Whistler and Alfvén Mode Cyclotron Masers in Space
NASA Astrophysics Data System (ADS)
Trakhtengerts, V. Y.; Rycroft, M. J.
2012-10-01
Preface; 1. Introduction; 2. Basic theory of cyclotron masers (CMs); 3. Linear theory of the cyclotron instability (CI); 4. Backward wave oscillator (BWO) regime in CMs; 5. Nonlinear cyclotron wave-particle interactions for a quasi-monochromatic wave; 6. Nonlinear interaction of quasi-monochromatic whistler mode waves with gyroresonant electrons in an in homogeneous plasma; 7. Wavelet amplification in an inhomogeneous plasma; 8. Quasi-linear theory of cyclotron masers; 9. Nonstationary generation regimes, and modulation effects; 10. ELF/VLF noise-like emissions and electrons in the Earth's radiation belts; 11. Generation of discrete ELF/VLF whistler mode emissions; 12. Cyclotron instability of the proton radiation belts; 13. Cyclotron masers elsewhere in the solar system and in laboratory plasma devices; Epilogue; Glossary of terms; List of acronyms; References; Index.
NASA Astrophysics Data System (ADS)
Kobayashi, T.; Ida, K.; Itoh, K.; Yoshinuma, M.; Moon, C.; Inagaki, S.; Yamada, I.; Funaba, H.; Yasuhara, R.; Tsuchiya, H.; Ohdachi, S.; Yoshimura, Y.; Igami, H.; Shimozuma, T.; Kubo, S.; Tsujimura, T. I.
2016-04-01
This paper provides a software application of the sampling scope concept for fusion research. The time evolution of Thomson scattering data is reconstructed with a high temporal resolution during a modulated electron cyclotron resonance heating (MECH) phase. The amplitude profile and the delay time profile of the heat pulse propagation are obtained from the reconstructed signal for discharges having on-axis and off-axis MECH depositions. The results are found to be consistent with the MECH deposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, T., E-mail: kobayashi.tatsuya@LHD.nifs.ac.jp; Yoshinuma, M.; Ohdachi, S.
2016-04-15
This paper provides a software application of the sampling scope concept for fusion research. The time evolution of Thomson scattering data is reconstructed with a high temporal resolution during a modulated electron cyclotron resonance heating (MECH) phase. The amplitude profile and the delay time profile of the heat pulse propagation are obtained from the reconstructed signal for discharges having on-axis and off-axis MECH depositions. The results are found to be consistent with the MECH deposition.
Kobayashi, T; Ida, K; Itoh, K; Yoshinuma, M; Moon, C; Inagaki, S; Yamada, I; Funaba, H; Yasuhara, R; Tsuchiya, H; Ohdachi, S; Yoshimura, Y; Igami, H; Shimozuma, T; Kubo, S; Tsujimura, T I
2016-04-01
This paper provides a software application of the sampling scope concept for fusion research. The time evolution of Thomson scattering data is reconstructed with a high temporal resolution during a modulated electron cyclotron resonance heating (MECH) phase. The amplitude profile and the delay time profile of the heat pulse propagation are obtained from the reconstructed signal for discharges having on-axis and off-axis MECH depositions. The results are found to be consistent with the MECH deposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minami, R., E-mail: minami@prc.tsukuba.ac.jp; Imai, T.; Kariya, T.
Temporally and spatially resolved soft x-ray and end-loss-electron analyses of the electron cyclotron heated plasmas are carried out by using a semiconductor detector array and an electrostatic energy analyzer in the GAMMA 10 tandem mirror. The flux and the energy spectrum of the end loss electrons are measured by a multi-grid energy analyzer. Recently, the electron cyclotron heating power modulation experiments have been started in order to generate and control the high heat flux and to make the edge localized mode-like intermittent heat load pattern for the divertor simulation studies by the use of these detectors for electron properties.
Jones, Kevin C; Vander Stappen, François; Bawiec, Christopher R; Janssens, Guillaume; Lewin, Peter A; Prieels, Damien; Solberg, Timothy D; Sehgal, Chandra M; Avery, Stephen
2015-12-01
To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be on the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring.
Modulated electron cyclotron drift instability in a high-power pulsed magnetron discharge.
Tsikata, Sedina; Minea, Tiberiu
2015-05-08
The electron cyclotron drift instability, implicated in electron heating and anomalous transport, is detected in the plasma of a planar magnetron. Electron density fluctuations associated with the mode are identified via an adapted coherent Thomson scattering diagnostic, under direct current and high-power pulsed magnetron operation. Time-resolved analysis of the mode amplitude reveals that the instability, found at MHz frequencies and millimeter scales, also exhibits a kHz-scale modulation consistent with the observation of larger-scale plasma density nonuniformities, such as the rotating spoke. Sharply collimated axial fluctuations observed at the magnetron axis are consistent with the presence of escaping electrons in a region where the magnetic and electric fields are antiparallel. These results distinguish aspects of magnetron physics from other plasma sources of similar geometry, such as the Hall thruster, and broaden the scope of instabilities which may be considered to dictate magnetron plasma features.
NASA Astrophysics Data System (ADS)
Teramoto, Tatsuya; Shikama, Taiichi; Ueda, Akira; Hasuo, Masahiro
2018-05-01
The anisotropy in the electron velocity distribution (EVD) was measured using the polarization of two helium atom emission lines, 21P-31D (668 nm) and 23P-33D (588 nm), in a helium electron cyclotron resonance (ECR) discharge plasma. A small polarization degree of less than 4% was measured by adopting a temporal modulation technique. It was found that the polarization originated locally from around the ECR layer and that the anisotropic component of the EVD produced by ECR heating had an average kinetic energy of approximately 40 eV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Kevin C.; Solberg, Timothy D.; Avery, Stephen, E-mail: Stephen.Avery@uphs.upenn.edu
Purpose: To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. Methods: An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. Results: The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be onmore » the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. Conclusions: The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring.« less
Nonlinear heating of ions by electron cyclotron frequency waves
NASA Astrophysics Data System (ADS)
Zestanakis, P. A.; Hizanidis, K.; Ram, A. K.; Kominis, Y.
2010-11-01
We study the nonlinear interaction of ions with electron cyclotron (EC) wave packets in a magnetized plasma. Previous studies have shown that such interactions with high frequency electrostatic lower hybrid waves can lead to coherent energization of ions. It requires the frequency bandwidth of the wave packet to be broader than the ion cyclotron frequency [1,2]. For the electromagnetic high frequency EC waves we have developed a more general theory, based on the Lie transform canonical perturbation method [3,4]. We apply the theory to the case of two overlapping EC beams. The wave frequency of each beam is assumed to be frequency modulated with a modulation bandwidth comparable to the ion cyclotron frequency. We present results for both X-mode and O-mode and illustrate the conditions for ion energization. [4pt] [1] D. Benisti, A. K. Ram, and A. Bers, Phys. Plasmas 5, 3224 (1998). [0pt] [2] A. K. Ram, A. Bers, and D. Benisti , J. Geophys. Res. 103, 9431 (1998). [0pt] [3] J.R. Cary and A.N. Kaufman, Phys. Fluids 24, 1238 (1981). [0pt] [4] R.L. Dewar, J. Phys A-Math. Gen 9, 2043 (1976).
NASA Astrophysics Data System (ADS)
Kobayashi, T.; Kobayashi, S.; Lu, X. X.; Kenmochi, N.; Ida, K.; Ohshima, S.; Yamamoto, S.; Kado, S.; Kokubu, D.; Nagasaki, K.; Okada, H.; Minami, T.; Otani, Y.; Mizuuchi, T.
2018-01-01
We report properties of a coherent density oscillation observed in the core region and its response to electron cyclotron resonance heating (ECH) in Heliotron J plasma. The measurement was performed using a multi-channel beam emission spectroscopy system. The density oscillation is observed in a radial region between the core and the half radius. The poloidal mode number is found to be 1 (or 2). By modulating the ECH power with 100 Hz, repetition of formation and deformation of a strong electron temperature gradient, which is likely ascribed to be an electron internal transport barrier, is realized. Amplitude and rotation frequency of the coherent density oscillation sitting at the strong electron temperature gradient location are modulated by the ECH, while the poloidal mode structure remains almost unchanged. The change in the rotation velocity in the laboratory frame is derived. Assuming that the change of the rotation velocity is given by the background E × B velocity, a possible time evolution of the radial electric field was deduced.
Nonlinear THz absorption and cyclotron resonance in InSb
NASA Astrophysics Data System (ADS)
Heffernan, Kate; Yu, Shukai; Talbayev, Diyar
The emergence of coherent high-field terahertz (THz) sources in the past decade has allowed the exploration of nonlinear light-matter interaction at THz frequencies. Nonlinear THz response of free electrons in semiconductors has received a great deal of attention. Such nonlinear phenomena as saturable absorption and self-phase modulation have been reported. InSb is a narrow-gap (bandgap 0.17 eV) semiconductor with a very low electron effective mass and high electron mobility. Previous high-field THz work on InSb reported the observation of ultrafast electron cascades via impact ionization. We study the transmission of an intense THz electric field pulse by an InSb wafer at different incident THz amplitudes and 10 K temperature. Contrary to previous reports, we observe an increased transmission at higher THz field. Our observation appears similar to the saturable THz absorption reported in other semiconductors. Along with the increased absorption, we observe a strong modulation of the THz phase at high incident fields, most likely due to the self-phase modulation of the THz pulse. We also study the dependence of the cyclotron resonance on the incident THz field amplitude. The cyclotron resonance exhibits a lower strength and frequency at the higher incident THz field. The work at Tulane was supported by the Louisiana Board of Regents through the Board of Regents Support Fund Contract No. LEQSF(2012-15)-RD-A-23 and through the Pilot Funding for New Research (PFund) Contract No. LEQSF-EPS(2014)-PFUND-378.
Nonlinear Right-Hand Polarized Wave in Plasma in the Electron Cyclotron Resonance Region
NASA Astrophysics Data System (ADS)
Krasovitskiy, V. B.; Turikov, V. A.
2018-05-01
The propagation of a nonlinear right-hand polarized wave along an external magnetic field in subcritical plasma in the electron cyclotron resonance region is studied using numerical simulations. It is shown that a small-amplitude plasma wave excited in low-density plasma is unstable against modulation instability with a modulation period equal to the wavelength of the excited wave. The modulation amplitude in this case increases with decreasing detuning from the resonance frequency. The simulations have shown that, for large-amplitude waves of the laser frequency range propagating in plasma in a superstrong magnetic field, the maximum amplitude of the excited longitudinal electric field increases with the increasing external magnetic field and can reach 30% of the initial amplitude of the electric field in the laser wave. In this case, the energy of plasma electrons begins to substantially increase already at magnetic fields significantly lower than the resonance value. The laser energy transferred to plasma electrons in a strong external magnetic field is found to increase severalfold compared to that in isotropic plasma. It is shown that this mechanism of laser radiation absorption depends only slightly on the electron temperature.
Stimson, D H R; Pringle, A J; Maillet, D; King, A R; Nevin, S T; Venkatachalam, T K; Reutens, D C; Bhalla, R
2016-09-01
The emphasis on the reduction of gaseous radioactive effluent associated with PET radiochemistry laboratories has increased. Various radioactive gas capture strategies have been employed historically including expensive automated compression systems. We have implemented a new cost-effective strategy employing gas capture bags with electronic feedback that are integrated with the cyclotron safety system. Our strategy is suitable for multiple automated 18 F radiosynthesis modules and individual automated 11 C radiosynthesis modules. We describe novel gas capture systems that minimize the risk of human error and are routinely used in our facility.
Nonlinear structures and anomalous transport in partially magnetized E×B plasmas
Janhunen, Salomon; Smolyakov, Andrei; Chapurin, Oleksandr; ...
2017-12-29
Nonlinear dynamics of the electron-cyclotron instability driven by the electron E x B current in a crossed electric and magnetic field is studied. In the nonlinear regime, the instability proceeds by developing a large amplitude coherent wave driven by the energy input from the fundamental cyclotron resonance. Further evolution shows the formation of the long wavelength envelope akin to the modulational instability. Simultaneously, the ion density shows the development of a high-k content responsible for wave focusing and sharp peaks on the periodic cnoidal wave structure. Here, it is shown that the anomalous electron transport (along the direction of themore » applied electric field) is dominated by the long wavelength part of the turbulent spectrum.« less
NASA Astrophysics Data System (ADS)
Stenzel, R. L.; Golubyatnikov, G.
1993-10-01
Radio frequency (rf) magnetic fluctuations B˜ have been measured with loop antennas in a large pulsed discharge plasma column (ne≲1012 cm-3, kTe≲3 eV, B0≂20 G, Ar, 2×10-4 Torr, 1 m diam×2.5 m length). A 1/f-like noise spectrum is observed in the whistler wave regime (ωce1/2ωci1/2<ω<ωce) both in the Maxwellian afterglow plasma and in the active discharge which contains energetic (45 eV) electrons. Discrete emission lines at the electron cyclotron frequency and its harmonics are found only in the presence of spiraling energetic electrons. These are naturally present in the active discharge but have also been injected as a controlled oblique electron beam into the Maxwellian afterglow plasma. In the latter case up to 15 cyclotron harmonic lines with weak amplitude decay B˜z(ω) are generated in the beam flux tube. From two-point correlation measurements it is shown that the line spectrum is due to ballistic beam modes rather than plasma eigenmodes driven unstable by the beam. The lines evolve from broadband thermal current fluctuations of the beam through a filtering effect. Those fluctuations which rotate synchronously with the ordered cyclotron motion (ω=nωc) constructively interfere (k∥=0) and produce coherent solenoidal rf fields, while others interfere destructively. Axial and azimuthal phase velocity measurements for rf-modulated beams clearly demonstrate the filtering effect. In the present parameter regime (ωp≫ωc) the fluctuations are evanescent and localized near the electron flux tube (rc≳c/ωp). In low density plasmas the fluctuations may couple to propagating electromagnetic waves and be observable externally as in earlier observations by Landauer or Ikegami.
Vladimirov, Gleb; Kostyukevich, Yury; Kharybin, Oleg; Nikolaev, Eugene
2017-08-01
Particle-in-cell-based realistic simulation of Fourier transform ion cyclotron resonance experiments could be used to generate ion trajectories and a signal induced on the detection electrodes. It has been shown recently that there is a modulation of "reduced" cyclotron frequencies in ion cyclotron resonance signal caused by Coulomb interaction of ion clouds. In this work it was proposed to use this modulation in order to determine frequency difference between an ion of known m/z and all other ions generating signal in ion cyclotron resonance cell. It is shown that with an increase of number of ions in ion cyclotron resonance trap, the modulation index increases, which lead to a decrease in the accuracy of determination of peak intensities by super Fourier transform resolution methods such as filter diagonalization method.
NASA Astrophysics Data System (ADS)
Kinsey, J. E.; Waltz, R. E.; DeBoo, J. C.
1999-05-01
It is difficult to discriminate between various tokamak transport models using standardized statistical measures to assess the goodness of fit with steady-state density and temperature profiles in tokamaks. This motivates consideration of transient transport experiments as a technique for testing the temporal response predicted by models. Results are presented comparing the predictions from the Institute for Fusion Studies—Princeton Plasma Physics Laboratory (IFS/PPPL), gyro-Landau-fluid (GLF23), Multi-mode (MM), Current Diffusive Ballooning Mode (CDBM), and Mixed-shear (MS) transport models against data from ohmic cold pulse and modulated electron cyclotron heating (ECH) experiments. In ohmically heated discharges with rapid edge cooling due to trace impurity injection, it is found that critical gradient models containing a strong temperature ratio (Ti/Te) dependence can exhibit behavior that is qualitatively consistent both spatially and temporally with experimental observation while depending solely on local parameters. On the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)], off-axis modulated ECH experiments have been conducted in L-mode (low confinement mode) and the perturbed electron and ion temperature response to multiple heat pulses has been measured across the plasma core. Comparing the predicted Fourier phase of the temperature perturbations, it is found that no single model yielded agreement with both electron and ion phases for all cases. In general, it was found that the IFS/PPPL, GLF23, and MS models agreed well with the ion response, but not with the electron response. The CDBM and MM models agreed well with the electron response, but not with the ion response. For both types of transient experiments, temperature coupling between the electron and ion transport is found to be an essential feature needed in the models for reproducing the observed perturbative response.
NASA Astrophysics Data System (ADS)
Bravenec, R. V.; Ross, D. W.; Austin, M. E.; Gentle, K. W.; Deboo, J. C.; DIII-D Team; McKee, G. R.; Dorland, W.; Rhodes, T. L.; Zeng, L.
2002-11-01
Experiments to elucidate the nature of electron thermal transport have been conducted in DIII-D plasmas using modulated off-axis electron-cyclotron heating (ECH). Density fluctuations were measured using beam-emission spectroscopy, microwave reflectometry, and far-infrared scattering. Simulations of the experiment are performed with the gyrokinetic and gyrofluid flux-tube codes GS2(F. Jenko, W. Dorland, M. Kotschenreuther, and B.N. Rogers, Phys. Plasmas 7), 1904 (2000) and refs. therein. and GRYFFIN,(W. Dorland and G.W. Hammett, Phys. Fluids B 5), 812 (1993); M.A. Beer and G.W. Hammett, Phys. Plasmas 3, 4046 (1996). respectively. Comparisons of experiment and simulation results for the fluctuations and transport fluxes (ion and electron) will be presented for both time-averaged and modulated quantities.
Comparative study of the loss cone-driven instabilities in the low solar corona
NASA Technical Reports Server (NTRS)
Sharma, R. R.; Vlahos, L.
1984-01-01
A comparative study of the loss cone-driven instabilities in the low solar corona is undertaken. The instabilities considered are the electron cyclotron maser, the whistler, and the electrostatic upper hybrid. It is shown that the first-harmonic extraordinary mode of the electron cyclotron maser instability is the fastest growing mode for strong magnetized plasma (the ratio of plasma frequency to cyclotron frequency being less than 0.35). For values of the ratio between 0.35 and 1.0, the first-harmonic ordinary mode of the electron cyclotron maser instability dominates the emission. For ratio values greater than 1.0, no direct electromagnetic radiation is expected since other instabilities, which do not escape directly, saturate the electron cyclotron maser (the whistler or the electrostatic upper hybrid waves). It is also shown that the second-harmonic electron cyclotron maser emission never grows to an appreciable level. Thus, it is suggested that the electron cyclotron maser instability can be the explanation for the escape of the first harmonic from a flaring loop.
Silva, A; Varela, P; Meneses, L; Manso, M
2012-10-01
The ASDEX Upgrade frequency modulated continuous wave broadband reflectometer system uses a mono-static antenna configuration with in-vessel hog-horns and 3 dB directional couplers. The operation of the new electron cyclotron resonance heating (ECRH) launcher and the start of collective Thomson scattering experiments caused several events where the fragile dummy loads inside the high field side directional couplers were damaged, due to excessive power resulting from the ECRH stray fields. In this paper, we present a non-conventional application of the existing three-port directional coupler that hardens the system to the ECRH stray fields and at the same time generates the necessary reference signal. Electromagnetic simulations and laboratory tests were performed to validate the proposed solution and are compared with the in-vessel calibration tests.
Ionospheric modification at twice the electron cyclotron frequency.
Djuth, F T; Pedersen, T R; Gerken, E A; Bernhardt, P A; Selcher, C A; Bristow, W A; Kosch, M J
2005-04-01
In 2004, a new transmission band was added to the HAARP high-frequency ionospheric modification facility that encompasses the second electron cyclotron harmonic at altitudes between approximately 220 and 330 km. Initial observations indicate that greatly enhanced airglow occurs whenever the transmission frequency approximately matches the second electron cyclotron harmonic at the height of the upper hybrid resonance. This is the reverse of what happens at higher electron cyclotron harmonics. The measured optical emissions confirm the presence of accelerated electrons in the plasma.
Update on the status of the ITER ECE diagnostic design
NASA Astrophysics Data System (ADS)
Taylor, G.; Austin, M. E.; Basile, A.; Beno, J. H.; Danani, S.; Feder, R.; Houshmandyar, S.; Hubbard, A. E.; Johnson, D. W.; Khodak, A.; Kumar, R.; Kumar, S.; Ouroua, A.; Padasalagi, S. B.; Pandya, H. K. B.; Phillips, P. E.; Rowan, W. L.; Stillerman, J.; Thomas, S.; Udintsev, V. S.; Vayakis, G.; Walsh, M.; Weeks, D.
2017-07-01
Considerable progress has been made on the design of the ITER electron cyclotron emission (ECE) diagnostic over the past two years. Radial and oblique views are still included in the design in order to measure distortions in the electron momentum distribution, but the oblique view has been redirected to reduce stray millimeter radiation from the electron cyclotron heating system. A major challenge has been designing the 1000 K calibration sources and remotely activated mirrors located in the ECE diagnostic shield module (DSM) in the equatorial port plug #09. These critical systems are being modeled and prototypes are being developed. Providing adequate neutron shielding in the DSM while allowing sufficient space for optical components is also a significant challenge. Four 45-meter long low-loss transmission lines transport the 70-1000 GHz ECE from the DSM to the ECE instrumentation room. Prototype transmission lines are being tested, as are the polarization splitter modules that separate O-mode and X-mode polarized ECE. A highly integrated prototype 200-300 GHz radiometer is being tested on the DIII-D tokamak in the USA. Design activities also include integration of ECE signals into the ITER plasma control system and determining the hardware and software architecture needed to control and calibrate the ECE instruments.
Electron cyclotron emission from nonthermal tokamak plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, R.W.; O'Brien, M.R.; Rozhdestvensky, V.V.
1993-02-01
Electron cyclotron emission can be a sensitive indicator of nonthermal electron distributions. A new, comprehensive ray-tracing and cyclotron emission code that is aimed at predicting and interpreting the cyclotron emission from tokamak plasmas is described. The radiation transfer equation is solved along Wentzel--Kramers--Brillouin (WKB) rays using a fully relativistic calculation of the emission and absorption from electron distributions that are gyrotropic and toroidally symmetric, but may be otherwise arbitrary functions of the constants of motion. Using a radial array of electron distributions obtained from a bounce-averaged Fokker--Planck code modeling dc electron field and electron cyclotron heating effects, the cyclotron emissionmore » spectra are obtained. A pronounced strong nonthermal cyclotron emission feature that occurs at frequencies relativistically downshifted to second harmonic cyclotron frequencies outside the tokamak is calculated, in agreement with experimental results from the DIII-D [J. L. Luxon and L. G. Davies, Fusion Technol. [bold 8], 441 (1985)] and FT-1 [D. G. Bulyginsky [ital et] [ital al]., in [ital Proceedings] [ital of] [ital the] 15[ital th] [ital European] [ital Conference] [ital on] [ital Controlled] [ital Fusion] [ital and] [ital Plasma] [ital Heating], Dubrovnik, 1988 (European Physical Society, Petit-Lancy, 1988), Vol. 12B, Part II, p. 823] tokamaks. The calculations indicate the presence of a strong loss mechanism that operates on electrons in the 100--150 keV energy range.« less
NASA Astrophysics Data System (ADS)
van Berkel, M.; Kobayashi, T.; Igami, H.; Vandersteen, G.; Hogeweij, G. M. D.; Tanaka, K.; Tamura, N.; Zwart, H. J.; Kubo, S.; Ito, S.; Tsuchiya, H.; de Baar, M. R.; LHD Experiment Group
2017-12-01
A new methodology to analyze non-linear components in perturbative transport experiments is introduced. The methodology has been experimentally validated in the Large Helical Device for the electron heat transport channel. Electron cyclotron resonance heating with different modulation frequencies by two gyrotrons has been used to directly quantify the amplitude of the non-linear component at the inter-modulation frequencies. The measurements show significant quadratic non-linear contributions and also the absence of cubic and higher order components. The non-linear component is analyzed using the Volterra series, which is the non-linear generalization of transfer functions. This allows us to study the radial distribution of the non-linearity of the plasma and to reconstruct linear profiles where the measurements were not distorted by non-linearities. The reconstructed linear profiles are significantly different from the measured profiles, demonstrating the significant impact that non-linearity can have.
Single-electron detection and spectroscopy via relativistic cyclotron radiation
Asner, D. M.; Bradley, R. F.; de Viveiros, L.; ...
2015-04-20
Since 1897, we've understood that accelerating charges must emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. We demonstrate single-electron detection in a novel radiofrequency spec- trometer. Here, we observe the cyclotron radiation emitted by individual magnetically-trapped electrons that are produced with mildly-relativistic energies by a gaseous radioactive source. The relativistic shift in the cyclotron frequency permits a precisemore » electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.« less
Recent Progress and Future Plans for Fusion Plasma Synthetic Diagnostics Platform
NASA Astrophysics Data System (ADS)
Shi, Lei; Kramer, Gerrit; Tang, William; Tobias, Benjamin; Valeo, Ernest; Churchill, Randy; Hausammann, Loic
2015-11-01
The Fusion Plasma Synthetic Diagnostics Platform (FPSDP) is a Python package developed at the Princeton Plasma Physics Laboratory. It is dedicated to providing an integrated programmable environment for applying a modern ensemble of synthetic diagnostics to the experimental validation of fusion plasma simulation codes. The FPSDP will allow physicists to directly compare key laboratory measurements to simulation results. This enables deeper understanding of experimental data, more realistic validation of simulation codes, quantitative assessment of existing diagnostics, and new capabilities for the design and optimization of future diagnostics. The Fusion Plasma Synthetic Diagnostics Platform now has data interfaces for the GTS and XGC-1 global particle-in-cell simulation codes with synthetic diagnostic modules including: (i) 2D and 3D Reflectometry; (ii) Beam Emission Spectroscopy; and (iii) 1D Electron Cyclotron Emission. Results will be reported on the delivery of interfaces for the global electromagnetic PIC code GTC, the extended MHD M3D-C1 code, and the electromagnetic hybrid NOVAK eigenmode code. Progress toward development of a more comprehensive 2D Electron Cyclotron Emission module will also be discussed. This work is supported by DOE contract #DEAC02-09CH11466.
NASA Astrophysics Data System (ADS)
Kandpal, Praveen; Pandey, R. S.
2018-05-01
In the present paper, the study of electrostatic electron cyclotron parallel flow velocity shear instability in presence of perpendicular inhomogeneous DC electric field has been carried out in the magnetosphere of Saturn. Dimensionless growth rate variation of electron cyclotron waves has been observed with respect to k⊥ ρe for various plasma parameters. Effect of velocity shear scale length (Ae), inhomogeneity (P/a), the ratio of ion to electron temperature (Ti/Te) and density gradient (ɛnρe) on the growth of electron cyclotron waves in the inner magnetosphere of Saturn has been studied and analyzed. The mathematical formulation and computation of dispersion relation and growth rate have been done by using the method of characteristic solution and kinetic approach. This theoretical analysis has been done taking the relevant data from the Cassini spacecraft in the inner magnetosphere of Saturn. We have considered ambient magnetic field data and other relevant data for this study at the radial distance of ˜4.82-5.00 Rs. In our study velocity shear and ion to electron temperature ratio have been observed to be the major sources of free energy for the electron cyclotron instability. The inhomogeneity of electric field caused a small noticeable impact on the growth rate of electrostatic electron cyclotron instability. Density gradient has been observed playing stabilizing effect on electron cyclotron instability.
Alonso, M P; Figueiredo, A C A; Borges, F O; Elizondo, J I; Galvão, R M O; Severo, J H F; Usuriaga, O C; Berni, L A; Machida, M
2010-10-01
We present the first simultaneous measurements of the Thomson scattering and electron cyclotron emission radiometer diagnostics performed at TCABR tokamak with Alfvén wave heating. The Thomson scattering diagnostic is an upgraded version of the one previously installed at the ISTTOK tokamak, while the electron cyclotron emission radiometer employs a heterodyne sweeping radiometer. For purely Ohmic discharges, the electron temperature measurements from both diagnostics are in good agreement. Additional Alfvén wave heating does not affect the capability of the Thomson scattering diagnostic to measure the instantaneous electron temperature, whereas measurements from the electron cyclotron emission radiometer become underestimates of the actual temperature values.
NASA Technical Reports Server (NTRS)
Pickett, J. S.; Franz, J. R.; Scudder, J. D.; Menietti, J. D.; Gurnett, D. A.; Hospodarsky, G. B.; Braunger, R. M.; Kintner, P. M.; Kurth, W. S.
2001-01-01
The boundary layer located in the cusp and adjacent to the magnetopause is a region that is quite turbulent and abundant with waves. The Polar spacecraft's orbit and sophisticated instrumentation are ideal for studying this region of space. Our analysis of the waveform data obtained in this turbulent boundary layer shows broadband magnetic noise extending up to a few kilohertz (but less than the electron cyclotron frequency); sinusoidal bursts (a few tenths of a second) of whistler mode waves at around a few tens of hertz, a few hundreds of hertz, and just below the electron cyclotron frequency; and bipolar pulses, interpreted as electron phase-space holes. In addition, bursts of electron cyclotron harmonic waves are occasionally observed with magnetic components. We show evidence of broadband electrostatic bursts covering a range of approx. 3 to approx. 25 kHz (near but less than the plasma frequency) occurring in packets modulated at the frequency of some of the whistler mode waves. On the basis of high time resolution particle data from the Polar HYDRA instrument, we show that these bursts are consistent with generation by the resistive medium instability. The most likely source of the whistler mode waves is the magnetic reconnection site closest to the spacecraft, since the waves are observed propagating both toward and away from the Earth, are bursty, which is often the case with reconnection, and do not fit on the theoretical cold plasma dispersion relation curve.
NASA Astrophysics Data System (ADS)
Goto, Yuki; Kubo, Shin; Tsujimura, Tohru; Takubo, Hidenori
2017-10-01
Recently, it has been shown that the radiation from a single electron in cyclotron motion has vortex property. Although the cyclotron emission exists universally in nature, the vortex property has not been featured because this property is normally cancelled out due to the randomness in gyro-phase of electrons and the development of detection of the vortex property has not been well motivated. In this research, we are developing a method to generate the vortex radiation from electrons in cyclotron motion with controlled gyro-phase. Electron that rotates around the uniform static magnetic field is accelerated by right-hand circular polarized (RHCP) radiation resonantly when the cyclotron frequency coincides with the applied RHCP radiation frequency. A large number of electrons can be coherently accelerated in gyro-phase by a RHCP high power radiation so that these electrons can radiate coherent emission with vortex feature. We will show that vortex radiation created by purely rotating electrons for the first time.
NASA Technical Reports Server (NTRS)
Vlahos, Loukas; Sprangle, Phillip
1987-01-01
The nonlinear evolution of cyclotron radiation from streaming and gyrating electrons in an external magnetic field is analyzed. The nonlinear dynamics of both the fields and the particles are treated fully relativistically and self-consistently. The model includes a background plasma and electrostatic effects. The analytical and numerical results show that a substantial portion of the beam particle energy can be converted to electromagnetic wave energy at frequencies far above the electron cyclotron frequency. In general, the excited radiation can propagate parallel to the magnetic field and, hence, escape gyrothermal absorption at higher cyclotron harmonics. The high-frequency Doppler-shifted cyclotron instability can have saturation efficiencies far higher than those associated with well-known instabilities of the electron cyclotron maser type. Although the analysis is general, the possibility of using this model to explain the intense radio emission observed from the sun is explored in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuwahara, D., E-mail: dkuwahar@cc.tuat.ac.jp; Ito, N.; Nagayama, Y.
A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.
Kuwahara, D; Ito, N; Nagayama, Y; Yoshinaga, T; Yamaguchi, S; Yoshikawa, M; Kohagura, J; Sugito, S; Kogi, Y; Mase, A
2014-11-01
A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.
NASA Astrophysics Data System (ADS)
Zhao, Duo; Fu, Suiyan; Parks, George K.; Sun, Weijie; Zong, Qiugang; Pan, Dongxiao; Wu, Tong
2017-08-01
We present new observations of electron distributions and the accompanying waves during the current sheet activities at ˜60 RE in the geomagnetic tail detected by the ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun) spacecraft. We find that electron flat-top distribution is a common feature near the neutral sheet of the tailward flowing plasmas, consistent with the electron distributions that are shaped in the reconnection region. Whistler mode waves are generated by the anisotropic electron temperature associated with the electron flat-top distributions. These whistler mode waves are modulated by low frequency ion scale waves that are possibly excited by the high-energy ions injected during the current sheet instability. The magnetic and electric fields of the ion scale waves are in phase with electron density variations, indicating that they are compressional ion cyclotron waves. Our observations present examples of the dynamical processes occurring during the current sheet activities far downstream of the geomagnetic tail.
Modulated phases of graphene quantum Hall polariton fluids
Pellegrino, Francesco M. D.; Giovannetti, Vittorio; MacDonald, Allan H.; Polini, Marco
2016-01-01
There is a growing experimental interest in coupling cavity photons to the cyclotron resonance excitations of electron liquids in high-mobility semiconductor quantum wells or graphene sheets. These media offer unique platforms to carry out fundamental studies of exciton-polariton condensation and cavity quantum electrodynamics in a regime, in which electron–electron interactions are expected to play a pivotal role. Here, focusing on graphene, we present a theoretical study of the impact of electron–electron interactions on a quantum Hall polariton fluid, that is a fluid of magneto-excitons resonantly coupled to cavity photons. We show that electron–electron interactions are responsible for an instability of graphene integer quantum Hall polariton fluids towards a modulated phase. We demonstrate that this phase can be detected by measuring the collective excitation spectra, which is often at a characteristic wave vector of the order of the inverse magnetic length. PMID:27841346
Mirror instability and origin of morningside auroral structure
NASA Technical Reports Server (NTRS)
Chiu, Y. T.; Schulz, M.; Fennell, J. F.; Kishi, A. M.
1983-01-01
Auroral optical imagery shows marked differences between auroral features of the evening and morning sectors: the separation between diffuse and discrete auroras in the evening sector is not distinct in the morning sector, which is dominated by auroral patches and multiple banded structures aligned along some direction. Plasma distribution function signatures also show marked differences: downward electron beams and inverted-V signatures prefer the evening sector, while the electron spectra on the morning sector are similar to the diffuse aurora. A theory of morningside auroras consistent with these features was constructed. The theory is based on modulation of the growth rates of electron cyclotron waves by the mirror instability, which is in turn driven by inward-convected ions that have become anisotropic. This modulation produces alternating bands of enhanced and reduced electron precipitation which approximate the observed multiple auroral bands and patches of the morning sector.
Energy limit in cyclotron autoresonance acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, C.; Hirshfield, J.L.
1995-03-01
A multimegawatt gyroharmonic converter depends critically on the parameters of a spatiotemporally modulated gyrating electron beam prepared using a cyclotron autoresonance accelerator (CARA). This paper extends a prior analysis of CARA [B. Hafizi, P. Sprangle, and J. L. Hirshfield, Phys. Rev. E 50, 3077 (1994)] to identify an approximate constant of the motion and, therefore, to give limits to the beam energy from CARA that can be utilized in a harmonic converter. It is also shown that particles are strongly phase trapped during acceleration in CARA and thus are insensitive to deviations from exact autoresonance. This fact could simplify constructionmore » of the up-tapered guide magnetic field in the device and augurs well for production of high-quality multimegawatt beams using CARA.« less
Theory of unfolded cyclotron accelerator
NASA Astrophysics Data System (ADS)
Rax, J.-M.; Robiche, J.
2010-10-01
An acceleration process based on the interaction between an ion, a tapered periodic magnetic structure, and a circularly polarized oscillating electric field is identified and analyzed, and its potential is evaluated. A Hamiltonian analysis is developed in order to describe the interplay between the cyclotron motion, the electric acceleration, and the magnetic modulation. The parameters of this universal class of magnetic modulation leading to continuous acceleration without Larmor radius increase are expressed analytically. Thus, this study provides the basic scaling of what appears as a compact unfolded cyclotron accelerator.
The importance of plasma effects on electron-cyclotron maser-emission from flaring loops
NASA Technical Reports Server (NTRS)
Sharma, R. R.; Vlahos, L.; Papadopoulos, K.
1982-01-01
Electron cyclotron maser instability has been suggested as the cause of the observed short (10-20 msec), intense (an approximate brightness temperature of 10 to the 15th K) and up to 100% polarized microwave solar emission. It is shown that plasma effects and thermal cyclotron damping, ignored in previous theories, play an important role in controlling the frequency range of the emission. The radio emission is suppressed for ratios of the plasma frequency to the cyclotron frequency smaller than 0.4. An examination of the cyclotron damping, reveals that the maser action is suppressed unless a large fraction (i.e., over 10%) of the accelerated electrons participates in the emission process.
Electron cyclotron harmonic wave acceleration
NASA Technical Reports Server (NTRS)
Karimabadi, H.; Menyuk, C. R.; Sprangle, P.; Vlahos, L.
1987-01-01
A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts.
Quantum non demolition measurement of cyclotron excitations in a Penning trap
NASA Technical Reports Server (NTRS)
Marzoli, Irene; Tombesi, Paolo
1993-01-01
The quantum non-demolition measurement of the cyclotron excitations of an electron confined in a Penning trap could be obtained by measuring the resonance frequency of the axial motion, which is coupled to the cyclotron motion through the relativistic shift of the electron mass.
Study of the Polarization Strategy for Electron Cyclotron Heating Systems on HL-2M
NASA Astrophysics Data System (ADS)
Zhang, F.; Huang, M.; Xia, D. H.; Song, S. D.; Wang, J. Q.; Huang, B.; Wang, H.
2016-06-01
As important components integrated in transmission lines of electron cyclotron heating systems, polarizers are mainly used to obtain the desired polarization for highly efficient coupling between electron cyclotron waves and plasma. The polarization strategy for 105-GHz electron cyclotron heating systems of HL-2M tokamak is studied in this paper. Considering the polarizers need high efficiency, stability, and low loss to realize any polarization states, two sinusoidal-grooved polarizers, which include a linear polarizer and an elliptical polarizer, are designed with the coordinate transformation method. The parameters, the period p and the depth d, of two sinusoidal-grooved polarizers are optimized by a phase difference analysis method to achieve an almost arbitrary polarization. Finally, the optimized polarizers are manufactured and their polarization characteristics are tested with a low-power test platform. The experimental results agree well with the numerical calculations, indicating that the designed polarizers can meet the polarization requirements of the electron cyclotron heating systems of HL-2M tokamak.
The electron-cyclotron maser for astrophysical application
NASA Astrophysics Data System (ADS)
Treumann, Rudolf A.
2006-08-01
The electron-cyclotron maser is a process that generates coherent radiation from plasma. In the last two decades, it has gained increasing attention as a dominant mechanism of producing high-power radiation in natural high-temperature magnetized plasmas. Originally proposed as a somewhat exotic idea and subsequently applied to include non-relativistic plasmas, the electron-cyclotron maser was considered as an alternative to turbulent though coherent wave-wave interaction which results in radio emission. However, when it was recognized that weak relativistic corrections had to be taken into account in the radiation process, the importance of the electron-cyclotron maser rose to the recognition it deserves. Here we review the theory and application of the electron-cyclotron maser to the directly accessible plasmas in our immediate terrestrial and planetary environments. In situ access to the radiating plasmas has turned out to be crucial in identifying the conditions under which the electron-cyclotron maser mechanism is working. Under extreme astrophysical conditions, radiation from plasmas may provide a major energy loss; however, for generating the powerful radiation in which the electron-cyclotron maser mechanism is capable, the plasma must be in a state where release of susceptible amounts of energy in the form of radiation is favorable. Such conditions are realized when the plasma is unable to digest the available free energy that is imposed from outside and stored in its particle distribution. The lack of dissipative processes is a common property of collisionless plasmas. When, in addition, the plasma density becomes so low that the amount of free energy per particle is large, direct emission becomes favorable. This can be expressed as negative absorption of the plasma which, like in conventional masers, leads to coherent emission even though no quantum correlations are involved. The physical basis of this formal analogy between a quantum maser and the electron-cyclotron maser is that in the electron-cyclotron maser the free-space radiation modes can be amplified directly. Several models have been proposed for such a process. The most famous one is the so-called loss-cone maser. However, as argued in this review, the loss-cone maser is rather inefficient. Available in situ measurements indicate that the loss-cone maser plays only a minor role. Instead, the main source for any strong electron-cyclotron maser is found in the presence of a magnetic-field-aligned electric potential drop which has several effects: (1) it dilutes the local plasma to such an extent that the plasma enters the regime in which the electron-cyclotron maser becomes effective; (2) it generates energetic relativistic electron beams and field-aligned currents; (3) it deforms, together with the magnetic mirror force, the electron distribution function, thereby mimicking a high energy level sufficiently far above the Maxwellian ground state of an equilibrium plasma; (4) it favors emission in the free-space RX mode in a direction roughly perpendicular to the ambient magnetic field; (5) this emission is the most intense, since it implies the coherent resonant contribution of a maximum number of electrons in the distribution function to the radiation (i.e., to the generation of negative absorption); (6) it generates a large number of electron holes via the two-stream instability, and ion holes via the current-driven ion-acoustic instability which manifest themselves as subtle fine structures moving across the radiation spectrum and being typical for the electron-cyclotron maser emission process. These fine structures can thus be taken as the ultimate identifier of the electron-cyclotron maser. The auroral kilometric radiation of Earth is taken here as the paradigm for other manifestations of intense radio emissions such as the radiation from other planets in the solar system, from exoplanets, the Sun and other astrophysical objects.
NASA Astrophysics Data System (ADS)
Shalashov, A. G.; Gospodchikov, E. D.; Izotov, I. V.; Mansfeld, D. A.; Skalyga, V. A.; Tarvainen, O.
2018-04-01
We report the first experimental evidence of a controlled transition from the generation of periodic bursts of electromagnetic radiation into the continuous-wave regime of a cyclotron maser formed in magnetically confined nonequilibrium plasma. The kinetic cyclotron instability of the extraordinary wave of weakly inhomogeneous magnetized plasma is driven by the anisotropic electron population resulting from electron cyclotron plasma heating in a MHD-stable minimum-B open magnetic trap.
Hole-cyclotron instability in semiconductor quantum plasmas
NASA Astrophysics Data System (ADS)
Areeb, F.; Rasheed, A.; Jamil, M.; Siddique, M.; Sumera, P.
2018-01-01
The excitation of electrostatic hole-cyclotron waves generated by an externally injected electron beam in semiconductor plasmas is examined using a quantum hydrodynamic model. The quantum effects such as tunneling potential, Fermi degenerate pressure, and exchange-correlation potential are taken care of. The growth rate of the wave is analyzed on varying the parameters normalized by hole-plasma frequency, like the angle θ between propagation vector and B0∥z ̂ , speed of the externally injected electron beam v0∥k , thermal temperature of the electron beam τ, external magnetic field B0∥z ̂ that modifies the hole-cyclotron frequency, and finally, the semiconductor electron number density. The instability of the hole-cyclotron wave seeks its applications in semiconductor devices.
Single-Electron Detection and Spectroscopy via Relativistic Cyclotron Radiation.
Asner, D M; Bradley, R F; de Viveiros, L; Doe, P J; Fernandes, J L; Fertl, M; Finn, E C; Formaggio, J A; Furse, D; Jones, A M; Kofron, J N; LaRoque, B H; Leber, M; McBride, E L; Miller, M L; Mohanmurthy, P; Monreal, B; Oblath, N S; Robertson, R G H; Rosenberg, L J; Rybka, G; Rysewyk, D; Sternberg, M G; Tedeschi, J R; Thümmler, T; VanDevender, B A; Woods, N L
2015-04-24
It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Although first derived in 1904, cyclotron radiation from a single electron orbiting in a magnetic field has never been observed directly. We demonstrate single-electron detection in a novel radio-frequency spectrometer. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay end point, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.
Cyclotron Resonance of Electrons Trapped in a Microwave Cavity
ERIC Educational Resources Information Center
Elmore, W. C.
1975-01-01
Describes an experiment in which the free-electron cyclotron resonance of electrons trapped in a microwave cavity by a Penning trap is observed. The experiment constitutes an attractive alternative to one of the Gardner-Purcell variety. (Author/GS)
Electron Plasmas Cooled by Cyclotron-Cavity Resonance
Povilus, A. P.; DeTal, N. D.; Evans, L. T.; ...
2016-10-21
We observe that high-Q electromagnetic cavity resonances increase the cyclotron cooling rate of pure electron plasmas held in a Penning-Malmberg trap when the electron cyclotron frequency, controlled by tuning the magnetic field, matches the frequency of standing wave modes in the cavity. For certain modes and trapping configurations, this can increase the cooling rate by factors of 10 or more. In this paper, we investigate the variation of the cooling rate and equilibrium plasma temperatures over a wide range of parameters, including the plasma density, plasma position, electron number, and magnetic field.
The role of spin–rotation coupling in the non-exponential decay of hydrogen-like heavy ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambiase, Gaetano, E-mail: lambiase@sa.infn.it; INFN, Sezione di Napoli; International Institute for Advanced Scientific Studies, 89019 Vietri sul Mare
2013-05-15
Recent experiments carried out at the storage ring of GSI in Darmstadt reveal an unexpected oscillation in the orbital electron capture and subsequent decay of hydrogen-like {sup 140}Pr{sup 58+}, {sup 142}Pm{sup 60+} and {sup 122}I{sup 52+}. The modulations have periods of 7.069(8) s, 7.10(22) s and 6.1 s respectively in the laboratory frame and are superimposed on the expected exponential decays. In this paper we propose a semiclassical model in which the observed modulations arise from the coupling of rotation to the spins of electron and nucleus. We show that the modulations are connected to quantum beats and to themore » effect of the Thomas precession on the spins of bound electron and nucleus, the magnetic moment precessions of electron and nucleus and their cyclotron frequencies. We also show that the spin–spin coupling of electron and nucleus, though dominant relative to the magnetic moment coupling of electron and nucleus with the storage ring magnetic field, does not contribute to the modulation because these terms average out during the time of flight of the ions, or cancel out. The model also predicts that the anomaly cannot be observed if the motion of the ions is rectilinear, or if the ions are stopped in a target (decay of neutral atoms in solid environments). It also supports the notion that no modulation occurs for the β{sup +}-decay branch. -- Highlights: ► Spin precession of the spin of nucleus and electron in storage ring. ► Coupling of rotation to the spin of electron and nucleus. ► Modulation in the decay probability of the heavy ions induced by quantum beats. ► Comparison with experimental data.« less
NASA Astrophysics Data System (ADS)
Omura, Y.; Hsieh, Y. K.; Foster, J. C.; Erickson, P. J.; Kletzing, C.; Baker, D. N.
2017-12-01
A recent test particle simulation of obliquely propagating whistler mode wave-particle interaction [Hsieh and Omura, 2017] shows that the perpendicular wave electric field can play a significant role in trapping and accelerating relativistic electrons through Landau resonance. A further theoretical and numerical investigation verifies that there occurs nonlinear wave trapping of relativistic electrons by the nonlinear Lorentz force of the perpendicular wave magnetic field. An electron moving with a parallel velocity equal to the parallel phase velocity of an obliquely propagating wave basically see a stationary wave phase. Since the electron position is displaced from its gyrocenter by a distance ρ*sin(φ), where ρ is the gyroradius and φ is the gyrophase, the wave phase is modulated with the gyromotion, and the stationary wave fields as seen by the electron are expanded as series of Bessel functions Jn with phase variations n*φ. The J1 components of the wave electric and magnetic fields rotate in the right-hand direction with the gyrofrequency, and they can be in resonance with the electron undergoing the gyromotion, resulting in effective electron acceleration and pitch angle scattering. We have performed a subpacket analysis of chorus waveforms observed by the Van Allen Probes [Foster et al., 2017], and calculated the energy gain by the cyclotron acceleration through Landau resonance. We compare the efficiencies of accelerations by cyclotron and Landau resonances in typical events of rapid electron acceleration observed by the Van Allen Probes.References:[1] Hsieh, Y.-K., and Y. Omura (2017), Nonlinear dynamics of electrons interacting with oblique whistler mode chorus in the magnetosphere, J. Geophys. Res. Space Physics, 122, 675-694, doi:10.1002/2016JA023255.[2] Foster, J. C., P. J. Erickson, Y. Omura, D. N. Baker, C. A. Kletzing, and S. G. Claudepierre (2017), Van Allen Probes observations of prompt MeV radiation belt electron acceleration in nonlinear interactions with VLF chorus, J. Geophys. Res. Space Physics, 122, 324-339, doi:10.1002/2016JA023429.
NASA Astrophysics Data System (ADS)
Vanovac, B.; Wolfrum, E.; Denk, S. S.; Mink, F.; Laggner, F. M.; Birkenmeier, G.; Willensdorfer, M.; Viezzer, E.; Hoelzl, M.; Freethy, S. J.; Dunne, M. G.; Lessig, A.; Luhmann, N. C., Jr.; the ASDEX Upgrade Team; the EUROfusion MST1 Team
2018-04-01
Electron cyclotron emission imaging (ECEI) provides measurements of electron temperature (T e ) and its fluctuations (δT e ). However, when measuring at the plasma edge, in the steep gradient region, radiation transport effects must be taken into account. It is shown that due to these effects, the scrape-off layer region is not accessible to the ECEI measurements in steady state conditions and that the signal is dominated by the shine-through emission. Transient effects, such as filaments, can change the radiation transport locally, but cannot be distinguished from the shine-through. Local density measurements are essential for the correct interpretation of the electron cyclotron emission, since the density fluctuations influence the temperature measurements at the plasma edge. As an example, a low frequency 8 kHz mode, which causes 10%-15% fluctuations in the signal level of the ECEI, is analysed. The same mode has been measured with the lithium beam emission spectroscopy density diagnostic, and is very well correlated in time with high frequency magnetic fluctuations. With radiation transport modelling of the electron cyclotron radiation in the ECEI geometry, it is shown that the density contributes significantly to the radiation temperature (T rad) and the experimental observations have shown the amplitude modulation in both density and temperature measurements. The poloidal velocity of the low frequency mode measured by the ECEI is 3 km s-1. The calculated velocity of the high frequency mode measured with the magnetic pick-up coils is about 25 km s-1. Velocities are compared with the E × B background flow velocity and possible explanations for the origin of the low frequency mode are discussed.
All-magnetic extraction for cyclotron beam reacceleration
Hudson, E.D.; Mallory, M.L.
1975-07-22
An isochronous cyclotron can be modified to provide an initial electron stripping stage, a complete acceleration of the stripped ions through the cyclotron to a first energy state, means for returning the ions to an intermediate cyclotron orbit through a second stripping stage, further acceleration of the now higher energy stripped ions through the cyclotron to their final energy, and final extraction of the ions from the cyclotron. (auth)
Electron Gyro-Harmonic Effects on Ionospheric Stimulated Brillouin Scatter
2014-08-21
27709-2211 Brillouin, SBS, emission lines, pump frequency stepping, cyclotron , EIC, airglow, upper hybrid REPORT DOCUMENTATION PAGE 11. SPONSOR...direction and the background magnetic field vector, the excited electrostatic wave could be either ion acoustic (IA) or electrostatic ion cyclotron (EIC...A. Hedberg, B. Lundborg, P. Stubbe, H. Kopka, and M. T. Rietveld (1989), Stimulated electromagnetic emission near electron cyclotron harmonics in
NASA Technical Reports Server (NTRS)
Freund, H. P.; Wu, C. S.; Gaffey, J. D., Jr.
1984-01-01
An expression for the spectral emissivity of spontaneous synchrotron radiation for a plasma which consists of both thermal and suprathermal electron components is derived using the complete relativistic cyclotron resonance condition. The expression is valid over all angles of propagation. The result is applied to the study of the emission of radiation from an energetic population of electrons with a loss-cone distribution in a relatively low-density plasma (i.e., the electron plasma frequency is less than the cyclotron frequency).
High-Amplitude, Rapid Photometric Variation of the New Polar Master OT J132104.0+560957.8
2015-02-05
channel the captured material onto cyclotron -emitting accretion regions near the WD’s magnetic poles. Because cyclotron emission is heavily beamed, it...of the cyclotron -emitting region can produce dramatic pho- tometric variability modulated at the WD’s spin period (e.g., Gänsicke et al. 2001). A...observations of J1321 could detect the polarized cyclotron emission from the accretion region, conclusively verifying this classification. Figure 1. The
Upgrades and Real Time Ntm Control Application of the Ece Radiometer on Asdex Upgrade
NASA Astrophysics Data System (ADS)
Hicks, N. K.; Suttrop, W.; Behler, K.; Giannone, L.; Manini, A.; Maraschek, M.; Raupp, G.; Reich, M.; Sips, A. C. C.; Stober, J.; Treutterer, W.; ASDEX Upgrade Team; Cirant, S.
2009-04-01
The 60-channel electron cyclotron emission (ECE) radiometer diagnostic on the ASDEX Upgrade tokamak is presently being upgraded to include a 1 MHz sampling rate data acquisition system. This expanded capability allows electron temperature measurements up to 500 kHz (anti-aliasing filter cut-off) with spatial resolution ~1 cm, and will thus provide measurement of plasma phenomena on the MHD timescale, such as neoclassical tearing modes (NTMs). The upgraded and existing systems may be run in parallel for comparison, and some of the first plasma measurements using the two systems together are presented. A particular planned application of the upgraded radiometer is integration into a real-time NTM stabilization loop using targeted deposition of electron cyclotron resonance heating (ECRH). For this loop, it is necessary to determine the locations of the NTM and ECRH deposition using ECE measurements. As the magnetic island of the NTM repeatedly rotates through the ECE line of sight, electron temperature fluctuations at the NTM frequency are observed. The magnetic perturbation caused by the NTM is independently measured using Mirnov coils, and a correlation profile between these magnetic measurements and the ECE data is constructed. The phase difference between ECE oscillations on opposite sides of the island manifests as a zero-crossing of the correlation profile, which determines the NTM location in ECE channel space. To determine the location of ECRH power deposition, the power from a given gyrotron may be modulated at a particular frequency. Correlation analysis of this modulated signal and the ECE data identifies a particular ECE channel associated with the deposition of that gyrotron. Real time equilibrium reconstruction allows the ECE channels to be translated into flux surface and spatial coordinates for use in the feedback loop.
Electron cyclotron thruster new modeling results preparation for initial experiments
NASA Technical Reports Server (NTRS)
Hooper, E. Bickford
1993-01-01
The following topics are discussed: a whistler-based electron cyclotron resonance heating (ECRH) thruster; cross-field coupling in the helicon approximation; wave propagation; wave structure; plasma density; wave absorption; the electron distribution function; isothermal and adiabatic plasma flow; ECRH thruster modeling; a PIC code model; electron temperature; electron energy; and initial experimental tests. The discussion is presented in vugraph form.
Design of the high voltage isolation transmission module with low delay for ECRH system on J-TEXT
NASA Astrophysics Data System (ADS)
Haiyan, MA; Donghui, XIA; Zhijiang, WANG; Fangtai, CUI; Zhenxiong, YU; Yikun, JIN; Changhai, LIU
2018-02-01
As a flexible auxiliary heating method, the electron cyclotron resonance heating (ECRH) has been widely used in many tokamaks and also will be applied for the J-TEXT tokamak. To meet requirements of protection and fault analysis for the ECRH system on J-TEXT, signals of gyrotrons such as the cathode voltage and current, the anode voltage and current, etc should be transmitted to the control and data acquisition system. Considering the high voltage environment of gyrotrons, isolation transmission module based on FPGA and optical fiber communication has been designed and tested. The test results indicate that the designed module has strong anti-noise ability, low error rate and high transmission speed. The delay of the module is no more than 5 μs which can fulfill the requirements.
Method and apparatus for preventing cyclotron breakdown in partially evacuated waveguide
Moeller, Charles P.
1987-01-01
Cyclotron breakdown is prevented in a partially evacuated waveguide by providing a section of waveguide having an axial cut therein in order to apply a potential across the two halves of the waveguide. This section is positioned in the waveguide crossing the area of electron cyclotron resonance. The potential applied across the waveguide halves is used to deflect seed electrons into the wall of the waveguide in order to prevent ionization of gas molecules and creation of more electron ion pairs which would result in cyclotron breakdown. Support means is also disclosed for electrically isolating the waveguide halves and transition means is provided between the section of the waveguide with the axial cut and the solid waveguide at either end thereof.
NASA Astrophysics Data System (ADS)
Ma, J. Z. G.; Hirose, A.
2010-05-01
Lower-hybrid (LH) oscillitons reveal one aspect of geocomplexities. They have been observed by rockets and satellites in various regions in geospace. They are extraordinary solitary waves the envelop of which has a relatively longer period, while the amplitude is modulated violently by embedded oscillations of much shorter periods. We employ a two-fluid (electron-ion) slab model in a Cartesian geometry to expose the excitation of LH oscillitons. Relying on a set of self-similar equations, we first produce, as a reference, the well-known three shapes (sinusoidal, sawtooth, and spiky or bipolar) of parallel-propagating ion-acoustic (IA) solitary structures in the absence of electron inertia, along with their Fast Fourier Transform (FFT) power spectra. The study is then expanded to illustrate distorted structures of the IA modes by taking into account all the three components of variables. In this case, the ion-cyclotron (IC) mode comes into play. Furthermore, the electron inertia is incorporated in the equations. It is found that the inertia modulates the coupled IA/IC envelops to produce LH oscillitons. The newly excited structures are characterized by a normal low-frequency IC solitary envelop embedded by high-frequency, small-amplitude LH oscillations which are superimposed upon by higher-frequency but smaller-amplitude IA ingredients. The oscillitons are shown to be sensitive to several input parameters (e.g., the Mach number, the electron-ion mass/temperature ratios, and the electron thermal speed). Interestingly, whenever a LH oscilliton is triggered, there occurs a density cavity the depth of which can reach up to 20% of the background density, along with density humps on both sides of the cavity. Unexpectedly, a mode at much lower frequencies is also found beyond the IC band. Future studies are finally highlighted. The appendices give a general dispersion relation and specific ones of linear modes relevant to all the nonlinear modes encountered in the text.
Generation of cyclotron harmonic waves in the ionospheric modification experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janabi, A.H.A.; Kumar, A.; Sharma, R.P.
1994-02-01
In the present paper, the parametric decay instability of the pump X-mode into electron Bernstein wave (EBW) near second harmonics of electron cyclotron frequency and IBW at different harmonics ([omega] < n[omega][sub ci];n = 2, 3, 4) is examined. Expressions are derived for homogeneous threshold, growth rate and convective threshold for this instability. Applications and relevances of the present investigation to ionospheric modification experiment in the F-layer of the ionosphere as well as during intense electron cyclotron resonance heating in the upcoming MTX tokamak have been given.
Fluid equations in the presence of electron cyclotron current drive
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Kruger, Scott E.
2012-12-01
Two-fluid equations, which include the physics imparted by an externally applied radiofrequency source near electron cyclotron resonance, are derived in their extended magnetohydrodynamic forms using the formalism of Hegna and Callen [Phys. Plasmas 16, 112501 (2009)]. The equations are compatible with the closed fluid/drift-kinetic model developed by Ramos [Phys. Plasmas 17, 082502 (2010); 18, 102506 (2011)] for fusion-relevant regimes with low collisionality and slow dynamics, and they facilitate the development of advanced computational models for electron cyclotron current drive-induced suppression of neoclassical tearing modes.
Fluid equations in the presence of electron cyclotron current drive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, Thomas G.; Kruger, Scott E.
Two-fluid equations, which include the physics imparted by an externally applied radiofrequency source near electron cyclotron resonance, are derived in their extended magnetohydrodynamic forms using the formalism of Hegna and Callen [Phys. Plasmas 16, 112501 (2009)]. The equations are compatible with the closed fluid/drift-kinetic model developed by Ramos [Phys. Plasmas 17, 082502 (2010); 18, 102506 (2011)] for fusion-relevant regimes with low collisionality and slow dynamics, and they facilitate the development of advanced computational models for electron cyclotron current drive-induced suppression of neoclassical tearing modes.
Cyclotron resonance of interacting quantum Hall droplets
NASA Astrophysics Data System (ADS)
Widmann, M.; Merkt, U.; Cortés, M.; Häusler, W.; Eberl, K.
1998-06-01
The line shape and position of cyclotron resonance in gated GaAs/GaAlAs heterojunctions with δ-doped layers of negatively charged beryllium acceptors, that provide strong potential fluctuations in the channels of the quasi-two-dimensional electron systems, are examined. Specifically, the magnetic quantum limit is considered when the electrons are localized in separate quantum Hall droplets in the valleys of the disorder potential. A model treating disorder and electron-electron interaction on an equal footing accounts for all of the principal experimental findings: blue shifts from the unperturbed cyclotron frequency that decrease when the electron density is reduced, surprisingly narrow lines in the magnetic quantum limit, and asymmetric lines due to additional oscillator strength on their high-frequency sides.
NASA Astrophysics Data System (ADS)
Kohagura, J.; Yoshikawa, M.; Wang, X.; Kuwahara, D.; Ito, N.; Nagayama, Y.; Shima, Y.; Nojiri, K.; Sakamoto, M.; Nakashima, Y.; Mase, A.
2016-11-01
In conventional multichannel/imaging microwave diagnostics of interferometry, reflectometry, and electron cyclotron emission measurements, a local oscillator (LO) signal is commonly supplied to a receiver array via irradiation using LO optics. In this work, we present a 60-GHz interferometer with a new eight-channel receiver array, called a local oscillator integrated antenna array (LIA). An outstanding feature of LIA is that it incorporates a frequency quadrupler integrated circuit for LO supply to each channel. This enables simple and uniform LO supply to the receiver array using only a 15-GHz LO source and a coaxial cable transmission line instead of using an expensive 60-GHz source, LO optics, and a waveguide transmission line. The new interferometer system is first applied to measure electron line-averaged density inside the divertor simulation experimental module (D-module) on GAMMA 10/PDX tandem mirror device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohagura, J., E-mail: kohagura@prc.tsukuba.ac.jp; Yoshikawa, M.; Shima, Y.
In conventional multichannel/imaging microwave diagnostics of interferometry, reflectometry, and electron cyclotron emission measurements, a local oscillator (LO) signal is commonly supplied to a receiver array via irradiation using LO optics. In this work, we present a 60-GHz interferometer with a new eight-channel receiver array, called a local oscillator integrated antenna array (LIA). An outstanding feature of LIA is that it incorporates a frequency quadrupler integrated circuit for LO supply to each channel. This enables simple and uniform LO supply to the receiver array using only a 15-GHz LO source and a coaxial cable transmission line instead of using an expensivemore » 60-GHz source, LO optics, and a waveguide transmission line. The new interferometer system is first applied to measure electron line-averaged density inside the divertor simulation experimental module (D-module) on GAMMA 10/PDX tandem mirror device.« less
Kohagura, J; Yoshikawa, M; Wang, X; Kuwahara, D; Ito, N; Nagayama, Y; Shima, Y; Nojiri, K; Sakamoto, M; Nakashima, Y; Mase, A
2016-11-01
In conventional multichannel/imaging microwave diagnostics of interferometry, reflectometry, and electron cyclotron emission measurements, a local oscillator (LO) signal is commonly supplied to a receiver array via irradiation using LO optics. In this work, we present a 60-GHz interferometer with a new eight-channel receiver array, called a local oscillator integrated antenna array (LIA). An outstanding feature of LIA is that it incorporates a frequency quadrupler integrated circuit for LO supply to each channel. This enables simple and uniform LO supply to the receiver array using only a 15-GHz LO source and a coaxial cable transmission line instead of using an expensive 60-GHz source, LO optics, and a waveguide transmission line. The new interferometer system is first applied to measure electron line-averaged density inside the divertor simulation experimental module (D-module) on GAMMA 10/PDX tandem mirror device.
ECR ion source with electron gun
Xie, Z.Q.; Lyneis, C.M.
1993-10-26
An Advanced Electron Cyclotron Resonance ion source having an electron gun for introducing electrons into the plasma chamber of the ion source is described. The ion source has a injection enclosure and a plasma chamber tank. The plasma chamber is defined by a plurality of longitudinal magnets. The electron gun injects electrons axially into the plasma chamber such that ionization within the plasma chamber occurs in the presence of the additional electrons produced by the electron gun. The electron gun has a cathode for emitting electrons therefrom which is heated by current supplied from an AC power supply while bias potential is provided by a bias power supply. A concentric inner conductor and outer conductor carry heating current to a carbon chuck and carbon pusher which hold the cathode in place and also heat the cathode. In the Advanced Electron Cyclotron Resonance ion source, the electron gun replaces the conventional first stage used in prior electron cyclotron resonance ion generators. 5 figures.
Nonlinear analysis of a relativistic beam-plasma cyclotron instability
NASA Technical Reports Server (NTRS)
Sprangle, P.; Vlahos, L.
1986-01-01
A self-consistent set of nonlinear and relativistic wave-particle equations are derived for a magnetized beam-plasma system interacting with electromagnetic cyclotron waves. In particular, the high-frequency cyclotron mode interacting with a streaming and gyrating electron beam within a background plasma is considered in some detail. This interaction mode may possibly find application as a high-power source of coherent short-wavelength radiation for laboratory devices. The background plasma, although passive, plays a central role in this mechanism by modifying the dielectric properties in which the magnetized electron beam propagates. For a particular choice of the transverse beam velocity (i.e., the speed of light divided by the relativistic mass factor), the interaction frequency equals the nonrelativistic electron cyclotron frequency times the relativistic mass factor. For this choice of transverse beam velocity the detrimental effects of a longitudinal beam velocity spread is virtually removed. Power conversion efficiencies in excess of 18 percent are both analytically calculated and obtained through numerical simulations of the wave-particle equations. The quality of the electron beam, degree of energy and pitch angle spread, and its effect on the beam-plasma cyclotron instability is studied.
Coupling of electrostatic ion cyclotron and ion acoustic waves in the solar wind
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sreeraj, T., E-mail: sreerajt13@iigs.iigm.res.in; Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: gslakhina@gmail.com
2016-08-15
The coupling of electrostatic ion cyclotron and ion acoustic waves is examined in three component magnetized plasma consisting of electrons, protons, and alpha particles. In the theoretical model relevant to solar wind plasma, electrons are assumed to be superthermal with kappa distribution and protons as well as alpha particles follow the fluid dynamical equations. A general linear dispersion relation is derived for such a plasma system which is analyzed both analytically and numerically. For parallel propagation, electrostatic ion cyclotron (proton and helium cyclotron) and ion acoustic (slow and fast) modes are decoupled. For oblique propagation, coupling between the cyclotron andmore » acoustic modes occurs. Furthermore, when the angle of propagation is increased, the separation between acoustic and cyclotron modes increases which is an indication of weaker coupling at large angle of propagation. For perpendicular propagation, only cyclotron modes are observed. The effect of various parameters such as number density and temperature of alpha particles and superthermality on dispersion characteristics is examined in details. The coupling between various modes occurs for small values of wavenumber.« less
Electron cyclotron maser instability in the solar corona - The role of superthermal tails
NASA Technical Reports Server (NTRS)
Vlahos, L.; Sharma, R. R.
1985-01-01
The effect of a superthermal component of electrons on the loss-cone-driven electron cyclotron maser instability is analyzed. It is found that for a superthermal tail with temperature about 10 KeV, the first harmonic (X- and O-mode) is suppressed for n(t)/n(r) of about 1 (n/t/ and n/r/ are the densities of superthermal tail and loss-cone electrons) and the second harmonic (X- and O-modes) is suppressed for n(t)/n(r) less than about 0.1. A qualitative discussion on the formation of superthermal tails is presented and it is suggested that superthermal tails play an important role on the observed or available power, at microwave frequencies, from the electron cyclotron maser instability in the solar corona.
NASA Astrophysics Data System (ADS)
Kidera, Masanori; Seto, Yasuo; Takahashi, Kazuya; Enomoto, Shuichi; Kishi, Shintaro; Makita, Mika; Nagamatsu, Tsuyoshi; Tanaka, Tatsuhiko; Toda, Masayoshi
2011-03-01
We developed a detection technology for vapor forms of chemical warfare agents (CWAs) with an element analysis system using an electron cyclotron resonance ion source. After the vapor sample was introduced directly into the ion source, the molecular material was decomposed into elements using electron cyclotron resonance plasma and ionized. The following CWAs and stimulants were examined: diisopropyl fluorophosphonate (DFP), 2-chloroethylethylsulfide (2CEES), cyanogen chloride (CNCl), and hydrogen cyanide (HCN). The type of chemical warfare agents, specifically, whether it was a nerve agent, blister agent, blood agent, or choking agent, could be determined by measuring the quantities of the monatomic ions or CN + using mass spectrometry. It was possible to detect gaseous CWAs that could not be detected by a conventional mass spectrometer. The distribution of electron temperature in the plasma could be closely controlled by adjusting the input power of the microwaves used to generate the electron cyclotron resonance plasma, and the target compounds could be detected as molecular ions or fragment ions, enabling identification of the target agents.
Nonlinear sub-cyclotron resonance as a formation mechanism for gaps in banded chorus
Fu, Xiangrong; Guo, Zehua; Dong, Chuanfei; ...
2015-05-14
An interesting characteristic of magnetospheric chorus is the presence of a frequency gap at ω ≃ 0.5Ω e, where Ω e is the electron cyclotron angular frequency. Recent chorus observations sometimes show additional gaps near 0.3Ω e and 0.6Ω e. Here we present a novel nonlinear mechanism for the formation of these gaps using Hamiltonian theory and test particle simulations in a homogeneous, magnetized, collisionless plasma. We find that an oblique whistler wave with frequency at a fraction of the electron cyclotron frequency can resonate with electrons, leading to effective energy exchange between the wave and particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houshmandyar, S., E-mail: houshmandyar@austin.utexas.edu; Phillips, P. E.; Rowan, W. L.
2016-11-15
Calibration is a crucial procedure in electron temperature (T{sub e}) inference from a typical electron cyclotron emission (ECE) diagnostic on tokamaks. Although the calibration provides an important multiplying factor for an individual ECE channel, the parameter ΔT{sub e}/T{sub e} is independent of any calibration. Since an ECE channel measures the cyclotron emission for a particular flux surface, a non-perturbing change in toroidal magnetic field changes the view of that channel. Hence the calibration-free parameter is a measure of T{sub e} gradient. B{sub T}-jog technique is presented here which employs the parameter and the raw ECE signals for direct measurement ofmore » electron temperature gradient scale length.« less
A solvent-extraction module for cyclotron production of high-purity technetium-99m.
Martini, Petra; Boschi, Alessandra; Cicoria, Gianfranco; Uccelli, Licia; Pasquali, Micòl; Duatti, Adriano; Pupillo, Gaia; Marengo, Mario; Loriggiola, Massimo; Esposito, Juan
2016-12-01
The design and fabrication of a fully-automated, remotely controlled module for the extraction and purification of technetium-99m (Tc-99m), produced by proton bombardment of enriched Mo-100 molybdenum metallic targets in a low-energy medical cyclotron, is here described. After dissolution of the irradiated solid target in hydrogen peroxide, Tc-99m was obtained under the chemical form of 99m TcO 4 - , in high radionuclidic and radiochemical purity, by solvent extraction with methyl ethyl ketone (MEK). The extraction process was accomplished inside a glass column-shaped vial especially designed to allow for an easy automation of the whole procedure. Recovery yields were always >90% of the loaded activity. The final pertechnetate saline solution Na 99m TcO 4 , purified using the automated module here described, is within the Pharmacopoeia quality control parameters and is therefore a valid alternative to generator-produced 99m Tc. The resulting automated module is cost-effective and easily replicable for in-house production of high-purity Tc-99m by cyclotrons. Copyright © 2016 Elsevier Ltd. All rights reserved.
ECR ion source with electron gun
Xie, Zu Q.; Lyneis, Claude M.
1993-01-01
An Advanced Electron Cyclotron Resonance ion source (10) having an electron gun (52) for introducing electrons into the plasma chamber (18) of the ion source (10). The ion source (10) has a injection enclosure (12) and a plasma chamber tank (14). The plasma chamber (18) is defined by a plurality of longitudinal magnets (16). The electron gun (52) injects electrons axially into the plasma chamber (18) such that ionization within the plasma chamber (18) occurs in the presence of the additional electrons produced by the electron gun (52). The electron gun (52) has a cathode (116) for emitting electrons therefrom which is heated by current supplied from an AC power supply (96) while bias potential is provided by a bias power supply (118). A concentric inner conductor (60) and Outer conductor (62) carry heating current to a carbon chuck (104) and carbon pusher (114) Which hold the cathode (116) in place and also heat the cathode (16). In the Advanced Electron Cyclotron Resonance ion source (10), the electron gun (52) replaces the conventional first stage used in prior art electron cyclotron resonance ion generators.
Status of the PHOENIX electron cyclotron resonance charge breeder at ISOLDE, CERN.
Barton, Charles; Cederkall, Joakim; Delahaye, Pierre; Kester, Oliver; Lamy, Thierry; Marie-Jeanne, Mélanie
2008-02-01
We report here on the last progresses made with the PHOENIX electron cyclotron resonance charge breeder test bench at ISOLDE. Recently, an experiment was performed to test the trapping of (61)Fe daughter nuclides from the decay of (61)Mn nuclides. Preliminary results are given.
BEST medical radioisotope production cyclotrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabaiduc, Vasile; Milton, Bruce; Suthanthiran, Krishnan
2013-04-19
Best Cyclotron Systems Inc (BCSI) is currently developing 14 MeV, 25 MeV, 35MeV and 70MeV cyclotrons for radioisotope production and research applications as well as the entire spectrum of targets and nuclear synthesis modules for the production of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and radiation therapy isotopes. The company is a subsidiary of Best Medical International, renowned in the field of medical instrumentation and radiation therapy. All cyclotrons have external negative hydrogen ion sources, four radial sectors with two dees in opposite valleys, cryogenic vacuum system and simultaneous beam extraction on opposite lines. The beammore » intensity ranges from 400 {mu}A to 1000 {mu}A, depending on the cyclotron energy and application.« less
BEST medical radioisotope production cyclotrons
NASA Astrophysics Data System (ADS)
Sabaiduc, Vasile; Milton, Bruce; Suthanthiran, Krishnan; Gelbart, W. Z.; Johnson, Richard R.
2013-04-01
Best Cyclotron Systems Inc (BCSI) is currently developing 14 MeV, 25 MeV, 35MeV and 70MeV cyclotrons for radioisotope production and research applications as well as the entire spectrum of targets and nuclear synthesis modules for the production of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and radiation therapy isotopes. The company is a subsidiary of Best Medical International, renowned in the field of medical instrumentation and radiation therapy. All cyclotrons have external negative hydrogen ion sources, four radial sectors with two dees in opposite valleys, cryogenic vacuum system and simultaneous beam extraction on opposite lines. The beam intensity ranges from 400 μA to 1000 μA, depending on the cyclotron energy and application [1].
An Overview of Saturn Narrowband Radio Emissions Observed by Cassini RPWS
NASA Astrophysics Data System (ADS)
Ye, S.-Y.; Fischer, G.; Menietti, J. D.; Wang, Z.; Gurnett, D. A.; Kurth, W. S.
Saturn narrowband (NB) radio emissions are detected between 3 and 70 kHz, with occurrence probability and wave intensity peaking around 5 kHz and 20 kHz. The emissions usually occur periodically for several days after intensification of Saturn kilometric radiation (SKR). Originally detected by the Voyagers, the extended duration of the Cassini mission and the improved capabilities of the Radio and Plasma Wave Science (RPWS) instrument have significantly advanced our knowledge about them. For example, RPWS measurements of the magnetic component have validated the electromagnetic nature of Saturn NB emissions. Evidences show that the 20 kHz NB emissions are generated by mode conversion of electrostatic upper hybrid waves on the boundary of the plasma torus, whereas direction-finding results point to a source in the auroral zone for the 5 kHz component. Similar to SKR, the 5 kHz NB emissions have a clock-like modulation and display two distinct modulation periods identical to the northern and southern hemisphere periods of SKR. Polarization measurements confirm that most NB emissions are propagating in the L-O mode, with the exception of second harmonic NB emissions. At high latitudes closer to the planet, RPWS detected right hand polarized Z-mode NB emissions below the local electron cyclotron frequency (f_ce), which are believed to be the source of the L-O mode NB emissions detected above the local f_ce. Although the energy source for the generation of the Z-mode waves is still unclear, linear growth rate calculations indicate that the observed plasma distributions are unstable to the growth of electrostatic cyclotron harmonic emission. Alternatively, electromagnetic Z-mode might be directly generated by the cyclotron maser instability. The source Z-mode waves, upon reflection, propagate to the opposite hemisphere before escaping through mode conversion, which could explain the fact that both rotational modulation periods of NB emissions are observable in each hemisphere.
Maven Observations of Electron-Induced Whistler Mode Waves in the Martian Magnetosphere
NASA Technical Reports Server (NTRS)
Harada, Y.; Andersson, L.; Fowler, C. M.; Mitchell, D. L.; Halekas, J. S.; Mazelle, C.; Espley, J.; DiBraccio, G. A.; McFadden, J. P.; Brian, D. A.;
2016-01-01
We report on narrowband electromagnetic waves at frequencies between the local electron cyclotron and lower hybrid frequencies observed by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft in the Martian induced magnetosphere. The peaked electric field wave spectra below the electron cyclotron frequency were first observed by Phobos-2 in the Martian magnetosphere, but the lack of magnetic field wave data prevented definitive identification of the wave mode and their generation mechanisms remain unclear. Analysis of electric and magnetic field wave spectra obtained by MAVEN demonstrates that the observed narrowband waves have properties consistent with the whistler mode. Linear growth rates computed from the measured electron velocity distributions suggest that these whistler mode waves can be generated by cyclotron resonance with anisotropic electrons. Large electron anisotropy in the Martian magnetosphere is caused by absorption of parallel electrons by the collisional atmosphere. The narrowband whistler mode waves and anisotropic electrons are observed on both open and closed field lines and have similar spatial distributions in MSO and planetary coordinates. Some of the waves on closed field lines exhibit complex frequency-time structures such as discrete elements of rising tones and two bands above and below half the electron cyclotron frequency. These MAVEN observations indicate that whistler mode waves driven by anisotropic electrons, which are commonly observed in intrinsic magnetospheres and at unmagnetized airless bodies, are also present at Mars. The wave-induced electron precipitation into the Martian atmosphere should be evaluated in future studies.
NASA Technical Reports Server (NTRS)
Gurnett, Donald A.
1993-01-01
The primary types of plasma waves observed in the vicinity of the planets Venus, Mars, Earth, Jupiter, Saturn, Uranus, and Neptune are described. The observations are organized according to the various types of plasma waves observed, ordered according to decreasing distance from the planet, starting from the sunward side of the planet, and ending in the region near the closest approach. The plasma waves observed include: electron plasma oscillations and ion acoustic waves; trapped continuum radiation; electron cyclotron and upper hybrid waves; whistler-mode emissions; electrostatic ion cyclotron waves; and electromagnetic ion cyclotron waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsujii, N.; Porkolab, M.; Edlund, E. M.
2009-11-26
Mode converted ion cyclotron wave (ICW) has been observed with phase contrast imaging (PCI) in D-{sup 3}He plasmas in Alcator C-Mod. The measurements were carried out with the optical heterodyne technique using acousto-optic modulators which modulate the CO2 laser beam intensity near the ion cyclotron frequency. With recently improved calibration of the PCI system using a calibrated sound wave source, the measurements have been compared with the full-wave code TORIC, as interpreted by a synthetic diagnostic. Because of the line-integrated nature of the PCI signal, the predictions are sensitive to the exact wave field pattern. The simulations are found tomore » be in qualitative agreement with the measurements.« less
Cyclotron resonance in InAs/AlSb quantum wells in magnetic fields up to 45 T
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spirin, K. E., E-mail: spirink@ipmras.ru; Krishtopenko, S. S.; Sadofyev, Yu. G.
Electron cyclotron resonance in InAs/AlSb heterostructures with quantum wells of various widths in pulsed magnetic fields up to 45 T are investigated. Our experimental cyclotron energies are in satisfactory agreement with the results of theoretical calculations performed using the eight-band kp Hamiltonian. The shift of the cyclotron resonance (CR) line, which corresponds to the transition from the lowest Landau level to the low magnetic-field region, is found upon varying the electron concentration due to the negative persistent photoconductivity effect. It is shown that the observed shift of the CR lines is associated with the finite width of the density ofmore » states at the Landau levels.« less
Results of RIKEN superconducting electron cyclotron resonance ion source with 28 GHz.
Higurashi, Y; Ohnishi, J; Nakagawa, T; Haba, H; Tamura, M; Aihara, T; Fujimaki, M; Komiyama, M; Uchiyama, A; Kamigaito, O
2012-02-01
We measured the beam intensity of highly charged heavy ions and x-ray heat load for RIKEN superconducting electron cyclotron resonance ion source with 28 GHz microwaves under the various conditions. The beam intensity of Xe(20+) became maximum at B(min) ∼ 0.65 T, which was ∼65% of the magnetic field strength of electron cyclotron resonance (B(ECR)) for 28 GHz microwaves. We observed that the heat load of x-ray increased with decreasing gas pressure and field gradient at resonance zone. It seems that the beam intensity of highly charged heavy ions with 28 GHz is higher than that with 18 GHz at same RF power.
NASA Technical Reports Server (NTRS)
Coroniti, F. V.; Thorne, R. M.
1972-01-01
Coupling of source, transport, and sink processes produces a fairly accurate model for the macroscopic structure and dynamics of magnetospheric electrons. Auroral electrons are controlled by convective transport from a plasma sheet source coupled with a precipitation loss due to whistler and electrostatic plasma turbulence. Outer and inner zone electrons are governed by radial diffusion transport from convection and acceleration sources external to the plasmapause and by parasitic precipitation losses arising from cyclotron and Landau interactions with whistler and ion cyclotron turbulence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Som, Sumit; Ghosh, Surajit; Seth, Sudeshna
2013-11-15
Variable Energy Cyclotron Centre (VECC) has commissioned K500 Superconducting cyclotron (SCC) based on MSU and Texas A and M university cyclotrons. The radio frequency (RF) system of SCC has been commissioned with the stringent requirement of various RF parameters. The three-phase RF system of Superconducting cyclotron has been developed in the frequency range 9–27 MHz with amplitude and phase stability of 100 ppm and ±0.1°, respectively. The phase control system has the option to change the relative phase difference between any two RF cavities and maintain the phase stability within ±0.1° during round-the-clock cyclotron operation. The said precision phase loopmore » consists of both analogue In-phase/Quadrature modulator to achieve faster response and also Direct Digital Synthesis based phase shifter to achieve wide dynamic range as well. This paper discusses detail insights into the various issues of phase control for the K500 SCC at VECC, Kolkata.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, J.; Chen, S. Y., E-mail: sychen531@163.com; Tang, C. J.
2014-01-15
The physical mechanism of the synergy current driven by lower hybrid wave (LHW) and electron cyclotron wave (ECW) in tokamaks is investigated using theoretical analysis and simulation methods in the present paper. Research shows that the synergy relationship between the two waves in velocity space strongly depends on the frequency ω and parallel refractive index N{sub //} of ECW. For a given spectrum of LHW, the parameter range of ECW, in which the synergy current exists, can be predicted by theoretical analysis, and these results are consistent with the simulation results. It is shown that the synergy effect is mainlymore » caused by the electrons accelerated by both ECW and LHW, and the acceleration of these electrons requires that there is overlap of the resonance regions of the two waves in velocity space.« less
2D FT-ICR MS of Calmodulin: A Top-Down and Bottom-Up Approach.
Floris, Federico; van Agthoven, Maria; Chiron, Lionel; Soulby, Andrew J; Wootton, Christopher A; Lam, Yuko P Y; Barrow, Mark P; Delsuc, Marc-André; O'Connor, Peter B
2016-09-01
Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry (2D FT-ICR MS) allows data-independent fragmentation of all ions in a sample and correlation of fragment ions to their precursors through the modulation of precursor ion cyclotron radii prior to fragmentation. Previous results show that implementation of 2D FT-ICR MS with infrared multi-photon dissociation (IRMPD) and electron capture dissociation (ECD) has turned this method into a useful analytical tool. In this work, IRMPD tandem mass spectrometry of calmodulin (CaM) has been performed both in one-dimensional and two-dimensional FT-ICR MS using a top-down and bottom-up approach. 2D IRMPD FT-ICR MS is used to achieve extensive inter-residue bond cleavage and assignment for CaM, using its unique features for fragment identification in a less time- and sample-consuming experiment than doing the same thing using sequential MS/MS experiments. Graphical Abstract ᅟ.
Electrostatic ion-cyclotron waves in a nonuniform magnetic field
NASA Technical Reports Server (NTRS)
Cartier, S. L.; Dangelo, N.; Merlino, R. L.
1985-01-01
The properties of electrostatic ion-cyclotron waves excited in a single-ended cesium Q machine with a nonuniform magnetic field are described. The electrostatic ion-cyclotron waves are generated in the usual manner by drawing an electron current to a small exciter disk immersed in the plasma column. The parallel and perpendicular (to B) wavelengths and phase velocities are determined by mapping out two-dimensional wave phase contours. The wave frequency f depends on the location of the exciter disk in the nonuniform magnetic field, and propagating waves are only observed in the region where f is approximately greater than fci, where fci is the local ion-cyclotron frequency. The parallel phase velocity is in the direction of the electron drift. From measurements of the plasma properties along the axis, it is inferred that the electron drift velocity is not uniform along the entire current channel. The evidence suggests that the waves begin being excited at that axial position where the critical drift velocity is first exceeded, consistent with a current-driven excitation mechanism.
Cyclotron production of Ga-68 for human use from liquid targets: From theory to practice
NASA Astrophysics Data System (ADS)
Alves, F.; Alves, V. H.; Neves, A. C. B.; do Carmo, S. J. C.; Nactergal, B.; Hellas, V.; Kral, E.; Gonçalves-Gameiro, C.; Abrunhosa, A. J.
2017-05-01
A fully automated system for the production of 68Ga based on commercially available cyclotron liquid target and synthesis modules is described. A solution containing enriched 68Zn dissolved in a nitric solution is irradiated in a Cyclone 18/9 IBA cyclotron leading to the production of up to about 25 GBq of 68Ga. The irradiated solution is transferred to a Synthera synthesis module in which 68Ga is separated and purified with a yield superior to 85 % and where further labelling is achieved with yields no inferior to 70 %. The developed and implemented method presents an improved approach for the production of 68Ga-radiopharmaceuticals suitable for human use, in a process that takes less than 2 hours. This technique represents an economically viable alternative to 68Ge/68Ga generators with improved characteristics.
Exciting Alfven Waves using Modulated Electron Heating by High Power Microwaves
NASA Astrophysics Data System (ADS)
Wang, Yuhou; Gekelman, Walter; Pribyl, Patrick; van Compernolle, Bart; Papadopoulos, Konstantinos
2014-10-01
Experiments exploring the physics of ionospheric modification with intense perpendicular propagating waves (k-> ⊥B->0) on the Large Plasma Device (LaPD) at UCLA have been upgraded with the addition of a high power rapidly pulsed microwave source. The plasma is irradiated with ten pulses (250 kW X-band) near the upper-hybrid frequency. The pulses are modulated at a frequency of a fraction (0.1-1.0) of fci (ion cyclotron frequency). Based on a previous single-pulse experiment, the modulated electron heating may drive a large amplitude shear Alfvén wave (f
Izotov, I V; Razin, S V; Sidorov, A V; Skalyga, V A; Zorin, V G; Bagryansky, P A; Beklemishev, A D; Prikhodko, V V
2012-02-01
Influence of shear flows of the dense plasma created under conditions of the electron cyclotron resonance (ECR) gas breakdown on the plasma confinement in the axisymmetric mirror trap ("vortex" confinement) was studied experimentally and theoretically. A limiter with bias potential was set inside the mirror trap for plasma rotation. The limiter construction and the optimal value of the potential were chosen according to the results of the preliminary theoretical analysis. This method of "vortex" confinement realization in an axisymmetric mirror trap for non-equilibrium heavy-ion plasmas seems to be promising for creation of ECR multicharged ion sources with high magnetic fields, more than 1 T.
The 88-Inch Cyclotron: A One-Stop Facility for Electronics Radiation and Detector Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kireeff Covo, M.; Albright, R. A.; Ninemire, B. F.
In outer space down to the altitudes routinely flown by larger aircrafts, radiation can pose serious issues for microelectronics circuits. The 88-Inch Cyclotron at Lawrence Berkeley National Laboratory is a sector-focused cyclotron and home of the Berkeley Accelerator Space Effects Facility, where the effects of energetic particles on sensitive microelectronics are studied with the goal of designing electronic systems for the space community. This paper describes the flexibility of the facility and its capabilities for testing the bombardment of electronics by heavy ions, light ions, and neutrons. Experimental capabilities for the generation of neutron beams from deuteron breakups and radiationmore » testing of carbon nanotube field effect transistor will be discussed.« less
Hilton, David J
2012-12-31
We develop a new characteristic matrix-based method to analyze cyclotron resonance experiments in high mobility two-dimensional electron gas samples where direct interference between primary and satellite reflections has previously limited the frequency resolution. This model is used to simulate experimental data taken using terahertz time-domain spectroscopy that show multiple pulses from the substrate with a separation of 15 ps that directly interfere in the time-domain. We determine a cyclotron dephasing lifetime of 15.1 ± 0.5 ps at 1.5 K and 5.0 ± 0.5 ps at 75 K.
Numerically simulated two-dimensional auroral double layers
NASA Technical Reports Server (NTRS)
Borovsky, J. E.; Joyce, G.
1983-01-01
A magnetized 2 1/2-dimensional particle-in-cell system which is periodic in one direction and bounded by reservoirs of Maxwellian plasma in the other is used to numerically simulate electrostatic plasma double layers. For the cases of both oblique and two-dimensional double layers, the present results indicate periodic instability, Debye length rather than gyroradii scaling, and low frequency electrostatic turbulence together with electron beam-excited electrostatatic electron-cyclotron waves. Estimates are given for the thickness of auroral doule layers, as well as the separations within multiple auroral arcs. Attention is given to the temporal modulation of accelerated beams, and the possibilities for ion precipitation and ion conic production by the double layer are hypothesized. Simulations which include the atmospheric backscattering of electrons imply the action of an ionospheric sheath which accelerates ionospheric ions upward.
Performance comparison of MoNA and LISA neutron detectors
NASA Astrophysics Data System (ADS)
Purtell, Kimberly; Rethman, Kaitlynne; Haagsma, Autumn; Finck, Joseph; Smith, Jenna; Snyder, Jesse
2010-11-01
In 2002 eight primarily undergraduate institutions constructed and tested the Modular Neutron Array (MoNA) which has been used to detect high energy neutrons at the National Superconducting Cyclotron Laboratory (NSCL). Nine institutions have now designed, constructed and tested the Large-area multi-Institutional Scintillator Array (LISA) neutron detector which will be used at the NSCL and the future Facility for Rare Isotope Beams (FRIB). Both detectors are comprised of 144 detector modules. Each module is a 200 x 10 x 10 cm^3 bar organic plastic scintillator with a photomultiplier tube mounted on each end. Using cosmic rays and a gamma source, we compared the performance of MoNA and LISA by using the same electronics to check light attenuation, position resolution, rise times, and cosmic ray peak widths. Results will be presented.
Mass spectrometry. [review of techniques
NASA Technical Reports Server (NTRS)
Burlingame, A. L.; Kimble, B. J.; Derrick, P. J.
1976-01-01
Advances in mass spectrometry (MS) and its applications over the past decade are reviewed in depth, with annotated literature references. New instrumentation and techniques surveyed include: modulated-beam MS, chromatographic MS on-line computer techniques, digital computer-compatible quadrupole MS, selected ion monitoring (mass fragmentography), and computer-aided management of MS data and interpretation. Areas of application surveyed include: organic MS and electron impact MS, field ionization kinetics, appearance potentials, translational energy release, studies of metastable species, photoionization, calculations of molecular orbitals, chemical kinetics, field desorption MS, high pressure MS, ion cyclotron resonance, biochemistry, medical/clinical chemistry, pharmacology, and environmental chemistry and pollution studies.
NASA Astrophysics Data System (ADS)
Albajar, F.; Bertelli, N.; Bornatici, M.; Engelmann, F.
2007-01-01
On the basis of the electromagnetic energy balance equation, a quasi-exact analytical evaluation of the electron-cyclotron (EC) absorption coefficient is performed for arbitrary propagation (with respect to the magnetic field) in a (Maxwellian) magneto-plasma for the temperature range of interest for fusion reactors (in which EC radiation losses tend to be important in the plasma power balance). The calculation makes use of Bateman's expansion for the product of two Bessel functions, retaining the lowest-order contribution. The integration over electron momentum can then be carried out analytically, fully accounting for finite Larmor radius effects in this approximation. On the basis of the analytical expressions for the EC absorption coefficients of both the extraordinary and ordinary modes thus obtained, (i) for the case of perpendicular propagation simple formulae are derived for both modes and (ii) a numerical analysis of the angular distribution of EC absorption is carried out. An assessment of the accuracy of asymptotic expressions that have been given earlier is also performed, showing that these approximations can be usefully applied for calculating EC power losses from reactor-grade plasmas. Presented in part at the 14th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating, Santorini, Greece, 9-12 May 2006.
Gabrielse, Gerald
2018-05-22
Remarkably, the famous UW measurement of the electron magnetic moment has stood since 1987. With QED theory, this measurement has determined the accepted value of the fine structure constant. This colloquium is about a new Harvard measurement of these fundamental constants. The new measurement has an uncertainty that is about six times smaller, and it shifts the values by 1.7 standard deviations. One electron suspended in a Penning trap is used for the new measurement, like in the old measurement. What is different is that the lowest quantum levels of the spin and cyclotron motion are resolved, and the cyclotron as well as spin frequencies are determined using quantum jump spectroscopy. In addition, a 0.1 mK Penning trap that is also a cylindrical microwave cavity is used to control the radiation field, to suppress spontaneous emission by more than a factor of 100, to control cavity shifts, and to eliminate the blackbody photons that otherwise stimulate excitations from the cyclotron ground state. Finally, great signal-to-noise for one-quantum transitions is obtained using electronic feedback to realize the first one-particle self-excited oscillator. The new methods may also allow a million times improved measurement of the 500 times small antiproton magnetic moment.
NASA Astrophysics Data System (ADS)
Pinsker, R. I.
2014-10-01
In hot magnetized plasmas, two types of linear collisionless absorption processes are used to heat and drive noninductive current: absorption at ion or electron cyclotron resonances and their harmonics, and absorption by Landau damping and the transit-time-magnetic-pumping (TTMP) interactions. This tutorial discusses the latter process, i.e., parallel interactions between rf waves and electrons in which cyclotron resonance is not involved. Electron damping by the parallel interactions can be important in the ICRF, particularly in the higher harmonic region where competing ion cyclotron damping is weak, as well as in the Lower Hybrid Range of Frequencies (LHRF), which is in the neighborhood of the geometric mean of the ion and electron cyclotron frequencies. On the other hand, absorption by parallel processes is not significant in conventional ECRF schemes. Parallel interactions are especially important for the realization of high current drive efficiency with rf waves, and an application of particular recent interest is current drive with the whistler or helicon wave at high to very high (i.e., the LHRF) ion cyclotron harmonics. The scaling of absorption by parallel interactions with wave frequency is examined and the advantages and disadvantages of fast (helicons/whistlers) and slow (lower hybrid) waves in the LHRF in the context of reactor-grade tokamak plasmas are compared. In this frequency range, both wave modes can propagate in a significant fraction of the discharge volume; the ways in which the two waves can interact with each other are considered. The use of parallel interactions to heat and drive current in practice will be illustrated with examples from past experiments; also looking forward, this tutorial will provide an overview of potential applications in tokamak reactors. Supported by the US Department of Energy under DE-FC02-04ER54698.
Cyclotron decay time of a two-dimensional electron gas from 0.4 to 100 K
NASA Astrophysics Data System (ADS)
Curtis, Jeremy A.; Tokumoto, Takahisa; Hatke, A. T.; Cherian, Judy G.; Reno, John L.; McGill, Stephen A.; Karaiskaj, Denis; Hilton, David J.
2016-04-01
We have studied the cyclotron decay time of a Landau-quantized two-dimensional electron gas as a function of temperature (0.4-100 K) at a fixed magnetic field (±1.25 T ) using terahertz time-domain spectroscopy in a gallium arsenide quantum well with a mobility of μd c=3.6 ×106cm2V-1s-1 and a carrier concentration of ns=2 ×1011cm-2 . We find a cyclotron decay time that is limited by superradiant decay of the cyclotron ensemble and a temperature dependence that may result from both dissipative processes as well as a decrease in ns below 1.5 K . Shubnikov-de Haas characterization determines a quantum lifetime, τq=1.1 ps , which is significantly faster than the corresponding dephasing time, τs=66.4 ps , in our cyclotron data. This is consistent with small-angle scattering as the dominant contribution in this sample, where scattering angles below θ ≤13∘ do not efficiently contribute to dephasing. Above 50 K , the cyclotron oscillations show a strong reduction in both the oscillation amplitude and lifetime that result from polar optical phonon scattering.
Effect of Alfvén waves on the growth rate of the electron-cyclotron maser emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, D. J., E-mail: djwu@pmo.ac.cn
By using the non-relativistic approximation for the calculation of growth rates, but taking account of the weakly relativistic modification for the electron-cyclotron resonance condition, it is shown that the effect of Alfvén waves (AWs) on the electron-cyclotron maser emission leads to the significant increase of the O-mode growth rate, but has little effect on the X-mode growth rate. We propose that this is because the O-mode wave has the field-aligned polarization sense in the same as the field-aligned oscillatory current, which is created by the field-aligned oscillatory motion of the energetic electrons caused via the presence of AWs. It ismore » this field-aligned oscillatory current that contributes a novel growth rate to the O-mode wave but has little effect on the X-mode wave.« less
Schachter, L; Stiebing, K E; Dobrescu, S
2009-01-01
The influence of metal-dielectric (MD) layers (MD structures) inserted into the plasma chamber of an electron cyclotron resonance ion source (ECRIS) onto the production of electron bremsstrahlung radiation has been studied in a series of dedicated experiments at the 14 GHz ECRIS of the Institut für Kernphysik der Universität Frankfurt. The IKF-ECRIS was equipped with a MD liner, covering the inner walls of the plasma chamber, and a MD electrode, covering the plasma-facing side of the extraction electrode. On the basis of similar extracted currents of highly charged ions, significantly reduced yields of bremsstrahlung radiation for the "MD source" as compared to the standard (stainless steel) source have been measured and can be explained by the significantly better plasma confinement in a MD source as compared to an "all stainless steel" ECRIS.
Kubo, S; Nishiura, M; Tanaka, K; Shimozuma, T; Yoshimura, Y; Igami, H; Takahash, H; Mutoh, T; Tamura, N; Tatematsu, Y; Saito, T; Notake, T; Korsholm, S B; Meo, F; Nielsen, S K; Salewski, M; Stejner, M
2010-10-01
Collective Thomson scattering (CTS) system has been constructed at LHD making use of the high power electron cyclotron resonance heating (ECRH) system in Large Helical Device (LHD). The necessary features for CTS, high power probing beams and receiving beams, both with well defined Gaussian profile and with the fine controllability, are endowed in the ECRH system. The 32 channel radiometer with sharp notch filter at the front end is attached to the ECRH system transmission line as a CTS receiver. The validation of the CTS signal is performed by scanning the scattering volume. A new method to separate the CTS signal from background electron cyclotron emission is developed and applied to derive the bulk and high energy ion components for several combinations of neutral beam heated plasmas.
Stationary radiation hydrodynamics of accreting magnetic white dwarfs.
NASA Astrophysics Data System (ADS)
Woelk, U.; Beuermann, K.
1996-02-01
Using an artificial viscosity, we solved the one-dimensional time-independent two-fluid hydrodynamic equations simultaneously to the fully frequency and angle dependent radiation transport in an accretion flow directed towards the surface of a magnetic white dwarf. We consider energy transfer from ions to electrons by Coulomb encounters and cooling by bremsstrahlung and by cyclotron radiation in fields between B=5 and 70MG. Electron and ion temperatures relax in the post-shock regime and the cooling flow settles onto the white dwarf surface. For high mass flow rates ˙(m) (in g/cm^2^/s), cooling takes place mainly by bremsstrahlung and the solutions approach the non-magnetic case. For low ˙(m) and high B, cooling is dominated by cyclotron radiation which causes the thickness of the cooling region to collapse by 1-2 orders of magnitude compared to the non-magnetic case. The electron temperature behind the shock drops from a few 10^8^ to a few 10^7^K and the ratio of cyclotron vs. total radiative flux approaches unity. For high ˙(m) and low B values, bremsstrahlung dominates, but cyclotron losses can never be neglected. We find a smooth transition from particle-heated to shock-heated atmospheres in the maximum electron temperature and also in the thickness of the heated layer. With these results, the stationary radiation-hydrodynamics of accreting magnetic white dwarfs with cyclotron and bremsstrahlung cooling has been solved for the whole range of observed mass flow rates and field strengths.
Development of an 18 GHz superconducting electron cyclotron resonance ion source at RCNP.
Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi
2008-02-01
An 18 GHz superconducting electron cyclotron resonance ion source has recently been developed and installed in order to extend the variety and the intensity of ions at the RCNP coupled cyclotron facility. Production of several ions such as O, N, Ar, Kr, etc., is now under development and some of them have already been used for user experiments. For example, highly charged heavy ion beams like (86)Kr(21+,23+) and intense (16)O(5+,6+) and (15)N(6+) ion beams have been provided for experiments. The metal ion from volatile compounds method for boron ions has been developed as well.
Clock and trigger synchronization between several chassis of digital data acquisition modules
NASA Astrophysics Data System (ADS)
Hennig, W.; Tan, H.; Walby, M.; Grudberg, P.; Fallu-Labruyere, A.; Warburton, W. K.; Vaman, C.; Starosta, K.; Miller, D.
2007-08-01
In applications with segmented high purity Ge detectors or other detector arrays with tens or hundreds of channels, the high development cost and limited flexibility of application specific integrated circuits outweigh their benefits of low power and small size. The readout electronics typically consist of multi-channel data acquisition modules in a common chassis for power, clock and trigger distribution, and data readout. As arrays become larger and reach several hundred channels, the readout electronics have to be divided over several chassis, but still must maintain precise synchronization of clocks and trigger signals across all channels. This division becomes necessary not only because of limits given by the instrumentation standards on module size and chassis slot numbers, but also because data readout times increase when more modules share the same data bus and because power requirements approach the limits of readily available power supplies. In this paper, we present a method for distributing clocks and triggers between 4 PXI chassis containing DGF Pixie-16 modules with up to 226 acquisition channels per chassis. The data acquisition system is intended to instrument the over 600 channels of the SeGA detector array at the National Superconducting Cyclotron Laboratory. Our solution is designed to achieve synchronous acquisition of detector waveforms from all channels with a jitter of less than 1 ns, and can be extended to a larger number of chassis if desired.
The rare isotope beams production at the Texas A and M university Cyclotron Institute
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabacaru, G.; May, D. P.; Chubarian, G.
2013-04-19
The Cyclotron Institute at Texas A and M initiated an upgrade project for the production of radioactive-ion beams that incorporates a light-ion guide (LIG) and a heavy-ion guide coupled (HIG) with an Electron Cyclotron Resonance Ion Source (ECRIS) constructed for charge-boosting (CB-ECRIS). This scheme is intended to produce radioactive beams suitable for injection into the K500 superconducting cyclotron. The current status of the project and details on the ion sources and devices used in the project is presented.
NASA Astrophysics Data System (ADS)
Vincena, S.; Gekelman, W.; Pribyl, P.; Tang, S., W.,; Papadopoulos, K.
2017-10-01
Shear Alfven waves are a fundamental mode in magnetized plasmas. Propagating near the ion cyclotron frequency, these waves are often termed electromagnetic ion cyclotron (EMIC) waves and can involve multiple ion species. Near the earth, for example, the wave may interact resonantly with oxygen ions at altitudes ranging from 1000 to 2000 km. The waves may either propagate from space towards the earth (possibly involving mode conversion), or be generated by RF transmitters on the ground. These preliminary experiments are motivated by theoretical predictions that such waves can pitch-angle scatter relativistic electrons trapped in the earth's dipole field. EMIC waves are launched in the Large Plasma Device at UCLA's Basic Plasma Science Facility in plasmas with single and multiple ion species into magnetic field gradients where ion cyclotron resonance is satisfied. We report here on the frequency and k-spectra in the critical layer and how they compare with theoretical predictions in computing an effective diffusion coefficient for high-energy electrons. Funding is provided by the NSF, DoE, and AFSOR.
Statistical fluctuations in cooperative cyclotron radiation
NASA Astrophysics Data System (ADS)
Anishchenko, S. V.; Baryshevsky, V. G.
2018-01-01
Shot noise is the cause of statistical fluctuations in cooperative cyclotron radiation generated by an ensemble of electrons oscillating in magnetic field. Autophasing time - the time required for the cooperative cyclotron radiation power to peak - is the critical parameter characterizing the dynamics of electron-oscillators interacting via the radiation field. It is shown that premodulation of charged particles leads to a considerable narrowing of the autophasing time distribution function for which the analytic expression is obtained. When the number of particles Ne exceeds a certain value that depends on the degree to which the particles have been premodulated, the relative root-mean-square deviation (RMSD) of the autophasing time δT changes from a logarithmic dependence on Ne (δT ∼ 1 / lnNe) to square-root (δT ∼ 1 /√{Ne }). A slight energy spread (∼4%) results in a twofold drop of the maximum attainable power of cooperative cyclotron radiation.
Effects of Coulomb collisions on cyclotron maser and plasma wave growth in magnetic loops
NASA Technical Reports Server (NTRS)
Hamilton, Russell J.; Petrosian, Vahe
1990-01-01
The evolution of nonthermal electrons accelerated in magnetic loops is determined by solving the kinetic equation, including magnetic field convergence and Coulomb collisions in order to determine the effects of these interactions on the induced cyclotron maser and plasma wave growth. It is found that the growth rates are larger and the possibility of cyclotron maser action is stronger for smaller loop column density, for larger magnetic field convergence, for a more isotropic injected electron pitch angle distribution, and for more impulsive acceleration. For modest values of the column density in the coronal portion of a flaring loop, the growth rates of instabilities are significantly reduced, and the reduction is much larger for the cyclotron modes than for the plasma wave modes. The rapid decrease in the growth rates with increasing loop column density suggests that, in flare loops when such phenomena occur, the densities are lower than commonly accepted.
Modification of "Pressed" Atmospheres in Active Regions of Ultracool Stars
NASA Astrophysics Data System (ADS)
Zaitsev, V. V.; Kronshtadtov, P. V.; Stepanov, A. V.
2017-12-01
Ultracool stars usually have active regions, which is confirmed by their high-power radiofrequency emission modulated by the star axial rotation. The interpretation of this emission is commonly based on the electron cyclotron maser mechanism realized in the active regions. A plasma mechanism of radiofrequency emission is not considered, because ultracool star atmospheres are tightly "pressed" against the star surface, and the plasma frequency is much lower than the electron gyrofrequency ( f L ≪ f B) at the coronal levels. This paper explores active regions of ultracool stars for the possible existence of a system of coronal magnetic loops carrying electric current generated by photospheric convection. It is shown that current dissipation induces a temperature increase inside the loops to about 107 K, which causes an increase in the scale of height of the inhomogeneous atmosphere and, at the coronal levels, effectuates condition f L ≫ f B, at which the plasma mechanism of radiofrequency emission prevails over the electron cyclotron maser mechanism. The magnetic loop parameters, intensity of electric currents generated by the photospheric convection, and efficiency of plasma heating inside the magnetic loops are evaluated on the example of the brown dwarf TVLM513-46546. The scale of the height of the modified atmosphere, which appears to be comparable to the star radius, is calculated; it is shown that the soft X-ray flow created by the hot modified atmosphere inside a coronal magnetic loop is about equal to that observed for brown dwarf TVLM513-46546.
NASA Astrophysics Data System (ADS)
Sironi, Lorenzo; Narayan, Ramesh
2015-02-01
In systems accreting well below the Eddington rate, such as the central black hole in the Milky Way (Sgr A*), the plasma in the innermost regions of the disk is believed to be collisionless and have two temperatures, with the ions substantially hotter than the electrons. However, whether a collisionless faster-than-Coulomb energy transfer mechanism exists in two-temperature accretion flows is still an open question. We study the physics of electron heating during the growth of ion velocity-space instabilities by means of multidimensional, fully kinetic, particle-in-cell (PIC) simulations. A background large-scale compression—embedded in a novel form of the PIC equations—continuously amplifies the field. This constantly drives a pressure anisotropy P > P ∥ because of the adiabatic invariance of the particle magnetic moments. We find that, for ion plasma beta values β0i ~ 5-30 appropriate for the midplane of low-luminosity accretion flows (here, β0i is the ratio of ion thermal pressure to magnetic pressure), mirror modes dominate if the electron-to-proton temperature ratio is T 0e /T 0i >~ 0.2, whereas for T 0e /T 0i <~ 0.2 the ion cyclotron instability triggers the growth of strong Alfvén-like waves, which pitch-angle scatter the ions to maintain marginal stability. We develop an analytical model of electron heating during the growth of the ion cyclotron instability, which we validate with PIC simulations. We find that for cold electrons (β0e <~ 2 me /mi , where β0e is the ratio of electron thermal pressure to magnetic pressure), the electron energy gain is controlled by the magnitude of the E-cross-B velocity induced by the ion cyclotron waves. This term is independent of the initial electron temperature, so it provides a solid energy floor even for electrons starting with extremely low temperatures. On the other hand, the electron energy gain for β0e >~ 2 me /mi —governed by the conservation of the particle magnetic moment in the growing fields of the instability—is proportional to the initial electron temperature, and it scales with the magnetic energy of ion cyclotron waves. Our results have implications for two-temperature accretion flows as well as for solar wind and intracluster plasmas.
Studies on a Q/A selector for the SECRAL electron cyclotron resonance ion source.
Yang, Y; Sun, L T; Feng, Y C; Fang, X; Lu, W; Zhang, W H; Cao, Y; Zhang, X Z; Zhao, H W
2014-08-01
Electron cyclotron resonance ion sources are widely used in heavy ion accelerators in the world because they are capable of producing high current beams of highly charged ions. However, the design of the Q/A selector system for these devices is challenging, because it must have a sufficient ion resolution while controlling the beam emittance growth. Moreover, this system has to be matched for a wide range of ion beam species with different intensities. In this paper, research on the Q/A selector system at the SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) platform both in experiment and simulation is presented. Based on this study, a new Q/A selector system has been designed for SECRAL II. The features of the new design including beam simulations are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strohmeier, M.; University of Applied Sciences Karlsruhe, Moltkestr. 30, 76133 Karlsruhe; Benitez, J. Y.
2010-02-15
This paper describes the recent development and commissioning of a pepper-pot emittance meter at the Lawrence Berkeley National Laboratory (LBNL). It is based on a potassium bromide (KBr) scintillator screen in combination with a charged coupled device camera. Pepper-pot scanners record the full four-dimensional transverse phase space emittances which are particularly interesting for electron cyclotron resonance ion sources. The strengths and limitations of evaluating emittances using optical pepper-pot scanners are described and systematic errors induced by the optical data acquisition system will be presented. Light yield tests of KBr exposed to different ion species and first emittance measurement data usingmore » ion beams extracted from the 6.4 GHz LBNL electron cyclotron resonance ion source are presented and discussed.« less
NASA Technical Reports Server (NTRS)
Breneman, A. W.; Cattell, C.
2013-01-01
We present the first observations of electron cyclotron harmonic waves at the Earth's bow shock from STEREO and Wind burst waveform captures. These waves are observed at magnetic field gradients at a variety of shock geometries ranging from quasi-parallel to nearly perpendicular along with whistler mode waves, ion acoustic waves, and electrostatic solitary waves. Large amplitude cyclotron harmonic waveforms are also observed in the magnetosheath in association with magnetic field gradients convected past the bow shock. Amplitudes of the cyclotron harmonic waves range from a few tens to more than 500 millivolts/meter peak-peak. A comparison between the short (15 meters) and long (100 meters) Wind spin plane antennas shows a similar response at low harmonics and a stronger response on the short antenna at higher harmonics. This indicates that wavelengths are not significantly larger than 100 meters, consistent with the electron cyclotron radius. Waveforms are broadband and polarizations are distinctively comma-shaped with significant power both perpendicular and parallel to the magnetic field. Harmonics tend to be more prominent in the perpendicular directions. These observations indicate that the waves consist of a combination of perpendicular Bernstein waves and field-aligned waves without harmonics. A likely source is the electron cyclotron drift instability which is a coupling between Bernstein and ion acoustic waves. These waves are the most common type of high-frequency wave seen by STEREO during bow shock crossings and magnetosheath traversals and our observations suggest that they are an important component of the high-frequency turbulent spectrum in these regions.
Superradiant Decay of Cyclotron Resonance of Two-Dimensional Electron Gases
NASA Astrophysics Data System (ADS)
Zhang, Qi; Arikawa, Takashi; Kato, Eiji; Reno, John L.; Pan, Wei; Watson, John D.; Manfra, Michael J.; Zudov, Michael A.; Tokman, Mikhail; Erukhimova, Maria; Belyanin, Alexey; Kono, Junichiro
2014-07-01
We report on the observation of collective radiative decay, or superradiance, of cyclotron resonance (CR) in high-mobility two-dimensional electron gases in GaAs quantum wells using time-domain terahertz magnetospectroscopy. The decay rate of coherent CR oscillations increases linearly with the electron density in a wide range, which is a hallmark of superradiant damping. Our fully quantum mechanical theory provides a universal formula for the decay rate, which reproduces our experimental data without any adjustable parameter. These results firmly establish the many-body nature of CR decoherence in this system, despite the fact that the CR frequency is immune to electron-electron interactions due to Kohn's theorem.
NASA Astrophysics Data System (ADS)
Woodger, L. A.; Millan, R. M.
2017-12-01
Balloon-borne x-ray detectors observe bremsstrahlung from precipitating electrons, offering a unique opportunity to observe sustained precipitation from a quasi-geosynchronous platform. Recent balloon observations of duskside relativistic electron precipitation (REP) on BARREL confirm that Electro-Magnetic Ion Cyclotron (EMIC) waves cause electron precipitation [e.g. Li et al., 2014]. However, BARREL observations show precipitation does not occur everywhere that waves are observed; precipitation is confined to narrow magnetic local time (MLT) regions in the duskside magnetosphere [Blum et al., 2015]. Furthermore, modulation of relativistic electron precipitation on Ultra Low Frequency (ULF) wave (f < 20 mHz) timescales has been reported in several events from balloon X-ray observations [Foat et al., 1998; Millan et al., 2002]. Wave-particle interaction between relativistic electrons and EMIC waves is a highly debated loss processes contributing to the dynamics of Earth's radiation belts. We present REP from balloon x-ray observations in the context of precipitation driven by EMIC waves. We investigate how background magnetic field strength could drive the localization, distribution, and temporal structure of the precipitating electrons.
Synthetic diagnostics platform for fusion plasmas (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, L., E-mail: lshi@pppl.gov; Valeo, E. J.; Tobias, B. J.
A Synthetic Diagnostics Platform (SDP) for fusion plasmas has been developed which provides state of the art synthetic reflectometry, beam emission spectroscopy, and Electron Cyclotron Emission (ECE) diagnostics. Interfaces to the plasma simulation codes GTC, XGC-1, GTS, and M3D-C{sup 1} are provided, enabling detailed validation of these codes. In this paper, we give an overview of SDP’s capabilities, and introduce the synthetic diagnostic modules. A recently developed synthetic ECE Imaging module which self-consistently includes refraction, diffraction, emission, and absorption effects is discussed in detail. Its capabilities are demonstrated on two model plasmas. The importance of synthetic diagnostics in validation ismore » shown by applying the SDP to M3D-C{sup 1} output and comparing it with measurements from an edge harmonic oscillation mode on DIII-D.« less
Synthetic diagnostics platform for fusion plasmas (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, L.; Valeo, E. J.; Tobias, B. J.
A Synthetic Diagnostics Platform (SDP) for fusion plasmas has been developed which provides state of the art synthetic reflectometry, beam emission spectroscopy, and Electron Cyclotron Emission (ECE) diagnostics. Interfaces to the plasma simulation codes GTC, XGC-1, GTS, and M3D-C-1 are provided, enabling detailed validation of these codes. In this paper, we give an overview of SDP's capabilities, and introduce the synthetic diagnostic modules. A recently developed synthetic ECE Imaging module which self-consistently includes refraction, diffraction, emission, and absorption effects is discussed in detail. Its capabilities are demonstrated on two model plasmas. Finally, the importance of synthetic diagnostics in validation ismore » shown by applying the SDP to M3D-C 1 output and comparing it with measurements from an edge harmonic oscillation mode on DIII-D.« less
Synthetic diagnostics platform for fusion plasmas (invited)
Shi, L.; Valeo, E. J.; Tobias, B. J.; ...
2016-08-26
A Synthetic Diagnostics Platform (SDP) for fusion plasmas has been developed which provides state of the art synthetic reflectometry, beam emission spectroscopy, and Electron Cyclotron Emission (ECE) diagnostics. Interfaces to the plasma simulation codes GTC, XGC-1, GTS, and M3D-C-1 are provided, enabling detailed validation of these codes. In this paper, we give an overview of SDP's capabilities, and introduce the synthetic diagnostic modules. A recently developed synthetic ECE Imaging module which self-consistently includes refraction, diffraction, emission, and absorption effects is discussed in detail. Its capabilities are demonstrated on two model plasmas. Finally, the importance of synthetic diagnostics in validation ismore » shown by applying the SDP to M3D-C 1 output and comparing it with measurements from an edge harmonic oscillation mode on DIII-D.« less
NASA Astrophysics Data System (ADS)
Feng, Songlin; Yang, Xuanzong; Feng, Chunhua; Wang, Long; Rao, Jun; Feng, Kecheng
2005-06-01
Experiments on the start-up and formation of spherical tokamak plasmas by electron cyclotron heating alone without ohmic heating and electrode discharge assisted electron cyclotron wave current start-up will be carried out on the SUNIST (Sino United Spherical Tokamak) device. The 2.45 GHz/100kW/30 ms microwave power system and 1000 V/50 A power supply for electrode discharge are ready for experiments with non-inductive current drive.
Ion-cyclotron instability in plasmas described by product-bi-kappa distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, M. S. dos; Ziebell, L. F., E-mail: luiz.ziebell@ufrgs.br; Gaelzer, R., E-mail: rudi.gaelzer@ufrgs.br
The dispersion relation for parallel propagating waves in the ion-cyclotron branch is investigated numerically by considering that the velocity distribution of the ion population is a function of type product-bi-kappa. We investigate the effects of the non-thermal features and of the anisotropy associated with this type of distribution on the ion-cyclotron instability, as well as the influence of different forms of the electron distribution, by considering Maxwellian distributions, bi-kappa distributions, and product-bi-kappa distributions. The cases of ions described by either Maxwellian or bi-kappa distributions are also considered, for comparison. The results of the numerical analysis show that the increase inmore » the non-thermal character associated with the anisotropic kappa distributions for ions contributes to enhance the instability as compared to that obtained in the Maxwellian case, in magnitude and in wave number range, with more significant enhancement for the case of ion product-bi-kappa distributions than for the case of ion bi-kappa distributions. It is also shown that the ion-cyclotron instability is decreased if the electrons are described by product-bi-kappa distributions, while electrons described by bi-kappa distributions lead to growth rates which are very similar to those obtained considering a Maxwellian distribution for the electron population.« less
Beam induced electron cloud resonances in dipole magnetic fields
Calvey, J. R.; Hartung, W.; Makita, J.; ...
2016-07-01
The buildup of low energy electrons in an accelerator, known as electron cloud, can be severely detrimental to machine performance. Under certain beam conditions, the beam can become resonant with the cloud dynamics, accelerating the buildup of electrons. This paper will examine two such effects: multipacting resonances, in which the cloud development time is resonant with the bunch spacing, and cyclotron resonances, in which the cyclotron period of electrons in a magnetic field is a multiple of bunch spacing. Both resonances have been studied directly in dipole fields using retarding field analyzers installed in the Cornell Electron Storage Ring. Thesemore » measurements are supported by both analytical models and computer simulations.« less
NASA Astrophysics Data System (ADS)
Chen, S. Y.; Hong, B. B.; Liu, Y.; Lu, W.; Huang, J.; Tang, C. J.; Ding, X. T.; Zhang, X. J.; Hu, Y. J.
2012-11-01
The synergy between electron cyclotron current drive (ECCD) and lower hybrid current drive (LHCD) is investigated numerically with the parameters of the HL-2A tokamak. Based on the understanding of the synergy mechanisms, a high current driven efficiency or a desired radial current profile can be achieved through properly matching the parameters of ECCD and LHCD due to the flexibility of ECCD. Meanwhile, it is found that the total current driven by the electron cyclotron wave (ECW) and the lower hybrid wave (LHW) simultaneously can be smaller than the sum of the currents driven by the ECW and LHW separately, when the power of the ECW is much larger than the LHW power. One of the reasons leading to this phenomenon (referred to as negative synergy in this context) is that fast current-carrying electrons tend to be trapped, when the perpendicular velocity driven by the ECW is large and the parallel velocity decided by the LHW is correspondingly small.
Nonlinear collisionless electron cyclotron interaction in the pre-ionisation stage
NASA Astrophysics Data System (ADS)
Farina, D.
2018-06-01
Electron cyclotron (EC) wave-particle interaction is theoretically investigated in the pre-ionisation phase, much before collisions and other mechanisms can play a role. In the very first phase of a plasma discharge with EC-assisted breakdown, the motion of an electron at room temperature in a static magnetic field under the action of a localised microwave beam is nonlinear, and transition to states of larger energy can occur via wave trapping. Within a Hamiltonian adiabatic formalism, the conditions at which the particles gain energy in single beam crossing are derived in a rigorous way, and the energy variation is characterized quantitatively as a function of the wave frequency, harmonic number, polarisation and EC power and beam width. Estimates of interest for applications to tokamak start-up are obtained for the first, second and third cyclotron harmonic. The investigation confirms that electrons can easily gain energies well above the ionisation energy in most conditions at the first two harmonics, while not at the third harmonic, as observed in experiments.
NASA Astrophysics Data System (ADS)
Liu, Si-Jia; Zhang, Yu-Fei; Wang, Kang; Li, Yong-Ming; Jing, Jian
2017-03-01
Based on the anomalous Doppler effect, we put forward a proposal to enhance the conversion efficiency of the slow-wave electron cyclotron masers (ECM) under the resonance condition. Compared with previous studies, we add a second-order shaping term in the guild magnetic field. Theoretical analyses and numerical calculations show that it can enhance the conversion efficiency in the low-gain limit. The case of the initial velocity spread of electrons satisfying the Gaussian distribution is also analysed numerically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Si-Jia; Zhang, Yu-Fei; Wang, Kang
Based on the anomalous Doppler effect, we put forward a proposal to enhance the conversion efficiency of the slow-wave electron cyclotron masers (ECM) under the resonance condition. Compared with previous studies, we add a second-order shaping term in the guild magnetic field. Theoretical analyses and numerical calculations show that it can enhance the conversion efficiency in the low-gain limit. The case of the initial velocity spread of electrons satisfying the Gaussian distribution is also analysed numerically.
Delta function excitation of waves in the earth's ionosphere
NASA Technical Reports Server (NTRS)
Vidmar, R. J.; Crawford, F. W.; Harker, K. J.
1983-01-01
Excitation of the earth's ionosphere by delta function current sheets is considered, and the temporal and spatial evolution of wave packets is analyzed for a two-component collisional F2 layer. Approximations of an inverse Fourier-Laplace transform via saddle point methods provide plots of typical wave packets. These illustrate cold plasma wave theory and may be used as a diagnostic tool since it is possible to relate specific features, e.g., the frequency of a modulation envelope, to plasma parameters such as the electron cyclotron frequency. It is also possible to deduce the propagation path length and orientation of a remote radio beacon.
The K{sub a}-band 10-kW continuous wave gyrotron with wide-band fast frequency sweep
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glyavin, M.; Luchinin, A.; Morozkin, M.
2012-07-15
The dual-frequency gyrotron with fast 2% frequency sweep at about 28 GHz is designed to power an electron cyclotron resonance ion source (ECRIS). Operation with an output power of up to 10 kW in CW mode and efficiency of 20% was demonstrated at both frequencies. Frequency manipulation has a characteristic time of about 1 ms and is based on magnetic field variation with an additional low-power coil. Fast frequency sweep will supposedly increase the ion current and the average ion charge of ECRIS. The possibility of 100% power modulation is demonstrated using the same control method.
Ozaki, M.; Shiokawa, K.; Miyoshi, Y.; ...
2016-08-16
To understand the role of electromagnetic ion cyclotron (EMIC) waves in determining the temporal features of pulsating proton aurora (PPA) via wave-particle interactions at subauroral latitudes, high-time-resolution (1/8 s) images of proton-induced N 2>+ emissions were recorded using a new electron multiplying charge-coupled device camera, along with related Pc1 pulsations on the ground. The observed Pc1 pulsations consisted of successive rising-tone elements with a spacing for each element of 100 s and subpacket structures, which manifest as amplitude modulations with a period of a few tens of seconds. In accordance with the temporal features of the Pc1 pulsations, the auroralmore » intensity showed a similar repetition period of 100 s and an unpredicted fast modulation of a few tens of seconds. Furthermore, these results indicate that PPA is generated by pitch angle scattering, nonlinearly interacting with Pc1/EMIC waves at the magnetic equator.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozaki, M.; Shiokawa, K.; Miyoshi, Y.
To understand the role of electromagnetic ion cyclotron (EMIC) waves in determining the temporal features of pulsating proton aurora (PPA) via wave-particle interactions at subauroral latitudes, high-time-resolution (1/8 s) images of proton-induced N 2>+ emissions were recorded using a new electron multiplying charge-coupled device camera, along with related Pc1 pulsations on the ground. The observed Pc1 pulsations consisted of successive rising-tone elements with a spacing for each element of 100 s and subpacket structures, which manifest as amplitude modulations with a period of a few tens of seconds. In accordance with the temporal features of the Pc1 pulsations, the auroralmore » intensity showed a similar repetition period of 100 s and an unpredicted fast modulation of a few tens of seconds. Furthermore, these results indicate that PPA is generated by pitch angle scattering, nonlinearly interacting with Pc1/EMIC waves at the magnetic equator.« less
NASA Technical Reports Server (NTRS)
Meyyappan, Meyya; Arnold, James O. (Technical Monitor)
1997-01-01
A simple analysis is provided to determine the characteristics of an electron cyclotron resonance (ECR) plasma source for the generation of active nitrogen species in the molecular beam epitaxy of III-V nitrides. The effects of reactor geometry, pressure, power, and flow rate on the dissociation efficiency and ion flux are presented. Pulsing the input power is proposed to reduce the ion flux.
Electron-cyclotron wave scattering by edge density fluctuations in ITER
NASA Astrophysics Data System (ADS)
Tsironis, Christos; Peeters, Arthur G.; Isliker, Heinz; Strintzi, Dafni; Chatziantonaki, Ioanna; Vlahos, Loukas
2009-11-01
The effect of edge turbulence on the electron-cyclotron wave propagation in ITER is investigated with emphasis on wave scattering, beam broadening, and its influence on localized heating and current drive. A wave used for electron-cyclotron current drive (ECCD) must cross the edge of the plasma, where density fluctuations can be large enough to bring on wave scattering. The scattering angle due to the density fluctuations is small, but the beam propagates over a distance of several meters up to the resonance layer and even small angle scattering leads to a deviation of several centimeters at the deposition location. Since the localization of ECCD is crucial for the control of neoclassical tearing modes, this issue is of great importance to the ITER design. The wave scattering process is described on the basis of a Fokker-Planck equation, where the diffusion coefficient is calculated analytically as well as computed numerically using a ray tracing code.
The electron-cyclotron maser instability as a source of plasma radiation. [Solar radio bursts
NASA Technical Reports Server (NTRS)
Winglee, R. M.; Dulk, G. A.
1986-01-01
The generation of continuum bursts from the sun at dm and m wavelengths (in particular, type IV bursts) via the electron-cyclotron-maser instability is examined. The maser instability can be driven by an electron distribution with either a loss-cone anisotropy or a peak at large pitch angles. For omega(p)/Omega(e) much greater than 1, the maser emission is produced by electrons interacting through a harmonic (cyclotron) resonance and is electrostatic, being in the upper hybrid mode at frequencies approximately equal to omega(p). Coalescence processes are required to convert the electrostatic waves into transverse radiation which can escape from the source region. Whether the resultant spectrum is nearly a smooth continuum or has a zebra-stripe pattern (both of which occur in type IV bursts) depends on the form of the electron distribution, inhomogeneities in the density and magnetic field, and whether the maser reaches saturation. For at least the case of some type IV dm bursts with fine structure, comparison with observations seems to indicate that the electrons producing the emission are more likely to have a loss-cone distribution, and that the maser instability is not at saturation.
Cyclotron autoresonant accelerator for electron beam dry scrubbing of flue gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaPointe, M. A.; Hirshfield, J. L.; Department of Physics, Yale University, P.O. Box 208124, New Haven, Connecticut 06520-8124
1999-06-10
Design and construction is underway for a novel rf electron accelerator for electron beam dry scrubbing (EBDS) of flue gases emanating from fossil-fuel burners. This machine, a cyclotron autoresonance accelerator (CARA), has already shown itself capable of converting rf power to electron beam power with efficiency values as high as 96%. This proof-of-principle experiment will utilize a 300 kV, 33 A Pierce type electron gun and up to 24 MW of available rf power at 2.856 GHz to produce 1.0 MeV, 33 MW electron beam pulses. The self-scanning conical beam from the high power CARA will be evaluated for EBDSmore » and other possible environmental applications.« less
NASA Astrophysics Data System (ADS)
Bernhardt, Paul; Selcher, Craig A.
High Power electromagnetic (EM) waves transmitted from the HAARP facility in Alaska can excite low frequency electrostatic waves by several processes including (1) direct magnetized stimulated Brillouin scatter (MSBS) and (2) parametric decay of high frequency electrostatic waves into electron and ion Bernstein waves. Either an ion acoustic (IA) wave with a frequency less than the ion cyclotron frequency (fCI) or an electrostatic ion cyclotron (EIC) wave just above fCI can be produced by MSBS. The coupled equations describing the MSBS instabil-ity show that the production of both IA and EIC waves is strongly influenced by the wave propagation direction relative to the background magnetic field. Experimental observations of stimulated electromagnetic emissions (SEE) using the HAARP transmitter in Alaska have confirmed the theoretical predictions that only IA waves are excited for propagation along the magnetic zenith and that EIC waves can only be detected with oblique propagation angles. The electron temperature in the heated plasma is obtained from the IA spectrum offsets from the pump frequency. The ion composition can be determined from the measured EIC frequency. Near the second harmonic of the electron cyclotron frequency, the EM pump wave is converted into an electron Bernstein (EB) wave that decays into another EB wave and an ion Bernstein (IB) wave. Strong cyclotron resonance with the EB wave leads to acceleration of the electrons. Ground based SEE observations are related to the theory of low-frequency electrostatic wave generation.
Cyclotron maser emission of auroral Z mode radiation
NASA Technical Reports Server (NTRS)
Melrose, D. B.; Hewitt, R. G.; Dulk, G. A.
1983-01-01
Results are presented suggesting that loss cone driven cyclotron maser emission by upgoing electrons, closely analogous to auroral kilometric radiation (AKR), may be the mechanism behind the observed Z mode radiation. With this hypothesis, the lack of a strong correlation between the Z mode radiation and AKR is not surprising; the ray paths for the X mode and the Z mode are markedly different, with the former directed upward and the latter downward. In addition, it is expected that the generation of the Z mode will be favored only in regions where the ratio of the plasma frequency to the electron cyclotron frequency is greater than or approximately equal to 0.3, that is, where the X mode radiation is suppressed. If the fraction of the radiation generated that crosses the cyclotron layer is large, then the argument in favor of the loss cone driven cyclotron maser as the source of the observed Z mode radiation is a strong one. The spatial growth rates are fairly large in comparison with those for the X mode, and there seems to be little doubt that Z mode radiation should be generated under conditions that differ only slightly from those for the generation of X mode radiation in AKR.
Cyclotron maser emission of auroral Z mode radiation
NASA Astrophysics Data System (ADS)
Melrose, D. B.; Hewitt, R. G.; Dulk, G. A.
1983-12-01
Results are presented suggesting that loss cone driven cyclotron maser emission by upgoing electrons, closely analogous to auroral kilometric radiation (AKR), may be the mechanism behind the observed Z mode radiation. With this hypothesis, the lack of a strong correlation between the Z mode radiation and AKR is not surprising; the ray paths for the X mode and the Z mode are markedly different, with the former directed upward and the latter downward. In addition, it is expected that the generation of the Z mode will be favored only in regions where the ratio of the plasma frequency to the electron cyclotron frequency is greater than or approximately equal to 0.3, that is, where the X mode radiation is suppressed. If the fraction of the radiation generated that crosses the cyclotron layer is large, then the argument in favor of the loss cone driven cyclotron maser as the source of the observed Z mode radiation is a strong one. The spatial growth rates are fairly large in comparison with those for the X mode, and there seems to be little doubt that Z mode radiation should be generated under conditions that differ only slightly from those for the generation of X mode radiation in AKR.
Applications of high-energy heavy-ions from superconducting cyclotrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimm, T. L.
1999-06-10
The superconducting cyclotrons of the National Superconducting Cyclotron Laboratory (NSCL), a major nuclear physics facility, can provide ions of any element from hydrogen to uranium. A major upgrade to the NSCL is underway and will consist of an electron cyclotron resonance (ECR) ion source followed by two large superconducting cyclotrons (K500 and K1200). Ions can be extracted at any point along this chain allowing a large range of energies and charge states. The ion energies range from a few keV to over 20 GeV, and charge states up to fully stripped {sup 197}Au{sup 79+} and two electron {sup 238}U{sup 90+}more » are possible. The long range of the high-energy heavy-ions allows them to penetrate deeply into a target that is placed in air, outside a vacuum chamber. The ion beams have already been used for a number of applications including; ion implantation, atomic physics, single event effects in integrated circuits, DNA radiation studies, radiation detector studies, flux pinning in high-T{sub c} superconductors, calibration of a space-based spectrometer, isotropic ratio measurements, material wear studies, and continuous positron emission tomography imaging.« less
Hojo, S; Katagiri, K; Nakao, M; Sugiura, A; Muramatsu, M; Noda, A; Okada, T; Takahashi, Y; Komiyama, A; Honma, T; Noda, K
2014-02-01
The Kei-source is a compact electron cyclotron resonance ion source using only permanent magnets and a frequency of 10 GHz. It was developed at the National Institute of Radiological Sciences (NIRS) for producing C(4+) ions oriented for high-energy carbon therapy. It has also been used as an ion source for the NIRS-930 cyclotron. Its microwave band region for the traveling-wave-tube amplifier and maximum output power are 8-10 GHz and 350 W, respectively. Since 2006, it has provided various ion beams such as proton, deuteron, carbon, oxygen, and neon with sufficient intensity (200 μA for proton and deuteron, 50 μA for C(4+), for example) and good stability for radioisotope production, tests of radiation damage, and basic research experiments. Its horizontal and vertical emittances were measured using a screen monitor and waist-scan. The present paper reports the current status of the Kei-source.
High power long pulse microwave generation from a metamaterial structure with reverse symmetry
NASA Astrophysics Data System (ADS)
Lu, Xueying; Stephens, Jacob C.; Mastovsky, Ivan; Shapiro, Michael A.; Temkin, Richard J.
2018-02-01
Experimental operation of a high power microwave source with a metamaterial (MTM) structure is reported at power levels to 2.9 MW at 2.4 GHz in full 1 μs pulses. The MTM structure is formed by a waveguide that is below cutoff for TM modes. The waveguide is loaded by two axial copper plates machined with complementary split ring resonators, allowing two backward wave modes to propagate in the S-Band. A pulsed electron beam of up to 490 kV, 84 A travels down the center of the waveguide, midway between the plates. The electron beam is generated by a Pierce gun and is focused by a lens into a solenoidal magnetic field. The MTM plates are mechanically identical but are placed in the waveguide with reverse symmetry. Theory indicates that both Cherenkov and Cherenkov-cyclotron beam-wave interactions can occur. High power microwave generation was studied by varying the operating parameters over a wide range, including the electron beam voltage, the lens magnetic field, and the solenoidal field. Frequency tuning with a magnetic field and beam voltage was studied to discriminate between operation in the Cherenkov mode and the Cherenkov-cyclotron mode. Both modes were observed, but pulses above 1 MW of output power were only seen in the Cherenkov-cyclotron mode. A pair of steering coils was installed prior to the interaction space to initiate the cyclotron motion of the electron beam and thus encourage the Cherenkov-cyclotron high power mode. This successfully increased the output power from 2.5 MW to 2.9 MW (450 kV, 74 A, 9% efficiency).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumgarten, C.; Barchetti, A.; Einenkel, H.
2011-05-15
A compact electron cyclotron resonance proton source has been developed and installed recently at thePaul Scherrer Institute's high intensity proton accelerator. Operation at the ion source test stand and the accelerator demonstrates a high reliability and stability of the new source. When operated at a 10 - 12 mA net proton current the lifetime of the source exceeds 2000 h. The essential development steps towards the observed performance are described.
Polarization Measurements During Electron Cyclotron Heating Experiments in the DIII-D Tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petty, C.C.; Luce, T.C.; Austin, M.E.
The polarization of the launched electron cyclotron wave has been optimized for coupling to the X-mode by adjusting the inclination of grooved mirrors located in two consecutive mitre bends of the waveguide. The unwanted O-mode component of the launched beam can be positively identified by the difference in the power deposition profiles between X-mode and O-mode. The optimal polarization for X-mode launch is in good agreement with theoretical expectations.
Open problems of magnetic island control by electron cyclotron current drive
Grasso, Daniela; Lazzaro, E.; Borgogno, D.; ...
2016-11-17
This study reviews key aspects of the problem of magnetic islands control by electron cyclotron current drive in fusion devices. On the basis of the ordering of the basic spatial and time scales of the magnetic reconnection physics, we present the established results, highlighting some of the open issues posed by the small-scale structures that typically accompany the nonlinear evolution of the magnetic islands and constrain the effect of the control action.
Analyzing the Spectra of Accreting X-Ray Pulsars
NASA Astrophysics Data System (ADS)
Wolff, Michael
This proposal seeks funding for the analysis of accretion-powered X-ray pulsar spectra from NASA/ HEASARC archived X-ray data. Spectral modeling of accreting X-ray pulsars can tell us a great deal about the physical conditions in and near high mass X-ray binary systems. Such systems have accretion flows where plasma is initially channeled from an accretion disk by the strong neutron star magnetic field, eventually falling onto the magnetic polar cap of the neutron star compact object. Many of these accreting X-ray pulsars have X-ray spectra that consist of broad power-law continua with superposed cyclotron resonant scattering features indicating magnetic field strengths above 10^12 G. The energies of these cyclotron line features have recently been shown to vary with X-ray luminosity in a number of sources such as Her X-1 and V 0332+53, a phenomenon not well understood. Another recent development is the relatively new analytic model for the spectral continuum formation in accretion-powered pulsar systems developed by Becker & Wolff. In their formalism the accretion flows are assumed to go through radiation- dominated radiative shocks and settle onto the neutron star surface. The radiation field consists of strongly Comptonized bremsstrahlung emission from the entire plasma, Comptonized cyclotron emission from the de-excitations of Landau-excited electrons in the neutron star magnetic field, and Comptonized black-body emission from a thermal mound near the neutron star surface. We seek to develop the data analysis tools to apply this model framework to the X-ray data from a wide set of sources to make progress characterizing the basic accretion properties (e.g., magnetic field strength, plasma temperatures, polar cap size, accretion rate per unit area, dominance of bulk vs. thermal Comptonization) as well as understanding the variations of the cyclotron line energies with X-ray luminosity. The three major goals of our proposed work are as follows: In the first year, we will develop the new software module (essentially a computer code representing the theoretical model) necessary to perform the analysis of accretion-powered pulsar X-ray spectra in the XSPEC spectral analysis environment. Also in this first year we will analyze new Suzaku Cycle 6 Target of Opportunity observations of GX 304-1 and 4U 0115+63, two known cyclotron line sources, that we have recently carried out. In the second year of this study we will apply our new XSPEC spectral continuum module to the archival X-ray observational data from a number of accreting X-ray pulsars from the RXTE/PCA/HEXTE and Suzaku/XIS/HXD instruments to extract basic accretion parameters. Our source list contains eight pulsars, seven of which have observed cyclotron scattering lines. These pulsars span a range in magnetic field strength, luminosity, expected accretion rate, expected polar cap size, and Comptonizing temperature. In the second year of this work we also plan to make our new fully tested XSPEC continuum analysis module available to the Goddard Space Flight Center HEASARC for distribution to the astrophysical research community. The development and analysis tasks proposed here will provide for the first time a physical basis for the analysis and interpretation of data on accreting X-ray pulsar spectra.
Experimental demonstration of high efficiency electron cyclotron autoresonance acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaPointe, M.A.; Yoder, R.B.; Wang, C.
1996-04-01
First experimental results are reported on the operation of a multimegawatt 2.856 GHz cyclotron autoresonance accelerator (CARA). A 90{endash}100 kV, 2{endash}3 MW linear electron beam has had up to6.6 MW added to it in CARA, with an rf-to-beam power efficiency of up to 96{percent}. This efficiency level is larger than that reported for any fast-wave interaction between radiation and electrons, and also larger than that in normal conducting rf linear accelerators. The results obtained are in good agreement with theoretical predictions. {copyright} {ital 1996 The American Physical Society.}
Direct measurement of cyclotron coherence times of high-mobility two-dimensional electron gases.
Wang, X; Hilton, D J; Reno, J L; Mittleman, D M; Kono, J
2010-06-07
We have observed long-lived (approximately 30 ps) coherent oscillations of charge carriers due to cyclotron resonance (CR) in high-mobility two-dimensional electrons in GaAs in perpendicular magnetic fields using time-domain terahertz spectroscopy. The observed coherent oscillations were fitted well by sinusoids with exponentially-decaying amplitudes, through which we were able to provide direct and precise measures for the decay times and oscillation frequencies simultaneously. This method thus overcomes the CR saturation effect, which is known to prevent determination of true CR linewidths in high-mobility electron systems using Fourier-transform infrared spectroscopy.
Modeling of electron cyclotron resonance discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyyappan, M.; Govindan, T.R.
The current trend in plasma processing is the development of high density plasma sources to achieve high deposition and etch rates, uniformity over large ares, and low wafer damage. Here, is a simple model to predict the spatially-averaged plasma characteristics of electron cyclotron resonance (ECR) reactors is presented. The model consists of global conservation equations for species concentration, electron density and energy. A gas energy balance is used to predict the neutral temperature self-consistently. The model is demonstrated for an ECR argon discharge. The predicted behavior of the discharge as a function of system variables agrees well with experimental observations.
NASA Astrophysics Data System (ADS)
Singh, Sukhmander
2018-05-01
In the present paper we derive the plasma dispersion equation under the effect of ionization rate in a dust plasma to investigate the electrostatic ion cyclotron instability, where dust charge fluctuation is absent. It has one of the lowest threshold drift velocities among all the current-driven instabilities in isothermal plasma. The Electrostatic ion cyclotron instability in a dusty plasma containing electrons, light ions, and massive negatively charged dust grains which can be investigated both experimentally and theoretically.
NASA Technical Reports Server (NTRS)
Soli, George A.; Nichols, Donald K.
1989-01-01
An isotope of krypton, Kr86, has been combined with a mix of Ar, Ne, and N ions at the electron cyclotron resonance (ECR) source, at the Lawrence Berkeley Laboratory cyclotron, to provide rapid ion changeover in Single Event Phenomena (SEP) testing. The new technique has been proved out successfully by a recent Jet Propulsion Laboratory (JPL) test in which it was found that there was no measurable contamination from other isotopes.
Why NASA and the Space Electronics Community Cares About Cyclotrons
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.
2017-01-01
NASA and the space community are faced with the harsh reality of operating electronic systems in the space radiation environment. Systems need to work reliably (as expected for as long as expected) and be available during critical operations such as docking or firing a thruster. This talk will provide a snapshot of the import of ground-based research on the radiation performance of electronics. Discussion topics include: 1) The space radiation environment hazard, 2) Radiation effects on electronics, 3) Simulation of effects with cyclotrons (and other sources), 4) Risk prediction for space missions, and, 5) Real-life examples of both ground-based testing and space-based anomalies and electronics performance. The talk will conclude with a discussion of the current state of radiation facilities in North America for ground-based electronics testing.
Cyclotron autoresonant accelerator for electron beam dry scrubbing of flue gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaPointe, M.A.; Hirshfield, J.L.; Hirshfield, J.L.
1999-06-01
Design and construction is underway for a novel rf electron accelerator for electron beam dry scrubbing (EBDS) of flue gases emanating from fossil-fuel burners. This machine, a cyclotron autoresonance accelerator (CARA), has already shown itself capable of converting rf power to electron beam power with efficiency values as high as 96{percent}. This proof-of-principle experiment will utilize a 300 kV, 33 A Pierce type electron gun and up to 24 MW of available rf power at 2.856 GHz to produce 1.0 MeV, 33 MW electron beam pulses. The self-scanning conical beam from the high power CARA will be evaluated for EBDSmore » and other possible environmental applications. {copyright} {ital 1999 American Institute of Physics.}« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dey, Indranuj, E-mail: indranuj@aees.kyushu-u.ac.jp; Toyoda, Yuji; Yamamoto, Naoji
A miniature microwave electron cyclotron resonance plasma source [(discharge diameter)/(microwave cutoff diameter) < 0.3] has been developed at Kyushu University to be used as an ion thruster in micro-propulsion applications in the exosphere. The discharge source uses both radial and axial magnetostatic field confinement to facilitate electron cyclotron resonance and increase the electron dwell time in the volume, thereby enhancing plasma production efficiency. Performance of the ion thruster is studied at 3 microwave frequencies (1.2 GHz, 1.6 GHz, and 2.45 GHz), for low input powers (<15 W) and small xenon mass flow rates (<40 μg/s), by experimentally measuring the extractedmore » ion beam current through a potential difference of ≅1200 V. The discharge geometry is found to operate most efficiently at an input microwave frequency of 1.6 GHz. At this frequency, for an input power of 8 W, and propellant (xenon) mass flow rate of 21 μg/s, 13.7 mA of ion beam current is obtained, equivalent to an calculated thrust of 0.74 mN.« less
NASA Astrophysics Data System (ADS)
Tobias, B.; Domier, C. W.; Luhmann, N. C.; Luo, C.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Wang, Y.
2016-11-01
The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.
Tobias, B; Domier, C W; Luhmann, N C; Luo, C; Mamidanna, M; Phan, T; Pham, A-V; Wang, Y
2016-11-01
The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.
Cyclotron maser instability and its applications
NASA Astrophysics Data System (ADS)
Wu, C. S.
The possible application of cyclotron maser theory to a variety of radio sources is considered, with special attention given to the theory of auroral kilometric radiation (AKR) of Wu and Lee (1979). The AKR model assumes a loss-cone distribution function for the reflected electrons, along with the depletion of low-energy electrons by the parallel electric field. Other topics considered include fundamental AKR, second-harmonic AKR, the generation of Z-mode radiation, and the application of maser instability to other sources than AKR.
Overview of ECRH experimental results
NASA Astrophysics Data System (ADS)
Lloyd, Brian
1998-08-01
A review of the present status of electron cyclotron heating and current drive experiments in toroidal fusion devices is presented. In addition to basic heating and current drive studies the review also addresses advances in wave physics and the application of electron cyclotron waves for instability control, transport studies, pre-ionization/start-up assist, etc. A comprehensive overview is given with particular emphasis on recent advances since the major review of Erckmann and Gasparino (1994) ( 36 1869), including results from the latest generation of high-power, high-frequency experiments.
NASA Astrophysics Data System (ADS)
Xie, Z. Q.; Antaya, T. A.
1990-01-01
We have obtained excellent agreement between BEAM-3D calculations and beam profile and emittance measurements of the total extracted beam from the room temperature electron cyclotron resonance (RTECR), when a low degree of beam neutralization is assumed in the calculations, as will be presented in this paper. The beam envelope has approximately a quadratic dependence on drift distance, and space-charge effects dominate the early beam formation and beamline optics matching process.
NASA Astrophysics Data System (ADS)
Xie, Z. Q.; Antaya, T. A.
1990-02-01
We have obtained excellent agreement between BEAM-3D calculations and beam profile and emittance measurements of the total extracted beam from the room temperature electron cyclotron resonance (RTECR), when a low degree of beam neutralization is assumed in the calculations, as will be presented in this paper. The beam envelope has approximately a quadratic dependence on drift distance, and space-charge effects dominate the early beam formation and beamline optics matching process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussain, Azam; Zhao, Zhenling; Xie, Jinlin, E-mail: jlxie@ustc.edu.cn
The spatial and temporal evolutions of compound sawteeth were directly observed using 2D electron cyclotron emission imaging on experimental advanced superconducting tokamak. The compound sawtooth consists of partial and full collapses. After partial collapse, the hot core survives as only a small amount of heat disperses outwards, whereas in the following full collapse a large amount of heat is released and the hot core dissipates. The presence of two q = 1 surfaces was not observed. Instead, the compound sawtooth occurs mainly at the beginning of an ion cyclotron resonant frequency heating pulse and during the L-H transition phase, which may bemore » related to heat transport suppression caused by a decrease in electron heat diffusivity.« less
NASA Astrophysics Data System (ADS)
Snicker, A.; Poli, E.; Maj, O.; Guidi, L.; Köhn, A.; Weber, H.; Conway, G. D.; Henderson, M.; Saibene, G.
2018-01-01
We present a numerical investigation of electron cyclotron beams interacting with electron density fluctuations in the ITER 15 MA H-mode scenario. In particular, here we study how the beam from the equatorial launcher, which shall be utilized to influence the sawtooth instability, is affected by the fluctuations. Moreover, we present the theory and first estimates of the power that is scattered from the injected O-mode to a secondary X-mode in the presence of the fluctuations. It is shown that for ITER parameters the scattered power stays within acceptable limits and broadening of the equatorial beams is less than those from the upper launcher.
NASA Astrophysics Data System (ADS)
Stefan, V. Alexander
2011-04-01
Stimulated Raman scattering in the electron cyclotron frequency range of the X-Mode and O-Mode driver with the ITER plasma leads to the ``tail heating'' via the generation of suprathermal electrons and energetic ions. The scattering off Trivelpiece-Gould (T-G) modes is studied for the gyrotron frequency of 170GHz; X-Mode and O-Mode power of 24 MW CW; on-axis B-field of 10T. The synergy between the two-plasmon decay and Raman scattering is analyzed in reference to the bulk plasma heating. Supported in part by Nikola TESLA Labs, La Jolla, CA
Electromagnetic Electron Cyclotron Instability in the Solar Wind
NASA Astrophysics Data System (ADS)
Lazar, M.; Yoon, P. H.; López, R. A.; Moya, P. S.
2018-01-01
The abundant reports on the existence of electromagnetic high-frequency fluctuations in space plasmas have increased the expectations that theoretical modeling may help understand their origins and implications (e.g., kinetic instabilities and dissipation). This paper presents an extended quasi-linear approach of the electromagnetic electron cyclotron instability in conditions typical for the solar wind, where the anisotropic electrons (T⊥>T∥) exhibit a dual distribution combining a bi-Maxwellian core and bi-Kappa halo. Involving both the core and halo populations, the instability is triggered by the cumulative effects of these components, mainly depending of their anisotropies. The instability is not very sensitive to the shape of halo distribution function conditioned in this case by the power index κ. This result seems to be a direct consequence of the low density of electron halo, which is assumed more dilute than the core component in conformity with the observations in the ecliptic. Quasi-linear time evolutions predicted by the theory are confirmed by the particle-in-cell simulations, which also suggest possible explanations for the inherent differences determined by theoretical constraints. These results provide premises for an advanced methodology to characterize, realistically, the electromagnetic electron cyclotron instability and its implication in the solar wind.
Electromagnetic ion cyclotron waves observed near the oxygen cyclotron frequency by ISEE 1 and 2
NASA Technical Reports Server (NTRS)
Fraser, B. J.; Samson, J. C.; Hu, Y. D.; Mcpherron, R. L.; Russell, C. T.
1992-01-01
The first results of observations of ion cyclotron waves by the elliptically orbiting ISEE 1 and 2 pair of spacecraft are reported. The most intense waves (8 nT) were observed in the outer plasmasphere where convection drift velocities were largest and the Alfven velocity was a minimum. Wave polarization is predominantly left-handed with propagation almost parallel to the ambient magnetic field, and the spectral slot and polarization reversal predicted by cold plasma propagation theory are identified in the wave data. Computations of the experimental wave spectra during the passage through the plasmapause show that the spectral slots relate to the local plasma parameters, possibly suggesting an ion cyclotron wave growth source near the spacecraft. A regular wave packet structure seen over the first 30 min of the event is attributed to the modulation of this energy source by the Pc 5 waves seen at the same time.
High current H{sub 2}{sup +} cyclotrons for neutrino physics: The IsoDAR and DAE{delta}ALUS projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alonso, Jose R.; Collaboration: DAE delta ALUS Collaboration
2013-04-19
Using H{sub 2}{sup +} ions is expected to mitigate the two major impediments to accelerating very high currents in cyclotrons, due to lower space charge at injection, and stripping extraction. Planning for peak currents of 10 particle milliamps at 800 MeV/amu, these cyclotrons can generate adequate neutrino fluxes for Decay-At-Rest (DAR) studies of neutrino oscillation and CP violation. The Injector Cyclotron, at 60 MeV/amu can also provide adequate fluxes of electron antineutrinos from {sup 8}Li decay for sterile neutrino searches in existing liquid scintillator detectors at Kam LAND or SNO+. This paper outlines programs for designing and building these machines.
Application of high-quality SiO2 grown by multipolar ECR source to Si/SiGe MISFET
NASA Technical Reports Server (NTRS)
Sung, K. T.; Li, W. Q.; Li, S. H.; Pang, S. W.; Bhattacharya, P. K.
1993-01-01
A 5 nm-thick SiO2 gate was grown on an Si(p+)/Si(0.8)Ge(0.2) modulation-doped heterostructure at 26 C with an oxygen plasma generated by a multipolar electron cyclotron resonance source. The ultrathin oxide has breakdown field above 12 MV/cm and fixed charge density about 3 x 10 exp 10/sq cm. Leakage current as low as 1/micro-A was obtained with the gate biased at 4 V. The MISFET with 0.25 x 25 sq m gate shows maximum drain current of 41.6 mA/mm and peak transconductance of 21 mS/mm.
NASA Astrophysics Data System (ADS)
Chatziantonaki, Ioanna; Tsironis, Christos; Isliker, Heinz; Vlahos, Loukas
2013-11-01
The most promising technique for the control of neoclassical tearing modes in tokamak experiments is the compensation of the missing bootstrap current with an electron-cyclotron current drive (ECCD). In this frame, the dynamics of magnetic islands has been studied extensively in terms of the modified Rutherford equation (MRE), including the presence of a current drive, either analytically described or computed by numerical methods. In this article, a self-consistent model for the dynamic evolution of the magnetic island and the driven current is derived, which takes into account the island's magnetic topology and its effect on the current drive. The model combines the MRE with a ray-tracing approach to electron-cyclotron wave-propagation and absorption. Numerical results exhibit a decrease in the time required for complete stabilization with respect to the conventional computation (not taking into account the island geometry), which increases by increasing the initial island size and radial misalignment of the deposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, B. F., E-mail: Ben.Spencer@manchester.ac.uk; Smith, W. F.; Hibberd, M. T.
2016-05-23
The effective mass, sheet carrier concentration, and mobility of electrons within a two-dimensional electron gas in an AlGaN/GaN heterostructure were determined using a laboratory-based terahertz cyclotron resonance spectrometer. The ability to perform terahertz cyclotron resonance spectroscopy with magnetic fields of up to 31 T was enabled by combining a high-field pulsed magnet with a modified asynchronous optical sampling terahertz detection scheme. This scheme allowed around 100 transmitted terahertz waveforms to be recorded over the 14 ms magnetic field pulse duration. The sheet density and mobility were measured to be 8.0 × 10{sup 12 }cm{sup −2} and 9000 cm{sup 2} V{sup −1} s{sup −1} at 77 K. The in-planemore » electron effective mass at the band edge was determined to be 0.228 ± 0.002m{sub 0}.« less
Understanding the bursty electron cyclotron emission during a sawtooth crash in the HT-7 tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Erzhong, E-mail: rzhonglee@ipp.ac.cn; Hu, Liqun; Chen, Kaiyun
2014-01-15
Bursts in electron cyclotron emission (ECE) were observed during sawtooth crashes in HT-7 in discharges with ion cyclotron resonance heating injected near the q = 1 rational surface (q is the safety factor). The local ECE measurement indicated that the bursty radiation is only observed on channels near but a little away outward from the q = 1 magnetic surface. In conjunction with the soft x-ray tomography analysis, it was determined that, for the first time, only a compression process survives in the later stage of fast magnetic reconnection but before prompt heat transport. The compression enhanced the electron radiation temperature, the increased amplitudemore » of which agreed well with the estimation according to a kinetic compression theory model [R. J. Hastie and T. C. Hender, Nucl. Fusion 28, 585 (1988)]. This paper presents the experimental evidence that there indeed exists a transient compression phase which results in the bursty ECE radiation during a sawtooth crash.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batanov, G. M.; Borzosekov, V. D.; Vasilkov, D. G.
Reflection and backscattering of high-power (400 kW) gyrotron radiation creating and heating plasma at the second harmonic of the electronic cyclotron frequency in the L-2M stellarator have been investigated experimentally. The effect of the displacement of the gyroresonance region from the axis of the plasma column under doubling of the plasma density on the processes of reflection and backscattering of microwave radiation has been examined. A near doubling of short-wavelength (k{sub ⊥} ≈ 30 cm{sup –1}) turbulent density fluctuations squared is observed. The change in the energy confinement time under variations of plasma parameters and characteristics of short-wavelength turbulence ismore » discussed. A discrepancy between the measured values of the reflection coefficient from the electron cyclotron resonance heating region and predictions of the one-dimensional model is revealed.« less
Improved cross-calibration of Thomson scattering and electron cyclotron emission with ECH on DIII-D.
Brookman, M W; Austin, M E; McLean, A G; Carlstrom, T N; Hyatt, A W; Lohr, J
2016-11-01
Thomson scattering produces n e profiles from measurement of scattered laser beam intensity. Rayleigh scattering provides a first calibration of the relation n e ∝ I TS , which depends on many factors (e.g., laser alignment and power, optics, and measurement systems). On DIII-D, the n e calibration is adjusted against an absolute n e from the density-driven cutoff of the 48 channel 2nd harmonic X-mode electron cyclotron emission system. This method has been used to calibrate Thomson n e from the edge to near the core (r/a > 0.15). Application of core electron cyclotron heating improves the quality of cutoff and depth of its penetration into the core, and also changes underlying MHD activity, minimizing crashes which confound calibration. Less fueling is needed as "ECH pump-out" generates a plasma ready to take up gas. On removal of gyrotron power, cutoff penetrates into the core as channels fall successively and smoothly into cutoff.
Tunable Fermi Contour Anisotropy in GaAs Electron and Hole Systems
NASA Astrophysics Data System (ADS)
Kamburov, Dobromir G.
This Thesis explores the ballistic transport of quasi two-dimensional (2D) electron and hole systems confined to GaAs quantum wells and subjected to a periodic, strain-induced density modulation. In the presence of an applied perpendicular magnetic field, whenever the diameter of the charged carriers' cyclotron orbit becomes commensurate with the period of the density modulation, the sample's resistance exhibits commensurability features. We use the commensurability effects to directly probe the size of the cyclotron orbit, the Fermi contour, and the spin-polarization of particles at low magnetic field and of composite fermions near even-denominator Landau level filling factors (nu). We establish how the commensurability signatures depend on the sample parameters, including the carrier density, the modulation period, and the width of the confining quantum well. In the presence of a small perpendicular magnetic field (B⊥ ), both 2D electrons and holes are essentially spin-unpolarized and their Fermi contours are nearly circular. When an additional parallel component B∥ is introduced, it couples to the carriers' out-of-plane motion and leads to a severe distortion of the energy bands and the Fermi contours. The degree of anisotropy is typically stronger in the wider quantum wells but it also depends on the carrier type. For a given QW width, holes become anisotropic more readily than electrons. The application of B ∥ also affects the spin-polarization of the carriers. Hole samples, for example, become more spin-polarized compared to electrons. We can semi-quantitatively explain the shape and size of the electron and hole Fermi contours with a theoretical calculation with no adjustable parameters based on an 8 x 8 Kane Hamiltonian. In addition to the electron and hole data at low perpendicular magnetic fields, we observe commensurability features for composite fermions near Landau level filling factors nu = 3=2, 1/2, and 1/4. Our data reveal an asymmetry of the composite fermion commensurability features on the two sides of filling factors nu = 1=2 and 3=2. The asymmetry is a fascinating manifestation of a subtle breaking of the particle-hole equivalence in the ballistic transport of composite fermions. It is consistent with a transport picture in which the minority carriers capture flux quanta to form composite fermions. We also employ commensurability oscillations as a tool to probe and quantify the effect of B∥ on the composite fermion Fermi contours. Our measurements reveal that, thanks to the finite layer thickness of the carriers and the coupling of their out-of-plane motion to B∥, the Fermi contours of nu = 1=2 and 3/2 composite fermions are significantly distorted. Furthermore, depending on the width of the quantum well and the sample density, in the vicinity of nu = 3=2 the spin-polarization of the composite fermions varies while near nu = 1=2 they remain fully spin-polarized.
Terahertz time-domain magnetospectroscopy of a high-mobility two-dimensional electron gas.
Wang, Xiangfeng; Hilton, David J; Ren, Lei; Mittleman, Daniel M; Kono, Junichiro; Reno, John L
2007-07-01
We have observed cyclotron resonance in a high-mobility GaAs/AlGaAs two-dimensional electron gas by using the techniques of terahertz time-domain spectroscopy combined with magnetic fields. From this, we calculate the real and imaginary parts of the diagonal elements of the magnetoconductivity tensor, which in turn allows us to extract the concentration, effective mass, and scattering time of the electrons in the sample. We demonstrate the utility of ultrafast terahertz spectroscopy, which can recover the true linewidth of cyclotron resonance in a high-mobility (>10(6) cm(2)V(-1)s(-1)) sample without being affected by the saturation effect.
Alton, Gerald D.
1996-01-01
An electron cyclotron resonance (ECR) ion source includes a primary mirror coil disposed coaxially around a vacuum vessel in which a plasma is induced and introducing a solenoidal ECR-producing field throughout the length of the vacuum vessel. Radial plasma confinement is provided by a multi-cusp, multi-polar permanent magnet array disposed azimuthally around the vessel and within the primary mirror coil. Axial confinement is provided either by multi-cusp permanent magnets at the opposite axial ends of the vessel, or by secondary mirror coils disposed on opposite sides of the primary coil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asaji, T., E-mail: asaji@oshima-k.ac.jp; Hirabara, N.; Izumihara, T.
A new electron cyclotron resonance ion/plasma source has been designed and will be built at Oshima National College of Maritime Technology by early 2014. We have developed an ion source that allows the control of the plasma parameters over a wide range of electron temperatures for material research. A minimum-B magnetic field composed of axial mirror fields and radial cusp fields was designed using mainly Nd-Fe-B permanent magnets. The axial magnetic field can be varied by three solenoid coils. The apparatus has 2.45 GHz magnetron and 2.5–6.0 GHz solid-state microwave sources.
Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources
Alton, Gerald D.
1998-01-01
Microwave injection methods for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant "volume" ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources.
DOE R&D Accomplishments Database
Bloch, F.; Staub, H.
1943-08-18
Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951
RF wave observations in beam-plasma discharge
NASA Technical Reports Server (NTRS)
Bernstein, W.
1986-01-01
The Beam Plasma Discharge (BPD) was produced in the large vacuum chamber at Johnson Space Center (20 x 30 m) using an energetic electron beam of moderately high perveance. A more complete expression of the threshold current I sub c taking into account the pitch angle injection dependence is given. Ambient plasma density inferred from wave measurements under various beam conditions are reported. Maximum frequency of the excited RF band behaves differently than the frequency of the peak amplitude. The latter shows signs of parabolic saturation consistent with the light data. Beam plasma state (pre-BPD or BPD) does not affect the pitch angle dependence. Unexpected strong modulation of the RF spectrum at half odd integer of the electron cyclotron frequency (n + 1/2)f sub ce is reported (5 n 10). Another new feature, the presence of wave emission around 3/2 f sub ce for I sub b is approximate I sub c is reported.
Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi
2010-02-01
An 18 GHz superconducting electron cyclotron resonance ion source has been installed as a subject of the azimuthally varying field cyclotron upgrade project (K. Hatanaka et al., in Proceedings of the 17th International Conference on Cyclotrons and Their Applications, Tokyo, Japan, 18-22 October 2004, pp. 115-117), in order to increase beam currents and to extend the variety of ions. The production development of several ions has been performed since 2006 and some of them have already been used for user experiments [T. Yorita et al., Rev. Sci. Instrum. 79, 02A311 (2008)]. Further optimizations for each component such as the material of plasma electrode, material, and shape of bias probe and mirror field have been continued and more intense ion beams have been obtained for O, N, and Ar. For the purpose of obtaining highly charged Xe with several microamperes, the optimization of position and shape of plasma electrode and bias disk has also been done and highly charged Xe(32+) beam has been obtained successfully.
NASA Astrophysics Data System (ADS)
Ikonnikov, A. V.; Zholudev, M. S.; Spirin, K. E.; Lastovkin, A. A.; Maremyanin, K. V.; Aleshkin, V. Ya; Gavrilenko, V. I.; Drachenko, O.; Helm, M.; Wosnitza, J.; Goiran, M.; Mikhailov, N. N.; Dvoretskii, S. A.; Teppe, F.; Diakonova, N.; Consejo, C.; Chenaud, B.; Knap, W.
2011-12-01
Cyclotron resonance spectra of 2D electrons in HgTe/CdxHg1-xTe (0 1 3) quantum well (QW) heterostructures with inverted band structure have been thoroughly studied in quasiclassical magnetic fields versus the electron concentration varied using the persistent photoconductivity effect. The cyclotron mass is shown to increase with QW width in contrast to QWs with normal band structure. The measured values of cyclotron mass are shown to be systematically less than those calculated using the 8 × 8 Kane model with conventional set of HgTe and CdTe material parameters. In quantizing pulsed magnetic fields (Landau level filling factor less than unity) up to 45 T, both intraband (CR) and interband magnetoabsorption have been studied at radiation wavelengths 14.8 and 11.4 µm for the first time. The results obtained are compared with the allowed transition energies between Landau levels in the valence and conduction bands calculated within the same model, the calculated energies being again systematically less (by 3-14%) than the observed optical transition energies.
Measurements on wave propagation characteristics of spiraling electron beams
NASA Technical Reports Server (NTRS)
Singh, A.; Getty, W. D.
1976-01-01
Dispersion characteristics of cyclotron-harmonic waves propagating on a neutralized spiraling electron beam immersed in a uniform axial magnetic field are studied experimentally. The experimental setup consisted of a vacuum system, an electron-gun corkscrew assembly which produces a 110-eV beam with the desired delta-function velocity distribution, a measurement region where a microwave signal is injected onto the beam to measure wavelengths, and a velocity analyzer for measuring the axial electron velocity. Results of wavelength measurements made at beam currents of 0.15, 1.0, and 2.0 mA are compared with calculated values, and undesirable effects produced by increasing the beam current are discussed. It is concluded that a suitable electron beam for studies of cyclotron-harmonic waves can be generated by the corkscrew device.
Ginzburg, N S; Zotova, I V; Sergeev, A S
2010-12-31
Based on analogy to the well-known process of the self-induced transparency of an optical pulse propagating through a passive two-level medium we describe similar effects for a microwave pulse interacting with a cold plasma or rectilinear electron beam under cyclotron resonance condition. It is shown that with increasing amplitude and duration of an incident pulse the linear cyclotron absorption is replaced by the self-induced transparency when the pulse propagates without damping. In fact, the initial pulse decomposes to one or several solitons with amplitude and duration defined by its velocity. In a certain parameter range, the single soliton formation is accompanied by significant compression of the initial electromagnetic pulse. We suggest using the effect of self-compression for producing multigigawatt picosecond microwave pulses.
Enhanced confinement in electron cyclotron resonance ion source plasma.
Schachter, L; Stiebing, K E; Dobrescu, S
2010-02-01
Power loss by plasma-wall interactions may become a limitation for the performance of ECR and fusion plasma devices. Based on our research to optimize the performance of electron cyclotron resonance ion source (ECRIS) devices by the use of metal-dielectric (MD) structures, the development of the method presented here, allows to significantly improve the confinement of plasma electrons and hence to reduce losses. Dedicated measurements were performed at the Frankfurt 14 GHz ECRIS using argon and helium as working gas and high temperature resistive material for the MD structures. The analyzed charge state distributions and bremsstrahlung radiation spectra (corrected for background) also clearly verify the anticipated increase in the plasma-electron density and hence demonstrate the advantage by the MD-method.
Characteristics of surface sterilization using electron cyclotron resonance plasma
NASA Astrophysics Data System (ADS)
Yonesu, Akira; Hara, Kazufumi; Nishikawa, Tatsuya; Hayashi, Nobuya
2016-07-01
The characteristics of surface sterilization using electron cyclotron resonance (ECR) plasma were investigated. High-energy electrons and oxygen radicals were observed in the ECR zone using electric probe and optical emission spectroscopic methods. A biological indicator (BI), Geobacillus stearothermophilus, containing 1 × 106 spores was sterilized in 120 s by exposure to oxygen discharges while maintaining a temperature of approximately 55 °C at the BI installation position. Oxygen radicals and high-energy electrons were found to be the sterilizing species in the ECR region. It was demonstrated that the ECR plasma could be produced in narrow tubes with an inner diameter of 5 mm. Moreover, sterilization tests confirmed that the spores present inside the narrow tube were successfully inactivated by ECR plasma irradiation.
NASA Astrophysics Data System (ADS)
Jiang, M.; Zhong, W. L.; Xu, Y.; Shi, Z. B.; Chen, W.; Ji, X. Q.; Ding, X. T.; Yang, Z. C.; Shi, P. W.; Liang, A. S.; Wen, J.; Li, J. Q.; Zhou, Y.; Li, Y. G.; Yu, D. L.; Liu, Y.; Yang, Q. W.; the HL-2A Team
2018-02-01
The radial profiles of perpendicular flows in the presence of the m/n=2/1 magnetic island were firstly measured in the HL-2A tokamak by hopping the work frequency of the Doppler backward scattering reflectometer system along with a two-dimensional electron cyclotron emission imaging diagnostic identifying the island locations. It has been observed that across the O-point cut the perpendicular flow is quite small at the center of the island and strongly enhanced around the boundary of the island, resulting in a large increase of the flow shear in the outer half island, while across the X-point cut the flow is almost flat in the whole island region. Meanwhile it was found that the density fluctuations are generally weakened inside the island. The results indicate that both the perpendicular flow and the density fluctuation level are modulated by the naturally rotating tearing mode near the island boundary. The cross-correlation between the perpendicular flows and the oscillating electron temperature further reveals that the modulation of the perpendicular flow occurs mainly inside and in the vicinity of the island.
Glow plasma trigger for electron cyclotron resonance ion sources.
Vodopianov, A V; Golubev, S V; Izotov, I V; Nikolaev, A G; Oks, E M; Savkin, K P; Yushkov, G Yu
2010-02-01
Electron cyclotron resonance ion sources (ECRISs) are particularly useful for nuclear, atomic, and high energy physics, as unique high current generators of multicharged ion beams. Plasmas of gas discharges in an open magnetic trap heated by pulsed (100 micros and longer) high power (100 kW and higher) high-frequency (greater than 37.5 GHz) microwaves of gyrotrons is promising in the field of research in the development of electron cyclotron resonance sources for high charge state ion beams. Reaching high ion charge states requires a decrease in gas pressure in the magnetic trap, but this method leads to increases in time, in which the microwave discharge develops. The gas breakdown and microwave discharge duration becomes greater than or equal to the microwave pulse duration when the pressure is decreased. This makes reaching the critical plasma density initiate an electron cyclotron resonance (ECR) discharge during pulse of microwave gyrotron radiation with gas pressure lower than a certain threshold. In order to reduce losses of microwave power, it is necessary to shorten the time of development of the ECR discharge. For fast triggering of ECR discharge under low pressure in an ECRIS, we initially propose to fill the magnetic trap with the plasmas of auxiliary pulsed discharges in crossed ExB fields. The glow plasma trigger of ECR based on a Penning or magnetron discharge has made it possible not only to fill the trap with plasma with density of 10(12) cm(-3), required for a rapid increase in plasma density and finally for ECR discharge ignition, but also to initially heat the plasma electrons to T(e) approximately = 20 eV.
Shaw, Jared B; Robinson, Errol W; Paša-Tolić, Ljiljana
2016-03-15
We revisited the implementation of 193 nm ultraviolet photodissociation (UVPD) within the ion cyclotron resonance (ICR) cell of a Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer. UVPD performance characteristics were examined in the context of recent developments in the understanding of UVPD and in-cell tandem mass spectrometry. Efficient UVPD and photo-ECD of a model peptide and proteins within the ICR cell of a FT-ICR mass spectrometer are accomplished through appropriate modulation of laser pulse timing, relative to ion magnetron motion and the potential applied to an ion optical element upon which photons impinge. It is shown that UVPD yields efficient and extensive fragmentation, resulting in excellent sequence coverage for model peptide and protein cations.
Zhao, Tao; Gong, Sen; Hu, Min; Zhong, Renbin; Liu, Diwei; Chen, Xiaoxing; Zhang, Ping; Wang, Xinran; Zhang, Chao; Wu, Peiheng; Liu, Shenggang
2015-01-01
Terahertz (THz) radiation can revolutionize modern science and technology. To this date, it remains big challenges to develop intense, coherent and tunable THz radiation sources that can cover the whole THz frequency region either by means of only electronics (both vacuum electronics and semiconductor electronics) or of only photonics (lasers, for example, quantum cascade laser). Here we present a mechanism which can overcome these difficulties in THz radiation generation. Due to the natural periodicity of 2π of both the circular cylindrical graphene structure and cyclotron electron beam (CEB), the surface plasmon polaritions (SPPs) dispersion can cross the light line of dielectric, making transformation of SPPs into radiation immediately possible. The dual natural periodicity also brings significant excellences to the excitation and the transformation. The fundamental and hybrid SPPs modes can be excited and transformed into radiation. The excited SPPs propagate along the cyclotron trajectory together with the beam and gain energy from the beam continuously. The radiation density is enhanced over 300 times, up to 105 W/cm2. The radiation frequency can be widely tuned by adjusting the beam energy or chemical potential. This mechanism opens a way for developing desired THz radiation sources to cover the whole THz frequency regime. PMID:26525516
Turbulence of electrostatic electron cyclotron harmonic waves observed by Ogo 5.
NASA Technical Reports Server (NTRS)
Oya, H.
1972-01-01
Analysis of VLF emissions that have been observed near 3/2, 5/2, and 7/2 f sub H by Ogo 5 in the magnetosphere (f sub H is the electron cyclotron frequency) in the light of the mechanism used for the diffuse plasma resonance f sub Dn observed by Alouette 2 and Isis 1. The VLF emission is considered to be generated by nonlinear coupling mechanisms in certain portions of the observation as the f sub Dn is enhanced by its association with nonlinear wave-particle interaction of the electrostatic electron cyclotron harmonic wave, including the instability due to the nonlinear inverse Landau damping mechanism in the turbulence. The difference between the two observations is in the excitation mechanism of the turbulence; the turbulence in the plasma trough detected by Ogo 5 is due to natural origins, whereas the ionospheric topside sounder makes the plasma wave turbulence artificially by submitting strong stimulation pulses. Electron density values in the plasma trough are deduced by applying the f sub Dn-f sub N/f sub H relationship obtained from the Alouette 2 experiment as well as by applying the condition for the wave-particle nonlinear interactions. The electron density values reveal good agreement with the ion density values observed simultaneously by the highly sensitive ion mass spectrometer.
Xu, Yuan; Peng, Shixiang; Ren, Haitao; Zhao, Jie; Chen, Jia; Zhang, Ailin; Zhang, Tao; Guo, Zhiyu; Chen, Jia'er
2014-02-01
The permanent magnet 2.45 GHz electron cyclotron resonance ion source at Peking University can produce more than 100 mA hydrogen ion beam working at pulsed mode. For the increasing requirements of cluster ions (H2(+) and H3(+)) in linac and cyclotron, experimental study was carried out to further understand the hydrogen plasma processes in the ion source for the generation of cluster ions. The constituents of extracted beam have been analyzed varying with the pulsed duration from 0.3 ms to 2.0 ms (repetition frequency 100 Hz) at different operation pressure. The fraction of cluster ions dramatically increased when the pulsed duration was lower than 0.6 ms, and more than 20 mA pure H3(+) ions with fraction 43.2% and 40 mA H2(+) ions with fraction 47.7% were obtained when the operation parameters were adequate. The dependence of extracted ion fraction on microwave power was also measured at different pressure as the energy absorbed by plasma will greatly influence electron temperature and electron density then the plasma processes in the ion source. More details will be presented in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mascali, David, E-mail: davidmascali@lns.infn.it; Castro, Giuseppe; Celona, Luigi
2016-02-15
An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and themore » beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.« less
Wall-loss distribution of charge breeding ions in an electron cyclotron resonance ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, S. C.; Oyaizu, M.; Imai, N.
2011-03-15
The ion loss distribution in an electron cyclotron resonance ion source (ECRIS) was investigated to understand the element dependence of the charge breeding efficiency in an electron cyclotron resonance (ECR) charge breeder. The radioactive {sup 111}In{sup 1+} and {sup 140}Xe{sup 1+} ions (typical nonvolatile and volatile elements, respectively) were injected into the ECR charge breeder at the Tokai Radioactive Ion Accelerator Complex to breed their charge states. Their respective residual activities on the sidewall of the cylindrical plasma chamber of the source were measured after charge breeding as functions of the azimuthal angle and longitudinal position and two-dimensional distributions ofmore » ions lost during charge breeding in the ECRIS were obtained. These distributions had different azimuthal symmetries. The origins of these different azimuthal symmetries are qualitatively discussed by analyzing the differences and similarities in the observed wall-loss patterns. The implications for improving the charge breeding efficiencies of nonvolatile elements in ECR charge breeders are described. The similarities represent universal ion loss characteristics in an ECR charge breeder, which are different from the loss patterns of electrons on the ECRIS wall.« less
Floquet theory of microwave absorption by an impurity in the two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Chepelianskii, Alexei D.; Shepelyansky, Dima L.
2018-03-01
We investigate the dynamics of a two-dimensional electron gas (2DEG) under circular polarized microwave radiation in the presence of dilute localized impurities. Inspired by recent developments on Floquet topological insulators we obtain the Floquet wave functions of this system which allow us to predict the microwave absorption and charge density responses of the electron gas; we demonstrate how these properties can be understood from the underlying semiclassical dynamics even for impurities with a size of around a magnetic length. The charge density response takes the form of a rotating charge density vortex around the impurity that can lead to a significant renormalization of the external microwave field which becomes strongly inhomogeneous on the scale of a cyclotron radius around the impurity. We show that this inhomogeneity can suppress the circular polarization dependence which is theoretically expected for microwave induced resistance oscillations but which was not observed in experiments on semiconducting 2DEGs. Our explanation for this so far unexplained polarization independence has close similarities with the Azbel'-Kaner effect in metals where the interaction length between the microwave field and conduction electrons is much smaller than the cyclotron radius due to skin effect generating harmonics of the cyclotron resonance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobias, B., E-mail: bjtobias@pppl.gov; Domier, C. W.; Luhmann, N. C.
2016-11-15
The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50–150 GHz) to an intermediate frequency (IF) band (e.g. 0.1–18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads tomore » 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.« less
Tobias, B.; Domier, C. W.; Luhmann, Jr., N. C.; ...
2016-07-25
The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads tomore » 10x improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). As a result, implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.« less
Electron dynamics in solid state via time varying wavevectors
NASA Astrophysics Data System (ADS)
Khaneja, Navin
2018-06-01
In this paper, we study electron wavepacket dynamics in electric and magnetic fields. We rigorously derive the semiclassical equations of electron dynamics in electric and magnetic fields. We do it both for free electron and electron in a periodic potential. We do this by introducing time varying wavevectors k(t). In the presence of magnetic field, our wavepacket reproduces the classical cyclotron orbits once the origin of the Schröedinger equation is correctly chosen to be center of cyclotron orbit. In the presence of both electric and magnetic fields, our equations for wavepacket dynamics differ from classical Lorentz force equations. We show that in a periodic potential, on application of electric field, the electron wave function adiabatically follows the wavefunction of a time varying Bloch wavevector k(t), with its energies suitably shifted with time. We derive the effective mass equation and discuss conduction in conductors and insulators.
Rowan, W L; Houshmandyar, S; Phillips, P E; Austin, M E; Beno, J H; Hubbard, A E; Khodak, A; Ouroua, A; Taylor, G
2016-11-01
Measurement of the electron cyclotron emission (ECE) is one of the primary diagnostics for electron temperature in ITER. In-vessel, in-vacuum, and quasi-optical antennas capture sufficient ECE to achieve large signal to noise with microsecond temporal resolution and high spatial resolution while maintaining polarization fidelity. Two similar systems are required. One views the plasma radially. The other is an oblique view. Both views can be used to measure the electron temperature, while the oblique is also sensitive to non-thermal distortion in the bulk electron distribution. The in-vacuum optics for both systems are subject to degradation as they have a direct view of the ITER plasma and will not be accessible for cleaning or replacement for extended periods. Blackbody radiation sources are provided for in situ calibration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowan, W. L., E-mail: w.l.rowan@austin.utexas.edu; Houshmandyar, S.; Phillips, P. E.
2016-11-15
Measurement of the electron cyclotron emission (ECE) is one of the primary diagnostics for electron temperature in ITER. In-vessel, in-vacuum, and quasi-optical antennas capture sufficient ECE to achieve large signal to noise with microsecond temporal resolution and high spatial resolution while maintaining polarization fidelity. Two similar systems are required. One views the plasma radially. The other is an oblique view. Both views can be used to measure the electron temperature, while the oblique is also sensitive to non-thermal distortion in the bulk electron distribution. The in-vacuum optics for both systems are subject to degradation as they have a direct viewmore » of the ITER plasma and will not be accessible for cleaning or replacement for extended periods. Blackbody radiation sources are provided for in situ calibration.« less
Rowan, W. L.; Houshmandyar, S.; Phillips, P. E.; ...
2016-09-07
Measurement of the electron cyclotron emission (ECE) is one of the primary diagnostics for electron temperature in ITER. In-vessel, in-vacuum, and quasi-optical antennas capture sufficient ECE to achieve large signal to noise with microsecond temporal resolution and high spatial resolution while maintaining polarization fidelity. Two similar systems are required. One views the plasma radially. The other is an oblique view. Both views can be used to measure the electron temperature, while the oblique is also sensitive to non-thermal distortion in the bulk electron distribution. The in-vacuum optics for both systems are subject to degradation as they have a direct viewmore » of the ITER plasma and will not be accessible for cleaning or replacement for extended periods. Here, blackbody radiation sources are provided for in situ calibration.« less
Onai, M; Etoh, H; Aoki, Y; Shibata, T; Mattei, S; Fujita, S; Hatayama, A; Lettry, J
2016-02-01
Recently, a filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In this study, numerical modeling of the filament arc-discharge source plasma has been done with kinetic modeling of electrons in the ion source plasmas by the multi-cusp arc-discharge code and zero dimensional rate equations for hydrogen molecules and negative ions. In this paper, main focus is placed on the effects of the arc-discharge power on the electron energy distribution function and the resultant H(-) production. The modelling results reasonably explains the dependence of the H(-) extraction current on the arc-discharge power in the experiments.
Effect of heating on the suppression of tearing modes in tokamaks.
Classen, I G J; Westerhof, E; Domier, C W; Donné, A J H; Jaspers, R J E; Luhmann, N C; Park, H K; van de Pol, M J; Spakman, G W; Jakubowski, M W
2007-01-19
The suppression of (neoclassical) tearing modes is of great importance for the success of future fusion reactors like ITER. Electron cyclotron waves can suppress islands, both by driving noninductive current in the island region and by heating the island, causing a perturbation to the Ohmic plasma current. This Letter reports on experiments on the TEXTOR tokamak, investigating the effect of heating, which is usually neglected. The unique set of tools available on TEXTOR, notably the dynamic ergodic divertor to create islands with a fully known driving term, and the electron cyclotron emission imaging diagnostic to provide detailed 2D electron temperature information, enables a detailed study of the suppression process and a comparison with theory.
Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources
Alton, G.D.
1998-11-24
Microwave injection methods are disclosed for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant ``volume`` ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources. 5 figs.
Wall-loss distribution of charge breeding ions in an electron cyclotron resonance ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, S. C.; Oyaizu, M.; Imai, N.
2012-02-15
We investigated the ion-loss distribution on the sidewall of an electron cyclotron resonance (ECR) plasma chamber using the 18-GHz ECR charge breeder at the Tokai Radioactive Ion Accelerator Complex (TRIAC). Similarities and differences between the ion-loss distributions (longitudinal and azimuthal) of different ion species (i.e., radioactive {sup 111}In{sup 1+} and {sup 140}Xe{sup 1+} ions that are typical volatile and nonvolatile elements) was qualitatively discussed to understand the element dependence of the charge breeding efficiency. Especially, the similarities represent universal ion loss characteristics in an ECR charge breeder, which are different from the loss patterns of electrons on the ECRIS wall.
BEARS: Radioactive ion beams at LBNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, J.; Guo, F.Q.; Haustein, P.E.
1998-07-01
BEARS (Berkeley Experiments with Accelerated Radioactive Species) is an initiative to develop a radioactive ion-beam capability at Lawrence Berkeley National Laboratory. The aim is to produce isotopes at an existing medical cyclotron and to accelerate them at the 88 inch Cyclotron. To overcome the 300-meter physical separation of these two accelerators, a carrier-gas transport system will be used. At the terminus of the capillary, the carrier gas will be separated and the isotopes will be injected into the 88 inch Cyclotron`s Electron Cyclotron Resonance (ECR) ion source. The first radioactive beams to be developed will include 20-min {sup 11}C andmore » 70-sec {sup 14}O, produced by (p,n) and (p,{alpha}) reactions on low-Z targets. A test program is currently being conducted at the 88 inch Cyclotron to develop the parts of the BEARS system. Preliminary results of these tests lead to projections of initial {sup 11}C beams of up to 2.5 {times} 10{sup 7} ions/sec and {sup 14}O beams of 3 {times} 10{sup 5} ions/sec.« less
ELECTRONUCLEAR RESEARCH DIVISION SEMIANNUAL PROGRESS REPORT FOR PERIOD ENDING MARCH 20, 1955
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, F.T. ed.
1955-06-24
The 86-in. cyclotron is being modified to provide for deflection of the proton beam. Radioisotope production and cyclotron operation before shut-down are summarized. With the use of the 63-in. cyclotron, the absolute values of the electron capture and loss cross sections for elastic scattering of N by N was measured at energies from 13 to 22 Mev. A double-focusing 90 deg magnet is being designed for use in identifying the reaction products from N-induced nuclear reactions. The 44-in. cyclotron is being revised to provide for the acceleration of protons to 1.5 and 5 Mev. The feasibility of converting the 44-more » in. cyclotron to a 48-in. heavy-particle cyclotron is being studied, and design specifications are given. The production of Pu isotopes by electromagnetic separation, Pu recycle chemistry, and product processing are discussed. The Army Package Power Reactor program is summarized. APPR-type fuel assemblies have been fabricated for irradiation experiments and are being corrosion tested. Feasibility studies of a fixed-frequency 1-bev accelerator are reported. (W.L.H.)« less
NASA Astrophysics Data System (ADS)
Meyer, B. K.; Hofmann, D. M.; Volm, D.; Chen, W. M.; Son, N. T.; Janzén, E.
2000-02-01
We present experimental data on the band-structure and high-mobility transport properties of 6H and 4H-SiC epitaxial films based on optically detected cyclotron resonance investigations. From the orientational dependence of the electron effective mass in 6H-SiC we obtain direct evidence for the camels back nature of the conduction band between the M and L points. The broadening of the resonance signal in 4H-SiC as a function of temperature is used to extract information on electron mobilities and to conclude on the role of the different scattering mechanisms. Under high microwave powers an enhancement of the electron effective mass is found which is explained by a coupling of the electrons with longitudinal optical phonons.
Improved cross-calibration of Thomson scattering and electron cyclotron emission with ECH on DIII-D
Brookman, M. W.; Austin, M. E.; McLean, A. G.; ...
2016-08-08
Thomson scattering (TS) produces n e profiles from measurement of scattered laser beam intensity. In the case of Rayleigh scattering, it provides a first calibration of the relation n e / ITS, which depends on many factors (e.g. laser alignment and power, optics, and measurement systems). On DIII-D, the n e calibration is adjusted for each laser and optic path against an absolute n e measurement from a density-driven cutoff on the 48 channel 2nd harmonic X-mode electron cyclotron emission (ECE) system. This method has been used to calibrate Thompson densities from the edge to near the core (r/a >more » 0.15). Application of core electron cyclotron heating improves the quality of cutoff and depth of its penetration into the core. ECH also changes underlying MHD activity. Furthermore, on the removal of ECH power, cutoff penetrates in from the edge to the core and channels fall successively and smoothly into cutoff. This improves the quality of the TS n e calibration while minimizing wall loading.« less
Control system of neoclassical tearing modes in real time on HL-2A tokamak.
Yan, Longwen; Ji, Xiaoquan; Song, Shaodong; Xia, Fan; Xu, Yuan; Ye, Jiruo; Jiang, Min; Chen, Wenjin; Sun, Tengfei; Liang, Shaoyong; Ling, Fei; Ma, Rui; Huang, Mei; Qu, Hongpeng; Song, Xianming; Yu, Deliang; Shi, Zhongbin; Liu, Yi; Yang, Qingwei; Xu, Min; Duan, Xuru; Liu, Yong
2017-11-01
The stability and performance of tokamak plasmas are routinely limited by various magneto-hydrodynamic instabilities, such as neoclassical tearing modes (NTMs). This paper presents a rather simple method to control the NTMs in real time (RT) on a tokamak, including the control principle of a feedback approach for RT suppression and stabilization for the NTMs. The control system combines Mirnov, electron cyclotron emission, and soft X-ray diagnostics used for determining the NTM positions. A methodology for fast detection of 2/1 or 3/2 NTM positions with 129 × 129 grid reconstruction is elucidated. The forty poloidal angles for steering the electron cyclotron resonance heating (ECRH)/electron cyclotron current drive launcher are used to establish the alignment of antenna mirrors with the center of the NTM and to ensure launcher emission intersecting with the rational surface of a magnetic island. Pilot experiments demonstrate the RT control capability to trace the conventional tearing modes (CTMs) in the HL-2A tokamak. The 2/1 CTMs have been suppressed or stabilized by the ECRH power deposition on site or with the steerable launcher.
First operation and effect of a new tandem-type ion source based on electron cyclotron resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Yushi, E-mail: kato@eei.eng.osaka-u.ac.jp; Kimura, Daiju; Yano, Keisuke
A new tandem type source has been constructed on the basis of electron cyclotron resonance plasma for producing synthesized ion beams in Osaka University. Magnetic field in the first stage consists of all permanent magnets, i.e., cylindrically comb shaped one, and that of the second stage consists of a pair of mirror coil, a supplemental coil and the octupole magnets. Both stage plasmas can be individually operated, and produced ions in which is energy controlled by large bore extractor also can be transported from the first to the second stage. We investigate the basic operation and effects of the tandemmore » type electron cyclotron resonance ion source (ECRIS). Analysis of ion beams and investigation of plasma parameters are conducted on produced plasmas in dual plasmas operation as well as each single operation. We describe construction and initial experimental results of the new tandem type ion source based on ECRIS with wide operation window for aiming at producing synthesized ion beams as this new source can be a universal source in future.« less
Improved cross-calibration of Thomson scattering and electron cyclotron emission with ECH on DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brookman, M. W., E-mail: brookmanmw@fusion.gat.com; Austin, M. E.; McLean, A. G.
2016-11-15
Thomson scattering produces n{sub e} profiles from measurement of scattered laser beam intensity. Rayleigh scattering provides a first calibration of the relation n{sub e} ∝ I{sub TS}, which depends on many factors (e.g., laser alignment and power, optics, and measurement systems). On DIII-D, the n{sub e} calibration is adjusted against an absolute n{sub e} from the density-driven cutoff of the 48 channel 2nd harmonic X-mode electron cyclotron emission system. This method has been used to calibrate Thomson n{sub e} from the edge to near the core (r/a > 0.15). Application of core electron cyclotron heating improves the quality of cutoffmore » and depth of its penetration into the core, and also changes underlying MHD activity, minimizing crashes which confound calibration. Less fueling is needed as “ECH pump-out” generates a plasma ready to take up gas. On removal of gyrotron power, cutoff penetrates into the core as channels fall successively and smoothly into cutoff.« less
Control system of neoclassical tearing modes in real time on HL-2A tokamak
NASA Astrophysics Data System (ADS)
Yan, Longwen; Ji, Xiaoquan; Song, Shaodong; Xia, Fan; Xu, Yuan; Ye, Jiruo; Jiang, Min; Chen, Wenjin; Sun, Tengfei; Liang, Shaoyong; Ling, Fei; Ma, Rui; Huang, Mei; Qu, Hongpeng; Song, Xianming; Yu, Deliang; Shi, Zhongbin; Liu, Yi; Yang, Qingwei; Xu, Min; Duan, Xuru; Liu, Yong
2017-11-01
The stability and performance of tokamak plasmas are routinely limited by various magneto-hydrodynamic instabilities, such as neoclassical tearing modes (NTMs). This paper presents a rather simple method to control the NTMs in real time (RT) on a tokamak, including the control principle of a feedback approach for RT suppression and stabilization for the NTMs. The control system combines Mirnov, electron cyclotron emission, and soft X-ray diagnostics used for determining the NTM positions. A methodology for fast detection of 2/1 or 3/2 NTM positions with 129 × 129 grid reconstruction is elucidated. The forty poloidal angles for steering the electron cyclotron resonance heating (ECRH)/electron cyclotron current drive launcher are used to establish the alignment of antenna mirrors with the center of the NTM and to ensure launcher emission intersecting with the rational surface of a magnetic island. Pilot experiments demonstrate the RT control capability to trace the conventional tearing modes (CTMs) in the HL-2A tokamak. The 2/1 CTMs have been suppressed or stabilized by the ECRH power deposition on site or with the steerable launcher.
Multi-megawatt millimeter-wave source for plasma heating and control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirshfield, J.L.; Wang, C.; Ganguly, A.K.
1995-12-31
Results of a feasibility study are summarized for multi-megawatt mm-wavelength gyroharmonic converters for plasma heating applications. Output power in these devices is extracted at a high harmonic of the modulation frequency of a spatiotemporally gyrating electron beam prepared using cyclotron autoresonance acceleration. An example is described in which an output of 2.2 MW at 148.5 GHz is predicted at the 13th harmonic of an 8 MW 11.424 GHz CARA, after including waveguide ohmic wall losses. Achievement of this performance requires a high quality 200 kV, 16 A luminar pencil beam injected into CARA, and effective suppression of competing output modes;more » means to realize these requirements are discussed.« less
Experimental investigation of the ECRH stray radiation during the start-up phase in Wendelstein 7-X
NASA Astrophysics Data System (ADS)
Moseev, Dmitry; Laqua, Heinrich; Marsen, Stefan; Stange, Torsten; Braune, Harald; Erckmann, Volker; Gellert, Florian; Oosterbeek, Johann Wilhelm; Wenzel, Uwe
2017-07-01
Electron cyclotron resonance heating (ECRH) is the main heating mechanism in the Wendelstein 7-X stellarator (W7-X). W7-X is equipped with five absolutely calibrated sniffer probes that are installed in each of the five modules of the device. The sniffer probes monitor energy flux of unabsorbed ECRH radiation in the device and interlocks are fed with the sniffer probe signals. The stray radiation level in the device changes significantly during the start-up phase: plasma is a strong microwave absorber and during its formation the stray radiation level in sniffer probes reduces by more than 95%. In this paper, we discuss the influence of neutral gas pressure and gyrotron power on plasma breakdown processes.
Interactions of waves on electron streams or plasmas are studied for several geometric configurations of finite cross section in a finite magnetic...velocity parallel to the magnetic field. It is further assumed that either macroscopic neutrality exists or static spacecharge forces are negligible. For...the most part the quasi-static analysis is used. For the case of two drifting streams cyclotron waves act to giveinstabilities which are either
Survey of heating and current drive for K-DEMO
NASA Astrophysics Data System (ADS)
Mikkelsen, D. R.; Kessel, C. E.; Poli, F. M.; Bertelli, N.; Kim, K.
2018-03-01
We present calculations of heating and current drive by neutral injection and by electromagnetic waves in the ion cyclotron, helicon, lower hybrid, and electron cyclotron frequency ranges for the steady state burn conditions in a K-DEMO configuration with I_p=12.3 MA, a = 2.1 m, R_o=6.8 m, B_o=7.4 T, \
Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Yasuda, Y; Morinobu, S; Tamii, A; Kamakura, K
2014-02-01
An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.
NASA Astrophysics Data System (ADS)
Golubev, S. V.; Skalyga, V. A.; Izotov, I. V.; Sidorov, A. V.
2018-01-01
A possibility of an intense deuterium ion beam creation for a compact powerful point-like neutron source is discussed. The fusion takes place due to bombardment of deuterium (or tritium) loaded target by high-current focused deuterium ion beam with energy of 100 keV. The ways of high-current and low emittance ion beam formation from the plasma of quasi-gasdynamic ion source of a new generation based on an electron cyclotron resonance discharge in an open magnetic trap sustained by powerful microwave radiation are investigated.
Beam-plasma instability in inhomogeneous magnetic field and second order cyclotron resonance effects
NASA Astrophysics Data System (ADS)
Trakhtengerts, V. Y.; Hobara, Y.; Demekhov, A. G.; Hayakawa, M.
1999-03-01
A new analytical approach to cyclotron instability of electron beams with sharp gradients in velocity space (step-like distribution function) is developed taking into account magnetic field inhomogeneity and nonstationary behavior of the electron beam velocity. Under these conditions, the conventional hydrodynamic instability of such beams is drastically modified and second order resonance effects become important. It is shown that the optimal conditions for the instability occur for nonstationary quasimonochromatic wavelets whose frequency changes in time. The theory developed permits one to estimate the wave amplification and spatio-temporal characteristics of these wavelets.
NASA Astrophysics Data System (ADS)
Kawamori, E.; Igami, H.
2017-11-01
A diagnostic technique for detecting the wave numbers of electron density fluctuations at electron gyro-scales in an electron cyclotron frequency range is proposed, and the validity of the idea is checked by means of a particle-in-cell (PIC) numerical simulation. The technique is a modified version of the scattering technique invented by Novik et al. [Plasma Phys. Controlled Fusion 36, 357-381 (1994)] and Gusakov et al., [Plasma Phys. Controlled Fusion 41, 899-912 (1999)]. The novel method adopts forward scattering of injected extraordinary probe waves at the upper hybrid resonance layer instead of the backward-scattering adopted by the original method, enabling the measurement of the wave-numbers of the fine scale density fluctuations in the electron-cyclotron frequency band by means of phase measurement of the scattered waves. The verification numerical simulation with the PIC method shows that the technique has a potential to be applicable to the detection of electron gyro-scale fluctuations in laboratory plasmas if the upper-hybrid resonance layer is accessible to the probe wave. The technique is a suitable means to detect electron Bernstein waves excited via linear mode conversion from electromagnetic waves in torus plasma experiments. Through the numerical simulations, some problems that remain to be resolved are revealed, which include the influence of nonlinear processes such as the parametric decay instability of the probe wave in the scattering process, and so on.
Imaging the dynamics of free-electron Landau states
Schattschneider, P.; Schachinger, Th.; Stöger-Pollach, M.; Löffler, S.; Steiger-Thirsfeld, A.; Bliokh, K. Y.; Nori, Franco
2014-01-01
Landau levels and states of electrons in a magnetic field are fundamental quantum entities underlying the quantum Hall and related effects in condensed matter physics. However, the real-space properties and observation of Landau wave functions remain elusive. Here we report the real-space observation of Landau states and the internal rotational dynamics of free electrons. States with different quantum numbers are produced using nanometre-sized electron vortex beams, with a radius chosen to match the waist of the Landau states, in a quasi-uniform magnetic field. Scanning the beams along the propagation direction, we reconstruct the rotational dynamics of the Landau wave functions with angular frequency ~100 GHz. We observe that Landau modes with different azimuthal quantum numbers belong to three classes, which are characterized by rotations with zero, Larmor and cyclotron frequencies, respectively. This is in sharp contrast to the uniform cyclotron rotation of classical electrons, and in perfect agreement with recent theoretical predictions. PMID:25105563
NASA Technical Reports Server (NTRS)
Zhou, M.; Ashour-Abdalla, M.; Berchem, J.; Walker, R. J.; Liang, H.; El-Alaoui, M.; Goldstein, M. L.; Lindqvist, P.-A.; Marklund, G.; Khotyaintsev, Y. V.;
2016-01-01
We report Magnetospheric Multiscale observations of high-frequency electrostatic waves in the vicinity of the reconnection ion diffusion region on the dayside magnetopause. The ion diffusion region is identified during two magnetopause crossings by the Hall electromagnetic fields, the slippage of ions with respect to the magnetic field, and magnetic energy dissipation. In addition to electron beam modes that have been previously detected at the separatrix on the magnetospheric side of the magnetopause, we report, for the first time, the existence of electron cyclotron harmonic waves at the magnetosheath separatrix. Broadband waves between the electron cyclotron and electron plasma frequencies, which were probably generated by electron beams, were found within the magnetopause current sheet. Contributions by these high-frequency waves to the magnetic energy dissipation were negligible in the diffusion regions as compared to those of lower-frequency waves.
Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts.
Shprits, Yuri Y; Drozdov, Alexander Y; Spasojevic, Maria; Kellerman, Adam C; Usanova, Maria E; Engebretson, Mark J; Agapitov, Oleksiy V; Zhelavskaya, Irina S; Raita, Tero J; Spence, Harlan E; Baker, Daniel N; Zhu, Hui; Aseev, Nikita A
2016-09-28
The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes.
Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts
Shprits, Yuri Y.; Drozdov, Alexander Y.; Spasojevic, Maria; Kellerman, Adam C.; Usanova, Maria E.; Engebretson, Mark J.; Agapitov, Oleksiy V.; Zhelavskaya, Irina S.; Raita, Tero J.; Spence, Harlan E.; Baker, Daniel N.; Zhu, Hui; Aseev, Nikita A.
2016-01-01
The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes. PMID:27678050
Li, Erzhong; Austin, Max E.; White, R. B.; ...
2017-08-21
Intense bursts of electron cyclotron emission (ECE) triggered by magnetohydrodynamic (MHD) instabilities such as edge localized modes (ELMs) have been observed on many tokamaks. On the DIII-D tokamak, it is found that an MHD mode is observed to trigger the ECE bursts in the low collisionality regime at the plasma edge. ORBIT-code simulations have shown that energetic electrons build up due to an interaction between barely trapped electrons with an MHD mode (f = 50 kHz for current case). The energetic tail of the electron distribution function develops a bump within several microseconds for this collisionless case. This behavior dependsmore » on the competition between the perturbing MHD mode and slowing down and pitch angle scattering due to collisions. As a result, for typical DIII-D parameters, the calculated ECE radiation transport predicted by ORBIT is in excellent agreement with ECE measurements, clarifying the electron dynamics of the ECE bursts for the first time.« less
Electromagnetic cyclotron-loss-cone instability associated with weakly relativistic electrons
NASA Technical Reports Server (NTRS)
Wong, H. K.; Wu, C. S.; Ke, F. J.; Schneider, R. S.; Ziebell, L. F.
1982-01-01
The amplification of fast extraordinary mode waves at frequencies very close to the electron cyclotron frequency, due to the presence of a population of energetic electrons with a loss-cone type distribution, is studied. Low-energy background electrons are included in the analysis. Two types of loss-cone distribution functions are considered, and it is found that the maximum growth rates for both distribution functions are of the same order of magnitude. When the thermal effects of the energetic electrons are included in the dispersion equation, the real frequencies of the waves are lower than those obtained by using the cold plasma approximation. This effect tends to enhance the growth rate. An idealized case including a parallel electric field such that the distribution function of the trapped energetic electrons is modified is also considered. It is assumed that the parallel electric field can remove the low-energy background electrons away from the source region of radiation. Both these effects increase the growth rate.
NASA Astrophysics Data System (ADS)
Thumm, M.
1997-02-01
Gyrotron oscillators are mainly used as high power mm-wave sources for start-up, electron cyclotron heating (ECH) and diagnostics of magnetically confined plasmas for controlled thermonuclear fusion research. 140 GHz (110 GHz) gyrotrons with output power Pout = 0.55 MW (0.93 MW), pulse length τ = 3.0 s (2.0 s) and efficiency η = 40% (38%) are commercially available. Total efficiencies around 50% have been achieved using single-stage depressed collectors. Diagnostic gyrotrons deliver Pout = 40 kW with τ = 40 μs at frequencies up to 650 GHz ( η≥4%). Recently, gyrotron oscillators have also been successfully used in materials processing, for example sintering of high performance, structural and functional ceramics. Such technological applications require gyrotrons with f≥24 GHz, Pout = 10-100 kW, CW, η≥30%. This paper reports on recent achievements in the development of very high power mm-wave gyrotron oscillators for long pulse or CW operation. In addition a short overview of the present development status of gyrotrons for technological applications, gyroklystron amplifiers, gyro-TWT amplifiers, cyclotron autoresonance masers (CARMs) and free electron masers (FEMs) is given. The most impressive FEM output parameters are: Pout = 2GW, τ = 20 ns, η = 13% at 140 GHz (LLNL) and Pout = 15 kW, τ = 20 μs, η = 5% in the range from 120 to 900 GHz (UCSB). In gyro-devices, magnetron injection guns (MIGs) operating in the temperature limited current regime have thus far been used most successfully. Diode guns as well as triode guns with a modulating anode are employed. Tests of a MIG operated under space-charge limited conditions have been not very successful. Electrostatic CW FEMs are driven by thermionic Pierce guns whereas pulsed high power devices employ many types of accelerators as drivers for example pulse-line accelerators, microtrons and induction or rf linacs, using field and photo emission cathodes.
NASA Astrophysics Data System (ADS)
Schächter, L.; Stiebing, K. E.; Dobrescu, S.; Badescu-Singureanu, Al. I.; Schmidt, L.; Hohn, O.; Runkel, S.
1999-02-01
A new approach of the possibility to significantly increase the high charge state ion beams delivered by electron cyclotron resonance (ECR) ion sources by using metal-dielectric (MD) structures characterized by high secondary electron emission properties is presented. The intensities of argon ion beams extracted from the 14 GHz electron cyclotron resonance ion source of the Institut für Kernphysik (IKF) der Johann Wolfgang Goethe-Universität in Frankfurt/Main were measured when a 26 mm diam disk of a specially treated MD structure (Al-Al2O3) was introduced axially close to the ECR plasma. The Ar beam intensities and charge-state distributions obtained with this disk are compared to measurements with disks of iron and pure aluminum at the same position relative to the plasma. All measurements were performed with the disk at the plasma chamber potential. The results with the MD structure show a net shift of the beam intensity towards higher charge states as compared with the other disk materials. Enhancement factors of the beam current of up to 10 (for Ar12+) when using a MD disk compared to the output when using an aluminum disk and up to 40 (for Ar11+) when using an iron disk were measured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisotto, I., E-mail: isabelle.bisotto@lncmi.cnrs.fr; Portal, J.-C.; Institut National des Sciences Appliquées, 31077 Toulouse Cedex 4
2015-11-15
We present new photovoltage oscillation in a pure two dimensional electron gas (2DEG) and in the presence of circular or semicircular antidot lattices. Results were interpreted as EMPs-like photovoltage oscillations. We observed and explained the photovoltage oscillation amplitude enhancement in the presence of an antidot lattice with regard to the pure 2DEG. The microwave frequency excitation range is 139 – 350 GHz. The cyclotron and magnetoplasmon resonances take place in the magnetic field range 0.4 – 0.8 T. This original experimental condition allows edge magnetoplasmons EMPs interference like observation at low magnetic field, typically B < B{sub c} where B{submore » c} is the magnetic field at which the cyclotron resonance takes place. The different oscillation periods observed and their microwave frequency dependence were discussed. For 139 and 158 GHz microwave excitation frequencies, a unique EMPs-like interference period was found in the presence of antidots whereas two periods were extracted for 295 or 350 GHz. An explanation of this effect is given taking account of strong electron interaction with antidot at low magnetic field. Indeed, electrons involved in EMPs like phenomenon interact strongly with antidots when electron cyclotron orbits are larger than or comparable to the antidot diameter.« less
Particle propagation effects on wave growth in a solar flux tube
NASA Astrophysics Data System (ADS)
White, S. M.; Melrose, D. B.; Dulk, G. A.
1986-09-01
The evolution of a distribution of electrons is followed after they are injected impulsively at the top of a coronal magnetic loop, with the objective of studying the plasma instabilities which result. At early times the downgoing electrons have beamlike distributions and amplify electrostatic waves via the Cerenkov resonance; the anomalous Doppler resonance is found to be less important. Slightly later, while the electrons are still predominantly downgoing, they are unstable to cyclotron maser generation of z-mode waves with omega(p) much less than Omega, or to second harmonic x-mode waves. The energetics of these instabilities, including saturation effects and heating of the ambient plasma, are discussed. It is suggested that coalescence of two z-mode waves generated by cyclotron maser emission of the downgoing electrons may produce the observed microwave spike bursts.
NASA Astrophysics Data System (ADS)
Creely, A. J.; Freethy, S. J.; Burke, W. M.; Conway, G. D.; Leccacorvi, R.; Parkin, W. C.; Terry, D. R.; White, A. E.
2018-05-01
A newly upgraded correlation electron cyclotron emission (CECE) diagnostic has been installed on the ASDEX Upgrade tokamak and has begun to perform experimental measurements of electron temperature fluctuations. CECE diagnostics measure small amplitude electron temperature fluctuations by correlating closely spaced heterodyne radiometer channels. This upgrade expanded the system from six channels to thirty, allowing simultaneous measurement of fluctuation level radial profiles without repeat discharges, as well as opening up the possibility of measuring radial turbulent correlation lengths. Newly refined statistical techniques have been developed in order to accurately analyze the fluctuation data collected from the CECE system. This paper presents the hardware upgrades for this system and the analysis techniques used to interpret the raw data, as well as measurements of fluctuation spectra and fluctuation level radial profiles.
Survey of heating and current drive for K-DEMO
Mikkelsen, D. R.; Kessel, C. E.; Poli, F. M.; ...
2018-01-22
Here, we present calculations of heating and current drive by neutral injection and by electromagnetic waves in the ion cyclotron, helicon, lower hybrid, and electron cyclotron frequency ranges for the steady state burn conditions in a K-DEMO configuration withmore » $$I_{\\rm p}=12.3$$ MA, a = 2.1 m, $$R_{\\rm o}=6.8$$ m, $$B_{\\rm o}=7.4$$ T, $$ \
Survey of heating and current drive for K-DEMO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikkelsen, D. R.; Kessel, C. E.; Poli, F. M.
Here, we present calculations of heating and current drive by neutral injection and by electromagnetic waves in the ion cyclotron, helicon, lower hybrid, and electron cyclotron frequency ranges for the steady state burn conditions in a K-DEMO configuration withmore » $$I_{\\rm p}=12.3$$ MA, a = 2.1 m, $$R_{\\rm o}=6.8$$ m, $$B_{\\rm o}=7.4$$ T, $$ \
Acceleration of Ions and Electrons by Wave-Particle Interactions
1984-03-31
of cyclotron radiation from high-temperature plasmas including collective effects have been derived and discussed in two recent articles by Freund...however, will be presented in separate articles . In summary, the spontaneous cyclotron emissivity has been calcu- lated using the complete...diation from high-temperature plasmas including collective effects are derived and discussed in two recent articles by Freund and Wu’ and Audenaerde
Electromagnetic Quasi-periodic Whistler-Mode Bursts during Ring Grazing Passes
NASA Astrophysics Data System (ADS)
Farrell, W. M.; Morooka, M. W.; Wahlund, J. E.; Kurth, W. S.; Hospodarsky, G.; MacDowall, R. J.; Mitchell, D. G.; Gurnett, D. A.; Krupp, N.; Roussos, E.; Kollmann, P.
2017-12-01
In the 2016-2017 time-frame, the Cassini spacecraft made a set of over 20 nearly identical Saturn orbital passes with closest approach at the outer edge of the F-ring. These passes are now called `Ring Grazing' orbits. During nearly every one of these orbits, quasi-periodic (QP) whistler-mode bursts were detected at mid-southern latitudes between -57o and -22o. During these ring grazing orbits, the spacecraft had an extended period of time where the trajectory 'hugged' the L 13 field line along its southern path when these bursts were detected. As such, we conclude that the 1 hr periodicity is not a spatial effect but a true temporal effect. In about 2/3 of the cases, there was wave activity observed above the local electron cyclotron frequency. We note that there have been previous reports of these QP whistler-mode burst in direct correlation with energetic auroral electron bursts, and we now also present the use of relativist electron cyclotron resonance theory to examine the wave-electron interactions. While in the past these waves have been considered a form of electrostatic auroral hiss, we suggest herein that the high energy of the electrons is more strongly coupled to the electromagnetic portion of the whistler-mode branch. In this presentation, we will provide more information on the wave character, and suggest the non-unique possibility that mode coupling is involved in creating emissions above the electron cyclotron frequency.
Cyclotron maser and plasma wave growth in magnetic loops
NASA Technical Reports Server (NTRS)
Hamilton, Russell J.; Petrosian, Vahe
1990-01-01
Cyclotron maser and plasma wave growth which results from electrons accelerated in magnetic loops are studied. The evolution of the accelerated electron distribution is determined by solving the kinetic equation including Coulomb collisions and magnetic convergence. It is found that for modest values of the column depth of the loop the growth rates of instabilities are significantly reduced and that the reduction is much larger for the cyclotron modes than for the plasma wave modes. The large decrease in the growth rate with column depth suggests that solar coronal densities must be much lower than commonly accepted in order for the cyclotron maser to operate. The density depletion has to be similar to that which occurs during auroral kilometric radiation events in the magnetosphere. The resulting distributions are much more complicated than the idealized distributions used in many theoretical studies, but the fastest growing mode can still simply be determined by the ratio of electron plasma to gyrofrequency, U=omega(sub p)/Omega(sub e). However, the dominant modes are different than for the idealized situations with growth of the z-mode largest for U approximately less than 0.5, and second harmonic x-mode (s=2) or fundamental o-mode (s=1) the dominant modes for 0.5 approximately less than U approximately less than 1. The electron distributions typically contain more than one inverted feature which could give rise to wave growth. It is shown that this can result in simultaneous amplification of more than one mode with each mode driven by a different feature and can be observed, for example, by differences in the rise times of the right and left circularly polarized components of the associated spike bursts.
Optical spin orientation of minority holes in a modulation-doped GaAs/(Ga,Al)As quantum well
NASA Astrophysics Data System (ADS)
Koudinov, A. V.; Dzhioev, R. I.; Korenev, V. L.; Sapega, V. F.; Kusrayev, Yu. G.
2016-04-01
The optical spin orientation effect in a GaAs/(Ga,Al)As quantum well containing a high-mobility two-dimensional electron gas was found to be due to spin-polarized minority carriers, the holes. The observed oscillations of both the intensity and polarization of the photoluminescence in a magnetic field are well described in a model whose main elements are resonant absorption of the exciting light by the Landau levels and mixing of the heavy- and light-hole subbands. After subtraction of these effects, the observed influence of magnetic fields on the spin polarization can be well interpreted by a standard approach of the optical orientation method. The spin relaxation of holes is controlled by the Dyakonov-Perel' mechanism. Deceleration of the spin relaxation by the magnetic field occurs through the Ivchenko mechanism—due to the cyclotron motion of holes. Mobility of holes was found to be two orders of magnitude smaller than that of electrons, being determined by the scattering of holes by the electron gas.
Cyclotron Lines in Accreting Neutron Star Spectra
NASA Astrophysics Data System (ADS)
Wilms, Jörn; Schönherr, Gabriele; Schmid, Julia; Dauser, Thomas; Kreykenbohm, Ingo
2009-05-01
Cyclotron lines are formed through transitions of electrons between discrete Landau levels in the accretion columns of accreting neutron stars with strong (1012 G) magnetic fields. We summarize recent results on the formation of the spectral continuum of such systems, describe recent advances in the modeling of the lines based on a modification of the commonly used Monte Carlo approach, and discuss new results on the dependence of the measured cyclotron line energy from the luminosity of transient neutron star systems. Finally, we show that Simbol-X will be ideally suited to build and improve the observational database of accreting and strongly magnetized neutron stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hellinger, Petr; Trávníček, Pavel M., E-mail: petr.hellinger@asu.cas.cz
Using a one-dimensional hybrid expanding box model, we investigate properties of the solar wind in the outer heliosphere. We assume a proton–electron plasma with a strictly transverse ambient magnetic field and, aside from the expansion, we take into account the influence of a continuous injection of cold pick-up protons through the charge-exchange process between the solar wind protons and hydrogen of interstellar origin. The injected cold pick-up protons form a ring distribution function, which rapidly becomes unstable, and generate Alfvén cyclotron waves. The Alfvén cyclotron waves scatter pick-up protons to a spherical shell distribution function that thickens over that timemore » owing to the expansion-driven cooling. The Alfvén cyclotron waves heat solar wind protons in the perpendicular direction (with respect to the ambient magnetic field) through cyclotron resonance. At later times, the Alfvén cyclotron waves become parametrically unstable and the generated ion-acoustic waves heat protons in the parallel direction through Landau resonance. The resulting heating of the solar wind protons is efficient on the expansion timescale.« less
Electron temperature response to ECRH on FTU tokamak in transient conditions.
NASA Astrophysics Data System (ADS)
Jacchia, A.; Bruschi, A.; Cirant, S.; Granucci, G.; Sozzi, C.; de Luca, F.; Amadeo, P.; Bracco, G.; Tudisco, O.
2001-10-01
Steady-state electron heat transport analysis of FTU high density plasmas under Electron Cyclotron Heating (ECRH) shows "stiff" electron temperature profiles [1,2,3]. Plasma response to off-axis EC heating, in fact, exibits a lower limit to electron temperature gradient length, Lc , below which electron thermal conductivity switches to higher values. Stiffness, however, is attenuated in the plasma core of saw-tooth free discharges with flat-hollow temperature profile and during current ramp-up [3,4,5], in which cases the temperature gradient length can be brought to very low values by means of on-axis ECH. Steady and current ramp-up discharges probed by steady and modulated ECH are analyzed in terms of stiffnes. Critical gradient length dependence on local features of computed current density profile is discussed. [1] Sozzi, C. et al., Paper EXP5/13, Plasma Phys. Contr. Fus. Res., Proc.18th IAEA Conf., Sorrento, 2000. [2] Jacchia, A. et al. Topical Conference on Radio Frequency Power in Plasmas, Oxnard, USA, (2001). [3] Cirant, S. et al. Topical Conference on Radio Frequency Power in Plasmas, Oxnard, USA, (2001). [4] Sozzi, C. et al., EPS, Madeira 2001. [5] Bracco, G. et al.,Plasma Phys. Contr. Fus. Res., Proc.18th IAEA Conf., Sorrento, 2000.
Transient dynamics of secondary radiation from an HF pumped magnetized space plasma
NASA Astrophysics Data System (ADS)
Norin, L.; Grach, S. M.; Thidé, B.; Sergeev, E. N.; Leyser, T. B.
2007-09-01
In order to systematically analyze the transient wave and radiation processes that are excited when a high-frequency (HF) radio wave is injected into a magnetized space plasma, we have measured the secondary radiation, or stimulated electromagnetic emission (SEE), from the ionosphere, preconditioned such that geomagnetic field-aligned plasma irregularities are already present. The transient dynamics experiments were made using a duty cycle of the HF radio wave of 200 ms (180 ms on and 20 ms off) and 100 ms (80 ms on and 20 ms off) for various frequencies near the fifth harmonic of the local ionospheric electron cyclotron frequency. Within the first 10 ms after the radio pulse turn-on, frequency downshifted structures of the SEE exhibit an overshoot with a maximum at 3 ms < t < 8 ms, whereas the upshifted spectral components do not exhibit this feature. The relative magnitude of the overshoot is strongly dependent on the frequency offset of the pump from the harmonic of the electron cyclotron frequency. A transient blue-shifted frequency component is identified. This component is upshifted from the pump by 14 kHz < Δ f < 55 kHz and exists only within the first 10 ms after the radio pulse turn-on. On a longer time scale we analyze the amplitude modulation, or ``ringing,'' of the reflected radio wave, (also known as ``quasi-periodic oscillations'' or ``spikes''). The ringing has a frequency of the order 15-20 Hz and we show that this phenomenon is also present in the SEE sidebands and is synchronized with the ringing of the reflected HF wave itself.
The phase-space dependence of fast-ion interaction with tearing modes
Heidbrink, William W.; Bardoczi, Laszlo; Collins, Cami S.; ...
2018-03-19
Modulation of various neutral beam sources probes the interaction of fast ions with tearing modes (TM) in the DIII-D tokamak. As measured by electron cyclotron emission, the (m,n) = (2,1) tearing modes have an island width of ~8 cm and change phase 180 at the q = 2 surface. (Here, m is the poloidal mode number and n is the toroidal mode number.) Deuterium neutral beam injection by six sources with differing injection geometries produces the fast ions. To study the interaction in different parts of phase space, on successive discharges, one of the six sources is modulated at 20more » Hz to populate different fast-ion orbits. The modulation only changes the island width by a few millimeters, implying that any fast-ion effect on mode stability is below detection limits. When compared to the expected signals in the absence of TM-induced transport, both the average and modulated neutron signals deviate, implying that fast-ion transport occurs in much of phase space. Fast-ion D-α (FIDA) measurements detect reductions in signal at wavelengths that are sensitive to counter-passing ions. Neutral particle analyzer data imply poor confinement of trapped fast ions. Lastly, calculations of the expected fast-ion transport that use measured TM properties successfully reproduce the data.« less
The phase-space dependence of fast-ion interaction with tearing modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidbrink, William W.; Bardoczi, Laszlo; Collins, Cami S.
Modulation of various neutral beam sources probes the interaction of fast ions with tearing modes (TM) in the DIII-D tokamak. As measured by electron cyclotron emission, the (m,n) = (2,1) tearing modes have an island width of ~8 cm and change phase 180 at the q = 2 surface. (Here, m is the poloidal mode number and n is the toroidal mode number.) Deuterium neutral beam injection by six sources with differing injection geometries produces the fast ions. To study the interaction in different parts of phase space, on successive discharges, one of the six sources is modulated at 20more » Hz to populate different fast-ion orbits. The modulation only changes the island width by a few millimeters, implying that any fast-ion effect on mode stability is below detection limits. When compared to the expected signals in the absence of TM-induced transport, both the average and modulated neutron signals deviate, implying that fast-ion transport occurs in much of phase space. Fast-ion D-α (FIDA) measurements detect reductions in signal at wavelengths that are sensitive to counter-passing ions. Neutral particle analyzer data imply poor confinement of trapped fast ions. Lastly, calculations of the expected fast-ion transport that use measured TM properties successfully reproduce the data.« less
NASA Astrophysics Data System (ADS)
Gabrielse, Gerald
2011-05-01
The electron magnetic moment in Bohr magnetons has been measured to a precision of 3 parts in 1013. This measurement, with quantum electrodynamics (AED) theory, provides the most precise value of the fine structure constant. This measurement, with a value of the fine structure from other measurements, also tests QED and sets a limit on the internal structure of the electron. A one-electron quantum cyclotron is at the heart of the measurement -- an electron suspended in a magnetic field and cooled enough that its lowest cyclotron and spin quantum states can be deduced with quantum nondemolition (QND) measurements. A cylindrical Penning trap cavity inhibits spontaneous emission and feedback methods make the electron excite and sustain its own motion for detection. A new apparatus is being commissioned in pursuit of more precise measurements. Adapted methods are promising for observing a proton spin flip, which should make it possible to compare the antiproton and proton magnetic moments a million times more accurately than is currently possible.
Polfer, Nicolas C; Haselmann, Kim F; Zubarev, Roman A; Langridge-Smith, Pat R R
2002-01-01
Electron capture dissociation (ECD) of polypeptides has been demonstrated using a commercially available 3 Tesla Fourier transform ion cyclotron resonance (FTICR) instrument. A conventional rhenium filament, designed for high-energy electron impact ionisation, was used to effect ECD of substance P, bee venom melittin and bovine insulin, oxidised B chain. A retarding field analysis of the effective electron kinetic energy distribution entering the ICR cell suggests that one of the most important parameters governing ECD for this particular instrument is the need to employ low trapping plate voltages. This is shown to maximise the abundance of low-energy electrons. The demonstration of ECD at this relatively low magnetic field strength could offer the prospect of more routine ECD analysis for the wider research community, given the reduced cost of such magnets and (at least theoretically) the greater ease of electron/ion cloud overlap at lower field. Copyright 2002 John Wiley & Sons, Ltd.
Development of DRAGON electron cyclotron resonance ion source at Institute of Modern Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, W.; Lin, S. H.; Graduate University of Chinese Academy of Sciences, Beijing 100049
2012-02-15
A new room temperature electron cyclotron resonance (ECR) ion source, DRAGON, is under construction at IMP. DRAGON is designed to operate at microwaves of frequencies of 14.5-18 GHz. Its axial solenoid coils are cooled with evaporative medium to provide an axial magnetic mirror field of 2.5 T at the injection and 1.4 T at the extraction, respectively. In comparison to other conventional room temperature ECR ion sources, DRAGON has so far the largest bore plasma chamber of inner diameter of 126 mm with maximum radial fields of 1.4-1.5 T produced by a non-Halbach permanent sextupole magnet.
Electron cyclotron resonance ion sources with arc-shaped coils.
Suominen, P; Wenander, F
2008-02-01
The minimum-B magnetic field structure of electron cyclotron resonance ion sources (ECRIS) has conventionally been formed with a combination of solenoids and a hexapole magnet. However, minimum-B structure can also be formed with arc-shaped coils. Recently it was shown that multiply charged heavy-ions can be produced with an ECRIS based on such a structure. In the future, the ARC-ECRIS magnetic field structure can be an interesting option for radioactive ion-beam sources and charge-breeders as well as for high performance ECRIS allowing for 100 GHz plasma heating. This paper presents some design aspects of the ARC-ECRIS.
NASA Astrophysics Data System (ADS)
Fan, Z. Y.; Newman, N.
1998-07-01
The atomic nitrogen flux and impacting ion kinetic energy are two important parameters which influence the quality of deposited nitride films using reactive growth. In this letter, a method is described to control the flux and kinetic energy of atomic and molecular nitrogen ions using an electron cyclotron resonance plasma with N2/Ar and N2/Ne gas mixtures. The results clearly show that the addition of neon to nitrogen plasma can remarkably enhance the production rate of atomic nitrogen due to Penning ionization involving the metastable state of Ne. In contrast, the addition of argon significantly decreases the rate.
NASA Astrophysics Data System (ADS)
Moriyama, S.; Kajiwara, K.; Takahashi, K.; Kasugai, A.; Seki, M.; Ikeda, Y.; Fujii, T.
2005-11-01
A compact antenna system was designed and fabricated to enable millimeter-wave beam scanning in the toroidal and poloidal directions of the JT-60U tokamak for electron cyclotron heating (ECH) and electron cyclotron current drive (ECCD) experiments. The antenna consists of a fast movable flat mirror mounted on the tokamak vacuum vessel and a rotary focusing mirror attached at the end of the waveguide that is supported from outside the vacuum vessel. This separate support concept enables a compact structure inside a shallow port (0.68×0.54×0.2m) that is shared with a subport for an independent diagnostic system. During a plasma shot, the flat mirror is driven by a servomotor with a 3-m-long drive shaft to reduce the influence of the high magnetic field on the motor. The focusing mirror is rotated by a simple mechanism utilizing a push rod and an air cylinder. The antenna has been operated reliably for 3 years after a small improvement to the rotary drive mechanism. It has made significant contributions to ECH and ECCD experiments, especially the current profile control in JT-60U.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Girka, I. O., E-mail: igorgirka@karazin.ua; Girka, V. O.; Sydora, R. D.
2016-06-15
The influence of non-monochromaticity of an external alternating electric field on excitation of TM eigenmodes at harmonics of the electron cyclotron frequency is considered here. These TM-modes propagate along the plasma interface in a metal waveguide. An external static constant magnetic field is oriented perpendicularly to the plasma interface. The problem is solved theoretically using the kinetic Vlasov-Boltzmann equation for description of plasma particles motion and the Maxwell equations for description of the electromagnetic mode fields. The external alternating electric field is supposed to be a superposition of two waves, whose amplitudes are different and their frequencies correlate as 2:1.more » An infinite set of equations for electric field harmonics of these modes is derived with the aid of nonlinear boundary conditions. This set is solved using the wave packet approach consisting of the main harmonic frequency and two nearest satellite temporal harmonics. Analytical studies of the obtained set of equations allow one to find two different regimes of parametric instability, namely, enhancement and suppression of the instability. Numerical analysis of the instability is carried out for the three first electron cyclotron harmonics.« less
Effect of ion compensation of the beam space charge on gyrotron operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fokin, A. P.; Glyavin, M. Yu.; Nusinovich, G. S.
In gyrotrons, the coherent radiation of electromagnetic waves takes place when the cyclotron resonance condition between the wave frequency and the electron cyclotron frequency or its harmonic holds. The voltage depression caused by the beam space charge field changes the relativistic cyclotron frequency and, hence, can play an important role in the beam-wave interaction process. In long pulse and continuous-wave regimes, the beam space charge field can be partially compensated by the ions, which appear due to the beam impact ionization of neutral molecules of residual gases in the interaction space. In the present paper, the role of this ionmore » compensation of the beam space charge on the interaction efficiency is analyzed. We also analyze the effect of the electron velocity spread on the limiting currents and discuss some effects restricting the ion-to-beam electron density ratio in the saturation stage. It is shown that the effect of the ion compensation on the voltage depression caused by the beam space charge field can cause significant changes in the efficiency of gyrotron operation and, in some cases, even result in the break of oscillations.« less
NASA Astrophysics Data System (ADS)
Wei, Wei; Bo-Jiang, Ding; Y, Peysson; J, Decker; Miao-Hui, Li; Xin-Jun, Zhang; Xiao-Jie, Wang; Lei, Zhang
2016-01-01
The optimized synergy conditions between electron cyclotron current drive (ECCD) and lower hybrid current drive (LHCD) with normal parameters of the EAST tokamak are studied by using the C3PO/LUKE code based on the understanding of the synergy mechanisms so as to obtain a higher synergistic current and provide theoretical reference for the synergistic effect in the EAST experiment. The dependences of the synergistic effect on the parameters of two waves (lower hybrid wave (LHW) and electron cyclotron wave (ECW)), including the radial position of the power deposition, the power value of the LH and EC waves, and the parallel refractive indices of the LHW (N∥) are presented and discussed. Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant Nos. 2011GB102000, 2012GB103000, and 2013GB106001), the National Natural Science Foundation of China (Grant Nos. 11175206 and 11305211), the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics (Grant No. 11261140328), and the Fundamental Research Funds for the Central Universities of China (Grant No. JZ2015HGBZ0472).
Extension of electron cyclotron heating at ASDEX Upgrade with respect to high density operation
NASA Astrophysics Data System (ADS)
Schubert, Martin; Stober, Jörg; Herrmann, Albrecht; Kasparek, Walter; Leuterer, Fritz; Monaco, Francesco; Petzold, Bernhard; Plaum, Burkhard; Vorbrugg, Stefan; Wagner, Dietmar; Zohm, Hartmut
2017-10-01
The ASDEX Upgrade electron cyclotron resonance heating operates at 105 GHz and 140 GHz with flexible launching geometry and polarization. In 2016 four Gyrotrons with 10 sec pulse length and output power close to 1 MW per unit were available. The system is presently being extended to eight similar units in total. High heating power and high plasma density operation will be a part of the future ASDEX Upgrade experiment program. For the electron cyclotron resonance heating, an O-2 mode scheme is proposed, which is compatible with the expected high plasma densities. It may, however, suffer from incomplete single-pass absorption. The situation can be improved significantly by installing holographic mirrors on the inner column, which allow for a second pass of the unabsorbed fraction of the millimetre wave beam. Since the beam path in the plasma is subject to refraction, the beam position on the holographic mirror has to be controlled. Thermocouples built into the mirror surface are used for this purpose. As a protective measure, the tiles of the heat shield on the inner column were modified in order to increase the shielding against unabsorbed millimetre wave power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguiam, D. E., E-mail: daguiam@ipfn.tecnico.ulisboa.pt; Silva, A.; Carvalho, P. J.
A new multichannel frequency modulated continuous-wave reflectometry diagnostic has been successfully installed and commissioned on ASDEX Upgrade to measure the plasma edge electron density profile evolution in front of the Ion Cyclotron Range of Frequencies (ICRF) antenna. The design of the new three-strap ICRF antenna integrates ten pairs (sending and receiving) of microwave reflectometry antennas. The multichannel reflectometer can use three of these to measure the edge electron density profiles up to 2 × 10{sup 19} m{sup −3}, at different poloidal locations, allowing the direct study of the local plasma layers in front of the ICRF antenna. ICRF power coupling,more » operational effects, and poloidal variations of the plasma density profile can be consistently studied for the first time. In this work the diagnostic hardware architecture is described and the obtained density profile measurements were used to track outer radial plasma position and plasma shape.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yorita, T., E-mail: yorita@rcnp.osaka-u.ac.jp; Hatanaka, K.; Fukuda, M.
2014-02-15
An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] andmore » the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.« less
Studies of electromagnetic ion cyclotron waves using AMPTE/CCE and Dynamics Explorer
NASA Technical Reports Server (NTRS)
Erlandson, Robert E.
1993-01-01
The principal activity during the past six months has involved the analysis of ion cyclotron waves recorded from DE-2 using the magnetic field experiment and electric field experiment. The results of this study have been published in the Geophysical Research Letters (GRL). The primary finding of this paper is that ion cyclotron waves were found to heat electrons, as observed in the DE-2 Langmuir probe data, through a Landau damping process. A second activity, which was started during the last six months, involves the study of large amplitude approximately one Hz electric and magnetic field oscillations recorded in the nightside auroral zone at substorm onset. Work is under way to determine the properties of these waves and investigate any association these waves may have with the substorm initiation process. A third activity under way involves a comprehensive study of ion cyclotron waves recorded at ionospheric altitudes by DE-2. This study will be an extension of the work reported in the GRL paper and will involve a larger sampling of wave events. This paper will focus on wave properties at ionospheric altitudes. A fourth activity involves a more in-depth analysis of the acceleration mechanisms and the resulting electron distributions based on the observations presented in the GRL paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierret, C.; Maunoury, L.; Biri, S.
The goal of this article is to present simulations on the extraction from an electron cyclotron resonance ion source (ECRIS). The aim of this work is to find out an extraction system, which allows one to reduce the emittances and to increase the current of the extracted ion beam at the focal point of the analyzing dipole. But first, we should locate the correct software which is able to reproduce the specific physics of an ion beam. To perform the simulations, the following softwares have been tested: SIMION 3D, AXCEL, CPO 3D, and especially, for the magnetic field calculation, MATHEMATICAmore » coupled with the RADIA module. Emittance calculations have been done with two types of ECRIS: one with a hexapole and one without a hexapole, and the difference will be discussed.« less
Transport hysteresis and hydrogen isotope effect on confinement
NASA Astrophysics Data System (ADS)
Itoh, S.-I.; Itoh, K.
2018-03-01
A Gedankenexperiment on hydrogen isotope effect is developed, using the transport model with transport hysteresis. The transport model with hysteresis is applied to case where the modulational electron cyclotron heating is imposed near the mid-radius of the toroidal plasmas. The perturbation propagates either outward or inward, being associated with the clockwise (CW) hysteresis or counter-clockwise (CCW) hysteresis, respectively. The hydrogen isotope effects on the CW and CCW hysteresis are investigated. The local component of turbulence-driven transport is assumed to be the gyro-Bohm diffusion. While the effect of hydrogen mass number is screened in the response of CW hysteresis, it is amplified in CCW hysteresis. This result motivates the experimental studies to compare CW and CCW cases in order to obtain further insight into the physics of hydrogen isotope effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onai, M., E-mail: onai@ppl.appi.keio.ac.jp; Fujita, S.; Hatayama, A.
2016-02-15
Recently, a filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In this study, numerical modeling of the filament arc-discharge source plasma has been done with kinetic modeling of electrons in the ion source plasmas by the multi-cusp arc-discharge code and zero dimensional rate equations for hydrogen molecules and negative ions. In this paper, main focus is placed on the effects of the arc-discharge power on the electron energy distribution function and the resultant H{sup −} production. The modelling results reasonably explains the dependence of the H{sup −} extraction current on the arc-discharge powermore » in the experiments.« less
Schachter, L; Dobrescu, S; Stiebing, K E; Thuillier, T; Lamy, T
2008-02-01
Charge diffusion in an electron cyclotron resonance ion source (ECRIS) discharge is usually characterized by nonambipolar behavior. While the ions are transported to the radial walls, electrons are lost axially from the magnetic trap. Global neutrality is maintained via compensating currents in the conducting walls of the vacuum chamber. It is assumed that this behavior reduces the ion breeding times compared to a truly ambipolar plasma. We have carried out a series of dedicated experiments in which the ambipolarity of the ECRIS plasma was influenced by inserting special metal-dielectric structures (MD layers) into the plasma chamber of the Frankfurt 14 GHz ECRIS. The measurements demonstrate the positive influence on the source performance when the ECR plasma is changed toward more ambipolar behavior.
Propagation of low energy solar electrons
NASA Technical Reports Server (NTRS)
Anderson, K. A.; Mcfadden, J. P.; Lin, R. P.
1981-01-01
Two events are reported in which 2-10 keV electrons of solar energy have undergone significant adiabatic mirroring and pitch angle scattering in large scale magnetic structures in the interplanetary medium within a distance of about 0.5 AU from the earth. Electrons of 3 keV, typical of the energies measured, have a speed of about one-tenth of the speed of light, so that their travel time from the sun at 0 deg pitch angle would be about 100 minutes. Their cyclotron radius is about 20 km for a pitch angle of 30 deg, and a field of magnitude of 5 nT, and the cyclotron period is about 7.1 milliseconds. The electrons are scattered by spatial variations in the interplanetary magnetic field. When the spatial variations are convected past a stationary spacecraft by a 500 km/sec solar wind, they are seen as temporal fluctuations at a frequency of about 3 Hz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stranak, Vitezslav; University of South Bohemia, Institute of Physics and Biophysics, Branisovska 31, 370 05 Ceske Budejovice; Herrendorf, Ann-Pierra
2012-11-01
This paper reports on an investigation of the hybrid pulsed sputtering source based on the combination of electron cyclotron wave resonance (ECWR) inductively coupled plasma and high power impulse magnetron sputtering (HiPIMS) of a Ti target. The plasma source, operated in an Ar atmosphere at a very low pressure of 0.03 Pa, provides plasma where the major fraction of sputtered particles is ionized. It was found that ECWR assistance increases the electron temperature during the HiPIMS pulse. The discharge current and electron density can achieve their stable maximum 10 {mu}s after the onset of the HiPIMS pulse. Further, a highmore » concentration of double charged Ti{sup ++} with energies of up to 160 eV was detected. All of these facts were verified experimentally by time-resolved emission spectroscopy, retarding field analyzer measurement, Langmuir probe, and energy-resolved mass spectrometry.« less
Electron beam injection during active experiments. I - Electromagnetic wave emissions
NASA Technical Reports Server (NTRS)
Winglee, R. M.; Kellogg, P. J.
1990-01-01
The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.
On a nonlinear state of the electromagnetic ion/ion cyclotron instability
NASA Astrophysics Data System (ADS)
Cremer, M.; Scholer, M.
We have investigated the nonlinear properties of the electromagnetic ion/ion cyclotron instability (EMIIC) by means of hybrid simulations (macroparticle ions, massless electron fluid). The instability is driven by the relative (super-Alfvénic) streaming of two field-aligned ion beams in a low beta plasma (ion thermal pressure to magnetic field pressure) and may be of importance in the plasma sheet boundary layer. As shown in previously reported simulations the waves propagate obliquely to the magnetic field and heat the ions in the perpendicular direction as the relative beam velocity decreases. By running the simulation to large times it can be shown that the large temperature anisotropy leads to the ion cyclotron instability (IC) with parallel propagating Alfvén ion cyclotron waves. This is confirmed by numerically solving the electromagnetic dispersion relation. An application of this property to the plasma sheet boundary layer is discussed.
Piezo electric polaron and polaron pinning in n-CdS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagasaka, K.
1976-05-01
The cyclotron resonance of the piezoelectric polaron in n-CdS has been investigated using far infrared spectroscopy at magnetic fields to 90 kOe. Both lamellar grating and Michelson Fourier transform spectrometers were used with a 0.3/sup 0/K Ge bolometer to study the photon energy region from 10 cm/sup -1/ to 60 cm/sup -1/. The theory of Miyake predicts that the frequency of the polaron's cyclotron resonance is shifted from the bare hand electron resonance frequency according to the expression: ..delta omega../sup p//sub c// ..cap omega../sub c/ varies as H/sup -1/ T/sup /sup 2///sup 3//. The magnetic field dependence of the presentmore » cyclotron resonance confirms this expression; the cyclotron mass isiezoelectric polaron effects. The bare band mass in n-CdS has also been determined by taking into account the Froehlich polaron interaction in addition to the piezoelectric polaron effects. For H parallel to the c-axis this cyclotron mass is 0.155 +- 0.005 m. The polaron pinning due to the 43 cm/sup -1/ optically inactive phonon has been observed.« less
NASA Astrophysics Data System (ADS)
Sharapov, S. E.; Garcia-Munoz, M.; Van Zeeland, M. A.; Bobkov, B.; Classen, I. G. J.; Ferreira, J.; Figueiredo, A.; Fitzgerald, M.; Galdon-Quiroga, J.; Gallart, D.; Geiger, B.; Gonzalez-Martin, J.; Johnson, T.; Lauber, P.; Mantsinen, M.; Nabais, F.; Nikolaeva, V.; Rodriguez-Ramos, M.; Sanchis-Sanchez, L.; Schneider, P. A.; Snicker, A.; Vallejos, P.; the AUG Team; the EUROfusion MST1 Team
2018-01-01
Dedicated studies performed for toroidal Alfvén eigenmodes (TAEs) in ASDEX-Upgrade (AUG) discharges with monotonic q-profiles have shown that electron cyclotron resonance heating (ECRH) can make TAEs more unstable. In these AUG discharges, energetic ions driving TAEs were obtained by ion cyclotron resonance heating (ICRH). It was found that off-axis ECRH facilitated TAE instability, with TAEs appearing and disappearing on timescales of a few milliseconds when the ECRH power was switched on and off. On-axis ECRH had a much weaker effect on TAEs, and in AUG discharges performed with co- and counter-current electron cyclotron current drive (ECCD), the effects of ECCD were found to be similar to those of ECRH. Fast ion distributions produced by ICRH were computed with the PION and SELFO codes. A significant increase in T e caused by ECRH applied off-axis is found to increase the fast ion slowing-down time and fast ion pressure causing a significant increase in the TAE drive by ICRH-accelerated ions. TAE stability calculations show that the rise in T e causes also an increase in TAE radiative damping and thermal ion Landau damping, but to a lesser extent than the fast ion drive. As a result of the competition between larger drive and damping effects caused by ECRH, TAEs become more unstable. It is concluded, that although ECRH effects on AE stability in present-day experiments may be quite significant, they are determined by the changes in the plasma profiles and are not particularly ECRH specific.
MM-wave cyclotron auto-resonance maser for plasma heating
NASA Astrophysics Data System (ADS)
Ceccuzzi, S.; Dattoli, G.; Di Palma, E.; Doria, A.; Gallerano, G. P.; Giovenale, E.; Mirizzi, F.; Spassovsky, I.; Ravera, G. L.; Surrenti, V.; Tuccillo, A. A.
2014-02-01
Heating and Current Drive systems are of outstanding relevance in fusion plasmas, magnetically confined in tokamak devices, as they provide the tools to reach, sustain and control burning conditions. Heating systems based on the electron cyclotron resonance (ECRH) have been extensively exploited on past and present machines DEMO, and the future reactor will require high frequencies. Therefore, high power (≥1MW) RF sources with output frequency in the 200 - 300 GHz range would be necessary. A promising source is the so called Cyclotron Auto-Resonance Maser (CARM). Preliminary results of the conceptual design of a CARM device for plasma heating, carried out at ENEA-Frascati will be presented together with the planned R&D development.
NASA Astrophysics Data System (ADS)
Bartlett, D. V.; Costley, A. E.; Porte, L.; Prentice, R.; Salmon, N. A.; Sips, G.
1990-12-01
The potential of electron cyclotron emission and microwave reflectometry as techniques for measuring the electron temperature and density in the edge region of tokamak plasmas is investigated. Experiments to realize this potential on JET are described and some illustrative results presented.
Investigation on the electron flux to the wall in the VENUS ion source
NASA Astrophysics Data System (ADS)
Thuillier, T.; Angot, J.; Benitez, J. Y.; Hodgkinson, A.; Lyneis, C. M.; Todd, D. S.; Xie, D. Z.
2016-02-01
The long-term operation of high charge state electron cyclotron resonance ion sources fed with high microwave power has caused damage to the plasma chamber wall in several laboratories. Porosity, or a small hole, can be progressively created in the chamber wall which can destroy the plasma chamber over a few year time scale. A burnout of the VENUS plasma chamber is investigated in which the hole formation in relation to the local hot electron power density is studied. First, the results of a simple model assuming that hot electrons are fully magnetized and strictly following magnetic field lines are presented. The model qualitatively reproduces the experimental traces left by the plasma on the wall. However, it is too crude to reproduce the localized electron power density for creating a hole in the chamber wall. Second, the results of a Monte Carlo simulation, following a population of scattering hot electrons, indicate a localized high power deposited to the chamber wall consistent with the hole formation process. Finally, a hypervapotron cooling scheme is proposed to mitigate the hole formation in electron cyclotron resonance plasma chamber wall.
Cortázar, O D; Megía-Macías, A; Vizcaíno-de-Julián, A
2013-09-01
Time resolved electron temperature and density measurements during the decay stage in a hydrogen electron cyclotron resonance (ECR) plasma are presented for a resonance and off-resonance magnetic field configurations. The measurements are conducted on a ECR plasma generator excited at 2.45 GHz denominated test-bench for ion-sources plasma studies at ESS Bilbao. The plasma parameters evolution is studied by Langmuir probe diagnostic with synchronized sample technique developed for repetitive pulsed plasmas with a temporal resolution of 200 ns in typical decay processes of about 40 μs. An afterglow transient is clearly observed in the reflected microwave power signal from the plasma. Simultaneously, the electron temperature evolution shows rebounding peaks that may be related to the interplay between density drop and microwave coupling with deep impact on the Electron Energy Distribution Function. The correlation of such structures with the plasma absorbed power and the coupling quality is also reported.
Physics and Engineering Design of the ITER Electron Cyclotron Emission Diagnostic
NASA Astrophysics Data System (ADS)
Rowan, W. L.; Austin, M. E.; Houshmandyar, S.; Phillips, P. E.; Beno, J. H.; Ouroua, A.; Weeks, D. A.; Hubbard, A. E.; Stillerman, J. A.; Feder, R. E.; Khodak, A.; Taylor, G.; Pandya, H. K.; Danani, S.; Kumar, R.
2015-11-01
Electron temperature (Te) measurements and consequent electron thermal transport inferences will be critical to the non-active phases of ITER operation and will take on added importance during the alpha heating phase. Here, we describe our design for the diagnostic that will measure spatial and temporal profiles of Te using electron cyclotron emission (ECE). Other measurement capability includes high frequency instabilities (e.g. ELMs, NTMs, and TAEs). Since results from TFTR and JET suggest that Thomson Scattering and ECE differ at high Te due to driven non-Maxwellian distributions, non-thermal features of the ITER electron distribution must be documented. The ITER environment presents other challenges including space limitations, vacuum requirements, and very high-neutron-fluence. Plasma control in ITER will require real-time Te. The diagnosic design that evolved from these sometimes-conflicting needs and requirements will be described component by component with special emphasis on the integration to form a single effective diagnostic system. Supported by PPPL/US-DA via subcontract S013464-C to UT Austin.
The instrument for investigating magnetic fields of isochronous cyclotrons
NASA Astrophysics Data System (ADS)
Avreline, N. V.
2017-12-01
A new instrument was designed and implemented in order to increase the measurement accuracy of magnetic field maps for isochronous Cyclotrons manufactured by Advanced Cyclotron Systems Inc. This instrument uses the Hall Probe (HP) from New Zealand manufacturer Group3. The specific probe used is MPT-141 HP and can measure magnetic field in the range from 2G to 21kG. Use of a fast ADC NI9239 module and error reduction algorithms, based on a polynomial regression method, allowed to reduce the noise to 0.2G. The design of this instrument allows to measure high gradient magnetic fields, as the resolution of the HP arm angle is within 0.0005° and the radial position resolution is within 25μm. A set of National Instrument interfaces connected to a desktop computer through a network are used as base control and data acquisition systems.
Novikov, V V; Sheĭman, I M; Iablokova, E V; Fesenko, E E
2014-01-01
It is shown that an exposure of pupae of the mealworm beetle Tenebrio molitor to the combined static (42 μT) and very weak alternating (250 nT) magnetic fields exerts different influence, depending on the frequency of the alternating magnetic field, on duration of metamorphosis processes in these insects. For instance, an exposure of pupae to weak combined magnetic fields, adjusted to the frequency of ion cyclotron resonance for glutaminic acid (4,4 Hz), stimulates metamorphosis process--a transitional stage from pupae to imago lasts shorter. An inhibiting effect was observed when adjusted to the frequency of ion cyclotron resonance for Ca2 (32,2 Hz). At some frequencies this effect is not seen. For instance, an exposure at a frequency of ion cyclotron resonance for K+ (16,5 Hz) exerts no noticeable effect on the duration of the pupal metamorphosis stage.
Uchida, T; Rácz, R; Muramatsu, M; Kato, Y; Kitagawa, A; Biri, S; Yoshida, Y
2016-02-01
We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, and fullerene-chlorine-iron.
Hong, In-Seok; Kim, Yong-Hwan; Choi, Bong-Hyuk; Choi, Suk-Jin; Park, Bum-Sik; Jin, Hyun-Chang; Kim, Hye-Jin; Heo, Jeong-Il; Kim, Deok-Min; Jang, Ji-Ho
2016-02-01
The injector for the main driver linear accelerator of the Rare Isotope Science Project in Korea, has been developed to allow heavy ions up to uranium to be delivered to the inflight fragmentation system. The critical components of the injector are the superconducting electron cyclotron resonance (ECR) ion sources, the radio frequency quadrupole (RFQ), and matching systems for low and medium energy beams. We have built superconducting magnets for the ECR ion source, and a prototype with one segment of the RFQ structure, with the aim of developing a design that can satisfy our specifications, demonstrate stable operation, and prove results to compare the design simulation.
NASA Astrophysics Data System (ADS)
Akazawa, Housei
2016-06-01
The branched-waveguide electron cyclotron resonance plasma sputtering apparatus places quartz windows for transmitting microwaves into the plasma source not in the line of sight of the target. However, the quartz windows must be replaced after some time of operation. For maintenance, the loop waveguide branching from the T-junction must be dismounted and re-assembled accurately, which is a time-consuming job. We investigated substituting the waveguide branches with two sets of coaxial cables and waveguide/coaxial cable converters to simplify assembly as far as connection and disconnection go. The resulting hybrid system worked well for the purposes of plasma generation and film deposition.
Akazawa, Housei
2016-06-01
The branched-waveguide electron cyclotron resonance plasma sputtering apparatus places quartz windows for transmitting microwaves into the plasma source not in the line of sight of the target. However, the quartz windows must be replaced after some time of operation. For maintenance, the loop waveguide branching from the T-junction must be dismounted and re-assembled accurately, which is a time-consuming job. We investigated substituting the waveguide branches with two sets of coaxial cables and waveguide/coaxial cable converters to simplify assembly as far as connection and disconnection go. The resulting hybrid system worked well for the purposes of plasma generation and film deposition.
NASA Technical Reports Server (NTRS)
Temerin, M.; Roth, I.
1992-01-01
A new model is presented for the production of He-3 and heavy ion enrichments in He-3-rich flares using a direct single-stage mechanism. In analogy with the production of electromagnetic hydrogen cyclotron waves in earth's aurora by electron beams, it is suggested that such waves should exist in the electron acceleration region of impulsive solar flares. Both analytic and test-particle models of the effect of such waves in a nonuniform magnetic field show that these waves can selectively accelerate He-3 and heavy ions to MeV energies in a single-stage process, in contrast to other models which require a two-stage mechanism.
Tearing modes induced by perpendicular electron cyclotron resonance heating in the KSTAR tokamak
NASA Astrophysics Data System (ADS)
Lee, H. H.; Lee, S. G.; Seol, J.; Aydemir, A. Y.; Bae, C.; Yoo, J. W.; Na, Y. S.; Kim, H. S.; Woo, M. H.; Kim, J.; Joung, M.; You, K. I.; Park, B. H.
2014-10-01
This paper reports on experimental evidence that shows perpendicular electron cyclotron resonance heating (ECRH) can trigger classical tearing modes when deposited near a rational flux surface. The complex evolution of an m = 2 island is followed during current ramp-up in KSTAR plasmas, from its initial onset as the rational surface enters the ECRH resonance layer to its eventual lock on the wall after the rational surface leaves the layer. Stability analysis coupled to a transport calculation of the current profile with ECRH shows that the perpendicular ECRH may play a significant role in triggering and destabilizing classical m = 2 tearing modes, in agreement with our experimental observation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akazawa, Housei, E-mail: akazawa.housei@lab.ntt.co.jp
2016-06-15
The branched-waveguide electron cyclotron resonance plasma sputtering apparatus places quartz windows for transmitting microwaves into the plasma source not in the line of sight of the target. However, the quartz windows must be replaced after some time of operation. For maintenance, the loop waveguide branching from the T-junction must be dismounted and re-assembled accurately, which is a time-consuming job. We investigated substituting the waveguide branches with two sets of coaxial cables and waveguide/coaxial cable converters to simplify assembly as far as connection and disconnection go. The resulting hybrid system worked well for the purposes of plasma generation and film deposition.
Stopping power of ions in a magnetized two-temperature plasma.
Nersisyan, H B; Walter, M; Zwicknagel, G
2000-06-01
Using the dielectric theory for a weakly coupled plasma, we investigate the stopping power of an ion in an anisotropic two-temperature electron plasma in the presence of a magnetic field. The analysis is based on the assumption that the energy variation of the ion is much less than its kinetic energy. A general expression for the stopping power is analyzed for weak and strong magnetic fields (i.e., for the electron cyclotron frequency less than and greater than the plasma frequency), and for low and high ion velocities. It is found that the usually velocity independent friction coefficient contains an anomalous term which diverges logarithmically as the projectile velocity approaches zero. The physical origin of this anomalous term is the coupling between the cyclotron motion of the electrons and the long-wavelength, low-frequency fluctuations produced by the projectile ion.
Atypical Particle Heating at a Supercritical Interplanetary Shock
NASA Technical Reports Server (NTRS)
Wilson, Lynn B., III
2010-01-01
We present the first observations at an interplanetary shock of large amplitude (> 100 mV/m pk-pk) solitary waves and large amplitude (approx.30 mV/m pk-pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein-like waves show enhanced power at integer and half-integer harmonics of the cyclotron frequency with a broadened power spectrum at higher frequencies, consistent with the electron cyclotron drift instability. The Bernstein-like waves are obliquely polarized with respect to the magnetic field but parallel to the shock normal direction. Strong particle heating is observed in both the electrons and ions. The observed heating and waveforms are likely due to instabilities driven by the free energy provided by reflected ions at this supercritical interplanetary shock. These results offer new insights into collisionless shock dissipation and wave-particle interactions in the solar wind.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, C. S.; Lee, S. G., E-mail: sglee@nfri.re.kr; National Fusion Research Institute, Daejeon 305-806
The behavior of relativistic runaway electrons during Electron Cyclotron Resonance Heating (ECRH) discharges is investigated in the Korea Superconducting Tokamak Advanced Research device. The effect of the ECRH on the runaway electron population is discussed. Observations on the generation of superthermal electrons during ECRH will be reported, which will be shown to be consistent with existing theory for the development of a superthermal electron avalanche during ECRH [A. Lazaros, Phys. Plasmas 8, 1263 (2001)].
Terahertz electron cyclotron maser interactions with an axis-encircling electron beam
NASA Astrophysics Data System (ADS)
Li, G. D.; Kao, S. H.; Chang, P. C.; Chu, K. R.
2015-04-01
To generate terahertz radiation via the electron cyclotron maser instability, harmonic interactions are essential in order to reduce the required magnetic field to a practical value. Also, high-order mode operation is required to avoid excessive Ohmic losses. The weaker harmonic interaction and mode competition associated with an over-moded structure present challenging problems to overcome. The axis-encircling electron beam is a well-known recipe for both problems. It strengthens the harmonic interaction, as well as minimizing the competing modes. Here, we examine these advantages through a broad data base obtained for a low-power, step-tunable, gyrotron oscillator. Linear results indicate far more higher-harmonic modes can be excited with an axis-encircling electron beam than with an off-axis electron beam. However, multi-mode, time-dependent simulations reveal an intrinsic tendency for a higher-harmonic mode to switch over to a lower-harmonic mode at a high beam current or upon a rapid current rise. Methods are presented to identify the narrow windows in the parameter space for stable harmonic interactions.
Principles of Space Plasma Wave Instrument Design
NASA Technical Reports Server (NTRS)
Gurnett, Donald A.
1998-01-01
Space plasma waves span the frequency range from somewhat below the ion cyclotron frequency to well above the electron cyclotron frequency and plasma frequency. Because of the large frequency range involved, the design of space plasma wave instrumentation presents many interesting challenges. This chapter discusses the principles of space plasma wave instrument design. The topics covered include: performance requirements, electric antennas, magnetic antennas, and signal processing. Where appropriate, comments are made on the likely direction of future developments.
Status and Perspectives for a Slow Positron Beam Facility at the HH—NIPNE Bucharest
NASA Astrophysics Data System (ADS)
Constantin, Florin; Craciun, Liviu Stefan; Constantinescu, Olimpiu; Ghita, Ionica Alina; Ionescu, Cristina; Racolta, Petru Mihai; Straticiuc, Mihai; Vasilescu, Angela; Braic, Viorel; Zoita, Catalin; Kiss, Adrian; Bojin, Dionezie
2009-03-01
The development of a positron annihilation spectroscopy laboratory at the HH-NIPNE Bucharest-to be used for material studies and applications was started in the last 10 years. In the framework of a national research project extended over the last 3 years, was designed a low energy positron accelerator, as a high-vacuum dedicated beam line with two options: a 25 mCi 22NaCl source and in line with the NIPNE-cyclotron or a new intense compact cyclotron. The construction of the beam line was planned as a sequence of modules: source- moderator system; magnetical filter for fast positrons in order to select the positrons energies in the range 0.8-1 keV; a modular system for focusing, transport and acceleration of monoenergetic positrons in the energy range 0.8-50 keV and a CDBS analysis chamber. The moderator proposed—is tungsten as a foil of about 3 μm prepared at the Optoelectronics Institute were put into a thermal treatment vacuum chamber and bombarded with electrons from a 100 W electron gun After the treatment, they were tested for changes of elemental composition of the surface and structure at the Polytechnic University. The structure tests were performed on a DRON 3 M diffractometer, with a Co tube (λKα = 1.7903 A)—the angular regions studied were around 34° (1 0 0) and 69° (2 0 0). In the present time, the trajectories of the positron are going to be simulated with dedicated software (an ion and electron optics simulator). For the coincidence measurements (CDBS) set-up we used a home-made 22NaCl source, by separation without carrier from a metallic Mg target irradiated with 12 MeV protons and separated by columnar cation exchange. A home- made biparametric system for CDBS measurements will be reported, also.
Status and Perspectives for a Slow Positron Beam Facility at the HH-NIPNE Bucharest
NASA Astrophysics Data System (ADS)
Straticiuc, Mihai; Craciun, Liviu Stefan; Constantinescu, Olimpiu; Ghita, Ionica Alina; Ionescu, Cristina; Racolta, Petru Mihai; Vasilescu, Angela; Braic, Viorel; Zoita, Catalin; Kiss, Adrian; Bojin, Dionezie
2009-03-01
The development of a positron annihilation spectroscopy laboratory at the HH-NIPNE Bucharest-to be used for material studies and applications was started in the last 10 years. In the framework of a national research project extended over the last 3 years, was designed a low energy positron accelerator, as a high-vacuum dedicated beam line with two options: a 25 mCi 22NaCl source and in line with the NIPNE-cyclotron or a new intense compact cyclotron. The construction of the beam line was planned as a sequence of modules: source- moderator system; magnetical filter for fast positrons in order to select the positrons energies in the range 0.8-1 keV; a modular system for focusing, transport and acceleration of monoenergetic positrons in the energy range 0.8-50 keV and a CDBS analysis chamber. The moderator proposed-is tungsten as a foil of about 3 μm prepared at the Optoelectronics Institute were put into a thermal treatment vacuum chamber and bombarded with electrons from a 100 W electron gun After the treatment, they were tested for changes of elemental composition of the surface and structure at the Polytechnic University. The structure tests were performed on a DRON 3 M diffractometer, with a Co tube (λKα = 1.7903 A)-the angular regions studied were around 34° (1 0 0) and 69° (2 0 0). In the present time, the trajectories of the positron are going to be simulated with dedicated software (an ion and electron optics simulator). For the coincidence measurements (CDBS) set-up we used a home-made 22NaCl source, by separation without carrier from a metallic Mg target irradiated with 12 MeV protons and separated by columnar cation exchange. A home- made biparametric system for CDBS measurements will be reported, also.
NASA Astrophysics Data System (ADS)
Martínez, M.; Zurro, B.; Baciero, A.; Jiménez-Rey, D.; Tribaldos, V.
2018-02-01
Numerous observation exist of a population of high energetic ions with energies well above the corresponding thermal values in plasmas generated by electron cyclotron resonance (ECR) heating in TJ-II stellarator and in other magnetically confined plasmas devices. In this work we study the impact of ECR heating different conditions (positions and powers) on fast ions escaping from plasmas in the TJ-II stellarator. For this study, an ion luminescent probe operated in counting mode is used to measure the energy distribution of suprathermal ions, in the range from 1 to 30 keV. It is observed that some suprathermal ions characteristics (such as temperature, particle and energy fluxes) are related directly with the gyrotron power and focus position of the heating beam in the plasma. Moreover, it is found that suprathermal ion characteristics vary during a magnetic configuration scan (performed along a single discharge). By investigating the suprathermal ions escaping from plasmas generated using two gyrotrons, one with fixed power and the other modulated (on/off) at low frequency (10 Hz), the de-confinement time of the suprathermal ions can be measured, which is of the order of a few milliseconds (<4 ms). A model that uses a zero-dimensional power balance is used to understand the de-confinement times in terms of the interaction of suprathermal ions and plasma components. This model also can be used to interpret experimental results of energy loss due to suprathermal ions. Finally, observations of increases (peaks) in the population of escaping suprathermal ions, which are well localized at discrete energies, is documented, these peaks being observed in the energy distributions along a discharge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zucca, C.; Sauter, O.; Fable, E.
2008-11-01
The effect of the predicted local electron cyclotron current driven by the optimized electron cyclotron system on ITER is discussed. A design variant was recently proposed to enlarge the physics program covered by the upper and equatorial launchers. By extending the functionality range of the upper launcher, significant control capabilities of the sawtooth period can be obtained. The upper launcher improvement still allows enough margin to exceed the requirements for neoclassical tearing mode stabilization, for which it was originally designed. The analysis of the sawtooth control is carried on with the ASTRA transport code, coupled with the threshold model bymore » Por-celli, to study the control capabilities of the improved upper launcher on the sawtooth instability. The simulations take into account the significant stabilizing effect of the fusion alpha particles. The sawtooth period can be increased by a factor of 1.5 with co-ECCD outside the q = 1 surface, and decreased by at least 30% with co-ECCD inside q = 1. The present ITER base-line design has the electron cyclotron launchers providing only co-ECCD. The variant for the equatorial launcher proposes the possibility to drive counter-ECCD with 1 of the 3 rows of mirrors: the counter-ECCD can then be balanced with co-ECCD and provide pure ECH with no net driven current. The difference between full co-ECCD off-axis using all 20MW from the equatorial launcher and 20MW co-ECCD driven by 2/3 from the equatorial launcher and 1/3 from the upper launcher is shown to be negligible. Cnt-ECCD also offers greater control of the plasma current density, therefore this analysis addresses the performance of the equatorial launcher to control the central q profile. The equatorial launcher is shown to control very efficiently the value of q{sub 0.2}-q{sub min} in advanced scenarios, if one row provides counter-ECCD.« less
Turbulent resistivity, diffusion and heating
NASA Technical Reports Server (NTRS)
Fried, B. D.; Kennel, C. F.; Mackenzie, K.; Coroniti, F. V.; Kindel, J. M.; Stenzel, R.; Taylor, R. J.; White, R.; Wong, A. Y.; Bernstein, W.
1971-01-01
Experimental and theoretical studies are reported on ion acoustic and ion cyclotron turbulence and their roles in anomalous resistivity, viscosity, diffusion and heating and in the structure of collisionless electrostatic shocks. Resistance due to ion acoustic turbulence has been observed in experiments with a streaming cesium plasma in which electron current, potential rise due to turbulent resistivity, spectrum of unstable ion acoustic waves, and associated electron heating were all measured directly. Kinetic theory calculations for an expanding, unstable plasma, give results in agreement with the experiment. In a strong magnetic field, with T sub e/T sub i approximately 1 and current densities typical for present Tokomaks, the plasma is stable to ion acoustic but unstable to current driven electrostatic ion cyclotron waves. Relevant characteristics of these waves are calculated and it is shown that for ion, beta greater than m sub e/m sub i, the electromagnetic ion cyclotron wave has a lower instability threshold than the electrostatic one. However, when ion acoustic turbulence is present experiments with double plasma devices show rapid anomalous heating of an ion beam streaming through a plasma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. BARNES
Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either overdense, operating at high density relative to the magnetic field (e.g. {omega}{sub pe} >> {Omega}{sub ce} in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition ({tau} > 2). Electron Bernstein waves (EBWs) are electrostatic waves which can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers, as amore » result of their large K{sub i}. This talk reports on measurements of EBW emission on the CDX-U spherical torus, where B{sub 0} {approx} 2 kG,
Design and application of a new control system for tokamak ECRH power supply
NASA Astrophysics Data System (ADS)
Hao, Xu; Zhang, Jian; Huang, Yiyun
2016-03-01
The biggest challenge of designing and building tokamak electron cyclotron resonance heating (ECRH) pulse step modulation (PSM) power supply is satisfying its required output voltage rising time to be less than 100 µs while suppressing the voltage overshoot to be no more than 1%. To fulfill the two requirements, a new control strategy with startup time in microsecond range is proposed in this paper, and a new control system to realize the control strategy is introduced. The control system was built and tested on 60 kV/50 A ECRH power supply. The experimental results indicate that the control system can restrain the overshoot effectively, increase response speed, and obviously improve the dynamic characteristics of the PSM power supply system. Thus, the proposed control system helps the PSM power supply to meet the design specifications.
Trivelpiece-Gould modes in a uniform unbounded plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenzel, R. L.; Urrutia, J. M.
Trivelpiece-Gould (TG) modes originally described electrostatic surface waves on an axially magnetized cylindrical plasma column. Subsequent studies of electromagnetic waves in such plasma columns revealed two modes, a predominantly magnetic helicon mode (H) and the mixed magnetic and electrostatic Trivelpiece-Gould modes (TG). The latter are similar to whistler modes near the oblique cyclotron resonance in unbounded plasmas. The wave propagation in cylindrical geometry is assumed to be paraxial while the modes exhibit radial standing waves. The present work shows that TG modes also arise in a uniform plasma without radial standing waves. It is shown experimentally that oblique cyclotron resonancemore » arises in large mode number helicons. Their azimuthal wave number far exceeds the axial wave number which creates whistlers near the oblique cyclotron resonance. Cyclotron damping absorbs the TG mode and can energize electrons in the center of a plasma column rather than the edge of conventional TG modes. The angular orbital field momentum can produce new perpendicular wave-particle interactions.« less
A BATSE investigation of radiation belt electrons precipitated by VLF waves
NASA Technical Reports Server (NTRS)
Datlowe, Dayton W.
1995-01-01
The Compton Observatory commonly encounters fluxes of energetic electrons which have been scattered from the inner radiation belt to the path of the satellite by resonant interactions with VLF waves from powerful man-made transmitters. The present investigation was motivated by the fact that in the Fall of 1993, the Gamma Ray Observatory was boosted from a 650 km altitude circular orbit to a 750 km altitude circular orbit. This was an opportunity, for the first time, to make observations at two different altitudes using the same instrument. We have examined DISCLA data from the Burst & Transient Source Experiment (BATSE) experiment from 1 Sep. 1993 to 29 Jan. 1994. During the period of study we identified 48 instances of the satellite encountering a cloud of energetic electrons which had been scattered by VLF transmitters. We find that boosting the altitude of the circular orbit from 650 km to 750 km increased the intensity of cyclotron resonance scattered electrons by a factor of two. To search for long term changes in the cyclotron resonance precipitation, we have compared the approx. 750 km altitude data from 106 days at the end of 1993 with data at the same altitudes and time of year in 1991. The cyclotron resonance events in 1991 were three times more frequent and 25% of those cases were more intense than any seen in the 1993 data. We attribute this difference to increased level of geomagnetic activity in 1991 near the Solar Maximum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, G. Q.; Chen, L.; Wu, D. J.
Solar type I radio storms are long-lived radio emissions from the solar atmosphere. It is believed that these type I storms are produced by energetic electrons trapped within a closed magnetic structure and are characterized by a high ordinary (O) mode polarization. However, the microphysical nature of these emissions is still an open problem. Recently, Wu et al. found that Alfven waves (AWs) can significantly influence the basic physics of wave-particle interactions by modifying the resonant condition. Taking the effects of AWs into account, this work investigates electron cyclotron maser emission driven by power-law energetic electrons with a low-energy cutoffmore » distribution, which are trapped in coronal loops by closed solar magnetic fields. The results show that the emission is dominated by the O mode. It is proposed that this O mode emission may possibly be responsible for solar type I radio storms.« less
Imaging of laboratory magnetospheric plasmas using coherence imaging technique
NASA Astrophysics Data System (ADS)
Nishiura, Masaki; Takahashi, Noriki; Yoshida, Zensho; Nakamura, Kaori; Kawazura, Yohei; Kenmochi, Naoki; Nakatsuka, Masataka; Sugata, Tetsuya; Katsura, Shotaro; Howard, John
2017-10-01
The ring trap 1 (RT-1) device creates a laboratory magnetosphere for the studies on plasma physics and advanced nuclear fusion. A levitated superconducting coil produces magnetic dipole fields that realize a high beta plasma confinement that is motivated by self-organized plasmas in planetary magnetospheres. The electron cyclotron resonance heating (ECRH) with 8.2 GHz and 50 kW produces the plasmas with hot electrons in a few ten keV range. The electrons contribute to the local electron beta that exceeded 1 in RT-1. For the ion heating, ion cyclotron range of frequencies (ICRF) heating with 2-4 MHz and 10 kW has been performed in RT-1. The radial profile of ion temperature by a spectroscopic measurement indicates the signature of ion heating. In the holistic point of view, a coherence imaging system has been implemented for imaging the entire ion dynamics in the laboratory magnetosphere. The diagnostic system and obtained results will be presented.
Jikiken /EXOS-B/ observation of Siple transmissions
NASA Technical Reports Server (NTRS)
Kimura, I.; Matsumoto, H.; Hashimoto, K.; Mukai, T.; Helliwell, R. A.; Bell, T. F.; Inan, U. S.; Katsufrakis, J. P.
1981-01-01
Preliminary results of observations by the Japanese magnetospheric satellite Jikiken (EXOS-B) of Siple transmissions and VLF emissions triggered by the Siple signals are reviewed. The experiments discussed were carried out in July, August, and September of 1979 and in December 1979 and January 1980. Only four events concentrated within the period from August 14 to 18 were found in which triggered emissions were associated with Siple transmissions. The electron distributions observed on the equatorial crossing passes, when Siple triggered emissions were detected, suggest that the cyclotron resonance condition is satisfied for Siple signals and electrons of energy around 1 keV or less, provided the interaction region is inside the plasmapause. It is noted that if these emissions were generated outside the plasmapause, electron energies much higher than 10 keV would be necessary for the cyclotron interaction, which were above the range of the measurements. For the high latitude passes of August 14 and 17, the electron fluxes were found to be very small.
NASA Astrophysics Data System (ADS)
Gugliada, V. R.; Austin, M. E.; Brookman, M. W.
2017-10-01
Electron cyclotron emission (ECE) provides high resolution measurements of electron temperature profiles (Te(R , t)) in tokamaks. Calibration accuracy of this data can be improved using a sawtooth averaging technique. This improved calibration will then be utilized to determine the symmetry of Te profiles by comparing low field side (LFS) and high field side (HFS) measurements. Although Te is considered constant on flux surfaces, cases have been observed in which there are pronounced asymmetries about the magnetic axis, particularly with increased pressure. Trends in LFS/HFS overlap are examined as functions of plasma pressure, MHD mode presence, heating techniques, and other discharge conditions. This research will provide information on the accuracy of the current two-dimensional mapping of flux surfaces in the tokamak. Findings can be used to generate higher quality EFITs and inform ECE calibration. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER549698.
A real-time beam-profile monitor for a PET cyclotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoehr, C.; Uittenbosch, T.; Verzilov, V.
2012-12-19
Beam profiles in medical cyclotrons are traditionally measured using techniques that do not provide any information about short-term fluctuations of the beam shape or beam intensity. To overcome this, we have developed a real-time harp beam profile monitor which can withstand beam power in excess of 300 W. The monitor and electronics were constructed and applied toward a 13 MeV proton beam with current of up to 25 {mu}A. Herein are reported preliminary beam-profile measurement results.
A real-time beam-profile monitor for a PET cyclotron
NASA Astrophysics Data System (ADS)
Hoehr, C.; Uittenbosch, T.; Verzilov, V.; English, W.; Buckley, K.; Gray, D.; Kellog, S.; Cameron, D.; Schaffer, P.
2012-12-01
Beam profiles in medical cyclotrons are traditionally measured using techniques that do not provide any information about short-term fluctuations of the beam shape or beam intensity. To overcome this, we have developed a real-time harp beam profile monitor which can withstand beam power in excess of 300 W. The monitor and electronics were constructed and applied toward a 13 MeV proton beam with current of up to 25 μA. Herein are reported preliminary beam-profile measurement results.
Progress in the development of an H{sup −} ion source for cyclotrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Etoh, H., E-mail: Hrh-Etoh@shi.co.jp; Aoki, Y.; Mitsubori, H.
2015-04-08
A multi-cusp DC H{sup −} ion source has been developed for cyclotrons in medical use. Beam optics of the H{sup −} ion beam is studied using a 2D beam trajectory code. The simulation results are compared with the experimental results obtained in the Mark I source, which has produced up to 16 mA H{sup −} ion beams. The optimum extraction voltages show good agreement between the calculation and the experimental results. A new ion source, Mark II source, is designed to achieve the next goal of producing an H{sup −} beam of 20 mA. The magnetic field configurations and the plasma electrodemore » design are optimized for Cs-seeded operation. Primary electron trajectory simulation shows that primary electrons are confined well and the magnetic filter prevents the primary electrons from entering into the extraction region.« less
NASA Astrophysics Data System (ADS)
Fukuda, Yukio; Okamoto, Hiroshi; Iwasaki, Takuro; Izumi, Kohei; Otani, Yohei; Ishizaki, Hiroki; Ono, Toshiro
2012-09-01
This paper reports on the thermal improvement of Si3N4/GeNx/Ge structures. After the Si3N4 (5 nm)/GeNx (2 nm) stacks were prepared on Ge substrates by electron-cyclotron-resonance plasma nitridation and sputtering at room temperature, they were thermally annealed in atmospheric N2 + 10% H2 ambient at temperatures from 400 to 600 °C. It was demonstrated that the electronic properties of the GeNx/Ge interfaces were thermally improved at temperatures of up to 500 °C with a minimum interface trap density (Dit) of ˜1×1011 cm-2 eV-1 near the Ge midgap, whereas the interface properties were slightly degraded after annealing at 600 °C with a minimum Dit value of ˜4×1011 cm-2 eV-1.
Lapierre, A; Schwarz, S; Baumann, T M; Cooper, K; Kittimanapun, K; Rodriguez, A J; Sumithrarachchi, C; Williams, S J; Wittmer, W; Leitner, D; Bollen, G
2014-02-01
An electron-beam ion trap (EBIT) charge breeder is being brought into operation at the National Superconducting Cyclotron Laboratory at Michigan State University. The EBIT is part of the ReA post-accelerator for reacceleration of rare isotopes, which are thermalized in a gas "stopping" cell after being produced at high energy by projectile fragmentation. The ReA EBIT has a distinctive design; it is characterized by a high-current electron gun and a two-field superconducting magnet to optimize the capture and charge-breeding efficiency of continuously injected singly charged ion beams. Following a brief overview of the reaccelerator system and the ReA EBIT, this paper presents the latest commissioning results, particularly, charge breeding and reacceleration of the highly charged rare isotopes, (76)Ga(24 +, 25 +).
Large-Amplitude Electrostatic Waves Observed at a Supercritical Interplanetary Shock
NASA Technical Reports Server (NTRS)
Wilson, L. B., III; Cattell, C. A.; Kellogg, P. J.; Goetz, K.; Kersten, K.; Kasper, J. C.; Szabo, A.; Wilber, M.
2010-01-01
We present the first observations at an interplanetary shock of large-amplitude (> 100 mV/m pk-pk) solitary waves and large-amplitude (approx.30 mV/m pk-pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein-like waves show enhanced power at integer and half-integer harmonics of the cyclotron frequency with a broadened power spectrum at higher frequencies, consistent with the electron cyclotron drift instability. The Bernstein-like waves are obliquely polarized with respect to the magnetic field but parallel to the shock normal direction. Strong particle heating is observed in both the electrons and ions. The observed heating and waveforms are likely due to instabilities driven by the free energy provided by reflected ions at this supercritical interplanetary shock. These results offer new insights into collisionless shock dissipation and wave-particle interactions in the solar wind.
NASA Astrophysics Data System (ADS)
Kirneva, N. A.; Razumova, K. A.; Pochelon, A.; Behn, R.; Coda, S.; Curchod, L.; Duval, B. P.; Goodman, T. P.; Labit, B.; Karpushov, A. N.; Rancic, M.; Sauter, O.; Silva, M.; TCV Team
2012-01-01
Scenarios with different electron cyclotron heating power profile distributions and widths were compared for the first time in experiments on the Tokamak à Configuration Variable (TCV). The heating profile was changed from shot to shot over a wide range from localized on-axis, with normalized minor radius half-width at half maximum σ1/2 ~ 0.1, up to a widely distributed heating power profile with σ1/2 ~ 0.4 and finally to a profile peaked far off-axis. The global confinement, MHD activity, density, temperature and electron pressure profile evolution were compared. In particular, the energy confinement properties of discharges with localized on-axis heating and distributed on-axis heating were very similar, with degradation close to that predicted by the ITER L-mode scaling; in the case of off-axis heating, on the other hand, the confinement degradation was even stronger.
Resonance of relativistic electrons with electromagnetic ion cyclotron waves
Denton, R. E.; Jordanova, V. K.; Bortnik, J.
2015-06-29
Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motionmore » of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.« less
Progress in high-temperature oven development for 28 GHz electron cyclotron resonance ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohnishi, J., E-mail: ohnishi@riken.jp; Higurashi, Y.; Nakagawa, T.
2016-02-15
We have been developing a high-temperature oven using UO{sub 2} in the 28 GHz superconducting electron cyclotron resonance ion source at RIKEN since 2013. A total of eleven on-line tests were performed. The longest operation time in a single test was 411 h, and the consumption rate of UO{sub 2} was approximately 2.4 mg/h. In these tests, we experienced several problems: the ejection hole of a crucible was blocked with UO{sub 2} and a crucible was damaged because of the reduction of tungsten strength at high temperature. In order to solve these problems, improvements to the crucible shape were mademore » by simulations using ANSYS.« less
Lee, B S; Choi, S; Yoon, J H; Park, J Y; Won, M S
2012-02-01
A magnet system for a 28 GHz electron cyclotron resonance ion source is being developed by the Korea Basic Science Institute. The configuration of the magnet system consists of 3 solenoid coils for a mirror magnetic field and 6 racetrack coils for a hexapole magnetic field. They can generate axial magnetic fields of 3.6 T at the beam injection part and 2.2 T at the extraction part. A radial magnetic field of 2.1 T is achievable at the plasma chamber wall. A step type winding process was employed in fabricating the hexapole coil. The winding technique was confirmed through repeated cooling tests. Superconducting magnets and a cryostat system are currently being manufactured.
Park, Bum-Sik; Hong, In-Seok; Jang, Ji-Ho; Jin, Hyunchang; Choi, Sukjin; Kim, Yonghwan
2016-02-01
A 28 GHz electron cyclotron resonance (ECR) ion source is being developed for use as an injector for the superconducting linear accelerator of the Rare Isotope Science Project. Beam extraction from the ECR ion source has been simulated using the KOBRA3-INP software. The simulation software can calculate charged particle trajectories in three dimensional complex magnetic field structures, which in this case are formed by the arrangement of five superconducting magnets. In this study, the beam emittance is simulated to understand the effects of plasma potential, mass-to-charge ratio, and spatial distribution. The results of these simulations and their comparison to experimental results are presented in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Yushi; Sakamoto, Naoki; Kiriyama, Ryutaro
2012-02-15
In order to contribute to various applications of plasma and beams based on an electron cyclotron resonance, a new concept on magnetic field with all magnets on plasma production and confinement has been proposed with enhanced efficiency for broad and dense ion beam. The magnetic field configuration consists of a pair of comb-shaped magnet surrounding plasma chamber cylindrically. Resonance zones corresponding for 2.45 GHz and 11-13 GHz frequencies are positioned at spatially different positions. We launch simultaneously multiplex frequencies microwaves operated individually, try to control profiles of the plasma parameters and the extracted ion beams, and to measure them inmore » detail.« less
Electron-cyclotron damping of helicon waves in low diverging magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lafleur, T.; Charles, C.; Boswell, R. W.
2011-04-15
Particle-in-cell simulations are performed to investigate wave propagation and absorption behavior of low-field (B{sub 0}<5 mT) helicon waves in the presence of a diverging magnetic field. The 1D electromagnetic simulations, which include experimental external magnetic field profiles, provide strong evidence for electron-cyclotron damping of helicon waves in the spatially decaying nonuniform magnetic field. For a dipole-type magnetic field configuration, the helicon waves are absence in the downstream (lower field) region of the plasma and are observed to be completely absorbed. As the magnetic field is changed slightly however, wave damping decreases, and waves are able to propagate freely downstream, confirmingmore » previous experimental measurements of this phenomenon.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uchida, T., E-mail: uchida-t@toyo.jp; Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585; Rácz, R.
2016-02-15
We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, andmore » fullerene-chlorine-iron.« less
Deposition of diamond-like films by ECR microwave plasma
NASA Technical Reports Server (NTRS)
Shing, Yuh-Han (Inventor); Pool, Frederick S. (Inventor)
1995-01-01
Hard amorphous hydrogenated carbon, diamond-like films are deposited using an electron cyclotron resonance microwave plasma with a separate radio frequency power bias applied to a substrate stage. The electron cyclotron resonance microwave plasma yields low deposition pressure and creates ion species otherwise unavailable. A magnetic mirror configuration extracts special ion species from a plasma chamber. Different levels of the radio frequency power bias accelerate the ion species of the ECR plasma impinging on a substrate to form different diamond-like films. During the deposition process, a sample stage is maintained at an ambient temperature of less than 100.degree. C. No external heating is applied to the sample stage. The deposition process enables diamond-like films to be deposited on heat-sensitive substrates.
Takenaka, T; Kiriyama, R; Muramatsu, M; Kitagawa, A; Uchida, T; Kurisu, Y; Nozaki, D; Yano, K; Yoshida, Y; Sato, F; Kato, Y; Iida, T
2012-02-01
An electron cyclotron resonance ion source (ECRIS) is used to generate multicharged ions for many kinds of the fields. We have developed an evaporator by using induction heating method that can generate pure vapor from solid state materials in ECRIS. We develop the new matching and protecting circuit by which we can precisely control the temperature of the induction heating evaporator. We can control the temperature within ±15 °C around 1400 °C under the operation pressure about 10(-4) Pa. We are able to use this evaporator for experiment of synthesizing process to need pure vapor under enough low pressure, e.g., experiment of generation of endohedral Fe-fullerene at the ECRIS.
Subterahertz gyrotron developments for collective Thomson scattering in LHDa)
NASA Astrophysics Data System (ADS)
Notake, T.; Saito, T.; Tatematsu, Y.; Kubo, S.; Shimozuma, T.; Tanaka, K.; Nishiura, M.; Fujii, A.; Agusu, La; Ogawa, I.; Idehara, T.
2008-10-01
Collective Thomson scattering (CTS) is expected to provide the spatially resolved velocity distribution functions of not only thermal and tail ions but also alpha particles resulting from fusion reactions. CTS using gyrotrons with frequency higher than the conventional ones used for plasma heating would have advantages to alleviate refraction, cutoff effects, and background electron cyclotron emission noise. Therefore, a high-power pulse gyrotron operating at approximately 400 GHz is being developed for CTS in Large Helical Device (LHD). A single-mode oscillation with a frequency greater than 400 GHz, applying the second-harmonic resonance, was successfully demonstrated in the first stage. At the same time, concrete feasibility study based on ray tracing, scattering spectra, and electron cyclotron emission calculations has been conducted.
Investigation on the electron flux to the wall in the VENUS ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thuillier, T.; Angot, J.; Benitez, J. Y.
The long-term operation of high charge state electron cyclotron resonance ion sources fed with high microwave power has caused damage to the plasma chamber wall in several laboratories. Porosity, or a small hole, can be progressively created in the chamber wall which can destroy the plasma chamber over a few year time scale. Here, a burnout of the VENUS plasma chamber is investigated in which the hole formation in relation to the local hot electron power density is studied. First, the results of a simple model assuming that hot electrons are fully magnetized and strictly following magnetic field lines aremore » presented. The model qualitatively reproduces the experimental traces left by the plasma on the wall. However, it is too crude to reproduce the localized electron power density for creating a hole in the chamber wall. Second, the results of a Monte Carlo simulation, following a population of scattering hot electrons, indicate a localized high power deposited to the chamber wall consistent with the hole formation process. Finally, a hypervapotron cooling scheme is proposed to mitigate the hole formation in electron cyclotron resonance plasma chamber wall.« less
Investigation on the electron flux to the wall in the VENUS ion source
Thuillier, T.; Angot, J.; Benitez, J. Y.; ...
2015-12-01
The long-term operation of high charge state electron cyclotron resonance ion sources fed with high microwave power has caused damage to the plasma chamber wall in several laboratories. Porosity, or a small hole, can be progressively created in the chamber wall which can destroy the plasma chamber over a few year time scale. Here, a burnout of the VENUS plasma chamber is investigated in which the hole formation in relation to the local hot electron power density is studied. First, the results of a simple model assuming that hot electrons are fully magnetized and strictly following magnetic field lines aremore » presented. The model qualitatively reproduces the experimental traces left by the plasma on the wall. However, it is too crude to reproduce the localized electron power density for creating a hole in the chamber wall. Second, the results of a Monte Carlo simulation, following a population of scattering hot electrons, indicate a localized high power deposited to the chamber wall consistent with the hole formation process. Finally, a hypervapotron cooling scheme is proposed to mitigate the hole formation in electron cyclotron resonance plasma chamber wall.« less
Investigation on the electron flux to the wall in the VENUS ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thuillier, T., E-mail: thuillier@lpsc.in2p3.fr; Angot, J.; Benitez, J. Y.
The long-term operation of high charge state electron cyclotron resonance ion sources fed with high microwave power has caused damage to the plasma chamber wall in several laboratories. Porosity, or a small hole, can be progressively created in the chamber wall which can destroy the plasma chamber over a few year time scale. A burnout of the VENUS plasma chamber is investigated in which the hole formation in relation to the local hot electron power density is studied. First, the results of a simple model assuming that hot electrons are fully magnetized and strictly following magnetic field lines are presented.more » The model qualitatively reproduces the experimental traces left by the plasma on the wall. However, it is too crude to reproduce the localized electron power density for creating a hole in the chamber wall. Second, the results of a Monte Carlo simulation, following a population of scattering hot electrons, indicate a localized high power deposited to the chamber wall consistent with the hole formation process. Finally, a hypervapotron cooling scheme is proposed to mitigate the hole formation in electron cyclotron resonance plasma chamber wall.« less
Electron Temperature Gradient Scale Measurements in ICRF Heated Plasmas at Alcator C-Mod
NASA Astrophysics Data System (ADS)
Houshmandyar, Saeid; Phillips, Perry E.; Rowan, William L.; Howard, Nathaniel T.; Greenwald, Martin
2016-10-01
It is generally believed that the temperature gradient is a driving mechanism for the turbulent transport in hot and magnetically confined plasmas. A feature of many anomalous transport models is the critical threshold value (LC) for the gradient scale length, above which both the turbulence and the heat transport increases. This threshold is also predicted by the recent multi-scale gyrokinetic simulations, which are focused on addressing the electron (and ion) heat transport in tokamaks. Recently, we have established an accurate technique (BT-jog) to directly measure the electron temperature gradient scale length (LTe =Te / ∇T) profile, using a high-spatial resolution radiometer-based electron cyclotron emission (ECE) diagnostic. For the work presented here, electrons are heated by ion cyclotron range of frequencies (ICRF) through minority heating in L-mode plasmas at different power levels, TRANSP runs determine the electron heat fluxes and the scale lengths are measured through the BT-jog technique. Furthermore, the experiment is extended for different plasma current and electron densities by which the parametric dependence of LC on magnetic shear, safety factor and density will be investigated. This work is supported by U.S. DoE OFES, under Award No. DE-FG03-96ER-54373.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mascali, D.; Gammino, S.; Celona, L.
2012-02-15
Further improvements of electron cyclotron resonance ion sources (ECRIS) output currents and average charge state require a deep understanding of electron and ion dynamics in the plasma. This paper will discuss the most recent advances about modeling of non-classical evidences like the sensitivity of electron energy distribution function to the magnetic field detuning, the influence of plasma turbulences on electron heating and ion confinement, the coupling between electron and ion dynamics. All these issues have in common the non-homogeneous distribution of the plasma inside the source: the abrupt density drop at the resonance layer regulates the heating regimes (from collectivemore » to turbulent), the beam formation mechanism and emittance. Possible means to boost the performances of future ECRIS will be proposed. In particular, the use of Bernstein waves, in preliminary experiments performed at Laboratori Nazionali del Sud (LNS) on MDIS (microwave discharge ion sources)-type sources, has permitted to sustain largely overdense plasmas enhancing the warm electron temperature, which will make possible in principle the construction of sources for high intensity multicharged ions beams with simplified magnetic structures.« less
Advanced electron cyclotron heating and current drive experiments on the stellarator Wendelstein 7-X
NASA Astrophysics Data System (ADS)
Stange, Torsten; Laqua, Heinrich Peter; Beurskens, Marc; Bosch, Hans-Stephan; Bozhenkov, Sergey; Brakel, Rudolf; Braune, Harald; Brunner, Kai Jakob; Cappa, Alvaro; Dinklage, Andreas; Erckmann, Volker; Fuchert, Golo; Gantenbein, Gerd; Gellert, Florian; Grulke, Olaf; Hartmann, Dirk; Hirsch, Matthias; Höfel, Udo; Kasparek, Walter; Knauer, Jens; Langenberg, Andreas; Marsen, Stefan; Marushchenko, Nikolai; Moseev, Dmitry; Pablant, Novomir; Pasch, Ekkehard; Rahbarnia, Kian; Mora, Humberto Trimino; Tsujimura, Toru; Turkin, Yuriy; Wauters, Tom; Wolf, Robert
2017-10-01
During the first operational phase (OP 1.1) of Wendelstein 7-X (W7-X) electron cyclotron resonance heating (ECRH) was the exclusive heating method and provided plasma start-up, wall conditioning, heating and current drive. Six gyrotrons were commissioned for OP1.1 and used in parallel for plasma operation with a power of up to 4.3 MW. During standard X2-heating the spatially localized power deposition with high power density allowed controlling the radial profiles of the electron temperature and the rotational transform. Even though W7-X was not fully equipped with first wall tiles and operated with a graphite limiter instead of a divertor, electron densities of n e > 3·1019 m-3 could be achieved at electron temperatures of several keV and ion temperatures above 2 keV. These plasma parameters allowed the first demonstration of a multipath O2-heating scenario, which is envisaged for safe operation near the X-cutoff-density of 1.2·1020 m-3 after full commissioning of the ECRH system in the next operation phase OP1.2.
Enhancement of negative hydrogen ion production in an electron cyclotron resonance source
NASA Astrophysics Data System (ADS)
Dugar-Zhabon, V. D.; Murillo, M. T.; Karyaka, V. I.
2013-07-01
In this paper, we present a method for improving the negative hydrogen ion yield in the electron cyclotron resonance source with driven plasma rings where the negative ion production is realized in two stages. First, the hydrogen and deuterium molecules are excited in collisions with plasma electrons to high-laying Rydberg and high vibration levels in the plasma volume. The second stage leads to negative ion production through the process of repulsive attachment of low-energy electrons by the excited molecules. The low-energy electrons originate due to a bombardment of the plasma electrode surface by ions of a driven ring and the thermoelectrons produced by a rare earth ceramic electrode, which is appropriately installed in the source chamber. The experimental and calculation data on the negative hydrogen ion generation rate demonstrate that very low-energy thermoelectrons significantly enhance the negative-ion generation rate that occurs in the layer adjacent to the plasma electrode surface. It is found that heating of the tungsten filaments placed in the source chamber improves the discharge stability and extends the pressure operation range.
The effect of magnetic field on chiral transmission in p-n-p graphene junctions.
Li, Yuan; Wan, Qi; Peng, Yingzi; Wang, Guanqing; Qian, Zhenghong; Zhou, Guanghui; Jalil, Mansoor B A
2015-12-18
We investigate Klein tunneling in graphene heterojunctions under the influence of a perpendicular magnetic field via the non-equilibrium Green's function method. We find that the angular dependence of electron transmission is deflected sideways, resulting in the suppression of normally incident electrons and overall decrease in conductance. The off-normal symmetry axis of the transmission profile was analytically derived. Overall tunneling conductance decreases to almost zero regardless of the potential barrier height V0 when the magnetic field (B-field) exceeds a critical value, thus achieving effective confinement of Dirac fermions. The critical field occurs when the width of the magnetic field region matches the diameter of the cyclotron orbit. The potential barrier also induces distinct Fabry-Pérot fringe patterns, with a "constriction region" of low transmission when V0 is close to the Fermi energy. Application of B-field deflects the Fabry-Pérot interference pattern to an off-normal angle. Thus, the conductance of the graphene heterojunctions can be sharply modulated by adjusting the B-field strength and the potential barrier height relative to the Fermi energy.
The effect of magnetic field on chiral transmission in p-n-p graphene junctions
NASA Astrophysics Data System (ADS)
Li, Yuan; Wan, Qi; Peng, Yingzi; Wang, Guanqing; Qian, Zhenghong; Zhou, Guanghui; Jalil, Mansoor B. A.
2015-12-01
We investigate Klein tunneling in graphene heterojunctions under the influence of a perpendicular magnetic field via the non-equilibrium Green’s function method. We find that the angular dependence of electron transmission is deflected sideways, resulting in the suppression of normally incident electrons and overall decrease in conductance. The off-normal symmetry axis of the transmission profile was analytically derived. Overall tunneling conductance decreases to almost zero regardless of the potential barrier height when the magnetic field (B-field) exceeds a critical value, thus achieving effective confinement of Dirac fermions. The critical field occurs when the width of the magnetic field region matches the diameter of the cyclotron orbit. The potential barrier also induces distinct Fabry-Pérot fringe patterns, with a “constriction region” of low transmission when is close to the Fermi energy. Application of B-field deflects the Fabry-Pérot interference pattern to an off-normal angle. Thus, the conductance of the graphene heterojunctions can be sharply modulated by adjusting the B-field strength and the potential barrier height relative to the Fermi energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, W., E-mail: luwang@impcas.ac.cn; Sun, L. T.; Qian, C.
2015-04-15
LECR4 (Lanzhou electron cyclotron resonance ion source No. 4) has been successfully constructed at IMP and has also been connected with the Low Energy Beam Transport (LEBT) and Radio Frequency Quadrupole (RFQ) systems. These source magnet coils are cooled through evaporative cooling technology, which is the first attempt with an ECR ion source in the world. The maximum mirror field is 2.5 T (with iron plug) and the effective plasma chamber volume is 1.2 l. It was designed to be operated at 18 GHz and aimed to produce intense multiple charge state heavy ion beams for the linear injector projectmore » SSC-Linac at IMP. In February 2014, the first analyzed beam at 18 GHz was extracted. During about three months’ commissioning, some outstanding results have been achieved, such as 1.97 emA of O{sup 6+}, 1.7 emA of Ar{sup 8+}, 1.07 emA of Ar{sup 9+}, and 118 euA of Bi{sup 28+}. The source has also successfully delivered O{sup 5+} and Ar{sup 8+} ion beams for RFQ commissioning in April 2014. This paper will give a brief overview of the design of LECR4. Then, the latest results of this source at 18 GHz will be presented.« less
Self-Paced Physics, Segments 32-36.
ERIC Educational Resources Information Center
New York Inst. of Tech., Old Westbury.
Five study segments of the Self-Paced Physics Course materials are presented in this seventh problems and solutions book used as a part of student course work. The content is related to magnetic fields, magnetic moments, forces on charged particles in magnetic fields, electron volts, cyclotron, electronic charge to mass ratio, current-carrying…
NASA Astrophysics Data System (ADS)
McConville, S. L.; Speirs, D. C.; Gillespie, K. M.; Phelps, A. D. R.; Cross, A. W.; Koepke, M. E.; Whyte, C. G.; Matheson, K.; Robertson, C. W.; Cairns, R. A.; Vorgul, I.; Bingham, R.; Kellett, B. J.; Ronald, K.
2012-04-01
Scaled laboratory experiments have been conducted at Strathclyde University [1,2] to further the understanding of the naturally occurring generation of Auroral Kilometric Radiation (AKR) in the Earth's polar magnetosphere. At an altitude of around 3200km there exists a region of partial plasma depletion (the auroral density cavity), through which electrons descend towards the Earth's atmosphere and are subject to magnetic compression. Due to conservation of the magnetic moment these electrons sacrifice parallel velocity for perpendicular velocity resulting in a horseshoe shaped distribution in velocity space which is unstable to the cyclotron maser instability [3,4]. The radiation is emitted at frequencies extending down to the local electron cyclotron frequency with a peak in emission at ~300kHz. The wave propagation is in the X-mode with powers ~109W corresponding to radiation efficiencies of 1% of the precipitated electron kinetic energy [5]. The background plasma frequency within the auroral density cavity is approximately 9kHz corresponding to an electron plasma density ~106m-3. Previous laboratory experiments at Strathclyde have studied cyclotron radiation emission from electron beams which have horseshoe shaped velocity distributions. Radiation measurements showed emissions in X-like modes with powers ~20kW and efficiencies ~1-2%, coinciding with both theoretical and numerical predictions [6-9] and magnetospheric studies. To enhance the experimental reproduction of the magnetospheric environment a Penning trap was designed and incorporated into the existing apparatus [10]. The trap was placed in the wave generation region where the magnetic field would be maintained at ~0.21T. The trap allowed a background plasma to be generated and its characteristics were studied using a plasma probe. The plasma had a significant impact on the radiation generated, introducing increasingly sporadic behaviour with increasing density. The power and efficiency of the radiation generated was lower than with no plasma present. Plasma diagnostics established the plasma frequency on the order of 150-300MHz and electron density ranging from ~1014-1015m-3, whilst the cyclotron frequency of the electrons within the Penning trap was 5.87GHz giving fce/fpe ~19-40, comparable to the auroral density cavity. Numerical simulations coinciding with this part of the experimental research program are currently being carried out using the VORPAL code. Details of these simulations will be presented in a separate paper [Speirs et al] at this meeting. McConville SL et al 2008, Plasma Phys. Control. Fusion, 50, 074010 Ronald et al 2011, Plasma Phys. Control. Fusion, 53, 074015 Bingham R and Cairns RA, 2002, Phys. Scr., T98, 160-162 Ergun RE et al, 1998, Geophys. Res. Lett., 25, 2061 Gurnett DA et al, 1974, J. Geophys. Res., 79, 4227-4238 Cairns RA et al, 2011, Phys. Plasmas, 18, 022902 Gillespie KM et al, 2008, Plasma Phys. Control. Fusion, 50, 124038 Speirs et al 2010, Phys. Plasmas, 17, 056501 Vorgul et al 2011, Phys. Plasmas, 18, 056501 McConville SL et al 2011, Plasma Phys. Control. Fusion, 53, 124020
Electron cyclotron resonance heating by magnetic filter field in a negative hydrogen ion source.
Kim, June Young; Cho, Won-Hwi; Dang, Jeong-Jeung; Chung, Kyoung-Jae; Hwang, Y S
2016-02-01
The influence of magnetic filter field on plasma properties in the heating region has been investigated in a planar-type inductively coupled radio-frequency (RF) H(-) ion source. Besides filtering high energy electrons near the extraction region, the magnetic filter field is clearly observed to increase the electron temperature in the heating region at low pressure discharge. With increasing the operating pressure, enhancement of electron temperature in the heating region is reduced. The possibility of electron cyclotron resonance (ECR) heating in the heating region due to stray magnetic field generated by a filter magnet located at the extraction region is examined. It is found that ECR heating by RF wave field in the discharge region, where the strength of an axial magnetic field is approximately ∼4.8 G, can effectively heat low energy electrons. Depletion of low energy electrons in the electron energy distribution function measured at the heating region supports the occurrence of ECR heating. The present study suggests that addition of axial magnetic field as small as several G by an external electromagnet or permanent magnets can greatly increase the generation of highly ro-vibrationally excited hydrogen molecules in the heating region, thus improving the performance of H(-) ion generation in volume-produced negative hydrogen ion sources.
Manipulation of a Nuclear Spin by a Magnetic Domain Wall in a Quantum Hall Ferromagnet.
Korkusinski, M; Hawrylak, P; Liu, H W; Hirayama, Y
2017-03-06
The manipulation of a nuclear spin by an electron spin requires the energy to flip the electron spin to be vanishingly small. This can be realized in a many electron system with degenerate ground states of opposite spin polarization in different Landau levels. We present here a microscopic theory of a domain wall between spin unpolarized and spin polarized quantum Hall ferromagnet states at filling factor two with the Zeeman energy comparable to the cyclotron energy. We determine the energies and many-body wave functions of the electronic quantum Hall droplet with up to N = 80 electrons as a function of the total spin, angular momentum, cyclotron and Zeeman energies from the spin singlet ν = 2 phase, through an intermediate polarization state exhibiting a domain wall to the fully spin-polarized phase involving the lowest and the second Landau levels. We demonstrate that the energy needed to flip one electron spin in a domain wall becomes comparable to the energy needed to flip the nuclear spin. The orthogonality of orbital electronic states is overcome by the many-electron character of the domain - the movement of the domain wall relative to the position of the nuclear spin enables the manipulation of the nuclear spin by electrical means.
Manipulation of a Nuclear Spin by a Magnetic Domain Wall in a Quantum Hall Ferromagnet
Korkusinski, M.; Hawrylak, P.; Liu, H. W.; Hirayama, Y.
2017-01-01
The manipulation of a nuclear spin by an electron spin requires the energy to flip the electron spin to be vanishingly small. This can be realized in a many electron system with degenerate ground states of opposite spin polarization in different Landau levels. We present here a microscopic theory of a domain wall between spin unpolarized and spin polarized quantum Hall ferromagnet states at filling factor two with the Zeeman energy comparable to the cyclotron energy. We determine the energies and many-body wave functions of the electronic quantum Hall droplet with up to N = 80 electrons as a function of the total spin, angular momentum, cyclotron and Zeeman energies from the spin singlet ν = 2 phase, through an intermediate polarization state exhibiting a domain wall to the fully spin-polarized phase involving the lowest and the second Landau levels. We demonstrate that the energy needed to flip one electron spin in a domain wall becomes comparable to the energy needed to flip the nuclear spin. The orthogonality of orbital electronic states is overcome by the many-electron character of the domain - the movement of the domain wall relative to the position of the nuclear spin enables the manipulation of the nuclear spin by electrical means. PMID:28262758
NASA Technical Reports Server (NTRS)
Scales, W. A.; Bernhardt, P. A.; Ganguli, G.
1994-01-01
Two-dimensional electrostatic particle-in-cell simulations are used to study the early time evolution of electron depletions and negative ion clouds produced during electron attachment chemical releases in the ionosphere. The simulation model considers the evolution in the plane perpendicular to the magnetic field and a three-species plasma that contains electrons, positive ions, and also heavy negative ions that result as a by-product of the electron attachment reaction. The early time evolution (less than the negative ion cyclotron period) of the system shows that a negative charge surplus initially develops outside of the depletion boundary as the heavy negative ions move across the boundary. The electrons are initially restricted from moving into the depletion due to the magnetic field. An inhomogenous electric field develops across the boundary layer due to this charge separation. A highly sheared electron flow velocity develops in the depletion boundary due to E x B and Delta-N x B drifts that result from electron density gradients and this inhomogenous electric field. Structure eventually develops in the depletion boundary layer due to low-frequency electrostatic waves that have growth times shorter than the negative ion cyclotron period. It is proposed that these waves are most likely produced by the electron-ion hybrid instability that results from sufficiently large shears in the electron flow velocity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Lei
Magnetic confinement fusion is one of the most promising approaches to achieve fusion energy. With the rapid increase of the computational power over the past decades, numerical simulation have become an important tool to study the fusion plasmas. Eventually, the numerical models will be used to predict the performance of future devices, such as the International Thermonuclear Experiment Reactor (ITER) or DEMO. However, the reliability of these models needs to be carefully validated against experiments before the results can be trusted. The validation between simulations and measurements is hard particularly because the quantities directly available from both sides are different.more » While the simulations have the information of the plasma quantities calculated explicitly, the measurements are usually in forms of diagnostic signals. The traditional way of making the comparison relies on the diagnosticians to interpret the measured signals as plasma quantities. The interpretation is in general very complicated and sometimes not even unique. In contrast, given the plasma quantities from the plasma simulations, we can unambiguously calculate the generation and propagation of the diagnostic signals. These calculations are called synthetic diagnostics, and they enable an alternate way to compare the simulation results with the measurements. In this dissertation, we present a platform for developing and applying synthetic diagnostic codes. Three diagnostics on the platform are introduced. The reflectometry and beam emission spectroscopy diagnostics measure the electron density, and the electron cyclotron emission diagnostic measures the electron temperature. The theoretical derivation and numerical implementation of a new two dimensional Electron cyclotron Emission Imaging code is discussed in detail. This new code has shown the potential to address many challenging aspects of the present ECE measurements, such as runaway electron effects, and detection of the cross phase between the electron temperature and density fluctuations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simonetto, A.; Sozzi, C.; Garavaglia, S.
A Martin Puplett interferometer for electron cyclotron emission (ECE) measurements from JET tokamak plasmas was extended to multichannel operation for simultaneous radial and oblique ECE measurements. This paper describes the new optics and the instrument's performance.
NASA Astrophysics Data System (ADS)
Starosta, K.; Vaman, C.; Miller, D.; Voss, P.; Bazin, D.; Glasmacher, T.; Crawford, H.; Mantica, P.; Tan, H.; Hennig, W.; Walby, M.; Fallu-Labruyere, A.; Harris, J.; Breus, D.; Grudberg, P.; Warburton, W. K.
2009-11-01
A 624-channel Digital Data Acquisition System capable of instrumenting the Segmented Germanium Array at National Superconducting Cyclotron Laboratory has been implemented using Pixie-16 Digital Gamma Finder modules by XIA LLC. The system opens an opportunity for determination of the first interaction position of a γ ray in a SeGA detector from implementation of γ-ray tracking. This will translate into a significantly improved determination of angle of emission, and in consequence much better Doppler corrections for experiments with fast beams. For stopped-beam experiments the system provides means for zero dead time measurements of rare decays, which occur on time scales of microseconds.
Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS.
Thomae, R; Conradie, J; Fourie, D; Mira, J; Nemulodi, F; Kuechler, D; Toivanen, V
2016-02-01
At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.
Trap density of GeNx/Ge interface fabricated by electron-cyclotron-resonance plasma nitridation
NASA Astrophysics Data System (ADS)
Fukuda, Yukio; Otani, Yohei; Toyota, Hiroshi; Ono, Toshiro
2011-07-01
We have investigated GeNx/Ge interface properties using Si3N4(7 nm)/GeNx(2 nm)/Ge metal-insulator-semiconductor structures fabricated by the plasma nitridation of Ge substrates using an electron-cyclotron-resonance-generated nitrogen plasma. The interface trap density (Dit) measured by the conductance method is found to be distributed symmetrically in the Ge band gap with a minimum Dit value lower than 3 × 1011 cm-2eV-1 near the midgap. This result may lead to the development of processes for the fabrication of p- and n-Ge Schottky-barrier (SB) source/drain metal-insulator-semiconductor field-effect transistors using chemically and thermally robust GeNx dielectrics as interlayers for SB source/drain contacts and high-κ gate dielectrics.
NASA Astrophysics Data System (ADS)
Fukuda, Yukio; Okamoto, Hiroshi; Iwasaki, Takuro; Otani, Yohei; Ono, Toshiro
2011-09-01
We have investigated the effects of the formation temperature and postmetallization annealing (PMA) on the interface properties of GeNx/p-Ge fabricated by the plasma nitridation of Ge substrates using an electron-cyclotron-resonance-generated nitrogen plasma. The nitridation temperature is found to be a critical parameter in improving the finally obtained GeNx/Ge interface properties. The GeNx/Ge formed at room temperature and treated by PMA at 400 °C exhibits the best interface properties with an interface trap density of 1 × 1011 cm-2 eV-1. The GeNx/Ge interface is unpinned and the Fermi level at the Ge surface can move from the valence band edge to the conduction band edge.
Advanced Accelerators for Medical Applications
NASA Astrophysics Data System (ADS)
Uesaka, Mitsuru; Koyama, Kazuyoshi
We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter “linac”); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laser-based acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.
Advanced Accelerators for Medical Applications
NASA Astrophysics Data System (ADS)
Uesaka, Mitsuru; Koyama, Kazuyoshi
We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter "linac"); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laserbased acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.
Global Simulation of Electromagnetic Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov, George V.; Gallagher, D. L.; Kozyra, J. U.
2007-01-01
It is very well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis of modern satellite and ground-based data is needed to solve this very intriguing problem.
Global Simulation of Electromagnetic Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K.; Gallagher, D. L.; Kozyra, J. U.
2007-01-01
It is well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002 - 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis of modern satellite and ground-based data is needed to solve this very intriguing problem.
Conceptual design studies of the Electron Cyclotron launcher for DEMO reactor
NASA Astrophysics Data System (ADS)
Moro, Alessandro; Bruschi, Alex; Franke, Thomas; Garavaglia, Saul; Granucci, Gustavo; Grossetti, Giovanni; Hizanidis, Kyriakos; Tigelis, Ioannis; Tran, Minh-Quang; Tsironis, Christos
2017-10-01
A demonstration fusion power plant (DEMO) producing electricity for the grid at the level of a few hundred megawatts is included in the European Roadmap [1]. The engineering design and R&D for the electron cyclotron (EC), ion cyclotron and neutral beam systems for the DEMO reactor is being performed by Work Package Heating and Current Drive (WPHCD) in the framework of EUROfusion Consortium activities. The EC target power to the plasma is about 50 MW, in which the required power for NTM control and burn control is included. EC launcher conceptual design studies are here presented, showing how the main design drivers of the system have been taken into account (physics requirements, reactor relevant operations, issues related to its integration as in-vessel components). Different options for the antenna are studied in a parameters space including a selection of frequencies, injection angles and launch points to get the best performances for the antenna configuration, using beam tracing calculations to evaluate plasma accessibility and deposited power. This conceptual design studies comes up with the identification of possible limits, constraints and critical issues, essential in the selection process of launcher setup solution.
NASA Astrophysics Data System (ADS)
Kobayashi, T.; Ida, K.; Inagaki, S.; Tsuchiya, H.; Tamura, N.; Choe, G. H.; Yun, G. S.; Park, H. K.; Ko, W. H.; Evans, T. E.; Austin, M. E.; Shafer, M. W.; Ono, M.; López-bruna, D.; Ochando, M. A.; Estrada, T.; Hidalgo, C.; Moon, C.; Igami, H.; Yoshimura, Y.; Tsujimura, T. Ii.; Itoh, S.-I.; Itoh, K.
2017-07-01
In this contribution we analyze modulation electron cyclotron resonance heating (MECH) experiment and discuss higher harmonic frequency dependence of transport coefficients. We use the bidirectional heat pulse propagation method, in which both inward propagating heat pulse and outward propagating heat pulse are analyzed at a radial range, in order to distinguish frequency dependence of transport coefficients due to hysteresis from that due to other reasons, such as radially dependent transport coefficients, a finite damping term, or boundary effects. The method is applied to MECH experiments performed in various helical and tokamak devices, i.e. Large Helical Device (LHD), TJ-II, Korea Superconducting Tokamak Advanced Research (KSTAR), and Doublet III-D (DIII-D) with different plasma conditions. The frequency dependence of transport coefficients are clearly observed, showing a possibility of existence of transport hysteresis in flux-gradient relation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Hyojae, E-mail: lkcom@ibs.re.kr; Jin, Hyunchang; Jang, Ji-Ho
2016-02-15
A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, developmentmore » of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.« less
Status of the ion sources developments for the Spiral2 project at GANILa)
NASA Astrophysics Data System (ADS)
Lehérissier, P.; Bajeat, O.; Barué, C.; Canet, C.; Dubois, M.; Dupuis, M.; Flambard, J. L.; Frigot, R.; Jardin, P.; Leboucher, C.; Lemagnen, F.; Maunoury, L.; Osmond, B.; Pacquet, J. Y.; Pichard, A.; Thuillier, T.; Peaucelle, C.
2012-02-01
The SPIRAL 2 facility is now under construction and will deliver either stable or radioactive ion beams. First tests of nickel beam production have been performed at GANIL with a new version of the large capacity oven, and a calcium beam has been produced on the heavy ion low energy beam transport line of SPIRAL 2, installed at LPSC Grenoble. For the production of radioactive beams, several target/ion-source systems (TISSs) are under development at GANIL as the 2.45 GHz electron cyclotron resonance ion source, the surface ionization source, and the oven prototype for heating the uranium carbide target up to 2000 °C. The existing test bench has been upgraded for these developments and a new one, dedicated for the validation of the TISS before mounting in the production module, is under design. Results and current status of these activities are presented.
Vilkov, Andrey N.; Gamage, Chaminda M.; Misharin, Alexander S.; Doroshenko, Vladimir M.; Tolmachev, Dmitry A.; Tarasova, Irina A.; Kharybin, Oleg N.; Novoselov, Konstantin P.; Gorshkov, Michael V.
2007-01-01
A new Fourier Transform Ion Cyclotron Resonance mass spectrometer based on a permanent magnet with an atmospheric pressure ionization source was designed and constructed. A mass resolving power (full-width-at-half-maximum) of up to 80,000 in the electron ionization mode and 25,000 in the electrospray mode was obtained. Also, a mass measurement accuracy at low-ppm level has been demonstrated for peptide mixtures in a mass range of up to 1,200 m/z in the isotopically resolved mass spectra. PMID:17587594
NASA Astrophysics Data System (ADS)
Steyn, Gideon; Vermeulen, Christiaan; Isaacs, Eugene
2018-05-01
The techniques employed at iThemba LABS for the encapsulation of solid radionuclide production targets, based on cold indentation welding, electron beam welding and laser welding, are described. Some aspects of the target holders and cooling requirements to bombard targets in a tandem configuration with a 66 MeV proton beam, with intensities up to nominally 250 A, are also briefly discussed. These techniques are inter alia suitable for a production regimen compatible with the new generation of commercial, high-intensity 70 MeV cyclotrons.
NASA Astrophysics Data System (ADS)
Markovskii, S. A.; Chandran, Benjamin D. G.; Vasquez, Bernard J.
2018-04-01
We present two-dimensional hybrid simulations of proton-cyclotron and mirror instabilities in a proton-alpha plasma with particle-in-cell ions and a neutralizing electron fluid. The instabilities are driven by the protons with temperature perpendicular to the background magnetic field larger than the parallel temperature. The alpha particles with initially isotropic temperature have a nonzero drift speed with respect to the protons. The minor ions are known to influence the relative effect of the proton-cyclotron and mirror instabilities. In this paper, we show that the mirror mode can dominate the power spectrum at the nonlinear stage even if its linear growth rate is significantly lower than that of the proton-cyclotron mode. The proton-cyclotron instability combined with the alpha-proton drift is a possible cause of the nonzero magnetic helicity observed in the solar wind for fluctuations propagating nearly parallel to the magnetic field. Our simulations generally confirm this concept but reveal a complex helicity spectrum that is not anticipated from the linear theory of the instability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasperse, John R.; Basu, Bamandas; Lund, Eric J.
2010-06-15
Recently, a new multimoment fluid theory was developed for inhomogeneous, nonuniformly magnetized plasma in the guiding-center and gyrotropic approximation that includes the effect of electrostatic, turbulent, wave-particle interactions (see Jasperse et al. [Phys. Plasmas 13, 072903 (2006); ibid.13, 112902 (2006)]). In the present paper, which is intended as a sequel, it is concluded from FAST satellite data that the electrostatic ion-cyclotron turbulence that appears is due to the operation of an electron, bump-on-tail-driven ion-cyclotron instability for downward currents in the long-range potential region of the Earth's magnetosphere. Approximate closed-form expressions for the anomalous momentum and energy transfer rates for themore » ion-cyclotron turbulence are obtained. The turbulent, inhomogeneous, nonuniformly magnetized, multimoment fluid theory given above, in the limit of a turbulent, homogeneous, uniformly magnetized, quasisteady plasma, yields the well-known formula for the anomalous resistivity given by Gary and Paul [Phys. Rev. Lett. 26, 1097 (1971)] and Tange and Ichimaru [J. Phys. Soc. Jpn. 36, 1437 (1974)].« less
Electron cyclotron emission imaging and applications in magnetic fusion energy
NASA Astrophysics Data System (ADS)
Tobias, Benjamin John
Energy production through the burning of fossil fuels is an unsustainable practice. Exponentially increasing energy consumption and dwindling natural resources ensure that coal and gas fueled power plants will someday be a thing of the past. However, even before fuel reserves are depleted, our planet may well succumb to disastrous side effects, namely the build up of carbon emissions in the environment triggering world-wide climate change and the countless industrial spills of pollutants that continue to this day. Many alternatives are currently being developed, but none has so much promise as fusion nuclear energy, the energy of the sun. The confinement of hot plasma at temperatures in excess of 100 million Kelvin by a carefully arranged magnetic field for the realization of a self-sustaining fusion power plant requires new technologies and improved understanding of fundamental physical phenomena. Imaging of electron cyclotron radiation lends insight into the spatial and temporal behavior of electron temperature fluctuations and instabilities, providing a powerful diagnostic for investigations into basic plasma physics and nuclear fusion reactor operation. This dissertation presents the design and implementation of a new generation of Electron Cyclotron Emission Imaging (ECEI) diagnostics on toroidal magnetic fusion confinement devices, or tokamaks, around the world. The underlying physics of cyclotron radiation in fusion plasmas is reviewed, and a thorough discussion of millimeter wave imaging techniques and heterodyne radiometry in ECEI follows. The imaging of turbulence and fluid flows has evolved over half a millennium since Leonardo da Vinci's first sketches of cascading water, and applications for ECEI in fusion research are broad ranging. Two areas of physical investigation are discussed in this dissertation: the identification of poloidal shearing in Alfven eigenmode structures predicted by hybrid gyrofluid-magnetohydrodynamic (gyrofluid-MHD) modeling, and magnetic field line displacement during precursor oscillations associated with the sawtooth crash, a disruptive instability observed both in tokamak plasmas with high core current and in the magnetized plasmas of solar flares and other interstellar plasmas. Understanding both of these phenomena is essential for the future of magnetic fusion energy, and important new observations described herein underscore the advantages of imaging techniques in experimental physics.
Weichsel, T; Hartung, U; Kopte, T; Zschornack, G; Kreller, M; Silze, A
2014-05-01
An inverted cylindrical sputter magnetron device has been developed. The magnetron is acting as a metal vapor supply for an electron cyclotron resonance (ECR) ion source. FEM simulation of magnetic flux density was used to ensure that there is no critical interaction between both magnetic fields of magnetron and ECR ion source. Spatially resolved double Langmuir probe and optical emission spectroscopy measurements show an increase in electron density by one order of magnitude from 1 × 10(10) cm(-3) to 1 × 10(11) cm(-3), when the magnetron plasma is exposed to the magnetic mirror field of the ECR ion source. Electron density enhancement is also indicated by magnetron plasma emission photography with a CCD camera. Furthermore, photographs visualize the formation of a localized loss-cone - area, when the magnetron is operated at magnetic mirror field conditions. The inverted cylindrical magnetron supplies a metal atom load rate of R > 1 × 10(18) atoms/s for aluminum, which meets the demand for the production of a milliampere Al(+) ion beam.
Analysis of Scanned Probe Images for Magnetic Focusing in Graphene
Bhandari, Sagar; Lee, Gil-Ho; Kim, Philip; ...
2017-02-21
We have used cooled scanning probe microscopy (SPM) to study electron motion in nanoscale devices. The charged tip of the microscope was raster-scanned at constant height above the surface as the conductance of the device was measured. The image charge scatters electrons away, changing the path of electrons through the sample. Using this technique, we imaged cyclotron orbits that flow between two narrow contacts in the magnetic focusing regime for ballistic hBN–graphene–hBN devices. We present herein an analysis of our magnetic focusing imaging results based on the effects of the tip-created charge density dip on the motion of ballistic electrons.more » The density dip locally reduces the Fermi energy, creating a force that pushes electrons away from the tip. When the tip is above the cyclotron orbit, electrons are deflected away from the receiving contact, creating an image by reducing the transmission between contacts. The data and our analysis suggest that the graphene edge is rather rough, and electrons scattering off the edge bounce in random directions. However, when the tip is close to the edge, it can enhance transmission by bouncing electrons away from the edge, toward the receiving contact. Our results demonstrate that cooled SPM is a promising tool to investigate the motion of electrons in ballistic graphene devices.« less
Analysis of Scanned Probe Images for Magnetic Focusing in Graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhandari, Sagar; Lee, Gil-Ho; Kim, Philip
We have used cooled scanning probe microscopy (SPM) to study electron motion in nanoscale devices. The charged tip of the microscope was raster-scanned at constant height above the surface as the conductance of the device was measured. The image charge scatters electrons away, changing the path of electrons through the sample. Using this technique, we imaged cyclotron orbits that flow between two narrow contacts in the magnetic focusing regime for ballistic hBN–graphene–hBN devices. We present herein an analysis of our magnetic focusing imaging results based on the effects of the tip-created charge density dip on the motion of ballistic electrons.more » The density dip locally reduces the Fermi energy, creating a force that pushes electrons away from the tip. When the tip is above the cyclotron orbit, electrons are deflected away from the receiving contact, creating an image by reducing the transmission between contacts. The data and our analysis suggest that the graphene edge is rather rough, and electrons scattering off the edge bounce in random directions. However, when the tip is close to the edge, it can enhance transmission by bouncing electrons away from the edge, toward the receiving contact. Our results demonstrate that cooled SPM is a promising tool to investigate the motion of electrons in ballistic graphene devices.« less
ITER ECE Diagnostic: Design Progress of IN-DA and the diagnostic role for Physics
NASA Astrophysics Data System (ADS)
Pandya, H. K. B.; Kumar, Ravinder; Danani, S.; Shrishail, P.; Thomas, Sajal; Kumar, Vinay; Taylor, G.; Khodak, A.; Rowan, W. L.; Houshmandyar, S.; Udintsev, V. S.; Casal, N.; Walsh, M. J.
2017-04-01
The ECE Diagnostic system in ITER will be used for measuring the electron temperature profile evolution, electron temperature fluctuations, the runaway electron spectrum, and the radiated power in the electron cyclotron frequency range (70-1000 GHz), These measurements will be used for advanced real time plasma control (e.g. steering the electron cyclotron heating beams), and physics studies. The scope of the Indian Domestic Agency (IN-DA) is to design and develop the polarizer splitter units; the broadband (70 to 1000 GHz) transmission lines; a high temperature calibration source in the Diagnostics Hall; two Michelson Interferometers (70 to 1000 GHz) and a 122-230 GHz radiometer. The remainder of the ITER ECE diagnostic system is the responsibility of the US domestic agency and the ITER Organization (IO). The design needs to conform to the ITER Organization’s strict requirements for reliability, availability, maintainability and inspect-ability. Progress in the design and development of various subsystems and components considering various engineering challenges and solutions will be discussed in this paper. This paper will also highlight how various ECE measurements can enhance understanding of plasma physics in ITER.
Design of the 2D electron cyclotron emission imaging instrument for the J-TEXT tokamak.
Pan, X M; Yang, Z J; Ma, X D; Zhu, Y L; Luhmann, N C; Domier, C W; Ruan, B W; Zhuang, G
2016-11-01
A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advanced optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.
Design of the 2D electron cyclotron emission imaging instrument for the J-TEXT tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, X. M.; Yang, Z. J., E-mail: yangzj@hust.edu.cn; Ma, X. D.
2016-11-15
A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advancedmore » optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.« less
NASA Astrophysics Data System (ADS)
Kamata, Tomoyuki; Niwa, Osamu; Umemura, Shigeru; Hirono, Shigeru
2012-12-01
We studied pure carbon films and carbon nitride (CN) films by using electron cyclotron resonance (ECR) sputtering. The main feature of this method is high density ion irradiation during deposition, which enables the pure carbon films to have fullerene-like (FL) structures without nitrogen incorporation. Furthermore, without substrate heating, the ECR sputtered CN films exhibited an enhanced FL microstructure and hardness comparable to that of diamond at intermediate nitrogen concentration. This microstructure consisted of bent and cross-linked graphene sheets where layered areas remarkably decreased due to increased sp3 bonding. Under high nitrogen concentration conditions, the CN films demonstrated extremely low hardness because nitrile bonding not only decreased the covalent-bonded two-dimensional hexagonal network but also annihilated the bonding there. By evaluating lattice images obtained by transmission electron microscopy and the bonding state measured by X-ray photoelectron spectroscopy, we classified the ECR sputtered CN films and offered phase diagram and structure zone diagram.
Current drive with combined electron cyclotron wave and high harmonic fast wave in tokamak plasmas
NASA Astrophysics Data System (ADS)
Li, J. C.; Gong, X. Y.; Dong, J. Q.; Wang, J.; Zhang, N.; Zheng, P. W.; Yin, C. Y.
2016-12-01
The current driven by combined electron cyclotron wave (ECW) and high harmonic fast wave is investigated using the GENRAY/CQL3D package. It is shown that no significant synergetic current is found in a range of cases with a combined ECW and fast wave (FW). This result is consistent with a previous study [Harvey et al., in Proceedings of IAEA TCM on Fast Wave Current Drive in Reactor Scale Tokamaks (Synergy and Complimentarily with LHCD and ECRH), Arles, France, IAEA, Vienna, 1991]. However, a positive synergy effect does appear with the FW in the lower hybrid range of frequencies. This positive synergy effect can be explained using a picture of the electron distribution function induced by the ECW and a very high harmonic fast wave (helicon). The dependence of the synergy effect on the radial position of the power deposition, the wave power, the wave frequency, and the parallel refractive index is also analyzed, both numerically and physically.
Electron Cyclotron Radiation, Related Power Loss, and Passive Current Drive in Tokamaks: A Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fidone, Ignazio; Giruzzi, Gerardo; Granata, Giovanni
2001-01-15
A critical review on emission of weakly damped, high-harmonics electron cyclotron radiation, the related synchrotron power loss, and passive current drive in tokamaks with a fish-scale first wall is presented. First, the properties of overlapping harmonics are discussed using general analytical formulas and numerical applications. Next, the radiation power loss and efficiency of passive current drive in tokamak reactors are derived for the asymmetric fish-scale first wall. The radiation power loss is determined by the direction-averaged reflection coefficient {sigma}{sub 0} and the passive current drive by the differential reflectivity {delta}{sigma}/(1 - {sigma}{sub 0}). Finally, the problem of experimental investigations ofmore » the high harmonics radiation spectra, of {sigma}{sub 0} and {delta}{sigma}/(1 - {sigma}{sub 0}) in existing and next-step tokamaks, is discussed. Accurate measurements of the radiation spectra and the fish-scale reflectivity can be performed at arbitrary electron temperature using a partial fish-scale structure located near the tokamak equatorial plane.« less
Polarization of low-frequency electromagnetic radiation in the lobes of Jupiter's magnetotail
NASA Technical Reports Server (NTRS)
Moses, S. L.; Kennel, C. F.; Coroniti, F. V.; Scarf, F. L.; Kurth, W. S.
1987-01-01
The plasma wave instruments on the Voyager spacecraft have detected intense electromagnetic radiation within the lobes of Jupiter's magnetic tail down to the lowest frequency of the detector (10 Hz). During a yaw maneuver performed by Voyager 1 in the lobe of the Jovian magnetotail, a modulation appeared in the amplitudes of waves detected in the 10-, 17.8- and 31.1-Hz channels of the plasma wave analyzer, well below the local electron cyclotron frequency of 260 Hz. The lowest amplitudes occurred when the antenna axis was most nearly parallel to the magnetic field. Wave amplitudes in the 56.2-Hz and higher frequency channels remained nearly constant during the maneuver. From the cold-plasma theory of electromagnetic waves, it is concluded that the plasma frequency was between the 56.2- and 31.1-Hz channels where the parallel-polarized component of the spectrum cuts off. This implies a tail-lobe density between 0.000032 and 0.000015/cu cm. The left-hand cutoff frequency would then be below 10 Hz, consistent with either the Z-mode (L, X) or whistlers (R-mode) in the modulated channels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Seong-Heon; Wi, H. M.; Lee, W. R.
2013-08-15
Frequency modulation reflectometer has been developed to measure the plasma density profile of the Korea Superconducting Tokamak Advanced Research tokamak. Three reflectometers are operating in extraordinary polarization mode in the frequency range of Q band (33.6–54 GHz), V band (48–72 GHz), and W band (72–108 GHz) to measure the density up to 7 × 10{sup 19} m{sup −3} when the toroidal magnetic field is 2 T on axis. The antenna is installed inside of the vacuum vessel. A new vacuum window is developed by using 50 μm thick mica film and 0.1 mm thick gold gasket. The filter bank ofmore » low pass filter, notch filter, and Faraday isolator is used to reject the electron cyclotron heating high power at attenuation of 60 dB. The full frequency band is swept in 20 μs. The mixer output is directly digitized with sampling rate of 100 MSamples/s. The phase is obtained by using wavelet transform. The whole hardware and software system is described in detail and the measured density profile is presented as a result.« less
The 113 GHz ECRH system for JET
NASA Astrophysics Data System (ADS)
Verhoeven, A. G. A.; Bongers, W. A.; Elzendoorn, B. S. Q.; Graswinckel, M.; Hellingman, P.; Kamp, J. J.; Kooijman, W.; Kruijt, O. G.; Maagdenberg, J.; Ronden, D.; Stakenborg, J.; Sterk, A. B.; Tichler, J.; Alberti, S.; Goodman, T.; Henderson, M.; Hoekzema, J. A.; Oosterbeek, J. W.; Fernandez, A.; Likin, K.; Bruschi, A.; Cirant, S.; Novak, S.; Piosczyk, B.; Thumm, M.; Bindslev, H.; Kaye, A.; Fleming, C.; Zohm, H.
2003-02-01
An ECRH (Electron Cyclotron Resonance Heating) system has been designed for JET in the framework of the JET Enhanced-Performance project (JET-EP) under the European Fusion Development Agreement (EFDA). Due to financial constraints it has recently been decided not to implement this project. Nevertheless, the design work conducted from April 2000 to January 2002 shows a number of features that can be relevant in preparation of future ECRH systems, e.g., for ITER. The ECRH system was foreseen to comprise 6 gyrotrons, 1 MW each, in order to deliver 5 MW into the plasma [1]. The main aim was to enable the control of neo-classical tearing modes (NTM). The paper will concentrate on: • The power-supply and modulation system, including series IGBT switches, to enable independent control of each gyrotron and an all-solid-state body power supply to stabilise the gyrotron output power and to enable fast modulations up to 10 kHz. • A plug-in launcher, that is steerable in both toroidal and poloidal angle, and able to handle 8 separate mm-wave beams. Four steerable launching mirrors were foreseen to handle two mm-wave beams each. Water cooling of all the mirrors was a particularly ITER relevant feature.
Ion cyclotron resonance heating for tungsten control in various JET H-mode scenarios
NASA Astrophysics Data System (ADS)
Goniche, M.; Dumont, R. J.; Bobkov, V.; Buratti, P.; Brezinsek, S.; Challis, C.; Colas, L.; Czarnecka, A.; Drewelow, P.; Fedorczak, N.; Garcia, J.; Giroud, C.; Graham, M.; Graves, J. P.; Hobirk, J.; Jacquet, P.; Lerche, E.; Mantica, P.; Monakhov, I.; Monier-Garbet, P.; Nave, M. F. F.; Noble, C.; Nunes, I.; Pütterich, T.; Rimini, F.; Sertoli, M.; Valisa, M.; Van Eester, D.; Contributors, JET
2017-05-01
Ion cyclotron resonance heating (ICRH) in the hydrogen minority scheme provides central ion heating and acts favorably on the core tungsten transport. Full wave modeling shows that, at medium power level (4 MW), after collisional redistribution, the ratio of power transferred to the ions and the electrons vary little with the minority (hydrogen) concentration n H/n e but the high-Z impurity screening provided by the fast ions temperature increases with the concentration. The power radiated by tungsten in the core of the JET discharges has been analyzed on a large database covering the 2013-2014 campaign. In the baseline scenario with moderate plasma current (I p = 2.5 MA) ICRH modifies efficiently tungsten transport to avoid its accumulation in the plasma centre and, when the ICRH power is increased, the tungsten radiation peaking evolves as predicted by the neo-classical theory. At higher current (3-4 MA), tungsten accumulation can be only avoided with 5 MW of ICRH power with high gas injection rate. For discharges in the hybrid scenario, the strong initial peaking of the density leads to strong tungsten accumulation. When this initial density peaking is slightly reduced, with an ICRH power in excess of 4 MW,very low tungsten concentration in the core (˜10-5) is maintained for 3 s. MHD activity plays a key role in tungsten transport and modulation of the tungsten radiation during a sawtooth cycle is correlated to the fishbone activity triggered by the fast ion pressure gradient.
Renaud, J; Rossomme, S; Sarfehnia, A; Vynckier, S; Palmans, H; Kacperek, A; Seuntjens, J
2016-09-21
In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6-20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package. Absorbed dose to water was measured with an associated type A standard uncertainty of approximately 0.4% and 0.2% for the electron and proton beam experiments, respectively. In terms of thermal stability, drifts were on the order of a couple of hundred µK min -1 , with a short-term variation of 5-10 µK. Heat transfer correction factors ranged between 1.021 and 1.049. The overall combined standard uncertainty on the absorbed dose to water was estimated to be 0.6% for the 6 MeV and 8 MeV electron beams, as well as for the 60 MeV monoenergetic protons, and 0.7% for the modulated 60 MeV proton beam. This study establishes the feasibility of developing an absorbed dose transfer standard for short-range clinical electrons and protons and forms the basis for a transportable dose standard for direct calibration of ionization chambers in the user's beam. The largest contributions to the combined standard uncertainty were the positioning (⩽0.5%) and the correction due to conductive heat transfer (⩽0.4%). This is the first time that water calorimetry has been used in such a low energy proton beam.
NASA Astrophysics Data System (ADS)
Renaud, J.; Rossomme, S.; Sarfehnia, A.; Vynckier, S.; Palmans, H.; Kacperek, A.; Seuntjens, J.
2016-09-01
In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6-20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package. Absorbed dose to water was measured with an associated type A standard uncertainty of approximately 0.4% and 0.2% for the electron and proton beam experiments, respectively. In terms of thermal stability, drifts were on the order of a couple of hundred µK min-1, with a short-term variation of 5-10 µK. Heat transfer correction factors ranged between 1.021 and 1.049. The overall combined standard uncertainty on the absorbed dose to water was estimated to be 0.6% for the 6 MeV and 8 MeV electron beams, as well as for the 60 MeV monoenergetic protons, and 0.7% for the modulated 60 MeV proton beam. This study establishes the feasibility of developing an absorbed dose transfer standard for short-range clinical electrons and protons and forms the basis for a transportable dose standard for direct calibration of ionization chambers in the user’s beam. The largest contributions to the combined standard uncertainty were the positioning (⩽0.5%) and the correction due to conductive heat transfer (⩽0.4%). This is the first time that water calorimetry has been used in such a low energy proton beam.
NASA Astrophysics Data System (ADS)
Otani, Yohei; Itayama, Yasuhiro; Tanaka, Takuo; Fukuda, Yukio; Toyota, Hiroshi; Ono, Toshiro; Mitsui, Minoru; Nakagawa, Kiyokazu
2007-04-01
The authors have fabricated germanium (Ge) metal-insulator-semiconductor (MIS) structures with a 7-nm-thick tantalum pentaoxide (Ta2O5)/2-nm-thick germanium nitride (GeNx) gate insulator stack by electron-cyclotron-resonance plasma nitridation and sputtering deposition. They found that pure GeNx ultrathin layers can be formed by the direct plasma nitridation of the Ge surface without substrate heating. X-ray photoelectron spectroscopy revealed no oxidation of the GeNx layer after the Ta2O5 sputtering deposition. The fabricated MIS capacitor with a capacitance equivalent thickness of 4.3nm showed excellent leakage current characteristics. The interface trap density obtained by the modified conductance method was 4×1011cm-2eV-1 at the midgap.
NASA Astrophysics Data System (ADS)
Maimone, F.; Celona, L.; Lang, R.; Mäder, J.; Roßbach, J.; Spädtke, P.; Tinschert, K.
2011-12-01
The electromagnetic field within the plasma chamber of an electron cyclotron resonance ion source (ECRIS) and the properties of the plasma waves affect the plasma properties and ion beam production. We have experimentally investigated the "frequency tuning effect" and "double frequency heating" on the CAPRICE ECRIS device. A traveling wave tube amplifier, two microwave sweep generators, and a dedicated experimental set-up were used to carry out experiments in the 12.5-16.5 GHz frequency range. During the frequency sweeps the evolution of the intensity and shape of the extracted argon beam were measured together with the microwave reflection coefficient. A range of different ion source parameter settings was used. Here we describe these experiments and the resultant improved understanding of these operational modes of the ECR ion source.
Asymmetric linear efficiency and bunching mechanisms of TM modes for electron cyclotron maser
NASA Astrophysics Data System (ADS)
Chang, T. H.; Huang, W. C.; Yao, H. Y.; Hung, C. L.; Chen, W. C.; Su, B. Y.
2017-02-01
This study examines the transverse magnetic (TM) waveguide modes, which have long been considered as the unsuitable ones for the operation of the electron cyclotron maser. The beam-wave coupling strength of the TM modes, as expected, is found to be relatively weak as compared with that of the transverse electric (TE) waveguide modes. Unlike TE modes, surprisingly, the linear behavior of the TM modes depends on the sign of the wave number kz. The negative kz has a much stronger linear efficiency than that of the positive kz. The bunching mechanism analysis further exhibits that the azimuthal bunching and axial bunching do not compete but cooperate with each other for the backward-wave operation (negative kz). The current findings are encouraging and imply that TM modes might be advantageous to the gyrotron backward-wave oscillators.
Maimone, F; Celona, L; Lang, R; Mäder, J; Rossbach, J; Spädtke, P; Tinschert, K
2011-12-01
The electromagnetic field within the plasma chamber of an electron cyclotron resonance ion source (ECRIS) and the properties of the plasma waves affect the plasma properties and ion beam production. We have experimentally investigated the "frequency tuning effect" and "double frequency heating" on the CAPRICE ECRIS device. A traveling wave tube amplifier, two microwave sweep generators, and a dedicated experimental set-up were used to carry out experiments in the 12.5-16.5 GHz frequency range. During the frequency sweeps the evolution of the intensity and shape of the extracted argon beam were measured together with the microwave reflection coefficient. A range of different ion source parameter settings was used. Here we describe these experiments and the resultant improved understanding of these operational modes of the ECR ion source.
Fully non-inductive second harmonic electron cyclotron plasma ramp-up in the QUEST spherical tokamak
NASA Astrophysics Data System (ADS)
Idei, H.; Kariya, T.; Imai, T.; Mishra, K.; Onchi, T.; Watanabe, O.; Zushi, H.; Hanada, K.; Qian, J.; Ejiri, A.; Alam, M. M.; Nakamura, K.; Fujisawa, A.; Nagashima, Y.; Hasegawa, M.; Matsuoka, K.; Fukuyama, A.; Kubo, S.; Shimozuma, T.; Yoshikawa, M.; Sakamoto, M.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Ide, S.; Maekawa, T.; Takase, Y.; Toi, K.
2017-12-01
Fully non-inductive second (2nd) harmonic electron cyclotron (EC) plasma current ramp-up was demonstrated with a newlly developed 28 GHz system in the QUEST spherical tokamak. A high plasma current of 54 kA was non-inductively ramped up and sustained stably for 0.9 s with a 270 kW 28 GHz wave. A higher plasma current of 66 kA was also non-inductively achieved with a slow ramp-up of the vertical field. We have achieved a significantly higher plasma current than those achieved previously with the 2nd harmonic EC waves. This fully non-inductive 2nd harmonic EC plasma ramp-up method might be useful for future burning plasma devices and fusion reactors, in particular for operations at half magnetic field with the same EC heating equipment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Santanu, E-mail: sbanerje@ipr.res.in; Mishra, K.; Zushi, H.
Fluctuations are measured in the edge and scrape-off layer (SOL) of QUEST using fast visible imaging diagnostic. Electron cyclotron wave injection in the Ohmic plasma features excitation of low frequency coherent fluctuations near the separatrix and enhanced cross-field transport. Plasma shifts from initial high field side limiter bound (inboard limited, IL) towards inboard poloidal null (IPN) configuration with steepening of the density profile at the edge. This may have facilitated the increased edge and SOL fluctuation activities. Observation of the coherent mode, associated plasma flow, and particle out-flux, for the first time in the IPN plasma configuration in a sphericalmore » tokamak may provide further impetus to the edge and SOL turbulence studies in tokamaks.« less
NASA Technical Reports Server (NTRS)
Ganguli, Supriya B.; Mitchell, Horace G.; Palmadesso, Peter J.
1988-01-01
Fluid simulations of the plasma along auroral field lines in the return current region have been performed. It is shown that the onset of electrostatic ion cyclotron (EIC) related anomalous resistivity and the consequent heating of electrons leads to a transverse ion temperature that is much higher than that produced by the current driven EIC instability (CDICI) alone. Two processes are presented for the enhancement of ion heating by anomalous resistivity. The anomalous resistivity associated with the turbulence is limited by electron heating, so that CDICI saturates at transverse temperature that is substantially higher than in the absence of resistivity. It is suggested that this process demonstrates a positive feedback loop in the interaction between CDICI, anomalous resistivity, and parallel large-scale dynamics in the topside ionosphere.
Coupled microwave ECR and radio-frequency plasma source for plasma processing
Tsai, Chin-Chi; Haselton, Halsey H.
1994-01-01
In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm.sup.2 at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance.
Coupled microwave ECR and radio-frequency plasma source for plasma processing
Tsai, C.C.; Haselton, H.H.
1994-03-08
In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm[sup 2] at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance. 4 figures.
Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomae, R., E-mail: rthomae@tlabs.ac.za; Conradie, J.; Fourie, D.
2016-02-15
At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the resultsmore » of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.« less
Electron Scattering by High-Frequency Whistler Waves at Earth's Bow Shock
NASA Technical Reports Server (NTRS)
Oka, M.; Wilson, L. B., III; Phan, T. D.; Hull, A. J.; Amano, T.; Hoshino, M.; Argall, M. R.; Le Contel, O.; Agapitov, O.; Gersham, D. J.;
2017-01-01
Electrons are accelerated to non-thermal energies at shocks in space and astrophysical environments. While different mechanisms of electron acceleration have been proposed, it remains unclear how non-thermal electrons are produced out of the thermal plasma pool. Here, we report in situ evidence of pitch-angle scattering of non-thermal electrons by whistler waves at Earths bow shock. On 2015 November 4, the Magnetospheric Multiscale (MMS) mission crossed the bow shock with an Alfvn Mach number is approximately 11 and a shock angle of approximately 84deg. In the ramp and overshoot regions, MMS revealed bursty enhancements of non-thermal (0.52 keV) electron flux, correlated with high-frequency (0.2 - 0.4 Omega(sub ce), where Omega(sub ce) is the cyclotron frequency) parallel-propagating whistler waves. The electron velocity distribution (measured at 30 ms cadence) showed an enhanced gradient of phase-space density at and around the region where the electron velocity component parallel to the magnetic field matched the resonant energy inferred from the wave frequency range. The flux of 0.5 keV electrons (measured at 1ms cadence) showed fluctuations with the same frequency. These features indicate that non-thermal electrons were pitch-angle scattered by cyclotron resonance with the high-frequency whistler waves. However, the precise role of the pitch-angle scattering by the higher-frequency whistler waves and possible nonlinear effects in the electron acceleration process remains unclear.
Electron Scattering by High-frequency Whistler Waves at Earth’s Bow Shock
NASA Astrophysics Data System (ADS)
Oka, M.; Wilson, L. B., III; Phan, T. D.; Hull, A. J.; Amano, T.; Hoshino, M.; Argall, M. R.; Le Contel, O.; Agapitov, O.; Gershman, D. J.; Khotyaintsev, Y. V.; Burch, J. L.; Torbert, R. B.; Pollock, C.; Dorelli, J. C.; Giles, B. L.; Moore, T. E.; Saito, Y.; Avanov, L. A.; Paterson, W.; Ergun, R. E.; Strangeway, R. J.; Russell, C. T.; Lindqvist, P. A.
2017-06-01
Electrons are accelerated to non-thermal energies at shocks in space and astrophysical environments. While different mechanisms of electron acceleration have been proposed, it remains unclear how non-thermal electrons are produced out of the thermal plasma pool. Here, we report in situ evidence of pitch-angle scattering of non-thermal electrons by whistler waves at Earth’s bow shock. On 2015 November 4, the Magnetospheric Multiscale (MMS) mission crossed the bow shock with an Alfvén Mach number ˜11 and a shock angle ˜84°. In the ramp and overshoot regions, MMS revealed bursty enhancements of non-thermal (0.5-2 keV) electron flux, correlated with high-frequency (0.2-0.4 {{{Ω }}}{ce}, where {{{Ω }}}{ce} is the cyclotron frequency) parallel-propagating whistler waves. The electron velocity distribution (measured at 30 ms cadence) showed an enhanced gradient of phase-space density at and around the region where the electron velocity component parallel to the magnetic field matched the resonant energy inferred from the wave frequency range. The flux of 0.5 keV electrons (measured at 1 ms cadence) showed fluctuations with the same frequency. These features indicate that non-thermal electrons were pitch-angle scattered by cyclotron resonance with the high-frequency whistler waves. However, the precise role of the pitch-angle scattering by the higher-frequency whistler waves and possible nonlinear effects in the electron acceleration process remains unclear.
Observations of LHR noise with banded structure by the sounding rocket S29 barium-GEOS
NASA Technical Reports Server (NTRS)
Koskinen, H. E. J.; Holmgren, G.; Kintner, P. M.
1983-01-01
The measurement of electrostatic noise near the lower hybrid frequency made by the sounding rocket S29 barium-GEOS is reported. The noise is related to the spin of the rocket and reaches well below the local lower hybrid resonance frequency. Above the altitude of 300 km the noise shows banded structure roughly organized by the hydrogen cyclotron frequency. Simultaneously with the banded structure a signal near the hydrogen cyclotron frequency is detected. This signal is also spin modulated. The character of the noise strongly suggests that it is locally generated by the rocket payload disturbing the plasma. If this interpretation is correct, plasma wave experiments on other spacecrafts are expected to observe similar phenomena.
Superradiant phase transition with graphene embedded in one dimensional optical cavity
NASA Astrophysics Data System (ADS)
Li, Benliang; Liu, Tao; Hewak, Daniel W.; Wang, Qi Jie
2018-01-01
We theoretically investigate the cavity QED of graphene embedded in an optical cavity under perpendicular magnetic field. We consider the coupling of cyclotron transition and a multimode cavity described by a multimode Dicke model. This model exhibits a superradiant quantum phase transition, which we describe exactly in an effective Hamiltonian approach. The complete excitation spectrum in both the normal phase and superradiant phase regimes is given. In contrast to the single mode case, multimode coupling of cavity photon and cyclotron transition can greatly reduce the critical vacuum Rabi frequency required for quantum phase transition, and dramatically enhance the superradiant emission by fast modulating the Hamiltonian. Our work paves a way to experimental explorations of quantum phase transitions in solid state systems.
NASA Technical Reports Server (NTRS)
Erlandson, R. E.; Aggson, T. L.; Hogey, W. R.; Slavin, J. A.
1993-01-01
Observational results from an investigation of LF (0.5-4.0 Hz) electromagnetic ion cyclotron waves and subauroral electron temperature enhancements recorded from the DE-2 satellite are presented. Four different wave events were analyzed, all recorded at magnetic latitudes from 57-60 deg, magnetic local times from 8-14 hr, and altitudes from 600-900 km. The peak wave amplitudes during the events ranged from 8-70 nT and 5-30 mV/m in the magnetic and electric field, respectively. Te enhancements at the time of the waves were observed in three of four events. A linear relationship between the wave magnetic field spectral density and Te enhancements was found for these events. The Te enhancements were also correlated with an enhanced flux of low energy electrons. During one event (82104) an enhanced flux of electrons were observed at energies up to 50 eV and at nearly all pitch angles, although the flux was largest in the precipitating and upflowing directions. It is suggested that the waves are responsible for heating the low energy electrons which precipitate to the ionosphere and produce the observed Te enhancements. The upflowing electron population appears to be heated at ionospheric altitudes, below the DE-2 satellite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, J. F.; Wu, D. J.; Yan, Y. H., E-mail: djwu@pmo.ac.cn, E-mail: djwu@pmo.ac.cn
The electron-cyclotron maser (ECM) conventionally driven by velocity anisotropies of energetic electrons trapped in magnetic fields is one of the most important radio-emission mechanisms in astrophysics. Recently, Wu and Tang proposed that a proper lower energy cutoff behavior of power-law electrons can effectively excite the ECM emission. This paper considers effects of temperature anisotropy on this new ECM mechanism. The results show that the growth rates of the ECM emissions increase with {beta}{sub perpendicular0} and {beta}{sub ||0}, where {beta}{sub perpendicular0} and {beta}{sub ||0} are the perpendicular and parallel velocity spreads (in units of the light velocity c) of the energeticmore » electron beam, respectively. Moreover, the growth rates of O1 and X2 modes both sensitively depend on the ratio of the electron-cyclotron frequency to the plasma frequency {Omega} and reach their extremum values at {Omega} {approx_equal} 1.5 for the O1 mode and at {Omega} {approx_equal} 1.0 for the X2 mode. Meanwhile, as the mean velocity of the electron beam {beta}{sub s} (in units of c) increases, the growth rate of the O1 mode remains approximately constant and that of the X2 mode decreases considerably.« less
NASA Astrophysics Data System (ADS)
Hsieh, Yi-Kai; Omura, Yoshiharu
2017-10-01
We investigate the properties of whistler mode wave-particle interactions at oblique wave normal angles to the background magnetic field. We find that electromagnetic energy of waves at frequencies below half the electron cyclotron frequency can flow nearly parallel to the ambient magnetic field. We thereby confirm that the gyroaveraging method, which averages the cyclotron motion to the gyrocenter and reduces the simulation from two-dimensional to one-dimensional, is valid for oblique wave-particle interaction. Multiple resonances appear for oblique propagation but not for parallel propagation. We calculate the possible range of resonances with the first-order resonance condition as a function of electron kinetic energy and equatorial pitch angle. To reveal the physical process and the efficiency of electron acceleration by multiple resonances, we assume a simple uniform wave model with constant amplitude and frequency in space and time. We perform test particle simulations with electrons starting at specific equatorial pitch angles and kinetic energies. The simulation results show that multiple resonances contribute to acceleration and pitch angle scattering of energetic electrons. Especially, we find that electrons with energies of a few hundred keV can be accelerated efficiently to a few MeV through the n = 0 Landau resonance.
NASA Astrophysics Data System (ADS)
Walton, D. J.; Bachetti, M.; Fürst, F.; Barret, D.; Brightman, M.; Fabian, A. C.; Grefenstette, B. W.; Harrison, F. A.; Heida, M.; Kennea, J.; Kosec, P.; Lau, R. M.; Madsen, K. K.; Middleton, M. J.; Pinto, C.; Steiner, J. F.; Webb, N.
2018-04-01
Based on phase-resolved broadband spectroscopy using XMM-Newton and NuSTAR, we report on a potential cyclotron resonant scattering feature (CRSF) at E ∼ 13 keV in the pulsed spectrum of the recently discovered ultraluminous X-ray source (ULX) pulsar NGC 300 ULX1. If this interpretation is correct, the implied magnetic field of the central neutron star is B ∼ 1012 G (assuming scattering by electrons), similar to that estimated from the observed spin-up of the star, and also similar to known Galactic X-ray pulsars. We discuss the implications of this result for the connection between NGC 300 ULX1 and the other known ULX pulsars, particularly in light of the recent discovery of a likely proton cyclotron line in another ULX, M51 ULX-8.
Magneto-optical absorption and cyclotron-phonon resonance in graphene monolayer
NASA Astrophysics Data System (ADS)
Hoi, Bui Dinh; Phuong, Le Thi Thu; Phong, Tran Cong
2018-03-01
The optical absorption power by Dirac fermions in a graphene monolayer subjected to a perpendicular magnetic field is calculated using a projection operator technique. The electron-optical phonon interaction with optical deformation potential is taken into account. By varying the photon frequency (energy), we observe in the absorption power a series of cyclotron-phonon resonance (CPR) peaks (i.e., the phonon-assisted cyclotron resonance). It is seen that the resonant photon energy is linearly proportional to the square root of the magnetic field. Also, the half width at half maximum (HWHM) of CPR peaks depends on the magnetic field by the law HWHM = 7.42 √{B } but does not depend on the temperature. In particular, the magnetic field and temperature dependences of the position and HWHM of CPR peaks are in good agreement with those obtained recently by the perturbation theory and an experiment in graphene.
Engineering refinements to overcome default nuclide regulatory constraints
NASA Astrophysics Data System (ADS)
Finn, R.; Capitelli, P.; Sheh, Y.; Lom, C.; Graham, M.; Germain, J. St.
2005-12-01
The "classical" positron emitting radionuclides include oxygen-15, nitrogen-13 and carbon-11 which possess unique properties for medical imaging. They are radionuclides of the fundamental elements of biological matter. They each possess short half-lives which allow their use in designed radiotracers for clinical investigations with minimal risk and they are readily able to be produced in sufficient activities by low energy nuclear reactions. At present several accelerator manufacturers offer production packages for these radionuclides emphasizing targetry with consideration of the cyclotron extracted energies for nuclide production and on-line chemistry systems for the continuous production of specific precursors or radiotracers. Following the installation and acceptance of the MSKCC TR 19/9 Cyclotron, our experience with the procured chemistry module for the preparation of oxygen-15 labeled water has forced us to examine the design and the operation of the synthetic unit with a view toward the state of New York's regulations addressing the environmental pollution from radioactive materials. The chemistry module was refined with subtle modifications to the chemistry procedure/unit and our experience with the unit is presented as an example of our approach to insure regulatory compliance.
Application and development of ion-source technology for radiation-effects testing of electronics
NASA Astrophysics Data System (ADS)
Kalvas, T.; Javanainen, A.; Kettunen, H.; Koivisto, H.; Tarvainen, O.; Virtanen, A.
2017-09-01
Studies of heavy-ion induced single event effect (SEE) on space electronics are necessary to verify the operation of the components in the harsh radiation environment. These studies are conducted by using high-energy heavy-ion beams to simulate the radiation effects in space. The ion beams are accelerated as so-called ion cocktails, containing several ion beam species with similar mass-to-charge ratio, covering a wide range of linear energy transfer (LET) values also present in space. The use of cocktails enables fast switching between beam species during testing. Production of these high-energy ion cocktails poses challenging requirements to the ion sources because in most laboratories reaching the necessary beam energies requires very high charge state ions. There are two main technologies producing these beams: The electron beam ion source EBIS and the electron cyclotron resonance ion source ECRIS. The EBIS is most suitable for pulsed accelerators, while ECRIS is most suitable for use with cyclotrons, which are the most common accelerators used in these applications. At the Accelerator Laboratory of the University of Jyväskylä (JYFL), radiation effects testing is currently performed using a K130 cyclotron and a 14 GHz ECRIS at a beam energy of 9.3 MeV/u. A new 18 GHz ECRIS, pushing the limits of the normal conducting ECR technology is under development at JYFL. The performances of existing 18 GHz ion sources have been compared, and based on this analysis, a 16.2 MeV/u beam cocktail with 1999 MeV 126Xe44+ being the most challenging component to has been chosen for development at JYFL. The properties of the suggested beam cocktail are introduced and discussed.
Electron Transport in Graphene From a Diffusion-Drift Perspective
2010-02-24
Tung, M.E. Schwartz, M. Takita, Y.-J. Wang, P. Kim, and H.L. Stormer , “Cyclotron resonance in bilayer graphene,” Phys. Rev. Lett. 100, 087403 (2008...Dec. 2004. [3] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer , “Ultrahigh electron mobility in
Beam tracking simulation in the central region of a 13 MeV PET cyclotron
NASA Astrophysics Data System (ADS)
Anggraita, Pramudita; Santosa, Budi; Taufik, Mulyani, Emy; Diah, Frida Iswinning
2012-06-01
This paper reports the trajectories simulation of proton beam in the central region of a 13 MeV PET cyclotron, operating with negative proton beam (for easier beam extraction using a stripper foil), 40 kV peak accelerating dee voltage at fourth harmonic frequency of 77.88 MHz, and average magnetic field of 1.275 T. The central region covers fields of 240mm × 240mm × 30mm size at 1mm resolution. The calculation was also done at finer 0.25mm resolution covering fields of 30mm × 30mm × 4mm size to see the effects of 0.55mm horizontal width of the ion source window and the halted trajectories of positive proton beam. The simulations show up to 7 turns of orbital trajectories, reaching about 1 MeV of beam energy. The distribution of accelerating electric fields and magnetic fields inside the cyclotron were calculated in 3 dimension using Opera3D code and Tosca modules for static magnetic and electric fields. The trajectory simulation was carried out using Scilab 5.3.3 code.
Ion cyclotron instability at Io: Hybrid simulation results compared to in situ observations
NASA Astrophysics Data System (ADS)
Šebek, Ondřej; Trávníček, Pavel M.; Walker, Raymond J.; Hellinger, Petr
2016-08-01
We present analysis of global three-dimensional hybrid simulations of Io's interaction with Jovian magnetospheric plasma. We apply a single-species model with simplified neutral-plasma chemistry and downscale Io in order to resolve the ion kinetic scales. We consider charge exchange, electron impact ionization, and photoionization by using variable rates of these processes to investigate their impact. Our results are in a good qualitative agreement with the in situ magnetic field measurements for five Galileo flybys around Io. The hybrid model describes ion kinetics self-consistently. This allows us to assess the distribution of temperature anisotropies around Io and thereby determine the possible triggering mechanism for waves observed near Io. We compare simulated dynamic spectra of magnetic fluctuations with in situ observations made by Galileo. Our results are consistent with both the spatial distribution and local amplitude of magnetic fluctuations found in the observations. Cyclotron waves, triggered probably by the growth of ion cyclotron instability, are observed mainly downstream of Io and on the flanks in regions farther from Io where the ion pickup rate is relatively low. Growth of the ion cyclotron instability is governed mainly by the charge exchange rate.
Zhou, Qinghua; Xiao, Fuliang; Yang, Chang; ...
2017-05-22
Electrostatic electron cyclotron harmonic (ECH) waves generated by the electron loss cone distribution can produce efficient scattering loss of plasma sheet electrons, which has a significant effect on the dynamics in the outer magnetosphere. Here we report two ECH emission events around the same location L≈ 5.7–5.8, MLT ≈ 12 from Van Allen Probes on 11 February (event A) and 9 January 2014 (event B), respectively. The spectrum of ECH waves was centered at the lower half of the harmonic bands during event A, but the upper half during event B. The observed electron phase space density in both eventsmore » is fitted by the subtracted bi-Maxwellian distribution, and the fitting functions are used to evaluate the local growth rates of ECH waves based on a linear theory for homogeneous plasmas. ECH waves are excited by the loss cone instability of 50 eV–1 keV electrons in the lower half of harmonic bands in the low-density plasmasphere in event A, and 1–10 keV electrons in the upper half of harmonic bands in a relatively high-density region in event B. Here, the current results successfully explain observations and provide a first direct evidence on how ECH waves are generated in the lower and upper half of harmonic frequency bands.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Qinghua; Xiao, Fuliang; Yang, Chang
Electrostatic electron cyclotron harmonic (ECH) waves generated by the electron loss cone distribution can produce efficient scattering loss of plasma sheet electrons, which has a significant effect on the dynamics in the outer magnetosphere. Here we report two ECH emission events around the same location L≈ 5.7–5.8, MLT ≈ 12 from Van Allen Probes on 11 February (event A) and 9 January 2014 (event B), respectively. The spectrum of ECH waves was centered at the lower half of the harmonic bands during event A, but the upper half during event B. The observed electron phase space density in both eventsmore » is fitted by the subtracted bi-Maxwellian distribution, and the fitting functions are used to evaluate the local growth rates of ECH waves based on a linear theory for homogeneous plasmas. ECH waves are excited by the loss cone instability of 50 eV–1 keV electrons in the lower half of harmonic bands in the low-density plasmasphere in event A, and 1–10 keV electrons in the upper half of harmonic bands in a relatively high-density region in event B. Here, the current results successfully explain observations and provide a first direct evidence on how ECH waves are generated in the lower and upper half of harmonic frequency bands.« less
Observations of temperature rise during electron cyclotron heating application in Proto-MPEX
NASA Astrophysics Data System (ADS)
Biewer, T. M.; Bigelow, T.; Caneses, J. F.; Diem, S. J.; Rapp, J.; Reinke, M.; Kafle, N.; Ray, H. B.; Showers, M.
2017-10-01
The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) at ORNL utilizes a variety of power systems to generate and deliver a high heat flux plasma (1 MW/m2 for these discharges) onto the surface of material targets. In the experiments described here, up to 120 kW of 13.56 MHz ``helicon'' waves are combined with 20 kW of 28 GHz microwaves to produce Deuterium plasma discharges. The 28 GHz waves are launched in a region of the device where the magnetic field is axially varying near 0.8 T, resulting in the presence of a 2nd harmonic electron cyclotron heating (ECH) resonance layer that transects the plasma column. The electron density and temperature profiles are measured using a Thomson scattering (TS) diagnostic, and indicate that the electron density is radially peaked. In the core of the plasma column the electron density is higher than the cut-off density (0.9x1019 m-3) for ECH waves to propagate and O-X-B mode conversion into electron Bernstien waves (EBW) is expected. TS measurements indicate electron temperature increases during 28 GHz wave application, rising (from 5 eV to 20 eV) as the neutral Deuterium pressure is reduced below 1 mTorr. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.
NASA Technical Reports Server (NTRS)
Adrian, Mark L.; Pollock, C. J.; Moore, T. E.; Kintner, P. M.; Arnoldy, R. L.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
SCIFER TECHS observations of the variations in the thermal electron distribution in the 1400-km altitude cleft are associated with periods of intense ion heating and field-aligned currents. Energization of the thermal ion plasma in the mid-altitude cleft occurs within density cavities accompanied by enhanced thermal electron temperatures, large field-aligned thermal electron plasma flows and broadband low-frequency electric fields. Variations in the thermal electron contribution to field-aligned current densities indicate small scale (approximately 100's m) filamentary structure embedded within the ion energization periods. TECHS observations of the field-aligned drift velocities and temperatures of the thermal electron distribution are presented to evaluate the critical velocity thresholds necessary for the generation of electrostatic ion cyclotron and ion acoustic instabilities. This analysis suggests that, during periods of thermal ion energization, sufficient drift exists in the thermal electron distribution to excite the electrostatic ion cyclotron instability. In addition, brief periods exist within the same interval where the drift of the thermal electron distribution is sufficient to marginally excite the ion acoustic instability. In addition, the presence an enhancement in Langmuir emission at the plasma frequency at the center of the ion energization region, accompanied by the emission's second-harmonic, and collocated with observations of high-frequency electric field solitary structures suggest the presence of electron beam driven decay of Langmuir waves to ion acoustic modes as an additional free energy source for ion energization.
NASA Technical Reports Server (NTRS)
Tam, S. W. Y.; Chang, T.
2002-01-01
Kinetic effects due to wave-particle interactions and suprathermal electrons have been suggested in the literature as possible solar wind acceleration mechanisms. Ion cyclotron resonant heating, in particular, has been associated with some qualitative features observed in the solar wind. In terms of solar wind acceleration, however, it is interesting to compare the kinetic effects of suprathermal electrons with those due to the wave-particle interactions. The combined effects of the two acceleration mechanisms on the fast solar wind have been studied by Tam and Chang (1999a,b). In this study. we investigate the role of the suprathermal electron population in the acceleration of the solar wind. Our model follows the global kinetic evolution of the fast solar wind under the influence of ion cyclotron resonant heating, while taking into account Coulomb collisions, and the ambipolar electric field that is consistent with the particle distributions themselves. The kinetic effects due to the suprathermal electrons, which we define to be the tail of the electron distributions, can be included in the model as an option. By comparing the results with and without the inclusion of the suprathermal electron effects, we determine the relative importance of suprathermal electrons and wave-particle interactions in driving the solar wind. We find that although suprathermal electrons enhance the ambipolar electric potential in the solar wind considerably, their overall influence as an acceleration mechanism is relatively insignificant in a wave-driven solar wind.
NASA Astrophysics Data System (ADS)
Marinoni, A.; Pinsker, R. I.; Porkolab, M.; Rost, J. C.; Davis, E. M.; Burrell, K. H.; Candy, J.; Staebler, G. M.; Grierson, B. A.; McKee, G. R.; Rhodes, T. L.; The DIII-D Team
2017-12-01
Experiments simulating the ITER baseline scenario on the DIII-D tokamak show that torque-free pure electron heating, when coupled to plasmas subject to a net co-current beam torque, affects density fluctuations at electron scales on a sub-confinement time scale, whereas fluctuations at ion scales change only after profiles have evolved to a new stationary state. Modifications to the density fluctuations measured by the phase contrast imaging diagnostic (PCI) are assessed by analyzing the time evolution following the switch-off of electron cyclotron heating (ECH), thus going from mixed beam/ECH to pure neutral beam heating at fixed βN . Within 20 ms after turning off ECH, the intensity of fluctuations is observed to increase at frequencies higher than 200 kHz in contrast, fluctuations at lower frequency are seen to decrease in intensity on a longer time scale, after other equilibrium quantities have evolved. Non-linear gyro-kinetic modeling at ion and electron scales scales suggest that, while the low frequency response of the diagnostic is consistent with the dominant ITG modes being weakened by the slow-time increase in flow shear, the high frequency response is due to prompt changes to the electron temperature profile that enhance electron modes and generate a larger heat flux and an inward particle pinch. These results suggest that electron heated regimes in ITER will feature multi-scale fluctuations that might affect fusion performance via modifications to profiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Dongcheol; Peterson, B. J.; Lee, Seung Hun
The resistive bolometers have been successfully installed in the midplane of L-port in Korea Superconducting Tokamak Advanced Research (KSTAR) device. The spatial and temporal resolutions, 4.5 cm and {approx}1 kHz, respectively, enable us to measure the radial profile of the total radiated power from magnetically confined plasma at a high temperature through radiation and neutral particles. The radiated power was measured at all shots. Even at low plasma current, the bolometer signal was detectable. The electron cyclotron resonance heating (ECH) has been used in tokamak for ECH assisted start-up and plasma control by local heating and current drive. The detectorsmore » of resistive bolometer, near the antenna of ECH, are affected by electron cyclotron wave. The tomographic reconstruction, using the Phillips-Tikhonov regularization method, will be carried out for a major radial profile of the radiation emissivity of the circular cross-section plasma.« less
Kato, Yushi; Yano, Keisuke; Nishiokada, Takuya; Nagaya, Tomoki; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu
2016-02-01
A new tandem type source of electron cyclotron resonance (ECR) plasmas has been constructing for producing synthesized ion beams in Osaka University. Magnetic mirror field configuration with octupole magnets can be controlled to various shape of ECR zones, namely, in the 2nd stage plasma to be available by a pair mirror and a supplemental coil. Noteworthy correlations between these magnetic configurations and production of multicharged ions are investigated in detail, as well as their optimum conditions. We have been considering accessibility condition of electromagnetic and electrostatic waves propagating in ECR ion source plasma, and then investigated their correspondence relationships with production of multicharged ions. It has been clarified that there exits efficient configuration of ECR zones for producing multicharged ion beams experimentally, and then has been suggested from detail accessibility conditions on the ECR plasma that new resonance, i.e., upper hybrid resonance, must have occurred.
Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toivanen, V., E-mail: ville.aleksi.toivanen@cern.ch; Küchler, D.
2016-02-15
The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a waymore » to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurisu, Yosuke; Kiriyama, Ryutaro; Takenaka, Tomoya
2012-02-15
We are constructing a tandem-type electron cyclotron resonance ion source (ECRIS). The first stage of this can supply 2.45 GHz and 11-13 GHz microwaves to plasma chamber individually and simultaneously. We optimize the beam current I{sub FC} by the mobile plate tuner. The I{sub FC} is affected by the position of the mobile plate tuner in the chamber as like a circular cavity resonator. We aim to clarify the relation between the I{sub FC} and the ion saturation current in the ECRIS against the position of the mobile plate tuner. We obtained the result that the variation of the plasmamore » density contributes largely to the variation of the I{sub FC} when we change the position of the mobile plate tuner.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro, G.; Di Giugno, R.; Miracoli, R.
2012-02-15
A microwave discharge ion source (MDIS) operating at the Laboratori Nazionali del Sud of INFN, Catania has been used to compare the traditional electron cyclotron resonance (ECR) heating with an innovative mechanisms of plasma ignition based on the electrostatic Bernstein waves (EBW). EBW are obtained via the inner plasma electromagnetic-to-electrostatic wave conversion and they are absorbed by the plasma at cyclotron resonance harmonics. The heating of plasma by means of EBW at particular frequencies enabled us to reach densities much larger than the cutoff ones. Evidences of EBW generation and absorption together with X-ray emissions due to high energy electronsmore » will be shown. A characterization of the discharge heating process in MDISs as a generalization of the ECR heating mechanism by means of ray tracing will be shown in order to highlight the fundamental physical differences between ECR and EBW heating.« less
Status of the ITER Electron Cyclotron Heating and Current Drive System
NASA Astrophysics Data System (ADS)
Darbos, Caroline; Albajar, Ferran; Bonicelli, Tullio; Carannante, Giuseppe; Cavinato, Mario; Cismondi, Fabio; Denisov, Grigory; Farina, Daniela; Gagliardi, Mario; Gandini, Franco; Gassmann, Thibault; Goodman, Timothy; Hanson, Gregory; Henderson, Mark A.; Kajiwara, Ken; McElhaney, Karen; Nousiainen, Risto; Oda, Yasuhisa; Omori, Toshimichi; Oustinov, Alexander; Parmar, Darshankumar; Popov, Vladimir L.; Purohit, Dharmesh; Rao, Shambhu Laxmikanth; Rasmussen, David; Rathod, Vipal; Ronden, Dennis M. S.; Saibene, Gabriella; Sakamoto, Keishi; Sartori, Filippo; Scherer, Theo; Singh, Narinder Pal; Strauß, Dirk; Takahashi, Koji
2016-01-01
The electron cyclotron (EC) heating and current drive (H&CD) system developed for the ITER is made of 12 sets of high-voltage power supplies feeding 24 gyrotrons connected through 24 transmission lines (TL), to five launchers, four located in upper ports and one at the equatorial level. Nearly all procurements are in-kind, following general ITER philosophy, and will come from Europe, India, Japan, Russia and the USA. The full system is designed to couple to the plasma 20 MW among the 24 MW generated power, at the frequency of 170 GHz, for various physics applications such as plasma start-up, central H&CD and magnetohydrodynamic (MHD) activity control. The design takes present day technology and extends toward high-power continuous operation, which represents a large step forward as compared to the present state of the art. The ITER EC system will be a stepping stone to future EC systems for DEMO and beyond.
Feasibility of a motional Stark effect system on the TCV tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siegrist, M.R.; Hawkes, N.; Weisen, H.
This paper presents a feasibility study for a motional Stark effect (MSE) [F. M. Levinton et al., Phys. Rev. Lett. 63, 2060 (1989)] diagnostic on the TCV tokamak. A numerical simulation code has been used to identify the optimal port arrangement and geometrical layout. It predicts the expected measurement accuracy for a range of typical plasma scenarios. With the existing neutral beam injector (NBI) and a detection system based on current day technology, it should be possible to determine the safety factor with an accuracy of the order of 5%. A vertically injected beam through the plasma center would allowmore » one to measure plasmas which are centered above the midplane, a common occurrence in connection with electron cyclotron resonance heating and electron cyclotron current drive experiments. In this case a new and ideally more powerful NBI would be required.« less
Park, Ji Hun; Byun, Dongjin; Lee, Joong Kee
2011-08-01
Gallium tin oxide composite (GTO) thin films were prepared by electron cyclotron resonance-metal organic chemical vapor deposition (ECR-MOCVD). The organometallics of tetramethlytin and trimethylgallium were used for precursors of gallium and tin, respectively. X-ray diffraction (XRD) characterization indicated that the gallium tin oxide composite thin films show the nanopolycrystalline of tetragonal rutile structure. Hall measurement indicated that the Ga/[O+Sn] mole ratio play an important role to determine the electrical properties of gallium tin composite oxide thin films. n-type conducting film obtained Ga/[O+Sn] mole ratio of 0.05 exhibited the lowest electrical resistivity of 1.21 x 10(-3) ohms cm. In our experimental range, the optimized carrier concentration of 3.71 x 10(18) cm(-3) was prepared at the Ga/[O+Sn] mole ratio of 0.35.
Electron cyclotron resonance plasma reactor for production of carbon stripper foil
NASA Astrophysics Data System (ADS)
Faith Romero, Camille; Kanamori, Keita; Kinsho, Michikazu; Yoshimoto, Masahiro; Wada, Motoi
2018-01-01
A graphite antenna for the production of carbon-containing hydrogen plasmas is being developed to prepare impurity-free charge exchange foils for high-energy synchrotrons. Microwave power at 2.45 GHz frequency drives a coaxial structure antenna with a 12-mm-diameter central graphite cylinder and a tapered surrounding cylinder serving as the ground electrode. The antenna was placed in a linear magnetic field to investigate how it performs under an electron cyclotron resonance (ECR) condition. A clear resonance phenomenon was observed in plasma luminosity, microwave power absorption, and microwave power reflection when the induction current used to produce a linear magnetic field was changed. The antenna realized the best microwave coupling to the plasma with the ECR zone formed 5 mm from the end of the center electrode. The antenna realized stable operation for more than 5 h with 100 W input microwave power and with operating hydrogen pressure from 0.5 to 50 Pa.
Predicting electromagnetic ion cyclotron wave amplitude from unstable ring current plasma conditions
Fu, Xiangrong; Cowee, Misa M.; Jordanova, Vania K.; ...
2016-11-01
Electromagnetic ion cyclotron (EMIC) waves in the Earth's inner magnetosphere are enhanced fluctuations driven unstable by ring current ion temperature anisotropy. EMIC waves can resonate with relativistic electrons and play an important role in precipitation of MeV radiation belt electrons. In this study, we investigate the excitation and saturation of EMIC instability in a homogeneous plasma using both linear theory and nonlinear hybrid simulations. We have explored a four-dimensional parameter space, carried out a large number of simulations, and derived a scaling formula that relates the saturation EMIC wave amplitude to initial plasma conditions. Finally, such scaling can be usedmore » in conjunction with ring current models like ring current-atmosphere interactions model with self-consistent magnetic field to provide global dynamic EMIC wave maps that will be more accurate inputs for radiation belt modeling than statistical models.« less
Design of a Microwave Assisted Discharge Inductive Plasma Accelerator
NASA Technical Reports Server (NTRS)
Hallock, Ashley K.; Polzin, Kurt A.
2010-01-01
A new plasma accelerator concept that employs electrodeless plasma preionization and pulsed inductive acceleration is presented. Preionization is achieved through an electron cyclotron resonance discharge that produces a weakly-ionized plasma at the face of a conical theta pinch-shaped inductive coil. The presence of the preionized plasma allows for current sheet formation at lower discharge voltages than those found in other pulsed inductive accelerators. The location of an electron cyclotron resonance discharge can be controlled through the design of the applied magnetic field in the thruster. A finite-element model of the magnetic field was used as a design tool, allowing for the implementation of an arrangement of permanent magnets that yields a small volume of preionized propellant at the coil face. This allows for current sheet formation at the face of the inductive coil, minimizing the initial inductance of the pulse circuit and maximizing the potential efficiency of the new accelerator.
Kimura, Daiju; Kurisu, Yosuke; Nozaki, Dai; Yano, Keisuke; Imai, Youta; Kumakura, Sho; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki
2014-02-01
We are constructing a tandem type ECRIS. The first stage is large-bore with cylindrically comb-shaped magnet. We optimize the ion beam current and ion saturation current by a mobile plate tuner. They change by the position of the plate tuner for 2.45 GHz, 11-13 GHz, and multi-frequencies. The peak positions of them are close to the position where the microwave mode forms standing wave between the plate tuner and the extractor. The absorbed powers are estimated for each mode. We show a new guiding principle, which the number of efficient microwave mode should be selected to fit to that of multipole of the comb-shaped magnets. We obtained the excitation of the selective modes using new mobile plate tuner to enhance ECR efficiency.
NASA Astrophysics Data System (ADS)
Alava, M. J.; Heikkinen, J. A.; Hellsten, T.
1995-07-01
In order to reduce or to avoid ion cyclotron damping, the use of frequencies below the ion cyclotron frequency of minority ion species or the second harmonic of majority ion species has been proposed for fast wave current drive based on direct electron absorption. For these scenarios, the Alfven or ion-ion hybrid resonance can appear on the high field side of a tokamak. The presence of these resonances causes parasitic absorption, competing with the electron Landau damping and transit time magnetic pumping responsible for the fast wave current drive. In the present study, neglecting effects from toroidicity, the mode conversion at the Alfven resonance is shown to be of the order of 5 to 10% in the current drive scenarios for the planned ITER experiment. If the single pass absorption in the centre can be made sufficiently high, the conversion at the Alfven resonance becomes negligible
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuda, Yukio; Otani, Yohei; Okamoto, Hiroshi
2011-09-26
We have investigated the effects of the formation temperature and postmetallization annealing (PMA) on the interface properties of GeN{sub x}/p-Ge fabricated by the plasma nitridation of Ge substrates using an electron-cyclotron-resonance-generated nitrogen plasma. The nitridation temperature is found to be a critical parameter in improving the finally obtained GeN{sub x}/Ge interface properties. The GeN{sub x}/Ge formed at room temperature and treated by PMA at 400 deg. C exhibits the best interface properties with an interface trap density of 1 x 10{sup 11 }cm{sup -2 }eV{sup -1}. The GeN{sub x}/Ge interface is unpinned and the Fermi level at the Ge surfacemore » can move from the valence band edge to the conduction band edge.« less
Toivanen, V; Küchler, D
2016-02-01
The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidorov, A.; Dorf, M.; Zorin, V.
2008-02-15
Electron cyclotron resonance ion source with quasi-gas-dynamic regime of plasma confinement (ReGIS), constructed at the Institute of Applied Physics, Russia, provides opportunities for extracting intense and high-brightness multicharged ion beams. Despite the short plasma lifetime in a magnetic trap of a ReGIS, the degree of multiple ionization may be significantly enhanced by the increase in power and frequency of the applied microwave radiation. The present work is focused on studying the intense beam quality of this source by the pepper-pot method. A single beamlet emittance measured by the pepper-pot method was found to be {approx}70 {pi} mm mrad, and themore » total extracted beam current obtained at 14 kV extraction voltage was {approx}25 mA. The results of the numerical simulations of ion beam extraction are found to be in good agreement with experimental data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spaedtke, P.; Lang, R.; Maeder, J.
2012-02-15
Using improved beam diagnostic tools, the structure of an ion beam extracted from an electron cyclotron resonance ion source (ECRIS) becomes visible. Especially viewing targets to display the beam profile and pepper pot devices for emittance measurements turned out to be very useful. On the contrary, diagnostic tools integrating over one space coordinate like wire harps for profile measurements or slit-slit devices, respectively slit-grid devices to measure the emittance might be applicable for beam transport investigations in a quadrupole channel, but are not very meaningful for investigations regarding the given ECRIS symmetry. Here we try to reproduce the experimentally foundmore » structure on the ion beam by simulation. For the simulation, a certain model has to be used to reproduce the experimental results. The model is also described in this paper.« less
NASA Astrophysics Data System (ADS)
Hayashizaki, Noriyosu; Hattori, Toshiyuki; Matsui, Shinjiro; Tomizawa, Hiromitsu; Yoshida, Toru; Isokawa, Katsushi; Kitagawa, Atsushi; Muramatsu, Masayuki; Yamada, Satoru; Okamura, Masahiro
2000-02-01
We have researched a compact medical accelerator with low investment and running cost for the popularization of heavy ion cancer therapy. As the first step, the compact injector system has been investigated for a Heavy Ion Medical Accelerator in Chiba at National Institute of Radiological Sciences. The proposed new injector system consists of a 6 MeV/u interdigital H-mode (IH) linac of 3.1 m long and a 18 GHz superconducting electron cyclotron resonance (ECR) (SC-ECR) ion source. The IH linac with high power efficiency is appropriate to a medical and industrial injector system. Its beam trajectory was simulated and a prototype has been constructed. The SC-ECR ion source has been designed to realize lightweight and low power consumption and the mirror field distribution was estimated.
NASA Astrophysics Data System (ADS)
Jasperse, John R.; Basu, Bamandas; Lund, Eric J.; Grossbard, Neil
2010-06-01
The physical processes that determine the self-consistent electric field (E∥) parallel to the magnetic field have been an unresolved problem in magnetospheric physics for over 40 years. Recently, a new multimoment fluid theory was developed for inhomogeneous, nonuniformly magnetized plasma in the guiding-center and gyrotropic approximation that includes the effect of electrostatic, turbulent, wave-particle interactions (see Jasperse et al. [Phys. Plasmas 13, 072903 (2006); Jasperse et al., Phys. Plasmas13, 112902 (2006)]). In the present paper and its companion paper [Jasperse et al., Phys. Plasmas 17, 062903 (2010)], which are intended as sequels to the earlier work, a fundamental model for downward, magnetic field-aligned (Birkeland) currents for quasisteady conditions is presented. The model includes the production of electrostatic ion-cyclotron turbulence in the long-range potential region by an electron, bump-on-tail-driven ion-cyclotron instability. Anomalous momentum transfer (anomalous resistivity) by itself is found to produce a very small contribution to E∥; however, the presence of electrostatic, ion-cyclotron turbulence has a very large effect on the altitude dependence of the entire quasisteady solution. Anomalous energy transfer (anomalous heating and cooling) modifies the density, drift, and temperature altitude profiles and hence the generalized parallel-pressure gradients and mirror forces in the electron and ion momentum-balance equations. As a result, |E∥| is enhanced by nearly a factor of 40 compared to its value when turbulence is absent. The space-averaged potential increase associated with the strong double layer at the bottom of the downward-current sheet is estimated using the FAST satellite data and the multimoment fluid theory.
Light, Max E; Colestock, Patrick L
2014-01-28
An electron cyclotron resonance (ECR) thruster is disclosed having a plasma chamber which is electrically biased with a positive voltage. The chamber bias serves to efficiently accelerate and expel the positive ions from the chamber. Electrons follow the exiting ions, serving to provide an electrically neutral exhaust plume. In a further embodiment, a downstream shaping magnetic field serves to further accelerate and/or shape the exhaust plume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abernathy, C.R.; Hobson, W.S.; Hong, J.
1998-11-04
Current and future generations of sophisticated compound semiconductor devices require the ability for submicron scale patterning. The situation is being complicated since some of the new devices are based on a wider diversity of materials to be etched. Conventional IUE (Reactive Ion Etching) has been prevalent across the industry so far, but has limitations for materials with high bond strengths or multiple elements. IrI this paper, we suggest high density plasmas such as ECR (Electron Cyclotron Resonance) and ICP (Inductively Coupled Plasma), for the etching of ternary compound semiconductors (InGaP, AIInP, AlGaP) which are employed for electronic devices like heterojunctionmore » bipolar transistors (HBTs) or high electron mobility transistors (HEMTs), and photonic devices such as light-emitting diodes (LEDs) and lasers. High density plasma sources, opeiating at lower pressure, are expected to meet target goals determined in terms of etch rate, surface morphology, surface stoichiometry, selectivity, etc. The etching mechanisms, which are described in this paper, can also be applied to other III-V (GaAs-based, InP-based) as well as III-Nitride since the InGaAIP system shares many of the same properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weichsel, T., E-mail: tim.weichsel@fep.fraunhofer.de; Hartung, U.; Kopte, T.
2014-05-15
An inverted cylindrical sputter magnetron device has been developed. The magnetron is acting as a metal vapor supply for an electron cyclotron resonance (ECR) ion source. FEM simulation of magnetic flux density was used to ensure that there is no critical interaction between both magnetic fields of magnetron and ECR ion source. Spatially resolved double Langmuir probe and optical emission spectroscopy measurements show an increase in electron density by one order of magnitude from 1 × 10{sup 10} cm{sup −3} to 1 × 10{sup 11} cm{sup −3}, when the magnetron plasma is exposed to the magnetic mirror field of themore » ECR ion source. Electron density enhancement is also indicated by magnetron plasma emission photography with a CCD camera. Furthermore, photographs visualize the formation of a localized loss-cone - area, when the magnetron is operated at magnetic mirror field conditions. The inverted cylindrical magnetron supplies a metal atom load rate of R > 1 × 10{sup 18} atoms/s for aluminum, which meets the demand for the production of a milliampere Al{sup +} ion beam.« less
Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy.
Inoue, T; Hattori, T; Sugimoto, S; Sasai, K
2014-02-01
Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz.
NASA Astrophysics Data System (ADS)
Zhao, H. W.; Sun, L. T.; Guo, J. W.; Lu, W.; Xie, D. Z.; Hitz, D.; Zhang, X. Z.; Yang, Y.
2017-09-01
The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24-28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of 40Ar+ and 129Xe26+ have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL), China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24 +18 GHz ) heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.
Nonlinear saturation of wave packets excited by low-energy electron horseshoe distributions.
Krafft, C; Volokitin, A
2013-05-01
Horseshoe distributions are shell-like particle distributions that can arise in space and laboratory plasmas when particle beams propagate into increasing magnetic fields. The present paper studies the stability and the dynamics of wave packets interacting resonantly with electrons presenting low-energy horseshoe or shell-type velocity distributions in a magnetized plasma. The linear instability growth rates are determined as a function of the ratio of the plasma to the cyclotron frequencies, of the velocity and the opening angle of the horseshoe, and of the relative thickness of the shell. The nonlinear stage of the instability is investigated numerically using a symplectic code based on a three-dimensional Hamiltonian model. Simulation results show that the dynamics of the system is mainly governed by wave-particle interactions at Landau and normal cyclotron resonances and that the high-order normal cyclotron resonances play an essential role. Specific features of the dynamics of particles interacting simultaneously with two or more waves at resonances of different natures and orders are discussed, showing that such complex processes determine the main characteristics of the wave spectrum's evolution. Simulations with wave packets presenting quasicontinuous spectra provide a full picture of the relaxation of the horseshoe distribution, revealing two main phases of the evolution: an initial stage of wave energy growth, characterized by a fast filling of the shell, and a second phase of slow damping of the wave energy, accompanied by final adjustments of the electron distribution. The influence of the density inhomogeneity along the horseshoe on the wave-particle dynamics is also discussed.
Strong Field Quenching of the Quasiparticle Effective Mass in Heavy Fermion Compound YbCo2Zn20
NASA Astrophysics Data System (ADS)
Masahiro Ohya,; Masaki Matsushita,; Shingo Yoshiuchi,; Tetsuya Takeuchi,; Fuminori Honda,; Rikio Settai,; Toshiki Tanaka,; Yasunori Kubo,; Yoshichika Ōnuki,
2010-08-01
We found a metamagnetic like anomaly at Hm≃ 5 kOe in a heavy fermion compound YbCo2Zn20 below the characteristic temperature Tχ_{max}=0.32 K where the ac-susceptibility shows a broad peak, suggesting that an electronic state with a very low Kondo temperature is realized. Interestingly, the metamagnetic like behavior was observed as two peaks at 4.0 and 7.5 kOe at 95 mK in the magnetic field dependence of the electronic specific heat C/T. The extremely large values of the electronic specific heat coefficient γ≃ 8000 mJ/(K2\\cdotmol) and A=160 μΩ\\cdotcm/K2 in the electrical resistivity ρ=ρ0+AT2 at H=0 kOe are most likely due to the very low Kondo temperature. The \\sqrt{A} value was, however, found to be strongly reduced from \\sqrt{A}=12.6 (μΩ\\cdotcm/K2)1/2 at 0 kOe to 0.145 (μΩ\\cdotcm/K2)1/2 at 150 kOe. Therefore, we considered that the corresponding cyclotron effective mass mc*, which was determined from the temperature dependence of the de Haas-van Alphen (dHvA) amplitude, is also reduced with increasing magnetic field and is in fact not large, ranging from 2 to 9m0 at 117 kOe. From the field dependence of \\sqrt{A} and mc*, we estimated the cyclotron effective mass at 0 kOe to be 100--500m0, revealing the largest cyclotron mass as far as we know.
E × B electron drift instability in Hall thrusters: Particle-in-cell simulations vs. theory
NASA Astrophysics Data System (ADS)
Boeuf, J. P.; Garrigues, L.
2018-06-01
The E × B Electron Drift Instability (E × B EDI), also called Electron Cyclotron Drift Instability, has been observed in recent particle simulations of Hall thrusters and is a possible candidate to explain anomalous electron transport across the magnetic field in these devices. This instability is characterized by the development of an azimuthal wave with wavelength in the mm range and velocity on the order of the ion acoustic velocity, which enhances electron transport across the magnetic field. In this paper, we study the development and convection of the E × B EDI in the acceleration and near plume regions of a Hall thruster using a simplified 2D axial-azimuthal Particle-In-Cell simulation. The simulation is collisionless and the ionization profile is not-self-consistent but rather is given as an input parameter of the model. The aim is to study the development and properties of the instability for different values of the ionization rate (i.e., of the total ion production rate or current) and to compare the results with the theory. An important result is that the wavelength of the simulated azimuthal wave scales as the electron Debye length and that its frequency is on the order of the ion plasma frequency. This is consistent with the theory predicting destruction of electron cyclotron resonance of the E × B EDI in the non-linear regime resulting in the transition to an ion acoustic instability. The simulations also show that for plasma densities smaller than under nominal conditions of Hall thrusters the field fluctuations induced by the E × B EDI are no longer sufficient to significantly enhance electron transport across the magnetic field, and transit time instabilities develop in the axial direction. The conditions and results of the simulations are described in detail in this paper and they can serve as benchmarks for comparisons between different simulation codes. Such benchmarks would be very useful to study the role of numerical noise (numerical noise can also be responsible to the destruction of electron cyclotron resonance) or the influence of the period of the azimuthal domain, as well as to reach a better and consensual understanding of the physics.
Whistlers in space plasma, their role for particle populations in the inner magnetosphere
NASA Astrophysics Data System (ADS)
Shklyar, David
Of many wave modes, which propagate in the plasmaspheric region of the magnetosphere, whistler waves play the most important role in the dynamics of energetic particles (chiefly elec-trons, but not excepting protons), as their resonant interactions are very efficient. There are three main sources of whistler mode waves in the magnetosphere, namely, lightning strokes, VLF transmitter signals, and far and away various kinds of kinetic instabilities leading to generation of whistler mode waves. Resonant interactions of energetic electrons with whistlers may lead to electron acceleration, scattering into loss-cone, and consequent precipitation into the iono-sphere and atmosphere. While electron resonant interaction with lightning-induced whistlers and VLF transmitter signals may, to a certain approximation, be considered as particle dy-namics in given electromagnetic fields, resonant wave-particle interaction in the case of plasma instability is intrinsically a self-consistent process. An important aspect of whistler-electron interactions (particularly in the case of plasma instability) is the possibility of energy exchange between different energetic electron populations. Thus, in many cases, whistler wave growth rate is determined by "competition" between the first cyclotron and Cerenkov resonances, one (depending on energetic electron distribution) leading to wave growth and the other one to wave damping. Since particles which give rise to wave growth loose their energy, while parti-cles which lead to wave damping gain energy at the expense of the wave, and since the first cyclotron and Cerenkov resonances correspond to different particle energies, wave generation as the result of plasma instability may lead, at the same time, to energy exchange between two populations of energetic particles. While the role of whistlers in dynamics of energetic electrons in the magnetosphere is gener-ally recognized, their role for protons seems to be underestimated. At the same time, quasi-electrostatic lower-hybrid resonance (LHR) waves (to which non-ducted whistler mode waves originating from lightning strokes naturally evolve while propagating in the magnetosphere) may efficiently interact with energetic protons at higher order cyclotron resonances. Thus, whistler mode waves may mediate energy transfer not only between different populations of energetic electrons, but also between various plasma species. Theoretical discussion of various aspects of resonant wave-particle interactions in the magne-tosphere, those mentioned above and others, will be the subject of the report.
Electron cyclotron resonance sources: Historical review and future prospects (invited)
NASA Astrophysics Data System (ADS)
Geller, R.
1998-03-01
Low charge state electron cyclotron resonance ion source (ECRIS) work since 1965 and high charge state ECRIS since 1974. These ECR sources are categorized into three main sections: (1) Low charged ion (ECRIS) inside simple magnetic mirror or Bucket configurations. (2) High charged ion ECRIS inside min-B mirror configurations. (3) Short pulsed ECRIS with highly charged ions where the ion confinement is disturbed for a short while, which allows the extraction of intense ion pulses. Future prospects are based on rational scaling of the magnetic confinement including high B modes, by increasing the radio frequency (rf) frequency and ECR magnetic field. In this case, charge exchange has to be minimized and plasma instabilities have to be avoided. However, clever empirical tricks lead also to outstanding not always predicted improvements. Let us cite: optimized rf plasma coupling, electron guns, gas mixing, wall coating, biased electrodes, and more recently multiple ECR frequency heating. ECRIS have not yet achieved their optimal possibilities. Let us wait for the next generation of superconducting ECRIS and the possible use of subcentimeter waves.
Electron cyclotron resonance sources: Historical review and future prospects (invited)
NASA Astrophysics Data System (ADS)
Geller, R.
1998-02-01
Low charge state electron cyclotron resonance ion source (ECRIS) work since 1965 and high charge state ECRIS since 1974. These ECR sources are categorized into three main sections: (1) Low charged ion (ECRIS) inside simple magnetic mirror or Bucket configurations. (2) High charged ion ECRIS inside min-B mirror configurations. (3) Short pulsed ECRIS with highly charged ions where the ion confinement is disturbed for a short while, which allows the extraction of intense ion pulses. Future prospects are based on rational scaling of the magnetic confinement including high B modes, by increasing the radio frequency (rf) frequency and ECR magnetic field. In this case, charge exchange has to be minimized and plasma instabilities have to be avoided. However, clever empirical tricks lead also to outstanding not always predicted improvements. Let us cite: optimized rf plasma coupling, electron guns, gas mixing, wall coating, biased electrodes, and more recently multiple ECR frequency heating. ECRIS have not yet achieved their optimal possibilities. Let us wait for the next generation of superconducting ECRIS and the possible use of subcentimeter waves.
NASA Astrophysics Data System (ADS)
Demikhovskii, V. Ya.; Turkevich, R. V.
2015-04-01
The semiclassical dynamics of charge carriers moving over the surface of a Bi2Te3-type 3D topological insulator in a static magnetic field is studied. The effects related to the changes in the symmetry of constant energy surfaces (contours), as well as to the nonzero Berry curvature, are taken into account. It is shown that effects related both to the anomalous velocity proportional to the Berry curvature and to the distortions of the trajectories stemming from the additional contribution to the energy proportional the orbital magnetic moment of a wave packet appear in contrast to the conventional dynamics of electrons moving in a uniform static magnetic field along trajectories determined by the conditions E( k) = const and p z = const. This should lead to changes in the cyclotron resonance conditions for surface electrons. Although the magnetic field breaks the time-reversal symmetry and the topological order, the studies of the cyclotron resonance allow finding out whether a given insulator is a trivial one or not in zero magnetic field.
NASA Technical Reports Server (NTRS)
Brown, E. R.; Wengler, M. J.; Phillips, T. G.
1985-01-01
Spectra are presented of the responsivity and noise equivalent power (NEP) of liquid-helium-cooled InSb detectors as a function of magnetic field in the range 20-110 per cm. The measurements are all made using a Fourier transform spectrometer with thermal sources. The results show a discernable peak in the detector response at the conduction electron cyclotron resonance (CCR) frequency for magnetic fields as low as 3 kG. The magnitude of responsivity at the resonance peaks is roughly constant with magnetic field and is comparable to the low-frequency hot-electron bolometer response. The NEP at the peaks is found to be comparable to the best long wavelength results previously reported. For example, NEP = 4.5 x 10 to the 13th W/(square root of Hz) at 4.2 K, 6 kG, and 40 per cm was measured. The InSb CCR will provide a much improved detector for laboratory spectroscopy, as compared with hot electron bolometers, in the 20-100 per cm range.
NASA Astrophysics Data System (ADS)
O'Steen, M. L.; Hauenstein, R. J.; Bandić, Z. Z.; Feenstra, R. M.; Hwang, S. J.; McGill, T. C.
1996-03-01
GaN is a robust semiconducting material offering a large, direct bandgap appropriate for use in blue-green to UV light emitting diodes and laser diodes. Attainment of device quality GaN has been difficult due to the lack of substrate materials that are suitably matched to the unusually small lattice parameter of GaN. To better control heteroepitaxial growth quality, a fundamental study of the initial stages of GaN growth by Electron Cyclotron Resonance Nitrogen Plasma-Assisted Molecular Beam Epitaxy (ECR-MBE) has been performed. The effect of an ECR Nitrogen plasma on a GaAs (100) surface is examined through time resolved reflection high energy electron diffraction, high resolution x-ray diffraction, and cross-sectional scanning tunneling microscopy. Fully commensurate GaN_yAs_1-y/GaAs heterostructures involving ultrathin GaN_yAs_1-y layers are obtained, and thermally activated microscopic growth processes are identified and quantitatively characterized through the aid of a specially developed kinetic model. The implications for ECR-MBE growth of GaN/GaAs mutilayers is discussed.
Self-consistent modeling of electron cyclotron resonance ion sources
NASA Astrophysics Data System (ADS)
Girard, A.; Hitz, D.; Melin, G.; Serebrennikov, K.; Lécot, C.
2004-05-01
In order to predict the performances of electron cyclotron resonance ion source (ECRIS), it is necessary to perfectly model the different parts of these sources: (i) magnetic configuration; (ii) plasma characteristics; (iii) extraction system. The magnetic configuration is easily calculated via commercial codes; different codes also simulate the ion extraction, either in two dimension, or even in three dimension (to take into account the shape of the plasma at the extraction influenced by the hexapole). However the characteristics of the plasma are not always mastered. This article describes the self-consistent modeling of ECRIS: we have developed a code which takes into account the most important construction parameters: the size of the plasma (length, diameter), the mirror ratio and axial magnetic profile, whether a biased probe is installed or not. These input parameters are used to feed a self-consistent code, which calculates the characteristics of the plasma: electron density and energy, charge state distribution, plasma potential. The code is briefly described, and some of its most interesting results are presented. Comparisons are made between the calculations and the results obtained experimentally.
EMIC Waves Observed in Conjunction with BARREL Electron Precipitation
NASA Astrophysics Data System (ADS)
Weaver, C.; Engebretson, M. J.; Lessard, M.; Halford, A. J.; Millan, R. M.; Horne, R. B.; Singer, H. J.
2013-05-01
Electromagnetic ion-cyclotron (EMIC) waves have been detected at Halley, Antarctica coinciding with observations of electron precipitation on high altitude balloons from the Balloon Array for RBSP Relativistic Electron Losses (BARREL) campaign launched in early 2013 from SANAE IV and Halley Station. The balloons were launched such that both spatial and temporal properties of electron precipitation might be examined. With a magnetic foot point mapped to the radiation belts, Halley is an ideal location to capture ground based signatures that coincide with electron precipitation. EMIC waves have been shown, both theoretically and through statistical surveys, to pitch angle scatter energetic protons and relativistic electrons via cyclotron resonance and contribute to radiation belt dynamics. EMIC waves were detected at Halley Station 23 times from 12 Jan - 4 Feb with 17 of those waves occurring during times when at least one BARREL balloon observed precipitation in one or more energy channels. High resolution magnetometer data from GOES 13 (which has a magnetic foot point near WAIS Divide, Antarctica-located about 2.5 hours, in MLT, west of Halley) show similar EMIC wave structure and frequency to 9 waves observed at Halley, suggesting the source region extended to at least the longitude and L value of GOES 13 during some events. The ground observed waves appeared in all local times and during both quiet and disturbed intervals.
Major results from the first plasma campaign of the Wendelstein 7-X stellarator
Wolf, R. C.; Ali, A.; Alonso, A.; ...
2017-07-27
Here, after completing the main construction phase of Wendelstein 7-X (W7-X) and successfully commissioning the device, first plasma operation started at the end of 2015. Integral commissioning of plasma start-up and operation using electron cyclotron resonance heating (ECRH) and an extensive set of plasma diagnostics have been completed, allowing initial physics studies during the first operational campaign. Both in helium and hydrogen, plasma breakdown was easily achieved. Gaining experience with plasma vessel conditioning, discharge lengths could be extended gradually. Eventually, discharges lasted up to 6 s, reaching an injected energy of 4 MJ, which is twice the limit originally agreedmore » for the limiter configuration employed during the first operational campaign. At power levels of 4 MW central electron densities reached 3 × 10 19 m –3, central electron temperatures reached values of 7 keV and ion temperatures reached just above 2 keV. Important physics studies during this first operational phase include a first assessment of power balance and energy confinement, ECRH power deposition experiments, 2nd harmonic O-mode ECRH using multi-pass absorption, and current drive experiments using electron cyclotron current drive. As in many plasma discharges the electron temperature exceeds the ion temperature significantly, these plasmas are governed by core electron root confinement showing a strong positive electric field in the plasma centre.« less
Major results from the first plasma campaign of the Wendelstein 7-X stellarator
NASA Astrophysics Data System (ADS)
Wolf, R. C.; Ali, A.; Alonso, A.; Baldzuhn, J.; Beidler, C.; Beurskens, M.; Biedermann, C.; Bosch, H.-S.; Bozhenkov, S.; Brakel, R.; Dinklage, A.; Feng, Y.; Fuchert, G.; Geiger, J.; Grulke, O.; Helander, P.; Hirsch, M.; Höfel, U.; Jakubowski, M.; Knauer, J.; Kocsis, G.; König, R.; Kornejew, P.; Krämer-Flecken, A.; Krychowiak, M.; Landreman, M.; Langenberg, A.; Laqua, H. P.; Lazerson, S.; Maaßberg, H.; Marsen, S.; Marushchenko, M.; Moseev, D.; Niemann, H.; Pablant, N.; Pasch, E.; Rahbarnia, K.; Schlisio, G.; Stange, T.; Pedersen, T. Sunn; Svensson, J.; Szepesi, T.; Trimino Mora, H.; Turkin, Y.; Wauters, T.; Weir, G.; Wenzel, U.; Windisch, T.; Wurden, G.; Zhang, D.; Abramovic, I.; Äkäslompolo, S.; Aleynikov, P.; Aleynikova, K.; Alzbutas, R.; Anda, G.; Andreeva, T.; Ascasibar, E.; Assmann, J.; Baek, S.-G.; Banduch, M.; Barbui, T.; Barlak, M.; Baumann, K.; Behr, W.; Benndorf, A.; Bertuch, O.; Biel, W.; Birus, D.; Blackwell, B.; Blanco, E.; Blatzheim, M.; Bluhm, T.; Böckenhoff, D.; Bolgert, P.; Borchardt, M.; Borsuk, V.; Boscary, J.; Böttger, L.-G.; Brand, H.; Brandt, Ch.; Bräuer, T.; Braune, H.; Brezinsek, S.; Brunner, K.-J.; Brünner, B.; Burhenn, R.; Buttenschön, B.; Bykov, V.; Calvo, I.; Cannas, B.; Cappa, A.; Carls, A.; Carraro, L.; Carvalho, B.; Castejon, F.; Charl, A.; Chernyshev, F.; Cianciosa, M.; Citarella, R.; Ciupiński, Ł.; Claps, G.; Cole, M.; Cole, M. J.; Cordella, F.; Cseh, G.; Czarnecka, A.; Czermak, A.; Czerski, K.; Czerwinski, M.; Czymek, G.; da Molin, A.; da Silva, A.; Dammertz, G.; Danielson, J.; de la Pena, A.; Degenkolbe, S.; Denner, P.; Dhard, D. P.; Dostal, M.; Drevlak, M.; Drewelow, P.; Drews, Ph.; Dudek, A.; Dundulis, G.; Durodie, F.; van Eeten, P.; Effenberg, F.; Ehrke, G.; Endler, M.; Ennis, D.; Erckmann, E.; Esteban, H.; Estrada, T.; Fahrenkamp, N.; Feist, J.-H.; Fellinger, J.; Fernandes, H.; Fietz, W. H.; Figacz, W.; Fontdecaba, J.; Ford, O.; Fornal, T.; Frerichs, H.; Freund, A.; Führer, M.; Funaba, T.; Galkowski, A.; Gantenbein, G.; Gao, Y.; García Regaña, J.; Garcia-Munoz, M.; Gates, D.; Gawlik, G.; Geiger, B.; Giannella, V.; Gierse, N.; Gogoleva, A.; Goncalves, B.; Goriaev, A.; Gradic, D.; Grahl, M.; Green, J.; Grosman, A.; Grote, H.; Gruca, M.; Guerard, C.; Haiduk, L.; Han, X.; Harberts, F.; Harris, J. H.; Hartfuß, H.-J.; Hartmann, D.; Hathiramani, D.; Hein, B.; Heinemann, B.; Heitzenroeder, P.; Henneberg, S.; Hennig, C.; Hernandez Sanchez, J.; Hidalgo, C.; Hölbe, H.; Hollfeld, K. P.; Hölting, A.; Höschen, D.; Houry, M.; Howard, J.; Huang, X.; Huber, M.; Huber, V.; Hunger, H.; Ida, K.; Ilkei, T.; Illy, S.; Israeli, B.; Ivanov, A.; Jablonski, S.; Jagielski, J.; Jelonnek, J.; Jenzsch, H.; Junghans, P.; Kacmarczyk, J.; Kaliatka, T.; Kallmeyer, J.-P.; Kamionka, U.; Karalevicius, R.; Kasahara, H.; Kasparek, W.; Kenmochi, N.; Keunecke, M.; Khilchenko, A.; Kinna, D.; Kleiber, R.; Klinger, T.; Knaup, M.; Kobarg, Th.; Köchl, F.; Kolesnichenko, Y.; Könies, A.; Köppen, M.; Koshurinov, J.; Koslowski, R.; Köster, F.; Koziol, R.; Krämer, M.; Krampitz, R.; Kraszewsk, P.; Krawczyk, N.; Kremeyer, T.; Krings, Th.; Krom, J.; Krzesinski, G.; Ksiazek, I.; Kubkowska, M.; Kühner, G.; Kurki-Suonio, T.; Kwak, S.; Lang, R.; Langish, S.; Laqua, H.; Laube, R.; Lechte, C.; Lennartz, M.; Leonhardt, W.; Lewerentz, L.; Liang, Y.; Linsmeier, Ch.; Liu, S.; Lobsien, J.-F.; Loesser, D.; Loizu Cisquella, J.; Lore, J.; Lorenz, A.; Losert, M.; Lubyako, L.; Lücke, A.; Lumsdaine, A.; Lutsenko, V.; Majano-Brown, J.; Marchuk, O.; Mardenfeld, M.; Marek, P.; Massidda, S.; Masuzaki, S.; Maurer, D.; McCarthy, K.; McNeely, P.; Meier, A.; Mellein, D.; Mendelevitch, B.; Mertens, Ph.; Mikkelsen, D.; Mishchenko, O.; Missal, B.; Mittelstaedt, J.; Mizuuchi, T.; Mollen, A.; Moncada, V.; Mönnich, T.; Morizaki, T.; Munk, R.; Murakami, S.; Musielok, F.; Náfrádi, G.; Nagel, M.; Naujoks, D.; Neilson, H.; Neubauer, O.; Neuner, U.; Ngo, T.; Nocentini, R.; Nührenberg, C.; Nührenberg, J.; Obermayer, S.; Offermanns, G.; Ogawa, K.; Ongena, J.; Oosterbeek, J. W.; Orozco, G.; Otte, M.; Pacios Rodriguez, L.; Pan, W.; Panadero, N.; Panadero Alvarez, N.; Panin, A.; Papenfuß, D.; Paqay, S.; Pavone, A.; Pawelec, E.; Pelka, G.; Peng, X.; Perseo, V.; Peterson, B.; Pieper, A.; Pilopp, D.; Pingel, S.; Pisano, F.; Plaum, B.; Plunk, G.; Povilaitis, M.; Preinhaelter, J.; Proll, J.; Puiatti, M.-E.; Sitjes, A. Puig; Purps, F.; Rack, M.; Récsei, S.; Reiman, A.; Reiter, D.; Remppel, F.; Renard, S.; Riedl, R.; Riemann, J.; Rimkevicius, S.; Riße, K.; Rodatos, A.; Röhlinger, H.; Romé, M.; Rong, P.; Roscher, H.-J.; Roth, B.; Rudischhauser, L.; Rummel, K.; Rummel, T.; Runov, A.; Rust, N.; Ryc, L.; Ryosuke, S.; Sakamoto, R.; Samartsev, A.; Sanchez, M.; Sano, F.; Satake, S.; Satheeswaran, G.; Schacht, J.; Schauer, F.; Scherer, T.; Schlaich, A.; Schlüter, K.-H.; Schmitt, J.; Schmitz, H.; Schmitz, O.; Schmuck, S.; Schneider, M.; Schneider, W.; Scholz, M.; Scholz, P.; Schrittwieser, R.; Schröder, M.; Schröder, T.; Schroeder, R.; Schumacher, H.; Schweer, B.; Shanahan, B.; Shikhovtsev, I. V.; Sibilia, M.; Sinha, P.; Sipliä, S.; Skodzik, J.; Slaby, C.; Smith, H.; Spiess, W.; Spong, D. A.; Spring, A.; Stadler, R.; Standley, B.; Stephey, L.; Stoneking, M.; Stridde, U.; Sulek, Z.; Surko, C.; Suzuki, Y.; Szabó, V.; Szabolics, T.; Szökefalvi-Nagy, Z.; Tamura, N.; Terra, A.; Terry, J.; Thomas, J.; Thomsen, H.; Thumm, M.; von Thun, C. P.; Timmermann, D.; Titus, P.; Toi, K.; Travere, J. M.; Traverso, P.; Tretter, J.; Tsuchiya, H.; Tsujimura, T.; Tulipán, S.; Turnyanskiy, M.; Unterberg, B.; Urban, J.; Urbonavicius, E.; Vakulchyk, I.; Valet, S.; van Millingen, B.; Vela, L.; Velasco, J.-L.; Vergote, M.; Vervier, M.; Vianello, N.; Viebke, H.; Vilbrandt, R.; Vorkörper, A.; Wadle, S.; Wagner, F.; Wang, E.; Wang, N.; Warmer, F.; Wegener, L.; Weggen, J.; Wei, Y.; Wendorf, J.; Werner, A.; Wiegel, B.; Wilde, F.; Winkler, E.; Winters, V.; Wolf, S.; Wolowski, J.; Wright, A.; Xanthopoulos, P.; Yamada, H.; Yamada, I.; Yasuhara, R.; Yokoyama, M.; Zajac, J.; Zarnstorff, M.; Zeitler, A.; Zhang, H.; Zhu, J.; Zilker, M.; Zimbal, A.; Zocco, A.; Zoletnik, S.; Zuin, M.
2017-10-01
After completing the main construction phase of Wendelstein 7-X (W7-X) and successfully commissioning the device, first plasma operation started at the end of 2015. Integral commissioning of plasma start-up and operation using electron cyclotron resonance heating (ECRH) and an extensive set of plasma diagnostics have been completed, allowing initial physics studies during the first operational campaign. Both in helium and hydrogen, plasma breakdown was easily achieved. Gaining experience with plasma vessel conditioning, discharge lengths could be extended gradually. Eventually, discharges lasted up to 6 s, reaching an injected energy of 4 MJ, which is twice the limit originally agreed for the limiter configuration employed during the first operational campaign. At power levels of 4 MW central electron densities reached 3 × 1019 m-3, central electron temperatures reached values of 7 keV and ion temperatures reached just above 2 keV. Important physics studies during this first operational phase include a first assessment of power balance and energy confinement, ECRH power deposition experiments, 2nd harmonic O-mode ECRH using multi-pass absorption, and current drive experiments using electron cyclotron current drive. As in many plasma discharges the electron temperature exceeds the ion temperature significantly, these plasmas are governed by core electron root confinement showing a strong positive electric field in the plasma centre.
Major results from the first plasma campaign of the Wendelstein 7-X stellarator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, R. C.; Ali, A.; Alonso, A.
Here, after completing the main construction phase of Wendelstein 7-X (W7-X) and successfully commissioning the device, first plasma operation started at the end of 2015. Integral commissioning of plasma start-up and operation using electron cyclotron resonance heating (ECRH) and an extensive set of plasma diagnostics have been completed, allowing initial physics studies during the first operational campaign. Both in helium and hydrogen, plasma breakdown was easily achieved. Gaining experience with plasma vessel conditioning, discharge lengths could be extended gradually. Eventually, discharges lasted up to 6 s, reaching an injected energy of 4 MJ, which is twice the limit originally agreedmore » for the limiter configuration employed during the first operational campaign. At power levels of 4 MW central electron densities reached 3 × 10 19 m –3, central electron temperatures reached values of 7 keV and ion temperatures reached just above 2 keV. Important physics studies during this first operational phase include a first assessment of power balance and energy confinement, ECRH power deposition experiments, 2nd harmonic O-mode ECRH using multi-pass absorption, and current drive experiments using electron cyclotron current drive. As in many plasma discharges the electron temperature exceeds the ion temperature significantly, these plasmas are governed by core electron root confinement showing a strong positive electric field in the plasma centre.« less
Cyclotron resonance in bilayer graphene.
Henriksen, E A; Jiang, Z; Tung, L-C; Schwartz, M E; Takita, M; Wang, Y-J; Kim, P; Stormer, H L
2008-02-29
We present the first measurements of cyclotron resonance of electrons and holes in bilayer graphene. In magnetic fields up to B=18 T, we observe four distinct intraband transitions in both the conduction and valence bands. The transition energies are roughly linear in B between the lowest Landau levels, whereas they follow square root[B] for the higher transitions. This highly unusual behavior represents a change from a parabolic to a linear energy dispersion. The density of states derived from our data generally agrees with the existing lowest order tight binding calculation for bilayer graphene. However, in comparing data to theory, a single set of fitting parameters fails to describe the experimental results.
Cyclotron resonance of dirac fermions in InAs/GaSb/InAs quantum wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishtopenko, S. S.; Ikonnikov, A. V., E-mail: antikon@ipmras.ru; Maremyanin, K. V.
2017-01-15
The band structure of three-layer symmetric InAs/GaSb/InAs quantum wells confined between AlSb barriers is analyzed theoretically. It is shown that, depending on the thicknesses of the InAs and GaSb layers, a normal band structure, a gapless state with a Dirac cone at the center of the Brillouin zone, or inverted band structure (two-dimensional topological insulator) can be realized in this system. Measurements of the cyclotron resonance in structures with gapless band spectra carried out for different electron concentrations confirm the existence of massless Dirac fermions in InAs/GaSb/InAs quantum wells.
Phase space evolution in linear instabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pantellini, F.G.E.; Burgess, D.; Schwartz, S.J.
1994-12-01
A simple and powerful way to investigate the linear evolution of particle distribution functions in kinetic instabilities in a homogeneous collisionless plasma is presented. The method can be applied to any kind of instability, provided the characteristics (growth rate, frequency, wave vector, and polarization) of the mode are known and can also be used to estimate the amplitude of the waves at the end of the linear phase of growth. Two didactic examples are used to illustrate the versatility of the technique: the Alfven Ion Cyclotron (AIC) instability, which is electromagnetic, and the Electron Ion Cyclotron (EIC) instability, which ismore » electrostatic.« less
The optical/ultraviolet excess of isolated neutron stars in the resonant cyclotron scattering model
NASA Astrophysics Data System (ADS)
Tong, Hao; Xu, Ren-Xin; Song, Li-Ming
2011-12-01
X-ray dim isolated neutron stars are peculiar pulsar-like objects, characterized by their Planck-like spectrum. In studying their spectral energy distributions, optical/ultraviolet (UV) excess is a long standing problem. Recently Kaplan et al. measured the optical/UV excess for all seven sources, which is understandable in the resonant cyclotron scattering (RCS) model previously addressed. The RCS model calculations show that the RCS process can account for the observed optical/UV excess for most sources. The flat spectrum of RX J2143.0+0654 may be due to contributions from the bremsstrahlung emission of the electron system in addition to the RCS process.
NASA Astrophysics Data System (ADS)
White, A. E.
2009-11-01
Multi-field fluctuation measurements provide opportunities for rigorous comparison between experiment and nonlinear gyrokinetic turbulence simulations. A unique set of diagnostics on DIII-D allows for simultaneous study of local, long-wavelength (0 < kθρs< 0.5) electron temperature and density fluctuations in the core plasma (0.4 < ρ< 0.8). Previous experiments in L-mode indicate that normalized electron temperature fluctuation levels (40 < f < 400,kHz) increase with radius from ˜0.4% at ρ= 0.5 to ˜2% at ρ=0.8, similar to simultaneously measured density fluctuations. Electron cyclotron heating (ECH) is used to increase Te, which increases electron temperature fluctuation levels and electron heat transport in the experiments. In contrast, long wavelength density fluctuation levels change very little. The different responses are consistent with increased TEM drive relative to ITG-mode drive. A new capability at DIII-D is the measurement of phase angle between electron temperature and density fluctuations using coupled correlation electron cyclotron emission radiometer and reflectometer diagnostics. Linear and nonlinear GYRO runs have been used to design validation experiments that focus on measurements of the phase angle. GYRO shows that if Te and ∇Te increase 50% in a beam-heated L-mode plasma (ρ=0.5), then the phase angle between electron temperature and density fluctuations decreases 30%-50% and electron temperature fluctuation levels increase a factor of two more than density fluctuations. Comparisons between these predictions and experimental results will be presented.
Vlasov simulations of electron acceleration by radio frequency heating near the upper hybrid layer
NASA Astrophysics Data System (ADS)
Najmi, A.; Eliasson, B.; Shao, X.; Milikh, G.; Sharma, A. S.; Papadopoulos, K.
2017-10-01
It is shown by using a combination of Vlasov and test particles simulations that the electron distribution function resulting from energization due to Upper Hybrid (UH) plasma turbulence depends critically on the closeness of the pump wave to the double resonance, defined as ω ≈ ωUH ≈ nωce, where n is an integer. For pump frequencies, away from the double resonance, the electron distribution function is very close to Maxwellian, while as the pump frequency approaches the double resonance, it develops a high energy tail. The simulations show turbulence involving coupling between Lower Hybrid (LH) and UH waves, followed by excitation of Electron Bernstein (EB) modes. For the particular case of a pump with frequency between n = 3 and n = 4, the EB modes cover the range from the first to the 5th mode. The simulations show that when the injected wave frequency is between the 3rd and 4th harmonics of the electron cyclotron frequency, bulk electron heating occurs due to the interaction between the electrons and large amplitude EB waves, primarily on the first EB branch leading to an essentially thermal distribution. On the other hand, when the frequency is slightly above the 4th electron cyclotron harmonic, the resonant interaction is predominantly due to the UH branch and leads to a further acceleration of high-velocity electrons and a distribution function with a suprathermal tail of energetic electrons. The results are consistent with ionospheric experiments and relevant to the production of Artificial Ionospheric Plasma Layers.
Ring Current-Electromagnetic Ion Cyclotron Waves Coupling
NASA Technical Reports Server (NTRS)
Khazanov, G. V.
2005-01-01
The effect of Electromagnetic Ion Cyclotron (EMIC) waves, generated by ion temperature anisotropy in Earth s ring current (RC), is the best known example of wave- particle interaction in the magnetosphere. Also, there is much controversy over the importance of EMIC waves on RC depletion. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt (RB) by EMIC wave scattering during a magnetic storm. That is why the calculation of EMIC waves must be a very critical part of the space weather studies. The new RC model that we have developed and present for the first time has several new features that we have combine together in a one single model: (a) several lower frequency cold plasma wave modes are taken into account; (b) wave tracing of these wave has been incorporated in the energy EMIC wave equation; (c) no assumptions regarding wave shape spectra have been made; (d) no assumptions regarding the shape of particle distribution have been made to calculate the growth rate; (e) pitch-angle, energy, and mix diffusions are taken into account together for the first time; (f) the exact loss-cone RC analytical solution has been found and coupled with bounce-averaged numerical solution of kinetic equation; (g) the EMIC waves saturation due to their modulation instability and LHW generation are included as an additional factor that contributes to this process; and (h) the hot ions were included in the real part of dielectric permittivity tensor. We compare our theoretical results with the different EMIC waves models as well as RC experimental data.
Comparison of intense electrostatic waves near f/sub UHR/ with linear instability theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurth, W.S.; Frank, L.A.; Gurnett, D.A.
1979-06-01
Intense electrostatic waves beyond the plasmapause have recently been identified at frequencies near the upper hybrid resonance frequency. In addition, the waves occur within a band at an odd, half-harmonic of the local electron gyrofrequency. These bands of electrostatic turbulence are among the most intense waves detected within the earth's magnetosphere. Measurements obtained with the ISEE 1 plasma wave receiver show that the intense waves appear to be intensifications of an electrostatic cyclotron harmonic band near the upper hybrid resonance frequency. A straightforward explanation of intense waves at the upper hybrid resonance frequency exists in the electrostatic multi-cyclotron emission theory.more » For a broad range of plasma parameters nonconvective instability or large spatial growth rates occur within the cyclotron band encompassing the cold upper hybrid frequency. Comparison of spatial growth rate spectra with measured wave spectra shows that there is excellent qualitative agreement between the linear theory and the observed wave characteristics.« less
REVIEWS OF TOPICAL PROBLEMS: Millisecond solar radio spikes
NASA Astrophysics Data System (ADS)
Fleishman, G. D.; Mel'nikov, V. F.
1998-12-01
Currently available models of one of the most intriguing types of unsteady rf solar emission, millisecond solar radio spikes, are discussed. A comparative analysis of the models' implications and of the body of existing data yields an outline of the most realistic radio spike model possible. The spikes are produced by the cyclotron maser mechanism. The cyclotron cone instability is caused by fast electrons distributed over energies according to a (piecewise) power law. The angular part of the distribution function (whose exact form is, as yet, undetermined) suffers fluctuations due to the magnetic field inhomogeneities that arise in the burst loop as a consequence of the original energy release. In some portions of the loop the distribution is not anisotropic enough to secure the development of a cyclotron instability; it is in these 'microtraps' where individual spikes form. Key areas of future theoretical and experimental research are suggested with a view to verifying the adequacy and realizing the diagnostic potential of the model.
NASA Astrophysics Data System (ADS)
Sun, Yong; Ding, Zhao-Hua; Xiao, Jing-Lin
2016-07-01
On the condition of strong electron-LO phonon coupling in a RbCl quantum pseudodot (QPD), the ground state energy and the mean number of phonons are calculated by using the Pekar variational method and quantum statistical theory. The variations of the ground state energy and the mean number with respect to the temperature and the cyclotron frequency of the magnetic field are studied in detail. We find that the absolute value of the ground state energy increases (decreases) with increasing temperature when the temperature is in the lower (higher) temperature region, and that the mean number increases with increasing temperature. The absolute value of the ground state energy is a decreasing function of the cyclotron frequency of the magnetic field whereas the mean number is an increasing function of it. We find two ways to tune the ground state energy and the mean number: controlling the temperature and controlling the cyclotron frequency of the magnetic field.
The anode power supply for the ECRH system on the J-TEXT tokamak
NASA Astrophysics Data System (ADS)
Donghui, XIA; Fangtai, CUI; Changhai, LIU; Zhenxiong, YU; Yikun, JIN; Zhijiang, WANG; J-TEXT, Team1
2018-01-01
The electron cyclotron resonance heating (ECRH) system with a 60 GHz/200 kW/0.5 s gyrotron donated by the Culham Science Center is being developed on the J-TEXT tokamak for plasma heating, current drive and MHD studies. Simultaneously, an anode power supply (APS) has been rebuilt and tested for the output power control of the gyrotron, of which the input voltage is derived from an 80 kV negative cathode power supply. The control strategy by controlling the grid voltage of the tetrode TH5186 is applied to obtain an accurate anode climbing voltage, of which the output voltage can be obtained from 0-30 kV with respect to the cathode power supply. The characteristics of the APS, including control, protection, modulation, and output waveform, were tested with a 100 kV/60 A negative cathode power supply, a dummy load and the ECRH control system. The results indicate that the APS can meet the requirements of the ECRH system on J-TEXT.
Sawtooth control in fusion plasmas
NASA Astrophysics Data System (ADS)
Graves, J. P.; Angioni, C.; Budny, R. V.; Buttery, R. J.; Coda, S.; Eriksson, L.-G.; Gimblett, C. G.; Goodman, T. P.; Hastie, R. J.; Henderson, M. A.; Koslowski, H. R.; Mantsinen, M. J.; Martynov, An; Mayoral, M.-L.; Mück, A.; Nave, M. F. F.; Sauter, O.; Westerhof, E.; Contributors, JET–EFDA
2005-12-01
Clear observations of early triggering of neo-classical tearing modes by sawteeth with long quiescent periods have motivated recent efforts to control, and in particular destabilize, sawteeth. One successful approach explored in TCV utilizes electron cyclotron heating in order to locally increase the current penetration time in the core. The latter is also achieved in various machines by depositing electron cyclotron current drive or ion cyclotron current drive close to the q = 1 rational surface. Crucially, localized current drive also succeeds in destabilizing sawteeth which are otherwise stabilized by a co-existing population of energetic trapped ions in the core. In addition, a recent reversed toroidal field campaign at JET demonstrates that counter-neutral beam injection (NBI) results in shorter sawtooth periods than in the Ohmic regime. The clear dependence of the sawtooth period on the NBI heating power and the direction of injection also manifests itself in terms of the toroidal plasma rotation, which consequently requires consideration in the theoretical interpretation of the experiments. Another feature of NBI, expected to be especially evident in the negative ion based neutral beam injection (NNBI) heating planned for ITER, is the parallel velocity asymmetry of the fast ion population. It is predicted that a finite orbit effect of asymmetrically distributed circulating ions could strongly modify sawtooth stability. Furthermore, NNBI driven current with non-monotonic profile could significantly slow down the evolution of the safety factor in the core, thereby delaying sawteeth.
New determination of the fine structure constant from the electron value and QED.
Gabrielse, G; Hanneke, D; Kinoshita, T; Nio, M; Odom, B
2006-07-21
Quantum electrodynamics (QED) predicts a relationship between the dimensionless magnetic moment of the electron (g) and the fine structure constant (alpha). A new measurement of g using a one-electron quantum cyclotron, together with a QED calculation involving 891 eighth-order Feynman diagrams, determine alpha(-1)=137.035 999 710 (96) [0.70 ppb]. The uncertainties are 10 times smaller than those of nearest rival methods that include atom-recoil measurements. Comparisons of measured and calculated g test QED most stringently, and set a limit on internal electron structure.
Criteria for Neoclassical Tearing Modes Suppression in KSTAR
NASA Astrophysics Data System (ADS)
Park, Y. S.; Hwang, Y. S.
2007-11-01
In KSTAR, neoclassical tearing modes(NTMs) will be suppressed by using 170GHz electron cyclotron current drive(ECCD) system with steering mirrors that align the current deposition to NTM locations. As an initial stage of NTM suppression study, 1 MW ECCD power will be used to suppress m/n = 3/2 and 2/1 NTMs. To confirm the feasibility of successful suppression of the modes under the proposed KSTAR environment, modified Rutherford equation(MRE) which encapsulates stability of NTMs is constructed for the target equilibrium of KSTAR. The geometric coefficients in MRE are obtained by comparing saturated sizes of NTMs from ISLAND code [1] with the amounts of local bootstrap currents from ONETWO. Parameters related to the operation of ECCD are analyzed by TORAY-GA linear ray-tracing code. Due to the small ECCD power available at the initial stage of KSTAR, condition of the optimum ECCD modulation is considered in the analysis to maximize suppression performance. From the analyses, criteria such as the minimum ECCD power required for complete suppression of the modes and the optimum conditions of EC wave launch angle and modulation duty factor are derived for the successful NTM suppression in KSTAR. [1] C.N. Nguyen, G. Bateman and A.H. Kritz, Phys. Plasmas 11 3460 (2004)
Marinoni, Alessandro; Pinsker, Robert I.; Porkolab, Miklos; ...
2017-08-01
Experiments simulating the ITER Baseline Scenario on the DIII-D tokamak show that torque-free pure electron heating, when coupled to plasmas subject to a net co-current beam torque, affects density fluctuations at electron scales on a sub-confinement time scale, whereas fluctuations at ion scales change only after profiles have evolved to a new stationary state. Modifications to the density fluctuations measured by the Phase Contrast Imaging diagnostic (PCI) are assessed by analyzing the time evolution following the switch-off of Electron Cyclotron Heating (ECH), thus going from mixed beam/ECH to pure neutral beam heating at fixed β N . Within 20 msmore » after turning off ECH, the intensity of fluctuations is observed to increase at frequencies higher than 200 kHz; in contrast, fluctuations at lower frequency are seen to decrease in intensity on a longer time scale, after other equilibrium quantities have evolved. Non-linear gyro-kinetic modeling at ion and electron scales scales suggest that, while the low frequency response of the diagnostic is consistent with the dominant ITG modes being weakened by the slow-time increase in flow shear, the high frequency response is due to prompt changes to the electron temperature profile that enhance electron modes and generate a larger heat flux and an inward particle pinch. Furthermore, these results suggest that electron heated regimes in ITER will feature multi-scale fluctuations that might affect fusion performance via modifications to profiles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pankratov, I. M., E-mail: pankratov@kipt.kharkov.ua, E-mail: rjzhou@ipp.ac.cn; Zhou, R. J., E-mail: pankratov@kipt.kharkov.ua, E-mail: rjzhou@ipp.ac.cn; Hu, L. Q.
2015-07-15
Peculiar phenomena were observed during experiments with runaway electrons: rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the electron cyclotron emission (ECE) signal (cyclotron radiation of suprathermal electrons). These phenomena were initially observed in TEXTOR (Tokamak Experiment for Technology Oriented Research), where these events only occurred in the current decay phase or in discharges with thin stable runaway beams at a q = 1 drift surface. These rapid changes in the synchrotron spot were interpreted by the TEXTOR team as a fast pitch angle scattering event. Recently, similar rapid changes in the synchrotron spot andmore » its intensity that coincided with stepwise increases in the non-thermal ECE signal were observed in the EAST (Experimental Advanced Superconducting Tokamak) runaway discharge. Runaway electrons were located around the q = 2 rational magnetic surface (ring-like runaway electron beam). During the EAST runaway discharge, stepwise ECE signal increases coincided with enhanced magnetohydrodynamic (MHD) activity. This behavior was peculiar to this shot. In this paper, we show that these non-thermal ECE step-like jumps were related to the abrupt growth of suprathermal electrons induced by bursting electric fields at reconnection events during this MHD plasma activity. Enhancement of the secondary runaway electron generation also occurred simultaneously. Local changes in the current-density gradient appeared because of local enhancement of the runaway electron generation process. These current-density gradient changes are considered to be a possible trigger for enhancement of the MHD plasma activity and the rapid changes in runaway beam behavior.« less
NASA Astrophysics Data System (ADS)
Pankratov, I. M.; Zhou, R. J.; Hu, L. Q.
2015-07-01
Peculiar phenomena were observed during experiments with runaway electrons: rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the electron cyclotron emission (ECE) signal (cyclotron radiation of suprathermal electrons). These phenomena were initially observed in TEXTOR (Tokamak Experiment for Technology Oriented Research), where these events only occurred in the current decay phase or in discharges with thin stable runaway beams at a q = 1 drift surface. These rapid changes in the synchrotron spot were interpreted by the TEXTOR team as a fast pitch angle scattering event. Recently, similar rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the non-thermal ECE signal were observed in the EAST (Experimental Advanced Superconducting Tokamak) runaway discharge. Runaway electrons were located around the q = 2 rational magnetic surface (ring-like runaway electron beam). During the EAST runaway discharge, stepwise ECE signal increases coincided with enhanced magnetohydrodynamic (MHD) activity. This behavior was peculiar to this shot. In this paper, we show that these non-thermal ECE step-like jumps were related to the abrupt growth of suprathermal electrons induced by bursting electric fields at reconnection events during this MHD plasma activity. Enhancement of the secondary runaway electron generation also occurred simultaneously. Local changes in the current-density gradient appeared because of local enhancement of the runaway electron generation process. These current-density gradient changes are considered to be a possible trigger for enhancement of the MHD plasma activity and the rapid changes in runaway beam behavior.
Vacuum system of the cyclotrons in VECC, Kolkata
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, Anindya; Bhole, R.B.; Akhtar, J.
2011-07-01
The vacuum system of the K=130 Room Temperature Cyclotron (RTC) (operational since 1978) has been recently modernized and the same of the K{sub bend}=520 Superconducting Cyclotron (SCC), currently under commissioning, is being deployed for remote monitoring and control. The vacuum system of RTC is designed to achieve and maintain vacuum level of 2 X 10{sup -6} mbar inside 23 m{sup 3} volume of Resonator tank and DEE tank. This has been upgraded by replacing several valves, Freon units, gauges and pumps. The relay based manual control system has been replaced by PLC based automated system. The SCC vacuum system alsomore » has an elaborate arrangement comprising of turbo molecular pumping modules with associated isolation valves and characteristic gauges. This paper describes essential elements, typically used to obtain high (1X10{sup -7} mbar) vacuum using rotary pumps, diffusion pumps and cold traps/turbo-molecular pumps and other system components such as valves, gauges and baffles. The supervisory control methodology/scheme of both the vacuum systems, developed in-house using EPICS (Experimental Physics and Industrial Control System), a standard open-source software tool for designing distributed control system, is also elaborated here. (author)« less
Electron cyclotron wave acceleration outside a flaring loop
NASA Technical Reports Server (NTRS)
Sprangle, P.; Vlahos, L.
1983-01-01
A model for the secondary acceleration of electrons outside a flaring loop is proposed. The results suggest that the narrow bandwidth radiation emitted by the unstable electron distribution inside a flaring loop can become the driver for secondary electron acceleration outside the loop. It is shown that a system of electrons gyrating about and streaming along an adiabatically spatially varying, static magnetic field can be efficiently accelerated to high energies by an electromagnetic wave propagating along and polarized transverse to the static magnetic field. The predictions from our model appear to be in general agreement with existing observations.
NASA Technical Reports Server (NTRS)
Rowland, H. L.; Palmadesso, P. J.
1983-01-01
Large amplitude ion cyclotron waves have been observed on auroral field lines. In the presence of an electric field parallel to the ambient magnetic field these waves prevent the acceleration of the bulk of the plasma electrons leading to the formation of a runaway tail. It is shown that low-frequency turbulence can also limit the acceleration of high-velocity runaway electrons via pitch angle scattering at the anomalous Doppler resonance.
Modification of Electron Cyclotron Maser Operation by Application of an External Signal.
1987-03-31
start-up phase jitter in the presence of this external priming signal can be estimated by using the method of David [30]. A lumped circuit representation...27. K.E. Kreischer, R.J. Temkin, H.R. Fetterman , and W.I. Mulligan, IEEE Trans. Microwave Theory Tech. MTT-32, 481 (1984). 28. I.G. Zarnitsyna and G.S...Nusinovich, Radiophys. Quant. Electron. 17, 1418 (1974). 29. G.S. Nusinovich, Radiophys. Quant. Electron. 19, 1301 (1976). 30. E.E. David Jr., Proc
Observations of single-pass ion cyclotron heating in a trans-sonic flowing plasma
NASA Astrophysics Data System (ADS)
Bering, E. A.; Díaz, F. R. Chang; Squire, J. P.; Glover, T. W.; Carter, M. D.; McCaskill, G. E.; Longmier, B. W.; Brukardt, M. S.; Chancery, W. J.; Jacobson, V. T.
2010-04-01
The VAriable Specific Impulse Magnetoplasma Rocket (VASIMR®) is a high power electric spacecraft propulsion system, capable of Isp/thrust modulation at constant power [F. R. Chang Díaz et al., Proceedings of the 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 8-11 Jan. 2001]. The VASIMR® uses a helicon discharge to generate plasma. This plasma is energized by an rf booster stage that uses left hand polarized slow mode waves launched from the high field side of the ion cyclotron resonance. In the experiments reported in this paper, the booster uses 2-4 MHz waves with up to 50 kW of power. This process is similar to the ion cyclotron heating (ICH) in tokamaks, but in the VASIMR® the ions only pass through the resonance region once. The rapid absorption of ion cyclotron waves has been predicted in recent theoretical studies. These theoretical predictions have been supported with several independent measurements in this paper. The single-pass ICH produced a substantial increase in ion velocity. Pitch angle distribution studies showed that this increase took place in the resonance region where the ion cyclotron frequency was roughly equal to the frequency on the injected rf waves. Downstream of the resonance region the perpendicular velocity boost should be converted to axial flow velocity through the conservation of the first adiabatic invariant as the magnetic field decreases in the exhaust region of the VASIMR®. This paper will review all of the single-pass ICH ion acceleration data obtained using deuterium in the first VASIMR® physics demonstrator machine, the VX-50. During these experiments, the available power to the helicon ionization stage increased from 3 to 20+ kW. The increased plasma density produced increased plasma loading of the ICH coupler. Starting with an initial demonstration of single-pass ion cyclotron acceleration, the experiments demonstrate significant improvements in coupler efficiency and in ion heating efficiency. In deuterium plasma, ≥80% efficient absorption of 20 kW of ICH input power was achieved. No clear evidence for power limiting instabilities in the exhaust beam has been observed.
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Khazanov, George; Mukhter, Ali
2007-01-01
We present results here from 2.5-D particle-in-cell simulations showing that the electrostatic (ES) components of broadband extremely low frequency (BBELF) waves could possibly be generated by cross-field plasma instabilities driven by the relative drifts between the heavy and light ion species in the electromagnetic (EM) Alfvenic component of the BBELF waves in a multi-ion plasma. The ES components consist of ion cyclotron as well as lower hybrid modes. We also demonstrate that the ES wave generation is directly involved in the transverse acceleration of ions (TAI) as commonly measured with the BBELF wave events. The heating is affected by ion cyclotron resonance in the cyclotron modes and Landau resonance in the lower hybrid waves. In the simulation we drive the plasma by the transverse electric field, E(sub y), of the EM waves; the frequency of E(sub y), omega(sub d), is varied from a frequency below the heavy ion cyclotron frequency, OMEGA(sub h), to below the light ion cyclotron frequency, OMEGA(sub i). We have also performed simulations for E(sub y) having a continuous spectrum given by a power law, namely, |Ey| approx. omega(sub d) (exp -alpha), where the exponent alpha = _, 1, and 2 in three different simulations. The driving electric field generates polarization and ExB drifts of the ions and electrons. When the interspecies relative drifts are sufficiently large, they drive electrostatic waves, which cause perpendicular heating of both light and heavy ions. The transverse ion heating found here is discussed in relation to observations from Cluster, FAST and Freja.
Comparison of Fine Structures of Electron Cyclotron Harmonic Emissions in Aurora
NASA Astrophysics Data System (ADS)
Labelle, J. W.; Dundek, M.
2015-12-01
Recent discoveries of emissions at four and five times the electron cyclotron frequency in aurora occuring under daylit conditions motivated the modification of radio receivers at South Pole Station, Antarctica, to measure fine structure of such emissions during two consecutive austral summers, 2013-4 and 2014-5. The experiment recorded 347 emission events over 376 days of observation. The seasonal distribution of these events revealed that successively higher harmonics require higher solar zenith angles for occurrence, as expected if they are generated at locations where the upper hybrid frequency matches the cyclotron harmonic, which for higher harmonics requires higher electron densities which are associated with higher solar zenith angles. Detailed examination of 21 cases in which two harmonics occur simultaneously showed that only rarely, about ten percent of the time, are the frequencies of the fine structures of the emissions in exact integer ratio (e.g., 3:2, 4:3, or 5:4 depending on which combination of harmonics is observed). In the remaining approximately ninety percent of the cases, the higher harmonic occurred at a lower ratio than the appropriate integer ratio, as expected if the harmonics are generated independently at their separate matching conditions in the bottomside ionosphere, where the upper hybrid frequency increases with altitude while the gyroharmonics decrease with altitude. (The bottomside is the most likely source of the emissions, since from there the mode converted Z-modes have access to ground-level.) Taken together, these results suggest that the dominant mechanism for the higher harmonics is independent generation at locations where the upper hybrid frequency matches each harmonic, i.e., at a separate source altitude for each harmonic. Generation of higher harmonics through coalescence of lower harmonic waves explains at most a small minority of events.
NASA Astrophysics Data System (ADS)
Girka, Igor O.; Pavlenko, Ivan V.; Thumm, Manfred
2018-05-01
Azimuthal surface waves are electromagnetic eigenwaves of cylindrical plasma-dielectric waveguides which propagate azimuthally nearby the plasma-dielectric interface across an axial external stationary magnetic field. Their eigenfrequency in particular can belong to the electron cyclotron frequency range. Excitation of azimuthal surface waves by rotating relativistic electron flows was studied in detail recently in the case of the zeroth radial mode for which the waves' radial phase change within the layer where the electrons gyrate is small. In this case, just the plasma parameters cause the main influence on the waves' dispersion properties. In the case of the first and higher radial modes, the wave eigenfrequency is higher and the wavelength is shorter than in the case of the zeroth radial mode. This gain being of interest for practical applications can be achieved without any change in the device design. The possibility of effective excitation of the higher order radial modes of azimuthal surface waves is demonstrated here. Getting shorter wavelengths of the excited waves in the case of higher radial modes is shown to be accompanied by decreasing growth rates of the waves. The results obtained here are of interest for developing new sources of electromagnetic radiation, in nano-physics and in medical physics.
Imaging electron motion in graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhandari, Sagar; Westervelt, Robert M.
A cooled scanning probe microscope (SPM) is an ideal tool to image electronic motion in graphene: the SPM tip acts as a scanning gate, which interacts with the electron gas below. We introduce the technique using our group's previous work on imaging electron flow from a quantum point contact in a GaAs 2DEG and tuning an InAs quantum dot in an InAs/InP nanowire. Carriers in graphene have very different characteristics: electrons and holes travel at a constant speed with no bandgap, and they pass through potential barriers via Klein tunneling. In this paper, we review the extension of SPM imagingmore » techniques to graphene. We image the cyclotron orbits passing between two narrow contacts in a single-atomic-layer graphene device in a perpendicular magnetic field. Magnetic focusing produces a peak in transmission between the contacts when the cyclotron diameter is equal to the contact spacing. The charged SPM tip deflects electrons passing from one contact to the other, changing the transmission when it interrupts the flow. By displaying the change in transmission as the tip is raster scanned above the sample, an image of flow is obtained. In addition, we have developed a complementary technique to image electronic charge using a cooled scanning capacitance microscope (SCM) that uses a sensitive charge preamplifier near the SPM tip to achieve a charge noise level 0.13 e Hz -1/2 with high spatial resolution 100 nm. The cooled SPM and SCM can be used to probe the motion of electrons on the nanoscale in graphene devices.« less
Imaging electron motion in graphene
Bhandari, Sagar; Westervelt, Robert M.
2017-01-05
A cooled scanning probe microscope (SPM) is an ideal tool to image electronic motion in graphene: the SPM tip acts as a scanning gate, which interacts with the electron gas below. We introduce the technique using our group's previous work on imaging electron flow from a quantum point contact in a GaAs 2DEG and tuning an InAs quantum dot in an InAs/InP nanowire. Carriers in graphene have very different characteristics: electrons and holes travel at a constant speed with no bandgap, and they pass through potential barriers via Klein tunneling. In this paper, we review the extension of SPM imagingmore » techniques to graphene. We image the cyclotron orbits passing between two narrow contacts in a single-atomic-layer graphene device in a perpendicular magnetic field. Magnetic focusing produces a peak in transmission between the contacts when the cyclotron diameter is equal to the contact spacing. The charged SPM tip deflects electrons passing from one contact to the other, changing the transmission when it interrupts the flow. By displaying the change in transmission as the tip is raster scanned above the sample, an image of flow is obtained. In addition, we have developed a complementary technique to image electronic charge using a cooled scanning capacitance microscope (SCM) that uses a sensitive charge preamplifier near the SPM tip to achieve a charge noise level 0.13 e Hz -1/2 with high spatial resolution 100 nm. The cooled SPM and SCM can be used to probe the motion of electrons on the nanoscale in graphene devices.« less
NASA Astrophysics Data System (ADS)
More, Supriya E.; Das, Partha Sarathi; Bansode, Avinash; Dhamale, Gayatri; Ghorui, S.; Bhoraskar, S. V.; Sahasrabudhe, S. N.; Mathe, Vikas L.
2018-01-01
Looking at the increasing scope of plasma processing of materials surface, here we present the development and diagnostics of a microwave assisted Electron Cyclotron Resonance (ECR) plasma system suitable for surface modification of polymers. Prior to the surface-treatment, a detailed diagnostic mapping of the plasma parameters throughout the reactor chamber was carried out by using single and double Langmuir probe measurements in Ar plasma. Conventional analysis of I-V curves as well as the elucidation form of the Electron Energy Distribution Function (EEDF) has become the source of calibration of plasma parameters in the reaction chamber. The high energy tail in the EEDF of electron temperature is seen to extend beyond 60 eV, at much larger distances from the ECR zone. This proves the suitability of the rector for plasma processing, since the electron energy is much beyond the threshold energy of bond breaking in most of the polymers. Nylon 6 is used as a representative candidate for surface processing in the presence of Ar, H2 + N2, and O2 plasma, treated at different locations inside the plasma chamber. In a typical case, the work of adhesion is seen to almost get doubled when treated with oxygen plasma. Morphology of the plasma treated surface and its hydrophilicity are discussed in view of the variation in electron density and electron temperature at these locations. Nano-protrusions arising from plasma treatment are set to be responsible for the hydrophobicity. Chemical sputtering and physical sputtering are seen to influence the surface morphology on account of sufficient electron energies and increased plasma potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muto, Hideshi, E-mail: guatemalacocoa@gmail.com; Center for Nuclear Study, University of Tokyo, 2-1 Hirosawa, Riken Campus, Wako, Saitama 351-0198; Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198
The light intensity of {sup 6}Li III line spectrum at λ = 516.7 nm was observed during {sup 6}Li{sup 3+} beam tuning at the Hyper-Electron Cyclotron Resonance (ECR) ion source. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process. However, {sup 6}Li III line intensity observation conducted in this study gives new insights into its simplification of this process. The light intensity of {sup 6}Li III line spectrum from the ECR plasma was found to have a strong correlation with the extracted {sup 6}Li{sup 3+}more » beam intensity from the RIKEN Azimuthal Varying Field cyclotron.« less
NASA Astrophysics Data System (ADS)
Tong, Hao; Xu, Renxin
2013-03-01
The X-ray dim isolated neutron stars (XDINSs) are peculiar pulsar-like objects, characterized by their very well Planck-like spectrum. In studying their spectral energy distributions, the optical/UV excess is a long standing problem. Recently, Kaplan et al. (2011) have measured the optical/UV excess for all seven sources, which is understandable in the resonant cyclotron scattering (RCS) model previously addressed. The RCS model calculations show that the RCS process can account for the observed optical/UV excess for most sources. The flat spectrum of RX J2143.0+0654 may due to contribution from bremsstrahlung emission of the electron system in addition to the RCS process.
ECRH and its effects on neoclassical transport in a stellarator
NASA Astrophysics Data System (ADS)
Seol, Jaechun
The banana center orbit deviates significantly from the magnetic surface due to the symmetry-breaking term in the magnetic field configuration. Energetic electrons can escape the plasma without collision, since the drift speed is proportional to the perpendicular energy of electron and the collision frequency is reduced as the electron energy goes up. A direct loss flux can be generated from energetic electron population in a stellarator. Thus energetic electron populations can substantially modify the neoclassical transport properties in stellarators. A model accounting for this change in transport is developed assuming the presence of electron cyclotron resonance heating (ECRH). The quasilinear diffusion coefficient for second harmonic X-mode ECRH is developed for a bumpy stellarator. Care is taken in accounting for the pitch-angle dependence of the quasilinear diffusion coefficient since application to experiments with narrow resonance zones is of interest. Weakly relativistic effects are considered through the mass effect on the cyclotron frequency. For trapped particles in a three dimensional configuration, collisionless loss zones exist in velocity space. Radio-frequency (rf) waves accelerate trapped electrons into the direct loss zone in bumpy stellarators and produce a direct loss flux. An analytic expression for this loss flux is derived; it is proportional to the rf field strength and the value of the zeroth order distribution function at the minimum speed for collisionless loss. The direct loss flux of electrons is another source of a non-ambipolar particle flux in bumpy stellarators. This additional non-ambipolar flux modifies the ambipolarity equation which generally has multiple roots for the radial electric field. An electron root (large positive Er) is easily obtained if the electrons are in the 1/nu regime and the ions are in the nu regime.
Resonant Compton Scattering in Highly-Magnetized Pulsars
NASA Astrophysics Data System (ADS)
Wadiasingh, Zorawar
Soft gamma repeaters and anomalous X-ray pulsars are subset of slow-rotating neutron stars, known as magnetars, that have extremely high inferred surface magnetic fields, of the order 100-1000 TeraGauss. Hard, non-thermal and pulsed persistent X-ray emission extending between 10 keV and 230 keV has been seen in a number of magnetars by RXTE, INTEGRAL, and Suzaku. In this thesis, the author considers inner magnetospheric models of such persistent hard X-ray emission where resonant Compton upscattering of soft thermal photons is anticipated to be the most efficient radiative process. This high efficiency is due to the relative proximity of the surface thermal photons, and also because the scattering becomes resonant at the cyclotron frequency. At the cyclotron resonance, the effective cross section exceeds the classical Thomson one by over two orders of magnitude, thereby enhancing the efficiency of continuum production and cooling of relativistic electrons. In this thesis, a new Sokolov and Ternov formulation of the QED Compton scattering cross section for strong magnetic fields is employed in electron cooling and emission spectra calculations. This formalism is formally correct for treating spin-dependent effects and decay rates that are important at the cyclotron resonance. The author presents electron cooling rates at arbitrary interaction points in a magnetosphere using the QED cross sections. The QED effects reduce the rates below high-field extrapolations of older magnetic Thomson results. The author also computes angle-dependent upscattering model spectra, formed using collisional integrals, for uncooled monoenergetic relativistic electrons injected in inner regions of pulsar magnetospheres. These spectra are integrated over closed field lines and obtained for different observing perspectives. The spectral cut-off energies are critically dependent on the observer viewing angles and electron Lorentz factor. It is found that electrons with energies less than around 15 MeV will emit most of their radiation below 250 keV, consistent with the observed turnovers in magnetar hard X-ray tails. Moreover, electrons of higher energy still emit most of the radiation below 1 MeV, except for very select viewing perspectives that sample tangents to field lines. This small parameter space makes it difficult to observe signals extending into the Fermi-LAT band. Polarization dependence in spectra is illustrated, offering potential constraints for models of magnetar emission in anticipation of a future hard X-ray polarimetry missions.
Park, Jin Yong; Choi, Seyong; Lee, Byoung-Seob; Yoon, Jang-Hee; Ok, Jung-Woo; Kim, Byoung Chul; Shin, Chang Seouk; Ahn, Jung Keun; Won, Mi-Sook
2014-02-01
A superconducting magnet for use in an electron cyclotron resonance ion source was developed at the Korea Basic Science Institute. The superconducting magnet is comprised of three solenoids and a hexapole magnet. According to the design value, the solenoid magnets can generate a mirror field, resulting in axial magnetic fields of 3.6 T at the injection area and 2.2 T at the extraction region. A radial field strength of 2.1 T can also be achieved by hexapole magnet on the plasma chamber wall. NbTi superconducting wire was used in the winding process following appropriate techniques for magnet structure. The final assembly of the each magnet involved it being vertically inserted into the cryostat to cool down the temperature using liquid helium. The performance of each solenoid and hexapole magnet was separately verified experimentally. The construction of the superconducting coil, the entire magnet assembly for performance testing and experimental results are reported herein.
NASA Astrophysics Data System (ADS)
Roschuk, T.; Wojcik, J.; Tan, X.; Davies, J. A.; Mascher, P.
2004-05-01
Thin silicon oxynitride (SiOxNy) and silicon-rich silicon-oxide (SiOx,x<=2) films of varying composition have been deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition. Films were deposited using various source gas flow rates while maintaining a constant chamber pressure. Thicknesses and refractive indices for these films were determined using ellipsometry. Bonding of the constituent atoms was analyzed using Fourier transform infrared (FTIR) spectroscopy. FTIR spectroscopy also allowed for the detection of bonded species such as hydrogen. Compositional characteristics were determined using various forms of ion beam analysis such as Rutherford backscattering and elastic recoil detection. These analysis techniques were used to determine the values of x and y, the molar fractions of oxygen and nitrogen, respectively, and the total amount of hydrogen present in the films. Using the results obtained from these methods the film characteristics were determined as a function of the deposition conditions. .
Heating of Solar Wind Ions via Cyclotron Resonance
NASA Astrophysics Data System (ADS)
Navarro, R.; Moya, P. S.; Figueroa-Vinas, A.; Munoz, V.; Valdivia, J. A.
2017-12-01
Remote and in situ observations in the solar wind show that ion and electron velocity distributions persistently deviate from thermal equilibrium in the form of relative streaming between species components, temperature anisotropy, etc. These non-thermal features represent a source of free energy for the excitation of kinetic instabilities and fluctuations in the plasma. In this regard, it is believed that plasma particles can be heated, through a second order Fermi acceleration process, by multiple resonances with unstable counter-propagating field-aligned Ion-cyclotron waves. For multi-species plasmas, several collective wave modes participate in this process. In this work, we test this model by studying the percentage of ions that resonate with the waves modes described by the proper kinetic multi-species dispersion relation in a solar-wind-like plasma composed of electrons, protons, and alpha particles. Numerical results are compared with WIND spacecraft data to test its relevance for the existence of thresholds for the preferential perpendicular heating of He+2 ions as observed in the solar wind fast streams.
NASA Astrophysics Data System (ADS)
Kakinuma, Hiroaki; Mohri, Mikio; Tsuruoka, Taiji
1994-01-01
We have investigated phosphorus doping using an electron cyclotron resonance (ECR) plasma, for application to the poly-Si driving circuits of liquid crystal displays or image sensors. The PH3/He was ionized and accelerated to poly-Si and c-Si substrates with a self bias of -220 V. The P concentration, as detected by secondary ion mass spectroscopy (SIMS), is ˜5×1021 cm-3 at the surface, which decayed to ˜1017 cm-3 within 50 100 nm depth. The surface is found to be etched during doping. The etching is restored by adding a small amount of SiH4 and the sheet resistance R s decreases. The optimized as-irradiated R s is ˜ 1× 105 Ω/\\Box and 1.7× 102 Ω/\\Box for poly-Si and (110) c-Si, respectively. The dependence of R s on the substrates and the anomalous diffusion constants derived from SIMS are also discussed.
36-segmented high magnetic field hexapole magnets for electron cyclotron resonance ion source.
Sun, L T; Zhao, H W; Zhang, Z M; Wang, H; Ma, B H; Zhang, X Z; Li, X X; Feng, Y C; Li, J Y; Guo, X H; Shang, Y; Zhao, H Y
2007-05-01
Two high magnetic field hexapoles for electron cyclotron resonance ion source (ECRIS) have successfully fabricated to provide sufficient radial magnetic confinement to the ECR plasma. The highest magnetic field at the inner pole tip of one of the magnets exceeds 1.5 T, with the inner diameter (i.d.)=74 mm. The other hexapole magnet provides more than 1.35 T magnetic field at the inner pole tip, and the i.d. is 84 mm. In this article, we discuss the necessity to have a good radial magnetic field confinement and the importance of a Halbach hexapole to a high performance ECRIS. The way to design a high magnetic field Halbach structure hexapole and one possible solution to the self-demagnetization problem are both discussed. Based on the above discussions, two high magnetic field hexapoles have been fabricated to be utilized on two high performance ECRISs in Lanzhou. The preliminary results obtained from the two ECR ion sources are given.
An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy.
Cao, Yun; Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia
2014-02-01
A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C(5+) ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C(5+) ion beam was got when work gas was CH4 while about 262 eμA of C(5+) ion beam was obtained when work gas was C2H2 gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.
Optimization of a coaxial electron cyclotron resonance plasma thruster with an analytical model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cannat, F., E-mail: felix.cannat@onera.fr, E-mail: felix.cannat@gmail.com; Lafleur, T.; Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universites, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau
2015-05-15
A new cathodeless plasma thruster currently under development at Onera is presented and characterized experimentally and analytically. The coaxial thruster consists of a microwave antenna immersed in a magnetic field, which allows electron heating via cyclotron resonance. The magnetic field diverges at the thruster exit and forms a nozzle that accelerates the quasi-neutral plasma to generate a thrust. Different thruster configurations are tested, and in particular, the influence of the source diameter on the thruster performance is investigated. At microwave powers of about 30 W and a xenon flow rate of 0.1 mg/s (1 SCCM), a mass utilization of 60% and amore » thrust of 1 mN are estimated based on angular electrostatic probe measurements performed downstream of the thruster in the exhaust plume. Results are found to be in fair agreement with a recent analytical helicon thruster model that has been adapted for the coaxial geometry used here.« less
Kinetic instability of electrostatic ion cyclotron waves in inter-penetrating plasmas
NASA Astrophysics Data System (ADS)
Bashir, M. F.; Ilie, R.; Murtaza, G.
2018-05-01
The Electrostatic Ion Cyclotron (EIC) instability that includes the effect of wave-particle interaction is studied owing to the free energy source through the flowing velocity of the inter-penetrating plasmas. It is shown that the origin of this current-less instability is different from the classical current driven EIC instability. The threshold conditions applicable to a wide range of plasma parameters and the estimate of the growth rate are determined as a function of the normalized flowing velocity ( u0/vt f e ), the temperature ( Tf/Ts ) and the density ratios ( nf 0/ns 0 ) of flowing component to static one. The EIC instability is driven by either flowing electrons or flowing ions, depending upon the different Doppler shifted frequency domains. It is found that the growth rate for electron-driven instability is higher than the ion-driven one. However, in both cases, the denser (hotter) is the flowing plasma, the lesser (greater) is the growth rate. The possible applications related to the terrestrial solar plasma environment are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uchiyama, A., E-mail: a-uchi@riken.jp; Ozeki, K.; Higurashi, Y.
A RIKEN 18 GHz electron cyclotron resonance ion source (18 GHz ECRIS) is used as an external ion source at the Radioactive Ion Beam Factory (RIBF) accelerator complex to produce an intense beam of medium-mass heavy ions (e.g., Ca and Ar). In most components that comprise the RIBF, the control systems (CSs) are integrated by the Experimental Physics and Industrial Control System (EPICS). On the other hand, a non-EPICS-based system has hardwired controllers, and it is used in the 18 GHz ECRIS CS as an independent system. In terms of efficient and effective operation, the 18 GHz ECRIS CS asmore » well as the RIBF CS should be renewed using EPICS. Therefore, we constructed an 18 GHz ECRIS CS by using programmable logic controllers with embedded EPICS technology. In the renewed system, an operational log system was developed as a new feature, for supporting of the 18 GHz ECRIS operation.« less
Verification of nonlinear particle simulation of radio frequency waves in fusion plasmas
NASA Astrophysics Data System (ADS)
Kuley, Animesh; Bao, Jian; Lin, Zhihong
2015-11-01
Nonlinear global particle simulation model has been developed in GTC to study the nonlinear interactions of radio frequency (RF) waves with plasmas in tokamak. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic. Boris push scheme for the ion motion has been implemented in the toroidal geometry using magnetic coordinates and successfully verified for the ion cyclotron, ion Bernstein and lower hybrid waves. The nonlinear GTC simulation of the lower hybrid wave shows that the amplitude of the electrostatic potential is oscillatory due to the trapping of resonant electrons by the electric field of the lower hybrid wave. The nonresonant parametric decay is observed an IBW sideband and an ion cyclotron quasimode (ICQM). The ICQM induces an ion perpendicular heating with a heating rate proportional to the pump wave intensity. This work is supported by PPPL subcontract number S013849-F and US Department of Energy (DOE) SciDAC GSEP Program.
Performance test of electron cyclotron resonance ion sources for the Hyogo Ion Beam Medical Center
NASA Astrophysics Data System (ADS)
Sawada, K.; Sawada, J.; Sakata, T.; Uno, K.; Okanishi, K.; Harada, H.; Itano, A.; Higashi, A.; Akagi, T.; Yamada, S.; Noda, K.; Torikoshi, M.; Kitagawa, A.
2000-02-01
Two electron cyclotron resonance (ECR) ion sources were manufactured for the accelerator facility at the Hyogo Ion Beam Medical Center. H2+, He2+, and C4+ were chosen as the accelerating ions because they have the highest charge to mass ratio among ion states which satisfy the required intensity and quality. The sources have the same structure as the 10 GHz ECR source at the Heavy Ion Medical Accelerator in Chiba except for a few improvements in the magnetic structure. Their performance was investigated at the Sumitomo Heavy Industries factory before shipment. The maximum intensity was 1500 μA for H2+, 1320 μA for He2+, and 580 μA for C4+ at the end of the ion source beam transport line. These are several times higher than required. Sufficient performance was also observed in the flatness and long-term stability of the pulsed beams. These test results satisfy the requirements for medical use.
NASA Astrophysics Data System (ADS)
Lin, Tzu-Yung; Green, Roger J.; O'Connor, Peter B.
2011-12-01
The nature of the ion signal from a 12-T Fourier-transform ion cyclotron resonance mass spectrometer and the electronic noise were studied to further understand the electronic detection limit. At minimal cost, a new transimpedance preamplifier was designed, computer simulated, built, and tested. The preamplifier design pushes the electronic signal-to-noise performance at room temperature to the limit, because of its enhanced tolerance of the capacitance of the detection device, lower intrinsic noise, and larger flat mid-band gain (input current noise spectral density of around 1 pA/sqrt{Hz} when the transimpedance is about 85 dBΩ). The designed preamplifier has a bandwidth of ˜3 kHz to 10 MHz, which corresponds to the mass-to-charge ratio, m/z, of approximately 18 to 61 k at 12 T. The transimpedance and the bandwidth can be easily adjusted by changing the value of passive components. The feedback limitation of the circuit is discussed. With the maximum possible transimpedance of 5.3 MΩ when using an 0402 surface mount resistor, the preamplifier was estimated to be able to detect ˜110 charges in a single scan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Tzu-Yung; Green, Roger J.; O'Connor, Peter B.
2011-12-15
The nature of the ion signal from a 12-T Fourier-transform ion cyclotron resonance mass spectrometer and the electronic noise were studied to further understand the electronic detection limit. At minimal cost, a new transimpedance preamplifier was designed, computer simulated, built, and tested. The preamplifier design pushes the electronic signal-to-noise performance at room temperature to the limit, because of its enhanced tolerance of the capacitance of the detection device, lower intrinsic noise, and larger flat mid-band gain (input current noise spectral density of around 1 pA/{radical}(Hz) when the transimpedance is about 85 dB{Omega}). The designed preamplifier has a bandwidth of {approx}3more » kHz to 10 MHz, which corresponds to the mass-to-charge ratio, m/z, of approximately 18 to 61 k at 12 T. The transimpedance and the bandwidth can be easily adjusted by changing the value of passive components. The feedback limitation of the circuit is discussed. With the maximum possible transimpedance of 5.3 M{Omega} when using an 0402 surface mount resistor, the preamplifier was estimated to be able to detect {approx}110 charges in a single scan.« less
A Michelson Interferometer for Electron Cyclotron Emission Measurements on EAST
NASA Astrophysics Data System (ADS)
Liu, Yong; Stefan, Schmuck; Zhao, Hailin; John, Fessey; Paul, Trimble; Liu, Xiang; Zhu, Zeying; Zang, Qing; Hu, Liqun
2016-12-01
A Michelson interferometer, on loan from EFDA-JET (Culham, United Kingdom) has recently been commissioned on the experimental advanced superconducting tokamak (EAST, ASIPP, Hefei, China). Following a successful in-situ absolute calibration the instrument is able to measure the electron cyclotron emission (ECE) spectrum, from 80 GHz to 350 GHz in extraordinary mode (X-mode) polarization, with high accuracy. This allows the independent determination of the electron temperature profile from observation of the second harmonic ECE and the possible identification of non-Maxwellian features by comparing higher harmonic emission with numerical simulations. The in-situ calibration results are presented together with the initial measured temperature profiles. These measurements are then discussed and compared with other independent temperature profile measurements. This paper also describes the main hardware features of the diagnostic and the associated commissioning test results. supported by National Natural Science Foundation of China (Nos. 11405211, 11275233), and the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB106002, 2015GB101000), and the RCUK Energy Programme (No. EP/I501045), partly supported by the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics (NSFC: No. 11261140328)
Study of electron beam on electron cyclotron waves with AC field in the magnetosphere of Uranus
NASA Astrophysics Data System (ADS)
Kaur, Rajbir; Kumari, Jyoti; Pandey, R. S.
2018-05-01
In this paper, we deal with the oblique electromagnetic electron cyclotron (EMEC) waves in the Uranus magnetosphere. The expression of the dispersion relation is plotted by using the method of the feature solution. After the kinetic method, the growth rate and the actual frequency of the EMEC wave are studied theoretically in the Uranian system. NASA, Voyager 2, the observed results of the space detectors show that the spin axes of the planets are abnormally oriented and that there are more particles in the high energy tail of the Uranian magnetospheric plasma. Therefore, this paper uses the Kappa distribution instead of the usual Maxwell distribution. The study extends to the tilt propagation of EMEC waves, which has a change in temperature anisotropy and propagation angle with respect to the direction of the magnetic field. These parameters were found to support the growth rate of EMEC waves. However, the response of the actual frequency of these waves is not the same as the rate of growth in all cases. These results apply to the detailed comparison of planetary studies of the space plasma environment and the magnetosphere system.
Electrostatic Steepening of Whistler Waves
NASA Astrophysics Data System (ADS)
Vasko, I. Y.; Agapitov, O. V.; Mozer, F. S.; Bonnell, J. W.; Artemyev, A. V.; Krasnoselskikh, V. V.; Tong, Y.
2018-05-01
We present surprising observations by the NASA Van Allen Probes spacecraft of whistler waves with substantial electric field power at harmonics of the whistler wave fundamental frequency. The wave power at harmonics is due to a nonlinearly steepened whistler electrostatic field that becomes possible in the two-temperature electron plasma due to the whistler wave coupling to the electron-acoustic mode. The simulation and analytical estimates show that the steepening takes a few tens of milliseconds. The hydrodynamic energy cascade to higher frequencies facilitates efficient energy transfer from cyclotron resonant electrons, driving the whistler waves, to lower energy electrons.
NASA Astrophysics Data System (ADS)
Simms, Laura; Engebretson, Mark; Clilverd, Mark; Rodger, Craig; Lessard, Marc; Gjerloev, Jesper; Reeves, Geoffrey
2018-05-01
Relativistic electron flux at geosynchronous orbit depends on enhancement and loss processes driven by ultralow frequency (ULF) Pc5, chorus, and electromagnetic ion cyclotron (EMIC) waves, seed electron flux, magnetosphere compression, the "Dst effect," and substorms, while solar wind inputs such as velocity, number density, and interplanetary magnetic field Bz drive these factors and thus correlate with flux. Distributed lag regression models show the time delay of highest influence of these factors on log10 high-energy electron flux (0.7-7.8 MeV, Los Alamos National Laboratory satellites). Multiple regression with an autoregressive term (flux persistence) allows direct comparison of the magnitude of each effect while controlling other correlated parameters. Flux enhancements due to ULF Pc5 and chorus waves are of equal importance. The direct effect of substorms on high-energy electron flux is strong, possibly due to injection of high-energy electrons by the substorms themselves. Loss due to electromagnetic ion cyclotron waves is less influential. Southward Bz shows only moderate influence when correlated processes are accounted for. Adding covariate compression effects (pressure and interplanetary magnetic field magnitude) allows wave-driven enhancements to be more clearly seen. Seed electrons (270 keV) are most influential at lower relativistic energies, showing that such a population must be available for acceleration. However, they are not accelerated directly to the highest energies. Source electrons (31.7 keV) show no direct influence when other factors are controlled. Their action appears to be indirect via the chorus waves they generate. Determination of specific effects of each parameter when studied in combination will be more helpful in furthering modeling work than studying them individually.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ida, K.; Kobayashi, T.; Yoshinuma, M.
Bifurcation physics of the magnetic island was investigated using the heat pulse propagation technique produced by the modulation of electron cyclotron heating. There are two types of bifurcation phenomena observed in LHD and DIII-D. One is a bifurcation of the magnetic topology between nested and stochastic fields. The nested state is characterized by the bi-directional (inward and outward) propagation of the heat pulse with slow propagation speed. The stochastic state is characterized by the fast propagation of the heat pulse with electron temperature flattening. The other bifurcation is between magnetic island with larger thermal diffusivity and that with smaller thermalmore » diffusivity. The damping of toroidal flow is observed at the O-point of the magnetic island both in helical plasmas and in tokamak plasmas during a mode locking phase with strong flow shears at the boundary of the magnetic island. Associated with the stochastization of the magnetic field, the abrupt damping of toroidal flow is observed in LHD. The toroidal flow shear shows a linear decay, while the ion temperature gradient shows an exponential decay. Lastly, this observation suggests that this flow damping is due to the change in the non-diffusive term of momentum transport.« less
Ida, K.; Kobayashi, T.; Yoshinuma, M.; ...
2016-07-29
Bifurcation physics of the magnetic island was investigated using the heat pulse propagation technique produced by the modulation of electron cyclotron heating. There are two types of bifurcation phenomena observed in LHD and DIII-D. One is a bifurcation of the magnetic topology between nested and stochastic fields. The nested state is characterized by the bi-directional (inward and outward) propagation of the heat pulse with slow propagation speed. The stochastic state is characterized by the fast propagation of the heat pulse with electron temperature flattening. The other bifurcation is between magnetic island with larger thermal diffusivity and that with smaller thermalmore » diffusivity. The damping of toroidal flow is observed at the O-point of the magnetic island both in helical plasmas and in tokamak plasmas during a mode locking phase with strong flow shears at the boundary of the magnetic island. Associated with the stochastization of the magnetic field, the abrupt damping of toroidal flow is observed in LHD. The toroidal flow shear shows a linear decay, while the ion temperature gradient shows an exponential decay. Lastly, this observation suggests that this flow damping is due to the change in the non-diffusive term of momentum transport.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maneva, Y. G.; Poedts, Stefaan; Viñas, Adolfo F.
2015-11-20
We perform 2.5D hybrid simulations with massless fluid electrons and kinetic particle-in-cell ions to study the temporal evolution of ion temperatures, temperature anisotropies, and velocity distribution functions in relation to the dissipation and turbulent evolution of a broadband spectrum of parallel and obliquely propagating Alfvén-cyclotron waves. The purpose of this paper is to study the relative role of parallel versus oblique Alfvén-cyclotron waves in the observed heating and acceleration of alpha particles in the fast solar wind. We consider collisionless homogeneous multi-species plasma, consisting of isothermal electrons, isotropic protons, and a minor component of drifting α particles in a finite-βmore » fast stream near the Earth. The kinetic ions are modeled by initially isotropic Maxwellian velocity distribution functions, which develop nonthermal features and temperature anisotropies when a broadband spectrum of low-frequency nonresonant, ω ≤ 0.34 Ω{sub p}, Alfvén-cyclotron waves is imposed at the beginning of the simulations. The initial plasma parameter values, such as ion density, temperatures, and relative drift speeds, are supplied by fast solar wind observations made by the Wind spacecraft at 1 AU. The imposed broadband wave spectra are left-hand polarized and resemble Wind measurements of Alfvénic turbulence in the solar wind. The imposed magnetic field fluctuations for all cases are within the inertial range of the solar wind turbulence and have a Kraichnan-type spectral slope α = −3/2. We vary the propagation angle from θ = 0° to θ = 30° and θ = 60°, and find that the heating of alpha particles is most efficient for the highly oblique waves propagating at 60°, whereas the protons exhibit perpendicular cooling at all propagation angles.« less
Acceleration of the Fast Solar Wind through Minor Ions
NASA Astrophysics Data System (ADS)
Li, X.
2004-01-01
It is assumed that the magnetic flux tubes are strongly concentrated at the boundaries of the supergranule convection cells. A power law spectrum of high frequency Alfvén waves with a spectral index -1 originating from the sun is assumed to supply all the energy needed to energize the plasma flowing in such magnetic flux tubes. At the high frequency end, the waves are eroded by ions due to ion cyclotron resonance. The magnetic flux concentration is essential since it allows a sufficiently strong energy flux to be carried by high frequency ion cyclotron waves and these waves can be readily released at the coronal base by cyclotron resonance. The main results are: 1. By primarily heating alpha particles only, it is possible to produce a steep transition region, a hot corona and a fast solar wind. Coulomb coupling plays a key role in transferring the thermal energy of alpha particles to protons and electrons at the corona base. The electron thermal conduction then does the remaining job to create a sharp transition region. 2. Plasma species may already partially lose thermal equilibrium in the transition region, minor ions may already be faster than protons at the very bottom of the corona. 3. The model predicts high temperature alpha particles (T 2 × 107 K) and low proton temperatures (Tp < 106 K) between 2 and 4 solar radii, suggests that hydrogen Lyman lines observed by UVCS above coronal holes may be primarily broadened by Alfvén waves in this range.
High carrier mobility in ultrapure diamond measured by time-resolved cyclotron resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akimoto, Ikuko, E-mail: akimoto@sys.wakayama-u.ac.jp; Handa, Yushi; Fukai, Katsuyuki
2014-07-21
We have performed time-resolved cyclotron resonance measurements in ultrapure diamond crystals for the temperature range of T=7.3–40 K and obtained the temperature-dependent momentum relaxation times based on the cyclotron resonance widths for optically generated electrons and holes. The relaxation time follows a T{sup −3/2} law down to 12 K, which is expected for acoustic-phonon scattering without impurity effect because of the high purity of our samples. The deviation from the law at lower temperatures is explained by the impurity scattering and the breakdown of the high-temperature approximation for the phonon scattering. We extract the carrier drift mobility by using the directly measuredmore » effective masses and the relaxation times. The mobility at 10 K for 600 ns delay time after optical injection is found to be μ{sub e}=1.5×10{sup 6} cm{sup 2}/V s for the electrons, and μ{sub lh}=2.3×10{sup 6} cm{sup 2}/V s and μ{sub hh}=2.4×10{sup 5} cm{sup 2}/V s for the light and heavy holes, respectively. These high values are achieved by our high-sensitivity detection for low-density carriers (at <10{sup 11} cm{sup −3}) free from the carrier-carrier scattering as well as by the suppression of the impurity scattering in the high-purity samples.« less
De-trapping Magnetic Mirror Confined Fast Electrons by Shear Alfvén Waves
NASA Astrophysics Data System (ADS)
Wang, Y.; Gekelman, W. N.; Pribyl, P.; Papadopoulos, K.
2013-12-01
Highly energetic electrons produced naturally or artificially can be trapped in the Earth's radiation belts for months, posing a danger to valuable space satellites. Concepts that can lead to radiation belts mitigation have drawn a great deal of interest. We report a clear demonstration in a controlled lab experiment that a shear Alfvén wave can effectively de-trap energetic electrons confined by a magnetic mirror field. The experiment is performed in a quiescent afterglow plasma in the Large Plasma Device (LaPD) at UCLA. A hot electron ring, along with hard x-rays of energies of 100 keV ~ 3 MeV, is generated by 2nd harmonic electron cyclotron resonance heating and is trapped in a magnetic mirror field (Rmirror = 1.1 ~ 4, Bmin = 438 Gauss). A shear Alfvén wave (fAlfvén ~ 0.5 fci, BAlfvén / B0 ~ 0.1%), is launched with a rotating magnetic field antenna with arbitrary polarization. Irradiated by the Alfvén wave, the loss of electrons is modulated at fAlfvén. The periodic loss of electrons is found to be related to the spatial distortion of the hot electron ring, and continues even after the termination of the wave. The effect is found to be caused only by the right-hand (electron diamagnetic direction) circularly polarized component of the Alfvén wave. Hard x-ray tomography, constructed from more than 1000 chord projections at each axial location, shows electrons are lost in both the radial and axial direction. X-ray spectroscopy shows electrons over a broad range of energy de-trapped by the Alfvén wave, which suggests a non-resonant nature of the de-trapping process. The de-trapping process is found to be accompanied by electro-magnetic fluctuations in the frequency range of 1~5 fLH, which are also modulated at the frequency of the Alfvén wave. To exclude the possible role of whistler waves in this electron de-trapping process, whistler waves at these frequencies are launched with an antenna in absence of the Alfvén wave and no significant electron loss found. Research is supported by an ONR MURI award, and conducted at the Basic Plasma Science Facility at UCLA funded by DoE and NSF. A schematic plot of the experiment, with measured Alfvén wave magnetic field vector over-plotted. The plot shows a plane transverse to the background magnetic mirror field, in which a population of fast electrons is trapped and formed a hot electron ring. It has been observed the shear Alfvén wave can effectively de-trap the mirror confined fast electrons.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.; Liemohn, M. W.
2007-01-01
This paper continues presentation and discussion of the results from our new global self-consistent theoretical model of interacting ring current ions and propagating electromagnetic ion cyclotron waves [Khazanov et al., 2006]. To study the effects of electromagnetic ion cyclotron wave propagation and refraction on the wave induced ring current precipitation and heating of the thermal plasmaspheric electrons, we simulate the May 1998 storm. The main findings after a simulation can be summarized as follows. Firstly, the wave induced ring current precipitation exhibits quite a lot of fine structure, and is highly organized by location of the plasmapause gradient. The strongest fluxes of about 4 x 10(exp 6) (cm(raised dot) s(raised dot) sr(raised dot) (sup -1)) are observed during the maill and early recovery phases of the storm. The very interesting and probably more important finding is that in a number of cases the most intense precipitating fluxes are not connected to the most intense waves in simple manner. The characteristics of the wave power spectral density distribution over the wave normal angle are extremely crucial for the effectiveness of the ring current ion scattering. Secondly, comparison of the global proton precipitating patterns with the results from RAM [Kozyra et al., 1997a] reveals that although we observe a qualitative agreement between the localizations of the wave induced precipitations in the models, there is no quantitative agreement between the magnitudes of the fluxes. The quantitative differences are mainly due to a qualitative difference between the characteristics of the wave power spectral density distributions over the wave normal angle in RAM and in our model. Thirdly, the heat fluxes to plasmaspheric electrons caused by Landau resonate energy absorption from electromagnetic ion cyclotron waves are observed in the postnoon-premidnight MLT sector, and can reach the magnitude of 10(exp 11) eV/(cm(sup 2)(raised dot)s). The Coulomb energy degradation of the RC H(+) and O(+) ions maximizes at about 10(exp 11) (eV/(cm(sup 2) (raised dot) s), and typically leads to electron energy deposition rates of about 2(raised dot) 10(exp 10) (eV/(cm(sup 2)(raised dot)s) which are observed during two periods; 32-48 hours, and 76-86 hours after 1 May, 0000 UT. The theoretically derived spatial structure of the thermal electron heating caused by interaction of the ring current with the plasmasphere is strongly supported by concurrent and conjugate plasma measurements from the plasmasphere, ring current, and topside ionosphere [Gurgiolo et al., 2005]. Finally, the wave induced intense electron heating has a structure of the spot-like patches along the most enhanced density gradients in the plasmasphere boundary layer and can be a possible driver to the observed but still not explained small-scale structures of enhanced emissions in the stable auroral red arcs.
NASA Astrophysics Data System (ADS)
Kataoka, Ryuho; Asaoka, Yoichi; Torii, Shoji; Terasawa, Toshio; Ozawa, Shunsuke; Tamura, Tadahisa; Shimizu, Yuki; Akaike, Yosui; Mori, Masaki
2016-05-01
The charge detector (CHD) of the Calorimetric Electron Telescope (CALET) on board the International Space Station (ISS) has a huge geometric factor for detecting MeV electrons and is sensitive to relativistic electron precipitation (REP) events. During the first 4 months, CALET CHD observed REP events mainly at the dusk to midnight sector near the plasmapause, where the trapped radiation belt electrons can be efficiently scattered by electromagnetic ion cyclotron (EMIC) waves. Here we show that interesting 5-20 s periodicity regularly exists during the REP events at ISS, which is useful to diagnose the wave-particle interactions associated with the nonlinear wave growth of EMIC-triggered emissions.
NASA Astrophysics Data System (ADS)
Razzaq, Javaria; Haque, Q.; Khan, Majid; Bhatti, Adnan Mehmood; Kamran, M.; Mirza, Arshad M.
2018-02-01
Nonlinear structure formation in ion-temperature-gradient (ITG) driven waves is investigated in pair-ion plasma comprising ions and nonthermal electrons (kappa, Cairns). By using the transport equations of the Braginskii model, a new set of nonlinear equations are derived. A linear dispersion relation is obtained and discussed analytically as well as numerically. It is shown that the nonthermal population of electrons affects both the linear and nonlinear characteristics of the ITG mode in pair-ion plasma. This work will be useful in tokamaks and stellarators where non-Maxwellian population of electrons may exist due to resonant frequency heating, electron cyclotron heating, runaway electrons, etc.
Parametric Instabilities of Electron Cyclotron Waves in Plasmas.
1980-03-01
Perkins, PPPL -1578 (1979). 7. C. S. Liu, in Advances in Plasma Physics, edited by A. Simon and W. B. Thompson (Wiley, N. Y. 1976) Vol. 6. p. 121. 8. V. K. Tripathi, C. S. Liu and C. Grebogi, Phys. Fluids 22, 301 (1979). II II II1I. .. ,
Studies of electromagnetic ion cyclotron waves using AMPTE/CCE and dynamics explorer
NASA Technical Reports Server (NTRS)
Erlandson, Robert E.
1994-01-01
The overall objective of this research is to investigate the generation and propagation of electromagnetic ion cyclotron (EMIC) waves in the frequency range from 0.2 to 5 Hz (Pc 1 frequency band). Data used in this research were acquired by the AMPTE/CCE, DE-1, and DE-2 satellites. One of the primary questions addressed in this research is the role which EMIC waves have on the transfer of energy from the equatorial magnetosphere to the ionosphere. The primary result from this research is that some fraction of EMIC waves, generated in the equatorial magnetosphere, are Landau damped in the ionosphere and are therefore a heat source for ionospheric electrons. This result as well as other results are summarized below.
NASA Astrophysics Data System (ADS)
Poli, E.; Bock, A.; Lochbrunner, M.; Maj, O.; Reich, M.; Snicker, A.; Stegmeir, A.; Volpe, F.; Bertelli, N.; Bilato, R.; Conway, G. D.; Farina, D.; Felici, F.; Figini, L.; Fischer, R.; Galperti, C.; Happel, T.; Lin-Liu, Y. R.; Marushchenko, N. B.; Mszanowski, U.; Poli, F. M.; Stober, J.; Westerhof, E.; Zille, R.; Peeters, A. G.; Pereverzev, G. V.
2018-04-01
The paraxial WKB code TORBEAM (Poli, 2001) is widely used for the description of electron-cyclotron waves in fusion plasmas, retaining diffraction effects through the solution of a set of ordinary differential equations. With respect to its original form, the code has undergone significant transformations and extensions, in terms of both the physical model and the spectrum of applications. The code has been rewritten in Fortran 90 and transformed into a library, which can be called from within different (not necessarily Fortran-based) workflows. The models for both absorption and current drive have been extended, including e.g. fully-relativistic calculation of the absorption coefficient, momentum conservation in electron-electron collisions and the contribution of more than one harmonic to current drive. The code can be run also for reflectometry applications, with relativistic corrections for the electron mass. Formulas that provide the coupling between the reflected beam and the receiver have been developed. Accelerated versions of the code are available, with the reduced physics goal of inferring the location of maximum absorption (including or not the total driven current) for a given setting of the launcher mirrors. Optionally, plasma volumes within given flux surfaces and corresponding values of minimum and maximum magnetic field can be provided externally to speed up the calculation of full driven-current profiles. These can be employed in real-time control algorithms or for fast data analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolghadr, S. H.; Jafari, S., E-mail: sjafari@guilan.ac.ir; Raghavi, A.
2016-05-15
Significant progress has been made employing plasmas in the free-electron lasers (FELs) interaction region. In this regard, we study the output power and saturation length of the plasma whistler wave-pumped FEL in a magnetized plasma channel. The small wavelength of the whistler wave (in sub-μm range) in plasma allows obtaining higher radiation frequency than conventional wiggler FELs. This configuration has a higher tunability by adjusting the plasma density relative to the conventional ones. A set of coupled nonlinear differential equations is employed which governs on the self-consistent evolution of an electromagnetic wave. The electron bunching process of the whistler-pumped FELmore » has been investigated numerically. The result reveals that for a long wiggler length, the bunching factor can appreciably change as the electron beam propagates through the wiggler. The effects of plasma frequency (or plasma density) and cyclotron frequency on the output power and saturation length have been studied. Simulation results indicate that with increasing the plasma frequency, the power increases and the saturation length decreases. In addition, when density of background plasma is higher than the electron beam density (i.e., for a dense plasma channel), the plasma effects are more pronounced and the FEL-power is significantly high. It is also found that with increasing the strength of the external magnetic field frequency, the power decreases and the saturation length increases, noticeably.« less
Adaptive time-stepping Monte Carlo integration of Coulomb collisions
NASA Astrophysics Data System (ADS)
Särkimäki, K.; Hirvijoki, E.; Terävä, J.
2018-01-01
We report an accessible and robust tool for evaluating the effects of Coulomb collisions on a test particle in a plasma that obeys Maxwell-Jüttner statistics. The implementation is based on the Beliaev-Budker collision integral which allows both the test particle and the background plasma to be relativistic. The integration method supports adaptive time stepping, which is shown to greatly improve the computational efficiency. The Monte Carlo method is implemented for both the three-dimensional particle momentum space and the five-dimensional guiding center phase space. Detailed description is provided for both the physics and implementation of the operator. The focus is in adaptive integration of stochastic differential equations, which is an overlooked aspect among existing Monte Carlo implementations of Coulomb collision operators. We verify that our operator converges to known analytical results and demonstrate that careless implementation of the adaptive time step can lead to severely erroneous results. The operator is provided as a self-contained Fortran 95 module and can be included into existing orbit-following tools that trace either the full Larmor motion or the guiding center dynamics. The adaptive time-stepping algorithm is expected to be useful in situations where the collision frequencies vary greatly over the course of a simulation. Examples include the slowing-down of fusion products or other fast ions, and the Dreicer generation of runaway electrons as well as the generation of fast ions or electrons with ion or electron cyclotron resonance heating.
TG wave autoresonant control of plasma temperature
NASA Astrophysics Data System (ADS)
Kabantsev, A. A.; Driscoll, C. F.
2015-06-01
The thermal correction term in the Trivelpiece-Gould (TG) wave's frequency has been used to accurately control the temperature of electron plasma, by applying a swept-frequency continuous drive autoresonantly locked in balance with the cyclotron cooling. The electron temperature can be either "pegged" at a desired value (by constant drive frequency); or varied cyclically (following the tailored frequency course), with rates limited by the cooling time (on the way down) and by chosen drive amplitude (on the way up).
Overview of recent and current research on the TCV tokamak
NASA Astrophysics Data System (ADS)
S. Codathe TCV Team
2013-10-01
Through a diverse research programme, the Tokamak à Configuration Variable (TCV) addresses physics issues and develops tools for ITER and for the longer term goals of nuclear fusion, relying especially on its extreme plasma shaping and electron cyclotron resonance heating (ECRH) launching flexibility and preparing for an ECRH and NBI power upgrade. Localized edge heating was unexpectedly found to decrease the period and relative energy loss of edge localized modes (ELMs). Successful ELM pacing has been demonstrated by following individual ELM detection with an ECRH power cut before turning the power back up to trigger the next ELM, the duration of the cut determining the ELM period. Negative triangularity was also seen to reduce the ELM energy release. H-mode studies have focused on the L-H threshold dependence on the main ion species and on the divertor leg length. Both L- and H-modes have been explored in the snowflake configuration with emphasis on edge measurements, revealing that the heat flux to the strike points on the secondary separatrix increases as the X-points approach each other, well before they coalesce. In L-mode, a systematic scan of the auxiliary power deposition profile, with no effect on confinement, has ruled it out as the cause of confinement degradation. An ECRH power absorption observer based on transmitted stray radiation was validated for eventual polarization control. A new profile control methodology was introduced, relying on real-time modelling to supplement diagnostic information; the RAPTOR current transport code in particular has been employed for joint control of the internal inductance and central temperature. An internal inductance controller using the ohmic transformer has also been demonstrated. Fundamental investigations of neoclassical tearing mode (NTM) seed island formation by sawtooth crashes and of NTM destabilization in the absence of a sawtooth trigger were carried out. Both stabilizing and destabilizing agents (electron cyclotron current drive on or inside the q = 1 surface, respectively) were used to pace sawtooth oscillations, permitting precise control of their period. Locking of the sawtooth period to a pre-defined ECRH modulation period was also demonstrated. Sawtooth control has permitted nearly failsafe NTM prevention when combined with backup NTM stabilization by ECRH.