliquity variations. The model is simple, yet physically plausible, and allows for investigations of the climate control of the polar layered deposits (PLD). We compare the model to a stratigraphic column obtained from the north polar layered deposits (NPLD) (Fishbaugh, K.E., Hvidberg, C.S., Byrne, S., Russel, P.S., Herkenhoff, K.E., Winstrup, M., Kirk, R. [2010a]. Geophys. Res. Lett., 37, L07201) and show that the model can be tuned to reproduce complex layer sequences. The comparison with observations cannot uniquely constrain the PLD chronology, and it is limited by our interpretation of the observed stratigraphic column as a proxy for NPLD composition. We identified, however, a set of parameters that provides a chronology of the NPLD tied to the insolation record and consistently explains layer formation in accordance with observations of NPLD stratigraphy. This model dates the top 500 m of the NPLD back to ∼1 million years with an average net deposition rate of ice and dust of 0.55 mm a−1. The model stratigraphy contains a quasi-periodic ∼30 m cycle, similar to a previously suggested cycle in brightness profiles from the NPLD (Laskar, J., Levrard, B., Mustard, F. [2002]. Nature, 419, 375–377; Milkovich, S., Head, J.W. [2005]. J. Geophys. Res. 110), but here related to half of the obliquity cycles of 120 and 99 kyr and resulting from a combination of the two layer formation mechanisms. Further investigations of the non-linear insolation control of PLD formation should consider data from other geographical locations and include radar data and other stratigraphic datasets that can constrain the composition and stratigraphy of the NPLD layers.
Modeling dust growth in protoplanetary disks: The breakthrough case
NASA Astrophysics Data System (ADS)
Drążkowska, J.; Windmark, F.; Dullemond, C. P.
2014-07-01
Context. Dust coagulation in protoplanetary disks is one of the initial steps toward planet formation. Simple toy models are often not sufficient to cover the complexity of the coagulation process, and a number of numerical approaches are therefore used, among which integration of the Smoluchowski equation and various versions of the Monte Carlo algorithm are the most popular. Aims: Recent progress in understanding the processes involved in dust coagulation have caused a need for benchmarking and comparison of various physical aspects of the coagulation process. In this paper, we directly compare the Smoluchowski and Monte Carlo approaches to show their advantages and disadvantages. Methods: We focus on the mechanism of planetesimal formation via sweep-up growth, which is a new and important aspect of the current planet formation theory. We use realistic test cases that implement a distribution in dust collision velocities. This allows a single collision between two grains to have a wide range of possible outcomes but also requires a very high numerical accuracy. Results: For most coagulation problems, we find a general agreement between the two approaches. However, for the sweep-up growth driven by the "lucky" breakthrough mechanism, the methods exhibit very different resolution dependencies. With too few mass bins, the Smoluchowski algorithm tends to overestimate the growth rate and the probability of breakthrough. The Monte Carlo method is less dependent on the number of particles in the growth timescale aspect but tends to underestimate the breakthrough chance due to its limited dynamic mass range. Conclusions: We find that the Smoluchowski approach, which is generally better for the breakthrough studies, is sensitive to low mass resolutions in the high-mass, low-number tail that is important in this scenario. To study the low number density features, a new modulation function has to be introduced to the interaction probabilities. As the minimum resolution needed for breakthrough studies depends strongly on setup, verification has to be performed on a case by case basis.
NASA Astrophysics Data System (ADS)
Apai, D.´niel; Lauretta, Dante S.
2014-02-01
Preface; 1. Planet formation and protoplanetary dust Daniel Apai and Dante Lauretta; 2. The origins of protoplanetary dust and the formation of accretion disks Hans-Peter Gail and Peter Hope; 3. Evolution of protoplanetary disk structures Fred Ciesla and Cornelius P. Dullemond; 4. Chemical and isotopic evolution of the solar nebula and protoplanetary disks Dmitry Semenov, Subrata Chakraborty and Mark Thiemens; 5. Laboratory studies of simple dust analogs in astrophysical environments John R. Brucato and Joseph A. Nuth III; 6. Dust composition in protoplanetaty dust Michiel Min and George Flynn; 7. Dust particle size evolution Klaus M. Pontoppidan and Adrian J. Brearly; 8. Thermal processing in protoplanetary nebulae Daniel Apai, Harold C. Connolly Jr. and Dante S. Lauretta; 9. The clearing of protoplanetary disks and of the protosolar nebula Ilaira Pascucci and Shogo Tachibana; 10. Accretion of planetesimals and the formation of rocky planets John E. Chambers, David O'Brien and Andrew M. Davis; Appendixes; Glossary; Index.
NASA Astrophysics Data System (ADS)
Tsytovich, V. N.; Gusein-zade, N. G.; Ignatov, A. M.
2017-10-01
The second part of the review on dust structures (the first part was published in Plasma Phys. Rep. 39, 515 (2013)) is devoted to experimental and theoretical studies on the stability of structures and their formation from the initially uniform dusty plasma components. The applicability limits of theoretical results and the role played by nonlinearity in the screening of dust grains are considered. The importance of nonlinearity is demonstrated by using numerous laboratory observations of planar clusters and volumetric dust structures. The simplest compact agglomerates of dust grains in the form of stable planar clusters are discussed. The universal character of instability resulting in the structurization of an initially uniform dusty plasma is shown. The fundamental correlations described in the first part of the review, supplemented with effects of dust inertia and dust friction by the neutral gas, are use to analyze structurization instability. The history of the development of theoretical ideas on the physics of the cluster formation for different types of interaction between dust grains is described.
NASA Astrophysics Data System (ADS)
Buat, V.; Heinis, S.; Boquien, M.
2013-11-01
We report on our recent works on the UV-to-IR SED fitting of a sample of distant (z>1) galaxies observed by Herschel in the CDFS as part of the GOODS-Herschel project. Combining stellar and dust emission in galaxies is found powerful to constrain their dust attenuation as well as their star formation activity. We focus on the caracterisation of dust attenuation and on the uncertainties on the derivation of the star formation rates and stellar masses, as a function of the range of wavelengths sampled by the data data and of the assumptions made on the star formation histories
NASA Astrophysics Data System (ADS)
Driver, Simon P.; Andrews, Stephen K.; da Cunha, Elisabete; Davies, Luke J.; Lagos, Claudia; Robotham, Aaron S. G.; Vinsen, Kevin; Wright, Angus H.; Alpaslan, Mehmet; Bland-Hawthorn, Joss; Bourne, Nathan; Brough, Sarah; Bremer, Malcolm N.; Cluver, Michelle; Colless, Matthew; Conselice, Christopher J.; Dunne, Loretta; Eales, Steve A.; Gomez, Haley; Holwerda, Benne; Hopkins, Andrew M.; Kafle, Prajwal R.; Kelvin, Lee S.; Loveday, Jon; Liske, Jochen; Maddox, Steve J.; Phillipps, Steven; Pimbblet, Kevin; Rowlands, Kate; Sansom, Anne E.; Taylor, Edward; Wang, Lingyu; Wilkins, Stephen M.
2018-04-01
We use the energy-balance code MAGPHYS to determine stellar and dust masses, and dust corrected star formation rates for over 200 000 GAMA galaxies, 170 000 G10-COSMOS galaxies, and 200 000 3D-HST galaxies. Our values agree well with previously reported measurements and constitute a representative and homogeneous data set spanning a broad range in stellar-mass (108-1012 M⊙), dust-mass (106-109 M⊙), and star formation rates (0.01-100 M⊙yr-1), and over a broad redshift range (0.0 < z < 5.0). We combine these data to measure the cosmic star formation history (CSFH), the stellar-mass density (SMD), and the dust-mass density (DMD) over a 12 Gyr timeline. The data mostly agree with previous estimates, where they exist, and provide a quasi-homogeneous data set using consistent mass and star formation estimators with consistent underlying assumptions over the full time range. As a consequence our formal errors are significantly reduced when compared to the historic literature. Integrating our CSFH we precisely reproduce the SMD with an interstellar medium replenishment factor of 0.50 ± 0.07, consistent with our choice of Chabrier initial mass function plus some modest amount of stripped stellar mass. Exploring the cosmic dust density evolution, we find a gradual increase in dust density with lookback time. We build a simple phenomenological model from the CSFH to account for the dust-mass evolution, and infer two key conclusions: (1) For every unit of stellar mass which is formed 0.0065-0.004 units of dust mass is also formed. (2) Over the history of the Universe approximately 90-95 per cent of all dust formed has been destroyed and/or ejected.
NASA Astrophysics Data System (ADS)
Wang, Ying; Zhuang, Guoshun; Sun, Yele; An, Zhisheng
A 4-year campaign from 2001 to 2004 monitoring PM 2.5 and TSP in the spring season in urban Beijing, China was performed to study the variation of characteristics and the different formation mechanisms of aerosols in dust, haze, and clear days. A total of 315 aerosol samples were collected and used in this study. The aerosols were more basic in dust days and more acidic in haze days. The ions presented in the order of SO42->Ca 2+≫ NO3->Cl -> NH4+>Na + in dust days, and of SO42-> NO3-> NH4+≫Cl ->Ca 2+>K + in haze days. Ions has been classified into three groups, "Na +, Mg 2+, Ca 2+", "K +, SO42-, Cl -", and " NO3-, NH4+", representing crust, pollution-crust, and pollution species, respectively. Crust and pollution ions were the main ion fractions in dust and haze days, respectively. The variation of Ca 2+/Al showed that the increase of dust in dust and haze days was from soil and construction, respectively. "CaCO 3, CaSO 4, and (NH 4) 2SO 4" and "(NH 4) 2SO 4, NH 4NO 3, and Ca(NO 3) 2" were the major species in dust and haze days, respectively. The formation of CaSO 4 on airborne soil particles and the formation of (NH 4) 2SO 4 and NH 4NO 3 were the predominant pathways of sulfate and nitrate formations in dust and haze days, respectively. Sulfate might be mainly formed through heterogeneous reactions in the aqueous surface layer on the pre-existing particles, while nitrate mainly through homogeneous gas-phase reactions in the spring season in Beijing. The formation of sulfate and nitrate was accelerated in dust and haze days.
NASA Astrophysics Data System (ADS)
Sarangi, Arkaprabha; Dwek, Eli; Arendt, Richard G.
2018-05-01
The light curves of Type IIn supernovae are dominated by the radiative energy released through the interaction of the supernova shock waves with their dense circumstellar medium (CSM). The ultraluminous Type IIn supernova SN 2010jl exhibits an infrared emission component that is in excess of the extrapolated UV–optical spectrum as early as few weeks postexplosion. This emission has been considered by some as evidence for the rapid formation of dust in the cooling postshock CSM. We investigate the physical processes that may inhibit or facilitate the formation of dust in the CSM. When only radiative cooling is considered, the temperature of the dense shocked gas rapidly drops below the dust condensation temperature. However, by accounting for the heating of the postshock gas by the downstream radiation from the shock, we show that dust formation is inhibited until the radiation from the shock weakens as it propagates into the less dense outer regions of the CSM. In SN 2010jl, dust formation can therefore only commence after day ∼380. Only the IR emission since that epoch can be attributed to the newly formed CSM dust. Observations on day 460 and later show that the IR luminosity exceeds the UV–optical luminosity. The postshock dust cannot extinct the radiation emitted by the expanding SN shock. Therefore, its IR emission must be powered by an interior source, which we identify as the reverse shock propagating through the SN ejecta. IR emission before day 380 must therefore be an IR echo from preexisting CSM dust.
Chromospheric dust formation, stellar masers and mass loss
NASA Technical Reports Server (NTRS)
Stencel, R. E.
1986-01-01
A multistep scenario which describes a plausible mass loss mechanism associated with red giant and related stars is outlined. The process involves triggering a condensation instability in an extended chromosphere, leading to the formation of cool, dense clouds which are conducive to the formation of molecules and dust grains. Once formed, the dust can be driven away from the star by radiation pressure. Consistency with various observed phenomena is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renno, Nilton O.; Ruf, Christopher S., E-mail: renno@alum.mit.edu
Ruf et al. used the Deep Space Network (DSN) to search for the emission of non-thermal radiation by martian dust storms, theoretically predicted by Renno et al. They detected the emission of non-thermal radiation that they were searching for, but were surprised that it contained spectral peaks suggesting modulation at various frequencies and their harmonics. Ruf et al. hypothesized that the emission of non-thermal radiation was caused by electric discharges in a deep convective dust storm, modulated by Schumann resonances (SRs). Anderson et al. used the Allen Telescope Array (ATA) to search for similar emissions. They stated that they foundmore » only radio frequency interference (RFI) during their search for non-thermal emission by martian dust storms and implicitly suggested that the signal detected by Ruf et al. was also RFI. However, their search was not conducted during the dust storm season when deep convective storms are most likely to occur. Here, we show that the ubiquitous dust devils and small-scale dust storms that were instead likely present during their observations are too shallow to excite SRs and produce the signals detected by Ruf et al. We also show that the spectral and temporal behavior of the signals detected by Anderson et al. corroborates the idea that they originated from man-made pulse-modulated telecommunication signals rather than martian electric discharges. In contrast, an identical presentation of the signals detected by Ruf et al. demonstrates that they do not resemble man-made signals. The presentation indicates that the DSN signals were consistent with modulation by martian SRs, as originally hypothesized by Ruf et al. We propose that a more comprehensive search for electrostatic discharges be conducted with either the ATA or DSN during a future martian dust storm season to test the hypothesis proposed by Ruf et al.« less
Simulating the dust content of galaxies: successes and failures
NASA Astrophysics Data System (ADS)
McKinnon, Ryan; Torrey, Paul; Vogelsberger, Mark; Hayward, Christopher C.; Marinacci, Federico
2017-06-01
We present full-volume cosmological simulations, using the moving-mesh code arepo to study the coevolution of dust and galaxies. We extend the dust model in arepo to include thermal sputtering of grains and investigate the evolution of the dust mass function, the cosmic distribution of dust beyond the interstellar medium and the dependence of dust-to-stellar mass ratio on galactic properties. The simulated dust mass function is well described by a Schechter fit and lies closest to observations at z = 0. The radial scaling of projected dust surface density out to distances of 10 Mpc around galaxies with magnitudes 17 < I < 21 is similar to that seen in Sloan Digital Sky Survey data, albeit with a lower normalization. At z = 0, the predicted dust density of Ωdust ≈ 1.3 × 10-6 lies in the range of Ωdust values seen in low-redshift observations. We find that the dust-to-stellar mass ratio anticorrelates with stellar mass for galaxies living along the star formation main sequence. Moreover, we estimate the 850 μm number density functions for simulated galaxies and analyse the relation between dust-to-stellar flux and mass ratios at z = 0. At high redshift, our model fails to produce enough dust-rich galaxies, and this tension is not alleviated by adopting a top-heavy initial mass function. We do not capture a decline in Ωdust from z = 2 to 0, which suggests that dust production mechanisms more strongly dependent on star formation may help to produce the observed number of dusty galaxies near the peak of cosmic star formation.
Impact of the 4 April 2014 Saharan dust outbreak on the photovoltaic power generation in Germany
NASA Astrophysics Data System (ADS)
Rieger, Daniel; Steiner, Andrea; Bachmann, Vanessa; Gasch, Philipp; Förstner, Jochen; Deetz, Konrad; Vogel, Bernhard; Vogel, Heike
2017-11-01
The importance for reliable forecasts of incoming solar radiation is growing rapidly, especially for those countries with an increasing share in photovoltaic (PV) power production. The reliability of solar radiation forecasts depends mainly on the representation of clouds and aerosol particles absorbing and scattering radiation. Especially under extreme aerosol conditions, numerical weather prediction has a systematic bias in the solar radiation forecast. This is caused by the design of numerical weather prediction models, which typically account for the direct impact of aerosol particles on radiation using climatological mean values and the impact on cloud formation assuming spatially and temporally homogeneous aerosol concentrations. These model deficiencies in turn can lead to significant economic losses under extreme aerosol conditions. For Germany, Saharan dust outbreaks occurring 5 to 15 times per year for several days each are prominent examples for conditions, under which numerical weather prediction struggles to forecast solar radiation adequately. We investigate the impact of mineral dust on the PV-power generation during a Saharan dust outbreak over Germany on 4 April 2014 using ICON-ART, which is the current German numerical weather prediction model extended by modules accounting for trace substances and related feedback processes. We find an overall improvement of the PV-power forecast for 65 % of the pyranometer stations in Germany. Of the nine stations with very high differences between forecast and measurement, eight stations show an improvement. Furthermore, we quantify the direct radiative effects and indirect radiative effects of mineral dust. For our study, direct effects account for 64 %, indirect effects for 20 % and synergistic interaction effects for 16 % of the differences between the forecast including mineral dust radiative effects and the forecast neglecting mineral dust.
Fluffy dust forms icy planetesimals by static compression
NASA Astrophysics Data System (ADS)
Kataoka, Akimasa; Tanaka, Hidekazu; Okuzumi, Satoshi; Wada, Koji
2013-09-01
Context. Several barriers have been proposed in planetesimal formation theory: bouncing, fragmentation, and radial drift problems. Understanding the structure evolution of dust aggregates is a key in planetesimal formation. Dust grains become fluffy by coagulation in protoplanetary disks. However, once they are fluffy, they are not sufficiently compressed by collisional compression to form compact planetesimals. Aims: We aim to reveal the pathway of dust structure evolution from dust grains to compact planetesimals. Methods: Using the compressive strength formula, we analytically investigate how fluffy dust aggregates are compressed by static compression due to ram pressure of the disk gas and self-gravity of the aggregates in protoplanetary disks. Results: We reveal the pathway of the porosity evolution from dust grains via fluffy aggregates to form planetesimals, circumventing the barriers in planetesimal formation. The aggregates are compressed by the disk gas to a density of 10-3 g/cm3 in coagulation, which is more compact than is the case with collisional compression. Then, they are compressed more by self-gravity to 10-1 g/cm3 when the radius is 10 km. Although the gas compression decelerates the growth, the aggregates grow rapidly enough to avoid the radial drift barrier when the orbital radius is ≲6 AU in a typical disk. Conclusions: We propose a fluffy dust growth scenario from grains to planetesimals. It enables icy planetesimal formation in a wide range beyond the snowline in protoplanetary disks. This result proposes a concrete initial condition of planetesimals for the later stages of the planet formation.
ERIC Educational Resources Information Center
Consumer Dynamics Inc., Rockville, MD.
This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on calibrating a respirable dust sampling device. Following guidelines for students and instructors and an introduction that explains what the student will learn, are three lessons: (1) naming each part of…
Simulating galactic dust grain evolution on a moving mesh
NASA Astrophysics Data System (ADS)
McKinnon, Ryan; Vogelsberger, Mark; Torrey, Paul; Marinacci, Federico; Kannan, Rahul
2018-05-01
Interstellar dust is an important component of the galactic ecosystem, playing a key role in multiple galaxy formation processes. We present a novel numerical framework for the dynamics and size evolution of dust grains implemented in the moving-mesh hydrodynamics code AREPO suited for cosmological galaxy formation simulations. We employ a particle-based method for dust subject to dynamical forces including drag and gravity. The drag force is implemented using a second-order semi-implicit integrator and validated using several dust-hydrodynamical test problems. Each dust particle has a grain size distribution, describing the local abundance of grains of different sizes. The grain size distribution is discretised with a second-order piecewise linear method and evolves in time according to various dust physical processes, including accretion, sputtering, shattering, and coagulation. We present a novel scheme for stochastically forming dust during stellar evolution and new methods for sub-cycling of dust physics time-steps. Using this model, we simulate an isolated disc galaxy to study the impact of dust physical processes that shape the interstellar grain size distribution. We demonstrate, for example, how dust shattering shifts the grain size distribution to smaller sizes resulting in a significant rise of radiation extinction from optical to near-ultraviolet wavelengths. Our framework for simulating dust and gas mixtures can readily be extended to account for other dynamical processes relevant in galaxy formation, like magnetohydrodynamics, radiation pressure, and thermo-chemical processes.
PLANETESIMAL FORMATION BY GRAVITATIONAL INSTABILITY OF A POROUS DUST DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michikoshi, Shugo; Kokubo, Eiichiro, E-mail: michikos@ccs.tsukuba.ac.jp, E-mail: kokubo@th.nao.ac.jp
2016-07-10
It has recently been proposed that porous icy dust aggregates are formed by the pairwise accretion of dust aggregates beyond the snowline. We calculate the equilibrium random velocity of porous dust aggregates, taking into account mutual gravitational scattering, collisions, gas drag, and turbulent stirring and scattering. We find that the disk of porous dust aggregates becomes gravitationally unstable as the aggregates evolve through gravitational compression in the minimum-mass solar nebula model for a reasonable range of turbulence strength, which leads to rapid formation of planetesimals.
Recycling of Chrome Tanned Leather Dust in Acrylonitrile Butadiene Rubber
NASA Astrophysics Data System (ADS)
El-Sabbagh, Salwa H.; Mohamed, Ola A.
2010-06-01
Concerns on environmental waste problem caused by chrome tanned leather wastes in huge amount have caused an increasing interest in developing this wastes in many composite formation. This leather dust was used as filler in acrylonitrile butadiene rubber (NBR) before treatment and after treatment with ammonia solution and sod. formate. Different formulations of NBR/ leather dust (untreated-treated with ammonia solution—treated with sod. formate) composites are prepared. The formed composite exhibit a considerable improvement in some of their properties such as rheometric characteristics especially with composites loaded with treated leather dust. Tensile strength, modulus at 100% elongation, hardness and youngs modulus were improved then by further loading start to be steady or decrease. Cross linking density in toluene were increased by incorporation of leather dust treated or untreated resulting in decreases in equilibrium swelling. Distinct increase in the ageing coefficient of both treated and untreated leather with drop in NBR vulcanizates without leather dust. Addition of leather dust treated or untreated exhibit better thermal stability.
Dust formation and wind acceleration around the aluminum oxide-rich AGB star W Hydrae
NASA Astrophysics Data System (ADS)
Takigawa, Aki; Kamizuka, Takafumi; Tachibana, Shogo; Yamamura, Issei
2017-11-01
Dust grains, formed around asymptotic giant branch (AGB) stars, are accelerated by stellar radiation to drive stellar winds, which supply freshly synthesized nuclides to the Galaxy. Silicate is the dominant dust species in space, but 40% of oxygen-rich AGB stars are thought to have comparable amounts of aluminum oxide dust. Dust formation and the wind-driving mechanism around these oxygen-rich stars, however, are poorly understood. We report on the spatial distributions of AlO and 29SiO molecules around an aluminum oxide-rich M-type AGB star, W Hydrae, based on observations obtained with the Atacama Large Millimeter/submillimeter Array. AlO molecules were only observed within three stellar radii (Rstar), whereas 29SiO was distributed in the accelerated wind beyond 5 Rstar without significant depletion. This strongly suggests that condensed aluminum oxide dust plays a key role in accelerating the stellar wind and in preventing the efficient formation of silicate dust around W Hydrae.
Dust formation and wind acceleration around the aluminum oxide–rich AGB star W Hydrae
Takigawa, Aki; Kamizuka, Takafumi; Tachibana, Shogo; Yamamura, Issei
2017-01-01
Dust grains, formed around asymptotic giant branch (AGB) stars, are accelerated by stellar radiation to drive stellar winds, which supply freshly synthesized nuclides to the Galaxy. Silicate is the dominant dust species in space, but ~40% of oxygen-rich AGB stars are thought to have comparable amounts of aluminum oxide dust. Dust formation and the wind-driving mechanism around these oxygen-rich stars, however, are poorly understood. We report on the spatial distributions of AlO and 29SiO molecules around an aluminum oxide–rich M-type AGB star, W Hydrae, based on observations obtained with the Atacama Large Millimeter/submillimeter Array. AlO molecules were only observed within three stellar radii (Rstar), whereas 29SiO was distributed in the accelerated wind beyond 5 Rstar without significant depletion. This strongly suggests that condensed aluminum oxide dust plays a key role in accelerating the stellar wind and in preventing the efficient formation of silicate dust around W Hydrae. PMID:29109978
Investigations of the Formation of Carbon Grains in Circumstellar Outflows
NASA Technical Reports Server (NTRS)
Contreras, Cesar; Salama, Farid
2013-01-01
The study of formation and destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic molecules. Although dust with all its components plays an important role in the evolution of interstellar chemistry and in the formation of organic molecules, little is known on the formation and destruction processes of carbonaceous dust. PAHs are important chemical building blocks of interstellar dust. They are detected in interplanetary dust particles and in meteoritic samples. Additionally, observational, laboratory, and theoretical studies have shown that PAHs, in their neutral and ionized forms, are an important, ubiquitous component of the interstellar medium. Also, the formation of PAHs from smaller molecules has not been extensively studied. Therefore, it is imperative that laboratory experiments be conducted to study the dynamic processes of carbon grain formation from PAH precursors. Studies of interstellar dust analogs formed from a variety of PAH and hydrocarbon precursors as well as species that include the atoms O, N, and S, have recently been performed in our laboratory under conditions that simulate interstellar and circumstellar environments. The species formed in the pulsed discharge nozzle (PDN) plasma source are detected and characterized with a high-sensitivity cavity ringdown spectrometer (CRDS) coupled to a Reflectron time-of-flight mass spectrometer (ReTOF-MS), thus providing both spectroscopic and ion mass information in-situ. We report the first set of measurements obtained in these experiments and identify the species present in the experiments and the ions that are formed in the plasma process. From these unique measurements, we derive information on the size and the structure of interstellar dust grain particles, the growth and the destruction processes of interstellar dust and the resulting budget of extraterrestrial organic molecules.
A supernova origin for dust in a high-redshift quasar.
Maiolino, R; Schneider, R; Oliva, E; Bianchi, S; Ferrara, A; Mannucci, F; Pedani, M; Sogorb, M Roca
2004-09-30
Interstellar dust plays a crucial role in the evolution of the Universe by assisting the formation of molecules, by triggering the formation of the first low-mass stars, and by absorbing stellar ultraviolet-optical light and subsequently re-emitting it at infrared/millimetre wavelengths. Dust is thought to be produced predominantly in the envelopes of evolved (age >1 Gyr), low-mass stars. This picture has, however, recently been brought into question by the discovery of large masses of dust in the host galaxies of quasars at redshift z > 6, when the age of the Universe was less than 1 Gyr. Theoretical studies, corroborated by observations of nearby supernova remnants, have suggested that supernovae provide a fast and efficient dust formation environment in the early Universe. Here we report infrared observations of a quasar at redshift 6.2, which are used to obtain directly its dust extinction curve. We then show that such a curve is in excellent agreement with supernova dust models. This result demonstrates a supernova origin for dust in this high-redshift quasar, from which we infer that most of the dust at high redshifts probably has the same origin.
NASA Technical Reports Server (NTRS)
Efimov, Yu. S.
1989-01-01
R CrB stars are classical examples of stars where dust envelope formation takes place. Dust envelope formation was detected around the Kuwano-Honda object (PU Vul) in 1980 to 1981 when the star's brightness fell to 8(sup m). Such envelopes are also formed at nova outbursts. The process of dust envelope formation leads to appreciable variations in optical characteristics, which are seen in specific color and polarization variations in the course of light fading and the appearance of IR radiation. It is shown that the model of a circumstellar dust envelope with aligned particles of changing size can be successfully applied to explain most phenomena observed at the time of light minima for a number of eruptive stars. The polarization may arise in a nonspherical dust envelope or be produced by alignment of nonspherical particles.
Lunar dust transport and potential interactions with power system components
NASA Technical Reports Server (NTRS)
Katzan, Cynthia M.; Edwards, Jonathan L.
1991-01-01
The lunar surface is covered by a thick blanket of fine dust. This dust may be readily suspended from the surface and transported by a variety of mechanisms. As a consequence, lunar dust can accumulate on sensitive power components, such as photovoltaic arrays and radiator surfaces, reducing their performance. In addition to natural mechanisms, human activities on the Moon will disturb significant amounts of lunar dust. Of all the mechanisms identified, the most serious is rocket launch and landing. The return of components from the Surveyor 3 provided a rare opportunity to observe the effects of the nearby landing of the Apollo 12 Lunar Module. The evidence proved that significant dust accumulation occurred on the Surveyor at a distance of 155 m. From available information on particle suspension and transport mechanisms, a series of models was developed to predict dust accumulation as a function of distance from the lunar module. The accumulation distribution was extrapolated to a future Lunar Lander scenario. These models indicate that accumulation is expected to be substantial even as far as 2 km from the landing site. Estimates of the performance penalties associated with lunar dust coverage and photovoltaic arrays are presented. Because of the lunar dust adhesive and cohesive properties, the most practical dust defensive strategy appears to be the protection of sensitive components from the arrival of lunar dust by location, orientation, or barriers.
Dust in Supernovae and Supernova Remnants I: Formation Scenarios
NASA Astrophysics Data System (ADS)
Sarangi, A.; Matsuura, M.; Micelotta, E. R.
2018-04-01
Supernovae are considered as prime sources of dust in space. Observations of local supernovae over the past couple of decades have detected the presence of dust in supernova ejecta. The reddening of the high redshift quasars also indicate the presence of large masses of dust in early galaxies. Considering the top heavy IMF in the early galaxies, supernovae are assumed to be the major contributor to these large amounts of dust. However, the composition and morphology of dust grains formed in a supernova ejecta is yet to be understood with clarity. Moreover, the dust masses inferred from observations in mid-infrared and submillimeter wavelength regimes differ by two orders of magnitude or more. Therefore, the mechanism responsible for the synthesis of molecules and dust in such environments plays a crucial role in studying the evolution of cosmic dust in galaxies. This review summarises our current knowledge of dust formation in supernova ejecta and tries to quantify the role of supernovae as dust producers in a galaxy.
Interannual Modulation of Subtropical Atlantic Boreal Summer Dust Variability by ENSO
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeFlorio, Mike; Goodwin, Ian D.; Cayan, Dan
2016-01-01
Dust variability in the climate system has been studied for several decades, yet there remains an incomplete understanding of the dynamical mechanisms controlling interannual and decadal variations in dust transport. The sparseness of multi-year observational datasets has limited our understanding of the relationship between climate variations and atmospheric dust. We use available observations and a century-length fully coupled Community Earth System Model (CESM) simulation to show that the El Niño- Southern Oscillation (ENSO) exerts a control on North African dust transport during boreal summer. In CESM, this relationship is stronger over the dusty tropical North Atlantic than near Barbados, onemore » of the few sites having a multi-decadal observed record. During strong La Niña summers in CESM, a statistically significant increase in lower tropospheric easterly wind is associated with an increase in North African dust transport over the Atlantic. Barbados dust and Pacific SST variability are only weakly correlated in both observations and CESM, suggesting that other processes are controlling the crossbasin variability of dust. We also use our CESM simulation to show that the relationship between downstream North African dust transport and ENSO fluctuates on multidecadal timescales and may be modulated by the North Atlantic Oscillation (NAO). Our findings indicate that existing observations of dust over the tropical North Atlantic are not extensive enough to completely describe the variability of dust and dust transport, and demonstrate the importance of global models to supplement and interpret observational records.« less
A new physically-based windblown dust emission parametrization in CMAQ
Dust has significant impacts on weather and climate, air quality and visibility, and human health; therefore, it is important to include a windblown dust emission module in atmospheric and air quality models. In this presentation, we summarize our efforts in development of a phys...
NASA Astrophysics Data System (ADS)
Schepanski, Kerstin; Heinold, Bernd; Tegen, Ina
2017-09-01
The outflow of dust from the northern African continent towards the North Atlantic is stimulated by the atmospheric circulation over North Africa, which modulates the spatio-temporal distribution of dust source activation and consequently the entrainment of mineral dust into the boundary layer, as well as the transport of dust out of the source regions. The atmospheric circulation over the North African dust source regions, predominantly the Sahara and the Sahel, is characterized by three major circulation regimes: (1) the harmattan (trade winds), (2) the Saharan heat low (SHL), and (3) the West African monsoon circulation. The strength of the individual regimes controls the Saharan dust outflow by affecting the spatio-temporal distribution of dust emission, transport pathways, and deposition fluxes.This study aims at investigating the atmospheric circulation pattern over North Africa with regard to its role favouring dust emission and dust export towards the tropical North Atlantic. The focus of the study is on summer 2013 (June to August), during which the SALTRACE (Saharan Aerosol Long-range TRansport and Aerosol-Cloud interaction Experiment) field campaign also took place. It involves satellite observations by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) flying on board the geostationary Meteosat Second Generation (MSG) satellite, which are analysed and used to infer a data set of active dust sources. The spatio-temporal distribution of dust source activation frequencies (DSAFs) allows for linking the diurnal cycle of dust source activations to dominant meteorological controls on dust emission. In summer, Saharan dust source activations clearly differ from dust source activations over the Sahel regarding the time of day when dust emission begins. The Sahara is dominated by morning dust source activations predominantly driven by the breakdown of the nocturnal low-level jet. In contrast, dust source activations in the Sahel are predominantly activated during the second half of the day, when downdrafts associated with deep moist convection are the major atmospheric driver. Complementary to the satellite-based analysis on dust source activations and implications from their diurnal cycle, simulations on atmosphere and dust life cycle were performed using the mesoscale atmosphere-dust model system COSMO-MUSCAT (COSMO: COnsortium for Small-scale MOdelling; MUSCAT: MUltiScale Chemistry Aerosol Transport Model). Fields from this simulation were analysed regarding the variability of the harmattan, the Saharan heat low, and the monsoon circulation as well as their impact on the variability of the Saharan dust outflow towards the North Atlantic. This study illustrates the complexity of the interaction among the three major circulation regimes and their modulation of the North African dust outflow. Enhanced westward dust fluxes frequently appear following a phase characterized by a deep SHL. Ultimately, findings from this study contribute to the quantification of the interannual variability of the atmospheric dust burden.
Dust to planetesimals - Settling and coagulation in the solar nebula
NASA Technical Reports Server (NTRS)
Weidenschilling, S. J.
1980-01-01
The behavior of solid particles in a low-mass solar nebula during settling to the central plane and the formation of planetesimals is discussed. The gravitational instability in a dust layer and collisional accretion are examined as possible mechanisms of planetesimal formation. The shear between the gas and a dust layer is considered along with the differences in the planetesimal formation mechanisms between the inner and outer nebula. A numerical model for computing simultaneous coagulation and settling is described.
NASA Astrophysics Data System (ADS)
Tatsuuma, Misako; Michikoshi, Shugo; Kokubo, Eiichiro
2018-03-01
Planetesimal formation is one of the most important unsolved problems in planet formation theory. In particular, rocky planetesimal formation is difficult because silicate dust grains are easily broken when they collide. It has recently been proposed that they can grow as porous aggregates when their monomer radius is smaller than ∼10 nm, which can also avoid the radial drift toward the central star. However, the stability of a layer composed of such porous silicate dust aggregates has not been investigated. Therefore, we investigate the gravitational instability (GI) of this dust layer. To evaluate the disk stability, we calculate Toomre’s stability parameter Q, for which we need to evaluate the equilibrium random velocity of dust aggregates. We calculate the equilibrium random velocity considering gravitational scattering and collisions between dust aggregates, drag by mean flow of gas, stirring by gas turbulence, and gravitational scattering by gas density fluctuation due to turbulence. We derive the condition of the GI using the disk mass, dust-to-gas ratio, turbulent strength, orbital radius, and dust monomer radius. We find that, for the minimum mass solar nebula model at 1 au, the dust layer becomes gravitationally unstable when the turbulent strength α ≲ 10‑5. If the dust-to-gas ratio is increased twice, the GI occurs for α ≲ 10‑4. We also find that the dust layer is more unstable in disks with larger mass, higher dust-to-gas ratio, and weaker turbulent strength, at larger orbital radius, and with a larger monomer radius.
Formation and dissociation of dust molecules in dusty plasma
NASA Astrophysics Data System (ADS)
Yan, Jia; Feng, Fan; Liu, Fucheng; Dong, Lifang; He, Yafeng
2016-09-01
Dust molecules are observed in a dusty plasma experiment. By using measurements with high spatial resolution, the formation and dissociation of the dust molecules are studied. The ion cloud in the wake of an upper dust grain attracts the lower dust grain nearby. When the interparticle distance between the upper dust grain and the lower one is less than a critical value, the two dust grains would form a dust molecule. The upper dust grain always leads the lower one as they travel. When the interparticle distance between them is larger than the critical value, the dust molecule would dissociate. Project supported by the National Natural Science Foundation of China (Grant Nos. 11205044 and 11405042), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2011201006 and A2012201015), the Research Foundation of Education Bureau of Hebei Province, China (Grant No. Y2012009), the Program for Young Principal Investigators of Hebei Province, China, and the Midwest Universities Comprehensive Strength Promotion Project, China.
Formation of dust grains with impurities in red giant winds
NASA Technical Reports Server (NTRS)
Dominik, Carsten
1994-01-01
Among the several proposed carriers of diffuse interstellar bands (DIB's) are impurities in small dust grains, especially in iron oxide grains (Huffman 1977) and silicate grains (Huffman 1970). Most promising are single ion impurities since they can reproduce the observed band widths (Whittet 1992). These oxygen-rich grains are believed to originate mostly in the mass flows from red giants and in supernovae ejecta (e.g. Gehrz 1989). A question of considerable impact for the origin of DIB's is therefore, whether these grains are produced as mainly clean crystals or as some dirty materials. A formalism has been developed that allows tracking of the heterogeneous growth of a dust grain and its internal structure during the dust formation process. This formalism has been applied to the dust formation in the outflow from a red giant star.
NASA Astrophysics Data System (ADS)
Price, Sedona H.; Kriek, Mariska; Brammer, Gabriel B.; Conroy, Charlie; Förster Schreiber, Natascha M.; Franx, Marijn; Fumagalli, Mattia; Lundgren, Britt; Momcheva, Ivelina; Nelson, Erica J.; Skelton, Rosalind E.; van Dokkum, Pieter G.; Whitaker, Katherine E.; Wuyts, Stijn
2014-06-01
The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust around star-forming regions (A V, H II ) and the integrated dust content (A V, star). We select a sample of 163 galaxies between 1.36 <= z <= 1.5 with Hα signal-to-noise ratio >=5 and measure Balmer decrements from stacked spectra to calculate A V, H II . First, we stack spectra in bins of A V, star, and find that A V, H II = 1.86 A V, star, with a significance of σ = 1.7. Our result is consistent with the two-component dust model, in which galaxies contain both diffuse and stellar birth cloud dust. Next, we stack spectra in bins of specific star formation rate (log SSFR), star formation rate (log SFR), and stellar mass (log M *). We find that on average A V, H II increases with SFR and mass, but decreases with increasing SSFR. Interestingly, the data hint that the amount of extra attenuation decreases with increasing SSFR. This trend is expected from the two-component model, as the extra attenuation will increase once older stars outside the star-forming regions become more dominant in the galaxy spectrum. Finally, using Balmer decrements we derive dust-corrected Hα SFRs, and find that stellar population modeling produces incorrect SFRs if rapidly declining star formation histories are included in the explored parameter space.
NASA Technical Reports Server (NTRS)
Zhang, Yang; Sunwoo, Young; Kotamarthi, Veerabhadra; Carmichael, Gregory R.
1994-01-01
The influence of dust on the tropospheric photochemical oxidant cycle is studied through the use of a detailed coupled aerosol and gas-phase chemistry model. Dust is a significant component of the troposphere throughout Asia and provides a surface for a variety of heterogeneous reactions. Dust is found to be an important surface for particulate nitrate formation. For dust loading and ambient concentrations representative of conditions in East Asia, particulate nitrate levels of 1.5-11.5 micrograms/cubic meter are predicted, consistent with measured levels in this region. Dust is also found to reduce NO(x) levels by up to 50%, HO2 concentrations by 20%-80%, and ozone production rates by up to 25%. The magnitude of the influence of dust is sensitive to mass concentration of the aerosol, relative humidity, and the value of the accommodation coefficient.
Modulational instability of an electron plasma wave in a dusty plasma
NASA Astrophysics Data System (ADS)
Amin, M. R.; Ferdous, T.; Salimullah, M.
1997-03-01
The modulational instability of an electron plasma wave in a homogeneous, unmagnetized, hot, and collisionless dusty plasma has been investigated analytically. The Vlasov equation has been solved perturbatively to find the nonlinear response of the plasma particles with random static distribution of massive and charged dust grains having certain correlation. It is noticed that the growth rate of the modulational instability of the electron plasma wave through a new ultra-low-frequency dust mode is more efficient than that through the usual ion-acoustic mode in the dusty plasma.
NASA Astrophysics Data System (ADS)
Walth, Gregory; Egami, Eiichi; Clément, Benjamin; Rujopakarn, Wiphu; Rawle, Tim; Richard, Johan; Dessauges, Miroslava; Perez-Gonzalez, Pablo; Ebeling, Harald; Vayner, Andrey; Wright, Shelley; Cosens, Maren; Herschel Lensing Survey
2018-01-01
We present our recent ALMA observations of Herschel-detected gravitationally lensed dusty, star-forming galaxies (DSFGs) and how they compliment our near-infrared spectroscopic observations of their rest-frame optical nebular emission. This provides the complete picture of star formation; from the molecular gas that fuels star formation, to the dust emission which are the sites of star formation, and the nebular emission which is the gas excited by the young stars. DSFGs undergo the largest starbursts in the Universe, contributing to the bulk of the cosmic star formation rate density between redshifts z = 1 - 4. Internal processes within high-redshift DSFGs remains largely unexplored; such as feedback from star formation, the role of turbulence, gas surface density of molecular gas, AGN activity, and the rates of metal production. Much that is known about DSFGs star formation properties comes from their CO and dust emission. In order to fully understand the star formation history of DSFGs, it is necessary to observe their optical nebular emission. Unfortunately, UV/optical emission is severely attenuated by dust, making it challenging to detect. With the Herschel Lensing Survey, a survey of the cores of almost 600 massive galaxy clusters, we are able to probe faint dust-attenuated nebular emission. We are currently conducting a new survey using Keck/OSIRIS to resolve a sample of gravitationally lensed DSFGs from the Herschel Lensing Survey (>100 mJy, with SFRs >100 Msun/yr) at redshifts z=1-4 with magnifications >10x all with previously detected nebular emission lines. We present the physical and resolved properties of gravitationally lensed DSFGs at unprecedented spatial scales; such as ionization, metallicity, AGN activity, and dust attenuation.
NASA Astrophysics Data System (ADS)
Bocchio, Marco
2014-09-01
The main goal of my PhD study is to understand the dust processing that occurs during the mixing between the galactic interstellar medium and the intracluster medium. This process is of particular interest in violent phenomena such as galaxy-galaxy interactions or the ``Ram Pressure Stripping'' due to the infalling of a galaxy towards the cluster centre.Initially, I focus my attention to the problem of dust destruction and heating processes, re-visiting the available models in literature. I particularly stress on the cases of extreme environments such as a hot coronal-type gas (e.g., IGM, ICM, HIM) and supernova-generated interstellar shocks. Under these conditions small grains are destroyed on short timescales and large grains are heated by the collisions with fast electrons making the dust spectral energy distribution very different from what observed in the diffuse ISM.In order to test our models I apply them to the case of an interacting galaxy, NGC 4438. Herschel data of this galaxy indicates the presence of dust with a higher-than-expected temperature.With a multi-wavelength analysis on a pixel-by-pixel basis we show that this hot dust seems to be embedded in a hot ionised gas therefore undergoing both collisional heating and small grain destruction.Furthermore, I focus on the long-standing conundrum about the dust destruction and dust formation timescales in the Milky Way. Based on the destruction efficiency in interstellar shocks, previous estimates led to a dust lifetime shorter than the typical timescale for dust formation in AGB stars. Using a recent dust model and an updated dust processing model we re-evaluate the dust lifetime in our Galaxy. Finally, I turn my attention to the phenomenon of ``Ram Pressure Stripping''. The galaxy ESO 137-001 represents one of the best cases to study this effect. Its long H2 tail embedded in a hot and ionised tail raises questions about its possible stripping from the galaxy or formation downstream in the tail. Based on recent hydrodynamical numerical simulations, I show that the formation of H2 molecules on the surface of dust grains in the tail is a viable scenario.
Stellar Ontogeny: From Dust...
ERIC Educational Resources Information Center
MOSAIC, 1978
1978-01-01
Discusses the process of star formation. Infrared and radio astronomy, particularly microwave astronomy is used to provide information on different stages of stellar formation. The role of dust and gas which swirl through the interstellar regions of a galaxy and the collapse of a cloud in star formation are also presented. (HM)
The Journey of Interstellar Dust
NASA Technical Reports Server (NTRS)
Dwek, Eliahu
2007-01-01
Interstellar dust particles undergo a complex journey in space. It commences with their formation in stellar outflows or outbursts, but may end in very different ways. Their fates range from sudden "death by destruction" promptly after their formation to maturity and inclusion in protoplanetary objects in stellar nursery homes. Throughout this journey dust grains are subjected to a host of interstellar processes in different astrophysical environments which leave their imprint on the dust and affects their surrounding environment. In this review I will summarize our current knowledge of the field, emphasizing what we still need to know to gain a full understanding of interstellar dust grains and their journey through the ISM.
WRF-Chem Model Simulations of Arizona Dust Storms
NASA Astrophysics Data System (ADS)
Mohebbi, A.; Chang, H. I.; Hondula, D.
2017-12-01
The online Weather Research and Forecasting model with coupled chemistry module (WRF-Chem) is applied to simulate the transport, deposition and emission of the dust aerosols in an intense dust outbreak event that took place on July 5th, 2011 over Arizona. Goddard Chemistry Aerosol Radiation and Transport (GOCART), Air Force Weather Agency (AFWA), and University of Cologne (UoC) parameterization schemes for dust emission were evaluated. The model was found to simulate well the synoptic meteorological conditions also widely documented in previous studies. The chemistry module performance in reproducing the atmospheric desert dust load was evaluated using the horizontal field of the Aerosol Optical Depth (AOD) from Moderate Resolution Imaging Spectro (MODIS) radiometer Terra/Aqua and Aerosol Robotic Network (AERONET) satellites employing standard Dark Target (DT) and Deep Blue (DB) algorithms. To assess the temporal variability of the dust storm, Particulate Matter mass concentration data (PM10 and PM2.5) from Arizona Department of Environmental Quality (AZDEQ) ground-based air quality stations were used. The promising performance of WRF-Chem indicate that the model is capable of simulating the right timing and loading of a dust event in the planetary-boundary-layer (PBL) which can be used to forecast approaching severe dust events and to communicate an effective early warning.
NASA Astrophysics Data System (ADS)
Avdeev, A. V.; Boreisho, A. S.; Ivakin, S. V.; Moiseev, A. A.; Savin, A. V.; Sokolov, E. I.; Smirnov, P. G.
2018-01-01
This article is devoted to the simulation of the processes of formation of dust clouds in the absence of gravitation, which is necessary for understanding the processes proceeding in dust clusters in outer space, upper planetary atmosphere, and on the surface of space objects, as well as for evaluating the possibilities of creating disperse structures with given properties. The chief aim of the simulation is to determine the general laws of the dynamics of the dust cloud at the initial stage of its formation. With the use of the original approach based on the particle-in-cell method that permits investigating the mechanics of large ensembles of particles on contemporary computational platforms, we consider the mechanics of a dusty medium in the process of its excitation in a closed container due to the vibration of the walls, and then in the process of particle scattering when the container opens in outer space. The main formation mechanisms of a dust formation have been elucidated, and the possibilities of mathematical simulation for predicting spatial and time characteristics of disperse structures have been shown.
A Model Connecting Galaxy Masses, Star Formation Rates, and Dust Temperatures across Cosmic Time
NASA Astrophysics Data System (ADS)
Imara, Nia; Loeb, Abraham; Johnson, Benjamin D.; Conroy, Charlie; Behroozi, Peter
2018-02-01
We investigate the evolution of dust content in galaxies from redshifts z = 0 to z = 9.5. Using empirically motivated prescriptions, we model galactic-scale properties—including halo mass, stellar mass, star formation rate, gas mass, and metallicity—to make predictions for the galactic evolution of dust mass and dust temperature in main-sequence galaxies. Our simple analytic model, which predicts that galaxies in the early universe had greater quantities of dust than their low-redshift counterparts, does a good job of reproducing observed trends between galaxy dust and stellar mass out to z ≈ 6. We find that for fixed galaxy stellar mass, the dust temperature increases from z = 0 to z = 6. Our model forecasts a population of low-mass, high-redshift galaxies with interstellar dust as hot as, or hotter than, their more massive counterparts; but this prediction needs to be constrained by observations. Finally, we make predictions for observing 1.1 mm flux density arising from interstellar dust emission with the Atacama Large Millimeter Array.
Shock structures in a strongly coupled self-gravitating opposite-polarity dust plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamun, A. A.; Schlickeiser, R.
2016-03-15
A strongly coupled, self-gravitating, opposite-polarity dust plasma (containing strongly coupled inertial positive and negative dust fluids, and inertialess weakly coupled ions) is considered. The generalized hydrodynamic model and the reductive perturbation method are employed to examine the possibility for the formation of the dust-acoustic (DA) shock structures in such an opposite-polarity dust plasma. It has been shown that the strong correlation among charged dust is a source of dissipation and is responsible for the formation of the DA shock structures in such the opposite-polarity dust plasma medium. The parametric regimes for the existence of the DA shock structures (associated withmore » electrostatic and gravitational potentials) and their basic properties (viz., polarity, amplitude, width, and speed) are found to be significantly modified by the combined effects of positively charged dust component, self-gravitational field, and strong correlation among charged dust. The implications of our results in different space plasma environments and laboratory plasma devices are briefly discussed.« less
NASA Astrophysics Data System (ADS)
Tsukamoto, Y.; Okuzumi, S.; Kataoka, A.
2017-04-01
We investigate the dust structure of gravitationally unstable disks undergoing mass accretion from the envelope, envisioning its application to Class 0/I young stellar objects (YSOs). We find that the dust disk quickly settles into a steady state and that, compared to a disk with interstellar medium (ISM) dust-to-gas mass ratio and micron-sized dust, the dust mass in the steady state decreases by a factor of 1/2 to 1/3, and the dust thermal emission decreases by a factor of 1/3 to 1/5. The latter decrease is caused by dust depletion and opacity decrease owing to dust growth. Our results suggest that the masses of gravitationally unstable disks in Class 0/I YSOs are underestimated by a factor of 1/3 to 1/5 when calculated from the dust thermal emission assuming an ISM dust-to-gas mass ratio and micron-sized dust opacity, and that a larger fraction of disks in Class 0/I YSOs is gravitationally unstable than was previously believed. We also investigate the orbital radius {r}{{P}} within which planetesimals form via coagulation of porous dust aggregates and show that {r}{{P}} becomes ˜20 au for a gravitationally unstable disk around a solar mass star. Because {r}{{P}} increases as the gas surface density increases and a gravitationally unstable disk has maximum gas surface density, {r}{{P}}˜ 20 {au} is the theoretical maximum radius for planetesimal formation. We suggest that planetesimal formation in the Class 0/I phase is preferable to that in the Class II phase because a large amount of dust is supplied by envelope-to-disk accretion.
TORUS: Radiation transport and hydrodynamics code
NASA Astrophysics Data System (ADS)
Harries, Tim
2014-04-01
TORUS is a flexible radiation transfer and radiation-hydrodynamics code. The code has a basic infrastructure that includes the AMR mesh scheme that is used by several physics modules including atomic line transfer in a moving medium, molecular line transfer, photoionization, radiation hydrodynamics and radiative equilibrium. TORUS is useful for a variety of problems, including magnetospheric accretion onto T Tauri stars, spiral nebulae around Wolf-Rayet stars, discs around Herbig AeBe stars, structured winds of O supergiants and Raman-scattered line formation in symbiotic binaries, and dust emission and molecular line formation in star forming clusters. The code is written in Fortran 2003 and is compiled using a standard Gnu makefile. The code is parallelized using both MPI and OMP, and can use these parallel sections either separately or in a hybrid mode.
Western Medusa Fossae Formation: Dust and Dunes
2015-09-16
This beautifully contrasted infrared-color image shows an area approximately 600 by 900 meters. This is a close-up from NASA Mars Reconnaissance Orbiter spacecraft of the western Medusa Fossae formation where we can see dust-covered rocky, bedrock surfaces beige and a bluish-tinted sand sheet that transitions into several dunes. The bluish sand is thought to originate from the bedrock that lies beneath the dust. If true, this has implications for the composition of the formation, which has been highly debated over the years. http://photojournal.jpl.nasa.gov/catalog/PIA19939
Use of Laboratory Data to Model Interstellar Chemistry
NASA Technical Reports Server (NTRS)
Vidali, Gianfranco; Roser, J. E.; Manico, G.; Pirronello, V.
2006-01-01
Our laboratory research program is about the formation of molecules on dust grains analogues in conditions mimicking interstellar medium environments. Using surface science techniques, in the last ten years we have investigated the formation of molecular hydrogen and other molecules on different types of dust grain analogues. We analyzed the results to extract quantitative information on the processes of molecule formation on and ejection from dust grain analogues. The usefulness of these data lies in the fact that these results have been employed by theoreticians in models of the chemical evolution of ISM environments.
Interstellar Dust: Contributed Papers
NASA Technical Reports Server (NTRS)
Tielens, Alexander G. G. M. (Editor); Allamandola, Louis J. (Editor)
1989-01-01
A coherent picture of the dust composition and its physical characteristics in the various phases of the interstellar medium was the central theme. Topics addressed included: dust in diffuse interstellar medium; overidentified infrared emission features; dust in dense clouds; dust in galaxies; optical properties of dust grains; interstellar dust models; interstellar dust and the solar system; dust formation and destruction; UV, visible, and IR observations of interstellar extinction; and quantum-statistical calculations of IR emission from highly vibrationally excited polycyclic aromatic hydrocarbon (PAH) molecules.
The Theoretical Astrophysical Observatory: Cloud-based Mock Galaxy Catalogs
NASA Astrophysics Data System (ADS)
Bernyk, Maksym; Croton, Darren J.; Tonini, Chiara; Hodkinson, Luke; Hassan, Amr H.; Garel, Thibault; Duffy, Alan R.; Mutch, Simon J.; Poole, Gregory B.; Hegarty, Sarah
2016-03-01
We introduce the Theoretical Astrophysical Observatory (TAO), an online virtual laboratory that houses mock observations of galaxy survey data. Such mocks have become an integral part of the modern analysis pipeline. However, building them requires expert knowledge of galaxy modeling and simulation techniques, significant investment in software development, and access to high performance computing. These requirements make it difficult for a small research team or individual to quickly build a mock catalog suited to their needs. To address this TAO offers access to multiple cosmological simulations and semi-analytic galaxy formation models from an intuitive and clean web interface. Results can be funnelled through science modules and sent to a dedicated supercomputer for further processing and manipulation. These modules include the ability to (1) construct custom observer light cones from the simulation data cubes; (2) generate the stellar emission from star formation histories, apply dust extinction, and compute absolute and/or apparent magnitudes; and (3) produce mock images of the sky. All of TAO’s features can be accessed without any programming requirements. The modular nature of TAO opens it up for further expansion in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernyk, Maksym; Croton, Darren J.; Tonini, Chiara
We introduce the Theoretical Astrophysical Observatory (TAO), an online virtual laboratory that houses mock observations of galaxy survey data. Such mocks have become an integral part of the modern analysis pipeline. However, building them requires expert knowledge of galaxy modeling and simulation techniques, significant investment in software development, and access to high performance computing. These requirements make it difficult for a small research team or individual to quickly build a mock catalog suited to their needs. To address this TAO offers access to multiple cosmological simulations and semi-analytic galaxy formation models from an intuitive and clean web interface. Results canmore » be funnelled through science modules and sent to a dedicated supercomputer for further processing and manipulation. These modules include the ability to (1) construct custom observer light cones from the simulation data cubes; (2) generate the stellar emission from star formation histories, apply dust extinction, and compute absolute and/or apparent magnitudes; and (3) produce mock images of the sky. All of TAO’s features can be accessed without any programming requirements. The modular nature of TAO opens it up for further expansion in the future.« less
The heating of dust in starburst galaxies: The contribution of the nonionizing radiation
NASA Technical Reports Server (NTRS)
Calzetti, D.; Bohlin, R. C.; Kinney, Anne L.; Storchi-Bergmann, T.; Heckman, Timothy M.
1995-01-01
The IUE UV and optical spectra and the far-infrared (FIR) IRAS flux densities of a sample of starburst and blue compact galaxies are used to investigate the relationship between dust obscuration and dust emission. The amount of dust obscuration at UV wavelengths correlates with the FIR-to-blue ratio; and an analysis of the correlation indicates that not only the ionizing but also the nonionizing radiation contribute to the FIR emission. The amount of UV and optical energy lost to dust obscuration accounts for most of the cool dust FIUR emission and for about 70% of the warm dust FIR emission. The remaining 30% of the warm dust FIR flux is probably due to dust emission from regions of star formation which are embedded in opaque giant molecular clouds and do not contribute to the integrated UV and optical spectrum. The use of the FIR emission as an indicator of high-mass star formation rate in star-forming galaxies can be problematic, since the contribution to the FIR flux from cool dust emission heated by relatively old stars is nonnegligible.
Are the Formation and Abundances of Metal-poor Stars the Result of Dust Dynamics?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopkins, Philip F.; Conroy, Charlie, E-mail: phopkins@caltech.edu
Large dust grains can fluctuate dramatically in their local density, relative to the gas, in neutral turbulent disks. Small, high-redshift galaxies (before reionization) represent ideal environments for this process. We show via simple arguments and simulations that order-of-magnitude fluctuations are expected in local abundances of large grains (>100 Å) under these conditions. This can have important consequences for star formation and stellar metal abundances in extremely metal-poor stars. Low-mass stars can form in dust-enhanced regions almost immediately after some dust forms even if the galaxy-average metallicity is too low for fragmentation to occur. We argue that the metal abundances ofmore » these “promoted” stars may contain interesting signatures as the CNO abundances (concentrated in large carbonaceous grains and ices) and Mg and Si (in large silicate grains) can be enhanced and/or fluctuate almost independently. Remarkably, the otherwise puzzling abundance patterns of some metal-poor stars can be well fit by standard IMF-averaged core-collapse SNe yields if we allow for fluctuating local dust-to-gas ratios. We also show that the observed log-normal distribution of enhancements in pure SNe yields, shows very large enhancements and variations up to factors of ≳100 as expected in the dust-promoted model, preferentially in the [C/Fe]-enhanced metal-poor stars. Together, this suggests that (1) dust exists in second-generation star formation, (2) local dust-to-gas ratio fluctuations occur in protogalaxies and can be important for star formation, and (3) the light element abundances of these stars may be affected by the local chemistry of dust where they formed, rather than directly tracing nucleosynthesis from earlier populations.« less
Erosive Wear Characterization of Materials for Lunar Construction
NASA Technical Reports Server (NTRS)
Mpagazehe, Jeremiah N.; Street, Kenneth W., Jr.; Delgado, Irebert R.; Higgs, C. Fred, III
2012-01-01
NASA s Apollo missions revealed that exhaust from the retrorockets of landing spacecraft may act to significantly accelerate lunar dust on the surface of the Moon. A recent study by Immer et al. (C. Immer, P.T. Metzger, P.E. Hintze, A. Nick, and R. Horan, Apollo 12 Lunar Module exhaust plume impingement on Lunar Surveyor III, Icarus, Vol. 211, pp. 1089-1102, 2011) investigated coupons returned to Earth from the Surveyor III lunar probe which were subjected to lunar dust impingement by the Apollo 12 Lunar Module landing. Their study revealed that even with indirect impingement, the spacecraft sustained erosive damage from the fast-moving lunar dust particles. In this work, results are presented from a series of erosive wear experiments performed on 6061 Aluminum using the JSC-1AF lunar dust simulant. Optical profilometry was used to investigate the surface after the erosion process. It was found that even short durations of lunar dust simulant impacting at low velocities produced substantial changes in the surface.
Stellar populations in spiral galaxies: Broadband versus spectroscopic viewpoints
NASA Astrophysics Data System (ADS)
MacArthur, Lauren Anne
This thesis addresses the stellar population content in the bulges and disks of spiral galaxies using broad-band and spectroscopic data. The results can be used to constrain models of galaxy formation in addition to establishing a comprehensive, model-independent, picture of colour and line-index gradients in spiral galaxies. Building upon my Masters study of structural parameters in spiral galaxies, I use the largest collection of multi-band (optical and IR) surface brightness profiles for face-on and moderately-tilted galaxies to extract radial colour profiles. The colour gradients are then translated into age and metallicity gradients by comparison with stellar population synthesis (SPS) models considering a range of star formation histories, including recent bursts. Based on their integrated light, we find that high surface brightness (SB) regions of galaxies formed their stars earlier than lower SB ones, or at a similar epoch but on shorter timescale. At a given SB level, the star formation histories are modulated by the overall potential of the galaxy such that brighter/higher rotational velocity galaxies formed earlier. This formation "down-sizing" implied by our results is inconsistent with current implementations of semi-analytic structure formation models. In order to alleviate concerns that our colour gradients could be affected by dust reddening, we designed a similar spectroscopic investigation and explored the dust sensitivity of absorption-line indices. The latter test makes use of the latest SPS, models incorporating a multi-component model for the line and continuum attenuation due to dust. For quiescent stellar populations (e.g. spheroids and globular clusters), dust extinction effects are small for most indices with the exception of the 4000 Å break. For models with current star formation, many indices may suffer from dust reddening and any departures depend on age, dust distribution, and the effective optical depth. However, a number of useful indices are only weakly affected by dust extinction (especially relative to typical measurement uncertainties), and can thus be safely used in spectroscopic studies of dusty systems. Motivated by our previous results, we embarked on a long-term project to determine age and metallicity gradients from absorption features in spiral galaxy spectra from their centers and extending well into their disks for the first time. A pilot sample of 8 barred and unbarred nearby spiral galaxies was observed with Gemini/GMOS and line indices with S/N > 40 per Å were extracted out to ~1-1.5 disk scale lengths. Emission contamination and a suite of instrumental effects were fully taken into account. Reliable line-indices compared with the latest SPS models reveal that; (i) late-type bulges and inner disks are generally young (light-weighted SSP ages <1 to 6 Gyr) with no age gradients, and (ii) late-type spirals have metallicities close to solar at their center decreasing rapidly outward (with gradients of ~-0.3 to -0.7 dex per r d ). Disk contamination into the bulge is an issue but the inferred young ages exclude the interpretation of early rapid collapse or merger origin of late-type bulges. While secular evolution processes are likely the predominant mechanism for the bulge build-up, the strong observed metallicity gradients are not currently supported by such models. Our analysis has demonstrated the feasibility of age and metallicity determinations from longslit spectroscopy of gas rich, star-forming systems. However, a systematic comparison with galaxy properties requires a larger statistical sample. New GMOS longslit spectra acquired recently will augment our data base and contribute to the build-up of this instrumental data base for the study of bulge and disk formation models.
Stellar populations in spiral galaxies: broadband versus spectroscopic viewpoints
NASA Astrophysics Data System (ADS)
MacArthur, Lauren Anne
2006-06-01
This thesis addresses the stellar population content in the bulges and disks of spiral galaxies using broad-band and spectroscopic data. The results can be used to constrain models of galaxy formation in addition to establishing a comprehensive, model-independent, picture of colour and line-index gradients in spiral galaxies. Building upon my Masters study of structural parameters in spiral galaxies, I use the largest collection of multi-band (optical and IR) surface brightness profiles for face-on and moderately-tilted galaxies to extract radial colour profiles. The colour gradients are then translated into age and metallicity gradients by comparison with stellar population synthesis (SPS) models considering a range of star formation histories, including recent bursts. Based on their integrated light, we find that high surface brightness (SB) regions of galaxies formed their stars earlier than lower SB ones, or at a similar epoch but on shorter timescale. At a given SB level, the star formation histories are modulated by the overall potential of the galaxy such that brighter/higher rotational velocity galaxies formed earlier. This formation "down-sizing" implied by our results is inconsistent with current implementations of semi-analytic structure formation models. In order to alleviate concerns that our colour gradients could be affected by dust reddening, we designed a similar spectroscopic investigation and explored the dust sensitivity of absorption-line indices. The latter test makes use of the latest SPS, models incorporating a multi-component model for the line and continuum attenuation due to dust. For quiescent stellar populations (e.g. spheroids and globular clusters), dust extinction effects are small for most indices with the exception of the 4000 Å break. For models with current star formation, many indices may suffer from dust reddening and any departures depend on age, dust distribution, and the effective optical depth. However, a number of useful indices are only weakly affected by dust extinction (especially relative to typical measurement uncertainties), and can thus be safely used in spectroscopic studies of dusty systems. Motivated by our previous results, we embarked on a long-term project to determine age and metallicity gradients from absorption features in spiral galaxy spectra from their centers and extending well into their disks for the first time. A pilot sample of 8 barred and unbarred nearby spiral galaxies was observed with Gemini/GMOS and line indices with S/N > 40 per Å were extracted out to ~1-1.5 disk scale lengths. Emission contamination and a suite of instrumental effects were fully taken into account. Reliable line-indices compared with the latest SPS models reveal that; (i) late-type bulges and inner disks are generally young (light-weighted SSP ages <= 1 to 6 Gyr) with no age gradients, and (ii) late-type spirals have metallicities close to solar at their center decreasing rapidly outward (with gradients of ~-0.3 to -0.7 dex per r d ). Disk contamination into the bulge is an issue but the inferred young ages exclude the interpretation of early rapid collapse or merger origin of late-type bulges. While secular evolution processes are likely the predominant mechanism for the bulge build-up, the strong observed metallicity gradients are not currently supported by such models. Our analysis has demonstrated the feasibility of age and metallicity determinations from longslit spectroscopy of gas rich, star-forming systems. However, a systematic comparison with galaxy properties requires a larger statistical sample. New GMOS longslit spectra acquired recently will augment our data base and contribute to the build-up of this instrumental data base for the study of bulge and disk formation models.
Formation of Non-symmetric Fractals During the First Stage of Pre-planetesimal Dust Growth
NASA Astrophysics Data System (ADS)
Kempf, S.; Blum, J.; Wurm, G.
It is a generally accepted view that the genesis of a planetary system coincide s with the formation of sun-like young stellar objects surrounded by gaseous disc s. The building blocks of the planetesimals are micron-sized solid particles (the so-called dust) embedded in the gas of the disc. The relevant process for formi ng larger aggregates is the growth due to collisional sticking. For particles to c ollide and stick, a relative velocity component between the grains must be present. In the onset of dust growth, Brownian motion dominates other relative-velocity sources . However, numerically determined time scales of the pure Brownian dust growth are much too large for explaining the formation of planets within the lifetime of a proto-planetary di sc. In order to verify the validity of the theoretical models, the Cosmic Dust Aggr egation Experiment CODAG was developed. It allows to observe the growth of micron-sized dust analogs under astrophysical realistic conditions. Surprisingly, the experi ments showed that at least in the onset of the dust growth needle-like fractal aggreg ates rather than symmetric fractals are formed. Here we discuss the implication of this experimental finding for the pre-planetesimal growth models.
Late formation of silicon carbide in type II supernovae
Liu, Nan; Nittler, Larry R.; Alexander, Conel M. O’D.; Wang, Jianhua
2018-01-01
We have found that individual presolar silicon carbide (SiC) dust grains from supernovae show a positive correlation between 49Ti and 28Si excesses, which is attributed to the radioactive decay of the short-lived (t½ = 330 days) 49V to 49Ti in the inner highly 28Si-rich Si/S zone. The 49V-49Ti chronometer shows that these supernova SiC dust grains formed at least 2 years after their parent stars exploded. This result supports recent dust condensation calculations that predict a delayed formation of carbonaceous and SiC grains in supernovae. The astronomical observation of continuous buildup of dust in supernovae over several years can, therefore, be interpreted as a growing addition of C-rich dust to the dust reservoir in supernovae. PMID:29376119
Theoretical Studies of Dust in the Galactic Environment: Some Recent Advances
NASA Technical Reports Server (NTRS)
Leung, Chun Ming
1995-01-01
Dust grains, although a minor constituent, play a very important role in the thermodynamics and evolution of many astronomical objects, e.g., young and evolved stars, nebulae, interstellar clouds, and nuclei of some galaxies. Since the birth of infrared astronomy over two decades ago, significant progress has been made not only in the observations of galactic dust, but also in the theoretical studies of phenomena involving dust grains. Models with increasing degree of sophistication and physical realism (in terms of grain properties, dust formation, emission processes, and grain alignment mechanisms) have become available. Here I review recent progress made in the following areas: (1) Extinction and emission of fractal grains. (2) Dust formation in radiation-driven outflows of evolved stars. (3) Transient heating and emission of very small dust grains. Where appropriate, relevant modeling results are presented and observational implications emphasized.
Chemistry in the circumstellar medium. Unveiling the dust formation zone
NASA Astrophysics Data System (ADS)
Millar, T. J.
2008-01-01
The growth of dust grains in the inner regions of late-type stars is shrouded in mystery due to the difficulty of understanding the growth of heterogeneous particles from simple atoms and molecules and the lack of observational data. This article reviews the molecular processes important in circumstellar envelopes and discusses how ALMA might be used to probe the dust formation zone either directly or indirectly.
Dust was collected over a period of several weeks in 2007 from HEPA filters in the U.S. Laboratory Module of the International Space Station (ISS). The dust was returned on the Space Shuttle Atlantis, mixed, sieved, and the DNA was extracted. Using a DNA-based method called mo...
Dust was collected over a period of several weeks in 2007 from HEPA filters in the U.S. Laboratory Module of the International Space Station (ISS). The dust was returned on the Space Shuttle Atlantis, mixed, sieved, and the DNA was extracted. Using a DNA-based method called mol...
Simulating the impact of dust cooling on the statistical properties of the intra-cluster medium
NASA Astrophysics Data System (ADS)
Pointecouteau, Etienne; da Silva, Antonio; Catalano, Andrea; Montier, Ludovic; Lanoux, Joseph; Roncarelli, Mauro; Giard, Martin
2009-08-01
From the first stages of star and galaxy formation, non-gravitational processes such as ram pressure stripping, SNs, galactic winds, AGNs, galaxy-galaxy mergers, etc. lead to the enrichment of the IGM in stars, metals as well as dust, via the ejection of galactic material into the IGM. We know now that these processes shape, side by side with gravitation, the formation and the evolution of structures. We present here hydrodynamic simulations of structure formation implementing the effect of the cooling by dust on large scale structure formation. We focus on the scale of galaxy clusters and study the statistical properties of clusters. Here, we present our results on the TX-M and the LX-M scaling relations which exhibit changes on both the slope and normalization when adding cooling by dust to the standard radiative cooling model. For example, the normalization of the TX-M relation changes only by a maximum of 2% at M=1014M⊙ whereas the normalization of the LX-TX changes by as much as 10% at TX=1keV for models that including dust cooling. Our study shows that the dust is an added non-gravitational process that contributes shaping the thermodynamical state of the hot ICM gas.
Development of Modal Aerosol Module in CAM5 for Biogeochemical Cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaohong
2017-11-18
This project aims at developing new capabilities for the Modal Aerosol Module in the DOE’s E3SM model with the applications to the global biogeochemical cycle. The impacts of the new developments on model simulations of clouds and climate will be examined. There are thee objectives for this project study: Implementing primary marine organic aerosols into the modal aerosol module (MAM) and investigate effects of primary marine organic aerosols on climate in E3SM; Implementing dust speciation in MAM and investigate the effect of dust species on mixed-phase clouds through indirect effects in E3SM; Writing papers documenting the new MAM developments (e.g.,more » MAM4 documentation paper, marine organic aerosol paper, dust speciation); These objectives will be accomplished in collaborations with Drs. Phil Rasch, Steve Ghan, and Susannah Burrows at Pacific Northwest National Laboratory.« less
Spatial distribution of dust in galaxies from the Integral field unit data
NASA Astrophysics Data System (ADS)
Zafar, Tayyaba; Sophie Dubber, Andrew Hopkins
2018-01-01
An important characteristic of the dust is it can be used as a tracer of stars (and gas) and tell us about the composition of galaxies. Sub-mm and infrared studies can accurately determine the total dust mass and its spatial distribution in massive, bright galaxies. However, faint and distant galaxies are hampered by resolution to dust spatial dust distribution. In the era of integral-field spectrographs (IFS), Balmer decrement is a useful quantity to infer the spatial extent of the dust in distant and low-mass galaxies. We conducted a study to estimate the spatial distribution of dust using the Sydney-Australian Astronomical Observatory (AAO) Multi-object Integral field spectrograph (SAMI) galaxies. Our methodology is unique to exploit the potential of IFS and using the spatial and spectral information together to study dust in galaxies of various morphological types. The spatial extent and content of dust are compared with the star-formation rate, reddening, and inclination of galaxies. We find a right correlation of dust spatial extent with the star-formation rate. The results also indicate a decrease in dust extent radius from Late Spirals to Early Spirals.
Dust devil track survey at Elysium Planitia, Mars: Implications for the InSight landing sites
NASA Astrophysics Data System (ADS)
Reiss, Dennis; Lorenz, Ralph D.
2016-03-01
The InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) robotic lander is scheduled to land in Elysium Planitia on Mars in September 2016. InSight will perform the first comprehensive surface-based geophysical investigation including seismic measurements. Knowledge about encounter rates of dust devils with the InSight lander are important for two main reasons: (1) dust devils will affect the scientific measurements, i.e., wind-induced seismic noise, and (2) the power-supply of the InSight lander and instruments is provided by solar arrays and previous landers and rovers on Mars were affected by a steady decline in electrical power output due to atmospheric dust deposition on the solar panels. Long term science operations were only made possible by dust clearing events of the solar arrays caused by wind gusts and dust devils. In this study we analyzed dust devil tracks (DDTs) at the final InSight landing site region in Elysium Planitia. Formation of DDTs is caused by the removal of a layer of dust by passing dust devils, hence in principle the same process as clearing of dust from solar panels. We mapped the number, size (width and length), and orientation of DDTs in repeat observations using High Resolution Imaging Science Experiment (HiRISE) images covering the exact same surface area acquired within a relatively short time span (<90 martian days). In total, we analyzed 557 newly formed dust devil tracks in 8 study areas. DDTs are morphologically relatively straight with a low mean sinuosity of 1.03 and only reach maximum widths of 30 m. The mean DDT width is 4 m, indicating that the dust devil size population is dominated by small dust devils with a diameter <10 m. The size-frequency distribution of DDTs follows a -2 power law. The mean lengths of DDTs are 0.62 km and 1.23 km for complete (tracks which are visible from their start to end point) and incomplete DDTs (tracks running across the HiRISE footprint), respectively. The alignment of DDTs in combination with Mars Climate Database (MCD) predicted wind directions imply that dust devils are moving from SE to NW until early northern autumn with a reversal to NW-SE directions of movement at LS = 200° consistent with the seasonal reversal in direction of the Hadley circulation. DDT formation rates vary between 0.002 and 0.08 ddt km-2 sol-1. DDT area formation rates using the measured DDT widths, lengths, and formation rates are in the range of 0.0003-0.00006 km2 km-2 sol-1, implying that a given spot on the surface may be cleared of dust only once between ∼3000 and 16,000 sols (i.e. every ∼5-24 Mars years). Measured DDT formation rates were used to find a scaling factor to the seasonal DDA index, and then integrated over the year to estimate a mean annual DDT formation rate of 0.046 ddt km-2 sol-1. This translates into a solar panel clearing recurrence interval estimate of ∼11 Mars years using the mean annual DDT formation rate, and the mean DDT width and length from all measured DDTs. Due to several uncertainties this solar panel clearing recurrence interval for the InSight landing should be seen as an upper limit estimate.
Satellitesimal Formation via Collisional Dust Growth in Steady Circumplanetary Disks
NASA Astrophysics Data System (ADS)
Shibaike, Yuhito; Okuzumi, Satoshi; Sasaki, Takanori; Ida, Shigeru
2017-09-01
The icy satellites around Jupiter are considered to have formed in a circumplanetary disk. While previous models have focused on the formation of the satellites starting from satellitesimals, the question of how satellitesimals themselves form from smaller dust particles has not yet been addressed. In this work, we study the possibility that satellitesimals form in situ in a circumplanetary disk. We calculate the radial distribution of the surface density and representative size of icy dust particles that grow by colliding with each other and drift toward the central planet in a steady circumplanetary disk with a continuous supply of gas and dust from the parent protoplanetary disk. The radial drift barrier is overcome if the ratio of the dust-to-gas accretion rates onto the circumplanetary disk, {\\dot{M}}{{d}}/{\\dot{M}}{{g}}, is high and the strength of turbulence, α, is not too low. The collision velocity is lower than the critical velocity of fragmentation when α is low. Taken together, we find that the conditions for satellitesimal formation via dust coagulation are given by {\\dot{M}}{{d}}/{\\dot{M}}{{g}}≥slant 1 and {10}-4≤slant α < {10}-2. The former condition is generally difficult to achieve, suggesting that the in situ satellitesimal formation via particle sticking is viable only under extreme conditions. We also show that neither satellitesimal formation via the collisional growth of porous aggregates nor via streaming instability is viable as long as {\\dot{M}}{{d}}/{\\dot{M}}{{g}} is low.
NASA Technical Reports Server (NTRS)
Price, Sedona H.; Kriek, Mariska; Brammer, Gabriel B; Conroy, Charlie; Schreiber, Natascha M. Foerster; Franx, Marijn; Fumagalli, Mattia; Lundren, Britt; Momcheva, Ivelina; Nelson, Erica J.;
2013-01-01
The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust towards star-forming regions (measured using Balmer decrements) and the integrated dust properties (derived by comparing spectral energy distributions [SEDs] with stellar population and dust models) for a statistically significant sample of distant galaxies. We select a sample of 163 galaxies between 1.36< or = z< or = 1.5 with H(alpha) SNR > or = 5 and measure Balmer decrements from stacked spectra. First, we stack spectra in bins of integrated stellar dust attenuation, and find that there is extra dust extinction towards star-forming regions (AV,HII is 1.81 times the integrated AV, star), though slightly lower than found for low-redshift starburst galaxies. Next, we stack spectra in bins of specific star formation rate (log sSFR), star formation rate (log SFR), and stellar mass (logM*). We find that on average AV,HII increases with SFR and mass, but decreases with increasing sSFR. The amount of extra extinction also decreases with increasing sSFR and decreasing stellar mass. Our results are consistent with the two-phase dust model - in which galaxies contain both a diffuse and a stellar birth cloud dust component - as the extra extinction will increase once older stars outside the star-forming regions become more dominant. Finally, using our Balmer decrements we derive dust-corrected H(alpha) SFRs, and find evidence that SED fitting produces incorrect SFRs if very rapidly declining SFHs are included in the explored parameter space. Subject headings: dust, extinction- galaxies: evolution- galaxies: high-redshift
Study of 1 MW PV array at the Kennedy Space Center
NASA Astrophysics Data System (ADS)
Dhere, Neelkanth G.; Schneller, Eric; Martin, Wayne R.; Dhere, Ramesh G.
2016-09-01
FP and L has deployed a 1 MW c-Si in a fenced compound at the Kennedy Space Center. Two 500 kW inverters located in an elevated and air-conditioned enclosure convert direct current (DC) to alternating current (AC). The generated power, DC and AC voltages and currents are measured and recorded. Charts of variation of PV parameters are generated for analyses. The generated power is also tabulated and reported on periodic basis. Infrared and visual images of the array, sections of the array, and of individual modules from the front and back are recorded periodically. Any interruption of power generation are recorded. The dust and corrosion on screws and frame were observed in a few modules. The temperature of active area of module is higher than that of metallic support and frame probably because of conduction of the heat by the heavy metallic structure. The 1-MW PV array is operating normally without signs of excessive degradation except for collection of dust towards the bottom of a few modules. Since these modules were not washed periodically and any cleaning was by rain. Thus the collection of dust towards the bottom of modules can be understood and does not pose a serious problem. Corrosion on screws and frame were observed in a few modules. This study if continued over a long time, will serve to follow the behavior of this reasonable size PV Plant.
Dust-forming molecules in VY Canis Majoris (and Betelgeuse)
NASA Astrophysics Data System (ADS)
Kamiński, T.; Gottlieb, C. A.; Schmidt, M. R.; Patel, N. A.; Young, K. H.; Menten, K. M.; Brünken, S.; Müller, H. S. P.; Winters, J. M.; McCarthy, M. C.
2013-05-01
The formation of inorganic dust in circumstellar environments of evolved stars is poorly understood. Spectra of molecules thought to be most important for the nucleation, i.e. AlO, TiO, and TiO2, have been recently detected in the red supergiant VY CMa. These molecules are effectively formed in VY CMa and the observations suggest that non-equilibrium chemistry must be involved in their formation and nucleation into dust. In addition to exploring the recent observations of VY CMa, we briefly discuss the possibility of detecting these molecules in the "dust-poor" circumstellar environment of Betelgeuse.
Lunar Dust Separation for Toxicology Studies
NASA Technical Reports Server (NTRS)
Cooper, Bonnie L.; McKay, D. S.; Riofrio, L. M.; Taylor, L. A.; Gonzalex, C. P.
2010-01-01
During the Apollo missions, crewmembers were briefly exposed to dust in the lunar module, brought in after extravehicular activity. When the lunar ascent module returned to micro-gravity, the dust that had settled on the floor now floated into the air, causing eye discomfort and occasional respiratory symptoms. Because our goal is to set an exposure standard for 6 months of episodic exposure to lunar dust for crew on the lunar surface, these brief exposures of a few days are not conclusive. Based on experience with industrial minerals such as sandblasting quartz, an exposure of several months may cause serious damage, while a short exposure may cause none. The detailed characteristics of sub-micrometer lunar dust are only poorly known, and this is the size range of particles that are of greatest concern. We have developed a method for extracting respirable dust (<2.5 micron) from Apollo lunar soils. This method meets stringent requirements that the soil must be kept dry, exposed only to pure nitrogen, and must conserve and recover the maximum amount of both respirable dust and coarser soil. In addition, we have developed a method for grinding coarser lunar soil to produce sufficient respirable soil for animal toxicity testing while preserving the freshly exposed grain surfaces in a pristine state.
The Evolution of Metals and Dust in the High-Redshift Universe (z greater than 6)
NASA Technical Reports Server (NTRS)
Dwek, Eliahu
2007-01-01
Dusty hyperluminous galaxies in the early universe provide unique environments for studying the role of massive stars in the formation and destruction of dust. At redshifts above approx. 6, when the universe was less than approx. 1 Gyr old, dust could have only condensed in the explosive ejecta of Type-II supernovae (SNe), since most of the progenitors of the AGB stars, the major alternative source of interstellar dust, did not have time to evolve off the main sequence. I will present analytical models for the evolution of the gas, dust, and metals in high redshift galaxies, with a special application to SDSS J1148+5251, a hyperluminous quasar at $z = 6.4$. I will also discuss possible star formation scenarios consistent with observational constraints on the dust and gas content of this object.
Structures and dynamics in a two-dimensional dipolar dust particle system
NASA Astrophysics Data System (ADS)
Hou, X. N.; Liu, Y. H.; Kravchenko, O. V.; Lapushkina, T. A.; Azarova, O. A.; Chen, Z. Y.; Huang, F.
2018-05-01
The effects of electric dipole moment, the number of dipolar particles, and system temperature on the structures and dynamics of a dipolar dust particle system are studied by molecular dynamics simulations. The results show that the larger electric dipole moment is favorable for the formation of a long-chain structure, the larger number of dipolar dust particles promotes the formation of the multi-chain structure, and the higher system temperature can cause higher rotation frequency. The trajectories, mean square displacement (MSD), and the corresponding spectrum functions of the MSDs are also calculated to illustrate the dynamics of the dipolar dust particle system, which is also closely related to the growth of dust particles. Some simulations are qualitatively in agreement with our experiments and can provide a guide for the study on dust growth, especially on the large-sized particles.
NASA Technical Reports Server (NTRS)
Kahre, M. A.
2015-01-01
The dust and water cycles are crucial to the current Martian climate, and they are coupled through cloud formation. Dust strongly impacts the thermal structure of the atmosphere and thus greatly affects atmospheric circulation, while clouds provide radiative forcing and control the hemispheric exchange of water through the modification of the vertical distributions of water and dust. Recent improvements in the quality and sophistication of both observations and climate models allow for a more comprehensive understanding of how the interaction between the dust and water cycles (through cloud formation) affects the dust and water cycles individually. We focus here on the effects of clouds on the vertical distribution of dust and water, and how those vertical distributions control the net meridional transport of water. For this study, we utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) combined with the NASA ARC Mars Global Climate Model (MGCM). We demonstrate that the magnitude and nature of the net meridional transport of water between the northern and southern hemispheres during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. We further examine how clouds influence the atmospheric thermal structure and thus the vertical structure of the cloud belt. Our goal is to identify and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.
The Role of Jet Adjustment Processes in Subtropical Dust Storms
NASA Astrophysics Data System (ADS)
Pokharel, Ashok Kumar; Kaplan, Michael L.; Fiedler, Stephanie
2017-11-01
Meso-α/β/γ scale atmospheric processes of jet dynamics responsible for generating Harmattan, Saudi Arabian, and Bodélé Depression dust storms are analyzed with observations and high-resolution modeling. The analysis of the role of jet adjustment processes in each dust storm shows similarities as follows: (1) the presence of a well-organized baroclinic synoptic scale system, (2) cross mountain flows that produced a leeside inversion layer prior to the large-scale dust storm, (3) the presence of thermal wind imbalance in the exit region of the midtropospheric jet streak in the lee of the respective mountains shortly after the time of the inversion formation, (4) dust storm formation accompanied by large magnitude ageostrophic isallobaric low-level winds as part of the meso-β scale adjustment process, (5) substantial low-level turbulence kinetic energy (TKE), and (6) emission and uplift of mineral dust in the lee of nearby mountains. The thermally forced meso-γ scale adjustment processes, which occurred in the canyons/small valleys, may have been the cause of numerous observed dust streaks leading to the entry of the dust into the atmosphere due to the presence of significant vertical motion and TKE generation. This study points to the importance of meso-β to meso-γ scale adjustment processes at low atmospheric levels due to an imbalance within the exit region of an upper level jet streak for the formation of severe dust storms. The low level TKE, which is one of the prerequisites to deflate the dust from the surface, cannot be detected with the low resolution data sets; so our results show that a high spatial resolution is required for better representing TKE as a proxy for dust emission.
NASA Technical Reports Server (NTRS)
Dwek, Eli; Cherchneff, Isabelle
2010-01-01
Two distinct scenarios for the origin of the approximately 4 x 10(exp 8) Solar Mass of dust observed in the high-redshift (z = 6.4) quasar J1148+5251 have been proposed. The first assumes that this galaxy is much younger than the age of the universe at that epoch so that only supernovae, could have produced this dust. The second scenario assumes a significantly older galactic age, so that the dust could have formed in lower-mass AGB stars. Presenting new integral solutions for the chemical evolution of metals and dust in galaxies, we offer a critical evaluation of these two scenarios. ^N;"(,, show that the AGB scenario is sensitive to the details of the galaxy's star formation history (SFH), which must consist of an early intense starburst followed by a period of low stellar activity. The presence or absence of massive amounts of dust in high-redshift galaxies can therefore be used to infer their SFH. However, a problem with the AGB scenario is that it produces a stellar mass that is significantly larger than the inferred dynamical mass of J1148+5251, an yet unresolved discrepancy. If this problem persists, then additional sites for the growth or formation of dust, such as molecular clouds or dense clouds around active galactic nuclei, must be considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zahid, H. J.; Kewley, L. J.; Kudritzki, R. P.
In this study, we investigate the relation between stellar mass, dust extinction, and star formation rate (SFR) using {approx}150,000 star-forming galaxies from SDSS DR7. We show that the relation between dust extinction and SFR changes with stellar mass. For galaxies at the same stellar mass, dust extinction is anti-correlated with the SFR at stellar masses <10{sup 10} M {sub Sun }. There is a sharp transition in the relation at a stellar mass of 10{sup 10} M {sub Sun }. At larger stellar masses, dust extinction is positively correlated with the SFR for galaxies at the same stellar mass. Themore » observed relation between stellar mass, dust extinction, and SFR presented in this study helps to confirm similar trends observed in the relation between stellar mass, metallicity, and SFR. The relation reported in this study provides important new constraints on the physical processes governing the chemical evolution of galaxies. The correlation between SFR and dust extinction for galaxies with stellar masses >10{sup 10} M {sub Sun} is shown to extend to the population of quiescent galaxies suggesting that the physical processes responsible for the observed relation between stellar mass, dust extinction, and SFR may be related to the processes leading to the shutdown of star formation in galaxies.« less
NASA Astrophysics Data System (ADS)
Levasseur-Regourd, Anny-Chantal; Agarwal, Jessica; Cottin, Hervé; Engrand, Cécile; Flynn, George; Fulle, Marco; Gombosi, Tamas; Langevin, Yves; Lasue, Jérémie; Mannel, Thurid; Merouane, Sihane; Poch, Olivier; Thomas, Nicolas; Westphal, Andrew
2018-04-01
This review presents our understanding of cometary dust at the end of 2017. For decades, insight about the dust ejected by nuclei of comets had stemmed from remote observations from Earth or Earth's orbit, and from flybys, including the samples of dust returned to Earth for laboratory studies by the Stardust return capsule. The long-duration Rosetta mission has recently provided a huge and unique amount of data, obtained using numerous instruments, including innovative dust instruments, over a wide range of distances from the Sun and from the nucleus. The diverse approaches available to study dust in comets, together with the related theoretical and experimental studies, provide evidence of the composition and physical properties of dust particles, e.g., the presence of a large fraction of carbon in macromolecules, and of aggregates on a wide range of scales. The results have opened vivid discussions on the variety of dust-release processes and on the diversity of dust properties in comets, as well as on the formation of cometary dust, and on its presence in the near-Earth interplanetary medium. These discussions stress the significance of future explorations as a way to decipher the formation and evolution of our Solar System.
Protoplanetary Disks and Planet Formation a Computational Perspective
NASA Astrophysics Data System (ADS)
Backus, Isaac
In this thesis I present my research on the early stages of planet formation. Using advanced computational modeling techniques, I study global gas and gravitational dynamics in proto- planetary disks (PPDs) on length scales from the radius of Jupiter to the size of the solar system. In that environment, I investigate the formation of gas giants and the migration, enhancement, and distribution of small solids--the precursors to planetesimals and gas giant cores. I examine numerical techniques used in planet formation and PPD modeling, especially methods for generating initial conditions (ICs) in these unstable, chaotic systems. Disk simulation outcomes may depend strongly on ICs, which may explain results in the literature. I present the largest suite of high resolution PPD simulations to-date and argue that direct fragmentations of PPDs around M-Dwarfs is a plausible path to rapidly forming gas giants. I implement dust physics to track the migration of centimeter and smaller dust grains in very high resolution PPD simulations. While current dust methods are slow, with strict resolution and/or time-stepping requirements, and have some serious numerical issues, we can still demonstrate that dust does not concentrate at the pressure maxima of spiral arms, an indication that spiral features observed in the dust component are at least as well resolved in the gas. Additionally, coherent spiral arms do not limit dust settling. We suggest a novel mechanism for disk fragmentation at large radii driven by dust accretion from the surrounding nebula. We also investigate self induced dust traps, a mechanism which may help explain the growth of solids beyond meter sizes. We argue that current apparent demonstrations of this mechanism may be due to numerical artifacts and require further investigation.
NASA Astrophysics Data System (ADS)
Brunken, S.; Muller, H. S. P.; Kaminski, T.; Menten, K. M.; Gott-Lieb, C. A.; Patel, N. A.; Young, K. H.; McCarthy, M. C.; Winters, J. M.; Decin, L.
2013-06-01
Circumstellar envelopes around late-type stars harbour a rich variety of molecular gas and copious amounts of dust, originating from the mass-loss of the central star during the asymptotic giant branch (AGB) or the red supergiant phase. The formation of dust in these objects, in particular the first nucleation stages out of gas phase molecules, is still poorly understood. Here we report the first detection of pure rotational transitions of the two simplest titanium oxides, TiO and TiO_2, towards the oxygen-rich red supergiant VY Canis Majoris (VY CMa). This actually represents the first secure identification of TiO_2 in space. Observations of several rotational emission lines of both species with the Submillimeter Array (SMA) in the 345 GHz-band and with the IRAM Plateau de Bure Interferometer (PdBI) around 220 GHz confirm the presence of these refractory species in the cool (<1000 K) circumstellar envelope in a region several times the size of the dust formation zone. The role of Ti oxides as "seeds" of inorganic dust formation in oxygen-rich circumstellar envelopes will be discussed in view of the present observations.
Orbital Observations of Dust Lofted by Daytime Convective Turbulence
NASA Astrophysics Data System (ADS)
Fenton, Lori; Reiss, Dennis; Lemmon, Mark; Marticorena, Béatrice; Lewis, Stephen; Cantor, Bruce
2016-11-01
Over the past several decades, orbital observations of lofted dust have revealed the importance of mineral aerosols as a climate forcing mechanism on both Earth and Mars. Increasingly detailed and diverse data sets have provided an ever-improving understanding of dust sources, transport pathways, and sinks on both planets, but the role of dust in modulating atmospheric processes is complex and not always well understood. We present a review of orbital observations of entrained dust on Earth and Mars, particularly that produced by the dust-laden structures produced by daytime convective turbulence called "dust devils". On Earth, dust devils are thought to contribute only a small fraction of the atmospheric dust budget; accordingly, there are not yet any published accounts of their occurrence from orbit. In contrast, dust devils on Mars are thought to account for several tens of percent of the planet's atmospheric dust budget; the literature regarding martian dust devils is quite rich. Because terrestrial dust devils may temporarily contribute significantly to local dust loading and lowered air quality, we suggest that martian dust devil studies may inform future studies of convectively-lofted dust on Earth.
VLTI monitoring of the dust formation event of the Nova V1280 Scorpii
NASA Astrophysics Data System (ADS)
Chesneau, O.; Banerjee, D. P. K.; Millour, F.; Nardetto, N.; Sacuto, S.; Spang, A.; Wittkowski, M.; Ashok, N. M.; Das, R. K.; Hummel, C.; Kraus, S.; Lagadec, E.; Morel, S.; Petr-Gotzens, M.; Rantakyro, F.; Schöller, M.
2008-08-01
Context: We present the first high spatial-resolution monitoring of the dust-forming nova V1280 Sco, performed with the Very Large Telescope Interferometer (VLTI). Aims: These observations promise to improve the distance determination of such events and constrain the mechanisms leading to very efficient dust formation under the harsh physical conditions encountered in novae ejecta. Methods: Spectra and visibilities were regularly acquired between the onset of dust formation, 23 days after discovery (or 11 days after maximum), and day 145, using the beam-combiner instruments AMBER (near-IR) and MIDI (mid-IR). These interferometric observations were complemented by near-infrared data from the 1.2 m Mt. Abu Infrared Observatory, India. The observations are initially interpreted in terms of simple uniform models; however more complex models, probably involving a second shell, are required to explain data acquired following t=110 d after outburst. This behavior is in accordance with the light curve of V1280 Sco, which exhibits a secondary peak at about t=106 d, followed by a new, steep decline, suggesting a new dust-forming event. Spherical dust shell models generated with the DUSTY code are used to investigate the parameters of the main dust shell. Results: Using uniform disk models, these observations allow us to determine an apparent linear expansion rate for the dust shell of 0.35 ± 0.03 mas day-1 and the approximate ejection time of the matter in which dust formed of t_ejec = 10.5 ± 7 d, i.e. close to the maximum brightness. This information, combined with the expansion velocity of 500 ± 100 km s-1, implies a distance estimate of 1.6 ± 0.4 kpc. The sparse uv coverage does not enable deviations from spherical symmetry to be clearly discerned. The dust envelope parameters were determined. The dust mass generated was typically 2-8 × 10-9 M_⊙ day-1, with a probable peak in production at about 20 days after the detection of dust and another peak shortly after t=110 d, when the amount of dust in the shell was estimated as 2.2 × 10-7 M_⊙. Considering that the dust-forming event lasted at least 200-250 d, the mass of the ejected material is likely to have exceeded 10-4 M_⊙. The conditions for the formation of multiple shells of dust are also discussed. Based on observations made with the Very Large Telescope Interferometer at Paranal Observatory under programs 278.D-5053, 279.D-5014 and 079.D-0415.
NASA Technical Reports Server (NTRS)
Salama, F.; Biennier, L.
2004-01-01
The study of the formation and destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic molecules. interstellar dust presents a continuous size distribution from large molecules, radicals and ions to nanometer-sized particles to micron-sized grains. The lower end of the dust size distribution is thought to be responsible for the ubiquitous spectral features that are seen in emission in the IR (UIBs) and in absorption in the visible (DIBs). The higher end of the dust-size distribution is thought to be responsible for the continuum emission plateau that is seen in the IR and for the strong absorption seen in the interstellar UV extinction curve. All these spectral signatures are characteristic of cosmic organic materials that are ubiquitous and present in various forms from gas-phase molecules to solid-state grains. Although dust with all its components plays an important role in the evolution of interstellar chemistry and in the formation of organic molecules, little is known on the formation and destruction processes of dust. Recent space observations in the UV (HST) and in the IR (ISO) help place size constraints on the molecular component of carbonaceous IS dust and indicate that small (ie., subnanometer) PAHs cannot contribute significantly to the IS features in the UV and in the IR. Studies of large molecular and nano-sized IS dust analogs formed from PAH precursors have been performed in our laboratory under conditions that simulate diffuse ISM environments (the particles are cold -100 K vibrational energy, isolated in the gas phase and exposed to a high-energy discharge environment in a cold plasma). The species (molecules, molecular fragments, ions, nanoparticles, etc) formed in the pulsed discharge nozzle (PDN) plasma source are detected with a high-sensitivity cavity ring-down spectrometer (CRDS). We will present new experimental results that indicate that nanoparticles are generated in the plasma. From these unique measurements, we derive information on the nature, the size and the structure of interstellar dust particles, the growth and the destruction processes of IS dust and the resulting budget of extraterrestrial organic molecules.
NASA Technical Reports Server (NTRS)
Rucker, Michelle a.
2009-01-01
This slide presentation explores some of the issues that concern the engineers and planners of the Altair Lunar landing module. Particular attention is paid to the issues concerning Lunar dust, and attempts that will be made to test the Altair systems using Lunar dust simulants.
Condition for dust evacuation from the first galaxies
NASA Astrophysics Data System (ADS)
Fukushima, Hajime; Yajima, Hidenobu; Omukai, Kazuyuki
2018-06-01
Dust enables low-mass stars to form from low-metallicity gas by inducing fragmentation of clouds via cooling by thermal emission. Dust may, however, be evacuated from star-forming clouds due to the radiation force from massive stars. We study here the condition for dust evacuation by comparing the dust evacuation time with the time of cloud destruction due to either expansion of H II regions or supernovae. The cloud destruction time has a weak dependence on cloud radius, while the dust evacuation time is shorter for a cloud with a smaller radius. Dust evacuation, thus, occurs in compact star-forming clouds whose column density is NH ≃ 1024-1026 cm-2. The critical halo mass above which dust evacuation occurs is lower for higher formation red shift, e.g. ˜109 M⊙ at red shift z ˜ 3 and ˜107 M⊙ at z ˜ 9. In addition, the metallicity of the gas should be less than ˜10-2 Z⊙, otherwise attenuation by dust reduces the radiation force significantly. From the dust-evacuated gas, massive stars are likely to form, even with a metallicity above ˜10-5 Z⊙, the critical value for low-mass star formation due to dust cooling. This can explain the dearth of ultra-metal-poor stars with a metallicity lower than ˜10-4 Z⊙.
Eta Carinae and Its Ejecta, the Homunculus
NASA Technical Reports Server (NTRS)
Gull, Theodore R.
2014-01-01
Eta Carinae (Eta Car), its interacting winds and historical ejecta provide an unique astrophysical laboratory that permits addressing a multitude of questions ranging from stellar evolution, colliding winds, chemical enrichment, nebular excitation to the formation of molecules and dust. Every 5.54 years, Eta Car changes from high excitation to several-months-long low excitation caused by modulation of the massive interacting winds due to a very eccentric binary orbit. The surrounding Homunculus (Figure 1) and Little Homunculus, thrown out in the 1840s Great Eruption and the 1890s Lesser Eruption, respond to the changing flux, providing clues to many physical phenomena of great interest to astrophysicists.
Dust around the Cool Component of D-Type Symbiotic Binaries
NASA Astrophysics Data System (ADS)
Jurkic, Tomislav; Kotnik-Karuza, Dubravka
2018-04-01
D type symbiotic binaries are an excellent astrophysical laboratory for investigation of the dust properties and dust formation under the influence of theMira stellar wind and nova activity and of the mass loss and mass transfer between components in such a widely separated system. We present a study of the properties of circumstellar dust in symbiotic Miras by use of long-term near-IR photometry and colour indices. The published JHKL magnitudes of o Ceti, RX Pup, KM Vel, V366 Car, V835 Cen, RR Tel, HM Sge and R Aqr have been collected, analyzed and corrected for short-term variations caused by Mira pulsations. Assuming spherical temperature distribution of the dust in the close neighbourhood of the Mira, the DUSTY code was used to solve the radiative transfer in order to determine the dust temperature and its properties in each particular case. Common dust properties of the symbiotic Miras have been found, suggesting similar conditions in the condensation region of the studied symbiotic Miras. Silicate dust with the inner dust shell radius determined by the dust condensation and with the dust temperature of 900-1200 K can fully explain the observed colour indices. R Aqr is an exception and showed lower dust temperature of 650 K. Obscuration events visible in light curves can be explained by variable dust optical depth with minimal variations of other dust properties. More active symbioticMiras that underwent recent nova outbursts showed higher dust optical depths and larger maximum grain sizes of the order of μm, which means that the post-nova activity could stimulate the dust formation and the grain growth. Optically thicker dust shells and higher dust condensation temperatures have been found in symbiotic Miras compared to their single counterparts, suggesting different conditions for dust production.
A Submillimeter Survey of Dust Continuum Emission in Local Dust-Obscured Galaxies
NASA Astrophysics Data System (ADS)
Lee, Jong Chul; Hwang, Ho Seong; Lee, Gwang-Ho
2015-08-01
Dusty star-forming galaxies are responsible for the bulk of cosmic star formation at 1
NASA Astrophysics Data System (ADS)
Blum, Jürgen
2018-03-01
After 25 years of laboratory research on protoplanetary dust agglomeration, a consistent picture of the various processes that involve colliding dust aggregates has emerged. Besides sticking, bouncing and fragmentation, other effects, like, e.g., erosion or mass transfer, have now been extensively studied. Coagulation simulations consistently show that μm-sized dust grains can grow to mm- to cm-sized aggregates before they encounter the bouncing barrier, whereas sub-μm-sized water-ice particles can directly grow to planetesimal sizes. For siliceous materials, other processes have to be responsible for turning the dust aggregates into planetesimals. In this article, these processes are discussed, the physical properties of the emerging dusty or icy planetesimals are presented and compared to empirical evidence from within and without the Solar System. In conclusion, the formation of planetesimals by a gravitational collapse of dust "pebbles" seems the most likely.
Cosmological simulation with dust formation and destruction
NASA Astrophysics Data System (ADS)
Aoyama, Shohei; Hou, Kuan-Chou; Hirashita, Hiroyuki; Nagamine, Kentaro; Shimizu, Ikkoh
2018-06-01
To investigate the evolution of dust in a cosmological volume, we perform hydrodynamic simulations, in which the enrichment of metals and dust is treated self-consistently with star formation and stellar feedback. We consider dust evolution driven by dust production in stellar ejecta, dust destruction by sputtering, grain growth by accretion and coagulation, and grain disruption by shattering, and treat small and large grains separately to trace the grain size distribution. After confirming that our model nicely reproduces the observed relation between dust-to-gas ratio and metallicity for nearby galaxies, we concentrate on the dust abundance over the cosmological volume in this paper. The comoving dust mass density has a peak at redshift z ˜ 1-2, coincident with the observationally suggested dustiest epoch in the Universe. In the local Universe, roughly 10 per cent of the dust is contained in the intergalactic medium (IGM), where only 1/3-1/4 of the dust survives against dust destruction by sputtering. We also show that the dust mass function is roughly reproduced at ≲ 108 M⊙, while the massive end still has a discrepancy, which indicates the necessity of stronger feedback in massive galaxies. In addition, our model broadly reproduces the observed radial profile of dust surface density in the circum-galactic medium (CGM). While our model satisfies the observational constraints for the dust extinction on cosmological scales, it predicts that the dust in the CGM and IGM is dominated by large (>0.03 μm) grains, which is in tension with the steep reddening curves observed in the CGM.
AGN contamination in total infrared determined star formation rates in dusty galaxies at z~2-3
NASA Astrophysics Data System (ADS)
Mazzei, Renato; Sharon, Chelsea E.; Riechers, Dominik
2017-01-01
Along with theoretical work that suggests feedback from active galactic nuclei (AGN) may quench star formation in massive galaxies, the temporal coincidence between the peak of cosmic star formation rates and black hole accretion rates suggests that AGN are common in star forming galaxies at z~2-3. Since star forming galaxies at these epochs are also very dusty, it is important that we correct galaxies’ long-wavelength properties for the presence of dust-obscured AGN in order to accurately capture their star formation rates and gas characteristics. We present a spectral energy distribution (SED) analysis of several un-lensed z~2-3 dusty star-forming galaxies from Pope et al. (2008) and Coppin et al. (2010), which we compare to several other high-z starbursts with well sampled SEDs. We constructed dust SEDs from existing Spitzer, Herschel, and SCUBA-2 photometry catalogues with data between 3.6 and 850 μm. For the SED fits, we used the Code Investigating GALaxy Emission (CIGALE), since it self-consistently determines the dust attenuation of stars and dust emission in the infrared in addition to determining the dust emission from obscured AGN (Noll et al. 2009; Serra et al. 2011). Our best-fit SEDs have typical reduced χ2 values between 0.2 and ~3. We use the output from CIGALE to determine the fraction of the total infrared luminosity (LTIR 8-1000 um) from star formation and from any potential obscured AGN. In order to examine the effects of buried AGN on the integrated Schmidt-Kennicutt relation (log(LTIR) vs. log(L'CO)), we compare our new LTIR to recently obtained CO(1-0) line luminosities from the Karl G. Jansky Very Large Array. Unaccounted for dust emission from AGN can artificially inflate the star formation rate inferred from LTIR, and may therefore offset starburst galaxies from the local Schmidt-Kennicutt relation and increase the slope of the relation, which can affect the inferred drivers of star formation.
The use of expanded clay dust in paint manufacturing
NASA Astrophysics Data System (ADS)
Sverguzova, S. V.; Sapronova, Zh A.; Starostina, Yu L.; Belovodskiy, E. A.
2018-01-01
Production increase of useful products is accompanied by the formation and the accumulation of the vast amounts of industrial wastes, the bulk of which is not involved in the recycling processes. An example of such wastes is dust bag filters of ceramsite production. At the large enterprises, the volume of its formation can reach 7-8 tons of dust per day, which is 10-15% of feedstock mass. The studies on the use of ceramsite production dust as filler pigment in the composition of organic mixed primer of red-brown color are carried out in this work. For comparison, red iron oxide pigment (Pg FGM) was used. The results showed that, primer with the use of expanded clay dust is characterized by the short drying time and meets all regulatory requirements.
Recombination of H atoms on the dust in fusion plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakhtiyari-Ramezani, M., E-mail: mahdiyeh.bakhtiyari@gmail.com; Alinejad, N., E-mail: nalinezhad@aeoi.org.ir; Mahmoodi, J., E-mail: mahmoodi@qom.ac.ir
2015-07-15
We survey a model for theoretical study of the interaction of hydrogen and dust surface and apply our results for dusty plasmas to fusion devices. In this model, considering the mobility of ad-atoms from one physisorbed, or chemisorbed site, to other one by thermal diffusion, we describe the formation of H{sub 2} on grain surfaces. Finally, we calculate the formation rate on the high temperature dust surfaces for a range of temperature and density in typical conditions of divertor of tokamak.
Global impact of mineral dust on cloud droplet number concentration
NASA Astrophysics Data System (ADS)
Karydis, Vlassis A.; Tsimpidi, Alexandra P.; Bacer, Sara; Pozzer, Andrea; Nenes, Athanasios; Lelieveld, Jos
2017-05-01
The importance of wind-blown mineral dust for cloud droplet formation is studied by considering (i) the adsorption of water on the surface of insoluble particles, (ii) particle coating by soluble material (atmospheric aging) which augments cloud condensation nuclei (CCN) activity, and (iii) the effect of dust on inorganic aerosol concentrations through thermodynamic interactions with mineral cations. The ECHAM5/MESSy Atmospheric Chemistry (EMAC) model is used to simulate the composition of global atmospheric aerosol, while the ISORROPIA-II thermodynamic equilibrium model treats the interactions of K+-Ca2+-Mg2+-NH4+-Na+-SO42--NO3--Cl--H2O aerosol with gas-phase inorganic constituents. Dust is considered a mixture of inert material with reactive minerals and its emissions are calculated online by taking into account the soil particle size distribution and chemical composition of different deserts worldwide. The impact of dust on droplet formation is treated through the unified dust activation parameterization
that considers the inherent hydrophilicity from adsorption and acquired hygroscopicity from soluble salts during aging. Our simulations suggest that the presence of dust increases cloud droplet number concentration (CDNC) over major deserts (e.g., up to 20 % over the Sahara and the Taklimakan desert) and decreases CDNC over polluted areas (e.g., up to 10 % over southern Europe and 20 % over northeastern Asia). This leads to a global net decrease in CDNC by 11 %. The adsorption activation of insoluble aerosols and the mineral dust chemistry are shown to be equally important for the cloud droplet formation over the main deserts; for example, these effects increase CDNC by 20 % over the Sahara. Remote from deserts the application of adsorption theory is critically important since the increased water uptake by the large aged dust particles (i.e., due to the added hydrophilicity by the soluble coating) reduce the maximum supersaturation and thus cloud droplet formation from the relatively smaller anthropogenic particles (e.g., CDNC decreases by 10 % over southern Europe and 20 % over northeastern Asia by applying adsorption theory). The global average CDNC decreases by 10 % by considering adsorption activation, while changes are negligible when accounting for the mineral dust chemistry. Sensitivity simulations indicate that CDNC is also sensitive to the mineral dust mass and inherent hydrophilicity, and not to the chemical composition of the emitted dust.
A new physically-based windblown dust emission ...
Dust has significant impacts on weather and climate, air quality and visibility, and human health; therefore, it is important to include a windblown dust emission module in atmospheric and air quality models. In this presentation, we summarize our efforts in development of a physics-based windblown dust emission scheme and its implementation in the CMAQ modeling system. The new model incorporates the effect of the surface wind speed, soil texture, soil moisture, and surface roughness in a physically sound manner. Specifically, a newly developed dynamic relation for the surface roughness length in this model is believed to adequately represent the physics of the surface processes involved in the dust generation. Furthermore, careful attention is paid in integrating the new windblown dust module within the CMAQ to ensure that the required input parameters are correctly configured. The new model is evaluated for the case studies including the continental United States and the Northern hemisphere, and is shown to be able to capture the occurrence of the dust outbreak and the level of the soil concentration. We discuss the uncertainties and limitations of the model and briefly describe our path forward for further improvements. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based
Dust formation in Nova Oph 2017 (TCP J17394608-2457555)
NASA Astrophysics Data System (ADS)
Joshi, Vishal; Banerjee, D. P. K.; Srivastava, Mudit
2017-06-01
Ongoing NIR observations of Nova Oph 2017 indicate the possible onset of dust formation in Nova Oph 2017. Monitoring in the JHKs bands shows a steady rise in the J-K color from around 1.4 on 5 June 2017 to 2.0 on 13 June 2017.
VARIABLE WINDS AND DUST FORMATION IN R CORONAE BOREALIS STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clayton, Geoffrey C.; Zhang Wanshu; Geballe, T. R., E-mail: gclayton@fenway.phys.lsu.edu, E-mail: wzhan21@lsu.edu, E-mail: tgeballe@gemini.edu
2013-08-01
We have observed P-Cygni and asymmetric, blue-shifted absorption profiles in the He I {lambda}10830 lines of 12 R Coronae Borealis stars over short (1 month) and long (3 yr) timescales to look for variations linked to their dust-formation episodes. In almost all cases, the strengths and terminal velocities of the line vary significantly and are correlated with dust formation events. Strong absorption features with blue-shifted velocities {approx}400 km s{sup -1} appear during declines in visible brightness and persist for about 100 days after recovery to maximum brightness. Small residual winds of somewhat lower velocity are present outside of the declinemore » and recovery periods. The correlations support models in which recently formed dust near the star is propelled outward at high speed by radiation pressure and drags the gas along with it.« less
Dust-trapping Rossby vortices in protoplanetary disks
NASA Astrophysics Data System (ADS)
Meheut, H.; Meliani, Z.; Varniere, P.; Benz, W.
2012-09-01
Context. One of the most challenging steps in planet formation theory is the one leading to the formation of planetesimals of kilometre size. A promising scenario involves the existence of vortices able to concentrate a large amount of dust and grains in their centres. Up to now this scenario has mostly been studied in 2D razor thin disks. A 3D study including, simultaneously, the formation and resulting dust concentration of the vortices with vertical settling, is still missing. Aims: The Rossby wave instability self-consistently forms 3D vortices, which have the unique quality of presenting a large-scale vertical velocity in their centre. Here we aim to study how this newly discovered effect can alter the dynamic evolution of the dust. Methods: We performed global 3D simulations of the RWI in a radially and vertically stratified disk using the code MPI-AMRVAC. After the growth phase of the instability, the gas and solid phases are modelled by a bi-fluid approach, where the dust is considered as a fluid without pressure. Both the drag force of the gas on the dust and the back reaction of the dust on the gas are included. Multiple grain sizes from 1 mm to 5 cm are used with a constant density distribution. Results: We obtain in a short timescale a high concentration of the largest grains in the vortices. Indeed, in 3 rotations the dust-to-gas density ratio grows from 10-2 to unity leading to a concentration of mass up to that of Mars in one vortex. The presence of the radial drift is also at the origin of a dust pile-up at the radius of the vortices. Lastly, the vertical velocity of the gas in the vortex causes the sedimentation process to be reversed, the mm size dust is lifted and higher concentrations are obtained in the upper layer than in the midplane. Conclusions: The Rossby wave instability is a promising mechanism for planetesimal formation, and the results presented here can be of particular interest in the context of future observations of protoplanetary disks.
NASA Astrophysics Data System (ADS)
Wang, Gehui; Cheng, Chunlei; Meng, Jingjing; Huang, Yao; Li, Jianjun; Ren, Yanqin
2015-07-01
Chemical evolution of East Asian dust during transpacific transport has been given much attention for inorganic species such as sulfate, nitrate and ammonium. However, the role of organic species during the transport has almost entirely been ignored. To understand the formation mechanism of secondary organic aerosols (SOA) on dust surfaces, this study investigated the concentrations and compositions of dicarboxylic acids, keto-carboxylic acids, α-dicarbonyls and inorganic ions in size-segregated aerosols (9-stages) collected in Xi'an, central China during the two dust storm episodes in the springs of 2009 and 2011 and compared with those in nondust storm periods. During the events the ambient particulate dicarboxylic acids were 932-2240 ng m-3, which are comparable and even higher than those in nondust periods. Molecular compositions of the above SOA are similar to those in nondust periods with oxalic acid being the leading species. In the presence of the dust storms, all the above mentioned SOA species in Xi'an were predominantly enriched on the coarse particles (>2.1 μm), and oxalic acid well correlated with NO3- (R2 = 0.72, p < 0.001) rather than SO42-. This phenomenon differs greatly from the SOA in any other nondust period that is usually characterized by an enrichment of oxalic acid in fine mode and a strong correlation of oxalic acid with SO42-. We propose a formation pathway to explain these observations, in which nitric acid and/or nitrogen oxides react with dust to produce Ca(NO3)2 and form a liquid phase on the surface of dust aerosols via water vapor-absorption of Ca(NO3)2, followed by a partitioning of the gas-phase water-soluble organic precursors (e.g.,glyoxal and methylglyoxal) into the aqueous-phase and a subsequent oxidation into oxalic acid. To the best of our knowledge, we found for the first time the enrichment of glyoxal and methylglyoxal on dust surface. Our data suggest an important role of nitrate in the heterogeneous formation process of SOA on the surface of dust.
NASA Astrophysics Data System (ADS)
Ahmed Darwish, Zeki; Sopian, K.; Kazem, Hussein A.; Alghoul, M. A.; Alawadhi, Hussain
2017-11-01
This paper presents a study of titanium oxide TiO2 as one of the components of dust pollution affecting the PV performance. This pollutant can be found in various quantities in different locations around the world. The production of energy by different types of photovoltaic systems is very sensitive and depends on various environmental factors. Dust is one of the main contributing factors, yet the type of the dust is often neglected when studying the behaviour of the solar panel. In this experimental work we have studied the performance of the monocrystalline solar module as affected by the density of TiO2. The reduction of the PV module power caused by titanium dioxide under various mass densities was investigated. The results showed that the TiO2 has a significant effect on the PV output power. The dust density varied between 0-125 g.m-2. The corresponding reduction of the PV output power increased from 0 to 86.7%. This is based on various influencing parameters such as: short circuit current (Isc), maximum current (Im), open circuit voltage (Voc), maximum voltage (Vm), maximum power (Pm) and efficiency (E). Two functions are proposed as a mathematical model in order to explain this behaviour, namely the exponential and Fourier functions. The coefficients of all general models are valid for this type of dust with a density value ranging from 0-125 g.m-2.
NASA Astrophysics Data System (ADS)
Orhan, Hükmü
1992-04-01
The importance of dust storms on geological processes has only been studied recently. Case-hardening, desert-varnish formation, duricrust development, reddening and cementation of sediments and caliche formation, are some important geological processes related to dust storms. Dust storms can also be a major source for cements in aeolian sandstones. The Jurassic aeolian Entrada Formation in the Ghost Ranch area is composed of quartz with minor amounts of feldspar and rock fragments, and is cemented with smectite as grain coatings and calcite and kaolinite as pore fillings. Smectite shows a crinkly and honeycomb-like morphology which points to an authigenic origin. The absence of smectite as framework grains and the presence of partially dissolved grains, coated with smectite and smectite egg-shells, indicate an external source. Clay and fine silt-size particles are believed to be the major source for cements, smectite and calcite in the Entrada Formation. The common association of kaolinite with altered feldspar, and the absence of kaolinite in spots heavily cemented with calcite, lead to the conclusions that the kaolinite formation postdates carbonates and that framework feldspar grains were the source of kaolinite.
Sequential planet formation in transition disks: The case of HD 100546
NASA Astrophysics Data System (ADS)
Pinilla, Paola; Birnsitel, Til; Walsh, Catherine; van Dishoeck, Ewine
2015-08-01
Transition disks are circumstellar disks with dust inner cavities and may reveal an intermediate step of the ongoing disk dispersal process, where planet formation might happen. The recent gas and dust observations of transition disks have given major support to the presence of massive planets in transition disks. The analysis of such observations help to constrain the properties of the potential unseen planets. An excellent candidate to analyse the dust evolution when planets are embedded in disks is the transition disk around the Herbig Ae star HD 100546. Near-infrared observations of HD 100546 suggested the presence on an inner planet at 10 AU distance from the star (e.g. Mulders et al. 2013), while an outer planet has been directly imaged at 70 AU distance, which may be in the act of formation (Quant et al. 2013, 2015; Currie et al. 2014). The two embedded planets can lead to remarkable dust structures due to the particle trapping at the edges of the gaps caved by such planets (e.g. Pinilla et al. 2012, 2015). Recent ALMA Cycle 0 observations of this disk reveal a two-ring like structure consistent with particle trapping induced by the two companions (Walsh et al. 2014). The comparison of these observations with dust evolution models, that include the coagulation and fragmentation of dust grains, suggest that the outer companion must be at least two million of years younger than the inner companion, revealing sequential planet formation in this disk (Pinilla et al. 2015, under revision).
Pebble pile-up and planetesimal formation at the snow line
NASA Astrophysics Data System (ADS)
Drazkowska, J.
2017-09-01
The planetesimal formation stage represents a major gap in our understanding of planet formation process. Because of this, the late-stage planet accretion models typically make arbitrary assumptions about planetesimals and pebbles distribution, while the state-of-the-art dust evolution models predict no or little planetesimal formation. With this contribution, I present a step toward bridging the gap between the early and late stages of planet formation by models that connect dust coagulation and planetesimal formation. With the aid of evaporation, outward diffusion, and re-condensation of water vapor, pile-up of large pebbles is formed outside of the snow line that facilitates planetesimal formation by streaming instability.
NASA Technical Reports Server (NTRS)
Fumagalli, Mattia; Labbe, Ivo; Patel, Shannon G.; Franx, Marijn; vanDokkum, Pieter; Brammer, Gabriel; DaCunha, Elisabete; FoersterSchreiber, Natascha M.; Kriek, Mariska; Quadri, Ryan;
2013-01-01
We investigate star formation rates of quiescent galaxies at high redshift (0.3 < z < 2.5) using 3D-HST WFC3 grism spectroscopy and Spitzer mid-infrared data. We select quiescent galaxies on the basis of the widely used UVJ color-color criteria. Spectral energy distribution fitting (rest frame optical and near-IR) indicates very low star formation rates for quiescent galaxies (sSFR approx. 10(exp -12)/yr. However, SED fitting can miss star formation if it is hidden behind high dust obscuration and ionizing radiation is re-emitted in the mid-infrared. It is therefore fundamental to measure the dust-obscured SFRs with a mid-IR indicator. We stack the MIPS-24 micron images of quiescent objects in five redshift bins centered on z = 0.5, 0.9, 1.2, 1.7, 2.2 and perform aperture photometry. Including direct 24 micron detections, we find sSFR approx. 10(exp -11.9) × (1 + z)(sup 4)/yr. These values are higher than those indicated by SED fitting, but at each redshift they are 20-40 times lower than those of typical star forming galaxies. The true SFRs of quiescent galaxies might be even lower, as we show that the mid-IR fluxes can be due to processes unrelated to ongoing star formation, such as cirrus dust heated by old stellar populations and circumstellar dust. Our measurements show that star formation quenching is very efficient at every redshift. The measured SFR values are at z > 1.5 marginally consistent with the ones expected from gas recycling (assuming that mass loss from evolved stars refuels star formation) and well above that at lower redshifts.
NASA Astrophysics Data System (ADS)
De Vis, P.; Gomez, H. L.; Schofield, S. P.; Maddox, S.; Dunne, L.; Baes, M.; Cigan, P.; Clark, C. J. R.; Gomez, E. L.; Lara-López, M.; Owers, M.
2017-10-01
We combine samples of nearby galaxies with Herschel photometry selected on their dust, metal, H I and stellar mass content, and compare these to chemical evolution models in order to discriminate between different dust sources. In a companion paper, we used an H I-selected sample of nearby galaxies to reveal a subsample of very gas-rich (gas fraction >80 per cent) sources with dust masses significantly below predictions from simple chemical evolution models, and well below Md/M* and Md/Mgas scaling relations seen in dust and stellar-selected samples of local galaxies. We use a chemical evolution model to explain these dust-poor, but gas-rich, sources as well as the observed star formation rates (SFRs) and dust-to-gas ratios. We find that (I) a delayed star formation history is required to model the observed SFRs; (II) inflows and outflows are required to model the observed metallicities at low gas fractions; (III) a reduced contribution of dust from supernovae (SNe) is needed to explain the dust-poor sources with high gas fractions. These dust-poor, low stellar mass galaxies require a typical core-collapse SN to produce 0.01-0.16 M⊙ of dust. To match the observed dust masses at lower gas fractions, significant grain growth is required to counteract the reduced contribution from dust in SNe and dust destruction from SN shocks. These findings are statistically robust, though due to intrinsic scatter it is not always possible to find one single model that successfully describes all the data. We also show that the dust-to-metal ratio decreases towards lower metallicity.
Dust discs around low-mass main-sequence stars
NASA Technical Reports Server (NTRS)
Wolstencroft, R. D.; Walker, Helen J.
1988-01-01
The current understanding of the formation of circumstellar disks as a natural accompaniment to the process of low-mass star formation is examined. Models of the thermal emission from the dust disks around the prototype stars Alpha Lyr, Alpha PsA, Beta Pic, and Epsilon Eri are discussed, which indicate that the central regions of three of these disks are almost devoid of dust within radii ranging between 17 and 26 AU, with the temperature of the hottest zone lying between about 115 and 210 K. One possible explanation of the dust-free zones is the presence of a planet at the inner boundary of each cloud which sweeps up grains crossing its orbit.
NASA Astrophysics Data System (ADS)
Cherchneff, Isabelle; Dwek, Eli
2010-04-01
We study the formation of molecular precursors to dust in the ejecta of Population III supernovae (Pop. III SNe) using a chemical kinetic approach to follow the evolution of small dust cluster abundances from day 100 to day 1000 after explosion. Our work focuses on zero-metallicity 20 M sun and 170 M sun progenitors, and we consider fully macroscopically mixed and unmixed ejecta. The dust precursors comprise molecular chains, rings, and small clusters of chemical composition relevant to the initial elemental composition of the ejecta under study. The nucleation stage for small silica, metal oxides and sulfides, pure metal, and carbon clusters is described with a new chemical reaction network highly relevant to the kinetic description of dust formation in hot circumstellar environments. We consider the effect of the pressure dependence of critical nucleation rates and test the impact of microscopically mixed He+ on carbon dust formation. Two cases of metal depletion on silica clusters (full and no depletion) are considered to derive upper limits to the amounts of dust produced in SN ejecta at 1000 days, while the chemical composition of clusters gives a prescription for the type of dust formed in Pop. III SNe. We show that the cluster mass produced in the fully mixed ejecta of a 170 M sun progenitor is ~ 25 M sun whereas its 20 M sun counterpart forms ~ 0.16 M sun of clusters. The unmixed ejecta of a 170 M sun progenitor SN synthesize ~5.6 M sun of small clusters, while its 20 M sun counterpart produces ~0.103 M sun. Our results point to smaller amounts of dust formed in the ejecta of Pop. III SNe by a factor of ~ 5 compared to values derived by previous studies, and to different dust chemical compositions. Such deviations result from some erroneous assumptions made, the inappropriate use of classical nucleation theory to model dust formation, and the omission of the synthesis of molecules in SN ejecta. We also find that the unmixed ejecta of massive Pop. III SNe chiefly form silica and/or silicates, and pure silicon grains whereas their lower mass counterparts form a dust mixture dominated by silica and/or silicates, pure silicon, and iron sulfides. Amorphous carbon can only condense via the nucleation of carbon chains and rings characteristic of the synthesis of fullerenes when the ejecta carbon-rich zone is deprived of He+. The first dust enrichment to the primordial gas in the early universe from Pop. III massive SN comprises primarily pure silicon, silica, and silicates. If carbon dust is present at redshift z > 6, alternative dust sources must be considered.
Revealing the Galactic Center in the Far-Infrared with SOFIA/FORCAST
NASA Astrophysics Data System (ADS)
Lau, Ryan M.; Herter, Terry; Morris, Mark; Li, Zhiyuan; Becklin, Eric; Adams, Joseph; Hankins, Matthew
2015-08-01
We present a summary of far-infrared imaging observations of the inner 40 pc of the Galactic center addressing the dense, dusty torus around Sgr A*, massive star formation, and dust production around massive stars and in the Sgr A East supernova remnant. Observations of warm dust emission were performed using the Faint Object Infrared Camera for the SOFIA Telescope (FORCAST). The Circumnuclear Ring (CNR) surrounding and heated by central cluster in the vicinity of Sgr A* shows no internal active star formation but does exhibit significant density “clumps,” a surprising result because tidal shearing should act quickly to smear out structure. G-0.02-0.07, a complex consisting of three compact HII regions and one ultracompact HII region, is site of the most recent confirmed star formation within ~10 pc of the Galactic center. Our observations reveal the dust morphologies and SEDs of the regions to constrain the composition and gas-to-dust mass ratios of the emitting dust and identify heating sources candidates from archival near-IR images. FORCAST observations Luminous Blue Variables (LBVs) located in and near the Quintuplet Cluster reveal the asymmetric, compressed shell of hot dust surrounding the Pistol Star and provide the first detection of the thermal emission from the symmetric, hot dust envelope surrounding G0.120-0.048. These two LBV’s have nebulae with similar quantities of dust (~0.02 M⊙) but exhibit contrasting appearances due to the external influence of their different environments. Finally, the far-infrared observations indicate the presence of ~0.02 M⊙ of warm (~100 K) dust in the hot interior of the ~10,000 yr-old SgrA East supernova remnant indicating the dust has survived the passage of the reverse shock. The results suggest that supernovae may indeed be the dominant dust production mechanism in the dense environment of early Universe galaxies.
Dust-acoustic waves modulational instability and rogue waves in a polarized dusty plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouzit, Omar; Tribeche, Mouloud
2015-10-15
The polarization force-induced changes in the dust-acoustic waves (DAWs) modulational instability (MI) are examined. Using the reductive perturbation method, the nonlinear Schrödinger equation that governs the MI of the DAWs is obtained. It is found that the effect of the polarization term R is to narrow the wave number domain for the onset of instability. The amplitude of the wave envelope decreases as R increases, meaning that the polarization force effects render weaker the associated DA rogue waves. The latter may therefore completely damp in the vicinity of R ∼ 1, i.e., as the polarization force becomes close to the electrostatic onemore » (the net force acting on the dust particles becomes vanishingly small). The DA rogue wave profile is very sensitive to any change in the restoring force acting on the dust particles. It turns out that the polarization effects may completely smear out the DA rogue waves.« less
Composition of extracts of airborne grain dusts: lectins and lymphocyte mitogens.
Olenchock, S A; Lewis, D M; Mull, J C
1986-01-01
Airborne grain dusts are heterogeneous materials that can elicit acute and chronic respiratory pathophysiology in exposed workers. Previous characterizations of the dusts include the identification of viable microbial contaminants, mycotoxins, and endotoxins. We provide information on the lectin-like activity of grain dust extracts and its possible biological relationship. Hemagglutination of erythrocytes and immunochemical modulation by antibody to specific lectins showed the presence of these substances in extracts of airborne dusts from barley, corn, and rye. Proliferation of normal rat splenic lymphocytes in vitro provided evidence for direct biological effects on the cells of the immune system. These data expand the knowledge of the composition of grain dusts (extracts), and suggest possible mechanisms that may contribute to respiratory disease in grain workers. PMID:3709474
Investigating Sensitivity to Saharan Dust in Tropical Cyclone Formation Using Nasa's Adjoint Model
NASA Technical Reports Server (NTRS)
Holdaway, Daniel
2015-01-01
As tropical cyclones develop from easterly waves coming of the coast of Africa they interact with dust from the Sahara desert. There is a long standing debate over whether this dust inhibits or advances the developing storm and how much influence it has. Dust can surround the storm and absorb incoming solar radiation, cooling the air below. As a result an energy source for the system is potentially diminished, inhibiting growth of the storm. Alternatively dust may interact with clouds through micro-physical processes, for example by causing more moisture to condense, potentially increasing the strength. As a result of climate change, concentrations and amount of dust in the atmosphere will likely change. It it is important to properly understand its effect on tropical storm formation. The adjoint of an atmospheric general circulation model provides a very powerful tool for investigating sensitivity to initial conditions. The National Aeronautics and Space Administration (NASA) has recently developed an adjoint version of the Goddard Earth Observing System version 5 (GEOS-5) dynamical core, convection scheme, cloud model and radiation schemes. This is extended so that the interaction between dust and radiation is also accounted for in the adjoint model. This provides a framework for examining the sensitivity to dust in the initial conditions. Specifically the set up allows for an investigation into the extent to which dust affects cyclone strength through absorption of radiation. In this work we investigate the validity of using an adjoint model for examining sensitivity to dust in hurricane formation. We present sensitivity results for a number of systems that developed during the Atlantic hurricane season of 2006. During this period there was a significant outbreak of Saharan dust and it is has been argued that this outbreak was responsible for the relatively calm season. This period was also covered by an extensive observation campaign. It is shown that the adjoint can provide insight into the sensitivity and reveals a relatively low sensitivity to dust compared to, for example, the thermodynamic variables. However a secondary sensitivity though moisture is seen. If dust dries the air it can significantly reduce the cyclone intensity through the moisture.
Investigating sensitivity to Saharan dust in tropical cyclone formation using NASA's adjoint model
NASA Astrophysics Data System (ADS)
Holdaway, Daniel
2015-04-01
As tropical cyclones develop from easterly waves coming off the coast of Africa they interact with dust from the Sahara desert. There is a long standing debate over whether this dust inhibits or advances the developing storm and how much influence it has. Dust can surround the storm and absorb incoming solar radiation, cooling the air below. As a result an energy source for the system is potentially diminished, inhibiting growth of the storm. Alternatively dust may interact with clouds through micro-physical processes, for example by causing more moisture to condense, potentially increasing the strength. As a result of climate change, concentrations and amount of dust in the atmosphere will likely change. It it is important to properly understand its effect on tropical storm formation. The adjoint of an atmospheric general circulation model provides a very powerful tool for investigating sensitivity to initial conditions. The National Aeronautics and Space Administration (NASA) has recently developed an adjoint version of the Goddard Earth Observing System version 5 (GEOS-5) dynamical core, convection scheme, cloud model and radiation schemes. This is extended so that the interaction between dust and radiation is also accounted for in the adjoint model. This provides a framework for examining the sensitivity to dust in the initial conditions. Specifically the set up allows for an investigation into the extent to which dust affects cyclone strength through absorption of radiation. In this work we investigate the validity of using an adjoint model for examining sensitivity to dust in hurricane formation. We present sensitivity results for a number of systems that developed during the Atlantic hurricane season of 2006. During this period there was a significant outbreak of Saharan dust and it is has been argued that this outbreak was responsible for the relatively calm season. This period was also covered by an extensive observation campaign. It is shown that the adjoint can provide insight into the sensitivity and reveals a relatively low sensitivity to dust compared to, for example, the thermodynamic variables. However a secondary sensitivity though moisture is seen. If dust dries the air it can significantly reduce the cyclone intensity through the moisture.
Fu, Xiao; Wang, Shuxiao; Chang, Xing; Cai, Siyi; Xing, Jia; Hao, Jiming
2016-10-26
Secondary inorganic aerosols (SIA) are the predominant components of fine particulate matter (PM 2.5 ) and have significant impacts on air quality, human health, and climate change. In this study, the Community Multiscale Air Quality modeling system (CMAQ) was modified to incorporate SO 2 heterogeneous reactions on the surface of dust particles. The revised model was then used to simulate the spatiotemporal characteristics of SIA over China and analyze the impacts of meteorological factors and dust on SIA formation. Including the effects of dust improved model performance for the simulation of SIA concentrations, particularly for sulfate. The simulated annual SIA concentration in China was approximately 10.1 μg/m 3 on domain average, with strong seasonal variation: highest in winter and lowest in summer. High SIA concentrations were concentrated in developed regions with high precursor emissions, such as the North China Plain, Yangtze River Delta, Sichuan Basin, and Pearl River Delta. Strong correlations between meteorological factors and SIA pollution levels suggested that heterogeneous reactions under high humidity played an important role on SIA formation, particularly during severe haze pollution periods. Acting as surfaces for heterogeneous reactions, dust particles significantly affected sulfate formation, suggesting the importance of reducing dust emissions for controlling SIA and PM 2.5 pollution.
NASA Astrophysics Data System (ADS)
Fu, Xiao; Wang, Shuxiao; Chang, Xing; Cai, Siyi; Xing, Jia; Hao, Jiming
2016-10-01
Secondary inorganic aerosols (SIA) are the predominant components of fine particulate matter (PM2.5) and have significant impacts on air quality, human health, and climate change. In this study, the Community Multiscale Air Quality modeling system (CMAQ) was modified to incorporate SO2 heterogeneous reactions on the surface of dust particles. The revised model was then used to simulate the spatiotemporal characteristics of SIA over China and analyze the impacts of meteorological factors and dust on SIA formation. Including the effects of dust improved model performance for the simulation of SIA concentrations, particularly for sulfate. The simulated annual SIA concentration in China was approximately 10.1 μg/m3 on domain average, with strong seasonal variation: highest in winter and lowest in summer. High SIA concentrations were concentrated in developed regions with high precursor emissions, such as the North China Plain, Yangtze River Delta, Sichuan Basin, and Pearl River Delta. Strong correlations between meteorological factors and SIA pollution levels suggested that heterogeneous reactions under high humidity played an important role on SIA formation, particularly during severe haze pollution periods. Acting as surfaces for heterogeneous reactions, dust particles significantly affected sulfate formation, suggesting the importance of reducing dust emissions for controlling SIA and PM2.5 pollution.
Fu, Xiao; Wang, Shuxiao; Chang, Xing; Cai, Siyi; Xing, Jia; Hao, Jiming
2016-01-01
Secondary inorganic aerosols (SIA) are the predominant components of fine particulate matter (PM2.5) and have significant impacts on air quality, human health, and climate change. In this study, the Community Multiscale Air Quality modeling system (CMAQ) was modified to incorporate SO2 heterogeneous reactions on the surface of dust particles. The revised model was then used to simulate the spatiotemporal characteristics of SIA over China and analyze the impacts of meteorological factors and dust on SIA formation. Including the effects of dust improved model performance for the simulation of SIA concentrations, particularly for sulfate. The simulated annual SIA concentration in China was approximately 10.1 μg/m3 on domain average, with strong seasonal variation: highest in winter and lowest in summer. High SIA concentrations were concentrated in developed regions with high precursor emissions, such as the North China Plain, Yangtze River Delta, Sichuan Basin, and Pearl River Delta. Strong correlations between meteorological factors and SIA pollution levels suggested that heterogeneous reactions under high humidity played an important role on SIA formation, particularly during severe haze pollution periods. Acting as surfaces for heterogeneous reactions, dust particles significantly affected sulfate formation, suggesting the importance of reducing dust emissions for controlling SIA and PM2.5 pollution. PMID:27782166
Dust and molecules in extra-galactic planetary nebulae
NASA Astrophysics Data System (ADS)
Garcia-Hernandez, Domingo Aníbal
2015-08-01
Extra-galactic planetary nebulae (PNe) permit the study of dust and molecules in metallicity environments other than the Galaxy. Their known distances lower the number of free parameters in the observations vs. models comparison, providing strong constraints on the gas-phase and solid-state astrochemistry models. Observations of PNe in the Galaxy and other Local Group galaxies such as the Magellanic Clouds (MC) provide evidence that metallicity affects the production of dust as well as the formation of complex organic molecules and inorganic solid-state compounds in their circumstellar envelopes. In particular, the lower metallicity MC environments seem to be less favorable to dust production and the frequency of carbonaceous dust features and complex fullerene molecules is generally higher with decreasing metallicity. Here, I present an observational review of the dust and molecular content in extra-galactic PNe as compared to their higher metallicity Galactic counterparts. A special attention is given to the level of dust processing and the formation of complex organic molecules (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene precursors) depending on metallicity.
Coupled European and Greenland last glacial dust activity driven by North Atlantic climate
Stevens, Thomas; Molnár, Mihály; Demény, Attila; Lambert, Fabrice; Varga, György; Páll-Gergely, Barna; Buylaert, Jan-Pieter; Kovács, János
2017-01-01
Centennial-scale mineral dust peaks in last glacial Greenland ice cores match the timing of lowest Greenland temperatures, yet little is known of equivalent changes in dust-emitting regions, limiting our understanding of dust−climate interaction. Here, we present the most detailed and precise age model for European loess dust deposits to date, based on 125 accelerator mass spectrometry 14C ages from Dunaszekcső, Hungary. The record shows that variations in glacial dust deposition variability on centennial–millennial timescales in east central Europe and Greenland were synchronous within uncertainty. We suggest that precipitation and atmospheric circulation changes were likely the major influences on European glacial dust activity and propose that European dust emissions were modulated by dominant phases of the North Atlantic Oscillation, which had a major influence on vegetation and local climate of European dust source regions. PMID:29180406
NASA Astrophysics Data System (ADS)
Tang, Yuping; Wang, Daniel; Wilson, Grant; Gutermuth, Robert; Heyer, Mark
2018-01-01
We present the AzTEC/LMT survey of dust continuum at 1.1mm on the central ˜ 200pc (CMZ) of our Galaxy. A joint SED analysis of all existing dust continuum surveys on the CMZ is performed, from 160µm to 1.1mm. Our analysis follows a MCMC sampling strategy incorporating the knowledge of PSFs in different maps, which provides unprecedented spacial resolution on distributions of dust temperature, column density and emissivity index. The dense clumps in the CMZ typically show low dust temperature ( 20K), with no significant sign of buried star formation, and a weak evolution of higher emissivity index toward dense peak. A new model is proposed, allowing for varying dust temperature inside a cloud and self-shielding of dust emission, which leads to similar conclusions on dust temperature and grain properties. We further apply a hierarchical Bayesian analysis to infer the column density probability distribution function (N-PDF), while simultaneously removing the Galactic foreground and background emission. The N-PDF shows a steep power-law profile with α > 3, indicating that formation of dense structures are suppressed.
CSM interaction and dust formation in SN 2010jl .
NASA Astrophysics Data System (ADS)
Krafton, K.; Clayton, G. C.
The origin of dust in galaxies >1 Gyr old has remained an unsolved mystery for over a decade. One proposed solution is dust produced by core collapse supernovae (CCSNe). Theorists have shown that 0.1-1 M⊙ of dust must be produced per supernova for this to work as an explanation for the dust in young galaxies. SN 1987A has produced ˜1 M⊙ of dust since its detonation. However, most supernovae have been found to only produce 10-4 - 10-2 M⊙ of dust. The energetic type IIn SN 2010jl is located in UGC 5189, in a dense shell of CSM. As dust condenses in the SN ejecta, we see, (1) a sudden decrease in continuum brightness in the visible due to increased dust extinction, (2) the development of an infrared excess in the SN light curve arising from dust grains absorbing high-energy photons and re-emitting them in the infrared, and (3) the development of asymmetric, blue-shifted emission-line profiles, caused by dust forming in the ejecta, and preferentially extinguishing redshifted emission. A dense circumstellar material (CSM) may increase the dust production by supernovae. We observe signs of strong interaction between the SN ejecta and a dense CSM in SN 2010jl. SN 2010jl has been a source of much debate in the CCSN community, particularly over when and how much dust it formed. The light curve shows strong signs of dust formation after 260 days. Arguments over these subjects have been based on the evolution of the light curve and spectra. We present new optical and IR photometry, as well as optical spectroscopy, of SN 2010jl over 2000 days. We estimate dust masses using the DAMOCLES and MOCASSIN radiative transfer codes.
Dust Formation, Evolution, and Obscuration Effects in the Very High-Redshift Universe
NASA Technical Reports Server (NTRS)
Dwek, Eli; Staguhn, Johannes; Arendt, Richard G.; Kovacks, Attila; Su, Ting; Benford, Dominic J.
2014-01-01
The evolution of dust at redshifts z > or approx. 9, and consequently the dust properties, differs greatly from that in the local universe. In contrast to the local universe, core collapse supernovae (CCSNe) are the only source of thermally-condensed dust. Because of the low initial dust-togas mass ratio, grain destruction rates are low, so that CCSNe are net producers of interstellar dust. Galaxies with large initial gas mass or high mass infall rate will therefore have a more rapid net rate of dust production comported to galaxies with lower gas mass, even at the same star formation rate. The dust composition is dominated by silicates, which exhibit a strong rise in the UV opacity near the Lyman break. This "silicate-UV break" may be confused with the Lyman break, resulting in a misidentification of a galaxies' photometric redshift. In this paper we demonstrate these effects by analyzing the spectral energy distribution (SED) of MACS1149-JD, a lensed galaxy at z = 9.6. A potential 2mm counterpart of MACS1149-JD has been identified with GISMO. While additional observations are required to corroborate this identification, we use this possible association to illustrate the physical processes and the observational effects of dust in the very high redshift universe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takekoshi, Tatsuya; Minamidani, Tetsuhiro; Sorai, Kazuo
The first 1.1 mm continuum survey toward the Small Magellanic Cloud (SMC) was performed using the AzTEC instrument installed on the ASTE 10 m telescope. This survey covered 4.5 deg{sup 2} of the SMC with 1 σ noise levels of 5–12 mJy beam{sup −1}, and 44 extended objects were identified. The 1.1 mm extended emission has good spatial correlation with Herschel 160 μ m, indicating that the origin of the 1.1 mm extended emission is thermal emission from a cold dust component. We estimated physical properties using the 1.1 mm and filtered Herschel data (100, 160, 250, 350, and 500more » μ m). The 1.1 mm objects show dust temperatures of 17–45 K and gas masses of 4 × 10{sup 3}–3 × 10{sup 5} M {sub ⊙}, assuming single-temperature thermal emission from the cold dust with an emissivity index, β , of 1.2 and a gas-to-dust ratio of 1000. These physical properties are very similar to those of giant molecular clouds (GMCs) in our galaxy and the Large Magellanic Cloud. The 1.1 mm objects also displayed good spatial correlation with the Spitzer 24 μ m and CO emission, suggesting that the 1.1 mm objects trace the dense gas regions as sites of massive star formation. The dust temperature of the 1.1 mm objects also demonstrated good correlation with the 24 μ m flux connected to massive star formation. This supports the hypothesis that the heating source of the cold dust is mainly local star-formation activity in the 1.1 mm objects. The classification of the 1.1 mm objects based on the existence of star-formation activity reveals the differences in the dust temperature, gas mass, and radius, which reflects the evolution sequence of GMCs.« less
Comet Dust: The Story of Planet Formation as Told by the Tiniest of Particles
NASA Technical Reports Server (NTRS)
Wooden, D. H.
2005-01-01
Our planetary system formed out of a gas-rich disk-shaped nebula with the early Sun at its center. Many small icy bodies were consumed by the formation of the giant planets. However, many km-size icy bodies were tossed out of the giant-planet region to the cold, distant reaches of our solar system. Comets remained in their places of cold storage until perturbed into orbits that carry them into the inner solar system where they pass relatively close to the Sun. Comets are warmed by the Sun and shed material from their outer layers. The ices and gases shed by comets reveal simple and complex organic molecules were present at the time and in the region of the formation of the giant planets. Where the Earth was forming was too hot and had too intense sunlight for many of these ices and molecules to survive. The dust shed by comets tells us that some stardust survived unaltered but much of the dust was heated and crystallized before becoming part of the comet. Therefore, comet dust grains tell of large radial migrations from the cold outer reaches near Neptune into the hot regions near the forming Sun, and then back out to the cold regions where icy comets were accreting and forming. On 2005 July 4, the NASA Deep Impact Mission hit a comet and ejected primitive materials fiom its interior. These materials were not released into the comet s coma during normal activity. Despite the many passages of this comet close to the Sun, these primitive volatile gases and dust grains survived in its interior. Comet dust grains show that cold and hot materials were mixed into the same tiny particle very early in the formation of the solar system, and these aggregate dust grains never saw high temperatures again. The survival of primitive materials in comet nuclei suggests comets could have delivered organic molecules and primitive dust grains to early Earth.
NASA Astrophysics Data System (ADS)
Takekoshi, Tatsuya; Minamidani, Tetsuhiro; Komugi, Shinya; Kohno, Kotaro; Tosaki, Tomoka; Sorai, Kazuo; Muller, Erik; Mizuno, Norikazu; Kawamura, Akiko; Onishi, Toshikazu; Fukui, Yasuo; Ezawa, Hajime; Oshima, Tai; Scott, Kimberly S.; Austermann, Jason E.; Matsuo, Hiroshi; Aretxaga, Itziar; Hughes, David H.; Kawabe, Ryohei; Wilson, Grant W.; Yun, Min S.
2017-01-01
The first 1.1 mm continuum survey toward the Small Magellanic Cloud (SMC) was performed using the AzTEC instrument installed on the ASTE 10 m telescope. This survey covered 4.5 deg2 of the SMC with 1σ noise levels of 5-12 mJy beam-1, and 44 extended objects were identified. The 1.1 mm extended emission has good spatial correlation with Herschel 160 μm, indicating that the origin of the 1.1 mm extended emission is thermal emission from a cold dust component. We estimated physical properties using the 1.1 mm and filtered Herschel data (100, 160, 250, 350, and 500 μm). The 1.1 mm objects show dust temperatures of 17-45 K and gas masses of 4 × 103-3 × 105 M⊙, assuming single-temperature thermal emission from the cold dust with an emissivity index, β, of 1.2 and a gas-to-dust ratio of 1000. These physical properties are very similar to those of giant molecular clouds (GMCs) in our galaxy and the Large Magellanic Cloud. The 1.1 mm objects also displayed good spatial correlation with the Spitzer 24 μm and CO emission, suggesting that the 1.1 mm objects trace the dense gas regions as sites of massive star formation. The dust temperature of the 1.1 mm objects also demonstrated good correlation with the 24 μm flux connected to massive star formation. This supports the hypothesis that the heating source of the cold dust is mainly local star-formation activity in the 1.1 mm objects. The classification of the 1.1 mm objects based on the existence of star-formation activity reveals the differences in the dust temperature, gas mass, and radius, which reflects the evolution sequence of GMCs. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
The role of disk self-gravity on gap formation of the HL Tau proto-planetary disk
Li, Shengtai; Li, Hui
2016-05-31
Here, we use extensive global hydrodynamic disk gas+dust simulations with embedded planets to model the dust ring and gap structures in the HL Tau protoplanetary disk observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). Since the HL Tau is a relatively massive disk, we find the disk self-gravity (DSG) plays an important role in the gap formation induced by the planets. Our simulation results demonstrate that DSG is necessary in explaining of the dust ring and gap in HL Tau disk. The comparison of simulation results shows that the dust rings and gap structures are more evident when the fullymore » 2D DSG (non-axisymmetric components are included) is used than if 1D axisymmetric DSG (only the axisymetric component is included) is used, or the disk self-gravity is not considered. We also find that the couple dust+gas+planet simulations are required because the gap and ring structure is different between dust and gas surface density.« less
NASA Astrophysics Data System (ADS)
Jha, V.; Kahre, M. A.
2017-12-01
The Mars atmosphere has low levels of dust during Northern Hemisphere (NH) spring and summer (the non-dusty season) and increased levels during NH autumn and winter (the dusty season). In the absence of regional or global storms, dust devils and local storms maintain a background minimum dust loading during the non-dusty season. While observational surveys and Global Climate Model (GCM) studies suggest that dust devils are likely to be major contributors to the background haze during NH spring and summer, a complete understanding of the relative contribution of dust devils and local dust storms has not yet been achieved. We present preliminary results from an investigation that focuses on the effects of radiatively active water ice clouds on dust lifting processes during these seasons. Water ice clouds are known to affect atmospheric temperatures directly by absorption and emission of thermal infrared radiation and indirectly through dynamical feedbacks. Our goal is to understand how clouds affect the contribution by local (wind stress) dust storms to the background dust haze during NH spring and summer. The primary tool for this work is the NASA Ames Mars GCM, which contains physical parameterizations for a fully interactive dust cycle. Three simulations that included wind stress dust lifting were executed for a period of 5 Martian years: a case that included no cloud formation, a case that included radiatively inert cloud formation and a case that included radiatively active cloud (RAC) formation. Results show that when radiatively active clouds are included, the clouds in the aphelion cloud belt radiatively heat the atmosphere aloft in the tropics (Figure 1). This heating produces a stronger overturning circulation, which in turn produces an enhanced low-level flow in the Hadley cell return branch. The stronger low-level flow drives higher surface stresses and increased dust lifting in those locations. We examine how realistic these simulated results are by comparing the spatial pattern of predicted wind stress lifting with a catalog of observed local storms. Better agreement is achieved in the radiatively active cloud case. These results suggest that wind stress lifting may contribute more to maintaining the background dust haze during NH spring and summer than what previous studies have shown.
Dust particles interaction with plasma jet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ticos, C. M.; Jepu, I.; Lungu, C. P.
2009-11-10
The flow of plasma and particularly the flow of ions play an important role in dusty plasmas. Here we present some instances in laboratory experiments where the ion flow is essential in establishing dust dynamics in strongly or weakly coupled dust particles. The formation of ion wake potential and its effect on the dynamics of dust crystals, or the ion drag force exerted on micron size dust grains are some of the phenomena observed in the presented experiments.
Torques Induced by Scattered Pebble-flow in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Benítez-Llambay, Pablo; Pessah, Martin E.
2018-03-01
Fast inward migration of planetary cores is a common problem in the current planet formation paradigm. Even though dust is ubiquitous in protoplanetary disks, its dynamical role in the migration history of planetary embryos has not been assessed. In this Letter, we show that the scattered pebble-flow induced by a low-mass planetary embryo leads to an asymmetric dust-density distribution that is able to exert a net torque. By analyzing a large suite of multifluid hydrodynamical simulations addressing the interaction between the disk and a low-mass planet on a fixed circular orbit, and neglecting dust feedback onto the gas, we identify two different regimes, gas- and gravity-dominated, where the scattered pebble-flow results in almost all cases in positive torques. We collect our measurements in a first torque map for dusty disks, which will enable the incorporation of the effect of dust dynamics on migration into population synthesis models. Depending on the dust drift speed, the dust-to-gas mass ratio/distribution, and the embryo mass, the dust-induced torque has the potential to halt inward migration or even induce fast outward migration of planetary cores. We thus anticipate that dust-driven migration could play a dominant role during the formation history of planets. Because dust torques scale with disk metallicity, we propose that dust-driven outward migration may enhance the occurrence of distant giant planets in higher-metallicity systems.
NASA Astrophysics Data System (ADS)
Wang, G.; Wang, J.; Ren, Y.; Li, J.
2015-12-01
To understand the formation mechanism of secondary organic aerosols (SOA) on dust surfaces, this study investigated the concentrations and compositions of dicarboxylic acids (C2-C11), keto-carboxylic acids (C3-C7), α-dicarbonyls and inorganic ions in size-segregated aerosols (9-stages) collected in Xi'an, China during the nondust storm and dust storm periods of 2009 and 2011. During the events the ambient particulate dicarboxylic acids were 932-2240 ng m-3, which are comparable and even higher than those in nondust periods. Molecular compositions of the above SOA are similar to those in nondust periods with oxalic acid being the leading species. In the presence of the dust storms, all the above mentioned SOA species in Xi'an were predominantly enriched on the coarse particles (>2.1μm), and oxalic acid well correlated with NO3- (R2=0.72, p<0.001) rather than SO42-.This phenomenon differs greatly from the SOA in any other nondust period that is characterized by an enrichment of oxalic acid in fine particles and a strong correlation of oxalic acid with SO42-. Our results further demonstrate that NO3- in the dust periods in Xi'an was mostly derived from secondary oxidation, whereas SO42- during the events was largely derived from surface soil of Gobi deserts. We propose a formation pathway to explain these observations, in which nitric acid and/or nitrogen oxides react with dust to produce Ca(NO3)2 and form a liquid phase on the surface of dust aerosols via water vapor-absorption of Ca(NO3)2, followed by a partitioning of the gas-phase water-soluble organic precursors (e.g.,glyoxal and methylglyoxal) into the aqueous-phase and a subsequent oxidation into oxalic acid. To the best of our knowledge, we found for the first time the enrichment of glyoxal and methylglyoxal on dust surface. Our data suggest an important role of nitrate in the heterogeneous formation process of SOA on the surface of Asian dust.
NASA Technical Reports Server (NTRS)
Perlwitz, Jan P.; Fridlind, Ann M.; Knopf, Daniel A.; Miller, Ron L.; García-Pando, Carlos Perez
2017-01-01
The effect of aerosol particles on ice nucleation and, in turn, the formation of ice and mixed phase clouds is recognized as one of the largest sources of uncertainty in climate prediction. We apply an improved dust mineral specific aerosol module in the NASA GISS Earth System ModelE, which takes into account soil aggregates and their fragmentation at emission as well as the emission of large particles. We calculate ice nucleating particle concentrations from K-feldspar abundance for an active site parameterization for a range of activation temperatures and external and internal mixing assumption. We find that the globally averaged INP concentration is reduced by a factor of two to three, compared to a simple assumption on the size distribution of emitted dust minerals. The decrease can amount to a factor of five in some geographical regions. The results vary little between external and internal mixing and different activation temperatures, except for the coldest temperatures. In the sectional size distribution, the size range 24 micrometer contributes the largest INP number.
NASA Astrophysics Data System (ADS)
Perlwitz, J. P.; Fridlind, A. M.; Knopf, D. A.; Miller, R. L.; Pérez García-Pando, C.
2017-12-01
The effect of aerosol particles on ice nucleation and, in turn, the formation of ice and mixed phase clouds is recognized as one of the largest sources of uncertainty in climate prediction. We apply an improved dust mineral specific aerosol module in the NASA GISS Earth System ModelE, which takes into account soil aggregates and their fragmentation at emission as well as the emission of large particles. We calculate ice nucleating particle concentrations from K-feldspar abundance for an active site parameterization for a range of activation temperatures and external and internal mixing assumption. We find that the globally averaged INP concentration is reduced by a factor of two to three, compared to a simple assumption on the size distribution of emitted dust minerals. The decrease can amount to a factor of five in some geographical regions. The results vary little between external and internal mixing and different activation temperatures, except for the coldest temperatures. In the sectional size distribution, the size range 2-4 μm contributes the largest INP number.
A COMPACT CONCENTRATION OF LARGE GRAINS IN THE HD 142527 PROTOPLANETARY DUST TRAP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casassus, Simon; Marino, Sebastian; Pérez, Sebastian
2015-10-20
A pathway to the formation of planetesimals, and eventually giant planets, may occur in concentrations of dust grains trapped in pressure maxima. Dramatic crescent-shaped dust concentrations have been seen in recent radio images at submillimeter wavelengths. These disk asymmetries could represent the initial phases of planet formation in the dust trap scenario, provided that grain sizes are spatially segregated. A testable prediction of azimuthal dust trapping is that progressively larger grains should be more sharply confined and should follow a distribution that is markedly different from the gas. However, gas tracers such as {sup 12}CO and the infrared emission frommore » small grains are both very optically thick where the submillimeter continuum originates, so previous observations have been unable to test the trapping predictions or to identify compact concentrations of larger grains required for planet formation by core accretion. Here we report multifrequency observations of HD 142527, from 34 to 700 GHz, that reveal a compact concentration of grains approaching centimeter sizes, with a few Earth masses, embedded in a large-scale crescent of smaller, submillimeter-sized particles. The emission peaks at wavelengths shorter than ∼1 mm are optically thick and trace the temperature structure resulting from shadows cast by the inner regions. Given this temperature structure, we infer that the largest dust grains are concentrated in the 34 GHz clump. We conclude that dust trapping is efficient enough for grains observable at centimeter wavelengths to lead to compact concentrations.« less
The impact of Saharan Dust on the genesis and evolution of Hurricane Earl (2010)
NASA Astrophysics Data System (ADS)
Pan, B.; Wang, Y.; Hsieh, J. S.; Lin, Y.; Hu, J.; Zhang, R.
2017-12-01
Dust, one of the most abundant natural aerosols, can exert substantial radiative and microphysical effects on the regional climate and has potential impacts on the genesis and intensification of tropical cyclones (TCs). A Weather Research and Forecasting Model and the Regional Oceanic Modeling System coupled model (WRF-ROMS) is used to simulate the evolution of Hurricane Earl (2010), of which Earl was interfered by Saharan dust at the TC genesis stage. A new dust module has been implemented to the TAMU two-moment microphysics scheme in the WRF model. It accounts for both dust as Cloud Condensation Nuclei (CCN) and Ice Nuclei (IN). The hurricane track, intensity and precipitation have been compared to the best track data and TRMM precipitation, respectively. The influences of Saharan dust on Hurricane Earl are investigated with dust-CCN, dust-IN, and dust-free scenarios. The analysis shows that Saharan dust changes the latent heat and moisture distribution, invigorates the convections in the hurricane's eyewall, and suppresses the development of Earl. This finding addresses the importance of accounting dust microphysics effect on hurricane predictions.
Dust Ion-Acoustic Shock Waves in a Multicomponent Magnetorotating Plasma
NASA Astrophysics Data System (ADS)
Kaur, Barjinder; Saini, N. S.
2018-02-01
The nonlinear properties of dust ion-acoustic (DIA) shock waves in a magnetorotating plasma consisting of inertial ions, nonextensive electrons and positrons, and immobile negatively charged dust are examined. The effects of dust charge fluctuations are not included in the present investigation, but the ion kinematic viscosity (collisions) is a source of dissipation, leading to the formation of stable shock structures. The Zakharov-Kuznetsov-Burgers (ZKB) equation is derived using the reductive perturbation technique, and from its solution the effects of different physical parameters, i.e. nonextensivity of electrons and positrons, kinematic viscosity, rotational frequency, and positron and dust concentrations, on the characteristics of shock waves are examined. It is observed that physical parameters play a very crucial role in the formation of DIA shocks. This study could be useful in understanding the electrostatic excitations in dusty plasmas in space (e.g. interstellar medium).
Formation of Cosmic Carbon Dust Analogues in Plasma Reactors
NASA Technical Reports Server (NTRS)
Salama, Farid
2016-01-01
Cosmic carbon dust analogs are produced, processed and analyzed in the laboratory using NASA's COSmIC (COSmIC Simulation Chamber) Facility. These experiments can be used to derive information on the most efficient molecular precursors in the chemical pathways that eventually lead to the formation of carbonaceous grains in the stellar envelopes of carbon stars.
The Cycle of Dust in the Milky Ways: Clues from the High-Redshift and the Local Universe
NASA Technical Reports Server (NTRS)
Dwek, Eli
2008-01-01
Massive amount of dust has been observed at high-redshifts when the universe was a mere 900 Myr old. The formation and evolution of dust is there dominated by massive stars and interstellar processes. In contrast, in the local universe lower mass stars, predominantly 2-5 Msun AGB stars, play the dominant role in the production of interstellar dust. These two extreme environments offer fascinating clues about the evolution of dust in the Milky Way galaxy
The Intricate Role of Cold Gas and Dust in Galaxy Evolution at Early Cosmic Epochs
NASA Astrophysics Data System (ADS)
Riechers, Dominik A.; Capak, Peter L.; Carilli, Christopher L.
Cold molecular and atomic gas plays a central role in our understanding of early galaxy formation and evolution. It represents the component of the interstellar medium (ISM) that stars form out of, and its mass, distribution, excitation, and dynamics provide crucial insight into the physical processes that support the ongoing star formation and stellar mass buildup. We here present results that demonstrate the capability of the Atacama Large (sub-)Millimeter Array (ALMA) to detect the cold ISM and dust in ``normal'' galaxies at redshifts z=5-6. We also show detailed studies of the ISM in massive, dust-obscured starburst galaxies out to z>6 with ALMA, the Combined Array for Research in Millimeter-wave Astronomy (CARMA), the Plateau de Bure Interferometer (PdBI), and the Karl G. Jansky Very Large Array (VLA). These observations place some of the most direct constraints on the dust-obscured fraction of the star formation history of the universe at z>5 to date, showing that ``typical'' galaxies at these epochs have low dust content, but also that highly-enriched, dusty starbursts already exist within the first billion years after the Big Bang.
NASA Astrophysics Data System (ADS)
Korhonen, H.; Kulmala, M.; Lauri, A.
Analyses of nucleation events have emphasized the importance of pre-existing par- ticles in new particle formation. When coarse mode aerosol is present, it typically dominates the condensation sink for trace gases and thus inhibits the onset of nucle- ation. A monodisperse aerosol dynamical box model is applied to investigate the effect of soluble coated mineral dust particles on new particle formation. The model in- cludes ternary H2SO4H2ONH3 nucleation, multicomponent condensation, coagu- lation and dry deposition. As the soluble coating can significantly change the ability of dust particles to serve as a condensation sink for condensable vapours, different mech- anisms of coating, including heterogeneous nucleation of sulphuric acid, are consid- ered. Preliminary results show that the presence of micron sized soluble coated dust par- ticles can even at relatively low concentrations prevent homogeneous nucleation or growth of nucleated particles to detectable size of 3 nm. Furthermore, critical conden- sation sinks obtained by model simulations correspond to measured sinks.
NASA Technical Reports Server (NTRS)
Ferguson, F.; Lilleleht, L. U.; Nuth, J.; Stephens, J. R.; Bussoletti, E.; Colangeli, L.; Mennella, V.; Dell'Aversana, P.; Mirra, C.
1993-01-01
The formation, properties and chemical dynamics of microparticles are important in a wide variety of technical and scientific fields including synthesis of semiconductor crystals from the vapour, heterogeneous chemistry in the stratosphere and the formation of cosmic dust surrounding the stars. Gravitational effects on particle formation from vapors include gas convection and buoyancy and particle sedimentation. These processes can be significantly reduced by studying condensation and agglomeration of particles in microgravity. In addition, to accurately simulate particle formation near stars, which takes place under low gravity conditions, studies in microgravity are desired. We report here the STARDUST experience, a recent collaborative effort that brings together a successful American program of microgravity experiments on particle formation aboard NASA KC-135 Reduced Gravity Research Aircraft and several Italian research groups with expertise in microgravity research and astrophysical dust formation. The program goal is to study the formation and properties of high temperature particles and gases that are of interest in astrophysics and planetary science. To do so we are developing techniques that are generally applicable to study particle formation and properties, taking advantage of the microgravity environment to allow accurate control of system parameters.
Ferguson, F; Lilleleht, L U; Nuth, J; Stephens, J R; Bussoletti, E; Colangeli, L; Mennella, V; Dell'Aversana, P; Mirra, C
1993-01-01
The formation, properties and chemical dynamics of microparticles are important in a wide variety of technical and scientific fields including synthesis of semiconductor crystals from the vapour, heterogeneous chemistry in the stratosphere and the formation of cosmic dust surrounding the stars. Gravitational effects on particle formation from vapors include gas convection and buoyancy and particle sedimentation. These processes can be significantly reduced by studying condensation and agglomeration of particles in microgravity. In addition, to accurately simulate particle formation near stars, which takes place under low gravity conditions, studies in microgravity are desired. We report here the STARDUST experience, a recent collaborative effort that brings together a successful American program of microgravity experiments on particle formation aboard NASA KC-135 Reduced Gravity Research Aircraft and several Italian research groups with expertise in microgravity research and astrophysical dust formation. The program goal is to study the formation and properties of high temperature particles and gases that are of interest in astrophysics and planetary science. To do so we are developing techniques that are generally applicable to study particle formation and properties, taking advantage of the microgravity environment to allow accurate control of system parameters.
Copious Amounts of Dust and Gas in a z = 7.5 Quasar Host Galaxy
NASA Astrophysics Data System (ADS)
Venemans, Bram P.; Walter, Fabian; Decarli, Roberto; Bañados, Eduardo; Carilli, Chris; Winters, Jan Martin; Schuster, Karl; da Cunha, Elisabete; Fan, Xiaohui; Farina, Emanuele Paolo; Mazzucchelli, Chiara; Rix, Hans-Walter; Weiss, Axel
2017-12-01
We present IRAM/NOEMA and JVLA observations of the quasar J1342+0928 at z = 7.54 and report detections of copious amounts of dust and [C II] emission in the interstellar medium (ISM) of its host galaxy. At this redshift, the age of the universe is 690 Myr, about 10% younger than the redshift of the previous quasar record holder. Yet, the ISM of this new quasar host galaxy is significantly enriched by metals, as evidenced by the detection of the [C II] 158 μm cooling line and the underlying far-infrared (FIR) dust continuum emission. To the first order, the FIR properties of this quasar host are similar to those found at a slightly lower redshift (z˜ 6), making this source by far the FIR-brightest galaxy known at z≳ 7.5. The [C II] emission is spatially unresolved, with an upper limit on the diameter of 7 kpc. Together with the measured FWHM of the [C II] line, this yields a dynamical mass of the host of < 1.5× {10}11 {M}⊙ . Using standard assumptions about the dust temperature and emissivity, the NOEMA measurements give a dust mass of (0.6{--}4.3)× {10}8 {M}⊙ . The brightness of the [C II] luminosity, together with the high dust mass, imply active ongoing star formation in the quasar host. Using [C II]-SFR scaling relations, we derive star formation rates of 85-545 {M}⊙ yr-1 in the host, consistent with the values derived from the dust continuum. Indeed, an episode of such past high star formation is needed to explain the presence of ˜108 M ⊙ of dust implied by the observations.
Observation of Dust Stream Formation Produced by Low Current, High Voltage Cathode Spots
NASA Technical Reports Server (NTRS)
Foster, John E.
2004-01-01
Macro-particle acceleration driven by low current, high voltage cathode spots has been investigated. The phenomenon was observed to occur when nanometer and micrometer-sized particles in the presence of a discharge plasma were exposed to a high voltage pulse. The negative voltage pulse initiates the formation of multiple, high voltage, low current cathode spots which provides the mechanism of actual acceleration of the charged dust particles. Dust streams generated by this process were detected using laser scattering techniques. The particle impact craters observed at the surface of downstream witness badges were documented using SEM and light microscopy.
The Keck Aperture Masking Experiment: Dust Enshrouded Red Giants
NASA Technical Reports Server (NTRS)
Blasius, T. D.; Monnier, J. D.; Tuthill, P. G.; Danchi, W. C.; Anderson, M.
2012-01-01
While the importance of dusty asymptotic giant branch (AGB) stars to galactic chemical enrichment is widely recognised, a sophisticated understanding of the dust formation and wind-driving mechanisms has proven elusive due in part to the difficulty in spatially-resolving the dust formation regions themselves. We have observed twenty dust-enshrouded AGB stars as part of the Keck Aperture Masking Experiment, resolving all of them in multiple near-infrared bands between 1.5 m and 3.1 m. We find 45% of the targets to show measurable elongations that, when correcting for the greater distances of the targets, would correspond to significantly asymmetric dust shells on par with the well-known cases of IRC +10216 or CIT 6. Using radiative transfer models, we find the sublimation temperature of Tsub(silicates) = 1130 90K and Tsub(amorphous carbon) = 1170 60 K, both somewhat lower than expected from laboratory measurements and vastly below temperatures inferred from the inner edge of YSO disks. The fact that O-rich and C-rich dust types showed the same sublimation temperature was surprising as well. For the most optically-thick shells ( 2.2 m > 2), the temperature profile of the inner dust shell is observed to change substantially, an effect we suggest could arise when individual dust clumps become optically-thick at the highest mass-loss rates.
H2 formation via the UV photo-processing of a-C:H nano-particles
NASA Astrophysics Data System (ADS)
Jones, A. P.; Habart, E.
2015-09-01
Context. The photolysis of hydrogenated amorphous carbon, a-C(:H), dust by UV photon-irradiation in the laboratory leads to the release of H2 as well as other molecules and radicals. This same process is also likely to be important in the interstellar medium. Aims: We investigate molecule formation arising from the photo-dissociatively-driven, regenerative processing of a-C(:H) dust. Methods: We explore the mechanism of a-C(:H) grain photolysis leading to the formation of H2 and other molecules/radicals. Results: The rate constant for the photon-driven formation of H2 from a-C(:H) grains is estimated to be 2 × 10-17 cm3 s-1. In intense radiation fields photon-driven grain decomposition will lead to fragmentation into daughter species rather than H2 formation. Conclusions: The cyclic re-structuring of arophatic a-C(:H) nano-particles appears to be a viable route to formation of H2 for low to moderate radiation field intensities (1 ≲ G0 ≲ 102), even when the dust is warm (T ~ 50-100 K).
NASA Astrophysics Data System (ADS)
Onishi, Isamu K.; Sekiya, Minoru
2017-04-01
We investigate the effect of a radial pressure bump in a protoplanetary disk on planetesimal formation. We performed the two-dimensional numerical simulation of the dynamical interaction of solid particles and gas with an initially defined pressure bump under the assumption of axisymmetry. The aim of this work is to elucidate the effects of the stellar vertical gravity that were omitted in a previous study. Our results are very different from the previous study, which omitted the vertical gravity. Because dust particles settle toward the midplane because of the vertical gravity to form a thin dust layer, the regions outside of the dust layer are scarcely affected by the back-reaction of the dust. Hence, the gas column density keeps its initial profile with a bump, and dust particles migrate toward the bump. In addition, the turbulence due to the Kelvin-Helmholtz instability caused by the difference of the azimuthal velocities between the inside and outside of the dust layer is suppressed where the radial pressure gradient is reduced by the pressure bump. The dust settling proceeds further where the turbulence is weak, and a number of dust clumps are formed. The dust density in some clumps exceeds the Roche density. Planetesimals are considered to be formed from these clumps owing to the self-gravity.[Figure not available: see fulltext.
NASA Technical Reports Server (NTRS)
Aller, Monique C.; Dwek, Eliahu; Kulkarni, Varsha P.; York, Donald G.; Welty, Daniel E.; Vladilo, Giovanni; Som, Debopam; Lackey, Kyle; Dwek, Eli; Beiranvand, Nassim;
2016-01-01
Gas and dust grains are fundamental components of the interstellar medium and significantly impact many of the physical processes driving galaxy evolution, such as star-formation, and the heating, cooling, and ionization of the interstellar material. Quasar absorption systems (QASs), which trace intervening galaxies along the sightlines to luminous quasars, provide a valuable tool to directly study the properties of the interstellar gas and dust in distant, normal galaxies. We have established the presence of silicate dust grains in at least some gas-rich QASs, and find that they exist at higher optical depths than expected for diffuse gas in the Milky Way. Differences in the absorption feature shapes additionally suggest variations in the silicate dust grain properties, such as in the level of grain crystallinity, from system-to-system. We present results from a study of the gas and dust properties of QASs with adequate archival IR data to probe the silicate dust grain properties. We discuss our measurements of the strengths of the 10 and 18 micron silicate dust absorption features in the QASs, and constraints on the grain properties (e.g., composition, shape, crystallinity) based on fitted silicate profile templates. We investigate correlations between silicate dust abundance, reddening, and gas metallicity, which will yield valuable insights into the history of star formation and chemical enrichment in galaxies.
Imaging Polarized Dust Emission in Star Formation Regions with the OVRO MM Array
NASA Technical Reports Server (NTRS)
Akeson, Rachel; Carlstrom, John
1996-01-01
We present OVRO interferometric observations of linearly polarized emission from magnetically aligned dust grains which allow the magnetic field geometry in nearby star formation regions to be probed on scales ranging from 100 to 3000 AU. Current results include observations of the young stellar objects NGC1333/IRAS 4A, IRAS 16293-2422 and Orion IRc2-KL.
Dust formation in a galaxy with primitive abundances.
Sloan, G C; Matsuura, M; Zijlstra, A A; Lagadec, E; Groenewegen, M A T; Wood, P R; Szyszka, C; Bernard-Salas, J; van Loon, J Th
2009-01-16
Interstellar dust plays a crucial role in the evolution of galaxies. It governs the chemistry and physics of the interstellar medium. In the local universe, dust forms primarily in the ejecta from stars, but its composition and origin in galaxies at very early times remain controversial. We report observational evidence of dust forming around a carbon star in a nearby galaxy with a low abundance of heavy elements, 25 times lower than the solar abundance. The production of dust by a carbon star in a galaxy with such primitive abundances raises the possibility that carbon stars contributed carbonaceous dust in the early universe.
NASA Astrophysics Data System (ADS)
Kobayashi, Hiroshi; Watanabe, Sei-ichiro; Kimura, Hiroshi; Yamamoto, Tetsuo
2009-05-01
Dust particles exposed to the stellar radiation and wind drift radially inward by the Poynting-Robertson (P-R) drag and pile up at the zone where they begin to sublime substantially. The reason they pile up or form a ring is that their inward drifts due to the P-R drag are suppressed by stellar radiation pressure when the ratio of radiation pressure to stellar gravity on them increases during their sublimation phases. We present analytic solutions to the orbital and mass evolution of such subliming dust particles, and find their drift velocities at the pileup zone are almost independent of their initial semimajor axes and masses. We derive analytically an enhancement factor of the number density of the particles at the outer edge of the sublimation zone from the solutions. We show that the formula of the enhancement factor reproduces well numerical simulations in the previous studies. The enhancement factor for spherical dust particles of silicate and carbon extends from 3 to more than 20 at stellar luminosities L=0.8-500L, where L is solar luminosity. Although the enhancement factor for fluffy dust particles is smaller than that for spherical particles, sublimating particles inevitably form a dust ring as long as their masses decrease faster than their surface areas during sublimation. The formulation is applicable to dust ring formation for arbitrary shape and material of dust in dust-debris disks as well as in the Solar System.
Dust Formation, Evolution, and Obscuration Effects in the Very High-Redshift Universe
NASA Technical Reports Server (NTRS)
Dwek, Eli; Staguhn, Johannes; Arendt, Richard G.; Kovacs, Attila; Su, Ting; Benford, Dominic J.
2014-01-01
The evolution of dust at redshifts z > or approx. 9, and consequently the dust properties, differs greatly from that in the local universe. In contrast to the local universe, core collapse supernovae (CCSNe) are the only source of thermally-condensed dust. Because of the low initial dust-to-gas mass ratio, grain destruction rates are low, so that CCSNe are net producers of interstellar dust. Galaxies with large initial gas mass or high mass infall rate will therefore have a more rapid net rate of dust production comported to galaxies with lower gas mass, even at the same star formation rate. The dust composition is dominated by silicates, which exhibit a strong rise in the UV opacity near the Lyman break. This "silicate-UV break" may be confused with the Lyman break, resulting in a misidentification of a galaxies' photometric redshift. In this paper we demonstrate these effects by analyzing the spectral energy distribution (SED) of MACS1149-JD, a lensed galaxy at z = 9.6. A potential 2mm counterpart of MACS1149-JD has been identified with GISMO. While additional observations are required to corroborate this identification, we use this possible association to illustrate the physical processes and the observational effects of dust in the very high redshift universe. Subject headings: galaxies: high-redshift - galaxies: evolution - galaxies: individual (MACS1149- JD) - Interstellar medium (ISM), nebulae: dust, extinction - physical data and processes: nuclear reactions, nucleosynthesis, abundances.
NASA Astrophysics Data System (ADS)
Whitaker, Katherine E.; Pope, Alexandra; Cybulski, Ryan; Casey, Caitlin M.; Popping, Gergo; Yun, Min; 3D-HST Collaboration
2018-01-01
The total star formation budget of galaxies consists of the sum of the unobscured star formation, as observed in the rest-frame ultraviolet (UV), together with the obscured component that is absorbed and re-radiated by dust grains in the infrared. We explore how the fraction of obscured star formation depends (SFR) and stellar mass for mass-complete samples of galaxies at 0 < z < 2.5. We combine GALEX and WISE photometry for SDSS-selected galaxies with the 3D-HST treasury program and Spitzer/MIPS 24μm photometry in the well-studied 5 extragalactic CANDELS fields. We find a strong dependence of the fraction of obscured star formation (f_obscured=SFR_IR/SFR_UV+IR) on stellar mass, with remarkably little evolution in this fraction with redshift out to z=2.5. 50% of star formation is obscured for galaxies with log(M/M⊙)=9.4 although unobscured star formation dominates the budget at lower masses, there exists a tail of low mass extremely obscured star-forming galaxies at z > 1. For log(M/M⊙)>10.5, >90% of star formation is obscured at all redshifts. We also show that at fixed total SFR, f_obscured is lower at higher redshift. At fixed mass, high-redshift galaxies are observed to have more compact sizes and much higher star formation rates, gas fractions and hence surface densities (implying higher dust obscuration), yet we observe no redshift evolution in f_obscured with stellar mass. This poses a challenge to theoretical models to reproduce, where the observed compact sizes at high redshift seem in tension with lower dust obscuration.
NASA Astrophysics Data System (ADS)
Whitaker, Katherine E.; Pope, Alexandra; Cybulski, Ryan; Casey, Caitlin M.; Popping, Gergö; Yun, Min S.
2017-12-01
The total star formation budget of galaxies consists of the sum of the unobscured star formation, as observed in the rest-frame ultraviolet (UV), together with the obscured component that is absorbed and re-radiated by dust grains in the infrared. We explore how the fraction of obscured star formation depends on stellar mass for mass-complete samples of galaxies at 0< z< 2.5. We combine GALEX and WISE photometry for SDSS-selected galaxies with the 3D-HST treasury program and Spitzer/MIPS 24 μm photometry in the well-studied five extragalactic Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) fields. We find a strong dependence of the fraction of obscured star formation (f obscured = SFRIR/SFRUV+IR) on stellar mass, with remarkably little evolution in this fraction with redshift out to z = 2.5. 50% of star formation is obscured for galaxies with log(M/M ⊙) = 9.4 although unobscured star formation dominates the budget at lower masses, there exists a tail of low-mass, extremely obscured star-forming galaxies at z> 1. For log(M/M ⊙) > 10.5, >90% of star formation is obscured at all redshifts. We also show that at fixed total SFR, {f}{obscured} is lower at higher redshift. At fixed mass, high-redshift galaxies are observed to have more compact sizes and much higher star formation rates, gas fractions, and hence surface densities (implying higher dust obscuration), yet we observe no redshift evolution in {f}{obscured} with stellar mass. This poses a challenge to theoretical models, where the observed compact sizes at high redshift seem in tension with lower dust obscuration.
X-ray radiative transfer in protoplanetary disks. The role of dust and X-ray background fields
NASA Astrophysics Data System (ADS)
Rab, Ch.; Güdel, M.; Woitke, P.; Kamp, I.; Thi, W.-F.; Min, M.; Aresu, G.; Meijerink, R.
2018-01-01
Context. The X-ray luminosities of T Tauri stars are about two to four orders of magnitude higher than the luminosity of the contemporary Sun. As these stars are born in clusters, their disks are not only irradiated by their parent star but also by an X-ray background field produced by the cluster members. Aims: We aim to quantify the impact of X-ray background fields produced by young embedded clusters on the chemical structure of disks. Further, we want to investigate the importance of the dust for X-ray radiative transfer in disks. Methods: We present a new X-ray radiative transfer module for the radiation thermo-chemical disk code PRODIMO (PROtoplanetary DIsk MOdel), which includes X-ray scattering and absorption by both the gas and dust component. The X-ray dust opacities can be calculated for various dust compositions and dust-size distributions. For the X-ray radiative transfer we consider irradiation by the star and by X-ray background fields. To study the impact of X-rays on the chemical structure of disks we use the well established disk ionization tracers N2H+ and HCO+. Results: For evolved dust populations (e.g. grain growth), X-ray opacities are mostly dominated by the gas; only for photon energies E ≳ 5-10 keV do dust opacities become relevant. Consequently the local disk X-ray radiation field is only affected in dense regions close to the disk midplane. X-ray background fields can dominate the local X-ray disk ionization rate for disk radii r ≳ 20 au. However, the N2H+ and HCO+ column densities are only significantly affected in cases of low cosmic-ray ionization rates (≲10-19 s-1), or if the background flux is at least a factor of ten higher than the flux level of ≈10-5 erg cm-2 s-1 expected for clusters typical for the solar vicinity. Conclusions: Observable signatures of X-ray background fields in low-mass star-formation regions, like Taurus, are only expected for cluster members experiencing a strong X-ray background field (e.g. due to their location within the cluster). For the majority of the cluster members, the X-ray background field has relatively little impact on the disk chemical structure.
Dust in brown dwarfs. III. Formation and structure of quasi-static cloud layers
NASA Astrophysics Data System (ADS)
Woitke, P.; Helling, Ch.
2004-01-01
In this paper, first solutions of the dust moment equations developed in (Woitke & Helling \\cite{wh2003a}) for the description of dust formation and precipitation in brown dwarf and giant gas planet atmospheres are presented. We consider the special case of a static brown dwarf atmosphere, where dust particles continuously nucleate from the gas phase, grow by the accretion of molecules, settle gravitationally and re-evaporate thermally. Mixing by convective overshoot is assumed to replenish the atmosphere with condensable elements, which is necessary to counterbalance the loss of condensable elements by dust formation and gravitational settling (no dust without mixing). Applying a kinetic description of the relevant microphysical and chemical processes for TiO2-grains, the model makes predictions about the large-scale stratification of dust in the atmosphere, the depletion of molecules from the gas phase, the supersaturation of the gas in the atmosphere as well as the mean size and the mass fraction of dust grains as function of depth. Our results suggest that the presence of relevant amounts of dust is restricted to a layer, where the upper boundary (cloud deck) is related to the requirement of a minimum mixing activity (mixing time-scale τmix ≈ 10 6 s) and the lower boundary (cloud base) is determined by the thermodynamical stability of the grains. The nucleation occurs around the cloud deck where the gas is cool, strongly depleted, but nevertheless highly supersaturated (S ≫ 1). These particles settle gravitationally and populate the warmer layers below, where the in situ formation (nucleation) is ineffective or even not possible. During their descent, the particles grow and reach mean radii of ≈30 \\mum ... 400 \\mum at the cloud base, but the majority of the particles in the cloud layer remains much smaller. Finally, the dust grains sink into layers which are sufficiently hot to cause their thermal evaporation. Hence, an effective transport mechanism for condensable elements exists in brown dwarfs, which depletes the gas above and enriches the gas below the cloud base of a considered solid/liquid material. The dust-to-gas mass fraction in the cloud layer results to be approximately given by the mass fraction of condensable elements in the gas being mixed up. Only for artificially reduced mixing we find a self-regulation mechanism that approximately installs phase equilibrium (S ≈ 1) in a limited region around the cloud base.
Experimental constraints on the origin of chondrules
NASA Astrophysics Data System (ADS)
Boynton, W. V.; Drake; Hildebrand; Jones; Lewis; Treiman; Wark
1987-11-01
Chrondule formation was an important (perhaps ubiguitous) process in the early solar system, yet their origins remain elusive. Some points, however, are clear. The precursor material of chondules (dust) was rapidly heated at rates of perhaps thousands of degrees per second and was cooled more slowly. It was proposed to investigate chondrule formation in the Space Station environment via a dust-box (a chamber in which dust can be suspended, heated, and cooled. A microgravity environment is conducive to this kind of experiment because of the significant retardation of settling rates compared with a terrestrial laboratory environment. These long-duration experiments might require the development of technologies to counteract even the small, but finite and permanent gravitation field of the Space Station. Simple, but interesting experiments on dust suspensions immediately present themselves.
Short-Wavelength Infrared Views of Messier 81
NASA Technical Reports Server (NTRS)
2003-01-01
The magnificent spiral arms of the nearby galaxy Messier 81 are highlighted in this NASA Spitzer Space Telescope image. Located in the northern constellation of Ursa Major (which also includes the Big Dipper), this galaxy is easily visible through binoculars or a small telescope. M81 is located at a distance of 12 million light-years from Earth.Because of its proximity, M81 provides astronomers with an enticing opportunity to study the anatomy of a spiral galaxy in detail. The unprecedented spatial resolution and sensitivity of Spitzer at infrared wavelengths show a clear separation between the several key constituents of the galaxy: the old stars, the interstellar dust heated by star formation activity, and the embedded sites of massive star formation. The infrared images also permit quantitative measurements of the galaxy's overall dust content, as well as the rate at which new stars are being formed.The infrared image was obtained by Spitzer's infrared array camera. It is a four-color composite of invisible light, showing emissions from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (yellow) and 8.0 microns (red). Winding outward from the bluish-white central bulge of the galaxy, where old stars predominate and there is little dust, the grand spiral arms are dominated by infrared emission from dust. Dust in the galaxy is bathed by ultraviolet and visible light from the surrounding stars. Upon absorbing an ultraviolet or visible-light photon, a dust grain is heated and re-emits the energy at longer infrared wavelengths. The dust particles, composed of silicates (which are chemically similar to beach sand) and polycyclic aromatic hydrocarbons, trace the gas distribution in the galaxy. The well-mixed gas (which is best detected at radio wavelengths) and dust provide a reservoir of raw materials for future star formation.The infrared-bright clumpy knots within the spiral arms denote where massive stars are being born in giant H II (ionized hydrogen) regions. The 8-micron emission traces the regions of active star formation in the galaxy. Studying the locations of these regions with respect to the overall mass distribution and other constituents of the galaxy (e.g., gas) will help identify the conditions and processes needed for star formation. With the Spitzer observations, this information comes to us without complications from absorption by cold dust in the galaxy, which makes interpretation of visible-light features uncertain.The white stars scattered throughout the field of view are foreground stars within our own Milky Way galaxy.Computing the complex : Dusty plasmas in the presence of magnetic fields and UV radiation
NASA Astrophysics Data System (ADS)
Land, V.
2007-12-01
About 90% of the visible universe is plasma. Interstellar clouds, stellar cores and atmospheres, the Solar wind, the Earth's ionosphere, polar lights, and lightning are all plasma; ionized gases, consisting of electrons, ions, and neutrals. Not only many industries, like the microchip and solar cell industry, but also future fusion power stations, rely heavily on the use of plasma. More and more, home appliances include plasma technologies, like compact fluorescent light sources, and plasma screens. Dust particles, which can disrupt plasma processes, enter these plasmas, through chemical reactions in the plasma, or through interactions between plasma and walls. For instance, during microchip fabrication, dust particles can destroy the tiny, nanometre-sized structures on the surface of these chips. On the other hand, dust particles orbiting Young Stellar Objects coagulate and form the seeds of planets. In order to understand fundamental processes, such as planet formation, or to optimize industrial plasma processes, a thorough description of dusty plasma is necessary. Dust particles immersed in plasma collect ions and electrons from the plasma and charge up electrically. Therefore, the presence of dust changes plasma, while at the same time many forces start acting on the dust. Therefore, the dust and plasma become coupled, making dusty plasma a very complex medium to describe, in which many length and time scales play a role, from the Debye length to the length of the electrodes, and from the inverse plasma frequencies to the dust transport times. Using a self-consistent fluid model, we simulate these multi-scale dusty plasmas in radio frequency discharges under micro-gravity. We show that moderate non-linear scattering of ions by the dust particles is the most important aspect in the calculation of the ion drag force. This force is also responsible for the formation of a dust-free 'void' in dusty plasma under micro-gravity, caused by ions moving from the centre of the void towards the outside of the discharge. The void thus requires electron-impact ionizations inside the void. The electrons gain the energy for these ionizations inside the dust cloud surrounding the void, however. We show that a growing electron temperature gradient is responsible for the transport of electron energy from the surrounding dust cloud into the void. An axial magnetic field in the discharge magnetizes the electrons. This changes the ambipolar flux of ions through the bulk of the discharge. The ion drag force changes, resulting in a differently shaped void and faster void formation. Experiments in a direct current discharge, show a response of both dust and plasma in the E?B direction, when a magnetic field is applied. The dust response consists of two phases: an initial fast phase, and a later, slow phase. Using a Particle-In-Cell plus Monte Carlo model, we show that the dust charge can be reduced by adding a flux of ultraviolet radiation. A source of ultraviolet light can thus serve as a tool to manipulate dusty plasmas, but might also be important for the coagulation of dust particles around young stars and planet formation in general.
A Methodology to Monitor Airborne PM10 Dust Particles Using a Small Unmanned Aerial Vehicle
Alvarado, Miguel; Gonzalez, Felipe; Erskine, Peter; Cliff, David; Heuff, Darlene
2017-01-01
Throughout the process of coal extraction from surface mines, gases and particles are emitted in the form of fugitive emissions by activities such as hauling, blasting and transportation. As these emissions are diffuse in nature, estimations based upon emission factors and dispersion/advection equations need to be measured directly from the atmosphere. This paper expands upon previous research undertaken to develop a relative methodology to monitor PM10 dust particles produced by mining activities making use of small unmanned aerial vehicles (UAVs). A module sensor using a laser particle counter (OPC-N2 from Alphasense, Great Notley, Essex, UK) was tested. An aerodynamic flow experiment was undertaken to determine the position and length of a sampling probe of the sensing module. Flight tests were conducted in order to demonstrate that the sensor provided data which could be used to calculate the emission rate of a source. Emission rates are a critical variable for further predictive dispersion estimates. First, data collected by the airborne module was verified using a 5.0 m tower in which a TSI DRX 8533 (reference dust monitoring device, TSI, Shoreview, MN, USA) and a duplicate of the module sensor were installed. Second, concentration values collected by the monitoring module attached to the UAV (airborne module) obtaining a percentage error of 1.1%. Finally, emission rates from the source were calculated, with airborne data, obtaining errors as low as 1.2%. These errors are low and indicate that the readings collected with the airborne module are comparable to the TSI DRX and could be used to obtain specific emission factors from fugitive emissions for industrial activities. PMID:28216557
Dust Coagulation in Infalling Protostellar Envelopes I. Compact Grains
NASA Technical Reports Server (NTRS)
Yorke, H.; Suttner, G.; Lin, D.
1999-01-01
Dust plays a key role in the optical, thermodynamic and gas dynamical behavior of collapsing molecular cores. Because of relative velocities of the individual dust grains, coagulation and shattering can modify the grain size distribution and due to corresponding changes in the medium's opacity significantly influence the evolution during early phase of star formation.
Dust Coagulation in Infalling Protostellar Envelopes I. Compact Grains
NASA Technical Reports Server (NTRS)
Yorke, H.; Lin, D.; Suttner, G.
1999-01-01
Dust plays a key role in the optical, thermodynamic and gas dynamical behavior of collapsing molecular cores. Because of relative velocities of the individual dust grains, coagulation and shattering can modify the grain size distribution and -- due to corresponding changes in the medium's opacity significantly -- influence the evolution during early phases of star formation.
Dust-obscured star-forming galaxies in the early universe
NASA Astrophysics Data System (ADS)
Wilkins, Stephen M.; Feng, Yu; Di Matteo, Tiziana; Croft, Rupert; Lovell, Christopher C.; Thomas, Peter
2018-02-01
Motivated by recent observational constraints on dust reprocessed emission in star-forming galaxies at z ∼ 6 and above, we use the very large cosmological hydrodynamical simulation BLUETIDES to explore predictions for the amount of dust-obscured star formation in the early Universe (z > 8). BLUETIDES matches current observational constraints on both the UV luminosity function and galaxy stellar mass function and predicts that approximately 90 per cent of the star formation in high-mass (M* > 1010 M⊙) galaxies at z = 8 is already obscured by dust. The relationship between dust attenuation and stellar mass predicted by BLUETIDES is consistent with that observed at lower redshift. However, observations of several individual objects at z > 6 are discrepant with the predictions, though it is possible that their uncertainties may have been underestimated. We find that the predicted surface density of z ≥ 8 submm sources is below that accessible to current Herschel, SCUBA-2 and Atacama Large Millimetre Array (ALMA) submm surveys. However, as ALMA continues to accrue an additional surface area the population of z > 8 dust-obscured galaxies may become accessible in the near future.
FORMULATION OF NON-STEADY-STATE DUST FORMATION PROCESS IN ASTROPHYSICAL ENVIRONMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nozawa, Takaya; Kozasa, Takashi, E-mail: takaya.nozawa@ipmu.jp
2013-10-10
The non-steady-state formation of small clusters and the growth of grains accompanied by chemical reactions are formulated under the consideration that the collision of key gas species (key molecule) controls the kinetics of dust formation process. The formula allows us to evaluate the size distribution and condensation efficiency of dust formed in astrophysical environments. We apply the formulation to the formation of C and MgSiO{sub 3} grains in the ejecta of supernovae, as an example, to investigate how the non-steady effect influences the formation process, condensation efficiency f{sub con,{sub ∞}}, and average radius a{sub ave,{sub ∞}} of newly formed grainsmore » in comparison with the results calculated with the steady-state nucleation rate. We show that the steady-state nucleation rate is a good approximation if the collision timescale of key molecule τ{sub coll} is much smaller than the timescale τ{sub sat} with which the supersaturation ratio increases; otherwise the effect of the non-steady state becomes remarkable, leading to a lower f{sub con,{sub ∞}} and a larger a{sub ave,{sub ∞}}. Examining the results of calculations, we reveal that the steady-state nucleation rate is applicable if the cooling gas satisfies Λ ≡ τ{sub sat}/τ{sub coll} ∼> 30 during the formation of dust, and find that f{sub con,{sub ∞}} and a{sub ave,{sub ∞}} are uniquely determined by Λ{sub on} at the onset time t{sub on} of dust formation. The approximation formulae for f{sub con,{sub ∞}} and a{sub ave,{sub ∞}} as a function of Λ{sub on} could be useful in estimating the mass and typical size of newly formed grains from observed or model-predicted physical properties not only in supernova ejecta but also in mass-loss winds from evolved stars.« less
The onset of planet formation in brown dwarf disks.
Apai, Dániel; Pascucci, Ilaria; Bouwman, Jeroen; Natta, Antonella; Henning, Thomas; Dullemond, Cornelis P
2005-11-04
The onset of planet formation in protoplanetary disks is marked by the growth and crystallization of sub-micrometer-sized dust grains accompanied by dust settling toward the disk mid-plane. Here, we present infrared spectra of disks around brown dwarfs and brown dwarf candidates. We show that all three processes occur in such cool disks in a way similar or identical to that in disks around low- and intermediate-mass stars. These results indicate that the onset of planet formation extends to disks around brown dwarfs, suggesting that planet formation is a robust process occurring in most young circumstellar disks.
Dust devil characteristics and associated dust entrainment based on large-eddy simulations
NASA Astrophysics Data System (ADS)
Klose, Martina; Kwidzinski, Nick; Shao, Yaping
2015-04-01
The characteristics of dust devils, such as occurrence frequency, lifetime, size, and intensity, are usually inferred from in situ field measurements and remote sensing. Numerical models, e.g. large-eddy simulation (LES) models, have also been established as a tool to investigate dust devils and their structures. However, most LES models do not contain a dust module. Here, we present results from simulations using the WRF-LES model coupled to the convective turbulent dust emission (CTDE) scheme of Klose et al. (2014). The scheme describes the stochastic process of aerodynamic dust entrainment in the absence of saltation. It therefore allows for dust emission even below the threshold friction velocity for saltation. Numerical experiments have been conducted for different atmospheric stability and background wind conditions at 10 m horizontal resolution. A dust devil tracking algorithm is used to identify dust devils in the simulation results. The detected dust devils are statistically analyzed with regard to e.g. radius, pressure drop, lifetime, and turbulent wind speeds. An additional simulation with higher horizontal resolution (2 m) is conducted for conditions, which are especially favorable for dust devil development, i.e. unstable atmospheric stratification and weak mean winds. The higher resolution enables the identification of smaller dust devils and a more detailed structure analysis. Dust emission fluxes, dust concentrations, and dust mass budgets are calculated from the simulations. The results are compared to field observations reported in literature.
Pedrotti, Maria Luiza; Gazeau, Frédéric; Guieu, Cécile
2017-01-01
The evolution of organic carbon export to the deep ocean, under anthropogenic forcing such as ocean warming and acidification, needs to be investigated in order to evaluate potential positive or negative feedbacks on atmospheric CO2 concentrations, and therefore on climate. As such, modifications of aggregation processes driven by transparent exopolymer particles (TEP) formation have the potential to affect carbon export. The objectives of this study were to experimentally assess the dynamics of organic matter, after the simulation of a Saharan dust deposition event, through the measurement over one week of TEP abundance and size, and to evaluate the effects of ocean acidification on TEP formation and carbon export following a dust deposition event. Three experiments were performed in the laboratory using 300 L tanks filled with filtered seawater collected in the Mediterranean Sea, during two ‘no bloom’ periods (spring at the start of the stratification period and autumn at the end of this stratification period) and during the winter bloom period. For each experiment, one of the two tanks was acidified to reach pH conditions slightly below values projected for 2100 (~ 7.6–7.8). In both tanks, a dust deposition event of 10 g m-2 was simulated at the surface. Our results suggest that Saharan dust deposition triggered the abiotic formation of TEP, leading to the formation of organic-mineral aggregates. The amount of particulate organic carbon (POC) exported was proportional to the flux of lithogenic particles to the sediment traps. Depending on the season, the POC flux following artificial dust deposition ranged between 38 and 90 mg m-2 over six experimental days. Such variability is likely linked to the seasonal differences in the quality and quantity of TEP-precursors initially present in seawater. Finally, these export fluxes were not significantly different at the completion of the three experiments between the two pH conditions. PMID:28212418
Louis, Justine; Pedrotti, Maria Luiza; Gazeau, Frédéric; Guieu, Cécile
2017-01-01
The evolution of organic carbon export to the deep ocean, under anthropogenic forcing such as ocean warming and acidification, needs to be investigated in order to evaluate potential positive or negative feedbacks on atmospheric CO2 concentrations, and therefore on climate. As such, modifications of aggregation processes driven by transparent exopolymer particles (TEP) formation have the potential to affect carbon export. The objectives of this study were to experimentally assess the dynamics of organic matter, after the simulation of a Saharan dust deposition event, through the measurement over one week of TEP abundance and size, and to evaluate the effects of ocean acidification on TEP formation and carbon export following a dust deposition event. Three experiments were performed in the laboratory using 300 L tanks filled with filtered seawater collected in the Mediterranean Sea, during two 'no bloom' periods (spring at the start of the stratification period and autumn at the end of this stratification period) and during the winter bloom period. For each experiment, one of the two tanks was acidified to reach pH conditions slightly below values projected for 2100 (~ 7.6-7.8). In both tanks, a dust deposition event of 10 g m-2 was simulated at the surface. Our results suggest that Saharan dust deposition triggered the abiotic formation of TEP, leading to the formation of organic-mineral aggregates. The amount of particulate organic carbon (POC) exported was proportional to the flux of lithogenic particles to the sediment traps. Depending on the season, the POC flux following artificial dust deposition ranged between 38 and 90 mg m-2 over six experimental days. Such variability is likely linked to the seasonal differences in the quality and quantity of TEP-precursors initially present in seawater. Finally, these export fluxes were not significantly different at the completion of the three experiments between the two pH conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, Alexandra; Battisti, Andrew; Wilson, Grant W.
We directly detect dust emission in an optically detected, multiply imaged galaxy lensed by the Frontier Fields cluster MACSJ0717.5+3745. We detect two images of the same galaxy at 1.1 mm with the AzTEC camera on the Large Millimeter Telescope leaving no ambiguity in the counterpart identification. This galaxy, MACS0717-Az9, is at z > 4 and the strong lensing model ( μ = 7.5) allows us to calculate an intrinsic IR luminosity of 9.7 × 10{sup 10} L {sub ⊙} and an obscured star formation rate of 14.6 ± 4.5 M {sub ⊙} yr{sup −1}. The unobscured star formation rate frommore » the UV is only 4.1 ± 0.3 M {sub ⊙} yr{sup −1}, which means the total star formation rate (18.7 ± 4.5 M {sub ⊙} yr{sup −1}) is dominated (75%–80%) by the obscured component. With an intrinsic stellar mass of only 6.9 × 10{sup 9} M {sub ⊙}, MACS0717-Az9 is one of only a handful of z > 4 galaxies at these lower masses that is detected in dust emission. This galaxy lies close to the estimated star formation sequence at this epoch. However, it does not lie on the dust obscuration relation (IRX- β ) for local starburst galaxies and is instead consistent with the Small Magellanic Cloud attenuation law. This remarkable lower mass galaxy, showing signs of both low metallicity and high dust content, may challenge our picture of dust production in the early universe.« less
Star and Dust Formation Activities in AzTEC-3, a Starburst Galaxy at z = 5.3
NASA Astrophysics Data System (ADS)
Dwek, Eli; Staguhn, Johannes G.; Arendt, Richard G.; Capak, Peter L.; Kovacs, Attila; Benford, Dominic J.; Fixsen, Dale; Karim, Alexander; Leclercq, Samuel; Maher, Stephen F.; Moseley, Samuel H.; Schinnerer, Eva; Sharp, Elmer H.
2011-09-01
Analyses of high-redshift ultraluminous infrared (IR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. An important observational constraint neglected in the analysis is the mass of dust giving rise to the IR emission. In this paper we add this constraint to the analysis of AzTEC-3. Adopting an upper limit to the mass of stars and a bolometric luminosity for this object, we construct different stellar and chemical evolutionary scenarios, constrained to produce the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. We use the PÉGASE population synthesis code and a chemical evolution model to follow the evolution of the galaxy's SED and its stellar and dust masses as a function of galactic age for seven different stellar initial mass functions (IMFs). We find that the model with a Top Heavy IMF provided the most plausible scenario consistent with the observational constraints. In this scenario the dust formed over a period of ~200 Myr, with an SFR of ~500 M sun yr-1. These values for the age and SFR in AzTEC-3 are significantly higher and lower, respectively, from those derived without the dust mass constraint. However, this scenario is not unique, and others cannot be completely ruled out because of the prevailing uncertainties in the age of the galaxy, its bolometric luminosity, and its stellar and dust masses. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multiwavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.
STAR AND DUST FORMATION ACTIVITIES IN AzTEC-3, A STARBURST GALAXY AT z = 5.3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwek, Eli; Staguhn, Johannes G.; Arendt, Richard G.
2011-09-01
Analyses of high-redshift ultraluminous infrared (IR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. An important observational constraint neglected in the analysis is the mass of dust giving rise to the IR emission. In this paper we add this constraint to the analysis of AzTEC-3. Adopting an upper limit to the mass of stars and a bolometric luminosity for this object, we construct different stellar and chemical evolutionary scenarios, constrained to producemore » the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. We use the PEGASE population synthesis code and a chemical evolution model to follow the evolution of the galaxy's SED and its stellar and dust masses as a function of galactic age for seven different stellar initial mass functions (IMFs). We find that the model with a Top Heavy IMF provided the most plausible scenario consistent with the observational constraints. In this scenario the dust formed over a period of {approx}200 Myr, with an SFR of {approx}500 M{sub sun} yr{sup -1}. These values for the age and SFR in AzTEC-3 are significantly higher and lower, respectively, from those derived without the dust mass constraint. However, this scenario is not unique, and others cannot be completely ruled out because of the prevailing uncertainties in the age of the galaxy, its bolometric luminosity, and its stellar and dust masses. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multiwavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.« less
Design of equipment for lunar dust removal
NASA Technical Reports Server (NTRS)
Belden, Lacy; Cowan, Kevin; Kleespies, Hank; Ratliff, Ryan; Shah, Oniell; Shelburne, Kevin
1991-01-01
NASA has a long range goal of constructing a fully equipped, manned lunar base on the near side of the moon by the year 2015. During the Apollo Missions, lunar dust coated and fouled equipment surfaces and mechanisms exposed to the lunar environment. In addition, the atmosphere and internal surfaces of the lunar excursion module were contaminated by lunar dust which was brought in on articles passed through the airlock. Consequently, the need exists for device or appliance to remove lunar dust from surfaces of material objects used outside of the proposed lunar habitat. Additionally, several concepts were investigated for preventing the accumulation of lunar dust on mechanisms and finished surfaces. The character of the dust and the lunar environment present unique challenges for the removal of contamination from exposed surfaces. In addition to a study of lunar dust adhesion properties, the project examines the use of various energy domains for removing the dust from exposed surfaces. Also, prevention alternatives are examined for systems exposed to lunar dust. A concept utilizing a pressurized gas is presented for dust removal outside of an atmospherically controlled environment. The concept consists of a small astronaut/robotic compatible device which removes dust from contaminated surfaces by a small burst of gas.
Cold Dust and its Heating Sources in M 33
NASA Astrophysics Data System (ADS)
Komugi, Shinya; Tosaki, Tomoka; Kohno, Kotaro; Tsukagoshi, Takashi; Tamura, Yoichi; Miura, Rie; Onodera, Sachiko; Kuno, Nario; Kawabe, Ryohei; Nakanishi, Koichiro; Sawada, Tsuyoshi; Ezawa, Hajime; Wilson, Grant W.; Yun, Min S.; Scott, Kimberly S.; Hughes, David H.; Aretxaga, Itziar; Perera, Thushara A.; Austermann, Jason E.; Tanaka, Kunihiko; Muraoka, Kazuyuki; Egusa, Fumi
2011-12-01
We have mapped the nearby face-on spiral galaxy M 33 in the 1.1 mm dust continuum using AzTEC on Atacama Submillimeter Telescope Experiment (ASTE). The preliminary results are presented here. The observed dust has a characteristic temperature of ~ 21 K in the central kpc, radially declining down to ~ 13 K at the edge of the star forming disk. We compare the dust temperatures with KS band flux and star formation tracers. Our results imply that cold dust heating may be driven by long-lived stars even nearby star forming regions.
Optical wireless communications for micromachines
NASA Astrophysics Data System (ADS)
O'Brien, Dominic C.; Yuan, Wei Wen; Liu, Jing Jing; Faulkner, Grahame E.; Elston, Steve J.; Collins, Steve; Parry-Jones, Lesley A.
2006-08-01
A key challenge for wireless sensor networks is minimizing the energy required for network nodes to communicate with each other, and this becomes acute for self-powered devices such as 'smart dust'. Optical communications is a potentially attractive solution for such devices. The University of Oxford is currently involved in a project to build optical wireless links to smart dust. Retro-reflectors combined with liquid crystal modulators can be integrated with the micro-machine to create a low power transceiver. When illuminated from a base station a modulated beam is returned, transmitting data. Data from the base station can be transmitted using modulation of the illuminating beam and a receiver at the micro-machine. In this paper we outline the energy consumption and link budget considerations in the design of such micro-machines, and report preliminary experimental results.
Black hole formation from the gravitational collapse of a nonspherical network of structures
NASA Astrophysics Data System (ADS)
Delgado Gaspar, Ismael; Hidalgo, Juan Carlos; Sussman, Roberto A.; Quiros, Israel
2018-05-01
We examine the gravitational collapse and black hole formation of multiple nonspherical configurations constructed from Szekeres dust models with positive spatial curvature that smoothly match to a Schwarzschild exterior. These configurations are made of an almost spherical central core region surrounded by a network of "pancake-like" overdensities and voids with spatial positions prescribed through standard initial conditions. We show that a full collapse into a focusing singularity, without shell crossings appearing before the formation of an apparent horizon, is not possible unless the full configuration becomes exactly or almost spherical. Seeking for black hole formation, we demand that shell crossings are covered by the apparent horizon. This requires very special fine-tuned initial conditions that impose very strong and unrealistic constraints on the total black hole mass and full collapse time. As a consequence, nonspherical nonrotating dust sources cannot furnish even minimally realistic toy models of black hole formation at astrophysical scales: demanding realistic collapse time scales yields huge unrealistic black hole masses, while simulations of typical astrophysical black hole masses collapse in unrealistically small times. We note, however, that the resulting time-mass constraint is compatible with early Universe models of primordial black hole formation, suitable in early dust-like environments. Finally, we argue that the shell crossings appearing when nonspherical dust structures collapse are an indicator that such structures do not form galactic mass black holes but virialize into stable stationary objects.
NASA Astrophysics Data System (ADS)
Pereyra, Y.; Ma, L.; Sak, P. B.; Gaillardet, J.; Buss, H. L.; Brantley, S. L.
2015-12-01
Dust inputs play an important role in soil formation, especially for thick soils developed on tropical volcanic islands. In these regions, soils are highly depleted due to intensive chemical weathering, and mineral nutrients from dusts have been known to be important in sustaining soil fertility and productivity. Tropical volcanic soils are an ideal system to study the impacts of dust inputs on the ecosystem. Sr and U-series isotopes are excellent tracers to identify sources of materials in an open system if the end-members have distinctive isotope signatures. These two isotope systems are particularly useful to trace the origin of atmospheric inputs into soils and to determine rates and timescales of soil formation. This study analyzes major elemental concentrations, Sr and U-series isotope ratios in highly depleted soils in the tropical volcanic island of Basse-Terre in French Guadeloupe to determine atmospheric input sources and identify key soil formation processes. We focus on three soil profiles (8 to 12 m thick) from the Bras-David, Moustique Petit-Bourg, and Deshaies watersheds; and on the adjacent rivers to these sites. Results have shown a significant depletion of U, Sr, and major elements in the deep profile (12 to 4 m) attributed to rapid chemical weathering. The top soil profiles (4 m to the surface) all show addition of elements such as Ca, Mg, U, and Sr due to atmospheric dust. More importantly, the topsoil profiles have distinct Sr and U-series isotope compositions from the deep soils. Sr and U-series isotope ratios of the top soils and sequential extraction fractions confirm that the sources of the dust are from the Saharan dessert, through long distance transport from Africa to the Caribbean region across the Atlantic Ocean. During the transport, some dust isotope signatures may also have been modified by local volcanic ashes and marine aerosols. Our study highlights that dusts and marine aerosols play important roles in element cycles and nutrient sources in the highly depleted surface soils of tropical oceanic islands.
Lyman alpha radiation in external galaxies
NASA Technical Reports Server (NTRS)
Neufeld, David A.; Mckee, Christopher F.
1990-01-01
The Ly alpha line of atomic hydrogen is often a luminous component of the radiation emitted by distant galaxies. Except for those galaxies which have a substantial central source of non-stellar ionizing radiation, most of the Ly alpha radiation emitted by galaxies is generated within regions of the interstellar medium which are photoionized by starlight. Conversely, much of the energy radiated by photoionized regions is carried by the Ly alpha line. Only hot, massive stars are capable of ionizing hydrogen in the interstellar medium which surrounds them, and because such stars are necessarily short-lived, Ly alpha emission traces regions of active star formation. Researchers argue that the strength of the Ly alpha emission observed from external galaxies may be used to estimate quantitatively the dust content of the emitting region, while the Ly alpha line profile is sensitive to the presence of shock waves. Interstellar dust particles and shock waves are intimately associated with the process of star formation in two senses. First, both dust particles and shock waves owe their existence to stellar activity; second, they may both serve as agents which facilitate the formation of stars, shocks by triggering gravitational instabilities in the interstellar gas that they compress, and dust by shielding star-forming molecular clouds from the ionizing and dissociative effects of external UV radiation. By using Ly alpha observations as a probe of the dust content in diffuse gas at high redshift, we might hope to learn about the earliest epochs of star formation.
Evolved stars in the Local Group galaxies - II. AGB, RSG stars and dust production in IC10
NASA Astrophysics Data System (ADS)
Dell'Agli, F.; Di Criscienzo, M.; Ventura, P.; Limongi, M.; García-Hernández, D. A.; Marini, E.; Rossi, C.
2018-06-01
We study the evolved stellar population of the Local Group galaxy IC10, with the aim of characterizing the individual sources observed and to derive global information on the galaxy, primarily the star formation history and the dust production rate. To this aim, we use evolutionary sequences of low- and intermediate-mass (M < 8 M⊙) stars, evolved through the asymptotic giant branch phase, with the inclusion of the description of dust formation. We also use models of higher mass stars. From the analysis of the distribution of stars in the observational planes obtained with IR bands, we find that the reddening and distance of IC10 are E(B - V) = 1.85 mag and d = 0.77 Mpc, respectively. The evolved stellar population is dominated by carbon stars, that account for 40% of the sources brighter than the tip of the red giant branch. Most of these stars descend from ˜1.1 - 1.3 M⊙ progenitors, formed during the major epoch of star formation, which occurred ˜2.5 Gyr ago. The presence of a significant number of bright stars indicates that IC10 has been site of significant star formation in recent epochs and currently hosts a group of massive stars in the core helium-burning phase. Dust production in this galaxy is largely dominated by carbon stars; the overall dust production rate estimated is 7 × 10-6 M⊙/yr.
Modulation of Atlantic Aerosols by the Madden-Julian Oscillation
NASA Technical Reports Server (NTRS)
Tian, B.; Waliser, D. E.; Kahn, Ralph A.; Wong, S.
2010-01-01
Much like the better-known EI Nino-Southern Oscillation, the Madden-Julian Oscillation (MJO) is a global-scale atmospheric phenomenon. The MJO involves periodic, systematic changes in the distribution of clouds and precipitation over the western Pacific and Indian oceans, along with differences in wind intensity over even more extensive areas, including the north and subtropical Atlantic Ocean. The lead authors of this paper developed a sophisticated mathematical technique for mapping the spatial and temporal behavior of changes in the atmosphere produced by the MJO. In a previous paper, we applied this technique to search for modulation of airborne particle amount in the eastern hemisphere associated with the "wet" (cloudy) vs. "dry" phases of the MJO. The study used primarily AVHRR, MODIS, and TOMS satellite-retrieved aerosol amount, but concluded that other factors, such as cloud contamination of the satellite signals, probably dominated the observed variations. The current paper looks at MJO modulation of desert dust transport eastward across the Atlantic from northern Africa, a region much less subject to systematic cloud contamination than the eastern hemisphere areas studied previously. In this case, a distinct aerosol signal appears, showing that dust is transported westward much more effectively during the MJO phase that favors westward-flowing wind, and such transport is suppressed when the MJO reduces these winds. Aside form the significant achievement in identifying such an effect, the result implies that an important component of global dust transport can be predicted based on the phase of the MJO. As a consequence, the impact of airborne dust on storm development in the Atlantic, and on dust deposition downwind of the desert sources, can also be predicted and more accurately modeled.
NANOCOSMOS: a trip to the nanoworld
NASA Astrophysics Data System (ADS)
Ruiz Zelmanovitch, N.; Castellanos, M.
2017-03-01
Cosmic dust is made in evolved stars. However, the processes involved in the formation and evolution of dust remain unknown so far. The project ''Gas and dust from stars to the laboratory: exploring the NANOCOSMOS'', takes advantage of the new observational capabilities (increased angular resolution) of the Atacama Large Millimeter/submillimeter Array (ALMA) to unveil the physical and chemical conditions in the dust formation zone of evolved stars. These observations, in combination with novel top-level ultra-high vacuum experiments and astrophysical modelling, will provide a cutting-edge view of cosmic dust. The importance of publishing scientific results based on NANOCOSMOS in the scientific literature goes without saying. But it is also important and a stated NANOCOSMOS objective to disseminate the achievements of the project and its scientific and technological results to a wider audience. In this presentation we will discuss the tools used to spread them to the society. This presentation is structured as follows: 1. What is Astrochemistry?; 2. What is NANOCOSMOS?; 3. Outreach in the NANOCOSMOS programme; 4. Conclusions.
Impact-generated dust clouds around planetary satellites: asymmetry effects
NASA Astrophysics Data System (ADS)
Sremčević, Miodrag; Krivov, Alexander V.; Spahn, Frank
2003-06-01
In a companion paper (Krivov et al., Impact-generated dust clouds around planetary satellites: spherically symmetric case, Planet. Space. Sci. 2003, 51, 251-269) an analytic model of an impact-generated, steady-state, spherically symmetric dust cloud around an atmosphereless planetary satellite (or planet - Mercury, Pluto) has been developed. This paper lifts the assumption of spherical symmetry and focuses on the asymmetry effects that result from the motion of the parent body through an isotropic field of impactors. As in the spherically symmetric case, we first consider the dust production from the surface and then derive a general phase-space distribution function of the ensemble of ejected dust motes. All quantities of interest, such as particle number densities and fluxes, can be obtained by integrating this phase-space distribution function. As an example, we calculate an asymmetric distribution of dust number density in a cloud. It is found that the deviation from the symmetric case can be accurately described by a cosine function of the colatitude measured from the apex of the satellite motion. This property of the asymmetry is rather robust. It is shown that even an extremely asymmetric dust production at the surface, when nearly all dust is ejected from the leading hemisphere, turns rapidly into the cosine modulation of the number density at distances larger than a few satellite radii. The amplitude of the modulation depends on the ratio of the moon orbital velocity to the speed of impactors and on the initial angular distribution of the ejecta. Furthermore, regardless of the functional form of the initial angular distribution, the number density distribution of the dust cloud is only sensitive to the mean ejecta angle. When the mean angle is small - ejection close to the normal of the surface - the initial dust production asymmetry remains persistent even far from the satellite, but when this angle is larger than about 45°, the asymmetry coefficient drops very rapidly with the increasing distance. The dependence of the asymmetric number density on other parameters is very weak. On the whole, our results provide necessary theoretical guidelines for a dedicated quest of asymmetries in the dust detector data, both those obtained by the Galileo dust detector around the Galilean satellites of Jupiter and those expected from the Cassini dust experiment around outer Saturnian moons.
Airborne Dust in Space Vehicles and Habitats
NASA Technical Reports Server (NTRS)
James, John
2006-01-01
Airborne dust, suspended inside a space vehicle or in future celestial habitats, can present a serious threat to crew health if it is not controlled. During the Apollo missions to the moon, lunar dust brought inside the capsule caused eye irritation and breathing difficulty to the crew when they launched from the moon and re-acquired "microgravity." During Shuttle flights reactive and toxic dusts such as lithium hydroxide have created a risk to crew health, and fine particles from combustion events can be especially worrisome. Under nominal spaceflight conditions, airborne dusts and particles tend to be larger than on earth because of the absence of gravity settling. Aboard the ISS, dusts are effectively managed by HEPA filters, although floating dust in newly-arrived modules can be a nuisance. Future missions to the moon and to Mars will present additional challenges because of the possibility that external dust will enter the breathing atmosphere of the habitat and reach the crew's respiratory system. Testing with simulated lunar and Martian dust has shown that these materials are toxic when placed into the lungs of test animals. Defining and evaluating the physical and chemical properties of Martian dusts through robotic missions will challenge our ability to prepare better dust simulants and to determine the risk to crew health from exposure to such dusts.
NASA Astrophysics Data System (ADS)
Andrea, Malizia; Rossi, Riccardo; Gaudio, Pasquale
2017-08-01
Dust explosions are dangerous events that still today represent a risk to all the industries that produce and/or handle combustible dust like the agro-alimentary, pharmaceutical and energy ones. When a dust cloud is dispersed in an oxidant gas, like air, it may reach the explosive concentration range. A model to predict the dust critical conditions, that can cause explosions, is a key factor for safety of operators and the security of the plants. The key point to predict this dust resuspension is to measure the velocity vectors of dust under the accidental conditions. In order to achieve this goal the authors have developed an experimental facility, STARDUST-U, which allow to obtain different conditions of temperature and pressurization rates characteristic of accidents in confined environment. The authors have developed also optical methods and software to analyse different dust resuspension phenomena under different conditions in confined environment. In this paper, the author will present how they measure the dust velocity vectors in different experimental conditions (and for different type of dusts) and how they have related the dust characteristics and positions inside STARDUST-U with the resuspension degree and the velocity values.
NASA Technical Reports Server (NTRS)
Greenberg, J. M. (Editor); Van De Hulst, H. C.
1973-01-01
Theoretical studies and observations of interstellar dust are described in papers dealing with the passive properties of dust grains, their physical and chemical activities in the interstellar medium, and their interactions in association with stars. The papers are grouped according to the principal topics of (1) extinction and polarization, (2) diffuse interstellar features, (3) dust around and in close association with stars, (4) reflection nebulae and other aspects of dust scattering properties, (5) alignment mechanisms, (6) distribution of molecules and processes of molecule formation, (7) radiation effects on dust, (8) physical and chemical interactions of dust with the ambient medium, and (9) gas and dust in H II regions. Individual items are announced in this issue.
Climatology of atmospheric circulation patterns of Arabian dust in western Iran.
Najafi, Mohammad Saeed; Sarraf, B S; Zarrin, A; Rasouli, A A
2017-08-28
Being in vicinity of vast deserts, the west and southwest of Iran are characterized by high levels of dust events, which have adverse consequences on human health, ecosystems, and environment. Using ground based dataset of dust events in western Iran and NCEP/NCAR reanalysis data, the atmospheric circulation patterns of dust events in the Arabian region and west of Iran are identified. The atmospheric circulation patterns which lead to dust events in the Arabian region and western Iran were classified into two main categories: the Shamal dust events that occurs in warm period of year and the frontal dust events as cold period pattern. In frontal dust events, the western trough or blocking pattern at mid-level leads to frontogenesis, instability, and air uplift at lower levels of troposphere in the southwest of Asia. Non-frontal is other pattern of dust event in the cold period and dust generation are due to the regional circulation systems at the lower level of troposphere. In Shamal wind pattern, the Saudi Arabian anticyclone, Turkmenistan anticyclone, and Zagros thermal low play the key roles in formation of this pattern. Summer and transitional patterns are two sub-categories of summer Shamal wind pattern. In summer trough pattern, the mid-tropospheric trough leads to intensify the surface thermal systems in the Middle East and causes instability and rising of wind speed in the region. In synthetic pattern of Shamal wind and summer trough, dust is created by the impact of a trough in mid-levels of troposphere as well as existing the mentioned regional systems which are contributed in formation of summer Shamal wind pattern.
Wind-Stress Dust Lifting in a Mars Global Circulation Model: Representation across Resolutions
NASA Astrophysics Data System (ADS)
Chapman, R.; Lewis, S.; Balme, M. R.; Steele, L.
2017-12-01
The formation of Martian dust storms is believed to be driven by dust lifting by near-surface wind stress (NSWS). Accurately representing this dust lifting within Mars Global Circulation Models (MGCMs) is important in order to gain a full understanding of the Martian dust storm cycle. Parameterisations of dust lifting by NSWS exist within several MGCMs; implementations differ but they all follow a similar design, so progress within one model is relevant to the entire field. Few studies have explored in detail how the results of these parameterisations can be affected by changing the horizontal resolution of the model. An accurate parameterisation of dust lifting by NSWS will lift a representative dust mass, reproducing characteristic dust optical depths in the atmosphere. The geographical distribution of the dust lifting by NSWS will also change throughout the year, affecting patterns of dust storm formation and development. Currently, suitable values for dust lifting parameters must be identified at every new model resolution. Resolutions of 5° latitude x 5° longitude are often used to model the Martian climate, as thermal tides and long-term weather patterns can be well represented at this resolution. However, smaller scale phenomena (such as near-surface winds driven by local topography) cannot be accurately depicted at this resolution. We use the LMD-UK MGCM to complete multi-year simulations across multiple model resolutions. Our experiments range from `low' resolution 5° lat x 5° lon to `high' resolution 1° lat x 1° lon. In experiments with fixed, constant lifting parameters, we find that higher resolution simulations lift more dust, but that this trend is asymptotic. At low resolutions, dust lifting increases proportionately with the increase in number of horizontal gridboxes. However, at high resolutions, doubling the number of gridboxes results only in a 30% increase in the total dust mass lifted. Geographical and temporal distributions of dust lifting are investigated, as well as the total dust lifted, in order to assess the optimum parameters for each resolution, and to develop a calibration scheme for this dust lifting across model resolutions. The scheme is verified through comparison with spacecraft observations of dust optical depths and dust storm locations.
NASA Astrophysics Data System (ADS)
Centeno Delgado, Diana C.; Chiao, Sen
2015-02-01
The roles of the Saharan Air Layer (SAL) and lightning during genesis of Tropical Depression (TD) 8 (2006) and TD 12 (2010) were investigated in relation to the interaction of the dust outbreaks with each system and their surrounding environment. This study applied data collected from the 2006 NASA African Monsoon Multidisciplinary Analysis and 2010 Genesis and Rapid Intensification Processes projects. Satellite observations from METEOSAT and Moderate Resolution Imaging Spectroradiometer (MODIS)—Aerosol Optical Depth (AOD) were also employed for the study of the dust content. Lightning activity data from the Met Office Arrival Time Difference (ATD) system were used as another parameter to correlate moist convective overturning and a sign of cyclone formation. The AOD and lightning analysis for TD 8 demonstrated the time-lag connection through their positive contribution to TC-genesis. TD 12 developed without strong dust outbreak, but with lower wind shear (2 m s-1) and an organized Mesoscale Convective System (MCS). Overall, the results from the combination of various data analyses in this study support the fact that both systems developed under either strong or weak dust conditions. From these two cases, the location (i.e., the target area) of strong versus weak dust outbreaks, in association with lightning, were essential interactions that impacted TC-genesis. While our dust footprints hypothesis applied under strong dust conditions (i.e., TD 8), other factors (e.g., vertical wind shear, pre-existing vortex and trough location, thermodynamics) need to be evaluated as well. The results from this study suggest that the SAL is not a determining factor that affects the formation of tropical cyclones (i.e., TD 8 and TD 12).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fumagalli, Mattia; Labbé, Ivo; Patel, Shannon G.
We investigate star formation rates (SFRs) of quiescent galaxies at high redshift (0.3 < z < 2.5) using 3D-HST WFC3 grism spectroscopy and Spitzer mid-infrared data. We select quiescent galaxies on the basis of the widely used UVJ color-color criteria. Spectral energy distribution (SED) fitting (rest-frame optical and near-IR) indicates very low SFRs for quiescent galaxies (sSFR ∼ 10{sup –12} yr{sup –1}). However, SED fitting can miss star formation if it is hidden behind high dust obscuration and ionizing radiation is re-emitted in the mid-infrared. It is therefore fundamental to measure the dust-obscured SFRs with a mid-IR indicator. We stackmore » the MIPS 24 μm images of quiescent objects in five redshift bins centered on z = 0.5, 0.9, 1.2, 1.7, 2.2 and perform aperture photometry. Including direct 24 μm detections, we find sSFR ∼ 10{sup –11.9} × (1 + z){sup 4} yr{sup –1}. These values are higher than those indicated by SED fitting, but at each redshift they are 20-40 times lower than those of typical star-forming galaxies. The true SFRs of quiescent galaxies might be even lower, as we show that the mid-IR fluxes can be due to processes unrelated to ongoing star formation, such as cirrus dust heated by old stellar populations and circumstellar dust. Our measurements show that star formation quenching is very efficient at every redshift. The measured SFR values are at z > 1.5 marginally consistent with the ones expected from gas recycling (assuming that mass loss from evolved stars refuels star formation) and well below that at lower redshifts.« less
Scanza, R. A.; Mahowald, N.; Ghan, S.; ...
2014-07-02
The mineralogy of desert dust is important due to its effect on radiation, clouds and biogeochemical cycling of trace nutrients. This study presents the simulation of dust radiative forcing as a function of both mineral composition and size at the global scale using mineral soil maps for estimating emissions. Externally mixed mineral aerosols in the bulk aerosol module in the Community Atmosphere Model version 4 (CAM4) and internally mixed mineral aerosols in the modal aerosol module in the Community Atmosphere Model version 5.1 (CAM5) embedded in the Community Earth System Model version 1.0.5 (CESM) are speciated into common mineral componentsmore » in place of total dust. The simulations with mineralogy are compared to available observations of mineral atmospheric distribution and deposition along with observations of clear-sky radiative forcing efficiency. Based on these simulations, we estimate the all-sky direct radiative forcing at the top of the atmosphere as +0.05 W m −2 for both CAM4 and CAM5 simulations with mineralogy and compare this both with simulations of dust in release versions of CAM4 and CAM5 (+0.08 and +0.17 W m −2) and of dust with optimized optical properties, wet scavenging and particle size distribution in CAM4 and CAM5, −0.05 and −0.17 W m −2, respectively. The ability to correctly include the mineralogy of dust in climate models is hindered by its spatial and temporal variability as well as insufficient global in-situ observations, incomplete and uncertain source mineralogies and the uncertainties associated with data retrieved from remote sensing methods.« less
Scanza, Rachel; Mahowald, N.; Ghan, Steven J.; ...
2015-01-01
The mineralogy of desert dust is important due to its effect on radiation, clouds and biogeochemical cycling of trace nutrients. This study presents the simulation of dust radiative forcing as a function of both mineral composition and size at the global scale, using mineral soil maps for estimating emissions. Externally mixed mineral aerosols in the bulk aerosol module in the Community Atmosphere Model version 4 (CAM4) and internally mixed mineral aerosols in the modal aerosol module in the Community Atmosphere Model version 5.1 (CAM5) embedded in the Community Earth System Model version 1.0.5 (CESM) are speciated into common mineral componentsmore » in place of total dust. The simulations with mineralogy are compared to available observations of mineral atmospheric distribution and deposition along with observations of clear-sky radiative forcing efficiency. Based on these simulations, we estimate the all-sky direct radiative forcing at the top of the atmosphere as + 0.05 Wm⁻² for both CAM4 and CAM5 simulations with mineralogy. We compare this to the radiative forcing from simulations of dust in release versions of CAM4 and CAM5 (+0.08 and +0.17 Wm⁻²) and of dust with optimized optical properties, wet scavenging and particle size distribution in CAM4 and CAM5, -0.05 and -0.17 Wm⁻², respectively. The ability to correctly include the mineralogy of dust in climate models is hindered by its spatial and temporal variability as well as insufficient global in situ observations, incomplete and uncertain source mineralogies and the uncertainties associated with data retrieved from remote sensing methods.« less
NASA Technical Reports Server (NTRS)
Luvall, J. C.; Sprigg, W. A.; Nickovic, S.; Huete, A.; Budge, A.; Flowers, L.
2008-01-01
The objective of the program is to assess the feasibility of combining a dust transport model with MODIS derived phenology to study pollen transport for integration with a public health decision support system. The use of pollen information has specifically be identified as a critical need by the New Mexico State Health department for inclusion in the Environmental Public Health Tracking (EPHT) program. Material and methods: Pollen can be transported great distances. Local observations of plan phenology may be consistent with the timing and source of pollen collected by pollen sampling instruments. The Dust REgional Atmospheric Model (DREAM) is an integrated modeling system designed to accurately describe the dust cycle in the atmosphere. The dust modules of the entire system incorporate the state of the art parameterization of all the major phases of the atmospheric dust life such as production, diffusion, advection, and removal. These modules also include effects of the particles size distribution on aerosol dispersion. The model was modified to use pollen sources instead of dust. Pollen release was estimated based on satellite-derived phenology of key plan species and vegetation communities. The MODIS surface reflectance product (MOD09) provided information on the start of the plant growing season, growth stage, and pollen release. The resulting deterministic model is useful for predicting and simulating pollen emission and downwind concentration to study details of phenology and meteorology and their dependencies. The proposed linkage in this project provided critical information on the location timing and modeled transport of pollen directly to the EPHT> This information is useful to support the centers for disease control and prevention (CDC)'s National EPHT and the state of New Mexico environmental public health decision support for asthma and allergies alerts.
Atmospheric circulation feedback on west Asian dust and Indian monsoon rainfall
NASA Astrophysics Data System (ADS)
Kaskaoutis, Dimitris; Houssos, Elias; Gautam, Ritesh; Singh, Ramesh; Rashki, Alireza; Dumka, Umesh
2016-04-01
Classification of the atmospheric circulation patterns associated with high aerosol loading events over the Ganges valley, via the synergy of Factor and Cluster analysis techniques, has indicated six different synoptic weather patterns, two of which mostly occur during late pre-monsoon and monsoon seasons (May to September). The current study focuses on examining these two specific clusters that are associated with different mean sea level pressure (MSLP), geopotential height at 700 hPa (Z700) and wind fields that seem to affect the aerosol (mostly dust) emissions and precipitation distribution over the Indian sub-continent. Furthermore, the study reveals that enhanced aerosol presence over the Arabian Sea is positively associated with increased rainfall over the Indian landmass. The increased dust over the Arabian Sea and rainfall over India are associated with deepening of the northwestern Indian and Arabian lows that increase thermal convection and convergence of humid air masses into Indian landmass, resulting in larger monsoon precipitation. For this cluster, negative MSLP and Z700 anomalies are observed over the Arabian Peninsula that enhance the dust outflow from Arabia and, concurrently, the southwesterly air flow resulting in increase in monsoon precipitation over India. The daily precipitation over India is found to be positively correlated with the aerosol loading over the Arabian Sea for both weather clusters, thus verifying recent results from satellite observations and model simulations concerning the modulation of the Indian summer monsoon rainfall by the Arabian dust. The present work reveals that in addition to the radiative impacts of dust on modulating the monsoon rainfall, differing weather patterns favor changes in dust emissions, accumulation as well as rainfall distribution over south Asia.
NASA Astrophysics Data System (ADS)
Sullivan, R. C.; Moore, M. J.; Petters, M. D.; Laskin, A.; Roberts, G. C.; Kreidenweis, S. M.; Prather, K. A.
2009-05-01
Our laboratory investigations of mineral dust particle hygroscopicity are motivated by field observations of the atmospheric processing of dust. During ACE-Asia we observed sulphate and nitrate to be strongly segregated from each other in individual aged Asian dust particles. CCN activation curves of pure calcium minerals as proxies for fresh (calcium carbonate) and aged (calcium sulphate, nitrate, chloride) dust indicate that this mixing state would cause a large fraction of aged dust particles to remain poor warm cloud nucleation potential, contrary to previous assumptions. The enrichment of oxalic acid in calcium-rich dust particles could have similar effects due to the formation of insoluble calcium oxalate. Soluble calcium nitrate and chloride reaction products are hygroscopic and will transform mineral dust into excellent CCN. Generating insoluble mineral particles wet by atomization produced particles with much higher hygroscopicity then when resuspended dry. The atomized particles are likely composed of dissolved residuals and do not properly reflect the chemistry of dry mineral powders. Aerosol flow tube experiments were employed to study the conversion of calcium carbonate into calcium nitrate via heterogeneous reaction with nitric acid, with simultaneous measurements of the reacted particles' chemistry and hygroscopicity. The timescale for this hygroscopic conversion was found to occur on the order of a few hours under tropospheric conditions. This implies that the conversion of non-hygroscopic calcite- containing dust into hygroscopic particles will be controlled by the availability of nitric acid, and not by the atmospheric residence time. Results from recent investigations of the effect of secondary coatings on the ice nucleation properties of dust particles will also be presented. The cloud formation potential of aged dust particles depends on both the quantity and form of the secondary species that have reacted or mixed with the dust. These results have important implications for the treatment of mineral dust particles in global chemistry and climate models.
NASA Astrophysics Data System (ADS)
Wang, Qiongzhen; Dong, Xinyi; Fu, Joshua S.; Xu, Jian; Deng, Congrui; Jiang, Yilun; Fu, Qingyan; Lin, Yanfen; Huang, Kan; Zhuang, Guoshun
2018-03-01
Near-surface and vertical in situ measurements of atmospheric particles were conducted in Shanghai during 19-23 March 2010 to explore the transport and chemical evolution of dust particles in a super dust storm. An air quality model with optimized physical dust emission scheme and newly implemented dust chemistry was utilized to study the impact of dust chemistry on regional air quality. Two discontinuous dust periods were observed with one traveling over northern China (DS1) and the other passing over the coastal regions of eastern China (DS2). Stronger mixing extents between dust and anthropogenic emissions were found in DS2, reflected by the higher SO2 / PM10 and NO2 / PM10 ratios as well as typical pollution elemental species such as As, Cd, Pb, and Zn. As a result, the concentrations of SO42- and NO3- and the ratio of Ca2+ / Ca were more elevated in DS2 than in DS1 but opposite for the [NH4+] / [SO42-+NO3-] ratio, suggesting the heterogeneous reactions between calcites and acid gases were significantly promoted in DS2 due to the higher level of relative humidity and gaseous pollution precursors. Lidar observation showed a columnar effect on the vertical structure of particle optical properties in DS1 that dust dominantly accounted for ˜ 80-90 % of the total particle extinction from near the ground to ˜ 700 m. In contrast, the dust plumes in DS2 were restrained within lower altitudes while the extinction from spherical particles exhibited a maximum at a high altitude of ˜ 800 m. The model simulation reproduced relatively consistent results with observations that strong impacts of dust heterogeneous reactions on secondary aerosol formation occurred in areas where the anthropogenic emissions were intensive. Compared to the sulfate simulation, the nitrate formation on dust is suggested to be improved in the future modeling efforts.
Formation of fine dust on Saturn's rings as suggested by the presence of spokes
NASA Technical Reports Server (NTRS)
Smoluchowski, R.
1983-01-01
The common interpretation of spokes on the B ring of Saturn is that they are the result of light scattered by electrostatically levitated micrometer- and submicrometer-size dust particles. The origin of this dust in terms of radiation-induced thermal fatigue and collisions between the particles of the ring as well as meteoritic bombardment is investigated.
Jayne Belnap; Richard Reynolds; Marith Reheis; Susan L. Phillips
2001-01-01
Eolian dust (windblown silt and clay) and biological soil crusts are both important to ecosystem functioning of arid lands. Dust furnishes essential nutrients, influences hydrology, contributes to soil formation, and renders surfaces vulnerable to erosion. Biological soil crusts contribute directly to soil fertility by fixing carbon and nitrogen, and indirectly by...
Structure Formation in Complex Plasma - Quantum Effects in Cryogenic Complex Plasmas
2014-09-26
pipe at the flange attached to the inner Dewar bottle. The temperature of the gas in the glass tube is controlled by the cryogenic liquid , liquid ...dust particles. The supersonic flow was possible to make in a complex plasma since dust acoustic wave is characterized by a sound speed of a few cm...through the illumination of laser light on dust particles. The supersonic flow was possible to make in a complex plasma since dust acoustic wave is
NASA Technical Reports Server (NTRS)
Vesper, Stephen J.; Wong, Wing; Kuo, C. Mike; Pierson, Duane L.
2008-01-01
Dust was collected over a period of several weeks in 2007 from various HEPA filters in the U.S. Laboratory Module of the International Space Station (ISS). The dust was returned on the Space Shuttle Atlantis, mixed, sieved, and the DNA was extracted. Using a DNA-based method called mold specific quantitative PCR (MSQPCR), 39 molds were measured in the dust. Opportunistic pathogens Aspergillus flavus and A. niger and toxin producers Penicillium chrysogenum and P. brevicompactum were found at relatively high concentrations (compared to U.S. homes). No cells of the opportunistic pathogens A. fumigatus, A. terreus, Fusarium solani or Candida albicans were detected.
Efficiency of Tungsten Dust Collection of Different Types of Dust Particles by Electrostatic Probe
NASA Astrophysics Data System (ADS)
Begrambekov, L. B.; Voityuk, A. N.; Zakharov, A. M.; Bidlevich, O. A.; Vechshev, E. A.; Shigin, P. A.; Vayakis, J.; Walsh, M.
2017-12-01
Formation of dust particles and clusters is observed in almost every modern thermonuclear facility. Accumulation of dust in the next generation thermonuclear installations can dramatically affect the plasma parameters and lead to the accumulation of unacceptably large amounts of tritium. Experiments on collection of dust particles by a model of electrostatic probe developed for collection of metallic dust at ITER are described in the article. Experiments on the generation of tungsten dust consisting of flakes formed during the destruction of tungsten layers formed on the walls of the plasma chamber sputtered from the surface of the tungsten target by plasma ions were conducted. The nature of dust degassing at elevated temperatures and the behavior of dust in an electric field were studied. The results obtained are compared with the results of the experiments with dust consisting of crystal particles of simple geometric shapes. The effectiveness of collection of both types of dust using the model of an electrostatic probe is determined.
EFFECTS OF DUST FEEDBACK ON VORTICES IN PROTOPLANETARY DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Wen; Liang, Edison; Li, Hui
2014-11-10
We carried out two-dimensional, high-resolution simulations to study the effect of dust feedback on the evolution of vortices induced by massive planets in protoplanetary disks. Various initial dust to gas disk surface density ratios (0.001-0.01) and dust particle sizes (Stokes number 4 × 10{sup –4}-0.16) are considered. We found that while dust particles migrate inward, vortices are very effective at collecting them. When dust density becomes comparable to gas density within the vortex, a dynamical instability is excited and it alters the coherent vorticity pattern and destroys the vortex. This dust feedback effect is stronger with a higher initial dust/gasmore » density ratio and larger dust grain. Consequently, we found that the disk vortex lifetime can be reduced up to a factor of 10. We discuss the implications of our findings on the survivability of vortices in protoplanetary disks and planet formation.« less
NASA Astrophysics Data System (ADS)
Ercolano, Barbara; Jennings, Jeff; Rosotti, Giovanni; Birnstiel, Tilman
2017-12-01
The streaming instability is often invoked as solution to the fragmentation and drift barriers in planetesimal formation, catalysing the aggregation of dust on kyr time-scales to grow km-sized cores. However, there remains a lack of consensus on the physical mechanism(s) responsible for initiating it. One potential avenue is disc photoevaporation, wherein the preferential removal of relatively dust-free gas increases the disc metallicity. Late in the disc lifetime, photoevaporation dominates viscous accretion, creating a gradient in the depleted gas surface density near the location of the gap. This induces a local pressure maximum that collects drifting dust particles, which may then become susceptible to the streaming instability. Using a one-dimensional viscous evolution model of a disc subject to internal X-ray photoevaporation, we explore the efficacy of this process to build planetesimals. Over a range of parameters, we find that the amount of dust mass converted into planetesimals is often <1 M⊕ and at most a few M⊕ spread across tens of au. We conclude that photoevaporation may at best be relevant for the formation of debris discs, rather than a common mechanism for the formation of planetary cores. Our results are in contrast to a recent, similar investigation that considered an far-ultra-violet (FUV)-driven photoevaporation model and reported the formation of tens of M⊕ at large (>100 au) disc radii. The discrepancies are primarily a consequence of the different photoevaporation profiles assumed. Until observations more tightly constrain photoevaporation models, the relevance of this process to the formation of planets remains uncertain.
Tungsten dust remobilization under steady-state and transient plasma conditions
Ratynskaia, S.; Tolias, P.; De Angeli, M.; ...
2016-11-22
Remobilization is one of the most prominent unresolved fusion dust-relevant issues, strongly related to the lifetime of dust in plasma-wetted regions, the survivability of dust on hot plasma-facing surfaces and the formation of dust accumulation sites. A systematic cross-machine study has been initiated to investigate the remobilization of tungsten micron-size dust from tungsten surfaces implementing a newly developed technique based on controlled pre-adhesion by gas dynamics methods. It has been utilized in a number of devices and has provided new insights on remobilization under steady-state and transient conditions. In conclusion, the experiments are interpreted with contact mechanics theory and heatmore » conduction models.« less
Research Needs in Electrostatics for Lunar and Mars Space Missions
NASA Technical Reports Server (NTRS)
Calle, Carlos I.
2005-01-01
The new space exploratory vision announced by President Bush on January 14, 2004, initiated new activities at the National Science and Space Administration (NASA) for human space missions to further explore our solar system. NASA is undertaking Lunar exploration to support sustained human and robotic exploration of Mars and beyond. A series of robotic missions to the Moon by 2008 to prepare for human exploration as early as 2015 but no later than 2020 are anticipated. In a similar way, missions to the Moon and Mars are being planned in Europe, Japan and Russia. These space missions will require international participation to solve problems in a number of important technological areas where research is needed, including biomedical risk mitigation as well as life support and habitability on the surface of Mars. Mitigation of dust hazards is one of the most important problems to be resolved for both Lunar and Mars missions. Both Lunar and Martian regolith are unique materials and completely different from the terrestrial soils that we are exposed to on earth. The total absence of water and an atmosphere on the moon and the formation of soil and fine dust by micrometeorite impacts over billions of years resulted in a layer of soil with unique properties. The soil is primarily basaltic in composition with a high glass concentration. The depth of the soil layer varies from a few meters in the mare areas (dark areas on the Lunar near side) to tens of meters in the highland areas (the lighter mountainous areas) and the particle size distribution of this dust layer varies widely with a major mass fraction less than 10 micrometer in diameter. The hard soil from the moon which has been extensively studied by several researchers showed clearly unique properties of Lunar soil. Apollo astronauts became aware of the potentially serious threat to crew health and mission hardware that can be caused by the lunar dust. As reported by McKay and Carrier the mass fraction of the lunar dust with particle diameter smaller than 20p.m probably represents up to 30% of the total mass of regolith. Apollo astronaut Dr. Harrison Schmidt reported that these fine dust particles were clinging to the Extra Vehicular Activity (EVA) suits and to the visors and were limiting the activity on the surface of the moon. The dust particles that were transported with the EVA suits into the lunar module floated throughout the cabin. Crews inhaled the dust particles and noted that they smelled like gun smoke, caused a chocking sensation in the throat and eye irritation. In addition,, some of the mechanical systems were not functioning well because of the dust deposition. It appeared that the dust particles are highly charged electrostatically and Dr. Schmidt noted that future successful Lunar missions will require appropriate dust mitigation technology for protecting astronauts from inhaling toxic particles and mission's life supporting equipment from contamination with the dust particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Jiwen; Leung, Lai-Yung R.; DeMott, Paul J.
2014-01-03
Mineral dust aerosols often observed over California in winter and spring, associated with long-range transport from Asia and Sahara, have been linked to enhanced precipitation based on observations. Local anthropogenic pollution, on the other hand, was shown in previous observational and modeling studies to reduce precipitation. Here we incorporate recent developments in ice nucleation parameterizations to link aerosols with ice crystal formation in a spectral-bin cloud microphysical model coupled with the Weather Research and Forecasting (WRF) model, to examine the relative and combined impacts of dust and local pollution particles on cloud properties and precipitation type and intensity. Simulations aremore » carried out for two cloud cases with contrasting meteorology and cloud dynamics that occurred on February 16 (FEB16) and March 02 (MAR02) from the CalWater 2011 field campaign. In both cases, observations show the presence of dust and biological particles in a relative pristine environment. The simulated cloud microphysical properties and precipitation show reasonable agreement with aircraft and surface measurements. Model sensitivity experiments indicate that in the pristine environment, the dust and biological aerosol layers increase the accumulated precipitation by 10-20% from the Central Valley to the Sierra Nevada Mountains for both FEB16 and MAR02 due to a ~40% increase in snow formation, validating the observational hypothesis. Model results show that local pollution increases precipitation over the windward slope of the mountains by few percent due to increased snow formation when dust is present but reduces precipitation by 5-8% if dust is removed on FEB16. The effects of local pollution on cloud microphysics and precipitation strongly depend on meteorology including the strength of the Sierra Barrier Jet, and cloud dynamics. This study further underscores the importance of the interactions between local pollution, dust, and environmental conditions for assessing aerosol effects on cold season precipitation in California.« less
Inclination Dependence of Estimated Galaxy Masses and Star Formation Rates
NASA Astrophysics Data System (ADS)
Hernandez, Betsy; Maller, Ariyeh; McKernan, Barry; Ford, Saavik
2016-01-01
We examine the inclination dependence of inferred star formation rates and galaxy mass estimates in the Sloan Digital Sky Survey by combining the disk/bulge de-convolved catalog of Simard et al 2011 with stellar mass estimates catalog of Mendel et al 2014 and star formation rates measured from spectra by Brinchmann et al 2004. We know that optical star formation indicators are reddened by dust, but calculated star formation rates and stellar mass estimates should account for this. However, we find that face-on galaxies have a higher calculated average star formation rates than edge-on galaxies. We also find edge-on galaxies have ,on average, slightly smaller but similar estimated masses to face-on galaxies, suggesting that there are issues with the applied dust corrections for both models.
Atmospheric Dynamics of Sub-Tropical Dust Storms
NASA Astrophysics Data System (ADS)
Pokharel, Ashok Kumar
Meso-alpha/beta scale observational and meso-beta/gamma scale numerical model analyses were performed to study the atmospheric dynamics responsible for generating Harmattan, Saudi Arabian, and Bodele Depression dust storms. For each dust storm case study, MERRA reanalysis datasets, WRF simulated very high resolution datasets, MODIS/Aqua and Terra images, EUMETSAT images, NAAPS aerosol modelling plots, CALIPSO images, surface observations, and rawinsonde soundings were analyzed. The analysis of each dust storm carried out separately and an in-depth comparison of the events shows some similarities among the three case studies: (1) the presence of a well-organized baroclinic synoptic scale system, (2) small scale dust emission events which occurred prior to the formation of the primary large-scale dust storms, (3) cross mountain flows which produced a strong leeside inversion layer prior to the large scale dust storm, (4) the presence of thermal wind imbalance in the exit region of the mid-tropospheric jet streak in the lee of the mountains shortly after the time of the inversion formation, (5) major dust storm formation was accompanied by large magnitude ageostrophic isallobaric low-level winds as part of the meso-beta scale adjustment process, (6) substantial low-level turbulence kinetic energy (TKE), (7) formation in the lee of nearby mountains, and (8) the emission of the dust occurred initially in narrow meso-beta scale zones parallel to the mountains, and later reached the meso-alpha scale when suspended dust was transported away from the mountains. In addition to this there were additional meso-beta scale and meso-gamma scale adjustment processes resulting in Kelvin waves in the Harmattan and the Bodele Depression cases and the thermally-forced MPS circulation in all of these three cases. The Kelvin wave preceded a cold pool accompanying the air behind the large scale cold front instrumental in the major dust storm. The Kelvin wave organized the major dust storm in a narrow zone parallel to the mountains before it expanded upscale. The thermally-forced meos-gamma scale adjustment processes, which occurred in the canyons/small valleys, resulted in the numerous dust streaks leading to the entry of the dust into the atmosphere due to the presence of significant vertical motion and the TKE generation. This indicates that there were meso-beta to meso-gamma scale adjustment processes at the lower levels after the imbalance within the exit region of the upper level jet streaks and these processes were responsible for causing the large scale dust storms. Most notably, the sub-tropical jet streak caused the dust storm nearer to the equatorial region after its interaction with the thermally perturbed air mass on the lee of the Tibesti Mountains in the Bodele case study, which is different than the two other cases where the polar jet streaks played this same role at higher latitudes. This represents an original finding. Additionally, a climatological analysis of 15 years (1997-2011) of dust events over the NASA Dryden Flight Research Center (DFRC) in the desert of Southern California was performed to evaluate how the extratropical systems influenced the cause of dust storms over this region. This study indicates that dust events were associated with the development of a deep convective boundary layer, turbulent kinetic energy ≥3 J/kg, a lapse rate between dry adiabatic and moist adiabatic, wind speed above the frictional threshold wind speed necessary to ablate dust from the surface (≥7.3m/s), above the surface the presence of a cold trough, and strong cyclonic jet. These processes are similar in many ways to the dynamics in the other subtropical case studies. This also indicated that the annual mean number of dust events, their mean duration, and the unit duration per number of event were positively correlated with each of the visibility ranges, when binned for <11.2km, <8km, <4.8km, <1.6km, and <1km. The percentage of the dust events by season show that most of the dust events occurred in autumn (44.7%), followed by spring (38.3%) and equally in summer and winter with these seasons each accounting for 8.5% of events.
The origin and evolution of dust in interstellar and circumstellar environments
NASA Technical Reports Server (NTRS)
Whittet, Douglas C. B.; Leung, Chun M.
1993-01-01
This status report covers the period from the commencement of the research program on 1 Jul. 1992 through 30 Apr. 1993. Progress is reported for research in the following areas: (1) grain formation in circumstellar envelopes; (2) photochemistry in circumstellar envelopes; (3) modeling ice features in circumstellar envelopes; (4) episodic dust formation in circumstellar envelopes; (5) grain evolution in the diffuse interstellar medium; and (6) grain evolution in dense molecular clouds.
The global impact of mineral dust on cloud droplet number concentration
NASA Astrophysics Data System (ADS)
Karydis, V.; Tsimpidi, A.; Bacer, S.; Pozzer, A.; Nenes, A.; Lelieveld, J.
2016-12-01
This study assesses the importance of mineral dust for cloud droplet formation by taking into account i) the adsorption of water on the surface of insoluble dust particles, ii) the coating of soluble material on the surface of mineral particles which augments their cloud condensation nuclei activity, and iii) the effect of dust on the inorganic aerosol concentrations through thermodynamic interactions with mineral cations. Simulations are carried out with the EMAC chemistry climate model that calculates the global atmospheric aerosol composition using the ISORROPIA-II thermodynamic equilibrium model and considers the gas phase interactions with K+-Ca2+-Mg2+-NH4+-Na+-SO42-NO3-Cl-H2O particle components. Emissions of the inert mineral dust and the reactive dust aerosol components are calculated online by taking into account the soil particle size distribution and chemical composition of different deserts worldwide (Karydis et al., 2016). We have implemented the "unified dust activation parameterization" (Kumar et al., 2011; Karydis et al., 2011) to calculate the droplet number concentration by taking into account the inherent hydrophilicity from adsorption and the acquired hygroscopicity from soluble salts by dust particles. Our simulations suggest that mineral dust significantly increases the cloud droplet number concentration (CDNC) over the main deserts and the adjacent oceans. However, over polluted areas the CDNC decreases significantly in the presence of dust. Furthermore, we investigate the role of adsorption activation of insoluble aerosols and the mineral dust thermodynamic interactions with inorganic anions on the cloud droplet formation. The CDNC sensitivity to the emission load, chemical composition, and inherent hydrophilicity of mineral dust is also tested. ReferencesKarydis, et al. (2011). "On the effect of dust particles on global cloud condensation nuclei and cloud droplet number." J. Geophys. Res. Atmos. 116. Karydis, et al. (2016). "Effects of mineral dust on global atmospheric nitrate concentrations." Atmos. Chem. Phys. 16(3): 1491-1509. Kumar, et al. (2011). "Measurements of cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals." Atmos. Chem. Phys. Discuss. 11(4): 12561-12605.
NASA Astrophysics Data System (ADS)
Gehrz, R. D.; Evans, A.; Woodward, C. E.; Helton, L. A.; Banerjee, D. P. K.; Srivastava, M. K.; Ashok, N. M.; Joshi, V.; Eyres, S. P. S.; Krautter, Joachim; Kuin, N. P. M.; Page, K. L.; Osborne, J. P.; Schwarz, G. J.; Shenoy, D. P.; Shore, S. N.; Starrfield, S. G.; Wagner, R. M.
2018-05-01
We present 5–28 μm SOFIA FORECAST spectroscopy complemented by panchromatic X-ray through infrared observations of the CO nova V5668 Sgr documenting the formation and destruction of dust during ∼500 days following outburst. Dust condensation commenced by 82 days after outburst at a temperature of ∼1090 K. The condensation temperature indicates that the condensate was amorphous carbon. There was a gradual decrease of the grain size and dust mass during the recovery phase. Absolute parameter values given here are for an assumed distance of 1.2 kpc. We conclude that the maximum mass of dust produced was 1.2 × 10‑7 M ⊙ if the dust was amorphous carbon. The average grain radius grew to a maximum of ∼2.9 μm at a temperature of ∼720 K around day 113 when the shell visual optical depth was τ v ∼ 5.4. Maximum grain growth was followed by a period of grain destruction. X-rays were detected with Swift from day 95 to beyond day 500. The Swift X-ray count rate due to the hot white dwarf peaked around day 220, when its spectrum was that of a kT = 35 eV blackbody. The temperature, together with the supersoft X-ray turn-on and turn-off times, suggests a white dwarf mass of ∼1.1 M ⊙. We show that the X-ray fluence was sufficient to destroy the dust. Our data show that the post-dust event X-ray brightening is not due to dust destruction, which certainly occurred, as the dust is optically thin to X-rays.
Exploring the dust content of galactic winds with Herschel - II. Nearby dwarf galaxies
NASA Astrophysics Data System (ADS)
McCormick, Alexander; Veilleux, Sylvain; Meléndez, Marcio; Martin, Crystal L.; Bland-Hawthorn, Joss; Cecil, Gerald; Heitsch, Fabian; Müller, Thomas; Rupke, David S. N.; Engelbracht, Chad
2018-06-01
We present the results from an analysis of deep Herschel Space Observatory observations of six nearby dwarf galaxies known to host galactic-scale winds. The superior far-infrared sensitivity and angular resolution of Herschel have allowed detection of cold circumgalactic dust features beyond the stellar components of the host galaxies traced by Spitzer 4.5 μm images. Comparisons of these cold dust features with ancillary data reveal an imperfect spatial correlation with the ionized gas and warm dust wind components. We find that typically ˜10-20 per cent of the total dust mass in these galaxies resides outside of their stellar discs, but this fraction reaches ˜60 per cent in the case of NGC 1569. This galaxy also has the largest metallicity (O/H) deficit in our sample for its stellar mass. Overall, the small number of objects in our sample precludes drawing strong conclusions on the origin of the circumgalactic dust. We detect no statistically significant trends with star formation properties of the host galaxies, as might be expected if the dust were lifted above the disc by energy inputs from ongoing star formation activity. Although a case for dust entrained in a galactic wind is seen in NGC 1569, in all cases, we cannot rule out the possibility that some of the circumgalactic dust might be associated instead with gas accreted or removed from the disc by recent galaxy interaction events, or that it is part of the outer gas-rich portion of the disc that lies below the sensitivity limit of the Spitzer 4.5 μm data.
THE REBOUND CONDITION OF DUST AGGREGATES REVEALED BY NUMERICAL SIMULATION OF THEIR COLLISIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wada, Koji; Tanaka, Hidekazu; Yamamoto, Tetsuo
2011-08-10
Collisional growth of dust aggregates is a plausible root of planetesimals forming in protoplanetary disks. However, a rebound of colliding dust aggregates prevents dust from growing into planetesimals. In fact, rebounding aggregates are observed in laboratory experiments but not in previous numerical simulations. Therefore, the condition of rebound between dust aggregates should be clarified to better understand the processes of dust growth and planetesimal formation. We have carried out numerical simulations of aggregate collisions for various types of aggregates and succeeded in reproducing a rebound of colliding aggregates under specific conditions. Our finding is that in the rebound process, themore » key factor of the aggregate structure is the coordination number, namely, the number of particles in contact with a particle. A rebound is governed by the energy dissipation along with restructuring of the aggregates and a large coordination number inhibits the restructuring at collisions. Results of our numerical simulation for various aggregates indicate that they stick to each other when the mean coordination number is less than 6, regardless of their materials and structures, as long as their collision velocity is less than the critical velocity for fragmentation. This criterion of the coordination number would correspond to a filling factor of {approx}0.3, which is somewhat larger than that reported in laboratory experiments. In protoplanetary disks, dust aggregates are expected to have low bulk densities (<0.1 g cm{sup -3}) during their growth, which would prevent dust aggregates from rebounding. This result supports the formation of planetesimals with direct dust growth in protoplanetary disks.« less
The formation and evolution of high-redshift dusty galaxies
NASA Astrophysics Data System (ADS)
Ma, Jingzhe; Gonzalez, Anthony H.; Ge, Jian; Vieira, Joaquin D.; Prochaska, Jason X.; Spilker, Justin; Strandet, Maria; Ashby, Matthew; Noterdaeme, Pasquier; Lundgren, Britt; Zhao, Yinan; Ji, Tuo; Zhang, Shaohua; Caucal, Paul; SPT SMG Collaboration
2017-01-01
Star formation and chemical evolution are among the biggest questions in galaxy formation and evolution. High-redshift dusty galaxies are the best sites to investigate mass assembly and growth, star formation rates, star formation history, chemical enrichment, and physical conditions. My thesis is based on two populations of high-redshift dusty galaxies, submillimeter galaxies (SMGs) and quasar 2175 Å dust absorbers, which are selected by dust emission and dust absorption, respectively.For the SMG sample, I have worked on the gravitationally lensed dusty, star-forming galaxies (DSFGs) at 2.8 < z < 5.7, which were first discovered by the South Pole Telescope (SPT) and further confirmed by ALMA. My thesis is focused on the stellar masses and star formation rates of these objects by means of multi-wavelength spectral energy distribution (SED) modelling. The data include HST/WFC3, Spitzer/IRAC, Herschel/PACS, Herschel/SPIRE, APEX/Laboca and SPT. Compared to the star-forming main sequence (MS), these DSFGs have specific SFRs that lie above the MS, suggesting that we are witnessing ongoing strong starburst events that may be driven by major mergers. SPT0346-52 at z = 5.7, the most extraordinary source in the SPT survey for which we obtained Chandra X-ray and ATCA radio data, was confirmed to have the highest star formation surface density of any known galaxy at high-z.The other half of my thesis is focused on a new population of quasar absorption line systems, 2175 Å dust absorbers, which are excellent probes of gas and dust properties, chemical evolution and physical conditions in the absorbing galaxies. This sample was selected from the SDSS and BOSS surveys and followed up with the Echelle Spectrographs and Imager on the Keck-II telescope, the Red & Blue Channel Spectrograph on the Multiple Mirror Telescope, and the Ultraviolet and Visible Echelle Spectrograph onboard the Very Large Telescope. We found a correlation between the presence of the 2175 Å bump and other ingredients including high metallicity, high depletion level, overall low ionization state of gas, neutral carbon and molecules. I have also pushed forward this study by using HST IR grism to link the absorber and the host galaxy.
Brisset, Julie; Heißelmann, Daniel; Kothe, Stefan; Weidling, René; Blum, Jürgen
2013-09-01
The Suborbital Particle Aggregation and Collision Experiment (SPACE) is a novel approach to study the collision properties of submillimeter-sized, highly porous dust aggregates. The experiment was designed, built, and carried out to increase our knowledge about the processes dominating the first phase of planet formation. During this phase, the growth of planetary precursors occurs by agglomeration of micrometer-sized dust grains into aggregates of at least millimeters to centimeters in size. However, the formation of larger bodies from the so-formed building blocks is not yet fully understood. Recent numerical models on dust growth lack a particular support by experimental studies in the size range of submillimeters, because these particles are predicted to collide at very gentle relative velocities of below 1 cm/s that can only be achieved in a reduced-gravity environment. The SPACE experiment investigates the collision behavior of an ensemble of silicate-dust aggregates inside several evacuated glass containers which are being agitated by a shaker to induce the desired collisions at chosen velocities. The dust aggregates are being observed by a high-speed camera, allowing for the determination of the collision properties of the protoplanetary dust analog material. The data obtained from the suborbital flight with the REXUS (Rocket Experiments for University Students) 12 rocket will be directly implemented into a state-of-the-art dust growth and collision model.
NASA Astrophysics Data System (ADS)
Schirrmacher, V.; Woitke, P.; Sedlmayr, E.
Stars on the Asymptotic Giant Branch (AGB) are pulsating objects in a late evolutionary stage. The stellar pulsation creates sound waves which steepen up to shock waves in the upper atmosphere and lead to a time dependent levitation of the outer atmosphere. Thereby, the stellar pulsation triggers and facilitates the formation of dust close to the star. The dust is accelerated by radiation pressure and drags the gas outwards due to frictional forces which is identified to provide the basic mass loss mechanism. A longstanding problem concerning the modelling of these physical processes is the influence of the propagating shock waves on the temperature structure of the wind, which strongly influences the dust formation. We have therefore improved our numerical models of AGB-star envelopes by including (i) a detailed calculation of non-LTE radiative heating and cooling rates, predominantly arising from atomic and molecular lines and (ii) atomic and molecular exitation aswell as ionisation and dissociation in the equation of state. First results, presented here, show that the cooling time scales behind the shock waves are usually rather short, but the binding energies of molecular hydrogen provide an important energy buffer capable to delay the radiative heating or cooling. Thus considerable deviations from radiative equilibrium may occur in the important inner dust forming layers.
Moon Dust may Simulate Vascular Hazards of Urban Pollution
NASA Astrophysics Data System (ADS)
Rowe, W. J.
A long duration mission to the moon presents several potential cardiovascular complications. To the risks of microgravity and hypokinesia, and the fact that pharmaceuticals cannot be always depended upon in the space fight conditions, there is a possible additional risk due to inhalation in the lunar module of ultra-fine dust (<100 nm). This may trigger endothelial dysfunction by mechanisms similar to those shown to precipitate endothelial insults complicating ultra-fine urban dust exposure. Vascular constriction and a significant increase in diastolic blood pressures have been found in subjects inhaling urban dust within just two hours, possibly triggered by oxidative stress, inflammatory effects, and calcium overload with a potential magnesium ion deficit playing an important contributing role. Both Irwin and Scott on Apollo 15, experienced arrhythmias, and in Irwin's case associated with syncope and severe dyspnea with angina during reentry. After the mission both had impairment in cardiac function, and delay in cardiovascular recovery, with Irwin in addition having stress test- induced extremely high blood pressures, with no available stress test results in Scott's case for comparison. It is conceivable that the chemical nature or particle size of the lunar dust is sufficiently variable to account for these complications, which were not described on the other Apollo missions. This could be determined by non-invasive endothelial-dependent flow-mediated dilatation studies in the lunar environment at various sites, thereby determining the site with the least endothelial vulnerability to dysfunction. These studies could be used also to demonstrate possible intensification of endothelial dysfunction from inhalation of ultra-fine moon dust in the lunar module.
Geochemical and Isotopic Estimates of Eolian Dust in Soils of the San Juan Mountains, USA.
NASA Astrophysics Data System (ADS)
Lawrence, C. R.; Neff, J. C.; Farmer, L.; Painter, T. H.; Landry, C.
2007-12-01
Eolian dust deposition in the San Juan Mountain Range in southern Colorado has increased 5-7 fold in the past two centuries. This dust deposition contributes an exogenous supply of biologically relevant elements such as Ca, K, Mg, and P to these alpine ecosystems in the form of fine textured mineral particulates. The deposition of eolian dust may be an underestimated factor of soil formation and soil chemistry in these alpine settings. The importance of eolian dust relative to the weathering of local bedrock likely varies across bedrock types. The San Juan Range is geologically diverse with distinct regions of Meso-proterozic crystalline granites in the Weminuche Wilderness, Mesozoic sedimentary layers near Molas Pass in the San Juan National Forest, and Tertiary volcanic geology found on Red Mountain Pass in the Uncompahgre National Forest. Principle component analysis of element chemistry shows that bedrock and soils from these sites cluster by geology. In addition, these groups are chemically distinct from eolian dust collected from snow in the San Juan Range. Several elements seem to drive the difference of dust from soils and bedrock including Ca, Sr, Cu and Cd. The purpose of this research was to estimate the relative contribution of eolian dust to alpine soil element pools in the San Juan Mountains across a range of local geologic parent material. A calculation of element mass- balance shows that Cu and Cd are enriched in the surface soils of both volcanic and sedimentary soils relative to concentrations in local bedrock. However, Ca is enriched only in volcanic soils. These observations support the notion that eolian dust contributes to soil formation and that the relative contribution of dust across the landscape varies with geology. In addition to element mass-balance estimates we utilize Sr and Nd isotope measurements of soil, bedrock, and dust to further constrain the importance of eolian dust to these alpine soils.
Planetary Dust: Cross-Functional Considerations
NASA Technical Reports Server (NTRS)
Wagner, Sandra
2006-01-01
Apollo astronauts learned first hand how problems with dust impact lunar surface missions. After three days, lunar dust contaminating on EVA suit bearings led to such great difficulty in movement that another EVA would not have been possible. Dust clinging to EVA suits was transported into the Lunar Module. During the return trip to Earth, when microgravity was reestablished, the dust became airborne and floated through the cabin. Crews inhaled the dust and it irritated their eyes. Some mechanical systems aboard the spacecraft were damaged due to dust contamination. Study results obtained by Robotic Martian missions indicate that Martian surface soil is oxidative and reactive. Exposures to the reactive Martian dust will pose an even greater concern to the crew health and the integrity of the mechanical systems. As NASA embarks on planetary surface missions to support its Exploration Vision, the effects of these extraterrestrial dusts must be well understood and systems must be designed to operate reliably and protect the crew in the dusty environments of the Moon and Mars. The AIM Dust Assessment Team was tasked to identify systems that will be affected by the respective dust, how they will be affected, associated risks of dust exposure, requirements that will need to be developed, identified knowledge gaps, and recommended scientific measurements to obtain information needed to develop requirements, and design and manufacture the surface systems that will support crew habitation in the lunar and Martian outposts.
Theory of void formation in dusty plasmas
NASA Astrophysics Data System (ADS)
Hu, Zuquan; Chen, Yinhua; Zheng, Xiang; Huang, Feng; Shi, Gei-fen; Yu, M. Y.
2009-06-01
A fluid theory of void formation in dusty plasmas taking into account ionization is proposed. It is shown that if the ionization rate is larger than a threshold, an initial steady-state dust-density distribution can evolve into a stable distribution containing a void. As the ionization rate is further increased, the time required for void formation decreases. The void size first increases, but then decreases. However, for still larger ionization rates, the dusty region of the plasma becomes ringlike, including the convection term in dust momentum equation. The results are in agreement with existing experiments and theories.
From Nuclei to Dust Grains: How the AGB Machinery Works
NASA Astrophysics Data System (ADS)
Gobrecht, D.; Cristallo, S.; Piersanti, L.
2015-12-01
With their circumstellar envelopes AGB stars are marvelous laboratories to test our knowledge of microphysics (opacities, equation of state), macrophysics (convection, rotation, stellar pulsations, magnetic fields) and nucleosynthesis (nuclear burnings, slow neutron capture processes, molecules and dust formation). Due to the completely different environments those processes occur, the interplay between stellar interiors (dominated by mixing events like convection and dredge-up episodes) and stellar winds (characterized by dust formation and wind acceleration) is often ignored. We intend to develop a new approach involving a transition region, taking into consideration hydrodynamic processes which may drive AGB mass-loss. Our aim is to describe the process triggering the mass-loss in AGB stars with different masses, metallicities and chemical enrichments, possibly deriving a velocity field of the outflowing matter. Moreover, we intend to construct an homogeneous theoretical database containing detailed abundances of atomic and molecular species produced by these objects. As a long term goal, we will derive dust production rates for silicates, alumina and silicon carbides, in order to explain laboratory measurements of isotopic ratios in AGB dust grains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amblard, A.; Riguccini, L.; Temi, P.
We compute the properties of a sample of 221 local, early-type galaxies with a spectral energy distribution (SED) modeling software, CIGALEMC. Concentrating on the star-forming (SF) activity and dust contents, we derive parameters such as the specific star formation rate (sSFR), the dust luminosity, dust mass, and temperature. In our sample, 52% is composed of elliptical (E) galaxies and 48% of lenticular (S0) galaxies. We find a larger proportion of S0 galaxies among galaxies with a large sSFR and large specific dust emission. The stronger activity of S0 galaxies is confirmed by larger dust masses. We investigate the relative proportionmore » of active galactic nuclei (AGNs) and SF galaxies in our sample using spectroscopic Sloan Digital Sky Survey data and near-infrared selection techniques, and find a larger proportion of AGN-dominated galaxies in the S0 sample than the E one. This could corroborate a scenario where blue galaxies evolve into red ellipticals by passing through an S0 AGN active period while quenching its star formation. Finally, we find a good agreement comparing our estimates with color indicators.« less
NASA Astrophysics Data System (ADS)
Vlaminck, Stefan; Kehl, Martin; Rolf, Christian; Franz, Sven Oliver; Lauer, Tobias; Lehndorff, Eva; Frechen, Manfred; Khormali, Farhad
2018-01-01
In southern Eurasia recurrent phases of aridization, dust source extension and enhanced Aeolian sedimentation alternated with moister intervals, promoting reduced deflation areas and dust accumulation in the context of late Pleistocene climate changes. Weathering and soil forming intensity in this greater region are, hence, mainly governed by fluctuations in the balance between dust supply and moisture availability. Among the hitherto known sections, the Toshan loess-soil sequence (LPS) represents a key site due to the quality of the record and the multitude of available data giving detailed insights into the timing and magnitude of dust accumulation and soil formation of the region. To elucidate these dynamics for much of the past 130.000 years bulk mineralogical and geochemical data are presented supplemented by a high resolution magnetic susceptibility record and by the results of a detailed micromorphological study of loess at Toshan. The last interglacial Luvisol/Phaeozem-like (∼MIS 5e) and the early glacial interstadial steppic palaeosols (∼MIS 5 c and a) are characterized by gradually increasing grain-size and decreasing degrees in decomposition of micaceous and mafic minerals. Pronounced feldspar weathering is detected in the last interglacial and modern soils only, which formed under reduced or absent dust deposition on penultimate and last glacial loess, respectively (postsedimentary). The overall pedosedimentary conditions correspond to large scale trends of increasing drought, dust accumulation and wind strength in southern Eurasia in relation to decreasing moisture availability towards the early Pleniglacial (∼MIS 4), causing soil formation under ongoing dust deposition (synsedimentary). Similar intervals of synsedimentary soil formation are recorded during the interglacial/interstadial-stadial transitions of the early glacial and during pleniglacial (∼MIS 4 to 2) interstadials. The latter are marked by gradual increases in magnetic susceptibility, colour and decreasing texture. Conversely, silicate weathering could not be detected, suggesting that grain-size fluctuations are a primary feature. Thus, windy and arid pleniglacial conditions in southern Eurasia were interrupted by intermittent phases of synsedimentary soil formation, in response to short-lived and relatively moist interstadials. Although the interrelation of these incipient soils, throughout southern Eurasia is afflicted with considerable restrictions, the oscillatory pattern of the Toshan LPS bears great similarity with millennial-scale oscillations recorded in limnic archives of western Asia.
ISM abundances and history: a 3D, solar neighborhood view
NASA Astrophysics Data System (ADS)
Lallement, R.; Vergely, J.-L.; Puspitarini, L.
For observational reasons, the solar neighborhood is particularly suitable for the study of the multi-phase interstellar (IS) medium and the search for traces of its temporal evolution. On the other hand, by a number of aspects it seems to be a peculiar region. We use recent 3D maps of the IS dust based on color excess data as well as former maps of the gas to illustrate how such maps can be used to shed additional light on the specificity of the local medium, its history and abundance pattern. 3D maps reveal a gigantic cavity located in the third quadrant and connected to the Local Bubble, the latter itself running into an elongated cavity toward l≃ 70°. Most nearby cloud complexes of the so-called Gould belt but also more distant clouds seem to border a large fraction of this entire structure. The IS medium with the large cavity appears ionized and dust-poor, as deduced from ionized calcium and neutral sodium to dust ratios. The geometry favors the proposed scenario of Gould belt-Local Arm formation through the braking of a supercloud by interaction with a spiral density wave \\citep{olano01}. The highly variable D/H ratio in the nearby IS gas may also be spatially related to the global structure. We speculate about potential consequences of the supercloud encounter and dust-gas decoupling during its braking, in particular the formation of strong inhomogeneities in both the dust to gas abundance ratio and the dust characteristics: (i) during the ≃ 500 Myrs prior to the collision, dust within the supercloud may have been gradually, strongly enriched in D due to an absence of strong stellar formation and preferential adsorption of D \\citep{jura82,draine03} ; (ii) during its interaction with the Plane and the braking dust-rich and dust-poor regions may have formed due to differential gas drag, the dust being more concentrated in the dense areas; strong radiation pressure from OB associations at the boundary of the left-behind giant cavity may have also helped in emptying the cavity from its dust at the profit of the central parts of the supercloud ; (iii) present D/H variations could be due to the combination of those dust inhomogeneities and posterior, localized deuterium release by grains in recent star forming regions. In this case, the true local D/H ratio has an intermediate value within the observed range.
Dusty galaxies in the Epoch of Reionization: simulations
NASA Astrophysics Data System (ADS)
Behrens, C.; Pallottini, A.; Ferrara, A.; Gallerani, S.; Vallini, L.
2018-06-01
The recent discovery of dusty galaxies well into the Epoch of Reionization (redshift z > 6) poses challenging questions about the properties of the interstellar medium in these pristine systems. By combining state-of-the-art hydrodynamic and dust radiative transfer simulations, we address these questions focusing on the recently discovered dusty galaxy A2744_YD4 (z = 8.38, Laporte et al.). We show that we can reproduce the observed spectral energy distribution (SED) only using different physical values with respect to the inferred ones by Laporte et al., i.e. a star formation rate of SFR = 78 M_{⊙} yr^{-1}, a factor ≈4 higher than deduced from simple SED fitting. In this case, we find: (i) dust attenuation (corresponding to τV = 1.4) is consistent with a Milky Way (MW) extinction curve; (ii) the dust-to-metal ratio is low, fd ˜ 0.08, implying that early dust formation is rather inefficient; (iii) the luminosity-weighted dust temperature is high, T_d=91± 23 K, as a result of the intense (≈100 × MW) interstellar radiation field; and (iv) due to the high Td, the Atacama Large Millimeter/submillimeter Array Band 7 detection can be explained by a limited dust mass, Md = 1.6 × 106 M⊙. Finally, the high dust temperatures might solve the puzzling low infrared excess (IRX) recently deduced for high-z galaxies from the IRX-β relation.
Northern hemisphere dust storms on Mars
NASA Technical Reports Server (NTRS)
James, P. B.
1993-01-01
Dust storms in the northern hemisphere of Mars appear to be less common than the more familiar southern hemisphere storms, and essentially, no activity north of about 30 latittude has been documented. The data are, however, subject to an observational bias because Mars is near aphelion during oppositions, which occur during the most likely seasons for dust activity in the north. The amount of dust activity in the northern hemisphere is clearly very relevant to the role of atmospheric transport in the dust cycle. The classic global storms that occur during spring in the southern hemisphere are observed to transport dust from sources in the southern hemisphere to sinks or temporary depositories in the north. The question of whether atmospheric transport can close the dust cycle, i.e., return the dust to the southern hemisphere sources on some timescale, is clearly relevant to the solution of the puzzle of how the dust storm cycle is modulated, i.e., why storms occur in some years but not in others. There are data that suggest that the spring/early summer season in the northern hemisphere of Mars during the year following the major 1977 storms observed by Viking was very dusty. A number of observations of the vicinity of the receding north polar cap showed clear evidence of substantial dust activity in the sub-Arctic region.
NASA Astrophysics Data System (ADS)
Yuan, Fang-Ting; Argudo-Fernández, María; Shen, Shiyin; Hao, Lei; Jiang, Chunyan; Yin, Jun; Boquien, Médéric; Lin, Lihwai
2018-05-01
We investigate the star formation history and the dust attenuation in the galaxy merger Mrk 848. Thanks to the multiwavelength photometry from the ultraviolet (UV) to the infrared (IR), and MaNGA's integral field spectroscopy, we are able to study this merger in a detailed way. We divide the whole merger into the core and tail regions, and fit both the optical spectrum and the multi-band spectral energy distribution (SED) to models to obtain the star formation properties for each region respectively. We find that the color excess of stars in the galaxy E(B-V)sSED measured with the multi-band SED fitting is consistent with that estimated both from the infrared excess (the ratio of IR to UV flux) and from the slope of the UV continuum. Furthermore, the reliability of the E(B-V)sSED is examined with a set of mock SEDs, showing that the dust attenuation of the stars can be well constrained by the UV-to-IR broadband SED fitting. The dust attenuation obtained from optical continuum E(B-V)sspec is only about half of E(B-V)sSED. The ratio of the E(B-V)sspec to the E(B-V)g obtained from the Balmer decrement is consistent with the local value (around 0.5). The difference between the results from the UV-to-IR data and the optical data is consistent with the picture that younger stellar populations are attenuated by an extra dust component from the birth clouds compared to older stellar populations which are only attenuated by the diffuse dust. Both with the UV-to-IR SED fitting and the spectral fitting, we find that there is a starburst younger than 100 Myr in one of the two core regions, consistent with the scenario that the interaction-induced gas inflow can enhance the star formation in the center of galaxies.
Remote sensing of mesospheric dust layers using active modulation of PMWE by high-power radio-waves
NASA Astrophysics Data System (ADS)
Cohen, M.; Zhang, X.; Cohen, M.; Mahmoudian, A.; Scales, W.; Kosch, M. J.; M Farahani, M.; Mohebalhojeh, A.
2016-12-01
So-called polar mesospheric winter echoes (PMWE) are radar echoes observed during winter at altitudes around 50-80 km and are much weaker than their PMSE (Polar Mesospheric Summer Echoes) counterpart. Unlike PMSE, PMWE are less studied and understood. Breaking of gravity waves and the associated turbulence are proposed as the major source for PMWE echoes. The action of neutral turbulence alone does not appear to give a good explanation for PMWE. PMWE is also attributed to Bragg scatter from electron irregularities which result from charging of free electrons onto sub-visible particles. The temporal behavior of PMWE response to HF pump heating can be employed to diagnose the charged dust layer. Specifically, the rise and fall time of radar echo strength as well as relaxation and recovery time after heater turn-on and off are distinct parameters that are a function of radar frequency. This work presents the first study of the modulation of PMWE by artificial radiowave heating using computational modeling and experimental observation in different radar frequency bands. Variation of dust plasma parameters associated with PMWE such as dust radius, dust density, recombination rate, electron- and dust-neutral collision frequencies, photo-detachment current and electron temperature enhancement ratio are included. Computational results derived from different sets of parameters are considered and compared with recent observations at EISCAT using 224 MHz and 56 MHz radars. The agreement between the model results and the observations show the high potential of remote sensing of dust and plasma parameters associated with PMWE. Measurement of Te/Ti using ISR and simultaneous observations in two frequency bands may lead to a more accurate estimation of dust density and radius. The enhancement of backscattered signal in the HF band during PMWE heating is predicted for the first time. The required background dust-plasma parameters as well as heater power (Te/Ti) for the observation of turn-on overshoot are investigated. It has been shown that the similarity of the temporal evolution of radar echoes in HF band and average charge on the dust particles can be used to study the fundamental physics associated with the dust charging in the PMWE source region. The possibilities of perusing PMWE heating experiments at HAARP will be discussed.
Comet 67p/Churyumov-Gerasimenko, possible origin of the depression Hatmehit
NASA Astrophysics Data System (ADS)
Kossacki, Konrad J.; Czechowski, Leszek
2018-05-01
On the nucleus of comet 67P/Churyumov-Gerasimenko numerous pits and depressions of different sizes are identified. In the present work the origin of depression Hatmehit is investigated. We propose a mechanism that includes recession of the surface due to sub-dust sublimation together with formation of cavities. Recession of the surface is calculated taking into account the sub-dust sublimation of water ice with volatile organic components, formation of a strengthened ice-dust crust due to sintering of ice grains and the increase of the gas pressure in pores due to release of gaseous CO. Our simulations indicate, that the formation of a 300 m deep depression due to the sub-dust sublimation of ice can take as little as 50 orbital periods assuming that the heliocentric distance at perihelion is close to its present value (Ip. et al., 2016). When amorphous water ice is present at small depth the release of gaseous CO may cause either compression of low-strength material beneath the strengthened crust, or ejection of the crust. In both cases a cavity is formed and grows due to the sublimation of ice from the wall and the floor.
Dust emission from comets at large heliocentric distances. I - The case of comet Bowell /1980b/
NASA Technical Reports Server (NTRS)
Houpis, H. L. F.; Mendis, D. A.
1981-01-01
Alternative processes of dust emission from comets at large heliocentric distances are considered, in order to explain the dust coma observed in comet Bowell (1980b) at a heliocentric distance as large as 7.17 AU. It is shown that the electrostatic blow-off of dust from a charged, H2O-dominated nucleus having a layer of loose, fine dust may be the formation process of the dust coma, with the coma size expected from the process being comparable to the observed value and the dust grain size being equal to or less than 0.4 microns in size. The upper limit for the total mass in the coma is 3.9 x 10 to the 8th g, and the spatial extension less than 10,000 km. The observed activity may alternatively be due to dust entrainment by the sublimating gas from a CO2-dominated nucleus.
Formation of the ZnFe2O4 phase in an electric arc furnace off-gas treatment system.
Suetens, T; Guo, M; Van Acker, K; Blanpain, B
2015-04-28
To better understand the phenomena of ZnFe2O4 spinel formation in electric arc furnace dust, the dust was characterized with particle size analysis, X-ray fluorescence (XRF), electron backscatter diffraction (EBSD), and electron probe micro-analysis (EPMA). Different ZnFe2O4 formation reaction extents were observed for iron oxide particles with different particle sizes. ZnO particles were present as both individual particles and aggregated on the surface of larger particles. Also, the slag particles found in the off-gas were shown not to react with the zinc vapor. After confirming the presence of a ZnFe2O4 formation reaction, the thermodynamic feasibility of in-process separation - a new electric arc furnace dust treatment technology - was reevaluated. The large air intake and the presence of iron oxide particles in the off-gas were included into the thermodynamic calculations. The formation of the stable ZnFe2O4 spinel phase was shown to be thermodynamically favorable in current electric arc furnace off-gas ducts conditions even before reaching the post combustion chamber. Copyright © 2015 Elsevier B.V. All rights reserved.
Planetesimal Formation in the Warm, Inner Disk: Experiments with Tempered Dust
NASA Astrophysics Data System (ADS)
de Beule, Caroline; Landers, Joachim; Salamon, Soma; Wende, Heiko; Wurm, Gerhard
2017-03-01
It is an open question how elevated temperatures in the inner parts of protoplanetary disks influence the formation of planetesimals. We approach this problem here by studying the tensile strength of granular beds with dust samples tempered at different temperatures. We find via laboratory experiments that tempering at increasing temperatures is correlated with an increase in cohesive forces. We studied dust samples of palagonite (JSC Mars-1a) which were tempered for up to 200 hr at temperatures between 600 and 1200 K, and measured the relative tensile strengths of highly porous dust layers once the samples cooled to room temperature. Tempering increases the tensile strength from 800 K upwards. This change is accompanied by mineral transformations, the formation of iron oxide crystallites as analyzed by Mössbauer spectroscopy, changes in the number size distribution, and the morphology of the surface visible as cracks in larger grains. These results suggest a difference in the collisional evolution toward larger bodies with increasing temperature as collisional growth is fundamentally based on cohesion. While high temperatures might also increase sticking (not studied here), compositional evolution will already enhance the cohesion and the possibility of growing larger aggregates on the way toward planetesimals. This might lead to a preferred in situ formation of inner planets and explain the observed presence of dense inner planetary systems.
Planetesimal Formation in the Warm, Inner Disk: Experiments with Tempered Dust
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Beule, Caroline; Landers, Joachim; Salamon, Soma
2017-03-01
It is an open question how elevated temperatures in the inner parts of protoplanetary disks influence the formation of planetesimals. We approach this problem here by studying the tensile strength of granular beds with dust samples tempered at different temperatures. We find via laboratory experiments that tempering at increasing temperatures is correlated with an increase in cohesive forces. We studied dust samples of palagonite (JSC Mars-1a) which were tempered for up to 200 hr at temperatures between 600 and 1200 K, and measured the relative tensile strengths of highly porous dust layers once the samples cooled to room temperature. Temperingmore » increases the tensile strength from 800 K upwards. This change is accompanied by mineral transformations, the formation of iron oxide crystallites as analyzed by Mössbauer spectroscopy, changes in the number size distribution, and the morphology of the surface visible as cracks in larger grains. These results suggest a difference in the collisional evolution toward larger bodies with increasing temperature as collisional growth is fundamentally based on cohesion. While high temperatures might also increase sticking (not studied here), compositional evolution will already enhance the cohesion and the possibility of growing larger aggregates on the way toward planetesimals. This might lead to a preferred in situ formation of inner planets and explain the observed presence of dense inner planetary systems.« less
Heating of Porous Icy Dust Aggregates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirono, Sin-iti
At the beginning of planetary formation, highly porous dust aggregates are formed through coagulation of dust grains. Outside the snowline, the main component of an aggregate is H{sub 2}O ice. Because H{sub 2}O ice is formed in amorphous form, its thermal conductivity is extremely small. Therefore, the thermal conductivity of an icy dust aggregate is low. There is a possibility of heating inside an aggregate owing to the decay of radionuclides. It is shown that the temperature increases substantially inside an aggregate, leading to crystallization of amorphous ice. During the crystallization, the temperature further increases sufficiently to continue sintering. Themore » mechanical properties of icy dust aggregates change, and the collisional evolution of dust aggregates is affected by the sintering.« less
NASA Technical Reports Server (NTRS)
1987-01-01
Topics addressed include: star formation; galactic infrared emission; molecular clouds; OB star luminosity; dust grains; IRAS observations; galactic disks; stellar formation in Magellanic clouds; irregular galaxies; spiral galaxies; starbursts; morphology of galactic centers; and far-infrared observations.
NASA Astrophysics Data System (ADS)
Chang, Qiang; Herbst, Eric
2016-03-01
The recent discovery of methyl formate and dimethyl ether in the gas phase of cold cores with temperatures as cold as 10 K challenges our previous astrochemical models concerning the formation of complex organic molecules (COMs). The strong correlation between the abundances and distributions of methyl formate and dimethyl ether further shows that current astrochemical models may be missing important chemical processes in cold astronomical sources. We investigate a scenario in which COMs and the methoxy radical can be formed on dust grains via a so-called chain reaction mechanism, in a similar manner to CO2. A unified gas-grain microscopic-macroscopic Monte Carlo approach with both normal and interstitial sites for icy grain mantles is used to perform the chemical simulations. Reactive desorption with varying degrees of efficiency is included to enhance the nonthermal desorption of species formed on cold dust grains. In addition, varying degrees of efficiency for the surface formation of methoxy are also included. The observed abundances of a variety of organic molecules in cold cores can be reproduced in our models. The strong correlation between the abundances of methyl formate and dimethyl ether in cold cores can also be explained. Nondiffusive chemical reactions on dust grain surfaces may play a key role in the formation of some COMs.
Coagulation of dust grains in the plasma of an RF discharge in argon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankelevich, Yu. A.; Olevanov, M. A.; Pal', A. F.
2009-03-15
Results are presented from experimental studies of coagulation of dust grains of different sizes injected into a low-temperature plasma of an RF discharge in argon. A theoretical model describing the formation of dust clusters in a low-temperature plasma is developed and applied to interpret the results of experiments on the coagulation of dust grains having large negative charges. The grain size at which coagulation under the given plasma conditions is possible is estimated using the developed theory. The theoretical results are compared with the experimental data.
Magnetic properties experiments on the Mars exploration Rover Spirit at Gusev Crater.
Bertelsen, P; Goetz, W; Madsen, M B; Kinch, K M; Hviid, S F; Knudsen, J M; Gunnlaugsson, H P; Merrison, J; Nørnberg, P; Squyres, S W; Bell, J F; Herkenhoff, K E; Gorevan, S; Yen, A S; Myrick, T; Klingelhöfer, G; Rieder, R; Gellert, R
2004-08-06
The magnetic properties experiments are designed to help identify the magnetic minerals in the dust and rocks on Mars-and to determine whether liquid water was involved in the formation and alteration of these magnetic minerals. Almost all of the dust particles suspended in the martian atmosphere must contain ferrimagnetic minerals (such as maghemite or magnetite) in an amount of approximately 2% by weight. The most magnetic fraction of the dust appears darker than the average dust. Magnetite was detected in the first two rocks ground by Spirit.
A Complete Library of Infrared Spectral Energy Distributions for z=0 Galaxies
NASA Astrophysics Data System (ADS)
Sandstrom, Karin
CONTEXT: Half of the light emitted by galaxies is starlight absorbed and reprocessed into the infrared by dust. The spectral energy distribution (SED) of this IR emission encodes information on the mass and properties of the dust, the radiation field heating it, and the bolometric luminosity of the region. This makes IR emission a main tool to estimate star formation rates (SFRs) and to trace the distribution of the interstellar medium (ISM) in galaxies. The dust itself also plays key roles in the physics of star formation, and thereby galaxy evolution. This critical information on dust and its dependence on environment can only be reliably measured when we have observations with full wavelength coverage of the IR SED that resolve galaxies. With no new IR imaging missions on the horizon, the remarkably thorough census conducted by Herschel, Spitzer, and WISE of the nearby (D < 50 Mpc) galaxy population is the definitive resource on dust at z=0 for the foreseeable future. Such observations allow us to understand the behavior of the IR SED and so inform observations from the major new facilities ALMA and JWST, which have amazing sensitivity and resolution but limited wavelength coverage. OBJECTIVES: We will create a library of matched resolution, uniformly processed IR SEDs for all 532 local galaxies with resolved mapping in the Herschel, Spitzer, and WISE archives. We will associate the SED measurements with rich "value added" data, including fits of physical models to the IR SED (yielding small grain fractions, temperature, and dust masses), host galaxy properties (e.g., stellar mass, SFR, morphology, inclination), and local conditions in the galaxy (SFR and stellar surface density, ISM gas mass and metallicity where available). The library will be created for a range of spatial and angular scales and served through IRSA/MAST, providing a major high level legacy resource that will be useful to a wide community. We will exploit this database to address three major questions: (1) What powers the dust emission from galaxies and how does dust emission relate to the star formation rate? (2) How are dust and gas related across the galaxy population and how can dust emission best be used to trace gas? and (3) How does the dust grain population vary in response to local environment across galaxies? METHODS: We will use established techniques to uniformly process the archival data, fit models to the spectral energy distributions, match the data in resolution. These have been successfully deployed on similar data by individual teams (including us), but we will apply them to an order of magnitude larger sample. PERCEIVED SIGNIFICANCE: Dust is a main mediator of cloud and star formation, and thus galaxy evolution. Therefore, the properties and evolution of dust in galaxies is directly relevant to key NASA science goals to "Discover how the universe works, explore how it began and evolved, and search for life on planets around other stars." These are also essential tools to understand "How did we get here?" In practical terms, the database that we propose to create would be a major resource for many scientists: a tool to understand the physics of dust and the ISM for those studying local galaxies and a major aid to interpret monochromatic observations of high-z galaxies and galaxy surveys. This should have a large impact in the ALMA and (soon) JWST communities.
Block 2 solar cell module environmental test program
NASA Technical Reports Server (NTRS)
Holloway, K. L.
1978-01-01
Environmental tests were performed of on 76 solar cell modules produced by four different manufacturers. The following tests were performed: (1) 28 day temperature and humidity; (2) rain and icing; (3) salt fog; (4) sand and dust; (5) vacuum/steam/pressure; (6) fungus; (7) temperature/altitude; and (8) thermal shock. Environmental testing of the solar cell modules produced cracked cells, cracked encapsulant and encapsulant delaminations on various modules. In addition, there was some minor cell and frame corrosion.
Time-resolved measurement of global synchronization in the dust acoustic wave
NASA Astrophysics Data System (ADS)
Williams, J. D.
2014-10-01
A spatially and temporally resolved measurement of the synchronization of the naturally occurring dust acoustic wave to an external drive and the relaxation from the driven wave mode back to the naturally occuring wave mode is presented. This measurement provides a time-resolved measurement of the synchronization of the self-excited dust acoustic wave with an external drive and the return to the self-excited mode. It is observed that the wave synchronizes to the external drive in a distinct time-dependent fashion, while there is an immediate loss of synchronization when the external modulation is discontinued.
Bertrand, Alexander; Seo, Dongjin; Maksimovic, Filip; Carmena, Jose M; Maharbiz, Michel M; Alon, Elad; Rabaey, Jan M
2014-01-01
In this paper, we examine the use of beamforming techniques to interrogate a multitude of neural implants in a distributed, ultrasound-based intra-cortical recording platform known as Neural Dust. We propose a general framework to analyze system design tradeoffs in the ultrasonic beamformer that extracts neural signals from modulated ultrasound waves that are backscattered by free-floating neural dust (ND) motes. Simulations indicate that high-resolution linearly-constrained minimum variance beamforming sufficiently suppresses interference from unselected ND motes and can be incorporated into the ND-based cortical recording system.
Planetesimal formation during protoplanetary disk buildup
NASA Astrophysics Data System (ADS)
Drążkowska, J.; Dullemond, C. P.
2018-06-01
Context. Models of dust coagulation and subsequent planetesimal formation are usually computed on the backdrop of an already fully formed protoplanetary disk model. At the same time, observational studies suggest that planetesimal formation should start early, possibly even before the protoplanetary disk is fully formed. Aims: In this paper we investigate under which conditions planetesimals already form during the disk buildup stage, in which gas and dust fall onto the disk from its parent molecular cloud. Methods: We couple our earlier planetesimal formation model at the water snow line to a simple model of disk formation and evolution. Results: We find that under most conditions planetesimals only form after the buildup stage, when the disk becomes less massive and less hot. However, there are parameters for which planetesimals already form during the disk buildup. This occurs when the viscosity driving the disk evolution is intermediate (αv 10-3-10-2) while the turbulent mixing of the dust is reduced compared to that (αt ≲ 10-4), and with the assumption that the water vapor is vertically well-mixed with the gas. Such a αt ≪ αv scenario could be expected for layered accretion, where the gas flow is mostly driven by the active surface layers, while the midplane layers, where most of the dust resides, are quiescent. Conclusions: In the standard picture where protoplanetary disk accretion is driven by global turbulence, we find that no planetesimals form during the disk buildup stage. Planetesimal formation during the buildup stage is only possible in scenarios in which pebbles reside in a quiescent midplane while the gas and water vapor are diffused at a higher rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michikoshi, Shugo; Kokubo, Eiichiro; Inutsuka, Shu-ichiro, E-mail: michikoshi@cfca.j, E-mail: kokubo@th.nao.ac.j, E-mail: inutsuka@tap.scphys.kyoto-u.ac.j
2009-10-01
The gravitational instability of a dust layer is one of the scenarios for planetesimal formation. If the density of a dust layer becomes sufficiently high as a result of the sedimentation of dust grains toward the midplane of a protoplanetary disk, the layer becomes gravitationally unstable and spontaneously fragments into planetesimals. Using a shearing box method, we performed local N-body simulations of gravitational instability of a dust layer and subsequent coagulation without gas and investigated the basic formation process of planetesimals. In this paper, we adopted the accretion model as a collision model. A gravitationally bound pair of particles ismore » replaced by a single particle with the total mass of the pair. This accretion model enables us to perform long-term and large-scale calculations. We confirmed that the formation process of planetesimals is the same as that in the previous paper with the rubble pile models. The formation process is divided into three stages: the formation of nonaxisymmetric structures; the creation of planetesimal seeds; and their collisional growth. We investigated the dependence of the planetesimal mass on the simulation domain size. We found that the mean mass of planetesimals formed in simulations is proportional to L {sup 3/2} {sub y}, where L{sub y} is the size of the computational domain in the direction of rotation. However, the mean mass of planetesimals is independent of L{sub x} , where L{sub x} is the size of the computational domain in the radial direction if L{sub x} is sufficiently large. We presented the estimation formula of the planetesimal mass taking into account the simulation domain size.« less
Monte Carlo kinetics simulations of ice-mantle formation on interstellar grains
NASA Astrophysics Data System (ADS)
Garrod, Robin
2015-08-01
The majority of interstellar dust-grain chemical kinetics models use rate equations, or alternative population-based simulation methods, to trace the time-dependent formation of grain-surface molecules and ice mantles. Such methods are efficient, but are incapable of considering explicitly the morphologies of the dust grains, the structure of the ices formed thereon, or the influence of local surface composition on the chemistry.A new Monte Carlo chemical kinetics model, MIMICK, is presented here, whose prototype results were published recently (Garrod 2013, ApJ, 778, 158). The model calculates the strengths and positions of the potential mimima on the surface, on the fly, according to the individual pair-wise (van der Waals) bonds between surface species, allowing the structure of the ice to build up naturally as surface diffusion and chemistry occur. The prototype model considered contributions to a surface particle's potential only from contiguous (or "bonded") neighbors; the full model considers contributions from surface constituents from short to long range. Simulations are conducted on a fully 3-D user-generated dust-grain with amorphous surface characteristics. The chemical network has also been extended from the simple water system previously published, and now includes 33 chemical species and 55 reactions. This allows the major interstellar ice components to be simulated, such as water, methane, ammonia and methanol, as well as a small selection of more complex molecules, including methyl formate (HCOOCH3).The new model results indicate that the porosity of interstellar ices are dependent on multiple variables, including gas density, the dust temperature, and the relative accretion rates of key gas-phase species. The results presented also have implications for the formation of complex organic molecules on dust-grain surfaces at very low temperatures.
NASA Astrophysics Data System (ADS)
Gibbons, P. G.; Mamatsashvili, G. R.; Rice, W. K. M.
2014-07-01
We study particle dynamics in self-gravitating gaseous discs with a simple cooling law prescription via two-dimensional simulations in the shearing sheet approximation. It is well known that structures arising in the gaseous component of the disc due to a gravitational instability can have a significant effect on the evolution of dust particles. Previous results have shown that spiral density waves can be highly efficient at collecting dust particles, creating significant local overdensities of particles. The degree of such concentrations has been shown to be dependent on two parameters: the size of the dust particles and the rate of gas cooling. We expand on these findings, including the self-gravity of dust particles, to see how these particle overdensities evolve. We use the PENCIL code to solve the local shearing sheet equations for gas on a fixed grid together with the equations of motion for solids coupled to the gas through an aerodynamic drag force. We find that the enhancements in the surface density of particles in spiral density wave crests can reach levels high enough to allow the solid component of the disc to collapse under its own self-gravity. This produces many gravitationally bound collections of particles within the spiral structure. The total mass contained in bound structures appears nearly independent of the cooling time, suggesting that the formation of planetesimals through dust particle trapping by self-gravitating density waves may be possible at a larger range of radii within a disc than previously thought. So, density waves due to gravitational instabilities in the early stages of star formation may provide excellent sites for the rapid formation of many large, planetesimal-sized objects.
Global variation of the dust-to-gas ratio in evolving protoplanetary discs
NASA Astrophysics Data System (ADS)
Hughes, Anna L. H.; Armitage, Philip J.
2012-06-01
Recent theories suggest planetesimal formation via streaming and/or gravitational instabilities may be triggered by localized enhancements in the dust-to-gas ratio, and one hypothesis is that sufficient enhancements may be produced in the pile-up of small solid particles inspiralling under aerodynamic drag from the large mass reservoir in the outer disc. Studies of particle pile-up in static gas discs have provided partial support for this hypothesis. Here, we study the radial and temporal evolution of the dust-to-gas ratio in turbulent discs that evolve under the action of viscosity and photoevaporation. We find that particle pile-ups do not generically occur within evolving discs, particularly if the introduction of large grains is restricted to the inner, dense regions of a disc. Instead, radial drift results in depletion of solids from the outer disc, while the inner disc maintains a dust-to-gas ratio that is within a factor of ˜2 of the initial value. We attribute this result to the short time-scales for turbulent diffusion and radial advection (with the mean gas flow) in the inner disc. We show that the qualitative evolution of the dust-to-gas ratio depends only weakly upon the parameters of the disc model (the disc mass, size, viscosity and value of the Schmidt number), and discuss the implications for planetesimal formation via collective instabilities. Our results suggest that in discs where there is a significant level of midplane turbulence and accretion, planetesimal formation would need to be possible in the absence of large-scale enhancements. Instead, trapping and concentration of particles within local turbulent structures may be required as a first stage of planetesimal formation.
Gravitational lensing reveals extreme dust-obscured star formation in quasar host galaxies
NASA Astrophysics Data System (ADS)
Stacey, H. R.; McKean, J. P.; Robertson, N. C.; Ivison, R. J.; Isaak, K. G.; Schleicher, D. R. G.; van der Werf, P. P.; Baan, W. A.; Berciano Alba, A.; Garrett, M. A.; Loenen, A. F.
2018-06-01
We have observed 104 gravitationally lensed quasars at z ˜ 1-4 with Herschel/SPIRE, the largest such sample ever studied. By targeting gravitational lenses, we probe intrinsic far-infrared (FIR) luminosities and star formation rates (SFRs) more typical of the population than the extremely luminous sources that are otherwise accessible. We detect 72 objects with Herschel/SPIRE and find 66 per cent (69 sources) of the sample have spectral energy distributions (SEDs) characteristic of dust emission. For 53 objects with sufficiently constrained SEDs, we find a median effective dust temperature of 38^{+12}_{-5} K. By applying the radio-infrared correlation, we find no evidence for an FIR excess that is consistent with star-formation-heated dust. We derive a median magnification-corrected FIR luminosity of 3.6^{+4.8}_{-2.4} × 10^{11} L_{⊙} and median SFR of 120^{+160}_{-80} M_{⊙} yr^{-1}} for 94 quasars with redshifts. We find ˜10 per cent of our sample have FIR properties similar to typical dusty star-forming galaxies at z ˜ 2-3 and a range of SFRs <20-10 000 M⊙ yr-1 for our sample as a whole. These results are in line with current models of quasar evolution and suggests a coexistence of dust-obscured star formation and AGN activity is typical of most quasars. We do not find a statistically significant difference in the FIR luminosities of quasars in our sample with a radio excess relative to the radio-infrared correlation. Synchrotron emission is found to dominate at FIR wavelengths for <15 per cent of those sources classified as powerful radio galaxies.
Damage of target edges in brush-like geometry in the course of ELM-like plasma pulses in QSPA Kh-50
NASA Astrophysics Data System (ADS)
Makhlaj, V. A.; Garkusha, I. E.; Aksenov, N. N.; Bazylev, B.; Byrka, O. V.; Chebotarev, V. V.; Landman, I.; Herashchenko, S. S.; Staltsov, V. V.
2015-08-01
Castellated edges of macro-brush armour elements of ITER divertor can be a source of molten/solid dust particles which are injected into the plasma. The targets that combined in brush-like geometry have been irradiated under different inclination angles in QSPA Kh-50. The cubic brushes element has typical size of 1 cm. The titanium was used to investigate dynamics of mountains' formation. The onset of dust particles ejection from the exposed castellated targets has been studied. Formation of resolidified bridges through the gaps of brush-like targets due to the melt motion is studied in dynamics. With following plasma impacts such resolidified bridges became additional source of dust.
Satellite remote sensing of dust aerosol indirect effects on ice cloud formation.
Ou, Steve Szu-Cheng; Liou, Kuo-Nan; Wang, Xingjuan; Hansell, Richard; Lefevre, Randy; Cocks, Stephen
2009-01-20
We undertook a new approach to investigate the aerosol indirect effect of the first kind on ice cloud formation by using available data products from the Moderate-Resolution Imaging Spectrometer (MODIS) and obtained physical understanding about the interaction between aerosols and ice clouds. Our analysis focused on the examination of the variability in the correlation between ice cloud parameters (optical depth, effective particle size, cloud water path, and cloud particle number concentration) and aerosol optical depth and number concentration that were inferred from available satellite cloud and aerosol data products. Correlation results for a number of selected scenes containing dust and ice clouds are presented, and dust aerosol indirect effects on ice clouds are directly demonstrated from satellite observations.
Scattered, extinguished, emitted: Three views of the dust in Perseus
NASA Astrophysics Data System (ADS)
Foster, Jonathan Bruce
Dust in star-forming regions is both a blessing and a curse. By shrouding young stars it inhibits our study of their birth, yet without dust we would have an impoverished view of the structure of the molecular cloud before it collapses to form a protostar--the initial conditions of the problem of star formation. Though less than 1% of the mass of a molecular cloud, dust is a reliable tracer of the invisible H 2 which makes up the vast majority of the material. Other molecules can trace the H 2 distribution, and are useful in the appropriate regime, but all are confounded by the complications of chemistry, excitation conditions, and depletion, processes which have little effect on dust. Interpreting observations of dust is not entirely straightforward. We do not have a comprehensive theory of dust which explains the size distribution and mineralogical composition of dust in the diverse environments where it is present, from the diffuse ISM to the proto-planetary disks around young stars. Lacking such a theory, it is surprising that models of dust are nonetheless able to reproduce many of the observational constraints imposed upon them. Among these constraints are direct capture of dust grains, spectral features, extinction of background light, scattering, and thermal emission. In this thesis I (1) describe a method to use scattered ambient galactic light to map dense cores with unprecedented high resolution; (2) extend near-infrared extinction mapping by incorporating background galaxies; (3) demonstrate a relation between column density and changes in the extinction law, which is evidence of grain growth; (4) report on a study using NH 3 temperatures to more precisely interpret a thermal emission map at 1.1-mm; and (5) apply all these different techniques to a single starless region in order to compare them and learn something both about dust and the initial conditions of star formation.
Dynamics of dust in astrophysical plasma and implications
NASA Astrophysics Data System (ADS)
Hoang, Thiem
2012-06-01
Dust is a ubiquitous constituent of the interstellar medium, molecular clouds, and circumstellar and protoplanetary disks. Dust emission interferes with observations of cosmic microwave background (CMB) temperature anisotropy and its polarized emission dominates the CMB B-mode polarization that prevents us from getting insight into the inflation epoch of the early universe. In my PhD thesis, I have studied fundamental physical processes of dust dynamics in astrophysical plasma and explored their implications for observations of the CMB, studies of magnetic fields, and formation of planets. I have investigated the spinning dust emission from very small grains (e.g., polycyclic aromatic hydrocarbons) of non-spherical shapes (including spheroid and triaxial ellipsoid shapes) that have grain axes fluctuating around grain angular momentum due to internal thermal fluctuations within the grain. I have proposed an approach based on Fourier transform to find power spectrum of spinning dust emission from grains of arbitrary grain shape. In particular, I have devised a method to find exact grain angular momentum distribution using the Langevin equation. I have explored the effects of transient spin-up by single-ion collisions, transient heating by single UV photons, and compressible turbulence on spinning dust emission. This improved model of spinning dust emission well reproduces observation data by Wilkinson Microwave Anisotropy Probe and allows a reliable separation of Galactic contamination from the CMB. I have identified grain helicity as the major driver for grain alignment via radiative torques (RATs) and suggested an analytical model of RATs based on this concept. Dust polarization predicted by the model has been confirmed by numerous observations, and can be used as a frequency template for the CMB B-mode searches. I have proposed a new type of dust acceleration due to magnetohydrodynamic turbulence through transit time damping for large grains, and quantified a novel acceleration mechanism induced by charge fluctuations for very small grains using Monte Carlo simulations. Grain velocities from these new acceleration mechanisms are necessary for understanding dust coagulation in protoplanetary disks and formations of planets.
Dust input in the formation of rock varnish from the Dry Valleys (Antarctica)
NASA Astrophysics Data System (ADS)
Zerboni, A.; Guglielmin, M.
2017-12-01
Rock varnish is a glossy, yellowish to dark brown coating that covers geomorphically stable, aerially exposed rock surfaces and landforms in warm and cold arid lands. In warm deserts, rock varnish consists of clay minerals, Mn-Fe oxides/hydroxides, and Si+alkalis dust; it occasionally containis sulphates, phosphates, and organic remains. In Antarctica, rock varnish developed on a variety of bedrocks and has been described being mostly formed of Si, Al, Fe, and sulphates, suggesting a double process in its formation, including biomineralization alternated to dust accretion. We investigated rock coatings developed on sandstones outcropping in the Dry Valleys of Antarctica and most of the samples highlithed an extremely complex varnish structure, alternating tihn layer of different chemical compostion. Optical microscope evidenced the occurrence of highly birefringent minerals, occasionally thinly laminated and consisitng of Si and Al-rich minerals (clays). These are interlayered by few micron-thick dark lenses and continous layers. The latter are well evident under the scanning electron microscope and chemical analysis confirmed that they consist of different kinds of sulphates; jarosite is the most represented species, but gypsum crystals were also found. Fe-rich hypocoatings and intergranula crusts were also detected, sometimes preserving the shape of the hyphae they have replaced. Moreover, small weathering pits on sandstone surface display the occurrence of an amorphous, dark Mn/Fe-rich rock varnish. The formation of rock varnish in the Dry Valleys is a complex process, which required the accretion of airborne dust of variable composition and subsequent recrystallization of some constituent, possibly promoted by microorganisms. In particualr, the formation of sulphates seems to preserve the memory of S-rich dust produced by volcanic eruptions. On the contrary, the formation of Mn-rich varnish should be in relation with the occurrence of higher environmental humidity within weathering pits. Rock varnish in the Dry Valleys represents a potential tool to reconstruct past water availability and changes in the aeolian fallout.
Infrared Emission from Supernova Remnants: Formation and Destruction of Dust
NASA Astrophysics Data System (ADS)
Williams, Brian J.; Temim, Tea
2016-09-01
We review the observations of dust emission in supernova remnants (SNRs) and supernovae (SNe). Theoretical calculations suggest that SNe, particularly core-collapse, should make significant quantities of dust, perhaps as much as a solar mass. Observations of extragalactic SNe have yet to find anywhere near this amount, but this may be the result of observational limitations. SN 1987A, in the process of transitioning from a SN to an SNR, does show signs of a significant amount of dust forming in its ejecta, but whether this dust will survive the passage of the reverse shock to be injected into the ISM is unknown. IR observations of SNRs have not turned up significant quantities of dust, and the dust that is observed is generally swept up by the forward shock, rather than created in the ejecta. Because the shock waves also destroy dust in the ISM, we explore the question of whether SNe might be net destroyers, rather than net creators of dust in the universe.
Infrared Emission from Supernova Remnants: Formation and Destruction of Dust
NASA Astrophysics Data System (ADS)
Williams, Brian J.; Temim, Tea
We review the observations of dust emission in supernova remnants (SNRs) and supernovae (SNe). Theoretical calculations suggest that SNe, particularly core-collapse, should make significant quantities of dust, perhaps as much as a solar mass. Observations of extragalactic SNe have yet to find anywhere near this amount, but this may be the result of observational limitations. SN 1987A, in the process of transitioning from a SN to an SNR, does show signs of a significant amount of dust forming in its ejecta, but whether this dust will survive the passage of the reverse shock to be injected into the ISM is unknown. IR observations of SNRs have not turned up significant quantities of dust, and the dust that is observed is generally swept up by the forward shock, rather than created in the ejecta. Because the shock waves also destroy dust in the ISM, we explore the question of whether SNe might be net destroyers, rather than net creators of dust in the universe.
SMA Continuum Survey of Circumstellar Disks in Serpens
NASA Astrophysics Data System (ADS)
Law, Charles; Ricci, Luca; Andrews, Sean M.; Wilner, David J.; Qi, Chunhua
2017-06-01
The lifetime of disks surrounding pre-main-sequence stars is closely linked to planet formation and provides information on disk dispersal mechanisms and dissipation timescales. The potential for these optically thick, gas-rich disks to form planets is critically dependent on how much dust is available to be converted into terrestrial planets and rocky cores of giant planets. For this reason, an understanding of how dust mass varies with key properties such as stellar mass, age, and environment is critical for understanding planet formation. Millimeter wavelength observations, in which the dust emission is optically thin, are required to study the colder dust residing in the disk’s outer regions and to measure disk dust masses. Hence, we have obtained SMA 1.3 mm continuum observations of 62 Class II sources with suspected circumstellar disks in the Serpens star-forming region (SFR). Relative to the well-studied Taurus SFR, Serpens allows us to probe the distribution of dust masses for disks in a much denser and more clustered environment. Only 13 disks were detected in the continuum with the SMA. We calculate the total dust masses of these disks and compare their masses to those of disks in Taurus, Lupus, and Upper Scorpius. We do not find evidence of diminished dust masses in Serpens disks relative to those in Taurus despite the fact that disks in denser clusters may be expected to contain less dust mass due to stronger and more frequent tidal interactions that can disrupt the outer regions of disks. However, considering the low detection fraction, we likely detected only bright continuum sources and a more sensitive survey of Serpens would help clarify these results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng Xie; Hong Li; Jianzhu Cao
A reform will be implemented in the helium purification system of the 10 MW High Temperature Gas-cooled Test Reactor (HTR-10) in China. The measurement of the gamma dose rates of facilities, including valves, pipes, dust filter, etc., in the purification system of the HTR-10, has been performed. The results indicated that most radiation nuclides are concentrated in the dust filter and facilities at the entrance of the helium purification system upstream of the dust filter. Other facilities have the same gamma dose rate level as the background. Based on the previous study and experiences in AVR, the measurement results canmore » be understood that the radioactive dust carried by the helium gas was filtered by the dust filter. It provides important insights for the decontamination and decommissioning of facilities in the primary loop, especially in the helium purification system of the HTR-10 as well as the High Temperature Reactor-Pebble bed Modules (HTR-PM). (authors)« less
A Dwarf Galaxy Star Bar and Dusty Wing
2012-01-10
In combined data from ESA Herschel and NASA Spitzer telescopes, irregular distribution of dust in the Small Magellanic Cloud becomes clear. A stream of dust extends to left, known as the galaxy wing, and a bar of star formation appears to right.
The effect of dust lifting process on the electrical properties of the atmosphere
NASA Astrophysics Data System (ADS)
Esposito, Francesca; Molinaro, Roberto; Ionut Popa, Ciprian; Molfese, Cesare; Cozzolino, Fabio; Marty, Laurent; Taj-Eddine, Kamal; Di Achille, Gaetano; Silvestro, Simone; Ori, Gian Gabriele
2015-04-01
Airborne dust and aerosol particles affect climate by absorbing and scattering thermal and solar radiation and acting as condensation nuclei for the formation of clouds. So, they strongly influence the atmospheric thermal structure, balance and circulation. On Earth and Mars, this 'climate forcing' is one of the most uncertain processes in climate change predictions. Wind-driven blowing of sand and dust is also responsible for shaping planetary surfaces through the formation of sand dunes and ripples, the erosion of rocks, and the creation and transport of soil particles. These processes are not confined to Earth, but occur also on Mars, Venus and Titan. It is clear that the knowledge of the atmospheric dust properties and the mechanisms of dust settling and raising into the atmosphere are important to understand planetary climate and surface evolution. On Mars the physical processes responsible for dust injection into the atmosphere are still poorly understood, but they likely involve saltation as on Earth. Saltation is a process where large sand grains are forced by the wind to move in ballistic trajectories on the soil surface. During these hops they hit dust particles, that are well bound to the soil due to interparticle cohesive forces, thus transferring to them the momentum necessary to be entrained into the atmosphere. Recently, it has been shown that this process is also responsible to generate strong electric fields in the atmosphere up to 100-150 kV/m. This enhanced electric force acts as a feedback in the dust lifting process, lowering the threshold of the wind friction velocity u* necessary to initiate sand saltation. It is an important aspect of dust lifting process that need to be well characterized and modeled. Even if literature reports several measurements of E-fields in dust devils events, very few reports deal with atmospheric electric properties during dust storms or isolated gusts. We present here preliminary results of an intense field test campaign we performed in the West Sahara during the 2013 and 2014 dust storm seasons. We collected a statistical meaningful set of data characterizing relationship between dust lifting and atmospheric E-field that had never been achieved so far.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bovino, S.; Banerjee, R.; Grassi, T.
Understanding the formation of the extremely metal-poor star SDSS J102915+172927 is of fundamental importance to improve our knowledge on the transition between the first and second generation of stars in the universe. In this paper, we perform three-dimensional cosmological hydrodynamical simulations of dust-enriched halos during the early stages of the collapse process including a detailed treatment of the dust physics. We employ the astrochemistry package krome coupled with the hydrodynamical code enzo assuming grain-size distributions produced by the explosion of core-collapse supernovae (SNe) of 20 and 35 M {sub ⊙} primordial stars, which are suitable to reproduce the chemical patternmore » of the SDSS J102915+172927 star. We find that the dust mass yield produced from Population III SNe explosions is the most important factor that drives the thermal evolution and the dynamical properties of the halos. Hence, for the specific distributions relevant in this context, the composition, the dust optical properties, and the size range have only minor effects on the results due to similar cooling functions. We also show that the critical dust mass to enable fragmentation provided by semi-analytical models should be revised, as we obtain values one order of magnitude larger. This determines the transition from disk fragmentation to a more filamentary fragmentation mode, and suggests that likely more than one single SN event or efficient dust growth should be invoked to get such high dust content.« less
Interpreting the evolution of galaxy colours from z = 8 to 5
NASA Astrophysics Data System (ADS)
Mancini, Mattia; Schneider, Raffaella; Graziani, Luca; Valiante, Rosa; Dayal, Pratika; Maio, Umberto; Ciardi, Benedetta
2016-11-01
We attempt to interpret existing data on the evolution of the UV luminosity function and UV colours, β, of galaxies at 5 ≤ z ≤ 8, to improve our understanding of their dust content and interstellar medium properties. To this aim, we post-process the results of a cosmological hydrodynamical simulation with a chemical evolution model, which includes dust formation by supernovae and intermediate-mass stars, dust destruction in supernova shocks, and grain growth by accretion of gas-phase elements in dense gas. We find that observations require a steep, Small Magellanic Cloud-like extinction curve and a clumpy dust distribution, where stellar populations younger than 15 Myr are still embedded in their dusty natal clouds. Investigating the scatter in the colour distribution and stellar mass, we find that the observed trends can be explained by the presence of two populations: younger, less massive galaxies where dust enrichment is mainly due to stellar sources, and massive, more chemically evolved ones, where efficient grain growth provides the dominant contribution to the total dust mass. Computing the IR-excess-UV colour relation, we find that all but the dustiest model galaxies follow a relation shallower than the Meurer et al. one, usually adopted to correct the observed UV luminosities of high-z galaxies for the effects of dust extinction. As a result, their total star formation rates might have been overestimated. Our study illustrates the importance to incorporate a proper treatment of dust in simulations of high-z galaxies, and that massive, dusty, UV-faint galaxies might have already appeared at z ≲ 7.
After the Fall: The Dust and Gas in E+A Post-starburst Galaxies
NASA Astrophysics Data System (ADS)
Smercina, A.; Smith, J. D. T.; Dale, D. A.; French, K. D.; Croxall, K. V.; Zhukovska, S.; Togi, A.; Bell, E. F.; Crocker, A. F.; Draine, B. T.; Jarrett, T. H.; Tremonti, C.; Yang, Yujin; Zabludoff, A. I.
2018-03-01
The traditional picture of post-starburst galaxies as dust- and gas-poor merger remnants, rapidly transitioning to quiescence, has been recently challenged. Unexpected detections of a significant interstellar medium (ISM) in many post-starburst galaxies raise important questions. Are they truly quiescent, and if so, what mechanisms inhibit further star formation? What processes dominate their ISM energetics? We present an infrared spectroscopic and photometric survey of 33 E+A post-starbursts selected by the Sloan Digital Sky Survey, aimed at resolving these questions. We find compact, warm dust reservoirs with high PAH abundances and total gas and dust masses significantly higher than expected from stellar recycling alone. Both polycyclic aromatic hydrocarbon (PAH)/total infrared (TIR) and dust-to-burst stellar mass ratios are seen to decrease with post-burst age, indicative of the accumulating effects of dust destruction and an incipient transition to hot, early-type ISM properties. Their infrared spectral properties are unique, with dominant PAH emission, very weak nebular lines, unusually strong H2 rotational emission, and deep [C II] deficits. There is substantial scatter among star formation rate (SFR) indicators, and both PAH and TIR luminosities provide overestimates. Even as potential upper limits, all tracers show that the SFR has typically experienced a decline of more than two orders of magnitude since the starburst and that the SFR is considerably lower than expected given both their stellar masses and molecular gas densities. These results paint a coherent picture of systems in which star formation was, indeed, rapidly truncated, but in which the ISM was not completely expelled, and is instead supported against collapse by latent or continued injection of turbulent or mechanical heating. The resulting aging burst populations provide a “high-soft” radiation field that seemingly dominates the E+A galaxies’ unusual ISM energetics.
An Assessment of Dust Effects on Planetary Surface Systems to Support Exploration Requirements
NASA Technical Reports Server (NTRS)
Wagner, Sandy
2004-01-01
Apollo astronauts learned first hand how problems with dust impact lunar surface missions. After three days, lunar dust contamination on EVA suit bearings led to such great difficulty in movement that another EVA would not have been possible. Dust clinging to EVA suits was transported into the Lunar Module. During the return trip to Earth, when micro gravity was reestablished, the dust became airborne and floated through the cabin. Crews inhaled the dust and it irritated their eyes. Some mechanical systems aboard the spacecraft were damaged due to dust contamination. Study results obtained by Robotic Martian missions indicate that Martian surface soil is oxidative and reactive. Exposures to the reactive Martian dust will pose an even greater concern to the crew health and the integrity of the mechanical systems. As NASA embarks on planetary surface missions to support its Exploration Vision, the effects of these extraterrestrial dusts must be well understood and systems must be designed to operate reliably and protect the crew in the dusty environments of the Moon and Mars. The AIM Dust Assessment Team was tasked to identify systems that will be affected by the respective dust, how they will be affected, associated risks of dust exposure, requirements that will need to be developed, identified knowledge gaps, and recommended scientific measurements to obtain information needed to develop requirements, and design and manufacture the surface systems that will support crew habitation in the lunar and Martian outposts.
NASA Astrophysics Data System (ADS)
Ansmann, A.; Tesche, M.; Althausen, D.; Müller, D.; Seifert, P.; Freudenthaler, V.; Heese, B.; Wiegner, M.; Pisani, G.; Knippertz, P.; Dubovik, O.
2008-02-01
Multiwavelength lidar, Sun photometer, and radiosonde observations were conducted at Ouarzazate (30.9°N, 6.9°W, 1133 m above sea level, asl), Morocco, in the framework of the Saharan Mineral Dust Experiment (SAMUM) in May-June 2006. The field site is close to the Saharan desert. Information on the depolarization ratio, backscatter and extinction coefficients, and lidar ratio of the dust particles, estimates of the available concentration of atmospheric ice nuclei at cloud level, profiles of temperature, humidity, and the horizontal wind vector as well as backward trajectory analysis are used to study cases of cloud formation in the dust with focus on heterogeneous ice formation. Surprisingly, most of the altocumulus clouds that form at the top of the Saharan dust layer, which reaches into heights of 4-7 km asl and has layer top temperatures of -8°C to -18°C, do not show any ice formation. According to the lidar observations the presence of a high number of ice nuclei (1-20 cm-3) does not automatically result in the obvious generation of ice particles, but the observations indicate that cloud top temperatures must typically reach values as low as -20°C before significant ice production starts. Another main finding is that liquid clouds are obviously required before ice crystals form via heterogeneous freezing mechanisms, and, as a consequence, that deposition freezing is not an important ice nucleation process. An interesting case with cloud seeding in the free troposphere above the dust layer is presented in addition. Small water clouds formed at about -30°C and produced ice virga. These virga reached water cloud layers several kilometers below the initiating cloud cells and caused strong ice production in these clouds at temperatures as high as -12°C to -15°C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pannella, M.; Elbaz, D.; Daddi, E.
We use deep panchromatic data sets in the GOODS-N field, from GALEX to the deepest Herschel far-infrared (FIR) and VLA radio continuum imaging, to explore the evolution of star-formation activity and dust attenuation properties of star-forming galaxies to z ≃ 4, using mass-complete samples. Our main results can be summarized as follows: (i) the slope of the star-formation rate–M{sub *} correlation is consistent with being constant ≃0.8 up to z ≃ 1.5, while its normalization keeps increasing with redshift; (ii) for the first time we are able to explore the FIR–radio correlation for a mass-selected sample of star-forming galaxies: themore » correlation does not evolve up to z ≃ 4; (iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-forming galaxies, with more massive galaxies being more dust attenuated. Strikingly, we find that this attenuation relation evolves very weakly with redshift, with the amount of dust attenuation increasing by less than 0.3 mag over the redshift range [0.5–4] for a fixed stellar mass; (iv) the correlation between dust attenuation and the UV spectral slope evolves with redshift, with the median UV slope becoming bluer with redshift. By z ≃ 3, typical UV slopes are inconsistent, given the measured dust attenuations, with the predictions of commonly used empirical laws. (v) Finally, building on existing results, we show that gas reddening is marginally larger (by a factor of around 1.3) than the stellar reddening at all redshifts probed. Our results support a scenario where the ISM conditions of typical star-forming galaxies evolve with redshift, such that at z ≥ 1.5 Main Sequence galaxies have ISM conditions moving closer to those of local starbursts.« less
Charged dust in Saturn's magnetosphere
NASA Technical Reports Server (NTRS)
Mendis, D. A.; Hill, J. R.; Houpis, H. L. F.
1983-01-01
The overall distribution of fine dust in the Saturnian magnetosphere, its behavior, the cosmogony of the Saturnian ring system, and observations of the magnetosphere and ring system are synthesized and explained using gravito-electrodynamics. Among the phenomena discussed are the formation of waves in the F-ring, the cause of eccentricities of certain isolated ringlets, and the origin and morphology of the broad diffuse E-ring. Magnetogravitational resonance of charged dust with nearby satellites, gyro-orbital resonances, and magnetogravitational capture of exogenic dust by the magnetosphere are used to explain individual observations. The effect of a ring current associated with the charged dust is evaluated. Finally, the cosmogonic implications of the magnetogravitational theory are discussed.
On the Formation of Massive Stars
NASA Technical Reports Server (NTRS)
Yorke, Harold W.; Sonnhalter, Cordula
2002-01-01
We calculate numerically the collapse of slowly rotating, nonmagnetic, massive molecular clumps of masses 30,60, and 120 Stellar Mass, which conceivably could lead to the formation of massive stars. Because radiative acceleration on dust grains plays a critical role in the clump's dynamical evolution, we have improved the module for continuum radiation transfer in an existing two-dimensional (axial symmetry assumed) radiation hydrodynamic code. In particular, rather than using "gray" dust opacities and "gray" radiation transfer, we calculate the dust's wavelength-dependent absorption and emission simultaneously with the radiation density at each wavelength and the equilibrium temperatures of three grain components: amorphous carbon particles. silicates, and " dirty ice " -coated silicates. Because our simulations cannot spatially resolve the innermost regions of the molecular clump, however, we cannot distinguish between the formation of a dense central cluster or a single massive object. Furthermore, we cannot exclude significant mass loss from the central object(s) that may interact with the inflow into the central grid cell. Thus, with our basic assumption that all material in the innermost grid cell accretes onto a single object. we are able to provide only an upper limit to the mass of stars that could possibly be formed. We introduce a semianalytical scheme for augmenting existing evolutionary tracks of pre-main-sequence protostars by including the effects of accretion. By considering an open outermost boundary, an arbitrary amount of material could, in principal, be accreted onto this central star. However, for the three cases considered (30, 60, and 120 Stellar Mass originally within the computation grid), radiation acceleration limited the final masses to 3 1.6, 33.6, and 42.9 Stellar Mass, respectively, for wavelength-dependent radiation transfer and to 19.1, 20.1, and 22.9 Stellar Mass. for the corresponding simulations with gray radiation transfer. Our calculations demonstrate that massive stars can in principle be formed via accretion through a disk. The accretion rate onto the central source increases rapidly after one initial free-fall time and decreases monotonically afterward. By enhancing the nonisotropic character of the radiation field, the accretion disk reduces the effects of radiative acceleration in the radial direction - a process we call the "flashlight effect." The flashlight effect is further amplified in our case by including the effects of frequency-dependent radiation transfer. We conclude with the warning that a careful treatment of radiation transfer is a mandatory requirement for realistic simulations of the formation of massive stars.
Observation of dust acoustic shock wave in a strongly coupled dusty plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Sumita K., E-mail: sumita-sharma82@yahoo.com; Boruah, A.; Nakamura, Y.
2016-05-15
Dust acoustic shock wave is observed in a strongly coupled laboratory dusty plasma. A supersonic flow of charged microparticles is allowed to perturb a stationary dust fluid to excite dust acoustic shock wave. The evolution process beginning with steepening of initial wave front and then formation of a stable shock structure is similar to the numerical results of the Korteweg-de Vries-Burgers equation. The measured Mach number of the observed shock wave agrees with the theoretical results. Reduction of shock amplitude at large distances is also observed due to the dust neutral collision and viscosity effects. The dispersion relation and themore » spatial damping of a linear dust acoustic wave are also measured and compared with the relevant theory.« less
The Evolution of Dust in the Multiphase Interstellar Medium
NASA Technical Reports Server (NTRS)
Oliversen, Ronald J. (Technical Monitor); Slavin, Jonathan
2003-01-01
Interstellar dust has a profound effect on the structure and evolution of the interstellar medium (ISM) and on the processes by which stars form from it. Dust obscures regions of star formation from view, and the uncertain quantities of elements in dust makes it difficult to measure accurately the abundances of the elements in low density regions. Despite the central importance of dust in astrophysics, we cannot answer some of the most basic questions about it: Why is it that most of the refractory elements are in dust grains? What determines the sizes of interstellar grains? It has been the goal of our proposed theoretical investigations to address these questions by studying the destruction of interstellar grains, and to develop observational diagnostics that can test the models we develop.
NASA Technical Reports Server (NTRS)
Sekanina, Z.
1977-01-01
The studies of the evolution of cometary debris are reviewed. The subject is divided into three major sections: (1) the developments in the immediate vicinity of the cometary nucleus, which is the source of the dust; (2) the formation of the dust tail; and (3) the blending of the debris with the dust component of interplanetary matter. The importance of the physical theory of comets is emphasized for the understanding of the early phase of the evolution of cometary dust. A physico-dynamical model designed to analyze the particle-emission mechanism from the distribution of light in the dust tails is described and the results are presented. Increased attention is paid to large particles because of their importance for the evolution of the zodiacal cloud. Finally, implications are discussed for the future in situ investigations of comets.
VizieR Online Data Catalog: Investigation of mass loss mechanism of LPVs (Winters+, 2000)
NASA Astrophysics Data System (ADS)
Winters, J. M.; Le Bertre, T.; Jeong, K. S.; Helling, C.; Sedlmayr, E.
2000-09-01
Parameters and resultant quantities of a grid of hydrodynamical models for the circumstellar dust shells around pulsating red giants which treat the time-dependent hydrodynamics and include a detailed treatment of the dust formation process. (1 data file).
Akhter, S R; Ikezaki, H; Gao, X P; Rubinstein, I
1999-05-01
The purpose of this study was to determine whether dexamethasone attenuates grain sorghum dust extract-induced increase in macromolecular efflux from the in situ hamster cheek pouch and, if so, whether this response is specific. By using intravital microscopy, we found that an aqueous extract of grain sorghum dust elicited significant, concentration-dependent leaky site formation and increase in clearance of FITC-labeled dextran (FITC-dextran; mol mass, 70 kDa) from the in situ hamster cheek pouch (P < 0.05). This response was significantly attenuated by dexamethasone (10 mg/kg iv). Dexamethasone also attenuated substance P-induced leaky site formation and increase in clearance of FITC-dextran from the cheek pouch but had no significant effects on adenosine-induced responses. Dexamethasone had no significant effects on arteriolar diameter in the cheek pouch. On balance, these data indicate that dexamethasone attenuates grain sorghum dust extract- and substance P-induced increases in macromolecular efflux from the in situ hamster cheek pouch in a specific fashion.
Magnetic Fields Versus Gravity
NASA Astrophysics Data System (ADS)
Hensley, Kerry
2018-04-01
Deep within giant molecular clouds, hidden by dense gas and dust, stars form. Unprecedented data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the intricate magnetic structureswoven throughout one of the most massive star-forming regions in the Milky Way.How Stars Are BornThe Horsehead Nebulasdense column of gas and dust is opaque to visible light, but this infrared image reveals the young stars hidden in the dust. [NASA/ESA/Hubble Heritage Team]Simple theory dictates that when a dense clump of molecular gas becomes massive enough that its self-gravity overwhelms the thermal pressure of the cloud, the gas collapses and forms a star. In reality, however, star formation is more complicated than a simple give and take between gravity and pressure. Thedusty molecular gas in stellar nurseries is permeated with magnetic fields, which are thought to impede the inward pull of gravity and slow the rate of star formation.How can we learn about the magnetic fields of distant objects? One way is by measuring dust polarization. An elongated dust grain will tend to align itself with its short axis parallel to the direction of the magnetic field. This systematic alignment of the dust grains along the magnetic field lines polarizes the dust grains emission perpendicular to the local magnetic field. This allows us to infer the direction of the magnetic field from the direction of polarization.Magnetic field orientations for protostars e2 and e8 derived from Submillimeter Array observations (panels a through c) and ALMA observations (panels d and e). Click to enlarge. [Adapted from Koch et al. 2018]Tracing Magnetic FieldsPatrick Koch (Academia Sinica, Taiwan) and collaborators used high-sensitivity ALMA observations of dust polarization to learn more about the magnetic field morphology of Milky Way star-forming region W51. W51 is one of the largest star-forming regions in our galaxy, home to high-mass protostars e2, e8, and North.The ALMA observations reveal polarized emission toward all three sources. By extracting the magnetic field orientations from the polarization vectors, Koch and collaborators found that the molecular cloud contains an ordered magnetic field with never-before-seen structures. Several small clumps on the perimeter of the massive star-forming cores exhibit comet-shaped magnetic field structures, which could indicate that these smaller cores are being pulled toward the more massive cores.These findings hint that the magnetic field structure can tell us about the flow of material within star-forming regions key to understanding the nature of star formation itself.Maps of sin for two of the protostars (e2 and e8) and their surroundings. [Adapted from Koch et al. 2018]Guiding Star FormationDo the magnetic fields in W51 help or hinder star formation? To explore this question,Koch and collaborators introduced the quantity sin , where is the angle between the local gravity and the local magnetic field.When the angle between gravity and the magnetic field is small (sin 0), the magnetic field has little effect on the collapse of the cloud. If gravity and the magnetic field are perpendicular (sin 1), the magnetic field can slow the infall of gas and inhibit star formation.Based on this parameter, Koch and collaborators identified narrow channels where gravity acts unimpeded by the magnetic field. These magnetic channels may funnel gas toward the dense cores and aid the star-formation process.The authors observations demonstrate just one example of the broad realm ALMAs polarimetry capabilities have opened to discovery. These and future observations of dust polarization will continue to reveal more about the delicate magnetic structure within molecular clouds, furtherilluminating the role that magnetic fields play in star formation.CitationPatrick M. Koch et al 2018 ApJ 855 39. doi:10.3847/1538-4357/aaa4c1
Mineral dust: observations of emission events and modeling of transport to the upper troposphere
NASA Astrophysics Data System (ADS)
Peter, T.; Wiacek, A.; Taddeo, M.
2009-04-01
The present study explores differences between mineral dust emission events in West African and Asian (Taklimakan) deserts, focusing on the availability of bare mineral dust ice nuclei for interactions with cirrus clouds without previous processing or washout by liquid water clouds. One-week trajectory calculations with high-resolution ECMWF fields are used to track transported (Lagrangian) relative humidities with respect to liquid water and ice, allowing to estimate the formation of liquid, mixed-phase and ice clouds. Transport trajectories can reasonably be assumed to carry dust with them throughout the year, except for the months of December-February, which are quiescent with respect to dust emission in both regions. Practically none of the simulated air parcels reach regions where homogeneous nucleation can take place (T < -35°C) along trajectories that have not experienced water saturation first, i.e. it is very unlikely that mineral dust particles could be a serious competitor for homogeneous nucleation during the formation of high, cold cirrus clouds. For the temperature region between -35°C < T < 0°C, i.e. in air parcels exhibiting necessary conditions for warmer ice clouds at lower altitudes, a small but significant number of air parcels are found to follow trajectories where RHw < 100% and RHi > 100% are simultaneously maintained. However, the potential for such low ice clouds originating from the Taklimakan desert is greater than that of the Sahara by a factor of 4-6. The implication is that although the Sahara is by far the biggest source of dust in the world, the much smaller Taklimakan desert in China's Tarim Basin may be of greater importance as a source of ice nuclei affecting cirrus cloud formation. This is likely the result of several meteorological factors, including the complex regional topography combined with the higher altitude of Taklimakan dust emissions and, on the synoptic scale, the higher altitude of potential temperature levels in the free troposphere at mid-latitudes than in the tropics. Finally, the very active Bodélé source region in Africa and the Gobi Desert in Asia will also be addressed.
Dust storms and their impact on ocean and human health: dust in Earth's atmosphere
Griffin, Dale W.; Kellog, Christina A.
2004-01-01
Satellite imagery has greatly influenced our understanding of dust activity on a global scale. A number of different satellites such as NASA's Earth-Probe Total Ozone Mapping Spectrometer (TOMS) and Se-viewing Field-of-view Sensor (SeaWiFS) acquire daily global-scale data used to produce imagery for monitoring dust storm formation and movement. This global-scale imagery has documented the frequent transmission of dust storm-derived soils through Earth's atmosphere and the magnitude of many of these events. While various research projects have been undertaken to understand this normal planetary process, little has been done to address its impact on ocean and human health. This review will address the ability of dust storms to influence marine microbial population densities and transport of soil-associated toxins and pathogenic microorganisms to marine environments. The implications of dust on ocean and human health in this emerging scientific field will be discussed.
Atmospheric bioaerosols transported via dust storms in the western United States
NASA Astrophysics Data System (ADS)
Hallar, A. Gannet; Chirokova, Galina; McCubbin, Ian; Painter, Thomas H.; Wiedinmyer, Christine; Dodson, Craig
2011-09-01
Measurements are presented showing the presence of biological material within frequent dust storms in the western United States. Previous work has indicated that biological particles were enhancing the impact of dust storms on the formation of clouds. This paper presents multiple case studies, between April and May 2010, showing the presence of and quantifying the amount of biological material via an Ultraviolet Aerodynamic Particle Sizer during dust events. All dust storms originated in the Four Corners region in the western Untied States and were measured at Storm Peak Laboratory, a high elevation facility in northwestern Colorado. From an Aerodynamic Particle Sizer, the mean dust particle size during these events was approximately 1 μm, with number concentrations between 6 cm-3 and 12 cm-3. Approximately 0.2% of these dust particles had fluorescence signatures, indicating the presence of biological material.
Self-confinement of finite dust clusters in isotropic plasmas.
Miloshevsky, G V; Hassanein, A
2012-05-01
Finite two-dimensional dust clusters are systems of a small number of charged grains. The self-confinement of dust clusters in isotropic plasmas is studied using the particle-in-cell method. The energetically favorable configurations of grains in plasma are found that are due to the kinetic effects of plasma ions and electrons. The self-confinement phenomenon is attributed to the change in the plasma composition within a dust cluster resulting in grain attraction mediated by plasma ions. This is a self-consistent state of a dust cluster in which grain's repulsion is compensated by the reduced charge and floating potential on grains, overlapped ion clouds, and depleted electrons within a cluster. The common potential well is formed trapping dust clusters in the confined state. These results provide both valuable insights and a different perspective to the classical view on the formation of boundary-free dust clusters in isotropic plasmas.
Some Pharmacological Actions of Cotton Dust and Other Vegetable Dusts
Nicholls, P. J.
1962-01-01
Aqueous extracts of cotton and other vegetable dusts cause contraction of the isolated ileum and tracheal muscle of the guinea-pig, and of isolated human bronchial muscle. The levels of this contractor activity place the dusts of cotton, flax, and jute in the order of the probable incidence of byssinosis occurring in the mills spinning these fibres. Extracts of cotton dust possess a histamine-liberating activity and contain a permeability-increasing component. These actions are of plant origin and are found in the pericarp and bracts of the cotton boll. Histamine and 5-hydroxytryptamine have also been found in some cotton dust samples. The formation of histamine by bacterial action in cotton dust does not take place under conditions found in cotton mills. The smooth muscle contractor substance is organic in nature, relatively heat-stable, and dialysable. The relevance of these results to the symptoms of byssinosis is discussed. PMID:14479451
Artist rendering of dust grains colliding at low speeds
NASA Technical Reports Server (NTRS)
2003-01-01
Clues to the formation of planets and planetary rings -- like Saturn's dazzling ring system -- may be found by studying how dust grains interact as they collide at low speeds. To study the question of low-speed dust collisions, NASA sponsored the COLLisions Into Dust Experiment (COLLIDE) at the University of Colorado. It was designed to spring-launch marble-size projectiles into trays of powder similar to space or lunar dust. COLLIDE-1 (1998) discovered that collisions below a certain energy threshold eject no material. COLLIDE-2 was designed to identify where the threshold is. In COLLIDE-2, scientists nudged small projectiles into dust beds and recorded how the dust splashed outward (video frame at top; artist's rendering at bottom). The slowest impactor ejected no material and stuck in the target. The faster impactors produced ejecta; some rebounded while others stuck in the target.
NASA Astrophysics Data System (ADS)
Srivastava, Parul; Dey, Sagnik; Srivastava, Atul K.; Singh, Sachchidanand; Tiwari, Suresh; Agarwal, Poornima
2016-04-01
Aerosol properties change with the change in mixing state of aerosols and therefore it is a source of uncertainty in estimated aerosol radiative forcing (ARF) from observations or by models assuming a specific mixing state. The problem is important in the Indo-Gangetic Basin, Northern India, where various aerosol types mix and show strong seasonal variations. Quantifying the modulation of ARF by mixing state is hindered by lack of knowledge about proper aerosol composition. Hence, first a detailed chemical composition analysis of aerosols for Delhi National capital region (NCR) is carried out. Aerosol composition is arranged quantitatively into five major aerosol types - accumulation dust, coarse dust, water soluble (WS), water insoluble (WINS), and black carbon (BC) (directly measured by Athelometer). Eight different mixing cases - external mixing, internal mixing, and six combinations of core- shell mixing (BC over dust, WS over dust, WS over BC, BC over WS, WS over WINS, and BC over WINS; each of the combinations externally mixed with other species) have been considered. The spectral aerosol optical properties - extinction coefficient, single scattering albedo (SSA) and asymmetry parameter (g) for each of the mixing cases are calculated and finally 'clear-sky' and 'cloudy-sky' ARF at the top-of-the-atmosphere (TOA) and surface are estimated using a radiative transfer model. Comparison of surface-reaching flux for each of the cases with MERRA downward shortwave surface flux reveals the most likely mixing state. 'BC-WINS+WS+Dust' show least deviation relative to MERRA during the pre-monsoon (MAMJ) and monsoon (JAS) seasons and hence is the most probable mixing states. During the winter season (DJF), 'BC-Dust+WS+WINS' case shows the closest match with MERRA, while external mixing is the most probable mixing state in the post-monsoon season (ON). Lowest values for both TOA and surface 'clear-sky' ARF is observed for 'BC-WINS+WS+ Dust' mixing case. TOA ARF is 0.28±2.4, 2.2±1.1, -1.4±1.4, -0.15±0.13, while, surface ARF is -16.4±3.1, -7.6±1.7, -31.5±4.7, -17.1±8.4, respectively for the MAMJ, JAS, ON and DJF seasons. Post-monsoon and winter season shows negative values of TOA ARF, hence suggest 'cooling'. The associated heating rate profiles show higher values for 'WS-BC+Dust+WINS' case as compared to other cases, with relatively large values during the winter and post-monsoon seasons, while lower value was observed for 'BC-WINS+WS+Dust'. We examined the modulation of clear sky ARF by 'water-cloud' and 'ice-cloud' separately. The seasonal mean ARF for both water and ice clouds show nearly similar characteristics as observed for clear-sky case, with relatively large ARF at TOA and surface in water cloud case as compared to ice cloud during all the seasons. As a result, the associated heating rate is also relatively higher in water cloud case as compared to ice cloud. Such large modulation of ARF due to mixing state calls for a coordinated effort to create a mixing state database for this region to reduce the uncertainty in climate forcing.
Bridging the gap: New ALMA observations of lensed dusty galaxies in the Frontier Fields
NASA Astrophysics Data System (ADS)
Kearney, Zoe; Pope, Alexandra; Aretxaga, Itziar; Hughes, David; Marchesini, Danilo; Montana, Alfredo; Murphy, Eric Joseph; Wilson, Grant; Yun, Min
2018-01-01
During much of cosmic time, most star formation activity in galaxies is obscured by dust. In order to complete the census of star formation, we must bridge the gap between optical and infrared galaxy populations. With AzTEC on the Large Millimeter Telescope (LMT), we surveyed two of the HST Frontier Fields in order to exploit the gravitational lensing from foreground clusters to study dust-obscured in galaxies below the nominal confusion limit. We detect millimeter galaxies with magnifications ranging from 1.1-8, allowing us to detect dust-obscured star formation rates in galaxies as low as ~10 Msun/year. We present new observations with ALMA in order to localize the millimeter emission of the AzTEC/LMT sources and make unambiguous associations with the optical galaxies in the deep HST images. We investigate the issue of multiplicity within our sample. We discuss the multi-wavelength counterparts of our faint millimeter sources and how they relate to brighter dusty galaxies from previous surveys.
Monitoring pulsating giant stars in M33: star formation history and chemical enrichment
NASA Astrophysics Data System (ADS)
Javadi, A.; van Loon, J. Th
2017-06-01
We have conducted a near-infrared monitoring campaign at the UK InfraRed Telescope (UKIRT), of the Local Group spiral galaxy M33 (Triangulum). A new method has been developed by us to use pulsating giant stars to reconstruct the star formation history of galaxies over cosmological time as well as using them to map the dust production across their host galaxies. In first Instance the central square kiloparsec of M33 was monitored and long period variable stars (LPVs) were identified. We give evidence of two epochs of a star formation rate enhanced by a factor of a few. These stars are also important dust factories, we measure their dust production rates from a combination of our data with Spitzer Space Telescope mid-IR photometry. Then the monitoring survey was expanded to cover a much larger part of M33 including spiral arms. Here we present our methodology and describe results for the central square kiloparsec of M33 [1-4] and disc of M33 [5-8].
Planetesimal formation by sweep-up coagulation
NASA Astrophysics Data System (ADS)
Windmark, Fredrik; Birnstiel, Til; Ormel, Chris W.; Dullemond, Cornelis P.
2013-07-01
The formation of planetesimals is often accredited to collisional sticking of dust grains in the protoplanetary disk. The exact process is however unknown, as collisions between larger aggregates tend to lead to fragmentation or bouncing rather than sticking. These growth barriers tend to halt the dust growth already at millimeters or centimeters in size, which is far below the kilometer-sizes that are needed for gravity to aid in the accretion. To study how far dust coagulation can proceed, we have developed a new collision model based on the latest laboratory experiments, and have used it together with a dust-size evolution code capable of resolving all grain interactions in the protoplanetary disk. We find that for the general dust population, bouncing and fragmenting collisions prevent the growth above millimeter-sizes. However, a small number of lucky particles can grow larger than the rest by only interacting at low, sticky velocities. As they grow, they become increasingly resilient to fragmentation caused by the small grains. In this way, two populations are formed: One which remains small due to the collisional barriers, and one that continues to grow by sweeping up the smaller grains around them.
Growth and form of planetary seedlings: results from a microgravity aggregation experiment.
Blum, J; Wurm, G; Kempf, S; Poppe, T; Klahr, H; Kozasa, T; Rott, M; Henning, T; Dorschner, J; Schräpler, R; Keller, H U; Markiewicz, W J; Mann, I; Gustafson, B A; Giovane, F; Neuhaus, D; Fechtig, H; Grün, E; Feuerbacher, B; Kochan, H; Ratke, L; El Goresy, A; Morfill, G; Weidenschilling, S J; Schwehm, G; Metzler, K; Ip, W H
2000-09-18
The outcome of the first stage of planetary formation, which is characterized by ballistic agglomeration of preplanetary dust grains due to Brownian motion in the free molecular flow regime of the solar nebula, is still somewhat speculative. We performed a microgravity experiment flown onboard the space shuttle in which we simulated, for the first time, the onset of free preplanetary dust accumulation and revealed the structures and growth rates of the first dust agglomerates in the young solar system. We find that a thermally aggregating swarm of dust particles evolves very rapidly and forms unexpected open-structured agglomerates.
Coulomb scatter of diamagnetic dust particles in a cusp magnetic trap under microgravity conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myasnikov, M. I., E-mail: miasnikovmi@mail.ru; D’yachkov, L. G.; Petrov, O. F.
2017-02-15
The effect of a dc electric field on strongly nonideal Coulomb systems consisting of a large number (~10{sup 4}) of charged diamagnetic dust particles in a cusp magnetic trap are carried out aboard the Russian segment of the International Space Station (ISS) within the Coulomb Crystal experiment. Graphite particles of 100–400 μm in size are used in the experiments. Coulomb scatter of a dust cluster and the formation of threadlike chains of dust particles are observed experimentally. The processes observed are simulated by the molecular dynamics (MD) method.
GOODS-Herschel: dust attenuation properties of UV selected high redshift galaxies
NASA Astrophysics Data System (ADS)
Buat, V.; Noll, S.; Burgarella, D.; Giovannoli, E.; Charmandaris, V.; Pannella, M.; Hwang, H. S.; Elbaz, D.; Dickinson, M.; Magdis, G.; Reddy, N.; Murphy, E. J.
2012-09-01
Context. Dust attenuation in galaxies is poorly known, especially at high redshift. And yet the amount of dust attenuation is a key parameter to deduce accurate star formation rates from ultraviolet (UV) rest-frame measurements. The wavelength dependence of the dust attenuation is also of fundamental importance to interpret the observed spectral energy distributions (SEDs) and to derive photometric redshifts or physical properties of galaxies. Aims: We want to study dust attenuation at UV wavelengths at high redshift, where the UV is redshifted to the observed visible light wavelength range. In particular, we search for a UV bump and related implications for dust attenuation determinations. Methods: We use photometric data in the Chandra Deep Field South (CDFS), obtained in intermediate and broad band filters by the MUSYC project, to sample the UV rest-frame of 751 galaxies with 0.95 < z < 2.2. When available, infrared (IR) Herschel/PACS data from the GOODS-Herschel project, coupled with Spitzer/MIPS measurements, are used to estimate the dust emission and to constrain dust attenuation. The SED of each source is fit using the CIGALE code. The amount of dust attenuation and the characteristics of the dust attenuation curve are obtained as outputs of the SED fitting process, together with other physical parameters linked to the star formation history. Results: The global amount of dust attenuation at UV wavelengths is found to increase with stellar mass and to decrease as UV luminosity increases. A UV bump at 2175 Å is securely detected in 20% of the galaxies, and the mean amplitude of the bump for the sample is similar to that observed in the extinction curve of the LMC supershell region. This amplitude is found to be lower in galaxies with very high specific star formation rates, and 90% of the galaxies exhibiting a secure bump are at z < 1.5. The attenuation curve is confirmed to be steeper than that of local starburst galaxies for 20% of the galaxies. The large dispersion found for these two parameters describing the attenuation law is likely to reflect a wide diversity of attenuation laws among galaxies. The relations between dust attenuation, IR-to-UV flux ratio, and the slope of the UV continuum are derived for the mean attenuation curve found for our sample. Deviations from the average trends are found to correlate with the age of the young stellar population and the shape of the attenuation curve. Table of multi-colour photometry for the 751 galaxies is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/545/A141
NASA Astrophysics Data System (ADS)
Tang, Yaoguo; Han, Yongxiang; Liu, Zhaohuan
2018-06-01
Dust aerosols are the main aerosol components of the atmosphere that affect climate change, but the contribution of dust devils to the atmospheric dust aerosol budget is uncertain. In this study, a new parameterization scheme for dust devils was established and coupled with WRF-Chem, and the diurnal and monthly variations and the contribution of dust devils to the atmospheric dust aerosol budget in East Asia was simulated. The results show that 1) both the diurnal and monthly variations in dust devil emissions in East Asia had unimodal distributions, with peaks in the afternoon and the summer that were similar to the observations; 2) the simulated dust devils occurred frequently in deserts, including the Gobi. The distributed area and the intensity center of the dust devil moved from east to west during the day; 3) the ratio between the availability of convective buoyancy relative to the frictional dissipation was the main factor that limited the presence of dust devils. The position of the dust devil formation, the surface temperature, and the boundary layer height determined the dust devil intensity; 4) the contribution of dust devils to atmospheric dust aerosols determined in East Asia was 30.4 ± 13%, thereby suggesting that dust devils contribute significantly to the total amount of atmospheric dust aerosols. Although the new parameterization scheme for dust devils was rough, it was helpful for understanding the distribution of dust devils and their contribution to the dust aerosol budget.
NASA Astrophysics Data System (ADS)
Gill, Thomas Edward
1995-01-01
Playas, evaporites, and aeolian sediments frequently are linked components within the Earth system. Anthropogenic water diversions from terminal lakes form playas that release fugitive dust. These actions, documented worldwide, simulate aeolian processes activated during palaeoclimatic pluvial/interpluvial transitions, and have significant environmental impacts. Pluvial lakes Russell and Owens in North America's Great Basin preceded historic Mono and Owens Lakes, now desiccated by water diversions into dust-generating, evaporite -encrusted playas. Geochemical and hydrologic cycles acting on the Owens (Dry) Lake playa form three distinct crust types each year. Although initial dust production results from deflation of surface efflorescences after the playa dries, most aerosols are created by saltation abrasion of salt/silt/clay crusts at crust/ sand sheet contacts. The warm-season, clastic "cemented" crust is slowest to degrade into dust. If the playa surface is stabilized by an unbroken, non-efflorescent crust, dust formation is discouraged. When Mono Lake's surFace elevation does not exceed 1951 meters (6400 feet), similar processes will also generate dust from its saline lower playa. Six factors--related to wind, topography, groundwater, and sediments--control dust formation at both playas. These factors were combined into a statistical model relating suspended dust concentrations to playa/lake morphometry. The model shows the extent and severity of Mono Lake dust storms expands significantly below the surface level 6376 feet (1943.5 meters). X-ray diffraction analysis of Mono Basin soils, playa sediments, and aerosols demonstrates geochemical cycling of materials through land, air and water during Mono Lake's 1982 low stand. Soils and clastic playa sediments contain silicate minerals and tephra. Saline groundwater deposited calcite, halite, thenardite, gaylussite, burkeite and glauberite onto the lower playa. Aerosols contained silicate minerals (especially micas) and salts (including calcite, thenardite, gaylussite and halite). Playa-specific compounds were detected in the aerosol, even at a site not visually impacted by dust plumes. Anthropogenic mitigation may help alleviate playa dust storms. Reducing water diversions, legally mandated for Mono Lake, is not feasible everywhere. Most successful land rehabilitation schemes for playas have combined engineering (sand fences, flooding) and ecological (revegetation) techniques to mimic and accelerate natural processes; this is recommended for Owens (Dry) Lake.
Modeling atmospheric mineral aerosol chemistry to predict heterogeneous photooxidation of SO2
NASA Astrophysics Data System (ADS)
Yu, Zechen; Jang, Myoseon; Park, Jiyeon
2017-08-01
The photocatalytic ability of airborne mineral dust particles is known to heterogeneously promote SO2 oxidation, but prediction of this phenomenon is not fully taken into account by current models. In this study, the Atmospheric Mineral Aerosol Reaction (AMAR) model was developed to capture the influence of air-suspended mineral dust particles on sulfate formation in various environments. In the model, SO2 oxidation proceeds in three phases including the gas phase, the inorganic-salted aqueous phase (non-dust phase), and the dust phase. Dust chemistry is described as the absorption-desorption kinetics of SO2 and NOx (partitioning between the gas phase and the multilayer coated dust). The reaction of absorbed SO2 on dust particles occurs via two major paths: autoxidation of SO2 in open air and photocatalytic mechanisms under UV light. The kinetic mechanism of autoxidation was first leveraged using controlled indoor chamber data in the presence of Arizona Test Dust (ATD) particles without UV light, and then extended to photochemistry. With UV light, SO2 photooxidation was promoted by surface oxidants (OH radicals) that are generated via the photocatalysis of semiconducting metal oxides (electron-hole theory) of ATD particles. This photocatalytic rate constant was derived from the integration of the combinational product of the dust absorbance spectrum and wave-dependent actinic flux for the full range of wavelengths of the light source. The predicted concentrations of sulfate and nitrate using the AMAR model agreed well with outdoor chamber data that were produced under natural sunlight. For seven consecutive hours of photooxidation of SO2 in an outdoor chamber, dust chemistry at the low NOx level was attributed to 55 % of total sulfate (56 ppb SO2, 290 µg m-3 ATD, and NOx less than 5 ppb). At high NOx ( > 50 ppb of NOx with low hydrocarbons), sulfate formation was also greatly promoted by dust chemistry, but it was suppressed by the competition between NO2 and SO2, which both consume the dust-surface oxidants (OH radicals or ozone).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharjee, Saurav, E-mail: sauravtsk.bhattacharjee@gmail.com; Das, Nilakshi
2015-10-15
A systematic theoretical investigation has been carried out on the role of dust charging dynamics on the nature and stability of DIA (Dust Ion Acoustic) mode in complex plasma. The study has been made for both linear and non-linear scale regime of DIA mode. The observed results have been characterized in terms of background plasma responses towards dust surface responsible for dust charge fluctuation, invoking important dusty plasma parameters, especially the ion flow speed and dust size. The linear analyses confirm the nature of instability in DIA mode in presence of dust charge fluctuation. The instability shows a damping ofmore » DIA mode in subsonic flow regime followed by a gradual growth in instability in supersonic limit of ion flow. The strength of non-linearity and their existence domain is found to be driven by different dusty plasma parameters. As dust is ubiquitous in interstellar medium with plasma background, the study also addresses the possible effect of dust charging dynamics in gravito-electrostatic characterization and the stability of dust molecular clouds especially in proto-planetary disc. The observations are influential and interesting towards the understanding of dust settling mechanism and formation of dust environments in different regions in space.« less
NASA Astrophysics Data System (ADS)
Evans, James E.; Reed, Jason M.
2007-03-01
Mississippian paleokarst served as a dust trap for the oldest known Paleozoic loessite in North America. The early Pennsylvanian Molas Formation consists of loessite facies (sorted, angular, coarse-grained quartz siltstone), infiltration facies (loess redeposited as cave sediments within paleokarst features of the underlying Mississippian Leadville Limestone), colluvium facies (loess infiltrated into colluvium surrounding paleokarst towers) and fluvial facies (siltstone-rich, fluvial channel and floodplain deposits with paleosols). The depositional system evolved from an initial phase of infiltration and colluvium facies that were spatially and temporally related to the paleokarst surface, to loessite facies that mantled the paleotopography, and to fluvial facies that were intercalated with marine-deltaic rocks of the overlying Pennsylvanian Hermosa Formation. This sequence is interpreted as a response to the modification of the dust-trapping ability of the paleokarst surface. Loess was initially eroded from the surface, transported and redeposited in the subsurface by the karst paleohydrologic system, maintaining the dust-trapping ability of the paleotopographic surface. Later, the paleotopographic surface was buried when loess accumulation rates exceeded the transport capacity of the karst paleohydrologic system. These changes could have occurred because of (1) increased dust input rates in western Pangaea, (2) rising base levels and/or (3) porosity loss due to deposition within paleokarst passageways.
An ALMA Survey of Planet Forming Disks in Rho Ophiuchus
NASA Astrophysics Data System (ADS)
Cox, Erin Guilfoil; Looney, Leslie; Harris, Robert J.; Dong, Jiayin; Segura-Cox, Dominique; Tobin, John J.; Sadavoy, Sarah; Li, Zhi-Yun; Dunham, Michael; Perez, Laura M.; Chandler, Claire J.; Kratter, Kaitlin M.; Melis, Carl; Chiang, Hsin-Fang
2017-01-01
Relatively evolved (~ 1 Myr old) protostars with little residual natal envelope, but massive disks, are commonly assumed to be the sites of ongoing planet formation. Critical to our study of these objects is information about the available mass reservior and dust structure, as they directly tie in to how much mass is available for planets as well as the modes of planet formation that occur (i.e., core-accretion vs. gravitational instability). Millimeter-wave observations provide this critical information as continuum emission is relatively optically thin, allowing for mass estimates, and the availability of high-resolution interferometry, allowing structure constraints. We present high-resolution observations of the population of Class II protostars in the Rho-Ophiuchus cloud (d ~ 130 pc). Our survey observed ~50 of these older protostars at 870µm, using the Atacama Large Millimeter/submillimeter Array (ALMA). Out of these sources, there are ~10 transition disks, where we see a ring of dust emission surrounding the central protostar -- indicative of ongoing planet formation -- as well as many binary systems. Both of these stages have implications for star and planet formation. We present results from both 1-D and 2-D disk modeling, where we try to understand disk substructure that might indicate on-going planet formation, in particular, transition disk cavities, disk gaps, and asymmetries in the dust emission.
The Origin and Evolution of Interstellar Dust in the Local and High-redshift Universe
NASA Technical Reports Server (NTRS)
Dwek, Eliahu
2012-01-01
In this talk I will begin by reviewing our current state of knowledge regarding the origin and evolution of dust in the local solar neighborhood. using chemical evolution models, I will discuss their many different input parameters and their uncertainties. An important consequence of these models is the delayed injection of dust from AGB stars, compared to supernova-condensed dust, into the interstellar medium. I will show that these stellar evolutionary effects on dust composition are manifested in the infrared spectra of local galaxies. The delayed production of dust in AGB stars has also important consequences for the origin of the large amount of dust detected in high-redshift galaxies, when the universe was less that approx. 1 Gyr old. Supernovae may have been the only viable dust sources in those galaxies. Recent observations of sN1987a show a significant mass of dust in the ejecta of this SN. Is that production rate high enough to account for the observed dust mass in these galaxies? If not, what are the alternative viable sources of dust, and how do they depend on the nature of the galaxy (starburst or AGN) and its star formation history .
The Origin and Evolution of Interstellar Dust in the Local and High-Redshift Universe
NASA Technical Reports Server (NTRS)
Dwek, Eliahu
2011-01-01
In this talk I will begin by reviewing our current state of knowledge regarding the origin and evolution of dust in the local solar neighborhood. Using chemical evolution models, I will discuss their many different input parameters and their uncertainties. An important consequence of these models is the delayed injection of dust from AGB stars, compared to supernova-condensed dust, into the interstellar medium. I will show that these stellar evolutionary effects on dust composition are manifested in the infrared spectra of local galaxies. The delayed production of dust in AGB stars has also important consequences for the origin of the large amount of dust detected in high-redshift galaxies, when the universe was less that - 1 Gyr old. Supernovae may have been the only viable dust sources in those galaxies. Recent observations of SN1987a show a significant mass of dust in the ejecta of this SN. Is that production rate high enough to account for the observed dust mass in these galaxies? If not, what are the alternative viable sources of dust, and how do they depend on the nature of the galaxy (starburst or AGN) and its star formation history.
Simulation of Asia Dust and Cloud Interaction Over Pacific Ocean During Pacdex
NASA Astrophysics Data System (ADS)
Long, X.; Huang, J.; Cheng, C.; Wang, W.
2007-12-01
The effect of dust plume on the Pacific cloud systems and the associated radiative forcing is an outstanding problem for understanding climate change. Many studies showing that dust aerosol might be a good absorber for solar radiation, at the same time dust aerosols could affect the cloud's formation and precipitation by its capability as cloud condensation nuclei (CCN) and ice forming nuclei (IFN). But the role of aerosols in clouds and precipitation is very complex. Simulation of interaction between cloud and dust aerosols requires recognition that the aerosol cloud system comprises coupled components of dynamics, aerosol and cloud microphysics, radiation processes. In this study, we investigated the interaction between dust aerosols and cloud with WRF which coupled with detailed cloud microphysics processes and dust process. The observed data of SACOL (Semi-Arid Climate and Environment Observatory of Lanzhou University) and PACDEX (Pacific Dust Experiment) is used as the initialization which include the vertical distributions and concentration of dust particles. Our results show that dust aerosol not only impacts cloud microphysical processes but also cloud microstructure; Dust aerosols can act as effective ice nuclei and intensify the ice-forming processes.
Infrared Luminosities and Dust Properties of z ≈ 2 Dust-obscured Galaxies
NASA Astrophysics Data System (ADS)
Bussmann, R. S.; Dey, Arjun; Borys, C.; Desai, V.; Jannuzi, B. T.; Le Floc'h, E.; Melbourne, J.; Sheth, K.; Soifer, B. T.
2009-11-01
We present SHARC-II 350 μm imaging of twelve 24 μm bright (F 24 μm > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1 mm imaging of a subset of two DOGs. These objects are selected from the Boötes field of the NOAO Deep Wide-Field Survey. Detections of four DOGs at 350 μm imply infrared (IR) luminosities which are consistent to within a factor of 2 of expectations based on a warm-dust spectral energy distribution (SED) scaled to the observed 24 μm flux density. The 350 μm upper limits for the 8 non-detected DOGs are consistent with both Mrk 231 and M82 (warm-dust SEDs), but exclude cold dust (Arp 220) SEDs. The two DOGs targeted at 1 mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T dust > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of ≈3 × 108 M sun. In comparison to other dusty z ~ 2 galaxy populations such as submillimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2 × 1013 L sun versus 6 × 1012 L sun for the other galaxy populations) that are driven by warmer dust temperatures (>35-60 K versus ~30 K) and lower inferred dust masses (3 × 108 M sun versus 3 × 109 M sun). Wide-field Herschel and Submillimeter Common-User Bolometer Array-2 surveys should be able to detect hundreds of these power-law-dominated DOGs. We use the existing Hubble Space Telescope and Spitzer/InfraRed Array Camera data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24 μm bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although much larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive galaxies at z ~ 2 involves a submillimeter bright, cold-dust, and star-formation-dominated phase followed by a 24 μm bright, warm-dust and AGN-dominated phase.
Integrated approach towards understanding interactions of mineral dust aerosol with warm clouds
NASA Astrophysics Data System (ADS)
Kumar, Prashant
2011-12-01
Mineral dust is ubiquitous in the atmosphere and represents a dominant type of particulate matter by mass. Dust particles can serve as cloud condensation nuclei (CCN), giant CCN (GCCN), or ice nuclei (IN), thereby, affecting cloud microphysics, albedo, and lifetime. Despite its well-recognized importance, assessments of dust impacts on clouds and climate remain highly uncertain. This thesis addresses the role of dust as CCN and GCCN with the goal of improving our understanding of dust-warm cloud interactions and their representation in climate models. Most studies to date focus on the soluble fraction of aerosol particles when describing cloud droplet nucleation, and overlook the interactions of the hydrophilic insoluble fraction with water vapor. A new approach to include such interactions (expressed by the process of water vapor adsorption) is explored, by combining multilayer Frenkel-Halsey-Hill (FHH) physical adsorption isotherm and curvature (Kelvin) effects. The importance of adsorption activation theory (FHH-AT) is corroborated by measurements of CCN activity of mineral aerosols generated from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. A new aerosol generation setup for CCN measurements was developed based on a dry generation technique capable of reproducing natural dust aerosol emission. Based on the dependence of critical supersaturation with particle dry diameter, it is found that the FHH-AT is a better framework for describing fresh (and unprocessed) dust CCN activity than the classical Kohler theory (KT). Ion Chromatography (IC) measurements performed on fresh regional dust samples indicate negligible soluble fraction, and support that water vapor adsorption is the prime source of CCN activity in the dust. CCN measurements with the commonly used wet generated mineral aerosol (from atomization of a dust aqueous suspension) are also carried out. Results indicate that the method is subject to biases as it generates a bimodal size distribution with a broad range of hygroscopicity. It is found that smaller particles generated in the more hygroscopic peak follow CCN activation by KT, while the larger peak is less hydrophilic with activation similar to dry generated dust that follow FHH-AT. Droplet activation kinetics measurements demonstrate that dry generated mineral aerosol display retarded activation kinetics with an equivalent water vapor uptake coefficient that is 30 - 80% lower relative to ammonium sulfate aerosol. Wet generated mineral aerosols, however, display similar activation kinetics to ammonium sulfate. These results suggest that at least a monolayer of water vapor (the rate-limiting step for adsorption) persists during the timescale of aerosol generation in the experiment, and questions the atmospheric relevance of studies on mineral aerosol generated from wet atomization method. A new parameterization of cloud droplet formation from insoluble dust CCN for regional and global climate models is also developed. The parameterization framework considers cloud droplet formation from dust CCN activating via FHH-AT, and soluble aerosol with activation described through KT. The parameterization is validated against a numerical parcel model, agreeing with predictions to within 10% (R2 ˜ 0.98). The potential role of dust GCCN activating by FHH-AT within warm stratocumulus and convective clouds is also evaluated. It is found that under pristine aerosol conditions, dust GCCN can act as collector drops with implications to dust-cloud-precipitation linkages. Biases introduced from describing dust GCCN activation by KT are also addressed. The results demonstrate that dust particles do not require deliquescent material to act as CCN in the atmosphere. Furthermore, the impact of dust particles as giant CCN on warm cloud and precipitation must be considered. Finally, the new parameterization of cloud droplet formation can be implemented in regional and global models providing an improved treatment of mineral aerosol on clouds and precipitation. The new framework is uniquely placed to address dust aerosol indirect effects on climate.
FRAGMENTATION AND EVOLUTION OF MOLECULAR CLOUDS. II. THE EFFECT OF DUST HEATING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urban, Andrea; Evans, Neal J.; Martel, Hugo
2010-02-20
We investigate the effect of heating by luminosity sources in a simulation of clustered star formation. Our heating method involves a simplified continuum radiative transfer method that calculates the dust temperature. The gas temperature is set by the dust temperature. We present the results of four simulations; two simulations assume an isothermal equation of state and the two other simulations include dust heating. We investigate two mass regimes, i.e., 84 M{sub sun} and 671 M{sub sun}, using these two different energetics algorithms. The mass functions for the isothermal simulations and simulations that include dust heating are drastically different. In themore » isothermal simulation, we do not form any objects with masses above 1 M{sub sun}. However, the simulation with dust heating, while missing some of the low-mass objects, forms high-mass objects ({approx}20 M{sub sun}) which have a distribution similar to the Salpeter initial mass function. The envelope density profiles around the stars formed in our simulation match observed values around isolated, low-mass star-forming cores. We find the accretion rates to be highly variable and, on average, increasing with final stellar mass. By including radiative feedback from stars in a cluster-scale simulation, we have determined that it is a very important effect which drastically affects the mass function and yields important insights into the formation of massive stars.« less
Modeling Dust Emission of HL Tau Disk Based on Planet-Disk Interactions
Jin, Sheng; Li, Shengtai; Isella, Andrea; ...
2016-02-09
In this paper, we use extensive global two-dimensional hydrodynamic disk gas+dust simulations with embedded planets, coupled with three-dimensional radiative transfer calculations, to model the dust ring and gap structures in the HL Tau protoplanetary disk observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We include the self-gravity of disk gas and dust components and make reasonable choices of disk parameters, assuming an already settled dust distribution and no planet migration. We can obtain quite adequate fits to the observed dust emission using three planets with masses of 0.35, 0.17, and 0.26 M Jup at 13.1, 33.0, and 68.6 AU, respectively.more » Finally, implications for the planet formation as well as the limitations of this scenario are discussed.« less
2003-01-22
Clues to the formation of planets and planetary rings -- like Saturn's dazzling ring system -- may be found by studying how dust grains interact as they collide at low speeds. To study the question of low-speed dust collisions, NASA sponsored the COLLisions Into Dust Experiment (COLLIDE) at the University of Colorado. It was designed to spring-launch marble-size projectiles into trays of powder similar to space or lunar dust. COLLIDE-1 (1998) discovered that collisions below a certain energy threshold eject no material. COLLIDE-2 was designed to identify where the threshold is. In COLLIDE-2, scientists nudged small projectiles into dust beds and recorded how the dust splashed outward (video frame at top; artist's rendering at bottom). The slowest impactor ejected no material and stuck in the target. The faster impactors produced ejecta; some rebounded while others stuck in the target.
The mineralogy of newly formed dust in active galactic nuclei
NASA Astrophysics Data System (ADS)
Srinivasan, Sundar; Kemper, F.; Zhou, Yeyan; Hao, Lei; Gallagher, Sarah C.; Shangguan, Jinyi; Ho, Luis C.; Xie, Yanxia; Scicluna, Peter; Foucaud, Sebastien; Peng, Rita H. T.
2017-12-01
The tori around active galactic nuclei (AGN) are potential formation sites for large amounts of dust, and they may help resolve the so-called dust budget crisis at high redshift. We investigate the dust composition in 53 of the 87 Palomar Green (PG) quasars showing the 9.7 μm silicate feature in emission. By simultaneously fitting the mid-infrared spectroscopic features and the underlying continuum, we estimate the mass fraction in various amorphous and crystalline dust species. We find that the dust consists predominantly of alumina and amorphous silicates, with a small fraction in crystalline form. The mean crystallinity is 8 ±6%, with more than half of the crystallinities greater than 5%, well above the upper limit determined for the Galaxy. Higher values of crystallinity are found for higher oxide fractions and for more luminous sources.
HERSCHEL OBSERVATIONS OF MAJOR MERGER PAIRS AT z = 0: DUST MASS AND STAR FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Chen; Xu, Cong Kevin; Lu, Nanyao
We present Herschel PACS and SPIRE far-infrared (FIR) and submillimeter imaging observations for a large K-band selected sample of 88 close major-merger pairs of galaxies (H-KPAIRs) in 6 photometric bands (70, 100, 160, 250, 350, and 500 μm). Among 132 spiral galaxies in the 44 spiral–spiral (S+S) pairs and 44 spiral–elliptical (S+E) pairs, 113 are detected in at least 1 Herschel band. The star formation rate (SFR) and dust mass (M{sub dust}) are derived from the IR SED fitting. The mass of total gas (M{sub gas}) is estimated by assuming a constant dust-to-gas mass ratio of 0.01. Star-forming spiral galaxiesmore » (SFGs) in S+S pairs show significant enhancements in both specific star formation rate (sSFR) and star formation efficiency (SFE), while having nearly the same gas mass compared to control galaxies. On the other hand, for SFGs in S+E pairs, there is no significant sSFR enhancement and the mean SFE enhancement is significantly lower than that of SFGs in S+S pairs. This suggests an important role for the disk–disk collision in the interaction-induced star formation. The M{sub gas} of SFGs in S+E pairs is marginally lower than that of their counterparts in both S+S pairs and the control sample. Paired galaxies with and without interaction signs do not differ significantly in their mean sSFR and SFE. As found in previous works, this much larger sample confirms that the primary and secondary spirals in S+S pairs follow a Holmberg effect correlation on sSFR.« less
Quantifying Bursty Star Formation and Dust Extinction in Dwarf Galaxies at 0.75 < z < 1.5
NASA Astrophysics Data System (ADS)
Siana, Brian
2014-10-01
Using the magnification provided by gravitational lensing, our team has recently uncovered an important population of star-forming dwarf galaxies at 1
Partitioning Tungsten between Matrix Precursors and Chondrule Precursors through Relative Settling
NASA Astrophysics Data System (ADS)
Hubbard, Alexander
2016-08-01
Recent studies of chondrites have found a tungsten isotopic anomaly between chondrules and matrix. Given the refractory nature of tungsten, this implies that W was carried into the solar nebula by at least two distinct families of pre-solar grains. The observed chondrule/matrix split requires that the distinct families were kept separate during the dust coagulation process, and that the two families of grain interacted with the chondrule formation mechanism differently. We take the co-existence of different families of solids in the same general orbital region at the chondrule-precursor size as given, and explore the requirements for them to have interacted with the chondrule formation process at significantly different rates. We show that this sorting of families of solids into chondrule- and matrix-destined dust had to have been at least as powerful a sorting mechanism as the relative settling of aerodynamically distinct grains at least two scale heights above the midplane. The requirement that the chondrule formation mechanism was correlated in some fashion with a dust-grain sorting mechanism argues strongly for spatially localized chondrule formation mechanisms such as turbulent dissipation in non-thermally ionized disk surface layers, and argues against volume-filling mechanisms such as planetesimal bow shocks.
Star Formation in M 33 (HerM33es)
NASA Astrophysics Data System (ADS)
Kramer, C.; Boquien, M.; Braine, J.; Buchbender, C.; Calzetti, D.; Gratier, P.; Mookerjea, B.; Relaño, M.; Verley, S.
2011-11-01
Within the key project "Herschel M 33 extended survey" (HerM33es), we are studying the physical and chemical processes driving star formation and galactic evolution in the nearby galaxy M 33, combining the study of local conditions affecting individual star formation with properties only becoming apparent on global scales. Here, we present recent results obtained by the HerM33es team. Combining Spitzer and Herschel data ranging from 3.6 μm to 500μm, along with H i, Hα, and GALEX UV data, we have studied the dust at high spatial resolutions of 150 pc, providing estimators of the total infrared (TIR) brightness and of the star formation rate. While the temperature of the warm dust at high brightness is driven by young massive stars, evolved stellar populations appear to drive the temperature of the cold dust. Plane-parallel models of photon dominated regions (PDRs) fail to reproduce fully the [C ii], [O i], and CO maps obtained in a first spectroscopic study of one 2' × 2' subregion of M 33, located on the inner, northern spiral arm and encompassing the H ii region BCLMP 302.
Planetesimal formation starts at the snow line
NASA Astrophysics Data System (ADS)
Drążkowska, J.; Alibert, Y.
2017-12-01
Context. The formation stage of planetesimals represents a major gap in our understanding of the planet formation process. Late-stage planet accretion models typically make arbitrary assumptions about planetesimal and pebble distribution, while dust evolution models predict that planetesimal formation is only possible at some orbital distances. Aims: We wish to test the importance of the water snow line in triggering the formation of the first planetesimals during the gas-rich phase of a protoplanetary disk, when cores of giant planets have to form. Methods: We connected prescriptions for gas disk evolution, dust growth and fragmentation, water ice evaporation and recondensation, the transport of both solids and water vapor, and planetesimal formation via streaming instability into a single one-dimensional model for protoplanetary disk evolution. Results: We find that processes taking place around the snow line facilitate planetesimal formation in two ways. First, because the sticking properties between wet and dry aggregates change, a "traffic jam" inside of the snow line slows the fall of solids onto the star. Second, ice evaporation and outward diffusion of water followed by its recondensation increases the abundance of icy pebbles that trigger planetesimal formation via streaming instability just outside of the snow line. Conclusions: Planetesimal formation is hindered by growth barriers and radial drift and thus requires particular conditions to take place. The snow line is a favorable location where planetesimal formation is possible for a wide range of conditions, but not in every protoplanetary disk model, however. This process is particularly promoted in large cool disks with low intrinsic turbulence and an increased initial dust-to-gas ratio. The movie attached to Fig. 3 is only available at http://www.aanda.org
The Need for Medical Geology in Space Exploration: Implications for the Journey to Mars and Beyond
NASA Technical Reports Server (NTRS)
Harrington, A. D.; Zeigler, R. A.; McCubbin, F. M.
2018-01-01
The previous manned missions to the Moon represent milestones in human ingenuity, perseverance, and intellectual curiosity. They also highlight a major hazard for future human exploration of the Moon and beyond: surface dust. Not only did the dust cause mechanical and structural integrity issues with the suits, the dust "storm" generated upon reentrance into the crew cabin caused "lunar hay fever" and "almost blindness". It was further reported that the allergic response to the dust worsened with each exposure. The lower gravity environment exacerbated the exposure, requiring the astronauts to wear their helmet within the module in order to avoid breathing the irritating particles. Due to the prevalence of these high exposures, the Human Research Roadmap developed by NASA identifies the Risk of Adverse Health and Performance Effects of Celestial Dust Exposure as an area of concern. Extended human exploration will further increase the probability of inadvertent and repeated exposures to celestial dusts. Going forward, hazard assessments of celestial dusts will be determined through sample return efforts prior to astronaut deployment. However, even then the returned samples could also put the Curators, technicians, and scientists at risk during processing and examination.
Using albedo to reform wind erosion modelling, mapping and monitoring
USDA-ARS?s Scientific Manuscript database
Dust emission models are used to assess the impacts of dust on radiative forcing in the atmosphere, cloud formation, nutrient fertilisation and human health. We describe a need in aeolian research to adequately represent the spatial variability and particularly the area average of the key aerodynami...
Dust trap formation in a non-self-sustained discharge with external gas ionization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippov, A. V., E-mail: fav@triniti.ru; Babichev, V. N.; Pal’, A. F.
2015-11-15
Results from numerical studies of a non-self-sustained gas discharge containing micrometer dust grains are presented. The non-self-sustained discharge (NSSD) was controlled by a stationary fast electron beam. The numerical model of an NSSD is based on the diffusion drift approximation for electrons and ions and self-consistently takes into account the influence of the dust component on the electron and ion densities. The dust component is described by the balance equation for the number of dust grains and the equation of motion for dust grains with allowance for the Stokes force, gravity force, and electric force in the cathode sheath. Themore » interaction between dust grains is described in the self-consistent field approximation. The height of dust grain levitation over the cathode is determined and compared with experimental results. It is established that, at a given gas ionization rate and given applied voltage, there is a critical dust grain size above which the levitation condition in the cathode sheath cannot be satisfied. Simulations performed for the dust component consisting of dust grains of two different sizes shows that such grains levitate at different heights, i.e., size separation of dust drains levitating in the cathode sheath of an NSSD takes place.« less
NASA Technical Reports Server (NTRS)
Colarco, Peter R.; Nowottnick, Edward Paul; Randles, Cynthia A.; Yi, Bingqi; Yang, Ping; Kim, Kyu-Myong; Smith, Jamison A.; Bardeen, Charles D.
2013-01-01
We investigate the radiative effects of dust aerosols in the NASA GEOS-5 atmospheric general circulation model. GEOS-5 is improved with the inclusion of a sectional aerosol and cloud microphysics module, the Community Aerosol and Radiation Model for Atmospheres (CARMA). Into CARMA we introduce treatment of the dust and sea salt aerosol lifecycle, including sources, transport evolution, and sinks. The aerosols are radiatively coupled to GEOS-5, and we perform a series of multi-decade AMIP-style simulations in which dust optical properties (spectral refractive index and particle shape distribution) are varied. Optical properties assuming spherical dust particles are from Mie theory, while those for non-spherical shape distributions are drawn from a recently available database for tri-axial ellipsoids. The climatologies of the various simulations generally compare well to data from the MODIS, MISR, and CALIOP space-based sensors, the ground-based AERONET, and surface measurements of dust deposition and concentration. Focusing on the summertime Saharan dust cycle we show significant variability in our simulations resulting from different choices of dust optical properties. Atmospheric heating due to dust enhances surface winds over important Saharan dust sources, and we find a positive feedback where increased dust absorption leads to increased dust emissions. We further find that increased dust absorption leads to a strengthening of the summertime Hadley cell circulation, increasing dust lofting to higher altitudes and strengthening the African Easterly Jet. This leads to a longer atmospheric residence time, higher altitude, and generally more northward transport of dust in simulations with the most absorbing dust optical properties. We find that particle shape, although important for radiance simulations, is a minor effect compared to choices of refractive index, although total atmospheric forcing is enhanced by greater than 10 percent for simulations incorporating a spheroidal shape distribution versus ellipsoidal or spherical shapes.
NASA Astrophysics Data System (ADS)
Devour, Brian M.; Bell, Eric F.
2016-06-01
We study the relative dust attenuation-inclination relation in 78 721 nearby galaxies using the axis ratio dependence of optical-near-IR colour, as measured by the Sloan Digital Sky Survey, the Two Micron All Sky Survey, and the Wide-field Infrared Survey Explorer. In order to avoid to the greatest extent possible attenuation-driven biases, we carefully select galaxies using dust attenuation-independent near- and mid-IR luminosities and colours. Relative u-band attenuation between face-on and edge-on disc galaxies along the star-forming main sequence varies from ˜0.55 mag up to ˜1.55 mag. The strength of the relative attenuation varies strongly with both specific star formation rate and galaxy luminosity (or stellar mass). The dependence of relative attenuation on luminosity is not monotonic, but rather peaks at M3.4 μm ≈ -21.5, corresponding to M* ≈ 3 × 1010 M⊙. This behaviour stands seemingly in contrast to some older studies; we show that older works failed to reliably probe to higher luminosities, and were insensitive to the decrease in attenuation with increasing luminosity for the brightest star-forming discs. Back-of-the-envelope scaling relations predict the strong variation of dust optical depth with specific star formation rate and stellar mass. More in-depth comparisons using the scaling relations to model the relative attenuation require the inclusion of star-dust geometry to reproduce the details of these variations (especially at high luminosities), highlighting the importance of these geometrical effects.
Effects of PV Module Soiling on Glass Surface Resistance and Potential-Induced Degradation: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hacke, Peter; Burton, Patrick; Hendrickson, Alex
2015-12-03
The sheet resistance of three soil types (Arizona road dust, soot, and sea salt) on glass were measured by the transmission line method as a function of relative humidity (RH) between 39% and 95% at 60 degrees C. Sea salt yielded a 3.5 order of magnitude decrease in resistance on the glass surface when the RH was increased over this RH range. Arizona road dust showed reduced sheet resistance at lower RH, but with less humidity sensitivity over the range tested. The soot sample did not show significant resistivity change compared to the unsoiled control. Photovoltaic modules with sea saltmore » on their faces were step-stressed between 25% and 95% RH at 60 degrees C applying -1000 V bias to the active cell circuit. Leakage current from the cell circuit to ground ranged between two and ten times higher than that of the unsoiled controls. Degradation rate of modules with salt on the surface increased with increasing RH and time.« less
Overview of Dust Model Inter-comparison (DMIP) in East Asia
NASA Astrophysics Data System (ADS)
Uno, I.
2004-12-01
Dust transport modeling plays an important role in understanding the recent increase of Asian Dust episodes and its impact to the regional climate system. Several dust models have been developed in several research institutes and government agencies independently since 1990s. Their numerical results either look very similar or different. Those disagreements are caused by difference in dust modules (concepts and basic mechanisms) and atmospheric models (meteorological and transport models). Therefore common understanding of performance and uncertainty of dust erosion and transport models in the Asian region becomes very important. To have a better understanding of dust model application, we proposed the dust model intercomparison under the international cooperation networks as a part of activity of ADEC (Aeolian Dust Experiment on Climate Impact) project research. Current participants are Kyusyu Univ. (Japan), Meteorological Research Institute (Japan), Hong-Kong City Univ. (China), Korean Meteorological Agency METRI (Korea), US Naval Research Laboratory (USA), Chinese Meteorological Agency (China), Institute of Atmospheric Physics (China), Insular Coastal Dynamics (Malta) and Meteorological Service of Canada (Canada). As a case study episode, we set two huge dust storms occurred in March and April 2002. Results from the dust transport model from all the participants are compiled on the same methods and examined the model characteristics against the ground and airborne measurement data. We will also examine the dust model results from the horizontal distribution at specified levels, vertical profiles, concentration at special check point and emission flux at source region, and show the important parameters for dust modeling. In this paper, we will introduce the general overview of this DMIP activity and several important conclusions from this activity.
NASA Technical Reports Server (NTRS)
Kishcha, Pavel; Da Silva, Arlindo M.; Starobinet, Boris; Alpert, Pinhas
2016-01-01
The tropical Atlantic is frequently affected by Saharan dust intrusions. Based on MODIS cloud fraction (CF) data during the ten-year study period, we found that these dust intrusions contribute to significant cloud cover along the Saharan Air Layer (SAL). Below the temperature inversion at the SAL's base, the presence of large amounts of settling dust particles, together with marine aerosols, produces meteorological conditions suitable for the formation of shallow stratocumulus clouds. The significant cloud fraction along the SAL together with clouds over the Atlantic Inter-tropical Convergence Zone contributes to the 20% hemispheric CF asymmetry between the tropical North and South Atlantic. This leads to the imbalance in strong solar radiation, which reaches the sea surface between the tropical North and South Atlantic, and, consequently, affects climate formation in the tropical Atlantic. Therefore, despite the fact that, over the global ocean, there is no noticeable hemispheric asymmetry in cloud fraction, over the significant area such as the tropical Atlantic the hemispheric asymmetry in CF takes place. Saharan dust is also the major contributor to hemispheric aerosol asymmetry over the tropical Atlantic. The NASA GEOS-5 model with aerosol data assimilation was used to extend the MERRA reanalysis with five atmospheric aerosol species (desert dust, sulfates, organic carbon, black carbon, and sea-salt). The obtained ten-year (2002 - 2012) MERRA-driven aerosol reanalysis dataset (aka MERRAero) showed that, over the tropical Atlantic, dust and carbonaceous aerosols were distributed asymmetrically relative to the equator, while other aerosol species were distributed more symmetrically.
Lunar Dust and Lunar Simulant Activation, Monitoring, Solution and Cellular Toxicity Properties
NASA Technical Reports Server (NTRS)
Jeevarajan, A.S.; Wallace, W.T.
2009-01-01
During the Apollo missions, many undesirable situations were encountered that must be mitigated prior to returning humans to the moon. Lunar dust (that part of the lunar regolith less than 20 m in diameter) was found to produce several problems with astronaut s suits and helmets, mechanical seals and equipment, and could have conceivably produced harmful physiological effects for the astronauts. For instance, the abrasive nature of the dust was found to cause malfunctions of various joints and seals of the spacecraft and suits. Additionally, though efforts were made to exclude lunar dust from the cabin of the lunar module, a significant amount of material nonetheless found its way inside. With the loss of gravity correlated with ascent of the lunar module from the lunar surface to rendezvous with the command module, much of the major portions of the contaminating soil and dust began to float, irritating the astronaut s eyes and being inhaled into their lungs. Our goal has been to understand some of the properties of lunar dust that could lead to possible hazards for humans. Due to the lack of an atmosphere, there is nothing to protect the lunar soil from ultraviolet radiation, solar wind, and meteorite impacts. These processes could all serve to activate the soil, or produce reactive surface species. In order to understand the possible toxic effects of the reactive dust, it is necessary to reactivate the dust, as samples returned during the Apollo missions were exposed to the atmosphere of the Earth. We have used grinding and UV exposure to mimic some of the processes occurring on the Moon. The level of activation has been monitored using two methods: fluorescence spectroscopy and electron paramagnetic resonance spectroscopy (EPR). These techniques allow the monitoring of hydroxyl radical production in solution. We have found that grinding of lunar dust produces 2-3 times the concentration of hydroxyl radicals as lunar simulant and 10 times that of quartz. Exposure of the lunar dust to UV radiation under vacuum was also found to lead to hydroxyl radical production. After grinding, we have also monitored loss of reactivity of the dusts by exposing them to conditions of known humidity and temperature. From these tests, it was found that the reactivity half-life of lunar simulant is approximately 3 hours, while that of quartz is approximately 2 hours. Placing lunar dust in solution could lead to effects on mechanical and physiological systems, as well as other biological systems. For instance, while it is known that lunar dust is highly abrasive and caused a variety of problems with suits and equipment during Apollo, it is unknown as to how these properties might be affected in the presence of water or other liquids. It is possible that the dust may release minerals (e.g., metallic nanophase Fe) into solution that could speed corrosion or rust. Also, as lunar dust produces hydroxyl radicals (and possibly other reactive oxygen species) in solution, these radicals could also lead to the breakdown of suit or habitat materials. In the body (i.e., in lung solution), the effects could be two-fold. First, if the lunar dust dissolves, it may release an excess of elements (such as zero-valence metallic Fe) that are necessary for bodily functions but only in certain concentration ranges. For lunar dust, the presence of nanophase iron being released into the body is a concern. Secondly, the hydroxyl radicals or other reactive oxygen species produced by the dust in solution could conceivably interact with cells, leading to various problems. We have studied the dissolution of both ground and unground lunar simulant in buffer solutions of different pH. The concentration of a number of species was determined using mass spectrometry. These studies showed that lowering the pH of the solution causes a dramatic increase in the amount of each element released into solution and that grinding also produces higher concentrations. Finally, we have perfmed initial tests aimed at understanding the effects of lunar simulant on cellular systems. Alveolar epithelial cells were cultured and exposed to different concentrations of dust suspended in cell culture media. After predetermined amounts of time, the media was removed and the concentrations of important inflammatory cytokines (IL6, IL8, and TNF-alpha ) were measured. The results of these tests are being used to develop the correct protocols for tests to be performed using lunar dust samples.
Dust-Corrected Star Formation Rates in Galaxies with Outer Rings
NASA Astrophysics Data System (ADS)
Kostiuk, I.; Silchenko, O.
2018-03-01
The star formation rates SFR, as well as the SFR surface densities ΣSFR and absolute stellar magnitudes MAB, are determined and corrected for interinsic dust absorption for 34 disk galaxies of early morphological types with an outer ring structure and ultraviolet emission from the ring. These characteristic are determined for the outer ring structures and for the galaxies as a whole. Data from the space telescopes GALEX (in the NUV and FUV ultraviolet ranges) and WISE (in the W4 22 μm infrared band) are used. The average relative deviation in the corrected SFR and ΣSFR derived from the NUV and FUV bands is only 19.0%, so their averaged values are used for statistical consideration. The relations between the dust-corrected SFR characteristics, UV colours, the galaxy morphological type, absolute magnitude are illustrated.
Ground truth of (sub-)micrometre cometary dust - Results of MIDAS onboard Rosetta
NASA Astrophysics Data System (ADS)
Mannel, Thurid; Bentley, Mark; Schmied, Roland; Torkar, Klaus; Jeszenszky, Harald; Romsted, Jens; Levasseur-Regourd, A.; Weber, Iris; Jessberger, Elmar K.; Ehrenfreund, Pascale; Köberl, Christian; Havnes, Ove
2016-10-01
The investigation of comet 67P by Rosetta has allowed the comprehensive characterisation of pristine cometary dust particles ejected from the nucleus. Flying alongside the comet at distances as small as a few kilometres, and with a relative velocity of only centimetres per second, the Rosetta payload sampled almost unaltered dust. A key instrument to study this dust was MIDAS (the Micro-Imaging Dust Analysis System), a dedicated atomic force microscope that scanned the surfaces of hundreds of (sub-)micrometre sized particles in 3D with resolutions down to nanometres. This offers the unique opportunity to explore the morphology of smallest cometary dust and expand our current knowledge about cometary material.Here we give an overview of dust collected and analysed by MIDAS and highlight its most important features. These include the ubiquitous agglomerate nature of the dust, which is found at all size scales from the largest (>10 µm) through to the smallest (<1 µm) dust particles. The sub-units show characteristic sizes and shapes that are compared with model predictions for interstellar dust.Our findings constrain key parameters of the evolution of the early Solar System. We will discuss which dust growth model is favoured by the observed morphology and how the results restrict cometary formation. Finally, dust particles detected by MIDAS resemble primitive interplanetary dust which is a strong argument for a common cometary origin.
Chemical desorption and diffusive dust chemistry
NASA Astrophysics Data System (ADS)
Dulieu, Francois; Pirronello, Valerio; Minissale, Marco; Congiu, Emanuele; Baouche, Saoud; Chaabouni, Henda; Moudens, Audrey; Accolla, Mario; Cazaux, Stephanie; Manicò, Giulio
In molecular clouds, gaseous species can accrete efficiently on the cold surfaces of dust grains. As for radical-radical reactions, the surface of the grains acts as a third body, and changes dramatically the efficiency of the reactions (i.e., H2 formation), or lowers considerably the barrier to formation (i.e., H2O synthesis) in comparison with gas phase reaction processes. These properties make dust grains efficient catalytic templates. However, the chemical role of dust grains depends on the diffusive properties of the reactive partners. Over the last years, we have developed experimental tools and methods to explore the chemistry occurring on cold (6-50K) surfaces. We have obtained some hints about the diffusivity of H on amorphous ice, and studied in detail the diffusion of O atoms. The latter species appears to have a hopping rate in the range 0.01-100 hops/sec. The diffusion rate of O atoms is dependent on the surface morphology and on the surface temperature. The diffusion law is compatible with a diffusion dominated by quantum tunnelling rather than classical thermal hopping. Using H, O, N atoms and, indirectly, OH and HCO radicals, we have begun to explore many chemical reactive networks. In this presentation, I will focus on the formation of H2O and CO2, and will propose many possible formation routes to obtain these chemical traps. The molecules formed on surfaces have a certain probability of desorbing upon their formation. This non-thermal desorption mechanism, or chemical desorption, has been proposed to explain why some molecules can be detected in the gas phase of those region where they were believed to be part of the icy mantles covering dust grains. We have shown that this process can be very efficient, but is very sensitive to the substrate and the surroundings of the reaction site, is dependent on the kind of molecule formed and its chemical pathway. In my presentation I will present how the surface coverage and the type of reaction can play a major role in the chemical desorption process. I will discuss of possible key parameters that rule this process.
NASA Astrophysics Data System (ADS)
Ullrich, Romy; Vogel, Franziska; Möhler, Ottmar; Höhler, Kristina; Schiebel, Thea
2017-04-01
Soil dust from arid and semi-arid regions is one of the most abundant aerosol types in the atmosphere with emission rates of about 1600 Tg per year (Andreae et al. (2009)). Therewith, soil dust plays an important role for the atmospheric radiative transfer and also for the formation of clouds. Soil dust refers to dust sampled from agricultural used areas, to dust from bare soil as well as to dust from desert regions. By mass-spectrometric measurements of the chemical composition of ice residuals, mineral dust as component of soil dust was found to be the major heterogeneous ice nucleating particle (INP) type (e.g. Cziczo et al. (2013)), in particular in the upper troposphere. Also in laboratory studies the ice nucleation efficiency of the different soil dusts was investigated. It was shown that desert dusts (Ullrich et al. (2017)) as well as soil dusts from arable regions (O'Sullivan et al. (2014), Tobo et al. (2014)) are efficient INP. However, there is still a lack of data for ice nucleation on soil dusts for temperatures below about 220 K. With the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) cloud chamber, we are able to characterize the ice nucleation efficiency for different aerosol types to temperatures down to 180 K and high ice supersaturations. In order to extend the already existing AIDA data base for deposition nucleation on desert dusts and agricultural soil dusts, new experiments were done in the upper tropospheric temperature regime. This contribution will show the results of the new experiments with desert dust in comparison to existing data for higher temperatures. The first data analysis confirms the temperature dependent trend of the ice nucleation activity as discussed and parameterized in a recent paper by Ullrich et al. (2017). Furthermore, the update and extension of the recently published parameterization of deposition nucleation for desert dust to lower temperatures will be discussed. The experiments with agricultural soil dust will be compared to existing AIDA experiments at higher temperatures published by Steinke et al. (2016). Finally, the ice nucleation activity of both desert dust and agricultural soil dust will be compared for the upper tropospheric temperature regime. Andreae et al. (2009), Sources and Nature of Atmospheric Aerosols, in Aerosol Pollution Impact on Precipitation - A Scientific Review, Ch.3, Springer Netherlands, 45-89 Cziczo et al. (2013), Clarifying the Dominant Sources and Mechanisms of Cirrus Cloud Formation, Science, 340, 1320-1324 O'Sullivan et al. (2014), Ice nucleation by fertile soil dusts: relative importance of mineral and biogenic components, Atmos. Chem. Phys., 14, 1853-1867 Steinke et al. (2016), Ice nucleation activity of agricultural soil dust aerosols from Mongolia, Argentina and Germany, J. Geophys. Res., 121 Tobo et al. (2014), Organic matter matters for ice nuclei of agricultural soil origin, Atmos. Chem. Phys., 14, 8521-8531 Ullrich et al. (2017), A new ice nucleation active site parametrization for desert dust and soot, J. Atmos. Sci., in press
Mineral dust aerosols promote the formation of toxic nitropolycyclic aromatic compounds
Kameda, Takayuki; Azumi, Eri; Fukushima, Aki; Tang, Ning; Matsuki, Atsushi; Kamiya, Yuta; Toriba, Akira; Hayakawa, Kazuichi
2016-01-01
Atmospheric nitrated polycyclic aromatic hydrocarbons (NPAHs), which have been shown to have adverse health effects such as carcinogenicity, are formed in part through nitration reactions of their parent polycyclic aromatic hydrocarbons (PAHs) in the atmosphere. However, little is known about heterogeneous nitration rates of PAHs by gaseous NO2 on natural mineral substrates, such as desert dust aerosols. Herein by employing kinetic experiments using a flow reactor and surface analysis by Fourier transform infrared spectroscopy with pyridine adsorption, we demonstrate that the reaction is accelerated on acidic surfaces of mineral dust, particularly on those of clay minerals. In support of this finding, we show that levels of ambient particle-associated NPAHs in Beijing, China, significantly increased during heavy dust storms. These results suggest that mineral dust surface reactions are an unrecognized source of toxic organic chemicals in the atmosphere and that they enhance the toxicity of mineral dust aerosols in urban environments. PMID:27075250
ALMA REVEALS POTENTIAL LOCALIZED DUST ENRICHMENT FROM MASSIVE STAR CLUSTERS IN II Zw 40
DOE Office of Scientific and Technical Information (OSTI.GOV)
Consiglio, S. Michelle; Turner, Jean L.; Beck, Sara
2016-12-10
We present subarcsecond images of submillimeter CO and continuum emission from a local galaxy forming massive star clusters: the blue compact dwarf galaxy II Zw 40. At ∼0.″4 resolution (20 pc), the CO(3-2), CO(1-0), 3 mm, and 870 μ m continuum maps illustrate star formation on the scales of individual molecular clouds. Dust contributes about one-third of the 870 μ m continuum emission, with free–free accounting for the rest. On these scales, there is not a good correspondence between gas, dust, and free–free emission. Dust continuum is enhanced toward the star-forming region as compared to the CO emission. We suggestmore » that an unexpectedly low and spatially variable gas-to-dust ratio is the result of rapid and localized dust enrichment of clouds by the massive clusters of the starburst.« less
NASA Astrophysics Data System (ADS)
Reiss, Dennis; Fenton, Lori; Neakrase, Lynn; Zimmerman, Michael; Statella, Thiago; Whelley, Patrick; Rossi, Angelo Pio; Balme, Matthew
2016-11-01
Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth's surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ˜1 m and ˜1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550-850 nm on Mars and around 0.5 % in the wavelength range from 300-1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns.
Spectral shifting strongly constrains molecular cloud disruption by radiation pressure on dust
NASA Astrophysics Data System (ADS)
Reissl, Stefan; Klessen, Ralf S.; Mac Low, Mordecai-Mark; Pellegrini, Eric W.
2018-03-01
Aim. We aim to test the hypothesis that radiation pressure from young star clusters acting on dust is the dominant feedback agent disrupting the largest star-forming molecular clouds and thus regulating the star-formation process. Methods: We performed multi-frequency, 3D, radiative transfer calculations including both scattering and absorption and re-emission to longer wavelengths for model clouds with masses of 104-107 M⊙, containing embedded clusters with star formation efficiencies of 0.009-91%, and varying maximum grain sizes up to 200 μm. We calculated the ratio between radiative and gravitational forces to determine whether radiation pressure can disrupt clouds. Results: We find that radiation pressure acting on dust almost never disrupts star-forming clouds. Ultraviolet and optical photons from young stars to which the cloud is optically thick do not scatter much. Instead, they quickly get absorbed and re-emitted by the dust at thermal wavelengths. As the cloud is typically optically thin to far-infrared radiation, it promptly escapes, depositing little momentum in the cloud. The resulting spectrum is more narrowly peaked than the corresponding Planck function, and exhibits an extended tail at longer wavelengths. As the opacity drops significantly across the sub-mm and mm wavelength regime, the resulting radiative force is even smaller than for the corresponding single-temperature blackbody. We find that the force from radiation pressure falls below the strength of gravitational attraction by an order of magnitude or more for either Milky Way or moderate starbust conditions. Only for unrealistically large maximum grain sizes, and star formation efficiencies far exceeding 50% do we find that the strength of radiation pressure can exceed gravity. Conclusions: We conclude that radiation pressure acting on dust does not disrupt star-forming molecular clouds in any Local Group galaxies. Radiation pressure thus appears unlikely to regulate the star-formation process on either local or global scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Despax, B.; Makasheva, K.; CNRS, LAPLACE, F-31062 Toulouse cedex 09
2012-11-01
A new approach of periodic production of dusty plasma consisting of pulsed injection of hexamethyldisiloxane (HMDSO) in argon axially asymmetric radiofrequency (RF) discharge was investigated in this work. The range of plasma operating conditions in which this dusty plasma can exist was closely examined. The obtained results clearly show that a net periodicity in the formation/disappearance of dust particles in the plasma can be maintained on a very large scale of discharge duration. The significance of discharge axial asymmetry to the dust particles behaviour in the plasma is revealed by the development of an asymmetric in shape void shifted towardsmore » the powered RF electrode. The key role of the reactive gas and its pulsed injection on each stage of the oscillating process of formation/disappearance of dust particles is disclosed by optical and electrical measurements. It is shown that the period of dusty plasma formation/disappearance is inversely related to the HMDSO injection time. Moreover, the impact of time injection over short period (5 s) is examined. It indicates the conflicting role played by the HMDSO on the reduction of dusty plasma during the reactive gas injection and the reappearance of particles in the plasma during the time off. The electronegative behavior of the plasma in the presence of negatively charged particles seems to explain the energetic modifications in the discharge. A frequency analysis of the floating potential reveals all these cyclic processes. Particularly, in the 10-200 Hz frequency range, the presence and the evolution of dust particles in the plasma over one generation can be observed.« less
The Maximum Flux of Star-Forming Galaxies
NASA Astrophysics Data System (ADS)
Crocker, Roland M.; Krumholz, Mark R.; Thompson, Todd A.; Clutterbuck, Julie
2018-04-01
The importance of radiation pressure feedback in galaxy formation has been extensively debated over the last decade. The regime of greatest uncertainty is in the most actively star-forming galaxies, where large dust columns can potentially produce a dust-reprocessed infrared radiation field with enough pressure to drive turbulence or eject material. Here we derive the conditions under which a self-gravitating, mixed gas-star disc can remain hydrostatic despite trapped radiation pressure. Consistently taking into account the self-gravity of the medium, the star- and dust-to-gas ratios, and the effects of turbulent motions not driven by radiation, we show that galaxies can achieve a maximum Eddington-limited star formation rate per unit area \\dot{Σ }_*,crit ˜ 10^3 M_{⊙} pc-2 Myr-1, corresponding to a critical flux of F*, crit ˜ 1013L⊙ kpc-2 similar to previous estimates; higher fluxes eject mass in bulk, halting further star formation. Conversely, we show that in galaxies below this limit, our one-dimensional models imply simple vertical hydrostatic equilibrium and that radiation pressure is ineffective at driving turbulence or ejecting matter. Because the vast majority of star-forming galaxies lie below the maximum limit for typical dust-to-gas ratios, we conclude that infrared radiation pressure is likely unimportant for all but the most extreme systems on galaxy-wide scales. Thus, while radiation pressure does not explain the Kennicutt-Schmidt relation, it does impose an upper truncation on it. Our predicted truncation is in good agreement with the highest observed gas and star formation rate surface densities found both locally and at high redshift.
The maximum flux of star-forming galaxies
NASA Astrophysics Data System (ADS)
Crocker, Roland M.; Krumholz, Mark R.; Thompson, Todd A.; Clutterbuck, Julie
2018-07-01
The importance of radiation pressure feedback in galaxy formation has been extensively debated over the last decade. The regime of greatest uncertainty is in the most actively star-forming galaxies, where large dust columns can potentially produce a dust-reprocessed infrared radiation field with enough pressure to drive turbulence or eject material. Here, we derive the conditions under which a self-gravitating mixed gas-star disc can remain hydrostatic despite trapped radiation pressure. Consistently, taking into account the self-gravity of the medium, the star- and dust-to-gas ratios, and the effects of turbulent motions not driven by radiation, we show that galaxies can achieve a maximum Eddington-limited star formation rate per unit area \\dot{Σ }_*,crit ˜ 10^3 M_{⊙} pc-2 Myr-1, corresponding to a critical flux of F*,crit ˜ 1013 L⊙ kpc-2 similar to previous estimates; higher fluxes eject mass in bulk, halting further star formation. Conversely, we show that in galaxies below this limit, our 1D models imply simple vertical hydrostatic equilibrium and that radiation pressure is ineffective at driving turbulence or ejecting matter. Because the vast majority of star-forming galaxies lie below the maximum limit for typical dust-to-gas ratios, we conclude that infrared radiation pressure is likely unimportant for all but the most extreme systems on galaxy-wide scales. Thus, while radiation pressure does not explain the Kennicutt-Schmidt relation, it does impose an upper truncation on it. Our predicted truncation is in good agreement with the highest observed gas and star formation rate surface densities found both locally and at high redshift.
Duststones on Mars: source, transport, deposition and erosion
Bridges, Nathan T.; Muhs, Daniel R.; Grotzinger, John P.; Milliken, Ralph E.
2012-01-01
Dust is an abundant material on Mars, and there is strong evidence that it is a contributor to the rock record as “duststone,” analogous in many ways to loess on Earth. Although a common suite of dust formation mechanisms has operated on the two planets, fundamental differences in environments and geologic histories have resulted in vastly different weighting functions, causing distinct depositional styles and erosional mechanisms. On Earth, dust is derived predominantly from glacial grinding and, in nonglacial environments, by other processes, such as volcanism, eolian abrasion, and fluvial comminution. Hydrological and biological processes convert dust accumulations to loess deposits. Active hydrology also acts to clean dust from the atmosphere and convert loess into soil or erode it entirely. On Mars, glacial production of dust has been minor, with most fine particles probably produced from ancient volcanic, impact, and fluvial processes. Dust is deposited under arid conditions in which aggregate growth and cementation are the stabilizing agents. Thick accumulations result in duststone.
Khakhaleva-Li, Zimu; Gnedin, Nickolay Y.
2016-03-30
In this study, we compare the properties of stellar populations of model galaxies from the Cosmic Reionization On Computers (CROC) project with the exiting UV and IR data. Since CROC simulations do not follow cosmic dust directly, we adopt two variants of the dust-follows-metals ansatz to populate model galaxies with dust. Using the dust radiative transfer code Hyperion, we compute synthetic stellar spectra, UV continuum slopes, and IR fluxes for simulated galaxies. We find that the simulation results generally match observational measurements, but, perhaps, not in full detail. The differences seem to indicate that our adopted dust-follows-metals ansatzes are notmore » fully sufficient. While the discrepancies with the exiting data are marginal, the future JWST data will be of much higher precision, rendering highly significant any tentative difference between theory and observations. It is, therefore, likely, that in order to fully utilize the precision of JWST observations, fully dynamical modeling of dust formation, evolution, and destruction may be required.« less
Mineral dust photochemistry induces nucleation events in the presence of SO2
Dupart, Yoan; King, Stephanie M.; Nekat, Bettina; Nowak, Andreas; Wiedensohler, Alfred; Herrmann, Hartmut; David, Gregory; Thomas, Benjamin; Miffre, Alain; Rairoux, Patrick; D’Anna, Barbara; George, Christian
2012-01-01
Large quantities of mineral dust particles are frequently ejected into the atmosphere through the action of wind. The surface of dust particles acts as a sink for many gases, such as sulfur dioxide. It is well known that under most conditions, sulfur dioxide reacts on dust particle surfaces, leading to the production of sulfate ions. In this report, for specific atmospheric conditions, we provide evidence for an alternate pathway in which a series of reactions under solar UV light produces first gaseous sulfuric acid as an intermediate product before surface-bound sulfate. Metal oxides present in mineral dust act as atmospheric photocatalysts promoting the formation of gaseous OH radicals, which initiate the conversion of SO2 to H2SO4 in the vicinity of dust particles. Under low dust conditions, this process may lead to nucleation events in the atmosphere. The laboratory findings are supported by recent field observations near Beijing, China, and Lyon, France. PMID:23213230
SILICATE COMPOSITION OF THE INTERSTELLAR MEDIUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogerty, S.; Forrest, W.; Watson, D. M.
2016-10-20
The composition of silicate dust in the diffuse interstellar medium and in protoplanetary disks around young stars informs our understanding of the processing and evolution of the dust grains leading up to planet formation. An analysis of the well-known 9.7 μ m feature indicates that small amorphous silicate grains represent a significant fraction of interstellar dust and are also major components of protoplanetary disks. However, this feature is typically modeled assuming amorphous silicate dust of olivine and pyroxene stoichiometries. Here, we analyze interstellar dust with models of silicate dust that include non-stoichiometric amorphous silicate grains. Modeling the optical depth alongmore » lines of sight toward the extinguished objects Cyg OB2 No. 12 and ζ Ophiuchi, we find evidence for interstellar amorphous silicate dust with stoichiometry intermediate between olivine and pyroxene, which we simply refer to as “polivene.” Finally, we compare these results to models of silicate emission from the Trapezium and protoplanetary disks in Taurus.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khakhaleva-Li, Zimu; Gnedin, Nickolay Y.
In this study, we compare the properties of stellar populations of model galaxies from the Cosmic Reionization On Computers (CROC) project with the exiting UV and IR data. Since CROC simulations do not follow cosmic dust directly, we adopt two variants of the dust-follows-metals ansatz to populate model galaxies with dust. Using the dust radiative transfer code Hyperion, we compute synthetic stellar spectra, UV continuum slopes, and IR fluxes for simulated galaxies. We find that the simulation results generally match observational measurements, but, perhaps, not in full detail. The differences seem to indicate that our adopted dust-follows-metals ansatzes are notmore » fully sufficient. While the discrepancies with the exiting data are marginal, the future JWST data will be of much higher precision, rendering highly significant any tentative difference between theory and observations. It is, therefore, likely, that in order to fully utilize the precision of JWST observations, fully dynamical modeling of dust formation, evolution, and destruction may be required.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramer, Tobias; Noack, Matthias
2016-05-20
The Rosetta probe around comet 67P/Churyumov–Gerasimenko (67P) reveals an anisotropic dust distribution of the inner coma with jet-like structures. The physical processes leading to jet formation are under debate, with most models for cometary activity focusing on localized emission sources, such as cliffs or terraced regions. Here we suggest, by correlating high-resolution simulations of the dust environment around 67P with observations, that the anisotropy and the background dust density of 67P originate from dust released across the entire sunlit surface of the nucleus rather than from few isolated sources. We trace back trajectories from coma regions with high local dustmore » density in space to the non-spherical nucleus and identify two mechanisms of jet formation: areas with local concavity in either two dimensions or only one. Pits and craters are examples of the first case; the neck region of the bi-lobed nucleus of 67P is an example of the latter case. The conjunction of multiple sources, in addition to dust released from all other sunlit areas, results in a high correlation coefficient (∼0.8) of the predictions with observations during a complete diurnal rotation period of 67P.« less
Radar meteor orbital structure of Southern Hemisphere cometary dust streams
NASA Technical Reports Server (NTRS)
Baggaley, W. Jack; Taylor, Andrew D.
1992-01-01
The Christchurch, New Zealand meteor orbit radar (AMOR) with its high precision and sensitivity, permits studies of the orbital fine structure of cometary streams. PC generated graphics are presented of data on some Southern Hemisphere Streams. Such data can be related to the formation phase and subsequent dynamical processes of dust streams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garofano, V.; Stafford, L., E-mail: luc.stafford@umontreal.ca, E-mail: kremena.makasheva@laplace.univ-tlse.fr; Despax, B.
2015-11-02
Optical emission spectroscopy was used to analyze the very-low-frequency cyclic evolution of the electron energy and density caused by repetitive formation and loss of dust nanoparticles in argon plasmas with pulsed injection of hexamethyldisiloxane (HMDSO, [CH{sub 3}]{sub 6}Si{sub 2}O). After elaborating a Boltzmann diagram for Ar high-lying levels and a collisional-radiative model for Ar 2p (Paschen notation) states, temperatures characterizing the low- and high-energy parts of the electron population were calculated. Relative electron densities were also estimated from relative line emission intensities. Both temperatures increase when the dust occupation increases, and then decrease when dust is lost. The opposite trendmore » was observed for the electron density. Such cyclic behaviors of the electron energy and electron density in the HMDSO-containing plasmas are in good agreement with the evolution processes in dusty plasmas, in which the formation of negative ions followed by an electron attachment on the surfaces of the nanoparticles is a critical phenomenon driving dust growth.« less
NASA Astrophysics Data System (ADS)
Wang, Chao; Forget, François; Bertrand, Tanguy; Spiga, Aymeric; Millour, Ehouarn; Navarro, Thomas
2018-04-01
The origin of the detached dust layers observed by the Mars Climate Sounder aboard the Mars Reconnaissance Orbiter is still debated. Spiga et al. (2013, https://doi.org/10.1002/jgre.20046) revealed that deep mesoscale convective "rocket dust storms" are likely to play an important role in forming these dust layers. To investigate how the detached dust layers are generated by this mesoscale phenomenon and subsequently evolve at larger scales, a parameterization of rocket dust storms to represent the mesoscale dust convection is designed and included into the Laboratoire de Météorologie Dynamique (LMD) Martian Global Climate Model (GCM). The new parameterization allows dust particles in the GCM to be transported to higher altitudes than in traditional GCMs. Combined with the horizontal transport by large-scale winds, the dust particles spread out and form detached dust layers. During the Martian dusty seasons, the LMD GCM with the new parameterization is able to form detached dust layers. The formation, evolution, and decay of the simulated dust layers are largely in agreement with the Mars Climate Sounder observations. This suggests that mesoscale rocket dust storms are among the key factors to explain the observed detached dust layers on Mars. However, the detached dust layers remain absent in the GCM during the clear seasons, even with the new parameterization. This implies that other relevant atmospheric processes, operating when no dust storms are occurring, are needed to explain the Martian detached dust layers. More observations of local dust storms could improve the ad hoc aspects of this parameterization, such as the trigger and timing of dust injection.
NASA Technical Reports Server (NTRS)
Kahre, Melinda A.; Haberle, Robert; Hollingsworth, Jeffery L.
2012-01-01
The dust cycle is critically important for the current climate of Mars. The radiative effects of dust impact the thermal and dynamical state of the atmosphere [1,2,3]. Although dust is present in the Martian atmosphere throughout the year, the level of dustiness varies with season. The atmosphere is generally the dustiest during northern fall and winter and the least dusty during northern spring and summer [4]. Dust particles are lifted into the atmosphere by dust storms that range in size from meters to thousands of kilometers across [5]. Regional storm activity is enhanced before northern winter solstice (Ls200 degrees - 240 degrees), and after northern solstice (Ls305 degrees - 340 degrees ), which produces elevated atmospheric dust loadings during these periods [5,6,7]. These pre- and post- solstice increases in dust loading are thought to be associated with transient eddy activity in the northern hemisphere with cross-equatorial transport of dust leading to enhanced dust lifting in the southern hemisphere [6]. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles [8,9,10]. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okuzumi, Satoshi; Hirose, Shigenobu, E-mail: okuzumi@nagoya-u.jp
Turbulence driven by magnetorotational instability (MRI) affects planetesimal formation by inducing diffusion and collisional fragmentation of dust particles. We examine conditions preferred for planetesimal formation in MRI-inactive 'dead zones' using an analytic dead-zone model based on our recent resistive MHD simulations. We argue that successful planetesimal formation requires not only a sufficiently large dead zone (which can be produced by tiny dust grains) but also a sufficiently small net vertical magnetic flux (NVF). Although often ignored, the latter condition is indeed important since the NVF strength determines the saturation level of turbulence in MRI-active layers. We show that direct collisionalmore » formation of icy planetesimal across the fragmentation barrier is possible when the NVF strength is lower than 10 mG (for the minimum-mass solar nebula model). Formation of rocky planetesimals via the secular gravitational instability is also possible within a similar range of the NVF strength. Our results indicate that the fate of planet formation largely depends on how the NVF is radially transported in the initial disk formation and subsequent disk accretion processes.« less
NASA Technical Reports Server (NTRS)
Sekanina, Z.
1976-01-01
The studies of the evolution of cometary debris are reviewed. The subject is divided into three major sections: (1) the developments in the immediate vicinity of the cometary nucleus, which is the source of the dust; (2) the formation of the dust tail; and (3) the blending of the debris with the dust component of interplanetary matter. The importance of the physical theory of comets is emphasized for the understanding of the early phase of evolution. A physico-dynamical model designed to analyze the particle-emission mechanism from the distribution of light in the dust tail is described and the results are presented. Increased attention is paid to large particles because of their importance for the evolution of the zodiacal cloud. Finally, implications are discussed for the future in situ investigations of comets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jabran Zahid, H.; Kudritzki, Rolf-Peter; Ho, I-Ting
We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relationsmore » obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.« less
Active Galactic Nuclei, Host Star Formation, and the Far Infrared
NASA Astrophysics Data System (ADS)
Draper, Aden R.; Ballantyne, D. R.
2011-05-01
Telescopes like Herschel and the Atacama Large Millimeter/submillimeter Array (ALMA) are creating new opportunities to study sources in the far infrared (FIR), a wavelength region dominated by cold dust emission. Probing cold dust in active galaxies allows for study of the star formation history of active galactic nuclei (AGN) hosts. The FIR is also an important spectral region for observing AGN which are heavily enshrouded by dust, such as Compton thick (CT) AGN. By using information from deep X-ray surveys and cosmic X-ray background synthesis models, we compute Cloudy photoionization simulations which are used to predict the spectral energy distribution (SED) of AGN in the FIR. Expected differential number counts of AGN and their host galaxies are calculated in the Herschel bands. The expected contribution of AGN and their hosts to the cosmic infrared background (CIRB) is also computed. Multiple star formation scenarios are investigated using a modified blackbody star formation SED. It is found that FIR observations at 350 and 500 um are an excellent tool in determining the star formation history of AGN hosts. Additionally, the AGN contribution to the CIRB can be used to determine whether star formation in AGN hosts evolves differently than in normal galaxies. AGN and host differential number counts are dominated by CT AGN in the Herschel-SPIRE bands. Therefore, X-ray stacking of bright SPIRE sources is likely to disclose a large fraction of the CT AGN population.
Studying Dust Scattering Halos with Galactic X-ray Binaries
NASA Astrophysics Data System (ADS)
Beeler, Doreen; Corrales, Lia; Heinz, Sebastian
2018-01-01
Dust is an important part of the interstellar medium (ISM) and contributes to the formation of stars and planets. Since the advent of modern X-ray telescopes, Galactic X-ray point sources have permitted a closer look at all phases of the ISM. Interstellar metals from oxygen to iron — in both gas and dust form — are responsible for absorption and scattering of X-ray light. Dust scatters the light in a forward direction and creates a diffuse halo image surrounding many bright Galactic X-ray binaries. We use all the bright X-ray point sources available in the Chandra HETG archive to study dust scattering halos from the local ISM. We have described a data analysis pipeline using a combination of the data reduction software CIAO and Python. We compare our results from Chandra HETG and ACIS-I observations of a well studied dust scattering halo around GX 13+1, in order to characterize any systematic errors associated with the HETG data set. We describe how our data products will be used to measure ISM scaling relations for X-ray extinction, dust abundance, and dust-to-metal ratios.
Featured Image: Making Dust in the Lab
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-12-01
This remarkable photograph (which spans only 10 m across; click for a full view) reveals what happens when you form dust grains in a laboratory under conditions similar to those of interstellar space. The cosmic life cycle of dust grains is not well understood we know that in the interstellar medium (ISM), dust is destroyed at a higher rate than it is produced by stellar sources. Since the amount of dust in the ISM stays constant, however, there must be additional sources of dust production besides stars. A team of scientists led by Daniele Fulvio (Pontifical Catholic University of Rio de Janeiro and the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena) have now studied formation mechanisms of dust grains in the lab by mimicking low-temperature ISM conditions and exploring how, under these conditions, carbonaceous materials condense from gas phase to form dust grains. To read more about their results and see additional images, check out the paper below.CitationDaniele Fulvio et al 2017 ApJS 233 14. doi:10.3847/1538-4365/aa9224
Measurements of Dust Devil Lower Structure and Properties, El Dorado Valley, Nevada, June 2002
NASA Astrophysics Data System (ADS)
Towner, M. C.; Ringrose, T. J.; Balme, M.; Greeley, R.; Zarnecki, J. C.
2002-12-01
We report the results of a recent field campaign in Nevada, USA, carried out to investigate the lower structure (less than 2m) and dust lofting mechanisms of terrestrial dust devils. Over several days, an instrumented platform was repeatedly deployed from the back of a pickup truck into the path of oncoming dust devils. Around 40 events were recorded, including core penetrations of large and small dust devils, close misses and periods of ambient background conditions before and after dust devil events, and during periods of dust devil inactivity. The platform deployed consisted of a 2 by 1m base with a 2m mast and carried a total of 24 instruments. The instrument suite consisted of horizontal wind profiling down to 5mm above surface, vertical wind speed and direction, temperature and pressure profiling, airborne and saltating particle recorders, vertical electric field gradient measurements, and upward looking UV sensors. We present preliminary results of profiles for several events, together with details of ambient conditions required for dust devil formation.
Neurogenic plasma exudation mediates grain dust-induced tissue injury in vivo.
Gao, X P; Von Essen, S; Rubinstein, I
1997-02-01
The purpose of this study was to determine whether an aqueous extract of grain sorghum dust (GDE) elicits neurogenic plasma exudation in the oral mucosa in vivo. Using intravital microscopy, we found that GDE elicited significant, concentration-dependent leaky site formation and an increase in clearance of fluorescein isothiocyanate-labeled dextran (FITC-dextran; mol mass 70 kDa) from the hamster cheek pouch (P < 0.05). The selective, nonpeptide neurokinin(1) (substance P) receptor antagonists, CP-96,345 and RP-67580, but not the 2R,3R enantiomer CP-96,344, significantly attenuated GDE-induced leaky site formation and increase in clearance of FITC-dextran (P < 0.05). Indomethacin had no significant effects on GDE-induced responses. CP-96,345 had no significant effects of adenosine-induced leaky site formation and increase in clearance of FITC-dextran from the cheek pouch. We conclude that GDE elicits neurogenic plasma exudation from the oral mucosa in vivo. We suggest that this process is one mechanism whereby grain sorghum dust elicits immediate oral mucosa inflammation in vivo.
Pharmacologic properties of brewery dust extracts in vitro.
Schachter, E N; Zuskin, E; Rienzi, N; Goswami, S; Castranova, V; Whitmer, M; Siegel, P
2001-06-01
To study the effects of extracts of brewery dust on isolated guinea pig tracheal smooth muscle in vitro. Parallel pharmacologic intervention on guinea pig tracheal rings that were obtained from the same animal. Mount Sinai School of Medicine, Department of Pulmonary Medicine. The isolated guinea pig tracheal tissue of 18 guinea pigs. Pretreatment of guinea pig rings by mediator-modifying agents before challenge with the brewery dust extracts. The effect of brewery dust extracts on isolated guinea pig tracheal smooth muscle was studied using water-soluble extracts of dust obtained from brewery materials, including hops, barley, and brewery yeast. Dust extracts were prepared as a 1:10 (wt/vol) aqueous solution. Dose-related contractions of nonsensitized guinea pig tracheas were demonstrated using these extracts. The dust extracts contained significant quantities of bacterial components (eg, endotoxin and n-formyl-methionyl-leucyl-phenylalanine), but these agents were not thought to contribute directly to the constrictor effect of the dusts. Pharmacologic studies were performed by pretreating guinea pig tracheal tissue with the following drugs known to modulate smooth muscle contraction: atropine; indomethacin; pyrilamine; LY171883; nordihydroguaiaretic acid; captopril; thiorphan; verapamil; and TMB8. The constrictor effects of the dust extracts were inhibited by a wide variety of agents, the patterns of which depended on the dust extract. Atropine consistently and strikingly reduced the contractile effects of these extracts. These observations may suggest an interaction of the extracts with parasympathetic nerves or, more directly, with muscarinic receptors. The inhibition of contraction by the blocking of other mediators was less effective and varied with the dust extract. We suggest that brewery dust extracts cause a dose-related airway smooth muscle constriction by nonimmunologic mechanisms involving a variety of airway mediators and, possibly, cholinergic receptors. This effect is not dependent on presensitization of the guinea pigs.
Magnetic reconnection as a chondrule heating mechanism
NASA Astrophysics Data System (ADS)
Lazerson, Samuel A.
2010-12-01
The origin of chondrules (sub-millimeter inclusions found in stony meteorites) remains today an open question despite over century of examination. The age of these proto-solar relics shows a well defined cutoff of around 4.5 billion years ago. This places them as the oldest solids in the solar system. Chemical examination indicates that they experienced heating events on the order of 5000 K/hr for periods of around 30 minutes, followed by extending periods of cooling. Additional examination indicates the presence of large magnetic fields during their formation. Most attempts to explain chondrule formation in the proto-solar nebula neglect the existence of a plasma environment, with even less mention of dust being a charge carrier (dusty plasma). Simulations of magnetic reconnection in a dusty plasma are forwarded as a mechanism for chondrule formation in the proto-solar nebula. Here large dust-neutral relative velocities are found in the reconnection region. These flows are associated with the dynamics of reconnection. The high Knudsen number of the dust particles allows for a direct calculation of frictional heating due to collisions with neutrals (allowing for the neglect of boundary layer formation around the particle). Test particle simulations produce heating equivalent to that recorded in the chondrule mineral record. It is shown that magnetic reconnection in a dusty plasma is of fundamental importance to the formation of the most primitive solids in the solar system.
NASA Astrophysics Data System (ADS)
Sala, M.; Marino, F.; Delmonte, B.; Uglietti, C.; Maggi, V.
2004-12-01
Aeolian dust concentration and size distribution measurements performed on the first 30 m of the Talos Dome (East Antarctica, 72°48'S, 159°06'E) firn core, drilled during the 1996 PNRA-ITASE (Programma Nazionale di Ricerche in Antartide-International Trans-Antarctic Scienticic Expedition) traverse, provide a record of recent climatic and atmospheric history over the East Antarctic sector facing the Ross Sea-Oates Coast (Southern Ocean). Talos Dome (2316 m a.s.l.) is located in the Northern Victoria Land at the topoghraphic summit of a dome (Frezzotti et al., 1998). More than 500 samples analyzed from 1.5 to 30 m allowed to obtain a record of atmospheric mineral dust at high temporal resolution (sub-annual) for the last ~200 years. The average dust concentration and size distribution levels, as well as their variability, are higher from early 1800 to the mid-1900 with respect to the most recent part of the record, with a sharp decrease occurring around 1950-55. The concentration and size distribution of microparticles almost covary over the period investigated, high dust concentrations being generally associated to coarser dust and vice versa. Moreover, average modal value of the volume (mass) background dust size distribution and total dust concentration are slightly higher that typical Holocene values for other East Antarctic sites (Delmonte et al., 2004). These evidences suggest that mixing of fine-grained atmospheric dust from long-range transport with more local sources such as the rock outcrops of the Northern Victoria Land, for example, cannot be excluded. A possible local contribution for dust was also suggested by Maggi and Petit (1998) from earlier dust investigations on a firn core drilled in the Northern Victoria Land close to the Transantarctic Mountains (Hercules Nevé, 73°06'S; 165°27'E). Interestingly, the dust concentration and size distribution profiles are embedded by clear cycles having periodicity of 7-8 years on average overall the 200 years of the record. The magnitude of these variations is a factor of 10 to 100 for the concentration and a factor 3 for the mode. Assuming the arrivals of coarse (fine) -grained dust having high (low) concentration directly related to the easier (more difficult) penetration of troposphere air masses to Talos Dome and hence to the pattern of meridional wind, our data evidence that a modulation of the atmospheric circulation at these timescales does exist. This periodicity corresponds to the time taken by the Antarctic Circumpolar Wave (White and Peterson, 1996) to encircle the Southern Ocean. We hypothesize the cyclic pattern observed as linked to the circumpolar propagation of ocean-sea ice-atmosphere anomalies in the Southern Ocean, imprinted particularly in the Ross Sea region, modulating the atmospheric circulation pattern at interannual timescale and finally the atmospheric dust advection to the site. The Talos Dome dust record, therefore, can be considered as first-order indicator capable to mirror the past Southern Ocean-atmosphere coupled mode of variability.
Parameterizing the interstellar dust temperature
NASA Astrophysics Data System (ADS)
Hocuk, S.; Szűcs, L.; Caselli, P.; Cazaux, S.; Spaans, M.; Esplugues, G. B.
2017-08-01
The temperature of interstellar dust particles is of great importance to astronomers. It plays a crucial role in the thermodynamics of interstellar clouds, because of the gas-dust collisional coupling. It is also a key parameter in astrochemical studies that governs the rate at which molecules form on dust. In 3D (magneto)hydrodynamic simulations often a simple expression for the dust temperature is adopted, because of computational constraints, while astrochemical modelers tend to keep the dust temperature constant over a large range of parameter space. Our aim is to provide an easy-to-use parametric expression for the dust temperature as a function of visual extinction (AV) and to shed light on the critical dependencies of the dust temperature on the grain composition. We obtain an expression for the dust temperature by semi-analytically solving the dust thermal balance for different types of grains and compare to a collection of recent observational measurements. We also explore the effect of ices on the dust temperature. Our results show that a mixed carbonaceous-silicate type dust with a high carbon volume fraction matches the observations best. We find that ice formation allows the dust to be warmer by up to 15% at high optical depths (AV> 20 mag) in the interstellar medium. Our parametric expression for the dust temperature is presented as Td = [ 11 + 5.7 × tanh(0.61 - log 10(AV) ]χuv1/5.9, where χuv is in units of the Draine (1978, ApJS, 36, 595) UV field.
Dust grains from the heart of supernovae
NASA Astrophysics Data System (ADS)
Bocchio, M.; Marassi, S.; Schneider, R.; Bianchi, S.; Limongi, M.; Chieffi, A.
2016-03-01
Dust grains are classically thought to form in the winds of asymptotic giant branch (AGB) stars. However, there is increasing evidence today for dust formation in supernovae (SNe). To establish the relative importance of these two classes of stellar sources of dust, it is important to know the fraction of freshly formed dust in SN ejecta that is able to survive the passage of the reverse shock and be injected in the interstellar medium. With this aim, we have developed a new code, GRASH_Rev, that allows following the dynamics of dust grains in the shocked SN ejecta and computing the time evolution of the mass, composition, and size distribution of the grains. We considered four well-studied SNe in the Milky Way and Large Magellanic Cloud: SN 1987A, CasA, the Crab nebula, and N49. These sources have been observed with both Spitzer and Herschel, and the multiwavelength data allow a better assessment the mass of warm and cold dust associated with the ejecta. For each SN, we first identified the best explosion model, using the mass and metallicity of the progenitor star, the mass of 56Ni, the explosion energy, and the circumstellar medium density inferred from the data. We then ran a recently developed dust formation model to compute the properties of freshly formed dust. Starting from these input models, GRASH_Rev self-consistently follows the dynamics of the grains, considering the effects of the forward and reverse shock, and allows predicting the time evolution of the dust mass, composition, and size distribution in the shocked and unshocked regions of the ejecta. All the simulated models aagree well with observations. Our study suggests that SN 1987A is too young for the reverse shock to have affected the dust mass. Hence the observed dust mass of 0.7-0.9 M⊙ in this source can be safely considered as indicative of the mass of freshly formed dust in SN ejecta. Conversely, in the other three SNe, the reverse shock has already destroyed between 10-40% of the initial dust mass. However, the largest dust mass destruction is predicted to occur between 103 and 105 yr after the explosions. Since the oldest SN in the sample has an estimated age of 4800 yr, current observations can only provide an upper limit to the mass of SN dust that will enrich the interstellar medium, the so-called effective dust yields. We find that only between 1-8% of the currently observed mass will survive, resulting in an average SN effective dust yield of (1.55 ± 1.48) × 10-2M⊙. This agrees well with the values adopted in chemical evolution models that consider the effect of the SN reverse shock. We discuss the astrophysical implications of our results for dust enrichment in local galaxies and at high redshift.
NASA Astrophysics Data System (ADS)
Lau, Ryan; Hankins, M.; Kasliwal, M.; Sivaramakrishnan, A.; Thatte, D.
2017-11-01
Dust is a key ingredient in the formation of stars and planets. However, the dominant channels of dust production throughout cosmic time are still unclear. With its unprecedented sensitivity and spatial resolution in the mid-IR, the James Webb Space Telescope (JWST) is the ideal platform to address this issue by investigating the dust abundance, composition, and production rates of various dusty sources. In particular, colliding-wind Wolf-Rayet (WR) binaries are efficient dust producers in the local Universe, and likely existed in the earliest galaxies. To study these interesting objects, we propose JWST observations of the archetypal colliding-wind binary WR 140 to study its dust composition, abundance, and formation mechanisms. We will utilize two key JWST observing modes with the medium resolution spectrometer (MRS) on the Mid-Infrared Instrument (MIRI) and the Aperture Masking Interferometry (AMI) mode with the Near Infrared Imager and Slitless Spectrograph (NIRISS). Our proposed observations will yield high impact scientific results on the dust forming properties WR binaries, and establish a benchmark for key observing modes for imaging bright sources with faint extended emission. This will be valuable in various astrophysical contexts including mass-loss from evolved stars, dusty tori around active galactic nuclei, and protoplanetary disks. We are committed to designing and delivering science-enabling products for the JWST community that address technical issues such as bright source artifacts that will limit the maximum achievable image contrast.
1987-01-01
be recorded. Obviously, without the close transaction the module cannot maintain the current status of each boundary. 4-1 0% Sle.t SOUNDARY tD NUMBER...HOp: 134 (MIMS) ... 0KI YES//-.. (YES) ARE YOU ADDING A NEW EMPLOYEE (THE 11TH FOR THIS IOUNDARY)9 Y (YES) RESPIRATOR TYPE: 1r~PF HALF FACE, DUST FUME
Kiloparsec-scale Dust Disks in High-redshift Luminous Submillimeter Galaxies
NASA Astrophysics Data System (ADS)
Hodge, J. A.; Swinbank, A. M.; Simpson, J. M.; Smail, I.; Walter, F.; Alexander, D. M.; Bertoldi, F.; Biggs, A. D.; Brandt, W. N.; Chapman, S. C.; Chen, C. C.; Coppin, K. E. K.; Cox, P.; Dannerbauer, H.; Edge, A. C.; Greve, T. R.; Ivison, R. J.; Karim, A.; Knudsen, K. K.; Menten, K. M.; Rix, H.-W.; Schinnerer, E.; Wardlow, J. L.; Weiss, A.; van der Werf, P.
2016-12-01
We present high-resolution (0.″16) 870 μm Atacama Large Millimeter/submillimeter Array (ALMA) imaging of 16 luminous ({L}{IR}˜ 4× {10}12 {L}⊙ ) submillimeter galaxies (SMGs) from the ALESS survey of the Extended Chandra Deep Field South. This dust imaging traces the dust-obscured star formation in these z˜ 2.5 galaxies on ˜1.3 kpc scales. The emission has a median effective radius of R e = 0.″24 ± 0.″02, corresponding to a typical physical size of {R}e= 1.8 ± 0.2 kpc. We derive a median Sérsic index of n = 0.9 ± 0.2, implying that the dust emission is remarkably disk-like at the current resolution and sensitivity. We use different weighting schemes with the visibilities to search for clumps on 0.″12 (˜1.0 kpc) scales, but we find no significant evidence for clumping in the majority of cases. Indeed, we demonstrate using simulations that the observed morphologies are generally consistent with smooth exponential disks, suggesting that caution should be exercised when identifying candidate clumps in even moderate signal-to-noise ratio interferometric data. We compare our maps to comparable-resolution Hubble Space Telescope {H}160-band images, finding that the stellar morphologies appear significantly more extended and disturbed, and suggesting that major mergers may be responsible for driving the formation of the compact dust disks we observe. The stark contrast between the obscured and unobscured morphologies may also have implications for SED fitting routines that assume the dust is co-located with the optical/near-IR continuum emission. Finally, we discuss the potential of the current bursts of star formation to transform the observed galaxy sizes and light profiles, showing that the z˜ 0 descendants of these SMGs are expected to have stellar masses, effective radii, and gas surface densities consistent with the most compact massive ({M}* ˜ 1-2 × 1011 {M}⊙ ) early-type galaxies observed locally.
NASA Astrophysics Data System (ADS)
Chen, Chian-Chou; Hodge, J. A.; Smail, Ian; Swinbank, A. M.; Walter, Fabian; Simpson, J. M.; Calistro Rivera, Gabriela; Bertoldi, F.; Brandt, W. N.; Chapman, S. C.; da Cunha, Elisabete; Dannerbauer, H.; De Breuck, C.; Harrison, C. M.; Ivison, R. J.; Karim, A.; Knudsen, K. K.; Wardlow, J. L.; Weiß, A.; van der Werf, P. P.
2017-09-01
We present detailed studies of a z = 2.12 submillimeter galaxy, ALESS67.1, using sub-arcsecond resolution ALMA, adaptive optics-aided VLT/SINFONI, and Hubble Space Telescope (HST)/CANDELS data to investigate the kinematics and spatial distributions of dust emission (870 μm continuum), 12CO(J = 3–2), strong optical emission lines, and visible stars. Dynamical modeling of the optical emission lines suggests that ALESS67.1 is not a pure rotating disk but a merger, consistent with the apparent tidal features revealed in the HST imaging. Our sub-arcsecond resolution data set allows us to measure half-light radii for all the tracers, and we find a factor of 4–6 smaller sizes in dust continuum compared to all the other tracers, including 12CO; also, ultraviolet (UV) and Hα emission are significantly offset from the dust continuum. The spatial mismatch between the UV continuum and the cold dust and gas reservoir supports the explanation that geometrical effects are responsible for the offset of the dusty galaxy on the IRX–β diagram. Using a dynamical method we derive an {α }CO}=1.8+/- 1.0, consistent with other submillimeter galaxies (SMGs) that also have resolved CO and dust measurements. Assuming a single {α }CO} value we also derive resolved gas and star formation rate surface densities, and find that the core region of the galaxy (≲ 5 kpc) follows the trend of mergers on the Schmidt–Kennicutt relationship, whereas the outskirts (≳ 5 kpc) lie on the locus of normal star-forming galaxies, suggesting different star formation efficiencies within one galaxy. Our results caution against using single size or morphology for different tracers of the star formation activity and gas content of galaxies, and therefore argue the need to use spatially resolved, multi-wavelength observations to interpret the properties of SMGs, and perhaps even for z> 1 galaxies in general.
INFRARED LUMINOSITIES AND DUST PROPERTIES OF z approx 2 DUST-OBSCURED GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bussmann, R. S.; Dey, Arjun; Jannuzi, B. T.
We present SHARC-II 350 mum imaging of twelve 24 mum bright (F{sub 24m}u{sub m} > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1 mm imaging of a subset of two DOGs. These objects are selected from the Booetes field of the NOAO Deep Wide-Field Survey. Detections of four DOGs at 350 mum imply infrared (IR) luminosities which are consistent to within a factor of 2 of expectations based on a warm-dust spectral energy distribution (SED) scaled to the observed 24 mum flux density. The 350 mum upper limits for the 8 non-detected DOGsmore » are consistent with both Mrk 231 and M82 (warm-dust SEDs), but exclude cold dust (Arp 220) SEDs. The two DOGs targeted at 1 mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T{sub dust} > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of approx3 x 10{sup 8} M{sub sun}. In comparison to other dusty z approx 2 galaxy populations such as submillimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2 x 10{sup 13} L{sub sun} versus 6 x 10{sup 12} L{sub sun} for the other galaxy populations) that are driven by warmer dust temperatures (>35-60 K versus approx30 K) and lower inferred dust masses (3 x 10{sup 8} M{sub sun} versus 3 x 10{sup 9} M{sub sun}). Wide-field Herschel and Submillimeter Common-User Bolometer Array-2 surveys should be able to detect hundreds of these power-law-dominated DOGs. We use the existing Hubble Space Telescope and Spitzer/InfraRed Array Camera data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24 mum bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although much larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive galaxies at z approx 2 involves a submillimeter bright, cold-dust, and star-formation-dominated phase followed by a 24 mum bright, warm-dust and AGN-dominated phase.« less
Insights into H2 formation in space from ab initio molecular dynamics
Casolo, Simone; Tantardini, Gian Franco; Martinazzo, Rocco
2013-01-01
Hydrogen formation is a key process for the physics and the chemistry of interstellar clouds. Molecular hydrogen is believed to form on the carbonaceous surface of dust grains, and several mechanisms have been invoked to explain its abundance in different regions of space, from cold interstellar clouds to warm photon-dominated regions. Here, we investigate direct (Eley–Rideal) recombination including lattice dynamics, surface corrugation, and competing H-dimers formation by means of ab initio molecular dynamics. We find that Eley–Rideal reaction dominates at energies relevant for the interstellar medium and alone may explain observations if the possibility of facile sticking at special sites (edges, point defects, etc.) on the surface of the dust grains is taken into account. PMID:23572584
THEMIS VIS and IR observations of a high-altitude Martian dust devil
Cushing, G.E.; Titus, T.N.; Christensen, P.R.
2005-01-01
The Mars Odyssey Thermal Emission Imaging System (THEMIS) imaged a Martian dust devil in both visible and thermal-infrared wavelengths on January 30, 2004. We believe this is the first documented infrared observation of an extraterrestrial dust devil, and the highest to be directly observed at more than 16 kilometers above the equatorial geoid of Mars. This dust devil measured over 700 meters in height and 375 meters across, and the strongest infrared signature was given by atmospheric dust absorption in the 9-micron range (THEMIS IR band 5). In addition to having formed in the extremely low-pressure environment of about 1 millibar, this dust devil is of particular interest because it was observed at 16:06 local time. This is an unusually late time of day to find dust devils on Mars, during a period when rapid surface cooling typically reduces the boundary-layer turbulence necessary to form these convective vortices. Understanding the mechanisms for dust-devil formation under such extreme circumstances will help to constrain theories of atmospheric dynamics, and of dust lifting and transport mechanisms on Mars. Copyright 2005 by the American Geophysical Union.
The Herschel Virgo Cluster Survey. XIX. Physical properties of low luminosity FIR sources at z < 0.5
NASA Astrophysics Data System (ADS)
Pappalardo, Ciro; Bizzocchi, Luca; Fritz, Jacopo; Boselli, Alessandro; Boquien, Mederic; Boissier, Samuel; Baes, Maarten; Ciesla, Laure; Bianchi, Simone; Clemens, Marcel; Viaene, Sebastien; Bendo, George J.; De Looze, Ilse; Smith, Matthew W. L.; Davies, Jonathan
2016-05-01
Context. The star formation rate is a crucial parameter for the investigation galaxy evolution. At low redshift the cosmic star formation rate density declines smoothly, and massive active galaxies become passive, reducing their star formation activity. This implies that the bulk of the star formation rate density at low redshift is mainly driven by low mass objects. Aims: We investigate the properties of a sample of low luminosity far-infrared sources selected at 250 μm. We have collected data from ultraviolet to far-infrared in order to perform a multiwavelengths analysis. The main goal is to investigate the correlation between star formation rate, stellar mass, and dust mass for a galaxy population with a wide range in dust content and stellar mass, including the low mass regime that most probably dominates the star formation rate density at low redshift. Methods: We define a main sample of ~800 sources with full spectral energy distribution coverage between 0.15 <λ< 500 μm and an extended sample with ~5000 sources in which we remove the constraints on the ultraviolet and near-infrared bands. We analyze both samples with two different spectral energy distribution fitting methods: MAGPHYS and CIGALE, which interpret a galaxy spectral energy distribution as a combination of different simple stellar population libraries and dust emission templates. Results: In the star formation rate versus stellar mass plane our samples occupy a region included between local spirals and higher redshift star forming galaxies. These galaxies represent the population that at z< 0.5 quenches their star formation activity and reduces their contribution to the cosmic star formation rate density. The subsample of galaxies with the higher masses (M∗> 3 × 1010 M⊙) do not lie on the main sequence, but show a small offset as a consequence of the decreased star formation. Low mass galaxies (M∗< 1 × 1010 M⊙) settle in the main sequence with star formation rate and stellar mass consistent with local spirals. Conclusions: Deep Herschel data allow the identification of a mixed galaxy population with galaxies still in an assembly phase or galaxies at the beginning of their passive evolution. We find that the dust luminosity is the parameter that allow us to discriminate between these two galaxy populations. The median spectral energy distribution shows that even at low star formation rate our galaxy sample has a higher mid-infrared emission than previously predicted. Herschel is an ESA space observatory with science instruments provided by a European-led principal investigator consortia and with an important participation from NASA.
NASA Astrophysics Data System (ADS)
Cimorelli, S. A.; Samuels, C.
2011-12-01
We define and categorize black holes (BH) and the space they inhabit. We describe mechanisms for their formation and mechanisms of black hole collisions and explosions/bursts, inside of the universe. These are linked to the formation of galaxies, stars, planets and planetary processes. Insight is gained regarding the formation and evolution of galaxies and the matter contained therein. Space itself must be categorized as to its purpose and properties as it relates to the various categories of black holes and processes ongoing within the space in which the processes occur. What we herein refer to as category-1 (c-1) black hole, formed the universe, by generating catagory-2 (c-2) black holes, say about 10% of which formed galaxies and 90% remain as dark matter in the form of c-2 BHs that are still evolving. C-1 BHs can explode/burst by collision or on their own, and give off great numbers (e.g., trillions) of c-2 BHs inside the universe, in c-2 space, which can become galaxies and which is the start of the universe. C-2 BHs can explode/burst and form a galaxy, containing c-3 space, filled with c-3 BHs. C-3 BHs are somewhat more modified and expanded than c-2 BHs and are formed from exploded/burst c-2 BHs on their own due to instabilities or by colliding with another c-2 BH and exploding/bursting to form gas and dust clouds peppered with c-3 BHs. Additionally, remnants from the exploded c-2 BH may include a range of sizes from minute particles that would contribute to the formation of massive gas and dust clouds peppered with the c-3 BHs; to about 10 to 20 solar masses that form large stars; and others, much smaller (tiny) stars that eventually become planets and moons. Some, eventually explode/burst inside the galaxy to produce the gas and dust clouds that we see inside the galaxy. These gas and dust clouds are peppered with c-4 BHs that eventually are seen as new stars forming in the dust clouds (described below). We envision three mechanisms (a,b,&c) for stellar origin, formation and evolution. The first type 'a' is well known (accepted); whereas, the other two 'b&c' are new and presented herein. The presently generally accepted process 'a,' consists of an accretion and gravitation process where mass comes together from interstellar gas and dust, left over from previous stars' deaths/explosions; or, from some other gas and dust accumulation. In addition, to this process, we propose a process 'b,' where a star originates as an expanded, modified Black Hole (BH) (described later with Figure 4) with none or little help from accretion/gravitation, begins to radiate, and continues to grow into a star. A third process 'c,' is also possible in which a star would originate from a combination of the two mechanisms 'a & b' described above. This latter mechanism is perhaps the most common type. This type starts as an expanded, modified BH inside of a gas and dust cloud. This, then serves as the nucleus that starts the subsequent accretion/gravitation process; however, it greatly accelerates the accretion/gravitation formation process as in the standard process. This mechanism could then explain how some super-cluster complexes, which have been estimated to take 40 to 60 billion years to form, can occur in a universe of a much younger age, as exists.
NASA Astrophysics Data System (ADS)
Cimorelli, S. A.; Samuels, C.
2012-04-01
We define and categorize black holes (BH) and the space they inhabit. We describe mechanisms for their formation and mechanisms of black hole collisions and explosions/bursts, inside of the universe. These are linked to the formation of galaxies, stars, planets and planetary processes. Insight is gained regarding the formation and evolution of galaxies and the matter contained therein. Space itself must be categorized as to its purpose and properties as it relates to the various categories of black holes and processes ongoing within the space in which the processes occur. What we herein refer to as category-1 (c-1) black hole, formed the universe, by generating catagory-2 (c-2) black holes, say about 10% of which formed galaxies and 90% remain as dark matter in the form of c-2 BHs that are still evolving. C-1 BHs can explode/burst by collision or on their own, and give off great numbers (e.g., trillions) of c-2 BHs inside the universe, in c-2 space, which can become galaxies and which is the start of the universe. C-2 BHs can explode/burst and form a galaxy, containing c-3 space, filled with c-3 BHs. C-3 BHs are somewhat more modified and expanded than c-2 BHs and are formed from exploded/burst c-2 BHs on their own due to instabilities or by colliding with another c-2 BH and exploding/bursting to form gas and dust clouds peppered with c-3 BHs. Additionally, remnants from the exploded c-2 BH may include a range of sizes from minute particles that would contribute to the formation of massive gas and dust clouds peppered with the c-3 BHs; to about 10 to 20 solar masses that form large stars; and others, much smaller (tiny) stars that eventually become planets and moons. Some, eventually explode/burst inside the galaxy to produce the gas and dust clouds that we see inside the galaxy. These gas and dust clouds are peppered with c-4 BHs that eventually are seen as new stars forming in the dust clouds (described below). We envision three mechanisms (a,b,&c) for stellar origin, formation and evolution. The first type 'a' is well known (accepted); whereas, the other two 'b&c' are new and presented herein. The presently generally accepted process 'a,' consists of an accretion and gravitation process where mass comes together from interstellar gas and dust, left over from previous stars' deaths/explosions; or, from some other gas and dust accumulation. In addition, to this process, we propose a process 'b,' where a star originates as an expanded, modified Black Hole (BH) (described later with Figure 4) with none or little help from accretion/gravitation, begins to radiate, and continues to grow into a star. A third process 'c,' is also possible in which a star would originate from a combination of the two mechanisms 'a & b' described above. This latter mechanism is perhaps the most common type. This type starts as an expanded, modified BH inside of a gas and dust cloud. This, then serves as the nucleus that starts the subsequent accretion/gravitation process; however, it greatly accelerates the accretion/gravitation formation process as in the standard process. This mechanism could then explain how some super-cluster complexes, which have been estimated to take 40 to 60 billion years to form, can occur in a universe of a much younger age of 13.5 billion, as exists.
Integrated spatiotemporal characterization of dust sources and outbreaks in Central and East Asia
NASA Astrophysics Data System (ADS)
Darmenova, Kremena T.
The potential of atmospheric dust aerosols to modify the Earth's environment and climate has been recognized for some time. However, predicting the diverse impact of dust has several significant challenges. One is to quantify the complex spatial and temporal variability of dust burden in the atmosphere. Another is to quantify the fraction of dust originating from human-made sources. This thesis focuses on the spatiotemporal characterization of sources and dust outbreaks in Central and East Asia by integrating ground-based data, satellite multisensor observations, and modeling. A new regional dust modeling system capable of operating over a span of scales was developed. The modeling system consists of a dust module DuMo, which incorporates several dust emission schemes of different complexity, and the PSU/NCAR mesoscale model MM5, which offers a variety of physical parameterizations and flexible nesting capability. The modeling system was used to perform for the first time a comprehensive study of the timing, duration, and intensity of individual dust events in Central and East Asia. Determining the uncertainties caused by the choice of model physics, especially the boundary layer parameterization, and the dust production scheme was the focus of our study. Implications to assessments of the anthropogenic dust fraction in these regions were also addressed. Focusing on Spring 2001, an analysis of routine surface meteorological observations and satellite multi-sensor data was carried out in conjunction with modeling to determine the extent to which integrated data set can be used to characterize the spatiotemporal distribution of dust plumes at a range of temporal scales, addressing the active dust sources in China and Mongolia, mid-range transport and trans-Pacific, long-range transport of dust outbreaks on a case-by-case basis. This work demonstrates that adequate and consistent characterization of individual dust events is central to establishing a reliable climatology, ultimately leading to improved assessments of dust impacts on the environment and climate. This will also help to identify the appropriate temporal and spatial scales for adequate intercomparison between model results and observational data as well as for developing an integrated analysis methodology for dust studies.
Evidence for dust grain growth in young circumstellar disks.
Throop, H B; Bally, J; Esposito, L W; McCaughrean, M J
2001-06-01
Hundreds of circumstellar disks in the Orion nebula are being rapidly destroyed by the intense ultraviolet radiation produced by nearby bright stars. These young, million-year-old disks may not survive long enough to form planetary systems. Nevertheless, the first stage of planet formation-the growth of dust grains into larger particles-may have begun in these systems. Observational evidence for these large particles in Orion's disks is presented. A model of grain evolution in externally irradiated protoplanetary disks is developed and predicts rapid particle size evolution and sharp outer disk boundaries. We discuss implications for the formation rates of planetary systems.
Using Lunar Module Shadows To Scale the Effects of Rocket Exhaust Plumes
NASA Technical Reports Server (NTRS)
2008-01-01
Excavating granular materials beneath a vertical jet of gas involves several physical mechanisms. These occur, for example, beneath the exhaust plume of a rocket landing on the soil of the Moon or Mars. We performed a series of experiments and simulations (Figure 1) to provide a detailed view of the complex gas-soil interactions. Measurements taken from the Apollo lunar landing videos (Figure 2) and from photographs of the resulting terrain helped demonstrate how the interactions extrapolate into the lunar environment. It is important to understand these processes at a fundamental level to support the ongoing design of higher fidelity numerical simulations and larger-scale experiments. These are needed to enable future lunar exploration wherein multiple hardware assets will be placed on the Moon within short distances of one another. The high-velocity spray of soil from the landing spacecraft must be accurately predicted and controlled or it could erode the surfaces of nearby hardware. This analysis indicated that the lunar dust is ejected at an angle of less than 3 degrees above the surface, the results of which can be mitigated by a modest berm of lunar soil. These results assume that future lunar landers will use a single engine. The analysis would need to be adjusted for a multiengine lander. Figure 3 is a detailed schematic of the Lunar Module camera calibration math model. In this chart, formulas relating the known quantities, such as sun angle and Lunar Module dimensions, to the unknown quantities are depicted. The camera angle PSI is determined by measurement of the imaged aspect ratio of a crater, where the crater is assumed to be circular. The final solution is the determination of the camera calibration factor, alpha. Figure 4 is a detailed schematic of the dust angle math model, which again relates known to unknown parameters. The known parameters now include the camera calibration factor and Lunar Module dimensions. The final computation is the ejected dust angle, as a function of Lunar Module altitude.
NASA Astrophysics Data System (ADS)
Lavi, Avi; Lin, Peng; Bhaduri, Bhaskar; Laskin, Alexander; Rudich, Yinon
2017-04-01
Dust particles and volatile organic compounds from fuel or biomass burning are two major components that affect air quality in urban polluted areas. We characterized the products from the reaction of soluble Fe(III), a reactive transition metal originating from dust particles dissolution processes, with phenolic compounds , namely, guaiacol, syringol, catechol, o- and p- cresol that are known products of incomplete fuel and biomass combustion but also from other natural sources such as humic compounds degradation. We found that under acidic conditions comparable to those expected on a dust particle surface, phenolic compounds readily react with dissolved Fe(III), leading to the formation of insoluble polymeric compounds. We characterized the insoluble products by x-ray photoelectron microscopy, UV-Vis spectroscopy, mass spectrometry, elemental analysis and thermo-gravimetric analysis. We found that the major chromophores formed are oligomers (from dimers to pentamers) of the reaction precursors that efficiently absorb light between 300nm and 500nm. High variability of the mass absorption coefficient of the reaction products was observed with catechol and guaiacol showing high absorption at the 300-500nm range that is comparable to that of brown carbon (BrC) from biomass burning studies. The studied reaction is a potential source for the in-situ production of secondary BrC material under dark conditions. Our results suggest a reaction path for the formation of bio-available iron in coastal polluted areas where dust particles mix with biomass burning pollution plumes. Such mixing can occur, for instance in the coast of West Africa or North Africa during dust and biomass burning seasons
PARTITIONING TUNGSTEN BETWEEN MATRIX PRECURSORS AND CHONDRULE PRECURSORS THROUGH RELATIVE SETTLING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubbard, Alexander, E-mail: ahubbard@amnh.org
2016-08-01
Recent studies of chondrites have found a tungsten isotopic anomaly between chondrules and matrix. Given the refractory nature of tungsten, this implies that W was carried into the solar nebula by at least two distinct families of pre-solar grains. The observed chondrule/matrix split requires that the distinct families were kept separate during the dust coagulation process, and that the two families of grain interacted with the chondrule formation mechanism differently. We take the co-existence of different families of solids in the same general orbital region at the chondrule-precursor size as given, and explore the requirements for them to have interactedmore » with the chondrule formation process at significantly different rates. We show that this sorting of families of solids into chondrule- and matrix-destined dust had to have been at least as powerful a sorting mechanism as the relative settling of aerodynamically distinct grains at least two scale heights above the midplane. The requirement that the chondrule formation mechanism was correlated in some fashion with a dust-grain sorting mechanism argues strongly for spatially localized chondrule formation mechanisms such as turbulent dissipation in non-thermally ionized disk surface layers, and argues against volume-filling mechanisms such as planetesimal bow shocks.« less
The fundamentally different dynamics of dust and gas in molecular clouds
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.; Lee, Hyunseok
2016-03-01
We study the behaviour of large dust grains in turbulent molecular clouds (MCs). In primarily neutral regions, dust grains move as aerodynamic particles, not necessarily with the gas. We therefore directly simulate, for the first time, the behaviour of aerodynamic grains in highly supersonic, magnetohydrodynamic turbulence typical of MCs. We show that, under these conditions, grains with sizes a ≳ 0.01 micron exhibit dramatic (exceeding factor ˜1000) fluctuations in the local dust-to-gas ratio (implying large small-scale variations in abundances, dust cooling rates, and dynamics). The dust can form highly filamentary structures (which would be observed in both dust emission and extinction), which can be much thinner than the characteristic width of gas filaments. Sometimes, the dust and gas filaments are not even in the same location. The `clumping factor' < n_dust2 > / < n_dust > 2 of the dust (critical for dust growth/coagulation/shattering) can reach ˜100, for grains in the ideal size range. The dust clustering is maximized around scales ˜ 0.2 pc (a/μm) (ngas/100 cm- 3)- 1, and is `averaged out' on larger scales. However, because the density varies widely in supersonic turbulence, the dynamic range of scales (and interesting grain sizes) for these fluctuations is much broader than in the subsonic case. Our results are applicable to MCs of essentially all sizes and densities, but we note how Lorentz forces and other physics (neglected here) may change them in some regimes. We discuss the potentially dramatic consequences for star formation, dust growth and destruction, and dust-based observations of MCs.
Elongated dust particles growth in a spherical glow discharge in ethanol
NASA Astrophysics Data System (ADS)
Fedoseev, A. V.; Sukhinin, G. I.; Sakhapov, S. Z.; Zaikovskii, A. V.; Novopashin, S. A.
2018-01-01
The formation of elongated dust particles in a spherical dc glow discharge in ethanol was observed for the first time. Dust particles were formed in the process of coagulation of ethanol dissociation products in the plasma of gas discharge. During the process the particles were captured into clouds in the electric potential wells of strong striations of spherical discharge. The size and the shape of dust particles are easily detected by naked eye after the illumination of the laser sheet. The description of the experimental setup and conditions, the analysis of size, shape and composition of the particles, the explanation of spatial ordering and orientation of these particles are presented.
NASA Technical Reports Server (NTRS)
Kahre, Melinda A.; Hollingsworth, Jeffery
2012-01-01
The dust cycle is a critically important component of Mars' current climate system. Dust is present in the atmosphere of Mars year-round but the dust loading varies with season in a generally repeatable manner. Dust has a significant influence on the thermal structure of the atmosphere and thus greatly affects atmospheric circulation. The dust cycle is the most difficult of the three climate cycles (CO2, water, and dust) to model realistically with general circulation models. Until recently, numerical modeling investigations of the dust cycle have typically not included the effects of couplings to the water cycle through cloud formation. In the Martian atmosphere, dust particles likely provide the seed nuclei for heterogeneous nucleation of water ice clouds. As ice coats atmospheric dust grains, the newly formed cloud particles exhibit different physical and radiative characteristics. Thus, the coupling between the dust and water cycles likely affects the distributions of dust, water vapor and water ice, and thus atmospheric heating and cooling and the resulting circulations. We use the NASA Ames Mars GCM to investigate the effects of radiatively active water ice clouds on surface stress and the potential for dust lifting. The model includes a state-of-the-art water ice cloud microphysics package and a radiative transfer scheme that accounts for the radiative effects of CO2 gas, dust, and water ice clouds. We focus on simulations that are radiatively forced by a prescribed dust map, and we compare simulations that do and do not include radiatively active clouds. Preliminary results suggest that the magnitude and spatial patterns of surface stress (and thus dust lifting potential) are substantial influenced by the radiative effects of water ice clouds.
Radiative transfer and radiative driving of outflows in active galactic nuclei and starbursts
NASA Astrophysics Data System (ADS)
Novak, G. S.; Ostriker, J. P.; Ciotti, L.
2012-12-01
To facilitate the study of black hole fuelling, star formation and feedback in galaxies, we outline a method for treating the radial forces on interstellar gas due to absorption of photons by dust grains. The method gives the correct behaviour in all of the relevant limits [dominated by the central point source; dominated by the distributed isotropic source; optically thin; optically thick to ultraviolet (UV)/optical; optically thick to infrared (IR)] and reasonably interpolates between the limits when necessary. The method is explicitly energy conserving so that UV/optical photons that are absorbed are not lost, but are rather redistributed to the IR where they may scatter out of the galaxy. We implement the radiative transfer algorithm in a two-dimensional hydrodynamical code designed to study feedback processes in the context of early-type galaxies. We find that the dynamics and final state of simulations are measurably but only moderately affected by radiative forces on dust, even when assumptions about the dust-to-gas ratio are varied from zero to a value appropriate for the Milky Way. In simulations with high gas densities designed to mimic ultraluminous IR galaxies with a star formation rate of several hundred solar masses per year, dust makes a more substantial contribution to the dynamics and outcome of the simulation. We find that, despite the large opacity of dust to UV radiation, the momentum input to the flow from radiation very rarely exceeds L/c due to two factors: the low opacity of dust to the re-radiated IR and the tendency for dust to be destroyed by sputtering in hot gas environments. We also develop a simplification of our radiative transfer algorithm that respects the essential physics but is much easier to implement and requires a fraction of the computational cost.
Ishii, Hope A; Bradley, John P; Bechtel, Hans A; Brownlee, Donald E; Bustillo, Karen C; Ciston, James; Cuzzi, Jeffrey N; Floss, Christine; Joswiak, David J
2018-06-26
The solar system formed from interstellar dust and gas in a molecular cloud. Astronomical observations show that typical interstellar dust consists of amorphous ( a -) silicate and organic carbon. Bona fide physical samples for laboratory studies would yield unprecedented insight about solar system formation, but they were largely destroyed. The most likely repositories of surviving presolar dust are the least altered extraterrestrial materials, interplanetary dust particles (IDPs) with probable cometary origins. Cometary IDPs contain abundant submicron a- silicate grains called GEMS (glass with embedded metal and sulfides), believed to be carbon-free. Some have detectable isotopically anomalous a- silicate components from other stars, proving they are preserved dust inherited from the interstellar medium. However, it is debated whether the majority of GEMS predate the solar system or formed in the solar nebula by condensation of high-temperature (>1,300 K) gas. Here, we map IDP compositions with single nanometer-scale resolution and find that GEMS contain organic carbon. Mapping reveals two generations of grain aggregation, the key process in growth from dust grains to planetesimals, mediated by carbon. GEMS grains, some with a- silicate subgrains mantled by organic carbon, comprise the earliest generation of aggregates. These aggregates (and other grains) are encapsulated in lower-density organic carbon matrix, indicating a second generation of aggregation. Since this organic carbon thermally decomposes above ∼450 K, GEMS cannot have accreted in the hot solar nebula, and formed, instead, in the cold presolar molecular cloud and/or outer protoplanetary disk. We suggest that GEMS are consistent with surviving interstellar dust, condensed in situ, and cycled through multiple molecular clouds. Copyright © 2018 the Author(s). Published by PNAS.
NASA Astrophysics Data System (ADS)
Choudhary, Mangilal; Mukherjee, S.; Bandyopadhyay, P.
2018-02-01
In this paper, the collective dynamics of large aspect ratio dusty plasma is studied over a wide range of discharge parameters. An inductively coupled diffused plasma, which creates an electrostatic trap to confine the negatively charged grains, is used to form a large volume (or large aspect ratio) dusty plasma at low pressure. For introducing the dust grains into the potential well, a unique technique using secondary DC glow discharge plasma is employed. The dust dynamics is recorded in a two-dimension (2D) plane at a given axial location. The dust fluid exhibits wave-like behavior at low pressure (p < 0.06 mbar) and high rf power (P > 3 W). The mixed motion, waves and vortices, is observed at an intermediate gas pressure (p ˜ 0.08 mbar) and low power (P < 3 W). Above the threshold value of gas pressure (p > 0.1 mbar), the clockwise and anti-clockwise co-rotating vortex series are observed on edges of the dust cloud, whereas the particles in the central region show random motion. These vortices are only observed above the threshold width of the dust cloud. The occurrence of the co-rotating vortices is understood on the basis of the charge gradient of dust particles, which is orthogonal to the gravity. The charge gradient is a consequence of the plasma inhomogeneity from the central region to the outer edge of the dust fluid. Since a vortex has the characteristic size in the dissipative medium; therefore, a series of the co-rotating vortex on both sides of dusty plasma is observed. The experimental results on the vortex formation and its multiplicity are compared to an available theoretical model and are found to be in close agreement.
Submillimeter Observations of CLASH 2882 and the Evolution of Dust in this Galaxy
NASA Technical Reports Server (NTRS)
Dwek, Eli; Staguhn, Johannes; Arendt, Richard G; Kovacs, Attila; Decarli, Roberto; Egami, Eiichi; Michalowski, Michal J.; Rawle, Timothy D.; Toft, Sune; Walter, Fabian
2015-01-01
Two millimeter observations of the MACS J1149.6+2223 cluster have detected a source that was consistent with the location of the lensed MACS 1149-JD galaxy at z = 9.6. A positive identification would have rendered this galaxy as the youngest dust forming galaxy in the universe. Follow up observation with the AzTEC 1.1 mm camera and the IRAM NOrthern Extended Millimeter Array (NOEMA) at 1.3 mm have not confirmed this association. In this paper we show that the NOEMA observations associate the 2 mm source with [PCB2012] 2882,12 source number 2882 in the Cluster Lensing And Supernova survey with Hubble (CLASH) catalog of MACS J1149.6 +2223. This source, hereafter referred to as CLASH 2882, is a gravitationally lensed spiral galaxy at z = 0.99. We combine the Goddard IRAM Superconducting 2-Millimeter Observer (GISMO) 2 mm and NOEMA 1.3 mm fluxes with other (rest frame) UV to far-IR observations to construct the full spectral energy distribution of this galaxy, and derive its star formation history, and stellar and interstellar dust content. The current star formation rate of the galaxy is 54/mu/Solar Mass/yr, and its dust mass is about 5 × 10(exp 7)/mu Solar Mass, where mu is the lensing magnification factor for this source, which has a mean value of 2.7. The inferred dust mass is higher than the maximum dust mass that can be produced by core collapse supernovae and evolved AGB stars. As with many other star forming galaxies, most of the dust mass in CLASH 2882 must have been accreted in the dense phases of the interstellar medium.
Discovery of SiCSi in IRC +10216: A missing link between gas and dust carriers of Si–C bonds
Cernicharo, J.; McCarthy, M. C.; Gottlieb, C. A.; Agúndez, M.; Velilla Prieto, L.; Baraban, J. H.; Changala, P. B.; Guélin, M.; Kahane, C.; Martin-Drumel, M. A.; Patel, N. A.; Reilly, N. J.; Stanton, J. F.; Quintana-Lacaci, G.; Thorwirth, S.; Young, K. H.
2015-01-01
We report the discovery in space of a disilicon species, SiCSi, from observations between 80 and 350 GHz with the IRAM10 30m radio telescope. Owing to the close coordination between laboratory experiments and astrophysics, 112 lines have now been detected in the carbon-rich star CW Leo. The derived frequencies yield improved rotational and centrifugal distortion constants up to sixth order. From the line profiles and interferometric maps with the Submillimeter Array11, the bulk of the SiCSi emission arises from a region of 6″ in radius. The derived abundance is comparable to that of SiC2. As expected from chemical equilibrium calculations, SiCSi and SiC2 are the most abundant species harboring a Si–C bond in the dust formation zone and certainly both play a key role in the formation of SiC dust grains. PMID:26722621
Grain growth in Class I protostar Per-emb-50: a dust continuum analysis with NOEMA & SMA .
NASA Astrophysics Data System (ADS)
Agurto-Gangas, C.; Pineda, J. E.; Testi, L.; Caselli, P.; Szucs, L.; Tazzari, M.; Dunham, M.; Stephens, I. W.; Miotello, A.
A good understanding of when dust grains grow from sub-micrometer to millimeter sizes occurs is crucial for models of planet formation. This provides the first step towards the production of pebbles and planetesimals in protoplanetary disks. Thanks to detailed studies of the spectral index in Class II disks, it is well established that Class II objects have already dust grains of millimetres sizes, however, it is not clear when in the star formation process this grain growth occurs. Here, we present interferometric data from NOEMA at 3 mm and SMA at 1.3 mm of the Class I protostar, Per-emb-50, to determine the flux density spectral index at mm-wavelengths of the unresolved disk and the surrounding envelope. We find a spectral index in the unresolved disk 30% smaller than the envelope, alpha env=2.18, comparable to values obtained toward Class 0 sources.
Dust dynamics and diagnostic applications in quasi-neutral plasmas and magnetic fusion
NASA Astrophysics Data System (ADS)
Wang, Zhehui; Ticos, Catalin M.; Si, Jiahe; Delzanno, Gian Luca; Lapenta, Gianni; Wurden, Glen
2007-11-01
Little is known about dust dynamics in highly ionized quasi-neutral plasmas with ca. 1.0 e+20 per cubic meter density and ion temperature at a few eV and above, including in magnetic fusion. For example, dust motion in fusion, better known as UFO's, has been observed since 1980's but not explained. Solid understanding of dust dynamics is also important to International Thermonuclear Experimental Reactor (ITER) because of concerns about safety and dust contamination of fusion core. Compared with well studied strongly-coupled dusty plasma regime, new physics may arise in the higher density quasi-neutral plasma regime because of at least four orders of magnitude higher density and two orders of magnitude hotter ion temperature. Our recent laboratory experiments showed that plasma-flow drag force dominates over other forces in a quasi-neutral flowing plasma. In contrast, delicate balance among different forces in dusty plasma has led to many unique phenomena, in particular, the formation of dust crystal. Based on our experiments, we argue that 1) dust crystal will not form in the highly ionized plasmas with flows; 2) the UFO's are moving dust dragged by plasma flows; 3) dust can be used to measure plasma flow. Two diagnostic applications using dust for laboratory quasi-neutral plasmas and magnetic fusion will also be presented.
Gaston, Cassandra J; Pratt, Kerri A; Suski, Kaitlyn J; May, Nathaniel W; Gill, Thomas E; Prather, Kimberly A
2017-02-07
Playas emit large quantities of dust that can facilitate the activation of cloud droplets. Despite the potential importance of playa dusts for cloud formation, most climate models assume that all dust is nonhygroscopic; however, measurements are needed to clarify the role of dusts in aerosol-cloud interactions. Here, we report measurements of CCN activation from playa dusts and parameterize these results in terms of both κ-Köhler theory and adsorption activation theory for inclusion in atmospheric models. κ ranged from 0.002 ± 0.001 to 0.818 ± 0.094, whereas Frankel-Halsey-Hill (FHH) adsorption parameters of A FHH = 2.20 ± 0.60 and B FHH = 1.24 ± 0.14 described the water uptake properties of the dusts. Measurements made using aerosol time-of-flight mass spectrometry (ATOFMS) revealed the presence of halite, sodium sulfates, and sodium carbonates that were strongly correlated with κ underscoring the role that mineralogy, including salts, plays in water uptake by dust. Predictions of κ made using bulk chemical techniques generally showed good agreement with measured values. However, several samples were poorly predicted suggesting that chemical heterogeneities as a function of size or chemically distinct particle surfaces can determine the hygroscopicity of playa dusts. Our results further demonstrate the importance of dust in aerosol-cloud interactions.
Dust grains from the heart of supernovae
NASA Astrophysics Data System (ADS)
Bocchio, Marco; Marassi, Stefania; Schneider, Raffaella; Bianchi, Simone; Limongi, Marco; Chieffi, A.
2016-06-01
Dust grains are classically thought to form in the winds of asymptotic giant branch (AGB) stars. However, there is increasing evidence today for dust formation in supernovae (SNe). To establish the relative importance of these two classes of stellar sources of dust, it is important to know the fraction of freshly formed dust in SN ejecta that is able to survive the passage of the reverse shock and be injected in the interstellar medium. We have developed a new code (GRASH_Rev) which follows the newly-formed dust evolution throughout the supernova explosion until the merging of the forward shock with the circumstellar ISM. We have considered four well studied SNe in the Milky Way and Large Magellanic Cloud: SN1987A, CasA, the Crab Nebula, and N49. For all the simulated models, we find good agreement with observations and estimate that between 1 and 8% of the observed mass will survive, leading to a SN dust production rate of (3.9± 3.7)×10^(-4) MM_{⊙})/yr in the Milky Way. This value is one order of magnitude larger than the dust production rate by AGB stars but insufficient to counterbalance the dust destruction by SNe, therefore requiring dust accretion in the gas phase.
An auto-bias control scheme for IQ-modulator with various modulation formats
NASA Astrophysics Data System (ADS)
Zhang, Wenqi; Yuan, Xueguang; Zhang, Yang'an
2016-10-01
We propose and demonstrate an auto-bias control scheme for the IQ-modulator of a flexible optical PSK or QAM or other modulation formats transmitter in this paper. Due to IQ-modulators usually producing higher-order modulation format, these modulation formats involve phase mostly. It is based on that the bias drift will change the operating point and result in varying the output optical phase. This technology has no restrictions on modulation formats, so it has good flexibility. The experimental result show the three biases can be stabilized when the proposed scheme is implemented.
NASA Technical Reports Server (NTRS)
Guo, Yanjuan; Tian, Baijun; Kahn, Ralph A.; Kalashnikova, Olga; Wong, Sun; Waliser, Duane E.
2013-01-01
In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) fine mode fraction and Multi-angle Imaging SpectroRadiometer (MISR) nonspherical fraction data are used to derive dust and smoke aerosol optical thickness (T(sub dust) and T(sub smoke)) over the tropical Atlantic in a complementary way: due to its wider swath, MODIS has 3-4 times greater sampling than MISR, but MISR dust discrimination is based on particle shape retrievals, whereas an empirical scheme is used for MODIS. MODIS and MISR show very similar dust and smoke winter climatologies. T(sub dust) is the dominant aerosol component over the tropical Atlantic, accounting for 40-70 percent of the total aerosol optical thickness (AOT), whereas T(sub smoke) is significantly smaller than T(sub dust). The consistency and high correlation between these climatologies and their daily variations lends confidence to their use for investigating the relative dust and smoke contributions to the total AOT variation associated with the Madden-Julian Oscillation (MJO). The temporal evolution and spatial patterns of the tdus anomalies associated with the MJO are consistent between MODIS and MISR: the magnitude of MJO-realted T(sub dust) anomalies is comparable to or even larger than that of the total T, while the T(sub smoke) anomaly represents about 15 percent compared to the total, which is quite different from their relative magnitudes to the total T on the climatological time scale. This suggests that dust and smoke are not influenced by the MJO in the same way. Based on correlation analysis, dust is strongly influenced by the MJO-modulated trade wind and precipitation anomalies, and can last as long as one MJO phase, whereas smoke is less affected.
Numerical Prediction of Dust. Chapter 10
NASA Technical Reports Server (NTRS)
Benedetti, Angela; Baldasano, J. M.; Basart, S.; Benincasa, F.; Boucher, O.; Brooks, M.; Chen, J. P.; Colarco, P. R.; Gong, S.; Huneeus, N.;
2013-01-01
Covers the whole breadth of mineral dust research, from a scientific perspective Presents interdisciplinary work including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies Explores the role of dust as a player and recorder of environmental change This volume presents state-of-the-art research about mineral dust, including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies. Dust research is a new, dynamic and fast-growing area of science and due to its multiple roles in the Earth system, dust has become a fascinating topic for many scientific disciplines. Aspects of dust research covered in this book reach from timescales of minutes (as with dust devils, cloud processes, and radiation) to millennia (as with loess formation and oceanic sediments), making dust both a player and recorder of environmental change. The book is structured in four main parts that explore characteristics of dust, the global dust cycle, impacts of dust on the Earth system, and dust as a climate indicator. The chapters in these parts provide a comprehensive, detailed overview of this highly interdisciplinary subject. The contributions presented here cover dust from source to sink and describe all the processes dust particles undergo while travelling through the atmosphere. Chapters explore how dust is lifted and transported, how it affects radiation, clouds, regional circulations, precipitation and chemical processes in the atmosphere, and how it deteriorates air quality. The book explores how dust is removed from the atmosphere by gravitational settling, turbulence or precipitation, how iron contained in dust fertilizes terrestrial and marine ecosystems, and about the role that dust plays in human health. We learn how dust is observed, simulated using computer models and forecast. The book also details the role of dust deposits for climate reconstructions. Scientific observations and results are presented, along with numerous illustrations. This work has an interdisciplinary appeal and will engage scholars in geology, geography, chemistry, meteorology and physics, amongst others with an interest in the Earth system and environmental change.
Interaction of adhered metallic dust with transient plasma heat loads
NASA Astrophysics Data System (ADS)
Ratynskaia, S.; Tolias, P.; Bykov, I.; Rudakov, D.; De Angeli, M.; Vignitchouk, L.; Ripamonti, D.; Riva, G.; Bardin, S.; van der Meiden, H.; Vernimmen, J.; Bystrov, K.; De Temmerman, G.
2016-06-01
The first study of the interaction of metallic dust (tungsten, aluminum) adhered on tungsten substrates with transient plasma heat loads is presented. Experiments were carried out in the Pilot-PSI linear device with transient heat fluxes up to 550 MW m-2 and in the DIII-D divertor tokamak. The central role of the dust-substrate contact area in heat conduction is highlighted and confirmed by heat transfer simulations. The experiments provide evidence of the occurrence of wetting-induced coagulation, a novel growth mechanism where cluster melting accompanied by droplet wetting leads to the formation of larger grains. The physical processes behind this mechanism are elucidated. The remobilization activity of the newly formed dust and the survivability of tungsten dust on hot surfaces are documented and discussed in the light of implications for ITER.
Photophoretic Levitation and Trapping of Dust in the Inner Regions of Protoplanetary Disks
NASA Astrophysics Data System (ADS)
McNally, Colin P.; McClure, Melissa K.
2017-01-01
In protoplanetary disks, the differential gravity-driven settling of dust grains with respect to gas and with respect to grains of varying sizes determines the observability of grains, and sets the conditions for grain growth and eventually planet formation. In this work, we explore the effect of photophoresis on the settling of large dust grains in the inner regions of actively accreting protoplanetary disks. Photophoretic forces on dust grains result from the collision of gas molecules with differentially heated grains. We undertake one-dimensional dust settling calculations to determine the equilibrium vertical distribution of dust grains in each column of the disk. In the process we introduce a new treatment of the photophoresis force which is consistent at all optical depths with the representation of the radiative intensity field in a two-stream radiative transfer approximation. The levitation of large dust grains creates a photophoretic dust trap several scale heights above the mid-plane in the inner regions of the disk where the dissipation of accretion energy is significant. We find that differential settling of dust grains is radically altered in these regions of the disk, with large dust grains trapped in a layer below the stellar irradiation surface, where the dust to gas mass ratio can be enhanced by a factor of a hundred for the relevant particles. The photophoretic trapping effect has a strong dependence on particle size and porosity.
The Life Cycle of Dust in the Universe: Observations, Theory, and Laboratory Experiments
NASA Astrophysics Data System (ADS)
Kemper, Ciska; Andersen, Anja; Baes, Maarten; Gomez, Haley; Watson, Darach
This meeting addresses the life cycle of dust in the Universe, which covers the formation, evolution and destruction of dust in a range of environments, ranging from the smallest to the largest scales. Bringing together observational and theoretical astrophysicists as well as meteoriticists and experimentalists allows for a cross-disciplinary dialogue. The meeting follows a successful tradition of astrophysical dust meetings, starting in Albany in 1972, with the latest edition "Cosmic Dust: Near and Far" organized by Th. Henning taking place in Heidelberg in 2008. Since that meeting, the field of dust astrophysics has made major leaps forward with the host of data arriving from such missions as the infrared space telescopes Spitzer and Herschel, and the sample return mission, Stardust, which took dust samples from comet Wild-2. The largest telescope on Earth, ALMA, has also recently come online, allowing for investigations into the origin of dust in the Universe, making this is excellent time to review the status of the field of dust astrophysics. The meeting aims to create an environment in which all aspects of the life cycle of dust are discussed, from an astrophysical, chemical and mineralogical perspective, and its effect on a range of environments. Observational insights, theoretical models and experimental approaches all contribute to our view of the life cycle of dust, and the meeting addresses new developments and future projects in all these areas.
TEMPLATES: Targeting Extremely Magnified Panchromatic Lensed Arcs and Their Extended Star formation
NASA Astrophysics Data System (ADS)
Spilker, Justin; Rigby, Jane R.; Vieira, Joaquin D.; TEMPLATES Team
2018-06-01
TEMPLATES is a JWST Early Release Science program designed to produce high signal-to-noise imaging and IFU spectroscopic data cubes for four gravitationally lensed galaxies at high redshift. The program will spatially resolve the star formation in galaxies across the peak of cosmic star formation in an extinction-robust manner. Lensing magnification pushes JWST to the highest spatial resolutions possible at these redshifts, to map the key spectral diagnostics of star formation and dust extinction: H-alpha, Pa-alpha, and 3.3um PAH emission within individual distant galaxies. Our targets are among the brightest, best-characterized lensed systems known, and include both UV-bright 'normal' galaxies and heavily dust-obscured submillimeter galaxies, at a range of stellar masses and luminosities. I will describe the scientific motivation for this program, detail the targeted galaxies, and describe the planned data products to be delivered to the community in advance of JWST Cycle 2.
Short-term modulation of Indian summer monsoon rainfall by West Asian dust
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinoj, V.; Rasch, Philip J.; Wang, Hailong
The Indian summer monsoon is the result of a complex interplay between radiative heating, dynamics and cloud and aerosol interactions. Despite increased scientific attention, the effect of aerosols on monsoons still remains uncertain. Here we present both observational evidence and numerical modeling results demonstrating a remote aerosol link to Indian summer monsoon rainfall. Rainfall over central India is positively correlated to natural aerosols over the Arabian Sea and West Asia. Simulations using a state-of-the-art global climate model support this remote aerosol link and indicate that dust aerosols induce additional moisture transport and convergence over Central India, producing increased monsoon rainfall.more » The convergence is driven through solar heating and latent heating within clouds over West Asia that increases surface winds over the Arabian Sea. On the other hand, sea-salt aerosol tends to counteract the effect of dust and reduces rainfall. Our findings highlight the importance of natural aerosols in modulating the strength of the Indian summer monsoon, and motivate additional research in how changes in background aerosols of natural origin may be influencing long-term trends in monsoon precipitation.« less
Tong, Haijie; Lakey, Pascale S J; Arangio, Andrea M; Socorro, Joanna; Kampf, Christopher J; Berkemeier, Thomas; Brune, William H; Pöschl, Ulrich; Shiraiwa, Manabu
2017-08-24
Mineral dust and secondary organic aerosols (SOA) account for a major fraction of atmospheric particulate matter, affecting climate, air quality and public health. How mineral dust interacts with SOA to influence cloud chemistry and public health, however, is not well understood. Here, we investigated the formation of reactive oxygen species (ROS), which are key species of atmospheric and physiological chemistry, in aqueous mixtures of SOA and mineral dust by applying electron paramagnetic resonance (EPR) spectrometry in combination with a spin-trapping technique, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and a kinetic model. We found that substantial amounts of ROS including OH, superoxide as well as carbon- and oxygen-centred organic radicals can be formed in aqueous mixtures of isoprene, α-pinene, naphthalene SOA and various kinds of mineral dust (ripidolite, montmorillonite, kaolinite, palygorskite, and Saharan dust). The molar yields of total radicals were ∼0.02-0.5% at 295 K, which showed higher values at 310 K, upon 254 nm UV exposure, and under low pH (<3) conditions. ROS formation can be explained by the decomposition of organic hydroperoxides, which are a prominent fraction of SOA, through interactions with water and Fenton-like reactions with dissolved transition metal ions. Our findings imply that the chemical reactivity and aging of SOA particles can be enhanced upon interaction with mineral dust in deliquesced particles or cloud/fog droplets. SOA decomposition could be comparably important to the classical Fenton reaction of H 2 O 2 with Fe 2+ and that SOA can be the main source of OH radicals in aqueous droplets at low concentrations of H 2 O 2 and Fe 2+ . In the human respiratory tract, the inhalation and deposition of SOA and mineral dust can also lead to the release of ROS, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols in the Anthropocene.
An ALMA Survey of Protoplanetary Disks in the σ Orionis Cluster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ansdell, M.; Williams, J. P.; Marel, N. van der
2017-05-01
The σ Orionis cluster is important for studying protoplanetary disk evolution, as its intermediate age (∼3–5 Myr) is comparable to the median disk lifetime. We use ALMA to conduct a high-sensitivity survey of dust and gas in 92 protoplanetary disks around σ Orionis members with M {sub *} ≳ 0.1 M {sub ⊙}. Our observations cover the 1.33 mm continuum and several CO J = 2–1 lines: out of 92 sources, we detect 37 in the millimeter continuum and 6 in {sup 12}CO, 3 in {sup 13}CO, and none in C{sup 18}O. Using the continuum emission to estimate dust mass, we find only 11more » disks with M {sub dust} ≳ 10 M {sub ⊕}, indicating that after only a few Myr of evolution most disks lack sufficient dust to form giant planet cores. Stacking the individually undetected continuum sources limits their average dust mass to 5× lower than that of the faintest detected disk, supporting theoretical models that indicate rapid dissipation once disk clearing begins. Comparing the protoplanetary disk population in σ Orionis to those of other star-forming regions supports the steady decline in average dust mass and the steepening of the M {sub dust}– M {sub *} relation with age; studying these evolutionary trends can inform the relative importance of different disk processes during key eras of planet formation. External photoevaporation from the central O9 star is influencing disk evolution throughout the region: dust masses clearly decline with decreasing separation from the photoionizing source, and the handful of CO detections exist at projected separations of >1.5 pc. Collectively, our findings indicate that giant planet formation is inherently rare and/or well underway by a few Myr of age.« less
INVESTIGATING PLANET FORMATION IN CIRCUMSTELLAR DISKS: CARMA OBSERVATIONS OF RY Tau AND DG Tau
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isella, Andrea; Carpenter, John M.; Sargent, Anneila I., E-mail: isella@astro.caltech.ed
2010-05-10
We present CARMA observations of the thermal dust emission from the circumstellar disks around the young stars RY Tau and DG Tau at wavelengths of 1.3 mm and 2.8 mm. The angular resolution of the maps is as high as 0.''15, or 20 AU at the distance of the Taurus cloud, which is a factor of 2 higher than has been achieved to date at these wavelengths. The unprecedented detail of the resulting disk images enables us to address three important questions related to the formation of planets. (1) What is the radial distribution of the circumstellar dust? (2) Doesmore » the dust emission show any indication of gaps that might signify the presence of (proto-)planets? (3) Do the dust properties depend on the orbital radius? We find that modeling the disk surface density in terms of either a classical power law or the similarity solution for viscous disk evolution reproduces the observations well. Both models constrain the surface density between 15 and 50 AU to within 30% for a given dust opacity. Outside this range, the densities inferred from the two models differ by almost an order of magnitude. The 1.3 mm image from RY Tau shows two peaks separated by 0.''2 with a decline in the dust emission toward the stellar position, which is significant at about 2{sigma}-4{sigma}. For both RY Tau and DG Tau, the dust emission at radii larger than 15 AU displays no significant deviation from an unperturbed viscous disk model. In particular, no radial gaps in the dust distribution are detected. Under reasonable assumptions, we exclude the presence of planets more massive than 5 M{sub J} orbiting either star at distances between about 10 and 60 AU, unless such a planet is so young that there has been insufficient time to open a gap in the disk surface density. The radial variation of the dust opacity slope, {beta}, was investigated by comparing the 1.3 mm and 2.8 mm observations. We find mean values of {beta} of 0.5 and 0.7 for DG Tau and RY Tau, respectively. Variations in {beta} are smaller than {Delta}{beta} = 0.7 between 20 and 70 AU. These results confirm that the circumstellar dust throughout these disks differs significantly from dust in the interstellar medium.« less
Modeling of Lunar Dust Contamination Due to Plume Impingement
NASA Technical Reports Server (NTRS)
Woronowicz, Michael
2009-01-01
During the Apollo missions it became apparent that lunar dust was a significant hazard. Problems included: surface obscuration during landing sequence; abrasion damage to gouge faces and helmet visors; mechanism clogging; development of space suit pressurization leaks; loss of radiator heat rejection capabilities to the point where vulnerable equipment exceeded maximum survival temperature ratings; temporary vision and respiratory problems within the Apollo Lunar Module (LM). NASA Constellation Program features many system-level components, including the Altair Lunar Lander. Altair to endure longer periods at lunar surface conditions: Apollo LM, about three days; Altair, over seven months. Program managers interested in plume-generated dust transport onto thermal control surface radiators of the first Altair created by its own landing operations.
Integration of the Electrodynamic Dust Shield on a Lunar Habitat Demonstration Unit
NASA Technical Reports Server (NTRS)
Calle, C. I.; Immer, C. D.; Ferreira, J.; Hogue, M. D.; Chen, A.; Csonka, M. W.; VanSuetendael, N.; Snyder, S. J.
2010-01-01
NASA is developing a Habitat Demonstration Unit (HDU) to investigate the feasibility of lunar surface technologies and lunar ground operations. The HDU will define and validate lunar scenario architecture through field analog testing. It will contain a four-port vertical habitat module with docking demonstration capabilities. The Electrodynamic Oust Shield (EDS) is being incorporated into the HDU to demonstrate dust removal from a viewport and from a door prior to docking procedures. In this paper, we will describe our efforts to scale up the EDS to protect a viewport 20 cm in diameter. We will also describe the development of several 20 cm x 25 cm EDS patches to demonstrate dust removal from one of the HDU doors.
NASA Astrophysics Data System (ADS)
Burgarella, Denis; Ciesla, Laure; Boquien, Mederic; Buat, Veronique; Roehlly, Yannick
2015-09-01
The star formation rate density traces the formation of stars in the universe. To estimate the star formation rate of galaxies, we can use a wide range of star formation tracers: continuum measurements in most wavelength domains, lines, supernovae and GRBs... All of them have pros and cons. Most of the monochromatic tracers are hampered but the effects of dust. But, before being able to estimate the star formation rate, we first need to obtain a safe estimate to the dust attenuation. The advantage of the X-ray wavelength range is that we can consider it as free from the effect of dust. In this talk, we will estimate how many galaxies we could detect with ATHENA to obtain the star formation density. For this, I will use my recent Herschel paper where the total (UV + IR) star formation rate density was evaluated up to z ~ 4 and provide quantitative figures for what ATHENA will detect as a function of the redshift and the luminosity. ATHENA will need predictions that are in agreement with what we observe in the other wavelength ranges. I will present the code CIGALE (http://cigale.lam.fr). The new and public version of CIGALE (released in April 2015) allows to model the emission of galaxies from the far-ultraviolet to the radio and it can make prediction in any of these wavelength ranges. I will show how galaxy star formation rates can be estimated in a way that combines all the advantages of monochromatic tracers but not the caveats. It should be stressed that we can model the emission of AGNs in the FUV-to-FIR range using several models. Finally, I will explain why we seriously consider to extend CIGALE to the x-ray range to predict the X-ray emission of galaxies including any AGN.
Newly Formed Dust in the Core-Collapse Supernova Remnant E0102
NASA Astrophysics Data System (ADS)
Ludwig, Bethany; Sandstrom, Karin; Bolatto, Alberto
2018-01-01
The mechanism of interstellar dust formation is a matter of continuing debate. In the very early universe, some high redshift galaxies are observed to have a substantial amount of dust. This has led to the suggestion that core collapse supernovae must be the producers of much of the dust in the universe. However, most observed supernova remnants (SNRs) in the local universe have measured dust yields far below the necessary levels. Cassiopeia A and SN 1987A are exceptions--in these young remnants, Herschel Space Observatory observations found large quantities of newly-formed dust. In these two cases, the SNR is young enough that the reverse shock has not yet interacted with most of the newly formed dust. To study supernova dust production, we observe SNR 1E0102.2-7219, which is approximately 1000 years old with a reverse shock that has only reached into a small part of its ejecta making it an excellent candidate to search for newly formed dust that has not yet been destroyed by those shocks. Using Herschel data, we carefully model the background around the remnant to remove emission that is unrelated to the SNR. We then measure the mass, temperature, and chemical composition of the dust by fitting the spectral energy distribution. Our findings reveal a substantial amount of previously undetected cold dust in the remnant, suggesting that indeed core collapse supernovae may host substantial amounts of newly formed dust, at least prior to the passage of the reverse shock.
NASA Astrophysics Data System (ADS)
Centeno Delgado, Diana C.
In this study, the results of an observational analysis and a numerical analysis on the role of the Saharan Air Layer during tropical cyclogenesis (TC-genesis) are described. The observational analysis investigates the interaction of dust particles and lightning during the genesis stage of two developed cases (Hurricanes Helene 2006 and Julia 2010). The Weather Research and Forecasting (WRF) and WRF-Chemistry models were used to include and monitor the aerosols and chemical processes that affect TC-genesis. The numerical modeling involved two developed cases (Hurricanes Helene 2006 and Julia 2010) and two non-developed cases (Non-Developed 2011 and Non-Developed 2012). The Aerosol Optical Depth (AOD) and lightning analysis for Hurricane Helene 2006 demonstrated the time-lag connection through their positive contribution to TC-genesis. The observational analyses supported the fact that both systems developed under either strong or weak dust conditions. From the two cases, the location of strong versus weak dust outbreaks in association with lightning was essential interactions that impacted TC-genesis. Furthermore, including dust particles, chemical processes, and aerosol feedback in the simulations with WRF-CHEM provides results closer to observations than regular WRF. The model advantageously shows the location of the dust particles inside of the tropical system. Overall, the results from this study suggest that the SAL is not a determining factor that affects the formation of tropical cyclones.
Cox, N. L. J.; Pilleri, P.; Berné, O.; Cernicharo, J.; Joblin, C.
2015-01-01
Evolved stars are primary sources for the formation of polycyclic aromatic hydrocarbons (PAHs) and dust grains. Their circumstellar chemistry is usually designated as either oxygen-rich or carbon-rich, although dual-dust chemistry objects, whose infrared spectra reveal both silicate- and carbon-dust features, are also known. The exact origin and nature of this dual-dust chemistry is not yet understood. Spitzer-IRS mid-infrared spectroscopic imaging of the nearby, oxygen-rich planetary nebula NGC 6720 reveals the presence of the 11.3 μm aromatic (PAH) emission band. It is attributed to emission from neutral PAHs, since no band is observed in the 7–8 μm range. The spatial distribution of PAHs is found to closely follow that of the warm clumpy molecular hydrogen emission. Emission from both neutral PAHs and warm H2 is likely to arise from photo-dissociation regions associated with dense knots that are located within the main ring. The presence of PAHs together with the previously derived high abundance of free carbon (relative to CO) suggest that the local conditions in an oxygen-rich environment can also become conducive to in-situ formation of large carbonaceous molecules, such as PAHs, via a bottom-up chemical pathway. In this scenario, the same stellar source can enrich the interstellar medium with both oxygen-rich dust and large carbonaceous molecules. PMID:26924856
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardamone, Carolin N.; Megan Urry, C.; Brammer, Gabriel
2010-09-20
Using new, highly accurate photometric redshifts from the MUSYC medium-band survey in the Extended Chandra Deep Field-South (ECDF-S), we fit synthetic stellar population models to compare active galactic nucleus (AGN) host galaxies to inactive galaxies at 0.8 {<=} z {<=} 1.2. We find that AGN host galaxies are predominantly massive galaxies on the red sequence and in the green valley of the color-mass diagram. Because both passive and dusty galaxies can appear red in optical colors, we use rest-frame near-infrared colors to separate passively evolving stellar populations from galaxies that are reddened by dust. As with the overall galaxy population,more » {approx}25% of the 'red' AGN host galaxies and {approx}75% of the 'green' AGN host galaxies have colors consistent with young stellar populations reddened by dust. The dust-corrected rest-frame optical colors are the blue colors of star-forming galaxies, which imply that these AGN hosts are not passively aging to the red sequence. At z {approx} 1, AGN activity is roughly evenly split between two modes of black hole growth: the first in passively evolving host galaxies, which may be heating up the galaxy's gas and preventing future episodes of star formation, and the second in dust-reddened young galaxies, which may be ionizing the galaxy's interstellar medium and shutting down star formation.« less
NASA Astrophysics Data System (ADS)
Yu, H.; Chin, M.; Yuan, T.; Bian, H.; Remer, L. A.; Prospero, J. M.; Omar, A. H.; Winker, D. M.; Yang, Y.; Zhang, Y.; Zhang, Z.; Zhao, C.
2015-12-01
Massive dust emitted from Sahara desert is carried by trade winds across the tropical Atlantic Ocean, reaching the Amazon Rainforest and Caribbean Sea. Airborne dust degrades air quality and interacts with radiation and clouds. Dust falling to land and ocean adds essential nutrients that could increase the productivity of terrestrial and aquatic ecosystems and modulate the biogeochemical cycles and climate. The resultant climate change will feed back on the production of dust in Sahara desert and its subsequent transport and deposition. Understanding the connections among the remote ecosystems requires an accurate quantification of dust transport and deposition flux on large spatial and temporal scales, in which satellite remote sensing can play an important role. We provide the first multiyear satellite-based estimates of altitude-resolved across-Atlantic dust transport and deposition based on eight-year (2007-2014) record of aerosol three-dimensional distributions from the CALIPSO lidar. On a basis of the 8-year average, 179 Tg (million tons) of dust leaves the coast of North Africa and is transported across Atlantic Ocean, of which 102, 20, and 28 Tg of dust is deposited into the tropical Atlantic Ocean, Caribbean Sea, and Amazon Rainforest, respectively. The dust deposition adds 4.3 Tg of iron and 0.1 Tg of phosphorus to the tropical Atlantic Ocean and Caribbean Sea where the productivity of marine ecosystem depends on the availability of these nutrients. The 28 Tg of dust provides about 0.022 Tg of phosphorus to Amazon Rainforest yearly that replenishes the leak of this plant-essential nutrient by rains and flooding, suggesting an important role of Saharan dust in maintaining the productivity of Amazon rainforest on timescales of decades or centuries. We will also discuss seasonal and interannual variations of the dust transport and deposition, and comparisons of the CALIOP-based estimates with model simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khakhaleva-Li, Zimu; Gnedin, Nickolay Y., E-mail: zimu@uchicago.edu, E-mail: gnedin@fnal.gov
We compare the properties of stellar populations of model galaxies from the Cosmic Reionization On Computers (CROC) project with the exiting ultraviolet (UV) and IR data. Since CROC simulations do not follow cosmic dust directly, we adopt two variants of the dust-follows-metals ansatz to populate model galaxies with dust. Using the dust radiative transfer code Hyperion, we compute synthetic stellar spectra, UV continuum slopes, and IR fluxes for simulated galaxies. We find that the simulation results generally match observational measurements, but, perhaps, not in full detail. The differences seem to indicate that our adopted dust-follows-metals ansatzes are not fully sufficient.more » While the discrepancies with the exiting data are marginal, the future James Webb Space Telescope (JWST) data will be of much higher precision, rendering highly significant any tentative difference between theory and observations. It is, therefore, likely, that in order to fully utilize the precision of JWST observations, fully dynamical modeling of dust formation, evolution, and destruction may be required.« less
Velocity Distributions of Interplanetary Dust Derived from Astronomical Sky Spectra
NASA Astrophysics Data System (ADS)
Huestis, D. L.; Ali, S.; Cosby, P. C.; Slanger, T. G.
2001-11-01
Characterization of interplanetary dust is important for understanding the creation by accretion of planets and moons, the development of planetary atmospheres, and, potentially, for the initiation of prebiotic chemistry. The recent COBE mission has provided a profile in ecliptic coordinates of the distribution of interplanetary dust particles through their thermal infrared emission. Additional information about interplanetary dust can be extracted from its visible spectrum of scattered sunlight, called Zodiacal Light. Night sky spectra taken at large-aperture telescopes using high-resolution echelle spectrographs reveal Fraunhofer absorption features in the Zodiacal Light spectrum of scattered sunlight, a nuisance in subtraction from the spectrum of the extraterrestrial object under investigation. We are analyzing the intensity modulations and Doppler shifts of solar Fraunhofer absorption lines in the Zodiacal Light component of sky spectra, donated by collaborating astronomers using Keck/HIRES and other high-performance astronomical facilities. Our objectives include velocity distributions of interplanetary dust and improved separation of terrestrial and extraterrestrial sources in sky spectra. Participation of S. Ali was made possible by a grant from the NSF Physics Research Experiences for Undergraduates (REU) program.
Using Indium Tin Oxide To Mitigate Dust on Viewing Ports
NASA Technical Reports Server (NTRS)
2008-01-01
NASA plans to use a number of onboard viewing ports to measure lunar regolith in situ and to monitor robotic and human activities on the lunar or Martian surface. Because of the size and abundance of dust particles on these bodies, the potential for dust to occlude viewing ports and windows is high enough to threaten system lifetime and reliability, especially when activities rely on relaying video to either a habitat module or controllers on Earth. This project uses a technology being developed by KSC's Electrostatics and Surface Physics Laboratory to remove dust from windowlike surfaces. The technology applies an alternating electric potential to interlaced electrodes. In this application, we use indium tin oxide (ITO) to create various electrode patterns in order to determine the most reliable pattern for dust removal. This technology has application to systems where optical clarity is important. Specifically, this project considers the in situ resource utilization (ISRU) application of a viewing port for Raman spectroscopy, where the electrode pattern on glass would be coated with a scratch-resistant sapphire film (Al2O3).
Gas Cavities inside Dust Cavities in Disks Inferred from ALMA Observations
NASA Astrophysics Data System (ADS)
van der Marel, Nienke; van Dishoeck, Ewine F.; Bruderer, Simon; Pinilla, Paola; van Kempen, Tim; Perez, Laura; Isella, Andrea
2016-01-01
Protoplanetary disks with cavities in their dust distribution, also named transitional disks, are expected to be in the middle of active evolution and possibly planet formation. In recent years, millimeter-dust rings observed by ALMA have been suggested to have their origin in dust traps, caused by pressure bumps. One of the ways to generate these is by the presence of planets, which lower the gas density along their orbit and create pressure bumps at the edge. We present spatially resolved ALMA Cycle 0 and Cycle 1 observations of CO and CO isotopologues of several famous transitional disks. Gas is found to be present inside the dust cavities, but at a reduced level compared with the gas surface density profile of the outer disk. The dust and gas emission are quantified using the physical-chemical modeling code DALI. In the majority of these disks we find clear evidence for a drop in gas density of at least a factor of 10 inside the cavity, whereas the dust density drops by at least a factor 1000. The CO isotopologue observations reveal that the gas cavities are significantly smaller than the dust cavities. These gas structures suggest clearing by one or more planetary-mass companions.
Monte Carlo simulation to investigate the formation of molecular hydrogen and its deuterated forms
NASA Astrophysics Data System (ADS)
Sahu, Dipen; Das, Ankan; Majumdar, Liton; Chakrabarti, Sandip K.
2015-07-01
H2 is the most abundant interstellar species, and its deuterated forms (HD and D2) are also present in high abundance. The high abundance of these molecules could be explained by considering the chemistry that occurs on interstellar dust. Because of its simplicity, the rate equation method is widely used to study the formation of grain-surface species. However, because the recombination efficiency for the formation of any surface species is highly dependent on various physical and chemical parameters, the Monte Carlo method is best suited for addressing the randomness of the processes. We perform Monte Carlo simulations to study the formation of H2, HD and D2 on interstellar ice. The adsorption energies of surface species are the key inputs for the formation of any species on interstellar dusts, but the binding energies of deuterated species have yet to be determined with certainty. A zero-point energy correction exists between hydrogenated and deuterated species, which should be considered during modeling of the chemistry on interstellar dusts. Following some previous studies, we consider various sets of adsorption energies to investigate the formation of these species under diverse physical conditions. As expected, notable differences in these two approaches (rate equation method and Monte Carlo method) are observed for the production of these simple molecules on interstellar ice. We introduce two factors, namely, Sf and β , to explain these discrepancies: Sf is a scaling factor, which can be used to correlate the discrepancies between the rate equation and Monte Carlo methods, and β indicates the formation efficiency under various conditions. Higher values of β indicate a lower production efficiency. We observed that β increases with a decrease in the rate of accretion from the gas phase to the grain phase.
Do Lyman-alpha photons escape from star-forming galaxies through dust-holes?
NASA Astrophysics Data System (ADS)
Wofford, Aida
2012-10-01
The hydrogen Lyman-alpha line is arguably the most important signature of galaxies undergoing their first violent burst of star formation. Although Lya photons are easily destroyed by dust, candidate Lya emitters have been detected at z>5. Thus the line can potentially be used to probe galaxy formation and evolution, as long as the astrophysical processes that regulate the escape of Lya photons from star-forming galaxies are well understood.We request 15 orbits for imaging in Lya and the FUV continuum with ACS/SBC, and in the H-beta/H-alpha ratio {proxy for dust extinction} with WFC3/UVIS, a sample of isolated non-AGN face-on spirals for which our team previously obtained and analyzed COS FUV spectroscopy of the central regions. Each target shows a different Lya profile, i.e., pure absorption, P-Cygni like, and multiple-emission. From the COS data, we already know the starburst phase and H I gas velocity. The images would greatly increase the impact of our spectroscopic study by enabling us to 1} conclusively determine if Lya photons escape through dust-holes, 2} assess the relative importance of dust extinction, ISM kinematics, and starburst phase in regulating the Lya escape, 3} clarify what we can really learn from the Lya equivalent width, and 4} provide constraints on the dust extinction to Lya 3D radiative transfer models. Ultimately this program will inform our understanding of the Lya escape at high redshift by providing spatially resolved views of the local conditions within star-forming galaxies that favor escape.
NASA Astrophysics Data System (ADS)
Liu, Qingyang; Bei, Yiling
2016-03-01
Trimethylamine (TMA) enters the atmosphere from a variety of sources and is a ubiquitous atmospheric organic base. The atmospheric reaction mechanism of TMA with key atmospheric oxidants is important to predict its distribution and environmental behavior in the particle phase. While previous studies have extensively focused on the production of particle amine salts (i.e. trimethylamine-N-oxide (TMAO)) using chamber experiments, the atmospheric behavior of TMAO in the environment is still poorly understood. Ambient fine particulate matter (PM2.5) was collected at two sampling sites in Beijing from March 10 to May 10, 2012. We analyzed the samples for water-soluble ions, crystal metals, TMA, and TMAO. Water-soluble ions (e.g. SO42-, NO3- , NH4+), TMA, and TMAO were measured using ion chromatography, while crystal metal (e.g. Al, Fe, Mn) in PM2.5 was quantified by inductively coupled plasma mass spectrometry (ICP-MS). Two dust storms (DS) occurred during the sampling period on March 28 and April 28. Mineral dust impacted PM2.5 mass and composition greatly during dust storm days, as it contributed approximately 1.2-4.0 times greater on dust storm days versus non-dust storm days. We found TMAO concentrations were highly associated with aluminum in PM2.5. Further, we applied the density functional theory (DFT) method to confirm that aluminum plays a catalytic effect in the reaction of TMA with ozone (O3). Our work improves understanding of the effect of crystal metals on secondary aliphatic amine aerosol formation in the atmosphere.
Dust temperature distributions in star-forming condensations
NASA Technical Reports Server (NTRS)
Xie, Taoling; Goldsmith, Paul F.; Snell, Ronald L.; Zhou, Weimin
1993-01-01
The FIR spectra of the central IR condensations in the dense cores of molecular clouds AFGL 2591. B335, L1551, Mon R2, and Sgr B2 are reanalyzed here in terms of the distribution of dust mass as a function of temperature. FIR spectra of these objects can be characterized reasonably well by a given functional form. The general shapes of the dust temperature distributions of these objects are similar and closely resemble the theoretical computations of de Muizon and Rouan (1985) for a sample of 'hot centered' clouds with active star formation. Specifically, the model yields a 'cutoff' temperature below which essentially no dust is needed to interpret the dust emission spectra, and most of the dust mass is distributed in a broad temperature range of a few tens of degrees above the cutoff temperature. Mass, luminosity, average temperature, and column density are obtained, and it is found that the physical quantities differ considerably from source to source in a meaningful way.
NASA Astrophysics Data System (ADS)
Gul-e-Ali, Masood, W.; Mirza, Arshad M.
2017-12-01
The shear flow in dust dynamics driven waves in combination with the dust-neutral drag is studied in a plasma comprising of ions, electrons, and dust. Non-thermal population of ions is considered, which has been observed by many satellite missions. It is found that the dissipative instability produced by dust sheared flow and dust-neutral drag gets modified by the presence of nonthermal ions. It is found that the dissipative instability enhances for the Cairns distribution, whereas the kappa distribution arrests the growth of this instability. In the nonlinear regime, the formation of vortices in the system is studied. It is found that the nonthermal population of ions significantly alters these structures in comparison with their Maxwellian counterpart. The results obtained in this paper may have relevance in the planetary magnetospheres where the dust particles are present and non-Maxwellian distribution of particles have been observed by Freja and Viking satellites.
DUST CAPTURE AND LONG-LIVED DENSITY ENHANCEMENTS TRIGGERED BY VORTICES IN 2D PROTOPLANETARY DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surville, Clément; Mayer, Lucio; Lin, Douglas N. C., E-mail: clement.surville@physik.uzh.ch
We study dust capture by vortices and its long-term consequences in global two-fluid inviscid disk simulations using a new polar grid code RoSSBi. We perform the longest integrations so far, several hundred disk orbits, at the highest resolution attainable in global disk simulations with dust, namely, 2048 × 4096 grid points. We vary a wide range of dust parameters, most notably the initial dust-to-gas ratio ϵ varies in the range of 10{sup −4}–10{sup −2}. Irrespective of the value of ϵ , we find rapid concentration of the dust inside vortices, reaching dust-to-gas ratios of the order of unity inside themore » vortex. We present an analytical model that describes this dust capture process very well, finding consistent results for all dust parameters. A vortex streaming instability develops, which invariably causes vortex destruction. After vortex dissipation large-scale dust rings encompassing a disk annulus form in most cases, which sustain very high dust concentration, approaching ratios of the order of unity; they persist as long as the duration of the simulations. They are sustained by a streaming instability, which manifests itself in high-density dust clumps at various scales. When vortices are particularly long-lived, rings do not form but dust clumps inside vortices can survive a long time and would likely undergo collapse by gravitational instability. Rings encompass almost an Earth mass of solid material, while even larger masses of dust do accumulate inside vortices in the earlier stage. We argue that rapid planetesimal formation would occur in the dust clumps inside the vortices as well as in the post-vortex rings.« less
Dust Capture and Long-lived Density Enhancements Triggered by Vortices in 2D Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Surville, Clément; Mayer, Lucio; Lin, Douglas N. C.
2016-11-01
We study dust capture by vortices and its long-term consequences in global two-fluid inviscid disk simulations using a new polar grid code RoSSBi. We perform the longest integrations so far, several hundred disk orbits, at the highest resolution attainable in global disk simulations with dust, namely, 2048 × 4096 grid points. We vary a wide range of dust parameters, most notably the initial dust-to-gas ratio ɛ varies in the range of 10-4-10-2. Irrespective of the value of ɛ, we find rapid concentration of the dust inside vortices, reaching dust-to-gas ratios of the order of unity inside the vortex. We present an analytical model that describes this dust capture process very well, finding consistent results for all dust parameters. A vortex streaming instability develops, which invariably causes vortex destruction. After vortex dissipation large-scale dust rings encompassing a disk annulus form in most cases, which sustain very high dust concentration, approaching ratios of the order of unity they persist as long as the duration of the simulations. They are sustained by a streaming instability, which manifests itself in high-density dust clumps at various scales. When vortices are particularly long-lived, rings do not form but dust clumps inside vortices can survive a long time and would likely undergo collapse by gravitational instability. Rings encompass almost an Earth mass of solid material, while even larger masses of dust do accumulate inside vortices in the earlier stage. We argue that rapid planetesimal formation would occur in the dust clumps inside the vortices as well as in the post-vortex rings.
Properties and Expected Number Counts of Active Galactic Nuclei and Their Hosts in the Far-infrared
NASA Astrophysics Data System (ADS)
Draper, A. R.; Ballantyne, D. R.
2011-03-01
Telescopes like Herschel and the Atacama Large Millimeter/submillimeter Array (ALMA) are creating new opportunities to study sources in the far-infrared (FIR), a wavelength region dominated by cold dust emission. Probing cold dust in active galaxies allows for study of the star formation history of active galactic nucleus (AGN) hosts. The FIR is also an important spectral region for observing AGNs which are heavily enshrouded by dust, such as Compton thick (CT) AGNs. By using information from deep X-ray surveys and cosmic X-ray background synthesis models, we compute Cloudy photoionization simulations which are used to predict the spectral energy distribution (SED) of AGNs in the FIR. Expected differential number counts of AGNs and their host galaxies are calculated in the Herschel bands. The expected contribution of AGNs and their hosts to the cosmic infrared background (CIRB) and the infrared luminosity density are also computed. Multiple star formation scenarios are investigated using a modified blackbody star formation SED. It is found that FIR observations at ~500 μm are an excellent tool in determining the star formation history of AGN hosts. Additionally, the AGN contribution to the CIRB can be used to determine whether star formation in AGN hosts evolves differently than in normal galaxies. The contribution of CT AGNs to the bright end differential number counts and to the bright source infrared luminosity density is a good test of AGN evolution models where quasars are triggered by major mergers.
Wide-field SCUBA-2 observations of NGC 2264: submillimetre clumps and filaments
NASA Astrophysics Data System (ADS)
Buckle, J. V.; Richer, J. S.
2015-10-01
We present wide-field observations of the NGC 2264 molecular cloud in the dust continuum at 850 and 450 μm using SCUBA-2 on the James Clerk Maxwell Telescope. Using 12CO 3 → 2 molecular line data, we determine that emission from CO contaminates the 850 μm emission at levels ˜30 per cent in localized regions associated with high-velocity molecular outflows. Much higher contamination levels of 60 per cent are seen in shocked regions near the massive star S Mon. If not removed, the levels of CO contamination would contribute an extra 13 per cent to the dust mass in NGC 2264. We use the FELLWALKER routine to decompose the dust into clumpy structures, and a Hessian-based routine to decompose the dust into filamentary structures. The filaments can be described as a hub-filament structure, with lower column density filaments radiating from the NGC 2264 C protocluster hub. Above mean filament column densities of 2.4 × 1022 cm-2, star formation proceeds with the formation of two or more protostars. Below these column densities, filaments are starless, or contain only a single protostar.
Dusty plasmas in the lunar exosphere: Effects of meteoroids
NASA Astrophysics Data System (ADS)
Popel, S. I.; Golub', A. P.; Zelenyi, L. M.; Horányi, M.
2018-01-01
A possibility of the formation in the lunar exosphere of dust cloud due to meteoroid impacts onto the lunar surface is studied. The main attention is paid to the high altitudes over the lunar surface including the range of the altitudes between 30 and 110 km where the measurements of dust were performed within the NASA LADEE mission. From the viewpoint of the formation of dust cloud at high altitudes over the Moon, the most important zone formed by the meteoroid impact is the zone of melting of substance. Only the droplets originated from this zone have the speeds between the first and second astronautical velocities (for the Moon). Correspondingly, only such droplets can perform finite movement around the Moon. The liquid droplets harden when rising over the lunar surface. Furthermore, they aquire electric charges due to the action, in particular, of the solar wind electrons and ions, as well as of the solar radiation. Thus dusty plasmas exist in the lunar exosphere with the characteristic number density ≲ 10-2 m-3 of dust particles with the sizes from 300 nm to 1 μm which is in accordance with the results of measurements performed by LADEE.
Complex molecules in Sagittarius B2(N): The importance of grain chemistry
NASA Technical Reports Server (NTRS)
Miao, Yanti; Mehringer, David M.; Kuan, Yi-Jheng; Snyder, Lewis E.
1995-01-01
The complex molecules vinyl cyanide (CH2CHCN), methyl formate (HCOOCH3), and ethyl cyanide (CH3CH2CN) were observed in the Sgr B2 star-forming region with the BIMA millimeter wavelength array. A region with diameter less than 0.1 pc toward the Sgr B2(N) molecular core is found to be the major source of these molecules. Also, this source is coincident with continuum emission from dust and a center of H2O maser activity. Ultracompact (UC) H 11 regions are located within 0.1 pc. Strikingly, none of these molecules is detected toward Sgr B2(M), a core located 1 minute south of Sgr B2(N). The existence of complex molecules, a large mass of dust, high-velocity H2O masers, and UC H 11 regions strongly suggests that the Sgr B2(N) region has just begun to form stars, while the absence of strong dust emission and large molecules suggests Sgr B2(M) is more evolved. The detection of large molecules coincident with continuum emission from dust supports the idea found in current chemical models that grain chemistry is of crucial importance for the formation of these molecules.
Early dust formation and a massive progenitor for SN 2011ja?
NASA Astrophysics Data System (ADS)
Andrews, J. E.; Krafton, Kelsie M.; Clayton, Geoffrey C.; Montiel, E.; Wesson, R.; Sugerman, Ben E. K.; Barlow, M. J.; Matsuura, M.; Drass, H.
2016-04-01
SN 2011ja was a bright (I = -18.3) Type II supernova occurring in the nearby edge on spiral galaxy NGC 4945. Flat-topped and multipeaked H α and H β spectral emission lines appear between 64 and 84 d post-explosion, indicating interaction with a disc-like circumstellar medium inclined ˜45° from edge-on. After day 84, an increase in the H- and K-band flux along with heavy attenuation of the red wing of the emission lines are strong indications of early dust formation, likely located in the cool dense shell created between the forward shock of the SN ejecta and the reverse shock created as the ejecta plows into the existing circumstellar material. Radiative transfer modelling reveals both ≈1 × 10-5 M⊙ of pre-existing dust located ˜1016.7 cm away and up to ≈6 × 10-4 M⊙ of newly formed dust. Spectral observations after 1.5 yr reveal the possibility that the fading SN is located within a young (3-6 Myr) massive stellar cluster, which when combined with tentative 56Ni mass estimates of 0.2 M⊙ may indicate a massive (≥25 M⊙) progenitor for SN 2011ja.
Impact of dust deposition on the albedo of Vatnajökull ice cap, Iceland
NASA Astrophysics Data System (ADS)
Wittmann, Monika; Dorothea Groot Zwaaftink, Christine; Steffensen Schmidt, Louise; Guðmundsson, Sverrir; Pálsson, Finnur; Arnalds, Olafur; Björnsson, Helgi; Thorsteinsson, Throstur; Stohl, Andreas
2017-03-01
Deposition of small amounts of airborne dust on glaciers causes positive radiative forcing and enhanced melting due to the reduction of surface albedo. To study the effects of dust deposition on the mass balance of Brúarjökull, an outlet glacier of the largest ice cap in Iceland, Vatnajökull, a study of dust deposition events in the year 2012 was carried out. The dust-mobilisation module FLEXDUST was used to calculate spatio-temporally resolved dust emissions from Iceland and the dispersion model FLEXPART was used to simulate atmospheric dust dispersion and deposition. We used albedo measurements at two automatic weather stations on Brúarjökull to evaluate the dust impacts. Both stations are situated in the accumulation area of the glacier, but the lower station is close to the equilibrium line. For this site ( ˜ 1210 m a.s.l.), the dispersion model produced 10 major dust deposition events and a total annual deposition of 20.5 g m-2. At the station located higher on the glacier ( ˜ 1525 m a.s.l.), the model produced nine dust events, with one single event causing ˜ 5 g m-2 of dust deposition and a total deposition of ˜ 10 g m-2 yr-1. The main dust source was found to be the Dyngjusandur floodplain north of Vatnajökull; northerly winds prevailed 80 % of the time at the lower station when dust events occurred. In all of the simulated dust events, a corresponding albedo drop was observed at the weather stations. The influence of the dust on the albedo was estimated using the regional climate model HIRHAM5 to simulate the albedo of a clean glacier surface without dust. By comparing the measured albedo to the modelled albedo, we determine the influence of dust events on the snow albedo and the surface energy balance. We estimate that the dust deposition caused an additional 1.1 m w.e. (water equivalent) of snowmelt (or 42 % of the 2.8 m w.e. total melt) compared to a hypothetical clean glacier surface at the lower station, and 0.6 m w.e. more melt (or 38 % of the 1.6 m w.e. melt in total) at the station located further upglacier. Our findings show that dust has a strong influence on the mass balance of glaciers in Iceland.
Dust-acoustic shock waves in a dusty plasma with non-thermal ions and super-thermal electrons
NASA Astrophysics Data System (ADS)
Emamuddin, M.; Mamun, A. A.
2018-01-01
The propagation of dust-acoustic shock waves (DASWs) in a collisionless unmagnetized dusty plasma (containing super-thermal electrons of two distinct temperatures, non-thermal ions, and a negatively charged viscous dust fluid) has been theoretically investigated by deriving and solving the nonlinear Burgers' equation. It has been observed that the viscous force acting on the dust fluid is a source of dissipation, and is responsible for the formation of DASWs, and that the basic features (viz., amplitude, polarity, width, etc.) of the DASWs are significantly modified by the presence of super-thermal electrons and non-thermal ions. The possible applications of this investigation in Earth's mesosphere, the solar atmosphere, Saturn's magnetosphere, etc., have also been briefly addressed.
Impacts of Cosmic Dust on Planetary Atmospheres and Surfaces
NASA Astrophysics Data System (ADS)
Plane, John M. C.; Flynn, George J.; Määttänen, Anni; Moores, John E.; Poppe, Andrew R.; Carrillo-Sanchez, Juan Diego; Listowski, Constantino
2018-02-01
Recent advances in interplanetary dust modelling provide much improved estimates of the fluxes of cosmic dust particles into planetary (and lunar) atmospheres throughout the solar system. Combining the dust particle size and velocity distributions with new chemical ablation models enables the injection rates of individual elements to be predicted as a function of location and time. This information is essential for understanding a variety of atmospheric impacts, including: the formation of layers of metal atoms and ions; meteoric smoke particles and ice cloud nucleation; perturbations to atmospheric gas-phase chemistry; and the effects of the surface deposition of micrometeorites and cosmic spherules. There is discussion of impacts on all the planets, as well as on Pluto, Triton and Titan.
High particulate iron(II) content in glacially sourced dusts enhances productivity of a model diatom
Shoenfelt, Elizabeth M.; Sun, Jing; Winckler, Gisela; Kaplan, Michael R.; Borunda, Alejandra L.; Farrell, Kayla R.; Moreno, Patricio I.; Gaiero, Diego M.; Recasens, Cristina; Sambrotto, Raymond N.; Bostick, Benjamin C.
2017-01-01
Little is known about the bioavailability of iron (Fe) in natural dusts and the impact of dust mineralogy on Fe utilization by photosynthetic organisms. Variation in the supply of bioavailable Fe to the ocean has the potential to influence the global carbon cycle by modulating primary production in the Southern Ocean. Much of the dust deposited across the Southern Ocean is sourced from South America, particularly Patagonia, where the waxing and waning of past and present glaciers generate fresh glaciogenic material that contrasts with aged and chemically weathered nonglaciogenic sediments. We show that these two potential sources of modern-day dust are mineralogically distinct, where glaciogenic dust sources contain mostly Fe(II)-rich primary silicate minerals, and nearby nonglaciogenic dust sources contain mostly Fe(III)-rich oxyhydroxide and Fe(III) silicate weathering products. In laboratory culture experiments, Phaeodactylum tricornutum, a well-studied coastal model diatom, grows more rapidly, and with higher photosynthetic efficiency, with input of glaciogenic particulates compared to that of nonglaciogenic particulates due to these differences in Fe mineralogy. Monod nutrient accessibility models fit to our data suggest that particulate Fe(II) content, rather than abiotic solubility, controls the Fe bioavailability in our Fe fertilization experiments. Thus, it is possible for this diatom to access particulate Fe in dusts by another mechanism besides uptake of unchelated Fe (Fe′) dissolved from particles into the bulk solution. If this capability is widespread in the Southern Ocean, then dusts deposited to the Southern Ocean in cold glacial periods are likely more bioavailable than those deposited in warm interglacial periods. PMID:28691098
NASA Astrophysics Data System (ADS)
Lombaert, Robin
2013-12-01
Low-to-intermediate mass stars end their life on the asymptotic giant branch (AGB), an evolutionary phase in which the star sheds most of its mantle into the circumstellar environment through a stellar wind. This stellar wind expands at relatively low velocities and enriches the interstellar medium with elements newly made in the stellar interior. The physical processes controlling the gas and dust chemistry in the outflow, as well as the driving mechanism of the wind itself, are poorly understood and constitute the broader context of this thesis work. In a first chapter, we consider the thermodynamics of the high-density wind of the oxygen-rich star oh, using observations obtained with the PACS instrument onboard the Herschel Space Telescope. Being one of the most abundant molecules, water vapor can be dominant in the energy balance of the inner wind of these types of stars, but to date, its cooling contribution is poorly understood. We aim to improve the constraints on water properties by careful combination of both dust and gas radiative-transfer models. This unified treatment is needed due to the high sensitivity of water excitation to dust properties. A combination of three types of diagnostics reveals a positive radial gradient of the dust-to-gas ratio in oh. The second chapter deals with the dust chemistry of carbon-rich winds. The 30-mic dust emission feature is commonly identified as due to magnesium sulfide (MgS). However, the lack of short-wavelength measurements of the optical properties of this dust species prohibits the determination of the temperature profile of MgS, and hence its feature strength and shape, questioning whether this species is responsible for the 30-mic feature. By considering the very optically thick wind of the extreme carbon star LL Peg, this problem can be circumvented because in this case the short-wavelength optical properties are not important for the radial temperature distribution. We attribute the 30-mic feature to MgS, but require that the dust species is embedded in a heterogeneous composite grain structure together with carbonaceous compounds. The final chapter considers the circumstellar gas chemistry of carbon-rich AGB stars. The recent discovery of warm water vapor in carbon-rich winds challenges our understanding of chemical processes ongoing in the wind. Two mechanisms for producing warm water were proposed: water formation induced by interstellar ultraviolet photons penetrating into the inner region of a clumpy wind, and water formation induced by shocks passing through the atmospheric and inner-wind molecular gas. A sample of eighteen carbon-rich AGB stars has been observed with the Herschel Space Telescope and offers insights into the dependence of water properties on the stellar and circumstellar conditions. We suggest that both proposed water formation mechanisms must be at work to account for the following findings: 1) warm water is present in all observed carbon stars; 2) water formation efficiency decreases with higher circumstellar column density; 3) water properties strongly depend on the variability characteristics of the AGB stars; and 4) a positive water abundance gradient is present up to at most ˜ 50 rstar in individual stars.
Nonequilibrium iron oxide formation in some low-mass post-asymptotic giant branch stars
NASA Technical Reports Server (NTRS)
Rietmeijer, Frans J. M.
1992-01-01
Using experimental evidence that under highly oxidizing conditions gamma-Fe2O3 (maghemite) and Fe3O4 display refractory behavior, it is proposed that very low C/O ratios, that could be unique to evolving AGB stars, induce nonequilibrium formation of ferromagnetic iron oxide grains along with chondritic dust. The oxides are preferentially fractionated from chondritic dust in the stellar magnetic field which could account for the observed extreme iron underabundance in their photosphere. A search for the 1-2.5-micron IR absorption feature, or for diagnostic magnetite and maghemite IR absorption features, could show the validity of the model proposed.
Astrophysics with Extraterrestrial Materials
NASA Astrophysics Data System (ADS)
Nittler, Larry R.; Ciesla, Fred
2016-09-01
Extraterrestrial materials, including meteorites, interplanetary dust, and spacecraft-returned asteroidal and cometary samples, provide a record of the starting materials and early evolution of the Solar System. We review how laboratory analyses of these materials provide unique information, complementary to astronomical observations, about a wide variety of stellar, interstellar and protoplanetary processes. Presolar stardust grains retain the isotopic compositions of their stellar sources, mainly asymptotic giant branch stars and Type II supernovae. They serve as direct probes of nucleosynthetic and dust formation processes in stars, galactic chemical evolution, and interstellar dust processing. Extinct radioactivities suggest that the Sun's birth environment was decoupled from average galactic nucleosynthesis for some tens to hundreds of Myr but was enriched in short-lived isotopes from massive stellar winds or explosions shortly before or during formation of the Solar System. Radiometric dating of meteorite components tells us about the timing and duration over which solar nebula solids were assembled into the building blocks of the planets. Components of the most primitive meteoritical materials provide further detailed constraints on the formation, processing, and transport of material and associated timescales in the Sun's protoplanetary disk as well as in other forming planetary systems.
Pits Formation from Volatile Outgassing on 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Mousis, O.; Guilbert-Lepoutre, A.; Brugger, B.; Jorda, L.; Kargel, J. S.; Bouquet, A.; Auger, A.-T.; Lamy, P.; Vernazza, P.; Thomas, N.; Sierks, H.
2015-11-01
We investigate the thermal evolution of comet 67P/Churyumov-Gerasimenko’s subsurface in the Seth_01 region, where active pits have been observed by the ESA/Rosetta mission. Our simulations show that clathrate destabilization and amorphous ice crystallization can occur at depths corresponding to those of the observed pits in a timescale shorter than 67P/Churyumov-Gerasimenko’s lifetime in the comet’s activity zone in the inner solar system. Sublimation of crystalline ice down to such depths is possible only in the absence of a dust mantle, which requires the presence of dust grains in the matrix small enough to be dragged out by gas from the pores. Our results are consistent with both pits formation via sinkholes or subsequent to outbursts, the dominant process depending on the status of the subsurface porosity. A sealed dust mantle would favor episodic and disruptive outgassing as a result of increasing gas pressure in the pores, while high porosity should allow the formation of large voids in the subsurface due to the continuous escape of volatiles. We finally conclude that the subsurface of 67P/Churyumov-Gerasimenko is not uniform at a spatial scale of ˜100-200 m.
The fine nebula dust component: A key to chondrule formation by lightning
NASA Technical Reports Server (NTRS)
Wasson, J. T.; Rasmussen, K. L.
1994-01-01
Our assessment indicates that chondrule formation by lightning is indeed possible in the solar nebula. Previously the overriding objection to the lightning process of chondrule formation has been that low nebula pressures prevented the buildup of large potential differences. The breakdown potential is controlled by the mean free live distance of an electron. We calculate the mean free live distance in pure H2 gas at 2 AU to be approximately 500 m. A fine dust load constituting 4 wt% of the dust in the dusty midplane region leads to a reduced mean free live distance of only 7 m. Very conservatively we estimate the breakdown potential to be at least 10, 1.8, and 0.7 V/cm at 1, 2, and 3 AU respectively. We set the radius of the lightning bolt equal to the kinetic mean free path of the gas. Our calculations based on electron drift velocities in a fully ionized H2 gas show that first strike durations are 0.96, 3.4, and 7.0 ms at 1, 2, and 3 AU respectively, in much better accordance with the meteoritic evidence than previous estimates of 10-100 s.
Kanji, Z A; Abbatt, J P D
2010-01-21
The University of Toronto Continuous Flow Diffusion Chamber (UT-CFDC) was used to study ice formation onto monodisperse Arizona Test Dust (ATD) particles. The onset relative humidity with respect to ice (RH(i)) was measured as a function of temperature in the range 251-223 K for 100 nm ATD particles. It was found that for 0.1% of the particles to freeze, water saturation was required at all temperatures except 223 K where particles activated at RH(i) below water saturation. At this temperature, where deposition mode freezing is occurring, we find that the larger the particle size, the lower the onset RH(i). We also demonstrate that the total number of particles present may influence the onset RH(i) observed. The surface area for ice activation, aerosol size, and temperature must all be considered when reporting onset values of ice formation onto ATD mineral dust particles. In addition, we calculate nucleation rates and contact angles of ice germs with ATD aerosols which indicate that there exists a range of active sites on the surface with different efficiencies for activating ice formation.
NASA Technical Reports Server (NTRS)
Kaufman, Yoram
1999-01-01
Simultaneous spaceborne and ground based measurements of the scattered solar radiation, create a powerful tool for determination of dust absorption and scattering properties. Absorption of solar radiation is a key component in understanding dust impact on radiative forcing at the top of the atmosphere, on the temperature profile and on cloud formation. We use Landsat spaceborne measurements at seven spectral channels in the range of 0.47 to 2.2 microns over Senegal with corresponding measurements of the aerosol spectral optical thickness by ground based sunphotometers, to find that Saharan dust absorption of solar radiation is two to four times smaller than measured in situ and represented in models. Though dust was found to absorb in the blue (single scattering albedo w = 0.88), almost no absorption, w = 0.98, was found for wavelengths > 0.6 microns. The new finding increases by 50% recently estimated solar radiative forcing by dust at the top of the atmosphere and decreases the estimated dust heating of the lower troposphere due to absorption of solar radiation. Dust transported from Asia shows slightly higher absorption for wavelengths under 1 micron, that can be explained by the presence of black carbon from urban/industrial pollution associated with the submicron size mode. In the talk I shall also discuss recent observation of the impact of dust shape on the dust scattering properties.
NASA Astrophysics Data System (ADS)
Green, R. O.; Realmuto, V. J.; Thompson, D. R.; Mahowald, N. M.; Pérez García-Pando, C.; Miller, R. L.; Clark, R. N.; Swayze, G. A.; Okin, G. S.
2015-12-01
Mineral dust emitted from the Earth's surface is a principal contributor to direct radiative forcing over the arid regions, where shifts in climate have a significant impact on agriculture, precipitation, and desert encroachment around the globe. Dust particles contribute to both positive and negative forcing, depending on the composition of the particles. Particle composition is a function of the surface mineralogy of dust source regions, but poor knowledge of surface mineralogy on regional to global scales limits the skill of Earth System models to predict shifts in regional climate around the globe. Earth System models include the source, emission, transport and deposition phases of the dust cycle. In addition to direct radiative forcing contributions, mineral dust impacts include indirect radiative forcing, modification of the albedo and melting rates of snow and ice, kinetics of tropospheric photochemistry, formation and deposition of acidic aerosols, supply of nutrients to aquatic and terrestrial ecosystems, and impact on human health and safety. We demonstrate the ability to map mineral dust source composition in the Salton Sea dust source region with imaging spectroscopy measurements acquired as part of the NASA HyspIRI preparatory airborne campaign. These new spectroscopically derived compositional measurements provide a six orders of magnitude improvement over current atlases for this dust source region and provide a pathfinder example for a remote measurement approach to address this critical dust composition gap for global Earth System models.
Eclipses and dust formation by WC9 type Wolf-Rayet stars
NASA Astrophysics Data System (ADS)
Williams, P. M.
2014-12-01
Visual photometry of 16 WC8-9 dust-making Wolf-Rayet (WR) stars during 2001-2009 was extracted from the All-Sky Automated Survey All Star Catalogue (ASAS-3) to search for eclipses attributable to extinction by dust formed in clumps in our line of sight. Data for a comparable number of dust-free WC6-9 stars were also examined to help characterize the data set. Frequent eclipses were observed from WR 104, and several from WR 106, extending the 1994-2001 studies by Kato et al., but not supporting their phasing the variations in WR 104 with its `pinwheel' rotation period. Only four other stars showed eclipses, WR 50 (one of the dust-free stars), WR 69, WR 95 and WR 117, and there may have been an eclipse by WR 121, which had shown two eclipses in the past. No dust eclipses were shown by the `historic' eclipsers WR 103 and WR 113. The atmospheric eclipses of the latter were observed but the suggestion by David-Uraz et al. that dust may be partly responsible for these is not supported. Despite its frequent eclipses, there is no evidence in the infrared images of WR 104 for dust made in its eclipses, demonstrating that any dust formed in this process is not a significant contributor to its circumstellar dust cloud and suggesting that the same applies to the other stars showing fewer eclipses.
Lunar Dust and Lunar Simulant Activation, Monitoring, Solution and Cellular Toxicity Properties
NASA Technical Reports Server (NTRS)
Wallace, William; Jeevarajan, A. S.
2009-01-01
During the Apollo missions, many undesirable situations were encountered that must be mitigated prior to returning humans to the moon. Lunar dust (that part of the lunar regolith less than 20 microns in diameter) was found to produce several problems with mechanical equipment and could have conceivably produced harmful physiological effects for the astronauts. For instance, the abrasive nature of the dust was found to cause malfunctions of various joints and seals of the spacecraft and suits. Additionally, though efforts were made to exclude lunar dust from the cabin of the lunar module, a significant amount of material nonetheless found its way inside. With the loss of gravity correlated with ascent from the lunar surface, much of the finer fraction of this dust began to float and was inhaled by the astronauts. The short visits tothe Moon during Apollo lessened exposure to the dust, but the plan for future lunar stays of up to six months demands that methods be developed to minimize the risk of dust inhalation. The guidelines for what constitutes "safe" exposure will guide the development of engineering controls aimed at preventing the presence of dust in the lunar habitat. This work has shown the effects of grinding on the activation level of lunar dust, the changes in dissolution properties of lunar simulant, and the production of cytokines by cellular systems. Grinding of lunar dust leads to the production of radicals in solution and increased dissolution of lunar simulant in buffers of different pH. Additionally, ground lunar simulant has been shown to promote the production of IL-6 and IL-8, pro-inflammatory cytokines, by alveolar epithelial cells. These results provide evidence of the need for further studies on these materials prior to returning to the lunar surface.
Retrospective view of airborne dust levels in workplace of a chrysotile mine in Ural, Russia.
Kashansky, S V; Domnin, S G; Kochelayev, V A; Monakhov, D D; Kogan, F M
2001-04-01
The Bazhenovskoye chrysotile asbestos deposit has been exploited for 115 years. All the technological operations in the quarry are accompanied by the formation of high-dispersion asbestos-containing aerosols. The dust concentrations at the miner's working places for the last 30 years (1970-2000) were at or below the Russian MACs(m.s.) level (4.0 mg/m3). The seasonal precipitation amount in the deposit area causes a rise in dust content in certain periods. The maximum density of asbestos respirable fibres exceeded 2.7 f/cm3. All the identified fibres belonged to chrysotile asbestos, and no amphibole asbestos, such as tremolite asbestos, has been identified. An excessive dust level remains, despite the dust content level decrease, at the work sites of oversized lump drillers and unloaders, and oncopathology heightened risk remains in these occupational groups, as a result.
Tempest in a glass tube: A helical vortex formation in a complex plasma
NASA Astrophysics Data System (ADS)
Saitou, Yoshifumi; Ishihara, Osamu; Ishihara
2014-12-01
A collective behavior of dust particles in a complex plasma with a magnetic field (up to 4 kG) is investigated. Dust particles form a dust disk which is rotating in a horizontal plane pushed by ions rotating with the E × B drift as a trigger force. The thickness of the disk is determined by controlling the experimental conditions. The disk rotates in a horizontal plane and forms a two-dimensional thin structure when the pressure pAr is relatively high. The dust particles are ejected from near the disk center and form a rotation in the vertical plane and, hence, forms a helical vortex when the disk is thick for relatively low pAr . The reason the dust disk has the different thickness is due to the neutral pressure. Under a higher (lower) neutral gas pressure, the disk becomes two (three) dimensional due to the influence of the neutral drag force.
Construction and implementation of a novel dust dropper for the PPPL Dusty Plasma Experiment
NASA Astrophysics Data System (ADS)
Tinguely, Roy; Dominguez, Arturo; Carpe, Andrew; Zwicker, Andrew
2013-10-01
The applications of dusty plasma research are far-reaching, from understanding astrophysical systems to studying plasma-wall interactions in magnetically confined plasma experiments. Unfortunately, dusty plasma environments can be difficult to control and replicate in laboratory settings. This poster details the construction, vacuum operation, and initial results of a multifaceted dust dropper, which is being implemented in the PPPL Dusty Plasma Experiment and is expected to improve the reproducibility and characterization of dust cloud formation. The cylindrical plastic shaker comprises four pairings of electromagnets and neodymium magnets, with eight stabilizing springs. The amplitude and frequency of a pulsed current determine the dust dispersal rate, while a biased metallic mesh regulates the area of dispersion and size and charge of dropped particles. Preliminary testing shows that, for 44 micron silica dust, steady dispersal rates as fast as 0.2 mg/s (approximately 1700 particles/s) can be achieved.
Hydrothermal Alteration Products as Key to Formation of Duricrust and Rock Coatings on Mars
NASA Astrophysics Data System (ADS)
Bishop, J. L.
1999-03-01
A model is presented for the formation of duricrust and rock coatings on Mars. Hydrothermal alteration of volcanic tephra may produce a corrosive agent that attacks rock surfaces and binds dust particles to form duricrust.
Diurnal variation in martian dust devil activity
NASA Astrophysics Data System (ADS)
Chapman, R. M.; Lewis, S. R.; Balme, M.; Steele, L. J.
2017-08-01
We show that the dust devil parameterisation in use in most Mars Global Circulation Models (MGCMs) results in an unexpectedly high level of dust devil activity during morning hours. Prior expectations of the diurnal variation of Martian dust devils are based mainly upon the observed behaviour of terrestrial dust devils: i.e. that the majority occur during the afternoon. We instead find that large areas of the Martian surface experience dust devil activity during the morning in our MGCM, and that many locations experience a peak in dust devil activity before mid-sol. We find that the diurnal variation in dust devil activity is governed by near-surface wind speeds. Within the range of daylight hours, higher wind speeds tend to produce higher levels of dust devil activity, rather than the activity simply being governed by the availability of heat at the planet's surface, which peaks in early afternoon. Evidence for whether the phenomenon we observe is real or an artefact of the parameterisation is inconclusive. We compare our results with surface-based observations of Martian dust devil timings and obtain a good match with the majority of surveys. We do not find a good match with orbital observations, which identify a diurnal distribution more closely matching that of terrestrial dust devils, but orbital observations have limited temporal coverage, biased towards the early afternoon. We propose that the generally accepted description of dust devil behaviour on Mars is incomplete, and that theories of dust devil formation may need to be modified specifically for the Martian environment. Further surveys of dust devil observations are required to support any such modifications. These surveys should include both surface and orbital observations, and the range of observations must encompass the full diurnal period and consider the wider meteorological context surrounding the observations.
Naarala, J; Kasanen, J-P; Pasanen, P; Pasanen, A-L; Liimatainen, A; Pennanen, S; Liesivuori, J
2003-07-11
Wood dusts are classified as carcinogenic to humans and also produce other toxic, allergic, and acute effects in woodworkers. However, little is known about causative agents in wood dusts and their mechanisms of action. The effects of different tree species and particle size for biological activity were studied. The differences in the production of reactive oxygen species (ROS) and cell death (necrotic and apoptotic) between mouse macrophage (RAW 264.7) cells and human polymorphonuclear leukocytes (PMNL) for pine, birch, and beech dust exposures were investigated in vitro. The pine and birch dust exposure (1-100 microg/ml) produced concentration-dependent ROS production in both the cells, which was one order of magnitude higher with pine dust. The ROS production was faster in human PNML than murine RAW cells. The higher concentrations (500 and/or 1000 microg/ml) decreased ROS formation. With pine and birch dust exposure, this was probably due to the necrotic cell death. The pine dust concentrations of 500 and 1000 microg/ml were cytotoxic to human PMNL. The beech dust exposure activated the ROS production and decreased the cell viability only at the highest concentrations, being least potent of the three dusts. A sign of the apoptotic cell death in the murine RAW cells was observed at the pine dust concentration of 100 microg/ml. The exposure to the birch and beech dusts with a smaller particle size (<5 microm) produced greater ROS production than exposure to the corresponding dust with a wide range of particle sizes. However, changing the particle size did not affect the cell viability. The results indicate that the type of wood dust (tree species and possibly particle size) has a significant impact on the function and viability of phagocytic cells.
PHOTOPHORETIC LEVITATION AND TRAPPING OF DUST IN THE INNER REGIONS OF PROTOPLANETARY DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNally, Colin P.; McClure, Melissa K., E-mail: cmcnally@nbi.dk, E-mail: mmcclure@eso.org
In protoplanetary disks, the differential gravity-driven settling of dust grains with respect to gas and with respect to grains of varying sizes determines the observability of grains, and sets the conditions for grain growth and eventually planet formation. In this work, we explore the effect of photophoresis on the settling of large dust grains in the inner regions of actively accreting protoplanetary disks. Photophoretic forces on dust grains result from the collision of gas molecules with differentially heated grains. We undertake one-dimensional dust settling calculations to determine the equilibrium vertical distribution of dust grains in each column of the disk.more » In the process we introduce a new treatment of the photophoresis force which is consistent at all optical depths with the representation of the radiative intensity field in a two-stream radiative transfer approximation. The levitation of large dust grains creates a photophoretic dust trap several scale heights above the mid-plane in the inner regions of the disk where the dissipation of accretion energy is significant. We find that differential settling of dust grains is radically altered in these regions of the disk, with large dust grains trapped in a layer below the stellar irradiation surface, where the dust to gas mass ratio can be enhanced by a factor of a hundred for the relevant particles. The photophoretic trapping effect has a strong dependence on particle size and porosity.« less
NASA Astrophysics Data System (ADS)
Nobakht, Mohamad; Shahgedanova, Maria; White, Kevin
2017-04-01
Central Asian deserts are a significant source of dust in the middle latitudes, where economic activity and health of millions of people are affected by dust storms. Detailed knowledge of sources of dust, controls over their activity, seasonality and atmospheric pathways are of crucial importance but to date, these data are limited. This paper presents a detailed database of sources of dust emissions in Central Asia, from western China to the Caspian Sea, obtained from the analysis of the Moderate Resolution Imaging Spectroradiometer (MODIS) data between 2003 and 2012. A dust enhancement algorithm was employed to obtain two composite images per day at 1 km resolution from MODIS Terra/Aqua acquisitions, from which dust point sources (DPS) were detected by visual analysis and recorded in a database together with meteorological variables at each DPS location. Spatial analysis of DPS has revealed several active source regions, including some which were not widely discussed in literature before (e.g. Northern Afghanistan sources, Betpak-Dala region in western Kazakhstan). Investigation of land surface characteristics and meteorological conditions at each source region revealed mechanisms for the formation of dust sources, including post-fire wind erosion (e.g. Lake Balkhash basin) and rapid desertification (e.g. the Aral Sea). Different seasonal patterns of dust emissions were observed as well as inter-annual trends. The most notable feature was an increase in dust activity in the Aral Kum.
Probing the Cold Dust Emission in the AB Aur Disk: A Dust Trap in a Decaying Vortex?
Fuente, Asunción; Baruteau, Clément; Neri, Roberto; Carmona, Andrés; Agúndez, Marcelino; Goicoechea, Javier R; Bachiller, Rafael; Cernicharo, José; Berné, Olivier
2017-09-01
One serious challenge for planet formation is the rapid inward drift of pebble-sized dust particles in protoplanetary disks. Dust trapping at local maxima in the disk gas pressure has received much theoretical attention but still lacks observational support. The cold dust emission in the AB Aur disk forms an asymmetric ring at a radius of about 120 au, which is suggestive of dust trapping in a gas vortex. We present high spatial resolution (0".58×0".78 ≈ 80×110 au) NOEMA observations of the 1.12 mm and 2.22 mm dust continuum emission from the AB Aur disk. Significant azimuthal variations of the flux ratio at both wavelengths indicate a size segregation of the large dust particles along the ring. Our continuum images also show that the intensity variations along the ring are smaller at 2.22 mm than at 1.12 mm, contrary to what dust trapping models with a gas vortex have predicted. Our two-fluid (gas+dust) hydrodynamical simulations demonstrate that this feature is well explained if the gas vortex has started to decay due to turbulent diffusion, and dust particles are thus losing the azimuthal trapping on different timescales depending on their size. The comparison between our observations and simulations allows us to constrain the size distribution and the total mass of solid particles in the ring, which we find to be of the order of 30 Earth masses, enough to form future rocky planets.
Dust Evolution in Galaxy Cluster Simulations
NASA Astrophysics Data System (ADS)
Gjergo, Eda; Granato, Gian Luigi; Murante, Giuseppe; Ragone-Figueroa, Cinthia; Tornatore, Luca; Borgani, Stefano
2018-06-01
We implement a state-of-the-art treatment of the processes affecting the production and Interstellar Medium (ISM) evolution of carbonaceous and silicate dust grains within SPH simulations. We trace the dust grain size distribution by means of a two-size approximation. We test our method on zoom-in simulations of four massive (M200 ≥ 3 × 1014M⊙) galaxy clusters. We predict that during the early stages of assembly of the cluster at z ≳ 3, where the star formation activity is at its maximum in our simulations, the proto-cluster regions are rich in dusty gas. Compared to the case in which only dust production in stellar ejecta is active, if we include processes occurring in the cold ISM,the dust content is enhanced by a factor 2 - 3. However, the dust properties in this stage turn out to be significantly different from those observationally derived for the average Milky Way dust, and commonly adopted in calculations of dust reprocessing. We show that these differences may have a strong impact on the predicted spectral energy distributions. At low redshift in star forming regions our model reproduces reasonably well the trend of dust abundances over metallicity as observed in local galaxies. However we under-produce by a factor of 2 to 3 the total dust content of clusters estimated observationally at low redshift, z ≲ 0.5 using IRAS, Planck and Herschel satellites data. This discrepancy does not subsist by assuming a lower sputtering efficiency, which erodes dust grains in the hot Intracluster Medium (ICM).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaroshenko, V. V.; Antonova, T.; Thomas, H. M.
2009-10-15
The screening length, the time-average electric field, and the particle charge as well as the local vertical gradients of these quantities are determined experimentally within a sheath of a capacitively coupled rf, 13.56 MHz, discharge at enhanced argon gas pressures of 30, 55, and 100 Pa. The parameters are derived directly from comparative measurements of levitation positions of the particles of different sizes and variations in the levitation heights caused by formation of new dust layers. The electrostatic effect of the horizontally extended dust layers on the sheath electric field is investigated.
The 617 MHz-λ 850 μm correlation (cosmic rays and cold dust) in NGC 3044 and NGC 4157
NASA Astrophysics Data System (ADS)
Irwin, J. A.; Brar, R. S.; Saikia, D. J.; Henriksen, R. N.
2013-08-01
We present the first maps of NGC 3044 and NGC 4157 at λ 450 μm and λ 850 μm from the James Clerk Maxwell Telescope as well as the first maps at 617 MHz from the Giant Metrewave Radio Telescope. High-latitude emission has been detected in both the radio continuum and sub-mm for NGC 3044 and in the radio continuum for NGC 4157, including several new features. For NGC 3044, in addition, we find 617 MHz emission extending to the north of the major axis, beginning at the far ends of the major axis. One of these low-intensity features, more than 10 kpc from the major axis, has apparently associated emission at λ 20 cm and may be a result of in-disc activity related to star formation. The dust spectrum at long wavelengths required fitting with a two-temperature model for both galaxies, implying the presence of cold dust (Tc = 9.5 K for NGC 3044 and Tc = 15.3 K for NGC 4157). Dust masses are Md = 1.6 × 108 M⊙ and Md = 2.1 × 107 M⊙ for NGC 3044 and NGC 4157, respectively, and are dominated by the cold component. There is a clear correlation between the 617 MHz and λ 850 μm emission in the two galaxies. In the case of NGC 3044 for which the λ 850 μm data are strongly dominated by cold dust, this implies a relation between the non-thermal synchrotron emission and cold dust. The 617 MHz component represents an integration of massive star formation over the past 107-8 yr and the λ 850 μm emission represents heating from the diffuse interstellar radiation field (ISRF). The 617 MHz-λ 850 μm correlation improves when a smoothing kernel is applied to the λ 850 μm data to account for differences between the cosmic ray (CR) electron diffusion scale and the mean free path of an ISRF photon to dust. The best-fitting relation is L_{617_MHz} ∝ {L_{850μ m}}^{2.1 ± 0.2} for NGC 3044. If variations in the cold dust emissivity are dominated by variations in dust density, and the synchrotron emission depends on magnetic field strength (a function of gas density) as well as CR electron generation (a function of massive star formation rate and therefore density via the Schmidt law) then the expected correlation for NGC 3044 is L_{617_MHz} ∝ {L_{850μ m}}^{2.2}, in agreement with the observed correlation.
Probing the Extreme Environment of the Galactic Center with Observations from SOFIA/FORCAST
NASA Astrophysics Data System (ADS)
Lau, Ryan M.; Herter, Terry L.; Morris, Mark; Adams, Joseph D; Becklin, Eric E.
2014-06-01
In this thesis we present a study of the inner 40 pc of the Galactic center addressing the dense, dusty torus around Sgr A*, dust production around massive stars, and massive star formation. Observations of warm dust emission from the Galactic center were performed using the Faint Object Infrared Camera for the SOFIA Telescope (FORCAST). A dense, molecular torus referred to as the Circumnuclear Disk (CND) orbits Sgr A* with an inner radius of ~1.4 pc and extending to ~7 pc. The inner edge of the CND, which we refer to as the Circumnuclear Ring (CNR), exhibits features of a classic HII region and appears consistent with the prevailing paradigm in which the dust is heated by the Central cluster of hot, young stars. We do not detect any star formation occurring in the CNR; however, we reveal the presence of density “clumps” along the inner edge of the CNR. These clumps are not dense enough to be stable against tidal shear from Sgr A* and will be sheared out before completing a full orbit 10^5 yrs). Three Luminous Blue Variables (LBVs) are located in and near the Quintuplet Cluster 40 pc in projection from Sgr A*: qF362, the Pistol star, G0.120-0.048 (LBV3). FORCAST observation reveal the asymmetric, compressed shell of hot dust surrounding the Pistol Star and provide the first detection of the thermal emission from the symmetric, hot dust envelope surrounding LBV3. However, no detection of hot dust associated with qF362 is made. We argue that the Pistol star and LBV3 are identical “twins” that exhibit contrasting nebulae due to the external influence of their different environments. G-0.02-0.07, a complex consisting of three compact HII regions and one ultracompact HII region, is located at the edge of a molecular cloud 6 pc in projection to the east of Sgr A* and contains the most recent episode of star formation in the Galactic center. We probe the dust morphology, energetics, and composition of the regions to study the star forming conditions of a molecular cloud in the strong gravitational potential of Sgr A*.
NASA Astrophysics Data System (ADS)
EL-Kalaawy, O. H.
2018-02-01
We consider the nonlinear propagation of non-planar (cylindrical and spherical) ion-acoustic (IA) envelope solitary waves in an unmagnetized plasma consisting of electron-positron-ion-dust plasma with two-electron temperature distributions in the context of the non-extensive statistics. The basic set of fluid equations is reduced to the modified nonlinear Schrödinger (MNLS) equation in cylindrical and spherical geometry by using the reductive perturbation method (RPM). It is found that the nature of the modulational instabilities would be significantly modified due to the effects of the non-extensive and other plasma parameters as well as cylindrical and spherical geometry. Conservation laws of the MNLS equation are obtained by Lie symmetry and multiplier method. A new exact solution (envelope bright soliton) is obtained by the extended homogeneous balance method. Finally, we study the results of this article.
NASA Astrophysics Data System (ADS)
Pound, M. W.; Wolfire, M. G.; Amarnath, N. S.
2003-12-01
The Dust InfraRed ToolBox (DIRT - a part of the Web Infrared ToolShed, or WITS, located at http://dustem.astro.umd.edu) is a Java applet for modeling astrophysical processes in circumstellar shells around young and evolved stars. DIRT has been used by the astrophysics community for about 5 years. Users can automatically and efficiently search grids of pre-calculated models to fit their data. A large set of physical parameters and dust types are included in the model database, which contains over 500,000 models. We are adding new functionality to DIRT to support new missions like SIRTF and SOFIA. A new Instrument module allows for plotting of the model points convolved with the spatial and spectral responses of the selected instrument. This lets users better fit data from specific instruments. Currently, we have implemented modules for the Infrared Array Camera (IRAC) and Multiband Imaging Photometer (MIPS) on SIRTF.
NASA Astrophysics Data System (ADS)
Zobnin, A. V.; Usachev, A. D.; Petrov, O. F.; Fortov, V. E.; Thoma, M. H.; Fink, M. A.
2018-03-01
The influence of a dust cloud on the structure of the positive column of a direct current gas discharge in a cylindrical glass tube under milligravity conditions has been studied both experimentally and numerically. The discharge was produced in neon at 60 Pa in a glass tube with a diameter of 30 mm at a discharge current 1 mA. Spherical monodisperse melamine formaldehyde dust particles with a diameter of 6.86 μm were injected into the positive column and formed there a uniform dust cloud with a maximum diameter of 14.4 mm. The shape of the cloud and the dust particle number density were measured. The cloud was stationary in the radial direction and slowly drifted in the axial direction. It was found that in the presence of the dust cloud, the intensity of the neon spectral line with a wavelength by 585.25 nm emitted by the discharge plasma increased by 2.3 times and 2 striations appeared on the anode side of the cloud. A numerical simulation of the discharge was performed using the 2D (quasi-3D) nonlocal self-consistent kinetic model of a longitudinally inhomogeneous axially symmetric positive column [Zobnin et al., Phys. Plasmas 21, 113503 (2014)], which was supplemented by a program module performing a self-consistent calculation of dust particle charges, the plasma recombination rate on dust particles, and ion scattering on dust particles. A new approach to the calculation of particle charges and the screening radius in dense dust clouds is proposed. The results of the simulation are presented, compared with experimental data and discussed. It is demonstrated that for the best agreement between simulated and experimental data, it is necessary to take into account the reflection of electrons from the dust particle surface in order to correctly describe the recombination rate in the cloud, its radial stability, and the dust particle charges.
Radauer-Preiml, Isabella; Andosch, Ancuela; Hawranek, Thomas; Luetz-Meindl, Ursula; Wiederstein, Markus; Horejs-Hoeck, Jutta; Himly, Martin; Boyles, Matthew; Duschl, Albert
2016-01-16
Engineered nanomaterials (ENMs) interact with different biomolecules as soon as they are in contact, resulting in the formation of a biomolecule 'corona'. Hence, the 'corona' defines the biological identity of the ENMs and could affect the response of the immune system to ENM exposure. With up to 40 % of the world population suffering from type I allergy, a possible modulation of allergen effects by binding to ENMs is highly relevant with respect to work place and consumer safety. Therefore, the aim of this present study was to gain an insight into the interactions of gold nanoparticles with different seasonally and perennially occurring outdoor and indoor allergens. Gold nanoparticles (AuNPs) were conjugated with the major allergens of birch pollen (Bet v 1), timothy grass pollen (Phl p 5) and house dust mite (Der p 1). The AuNP-allergen conjugates were characterized by means of TEM negative staining, dynamic light scattering (DLS), z-potential measurements and hyperspectral imaging. Furthermore, 3D models were constructed, based on the characterization data, to visualize the interaction between the allergens and the AuNPs surface. Differences in the activation of human basophil cells derived from birch/grass pollen- and house dust mite-allergic patients in response to free allergen and AuNP-allergen conjugates were determined using the basophil activation assay (BAT). Potential allergen corona replacement during BAT was controlled for using Western blotting. The protease activity of AuNP-Der p 1 conjugates compared to free Der p 1 was assessed, by an enzymatic activity assay and a cellular assay pertaining to lung type II alveolar epithelial cell tight junction integrity. The formation of a stable corona was found for all three allergens used. Our data suggest, that depending on the allergen, different effects are observed after binding to ENMs, including enhanced allergic responses against Der p 1 and also, for some patients, against Bet v 1. Moreover elevated protease activity of AuNP-Der p 1 conjugates compared to free Der p 1 was found. In summary, this study presents that conjugation of allergens to ENMs can modulate the human allergic response, and that protease activity can be increased. Graphical Abstract Cross-linking of IgE receptors and degranulation of human basophils due to epitope alignment of nanoparticle-coated allergens.
Hyper Suprime-Camera Survey of the Akari NEP Wide Field
NASA Astrophysics Data System (ADS)
Goto, Tomotsugu; Toba, Yoshiki; Utsumi, Yousuke; Oi, Nagisa; Takagi, Toshinobu; Malkan, Matt; Ohayma, Youichi; Murata, Kazumi; Price, Paul; Karouzos, Marios; Matsuhara, Hideo; Nakagawa, Takao; Wada, Takehiko; Serjeant, Steve; Burgarella, Denis; Buat, Veronique; Takada, Masahiro; Miyazaki, Satoshi; Oguri, Masamune; Miyaji, Takamitsu; Oyabu, Shinki; White, Glenn; Takeuchi, Tsutomu; Inami, Hanae; Perason, Chris; Malek, Katarzyna; Marchetti, Lucia; Lee, Hyung Mok; Im, Myung; Kim, Seong Jin; Koptelova, Ekaterina; Chao, Dani; Wu, Yi-Han; AKARI NEP Survey Team; AKARI All Sky Survey Team
2017-03-01
The extragalactic background suggests half the energy generated by stars was reprocessed into the infrared (IR) by dust. At z ∼1.3, 90% of star formation is obscured by dust. To fully understand the cosmic star formation history, it is critical to investigate infrared emission. AKARI has made deep mid-IR observation using its continuous 9-band filters in the NEP field (5.4 deg^2), using ∼10% of the entire pointed observations available throughout its lifetime. However, there remain 11,000 AKARI infrared sources undetected with the previous CFHT/Megacam imaging (r ∼25.9ABmag). Redshift and IR luminosity of these sources are unknown. These sources may contribute significantly to the cosmic star-formation rate density (CSFRD). For example, if they all lie at 1 < z < 2, the CSFRD will be twice as high at the epoch. We are carrying out deep imaging of the NEP field in 5 broad bands (g,r,i,z, and y) using Hyper Suprime-Camera (HSC), which has 1.5 deg field of view in diameter on Subaru 8m telescope. This will provide photometric redshift information, and thereby IR luminosity for the previously-undetected 11,000 faint AKARI IR sources. Combined with AKARI's mid-IR AGN/SF diagnosis, and accurate mid-IR luminosity measurement, this will allow a complete census of cosmic star-formation/AGN accretion history obscured by dust.
Maisotsenko cycle applications in multi-stage ejector recycling module for chemical production
NASA Astrophysics Data System (ADS)
Levchenko, D. O.; Artyukhov, A. E.; Yurko, I. V.
2017-08-01
The article is devoted to the theoretical bases of multistage (multi-level) utilization modules as part of chemical plants (on the example of the technological line for obtaining nitrogen fertilizers). The possibility of recycling production waste (ammonia vapors, dust and substandard nitrogen fertilizers) using ejection devices and waste heat using Maisotsenko cycle technology (Maisotsenko heat and mass exchanger (HMX), Maisotsenko power cycles and recuperators, etc.) is substantiated. The principle of operation of studied recycling module and prospects for its implementation are presented. An improved technological scheme for obtaining granular fertilizers and granules with porous structure with multistage (multi-level) recycling module is proposed.
Diurnal Variations of Dust from Mars Climate Sounder Observations: Initial Results
NASA Astrophysics Data System (ADS)
Kleinboehl, A.
2017-12-01
Over the recent years, research on the Martian atmosphere has been focusing increasingly on aerosols. One recent focus has been on detached dust layers (DDL) as they have a significant radiative impact on the atmosphere. The dust distribution in the Martian atmosphere is affected by transport processes like lifting, advection, and sedimentation. However, lifting and sedimentation processes are only poorly understood, and the formation mechanism of DDLs is unclear. Significant variations in the occurrence of DDLs have been observed in comparisons of nearly co-located daytime and nighttime dust extinction measurements by the Mars Climate Sounder (MCS). However, the detailed behavior of changes in the vertical profile of dust over the course of a day has largely been unexplored. To date, aerosol studies by MCS have been limited to observations around 3 am and 3 pm local time due to the sun-synchronous orbit of the Mars Reconnaissance Orbiter (MRO), from which MCS is operated. MCS nominally observes in the direction of the MRO orbit track. Since Sep. 2010 the MCS instrument has been performing frequent sideways scans to obtain measurements at various local times. These special measurements yield nearly global coverage while sampling local times within a few hours of the nominal local time determined by the MRO orbit track. Of particular interest is the behavior at latitudes where cross-track measurements intersect with in-track measurements such that the same airmass is sampled 3 times in intervals of 2 hours at mid-latitudes. Here I present initial analyses of dust vertical profiles retrieved from these MCS observations during the dusty season of the Martian year. Dust opacities tend to be highest within 25 km of the surface and decreasing above. Numerous sets of profiles have been identified in the southern mid-latitudes in which this dust opacity slope is lofted by several kilometers in altitude between 4 pm and 6 pm local time. The behavior is largely restricted to ice-free conditions and suggestive of convective lofting of dust to higher altitudes due to absorption of incoming sunlight by dust particles. Most of these events are located in the vicinity of the Hellas basin, suggesting that topographic features may also play a role in their formation.
Comparison of the mixing state of long-range transported Asian and African mineral dust
NASA Astrophysics Data System (ADS)
Fitzgerald, Elizabeth; Ault, Andrew P.; Zauscher, Melanie D.; Mayol-Bracero, Olga L.; Prather, Kimberly A.
2015-08-01
Mineral dust from arid regions represents the second largest global source of aerosols to the atmosphere. Dust strongly impacts the radiative balance of the earth's atmosphere by directly scattering solar radiation and acting as nuclei for the formation of liquid droplets and ice nuclei within clouds. The climate effects of mineral dust aerosols are poorly understood, however, due to their complex chemical and physical properties, which continuously evolve during atmospheric transport. This work focuses on characterizing atmospheric mineral dust from the two largest global dust sources: the Sahara Desert in Africa and the Gobi and Taklamakan Deserts in Asia. Measurements of individual aerosol particle size and chemical mixing state were made at El Yunque National Forest, Puerto Rico, downwind of the Sahara Desert, and Gosan, South Korea, downwind of the Gobi and Taklamakan Deserts. In general, the chemical characterization of the individual dust particles detected at these two sites reflected the dominant mineralogy of the source regions; aluminosilicate-rich dust was more common at El Yunque (∼91% of El Yunque dust particles vs. ∼69% of Gosan dust particles) and calcium-rich dust was more common at Gosan (∼22% of Gosan dust particles vs. ∼2% of El Yunque dust particles). Furthermore, dust particles from Africa and Asia were subjected to different transport conditions and atmospheric processing; African dust showed evidence of cloud processing, while Asian dust was modified via heterogeneous chemistry and direct condensation of secondary species. A larger fraction of dust detected at El Yunque contained the cloud-processing marker oxalate ion compared to dust detected at Gosan (∼20% vs ∼9%). Additionally, nearly 100% of dust detected at Gosan contained nitrate, showing it was aged via heterogeneous reactions with nitric acid, compared to only ∼60% of African dust. Information on the distinct differences in the chemical composition of mineral dust particles, as well as the mechanisms and extent of atmospheric processing, is critical for assessing its impacts on the earth's radiative budget through scattering, absorption, and nucleating cloud droplets and ice crystals.
Dusty Dwarfs Galaxies Occulting A Bright Background Spiral
NASA Astrophysics Data System (ADS)
Holwerda, Benne
2017-08-01
The role of dust in shaping the spectral energy distributions of low mass disk galaxies remains poorly understood. Recent results from the Herschel Space Observatory imply that dwarf galaxies contain large amounts of cool (T 20K) dust, coupled with very modest optical extinctions. These seemingly contradictory conclusions may be resolved if dwarfs harbor a variety of dust geometries, e.g., dust at larger galactocentric radii or in quiescent dark clumps. We propose HST observations of six truly occulting dwarf galaxies drawn from the Galaxy Zoo catalog of silhouetted galaxy pairs. Confirmed, true occulting dwarfs are rare as most low-mass disks in overlap are either close satellites or do not have a confirmed redshift. Dwarf occulters are the key to determining the spatial extent of dust, the small scale structure introduced by turbulence, and the prevailing dust attenuation law. The recent spectroscopic confirmation of bona-fide low mass occulting dwarfs offers an opportunity to map dust in these with HST. What is the role of dust in the SED of these dwarf disk galaxies? With shorter feedback scales, how does star-formation affect their morphology and dust composition, as revealed from their attenuation curve? The resolution of HST allows us to map the dust disks down to the fine scale structure of molecular clouds and multi-wavelength imaging maps the attenuation curve and hence dust composition in these disks. We therefore ask for 2 orbits on each of 6 dwarf galaxies in F275W, F475W, F606W, F814W and F125W to map dust from UV to NIR to constrain the attenuation curve.
NASA Technical Reports Server (NTRS)
Tankosic, D.; Abbas, M. M.
2012-01-01
Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper, we discuss experimental results on dust charging by electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Currently, very limited experimental data are available for charging of individual micron-size dust grains, particularly by low energy electron impact. Available theoretical models based on the Sternglass equation (Sternglass, 1954) are applicable for neutral, planar, and bulk surfaces only. However, charging properties of individual micron-size dust grains are expected to be different from the values measured on bulk materials. Our recent experimental results on individual, positively charged, micron-size lunar dust grains levitated in an electrodynamic balance facility (at NASA-MSFC) indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (e.g. Abbas et al, 2010). Here we discuss the complex nature of SEE charging properties of individual micron-size lunar dust grains and silica microspheres.
Aïssa, Brahim; Isaifan, Rima J; Madhavan, Vinod E; Abdallah, Amir A
2016-08-16
Recently, extensive R&D has been conducted, both by industry and academia, to significantly raise the conversion efficiency of commercial photovoltaic (PV) modules. The installation of PV systems aimed at optimizing solar energy yield is primarily dictated by its geographic location and installation design to maximize solar exposure. However, even when these characteristics have been addressed appropriately, there are other factors that adversely affect the performance of PV systems, namely the temperature-induced voltage decrease leading to a PV power loss, and the dust accumulation (soiling). The latter is the lesser acknowledged factor that significantly influences the performance of PV installations especially in the Middle East region. In this paper we report on the investigation of the structural and physical properties of the desert-dust particles in the State of Qatar. The dust particles were collected directly from the PV panels installed in desert environment and characterized by different techniques, including scanning electron, optical and atomic force microscopies, X-ray diffraction, energy-dispersive, UV-Vis, micro-Raman and Fourier transform infrared spectroscopy. The vibrating sample magnetometry analyses were also conducted to study the magnetic properties of the dust particles. The influence of the dust accumulation on the PV panel performance was also presented and discussed.
NASA Astrophysics Data System (ADS)
Aïssa, Brahim; Isaifan, Rima J.; Madhavan, Vinod E.; Abdallah, Amir A.
2016-08-01
Recently, extensive R&D has been conducted, both by industry and academia, to significantly raise the conversion efficiency of commercial photovoltaic (PV) modules. The installation of PV systems aimed at optimizing solar energy yield is primarily dictated by its geographic location and installation design to maximize solar exposure. However, even when these characteristics have been addressed appropriately, there are other factors that adversely affect the performance of PV systems, namely the temperature-induced voltage decrease leading to a PV power loss, and the dust accumulation (soiling). The latter is the lesser acknowledged factor that significantly influences the performance of PV installations especially in the Middle East region. In this paper we report on the investigation of the structural and physical properties of the desert-dust particles in the State of Qatar. The dust particles were collected directly from the PV panels installed in desert environment and characterized by different techniques, including scanning electron, optical and atomic force microscopies, X-ray diffraction, energy-dispersive, UV-Vis, micro-Raman and Fourier transform infrared spectroscopy. The vibrating sample magnetometry analyses were also conducted to study the magnetic properties of the dust particles. The influence of the dust accumulation on the PV panel performance was also presented and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koepferl, Christine M.; Robitaille, Thomas P.; Dale, James E., E-mail: koepferl@usm.lmu.de
We use a large data set of realistic synthetic observations (produced in Paper I of this series) to assess how observational techniques affect the measurement physical properties of star-forming regions. In this part of the series (Paper II), we explore the reliability of the measured total gas mass, dust surface density and dust temperature maps derived from modified blackbody fitting of synthetic Herschel observations. We find from our pixel-by-pixel analysis of the measured dust surface density and dust temperature a worrisome error spread especially close to star formation sites and low-density regions, where for those “contaminated” pixels the surface densitiesmore » can be under/overestimated by up to three orders of magnitude. In light of this, we recommend to treat the pixel-based results from this technique with caution in regions with active star formation. In regions of high background typical in the inner Galactic plane, we are not able to recover reliable surface density maps of individual synthetic regions, since low-mass regions are lost in the far-infrared background. When measuring the total gas mass of regions in moderate background, we find that modified blackbody fitting works well (absolute error: + 9%; −13%) up to 10 kpc distance (errors increase with distance). Commonly, the initial images are convolved to the largest common beam-size, which smears contaminated pixels over large areas. The resulting information loss makes this commonly used technique less verifiable as now χ {sup 2} values cannot be used as a quality indicator of a fitted pixel. Our control measurements of the total gas mass (without the step of convolution to the largest common beam size) produce similar results (absolute error: +20%; −7%) while having much lower median errors especially for the high-mass stellar feedback phase. In upcoming papers (Paper III; Paper IV) of this series we test the reliability of measured star formation rate with direct and indirect techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Nanyao; Zhao, Yinghe; Xu, C. Kevin
2015-03-20
To better characterize the global star formation activity in a galaxy, one needs to know not only the star formation rate (SFR) but also the rest-frame, far-infrared color (e.g., the 60–100 μm color, C(60/100)) of the dust emission. The latter probes the average intensity of the dust heating radiation field and scales statistically with the effective SFR surface density in star-forming galaxies including (ultra-)luminous infrared galaxies ((U)LIRGs). To this end, here we exploit a new spectroscopic approach involving only two emission lines: CO(7–6) at 372 μm and [N ii] at 205 μm([N ii]{sub 205μm}). For local (U)LIRGs, the ratios ofmore » the CO(7–6) luminosity (L{sub CO(7–6)}) to the total infrared luminosity (L{sub IR}; 8–1000 μm) are fairly tightly distributed (to within ∼0.12 dex) and show little dependence on C(60/100). This makes L{sub CO(7–6)} a good SFR tracer, which is less contaminated by active galactic nuclei than L{sub IR} and may also be much less sensitive to metallicity than L{sub CO(1–0)}. Furthermore, the logarithmic [N ii]{sub 205μm}/CO(7–6) luminosity ratio depends fairly strongly (at a slope of ∼ −1.4) on C(60/100), with a modest scatter (∼0.23 dex). This makes it a useful estimator on C(60/100) with an implied uncertainty of ∼0.15 (or ≲4 K in the dust temperature (T{sub dust}) in the case of a graybody emission with T{sub dust} ≳ 30 K and a dust emissivity index β ≥ 1). Our locally calibrated SFR and C(60/100) estimators are shown to be consistent with the published data of (U)LIRGs of z up to ∼6.5.« less
Further Analysis on the Mystery of the Surveyor III Dust Deposits
NASA Technical Reports Server (NTRS)
Metzger, Philip; Hintze, Paul; Trigwell, Steven; Lane, John
2012-01-01
The Apollo 12 lunar module (LM) landing near the Surveyor III spacecraft at the end of 1969 has remained the primary experimental verification of the predicted physics of plume ejecta effects from a rocket engine interacting with the surface of the moon. This was made possible by the return of the Surveyor III camera housing by the Apollo 12 astronauts, allowing detailed analysis of the composition of dust deposited by the LM plume. It was soon realized after the initial analysis of the camera housing that the LM plume tended to remove more dust than it had deposited. In the present study, coupons from the camera housing have been reexamined. In addition, plume effects recorded in landing videos from each Apollo mission have been studied for possible clues.
Design and Construction of Manned Lunar Base
NASA Astrophysics Data System (ADS)
Li, Zhijie
2016-07-01
Building manned lunar base is one of the core aims of human lunar exploration project, which is also an important way to carry out the exploitation and utilization of lunar in situ resources. The most important part of manned lunar base is the design and construction of living habitation and many factors should be considered including science objective and site selection. Through investigating and research, the scientific goals of manned lunar base should be status and characteristics ascertainment of lunar available in situ resources, then developing necessary scientific experiments and utilization of lunar in situ resources by using special environment conditions of lunar surface. The site selection strategy of manned lunar base should rely on scientific goals according to special lunar surface environment and engineering capacity constraints, meanwhile, consulting the landing sites of foreign unmanned and manned lunar exploration, and choosing different typical regions of lunar surface and analyzing the landform and physiognomy, reachability, thermal environment, sunlight condition, micro meteoroids protection and utilization of in situ resources, after these steps, a logical lunar living habitation site should be confirmed. This paper brings out and compares three kinds of configurations with fabricating processes of manned lunar base, including rigid module, flexible and construction module manned lunar base. 1.The rigid habitation module is usually made by metal materials. The design and fabrication may consult the experience of space station, hence with mature technique. Because this configuration cannot be folded or deployed, which not only afford limit working and living room for astronauts, but also needs repetitious cargo transit between earth and moon for lunar base extending. 2. The flexible module habitation can be folded in fairing while launching. When deploying on moon, the configuration can be inflatable or mechanically-deployed, which means under the condition of the same volume it has less weight than rigid module, but based on durable, high hermetic, low density and elastic modulus advanced materials. 3.The construction habitation has high expansibility and various configurations by using in situ resources as construction materials, but this technique is difficult to implement since it involves deep exploitation of lunar resources. Aiming at different missions' objects and development periods, three different patterns talked above can be chosen as the scheme of lunar base habitation establishments. But each of them is too simple to adapt high-level lunar base during a long period. Thereby, based on the design of rigid module and flexible module, this paper brings out an assumed scheme of an integrated lunar base, and the exterior part of lunar base is built by using construction technique. The design of lunar base follows the principle of crew-robot coordinated exploration, which functions automatically in a long period and short period with attention by astronauts. The technique characteristics are as follows: life period ≥ 8 years; 6 astronauts; single lunar surface mission period ≥ 3 months. The inner main body of integrated manned lunar base consists of habitation module, laboratory module and support module. In order to afford security and comfortableness, the habitation module provides astronauts kitchen, bedroom, gymnasium, toilet, and so on. The laboratory module is used for science experiments, which involves plant cultivation devices and animal cultivation devices of bioregenerative life support system. The communication system, main computer, central control system and backup powers are arranged in the support module. For convenience of outside working and emergency rescue, every module with two exports is connected with other modules or lunar rovers. In order to solve the problems of waste treatment, atmosphere/water regeneration and food supply, this paper designed a bioregenerative life support system based on physical/chemic-regenerative life support system, which includes microbial waste treatment system, plants cultivation system and animal-protein production system. Energy is another important aspect needs to be solved when building lunar base habitation. The steps of lunar base building process are divided into lunar surface landing, transport, unloading, assembly and construction. Thus the activity systems including lunar lander, lunar chain block, various lunar rovers, robots and 3D printing machine are needed while building a lunar base. For the sake of enough power support for these facilities, the integrated manned lunar base will use solar + nuclear energy plus regenerative fuel cell together with 180kW power to satisfy the requirement of power supply. Besides these two questions talked above, the lunar base habitation also needs to solve the problem of lunar dust protection. Lunar dust grains are sharp and have electrostatic adsorption, which means this kind of dust may damage the functions of spacesuit, lunar rover and other equipments, and it may cause diseases if breathed by astronauts, consequently, lunar dust protection and cleaning mechanism needs to be founded and the anti-dust, automatic dust removal and self-cleaning materials need to be used. At last, this paper puts forward corresponding advices about building lunar base by using international collaboration. Out of question, the construction of lunar base is a huge project, it is very hard to be accomplished by any country alone since lots of uncertain complications exist there. By this token, international collaboration is a certain development direction, and lots of aerospace countries have already achieved the breakout of correlation key technologies, in order to avoid unnecessary waste, the dispersive advantageous resources need to be combined together.
NASA Astrophysics Data System (ADS)
Eufrasio, Rafael T.
The spectral energy distributions (SEDs) of galaxies are shaped by their physical properties and they are our primary source of information on galaxies stellar, gaseous, and dust content. Nearby galaxies (less than 100 Mpc away) are spatially resolved by current telescopes from the ultraviolet (UV) to radio wavelengths, allowing the study of the SEDs of subgalactic regions. Such studies are necessary for deriving maps and spatial trends of the physical properties across a galaxy. In principle, the complex history of the formation, growth, and evolution of a galaxy or a region of a galaxy can be inferred from its radiative output. In practice, this task is complicated by the fact that a significant fraction of the star formation activity takes place in dust obscured regions, in which a significant fraction of the stellar radiative output is absorbed, scattered, and reradiated by the gas and dust in the interstellar medium (ISM). This reprocessing of the stellar radiation takes place in ionized interstellar gas regions (H II regions) surrounding massive hot stars, in diffuse atomic gas (H I regions), and in dense molecular clouds. For this work, we have analyzed two galaxies in detail, NGC 6872 and NGC 6946, also known as Condor and Fireworks Galaxy, respectively. The Condor galaxy is the largest-known spiral galaxy. It is part a group of galaxies, the Pavo group, with 12 other galaxies. It has, however, interacted in the past ~150 Myr with a smaller companion, previously believed to have shaped the physical extent of the giant spiral. We have performed detailed SED fitting from the UV to mid-infrared (mid-IR) to obtain star formation histories of seventeen sub-galactic regions across the Condor. These regions are large enough to be galaxies themselves, with 32.3 million light-years in diameter. We find that the Condor was already very massive before this interaction and that it was much less affected by the passage of the companion than previously thought. We also found that a significant fraction of the 22 micron flux, usually considered a complementary measure of the UV-optically determined star formation rate (SFR), is not associated with the recent (last 100 Myr) star formation activity. A fraction of the 22 micron flux represents the energy reradiated by dust heated by intermediate age, long-lived stars. For the Fireworks galaxy, data coverage from the UV to radio allowed us to measure the full radiative budget from the stellar emission (bolometric luminosities) and the fraction coming from reprocessing by dust and gas in the IR. We present a self-consistent, physically-motivated model to describe SEDs of subgalactic regions across the galaxy, which simultaneously fits the stellar attenuated SED from UV to mid-infrared emission, the reradiated infrared emission from the dust, the radio continuum emission from the gas, as well as the intensity of select recombination lines from the ionized gas. We present a framework capable of determine the IR fraction not associated with the recent SFR. This work provides a novel and crucial step towards understanding the physical processes responsible for various empirical laws to determine SFR in galaxies, the correlation between the IR and stellar emission, and the physical conditions of the ISM. It provides essential inputs for more detailed modeling of the spatially-resolved photometric and chemical (dust and gas) evolution of galaxies.
NASA Astrophysics Data System (ADS)
Grava, C.; Stubbs, T. J.; Glenar, D. A.; Retherford, K. D.; Kaufmann, D. E.
2017-05-01
The Lyman-Alpha Mapping Project (LAMP) UV spectrograph on board the Lunar Reconnaissance Orbiter (LRO) performed a campaign to observe the Moon's nanodust exosphere, evidence for which was provided by the Lunar Atmosphere and Dust Environment Explorer (LADEE) Ultraviolet and Visible Spectrometer (UVS) during the 2014 Quadrantid meteoroid stream. These LADEE/UVS observations were consistent with a nanodust exosphere modulated by meteoroid impacts. LRO performed off-nadir maneuvers around the peak of the 2016 Quadrantids, in order to reproduce, as closely as possible, the active meteoroid environment and observing geometry of LADEE/UVS. We analyzed LAMP spectra to search for sunlight backscattering from nanodust. No brightness enhancement attributable to dust, of any size, was observed. We determine an upper limit for dust column concentration of 105 cm-2 for grains of radius 25 nm, and an upper limit for dust column mass of 10-11 g cm-2, nearly independent of grain size for radii <100 nm.
Effect of electromagnetic field on Kordylewski clouds formation
NASA Astrophysics Data System (ADS)
Salnikova, Tatiana; Stepanov, Sergey
2018-05-01
In previous papers the authors suggest a clarification of the phenomenon of appearance-disappearance of Kordylewski clouds - accumulation of cosmic dust mass in the vicinity of the triangle libration points of the Earth-Moon system. Under gravi-tational and light perturbation of the Sun the triangle libration points aren't the points of relative equilibrium. However, there exist the stable periodic motion of the particles, surrounding every of the triangle libration points. Due to this fact we can consider a probabilistic model of the dust clouds formation. These clouds move along the periodical orbits in small vicinity of the point of periodical orbit. To continue this research we suggest a mathematical model to investigate also the electromagnetic influences, arising under consideration of the charged dust particles in the vicinity of the triangle libration points of the Earth-Moon system. In this model we take under consideration the self-unduced force field within the set of charged particles, the probability distribution density evolves according to the Vlasov equation.
A Spectroscopic Survey of Lensed Dwarf Galaxies at 1
NASA Astrophysics Data System (ADS)
Alavi, Anahita; Siana, Brian; gburek, Timothy; Richard, Johan; Teplitz, Harry; Rafelski, Marc; Stark, Daniel P.; Anahita Alavi
2018-01-01
High-redshift dwarf galaxies (M<109 M⊙) are one of the primary targets of the James Web Space Telescope. Recent studies have suggested that these galaxies are different than their bright counterparts, as they follow a divergent evolutionary history of star formation. In our previous study, utilizing the magnification from massive clusters of galaxies (Hubble Frontier Fields), we found a large sample of dwarf star-forming galaxies at the peak epoch of star formation (1
DISCOVERY OF SiCSi IN IRC+10216: A MISSING LINK BETWEEN GAS AND DUST CARRIERS OF Si–C BONDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cernicharo, J.; Agúndez, M.; Prieto, L. Velilla
2015-06-10
We report the discovery in space of a disilicon species, SiCSi, from observations between 80 and 350 GHz with the IRAM 30 m radio telescope. Owing to the close coordination between laboratory experiments and astrophysics, 112 lines have now been detected in the carbon-rich star CW Leo. The derived frequencies yield improved rotational and centrifugal distortion constants up to sixth order. From the line profiles and interferometric maps with the Submillimeter Array, the bulk of the SiCSi emission arises from a region of 6″ in radius. The derived abundance is comparable to that of SiC{sub 2}. As expected from chemicalmore » equilibrium calculations, SiCSi and SiC{sub 2} are the most abundant species harboring a Si−C bond in the dust formation zone and certainly both play a key role in the formation of SiC dust grains.« less
A Massive Shell of Supernova-Formed Dust in SNR G54.1+0.3
NASA Technical Reports Server (NTRS)
Temim, Tea; Dwek, Eli; Arendt, Richard G.; Borkowski, Kazimiera J.; Reynolds, Stephen P.; Slane, Patrick; Gelfand, Joseph D.; Raymond, John C.
2017-01-01
While theoretical models of dust condensation predict that most refractory elements produced in core-collapsesupernovae (SNe) efficiently condense into dust, a large quantity of dust has so far only been observed inSN1987A. We present an analysis of observations from the Spitzer Space Telescope, Herschel SpaceObservatory, Stratospheric Observatory for Infrared Astronomy, and AKARI of the infrared shell surrounding thepulsar wind nebula in the supernova remnant G54.1+0.3. We attribute a distinctive spectral feature at 21 m to amagnesium silicate grain species that has been invoked in modeling the ejecta-condensed dust in Cas A, whichexhibits the same spectral signature. If this species is responsible for producing the observed spectral feature andaccounts for a significant fraction of the observed infrared continuum, we find that it would be the dominantconstituent of the dust in G54.1+0.3, with possible secondary contributions from other compositions, such ascarbon, silicate, or alumina grains. The total mass of SN-formed dust required by this model is at least 0.3Me. Wediscuss how these results may be affected by varying dust grain properties and self-consistent grain heating models.The spatial distribution of the dust mass and temperature in G54.1+0.3 confirms the scenario in which the SNformeddust has not yet been processed by the SN reverse shock and is being heated by stars belonging to a clusterin which the SN progenitor exploded. The dust mass and composition suggest a progenitor mass of 1627Me andimply a high dust condensation efficiency, similar to that found for Cas A and SN1987A. The study providesanother example of significant dust formation in a Type IIP SN explosion and sheds light on the properties ofpristine SN-condensed dust.
Dust Destruction Rates and Lifetimes in the Magellanic Clouds
NASA Technical Reports Server (NTRS)
Temim, Tea; Dwek, Eli; Tchernyshyov, Kirill; Boyer, Martha L.; Meixner, Margaret; Gall, Christa; Roman-Duval, Julia
2015-01-01
The nature, composition, abundance, and size distribution of dust in galaxies is determined by the rate at which it is created in the different stellar sources and destroyed by interstellar shocks. Because of their extensive wavelength coverage, proximity, and nearly face-on geometry, the Magellanic Clouds (MCs) provide a unique opportunity to study these processes in great detail. In this paper we use the complete sample of supernova remnants (SNRs) in the MCs to calculate the lifetime and destruction efficiencies of silicate and carbon dust in these galaxies. We find dust lifetimes of 22+/-13 Myr (30+/-17 Myr) for silicate (carbon) grains in the LMC, and 54 +/- 32 Myr (72 +/- 43 Myr) for silicate (carbon) grains in the SMC. The significantly shorter lifetimes in the MCs, as compared to the Milky Way, are explained as the combined effect of their lower total dust mass, and the fact that the dust-destroying isolated SNe in the MCs seem to be preferentially occurring in regions with higher than average dust-to-gas (D2G) mass ratios. We also calculate the supernova rate and the current star formation rate in the MCs, and use them to derive maximum dust injection rates by asymptotic giant branch (AGB) stars and core collapse supernovae (CCSNe). We find that the injection rates are an order of magnitude lower than the dust destruction rates by the SNRs. This supports the conclusion that, unless the dust destruction rates have been considerably overestimated, most of the dust must be reconstituted from surviving grains in dense molecular clouds. More generally, we also discuss the dependence of the dust destruction rate on the local D2G mass ratio and the ambient gas density and metallicity, as well as the application of our results to other galaxies and dust evolution models.
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; LeClair, A.
2014-01-01
Dust grains constitute a significant component of matter in the universe, and play an important and crucial role in the formation and evolution of the stellar/planetary systems in interstellar dust clouds. Knowledge of physical and optical properties of dust grains is required for understanding of a variety of processes in astrophysical and planetary environments. The currently available and generally employed data on the properties of dust grains is based on bulk materials, with analytical models employed to deduce the corresponding values for individual small micron/submicron-size dust grains. However, it has been well-recognized over a long period, that the properties of individual smallsize dust grains may be very different from those deduced from bulk materials. This has been validated by a series of experimental investigations carried out over the last few years, on a laboratory facility based on an Electrodynamic Balance at NASA, which permits levitation of single small-size dust grains of desired composition and size, in vacuum, in simulated space environments. In this paper, we present a brief review of the results of a series of selected investigations carried out on the analogs of interstellar and planetary dust grains, as well as dust grains obtained by Apollo-l1-17 lunar missions. The selected investigations, with analytical results and discussions, include: (a) Direct measurements of radiation on individual dust grains (b) Rotation and alignments of dust grains by radiative torque (c) Charging properties of dust grains by: (i) UV Photo-electric emissions (ii) Electron Impact. The results from these experiments are examined in the light of the current theories of the processes involved.
Meteorological Situations Favouring the Development of Dust Plumes over Iceland
NASA Astrophysics Data System (ADS)
Schepanski, K.; Szodry, K.
2017-12-01
The knowledge on mineral dust emitted at high latitudes is limited, but its impact on the polar environments is divers. Within a warming climate, dust emitted from regions in cold climates is expected to increase due to the retreat of the ice sheet and increasing melting rates. Therefore, and for its extensive impacts on different aspects of the climate system, a better understanding of the atmospheric dust life-cycle at high latitudes/cold climates in general, and the spatio-temporal distribution of dust sources in particular, are essential. At high-latitudes, glacio-fluvial sediments as found on river flood plains e.g. supplied by glaciers are prone to wind erosion when dry and bare. In case of the occurrence of strong winds, sediments are blown out and dust plumes develop. As dust uplift is controlled by soil surface characteristics, the availability of suitable sediments, and atmospheric conditions, an interannual variability in dust source activity is expected. We investigated atmospheric circulation patterns that favour the development of dust plumes over Iceland, which presents a well-known dust source at high latitudes. Using the atmosphere model COSMO (COnsortium for Small-scale MOdeling), we analysed the wind speed distribution over the Iceland region for identified and documented dust cases. As one outcome of the study, the position of the Icelandic low, the anticyclones located over Northern Europe, and the resulting pressure gradients are of particular relevance. The interaction of the synoptic-scale winds with the Icelandic orography may locally enhance the wind speeds and thus foster local dust emission. Results from this study suggest that the atmospheric circulation determined by the pressure pattern is of particular relevance for the formation of dust plumes entering the North Atlantic.
A CANDELS-3D-HST synergy: Resolved Star Formation Patterns at 0.7 < z < 1.5
NASA Astrophysics Data System (ADS)
Wuyts, Stijn; Förster Schreiber, Natascha M.; Nelson, Erica J.; van Dokkum, Pieter G.; Brammer, Gabe; Chang, Yu-Yen; Faber, Sandra M.; Ferguson, Henry C.; Franx, Marijn; Fumagalli, Mattia; Genzel, Reinhard; Grogin, Norman A.; Kocevski, Dale D.; Koekemoer, Anton M.; Lundgren, Britt; Lutz, Dieter; McGrath, Elizabeth J.; Momcheva, Ivelina; Rosario, David; Skelton, Rosalind E.; Tacconi, Linda J.; van der Wel, Arjen; Whitaker, Katherine E.
2013-12-01
We analyze the resolved stellar populations of 473 massive star-forming galaxies at 0.7 < z < 1.5, with multi-wavelength broadband imaging from CANDELS and Hα surface brightness profiles at the same kiloparsec resolution from 3D-HST. Together, this unique data set sheds light on how the assembled stellar mass is distributed within galaxies, and where new stars are being formed. We find the Hα morphologies to resemble more closely those observed in the ACS I band than in the WFC3 H band, especially for the larger systems. We next derive a novel prescription for Hα dust corrections, which accounts for extra extinction toward H II regions. The prescription leads to consistent star formation rate (SFR) estimates and reproduces the observed relation between the Hα/UV luminosity ratio and visual extinction, on both a pixel-by-pixel and a galaxy-integrated level. We find the surface density of star formation to correlate with the surface density of assembled stellar mass for spatially resolved regions within galaxies, akin to the so-called "main sequence of star formation" established on a galaxy-integrated level. Deviations from this relation toward lower equivalent widths are found in the inner regions of galaxies. Clumps and spiral features, on the other hand, are associated with enhanced Hα equivalent widths, bluer colors, and higher specific SFRs compared to the underlying disk. Their Hα/UV luminosity ratio is lower than that of the underlying disk, suggesting that the ACS clump selection preferentially picks up those regions of elevated star formation activity that are the least obscured by dust. Our analysis emphasizes that monochromatic studies of galaxy structure can be severely limited by mass-to-light ratio variations due to dust and spatially inhomogeneous star formation histories.
A COMPARATIVE STUDY OF KNOTS OF STAR FORMATION IN INTERACTING VERSUS SPIRAL GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Beverly J.; Olmsted, Susan; Jones, Keith
2016-03-15
Interacting galaxies are known to have higher global rates of star formation on average than normal galaxies, relative to their stellar masses. Using UV and IR photometry combined with new and published Hα images, we have compared the star formation rates (SFRs) of ∼700 star forming complexes in 46 nearby interacting galaxy pairs with those of regions in 39 normal spiral galaxies. The interacting galaxies have proportionally more regions with high SFRs than the spirals. The most extreme regions in the interacting systems lie at the intersections of spiral/tidal structures, where gas is expected to pile up and trigger starmore » formation. Published Hubble Space Telescope images show unusually large and luminous star clusters in the highest luminosity regions. The SFRs of the clumps correlate with measures of the dust attenuation, consistent with the idea that regions with more interstellar gas have more star formation. For the clumps with the highest SFRs, the apparent dust attenuation is consistent with the Calzetti starburst dust attenuation law. This suggests that the high luminosity regions are dominated by a central group of young stars surrounded by a shell of clumpy interstellar gas. In contrast, the lower luminosity clumps are bright in the UV relative to Hα, suggesting either a high differential attenuation between the ionized gas and the stars, or a post-starburst population bright in the UV but faded in Hα. The fraction of the global light of the galaxies in the clumps is higher on average for the interacting galaxies than for the spirals. Thus either star formation in interacting galaxies is “clumpier” on average, or the star forming regions in interacting galaxies are more luminous, dustier, or younger on average.« less
A CANDELS-3d-HST Synergy: Resolved Star Formation Patterns at 0.7 less than z less than 1.5
NASA Technical Reports Server (NTRS)
Wuyts, Stijn; Foerster Schreiber, Natascha M.; Nelson, Erica J.; Van Dokkum, Pieter G.; Brammer, Gabe; Chang, Yu-Yen; Faber, Sandra M.; Ferguson, Henry C.; Franx, Marijn; Fumagalli, Mattia;
2013-01-01
We analyze the resolved stellar populations of 473 massive star-forming galaxies at 0.7 < z < 1.5, with multiwavelength broadband imaging from CANDELS andHalpha surface brightness profiles at the same kiloparsec resolution from 3D-HST. Together, this unique data set sheds light on how the assembled stellar mass is distributed within galaxies, and where new stars are being formed. We find the Halpha morphologies to resemble more closely those observed in the ACS I band than in the WFC3 H band, especially for the larger systems. We next derive a novel prescription for Halpha dust corrections, which accounts for extra extinction toward H II regions. The prescription leads to consistent star formation rate (SFR) estimates and reproduces the observed relation between the Halpha/UV luminosity ratio and visual extinction, on both a pixel-by-pixel and a galaxy-integrated level. We find the surface density of star formation to correlate with the surface density of assembled stellar mass for spatially resolved regions within galaxies, akin to the so-called "main sequence of star formation" established on a galaxy-integrated level. Deviations from this relation toward lower equivalent widths are found in the inner regions of galaxies. Clumps and spiral features, on the other hand, are associated with enhanced H alpha equivalent widths, bluer colors, and higher specific SFRs compared to the underlying disk. Their Halpha/UV luminosity ratio is lower than that of the underlying disk, suggesting that the ACS clump selection preferentially picks up those regions of elevated star formation activity that are the least obscured by dust. Our analysis emphasizes that monochromatic studies of galaxy structure can be severely limited by mass-to-light ratio variations due to dust and spatially inhomogeneous star formation histories.
NASA Astrophysics Data System (ADS)
Liu, F. S.; Jiang, Dongfei; Faber, S. M.; Koo, David C.; Yesuf, Hassen M.; Tacchella, Sandro; Mao, Shude; Wang, Weichen; Guo, Yicheng; Fang, Jerome J.; Barro, Guillermo; Zheng, Xianzhong; Jia, Meng; Tong, Wei; Liu, Lu; Meng, Xianmin
2017-07-01
The rest-frame UV-optical (I.e., NUV - B) color is sensitive to both low-level recent star formation (specific star formation rate—sSFR) and dust. In this Letter, we extend our previous work on the origins of NUV - B color gradients in star-forming galaxies (SFGs) at z˜ 1 to those at z˜ 2. We use a sample of 1335 large (semimajor axis radius {R}{SMA}> 0\\buildrel{\\prime\\prime}\\over{.} 18) SFGs with extended UV emission out to 2{R}{SMA} in the mass range {M}* ={10}9{--}{10}11 {M}⊙ at 1.5< z< 2.8 in the CANDELS/GOODS-S and UDS fields. We show that these SFGs generally have negative NUV - B color gradients (redder centers), and their color gradients strongly increase with galaxy mass. We also show that the global rest-frame FUV - NUV color is approximately linear with {A}{{V}}, which is derived by modeling the observed integrated FUV to NIR spectral energy distributions of the galaxies. Applying this integrated calibration to our spatially resolved data, we find a negative dust gradient (more dust extinguished in the centers), which steadily becomes steeper with galaxy mass. We further find that the NUV - B color gradients become nearly zero after correcting for dust gradients regardless of galaxy mass. This indicates that the sSFR gradients are negligible and dust reddening is likely the principal cause of negative UV-optical color gradients in these SFGs. Our findings support that the buildup of the stellar mass in SFGs at Cosmic Noon is self-similar inside 2{R}{SMA}.
The Diversity of Carbon in Cometary Refractory Dust Particles
NASA Technical Reports Server (NTRS)
Wooden, D. H.
2018-01-01
When comparing the dark icy surfaces of outer solar system small bodies and the composition of carbonaceous chondrites derived from dark asteroids we find a significant discrepancy in the assessed amounts of elemental carbon: up to 80% amorphous carbon is used to model the dark surfaces of Kuiper Belt Objects and Centaurs whereas at most 5% of elemental carbon is found in carbonaceous chondrites. If we presume that regimes of comet nuclei formation are analogous to disk regimes where other outer solar system ice-rich bodies formed then we can turn to comet dust to gain insights into the diversity in the concentration and forms of carbon available in the outer disk. Comet dust offers important insights into the diversity in the amounts and forms of carbon that were incorporated into aggregate dust particles in the colder parts of the protoplanetary disk out of which comet nuclei accreted. Comet nuclei are amongst the most primitive bodies because they have remained cold and unequilibrated. Comet dust particles reveal the presence of forms of elemental carbon and of soluble and insoluble organic matter, and in a great diversity of concentrations from very little, e.g., Stardust samples of comet 81P/Wild 2, to 80% by volume for Ultra Carbonaceous Antarctic Micro Meteorites (UCAMMs). Cometary outbursts and/or jet activity also demonstrate variations in the concentration of carbon in the grains at different grain sizes within a single comet. We review the diversity of carbon-bearing dust grains in cometary samples, flyby measurements and deduced from remote-sensing to enrich the discussion about the diversity of carbonaceous matter available in the outer ice-rich disk at the time of comet nuclei formation.
VizieR Online Data Catalog: Dust properties of major-merger galaxy pairs (Domingue+, 2016)
NASA Astrophysics Data System (ADS)
Domingue, D. L.; Cao, C.; Xu, C. K.; Jarrett, T. H.; Ronca, J.; Hill, E.; Jacques, A.
2018-04-01
We present an analysis of dust properties of a sample of close major-merger galaxy pairs selected by Ks magnitude and redshift. The pairs represent the two populations of spiral-spiral (S+S) and mixed morphology spiral-elliptical (S+E). The Code Investigating GALaxy Emission (CIGALE) software is used to fit dust models to the Two Micron All Sky Survey, Wide-Field Infrared Survey Explorer, and Herschel flux density measurements, and to derive the parameters describing the polycyclic aromatic hydrocarbons contribution, interstellar radiation field, and photodissociation regions. Model fits verify our previous Spitzer Space Telescope analysis that S+S and S+E pairs do not have the same level of enhancement of star formation and differ in dust composition. (1 data file).