Sample records for modulated elliptically polarizing

  1. Amplified all-optical polarization phase modulator assisted by a local surface plasmon in Au-hybrid CdSe quantum dots.

    PubMed

    Kyhm, Kwangseuk; Je, Koo-Chul; Taylor, Robert A

    2012-08-27

    We propose an amplified all-optical polarization phase modulator assisted by a local surface plasmon in Au-hybrid CdSe quantum dots. When the local surface plasmon of a spherical Au quantum dot is in resonance with the exciton energy level of a CdSe quantum dot, a significant enhancement of the linear and nonlinear refractive index is found in both the real and imaginary terms via the interaction with the dipole field of the local surface plasmon. Given a gating pulse intensity, an elliptical polarization induced by the phase retardation is described in terms of elliptical and rotational angles. In the case that a larger excitation than the bleaching intensity is applied, the signal light can be amplified due to the presence of gain in the CdSe quantum dot. This enables a longer propagation of the signal light relative to the metal loss, resulting in more feasible polarization modulation.

  2. Demonstration of a vectorial optical field generator with adaptive close loop control.

    PubMed

    Chen, Jian; Kong, Lingjiang; Zhan, Qiwen

    2017-12-01

    We experimentally demonstrate a vectorial optical field generator (VOF-Gen) with an adaptive close loop control. The close loop control capability is illustrated with the calibration of polarization modulation of the system. To calibrate the polarization ratio modulation, we generate 45° linearly polarized beam and make it propagate through a linear analyzer whose transmission axis is orthogonal to the incident beam. For the retardation calibration, circularly polarized beam is employed and a circular polarization analyzer with the opposite chirality is placed in front of the CCD as the detector. In both cases, the close loop control automatically changes the value of the corresponding calibration parameters in the pre-set ranges to generate the phase patterns applied to the spatial light modulators and records the intensity distribution of the output beam by the CCD camera. The optimized calibration parameters are determined corresponding to the minimum total intensity in each case. Several typical kinds of vectorial optical beams are created with and without the obtained calibration parameters, and the full Stokes parameter measurements are carried out to quantitatively analyze the polarization distribution of the generated beams. The comparisons among these results clearly show that the obtained calibration parameters could remarkably improve the accuracy of the polarization modulation of the VOF-Gen, especially for generating elliptically polarized beam with large ellipticity, indicating the significance of the presented close loop in enhancing the performance of the VOF-Gen.

  3. Toggle switch from optical bistability to multistability via an elliptically polarized field

    NASA Astrophysics Data System (ADS)

    Yan, Xiang-An; Ren, Bo-Quan; Wang, Li-Qiang; Liu, Yao-Wu; Yu, Hua-Wa

    2017-06-01

    In this paper, we propose a scheme for manipulating the behavior of optical bistability (OB) and optical multistability (OM) in an N-type four-level atomic system. In the scheme, quantum interference is optimized by the left-handed and the right-handed fields of an elliptically polarized field (EPF). The threshold and the hysteresis cycle shape of OB and OM can be controlled by modulating the intensity of the EPF. Especially, the transition from OB to OM or vice versa can also be easily realized by proper tuning the phase difference between the left-handed and right-handed polarized fields under the optimal intensity of the EPF.

  4. Generation of elliptical and circular vector hollow beams with different polarizations by a Mach-Zehnder-type optical path

    NASA Astrophysics Data System (ADS)

    Wang, Zhizhang; Pei, Chunying; Xia, Meng; Yin, Yaling; Xia, Yong; Yin, Jianping

    2018-01-01

    We present an experimental approach to convert linearly polarized Gaussian beams into elliptical and circular vector hollow beams (VHBs) with different polarization states. The scheme employed is based on a Mach-Zehnder-type optical path combined with a reflective spatial light modulator (SLM) in each path. The resulting VHBs have radial, azimuthal, and other polarization states. Our studies also show that the size of the generated VHBs remains constant during the propagation in free space over a certain distance, and can be controlled by the axial ratio of the SLM’s binary phase plate. These studies deliver great optical parameters and hold promising applications in the fields of optical trapping and manipulation of particles.

  5. Elliptical polarization of near-resonant linearly polarized probe light in optically pumped alkali metal vapor

    PubMed Central

    Li, Yingying; Wang, Zhiguo; Jin, Shilong; Yuan, Jie; Luo, Hui

    2017-01-01

    Optically pumped alkali metal atoms currently provide a sensitive solution for magnetic microscopic measurements. As the most practicable plan, Faraday rotation of linearly polarized light is extensively used in spin polarization measurements of alkali metal atoms. In some cases, near-resonant Faraday rotation is applied to improve the sensitivity. However, the near-resonant linearly polarized probe light is elliptically polarized after passing through optically pumped alkali metal vapor. The ellipticity of transmitted near-resonant probe light is numerically calculated and experimentally measured. In addition, we also analyze the negative impact of elliptical polarization on Faraday rotation measurements. From our theoretical estimate and experimental results, the elliptical polarization forms an inevitable error in spin polarization measurements. PMID:28216649

  6. Precise, motion-free polarization control in Second Harmonic Generation microscopy using a liquid crystal modulator in the infinity space.

    PubMed

    Lien, Chi-Hsiang; Tilbury, Karissa; Chen, Shean-Jen; Campagnola, Paul J

    2013-01-01

    Second Harmonic Generation (SHG) microscopy coupled with polarization analysis has great potential for use in tissue characterization, as molecular and supramolecular structural details can be extracted. Such measurements are difficult to perform quickly and accurately. Here we present a new method that uses a liquid crystal modulator (LCM) located in the infinity space of a SHG laser scanning microscope that allows the generation of any desired linear or circular polarization state. As the device contains no moving parts, polarization can be rotated accurately and faster than by manual or motorized control. The performance in terms of polarization purity was validated using Stokes vector polarimetry, and found to have minimal residual polarization ellipticity. SHG polarization imaging characteristics were validated against well-characterized specimens having cylindrical and/or linear symmetries. The LCM has a small footprint and can be implemented easily in any standard microscope and is cost effective relative to other technologies.

  7. Precise, motion-free polarization control in Second Harmonic Generation microscopy using a liquid crystal modulator in the infinity space

    PubMed Central

    Lien, Chi-Hsiang; Tilbury, Karissa; Chen, Shean-Jen; Campagnola, Paul J.

    2013-01-01

    Second Harmonic Generation (SHG) microscopy coupled with polarization analysis has great potential for use in tissue characterization, as molecular and supramolecular structural details can be extracted. Such measurements are difficult to perform quickly and accurately. Here we present a new method that uses a liquid crystal modulator (LCM) located in the infinity space of a SHG laser scanning microscope that allows the generation of any desired linear or circular polarization state. As the device contains no moving parts, polarization can be rotated accurately and faster than by manual or motorized control. The performance in terms of polarization purity was validated using Stokes vector polarimetry, and found to have minimal residual polarization ellipticity. SHG polarization imaging characteristics were validated against well-characterized specimens having cylindrical and/or linear symmetries. The LCM has a small footprint and can be implemented easily in any standard microscope and is cost effective relative to other technologies. PMID:24156059

  8. [Effect of decimeter polarized electromagnetic radiation on germinating capacity of seeds].

    PubMed

    Polevik, N D

    2013-01-01

    The effect of a polarization structure of electromagnetic radiation on the germinating capacity of seeds of such weeds as Green foxtail (Setaria viridis) and Green amaranth (Amaranthus retroflexus) has been studied. Seeds have been exposed to impulse electromagnetic radiation in a frequency of 896 MHz with linear, elliptical right-handed and elliptical left-handed polarizations at different power flux density levels. It is determined that the effect of the right-handed polarized electromagnetic radiation increases and the influence of the left-handed polarized one reduces the germinating capacity of seeds compared to the effect of the linearly polarized electromagnetic radiation. It is shown that the seeds have an amplitude polarization selectivity as evinced by the major effect of the right-handed polarized radiation on seeds. An electrodynamic model as the right-handed elliptically polarized antenna with the given quantity of the ellipticity of polarization is suggested to use in description of this selectivity.

  9. Polarization-dependent enhanced photoluminescence and polarization-independent emission rate of quantum dots on gold elliptical nanodisc arrays.

    PubMed

    Zhu, Qiangzhong; Zheng, Shupei; Lin, Shijie; Liu, Tian-Ran; Jin, Chongjun

    2014-07-07

    We have fabricated gold (Au) elliptical nanodisc (ND) arrays via three-beam interference lithography and electron beam deposition of gold. The enhanced photoluminescence intensity and emission rate of quantum dots (QDs) near to the Au elliptical NDs have been studied by tuning the nearest distance between quantum dots and Au elliptical NDs. We found that the photoluminescence intensity is polarization-dependent with the degree of polarization being equal to that of the light extinction of the Au elliptical NDs, while the emission rate is polarization-independent. This is resulted from the plasmon-coupled emission via the coupling between the QD dipole and the plasmon nano-antenna. Our experiments fully confirm the evidence of the plasmophore concept proposed recently in the interaction of the QDs with metal nanoparticles.

  10. Active terahertz metamaterials based on liquid-crystal induced transparency and absorption

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Fan, Fei; Chen, Meng; Zhang, Xuanzhou; Chang, Sheng-Jiang

    2017-01-01

    An active terahertz (THz) liquid crystal (LC) metamaterial has been experimentally investigated for THz wave modulation. Some interesting phenomena of resonance shifting, tunable electromagnetically induced transparency (EIT) and electromagnetically induced absorption (EIA) have been observed in the same device structure under different DC bias directions and different incident wave polarization directions by the THz time domain spectroscopy. Further theoretical studies indicate that these effects originate from interference and coupling between bright and dark mode components of elliptically polarized modes in the LC metamaterial, which are induced by the optical activity of LC alignment controllable by the electric field as well as the changes of LC refractive index. The LC layer is indeed a phase retarder and polarization converter that is controlled by the DC bias. The THz modulation depth of the analogs of EIT and EIA effects are 18.3 dB and 10.5 dB in their frequency band, respectively. Electrical control, large modulation depth and feasible integration of this LC device make it an ideal candidate for THz tunable filter, intensity modulator and spatial light modulator.

  11. Transition of recollision trajectories from linear to elliptical polarization

    DOE PAGES

    Li, Yingbin; Yu, Benhai; Tang, Qingbin; ...

    2016-03-15

    Using a classical ensemble method, we revisit the topic of recollision and nonsequential double ionization with elliptically polarized laser fields. We focus on how the recollision mechanism transitions from short trajectories with linear polarization to long trajectories with elliptical polarization. Furthermore, we propose how this transition can be observed by measuring the carrier-envelop-phase dependence of the correlated electron momentum spectra using currently available few-cycle laser pulses.

  12. Double ionization of neon in elliptically polarized femtosecond laser fields

    NASA Astrophysics Data System (ADS)

    Kang, HuiPeng; Henrichs, Kevin; Wang, YanLan; Hao, XiaoLei; Eckart, Sebastian; Kunitski, Maksim; Schöffler, Markus; Jahnke, Till; Liu, XiaoJun; Dörner, Reinhard

    2018-06-01

    We present a joint experimental and theoretical investigation of the correlated electron momentum spectra from strong-field double ionization of neon induced by elliptically polarized laser pulses. A significant asymmetry of the electron momentum distributions along the major polarization axis is reported. This asymmetry depends sensitively on the laser ellipticity. Using a three-dimensional semiclassical model, we attribute this asymmetry pattern to the ellipticity-dependent probability distributions of recollision time. Our work demonstrates that, by simply varying the ellipticity, the correlated electron emission can be two-dimensionally controlled and the recolliding electron trajectories can be steered on a subcycle time scale.

  13. Three axis vector atomic magnetometer utilizing polarimetric technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradhan, Swarupananda, E-mail: spradhan@barc.gov.in, E-mail: pradhans75@gmail.com

    2016-09-15

    The three axis vector magnetic field measurement based on the interaction of a single elliptically polarized light beam with an atomic system is described. The magnetic field direction dependent atomic responses are extracted by the polarimetric detection in combination with laser frequency modulation and magnetic field modulation techniques. The magnetometer geometry offers additional critical requirements like compact size and large dynamic range for space application. Further, the three axis magnetic field is measured using only the reflected signal (one polarization component) from the polarimeter and thus can be easily expanded to make spatial array of detectors and/or high sensitivity fieldmore » gradient measurement as required for biomedical application.« less

  14. Manipulation of dielectric Rayleigh particles using highly focused elliptically polarized vector fields.

    PubMed

    Gu, Bing; Xu, Danfeng; Rui, Guanghao; Lian, Meng; Cui, Yiping; Zhan, Qiwen

    2015-09-20

    Generation of vectorial optical fields with arbitrary polarization distribution is of great interest in areas where exotic optical fields are desired. In this work, we experimentally demonstrate the versatile generation of linearly polarized vector fields, elliptically polarized vector fields, and circularly polarized vortex beams through introducing attenuators in a common-path interferometer. By means of Richards-Wolf vectorial diffraction method, the characteristics of the highly focused elliptically polarized vector fields are studied. The optical force and torque on a dielectric Rayleigh particle produced by these tightly focused vector fields are calculated and exploited for the stable trapping of dielectric Rayleigh particles. It is shown that the additional degree of freedom provided by the elliptically polarized vector field allows one to control the spatial structure of polarization, to engineer the focusing field, and to tailor the optical force and torque on a dielectric Rayleigh particle.

  15. Timing Recollision in Nonsequential Double Ionization by Intense Elliptically Polarized Laser Pulses.

    PubMed

    Kang, H; Henrichs, K; Kunitski, M; Wang, Y; Hao, X; Fehre, K; Czasch, A; Eckart, S; Schmidt, L Ph H; Schöffler, M; Jahnke, T; Liu, X; Dörner, R

    2018-06-01

    We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the subcycle dynamics of the recollision process. Our Letter reveals a general physical picture for recollision impact double ionization with elliptical polarization and demonstrates the possibility of ultrafast control of the recollision dynamics.

  16. Timing Recollision in Nonsequential Double Ionization by Intense Elliptically Polarized Laser Pulses

    NASA Astrophysics Data System (ADS)

    Kang, H.; Henrichs, K.; Kunitski, M.; Wang, Y.; Hao, X.; Fehre, K.; Czasch, A.; Eckart, S.; Schmidt, L. Ph. H.; Schöffler, M.; Jahnke, T.; Liu, X.; Dörner, R.

    2018-06-01

    We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the subcycle dynamics of the recollision process. Our Letter reveals a general physical picture for recollision impact double ionization with elliptical polarization and demonstrates the possibility of ultrafast control of the recollision dynamics.

  17. Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson

    NASA Astrophysics Data System (ADS)

    Arwin, Hans; Magnusson, Roger; Landin, Jan; Järrendahl, Kenneth

    2012-04-01

    One hundred years ago Michelson discovered circular polarization in reflection from beetles. Today a novel Mueller-matrix ellipsometry setup allows unprecedented detailed characterization of the beetles' polarization properties. A formalism based on elliptical polarization for description of reflection from scarab beetles is here proposed and examples are given on four beetles of different character: Coptomia laevis - a simple dielectric mirror; Cetonia aurata - a left-hand narrow-band elliptical polarizer; Anoplognathus aureus - a broad-band elliptical polarizer; and Chrysina argenteola - a left-hand polarizer for visible light at small angles, whereas for larger angles, red reflected light is right-handed polarized. We confirm the conclusion of previous studies which showed that a detailed quantification of ellipticity and degree of polarization of cuticle reflection can be performed instead of only determining whether reflections are circularly polarized or not. We additionally investigate reflection as a function of incidence angle. This provides much richer information for understanding the behaviour of beetles and for structural analysis.

  18. ON ELLIPTICALLY POLARIZED ANTENNAS IN THE PRESENCE OF GROUND

    DTIC Science & Technology

    The effect of ground reflections upon the far field of an elliptically polarized antenna of ar itrary orientation with r spect to ground is...investigated. The equation of the polarization ellipse produced by an elliptically polarized antenna in the presence of ground is derived, AND SEVERAL...to measurement. It can be modified to permit separating the effects of the presence of ground from the radiation properties of the antenna itself when

  19. Optical asymmetric cryptography based on amplitude reconstruction of elliptically polarized light

    NASA Astrophysics Data System (ADS)

    Cai, Jianjun; Shen, Xueju; Lei, Ming

    2017-11-01

    We propose a novel optical asymmetric image encryption method based on amplitude reconstruction of elliptically polarized light, which is free from silhouette problem. The original image is analytically separated into two phase-only masks firstly, and then the two masks are encoded into amplitudes of the orthogonal polarization components of an elliptically polarized light. Finally, the elliptically polarized light propagates through a linear polarizer, and the output intensity distribution is recorded by a CCD camera to obtain the ciphertext. The whole encryption procedure could be implemented by using commonly used optical elements, and it combines diffusion process and confusion process. As a result, the proposed method achieves high robustness against iterative-algorithm-based attacks. Simulation results are presented to prove the validity of the proposed cryptography.

  20. Electromagnetically induced transparency in the case of elliptic polarization of interacting fields

    NASA Astrophysics Data System (ADS)

    Parshkov, Oleg M.

    2018-04-01

    The theoretical investigation results of disintegration effect of elliptic polarized shot probe pulses of electromagnetically induced transparency in the counterintuitive superposed elliptic polarized control field and in weak probe field approximation are presented. It is shown that this disintegration occurs because the probe field in the medium is the sum of two normal modes, which correspond to elliptic polarized pulses with different speeds of propagation. The polarization ellipses of normal modes have equal eccentricities and mutually perpendicular major axes. Major axis of polarization ellipse of one normal mode is parallel to polarization ellipse major axis of control field, and electric vector of this mode rotates in the opposite direction, than electric vector of the control field. The electric vector other normal mode rotates in the same direction that the control field electric vector. The normal mode speed of the first type aforementioned is less than that of the second type. The polarization characteristics of the normal mode depend uniquely on the polarization characteristics of elliptic polarized control field and remain changeless in the propagation process. The theoretical investigation is performed for Λ-scheme of degenerated quantum transitions between 3P0, 3P10 and 3P2 energy levels of 208Pb isotope.

  1. Three-dimensionally modulated anisotropic structure for diffractive optical elements created by one-step three-beam polarization holographic photoalignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawai, Kotaro, E-mail: s135016@stn.nagaokaut.ac.jp; Sakamoto, Moritsugu; Noda, Kohei

    2016-03-28

    A diffractive optical element with a three-dimensional liquid crystal (LC) alignment structure for advanced control of polarized beams was fabricated by a highly efficient one-step photoalignment method. This study is of great significance because different two-dimensional continuous and complex alignment patterns can be produced on two alignment films by simultaneously irradiating an empty glass cell composed of two unaligned photocrosslinkable polymer LC films with three-beam polarized interference beam. The polarization azimuth, ellipticity, and rotation direction of the diffracted beams from the resultant LC grating widely varied depending on the two-dimensional diffracted position and the polarization states of the incident beams.more » These polarization diffraction properties are well explained by theoretical analysis based on Jones calculus.« less

  2. Above-Threshold Ionization by an Elliptically Polarized Field: Quantum Tunneling Interferences and Classical Dodging

    NASA Astrophysics Data System (ADS)

    Paulus, G. G.; Zacher, F.; Walther, H.; Lohr, A.; Becker, W.; Kleber, M.

    1998-01-01

    Measurements of above-threshold ionization electron spectra in an elliptically polarized field as a function of the ellipticity are presented. In the rescattering regime, electron yields quickly drop with increasing ellipticity. The yields of lower-energy electrons rise again when circular polarization is approached. A classical explanation for these effects is provided. Additional local maxima in the yields of lower-energy electrons can be interpreted as being due to interferences of electron trajectories that tunnel out at different times within one cycle of the field.

  3. Spectroscopic ellipsometer based on direct measurement of polarization ellipticity.

    PubMed

    Watkins, Lionel R

    2011-06-20

    A polarizer-sample-Wollaston prism analyzer ellipsometer is described in which the ellipsometric angles ψ and Δ are determined by direct measurement of the elliptically polarized light reflected from the sample. With the Wollaston prism initially set to transmit p- and s-polarized light, the azimuthal angle P of the polarizer is adjusted until the two beams have equal intensity. This condition yields ψ=±P and ensures that the reflected elliptically polarized light has an azimuthal angle of ±45° and maximum ellipticity. Rotating the Wollaston prism through 45° and adjusting the analyzer azimuth until the two beams again have equal intensity yields the ellipticity that allows Δ to be determined via a simple linear relationship. The errors produced by nonideal components are analyzed. We show that the polarizer dominates these errors but that for most practical purposes, the error in ψ is negligible and the error in Δ may be corrected exactly. A native oxide layer on a silicon substrate was measured at a single wavelength and multiple angles of incidence and spectroscopically at a single angle of incidence. The best fit film thicknesses obtained were in excellent agreement with those determined using a traditional null ellipsometer.

  4. Elliptically polarized terahertz radiation from a chiral oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, R.; Kida, N., E-mail: kida@k.u-tokyo.ac.jp; Sotome, M.

    2015-09-28

    Polarization control of terahertz wave is a challenging subject in terahertz science and technology. Here, we report a simple method to control polarization state of the terahertz wave in terahertz generation process. At room temperature, terahertz radiation from a noncentrosymmetric and chiral oxide, sillenite Bi{sub 12}GeO{sub 20}, is observed by the irradiation of linearly polarized femtosecond laser pulses at 800 nm. The polarization state of the emitted terahertz wave is found to be elliptic with an ellipticity of ∼0.37 ± 0.10. Furthermore, the ellipticity was altered to a nearly zero (∼0.01 ± 0.01) by changing the polarization of the incident linearly polarized femtosecond laser pulses.more » Such a terahertz radiation characteristic is attributable to variation of the polarization state of the emitted terahertz waves, which is induced by retardation due to the velocity mismatch between the incident femtosecond laser pulse and generated terahertz wave and by the polarization tilting due to the optical activity at 800 nm.« less

  5. The Advanced Light Source Elliptically Polarizing Undulator

    NASA Astrophysics Data System (ADS)

    Marks, Steve; Cortopassi, Christopher; Devries, Jan; Hoyer, Egon; Leinbach, Robert; Minamihara, Yoshi; Padmore, Howard; Pipersky, Paul; Plate, Dave; Schlueter, Ross; Young, Anthony

    1997-05-01

    An elliptically polarizing undulator for the Advanced Light Source has been designed and is currently under construction. The magnetic design is a four quadrant pure permanent magnet structure featuring moveable magnets to correct phase errors and on axis field integrals. The device is designed with a 5.0 cm period and will produce variably polarized light of any ellipticity, including pure circular and linear. The spectral range at 1.9 GeV for typical elliptical polarization with a degree of circular polarization greater than 0.8 will be from 100 eV to 1500 eV, using the third and fifth spectral harmonics. The device will be switchabe between left and right circular modes at a frequency of up to 0.1 Hz. The 1.95 m long overall length will allow two such devices in a single ALS straight sector.

  6. Note: Soft X-ray transmission polarizer based on ferromagnetic thin films

    NASA Astrophysics Data System (ADS)

    Müller, L.; Hartmann, G.; Schleitzer, S.; Berntsen, M. H.; Walther, M.; Rysov, R.; Roseker, W.; Scholz, F.; Seltmann, J.; Glaser, L.; Viefhaus, J.; Mertens, K.; Bagschik, K.; Frömter, R.; De Fanis, A.; Shevchuk, I.; Medjanik, K.; Öhrwall, G.; Oepen, H. P.; Martins, M.; Meyer, M.; Grübel, G.

    2018-03-01

    A transmission polarizer for producing elliptically polarized soft X-ray radiation from linearly polarized light is presented. The setup is intended for use at synchrotron and free-electron laser beamlines that do not directly offer circularly polarized light for, e.g., X-ray magnetic circular dichroism (XMCD) measurements or holographic imaging. Here, we investigate the degree of ellipticity upon transmission of linearly polarized radiation through a cobalt thin film. The experiment was performed at a photon energy resonant to the Co L3-edge, i.e., 778 eV, and the polarization of the transmitted radiation was determined using a polarization analyzer that measures the directional dependence of photo electrons emitted from a gas target. Elliptically polarized radiation can be created at any absorption edge showing the XMCD effect by using the respective magnetic element.

  7. Optical asymmetric cryptography based on elliptical polarized light linear truncation and a numerical reconstruction technique.

    PubMed

    Lin, Chao; Shen, Xueju; Wang, Zhisong; Zhao, Cheng

    2014-06-20

    We demonstrate a novel optical asymmetric cryptosystem based on the principle of elliptical polarized light linear truncation and a numerical reconstruction technique. The device of an array of linear polarizers is introduced to achieve linear truncation on the spatially resolved elliptical polarization distribution during image encryption. This encoding process can be characterized as confusion-based optical cryptography that involves no Fourier lens and diffusion operation. Based on the Jones matrix formalism, the intensity transmittance for this truncation is deduced to perform elliptical polarized light reconstruction based on two intensity measurements. Use of a quick response code makes the proposed cryptosystem practical, with versatile key sensitivity and fault tolerance. Both simulation and preliminary experimental results that support theoretical analysis are presented. An analysis of the resistance of the proposed method on a known public key attack is also provided.

  8. Isolated elliptically polarized attosecond soft X-ray with high-brilliance using polarization gating of harmonics from relativistic plasmas at oblique incidence.

    PubMed

    Chen, Zi-Yu; Li, Xiao-Ya; Li, Bo-Yuan; Chen, Min; Liu, Feng

    2018-02-19

    The production of intense isolated attosecond pulse is a major goal in ultrafast research. Recent advances in high harmonic generation from relativistic plasma mirrors under oblique incidence interactions gave rise to photon-rich attosecond pulses with circular or elliptical polarization. However, to achieve an isolated elliptical attosecond pulse via polarization gating using currently available long driving pulses remains a challenge, because polarization gating of high harmonics from relativistic plasmas is assumed only possible at normal or near-normal incidence. Here we numerically demonstrate a scheme around this problem. We show that via control of plasma dynamics by managing laser polarization, it is possible to gate an intense single attosecond pulse with high ellipticity extending to the soft X-ray regime at oblique incidence. This approach thus paves the way towards a powerful tool enabling high-time-resolution probe of dynamics of chiral systems and magnetic materials with current laser technology.

  9. Generation of Elliptically Polarized Terahertz Waves from Antiferromagnetic Sandwiched Structure.

    PubMed

    Zhou, Sheng; Zhang, Qiang; Fu, Shu-Fang; Wang, Xuan-Zhang; Song, Yu-Ling; Wang, Xiang-Guang; Qu, Xiu-Rong

    2018-04-01

    The generation of elliptically polarized electromagnetic wave of an antiferromagnetic (AF)/dielectric sandwiched structure in the terahertz range is studied. The frequency and external magnetic field can change the AF optical response, resulting in the generation of elliptical polarization. An especially useful geometry with high levels of the generation of elliptical polarization is found in the case where an incident electromagnetic wave perpendicularly illuminates the sandwiched structure, the AF anisotropy axis is vertical to the wave-vector and the external magnetic field is pointed along the wave-vector. In numerical calculations, the AF layer is FeF2 and the dielectric layers are ZnF2. Although the effect originates from the AF layer, it can be also influenced by the sandwiched structure. We found that the ZnF2/FeF2/ZnF2 structure possesses optimal rotation of the principal axis and ellipticity, which can reach up to about thrice that of a single FeF2 layer.

  10. Suppressing longitudinal double-layer oscillations by using elliptically polarized laser pulses in the hole-boring radiation pressure acceleration regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Dong; Yan, X. Q.; Key Laboratory of High Energy Density Physics Simulation, Ministry of Education, Peking University, Beijing 100871

    It is shown that well collimated mono-energetic ion beams with a large particle number can be generated in the hole-boring radiation pressure acceleration regime by using an elliptically polarized laser pulse with appropriate theoretically determined laser polarization ratio. Due to the J Multiplication-Sign B effect, the double-layer charge separation region is imbued with hot electrons that prevent ion pileup, thus suppressing the double-layer oscillations. The proposed mechanism is well confirmed by Particle-in-Cell simulations, and after suppressing the longitudinal double-layer oscillations, the ion beams driven by the elliptically polarized lasers own much better energy spectrum than those by circularly polarized lasers.

  11. Electro-optic high voltage sensor

    DOEpatents

    Davidson, James R.; Seifert, Gary D.

    2002-01-01

    A small sized electro-optic voltage sensor capable of accurate measurement of high levels of voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation into the sensor. A polarization beam displacer serves as a filter to separate the input beam into two beams with orthogonal linear polarizations. The beam displacer is oriented in such a way as to rotate the linearly polarized beams such that they enter a Pockels crystal having at a preferred angle of 45 degrees. The beam displacer is therefore capable of causing a linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels electro-optic effect induces a differential phase shift on the major and minor axes of the input beam as it travels through the Pockels crystal, which causes the input beam to be elliptically polarized. A reflecting prism redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization representing the major and minor axes. The system may include a detector for converting the output beams into electrical signals, and a signal processor for determining the voltage based on an analysis of the output beams. The output beams are amplitude modulated by the frequency of the electric field and the amplitude of the output beams is proportional to the magnitude of the electric field, which is related to the voltage being measured.

  12. Experimental study of multi-pulse generation in a full polarization-controlled passively mode-locked Er-fiber laser

    NASA Astrophysics Data System (ADS)

    Santiago-Hernández, H.; Bracamontes-Rodríguez, Y. E.; Beltrán-Pérez, G.; Armas-Rivera, I.; Rodríguez-Morales, L. A.; Pottiez, O.; Ibarra-Escamilla, B.; Durán-Sánchez, M.; Hernández-Arriaga, M. V.; Kuzin, E. A.

    2018-02-01

    We report the dynamics of multi-pulse in a ring cavity passively mode-locked fiber laser with a strict control of the polarization state. We study the relation between the polarization state of the pulses propagating in the cavity and the regimes of generation. We have found that small ellipticities, the laser generates one bunch of pulses in the cavity, while at higher ellipticities the laser generates multiple bunches. At constant ellipticity we rotated the polarization azimuth and observed a regime transition from the generation of a bunch of solitons to that of noise-like pulses (NLP).

  13. Energy-dependent angular shifts in the photoelectron momentum distribution for atoms in elliptically polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Xie, Hui; Li, Min; Luo, Siqiang; Li, Yang; Zhou, Yueming; Cao, Wei; Lu, Peixiang

    2017-12-01

    We measure the photoelectron momentum distributions from atoms ionized by strong elliptically polarized laser fields at the wavelengths of 400 and 800 nm, respectively. The momentum distributions show distinct angular shifts, which sensitively depend on the electron energy. We find that the deflection angle with respect to the major axis of the laser ellipse decreases with the increase of the electron energy for large ellipticities. This energy-dependent angular shift is well reproduced by both numerical solutions of the time-dependent Schrödinger equation and the classical-trajectory Monte Carlo model. We show that the ionization time delays among the electrons with different energies are responsible for the energy-dependent angular shifts. On the other hand, for small ellipticities, we find the deflection angle increases with increasing the electron energy, which might be caused by electron rescattering in the elliptically polarized fields.

  14. Three-dimensional, time-dependent simulation of free-electron lasers with planar, helical, and elliptical undulators

    NASA Astrophysics Data System (ADS)

    Freund, H. P.; van der Slot, P. J. M.; Grimminck, D. L. A. G.; Setija, I. D.; Falgari, P.

    2017-02-01

    Free-electron lasers (FELs) have been built ranging in wavelength from long-wavelength oscillators using partial wave guiding through ultraviolet through hard x-ray that are either seeded or start from noise. In addition, FELs that produce different polarizations of the output radiation ranging from linear through elliptic to circular polarization are currently under study. In this paper, we develop a three-dimensional, time-dependent formulation that is capable of modeling this large variety of FEL configurations including different polarizations. We employ a modal expansion for the optical field, i.e., a Gaussian expansion with variable polarization for free-space propagation. This formulation uses the full Newton-Lorentz force equations to track the particles through the optical and magnetostatic fields. As a result, arbitrary three-dimensional representations for different undulator configurations are implemented, including planar, helical, and elliptical undulators. In particular, we present an analytic model of an APPLE-II undulator to treat arbitrary elliptical polarizations, which is used to treat general elliptical polarizations. To model oscillator configurations, and allow propagation of the optical field outside the undulator and interact with optical elements, we link the FEL simulation with the optical propagation code OPC. We present simulations using the APPLE-II undulator model to produce elliptically polarized output radiation, and present a detailed comparison with recent experiments using a tapered undulator configuration at the Linac Coherent Light Source. Validation of the nonlinear formation is also shown by comparison with experimental results obtained in the Sorgente Pulsata Auto-amplificata di Radiazione Coerente SASE FEL experiment at ENEA Frascati, a seeded tapered amplifier experiment at Brookhaven National Laboratory, and the 10 kW upgrade oscillator experiment at the Thomas Jefferson National Accelerator Facility.

  15. Anomalous incident-angle and elliptical-polarization rotation of an elastically refracted P-wave

    NASA Astrophysics Data System (ADS)

    Fa, Lin; Fa, Yuxiao; Zhang, Yandong; Ding, Pengfei; Gong, Jiamin; Li, Guohui; Li, Lijun; Tang, Shaojie; Zhao, Meishan

    2015-08-01

    We report a newly discovered anomalous incident-angle of an elastically refracted P-wave, arising from a P-wave impinging on an interface between two VTI media with strong anisotropy. This anomalous incident-angle is found to be located in the post-critical incident-angle region corresponding to a refracted P-wave. Invoking Snell’s law for a refracted P-wave provides two distinctive solutions before and after the anomalous incident-angle. For an inhomogeneously refracted and elliptically polarized P-wave at the anomalous incident-angle, its rotational direction experiences an acute variation, from left-hand elliptical to right-hand elliptical polarization. The new findings provide us an enhanced understanding of acoustical-wave scattering and lead potentially to widespread and novel applications.

  16. Probing the ionization wave packet and recollision dynamics with an elliptically polarized strong laser field in the nondipole regime

    NASA Astrophysics Data System (ADS)

    Maurer, J.; Willenberg, B.; Daněk, J.; Mayer, B. W.; Phillips, C. R.; Gallmann, L.; Klaiber, M.; Hatsagortsyan, K. Z.; Keitel, C. H.; Keller, U.

    2018-01-01

    We explore ionization and rescattering in strong mid-infrared laser fields in the nondipole regime over the full range of polarization ellipticity. In three-dimensional photoelectron momentum distributions (3D PMDs) measured with velocity map imaging spectroscopy, we observe the appearance of a sharp ridge structure along the major polarization axis. Within a certain range of ellipticity, the electrons in this ridge are clearly separated from the two lobes that commonly appear in the PMD with elliptically polarized laser fields. In contrast to the well-known lobes of direct electrons, the sharp ridge is created by Coulomb focusing of the softly recolliding electrons. These ridge electrons are directly related to a counterintuitive shift of the PMD peak opposite to the laser beam propagation direction when the dipole approximation breaks down. The ellipticity-dependent 3D PMDs give access to different ionization and recollision dynamics with appropriate filters in the momentum space. For example, we can extract information about the spread of the initial wave packet and the Coulomb momentum transfer of the rescattering electrons.

  17. Oblique superposition of two elliptically polarized lightwaves using geometric algebra: is energy-momentum conserved?

    PubMed

    Sze, Michelle Wynne C; Sugon, Quirino M; McNamara, Daniel J

    2010-11-01

    In this paper, we use Clifford (geometric) algebra Cl(3,0) to verify if electromagnetic energy-momentum density is still conserved for oblique superposition of two elliptically polarized plane waves with the same frequency. We show that energy-momentum conservation is valid at any time only for the superposition of two counter-propagating elliptically polarized plane waves. We show that the time-average energy-momentum of the superposition of two circularly polarized waves with opposite handedness is conserved regardless of the propagation directions of the waves. And, we show that the resulting momentum density of the superposed waves generally has a vector component perpendicular to the momentum densities of the individual waves.

  18. Control of polarization rotation in nonlinear propagation of fully structured light

    NASA Astrophysics Data System (ADS)

    Gibson, Christopher J.; Bevington, Patrick; Oppo, Gian-Luca; Yao, Alison M.

    2018-03-01

    Knowing and controlling the spatial polarization distribution of a beam is of importance in applications such as optical tweezing, imaging, material processing, and communications. Here we show how the polarization distribution is affected by both linear and nonlinear (self-focusing) propagation. We derive an analytical expression for the polarization rotation of fully structured light (FSL) beams during linear propagation and show that the observed rotation is due entirely to the difference in Gouy phase between the two eigenmodes comprising the FSL beams, in excellent agreement with numerical simulations. We also explore the effect of cross-phase modulation due to a self-focusing (Kerr) nonlinearity and show that polarization rotation can be controlled by changing the eigenmodes of the superposition, and physical parameters such as the beam size, the amount of Kerr nonlinearity, and the input power. Finally, we show that by biasing cylindrical vector beams to have elliptical polarization, we can vary the polarization state from radial through spiral to azimuthal using nonlinear propagation.

  19. Voltage sensing systems and methods for passive compensation of temperature related intrinsic phase shift

    DOEpatents

    Davidson, James R.; Lassahn, Gordon D.

    2001-01-01

    A small sized electro-optic voltage sensor capable of accurate measurement of high levels of voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation into the sensor. A polarization beam displacer serves as a filter to separate the input beam into two beams with orthogonal linear polarizations. The beam displacer is oriented in such a way as to rotate the linearly polarized beams such that they enter a Pockels crystal at a preferred angle of 45 degrees. The beam displacer is therefore capable of causing a linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels electro-optic effect induces a differential phase shift on the major and minor axes of the input beam as it travels through the Pockels crystal, which causes the input beam to be elliptically polarized. A reflecting prism redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization representing the major and minor axes. In crystals that introduce a phase differential attributable to temperature, a compensating crystal is provided to cancel the effect of temperature on the phase differential of the input beam. The system may include a detector for converting the output beams into electrical signals, and a signal processor for determining the voltage based on an analysis of the output beams. The output beams are amplitude modulated by the frequency of the electric field and the amplitude of the output beams is proportional to the magnitude of the electric field, which is related to the voltage being measured.

  20. Polarization control of isolated high-harmonic pulses

    NASA Astrophysics Data System (ADS)

    Huang, Pei-Chi; Hernández-García, Carlos; Huang, Jen-Ting; Huang, Po-Yao; Lu, Chih-Hsuan; Rego, Laura; Hickstein, Daniel D.; Ellis, Jennifer L.; Jaron-Becker, Agnieszka; Becker, Andreas; Yang, Shang-Da; Durfee, Charles G.; Plaja, Luis; Kapteyn, Henry C.; Murnane, Margaret M.; Kung, A. H.; Chen, Ming-Chang

    2018-06-01

    High-harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, thus far, the shortest isolated attosecond pulses have only been produced with linear polarization, which limits the range of physics that can be explored. Here, we demonstrate robust polarization control of isolated extreme-ultraviolet pulses by exploiting non-collinear high-harmonic generation driven by two counter-rotating few-cycle laser beams. The circularly polarized supercontinuum is produced at a central photon energy of 33 eV with a transform limit of 190 as and a predicted linear chirp of 330 as. By adjusting the ellipticity of the two counter-rotating driving pulses simultaneously, we control the polarization state of isolated extreme-ultraviolet pulses—from circular through elliptical to linear polarization—without sacrificing conversion efficiency. Access to the purely circularly polarized supercontinuum, combined with full helicity and ellipticity control, paves the way towards attosecond metrology of circular dichroism.

  1. Elliptical quantum dots as on-demand single photons sources with deterministic polarization states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, Chu-Hsiang; Demory, Brandon; Ku, Pei-Cheng, E-mail: peicheng@umich.edu

    In quantum information, control of the single photon's polarization is essential. Here, we demonstrate single photon generation in a pre-programmed and deterministic polarization state, on a chip-scale platform, utilizing site-controlled elliptical quantum dots (QDs) synthesized by a top-down approach. The polarization from the QD emission is found to be linear with a high degree of linear polarization and parallel to the long axis of the ellipse. Single photon emission with orthogonal polarizations is achieved, and the dependence of the degree of linear polarization on the QD geometry is analyzed.

  2. Depth-resolved measurements with elliptically polarized reflectance spectroscopy

    PubMed Central

    Bailey, Maria J.; Sokolov, Konstantin

    2016-01-01

    The ability of elliptical polarized reflectance spectroscopy (EPRS) to detect spectroscopic alterations in tissue mimicking phantoms and in biological tissue in situ is demonstrated. It is shown that there is a linear relationship between light penetration depth and ellipticity. This dependence is used to demonstrate the feasibility of a depth-resolved spectroscopic imaging using EPRS. The advantages and drawbacks of EPRS in evaluation of biological tissue are analyzed and discussed. PMID:27446712

  3. Mueller-Stokes characterization and optimization of a liquid crystal on silicon display showing depolarization.

    PubMed

    Márquez, A; Moreno, I; Iemmi, C; Lizana, A; Campos, J; Yzuel, M J

    2008-02-04

    In this paper we characterize the polarimetric properties of a liquid crystal on silicon display (LCoS), including depolarization and diattenuation which are usually not considered when applying the LCoS in diffractive or adaptive optics. On one hand, we have found that the LCoS generates a certain degree (that can be larger than a 10%) of depolarized light, which depends on the addressed gray level and on the incident state of polarization (SOP), and can not be ignored in the above mentioned applications. The main origin of the depolarized light is related with temporal fluctuations of the SOP of the light reflected by the LCoS. The Mueller matrix of the LCoS is measured as a function of the gray level, which enables for a numerical optimization of the intensity modulation configurations. In particular we look for maximum intensity contrast modulation or for constant intensity modulation. By means of a heuristic approach we show that, using elliptically polarized light, amplitude-mostly or phase-mostly modulation can be obtained at a wavelength of 633 nm.

  4. Electrical tuning of the polarization state of light using graphene-integrated anisotropic metasurfaces

    NASA Astrophysics Data System (ADS)

    Dutta-Gupta, Shourya; Dabidian, Nima; Kholmanov, Iskandar; Belkin, Mikhail A.; Shvets, Gennady

    2017-03-01

    Plasmonic metasurfaces have been employed for moulding the flow of transmitted and reflected light, thereby enabling numerous applications that benefit from their ultra-thin sub-wavelength format. Their appeal is further enhanced by the incorporation of active electro-optic elements, paving the way for dynamic control of light's properties. In this paper, we realize a dynamic polarization state generator using a graphene-integrated anisotropic metasurface (GIAM) that converts the linear polarization of the incident light into an elliptical one. This is accomplished by using an anisotropic metasurface with two principal polarization axes, one of which possesses a Fano-type resonance. A gate-controlled single-layer graphene integrated with the metasurface was employed as an electro-optic element controlling the phase and intensity of light polarized along the resonant axis of the GIAM. When the incident light is polarized at an angle to the resonant axis of the metasurface, the ellipticity of the reflected light can be dynamically controlled by the application of a gate voltage. Thus accomplished dynamic polarization control is experimentally demonstrated and characterized by measuring the Stokes polarization parameters. Large changes of the ellipticity and the tilt angle of the polarization ellipse are observed. Our measurements show that the tilt angle can be changed from positive values through zero to negative values while keeping the ellipticity constant, potentially paving the way to rapid ellipsometry and other characterization techniques requiring fast polarization shifting. This article is part of the themed issue 'New horizons for nanophotonics'.

  5. Unified approach to probing Coulomb effects in tunnel ionization for any ellipticity of laser light.

    PubMed

    Landsman, A S; Hofmann, C; Pfeiffer, A N; Cirelli, C; Keller, U

    2013-12-27

    We present experimental data that show significant deviations from theoretical predictions for the location of the center of the electron momenta distribution at low values of ellipticity ε of laser light. We show that these deviations are caused by significant Coulomb focusing along the minor axis of polarization, something that is normally neglected in the analysis of electron dynamics, even in cases where the Coulomb correction is otherwise taken into account. By investigating ellipticity-resolved electron momenta distributions in the plane of polarization, we show that Coulomb focusing predominates at lower values of ellipticity of laser light, while Coulomb asymmetry becomes important at higher values, showing that these two complementary phenomena can be used to probe long-range Coulomb interaction at all polarizations of laser light. Our results suggest that both the breakdown of Coulomb focusing and the onset of Coulomb asymmetry are linked to the disappearance of Rydberg states with increasing ellipticity.

  6. Polarization characteristics of double-clad elliptical fibers.

    PubMed

    Zhang, F; Lit, J W

    1990-12-20

    A scalar variational analysis based on a Gaussian approximation of the fundamental mode of a double-clad elliptical fiber with a depressed inner cladding is studied. The polarization properties and graphic results are presented; they are given in terms of three parameters: the ratio of the major axis to the minor axis of the core, the ratio of the inner cladding major axis to the core major axis, and the difference between the core index and the inner cladding index. The variations of both the spot size and the field intensity with core ellipticity are examined. It is shown that high birefringence and dispersion-free orthogonal polarization modes can be obtained within the single-mode region and that the field intensity distribution may be more confined to the fiber center than in a single-clad elliptical fiber.

  7. Measurement of third-order nonlinear susceptibility tensor in InP using extended Z-scan technique with elliptical polarization

    NASA Astrophysics Data System (ADS)

    Oishi, Masaki; Shinozaki, Tomohisa; Hara, Hikaru; Yamamoto, Kazunuki; Matsusue, Toshio; Bando, Hiroyuki

    2018-05-01

    The elliptical polarization dependence of the two-photon absorption coefficient β in InP has been measured by the extended Z-scan technique for thick materials in the wavelength range from 1640 to 1800 nm. The analytical formula of the Z-scan technique has been extended with consideration of multiple reflections. The Z-scan results have been fitted very well by the formula and β has been evaluated accurately. The three independent elements of the third-order nonlinear susceptibility tensor in InP have also been determined accurately from the elliptical polarization dependence of β.

  8. Tight focusing of spatially variant vector optical fields with elliptical symmetry of linear polarization.

    PubMed

    Lerman, Gilad M; Levy, Uriel

    2007-08-01

    We study the tight-focusing properties of spatially variant vector optical fields with elliptical symmetry of linear polarization. We found the eccentricity of the incident polarized light to be an important parameter providing an additional degree of freedom assisting in controlling the field properties at the focus and allowing matching of the field distribution at the focus to the specific application. Applications of these space-variant polarized beams vary from lithography and optical storage to particle beam trapping and material processing.

  9. Different evolution dynamics of vector solitons depending on their polarization states

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Cheng; Chen, Guo-Jie

    2014-03-01

    There are three types of temporal evolution dynamics of vector solitons observed in a ring fiber laser with a semiconductor saturable absorption mirror (SESAM) as a mode-locker. It is found that the polarization property of vector solitons is an important factor for achieving different evolution dynamics. The vector soliton with a uniform polarization state across the whole pulse profile and zero polarization extinction ratio operates at a fundamental repetition rate with a single pulse profile. The elliptically polarized vector soliton with a larger polarization extinction ratio exhibits a harmonic pulse train. The soliton bunching with multi-peak structures exists between the above two states and shows elliptical polarization with a small polarization extinction ratio.

  10. Improved optical filter

    NASA Technical Reports Server (NTRS)

    Title, A. M.

    1978-01-01

    Filter includes partial polarizer between birefrigent elements. Plastic film on partial polarizer compensates for any polarization rotation by partial polarizer. Two quarter-wave plates change incident, linearly polarized light into elliptically polarized light.

  11. Angle-dependent rotation of calcite in elliptically polarized light

    NASA Astrophysics Data System (ADS)

    Herne, Catherine M.; Cartwright, Natalie A.; Cattani, Matthew T.; Tracy, Lucas A.

    2017-08-01

    Calcite crystals trapped in an elliptically polarized laser field exhibit intriguing rotational motion. In this paper, we show measurements of the angle-dependent motion, and discuss how the motion of birefringent calcite can be used to develop a reliable and efficient process for determining the polarization ellipticity and orientation of a laser mode. The crystals experience torque in two ways: from the transfer of spin angular momentum (SAM) from the circular polarization component of the light, and from a torque due to the linear polarization component of the light that acts to align the optic axis of the crystal with the polarization axis of the light. These torques alternatingly compete with and amplify each other, creating an oscillating rotational crystal velocity. We model the behavior as a rigid body in an angle-dependent torque. We experimentally demonstrate the dependence of the rotational velocity on the angular orientation of the crystal by placing the crystals in a sample solution in our trapping region, and observing their behavior under different polarization modes. Measurements are made by acquiring information simultaneously from a quadrant photodiode collecting the driving light after it passes through the sample region, and by imaging the crystal motion onto a camera. We finish by illustrating how to use this model to predict the ellipticity of a laser mode from rotational motion of birefringent crystals.

  12. Bright high-order harmonic generation with controllable polarization from a relativistic plasma mirror

    PubMed Central

    Chen, Zi-Yu; Pukhov, Alexander

    2016-01-01

    Ultrafast extreme ultraviolet (XUV) sources with a controllable polarization state are powerful tools for investigating the structural and electronic as well as the magnetic properties of materials. However, such light sources are still limited to only a few free-electron laser facilities and, very recently, to high-order harmonic generation from noble gases. Here we propose and numerically demonstrate a laser–plasma scheme to generate bright XUV pulses with fully controlled polarization. In this scheme, an elliptically polarized laser pulse is obliquely incident on a plasma surface, and the reflected radiation contains pulse trains and isolated circularly or highly elliptically polarized attosecond XUV pulses. The harmonic polarization state is fully controlled by the laser–plasma parameters. The mechanism can be explained within the relativistically oscillating mirror model. This scheme opens a practical and promising route to generate bright attosecond XUV pulses with desirable ellipticities in a straightforward and efficient way for a number of applications. PMID:27531047

  13. Polarization control of terahertz waves generated by circularly polarized few-cycle laser pulses

    NASA Astrophysics Data System (ADS)

    Song, Liwei; Bai, Ya; Xu, Rongjie; Li, Chuang; Liu, Peng; Li, Ruxin; Xu, Zhizhan

    2013-12-01

    We demonstrate the generation and control of elliptically polarized terahertz (THz) waves from air plasma produced by circularly polarized few-cycle laser pulses. Experimental and calculated results reveal that electric field asymmetry in rotating directions of the circularly polarized few-cycle laser pulses produces the enhanced broadband transient currents, and the phase difference of perpendicular laser field components is partially inherited in the generation process of THz emission. The ellipticity of the THz emission and its major axis direction are all-optically controlled by the duration and carrier-envelope phase of the laser pulses.

  14. Above-threshold ionization of noble gases in elliptically polarized fields: Effects of atomic polarization on photoelectron angular distributions

    NASA Astrophysics Data System (ADS)

    Wang, YanLan; Yu, ShaoGang; Lai, XuanYang; Liu, XiaoJun; Chen, Jing

    2017-06-01

    We theoretically investigate the atomic polarization effect on photoelectron angular distributions (PADs) in above-threshold ionization of noble gases with elliptically polarized laser fields at wavelength of 800 nm, ellipticity of 0.25, and intensity of 1.5 ×1014W/cm2 . Simulations based on a semiclassical model that includes both the ionic Coulomb potential and the atomic polarization effect show surprisingly little difference between PADs for Ar, Kr, and Xe, which is in good agreement with recent experimental observations. Our calculations reveal that the atomic polarization effect increases the distance of the tunnel exit point of the photoelectron to the parent ion and weakens the strength of the interaction between the parent ion and the photoelectron on its subsequent classical propagation. As a result, the forward-scattering electrons which contribute to the main lobes in PADs are substantially suppressed. Our results indicate that the insensitivity of PADs for Ar, Kr, and Xe may be closely related to the influence of the atomic polarization effect on the photoelectron dynamics in the strong laser field.

  15. Nonlinear Dichroism in Back-to-Back Double Ionization of He by an Intense Elliptically Polarized Few-Cycle Extreme Ultraviolet Pulse.

    PubMed

    Ngoko Djiokap, J M; Manakov, N L; Meremianin, A V; Hu, S X; Madsen, L B; Starace, Anthony F

    2014-11-28

    Control of double ionization of He by means of the polarization and carrier-envelope phase (CEP) of an intense, few-cycle extreme ultraviolet (XUV) pulse is demonstrated numerically by solving the six-dimensional two-electron, time-dependent Schrödinger equation for He interacting with an elliptically polarized XUV pulse. Guided by perturbation theory (PT), we predict the existence of a nonlinear dichroic effect (∝I^{3/2}) that is sensitive to the CEP, ellipticity, peak intensity I, and temporal duration of the pulse. This dichroic effect (i.e., the difference of the two-electron angular distributions for opposite helicities of the ionizing XUV pulse) originates from interference of first- and second-order PT amplitudes, allowing one to probe and control S- and D-wave channels of the two-electron continuum. We show that the back-to-back in-plane geometry with unequal energy sharing is an ideal one for observing this dichroic effect that occurs only for an elliptically polarized, few-cycle attosecond pulse.

  16. Polarization properties of below-threshold harmonics from aligned molecules H2+ in linearly polarized laser fields.

    PubMed

    Dong, Fulong; Tian, Yiqun; Yu, Shujuan; Wang, Shang; Yang, Shiping; Chen, Yanjun

    2015-07-13

    We investigate the polarization properties of below-threshold harmonics from aligned molecules in linearly polarized laser fields numerically and analytically. We focus on lower-order harmonics (LOHs). Our simulations show that the ellipticity of below-threshold LOHs depends strongly on the orientation angle and differs significantly for different harmonic orders. Our analysis reveals that this LOH ellipticity is closely associated with resonance effects and the axis symmetry of the molecule. These results shed light on the complex generation mechanism of below-threshold harmonics from aligned molecules.

  17. An electrostatic elliptical mirror for neutral polar molecules.

    PubMed

    González Flórez, A Isabel; Meek, Samuel A; Haak, Henrik; Conrad, Horst; Santambrogio, Gabriele; Meijer, Gerard

    2011-11-14

    Focusing optics for neutral molecules finds application in shaping and steering molecular beams. Here we present an electrostatic elliptical mirror for polar molecules consisting of an array of microstructured gold electrodes deposited on a glass substrate. Alternating positive and negative voltages applied to the electrodes create a repulsive potential for molecules in low-field-seeking states. The equipotential lines are parallel to the substrate surface, which is bent in an elliptical shape. The mirror is characterized by focusing a beam of metastable CO molecules and the results are compared to the outcome of trajectory simulations.

  18. Interaction between Faraday rotation and Cotton-Mouton effects in polarimetry modeling for NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J.; Crocker, N. A.; Carter, T. A.

    The evolution of electromagnetic wave polarization is modeled for propagation in the major radial direction in the National Spherical Torus Experiment with retroreflection from the center stack of the vacuum vessel. This modeling illustrates that the Cotton-Mouton effect-elliptization due to the magnetic field perpendicular to the propagation direction-is shown to be strongly weighted to the high-field region of the plasma. An interaction between the Faraday rotation and Cotton-Mouton effects is also clearly identified. Elliptization occurs when the wave polarization direction is neither parallel nor perpendicular to the local transverse magnetic field. Since Faraday rotation modifies the polarization direction during propagation,more » it must also affect the resultant elliptization. The Cotton-Mouton effect also intrinsically results in rotation of the polarization direction, but this effect is less significant in the plasma conditions modeled. The interaction increases at longer wavelength and complicates interpretation of polarimetry measurements.« less

  19. Monstar polarization singularities with elliptically-symmetric q-plates.

    PubMed

    Cvarch, Ben A; Khajavi, Behzad; Jones, Joshua A; Piccirillo, Bruno; Marrucci, Lorenzo; Galvez, Enrique J

    2017-06-26

    Space-variant polarization patterns present in the transverse mode of optical beams highlight disclination patterns of polarization about a singularity, often a C-point. These patterns are important for understanding rotational dislocations and for characterizing complex polarization patterns. Liquid-crystal devices known as q-plates have been used to produce two of the three types of disclination patterns in optical beams: lemons and stars. Here we report the production of the third type of disclination, which is asymmetric, known as the monstar. We do so with elliptically-symmetric q-plates. We present theory and measurements, and find excellent agreement between the two.

  20. Circularly polarized light to study linear magneto-optics for ferrofluids: θ-scan technique

    NASA Astrophysics Data System (ADS)

    Meng, Xiangshen; Huang, Yan; He, Zhenghong; Lin, Yueqiang; Liu, Xiaodong; Li, Decai; Li, Jian; Qiu, Xiaoyan

    2018-06-01

    Circularly polarized light can be divided into two vertically linearly polarized light beams with  ±π/2 phase differences. In the presence of an external magnetic field, when circularly polarized light travels through a ferrofluid film, whose thickness is no more than that of λ/4 plate, magneto-optical, magnetic birefringence and dichroism effects cause the transmitted light to behave as elliptically polarized light. Using angular scan by a continuously rotating polarizer as analyzer, the angular (θ) distribution curve of relative intensity (T) corresponding to elliptically polarized light can be measured. From the T  ‑  θ curve having ellipsometry, the parameters such as the ratio of short to long axis, and angular orientation of the long axis to the vertical field direction can be obtained. Thus, magnetic birefringence and dichroism can be probed simultaneously by measuring magneto-optical, positive or negative birefringence and dichroism features from the transmission mode. The proposed method is called θ-scan technique, and can accurately determine sample stability, magnetic field direction, and cancel intrinsic light source ellipticity. This study may be helpful to further research done to ferrofluids and other similar colloidal samples with anisotropic optics.

  1. Ellipticity dependence of the near-threshold harmonics of H2 in an elliptical strong laser field.

    PubMed

    Yang, Hua; Liu, Peng; Li, Ruxin; Xu, Zhizhan

    2013-11-18

    We study the ellipticity dependence of the near-threshold (NT) harmonics of pre-aligned H2 molecules using the time-dependent density functional theory. The anomalous maximum appearing at a non-zero ellipticity for the generated NT harmonics can be attributed to multiphoton effects of the orthogonally polarized component of the elliptical driving laser field. Our calculation also shows that the structure of the bound-state, such as molecular alignment and bond length, can be sensitively reflected on the ellipticity dependence of the near-threshold harmonics.

  2. High-harmonic generation in graphene enhanced by elliptically polarized light excitation

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Naotaka; Tamaya, Tomohiro; Tanaka, Koichiro

    2017-05-01

    The electronic properties of graphene can give rise to a range of nonlinear optical responses. One of the most desirable nonlinear optical processes is high-harmonic generation (HHG) originating from coherent electron motion induced by an intense light field. Here, we report on the observation of up to ninth-order harmonics in graphene excited by mid-infrared laser pulses at room temperature. The HHG in graphene is enhanced by an elliptically polarized laser excitation, and the resultant harmonic radiation has a particular polarization. The observed ellipticity dependence is reproduced by a fully quantum mechanical treatment of HHG in solids. The zero-gap nature causes the unique properties of HHG in graphene, and our findings open up the possibility of investigating strong-field and ultrafast dynamics and nonlinear behavior of massless Dirac fermions.

  3. Polarization-operator approach to optical signatures of axion-like particles in strong laser pulses

    NASA Astrophysics Data System (ADS)

    Villalba-Chávez, S.; Podszus, T.; Müller, C.

    2017-06-01

    Hypothetical oscillations of probe photons into axion-like particles might be revealed by exploiting the strong fields of high-intensity laser pulses. Considering an arbitrary plane-wave background, we determine the polarization tensor induced by the quantum fluctuations of the axion field and use it to calculate how the polarimetric properties of an initially linear-polarized probe beam are modified. We find that various experimental setups based on contemporary facilities and instrumentation might lead to new exclusion bounds on the parameter space of these particle candidates. The impact of the pulse shape on the discovery potential is studied via a comparison between the cases in which the wave is modulated by a Gaussian envelope and a sin2 profile. This analysis shows that the upper limits resulting from the ellipticity are relatively insensitive to this change, whereas those arising from the rotation of the polarization plane turn out to be more dependent on the field shape.

  4. Polarization-singular processing of biological layers laser images to diagnose and classify their optical properties

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu. O.; Telenga, O. Y.

    2011-09-01

    Presented in this work are the results of investigation aimed at analysis of coordinate distributions for azimuths and ellipticity of polarization (polarization maps) in blood plasma layers laser images of three groups of patients: healthy (group 1), with dysplasia (group 2) and cancer of cervix uteri (group 3). To characterize polarization maps for all groups of samples, the authors have offered to use three groups of parameters: statistical moments of the first to the fourth orders, autocorrelation functions, logarithmic dependences for power spectra related to distributions of azimuths and ellipticity of polarization inherent to blood plasma laser images. Ascertained are the criteria for diagnostics and differentiation of cervix uteri pathological changes.

  5. Dichroism, chirality, and polarization eigenstates in Babinet nanoslot-dimer membrane metamaterials

    NASA Astrophysics Data System (ADS)

    Zhukovsky, Sergei V.; Chigrin, Dmitry N.; Kremers, Christian; Lavrinenko, Andrei V.

    2013-11-01

    We present a detailed theoretical description of the optical properties of planar metamaterials comprising a metal membrane patterned with openings (microslots) arranged in closely located couples (dimers). Using the covariant coupled-dipole approach, the effective material tensors of such a metamaterial are recovered, and contributions responsible for elliptical dichroism and optical activity are identified. Polarization conversion properties of II-shaped and V-shaped dimers are determined and explained in terms of elliptically polarized eigenmodes of the metamaterial. Good agreement with direct numerical simulations is demonstrated. The results obtained are promising for the design of thin-film frequency selective polarization shapers for terahertz waves.

  6. Dramatic enhancement of supercontinuum generation in elliptically-polarized laser filaments

    PubMed Central

    Rostami, Shermineh; Chini, Michael; Lim, Khan; Palastro, John P.; Durand, Magali; Diels, Jean-Claude; Arissian, Ladan; Baudelet, Matthieu; Richardson, Martin

    2016-01-01

    Broadband laser sources based on supercontinuum generation in femtosecond laser filamentation have enabled applications from stand-off sensing and spectroscopy to the generation and self-compression of high-energy few-cycle pulses. Filamentation relies on the dynamic balance between self-focusing and plasma defocusing – mediated by the Kerr nonlinearity and multiphoton or tunnel ionization, respectively. The filament properties, including the supercontinuum generation, are therefore highly sensitive to the properties of both the laser source and the propagation medium. Here, we report the anomalous spectral broadening of the supercontinuum for filamentation in molecular gases, which is observed for specific elliptical polarization states of the input laser pulse. The resulting spectrum is accompanied by a modification of the supercontinuum polarization state and a lengthening of the filament plasma column. Our experimental results and accompanying simulations suggest that rotational dynamics of diatomic molecules play an essential role in filamentation-induced supercontinuum generation, which can be controlled with polarization ellipticity. PMID:26847427

  7. Analysis of elliptically polarized maximally entangled states for bell inequality tests

    NASA Astrophysics Data System (ADS)

    Martin, A.; Smirr, J.-L.; Kaiser, F.; Diamanti, E.; Issautier, A.; Alibart, O.; Frey, R.; Zaquine, I.; Tanzilli, S.

    2012-06-01

    When elliptically polarized maximally entangled states are considered, i.e., states having a non random phase factor between the two bipartite polarization components, the standard settings used for optimal violation of Bell inequalities are no longer adapted. One way to retrieve the maximal amount of violation is to compensate for this phase while keeping the standard Bell inequality analysis settings. We propose in this paper a general theoretical approach that allows determining and adjusting the phase of elliptically polarized maximally entangled states in order to optimize the violation of Bell inequalities. The formalism is also applied to several suggested experimental phase compensation schemes. In order to emphasize the simplicity and relevance of our approach, we also describe an experimental implementation using a standard Soleil-Babinet phase compensator. This device is employed to correct the phase that appears in the maximally entangled state generated from a type-II nonlinear photon-pair source after the photons are created and distributed over fiber channels.

  8. Laser Polarization Effect on Molecular Harmonic and Elliptically Polarized Attosecond Pulse Generation

    NASA Astrophysics Data System (ADS)

    Feng, Li-Qiang; Li, Wen-Liang; Liu, Hang

    2017-01-01

    Molecular harmonic spectra of {{{H}}}2+ driven by the linearly polarized laser pulses with different polarized angles have been theoretically investigated through solving the two-dimensional time-dependent Schrödinger equation. (i) Below-threshold harmonic spectra show a visible enhanced peak around the 7th harmonic (H7), which produces a red-shift phenomenon as the internuclear distance increased. Theoretical analyses show the red-shift enhanced peak is caused by the laser-induced electron transfer between the ground state and the 1st excited state of {{{H}}}2+. (ii) Due to the two-centre interference phenomenon, the above-threshold harmonic spectra exhibit many maxima and minima. (iii) With the introduction of the polarized angle, the anomalous elliptically polarized harmonics can be found. But, with the introduction of the spatial inhomogeneous effect, not only the ellipticities of the harmonics are equal to a stable value of \\varepsilon ˜ 0.1-0.3, but also the harmonic cutoffs are extended. As a result, four super-bandwidths of 407 eV, 310 eV, 389 eV, and 581 eV can be obtained. Time profiles of the harmonic generations have been shown to explain the harmonic characteristics. Finally, a series of elliptically polarized (\\varepsilon ˜ 0.1-0.3) attosecond X-ray pulses with durations from 18as to 25as can be directly produced through Fourier transformation of the spectral continuum. Supported by National Natural Science Foundation of China under Grant No. 11504151, Doctoral Scientific Research Foundation of Liaoning Province under Grant No. 201501123 and Scientific Research Fund of Liaoning Provincial Education Department under Grant No. L2014242

  9. Helicity-Selective Enhancement and Polarization Control of Attosecond High Harmonic Waveforms Driven by Bichromatic Circularly Polarized Laser Fields.

    PubMed

    Dorney, Kevin M; Ellis, Jennifer L; Hernández-García, Carlos; Hickstein, Daniel D; Mancuso, Christopher A; Brooks, Nathan; Fan, Tingting; Fan, Guangyu; Zusin, Dmitriy; Gentry, Christian; Grychtol, Patrik; Kapteyn, Henry C; Murnane, Margaret M

    2017-08-11

    High harmonics driven by two-color counterrotating circularly polarized laser fields are a unique source of bright, circularly polarized, extreme ultraviolet, and soft x-ray beams, where the individual harmonics themselves are completely circularly polarized. Here, we demonstrate the ability to preferentially select either the right or left circularly polarized harmonics simply by adjusting the relative intensity ratio of the bichromatic circularly polarized driving laser field. In the frequency domain, this significantly enhances the harmonic orders that rotate in the same direction as the higher-intensity driving laser. In the time domain, this helicity-dependent enhancement corresponds to control over the polarization of the resulting attosecond waveforms. This helicity control enables the generation of circularly polarized high harmonics with a user-defined polarization of the underlying attosecond bursts. In the future, this technique should allow for the production of bright highly elliptical harmonic supercontinua as well as the generation of isolated elliptically polarized attosecond pulses.

  10. Einstein Equations Under Polarized U (1) Symmetry in an Elliptic Gauge

    NASA Astrophysics Data System (ADS)

    Huneau, Cécile; Luk, Jonathan

    2018-06-01

    We prove local existence of solutions to the Einstein-null dust system under polarized U (1) symmetry in an elliptic gauge. Using in particular the previous work of the first author on the constraint equations, we show that one can identify freely prescribable data, solve the constraints equations, and construct a unique local in time solution in an elliptic gauge. Our main motivation for this work, in addition to merely constructing solutions in an elliptic gauge, is to provide a setup for our companion paper in which we study high frequency backreaction for the Einstein equations. In that work, the elliptic gauge we consider here plays a crucial role to handle high frequency terms in the equations. The main technical difficulty in the present paper, in view of the application in our companion paper, is that we need to build a framework consistent with the solution being high frequency, and therefore having large higher order norms. This difficulty is handled by exploiting a reductive structure in the system of equations.

  11. An investigation into the vector ellipticity of extremely low frequency magnetic fields from appliances in UK homes

    NASA Astrophysics Data System (ADS)

    Ainsbury, Elizabeth A.; Conein, Emma; Henshaw, Denis L.

    2005-07-01

    Elliptically polarized magnetic fields induce higher currents in the body compared with their plane polarized counterparts. This investigation examines the degree of vector ellipticity of extremely low frequency magnetic fields (ELF-MFs) in the home, with regard to the adverse health effects reportedly associated with ELF-MFs, for instance childhood leukaemia. Tri-axial measurements of the magnitude and phase of the 0-3000 Hz magnetic fields, produced by 226 domestic mains-fed appliances of 32 different types, were carried out in 16 homes in Worcestershire in the summer of 2004. Magnetic field strengths were low, with average (RMS) values of 0.03 ± 0.02 µT across all residences. In contrast, background field ellipticities were high, on average 47 ± 11%. Microwave and electric ovens produced the highest ellipticities: mean respective values of 21 ± 21% and 21 ± 17% were observed 20 cm away from these appliances. There was a negative correlation between field strength and field polarization, which we attribute to the higher relative field contribution close to each individual (single-phase) appliance. The measurements demonstrate that domestic magnetic fields are extremely complex and cannot simply be characterized by traditional measurements such as time-weighted average or peak exposure levels. We conclude that ellipticity should become a relevant metric for future epidemiological studies of health and ELF-MF exposure. This work is supported by the charity CHILDREN with LEUKAEMIA, registered charity number 298405.

  12. Electro-optic high voltage sensor

    DOEpatents

    Davidson, James R.; Seifert, Gary D.

    2003-09-16

    A small sized electro-optic voltage sensor capable of accurate measurement of high voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation. A polarization beam displacer separates the input beam into two beams with orthogonal linear polarizations and causes one linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels effect elliptically polarizes the beam as it travels through the crystal. A reflector redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization. The system may include a detector for converting the output beams into electrical signals and a signal processor for determining the voltage based on an analysis of the output beams.

  13. Polarization-independent broadband meta-holograms via polarization-dependent nanoholes.

    PubMed

    Zhang, Xiaohu; Li, Xiong; Jin, Jinjin; Pu, Mingbo; Ma, Xiaoliang; Luo, Jun; Guo, Yinghui; Wang, Changtao; Luo, Xiangang

    2018-05-17

    Composed of ultrathin metal or dielectric nanostructures, metasurfaces can manipulate the phase, amplitude and polarization of electromagnetic waves at a subwavelength scale, which is promising for flat optical devices. In general, metasurfaces composed of space-variant anisotropic units are sensitive to the incident polarization due to the inherent polarization dependent geometric phase. Here, we implement polarization-independent broadband metasurface holograms constructed by polarization-dependent anisotropic elliptical nanoholes by elaborate design of complex amplitude holograms. The fabricated meta-hologram exhibits a polarization insensitive feature with an acceptable image quality. We verify the feasibility of the design algorithm for three-dimensional (3D) meta-holograms with simulation and the feasibility for two-dimensional (2D) meta-holograms is experimentally demonstrated at a broadband wavelength range from 405 nm to 632.8 nm. The effective polarization-independent broadband complex wavefront control with anisotropic elliptical nanoholes proposed in this paper greatly promotes the practical applications of the metasurface in technologies associated with wavefront manipulation, such as flat lens, colorful holographic displays and optical storage.

  14. Electro-optic voltage sensor for sensing voltage in an E-field

    DOEpatents

    Davidson, James R.; Crawford, Thomas M.; Seifert, Gary D.

    2002-03-26

    A miniature electro-optic voltage sensor and system capable of accurate operation at high voltages has a sensor body disposed in an E-field. The body receives a source beam of electromagnetic radiation. A polarization beam displacer separates the source light beam into two beams with orthogonal linear polarizations. A wave plate rotates the linear polarization to rotated polarization. A transducer utilizes Pockels electro-optic effect and induces a differential phase shift on the major and minor axes of the rotated polarization in response to the E-field. A prism redirects the beam back through the transducer, wave plate, and polarization beam displacer. The prism also converts the rotated polarization to circular or elliptical polarization. The wave plate rotates the major and minor axes of the circular or elliptical polarization to linear polarization. The polarization beam displacer separates the beam into two beams of orthogonal linear polarization representing the major and minor axes. The system may have a transmitter for producing the beam of electro-magnetic radiation; a detector for converting the two beams into electrical signals; and a signal processor for determining the voltage.

  15. Radiation in the earth's atmosphere: its radiance, polarization, and ellipticity.

    PubMed

    Hitzfelder, S J; Plass, G N; Kattawar, G W

    1976-10-01

    The complete radiation field including polarization is calculated by the matrix operator method for a model of the real atmosphere. The radiance, direction and amount of polarization, and ellipticity are obtained at the top and bottom of the atmosphere for three values of the surface albedo (0, 0.15, 0.90) and five solar zenith angles. Scattering and absorption by molecules (including ozone) and by aerosols are taken into account together with the variation of the number density of these substances with height. All results are calculated for both a normal aerosol number and a distribution that is one-third of the normal amount at all heights. The calculated values show general qualitative agreement with the available experimental measurements. The position of the neutral points of the polarization in the principal plane is a sensitive indicator of the characteristics of the aerosol particles in the atmosphere, since it depends on the sign and value of the single scattered polarization for scattering angles around 20 degrees and 160 degrees for transmitted and reflected photons, respectively. This, in turn, depends on the index of refraction and size distribution of the aerosols. The neutral point position does not depend appreciably on the surface albedo and, over a considerable range, depends little on the solar zenith angle. The value of the maximum polarization in the principal plane depends on the aerosol amount, surface albedo, and solar zenith angle. It could be used to measure the aerosol amount. The details of the ellipticity curves are similar to those for scattering from pure aerosol layers and, thus, are little modified by the Rayleigh scattering. Aerosols could be identified by their characteristic ellipticity curves.

  16. Elliptic-symmetry vector optical fields.

    PubMed

    Pan, Yue; Li, Yongnan; Li, Si-Min; Ren, Zhi-Cheng; Kong, Ling-Jun; Tu, Chenghou; Wang, Hui-Tian

    2014-08-11

    We present in principle and demonstrate experimentally a new kind of vector fields: elliptic-symmetry vector optical fields. This is a significant development in vector fields, as this breaks the cylindrical symmetry and enriches the family of vector fields. Due to the presence of an additional degrees of freedom, which is the interval between the foci in the elliptic coordinate system, the elliptic-symmetry vector fields are more flexible than the cylindrical vector fields for controlling the spatial structure of polarization and for engineering the focusing fields. The elliptic-symmetry vector fields can find many specific applications from optical trapping to optical machining and so on.

  17. Suppression of transverse ablative Rayleigh-Taylor-like instability in the hole-boring radiation pressure acceleration by using elliptically polarized laser pulses.

    PubMed

    Wu, D; Zheng, C Y; Qiao, B; Zhou, C T; Yan, X Q; Yu, M Y; He, X T

    2014-08-01

    It is shown that the transverse Rayleigh-Taylor-like (RT) instability in the hole-boring radiation pressure acceleration can be suppressed by using an elliptically polarized (EP) laser. A moderate J×B heating of the EP laser will thermalize the local electrons, which leads to the transverse diffusion of ions, suppressing the short wavelength perturbations of RT instability. A proper condition of polarization ratio is obtained analytically for the given laser intensity and plasma density. The idea is confirmed by two-dimensional particle-in-cell simulations, showing that the ion beam driven by the EP laser is more concentrated and intense compared with that of the circularly polarized laser.

  18. Fabrication and characterization of chalcogenide polarization-maintaining fibers based on extrusion

    NASA Astrophysics Data System (ADS)

    Jiang, Ling; Wang, Xunsi; Guo, Fangxia; Wu, Bo; Zhao, Zheming; Mi, Nan; Li, Xing; Dai, Shixun; Liu, Zijun; Nie, Qiuhua; Wang, Rongping

    2017-12-01

    The fabrication and characterization of IR chalcogenide polarization-maintaining (PM) step-index optical fibers with elliptical-core and 1-in-line-core have been reported for the first time. An improved isolated co-extrusion method was used to fabricate these core-shaped PM fibers. The elliptical core had a horizontal radius of a = 3.66 μm, vertical radius of b = 1.83 μm and the 1-in-line core of a = 4.83 μm, b = 1.42 μm, respectively. Single-mode PM beam spots were observed for the elliptical-core and 1-in-line-core fibers in the near-field energy distributions. The highest values of birefringence of the elliptical-core and 1-in-line-core fibers are 2.09 × 10-4 at 2.7 μm and 3.272 × 10-4 at 2.8 μm, respectively. The extinction ratios of -3.7 dB and -2 dB were achieved in fibers of 0.5 m long with elliptical-core and 1-in-line-core, respectively.

  19. An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface.

    PubMed

    Wang, Dacheng; Gu, Yinghong; Gong, Yandong; Qiu, Cheng-Wei; Hong, Minghui

    2015-05-04

    Metamaterials promise an exotic approach to artificially manipulate the polarization state of electromagnetic waves and boost the design of polarimetric devices for sensitive detection, imaging and wireless communication. Here, we present the design and experimental demonstration of an ultrathin (0.29λ) terahertz quarter-wave plate based on planar babinet-inverted metasurface. The quarter-wave plate consisting of arrays of asymmetric cross apertures reveals a high transmission of 0.545 with 90 degrees phase delay at 0.870 THz. The calculated ellipticity indicates a high degree of polarization conversion from linear to circular polarization. With respect to different incident polarization angles, left-handed circular polarized light, right-handed circular polarized light and elliptically polarized light can be created by this novel design. An analytical model is applied to describe transmitted amplitude, phase delay and ellipticitiy, which are in good agreement with the measured and simulated results. The planar babinet-inverted metasurface with the analytical model opens up avenues for new functional terahertz devices design.

  20. Interplay between Coulomb-focusing and non-dipole effects in strong-field ionization with elliptical polarization

    NASA Astrophysics Data System (ADS)

    Daněk, J.; Klaiber, M.; Hatsagortsyan, K. Z.; Keitel, C. H.; Willenberg, B.; Maurer, J.; Mayer, B. W.; Phillips, C. R.; Gallmann, L.; Keller, U.

    2018-06-01

    We study strong-field ionization and rescattering beyond the long-wavelength limit of the dipole approximation with elliptically polarized mid-IR laser pulses. Full three-dimensional photoelectron momentum distributions (PMDs) measured with velocity map imaging and tomographic reconstruction revealed an unexpected sharp ridge structure in the polarization plane (2018 Phys. Rev. A 97 013404). This thin line-shaped ridge structure for low-energy photoelectrons is correlated with the ellipticity-dependent asymmetry of the PMD along the beam propagation direction. The peak of the projection of the PMD onto the beam propagation axis is shifted from negative to positive values when the sharp ridge fades away with increasing ellipticity. With classical trajectory Monte Carlo simulations and analytical analysis, we study the underlying physics of this feature. The underlying physics is based on the interplay between the lateral drift of the ionized electron, the laser magnetic field induced drift in the laser propagation direction, and Coulomb focusing. To apply our observations to emerging techniques relying on strong-field ionization processes, including time-resolved holography and molecular imaging, we present a detailed classical trajectory-based analysis of our observations. The analysis leads to the explanation of the fine structure of the ridge and its non-dipole behavior upon rescattering while introducing restrictions on the ellipticity. These restrictions as well as the ionization and recollision phases provide additional observables to gain information on the timing of the ionization and recollision process and non-dipole properties of the ionization process.

  1. Controllable optical steady behavior from nonradiative coherence in GaAs quantum well driven by a single elliptically polarized field

    NASA Astrophysics Data System (ADS)

    Zhu, Zhonghu; Chen, Ai-Xi; Bai, Yanfeng; Yang, Wen-Xing; Lee, Ray-Kuang

    2014-05-01

    In this paper, we analyze theoretically the optical steady behavior in GaAs quantum well structure which interacts with a single elliptically polarized field (EPF) and a π-polarized probe field. Due to the existence of the robust nonradiative coherence, we demonstrate that the controllable optical steady behavior including multi-stability (OM) and optical bistability (OB) can be obtained. More interestingly, our numerical results also illustrate that tuning the phase difference between two components of polarized electric field of the EPF can realize the conversion between OB and OM. Our results illustrate the potential to utilize the optical phase for developing the new all-optical switching devices, as well as a guidance in the design for possible experimental implementations.

  2. Time-resolved circular dichroism: Application to the study of conformal changes in biomolecules

    NASA Astrophysics Data System (ADS)

    Hache, F.

    2010-06-01

    Circular dichroism (CD) is known to be a very sensitive probe of the conformation of molecules and biomolecules. It is therefore tempting to implement CD in a pump-probe experiment in order to measure ultrarapid conformational changes which occur in photochemical processes. We present two technical developments of such time-resolved CD experiments. The first one relies on the modulation of the probe polarization from left to right circular whereas the second one measures the pump-induced ellipticity of the probe with a Babinet-Soleil compensator. Some applications are described and extension of these techniques towards the study of elementary protein folding processes is discussed.

  3. Does the Coherent Lidar System Corroborate Non-Interaction of Waves (NIW)?

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Roychoudhari, Chandrasekhar

    2013-01-01

    The NIW (non-interaction of waves) property has been proposed by one of the coauthors. The NIW property states that in the absence of any "obstructing" detectors, all the Huygens-Fresnel secondary wavelets will continue to propagate unhindered and without interacting (interfering) with each other. Since a coherent lidar system incorporates complex behaviors of optical components with different polarizations including circular polarization for the transmitted radiation, then the question arises whether the NIW principle accommodate elliptical polarization of light. Elliptical polarization presumes the summation of orthogonally polarized electric field vectors which contradicts the NIW principle. In this paper, we present working of a coherent lidar system using Jones matrix formulation. The Jones matrix elements represent the anisotropic dipolar properties of molecules of optical components. Accordingly, when we use the Jones matrix methodology to analyze the coherent lidar system, we find that the system behavior is congruent with the NIW property.

  4. Magnetic elliptical polarization of Schumann resonances

    NASA Technical Reports Server (NTRS)

    Sentman, D. D.

    1987-01-01

    Measurements of orthogonal, horizontal components of the magnetic field in the ELF range obtained during September 1985 show that the Schumann resonance eigenfrequencies determined separately for the north-south and east-west magnetic components differ by as much as 0.5 Hz, suggesting that the underlying magnetic signal is not linearly polarized at such times. The high degree of magnetic ellipticity found suggests that the side multiplets of the Schumann resonances corresponding to azimuthally inhomogeneous normal modes are strongly excited in the highly asymmetric earth-ionosphere cavity. The dominant sense of polarization over the measurement passband is found to be right-handed during local daylight hours, and to be left-handed during local nighttime hours.

  5. FIBER AND INTEGRATED OPTICS: Anisotropic waveguides with an elliptic stress-inducing cladding and a circular core

    NASA Astrophysics Data System (ADS)

    Arutyunyan, Z. É.; Grudinin, A. B.; Gur'yanov, A. N.; Gusovskiĭ, D. D.; Dianov, Evgenii M.; Ignat'ev, S. V.; Smirnov, O. B.

    1990-10-01

    A technology of fabrication of anisotropic single-mode fiber waveguides with an elliptic stress-inducing cladding and a circular core was developed. This technology was used to make fiber waveguides with a birefringence (1-3) × 10 - 4, a coefficient representing the coupling between the polarization modes h = (5-7) × 10 - 5 m - 1, and optical losses a = 0.5 dB/km in the vicinity of 1.6 μm. A comparison was made of the experimental data with the results of a theoretical analysis. It was found that certain mechanisms restricted the ability of these waveguides to maintain a constant polarization of the injected linearly polarized radiation.

  6. Electromagnetic ion cyclotron waves observed near the oxygen cyclotron frequency by ISEE 1 and 2

    NASA Technical Reports Server (NTRS)

    Fraser, B. J.; Samson, J. C.; Hu, Y. D.; Mcpherron, R. L.; Russell, C. T.

    1992-01-01

    The first results of observations of ion cyclotron waves by the elliptically orbiting ISEE 1 and 2 pair of spacecraft are reported. The most intense waves (8 nT) were observed in the outer plasmasphere where convection drift velocities were largest and the Alfven velocity was a minimum. Wave polarization is predominantly left-handed with propagation almost parallel to the ambient magnetic field, and the spectral slot and polarization reversal predicted by cold plasma propagation theory are identified in the wave data. Computations of the experimental wave spectra during the passage through the plasmapause show that the spectral slots relate to the local plasma parameters, possibly suggesting an ion cyclotron wave growth source near the spacecraft. A regular wave packet structure seen over the first 30 min of the event is attributed to the modulation of this energy source by the Pc 5 waves seen at the same time.

  7. Molecular frame photoemission by a comb of elliptical high-order harmonics: a sensitive probe of both photodynamics and harmonic complete polarization state.

    PubMed

    Veyrinas, K; Gruson, V; Weber, S J; Barreau, L; Ruchon, T; Hergott, J-F; Houver, J-C; Lucchese, R R; Salières, P; Dowek, D

    2016-12-16

    Due to the intimate anisotropic interaction between an XUV light field and a molecule resulting in photoionization (PI), molecular frame photoelectron angular distributions (MFPADs) are most sensitive probes of both electronic/nuclear dynamics and the polarization state of the ionizing light field. Consequently, they encode the complex dipole matrix elements describing the dynamics of the PI transition, as well as the three normalized Stokes parameters s 1 , s 2 , s 3 characterizing the complete polarization state of the light, operating as molecular polarimetry. The remarkable development of advanced light sources delivering attosecond XUV pulses opens the perspective to visualize the primary steps of photochemical dynamics in time-resolved studies, at the natural attosecond to few femtosecond time-scales of electron dynamics and fast nuclear motion. It is thus timely to investigate the feasibility of measurement of MFPADs when PI is induced e.g., by an attosecond pulse train (APT) corresponding to a comb of discrete high-order harmonics. In the work presented here, we report MFPAD studies based on coincident electron-ion 3D momentum imaging in the context of ultrafast molecular dynamics investigated at the PLFA facility (CEA-SLIC), with two perspectives: (i) using APTs generated in atoms/molecules as a source for MFPAD-resolved PI studies, and (ii) taking advantage of molecular polarimetry to perform a complete polarization analysis of the harmonic emission of molecules, a major challenge of high harmonic spectroscopy. Recent results illustrating both aspects are reported for APTs generated in unaligned SF 6 molecules by an elliptically polarized infrared driving field. The observed fingerprints of the elliptically polarized harmonics include the first direct determination of the complete s 1 , s 2 , s 3 Stokes vector, equivalent to (ψ, ε, P), the orientation and the signed ellipticity of the polarization ellipse, and the degree of polarization P. They are compared to so far incomplete results of XUV optical polarimetry. We finally discuss the comparison between the outcomes of photoionization and high harmonic spectroscopy for the description of molecular photodynamics.

  8. Generation of arbitrary vector fields based on a pair of orthogonal elliptically polarized base vectors.

    PubMed

    Xu, Danfeng; Gu, Bing; Rui, Guanghao; Zhan, Qiwen; Cui, Yiping

    2016-02-22

    We present an arbitrary vector field with hybrid polarization based on the combination of a pair of orthogonal elliptically polarized base vectors on the Poincaré sphere. It is shown that the created vector field is only dependent on the latitude angle 2χ but is independent on the longitude angle 2ψ on the Poincaré sphere. By adjusting the latitude angle 2χ, which is related to two identical waveplates in a common path interferometric arrangement, one could obtain arbitrary type of vector fields. Experimentally, we demonstrate the generation of such kind of vector fields and confirm the distribution of state of polarization by the measurement of Stokes parameters. Besides, we investigate the tight focusing properties of these vector fields. It is found that the additional degree of freedom 2χ provided by arbitrary vector field with hybrid polarization allows one to control the spatial structure of polarization and to engineer the focusing field.

  9. Polarization feedback laser stabilization

    DOEpatents

    Esherick, Peter; Owyoung, Adelbert

    1988-01-01

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other.

  10. STELLAR ROTATION EFFECTS IN POLARIMETRIC MICROLENSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sajadian, Sedighe, E-mail: sajadian@ipm.ir

    2016-07-10

    It is well known that the polarization signal in microlensing events of hot stars is larger than that of main-sequence stars. Most hot stars rotate rapidly around their stellar axes. The stellar rotation creates ellipticity and gravity-darkening effects that break the spherical symmetry of the source's shape and the circular symmetry of the source's surface brightness respectively. Hence, it causes a net polarization signal for the source star. This polarization signal should be considered in polarimetric microlensing of fast rotating stars. For moderately rotating stars, lensing can magnify or even characterize small polarization signals due to the stellar rotation throughmore » polarimetric observations. The gravity-darkening effect due to a rotating source star creates asymmetric perturbations in polarimetric and photometric microlensing curves whose maximum occurs when the lens trajectory crosses the projected position of the rotation pole on the sky plane. The stellar ellipticity creates a time shift (i) in the position of the second peak of the polarimetric curves in transit microlensing events and (ii) in the peak position of the polarimetric curves with respect to the photometric peak position in bypass microlensing events. By measuring this time shift via polarimetric observations of microlensing events, we can evaluate the ellipticity of the projected source surface on the sky plane. Given the characterizations of the FOcal Reducer and low dispersion Spectrograph (FORS2) polarimeter at the Very Large Telescope, the probability of observing this time shift is very small. The more accurate polarimeters of the next generation may well measure these time shifts and evaluate the ellipticity of microlensing source stars.« less

  11. Torque Induced on Lipid Microtubules with Optical Tweezers

    NASA Astrophysics Data System (ADS)

    wichean, T. Na; Charrunchon, S.; Pattanaporkratana, A.; Limtrakul, J.; Chattham, N.

    2017-09-01

    Chiral Phospholipids are found self-assembled into cylindrical tubules of 500 nm in diameter by helical winding of bilayer stripes under cooling in ethanol and water solution. Theoretical prediction and experimental evidence reported so far confirmed the modulated tilt direction in a helical striped pattern of the tubules. This molecular orientation morphology results in optically birefringent tubules. We investigate an individual lipid microtubule under a single optical trap of 532 nm linearly polarized laser. Spontaneous rotation of a lipid tubule induced by radiation torque was observed with only one sense of rotation caused by chirality of a lipid tubule. Rotation discontinued once the high refractive index axis of a lipid tubule aligned with a polarization axis of the laser. We further explored a lipid tubule under circularly polarized optical trap. It was found that a lipid tubule was continuously rotated confirming the tubule birefringent property. We modified the shape of optical trap by cylindrical lens obtaining an elliptical profile optical trap. A lipid tubule can be aligned along the elongated length of optical trap. We reported an investigation of competition between polarized light torque on a birefringent lipid tubule versus torque from intensity gradient of an elongated optical trap.

  12. Full Field Photoelastic Stress Analysis

    NASA Technical Reports Server (NTRS)

    Lesniak, Jon R. (Inventor)

    2000-01-01

    A structural specimen coated with or constructed of photoelastic material, when illuminated with circularly polarized light will, when stressed: reflect or transmit elliptically polarized light, the direction of the axes of the ellipse and variation of the elliptically light from illuminating circular light will correspond to and indicate the direction and magnitude of the shear stresses for each illuminated point on the specimen. The principles of this invention allow for several embodiments of stress analyzing apparatus, ranging from those involving multiple rotating optical elements, to those which require no moving parts at all. A simple polariscope may be constructed having two polarizing filters with a single one-quarter waveplate placed between the polarizing filters. Light is projected through the first polarizing filter and the one-quarter waveplate and is reflected from a sub-fringe birefringent coating on a structure under load. Reflected light from the structure is analyzed with a polarizing filter. The two polarizing filters and the one-quarter waveplate may be rotated together or the analyzer alone may be rotated. Computer analysis of the variation in light intensity yields shear stress magnitude and direction.

  13. Environmental performance of an elliptical core polarization maintaining optical fiber for fiber optic gyro applications

    NASA Astrophysics Data System (ADS)

    Martinelli, Vincent P.; Squires, Emily M.; Watkins, James J.

    1994-03-01

    Corning has introduced a new polarization-maintaining optical fiber to satisfy customer requirements for a range of commercial and military FOG applications. This fiber has an elliptical core, matched-clad design, and is intended for operation in the 780 to 850 nm wavelength region. The fiber has a beat length less than 1.5 mm, attenuation rate less than 10 dB/km, and a typical coiled h-parameter less than 1.5 X 10-4 m-1 in the designated operating wavelength range. It has a cladding diameter of 80 micrometers and a coating diameter of 185 micrometers . The coating is an acrylate system, similar to that used in telecommunications optical fibers. We report on the performance of this elliptical core fiber for a variety of environmental exposures representative of an automotive application.

  14. Imaginary geometric phases of quantum trajectories in high-order terahertz sideband generation

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Liu, Ren-Bao

    2014-03-01

    Quantum evolution of particles under strong fields can be described by a small number of quantum trajectories that satisfy the stationary phase condition in the Dirac-Feynmann path integral. The quantum trajectories are the key concept to understand the high-order terahertz siedeband generation (HSG) in semiconductors. Due to the nontrivial ``vacuum'' states of band materials, the quantum trajectories of optically excited electron-hole pairs in semiconductors can accumulate geometric phases under the driving of an elliptically polarized THz field. We find that the geometric phase of the stationary trajectory is generally complex with both real and imaginary parts. In monolayer MoS2, the imaginary parts of the geometric phase leads to a changing of the polarization ellipticity of the sideband. We further show that the imaginary part originates from the quantum interference of many trajectories with different phases. Thus the observation of the polarization ellipticity of the sideband shall be a good indication of the quantum nature of the stationary trajectory. This work is supported by Hong Kong RGC/GRF 401512 and the CUHK Focused Investments Scheme.

  15. Highly efficient birefringent quarter-wave plate based on all-dielectric metasurface and graphene

    NASA Astrophysics Data System (ADS)

    Owiti, Edgar O.; Yang, Hanning; Liu, Peng; Ominde, Calvine F.; Sun, Xiudong

    2018-07-01

    All-dielectric metasurfaces offer remarkable properties including high efficiency and flexible control of the optical response. However, extreme, narrow bandwidth is a limitation that lowers applicability of these structures in photonic sensing applications. In this work, we numerically design and propose a switchable quarter-wave plate by hybridizing an all-dielectric metasurface with graphene. By using a single layer of graphene between a highly refractive index silicon and a silica substrate, the transmissive resonance is enhanced and broadened. Additionally, integrating graphene with silicon effectively modulates the Q-factor and the trapped magnetic modes in the silicon. A stable birefringence output is obtained and manipulated through the structure dimensions and the Fermi energy of graphene. A 95% polarization conversion ratio is achieved through converting linearly polarized light into circularly polarized light, and a 96% ellipticity ratio is obtained at the resonance wavelength. The structure is compact and has an ultrathin design thickness of 0 . 1 λ, in the telecommunication region. The above properties are essential for integration into photonic sensing devices and the structure has potential for compatibility with the CMOS devices.

  16. Elliptic complexes over C∗-algebras of compact operators

    NASA Astrophysics Data System (ADS)

    Krýsl, Svatopluk

    2016-03-01

    For a C∗-algebra A of compact operators and a compact manifold M, we prove that the Hodge theory holds for A-elliptic complexes of pseudodifferential operators acting on smooth sections of finitely generated projective A-Hilbert bundles over M. For these C∗-algebras and manifolds, we get a topological isomorphism between the cohomology groups of an A-elliptic complex and the space of harmonic elements of the complex. Consequently, the cohomology groups appear to be finitely generated projective C∗-Hilbert modules and especially, Banach spaces. We also prove that in the category of Hilbert A-modules and continuous adjointable Hilbert A-module homomorphisms, the property of a complex of being self-adjoint parametrix possessing characterizes the complexes of Hodge type.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weilacher, F.; Radha, P. B., E-mail: rbah@lle.rochester.edu; Collins, T. J. B.

    Ongoing polar-direct-drive (PDD) implosions on the National Ignition Facility (NIF) [J. D. Lindl and E. I. Moses, Phys. Plasmas 18, 050901 (2011)] use existing NIF hardware, including indirect-drive phase plates. This limits the performance achievable in these implosions. Spot shapes are identified that significantly improve the uniformity of PDD NIF implosions; outer surface deviation is reduced by a factor of 7 at the end of the laser pulse and hot-spot distortion is reduced by a factor of 2 when the shell has converged by a factor of ∼10. As a result, the neutron yield increases by approximately a factor ofmore » 2. This set of laser spot shapes is a combination of circular and elliptical spots, along with elliptical spot shapes modulated by an additional higher-intensity ellipse offset from the center of the beam. This combination is motivated in this paper. It is also found that this improved implosion uniformity is obtained independent of the heat conduction model. This work indicates that significant improvement in performance can be obtained robustly with the proposed spot shapes.« less

  18. Polarization sensitive optical low-coherence reflectometry for blood glucose monitoring in human subjects

    NASA Astrophysics Data System (ADS)

    Solanki, Jitendra; Choudhary, Om Prakash; Sen, P.; Andrews, J. T.

    2013-07-01

    A device based on polarization sensitive optical low-coherence reflectometry is developed to monitor blood glucose levels in human subjects. The device was initially tested with tissue phantom. The measurements with human subjects for various glucose concentration levels are found to be linearly dependent on the ellipticity obtainable from the home-made phase-sensitive optical low-coherence reflectometry device. The linearity obtained between glucose concentration and ellipticity are explained with theoretical calculations using Mie theory. A comparison of results with standard clinical methods establishes the utility of the present device for non-invasive glucose monitoring.

  19. An SRRC elliptically polarizing undulator prototype to examine mechanical design feasibility and magnetic field performance.

    PubMed

    Chang, C H; Hwang, C S; Fan, T C; Chen, K H; Pan, K T; Lin, F Y; Wang, C; Chang, L H; Chen, H H; Lin, M C; Yeh, S

    1998-05-01

    In this work, a 1 m long Sasaki-type elliptically polarizing undulator (EPU) prototype with 5.6 cm period length is used to examine the mechanical design feasibility as well as magnetic field performance. The magnetic field characteristics of the EPU5.6 prototype at various phase shifts and gap motion are described. The field errors from mechanical tolerances, magnet block errors, end field effects and phase/gap motion effects are analysed. The procedures related to correcting the field with the block position tuning, iron shimming and the trim blocks at both ends are outlined.

  20. Polarization and dispersion properties of elliptical hole golden spiral photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Agrawal, A.; Kejalakshmy, N.; Rahman, B. M. A.; Grattan, K. T. V.

    2010-06-01

    An elliptical air-hole golden spiral photonic crystal fiber (EGS-PCF) is analyzed with the full-vectorial finite element method. The air-holes in the EGS-PCF are arranged in a spiral pattern governed by the Golden Ratio, where the design has been inspired by the optimal arrangement of seeds found in nature. The EGS-PCF exhibits extremely high birefringence (˜0.022 at operating wavelength 1550 nm) which is particularly useful for generating a polarization stable supercontinuum (SC). The fiber can also be designed to have a Zero Dispersion Wavelength (ZDW) at a suitable wavelength for only one polarization and large negative dispersion for the other, leading to a single-polarization SC. In addition, the fiber dispersion can be designed to obtain ZDWs at 800 nm and 1064 nm simultaneously, which can facilitate broadband supercontinuum generation (SCG) through multi-wavelength pumping.

  1. Plasmon-shaped polarization gating for high-order-harmonic generation

    NASA Astrophysics Data System (ADS)

    Wang, Feng; He, Lixin; Chen, Jiawei; Wang, Baoning; Zhu, Xiaosong; Lan, Pengfei; Lu, Peixiang

    2017-12-01

    We present a plasmon-shaped polarization gating for high-order-harmonic generation by using a linearly polarized laser field to illuminate two orthogonal bow-tie nanostructures. The results show that when these two bow-tie nanostructures have nonidentical geometrical sizes, the transverse and longitudinal components of the incident laser field will experience different phase responses, thus leading to a time-dependent ellipticity of laser field. For the polarizing angle of incident laser field in the range from 45∘ to 60∘, the dominant harmonic emission is gated within the few optical cycles where the laser ellipticity is below 0.3. Then sub-50-as isolated attosecond pulses (IAPs) can be generated. Such a plasmon-shaped polarization gating is robust for IAP generation against the variations of the carrier-envelope phases of the laser pulse. Moreover, by changing the geometrical size of one of the bow-tie nanostructures, the electron dynamics can be effectively controlled and the more efficient supercontinuum as well as IAP can be generated.

  2. Polarization feedback laser stabilization

    DOEpatents

    Esherick, P.; Owyoung, A.

    1987-09-28

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other. 4 figs.

  3. Highly birefringent elliptical core photonic crystal fiber for terahertz application

    NASA Astrophysics Data System (ADS)

    Sultana, Jakeya; Islam, Md. Saiful; Faisal, Mohammad; Islam, Mohammad Rakibul; Ng, Brian W.-H.; Ebendorff-Heidepriem, Heike; Abbott, Derek

    2018-01-01

    We present a novel strategy for designing a highly birefringent photonic crystal fiber (PCF) with near zero flattened dispersion properties by applying elliptical air holes in the core area. The elliptical structure of the air holes in the porous-core region introduces asymmetry between x and y polarization modes, which consequently offers ultra-high birefringence. Also the compact geometry of the conventional hexagonal structure in the cladding confines most of the useful power. The optical properties including birefringence, dispersion, confinement loss, effective material loss (EML) and single modeness of the fiber are investigated using a full-vector finite element method. Simulation results show an ultra-high birefringence of 0 . 086 ultra-flattened near zero dispersion of 0 . 53 ± 0 . 07 ps/THz/cm in a broad frequency range. The practical implementation of the proposed fiber is feasible using existing fabrication technology and is applicable to the areas of terahertz sensing and polarization maintaining systems.

  4. Investigation of polarization-selective InGaAs sensor with elliptical two-dimensional holes array structure

    NASA Astrophysics Data System (ADS)

    Wang, Wenbo; Fu, Dong; Hu, Xiaobin; Xu, Yun; Song, Guofeng; Wei, Xin

    2016-10-01

    Polarimetric imaging in infrared wavelengths have attracted more and more attention for broad applications in meteorological observations, medicine, remote sensing and many other fields. Metal metamaterial structures are used in nanophotonics in order to localize and enhance the incident electromagnetic field. Here we develop an elliptical gold Two-Dimensional Holes Array (2DHA) in which photons can be manipulated by surface plasmon resonance, and the ellipse introduce the asymmetry to realize a polarization selective function. Strong polarization dependence is observed in the simulated transmission spectra. To further understand the coupling mechanism between gold holes array and InP, the different parameters of the 2DHA are analyzed. It is shown that the polarization axis is perpendicular to the major axis of the ellipse, and the degree of polarization is determined by the aspect ratio of the ellipse. Furthermore, the resonance frequency of the 2DHA shows a linear dependence on the array period, the bandwidth of transmission spectra closely related to duty cycle of the ellipse in each period. This result will establish a basis for the development of innovative polarization selective infrared sensor.

  5. Ellipticity of near-threshold harmonics from stretched molecules.

    PubMed

    Li, Weiyan; Dong, Fulong; Yu, Shujuan; Wang, Shang; Yang, Shiping; Chen, Yanjun

    2015-11-30

    We study the ellipticity of near-threshold harmonics (NTH) from aligned molecules with large internuclear distances numerically and analytically. The calculated harmonic spectra show a broad plateau for NTH which is several orders of magnitude higher than that for high-order harmonics. In particular, the NTH plateau shows high ellipticity at small and intermediate orientation angles. Our analyses reveal that the main contributions to the NTH plateau come from the transition of the electron from continuum states to these two lowest bound states of the system, which are strongly coupled together by the laser field. Besides continuum states, higher excited states also play a role in the NTH plateau, resulting in a large phase difference between parallel and perpendicular harmonics and accordingly high ellipticity of the NTH plateau. The NTH plateau with high intensity and large ellipticity provides a promising manner for generating strong elliptically-polarized extreme-ultraviolet (EUV) pulses.

  6. Polarization squeezing of light by single passage through an atomic vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barreiro, S.; Valente, P.; Failache, H.

    We have studied relative-intensity fluctuations for a variable set of orthogonal elliptic polarization components of a linearly polarized laser beam traversing a resonant {sup 87}Rb vapor cell. Significant polarization squeezing at the threshold level (-3dB) required for the implementation of several continuous-variable quantum protocols was observed. The extreme simplicity of the setup, which is based on standard polarization components, makes it particularly convenient for quantum information applications.

  7. Is cepstrum averaging applicable to circularly polarized electric-field data?

    NASA Astrophysics Data System (ADS)

    Tunnell, T.

    1990-04-01

    In FY 1988 a cepstrum averaging technique was developed to eliminate the ground reflections from charged particle beam (CPB) electromagnetic pulse (EMP) data. The work was done for the Los Alamos National Laboratory Project DEWPOINT at SST-7. The technique averages the cepstra of horizontally and vertically polarized electric field data (i.e., linearly polarized electric field data). This cepstrum averaging technique was programmed into the FORTRAN codes CEP and CEPSIM. Steve Knox, the principal investigator for Project DEWPOINT, asked the authors to determine if the cepstrum averaging technique could be applied to circularly polarized electric field data. The answer is, Yes, but some modifications may be necessary. There are two aspects to this answer that we need to address, namely, the Yes and the modifications. First, regarding the Yes, the technique is applicable to elliptically polarized electric field data in general: circular polarization is a special case of elliptical polarization. Secondly, regarding the modifications, greater care may be required in computing the phase in the calculation of the complex logarithm. The calculation of the complex logarithm is the most critical step in cepstrum-based analysis. This memorandum documents these findings.

  8. Thin conformal antenna array for microwave power conversions

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M. (Inventor)

    1978-01-01

    A structure of a circularly polarized, thin conformal, antenna array which may be mounted integrally with the skin of an aircraft employs microstrip elliptical elements and interconnecting feed lines spaced from a circuit ground plane by a thin dielectric layer. The feed lines are impedance matched to the elliptical antenna elements by selecting a proper feedpoint inside the periphery of the elliptical antenna elements. Diodes connected between the feed lines and the ground plane rectify the microwave power, and microstrip filters (low pass) connected in series with the feed lines provide dc current to a microstrip bus. Low impedance matching strips are included between the elliptical elements and the rectifying and filtering elements.

  9. Effect of micropolar fluids on the squeeze film elliptical plates

    NASA Astrophysics Data System (ADS)

    Rajashekhar Anagod, Roopa; Hanumagowda, B. N.; Santhosh Kumar, J.

    2018-04-01

    This paper elaborates on the theoretical analysis of squeeze film characteristics between elliptical plates lubricated with non-Newtonian micro-polar fluid on the basis of Eringen's micropolar fluid theory. The modified Reynold’s equations governing flow of micro-polar fluid is mathematically derived and the outcome reveals distribution of film pressure which determines the dynamic performance characteristics in terms of load and squeezing time for various values of coupling number and micro structure size parameter. Based on the results reported, The influence of non-Newtonian micropolar fluids is examined in enhancing the time of approach and load carrying capacity to the case of classical Newtonian lubricant.

  10. Dual circularly polarized broadside beam antenna based on metasurfaces

    NASA Astrophysics Data System (ADS)

    Tellechea, A.; Caminita, F.; Martini, E.; Ederra, I.; Teniente, J.; Iriarte, J. C.; Gonzalo, R.; Maci, S.

    2018-02-01

    Design details of a Ku band metasurface (MTS) antenna with dual circularly polarized (CP) broadside radiation is shown in this work. By means of the surface impedance tensor modulation, synchronized propagation of two transversal magnetic (TM) and transverse electric (TE) surface waves (SWs) is ensured in the structure, which contribute to the radiation in broadside direction by the generation of a CP leaky wave. The structure is implemented by elliptical subwavelength metallic elements with a cross-shaped aperture in the center, printed on top of a thin substrate with high permittivity (AD1000 with a thickness of λ0/17). For the experimental validation, the MTS prototype has been excited employing an orthomode transducer composed by a metallic stepped septum inside an air-filled waveguide. Two orthogonal TE11 modes excited with ±90° phase shift in the feed couple with the TM and TE SWs supported by the MTS and generate RHCP or LHCP broadside beam. Experimental results are compared with the simulation predictions. Finally, conclusions are drawn.

  11. Anisotropy modulations of femtosecond laser pulse induced periodic surface structures on silicon by adjusting double pulse delay.

    PubMed

    Han, Weina; Jiang, Lan; Li, Xiaowei; Wang, Qingsong; Li, Hao; Lu, YongFeng

    2014-06-30

    We demonstrate that the polarization-dependent anisotropy of the laser-induced periodic surface structure (LIPSS) on silicon can be adjusted by designing a femtosecond laser pulse train (800 nm, 50 fs, 1 kHz). By varying the pulse delay from 100 to 1600 fs within a double pulse train to reduce the deposited pulse energy, which weakens the directional surface plasmon polarition (SPP)-laser energy coupling based on the initial formed ripple structure, the polarization-dependent geometrical morphology of the LIPSS evolves from a nearly isotropic circular shape to a somewhat elongated elliptical shape. Meanwhile, the controllable anisotropy of the two-dimensional scanned-line widths with different directions is achieved based on a certain pulse delay combined with the scanning speed. This can effectively realize better control over large-area uniform LIPSS formation. As an example, we further show that the large-area LIPSS can be formed with different scanning times under different pulse delays.

  12. FIBER OPTICS: Investigation of the spectral dependences of some of the polarization characteristics of fiber waveguides with an elliptic stress-inducing cladding and a circular core

    NASA Astrophysics Data System (ADS)

    Arutyunyan, Z. É.; Grudinin, A. B.; Gur'yanov, A. N.; Gusovskiĭ, D. D.; Dianov, Evgenii M.; Ignat'ev, S. V.; Smirnov, O. B.; Surin, S. Yu

    1991-01-01

    An experimental investigation was made of the spectral dependences of the modal birefringence B, of the polarization dispersion τp, and of the difference Dx-Dy between the chromatic dispersions of polarization modes in fiber waveguides with an elliptic stress-inducing cladding, a second circular buffer cladding, and a circular core. The investigation was carried out in the wavelength range 1.15-1.75 μm. The magnitude of the changes in B, τp, and Dx-Dy depended on the dimensions of the buffer cladding. The dependences obtained were explained satisfactorily by an analysis of the similarity of the distributions of the intensity of the fundamental mode and of the difference of the stresses along the optic axes of the investigated fiber waveguides.

  13. Analysis of frequency mixing error on heterodyne interferometric ellipsometry

    NASA Astrophysics Data System (ADS)

    Deng, Yuan-long; Li, Xue-jin; Wu, Yu-bin; Hu, Ju-guang; Yao, Jian-quan

    2007-11-01

    A heterodyne interferometric ellipsometer, with no moving parts and a transverse Zeeman laser, is demonstrated. The modified Mach-Zehnder interferometer characterized as a separate frequency and common-path configuration is designed and theoretically analyzed. The experimental data show a fluctuation mainly resulting from the frequency mixing error which is caused by the imperfection of polarizing beam splitters (PBS), the elliptical polarization and non-orthogonality of light beams. The producing mechanism of the frequency mixing error and its influence on measurement are analyzed with the Jones matrix method; the calculation indicates that it results in an error up to several nanometres in the thickness measurement of thin films. The non-orthogonality has no contribution to the phase difference error when it is relatively small; the elliptical polarization and the imperfection of PBS have a major effect on the error.

  14. Terahertz polarization converter based on all-dielectric high birefringence metamaterial with elliptical air holes

    NASA Astrophysics Data System (ADS)

    Zi, Jianchen; Xu, Quan; Wang, Qiu; Tian, Chunxiu; Li, Yanfeng; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2018-06-01

    Metamaterials have been widely applied in the polarization conversion of terahertz (THz) waves. However, common plasmonic metamaterials usually work as reflective devices and have low transmissions. All-dielectric metamaterials can overcome these shortcomings. An all-dielectric metamaterial based on silicon with elliptical air holes is reported to achieve high artificial birefringence at THz frequencies. Simulations show that with appropriate structural parameters the birefringence of the dielectric metamaterial can remain flat and is above 0.7 within a broad band. Moreover, the metamaterial can be designed as a broadband quarter wave plate. A sample metamaterial was fabricated and tested to prove the validity of the simulations, and the sample could work as a quarter wave plate at 1.76 THz. The all-dielectric metamaterial that we proposed is of great significance for high performance THz polarization converters.

  15. Finite-difference time-domain analysis of photonic nanojets from liquid-crystal-containing microcylinder

    NASA Astrophysics Data System (ADS)

    Matsui, Tatsunosuke; Okajima, Akiko

    2014-01-01

    The photonic nanojet (PNJ) from a microcylinder with liquid crystals (LCs) showing tangential molecular alignment inside the microcylinder has been numerically analyzed on the basis of the finite-difference time-domain method. By introducing a small degree of birefringence, the characteristics of the PNJ, such as propagation length and polarization state, can be drastically changed. The azimuth angle and the ellipticity of the elliptically polarized PNJ obtained from the LC microcylinder changes within the propagation lengths in the micrometer range even in the isotropic matrix, which might be attributed to the jet like spatial profile of the PNJ. By using LC microcylinders or microspheres, we may obtain a rich variety of PNJs with unique polarization characteristics, which might open a new avenue for the development of novel optical devices with electrical tunability.

  16. Radiance, polarization, and ellipticity of the radiation in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Hitzfelder, S. J.; Plass, G. N.; Kattawar, G. W.

    1976-01-01

    The complete radiation field including polarization is calculated for a model of the real atmosphere by the matrix operator method. The radiance, direction and amount of polarization, and ellipticity are obtained at the top and bottom of the atmosphere for three values of the surface albedo (0; 0.15 0.90) and five solar zenith angles. Scattering and absorption by molecules (including ozone) and by aerosols are taken into account together with the variation of the number density of these substances with height. All results are calculated for both a normal aerosol number and a distribution which is one-third of the normal amount at all heights. The calculated values show general qualitative agreement with the available experimental measurements. The position of the neutral points of the polarization in the principal plane is a sensitive indicator of the characteristics of the aerosol particles in the atmosphere, since it depends on the sign and value of the single scattered polarization for scattering angles around 20 deg and 160 deg for transmitted and reflected photons respectively.

  17. A fully polarimetric scattering model for a coniferous forest

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.; Lopes, A.; Mougin, E.

    1991-01-01

    For an elliptically polarized plane wave exciting a coniferous forested canopy a fully polarimetric scattering model has been developed to account for the size and orientation distributions of each forest constituent. A canopy is divided into three layers over a rough interface. The upper two layers represent the crown with its constituents (leaves, stems, and branches). The lower layer stands for the trunks and the rough interface is the canopy-ground interface. For a plane wave exciting the canopy, the explicit expressions for the bistatic scattering coefficient associated with each scattering mechanism are given. For an elliptically polarized incidence wave, the present model can be recast in a form suitable for polarimetric wave synthesis. The model validation is justified by comparing the measured and the calculated values of the backscattering coefficients for a linearly polarized incident wave. The comparison is made over a wide range of frequencies and incident angles. Numerical simulations are conducted to calculate the radar polarization signature of the canopy for different incident frequencies and angles.

  18. Ground roll attenuation using polarization analysis in the t-f-k domain

    NASA Astrophysics Data System (ADS)

    Wang, C.; Wang, Y.

    2017-07-01

    S waves travel slower than P waves and have a lower dominant frequency. Therefore, applying common techniques such as time-frequency filtering and f-k filtering to separate S waves from ground roll is difficult because ground roll is also characterized by slow velocity and low frequency. In this study, we present a method for attenuating ground roll using a polarization filtering method based on the t-f-k transform. We describe the particle motion of the waves by complex vector signals. Each pair of frequency components, whose frequencies have the same absolute value but different signs, of the complex signal indicate an elliptical or linear motion. The polarization parameters of the elliptical or linear motion are explicitly related to the two Fourier coefficients. We then extend these concepts to the t-f-k domain and propose a polarization filtering method for ground roll attenuation based on the t-f-k transform. The proposed approach can define automatically the time-varying reject zones on the f-k panel at different times as a function of the reciprocal ellipticity. Four attributes, time, frequency, apparent velocity and polarization are used to identify and extract the ground roll simultaneously. Thus, the ground roll and body waves can be separated as long as they are dissimilar in one of these attributes. We compare our method with commonly used filtering techniques by applying the methods to synthetic and real seismic data. The results indicate that our method can attenuate ground roll while preserving body waves more effectively than the other methods.

  19. Controlling the excitation process of free electrons by a femtosecond elliptically polarized laser

    NASA Astrophysics Data System (ADS)

    Gao, Lili; Wang, Feng; Jiang, Lan; Qu, Liangti; Lu, Yongfeng

    2015-11-01

    This paper is focused on the excitation rates of free electrons of an aluminum (Al) bulk irradiated by an elliptically polarized laser in simulation, using time-dependent density functional theory (TDDFT). The polarized 400 nm, 10 fs laser pulse consisted of two elementary sinusoidal beams, and is adjusted by changing the phase difference φ and the intersection angle θ of the polarization directions between the two beams. The simulation includes cases of φ = π/2 with θ = 30°, θ = 45°, θ = 60°, θ = 90°, θ = 120°, θ = 135°, θ = 150°, and cases of θ = 90° with φ = π/4, φ = π/3, φ = π/2, φ = 2π/3, φ = 3π/4. The absorbed energy, the excitation rates and the density distributions of free electrons after laser termination are investigated. At the given power intensity (1×1014Wcm-2), pulse width (10 fs) and wavelength (400 nm) of each elementary laser beam, computational results indicate that the excitation rate of free electrons is impacted by three major factors: the long axis direction of the laser projected profile, the amplitude difference of the first main oscillation (1st AD), and the total amplitude difference of main oscillations (TAD) of the external electric field. Among the aforementioned three factors for the excitation rate of free electrons, the direction of long axis plays the most significant role. The screen effect is crucial to compare the importance of the remaining two factors. The analysis approach to investigate the electron dynamics under an elliptically polarized laser is both pioneering and effective.

  20. Nonlinear modulation of an extraordinary wave under the conditions of parametric decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorofeenko, V. G.; Krasovitskiy, V. B.; Turikov, V. A.

    2012-06-15

    A self-consistent set of Hamilton equations describing nonlinear saturation of the amplitude of oscillations excited under the conditions of parametric decay of an elliptically polarized extraordinary wave in cold plasma is solved analytically and numerically. It is shown that the exponential increase in the amplitude of the secondary wave excited at the half-frequency of the primary wave changes into a reverse process in which energy is returned to the primary wave and nonlinear oscillations propagating across the external magnetic field are generated. The system of 'slow' equations for the amplitudes, obtained by averaging the initial equations over the high-frequency period,more » is used to describe steady-state nonlinear oscillations in plasma.« less

  1. Optical Chirality in Nonlinear Optics: Application to High Harmonic Generation.

    PubMed

    Neufeld, Ofer; Cohen, Oren

    2018-03-30

    Optical chirality (OC)-one of the fundamental quantities of electromagnetic fields-corresponds to the instantaneous chirality of light. It has been utilized for exploring chiral light-matter interactions in linear optics, but has not yet been applied to nonlinear processes. Motivated to explore the role of OC in the generation of helically polarized high-order harmonics and attosecond pulses, we first separate the OC of transversal and paraxial beams to polarization and orbital terms. We find that the polarization-associated OC of attosecond pulses corresponds approximately to that of the pump in the quasimonochromatic case, but not in the multichromatic pump cases. We associate this discrepancy with the fact that the polarization OC of multichromatic pumps vary rapidly in time along the optical cycle. Thus, we propose new quantities, noninstantaneous polarization-associated OC, and time-scale-weighted polarization-associated OC, and show that these quantities link the chirality of multichromatic pumps and their generated attosecond pulses. The presented extension to OC theory should be useful for exploring various nonlinear chiral light-matter interactions. For example, it stimulates us to propose a tricircular pump for generation of highly elliptical attosecond pulses with a tunable ellipticity.

  2. Optical Chirality in Nonlinear Optics: Application to High Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Neufeld, Ofer; Cohen, Oren

    2018-03-01

    Optical chirality (OC)—one of the fundamental quantities of electromagnetic fields—corresponds to the instantaneous chirality of light. It has been utilized for exploring chiral light-matter interactions in linear optics, but has not yet been applied to nonlinear processes. Motivated to explore the role of OC in the generation of helically polarized high-order harmonics and attosecond pulses, we first separate the OC of transversal and paraxial beams to polarization and orbital terms. We find that the polarization-associated OC of attosecond pulses corresponds approximately to that of the pump in the quasimonochromatic case, but not in the multichromatic pump cases. We associate this discrepancy with the fact that the polarization OC of multichromatic pumps vary rapidly in time along the optical cycle. Thus, we propose new quantities, noninstantaneous polarization-associated OC, and time-scale-weighted polarization-associated OC, and show that these quantities link the chirality of multichromatic pumps and their generated attosecond pulses. The presented extension to OC theory should be useful for exploring various nonlinear chiral light-matter interactions. For example, it stimulates us to propose a tricircular pump for generation of highly elliptical attosecond pulses with a tunable ellipticity.

  3. Scattering by an infinite homogenous anisotropic elliptic cylinder in terms of Mathieu functions and Fourier series.

    PubMed

    Mao, Shi-Chun; Wu, Zhen-Sen

    2008-12-01

    An exact solution to the two-dimensional scattering properties of an anisotropic elliptic cylinder for transverse electric polarization is presented. The internal field in an anisotropic elliptic cylinder is expressed as integral representations of Mathieu functions and Fourier series. The coefficients of the series expansion are obtained by imposing boundary conditions on the anisotropic-free-space interface. A matrix is developed to solve the nonorthogonality properties of Mathieu functions at the interface between two different media. Numerical results are given for the bistatic radar cross section and the amplitude of the total magnetic field along the x and y axes. The result is in agreement with that available as expected when an elliptic cylinder degenerates to a circular one.

  4. Theory of a refined earth model

    NASA Technical Reports Server (NTRS)

    Krause, H. G. L.

    1968-01-01

    Refined equations are derived relating the variations of the earths gravity and radius as functions of longitude and latitude. They particularly relate the oblateness coefficients of the old harmonics and the difference of the polar radii /respectively, ellipticities and polar gravity accelerations/ in the Northern and Southern Hemispheres.

  5. A Combined FEM/MoM/GTD Technique To Analyze Elliptically Polarized Cavity-Backed Antennas With Finite Ground Plane

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.; Deshpande, M. D.; Fralick, D. T.; Cockrell, C. R.; Beck, F. B.

    1996-01-01

    Radiation pattern prediction analysis of elliptically polarized cavity-backed aperture antennas in a finite ground plane is performed using a combined Finite Element Method/Method of Moments/Geometrical Theory of Diffraction (FEM/MoM/GTD) technique. The magnetic current on the cavity-backed aperture in an infinite ground plane is calculated using the combined FEM/MoM analysis. GTD, including the slope diffraction contribution, is used to calculate the diffracted fields caused by both soft and hard polarizations at the edges of the finite ground plane. Explicit expressions for regular diffraction coefficients and slope diffraction coefficients are presented. The slope of the incident magnetic field at the diffraction points is derived and analytical expressions are presented. Numerical results for the radiation patterns of a cavity-backed circular spiral microstrip patch antenna excited by a coaxial probe in a finite rectangular ground plane are computed and compared with experimental results.

  6. Observations of ULF oscillations in the ion fluxes at small pitch angles with ATS 6. [low energy particle detection

    NASA Technical Reports Server (NTRS)

    Su, S.-Y.; Mcpherron, R. L.; Konradi, A.; Fritz, T. A.

    1980-01-01

    The ultra-low-frequency modulation of ion flux densities at small pitch angles observed by ATS 6 is examined, with particular attention given to a detailed analysis of a representative event. ULF modulation events with maximum modulation at small pitch angles were identified 14 times during the first eight months of operation of the NOAA low-energy particle detector on ATS 6. For the event of October 23, 1974, maximum flux modulation, with a maximum/minimum intensity ratio of 3.7, was observed in the 100 to 150 keV detector at an angle of 32 deg to the ambient field. Spectral analysis of magnetic field data reveals a right elliptically polarized magnetic perturbation with a 96-sec period and a 5-gamma rms amplitude, propagating in the dipole meridian at an angle of about 15 deg to the ambient field and the dipole axis. Proton flux modulation is found to lag the field by up to 180 deg for the lowest-energy channel. Observations are compared with the drift wave, MHD slow wave, and bounce resonant interaction associated with transverse wave models, and it is found that none of the wave models can adequately account for all of the correlated particle and field oscillations.

  7. Some More Simple Laser Experiments for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Yap, F. Y.

    1969-01-01

    Describes three elementary optics experiments using a laser instead of conventional light sources. Experiments illustrate the Fresnel-Arago law, elliptical polarization, double refraction and polarization in calcite, and interference by a Fresnel biprism. Because of the high intensity of the laser beam, these experiments lend themselves very well…

  8. Ellipticity angle of electromagnetic signals and its use for non-energetic detection optimal by the Neumann-Pearson criterion

    NASA Astrophysics Data System (ADS)

    Gromov, V. A.; Sharygin, G. S.; Mironov, M. V.

    2012-08-01

    An interval method of radar signal detection and selection based on non-energetic polarization parameter - the ellipticity angle - is suggested. The examined method is optimal by the Neumann-Pearson criterion. The probability of correct detection for a preset probability of false alarm is calculated for different signal/noise ratios. Recommendations for optimization of the given method are provided.

  9. Surface plasmon resonance and polarization change properties in centrosymmetric nanoright-triangle dimer arrays

    NASA Astrophysics Data System (ADS)

    Ma, Qilin; Liu, Guangqiang; Chen, Yiqing; Zhao, Qian; Guo, Jing; Yang, Shaosong; Cai, Weiping

    2018-03-01

    Dimer nanoparticles in a sandwich structure exhibit a large electric-field intensity enhancement. The dispersion relation between the surface plasmon resonance (SPR) and particle size has not been reported yet, owing to the effects of the particle size, shape, materials, etc. A sandwich structure, which contains a nano-right-triangle dimer array, SiO2 spacer, and Au film, is proposed, with a significant electric-field intensity enhancement and polarization-changing properties. The dependence of the peak positions of the two localized surface plasmon resonance (LSPR) modes as a function of the triangle thicknesses is discussed; different trends are observed for the different LSPR modes. We introduce a concept on the rule for LSPR peak position change, which can contribute to a better understanding of the LSPR modes. In addition, centrosymmetric but not axisymmetric structures, which like in our study exhibit surface plasmon polaritons typically show different responses to a different polarization of the incident light. Here, we showed that our centrosymmetric but not axisymmetric structure can change the linearly polarized light into a circularly or elliptically polarized wave, by surface plasmon-induced polarization properties. Far-field distribution maps are used to study the properties of the surface plasmons-induced circular or elliptic polarization wave. These findings could be employed to better understand the surface plasmon-induced polarization properties showed in previous reports and near-field of surface plasmons. These findings could be employed to better understand the near-field of surface plasmons and polarization properties.

  10. Longitudinal elliptically polarized electromagnetic waves in off-diagonal magnetoelectric split-ring composites.

    PubMed

    Chui, S T; Wang, Weihua; Zhou, L; Lin, Z F

    2009-07-22

    We study the propagation of plane electromagnetic waves through different systems consisting of arrays of split rings of different orientations. Many extraordinary EM phenomena were discovered in such systems, contributed by the off-diagonal magnetoelectric susceptibilities. We find a mode such that the electric field becomes elliptically polarized with a component in the longitudinal direction (i.e. parallel to the wavevector). Even though the group velocity [Formula: see text] and the wavevector k are parallel, in the presence of damping, the Poynting vector does not just get 'broadened', but can possess a component perpendicular to the wavevector. The speed of light can be real even when the product ϵμ is negative. Other novel properties are explored.

  11. Nonsequential double ionization channels control of Ar with few-cycle elliptically polarized laser pulse by carrier-envelope-phase.

    PubMed

    Ben, Shuai; Wang, Tian; Xu, Tongtong; Guo, Jing; Liu, Xueshen

    2016-04-04

    The carrier-envelop-phase (CEP) dependence of nonsequential double ionization (NSDI) of atomic Ar with few-cycle elliptically polarized laser pulse is investigated using 2D classical ensemble method. We distinguish two particular recollision channels in NSDI, which are recollision-impact ionization (RII) and recollision-induced excitation with subsequent ionization (RESI). We separate the RII and RESI channels according to the delay time between recollision and final double ionization. By tracing the history of the trajectories, we find the electron correlation spectra as well as the competition between the two channels are sensitively dependent on the laser field CEP. Finally, control can be achieved between the two channels by varying the CEP.

  12. Improving the lifetime in optical microtraps by using elliptically polarized dipole light

    NASA Astrophysics Data System (ADS)

    Garcia, Sébastien; Reichel, Jakob; Long, Romain

    2018-02-01

    Tightly focused optical dipole traps induce vector light shifts ("fictitious magnetic fields") which complicate their use for single-atom trapping and manipulation. The problem can be mitigated by adding a larger, real magnetic field, but this solution is not always applicable; in particular, it precludes fast switching to a field-free configuration. Here we show that this issue can be addressed elegantly by deliberately adding a small elliptical polarization component to the dipole trap beam. In our experiments with single 87Rb atoms laser-cooled in a chopped trap, we observe improvements up to a factor of 11 of the trap lifetime compared to the standard, seemingly ideal linear polarization. This effect results from a modification of heating processes via spin-state diffusion in state-dependent trapping potentials. We develop Monte Carlo simulations of the evolution of the atom's internal and motional states and find that they agree quantitatively with the experimental data. The method is general and can be applied in all experiments where the longitudinal polarization component is non-negligible.

  13. Optical chirality in AgCl-Ag thin films through formation of laser-induced planar crossed-chain nanostructures

    NASA Astrophysics Data System (ADS)

    Nahal, Arashmid; Kashani, Somayeh

    2017-09-01

    Irradiation of AgCl-Ag thin films by a linearly polarized He-Ne laser beam results in the formation of self-organized periodic nanostructures. As a result of secondary irradiation of the initially exposed sample by the same linearly polarized He-Ne laser beam, but with different orientations of polarization, a complex crossed-chain nanostructure forms. We found that such a complex nanostructure has noticeable chirality and increased optical anisotropy, resulting in optical activity of the sample. Double exposure produces two gratings, crossing each other with angle α, which leads to the formation of crossed building blocks with chiroptical effects. It is established that the amount and the sign of the angle between the two laser-induced gratings (±α) determine the amount and the direction of rotation of the linearly polarized probe beam, respectively. We have also observed an induced anisotropy-dependent ellipticity for the probe light, which is passed through the sample. It is shown that the amount of ellipticity depends on the angle α.

  14. Modulated Elliptical Slot

    NASA Technical Reports Server (NTRS)

    Abou-Khousa, M. A.

    2009-01-01

    A novel modulated slot design has been proposed and tested. The proposed slot is aimed to replace the inefficient small dipoles used in conventional MST-based imaging systems. The developed slot is very attractive as MST array element due to its small size and high efficiency/modulation depth. In fact, the developed slot has been successfully used to implement the first prototype of a microwave camera operating at 24 GHZ. It is also being used in the design of the second generation of the camera. Finally, the designed elliptical slot can be used as an electronically controlled waveguide iris for many other purposes (for instance in constructing waveguide reflective phase shifters and multiplexers/switches).

  15. Mid-infrared high birefringence As2Se3-based PCF with large nonlinearity and distinctive dispersion by using asymmetric elliptical air hole cladding

    NASA Astrophysics Data System (ADS)

    Hui, Zhanqiang; Yang, Min; Zhang, Youkun; Zhang, Meizhi

    2018-01-01

    A novel high birefringence As2Se3-based hexagonal lattice photonic crystal fiber (PCF) is proposed. In the structure, a central defect core and three kinds of elliptical air holes with different major axes length and ellipticity are introduced in the cladding. The finite difference time domain (FDTD) method with perfectly matched layer (PML) absorption boundary conditions are used to simulate the guided modes of the designed PCF. The properties of this PCF are investigated in detail including the birefringence, beat length, dispersion, nonlinearity and polarization mode dispersion in the 2-5 μm mid-infrared range. The results show that for the optimized structure parameters of Λ = 1.6μm, a = 0.4μm, b = 0.1μm, a1 = 0.6μm, b1 = 0.04μm, a2 = 0.8μm, b2 = 0.06μm, the high birefringence of 0.1192 and beat length of 41.93 μm are obtained. The maximum nonlinearity coefficient of 10,050 w-1km-1 and 15,200 w-1km-1 for x- and y-polarization modes are achieved. The distinctive dispersion is analyzed, which is all-normal in x-polarization direction while it has two zero dispersion points at 3.18 μm and 3.65 μm in y-polarization direction. The designed PCF with high birefringence, large nonlinearity and distinctive dispersion will be beneficial for mid-infrared fiber sensing, mid-infrared spectroscopy and nonlinear optics applications.

  16. Theoretical investigation of confocal microscopy using an elliptically polarized cylindrical vector laser beam: Visualization of quantum emitters near interfaces

    NASA Astrophysics Data System (ADS)

    Boichenko, Stepan

    2018-04-01

    We theoretically study laser-scanning confocal fluorescence microscopy using elliptically polarized cylindrical vector excitation light as a tool for visualization of arbitrarily oriented single quantum dipole emitters located (1) near planar surfaces enhancing fluorescence, (2) in a thin supported polymer film, (3) in a freestanding polymer film, and (4) in a dielectric planar microcavity. It is shown analytically that by using a tightly focused azimuthally polarized beam, it is possible to exclude completely the orientational dependence of the image intensity maximum of a quantum emitter that absorbs light as a pair of incoherent independent linear dipoles. For linear dipole quantum emitters, the orientational independence degree higher than 0.9 can normally be achieved (this quantity equal to 1 corresponds to completely excluded orientational dependence) if the collection efficiency of the microscope objective and the emitter's total quantum yield are not strongly orientationally dependent. Thus, the visualization of arbitrarily oriented single quantum emitters by means of the studied technique can be performed quite efficiently.

  17. Enhancing nonlinear energy deposition into transparent solids with an elliptically polarized and mid-IR heating laser pulse under two-color femtosecond impact

    NASA Astrophysics Data System (ADS)

    Potemkin, F. V.; Mareev, E. I.; Bezsudnova, Yu I.; Platonenko, V. T.; Bravy, B. G.; Gordienko, V. M.

    2017-06-01

    We report on an enhancement of deposited energy density of up to 10 kJ cm-3 inside transparent solids (fused silica and quartz) from using two-color µJ energy level tightly focused (NA  =  0.5) co-propagating linearly polarized seeding (visible, 0.62 µm) and elliptically polarized heating (near-IR, 1.24 µm) femtosecond laser pulses. The rise in temperature under constant volume causes pressure of up to 12 GPa. It has been shown experimentally and theoretically that the production of seeding electrons through multiphoton ionization by visible laser pulse paves the way for controllability of the energy deposition and laser-induced micromodification via carrier heating by delayed infrared laser pulses inside the material. The developed theoretical approach predicts that the deposited energy density will be enhanced by up to 14 kJ cm-3 when using longer (up to 5 µm) wavelengths for heating laser pulses inside transparent solids.

  18. Nuclear spin circular dichroism.

    PubMed

    Vaara, Juha; Rizzo, Antonio; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia

    2014-04-07

    Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra.

  19. Helicons in uniform fields. I. Wave diagnostics with hodograms

    NASA Astrophysics Data System (ADS)

    Urrutia, J. M.; Stenzel, R. L.

    2018-03-01

    The wave equation for whistler waves is well known and has been solved in Cartesian and cylindrical coordinates, yielding plane waves and cylindrical waves. In space plasmas, waves are usually assumed to be plane waves; in small laboratory plasmas, they are often assumed to be cylindrical "helicon" eigenmodes. Experimental observations fall in between both models. Real waves are usually bounded and may rotate like helicons. Such helicons are studied experimentally in a large laboratory plasma which is essentially a uniform, unbounded plasma. The waves are excited by loop antennas whose properties determine the field rotation and transverse dimensions. Both m = 0 and m = 1 helicon modes are produced and analyzed by measuring the wave magnetic field in three dimensional space and time. From Ampère's law and Ohm's law, the current density and electric field vectors are obtained. Hodograms for these vectors are produced. The sign ambiguity of the hodogram normal with respect to the direction of wave propagation is demonstrated. In general, electric and magnetic hodograms differ but both together yield the wave vector direction unambiguously. Vector fields of the hodogram normal yield the phase flow including phase rotation for helicons. Some helicons can have locally a linear polarization which is identified by the hodogram ellipticity. Alternatively the amplitude oscillation in time yields a measure for the wave polarization. It is shown that wave interference produces linear polarization. These observations emphasize that single point hodogram measurements are inadequate to determine the wave topology unless assuming plane waves. Observations of linear polarization indicate wave packets but not plane waves. A simple qualitative diagnostics for the wave polarization is the measurement of the magnetic field magnitude in time. Circular polarization has a constant amplitude; linear polarization results in amplitude modulations.

  20. Polarization-Dependent Quasi-Far-Field Superfocusing Strategy of Nanoring-Based Plasmonic Lenses.

    PubMed

    Sun, Hao; Zhu, Yechuan; Gao, Bo; Wang, Ping; Yu, Yiting

    2017-12-01

    The two-dimensional superfocusing of nanoring-based plasmonic lenses (NRPLs) beyond the diffraction limit in the far-field region remains a great challenge at optical wavelengths. In this paper, in addition to the modulation of structural parameters, we investigated the polarization-dependent focusing performance of a NRPL employing the finite-difference time-domain (FDTD) method. By utilizing the state of polarization (SOP) of incident light, we successfully realize the elliptical-, donut-, and circular-shape foci. The minimum full widths at half maximum (FWHMs) of these foci are ~0.32, ~0.34, and ~0.42 λ 0 in the total electric field, respectively, and the depth of focus (DOF) lies in 1.41~1.77 λ 0 . These sub-diffraction-limit foci are well controlled in the quasi-far-field region. The underlying physical mechanism on the focal shift and an effective way to control the focusing position are proposed. Furthermore, in the case of a high numerical aperture, the longitudinal component, which occupies over 80% of the electric-field energy, decides the focusing patterns of the foci. The achieved sub-diffraction-limit focusing can be widely used for many engineering applications, including the super-resolution imaging, particle acceleration, quantum optical information processing, and optical data storage.

  1. Elliptical optical solitary waves in a finite nematic liquid crystal cell

    NASA Astrophysics Data System (ADS)

    Minzoni, Antonmaria A.; Sciberras, Luke W.; Smyth, Noel F.; Worthy, Annette L.

    2015-05-01

    The addition of orbital angular momentum has been previously shown to stabilise beams of elliptic cross-section. In this article the evolution of such elliptical beams is explored through the use of an approximate methodology based on modulation theory. An approximate method is used as the equations that govern the optical system have no known exact solitary wave solution. This study brings to light two distinct phases in the evolution of a beam carrying orbital angular momentum. The two phases are determined by the shedding of radiation in the form of mass loss and angular momentum loss. The first phase is dominated by the shedding of angular momentum loss through spiral waves. The second phase is dominated by diffractive radiation loss which drives the elliptical solitary wave to a steady state. In addition to modulation theory, the "chirp" variational method is also used to study this evolution. Due to the significant role radiation loss plays in the evolution of an elliptical solitary wave, an attempt is made to couple radiation loss to the chirp variational method. This attempt furthers understanding as to why radiation loss cannot be coupled to the chirp method. The basic reason for this is that there is no consistent manner to match the chirp trial function to the generated radiating waves which is uniformly valid in time. Finally, full numerical solutions of the governing equations are compared with solutions obtained using the various variational approximations, with the best agreement achieved with modulation theory due to its ability to include both mass and angular momentum losses to shed diffractive radiation.

  2. An invisible medium for circularly polarized electromagnetic waves.

    PubMed

    Tamayama, Y; Nakanishi, T; Sugiyama, K; Kitano, M

    2008-12-08

    We study the no reflection condition for a planar boundary between vacuum and an isotropic chiral medium. In general chiral media, elliptically polarized waves incident at a particular angle satisfy the no reflection condition. When the wave impedance and wavenumber of the chiral medium are equal to the corresponding parameters of vacuum, one of the circularly polarized waves is transmitted to the medium without reflection or refraction for all angles of incidence. We propose a circular polarizing beam splitter as a simple application of the no reflection effect. (c) 2008 Optical Society of America

  3. Detection of terahertz radiation in metamaterials: giant plasmonic ratchet effect (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rudin, Sergey; Rupper, Greg; Kachorovski, Valentin; Shur, Michael S.

    2017-05-01

    The electromagnetic wave impinging on the spatially modulated two-dimensional electron liquid (2DEL) induces a direct current (DC) when the wave amplitude modulated with the same wave vector as the 2DEL but is shifted in phase (the ratchet effect). The recent theory of this phenomenon predicted a dramatic enhancement at the plasmonic resonances and a non-trivial polarization dependence [1]. We will present the results of the numerical simulations using a hydrodynamic model exploring the helicity dependence of the DC current for silicon, InGaAs, and GaN metamaterial structures at cryogenic and room temperatures. In particular we will report on the effect of the DEL viscosity and explore the nonlinear effects at large amplitudes of the helical electromagnetic radiation impinging on the ratchet structures. We will then discuss the applications of the ratchet effect for terahertz metamaterials in order to realize ultra-sensitive terahertz (THz) radiation detectors, modulators, phase shifters, and delay lines with cross sections matching the terahertz wavelength and capable of determining the electromagnetic wave polarization and helicity. To this end, we propose and analyze the four contact ratchet devices capable of registering the two perpendicular components of the electric currents induced by the elliptically or circularly polarized radiation and analyze the load impedance effects in the structures optimized for the ratchet metamaterial THz components. The analysis is based on the hydrodynamic model suitable for the multi-gated semiconductor structures, coupled self-consistently with Poisson's equation for the electric potential. The model accounts for the effects of pressure gradients and 2DEL viscosity. Our numerical solutions are applicable to the wide ranges of electron mobility and terahertz power. [1] I. V. Rozhansky, V. Yu. Kachorovskii, and M. S. Shur, Helicity-Driven Ratchet Effect Enhanced by Plasmons, Phys. Rev. Lett. 114, 246601, 15 June 2015

  4. Chiral photonic crystals with an anisotropic defect layer.

    PubMed

    Gevorgyan, A H; Harutyunyan, M Z

    2007-09-01

    In the present paper we consider some properties of defect modes in chiral photonic crystals with an anisotropic defect layer. We solved the problem by Ambartsumian's layer addition method. We investigated the influence of the defect layer thickness variation and its location in the chiral photonic crystal (CPC) and also its optical axes orientation, as well as of CPC thickness variation on defect mode properties. Variations of the optical thickness of the defect layer have its impact on the defect mode linewidth and the light accumulation in the defect. We obtain that CPCs lose their base property at certain defect layer thicknesses; namely, they lose their diffraction reflection dependence on light polarization. We also show that the circular polarization handedness changes from right-handed to left-handed if the defect layer location is changed, and therefore, such systems can be used to create sources of elliptically polarized light with tunable ellipticity. Some nonreciprocity properties of such systems are investigated, too. In particular, it is also shown that such a system can work as a practically ideal wide band optical diode for circularly polarized incident light provided the defect layer thickness is properly chosen, and it can work as a narrow band diode at small defect layer thicknesses.

  5. Managing focal fields of vector beams with multiple polarization singularities.

    PubMed

    Han, Lei; Liu, Sheng; Li, Peng; Zhang, Yi; Cheng, Huachao; Gan, Xuetao; Zhao, Jianlin

    2016-11-10

    We explore the tight focusing behavior of vector beams with multiple polarization singularities, and analyze the influences of the number, position, and topological charge of the singularities on the focal fields. It is found that the ellipticity of the local polarization states at the focal plane could be determined by the spatial distribution of the polarization singularities of the vector beam. When the spatial location and topological charge of singularities have even-fold rotation symmetry, the transverse fields at the focal plane are locally linearly polarized. Otherwise, the polarization state becomes a locally hybrid one. By appropriately arranging the distribution of the polarization singularities in the vector beam, the polarization distributions of the focal fields could be altered while the intensity maintains unchanged.

  6. Vector optical fields with bipolar symmetry of linear polarization.

    PubMed

    Pan, Yue; Li, Yongnan; Li, Si-Min; Ren, Zhi-Cheng; Si, Yu; Tu, Chenghou; Wang, Hui-Tian

    2013-09-15

    We focus on a new kind of vector optical field with bipolar symmetry of linear polarization instead of cylindrical and elliptical symmetries, enriching members of family of vector optical fields. We design theoretically and generate experimentally the demanded vector optical fields and then explore some novel tightly focusing properties. The geometric configurations of states of polarization provide additional degrees of freedom assisting in engineering the field distribution at the focus to the specific applications such as lithography, optical trapping, and material processing.

  7. Demonstration of polarization-insensitive spatial light modulation using a single polarization-sensitive spatial light modulator.

    PubMed

    Liu, Jun; Wang, Jian

    2015-07-06

    We present a simple configuration incorporating a single polarization-sensitive phase-only liquid crystal spatial light modulator (LC-SLM) to facilitate polarization-insensitive spatial light modulation. The polarization-insensitive configuration is formed by a polarization beam splitter (PBS), a polarization-sensitive phase-only LC-SLM, a half-wave plate (HWP), and a mirror in a loop structure. We experimentally demonstrate polarization-insensitive spatial light modulations for incident linearly polarized beams with different polarization states and polarization-multiplexed beams. Polarization-insensitive spatial light modulations generating orbital angular momentum (OAM) beams are demonstrated in the experiment. The designed polarization-insensitive configuration may find promising applications in spatial light modulations accommodating diverse incident polarizations.

  8. Birefringent corrugated waveguide

    DOEpatents

    Moeller, Charles P.

    1990-01-01

    A corrugated waveguide having a circular bore and noncircularly symmetric corrugations, and preferably elliptical corrugations, provides birefringence for rotation of polarization in the HE.sub.11 mode. The corrugated waveguide may be fabricated by cutting circular grooves on a lathe in a cylindrical tube or rod of aluminum of a diameter suitable for the bore of the waveguide, and then cutting an approximation to ellipses for the corrugations using a cutting radius R.sub.0 from the bore axis that is greater than the bore radius, and then making two circular cuts using a radius R.sub.1 less than R.sub.0 at centers +b and -b from the axis of the waveguide bore. Alternatively, stock for the mandrel may be formed with an elliptical transverse cross section, and then only the circular grooves need be cut on a lathe, leaving elliptical corrugations between the grooves. In either case, the mandrel is first electroplated and then dissolved leaving a corrugated waveguide with noncircularly symmetric corrugations. A transition waveguide is used that gradually varies from circular to elliptical corrugations to couple a circularly corrugated waveguide to an elliptically corrugated waveguide.

  9. Time-dependent analysis of the mixed-field orientation of molecules without rotational symmetry

    NASA Astrophysics Data System (ADS)

    Thesing, Linda V.; Küpper, Jochen; González-Férez, Rosario

    2017-06-01

    We present a theoretical study of the mixed-field orientation of molecules without rotational symmetry. The time-dependent one-dimensional and three-dimensional orientation of a thermal ensemble of 6-chloropyridazine-3-carbonitrile molecules in combined linearly or elliptically polarized laser fields and tilted dc electric fields is computed. The results are in good agreement with recent experimental results of one-dimensional orientation for weak dc electric fields [J. L. Hansen, J. Chem. Phys. 139, 234313 (2013)]. Moreover, they predict that using elliptically polarized laser fields or strong dc fields, three-dimensional orientation is obtained. The field-dressed dynamics of excited rotational states is characterized by highly non-adiabatic effects. We analyze the sources of these non-adiabatic effects and investigate their impact on the mixed-field orientation for different field configurations in mixed-field-orientation experiments.

  10. Analysis of field-aligned structure of compressional Pc 5 waves and associated energetic ion modulations observed by Polar at L~9.5

    NASA Astrophysics Data System (ADS)

    Capman, E.; Engebretson, M. J.; Pilipenko, V.; Russell, C. T.; Peterson, W. K.

    2012-12-01

    Nearly all previous studies of storm-time compressional Pc 5 waves have used data from low-inclination satellites, so the field-aligned structure of these waves could be determined only statistically or by inference. However, the high inclination of the Polar satellite's orbit allowed it to approximately follow a flux tube across the equator. In this study we present examples of compressional Pc 5 events identified during Polar's 2001-02 and 2002-03 duskside passages. The focus of this presentation is on exploring the field-aligned structure of the observed waves near the geomagnetic equator. At least two frequencies were identified in each event. In many cases these are a 1st (fundamental) harmonic with a node in the field-aligned (Bz) component near the geomagnetic equator, and a 2nd harmonic with an anti-node near the equator. To verify this assumption we applied the analytical signal method, verified by manual hodogram analysis, to monitor the amplitude and phase variations of the radial (Bx) and compressional (Bz) components at certain frequencies. The following transitions occurred near the time when Polar crossed the geomagnetic equator: The phase difference was 0° in the southern hemisphere and then 180° out of phase in the northern hemisphere. The waves were often linearly polarized, and the inclination angle of the polarization ellipse in the Bx-Bz plane was negative in the southern hemisphere and positive in the northern hemisphere. The ellipticity still had a slight positive bias in the southern hemisphere and a slight negative bias in the northern hemisphere. These observational results are compared with the results of modeling of coupled MHD Alfven and slow magnetosonic modes.

  11. Polarization and propagation characteristics of switchable first-order azimuthally asymmetric beam generated in dual-mode fiber.

    PubMed

    Khan, Saba N; Chatterjee, Sudip K; Chaudhuri, Partha Roy

    2015-02-20

    We report here the controlled generation of a linearly polarized first-order azimuthally asymmetric beam (F-AAB) in a dual-mode fiber (DMF) by appropriate superposition of selectively excited zeroth-order vector modes that are doughnut-shaped azimuthally symmetric beams (D-ASBs). We first demonstrate continually switching polarization mode structures having an identical two-lobe intensity profile (i.e., intra-F-AAB conversion). Then, under a distinct launching state, we generate mode structures progressively toggling between the doughnut-shaped profile and two-lobe pattern having dissimilar polarization orientations (i.e., F-AAB to D-ASB conversion). Interestingly, a decentralized elliptical Gaussian beam possessing homogenous spatial polarization is obtained by enhancing the contribution of the fundamental mode (HE11/LP01) in selectively excited F-AAB. A smoothly varying azimuth of the input beam in this situation resulted in redistribution of transverse energy procuring a unique and exciting unconventional two-grain T-polarized beam having mutually orthogonal state of polarization (SOP). All of the above three were achieved under a given set of launching conditions (tilt/offset) of a Gaussian mode (TEM00) devised with changing SOP of the input beam. A strong modulation in the output beam characteristics was also observed with the variation in propagation distance (for a fixed input SOP) owing to the large difference in propagation constants of the participating modes (LP01 and one of the F-AABs). Finally, this particular study led to a design for a low-cost highly sensitive strain measuring device based on tracking the centroid movement of the output intensity pattern. Each of our experimentally observed intensity/polarization distributions is theoretically mapped on a one-to-one basis considering a linear superposition of appropriately excited LP basis modes of the waveguide toward a complete understanding of the polarization and mode propagation in the dual-mode structure.

  12. Demonstration of polarization-insensitive spatial light modulation using a single polarization-sensitive spatial light modulator

    PubMed Central

    Liu, Jun; Wang, Jian

    2015-01-01

    We present a simple configuration incorporating a single polarization-sensitive phase-only liquid crystal spatial light modulator (LC-SLM) to facilitate polarization-insensitive spatial light modulation. The polarization-insensitive configuration is formed by a polarization beam splitter (PBS), a polarization-sensitive phase-only LC-SLM, a half-wave plate (HWP), and a mirror in a loop structure. We experimentally demonstrate polarization-insensitive spatial light modulations for incident linearly polarized beams with different polarization states and polarization-multiplexed beams. Polarization-insensitive spatial light modulations generating orbital angular momentum (OAM) beams are demonstrated in the experiment. The designed polarization-insensitive configuration may find promising applications in spatial light modulations accommodating diverse incident polarizations. PMID:26146032

  13. Sea Mines and Countermeasures: A Bibliography. Revision

    DTIC Science & Technology

    2007-07-01

    days. " Vector polarization filtering" was employed to separate the reflected signal due to Rayleigh waves, for which the particle motion is...buried mines. Rayleigh waves are unique in that they have elliptical particle motion that allows one to use vector polarization filtering to separate...D. Vector Acoustic Mine Mechanism. Patent. Washington, DC: Department of the Navy, February 1980. 11p. ABSTRACT: This patent discloses a submarine

  14. NASA launches dual Dynamics Explorer spacecraft

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A Delta launch vehicle was used to insert Dynamics Explorer A into a highly elliptical polar orbit, ranging from 675 to 24,945 km, and Dynamics Explorer B satellite into a low polar orbit, ranging from 306 to 1,300 km. The two spacecraft are designed to provide specific knowledge about the interaction of energy, electric currents, electric fields, and plasmas between the magnetosphere, the ionosphere, and the atmosphere.

  15. Surface treatment with linearly polarized laser beam at oblique incidence

    NASA Astrophysics Data System (ADS)

    Gutu, I.; Petre, C.; Mihailescu, I. N.; Taca, M.; Alexandrescu, E.; Ivanov, I.

    2002-07-01

    An effective method for surface heat treatment with 10.6 μm linear polarized laser beam at oblique incidence is reported. A circular focused laser spot on the workpiece surface, simultaneously with 2.2-4 times increasing of the absorption are obtained in the 70-80° range of the incidence angle. The main element of the experimental setup is the astigmatic focusing head which focalize the laser beam into an elliptical spot of ellipticity ɛ>3 at normal incidence. At a proper incidence angle (obtained by the focusing head tilting) the focused laser spot on the work piece surface gets a circular form and p-state of polarization is achieved. We performed laser heat treatment (transformation hardening, surface remelting) of the uncoated surface, as well as the alloying and cladding processes by powder injection. An enhancement of the processing efficiency was obtained; in this way the investment and operation costs for surface treatment with CO 2 laser can be significantly reduced. Several technical advantages concerning the pollution of the focusing optical components, powder jet flowing and reflected radiation by the work piece surface are obtained.

  16. Influence of non-ideal performance of lasers on displacement precision in single-grating heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Guochao; Xie, Xuedong; Yan, Shuhua

    2010-10-01

    Principle of the dual-wavelength single grating nanometer displacement measuring system, with a long range, high precision, and good stability, is presented. As a result of the nano-level high-precision displacement measurement, the error caused by a variety of adverse factors must be taken into account. In this paper, errors, due to the non-ideal performance of the dual-frequency laser, including linear error caused by wavelength instability and non-linear error caused by elliptic polarization of the laser, are mainly discussed and analyzed. On the basis of theoretical modeling, the corresponding error formulas are derived as well. Through simulation, the limit value of linear error caused by wavelength instability is 2nm, and on the assumption that 0.85 x T = , 1 Ty = of the polarizing beam splitter(PBS), the limit values of nonlinear-error caused by elliptic polarization are 1.49nm, 2.99nm, 4.49nm while the non-orthogonal angle is selected correspondingly at 1°, 2°, 3° respectively. The law of the error change is analyzed based on different values of Tx and Ty .

  17. Electromagnetic frozen waves with radial, azimuthal, linear, circular, and elliptical polarizations

    NASA Astrophysics Data System (ADS)

    Corato-Zanarella, Mateus; Zamboni-Rached, Michel

    2016-11-01

    Frozen waves (FWs) are a class of diffraction- and attenuation-resistant beams whose intensity pattern along the direction of propagation can be chosen arbitrarily, thus making them relevant for engineering the spatial configuration of optical fields. To date, analyses of such beams have been done essentially for the scalar case, with the vectorial nature of the electromagnetic fields often neglected. Although it is expected that the field components keep the fundamental properties of the scalar FWs, a deeper understanding of their electromagnetic counterparts is mandatory in order to exploit their different possible polarization states. The purpose of this paper is to study the properties of electromagnetic FWs with radial, azimuthal, linear, circular, and elliptical polarizations under paraxial and nonparaxial regimes in nonabsorbing media. An intensity pattern is chosen for a scalar FW, and the vectorial solutions are built after it via the use of Maxwell's equations. The results show that the field components and the longitudinal component of the time-averaged Poynting vector closely follow the pattern chosen even under highly nonparaxial conditions, showing the robustness of the FW structure to parameters variations.

  18. Circular polarization switching and bistability in an optically injected 1300 nm spin-vertical cavity surface emitting laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alharthi, S. S., E-mail: ssmalh@essex.ac.uk; Henning, I. D.; Adams, M. J.

    We report the experimental observation of circular polarization switching (PS) and polarization bistability (PB) in a 1300 nm dilute nitride spin-vertical cavity surface emitting laser (VCSEL). We demonstrate that the circularly polarized optical signal at 1300 nm can gradually or abruptly switch the polarization ellipticity of the spin-VCSEL from right-to-left circular polarization and vice versa. Moreover, different forms of PS and PB between right- and left-circular polarizations are observed by controlling the injection strength and the initial wavelength detuning. These results obtained at the telecom wavelength of 1300 nm open the door for novel uses of spin-VCSELs in polarization sensitive applications in futuremore » optical systems.« less

  19. Polarization extinction ratio of the polarization crosstalk caused by point pressure force in the polarization-maintaining fiber

    NASA Astrophysics Data System (ADS)

    Mukhtubayev, Azamat B.; Aksarin, Stanislav M.; Strigalev, Vladimir E.

    2017-11-01

    A study of the orthogonal polarization modes crosstalk changes in the point of different mechanical actions (pressure force) in the polarization-maintaining fiber with straining elliptical cladding is presented. It was found that by increasing of the pressure force the polarization extinction ratio increases nonlinearly. Also revealed the dependence of the extinction coefficient and the angle between vector of the mechanical action and polarization axes of the test fiber, which leads to change the extinction coefficient variable from -57 dB to -25 dB under the pressure force of 0.7 N. Also it was found that the cross angle of the fiber axes doesn't influence on the extinction ratio value of the mechanical induced polarization crosstalk.

  20. Three-dimensional polarization states of monochromatic light fields.

    PubMed

    Azzam, R M A

    2011-11-01

    The 3×1 generalized Jones vectors (GJVs) [E(x) E(y) E(z)](t) (t indicates the transpose) that describe the linear, circular, and elliptical polarization states of an arbitrary three-dimensional (3-D) monochromatic light field are determined in terms of the geometrical parameters of the 3-D vibration of the time-harmonic electric field. In three dimensions, there are as many distinct linear polarization states as there are points on the surface of a hemisphere, and the number of distinct 3-D circular polarization states equals that of all two-dimensional (2-D) polarization states on the Poincaré sphere, of which only two are circular states. The subset of 3-D polarization states that results from the superposition of three mutually orthogonal x, y, and z field components of equal amplitude is considered as a function of their relative phases. Interesting contours of equal ellipticity and equal inclination of the normal to the polarization ellipse with respect to the x axis are obtained in 2-D phase space. Finally, the 3×3 generalized Jones calculus, in which elastic scattering (e.g., by a nano-object in the near field) is characterized by the 3-D linear transformation E(s)=T E(i), is briefly introduced. In such a matrix transformation, E(i) and E(s) are the 3×1 GJVs of the incident and scattered waves and T is the 3×3 generalized Jones matrix of the scatterer at a given frequency and for given directions of incidence and scattering.

  1. Confining standing waves in optical corrals.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babayan, Y.; McMahon, J. M.; Li, S.

    2009-03-01

    Near-field scanning optical microscopy images of solid wall, circular, and elliptical microscale corrals show standing wave patterns confined inside the structures with a wavelength close to that of the incident light. The patterns inside the corrals can be tuned by changing the size and material of the walls, the wavelength of incident light, and polarization direction for elliptical corrals. Finite-difference time-domain calculations of the corral structures agree with the experimental observations and reveal that the electric and magnetic field intensities are out of phase inside the corral. A theoretical modal analysis indicates that the fields inside the corrals can bemore » attributed to p- and s-polarized waveguide modes, and that the superposition of the propagating and evanescent modes can explain the phase differences between the fields. These experimental and theoretical results demonstrate that electromagnetic fields on a dielectric surface can be controlled in a predictable manner.« less

  2. Sum-Frequency Generation from a Thin Cylindrical Layer

    NASA Astrophysics Data System (ADS)

    Shamyna, A. A.; Kapshai, V. N.

    2018-01-01

    In the Rayleigh-Gans-Debye approximation, we have solved the problem of the sum-frequency generation by two plane elliptically polarized electromagnetic waves from the surface of a dielectric particle of a cylindrical shape that is coated by a thin layer possessing nonlinear optical properties. The formulas that describe the sum-frequency field have been presented in the tensor and vector forms for the second-order nonlinear dielectric susceptibility tensor, which was chosen in the general form, containing chiral components. Expressions describing the sum-frequency field from the cylindrical particle ends have been obtained for the case of a nonlinear layer possessing chiral properties. Three-dimensional directivity patterns of the sum-frequency radiation have been analyzed for different combinations of parameters (angles of incidence, degrees of ellipticity, orientations of polarization ellipses, cylindrical particle dimensions). The mathematical properties of the spatial distribution functions of the sum-frequency field, which characterize the symmetry of directivity patterns, have been revealed.

  3. Geometric diffusion of quantum trajectories

    PubMed Central

    Yang, Fan; Liu, Ren-Bao

    2015-01-01

    A quantum object can acquire a geometric phase (such as Berry phases and Aharonov–Bohm phases) when evolving along a path in a parameter space with non-trivial gauge structures. Inherent to quantum evolutions of wavepackets, quantum diffusion occurs along quantum trajectories. Here we show that quantum diffusion can also be geometric as characterized by the imaginary part of a geometric phase. The geometric quantum diffusion results from interference between different instantaneous eigenstate pathways which have different geometric phases during the adiabatic evolution. As a specific example, we study the quantum trajectories of optically excited electron-hole pairs in time-reversal symmetric insulators, driven by an elliptically polarized terahertz field. The imaginary geometric phase manifests itself as elliptical polarization in the terahertz sideband generation. The geometric quantum diffusion adds a new dimension to geometric phases and may have applications in many fields of physics, e.g., transport in topological insulators and novel electro-optical effects. PMID:26178745

  4. Non-Leaching, Benign Antifouling Multilayer Polymer Coatings for Marine Applications

    DTIC Science & Technology

    2010-03-01

    polymerization b block BF3•Et2O boron trifluoride diethyl etherate BNL Brookhaven National Labs BF3•Et2O boron trifluoride diethyl etherate BSA...surface characterization of the polymers. We also acknowledge Brookhaven National Laboratory ( BNL ) where the NEXAFS surface characterization was...National Synchrotron Light Source at Brookhaven National Laboratory ( BNL ). The X-ray beam was elliptically polarized (polarization factor = 0.85

  5. Optical manipulation of electron spin in quantum dot systems

    NASA Astrophysics Data System (ADS)

    Villas-Boas, Jose; Ulloa, Sergio; Govorov, Alexander

    2006-03-01

    Self-assembled quantum dots (QDs) are of particular interest for fundamental physics because of their similarity with atoms. Coupling two of such dots and addressing them with polarized laser light pulses is perhaps even more interesting. In this paper we use a multi-exciton density matrix formalism to model the spin dynamics of a system with single or double layers of QDs. Our model includes the anisotropic electron-hole exchange in the dots, the presence of wetting layer states, and interdot tunneling [1]. Our results show that it is possible to switch the spin polarization of a single self-assembled quantum dot under elliptically polarized light by increasing the laser intensity. In the nonlinear mechanism described here, intense elliptically polarized light creates an effective exchange channel between the exciton spin states through biexciton states, as we demonstrate by numerical and analytical methods. We further show that the effect persists in realistic ensembles of dots, and we propose alternative ways to detect it. We also extend our study to a double layer of quantum dots, where we find a competition between Rabi frequency and tunneling oscillations. [1] J. M. Villas-Boas, S. E. Ulloa, and A. O. Govorov, Phys. Rev. Lett. 94, 057404 (2005); Phys. Rev. B 69, 125342 (2004).

  6. Polarization singularity indices in Gaussian laser beams

    NASA Astrophysics Data System (ADS)

    Freund, Isaac

    2002-01-01

    Two types of point singularities in the polarization of a paraxial Gaussian laser beam are discussed in detail. V-points, which are vector point singularities where the direction of the electric vector of a linearly polarized field becomes undefined, and C-points, which are elliptic point singularities where the ellipse orientations of elliptically polarized fields become undefined. Conventionally, V-points are characterized by the conserved integer valued Poincaré-Hopf index η, with generic value η=±1, while C-points are characterized by the conserved half-integer singularity index IC, with generic value IC=±1/2. Simple algorithms are given for generating V-points with arbitrary positive or negative integer indices, including zero, at arbitrary locations, and C-points with arbitrary positive or negative half-integer or integer indices, including zero, at arbitrary locations. Algorithms are also given for generating continuous lines of these singularities in the plane, V-lines and C-lines. V-points and C-points may be transformed one into another. A topological index based on directly measurable Stokes parameters is used to discuss this transformation. The evolution under propagation of V-points and C-points initially embedded in the beam waist is studied, as is the evolution of V-dipoles and C-dipoles.

  7. Linearly polarized vector modes: enabling MIMO-free mode-division multiplexing.

    PubMed

    Wang, Lixian; Nejad, Reza Mirzaei; Corsi, Alessandro; Lin, Jiachuan; Messaddeq, Younès; Rusch, Leslie; LaRochelle, Sophie

    2017-05-15

    We experimentally investigate mode-division multiplexing in an elliptical ring core fiber (ERCF) that supports linearly polarized vector modes (LPV). Characterization show that the ERCF exhibits good polarization maintaining properties over eight LPV modes with effective index difference larger than 1 × 10 -4 . The ERCF further displays stable mode power and polarization extinction ratio when subjected to external perturbations. Crosstalk between the LPV modes, after propagating through 0.9 km ERCF, is below -14 dB. By using six LPV modes as independent data channels, we achieved the transmission of 32 Gbaud QPSK over 0.9 km ERCF without any multiple-input-multiple-output (MIMO) or polarization-division multiplexing (PDM) signal processing.

  8. Experimental and theoretical study of the in- fiber twist sensor based on quasi-fan Solc structure filter.

    PubMed

    Sun, Chunran; Wang, Muguang; Jian, Shuisheng

    2017-08-21

    In this paper, a novel quasi-fan Solc structure filter based on elliptical-core spun fiber for twist sensing has been experimentally investigated and theoretically analyzed. The discrete model of spun fiber has been built to analyze the transmission characteristics of proposed sensor. Both experimental and simulated results indicate that the extinction ratio of the comb spectrum based on quasi-fan Solc birefringent fiber filter varies with twist angle and agrees well with each other. Based on the intensity modulation, the proposed twist sensor exhibits a high sensitivity of 0.02219 dB/(°/m). Moreover, thanks to the invariability of the fiber birefringence and the state of polarization of the input light, the proposed twist sensor has a very low temperature and strain sensitivity, which can avoid the cross-sensitivity problem existing in most twist sensors.

  9. Photoelectron circular dichroism of bicyclic ketones from multiphoton ionization with femtosecond laser pulses.

    PubMed

    Lux, Christian; Wollenhaupt, Matthias; Sarpe, Cristian; Baumert, Thomas

    2015-01-12

    Photoelectron circular dichroism (PECD) is a CD effect up to the ten-percent regime and shows contributions from higher-order Legendre polynomials when multiphoton ionization is compared to single-photon ionization. We give a full account of our experimental methodology for measuring the multiphoton PECD and derive quantitative measures that we apply on camphor, fenchone and norcamphor. Different modulations and amplitudes of the contributing Legendre polynomials are observed despite the similarity in chemical structure. In addition, we study PECD for elliptically polarized light employing tomographic reconstruction methods. Intensity studies reveal dissociative ionization as the origin of the observed PECD effect, whereas ionization of the intermediate resonance is dominating the signal. As a perspective, we suggest to make use of our tomographic data as an experimental basis for a complete photoionization experiment and give a prospect of PECD as an analytic tool. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Extending the data rate of non-line-of-sight UV communication with polarization modulation

    NASA Astrophysics Data System (ADS)

    Yin, Hongwei; Jia, Honghui; Zhang, Hailiang; Wang, Xiaofeng; Chang, Shengli; Yang, Juncai

    2012-10-01

    With low radiation background of solar-blind UV and strong scattering of UV photons by atmospheric particles, UV communication can be made use of to set up a non-line-of-sight (NLOS) free-space optical communication link. Polarization modulation, besides the traditional intensity modulation, is presented to enhance the data rate of the UV communication system. The configuration and the working process of the dually modulated UV communication system with intensity modulation and polarization, the theoretical evaluation of polarization modulation, and a numerical of the scattering matrix are presented, with the conclusion that polarization modulation is achievable. By adding the polarizing devices and changing the coding procedures, the existing singly-modulated UV communication systems with intensity modulation are easily modified to be dually-modulated ones with polarization modulation and intensity modulation. Ideally speaking, the data rate of the dually-modulated UV communication system is the product of the data rate of the singly modulated system and the number of polarization modulation.

  11. Full Polarization Conical Dispersion and Zero-Refractive-Index in Two-Dimensional Photonic Hypercrystals

    PubMed Central

    Wang, Jia-Rong; Chen, Xiao-Dong; Zhao, Fu-Li; Dong, Jian-Wen

    2016-01-01

    Photonic conical dispersion has been found in either transverse magnetic or transverse electric polarization, and the predominant zero-refractive-index behavior in a two-dimensional photonic crystal is polarization-dependent. Here, we show that two-dimensional photonic hypercrystals can be designed that exhibit polarization independent conical dispersion at the Brillouin zone center, as two sets of triply-degenerate point for each polarization are accidentally at the same Dirac frequency. Such photonic hypercrystals consist of periodic dielectric cylinders embedded in elliptic metamaterials, and can be viewed as full-polarized near zero-refractive-index materials around Dirac frequency by using average eigen-field evaluation. Numerical simulations including directional emissions and invisibility cloak are employed to further demonstrate the double-zero-index characteristics for both polarizations in the photonic hypercrystals. PMID:26956377

  12. Summaries of Papers Presented at the High Resolution Spectroscopy Topical Meeting Held in Salt Lake City, Utah on 18-21 January 1993. Technical Digest Series. Volume 1. Postconference Edition

    DTIC Science & Technology

    1994-05-01

    ViW 0 AN Nannvahv Aemawat f fle Vmd Y-k MfrWon, CA Fbnamuy 1923) Po.&vnfaum eitian SBN 1-552-,).4 [US Lis Pric $92 / OSA Mem *&ePric $M0 O~p " a ndlb r...cited effect lies in the basis of nonlinear polarization spectroscopy(NPS) and optically heterodyned polarization spectroscopy( OHPS ). Usually the pump...let us analyze the scheme of OHPS with elliptically polarized pumping. When the probe wave Is linearly polarized at x/ 4 to the major axis of the pump

  13. Study of the Polarization Strategy for Electron Cyclotron Heating Systems on HL-2M

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Huang, M.; Xia, D. H.; Song, S. D.; Wang, J. Q.; Huang, B.; Wang, H.

    2016-06-01

    As important components integrated in transmission lines of electron cyclotron heating systems, polarizers are mainly used to obtain the desired polarization for highly efficient coupling between electron cyclotron waves and plasma. The polarization strategy for 105-GHz electron cyclotron heating systems of HL-2M tokamak is studied in this paper. Considering the polarizers need high efficiency, stability, and low loss to realize any polarization states, two sinusoidal-grooved polarizers, which include a linear polarizer and an elliptical polarizer, are designed with the coordinate transformation method. The parameters, the period p and the depth d, of two sinusoidal-grooved polarizers are optimized by a phase difference analysis method to achieve an almost arbitrary polarization. Finally, the optimized polarizers are manufactured and their polarization characteristics are tested with a low-power test platform. The experimental results agree well with the numerical calculations, indicating that the designed polarizers can meet the polarization requirements of the electron cyclotron heating systems of HL-2M tokamak.

  14. Modulated elliptic wave and asymptotic solitons in a shock problem to the modified Korteweg-de Vries equation

    NASA Astrophysics Data System (ADS)

    Kotlyarov, Vladimir; Minakov, Alexander

    2015-07-01

    We study the long-time asymptotic behavior of the Cauchy problem for the modified Korteweg—de Vries equation with an initial function of the step type. This function rapidly tends to zero as x\\to +∞ and to some positive constant c as x\\to -∞ . In 1989 Khruslov and Kotlyarov have found (Khruslov and Kotlyarov 1989 Inverse Problems 5 1075-88) that for a large time the solution breaks up into a train of asymptotic solitons located in the domain 4{c}2t-{C}N{ln}t\\lt x≤slant 4{c}2t ({C}N is a constant). The number N of these solitons grows unboundedly as t\\to ∞ . In 2010 Kotlyarov and Minakov have studied temporary asymptotics of the solution of the Cauchy problem on the whole line (Kotlyarov and Minakov 2010 J. Math. Phys. 51 093506) and have found that in the domain -6{c}2t\\lt x\\lt 4{c}2t this solution is described by a modulated elliptic wave. We consider here the modulated elliptic wave in the domain 4{c}2t-{C}N{ln}t\\lt x\\lt 4{c}2t. Our main result shows that the modulated elliptic wave also breaks up into solitons, which are similar to the asymptotic solitons in Khruslov and Kotlyarov (1989 Inverse Problems 5 1075-88), but differ from them in phase. It means that the modulated elliptic wave does not represent the asymptotics of the solution in the domain 4{c}2t-{C}N{ln}t\\lt x\\lt 4{c}2t. The correct asymptotic behavior of the solution is given by the train of asymptotic solitons given in Khruslov and Kotlyarov (1989 Inverse Problems 5 1075-88). However, in the asymptotic regime as t\\to ∞ in the region 4{c}2t-\\displaystyle \\frac{N+1/4}{c}{ln}t\\lt x\\lt 4{c}2t-\\displaystyle \\frac{N-3/4}{c}{ln}t we can watch precisely a pair of solitons with numbers N. One of them is the asymptotic soliton while the other soliton is generated from the elliptic wave. Their phases become closer to each other for a large N, i.e. these solitons are also close to each other. This result gives the answer on a very important question about matching of the asymptotic formulas in the mentioned region where the both formulas are well-defined. Thus we have here a new and previously unknown mechanism (5.35) of matching of the asymptotics of the solution in the adjacent regions.

  15. Chiral photonic crystal fibers with single mode and single polarization

    NASA Astrophysics Data System (ADS)

    Li, She; Li, Junqing

    2015-12-01

    Chiral photonic crystal fiber (PCF) with a solid core is numerically investigated by a modified chiral plane-wave expansion method. The effects of structural parameters and chirality strength are analyzed on single-polarization single-mode range and polarization states of guided modes. The simulation demonstrates that the chiral photonic crystal fiber compared to its achiral counterpart possesses another single-circular-polarization operation range, which is located in the short-wavelength region. The original single-polarization operation range in the long-wavelength region extends to the short wavelength caused by introducing chirality. Then this range becomes a broadened one with elliptical polarization from linear polarization. With increase of chirality, the two single-polarization single-mode ranges may fuse together. By optimizing the structure, an ultra-wide single-circular-polarization operation range from 0.5 μm to 1.67 μm for chiral PCF can be realized with moderate chirality strength.

  16. Ellipticity dependence of high harmonics generated using 400 nm driving lasers

    NASA Astrophysics Data System (ADS)

    Cheng, Yan; Khan, Sabih; Zhao, Kun; Zhao, Baozhen; Chini, Michael; Chang, Zenghu

    2011-05-01

    High order harmonics generated from 400 nm driving pulses hold promise of scaling photon flux of single attosecond pulses by one to two orders of magnitude. We report ellipticity dependence and phase matching of high order harmonics generated from such pulses in Neon gas target and compared them with similar measurements using 800 nm driving pulses. Based on measured ellipticity dependence, we predict that double optical gating (DOG) and generalized double optical gating (GDOG) can be employed to extract intense single attosecond pulses from pulse train, while polarization gating (PG) may not work for this purpose. This material is supported by the U.S. Army Research Office under grant number W911NF-07-1-0475, and by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

  17. Polarization-dependent responses of fluorescent indicators partitioned into myelinated axons

    NASA Astrophysics Data System (ADS)

    Micu, Ileana; Brideau, Craig; Stys, Peter K.

    2012-02-01

    Myelination, i.e. the wrapping of axons in multiple layers of lipid-rich membrane, is a unique phenomenon in the nervous systems of both vertebrates and invertebrates, that greatly increases the speed and efficiency of signal transmission. In turn, disruption of axo-myelinic integrity underlies disability in numerous clinical disorders. The dependence of myelin physiology on nanometric organization of its lamellae makes it difficult to accurately study this structure in the living state. We expected that fluorescent probes might become highly oriented when partitioned into the myelin sheath, and in turn, this anisotropy could be interrogated by controlling the polarization state of the exciting laser field used for 2-photon excited fluorescence (TPEF). Live ex vivo myelinated rodent axons were labeled with a series of lipohilic and hydrophilic fluorescenct probes, and TPEF images acquired while laser polarization was varied at the sample over a broad range of ellipticities and orientations of the major angle [see Brideau, Micu & Stys, abstract this meeting]. We found that most probes exhibited strong dependence on both the major angle of polarization, and perhaps more surprisingly, on ellipticity as well. Lipophilic vs. hydrophilic probes exhibited distinctly different behavior. We propose that polarization-dependent TPEF microscopy represents a powerful tool for probing the nanostructural architecture of both myelin and axonal cytoskeleton in a domain far below the resolution limit of visible light microscopy. By selecting probes with different sizes and physicochemical properties, distinct aspects of cellular nanoarchitecture can be accurately interrogated in real-time in living tissue.

  18. Effect of a quartic anisotropy energy on the ''spiral magnetic'' coexistence state of superconductivity and ferromagnetism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, G.H.; Hu, C.

    1988-02-01

    The effect of three types of ''quartic'' anisotropy energy (i.e., in the M/sup 4/ term of the magnetic Ginzburg-Landau free energy) on the polarization of the ''spiral magnetic'' state of Blount and Varma is studied near the onset temperature. For a quartic anisotropy with uniaxial symmetry, we find continuous polarization transitions from circular to elliptical and then to linear as the strength of a uni-easy-axis anisotropy is increased. (No transition is found for the uni-hard-axis case.) If the quartic anisotropy has cubic symmetry, we find a discontinuous transition directly between circular and linear, without going through an elliptic stage, whenmore » the sign of the anisotropy energy is to favor the cubic axes. (The polarization stays circular at all strengths of the anisotropy energy if the sign of the latter is to favor the body diagonals.) Finally, we model the anisotropy in primitive tetragonal ErRh/sub 4/B/sub 4/ with a quadratic anisotropy giving a hard c axis, plus a quartic anisotropy in the basal plane with a square symmetry. A first-order polarization transition directly between circular and linear is also obtained for this case, when the quartic anisotropy favors the principal axes in the basal plane. This last case studied provides a plausible explanation for the linear polarization observed in the coexistence state of ErRh/sub 4/B/sub 4/. .AE« less

  19. Enhanced Kerr nonlinearity in a quantized four-level graphene nanostructure

    NASA Astrophysics Data System (ADS)

    Ghahraman, Solookinejad; M, Panahi; E, Ahmadi; Seyyed, Hossein Asadpour

    2016-07-01

    In this paper, a new model is proposed for manipulating the Kerr nonlinearity of right-hand circular probe light in a monolayer of graphene nanostructure. By using the density matrix equations and quantum optical approach, the third-order susceptibility of probe light is explored numerically. It is realized that the enhanced Kerr nonlinearity with zero linear absorption can be provided by selecting the appropriate quantities of controllable parameters, such as Rabi frequency and elliptical parameter of elliptical polarized coupling field. Our results may be useful applications in future all-optical system devices in nanostructures.

  20. Quantum dot spin-V(E)CSELs: polarization switching and periodic oscillations

    NASA Astrophysics Data System (ADS)

    Li, Nianqiang; Alexandropoulos, Dimitris; Susanto, Hadi; Henning, Ian; Adams, Michael

    2017-09-01

    Spin-polarized vertical (external) cavity surface-emitting lasers [Spin-V(E)CSELs] using quantum dot (QD) material for the active region, can display polarization switching between the right- and left-circularly polarized fields via control of the pump polarization. In particular, our previous experimental results have shown that the output polarization ellipticity of the spin-V(E)CSEL emission can exhibit either the same handedness as that of the pump polarization or the opposite, depending on the experimental operating conditions. In this contribution, we use a modified version of the spin-flip model in conjunction with combined time-independent stability analysis and direct time integration. With two representative sets of parameters our simulation results show good agreement with experimental observations. In addition periodic oscillations provide further insight into the dynamic properties of spin-V(E)CSELs.

  1. Remote sensing of the earth's surface with an airborne polarized laser

    NASA Technical Reports Server (NTRS)

    Kalshoven, James E.; Dabney, Philip W.

    1993-01-01

    Attention is given to the Airborne Laser Polarization Sensor (ALPS), which makes multispectral radiometric and polarization measurements of the earth's surface using a polarized laser light source. Results from data flights taken over boreal forests in Maine at two wavelengths (1060 and 532 nm) using an Nd:YAG laser source show distinct depolarization signatures for three broadleaf and five coniferous tree species. A statistically significant increase in depolarization is found to correlate with increasing leaf surface roughness for the broadleaf species in the near-IR. The ALPS system 3 employs 12 photomultiplier tube detectors configurable to measure desired parameters such as the total backscatter and the polarization state, including the azimuthal angle and ellipticity, at different UV to near-IR wavelengths simultaneously.

  2. Endothermic decompositions of inorganic monocrystalline thin plates. II. Displacement rate modulation of the reaction front

    NASA Astrophysics Data System (ADS)

    Bertrand, G.; Comperat, M.; Lallemant, M.

    1980-09-01

    Copper sulfate pentahydrate dehydration into trihydrate was investigated using monocrystalline platelets with (110) crystallographic orientation. Temperature and pressure conditions were selected so as to obtain elliptical trihydrate domains. The study deals with the evolution, vs time, of elliptical domain dimensions and the evolution, vs water vapor pressure, of the {D}/{d} ratio of ellipse axes and on the other hand of the interface displacement rate along a given direction. The phenomena observed are not basically different from those yielded by the overall kinetic study of the solid sample. Their magnitude, however, is modulated depending on displacement direction. The results are analyzed within the scope of our study of endothermic decomposition of solids.

  3. Swings and roundabouts: optical Poincaré spheres for polarization and Gaussian beams

    NASA Astrophysics Data System (ADS)

    Dennis, M. R.; Alonso, M. A.

    2017-02-01

    The connection between Poincaré spheres for polarization and Gaussian beams is explored, focusing on the interpretation of elliptic polarization in terms of the isotropic two-dimensional harmonic oscillator in Hamiltonian mechanics, its canonical quantization and semiclassical interpretation. This leads to the interpretation of structured Gaussian modes, the Hermite-Gaussian, Laguerre-Gaussian and generalized Hermite-Laguerre-Gaussian modes as eigenfunctions of operators corresponding to the classical constants of motion of the two-dimensional oscillator, which acquire an extra significance as families of classical ellipses upon semiclassical quantization. This article is part of the themed issue 'Optical orbital angular momentum'.

  4. Generation of supercontinuum light in micro-structured fiber and polarization study at different wavelengths

    NASA Astrophysics Data System (ADS)

    Valle-Atilano, F. J.; Estudillo-Ayala, J. M.; Filoteo-Razo, J. D.; Hernández-García, J. C.; Jáuregui-Vázquez, D.; Sierra-Hernández, J. M.; Rojas-Laguna, R.; Mata-Chavez, R. I.; Samano-Aguilar, L. F.

    2016-09-01

    In this work, we study the changes of polarization at different wavelengths in a supercontinuum source generated through a microchip laser in the IR spectrum. We use a microchip laser pulsed as pumped source, 1064 nm of wavelength, and a photonic crystal fiber by generated a supercontinuum spectrum. We twist the fiber to the purpose to induce birefringence and study the changes of the state of polarization, and through bandpass filters we observe a single wavelength of the broad spectrum obtained. Besides, ellipticity study for different filters and its relation with the supercontinuum results is discussed.

  5. Observation of the X-Ray Magneto-Optical Voigt Effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mertins, H.-Ch.; Oppeneer, P. M.; Kunes, J.

    2001-07-23

    The existence of the x-ray magneto-optical Voigt effect is demonstrated. By means of polarization analysis the Voigt rotation and ellipticity of linearly polarized synchrotron radiation are measured at the Co L{sub 3} edge upon transmission through an amorphous Co film. The observed x-ray Voigt rotation is about 7.5{sup o}/{mu}m . On the basis of ab initio calculations it is shown that the x-ray Voigt effect follows sensitively the amount of spin polarization of the 2p core states. Therefore it provides a unique measure of the spin splitting of the core states.

  6. Fresnel's original interpretation of complex numbers in 19th century optics

    NASA Astrophysics Data System (ADS)

    Karam, Ricardo

    2018-04-01

    In 1823, Fresnel published an original (physical) interpretation of complex numbers in his investigations of refraction and reflection of polarized light. This is arguably the first time that complex numbers were given a physical interpretation, which led to a better understanding of elliptical and circular polarizations. This rather unknown episode of the history of physics is described in this work, and some of the pedagogical lessons that can be extracted from it are discussed.

  7. Cubic nonlinearity in shear wave beams with different polarizations

    PubMed Central

    Wochner, Mark S.; Hamilton, Mark F.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.

    2008-01-01

    A coupled pair of nonlinear parabolic equations is derived for the two components of the particle motion perpendicular to the axis of a shear wave beam in an isotropic elastic medium. The equations account for both quadratic and cubic nonlinearity. The present paper investigates, analytically and numerically, effects of cubic nonlinearity in shear wave beams for several polarizations: linear, elliptical, circular, and azimuthal. Comparisons are made with effects of quadratic nonlinearity in compressional wave beams. PMID:18529167

  8. Optical properties of an elliptic quantum ring: Eccentricity and electric field effects

    NASA Astrophysics Data System (ADS)

    Bejan, Doina; Stan, Cristina; Niculescu, Ecaterina C.

    2018-04-01

    We have theoretically studied the electronic and optical properties of a GaAs/AlGaAs elliptic quantum ring under in-plane electric field. The effects of an eccentric internal barrier -placed along the electric field direction, chosen as x-axis- and incident light polarization are particularly taken into account. The one-electron energy spectrum and wave functions are found using the adiabatic approximation and the finite element method within the effective-mass model. We show that it is possible to repair the structural distortion by applying an appropriate in-plane electric field, and the compensation is almost complete for all electronic states under study. For both concentric and eccentric quantum ring the intraband optical properties are very sensitive to the electric field and probe laser polarization. As expected, in the systems with eccentricity distortions the energy spectrum, as well as the optical response, strongly depends on the direction of the externally applied electric field, an effect that can be used as a signature of ring eccentricity. We demonstrated the possibility of generating second harmonic response at double resonance condition for incident light polarized along the x-axis if the electric field or/and eccentric barrier break the inversion symmetry. Also, strong third harmonic signal can be generated at triple resonance condition for a specific interval of electric field values when using y-polarized light.

  9. Exploring vacuum birefringence based on a 100 PW laser and an x-ray free electron laser beam

    NASA Astrophysics Data System (ADS)

    Shen, Baifei; Bu, Zhigang; Xu, Jiancai; Xu, Tongjun; Ji, Liangliang; Li, Ruxin; Xu, Zhizhan

    2018-04-01

    Exploring vacuum birefringence with the station of extreme light at Shanghai Coherent Light Facility is considered. Laser pulses of intensity beyond 1023 W cm-2 are capable of polarizing the vacuum due to the ultra-strong electro-magnetic fields. The subtle difference of the vacuum refractive indexes along electric and magnetic fields leads to a birefringence effect for lights propagating through. The vacuum birefringence effect can now be captured by colliding a hard x-ray free electron laser (XFEL) beam with a high-power laser. The initial XFEL beam of pure linear polarization is predicated to gain a very small ellipticity after passing through the laser stimulated vacuum. Various interaction geometries are considered, showing that the estimated ellipticity lies between 1.8 × 10-10 and 10-9 for a 100 PW laser interacting with a 12.9 keV XFEL beam, approaching the threshold for todays’ polarity detection technique. The detailed experimental set-up is designed, including the polarimeter, the focusing compound refractive lens and the optical path. When taking into account the efficiencies of the x-ray instruments, it is found that about 10 polarization-flipped x-ray photons can be detected for a single shot for our design. Considering the background noise level, accumulating runs are necessary to obtain high confident measurement.

  10. The system spatial-frequency filtering of birefringence images of human blood layers

    NASA Astrophysics Data System (ADS)

    Ushenko, A. G.; Boychuk, T. M.; Mincer, O. P.; Angelsky, P. O.; Bodnar, N. B.; Oleinichenko, B. P.; Bizer, L. I.

    2013-09-01

    Among various opticophysical methods [1 - 3] of diagnosing the structure and properties of the optical anisotropic component of various biological objects a specific trend has been singled out - multidimensional laser polarimetry of microscopic images of the biological tissues with the following statistic, correlative and fractal analysis of the coordinate distributions of the azimuths and ellipticity of polarization in approximating of linear birefringence polycrystalline protein networks [4 - 10]. At the same time, in most cases, experimental obtaining of tissue sample is a traumatic biopsy operation. In addition, the mechanisms of transformation of the state of polarization of laser radiation by means of the opticoanisotropic biological structures are more varied (optical dichroism, circular birefringence). Hereat, real polycrystalline networks can be formed by different types, both in size and optical properties of biological crystals. Finally, much more accessible for an experimental investigation are biological fluids such as blood, bile, urine, and others. Thus, further progress of laser polarimetry can be associated with the development of new methods of analysis and processing (selection) of polarization- heterogeneous images of biological tissues and fluids, taking into account a wider set of mechanisms anisotropic mechanisms. Our research is aimed at developing experimental method of the Fourier polarimetry and a spatialfrequency selection for distributions of the azimuth and the ellipticity polarization of blood plasma laser images with a view of diagnosing prostate cancer.

  11. Neural network approximation of nonlinearity in laser nano-metrology system based on TLMI

    NASA Astrophysics Data System (ADS)

    Olyaee, Saeed; Hamedi, Samaneh

    2011-02-01

    In this paper, an approach based on neural network (NN) for nonlinearity modeling in a nano-metrology system using three-longitudinal-mode laser heterodyne interferometer (TLMI) for length and displacement measurements is presented. We model nonlinearity errors that arise from elliptically and non-orthogonally polarized laser beams, rotational error in the alignment of laser head with respect to the polarizing beam splitter, rotational error in the alignment of the mixing polarizer, and unequal transmission coefficients in the polarizing beam splitter. Here we use a neural network algorithm based on the multi-layer perceptron (MLP) network. The simulation results show that multi-layer feed forward perceptron network is successfully applicable to real noisy interferometer signals.

  12. Phase-Controlled Polarization Modulators

    NASA Technical Reports Server (NTRS)

    Chuss, D. T.; Wollack, E. J.; Novak, G.; Moseley, S. H.; Pisano, G.; Krejny, M.; U-Yen, K.

    2012-01-01

    We report technology development of millimeter/submillimeter polarization modulators that operate by introducing a a variable, controlled phase delay between two orthogonal polarization states. The variable-delay polarization modulator (VPM) operates via the introduction of a variable phase delay between two linear orthogonal polarization states, resulting in a variable mapping of a single linear polarization into a combination of that Stokes parameter and circular (Stokes V) polarization. Characterization of a prototype VPM is presented at 350 and 3000 microns. We also describe a modulator in which a variable phase delay is introduced between right- and left- circular polarization states. In this architecture, linear polarization is fully modulated. Each of these devices consists of a polarization diplexer parallel to and in front of a movable mirror. Modulation involves sub-wavelength translations of the mirror that change the magnitude of the phase delay.

  13. Geometric phase topology in weak measurement

    NASA Astrophysics Data System (ADS)

    Samlan, C. T.; Viswanathan, Nirmal K.

    2017-12-01

    The geometric phase visualization proposed by Bhandari (R Bhandari 1997 Phys. Rep. 281 1-64) in the ellipticity-ellipse orientation basis of the polarization ellipse of light is implemented to understand the geometric aspects of weak measurement. The weak interaction of a pre-selected state, acheived via spin-Hall effect of light (SHEL), results in a spread in the polarization ellipticity (η) or ellipse orientation (χ) depending on the resulting spatial or angular shift, respectively. The post-selection leads to the projection of the η spread in the complementary χ basis results in the appearance of a geometric phase with helical phase topology in the η - χ parameter space. By representing the weak measurement on the Poincaré sphere and using Jones calculus, the complex weak value and the geometric phase topology are obtained. This deeper understanding of the weak measurement process enabled us to explore the techniques’ capabilities maximally, as demonstrated via SHEL in two examples—external reflection at glass-air interface and transmission through a tilted half-wave plate.

  14. Subcycle dynamics of Coulomb asymmetry in strong elliptical laser fields.

    PubMed

    Li, Min; Liu, Yunquan; Liu, Hong; Ning, Qicheng; Fu, Libin; Liu, Jie; Deng, Yongkai; Wu, Chengyin; Peng, Liang-You; Peng, Liangyou; Gong, Qihuang

    2013-07-12

    We measure photoelectron angular distributions of noble gases in intense elliptically polarized laser fields, which indicate strong structure-dependent Coulomb asymmetry. Using a dedicated semiclassical model, we have disentangled the contribution of direct ionization and multiple forward scattering on Coulomb asymmetry in elliptical laser fields. Our theory quantifies the roles of the ionic potential and initial transverse momentum on Coulomb asymmetry, proving that the small lobes of asymmetry are induced by direct ionization and the strong asymmetry is induced by multiple forward scattering in the ionic potential. Both processes are distorted by the Coulomb force acting on the electrons after tunneling. Lowering the ionization potential, the relative contribution of direct ionization on Coulomb asymmetry substantially decreases and Coulomb focusing on multiple rescattering is more important. We do not observe evident initial longitudinal momentum spread at the tunnel exit according to our simulation.

  15. Navigating highly elliptical earth orbiters with simultaneous VLBI from orthogonal baseline pairs

    NASA Technical Reports Server (NTRS)

    Frauenholz, Raymond B.

    1986-01-01

    Navigation strategies for determining highly elliptical orbits with VLBI are described. The predicted performance of wideband VLBI and Delta VLBI measurements obtained by orthogonal baseline pairs are compared for a 16-hr equatorial orbit. It is observed that the one-sigma apogee position accuracy improves two orders of magnitude to the meter level when Delta VLBI measurements are added to coherent Doppler and range, and the simpler VLBI strategy provides nearly the same orbit accuracy. The effects of differential measurement noise and acquisition geometry on orbit accuracy are investigated. The data reveal that quasar position uncertainty limits the accuracy of wideband Delta VLBI measurements, and that polar motion and baseline uncertainties and offsets between station clocks affect the wideband VLBI data. It is noted that differential one-way range (DOR) has performance nearly equal to that of the more complex Delta DOR and is recommended for use on spacecraft in high elliptical orbits.

  16. Polarization locked vector solitons and axis instability in optical fiber.

    PubMed

    Cundiff, Steven T.; Collings, Brandon C.; Bergman, Keren

    2000-09-01

    We experimentally observe polarization-locked vector solitons in optical fiber. Polarization locked-vector solitons use nonlinearity to preserve their polarization state despite the presence of birefringence. To achieve conditions where the delicate balance between nonlinearity and birefringence can survive, we studied the polarization evolution of the pulses circulating in a laser constructed entirely of optical fiber. We observe two distinct states with fixed polarization. This first state occurs for very small values birefringence and is elliptically polarized. We measure the relative phase between orthogonal components along the two principal axes to be +/-pi/2. The relative amplitude varies linearly with the magnitude of the birefringence. This state is a polarization locked vector soliton. The second, linearly polarized, state occurs for larger values of birefringence. The second state is due to the fast axis instability. We provide complete characterization of these states, and present a physical explanation of both of these states and the stability of the polarization locked vector solitons. (c) 2000 American Institute of Physics.

  17. Polarization locked vector solitons and axis instability in optical fiber

    NASA Astrophysics Data System (ADS)

    Cundiff, Steven T.; Collings, Brandon C.; Bergman, Keren

    2000-09-01

    We experimentally observe polarization-locked vector solitons in optical fiber. Polarization locked-vector solitons use nonlinearity to preserve their polarization state despite the presence of birefringence. To achieve conditions where the delicate balance between nonlinearity and birefringence can survive, we studied the polarization evolution of the pulses circulating in a laser constructed entirely of optical fiber. We observe two distinct states with fixed polarization. This first state occurs for very small values birefringence and is elliptically polarized. We measure the relative phase between orthogonal components along the two principal axes to be ±π/2. The relative amplitude varies linearly with the magnitude of the birefringence. This state is a polarization locked vector soliton. The second, linearly polarized, state occurs for larger values of birefringence. The second state is due to the fast axis instability. We provide complete characterization of these states, and present a physical explanation of both of these states and the stability of the polarization locked vector solitons.

  18. Polarization control of high order harmonics in the EUV photon energy range.

    PubMed

    Vodungbo, Boris; Barszczak Sardinha, Anna; Gautier, Julien; Lambert, Guillaume; Valentin, Constance; Lozano, Magali; Iaquaniello, Grégory; Delmotte, Franck; Sebban, Stéphane; Lüning, Jan; Zeitoun, Philippe

    2011-02-28

    We report the generation of circularly polarized high order harmonics in the extreme ultraviolet range (18-27 nm) from a linearly polarized infrared laser (40 fs, 0.25 TW) focused into a neon filled gas cell. To circularly polarize the initially linearly polarized harmonics we have implemented a four-reflector phase-shifter. Fully circularly polarized radiation has been obtained with an efficiency of a few percents, thus being significantly more efficient than currently demonstrated direct generation of elliptically polarized harmonics. This demonstration opens up new experimental capabilities based on high order harmonics, for example, in biology and materials science. The inherent femtosecond time resolution of high order harmonic generating table top laser sources renders these an ideal tool for the investigation of ultrafast magnetization dynamics now that the magnetic circular dichroism at the absorption M-edges of transition metals can be exploited.

  19. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals

    NASA Astrophysics Data System (ADS)

    Kan, Tetsuo; Isozaki, Akihiro; Kanda, Natsuki; Nemoto, Natsuki; Konishi, Kuniaki; Takahashi, Hidetoshi; Kuwata-Gonokami, Makoto; Matsumoto, Kiyoshi; Shimoyama, Isao

    2015-10-01

    Active modulation of the polarization states of terahertz light is indispensable for polarization-sensitive spectroscopy, having important applications such as non-contact Hall measurements, vibrational circular dichroism measurements and anisotropy imaging. In the terahertz region, the lack of a polarization modulator similar to a photoelastic modulator in the visible range hampers expansion of such spectroscopy. A terahertz chiral metamaterial has a huge optical activity unavailable in nature; nevertheless, its modulation is still challenging. Here we demonstrate a handedness-switchable chiral metamaterial for polarization modulation employing vertically deformable Micro Electro Mechanical Systems. Vertical deformation of a planar spiral by a pneumatic force creates a three-dimensional spiral. Enantiomeric switching is realized by selecting the deformation direction, where the polarity of the optical activity is altered while maintaining the spectral shape. A polarization rotation as high as 28° is experimentally observed, thus providing a practical and compact polarization modulator for the terahertz range.

  20. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals.

    PubMed

    Kan, Tetsuo; Isozaki, Akihiro; Kanda, Natsuki; Nemoto, Natsuki; Konishi, Kuniaki; Takahashi, Hidetoshi; Kuwata-Gonokami, Makoto; Matsumoto, Kiyoshi; Shimoyama, Isao

    2015-10-01

    Active modulation of the polarization states of terahertz light is indispensable for polarization-sensitive spectroscopy, having important applications such as non-contact Hall measurements, vibrational circular dichroism measurements and anisotropy imaging. In the terahertz region, the lack of a polarization modulator similar to a photoelastic modulator in the visible range hampers expansion of such spectroscopy. A terahertz chiral metamaterial has a huge optical activity unavailable in nature; nevertheless, its modulation is still challenging. Here we demonstrate a handedness-switchable chiral metamaterial for polarization modulation employing vertically deformable Micro Electro Mechanical Systems. Vertical deformation of a planar spiral by a pneumatic force creates a three-dimensional spiral. Enantiomeric switching is realized by selecting the deformation direction, where the polarity of the optical activity is altered while maintaining the spectral shape. A polarization rotation as high as 28° is experimentally observed, thus providing a practical and compact polarization modulator for the terahertz range.

  1. Distribution of Linearly Polarized Gluons and Elliptic Azimuthal Anisotropy in Deep Inelastic Scattering Dijet Production at High Energy

    DOE PAGES

    Dumitru, Adrian; Lappi, Tuomas; Skokov, Vladimir

    2015-12-17

    In this study, we determine the distribution of linearly polarized gluons of a dense target at small x by solving the Balitsky–Jalilian-Marian–Iancu–McLerran–Weigert–Leonidov–Kovner rapidity evolution equations. From these solutions, we estimate the amplitude of cos2Φ azimuthal asymmetries in deep inelastic scattering dijet production at high energies. We find sizable long-range in rapidity azimuthal asymmetries with a magnitude in the range of v 2=~10%.

  2. FIBER AND INTEGRATED OPTICS: Polarization characteristics of anisotropic single-mode fiber waveguides

    NASA Astrophysics Data System (ADS)

    Arutyunyan, Z. É.; Grudinin, A. B.; Gur'yanov, A. N.; Gusovskiĭ, D. D.; Dianov, Evgenii M.; Ignat'ev, S. V.; Smirnov, O. B.; Khrushchev, I. Yu

    1990-01-01

    An experimental investigation was made of the polarization characteristics of anisotropic fiber waveguides with an elliptic stress-inducing cladding, operating in a wide spectral range. The maximum birefringence amounted to 3.4 × 10 - 4, the minimum mode coupling parameter was 2.5 × 10 - 5 m - 1 (λ = 1.1 μm), and the minimum losses were 0.7 dB/km (λ = 1.5 μm). A qualitative comparison was made with the theoretical data.

  3. Modulating laser intensity profile ellipticity for microstructural control during metal additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roehling, Tien T.; Wu, Sheldon S. Q.; Khairallah, Saad A.

    Additively manufactured (AM) metals are often highly textured, containing large columnar grains that initiate epitaxially under steep temperature gradients and rapid solidification conditions. These unique microstructures partially account for the massive property disparity existing between AM and conventionally processed alloys. Although equiaxed grains are desirable for isotropic mechanical behavior, the columnar-to-equiaxed transition remains difficult to predict for conventional solidification processes, and much more so for AM. In this study, the effects of laser intensity profile ellipticity on melt track macrostructures and microstructures were studied in 316L stainless steel. Experimental results were supported by temperature gradients and melt velocities simulated usingmore » the ALE3D multi-physics code. As a general trend, columnar grains preferentially formed with increasing laser power and scan speed for all beam profiles. However, when conduction mode laser heating occurs, scan parameters that result in coarse columnar microstructures using Gaussian profiles produce equiaxed or mixed equiaxed-columnar microstructures using elliptical profiles. Furthermore, by modulating spatial laser intensity profiles on the fly, site-specific microstructures and properties can be directly engineered into additively manufactured parts.« less

  4. Modulating laser intensity profile ellipticity for microstructural control during metal additive manufacturing

    DOE PAGES

    Roehling, Tien T.; Wu, Sheldon S. Q.; Khairallah, Saad A.; ...

    2017-02-12

    Additively manufactured (AM) metals are often highly textured, containing large columnar grains that initiate epitaxially under steep temperature gradients and rapid solidification conditions. These unique microstructures partially account for the massive property disparity existing between AM and conventionally processed alloys. Although equiaxed grains are desirable for isotropic mechanical behavior, the columnar-to-equiaxed transition remains difficult to predict for conventional solidification processes, and much more so for AM. In this study, the effects of laser intensity profile ellipticity on melt track macrostructures and microstructures were studied in 316L stainless steel. Experimental results were supported by temperature gradients and melt velocities simulated usingmore » the ALE3D multi-physics code. As a general trend, columnar grains preferentially formed with increasing laser power and scan speed for all beam profiles. However, when conduction mode laser heating occurs, scan parameters that result in coarse columnar microstructures using Gaussian profiles produce equiaxed or mixed equiaxed-columnar microstructures using elliptical profiles. Furthermore, by modulating spatial laser intensity profiles on the fly, site-specific microstructures and properties can be directly engineered into additively manufactured parts.« less

  5. Vehicle security encryption based on unlicensed encryption

    NASA Astrophysics Data System (ADS)

    Huang, Haomin; Song, Jing; Xu, Zhijia; Ding, Xiaoke; Deng, Wei

    2018-03-01

    The current vehicle key is easy to be destroyed and damage, proposing the use of elliptical encryption algorithm is improving the reliability of vehicle security system. Based on the encryption rules of elliptic curve, the chip's framework and hardware structure are designed, then the chip calculation process simulation has been analyzed by software. The simulation has been achieved the expected target. Finally, some issues pointed out in the data calculation about the chip's storage control and other modules.

  6. Nonnormal operators in physics, a singular-vectors approach: illustration in polarization optics.

    PubMed

    Tudor, Tiberiu

    2016-04-20

    The singular-vectors analysis of a general nonnormal operator defined on a finite-dimensional complex vector space is given in the frame of a pure operatorial ("nonmatrix," "coordinate-free") approach, performed in a Dirac language. The general results are applied in the field of polarization optics, where the nonnormal operators are widespread as operators of various polarization devices. Two nonnormal polarization devices representative for the class of nonnormal and even pathological operators-the standard two-layer elliptical ideal polarizer (singular operator) and the three-layer ambidextrous ideal polarizer (singular and defective operator)-are analyzed in detail. It is pointed out that the unitary polar component of the operator exists and preserves, in such pathological case too, its role of converting the input singular basis of the operator in its output singular basis. It is shown that for any nonnormal ideal polarizer a complementary one exists, so that the tandem of their operators uniquely determines their (common) unitary polar component.

  7. Computer Aided Process Planning for Non-Axisymmetric Deep Drawing Products

    NASA Astrophysics Data System (ADS)

    Park, Dong Hwan; Yarlagadda, Prasad K. D. V.

    2004-06-01

    In general, deep drawing products have various cross-section shapes such as cylindrical, rectangular and non-axisymmetric shapes. The application of the surface area calculation to non-axisymmetric deep drawing process has not been published yet. In this research, a surface area calculation for non-axisymmetric deep drawing products with elliptical shape was constructed for a design of blank shape of deep drawing products by using an AutoLISP function of AutoCAD software. A computer-aided process planning (CAPP) system for rotationally symmetric deep drawing products has been developed. However, the application of the system to non-axisymmetric components has not been reported yet. Thus, the CAPP system for non-axisymmetric deep drawing products with elliptical shape was constructed by using process sequence design. The system developed in this work consists of four modules. The first is recognition of shape module to recognize non-axisymmetric products. The second is a three-dimensional (3-D) modeling module to calculate the surface area for non-axisymmetric products. The third is a blank design module to create an oval-shaped blank with the identical surface area. The forth is a process planning module based on the production rules that play the best important role in an expert system for manufacturing. The production rules are generated and upgraded by interviewing field engineers. Especially, the drawing coefficient, the punch and die radii for elliptical shape products are considered as main design parameters. The suitability of this system was verified by applying to a real deep drawing product. This CAPP system constructed would be very useful to reduce lead-time for manufacturing and improve an accuracy of products.

  8. Elliptically polarizing adjustable phase insertion device

    DOEpatents

    Carr, Roger

    1995-01-01

    An insertion device for extracting polarized electromagnetic energy from a beam of particles is disclosed. The insertion device includes four linear arrays of magnets which are aligned with the particle beam. The magnetic field strength to which the particles are subjected is adjusted by altering the relative alignment of the arrays in a direction parallel to that of the particle beam. Both the energy and polarization of the extracted energy may be varied by moving the relevant arrays parallel to the beam direction. The present invention requires a substantially simpler and more economical superstructure than insertion devices in which the magnetic field strength is altered by changing the gap between arrays of magnets.

  9. Wave-vector and polarization dependence of conical refraction.

    PubMed

    Turpin, A; Loiko, Yu V; Kalkandjiev, T K; Tomizawa, H; Mompart, J

    2013-02-25

    We experimentally address the wave-vector and polarization dependence of the internal conical refraction phenomenon by demonstrating that an input light beam of elliptical transverse profile refracts into two beams after passing along one of the optic axes of a biaxial crystal, i.e. it exhibits double refraction instead of refracting conically. Such double refraction is investigated by the independent rotation of a linear polarizer and a cylindrical lens. Expressions to describe the position and the intensity pattern of the refracted beams are presented and applied to predict the intensity pattern for an axicon beam propagating along the optic axis of a biaxial crystal.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, T.; Zimoch, D.

    The operation of an APPLE II based undulator beamline with all its polarization states (linear horizontal and vertical, circular and elliptical, and continous variation of the linear vector) requires an effective description allowing an automated calculation of gap and shift parameter as function of energy and operation mode. The extension of the linear polarization range from 0 to 180 deg. requires 4 shiftable magnet arrrays, permitting use of the APU (adjustable phase undulator) concept. Studies for a pure fixed gap APPLE II for the SLS revealed surprising symmetries between circular and linear polarization modes allowing for simplified operation. A semi-analyticalmore » model covering all types of APPLE II and its implementation will be presented.« less

  11. About APPLE II Operation

    NASA Astrophysics Data System (ADS)

    Schmidt, T.; Zimoch, D.

    2007-01-01

    The operation of an APPLE II based undulator beamline with all its polarization states (linear horizontal and vertical, circular and elliptical, and continous variation of the linear vector) requires an effective description allowing an automated calculation of gap and shift parameter as function of energy and operation mode. The extension of the linear polarization range from 0 to 180° requires 4 shiftable magnet arrrays, permitting use of the APU (adjustable phase undulator) concept. Studies for a pure fixed gap APPLE II for the SLS revealed surprising symmetries between circular and linear polarization modes allowing for simplified operation. A semi-analytical model covering all types of APPLE II and its implementation will be presented.

  12. 1300 nm optically pumped quantum dot spin vertical external-cavity surface-emitting laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alharthi, S. S., E-mail: ssmalh@essex.ac.uk; Henning, I. D.; Adams, M. J.

    We report a room temperature optically pumped Quantum Dot-based Spin-Vertical-External-Cavity Surface-Emitting laser (QD Spin-VECSEL) operating at the telecom wavelength of 1.3 μm. The active medium was composed of 5 × 3 QD layers; each threefold group was positioned at an antinode of the standing wave of the optical field. Circularly polarized lasing in the QD-VECSEL under Continuous-Wave optical pumping has been realized with a threshold pump power of 11 mW. We further demonstrate at room temperature control of the QD-VECSEL output polarization ellipticity via the pump polarization.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, X. L.; Meng, Q. X.; Yuan, C. X.

    The visible light broadband perfect absorbers based on the silver (Ag) nano elliptical disks and holes array are studied using finite difference time domain simulations. The semiconducting indium silicon dioxide thin film is introduced as the space layer in this sandwiched structure. Utilizing the asymmetrical geometry of the structures, polarization sensitivity for transverse electric wave (TE)/transverse magnetic wave (TM) and left circular polarization wave (LCP)/right circular polarization wave (RCP) of the broadband absorption are gained. The absorbers with Ag nano disks and holes array show several peaks absorbance of 100% by numerical simulation. These simple and flexible perfect absorbers aremore » particularly desirable for various potential applications including the solar energy absorber.« less

  14. Effect of atomic noise on optical squeezing via polarization self-rotation in a thermal vapor cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, M. T. L.; Hetet, G.; Peng, A.

    2006-02-15

    The traversal of an elliptically polarized optical field through a thermal vapor cell can give rise to a rotation of its polarization axis. This process, known as polarization self-rotation (PSR), has been suggested as a mechanism for producing squeezed light at atomic transition wavelengths. We show results of the characterization of PSR in isotopically enhanced rubidium-87 cells, performed in two independent laboratories. We observed that, contrary to earlier work, the presence of atomic noise in the thermal vapor overwhelms the observation of squeezing. We present a theory that contains atomic noise terms and show that a null result in squeezingmore » is consistent with this theory.« less

  15. Dynamics of plasmonic field polarization induced by quantum coherence in quantum dot-metallic nanoshell structures.

    PubMed

    Sadeghi, S M

    2014-09-01

    When a hybrid system consisting of a semiconductor quantum dot and a metallic nanoparticle interacts with a laser field, the plasmonic field of the metallic nanoparticle can be normalized by the quantum coherence generated in the quantum dot. In this Letter, we study the states of polarization of such a coherent-plasmonic field and demonstrate how these states can reveal unique aspects of the collective molecular properties of the hybrid system formed via coherent exciton-plasmon coupling. We show that transition between the molecular states of this system can lead to ultrafast polarization dynamics, including sudden reversal of the sense of variations of the plasmonic field and formation of circular and elliptical polarization.

  16. Effects of ultrashort laser pulses on angular distributions of photoionization spectra.

    PubMed

    Ooi, C H Raymond; Ho, W L; Bandrauk, A D

    2017-07-27

    We study the photoelectron spectra by intense laser pulses with arbitrary time dependence and phase within the Keldysh framework. An efficient semianalytical approach using analytical transition matrix elements for hydrogenic atoms in any initial state enables efficient and accurate computation of the photoionization probability at any observation point without saddle point approximation, providing comprehensive three dimensional photoelectron angular distribution for linear and elliptical polarizations, that reveal the intricate features and provide insights on the photoionization characteristics such as angular dispersions, shift and splitting of photoelectron peaks from the tunneling or above threshold ionization(ATI) regime to non-adiabatic(intermediate) and multiphoton ionization(MPI) regimes. This facilitates the study of the effects of various laser pulse parameters on the photoelectron spectra and their angular distributions. The photoelectron peaks occur at multiples of 2ħω for linear polarization while  odd-ordered peaks are suppressed in the direction perpendicular to the electric field. Short pulses create splitting and angular dispersion where the peaks are strongly correlated to the angles. For MPI and elliptical polarization with shorter pulses the peaks split into doublets and the first peak vanishes. The carrier envelope phase(CEP) significantly affects the ATI spectra while the Stark effect shifts the spectra of intermediate regime to higher energies due to interference.

  17. Simultaneous weak measurement of angular and spatial Goos-Hänchen and Imbert-Fedorov shifts

    NASA Astrophysics Data System (ADS)

    Prajapati, Chandravati; Viswanathan, Nirmal K.

    2017-10-01

    We propose and demonstrate the weak measurement scheme to simultaneously measure the amplified angular and spatial contributions to the Goos-Hänchen (GH) and Imbert-Fedorov (IF) shifts, due to transmission through a glass plate. We have studied two cases of post-selection using a polarizer in the first case and a quarter-wave plate (QWP)-polarizer combination in the second case. The two cases are analyzed theoretically using Jones calculus of polarization formalism and the results are verified experimentally. In the first case of post-selection, the projection of the polarizer at +/- {{Δ }} away from the crossed position amplifies the angular GH and IF shifts, while in the second case of post-selection, the projection of QWP at +/- {{Δ }} and polarizer kept fixed measures the polarization ellipticity in the beam and thus amplifies the spatial shift along with the angular shift simultaneously, for {{Δ }}\\ll 1.

  18. Theory of topological insulator waveguides: polarization control and the enhancement of the magneto-electric effect

    NASA Astrophysics Data System (ADS)

    Crosse, J. A.

    2017-02-01

    Topological insulators subject to a time-reversal-symmetry-breaking perturbation are predicted to display a magneto-electric effect that causes the electric and magnetic induction fields to mix at the material’s surface. This effect induces polarization rotations of between ≈1-10 mrad per interface in an incident plane-polarized electromagnetic wave normal to a multilayered structure. Here we show, theoretically and numerically, that by using a waveguide geometry with a topological insulator guide layer and magneto-dielectric cladding it is possible to achieve rotations of ≈100 mrad and generate an elliptical polarization with only a three-layered structure. This geometry is beneficial, not only as a way to enhance the magneto-electric effect, rendering it easier to observe, but also as a method for controlling the polarization of electromagnetic radiation.

  19. Multiple polarization states of vector soliton in fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, Weicheng; Xu, Wencheng; Cao, Hui; Han, Dingan

    2007-11-01

    Vector soliton is obtained in erbium-doped fiber laser via nonlinear polarization rotation techniques. In experiment, we observe the every 4- and 7-pulse sinusoidal peak modulation. Temporal pulse sinusoidal peak modulation owes to evolution behavior of vector solitons in multiple polarization states. The polarizer in the laser modulates the mode-locked pulses with different polarization states into periodical pulse train intensities modulation. Moreover, the increasing pumping power lead to the appearance of the harmonic pulses and change the equivalent beat length to accelerate the polarization rotation. When the laser cavity length is the n-th multiple ratios to the beat length to maintain the mode-locking, the mode-locked vector soliton is in n-th multiple polarization states, exhibiting every n-pulse sinusoidal peak modulation.

  20. Investigation of focusing and correcting aberrations with binary amplitude and polarization modulation

    DOE PAGES

    Fiala, Peter; Li, Yunqi; Dorrer, Christophe

    2018-01-29

    Here, we investigate the focusing and correcting wavefront aberration of an optical wave using binary amplitude and polarization modulation. Focusing is performed by selectively modulating the field in different zones of the pupil to obtain on-axis constructive interference at a given distance. The conventional Soret zone plate (binary amplitude profile) is expanded to a polarization Soret zone plate with twice the focusing efficiency. Binary pixelated devices that approximate the sinusoidal transmission profile of a Gabor zone plate by spatial dithering are also investigated with amplitude and polarization modulation. Wavefront aberrations are corrected by modulation of the field in the pupilmore » plane to prevent destructive interference in the focal plane of an ideal focusing element. Polarization modulation improves the efficiency obtained by amplitude-only modulation, with a gain that depends on the aberration. Experimental results obtained with Cr-on-glass devices for amplitude modulation and liquid crystal devices operating in the Mauguin condition for polarization modulation are in very good agreement with simulations.« less

  1. Investigation of focusing and correcting aberrations with binary amplitude and polarization modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiala, Peter; Li, Yunqi; Dorrer, Christophe

    Here, we investigate the focusing and correcting wavefront aberration of an optical wave using binary amplitude and polarization modulation. Focusing is performed by selectively modulating the field in different zones of the pupil to obtain on-axis constructive interference at a given distance. The conventional Soret zone plate (binary amplitude profile) is expanded to a polarization Soret zone plate with twice the focusing efficiency. Binary pixelated devices that approximate the sinusoidal transmission profile of a Gabor zone plate by spatial dithering are also investigated with amplitude and polarization modulation. Wavefront aberrations are corrected by modulation of the field in the pupilmore » plane to prevent destructive interference in the focal plane of an ideal focusing element. Polarization modulation improves the efficiency obtained by amplitude-only modulation, with a gain that depends on the aberration. Experimental results obtained with Cr-on-glass devices for amplitude modulation and liquid crystal devices operating in the Mauguin condition for polarization modulation are in very good agreement with simulations.« less

  2. Influence of incident angle on the decoding in laser polarization encoding guidance

    NASA Astrophysics Data System (ADS)

    Zhou, Muchun; Chen, Yanru; Zhao, Qi; Xin, Yu; Wen, Hongyuan

    2009-07-01

    Dynamic detection of polarization states is very important for laser polarization coding guidance systems. In this paper, a set of dynamic polarization decoding and detection system used in laser polarization coding guidance was designed. Detection process of the normal incident polarized light is analyzed with Jones Matrix; the system can effectively detect changes in polarization. Influence of non-normal incident light on performance of polarization decoding and detection system is studied; analysis showed that changes in incident angle will have a negative impact on measure results, the non-normal incident influence is mainly caused by second-order birefringence and polarization sensitivity effect generated in the phase delay and beam splitter prism. Combined with Fresnel formula, decoding errors of linearly polarized light, elliptically polarized light and circularly polarized light with different incident angles into the detector are calculated respectively, the results show that the decoding errors increase with increase of incident angle. Decoding errors have relations with geometry parameters, material refractive index of wave plate, polarization beam splitting prism. Decoding error can be reduced by using thin low-order wave-plate. Simulation of detection of polarized light with different incident angle confirmed the corresponding conclusions.

  3. Properties of a Variable-Delay Polarization Modulator

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Wollack, Edward J.; Henry, Ross; Hui, Howard; Juarez, Aaron J.; Krenjy, Megan; Moseley, Harvey; Novak, Giles

    2011-01-01

    We investigate the polarization modulation properties of a variable-delay polarization modulator (VPM). The VPM modulates polarization via a variable separation between a polarizing grid and a parallel mirror. We find that in the limit where the wavelength is much larger than the diameter of the metal wires that comprise the grid, the phase delay derived from the geometric separation between the mirror and the grid is sufficient to characterize the device. However, outside of this range, additional parameters describing the polarizing grid geometry must be included to fully characterize the modulator response. In this paper, we report test results of a VPM at wavelengths of 350 micron and 3 mm. Electromagnetic simulations of wire grid polarizers were performed and are summarized using a simple circuit model that incorporates the loss and polarization properties of the device.

  4. Transmission of isotropic light across a dielectric surface in two and three dimensions.

    NASA Technical Reports Server (NTRS)

    Allen, W. A.

    1973-01-01

    Average transmittance of polarized diffuse light across a dielectric surface is calculated in both two and three dimensions. The incident light in both cases is confined to an angular range measured from the surface normal. Limiting values in three dimensions correspond to known results for two cases, (1) normal incidence, and (2) diffuse light incident from a 180 deg cone. The two-dimensional formulation is solvable in terms of elliptic functions and incomplete elliptic integrals of the first, second, and third kinds. Results are displayed graphically for values of transmittances in excess of 0.9 associated with relative indices of refraction in the range m = 1.0 to m = 2.6.

  5. Dynamical polarizability of atoms in arbitrary light fields: general theory and application to cesium

    NASA Astrophysics Data System (ADS)

    Le Kien, Fam; Schneeweiss, Philipp; Rauschenbeutel, Arno

    2013-05-01

    We present a systematic derivation of the dynamical polarizability and the ac Stark shift of the ground and excited states of atoms interacting with a far-off-resonance light field of arbitrary polarization. We calculate the scalar, vector, and tensor polarizabilities of atomic cesium using resonance wavelengths and reduced matrix elements for a large number of transitions. We analyze the properties of the fictitious magnetic field produced by the vector polarizability in conjunction with the ellipticity of the polarization of the light field.

  6. Polarization-Insensitive Surface Plasmon Polarization Electro-Absorption Modulator Based on Epsilon-Near-Zero Indium Tin Oxide.

    PubMed

    Jin, Lin; Wen, Long; Liang, Li; Chen, Qin; Sun, Yunfei

    2018-02-03

    CMOS-compatible plasmonic modulators operating at the telecom wavelength are significant for a variety of on-chip applications. Relying on the manipulation of the transverse magnetic (TM) mode excited on the metal-dielectric interface, most of the previous demonstrations are designed to response only for specific polarization state. In this case, it will lead to a high polarization dependent loss, when the polarization-sensitive modulator integrates to a fiber with random polarization state. Herein, we propose a plasmonic modulator utilizing a metal-oxide indium tin oxide (ITO) wrapped around the silicon waveguide and investigate its optical modulation ability for both the vertical and horizontal polarized guiding light by tuning electro-absorption of ITO with the field-induced carrier injection. The electrically biased modulator with electron accumulated at the ITO/oxide interface allows for epsilon-near-zero (ENZ) mode to be excited at the top or lateral portion of the interface depending on the polarization state of the guiding light. Because of the high localized feature of ENZ mode, efficient electro-absorption can be achieved under the "OFF" state of the device, thus leading to large extinction ratio (ER) for both polarizations in our proposed modulator. Further, the polarization-insensitive modulation is realized by properly tailoring the thickness of oxide in two different stacking directions and therefore matching the ER values for device operating at vertical and horizontal polarized modes. For the optimized geometry configuration, the difference between the ER values of two polarization modes, i.e., the ΔER, as small as 0.01 dB/μm is demonstrated and, simultaneously with coupling efficiency above 74%, is obtained for both polarizations at a wavelength of 1.55 μm. The proposed plasmonic-combined modulator has a potential application in guiding and processing of light from a fiber with a random polarization state.

  7. Polarization-Insensitive Surface Plasmon Polarization Electro-Absorption Modulator Based on Epsilon-Near-Zero Indium Tin Oxide

    NASA Astrophysics Data System (ADS)

    Jin, Lin; Wen, Long; Liang, Li; Chen, Qin; Sun, Yunfei

    2018-02-01

    CMOS-compatible plasmonic modulators operating at the telecom wavelength are significant for a variety of on-chip applications. Relying on the manipulation of the transverse magnetic (TM) mode excited on the metal-dielectric interface, most of the previous demonstrations are designed to response only for specific polarization state. In this case, it will lead to a high polarization dependent loss, when the polarization-sensitive modulator integrates to a fiber with random polarization state. Herein, we propose a plasmonic modulator utilizing a metal-oxide indium tin oxide (ITO) wrapped around the silicon waveguide and investigate its optical modulation ability for both the vertical and horizontal polarized guiding light by tuning electro-absorption of ITO with the field-induced carrier injection. The electrically biased modulator with electron accumulated at the ITO/oxide interface allows for epsilon-near-zero (ENZ) mode to be excited at the top or lateral portion of the interface depending on the polarization state of the guiding light. Because of the high localized feature of ENZ mode, efficient electro-absorption can be achieved under the "OFF" state of the device, thus leading to large extinction ratio (ER) for both polarizations in our proposed modulator. Further, the polarization-insensitive modulation is realized by properly tailoring the thickness of oxide in two different stacking directions and therefore matching the ER values for device operating at vertical and horizontal polarized modes. For the optimized geometry configuration, the difference between the ER values of two polarization modes, i.e., the ΔER, as small as 0.01 dB/μm is demonstrated and, simultaneously with coupling efficiency above 74%, is obtained for both polarizations at a wavelength of 1.55 μm. The proposed plasmonic-combined modulator has a potential application in guiding and processing of light from a fiber with a random polarization state.

  8. Development of the Next Generation of Multi-chroic Antenna-Coupled Transition Edge Sensor Detectors for CMB Polarimetry

    NASA Astrophysics Data System (ADS)

    Westbrook, B.; Cukierman, A.; Lee, A.; Suzuki, A.; Raum, C.; Holzapfel, W.

    2016-07-01

    We present the development of the next generation of multi-chroic sinuous antenna-coupled transition edge sensor (TES) bolometers optimized for precision measurements of polarization of the cosmic microwave background (CMB) and cosmic foreground. These devices employ a polarization sensitive broadband self-complementary sinuous antenna to feed on-chip band defining filters before delivering the power to load resistors coupled to a TES on a released bolometer island. This technology was originally developed by UC Berkeley and will be deployed by POLARBEAR-2 and SPT-3G in the next year and half. In addition, it is a candidate detector for the LiteBIRD mission which will make all sky CMB and cosmic foreground polarization observations from a satellite platform in the early 2020's. This works focuses on expanding both the bandwidth and band count per pixel of this technology in order to meet the needs of future CMB missions. This work demonstrates that these devices are well suited for observations between 20 and 380 GHz. This proceeding describes the design, fabrication, and the characterization of three new pixel types: a low-frequency triplexing pixel (LFTP) with bands centered on 40, 60, and 90 GHz, a high-frequency triplexing pixel (HFTP) with bands centered on 220, 280, and 350 GHz, and a mid-frequency tetraplexing pixel with bands (MFTP) centered on 90, 150, 220, and 280 GHz. The average fractional bandwidth of these pixels designs was 36.7, 34.5, and 31.4 % respectively. In addition we found that the polarization modulation efficiency of each band was between 1 and 3 % which is consistent with the polarization efficiency of the wire grid used to take the measurement. Finally, we find that the beams have {˜ }1 % ellipticity for each pixel type. The thermal properties of the bolometers where tuned for characterization in our lab so we do not report on G and noise values as they would be unsuitable for modern CMB experiments.

  9. Feasibility of Coupling Between a Single-Mode Elliptical-Core Fiber and a Single Mode Rib Waveguide Over Temperature. Ph.D. Thesis - Akron Univ., Aug. 1995

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.

    1995-01-01

    To determine the feasibility of coupling the output of an optical fiber to a rib waveguide in a temperature environment ranging from 20 C to 300 C, a theoretical calculation of the coupling efficiency between the two was investigated. This is a significant problem which needs to be addressed to determine whether an integrated optic device can function in a harsh temperature environment. Because the behavior of the integrated-optic device is polarization sensitive, a polarization-preserving optic fiber, via its elliptical core, was used to couple light with a known polarization into the device. To couple light energy efficiently from an optical fiber into a channel waveguide, the design of both components should provide for well-matched electric field profiles. The rib waveguide analyzed was the light input channel of an integrated-optic pressure sensor. Due to the complex geometry of the rib waveguide, there is no analytical solution to the wave equation for the guided modes. Approximation or numerical techniques must be utilized to determine the propagation constants and field patterns of the guide. In this study, three solution methods were used to determine the field profiles of both the fiber and guide: the effective-index method (EIM), Marcatili's approximation, and a Fourier method. These methods were utilized independently to calculate the electric field profile of a rib channel waveguide and elliptical fiber at two temperatures, 20 C and 300 C. These temperatures were chosen to represent a nominal and a high temperature that the device would experience. Using the electric field profile calculated from each method, the theoretical coupling efficiency between the single-mode optical fiber and rib waveguide was calculated using the overlap integral and results of the techniques compared. Initially, perfect alignment was assumed and the coupling efficiency calculated. Then, the coupling efficiency calculation was repeated for a range of transverse offsets at both temperatures. Results of the calculation indicate a high coupling efficiency can be achieved when the two components were properly aligned. The coupling efficiency was more sensitive to alignment offsets in the y direction than the x, due to the elliptical modal profile of both components. Changes in the coupling efficiency over temperature were found to be minimal.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steier, C.; Marks, S.; Prestemon, Soren

    Since about 5 years, Apple-II type Elliptically Polarizing Undulators (EPU) have been used very successfully at the ALS to generate high brightness photon beams with arbitrary polarization. However, both EPUs installed so far cause significant changes of the vertical beamsize, especially when the row phase is changed to change the polarization of the photons emitted. Detailed measurements indicate this is caused by a row phase dependent skew quadrupole term in the EPUs. Magnetic measurements revealed the same effect for the third EPU to be installed later this year. All measurements to identify and quantify the effect with beam will bemore » presented, as well as some results of magnetic bench measurements and numeric field simulations.« less

  11. Elliptically polarizing adjustable phase insertion device

    DOEpatents

    Carr, R.

    1995-01-17

    An insertion device for extracting polarized electromagnetic energy from a beam of particles is disclosed. The insertion device includes four linear arrays of magnets which are aligned with the particle beam. The magnetic field strength to which the particles are subjected is adjusted by altering the relative alignment of the arrays in a direction parallel to that of the particle beam. Both the energy and polarization of the extracted energy may be varied by moving the relevant arrays parallel to the beam direction. The present invention requires a substantially simpler and more economical superstructure than insertion devices in which the magnetic field strength is altered by changing the gap between arrays of magnets. 3 figures.

  12. Response functions of free mass gravitational wave antennas

    NASA Technical Reports Server (NTRS)

    Estabrook, F. B.

    1985-01-01

    The work of Gursel, Linsay, Spero, Saulson, Whitcomb and Weiss (1984) on the response of a free-mass interferometric antenna is extended. Starting from first principles, the earlier work derived the response of a 2-arm gravitational wave antenna to plane polarized gravitational waves. Equivalent formulas (generalized slightly to allow for arbitrary elliptical polarization) are obtained by a simple differencing of the '3-pulse' Doppler response functions of two 1-arm antennas. A '4-pulse' response function is found, with quite complicated angular dependences for arbitrary incident polarization. The differencing method can as readily be used to write exact response functions ('3n+1 pulse') for antennas having multiple passes or more arms.

  13. Elliptical As2Se3 filled core ultra-high-nonlinearity and polarization-maintaining photonic crystal fiber with double hexagonal lattice cladding

    NASA Astrophysics Data System (ADS)

    Li, Feng; He, Menghui; Zhang, Xuedian; Chang, Min; Wu, Zhizheng; Liu, Zheng; Chen, Hua

    2018-05-01

    A high birefringence and ultra-high nonlinearity photonic crystal fiber (PCF) is proposed, which is composed of an elliptical As2Se3-doped core and an inner cladding with hexagonal lattice. Optical properties of the PCF are simulated by the full-vector finite element method. The simulation results show that the high birefringence of ∼0.33, ultra-high-nonlinearity coefficient of 300757 W-1km-1 and the low confinement loss can be achieved in the proposed PCF simultaneously at the wavelength of 1.55 μm. Furthermore, by comparison with the other two materials (80PbO•20Ga2O3, As2S3) filled in the core, the As2Se3-doped PCF is found to have the highest birefringence and nonlinearity due to its higher refractive index and nonlinear refractive index. The flattened dispersion feature, as well as the low confinement loss of the proposed PCF structure make it suitable as a wide range of applications, such as the coherent optical communications, polarization-maintaining and nonlinear optics, etc.

  14. Leaf-shape effects in electromagnetic wave scattering from vegetation

    NASA Technical Reports Server (NTRS)

    Karam, Mostafa A.; Fung, Adrian K.

    1989-01-01

    A vegetation medium is modeled as a half-space of randomly distributed and oriented leaves of arbitrary shape. In accordance with the first-order radiative transfer theory, the backscattering coefficient for such a half-space is expressed in terms of the scattering amplitudes. For disc- or needle-shaped leaves, the generalized Rayleigh-Gans approximation is used to calculate the scattering amplitudes. This approach is valid for leaf dimensions up to the size of the incident wavelength. To examine the leaf-shape effect, elliptic discs are used to model deciduous leaves, and needles are used to model coniferous leaves. The differences between the scattering characteristics of leaves of different shapes are illustrated numerically for various orientations, frequencies, and incidence angles. It is found that the scattering characteristics of elliptic disc-shaped leaves are sensitive to the three angles of orientation and disc ellipticity. In general, both like and cross polarizations may be needed to differentiate the difference in scattering due to the shapes of the leaves.

  15. Theory of topological insulator waveguides: polarization control and the enhancement of the magneto-electric effect

    PubMed Central

    Crosse, J. A.

    2017-01-01

    Topological insulators subject to a time-reversal-symmetry-breaking perturbation are predicted to display a magneto-electric effect that causes the electric and magnetic induction fields to mix at the material’s surface. This effect induces polarization rotations of between ≈1–10 mrad per interface in an incident plane-polarized electromagnetic wave normal to a multilayered structure. Here we show, theoretically and numerically, that by using a waveguide geometry with a topological insulator guide layer and magneto-dielectric cladding it is possible to achieve rotations of ≈100 mrad and generate an elliptical polarization with only a three-layered structure. This geometry is beneficial, not only as a way to enhance the magneto-electric effect, rendering it easier to observe, but also as a method for controlling the polarization of electromagnetic radiation. PMID:28220875

  16. Observation of non-classical correlations in sequential measurements of photon polarization

    NASA Astrophysics Data System (ADS)

    Suzuki, Yutaro; Iinuma, Masataka; Hofmann, Holger F.

    2016-10-01

    A sequential measurement of two non-commuting quantum observables results in a joint probability distribution for all output combinations that can be explained in terms of an initial joint quasi-probability of the non-commuting observables, modified by the resolution errors and back-action of the initial measurement. Here, we show that the error statistics of a sequential measurement of photon polarization performed at different measurement strengths can be described consistently by an imaginary correlation between the statistics of resolution and back-action. The experimental setup was designed to realize variable strength measurements with well-controlled imaginary correlation between the statistical errors caused by the initial measurement of diagonal polarizations, followed by a precise measurement of the horizontal/vertical polarization. We perform the experimental characterization of an elliptically polarized input state and show that the same complex joint probability distribution is obtained at any measurement strength.

  17. Polarization-interleave-multiplexed discrete multi-tone modulation with direct detection utilizing MIMO equalization.

    PubMed

    Zhou, Xian; Zhong, Kangping; Gao, Yuliang; Sui, Qi; Dong, Zhenghua; Yuan, Jinhui; Wang, Liang; Long, Keping; Lau, Alan Pak Tao; Lu, Chao

    2015-04-06

    Discrete multi-tone (DMT) modulation is an attractive modulation format for short-reach applications to achieve the best use of available channel bandwidth and signal noise ratio (SNR). In order to realize polarization-multiplexed DMT modulation with direct detection, we derive an analytical transmission model for dual polarizations with intensity modulation and direct diction (IM-DD) in this paper. Based on the model, we propose a novel polarization-interleave-multiplexed DMT modulation with direct diction (PIM-DMT-DD) transmission system, where the polarization de-multiplexing can be achieved by using a simple multiple-input-multiple-output (MIMO) equalizer and the transmission performance is optimized over two distinct received polarization states to eliminate the singularity issue of MIMO demultiplexing algorithms. The feasibility and effectiveness of the proposed PIM-DMT-DD system are investigated via theoretical analyses and simulation studies.

  18. Dual-band high-efficiency polarization converter using an anisotropic metasurface

    NASA Astrophysics Data System (ADS)

    Lin, Baoqin; Wang, Buhong; Meng, Wen; Da, Xinyu; Li, Wei; Fang, Yingwu; Zhu, Zihang

    2016-05-01

    In this work, a dual-band and high-efficiency reflective cross-polarization converter based on an anisotropic metasurface for linearly polarized electromagnetic waves is proposed. Its unit cell is composed of an elliptical disk-ring mounted on grounded dielectric substrate, which is an anisotropic structure with a pair of mutually perpendicular symmetric axes u and v along ± 45 ° directions with respect to y-axis direction. Both the simulation and measured results show that the polarization converter can convert x- or y-polarized incident wave to its cross polarized wave in the two frequency bands (6.99-9.18 GHz, 11.66-20.40 GHz) with the conversion efficiency higher than 90%; moreover, the higher frequency band is an ultra-wide one with a relative bandwidth of 54.5% for multiple plasmon resonances. In addition, we present a detailed analysis for the polarization conversion of the polarization converter, and derive a formula to calculate the cross- and co-polarization reflections at y-polarized incidence according to the phase differences between the two reflected coefficients at u-polarized and v-polarized incidences. The simulated, calculated, and measured results are all in agreement with the entire frequency regions.

  19. Variable Accuracy of Wearable Heart Rate Monitors during Aerobic Exercise.

    PubMed

    Gillinov, Stephen; Etiwy, Muhammad; Wang, Robert; Blackburn, Gordon; Phelan, Dermot; Gillinov, A Marc; Houghtaling, Penny; Javadikasgari, Hoda; Desai, Milind Y

    2017-08-01

    Athletes and members of the public increasingly rely on wearable HR monitors to guide physical activity and training. The accuracy of newer, optically based monitors is unconfirmed. We sought to assess the accuracy of five optically based HR monitors during various types of aerobic exercise. Fifty healthy adult volunteers (mean ± SD age = 38 ± 12 yr, 54% female) completed exercise protocols on a treadmill, a stationary bicycle, and an elliptical trainer (±arm movement). Each participant underwent HR monitoring with an electrocardiogaphic chest strap monitor (Polar H7), forearm monitor (Scosche Rhythm+), and two randomly assigned wrist-worn HR monitors (Apple Watch, Fitbit Blaze, Garmin Forerunner 235, and TomTom Spark Cardio), one on each wrist. For each exercise type, HR was recorded at rest, light, moderate, and vigorous intensity. Agreement between HR measurements was assessed using Lin's concordance correlation coefficient (rc). Across all exercise conditions, the chest strap monitor (Polar H7) had the best agreement with ECG (rc = 0.996) followed by the Apple Watch (rc = 0.92), the TomTom Spark (rc = 0.83), and the Garmin Forerunner (rc = 0.81). Scosche Rhythm+ and Fitbit Blaze were less accurate (rc = 0.75 and rc = 0.67, respectively). On treadmill, all devices performed well (rc = 0.88-0.93) except the Fitbit Blaze (rc = 0.76). While bicycling, only the Garmin, Apple Watch, and Scosche Rhythm+ had acceptable agreement (rc > 0.80). On the elliptical trainer without arm levers, only the Apple Watch was accurate (rc = 0.94). None of the devices was accurate during elliptical trainer use with arm levers (all rc < 0.80). The accuracy of wearable, optically based HR monitors varies with exercise type and is greatest on the treadmill and lowest on elliptical trainer. Electrode-containing chest monitors should be used when accurate HR measurement is imperative.

  20. Fiber-based polarization-sensitive Mueller matrix optical coherence tomography with continuous source polarization modulation.

    PubMed

    Jiao, Shuliang; Todorović, Milos; Stoica, George; Wang, Lihong V

    2005-09-10

    We report on a new configuration of fiber-based polarization-sensitive Mueller matrix optical coherence tomography that permits the acquisition of the round-trip Jones matrix of a biological sample using only one light source and a single depth scan. In this new configuration, a polarization modulator is used in the source arm to continuously modulate the incident polarization state for both the reference and the sample arms. The Jones matrix of the sample can be calculated from the two frequency terms in the two detection channels. The first term is modulated by the carrier frequency, which is determined by the longitudinal scanning mechanism, whereas the other term is modulated by the beat frequency between the carrier frequency and the second harmonic of the modulation frequency of the polarization modulator. One important feature of this system is that, for the first time to our knowledge, the Jones matrix of the sample can be calculated with a single detection channel and a single measurement when diattenuation is negligible. The system was successfully tested by imaging both standard polarization elements and biological samples.

  1. Scientific Verification of Faraday Rotation Modulators: Detection of Diffuse Polarized Galactic Emission

    NASA Technical Reports Server (NTRS)

    Moyerman, S.; Bierman, E.; Ade, P. A. R.; Aiken, R.; Barkats, D.; Bischoff, C.; Bock, J. J.; Chiang, H. C.; Dowell, C. D.; Duband, L.; hide

    2012-01-01

    The design and performance of a wide bandwidth linear polarization-modulator based on the Faraday effect is described. Faraday Rotation Modulators (FRMs) are solid-state polarization switches that are capable of modulation up to approx 10 kHz. Six FRMs were utilized during the 2006 observing season in the Background Imaging of Cosmic Extragalactic Polarization (BICEP) experiment; three FRMs were used at each of BICEP fs 100 and 150 GHz frequency bands. The technology was verified through high signal-to-noise detection of Galactic polarization using two of the six FRMs during four observing runs in 2006. The features exhibit strong agreement with BICEP fs measurements of the Galaxy using non-FRM pixels and with the Galactic polarization models. This marks the first detection of high signal-to-noise mm-wave celestial polarization using fast, active optical modulation. The performance of the FRMs during periods when they were not modulated was also analyzed and compared to results from BICEP fs 43 pixels without FRMs.

  2. Observing the Cosmic Microwave Background Polarization with Variable-delay Polarization Modulators for the Cosmology Large Angular Scale Surveyor

    NASA Astrophysics Data System (ADS)

    Harrington, Kathleen; CLASS Collaboration

    2018-01-01

    The search for inflationary primordial gravitational waves and the optical depth to reionization, both through their imprint on the large angular scale correlations in the polarization of the cosmic microwave background (CMB), has created the need for high sensitivity measurements of polarization across large fractions of the sky at millimeter wavelengths. These measurements are subjected to instrumental and atmospheric 1/f noise, which has motivated the development of polarization modulators to facilitate the rejection of these large systematic effects.Variable-delay polarization modulators (VPMs) are used in the Cosmology Large Angular Scale Surveyor (CLASS) telescopes as the first element in the optical chain to rapidly modulate the incoming polarization. VPMs consist of a linearly polarizing wire grid in front of a moveable flat mirror; varying the distance between the grid and the mirror produces a changing phase shift between polarization states parallel and perpendicular to the grid which modulates Stokes U (linear polarization at 45°) and Stokes V (circular polarization). The reflective and scalable nature of the VPM enables its placement as the first optical element in a reflecting telescope. This simultaneously allows a lock-in style polarization measurement and the separation of sky polarization from any instrumental polarization farther along in the optical chain.The Q-Band CLASS VPM was the first VPM to begin observing the CMB full time in 2016. I will be presenting its design and characterization as well as demonstrating how modulating polarization significantly rejects atmospheric and instrumental long time scale noise.

  3. [Research on Spectral Polarization Imaging System Based on Static Modulation].

    PubMed

    Zhao, Hai-bo; Li, Huan; Lin, Xu-ling; Wang, Zheng

    2015-04-01

    The main disadvantages of traditional spectral polarization imaging system are: complex structure, with moving parts, low throughput. A novel method of spectral polarization imaging system is discussed, which is based on static polarization intensity modulation combined with Savart polariscope interference imaging. The imaging system can obtain real-time information of spectral and four Stokes polarization messages. Compared with the conventional methods, the advantages of the imaging system are compactness, low mass and no moving parts, no electrical control, no slit and big throughput. The system structure and the basic theory are introduced. The experimental system is established in the laboratory. The experimental system consists of reimaging optics, polarization intensity module, interference imaging module, and CCD data collecting and processing module. The spectral range is visible and near-infrared (480-950 nm). The white board and the plane toy are imaged by using the experimental system. The ability of obtaining spectral polarization imaging information is verified. The calibration system of static polarization modulation is set up. The statistical error of polarization degree detection is less than 5%. The validity and feasibility of the basic principle is proved by the experimental result. The spectral polarization data captured by the system can be applied to object identification, object classification and remote sensing detection.

  4. Linear Transformation of the Polarization Modes in Coiled Optical Spun-Fibers with Strong Unperturbed Linear Birefringence. I. Nonresonant Transformation

    NASA Astrophysics Data System (ADS)

    Malykin, G. B.; Pozdnyakova, V. I.

    2018-03-01

    A linear transformation of orthogonal polarization modes in coiled optical spun-fibers with strong unperturbed linear birefringence, which causes the emergence of the dependences of the integrated elliptical birefringence and the ellipticity and azimuth of the major axis of the ellipse, as well as the polarization state of radiation (PSR), on the length of optical fiber has been considered. Optical spun-fibers are subjected to a strong mechanical twisting, which is frozen into the structure of the optical fiber upon cooling, in the process of being drawn out from the workpiece. Since the values of the local polarization parameters of coiled spunwaveguides vary according to a rather complex law, the calculations were carried out by numerical modeling of the parameters of the Jones matrices. Since the rotation speed of the axes of the birefringence is constant on a relatively short segment of a coiled optical spun-fiber in the accompanying torsion (helical) coordinate system, the so-called "Ginzburg helical polarization modes" (GHPMs)—two mutually orthogonal ellipses with the opposite directions of traversal, the axis of which rotate relative to the fixed coordinate system uniformly and unidirectionally—are approximately the local normal polarization modes of such optical fiber. It has been shown that, despite the fact that the unperturbed linear birefringence of the spun-fibers significantly exceeds the linear birefringence, which is caused by the winding on a coil, the integral birefringence of an extended segment of such a fiber coincides in order of magnitude with the linear birefringence, which is caused by the winding on the coil, and the integral polarization modes tend asymptotically to circular ones. It has been also shown that the values of the circular birefringence of twisted single-mode fibers, which were calculated in a nonrotating and torsion helical coordinate systems, differ significantly. It has been shown that the polarization phenomena occur in the process of linear transformation of local polarization modes, which lead to small quasi-harmonic oscillations of the birefringence integral parameters of the optical spun-fibers, which depend on their length, and the period of these oscillations is approximately equal to half of the effective period of polarization beating.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allaria, Enrico; Diviacco, Bruno; Callegari, Carlo

    The two single-pass, externally seeded free-electron lasers (FELs) of the FERMI user facility are designed around Apple-II-type undulators that can operate at arbitrary polarization in the vacuum ultraviolet-to-soft x-ray spectral range. Furthermore, within each FEL tuning range, any output wavelength and polarization can be set in less than a minute of routine operations. We report the first demonstration of the full output polarization capabilities of FERMI FEL-1 in a campaign of experiments where the wavelength and nominal polarization are set to a series of representative values, and the polarization of the emitted intense pulses is thoroughly characterized by three independentmore » instruments and methods, expressly developed for the task. The measured radiation polarization is consistently >90% and is not significantly spoiled by the transport optics; differing, relative transport losses for horizontal and vertical polarization become more prominent at longer wavelengths and lead to a non-negligible ellipticity for an originally circularly polarized state. The results from the different polarimeter setups validate each other, allow a cross-calibration of the instruments, and constitute a benchmark for user experiments.« less

  6. Streamline integration as a method for two-dimensional elliptic grid generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiesenberger, M., E-mail: Matthias.Wiesenberger@uibk.ac.at; Held, M.; Einkemmer, L.

    We propose a new numerical algorithm to construct a structured numerical elliptic grid of a doubly connected domain. Our method is applicable to domains with boundaries defined by two contour lines of a two-dimensional function. Furthermore, we can adapt any analytically given boundary aligned structured grid, which specifically includes polar and Cartesian grids. The resulting coordinate lines are orthogonal to the boundary. Grid points as well as the elements of the Jacobian matrix can be computed efficiently and up to machine precision. In the simplest case we construct conformal grids, yet with the help of weight functions and monitor metricsmore » we can control the distribution of cells across the domain. Our algorithm is parallelizable and easy to implement with elementary numerical methods. We assess the quality of grids by considering both the distribution of cell sizes and the accuracy of the solution to elliptic problems. Among the tested grids these key properties are best fulfilled by the grid constructed with the monitor metric approach. - Graphical abstract: - Highlights: • Construct structured, elliptic numerical grids with elementary numerical methods. • Align coordinate lines with or make them orthogonal to the domain boundary. • Compute grid points and metric elements up to machine precision. • Control cell distribution by adaption functions or monitor metrics.« less

  7. Complete Stokes polarimetry of magneto-optical Faraday effect in a terbium gallium garnet crystal at cryogenic temperatures.

    PubMed

    Majeed, Hassaan; Shaheen, Amrozia; Anwar, Muhammad Sabieh

    2013-10-21

    We report the complete determination of the polarization changes caused in linearly polarized incident light due to propagation in a magneto-optically active terbium gallium garnet (TGG) single crystal, at temperatures ranging from 6.3 to 300 K. A 28-fold increase in the Verdet constant of the TGG crystal is seen as its temperature decreases to 6.3 K. In contrast with polarimetry of light emerging from a Faraday material at room temperature, polarimetry at cryogenic temperatures cannot be carried out using the conventional fixed polarizer-analyzer technique because the assumption that ellipticity is negligible becomes increasingly invalid as temperature is lowered. It is shown that complete determination of light polarization in such a case requires the determination of its Stokes parameters, otherwise inaccurate measurements will result with negative implications for practical devices.

  8. Polarization-sensitive optical coherence tomography using continuous polarization modulation with arbitrary phase modulation amplitude

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.

    2012-03-01

    We demonstrate theoretically and experimentally that the phase retardance and relative optic-axis orientation of a sample can be calculated without prior knowledge of the actual value of the phase modulation amplitude when using a polarization-sensitive optical coherence tomography system based on continuous polarization modulation (CPM-PS-OCT). We also demonstrate that the sample Jones matrix can be calculated at any values of the phase modulation amplitude in a reasonable range depending on the system effective signal-to-noise ratio. This has fundamental importance for the development of clinical systems by simplifying the polarization modulator drive instrumentation and eliminating its calibration procedure. This was validated on measurements of a three-quarter waveplate and an equine tendon sample by a fiber-based swept-source CPM-PS-OCT system.

  9. TRANSVERSE MERCATOR MAP PROJECTION OF THE SPHEROID USING TRANSFORMATION OF THE ELLIPTIC INTEGRAL

    NASA Technical Reports Server (NTRS)

    Wallis, D. E.

    1994-01-01

    This program produces the Gauss-Kruger (constant meridional scale) Transverse Mercator Projection which is used to construct the U.S. Army's Universal Transverse Mercator (UTM) Grid System. The method is capable of mapping the entire northern hemisphere of the earth (and, by symmetry of the projection, the entire earth) accurately with respect to a single principal meridian, and is therefore mathematically insensitive to proximity either to the pole or the equator, or to the departure of the meridian from the central meridian. This program could be useful to any map-making agency. The program overcomes the limitations of the "series" method (Thomas, 1952) presently used to compute the UTM Grid, specifically its complicated derivation, non-convergence near the pole, lack of rigorous error analysis, and difficulty of obtaining increased accuracy. The method is based on the principle that the parametric colatitude of a point is the amplitude of the Elliptic Integral of the 2nd Kind, and this (irreducible) integral is the desired projection. Thus, a specification of the colatitude leads, most directly (and with strongest motivation) to a formulation in terms of amplitude. The most difficult problem to be solved was setting up the method so that the Elliptic Integral of the 2nd Kind could be used elsewhere than on the principal meridian. The point to be mapped is specified in conventional geographic coordinates (geodetic latitude and longitudinal departure from the principal meridian). Using the colatitude (complement of latitude) and the longitude (departure), the initial step is to map the point to the North Polar Stereographic Projection. The closed-form, analytic function that coincides with the North Polar Stereographic Projection of the spheroid along the principal meridian is put into a Newton-Raphson iteration that solves for the tangent of one half the parametric colatitude, generalized to the complex plane. Because the parametric colatitude is the amplitude of the (irreducible) Incomplete Elliptic Integral of the 2nd Kind, the value for the tangent of one half the amplitude of the Elliptic Integral of the 2nd Kind is now known. The elliptic integral may now be computed by any desired method, and the result will be the Gauss-Kruger Transverse Mercator Projection. This result is a consequence of the fact that these steps produce a computation of real distance along the image (in the plane) of the principal meridian, and an analytic continuation of the distance at points that don't lie on the principal meridian. The elliptic-integral method used by this program is one of the "transformations of the elliptic integral" (similar to Landen's Transformation), appearing in standard handbooks of mathematical functions. Only elementary transcendental functions are utilized. The program output is the conventional (as used by the mapping agencies) cartesian coordinates, in meters, of the Transverse Mercator projection. The origin is at the intersection of the principal meridian and the equator. This FORTRAN77 program was developed on an IBM PC series computer equipped with an Intel Math Coprocessor. Double precision complex arithmetic and transcendental functions are needed to support a projection accuracy of 1 mm. Because such functions are not usually part of the FORTRAN library, the needed functions have been explicitly programmed and included in the source code. The program was developed in 1989. TRANSVERSE MERCATOR MAP PROJECTION OF THE SPHEROID USING TRANSFORMATIONS OF THE ELLIPTIC INTEGRAL is a copyrighted work with all copyright vested in NASA.

  10. Determination of Atmospheric Aerosol Characteristics from the Polarization of Scattered Radiation

    NASA Technical Reports Server (NTRS)

    Harris, F. S., Jr.; McCormick, M. P.

    1973-01-01

    Aerosols affect the polarization of radiation in scattering, hence measured polarization can be used to infer the nature of the particles. Size distribution, particle shape, real and absorption parts of the complex refractive index affect the scattering. From Lorenz-Mie calculations of the 4-Stokes parameters as a function of scattering angle for various wavelengths the following polarization parameters were plotted: total intensity, intensity of polarization in plane of observation, intensity perpendicular to the plane of observation, polarization ratio, polarization (using all 4-Stokes parameters), plane of the polarization ellipse and its ellipticity. A six-component log-Gaussian size distribution model was used to study the effects of the nature of the polarization due to variations in the size distribution and complex refractive index. Though a rigorous inversion from measurements of scattering to detailed specification of aerosol characteristics is not possible, considerable information about the nature of the aerosols can be obtained. Only single scattering from aerosols was used in this paper. Also, the background due to Rayleigh gas scattering, the reduction of effects as a result of multiple scattering and polarization effects of possible ground background (airborne platforms) were not included.

  11. Remote Sensing of Arctic and Boreal Atmospheric Composition from a Highly Elliptical Orbit

    NASA Astrophysics Data System (ADS)

    Nassar, Ray; McElroy, C. Tom; Walker, Kaley A.; McLinden, Chris; Sioris, Chris E.; Jones, Dylan B. A.; Martin, Randall V.; Rochon, Yves; Garand, Louis; Trischencko, Alexander P.

    2016-04-01

    The Polar Communications and Weather (PCW) mission is a proposed Canadian mission that aims to provide continuous meteorological observations and communications capacity over the Arctic and northern latitudes from a pair of satellites in a highly elliptical orbit (HEO) configuration. The Weather, Climate and Air quality (WCA) concept is a mission enhancement that completed a Phase A study through the Polar Highly Elliptical Orbit Science (PHEOS) program. The PHEOS-WCA instrument suite would consist of a high resolution Fourier Transform Spectrometer (FTS) operating in the mid-, near- and shortwave infrared and a UV-Visible grating Spectrometer (UVS), both with 2-dimensional imaging capability. These instruments would enable dense measurements of numerous quantities important for understanding weather (H2O and temperature profiles), climate (column-averaged CO2 and CH4) and air quality (tropospheric O3, CO, NO2, SO2, NH3, HCN, CH3OH, BrO, aerosols, ….) with a pixel size of 10×10 km2 or better and repeat time targeted at 2 hours or less. Our studies have demonstrated that HEO observations of CO2 offer major advantages over those from low earth orbit (LEO) for constraining CO2 surface sources and sinks in the Arctic and boreal regions, especially in the summer when there is the potential for the release of CO2 from permafrost thaw and boreal forest disturbances. This presentation will give an overview of the PHEOS-WCA mission concept, discuss its complementarity with upcoming international missions and provide an update on recent progress and challenges in moving forward.

  12. Coherent population trapping with polarization modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Peter, E-mail: enxue.yun@obspm.fr; Guérandel, Stéphane; Clercq, Emeric de

    Coherent population trapping (CPT) is extensively studied for future vapor cell clocks of high frequency stability. In the constructive polarization modulation CPT scheme, a bichromatic laser field with polarization and phase synchronously modulated is applied on an atomic medium. A high contrast CPT signal is observed in this so-called double-modulation configuration, due to the fact that the atomic population does not leak to the extreme Zeeman states, and that the two CPT dark states, which are produced successively by the alternate polarizations, add constructively. Here, we experimentally investigate CPT signal dynamics first in the usual configuration, a single circular polarization.more » The double-modulation scheme is then addressed in both cases: one pulse Rabi interaction and two pulses Ramsey interaction. The impact and the optimization of the experimental parameters involved in the time sequence are reviewed. We show that a simple seven-level model explains the experimental observations. The double-modulation scheme yields a high contrast similar to the one of other high contrast configurations like push-pull optical pumping or crossed linear polarization scheme, with a setup allowing a higher compactness. The constructive polarization modulation is attractive for atomic clock, atomic magnetometer, and high precision spectroscopy applications.« less

  13. Analytical Research by Computer Simulation of Developmental Polarimetric/Frequency Agile Pulsed Radars.

    DTIC Science & Technology

    1982-12-01

    EOONw OF I NOV 65 It OLETE UNCLASSIFIED SECU1ITY CLAINPICATIOW OF TrIS PA" (ui" D~e Sntere SM rVv CLAMIC*7mwN OF rN#S PA~gtMM 3W AWus 29CURITY... out of the page Figure 2. Left hand circular polarization. Right hand circular Po - -90* or - n/2 radians / EV-- E The Loci is a circle of radius E...looking against the direction of travel. .4 I. travel of E is out of the page Figure 3. Right hand circular polarization 3. Elliptical (see Figure 4

  14. Diffusing-wave polarimetry for tissue diagnostics

    NASA Astrophysics Data System (ADS)

    Macdonald, Callum; Doronin, Alexander; Peña, Adrian F.; Eccles, Michael; Meglinski, Igor

    2014-03-01

    We exploit the directional awareness of circularly and/or elliptically polarized light propagating within media which exhibit high numbers of scattering events. By tracking the Stokes vector of the detected light on the Poincaŕe sphere, we demonstrate its applicability for characterization of anisotropy of scattering. A phenomenological model is shown to have an excellent agreement with the experimental data and with the results obtained by the polarization tracking Monte Carlo model, developed in house. By analogy to diffusing-wave spectroscopy we call this approach diffusing-wave polarimetry, and illustrate its utility in probing cancerous and non-cancerous tissue samplesin vitro for diagnostic purposes.

  15. Formulation of the proper equations for developing standards in coherent dual polarisation SAR imaging

    NASA Astrophysics Data System (ADS)

    Boerner, W.-M.; Kostinski, A. B.

    1988-08-01

    Crucial inconsistencies in the basic equations of radar polarimetry which are common in the literature were detected. The formulations of the polarization state definitions given in the IEEE/ANSI Standards 149-1979 are in error. These and other inconsistencies and conceptual errors are discussed. The correct formulae for the proposed revision of the polarimetric standards together with a well-defined and consistent procedure for measuring target scattering matrices in monostatic and bistatic arrangements are given. The proposed procedure can be applied to an arbitrary measurement process in any general elliptical polarization basis.

  16. Polarization-sensitive optical coherence tomography measurements with different phase modulation amplitude when using continuous polarization modulation

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.

    2012-01-01

    We demonstrate theoretically and experimentally that the phase retardance and relative optic-axis orientation of a sample can be calculated without prior knowledge of the actual value of the phase modulation amplitude when using a polarization-sensitive optical coherence tomography system based on continuous polarization modulation (CPM-PS-OCT). We also demonstrate that the sample Jones matrix can be calculated at any values of the phase modulation amplitude in a reasonable range depending on the system effective signal-to-noise ratio. This has fundamental importance for the development of clinical systems by simplifying the polarization modulator drive instrumentation and eliminating its calibration procedure. This was validated on measurements of a three-quarter waveplate and an equine tendon sample by a fiber-based swept-source CPM-PS-OCT system.

  17. Q-plates as higher order polarization controllers for orbital angular momentum modes of fiber.

    PubMed

    Gregg, P; Mirhosseini, M; Rubano, A; Marrucci, L; Karimi, E; Boyd, R W; Ramachandran, S

    2015-04-15

    We demonstrate that a |q|=1/2 plate, in conjunction with appropriate polarization optics, can selectively and switchably excite all linear combinations of the first radial mode order |l|=1 orbital angular momentum (OAM) fiber modes. This enables full mapping of free-space polarization states onto fiber vector modes, including the radially (TM) and azimuthally polarized (TE) modes. The setup requires few optical components and can yield mode purities as high as ∼30  dB. Additionally, just as a conventional fiber polarization controller creates arbitrary elliptical polarization states to counteract fiber birefringence and yield desired polarizations at the output of a single-mode fiber, q-plates disentangle degenerate state mixing effects between fiber OAM states to yield pure states, even after long-length fiber propagation. We thus demonstrate the ability to switch dynamically, potentially at ∼GHz rates, between OAM modes, or create desired linear combinations of them. We envision applications in fiber-based lasers employing vector or OAM mode outputs, as well as communications networking schemes exploiting spatial modes for higher dimensional encoding.

  18. Control of the polarization of a vacuum-ultraviolet, high-gain, free-electron laser

    DOE PAGES

    Allaria, Enrico; Diviacco, Bruno; Callegari, Carlo; ...

    2014-12-02

    The two single-pass, externally seeded free-electron lasers (FELs) of the FERMI user facility are designed around Apple-II-type undulators that can operate at arbitrary polarization in the vacuum ultraviolet-to-soft x-ray spectral range. Furthermore, within each FEL tuning range, any output wavelength and polarization can be set in less than a minute of routine operations. We report the first demonstration of the full output polarization capabilities of FERMI FEL-1 in a campaign of experiments where the wavelength and nominal polarization are set to a series of representative values, and the polarization of the emitted intense pulses is thoroughly characterized by three independentmore » instruments and methods, expressly developed for the task. The measured radiation polarization is consistently >90% and is not significantly spoiled by the transport optics; differing, relative transport losses for horizontal and vertical polarization become more prominent at longer wavelengths and lead to a non-negligible ellipticity for an originally circularly polarized state. The results from the different polarimeter setups validate each other, allow a cross-calibration of the instruments, and constitute a benchmark for user experiments.« less

  19. Antiferromagnetic domain wall as spin wave polarizer and retarder.

    PubMed

    Lan, Jin; Yu, Weichao; Xiao, Jiang

    2017-08-02

    As a collective quasiparticle excitation of the magnetic order in magnetic materials, spin wave, or magnon when quantized, can propagate in both conducting and insulating materials. Like the manipulation of its optical counterpart, the ability to manipulate spin wave polarization is not only important but also fundamental for magnonics. With only one type of magnetic lattice, ferromagnets can only accommodate the right-handed circularly polarized spin wave modes, which leaves no freedom for polarization manipulation. In contrast, antiferromagnets, with two opposite magnetic sublattices, have both left and right-circular polarizations, and all linear and elliptical polarizations. Here we demonstrate theoretically and confirm by micromagnetic simulations that, in the presence of Dzyaloshinskii-Moriya interaction, an antiferromagnetic domain wall acts naturally as a spin wave polarizer or a spin wave retarder (waveplate). Our findings provide extremely simple yet flexible routes toward magnonic information processing by harnessing the polarization degree of freedom of spin wave.Spin waves are promising candidates as carriers for energy-efficient information processing, but they have not yet been fully explored application wise. Here the authors theoretically demonstrate that antiferromagnetic domain walls are naturally spin wave polarizers and retarders, two key components of magnonic devices.

  20. Polarised Organisation of the Cytoskeleton: Regulation by Cell Polarity Proteins.

    PubMed

    Raman, Renuka; Savio, Clyde; Sonawane, Mahendra

    2018-06-24

    Polarity is one of the fundamental properties displayed by living organisms. In metazoans, cell polarity governs developmental processes and plays an essential role during maintenance of forms of tissues as well as their functions. The mechanisms of establishment and maintenance of cell polarity have been investigated extensively in the last two decades. This has resulted in identification of "core cell polarity modules" that control anterior-posterior, front-rear and apical-basal polarity across various cell types. Here, we review how these polarity modules interact closely with the cytoskeleton during establishment and maintenance of cytoskeletal polarity. We further suggest that reciprocal interactions between cell polarity modules and the cytoskeleton consolidate the initial weaker polarity, arising from an external cue, into a committed polarised system. Copyright © 2018. Published by Elsevier Ltd.

  1. Soft x-ray spectromicroscopy using compact scanning transmission x-ray microscope at the photon factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeichi, Yasuo, E-mail: yasuo.takeichi@kek.jp; Inami, Nobuhito; Ono, Kanta

    We report the stability and recent performances of a new type of scanning transmission X-ray microscopy. The optics and compact design of the microscope realized mobility and robust performance. Detailed consideration to the vibration control will be described. The insertion device upgraded to elliptical polarization undulator enabled linear dichroism and circular dichroism experiments.

  2. Testing the Role of Recollision in N2+ Air Lasing

    NASA Astrophysics Data System (ADS)

    Britton, Mathew; Laferrière, Patrick; Ko, Dong Hyuk; Li, Zhengyan; Kong, Fanqi; Brown, Graham; Naumov, Andrei; Zhang, Chunmei; Arissian, Ladan; Corkum, P. B.

    2018-03-01

    It has been known for many years that during filamentation of femtosecond light pulses in air, gain is observed on the B to X transition in N2+ . While the gain mechanism remains unclear, it has been proposed that recollision, a process that is fundamental to much of strong field science, is critical for establishing gain. We probe this hypothesis by directly comparing the influence of the ellipticity of the pump light on gain in air filaments. Then, we decouple filamentation from gain by measuring the gain in a thin gas jet that we also use for high harmonic generation. The latter allows us to compare the dependence of the gain on the ellipticity of the pump with the dependence of the high harmonic signal on the ellipticity of the fundamental. We find that gain and harmonic generation have very different behavior in both filaments and in the jet. In fact, in a jet we even measure gain with circular polarization. Thus, we establish that recollision does not play a significant role in creating the inversion.

  3. Effects of the pion-nucleon potential in 197Au+197Au collisions at 1.5 GeV/nucleon

    NASA Astrophysics Data System (ADS)

    Xie, Wen-Jie; Su, Jun; Zhu, Long; Zhang, Feng-Shou

    2018-06-01

    The influence of the pion-nucleon potential on the pion dynamics in 197Au+197Au collisions at 1.5 GeV/nucleon for different centrality intervals is investigated in the framework of the isospin-dependent quantum molecular dynamics model. It is found that the observables related to pions, such as the rapidity distributions, the rapidity dependencies of the directed flow and the elliptic flow, the centrality dependencies of the directed flow and the elliptic flow, and the transverse momentum distribution of the strength function of the azimuthal anisotropy are sensitive to the pion-nucleon potential. The pion multiplicity and the polar-angle distributions of pions are less affected by the pion-nucleon potential. The comparisons to the experimental data, in particular to the rapidity distributions of the directed flow and the elliptic flow, favor the stronger pion-nucleon potential derived from the phenomenological ansatz proposed by Gale and Kapusta [C. Gale and J. Kapusta, Phys. Rev. C 35, 2107 (1987), 10.1103/PhysRevC.35.2107].

  4. Nuclear quadrupole moment-induced Cotton-Mouton effect in molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Li-juan, E-mail: lijuan.fu@oulu.fi, E-mail: juha.vaara@iki.fi; Vaara, Juha, E-mail: lijuan.fu@oulu.fi, E-mail: juha.vaara@iki.fi

    Nuclear magneto-optic effects could make important contributions to novel, high-sensitivity, and high-resolution spectroscopic and imaging methods that provide nuclear site-specific structural and dynamic information on molecular and materials systems. Here we present a first-principles electronic structure formulation of nuclear quadrupole moment-induced Cotton-Mouton effect in terms of response theory, as well as ab initio and density-functional theory calculations of this phenomenon for a series of molecular liquids: H{sub 2}O, CH{sub 3}NO{sub 2}, CH{sub 3}CH{sub 2}OH, C{sub 6}H{sub 6}, C{sub 6}H{sub 12} (cyclohexane), HI, XeF{sub 2}, WF{sub 5}Cl, and Pt(C{sub 2}dtp){sub 2}. The roles of basis-set convergence, electron correlation, and relativistic effectsmore » are discussed. The estimated order of magnitude of the overall ellipticities induced to linearly polarized light is 10{sup −3}–10{sup −7} rad/(M cm) for fully spin polarized nuclei. The cases with the largest presently obtained ellipticities should be detectable with modern instrumentation in the Voigt magneto-optic setup, particularly for the heavy nuclei.« less

  5. Corrections to the Thomson cross section caused by relativistic effects and by the presence of the drift velocity of a classical charged particle in the field of a monochromatic plane wave

    NASA Astrophysics Data System (ADS)

    Perestoronin, A. V.

    2017-03-01

    An approach to the solution of the relativistic problem of the motion of a classical charged particle in the field of a monochromatic plane wave with an arbitrary polarization (linear, circular, or elliptic) is proposed. It is based on the analysis of the 4-vector equation of motion of the charged particle together with the 4-vector and tensor equations for the components of the electromagnetic field tensor of a monochromatic plane wave. This approach provides analytical expressions for the time-averaged square of the 4-acceleration of the charge, as well as for the averaged values of any quantities periodic in the time of the reference frame. Expressions for the integral power of scattered radiation, which is proportional to the time-averaged square of the 4-acceleration of the charge, and for the integral scattering cross section, which is the ratio of the power of scattered radiation to the intensity of incident radiation, are obtained for an arbitrary inertial reference frame. An expression for the scattering cross section, which coincides with the known results at the circular and linear polarizations of the incident waves and describes the case of elliptic polarization of the incident wave, is obtained for the reference frame where the charged particle is on average at rest. An expression for the scattering cross section including relativistic effects and the nonzero drift velocity of a particle in this system is obtained for the laboratory reference frame, where the initial velocity of the charged particle is zero. In the case of the circular polarization of the incident wave, the scattering cross section in the laboratory frame is equal to the Thompson cross section.

  6. Construction and performance of BL28 of the Photon Factory for circularly polarized synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Kagoshima, Yasushi; Muto, Sadatsugu; Miyahara, Tsuneaki; Koide, Tsuneharu; Yamamoto, Shigeru; Kitamura, Hideo

    1992-01-01

    A branch beamline, BL28A, has been constructed for the application of circularly polarized vacuum ultraviolet radiation. The radiation can be obtained in the helical undulator operation mode of an insertion device, EMPW♯28, which is also cut for elliptically polarized hard x-ray radiation. T first harmonic of the helical undulator radiation can be tuned from 40 to 350 eV with its corresponding K value from 3 to 0.2. A monochromator working basically with constant deviation optics was installed, and has started its operation. A circularly polarized flux of ˜1010 photons/s has been achieved with energy resolution of around 500-1000 at the first harmonic peak. The circular polarization after the monochromator was estimated to be higher than 70% by comparing theory and experiment on the magnetic circular dichroism of nickel films in the 3p-3d excitation region. The design philosophy of the beamline and recent results on the performance tests are presented.

  7. A compact tunable polarized X-ray source based on laser-plasma helical undulators

    PubMed Central

    Luo, J.; Chen, M.; Zeng, M.; Vieira, J.; Yu, L. L.; Weng, S. M.; Silva, L. O.; Jaroszynski, D. A.; Sheng, Z. M.; Zhang, J.

    2016-01-01

    Laser wakefield accelerators have great potential as the basis for next generation compact radiation sources because of their extremely high accelerating gradients. However, X-ray radiation from such devices still lacks tunability, especially of the intensity and polarization distributions. Here we propose a tunable polarized radiation source based on a helical plasma undulator in a plasma channel guided wakefield accelerator. When a laser pulse is initially incident with a skew angle relative to the channel axis, the laser and accelerated electrons experience collective spiral motions, which leads to elliptically polarized synchrotron-like radiation with flexible tunability on radiation intensity, spectra and polarization. We demonstrate that a radiation source with millimeter size and peak brilliance of 2 × 1019 photons/s/mm2/mrad2/0.1% bandwidth can be made with moderate laser and electron beam parameters. This brilliance is comparable with third generation synchrotron radiation facilities running at similar photon energies, suggesting that laser plasma based radiation sources are promising for advanced applications. PMID:27377126

  8. Transverse low frequency wave in a two fluid solar wind. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Solodyna, G. V.

    1973-01-01

    Investigation is made of the properties of low frequency transverse waves in a two-fluid solar wind having a radial magnetic field and radial streaming velocity. In order to examine what effects this streaming medium has on the waves, linearly polarized waves are decomposed into left and right circularly polarized waves. Computation is made of analytic expressions valid to first order for the radial amplitude and phase dependence of these constituent waves. It is shown that after travelling a given distance r, these waves have different amplitudes and phases. The former result causes their superposition to become elliptical rather than linear. The latter causes the axis of the ellipse of polarization to rotate through a well-defined angle. Analytic expressions are obtained for the eccentricity of the ellipse and for the angle of rotation. In analogy with regular Faraday rotation, in which the plane of polarization of a linear polarized wave rotates, the effect is denoted as generalized Faraday rotation.

  9. Target-adaptive polarimetric synthetic aperture radar target discrimination using maximum average correlation height filters.

    PubMed

    Sadjadi, Firooz A; Mahalanobis, Abhijit

    2006-05-01

    We report the development of a technique for adaptive selection of polarization ellipse tilt and ellipticity angles such that the target separation from clutter is maximized. From the radar scattering matrix [S] and its complex components, in phase and quadrature phase, the elements of the Mueller matrix are obtained. Then, by means of polarization synthesis, the radar cross section of the radar scatters are obtained at different transmitting and receiving polarization states. By designing a maximum average correlation height filter, we derive a target versus clutter distance measure as a function of four transmit and receive polarization state angles. The results of applying this method on real synthetic aperture radar imagery indicate a set of four transmit and receive angles that lead to maximum target versus clutter discrimination. These optimum angles are different for different targets. Hence, by adaptive control of the state of polarization of polarimetric radar, one can noticeably improve the discrimination of targets from clutter.

  10. Focusing light through scattering media by polarization modulation based generalized digital optical phase conjugation

    NASA Astrophysics Data System (ADS)

    Yang, Jiamiao; Shen, Yuecheng; Liu, Yan; Hemphill, Ashton S.; Wang, Lihong V.

    2017-11-01

    Optical scattering prevents light from being focused through thick biological tissue at depths greater than ˜1 mm. To break this optical diffusion limit, digital optical phase conjugation (DOPC) based wavefront shaping techniques are being actively developed. Previous DOPC systems employed spatial light modulators that modulated either the phase or the amplitude of the conjugate light field. Here, we achieve optical focusing through scattering media by using polarization modulation based generalized DOPC. First, we describe an algorithm to extract the polarization map from the measured scattered field. Then, we validate the algorithm through numerical simulations and find that the focusing contrast achieved by polarization modulation is similar to that achieved by phase modulation. Finally, we build a system using an inexpensive twisted nematic liquid crystal based spatial light modulator (SLM) and experimentally demonstrate light focusing through 3-mm thick chicken breast tissue. Since the polarization modulation based SLMs are widely used in displays and are having more and more pixel counts with the prevalence of 4 K displays, these SLMs are inexpensive and valuable devices for wavefront shaping.

  11. Constructive polarization modulation for coherent population trapping clock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Peter, E-mail: enxue.yun@obspm.fr; Danet, Jean-Marie; Holleville, David

    2014-12-08

    We propose a constructive polarization modulation scheme for atomic clocks based on coherent population trapping (CPT). In this scheme, the polarization of a bichromatic laser beam is modulated between two opposite circular polarizations to avoid trapping the atomic populations in the extreme Zeeman sublevels. We show that if an appropriate phase modulation between the two optical components of the bichromatic laser is applied synchronously, the two CPT dark states which are produced successively by the alternate polarizations add constructively. Measured CPT resonance contrasts up to 20% in one-pulse CPT and 12% in two-pulse Ramsey-CPT experiments are reported, demonstrating the potentialmore » of this scheme for applications to high performance atomic clocks.« less

  12. Multidimensional signal modulation and/or demodulation for data communications

    DOEpatents

    Smith, Stephen F [London, TN; Dress, William B [Camas, WA

    2008-03-04

    Systems and methods are described for multidimensional signal modulation and/or demodulation for data communications. A method includes modulating a carrier signal in a first domain selected from the group consisting of phase, frequency, amplitude, polarization and spread; modulating the carrier signal in a second domain selected from the group consisting of phase, frequency, amplitude, polarization and spread; and modulating the carrier signal in a third domain selected from the group consisting of phase, frequency, amplitude, polarization and spread.

  13. On the effect of tilted roof reflectors in Martin-Puplett spectrometers

    NASA Astrophysics Data System (ADS)

    Schillaci, Alessandro; de Bernardis, Paolo

    2012-01-01

    In this paper we analyze theoretically and experimentally the effect of tilt of the roof mirrors in a double pendulum Martin-Puplett Polarizing Interferometer (MPI), focusing on the polarization of the interfering beams. In principle, the tilt affects the efficiency and polarimetric properties of the interferometer. The case of a moderate resolution spectrometer is analysed in detail. Using the Stokes formalism we recover the analytical expressions for the orientation angle and the ellipticity of the beam reflected from a metallic surface, and we compute these quantities for the roof-mirror of a MPI. We find that the polarization rotation and depolarization are small. Using the Jones formalism we propagate their effect on the measured interferogram and spectrum, and demonstrate that the performance degradation is small compared to other systematic effects.

  14. Arbitrary spin-to-orbital angular momentum conversion of light

    NASA Astrophysics Data System (ADS)

    Devlin, Robert C.; Ambrosio, Antonio; Rubin, Noah A.; Mueller, J. P. Balthasar; Capasso, Federico

    2017-11-01

    Optical elements that convert the spin angular momentum (SAM) of light into vortex beams have found applications in classical and quantum optics. These elements—SAM-to-orbital angular momentum (OAM) converters—are based on the geometric phase and only permit the conversion of left- and right-circular polarizations (spin states) into states with opposite OAM. We present a method for converting arbitrary SAM states into total angular momentum states characterized by a superposition of independent OAM. We designed a metasurface that converts left- and right-circular polarizations into states with independent values of OAM and designed another device that performs this operation for elliptically polarized states. These results illustrate a general material-mediated connection between SAM and OAM of light and may find applications in producing complex structured light and in optical communication.

  15. Variable-Delay Polarization Modulators for Cryogenic Millimeter-Wave Applications

    NASA Technical Reports Server (NTRS)

    Chuss, D. T.; Eimer, J. R.; Fixsen, D. J.; Hinderks, J.; Kogut, A. J.; Lazear, J.; Mirel, P.; Switzer, E.; Voellmer, G. M.; Wollack, E. J..

    2014-01-01

    We describe the design, construction, and initial validation of the variable-delay polarization modulator (VPM) designed for the PIPER cosmic microwave background polarimeter. The VPM modulates between linear and circular polarization by introducing a variable phase delay between orthogonal linear polarizations. Each VPM has a diameter of 39 cm and is engineered to operate in a cryogenic environment (1.5 K). We describe the mechanical design and performance of the kinematic double-blade flexure and drive mechanism along with the construction of the high precision wire grid polarizers.

  16. Miniature Surface Plasmon Polariton Amplitude Modulator by Beat Frequency and Polarization Control

    PubMed Central

    Chang, Cheng-Wei; Lin, Chu-En; Yu, Chih-Jen; Yeh, Ting-Tso; Yen, Ta-Jen

    2016-01-01

    The miniaturization of modulators keeps pace for the compact devices in optical applications. Here, we present a miniature surface plasmon polariton amplitude modulator (SPPAM) by directing and interfering surface plasmon polaritons on a nanofabricated chip. Our results show that this SPPAM enables two kinds of modulations. The first kind of modulation is controlled by encoding angular-frequency difference from a Zeeman laser, with a beat frequency of 1.66 MHz; the second of modulation is validated by periodically varying the polarization states from a polarization generator, with rotation frequencies of 0.5–10 k Hz. In addition, the normalized extinction ratio of our plasmonic structure reaches 100. Such miniaturized beat-frequency and polarization-controlled amplitude modulators open an avenue for the exploration of ultrasensitive nanosensors, nanocircuits, and other integrated nanophotonic devices. PMID:27558516

  17. Operating characteristics of tube-current-modulation techniques when scanning simple-shaped phantoms

    NASA Astrophysics Data System (ADS)

    Matsubara, Kosuke; Koshida, Kichiro; Lin, Pei-Jan Paul; Fukuda, Atsushi

    2015-07-01

    Our objective was to investigate the operating characteristics of tube current modulation (TCM) in computed tomography (CT) when scanning two types of simple-shaped phantoms. A tissueequivalent elliptical phantom and a homogeneous cylindrical step phantom comprising 16-, 24-, and 32-cm-diameter polymethyl methacrylate (PMMA) phantoms were scanned by using an automatic exposure control system with longitudinal (z-) and angular-longitudinal (xyz-) TCM and with a fixed tube current. The axial dose distribution throughout the elliptical phantom and the longitudinal dose distribution at the center of the cylindrical step phantom were measured by using a solid-state detector. Image noise was quantitatively measured at eight regions in the elliptical phantom and at 90 central regions in contiguous images over the full z extent of the cylindrical step phantom. The mean absorbed doses and the standard deviations in the elliptical phantom with z- and xyz-TCM were 12.3' 3.7 and 11.3' 3.5 mGy, respectively. When TCM was activated, some differences were observed in the absorbed doses of the left and the right measurement points. The average image noises in Hounsfield units (HU) and the standard deviations were 15.2' 2.4 and 15.9' 2.4 HU when using z- and xyz-TCM, respectively. With respect to the cylindrical step phantom under z-TCM, there were sudden decreases followed by increases in image noise at the interfaces with the 24- and 16-cm-diameter phantoms. The image noise of the 24-cm-diameter phantom was, relatively speaking, higher than those of the 16- and 32-cm-diameter phantoms. The simple-shaped phantoms used in this study can be employed to investigate the operating characteristics of automatic exposure control systems when specialized phantoms designed for that purpose are not available.

  18. Generation of an axially super-resolved quasi-spherical focal spot using an amplitude-modulated radially polarized beam.

    PubMed

    Lin, Han; Jia, Baohua; Gu, Min

    2011-07-01

    An axially super-resolved quasi-spherical focal spot can be generated by focusing an amplitude-modulated radially polarized beam through a high numerical aperture objective. A method based on the unique depolarization properties of a circular focus is proposed to design the amplitude modulation. The generated focal spot shows a ratio of x:y:z=1:1:1.48 for the normalized FWHM in three dimensions, compared to that of x:y:z=1:0.74:1.72 under linear polarization (in the x direction) illumination. Moreover, the focusable light efficiency of the designed amplitude-modulated beam is 65%, which is more than 3 times higher than the optimized case under linear polarization and thus make the amplitude-modulated radial polarization beam more suitable for a wide range of applications.

  19. Microtubules provide directional information for core PCP function

    PubMed Central

    Matis, Maja; Russler-Germain, David A; Hu, Qie; Tomlin, Claire J; Axelrod, Jeffrey D

    2014-01-01

    Planar cell polarity (PCP) signaling controls the polarization of cells within the plane of an epithelium. Two molecular modules composed of Fat(Ft)/Dachsous(Ds)/Four-jointed(Fj) and a ‘PCP-core’ including Frizzled(Fz) and Dishevelled(Dsh) contribute to polarization of individual cells. How polarity is globally coordinated with tissue axes is unresolved. Consistent with previous results, we find that the Ft/Ds/Fj-module has an effect on a MT-cytoskeleton. Here, we provide evidence for the model that the Ft/Ds/Fj-module provides directional information to the core-module through this MT organizing function. We show Ft/Ds/Fj-dependent initial polarization of the apical MT-cytoskeleton prior to global alignment of the core-module, reveal that the anchoring of apical non-centrosomal MTs at apical junctions is polarized, observe that directional trafficking of vesicles containing Dsh depends on Ft, and demonstrate the feasibility of this model by mathematical simulation. Together, these results support the hypothesis that Ft/Ds/Fj provides a signal to orient core PCP function via MT polarization. DOI: http://dx.doi.org/10.7554/eLife.02893.001 PMID:25124458

  20. High-frequency modulation of the four states of polarization of light with a single phase modulator

    NASA Astrophysics Data System (ADS)

    Compain, Eric; Drevillon, Bernard

    1998-04-01

    A method for light polarization modulation is described. It allows us to independently modulate, at a high frequency, the four components of the Stokes vector of light using a single phase modulator. It works in a double-pass configuration: the polarization of light is modulated a first time by the phase modulator, and is then modified by a coupling object before being modulated a second time by the same modulator. The coupling object consists of multiple glass plates, oriented at the Brewster angle, acting as a partial polarizer and in a right angle prism acting as a phase shifter and back reflector. Its polarimetric properties are obtained from refractive index contrast effects, which provides optimized and constant properties over a wide spectral range. The phase modulator can be either an electro-optic modulator providing a very high-frequency capability (up to 100 MHz) or a photoelastic modulator providing a wide spectral range capability. It is robust because there is no moving part and simple to implement because of the presence of one modulation. It displays a high level of sensitivity because all the components are high-frequency modulated. Two applications using this modulator in a polarimeter or in a polarization states generator are described. The four modulations, having the same fundamental frequency, are easily demodulated by numerical data processing. Optimized demodulation processing, adapted to the different kind of phase modulator is described. Its adaptation taking into account the bandwidth limitation and the variation of the sampling phase, are finally presented in the case of a photoelastic modulator.

  1. Generation of Optical Millimeter Wave Using Two Cascaded Polarization Modulators Based on Frequency Octupling Without Filtering

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Ma, Jianxin; Zhang, Ruijiao; Xin, Xiangjun; Zhang, Junyi

    2015-11-01

    An approach to generate an optical millimeter wave is introduced with frequency octupling using two cascaded polarization modulators followed by polarizers, respectively. By adjusting the modulation indexes of polarization modulators, only the ±4th-order sidebands are generated with a pure spectrum. Since no filter is needed, the proposed technique can be used to generate a frequency-tunable millimeter wave with a large frequency-tunable range. To prove the feasibility of the proposed approach, a simulation is conducted to generate an 80-GHz millimeter wave, and then its transmission performance is checked.

  2. Polarization control in an X-ray free-electron laser

    DOE PAGES

    Lutman, Alberto A.; MacArthur, James P.; Ilchen, Markus; ...

    2016-05-09

    X-ray free-electron lasers are unique sources of high-brightness coherent radiation. However, existing devices supply only linearly polarized light, precluding studies of chiral dynamics. A device called the Delta undulator has been installed at the Linac Coherent Light Source (LCLS) to provide tunable polarization. With a reverse tapered planar undulator line to pre-microbunch the beam and the novel technique of beam diverting, hundreds of microjoules of circularly polarized X-ray pulses are produced at 500–1,200 eV. These X-ray pulses are tens of femtoseconds long, have a degree of circular polarization of 0.98 –0.04 +0.02 at 707 eV and may be scanned inmore » energy. We also present a new two-colour X-ray pump–X-ray probe operating mode for the LCLS. As a result, energy differences of ΔE/E = 2.4% are supported, and the second pulse can be adjusted to any elliptical polarization. In this mode, the pointing, timing, intensity and wavelength of the two pulses can be modified.« less

  3. Controlling electron quantum paths for generation of circularly polarized high-order harmonics by H2+ subject to tailored (ω , 2 ω ) counter-rotating laser fields

    NASA Astrophysics Data System (ADS)

    Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.

    2018-04-01

    Recently, studies of high-order harmonics (HHG) from atoms driven by bichromatic counter-rotating circularly polarized laser fields as a source of coherent circularly polarized extreme ultraviolet (XUV) and soft-x-ray beams in a tabletop-scale setup have received considerable attention. Here, we demonstrate the ability to control the electron recollisions giving three returns per one cycle of the fundamental frequency ω by using tailored bichromatic (ω , 2 ω ) counter-rotating circularly polarized laser fields with a molecular target. The full control of the electronic pathway is first analyzed by a classical trajectory analysis and then extended to a detailed quantum study of H2+ molecules in bichromatic (ω , 2 ω ) counter-rotating circularly polarized laser fields. The radiation spectrum contains doublets of left- and right-circularly polarized harmonics in the XUV ranges. We study in detail the below-, near-, and above-threshold harmonic regions and describe how excited-state resonances alter the ellipticity and phase of the generated harmonic peaks.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuchiya, Kimichika, E-mail: kimichika.tsuchiya@kek.jp; Adachi, Masahiro; Shioya, Tatsuro

    At the 2.5-GeV Photon Factory (PF) storage ring, we recently constructed four new undulators known as U#02-2, U#13, SGU#15, and U#28 for BL02, BL13, BL15, and BL28, respectively. SGU#15 is an in-vacuum undulator with a period length of 17.6 mm. The other three undulators are elliptically polarizing undulators (EPUs) for the vacuum ultraviolet and soft X-ray (VUV-SX) light sources to obtain various polarization states. We constructed these new undulators by fiscal 2013 and step by step installed them in the PF ring. We describe the details of the construction of these new undulators in this report.

  5. Planar Poincare chart - A planar graphic representation of the state of light polarization

    NASA Technical Reports Server (NTRS)

    Tedjojuwono, Ken K.; Hunter, William W., Jr.; Ocheltree, Stewart L.

    1989-01-01

    The planar Poincare chart, which represents the complete planar equivalence of the Poincare sphere, is proposed. The four sets of basic lines are drawn on two separate charts for the generalization and convenience of reading the scale. The chart indicates the rotation of the principal axes of linear birefringent material. The relationships between parameters of the two charts are given as 2xi-2phi (orientation angle of the major axis-ellipticity angle) pair and 2alpha-delta (angle of amplitude ratio-phase difference angle) pair. The results are useful for designing and analyzing polarization properties of optical components with birefringent properties.

  6. Physical optics in a uniform gravitational field

    NASA Astrophysics Data System (ADS)

    Hacyan, Shahen

    2012-01-01

    The motion of a (quasi-)plane wave in a uniform gravitational field is studied. It is shown that the energy of an elliptically polarized wave does not propagate along a geodesic, but in a direction that is rotated with respect to the gravitational force. The similarity with the walk-off effect in anisotropic crystals or the optical Magnus effect in inhomogeneous media is pointed out.

  7. Optical vector network analyzer with improved accuracy based on polarization modulation and polarization pulling.

    PubMed

    Li, Wei; Liu, Jian Guo; Zhu, Ning Hua

    2015-04-15

    We report a novel optical vector network analyzer (OVNA) with improved accuracy based on polarization modulation and stimulated Brillouin scattering (SBS) assisted polarization pulling. The beating between adjacent higher-order optical sidebands which are generated because of the nonlinearity of an electro-optic modulator (EOM) introduces considerable error to the OVNA. In our scheme, the measurement error is significantly reduced by removing the even-order optical sidebands using polarization discrimination. The proposed approach is theoretically analyzed and experimentally verified. The experimental results show that the accuracy of the OVNA is greatly improved compared to a conventional OVNA.

  8. Modulation stability analysis of exact multidimensional solutions to the generalized nonlinear Schrödinger equation and the Gross-Pitaevskii equation using a variational approach.

    PubMed

    Petrović, Nikola Z; Aleksić, Najdan B; Belić, Milivoj

    2015-04-20

    We analyze the modulation stability of spatiotemporal solitary and traveling wave solutions to the multidimensional nonlinear Schrödinger equation and the Gross-Pitaevskii equation with variable coefficients that were obtained using Jacobi elliptic functions. For all the solutions we obtain either unconditional stability, or a conditional stability that can be furnished through the use of dispersion management.

  9. Bunch modulation in LWFA blowout regime

    NASA Astrophysics Data System (ADS)

    Vyskočil, Jiří; Klimo, Ondřej; Vieira, Jorge; Korn, Georg

    2015-05-01

    Laser wakefield acceleration (LWFA) is able to produce high quality electron bunches interesting for many applications ranging from coherent light sources to high energy physics. The blow-out regime of LWFA provides excellent accelerating structure able to maintain small transverse emittance and energy spread of the accelerating electron beam if combined with localised injection. A modulation of the back of a self-injected electron bunch in the blowout regime of Laser Wakefield Acceleration appears 3D Particle-in-Cell simulations with the code OSIRIS. The shape of the modulation is connected to the polarization of the driving laser pulse, although the wavelength of the modulation is longer than that of the pulse. Nevertheless a circularly polarized laser pulse leads to a corkscrew-like modulation, while in the case of linear polarization, the modulation lies in the polarization plane.

  10. Fiber-FSO/wireless convergent systems based on dual-polarization and one optical sideband transmission schemes

    NASA Astrophysics Data System (ADS)

    Huang, Xu-Hong; Lu, Hai-Han; Li, Chung-Yi; Wang, Yun-Chieh; Chang, Jen-Chieh; Jheng, Yu-Bo; Tsai, Wen-Shing

    2018-06-01

    A bidirectional fiber-free-space optical (FSO)/wireless convergent system that uses dual-polarization and one optical sideband transmission schemes for hybrid vestigial sideband (VSB)–four-level pulse amplitude modulation (PAM4)/millimeter-wave signal transmission is proposed and demonstrated. Using a dual-polarization scheme, one optical sideband that is modulated by a 56 Gb s‑1 VSB–PAM4 signal (x-polarization) and another optical sideband that is modulated by a 10 Gbps data stream (y-polarization) are separated and polarized orthogonally. One optical sideband modulated by a 10 Gbps data stream (y-polarization) is delivered to efficaciously suppress the dispersion-induced limitation due to a span of 40 km single-mode fiber (SMF) and the distortion due to the beating among multiple sidebands. The proposed bidirectional fiber-FSO/wireless convergent system is a prominent one for providing broadband integrated services, such as the Internet, telecommunication, and 5G mobile networks.

  11. Metal-Coated <100>-Cut GaAs Coupled to Tapered Parallel-Plate Waveguide for Cherenkov-Phase-Matched Terahertz Detection: Influence of Crystal Thickness

    NASA Astrophysics Data System (ADS)

    delos Santos, Ramon; Mag-usara, Valynn; Tuico, Anthony; Copa, Vernalyn; Salvador, Arnel; Yamamoto, Kohji; Somintac, Armando; Kurihara, Kazuyoshi; Kitahara, Hideaki; Tani, Masahiko; Estacio, Elmer

    2018-04-01

    The influence of crystal thickness of metal-coated <100>-cut GaAs (M-G-M) on Cherenkov-phase-matched terahertz (THz) pulse detection was studied. The M-G-M detectors were utilized in conjunction with a metallic tapered parallel-plate waveguide (TPPWG). Polarization-sensitive measurements were carried out to exemplify the efficacy of GaAs in detecting transverse magnetic (TM)- and transverse electric (TE)-polarized THz waves. The reduction of GaAs' thickness increased the THz amplitude spectra of the detected TM-polarized THz electro-optic (EO) signal due to enhanced electric field associated with a more tightly-focused and well-concentrated THz radiation on the thinner M-G-M. The higher-fluence THz beam coupled to the thinner M-G-M improved the integrated intensity of the detected THz amplitude spectrum. This trend was not observed for TE-polarized THz waves, wherein the integrated intensities were almost comparable. Nevertheless, good agreement of spectral line shapes of the superposed TM- and TE-polarized THz-EO signals with that of elliptically polarized THz-EO signal demonstrates excellent polarization-resolved detection capabilities of M-G-M via Cherenkov-phase-matched EO sampling technique.

  12. Metal-Coated <100>-Cut GaAs Coupled to Tapered Parallel-Plate Waveguide for Cherenkov-Phase-Matched Terahertz Detection: Influence of Crystal Thickness

    NASA Astrophysics Data System (ADS)

    delos Santos, Ramon; Mag-usara, Valynn; Tuico, Anthony; Copa, Vernalyn; Salvador, Arnel; Yamamoto, Kohji; Somintac, Armando; Kurihara, Kazuyoshi; Kitahara, Hideaki; Tani, Masahiko; Estacio, Elmer

    2018-06-01

    The influence of crystal thickness of metal-coated <100>-cut GaAs (M-G-M) on Cherenkov-phase-matched terahertz (THz) pulse detection was studied. The M-G-M detectors were utilized in conjunction with a metallic tapered parallel-plate waveguide (TPPWG). Polarization-sensitive measurements were carried out to exemplify the efficacy of GaAs in detecting transverse magnetic (TM)- and transverse electric (TE)-polarized THz waves. The reduction of GaAs' thickness increased the THz amplitude spectra of the detected TM-polarized THz electro-optic (EO) signal due to enhanced electric field associated with a more tightly-focused and well-concentrated THz radiation on the thinner M-G-M. The higher-fluence THz beam coupled to the thinner M-G-M improved the integrated intensity of the detected THz amplitude spectrum. This trend was not observed for TE-polarized THz waves, wherein the integrated intensities were almost comparable. Nevertheless, good agreement of spectral line shapes of the superposed TM- and TE-polarized THz-EO signals with that of elliptically polarized THz-EO signal demonstrates excellent polarization-resolved detection capabilities of M-G-M via Cherenkov-phase-matched EO sampling technique.

  13. Great circle solution to polarization-based quantum communication (QC) in optical fiber

    DOEpatents

    Nordholt, Jane Elizabeth; Peterson, Charles Glen; Newell, Raymond Thorson; Hughes, Richard John

    2016-03-15

    Birefringence in optical fibers is compensated by applying polarization modulation at a receiver. Polarization modulation is applied so that a transmitted optical signal has states of polarization (SOPs) that are equally spaced on the Poincare sphere. Fiber birefringence encountered in propagation between a transmitter and a receiver rotates the great circle on the Poincare sphere that represents the polarization bases used for modulation. By adjusting received polarizations, polarization components of the received optical signal can be directed to corresponding detectors for decoding, regardless of the magnitude and orientation of the fiber birefringence. A transmitter can be configured to transmit in conjugate polarization bases whose SOPs can be represented as equidistant points on a great circle so that the received SOPs are mapped to equidistant points on a great circle and routed to corresponding detectors.

  14. Optical atomic magnetometer

    DOEpatents

    Budker, Dmitry; Higbie, James; Corsini, Eric P.

    2013-11-19

    An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.

  15. FIBER AND INTEGRATED OPTICS: Radio-frequency electrooptic modulation in optical fibers

    NASA Astrophysics Data System (ADS)

    Bulyuk, A. N.

    1992-10-01

    The electrooptic interaction in single-mode optical fibers with both linear and circular birefringe is analyzed. In most cases, a large interaction length imposes a limit on the modulation frequency. A circular birefringence in an optical fiber may lead to an effective coupling of polarization normal modes if a phase-matching condition is satisfied. Through an appropriate choice of polarization states of the light at the entrance and exit of the device, one can achieve a polarization modulation or a frequency shift of the light. There are possible applications in rf polarization modulators, devices for shifting the frequency of light, and detectors of electromagnetic fields.

  16. The impact of ΛCDM substructure and baryon-dark matter transition on the image positions of quad galaxy lenses

    NASA Astrophysics Data System (ADS)

    Gomer, Matthew R.; Williams, Liliya L. R.

    2018-04-01

    The positions of multiple images in galaxy lenses are related to the galaxy mass distribution. Smooth elliptical mass profiles were previously shown to be inadequate in reproducing the quad population. In this paper, we explore the deviations from such smooth elliptical mass distributions. Unlike most other work, we use a model-free approach based on the relative polar image angles of quads, and their position in 3D space with respect to the fundamental surface of quads (FSQ). The FSQ is defined by quads produced by elliptical lenses. We have generated thousands of quads from synthetic populations of lenses with substructure consistent with Lambda cold dark matter (ΛCDM) simulations, and found that such perturbations are not sufficient to match the observed distribution of quads relative to the FSQ. The result is unchanged even when subhalo masses are increased by a factor of 10, and the most optimistic lensing selection bias is applied. We then produce quads from galaxies created using two components, representing baryons and dark matter. The transition from the mass being dominated by baryons in inner radii to being dominated by dark matter in outer radii can carry with it asymmetries, which would affect relative image angles. We run preliminary experiments using lenses with two elliptical mass components with non-identical axial ratios and position angles, perturbations from ellipticity in the form of non-zero Fourier coefficients a4 and a6, and artificially offset ellipse centres as a proxy for asymmetry at image radii. We show that combination of these effects is a promising way of accounting for quad population properties. We conclude that the quad population provides a unique and sensitive tool for constraining detailed mass distribution in the centres of galaxies.

  17. Modulation of visualized electrical field

    NASA Astrophysics Data System (ADS)

    Chuang, Chin-Jung; Wu, Chi-Chung; Wang, Yi-Ting; Huang, Shiuan-Hau

    2015-10-01

    Polarization is an important concept of electromagnetism, and polarizers were traditionally applied to demonstrate this concept in a laboratory. We set up a optical system with the optical component "axis finder" to visualize the polarization direction immediately. The light phenomena, such as birefringence, circular polarization, and Brewster's angle, can be examined polarization visually. In addition, the principle of different waveplate and optical axis can be presented in a straightforward approach. By means of image analysis, the great precision of polarizing direction can be measured up to 0.01 degree. Modulated polarized light is applied to a few optical devices, like Liquid-crystal display. It is marvelous to trace the light polarization between the backlight module, polarizer, and panel. As seeing is believing, the visualized electrical field allows educators to teach polarization in a smooth and strikingly manifest manner. Without any polarizer and analyzer, we examine the rotary power of different concentration syrup, presenting the relationship with polarization change. We also demonstrate the wide application of polarization light in modern life, and examine the principle through this visualized electrical field system.

  18. Application of the dressed-bound-state molecular strong-field approximation to above-threshold ionization of heteronuclear molecules: NO vs. CO.

    PubMed

    Busuladžić, M; Hasović, E; Becker, W; Milošević, D B

    2012-10-07

    We theoretically investigate high-order above-threshold ionization (HATI) of heteronuclear diatomic molecules applying the molecular strong-field approximation which includes dressing of the molecular bound state. We consider HATI of nitrogen monoxide molecules, which are characterized by the π symmetry of their highest occupied molecular orbital. We show that the HATI spectra of NO exhibit characteristic interference structures. We analyze the differences and similarities of the HATI spectra of NO molecules and the spectra of CO (σ symmetry) and O(2) (π(g) symmetry) molecules. The symmetry properties of the molecular HATI spectra governed by linearly and elliptically polarized fields are considered in detail. The yields of high-energy electrons, contributing to the plateau region of the photoelectron spectra, strongly depend on the employed ellipticity.

  19. Singularities of interference of three waves with different polarization states.

    PubMed

    Kurzynowski, Piotr; Woźniak, Władysław A; Zdunek, Marzena; Borwińska, Monika

    2012-11-19

    We presented the interference setup which can produce interesting two-dimensional patterns in polarization state of the resulting light wave emerging from the setup. The main element of our setup is the Wollaston prism which gives two plane, linearly polarized waves (eigenwaves of both Wollaston's wedges) with linearly changed phase difference between them (along the x-axis). The third wave coming from the second arm of proposed polarization interferometer is linearly or circularly polarized with linearly changed phase difference along the y-axis. The interference of three plane waves with different polarization states (LLL - linear-linear-linear or LLC - linear-linear-circular) and variable change difference produce two-dimensional light polarization and phase distributions with some characteristic points and lines which can be claimed to constitute singularities of different types. The aim of this article is to find all kind of these phase and polarization singularities as well as their classification. We postulated in our theoretical simulations and verified in our experiments different kinds of polarization singularities, depending on which polarization parameter was considered (the azimuth and ellipticity angles or the diagonal and phase angles). We also observed the phase singularities as well as the isolated zero intensity points which resulted from the polarization singularities when the proper analyzer was used at the end of the setup. The classification of all these singularities as well as their relationships were analyzed and described.

  20. A Quasioptical Vector Interferometer for Polarization Control

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Wollack, Edward J.; Moseley, Harvey S.; Novak, Giles

    2005-01-01

    We present a mathematical description of a Quasioptical Vector Interferometer (QVI), a device that maps an input polarization state to an output polarization state by introducing a phase delay between two linear orthogonal components of the input polarization. The advantages of such a device over a spinning wave-plate modulator for measuring astronomical polarization in the far-infrared through millimeter are: 1. The use of small, linear motions eliminates the need for cryogenic rotational bearings, 2. The phase flexibility allows measurement of Stokes V as well as Q and U, and 3. The QVI allows for both multi-wavelength and broadband modulation. We suggest two implementations of this device as an astronomical polarization modulator. The first involves two such modulators placed in series. By adjusting the two phase delays, it is possible to use such a modulator to measure Stokes Q, U, and V for passbands that are not too large. Conversely, a single QVI may be used to measure Q and V independent of frequency. In this implementation, Stokes U must be measured by rotating the instrument. We conclude this paper by presenting initial laboratory results.

  1. Combining module based on coherent polarization beam combining.

    PubMed

    Yang, Yan; Geng, Chao; Li, Feng; Li, Xinyang

    2017-03-01

    A multiaperture receiver with a phased array is an effective approach to overcome the effect of the random optical disturbance in coherent free-space laser communications, in which one of the key technologies is how to efficiently combine the multiple laser beams received by the phased array antenna. A combining module based on coherent polarization beam combining (CPBC), which can combine multiple laser beams to one laser beam with high combining efficiency and output a linearly polarized beam, is proposed in this paper. The principle of the combining module is introduced, the coherent polarization combining efficiency of CPBC is analyzed, and the performance of the combining module is evaluated. Moreover, the feasibility and the expansibility of the proposed combining module are validated in experiments of CPBC based on active phase-locking.

  2. The Primordial Inflation Polarization Explorer (PIPER)

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Ade, Peter A. R.; Benford, Dominic J.; Bennett, Charles L.; Dotson, Jessie L.; Eimer, Joseph R.; Fixsen, Dale J.; Halpern, Mark; Hilton, Gene; Hinderks, James; hide

    2010-01-01

    The Primordial Inflation Polarization Explorer (PIPER) is it balloon-borne instrument designed to search for the faint signature of inflation in the polarized component of the cosmic microwave background (C-N-113). Each flight will be configured for a single frequency, but in order to aid in the removal of the polarized foreground signal due to Galactic dust, the filters will be changed between flights. In this way, the CMB polarization at a total of four different frequencies (200, 270, 350, and 600 GHz) will be, measured on large angular scales. PIPER consists of a pair of cryogenic telescopes, one for measuring each of Stokes Q and U in the instrument frame. Each telescope receives both linear orthogonal polarizations in two 32 x 40 element planar arrays that utilize Transition-Edge Sensors (TES). The first element in each telescope is a variable-delay polarization modulator (VPM) that fully modulates the linear Stokes parameter to which the telescope is sensitive. There are several advantages to this architecture. First, by modulating at the front of the optics, instrumental polarization is unmodulated and is therefore cleanly separated from source polarization. Second, by implementing this system with the appropriate symmetry, systematic effects can be further mitigated. In the PIPER design, many of the. systematics are manifest in the unmeasured linear Stokes parameter for each telescope and this can be separated from the desired signal. Finally, the modulation cycle never mixes the Q and U linear Stokes parameters, and thus residuals in the modulation do not twist the observed polarization vector. This is advantageous because measuring the angle of linear polarization is critical for separating the inflationary signal from other polarized components.

  3. Equidistant map projections of a triaxial ellipsoid with the use of reduced coordinates

    NASA Astrophysics Data System (ADS)

    Pędzich, Paweł

    2017-12-01

    The paper presents a new method of constructing equidistant map projections of a triaxial ellipsoid as a function of reduced coordinates. Equations for x and y coordinates are expressed with the use of the normal elliptic integral of the second kind and Jacobian elliptic functions. This solution allows to use common known and widely described in literature methods of solving such integrals and functions. The main advantage of this method is the fact that the calculations of x and y coordinates are practically based on a single algorithm that is required to solve the elliptic integral of the second kind. Equations are provided for three types of map projections: cylindrical, azimuthal and pseudocylindrical. These types of projections are often used in planetary cartography for presentation of entire and polar regions of extraterrestrial objects. The paper also contains equations for the calculation of the length of a meridian and a parallel of a triaxial ellipsoid in reduced coordinates. Moreover, graticules of three coordinates systems (planetographic, planetocentric and reduced) in developed map projections are presented. The basic properties of developed map projections are also described. The obtained map projections may be applied in planetary cartography in order to create maps of extraterrestrial objects.

  4. Black hole meiosis

    NASA Astrophysics Data System (ADS)

    van Herck, Walter; Wyder, Thomas

    2010-04-01

    The enumeration of BPS bound states in string theory needs refinement. Studying partition functions of particles made from D-branes wrapped on algebraic Calabi-Yau 3-folds, and classifying states using split attractor flow trees, we extend the method for computing a refined BPS index, [1]. For certain D-particles, a finite number of microstates, namely polar states, exclusively realized as bound states, determine an entire partition function (elliptic genus). This underlines their crucial importance: one might call them the ‘chromosomes’ of a D-particle or a black hole. As polar states also can be affected by our refinement, previous predictions on elliptic genera are modified. This can be metaphorically interpreted as ‘crossing-over in the meiosis of a D-particle’. Our results improve on [2], provide non-trivial evidence for a strong split attractor flow tree conjecture, and thus suggest that we indeed exhaust the BPS spectrum. In the D-brane description of a bound state, the necessity for refinement results from the fact that tachyonic strings split up constituent states into ‘generic’ and ‘special’ states. These are enumerated separately by topological invariants, which turn out to be partitions of Donaldson-Thomas invariants. As modular predictions provide a check on many of our results, we have compelling evidence that our computations are correct.

  5. Modulated mass-transfer model for superhumps in SU Ursae Majoris stars

    NASA Technical Reports Server (NTRS)

    Mineshige, Shin

    1988-01-01

    The response of a circular accretion disk to rapid modulation of the mass-transfer rate into the disk is explored in order to model superhumps in SU UMa stars. It is proposed that periodically enhanced flow may disrupt or heat up the outer disk and produce the dips noted just before the superhump peaks. The elliptical accretion-disk model with extended vertical disk structure can account for the observed characteristics of superhumps in these stars.

  6. Localized spatially nonlinear matter waves in atomic-molecular Bose-Einstein condensates with space-modulated nonlinearity

    PubMed Central

    Yao, Yu-Qin; Li, Ji; Han, Wei; Wang, Deng-Shan; Liu, Wu-Ming

    2016-01-01

    The intrinsic nonlinearity is the most remarkable characteristic of the Bose-Einstein condensates (BECs) systems. Many studies have been done on atomic BECs with time- and space- modulated nonlinearities, while there is few work considering the atomic-molecular BECs with space-modulated nonlinearities. Here, we obtain two kinds of Jacobi elliptic solutions and a family of rational solutions of the atomic-molecular BECs with trapping potential and space-modulated nonlinearity and consider the effect of three-body interaction on the localized matter wave solutions. The topological properties of the localized nonlinear matter wave for no coupling are analysed: the parity of nonlinear matter wave functions depends only on the principal quantum number n, and the numbers of the density packets for each quantum state depend on both the principal quantum number n and the secondary quantum number l. When the coupling is not zero, the localized nonlinear matter waves given by the rational function, their topological properties are independent of the principal quantum number n, only depend on the secondary quantum number l. The Raman detuning and the chemical potential can change the number and the shape of the density packets. The stability of the Jacobi elliptic solutions depends on the principal quantum number n, while the stability of the rational solutions depends on the chemical potential and Raman detuning. PMID:27403634

  7. Method and Apparatus for Improved Spatial Light Modulation

    NASA Technical Reports Server (NTRS)

    Soutar, Colin (Inventor); Juday, Richard D. (Inventor)

    2000-01-01

    A method and apparatus for modulating a light beam in an optical processing system is described. Preferably, an electrically-controlled polarizer unit and/or an analyzer unit are utilized in combination with a spatial light modulator and a controller. Preferably, the spatial light modulator comprises a pixelated birefringent medium such as a liquid crystal video display. The combination of the electrically controlled polarizer unit and analyzer unit make it simple and fast to reconfigure the modulation described by the Jones matrix of the spatial light modulator. A particular optical processing objective is provided to the controller. The controller performs calculations and supplies control signals to the polarizer unit, the analyzer unit, and the spatial light modulator in order to obtain the optical processing objective.

  8. Method and Apparatus for Improved Spatial Light Modulation

    NASA Technical Reports Server (NTRS)

    Colin, Soutar (Inventor); Juday, Richard D. (Inventor)

    1999-01-01

    A method and apparatus for modulating a light beam in an optical processing system is described. Preferably, an electrically-controlled polarizer unit and/or an analyzer unit are utilized in combination with a spatial light modulator and a controller. Preferably, the spatial light modulator comprises a pixelated birefringent medium such as a liquid crystal video display. The combination of the electrically controlled polarizer unit and analyzer unit make it simple and fast to reconfigure the modulation described by the Jones matrix of the spatial light modulator. A particular optical processing objective is provided to the controller. The controller performs calculations and supplies control signals to the polarizer unit, the analyzer unit, and the spatial light modulator in order to obtain die optical processing objective.

  9. Nanopatterned bulk metallic glass-based biomaterials modulate macrophage polarization.

    PubMed

    Shayan, Mahdis; Padmanabhan, Jagannath; Morris, Aaron H; Cheung, Bettina; Smith, Ryan; Schroers, Jan; Kyriakides, Themis R

    2018-06-01

    Polarization of macrophages by chemical, topographical and mechanical cues presents a robust strategy for designing immunomodulatory biomaterials. Here, we studied the ability of nanopatterned bulk metallic glasses (BMGs), a new class of metallic biomaterials, to modulate murine macrophage polarization. Cytokine/chemokine analysis of IL-4 or IFNγ/LPS-stimulated macrophages showed that the secretion of TNF-α, IL-1α, IL-12, CCL-2 and CXCL1 was significantly reduced after 24-hour culture on BMGs with 55 nm nanorod arrays (BMG-55). Additionally, under these conditions, macrophages increased phagocytic potential and exhibited decreased cell area with multiple actin protrusions. These in vitro findings suggest that nanopatterning can modulate biochemical cues such as IFNγ/LPS. In vivo evaluation of the subcutaneous host response at 2 weeks demonstrated that the ratio of Arg-1 to iNOS increased in macrophages adjacent to BMG-55 implants, suggesting modulation of polarization. In addition, macrophage fusion and fibrous capsule thickness decreased and the number and size of blood vessels increased, which is consistent with changes in macrophage responses. Our study demonstrates that nanopatterning of BMG implants is a promising technique to selectively polarize macrophages to modulate the immune response, and also presents an effective tool to study mechanisms of macrophage polarization and function. Implanted biomaterials elicit a complex series of tissue and cellular responses, termed the foreign body response (FBR), that can be influenced by the polarization state of macrophages. Surface topography can influence polarization, which is broadly characterized as either inflammatory or repair-like. The latter has been linked to improved outcomes of the FBR. However, the impact of topography on macrophage polarization is not fully understood, in part, due to a lack of high moduli biomaterials that can be reproducibly processed at the nanoscale. Here, we studied macrophage interactions with nanopatterned bulk metallic glasses (BMGs), a class of metallic alloys with amorphous microstructure and formability like polymers. We show that nanopatterned BMGs modulate macrophage polarization and transiently induce less fibrotic and more angiogenic responses. Overall, we demonstrate nanopatterning of BMG implants as a technique to polarize macrophages and modulate the FBR. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Spin polarization of {sup 87}Rb atoms with ultranarrow linewidth diode laser: Numerical simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Z. G.; Interdisciplinary Center of Quantum Information, National University of Defense Technology, Changsha, 410073; College of Science, National University of Defense Technology, Changsha, 410073

    2016-08-15

    In order to polarize {sup 87}Rb vapor effectively with ultranarrow linewidth diode laser, we studied the polarization as a function of some parameters including buffer gas pressure and laser power. Moreover, we also discussed the methods which split or modulate the diode laser frequency so as to pump the two ground hyperfine levels efficiently. We obtained some useful results through numerical simulation. If the buffer gas pressure is so high that the hyperfine structure is unresolved, the polarization is insensitive to laser frequency at peak absorption point so frequency splitting and frequency modulation methods do not show improvement. At lowmore » pressure and laser power large enough, where the hyperfine structure is clearly resolved, frequency splitting and frequency modulation methods can increase polarization effectively. For laser diodes, frequency modulation is easily realized with current modulation, so this method is attractive since it does not add any other components in the pumping laser system.« less

  11. An Ultrafast Switchable Terahertz Polarization Modulator Based on III-V Semiconductor Nanowires.

    PubMed

    Baig, Sarwat A; Boland, Jessica L; Damry, Djamshid A; Tan, H Hoe; Jagadish, Chennupati; Joyce, Hannah J; Johnston, Michael B

    2017-04-12

    Progress in the terahertz (THz) region of the electromagnetic spectrum is undergoing major advances, with advanced THz sources and detectors being developed at a rapid pace. Yet, ultrafast THz communication is still to be realized, owing to the lack of practical and effective THz modulators. Here, we present a novel ultrafast active THz polarization modulator based on GaAs semiconductor nanowires arranged in a wire-grid configuration. We utilize an optical pump-terahertz probe spectroscopy system and vary the polarization of the optical pump beam to demonstrate ultrafast THz modulation with a switching time of less than 5 ps and a modulation depth of -8 dB. We achieve an extinction of over 13% and a dynamic range of -9 dB, comparable to microsecond-switchable graphene- and metamaterial-based THz modulators, and surpassing the performance of optically switchable carbon nanotube THz polarizers. We show a broad bandwidth for THz modulation between 0.1 and 4 THz. Thus, this work presents the first THz modulator which combines not only a large modulation depth but also a broad bandwidth and picosecond time resolution for THz intensity and phase modulation, making it an ideal candidate for ultrafast THz communication.

  12. Holographic arrays for multi-path imaging artifact reduction

    DOEpatents

    McMakin, Douglas L.; Sheen, David M.; Hall, Thomas E.

    2007-11-13

    A method and apparatus to remove human features utilizing at least one transmitter transmitting a signal between 200 MHz and 1 THz, the signal having at least one characteristic of elliptical polarization, and at least one receiver receiving the reflection of the signal from the transmitter. A plurality of such receivers and transmitters are arranged together in an array which is in turn mounted to a scanner, allowing the array to be passed adjacent to the surface of the item being imaged while the transmitter is transmitting electromagnetic radiation. The array is passed adjacent to the surface of the item, such as a human being, that is being imaged. The portions of the received signals wherein the polarity of the characteristic has been reversed and those portions of the received signal wherein the polarity of the characteristic has not been reversed are identified. An image of the item from those portions of the received signal wherein the polarity of the characteristic was reversed is then created.

  13. Ultrafast Imaging of Chiral Surface Plasmon by Photoemission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Dai, Yanan; Dabrowski, Maciej; Petek, Hrvoje

    We employ Time-Resolved Photoemission Electron Microscopy (TR-PEEM) to study surface plasmon polariton (SPP) wave packet dynamics launched by tunable (VIS-UV) femtosecond pulses of various linear and circular polarizations. The plasmonic structures are micron size single-crystalline Ag islands grown in situ on Si surfaces and characterized by Low Energy Electron Microscopy (LEEM). The local fields of plasmonic modes enhance two and three photon photoemission (2PP and 3PP) at the regions of strong field enhancement. Imaging of the photoemission signal with PEEM electron optics thus images the plasmonic fields excited in the samples. The observed PEEM images with left and right circularly polarized light show chiral images, which is a consequence of the transverse spin momentum of surface plasmon. By changing incident light polarization, the plasmon interference pattern shifts with light ellipticity indicating a polarization dependent excitation phase of SPP. In addition, interferometric-time resolved measurements record the asymmetric SPP wave packet motion in order to characterize the dynamical properties of chiral SPP wave packets.

  14. Conversion of the high-mode solitons in strongly nonlocal nonlinear media

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaping

    2017-01-01

    The conversion of high-mode solitons propagating in Strongly Nonlocal Nonlinear Media (SNNM) in three coordinate systems, namely, the elliptic coordinate system, the rectangular coordinate system and the cylindrical coordinate system, based on the Snyder-Mitchell Model that describes the paraxial beam propagating in SNNM, is discussed. Through constituting the trial solution with modulating the Gaussian beam by Ince polynomials, the closed-solution of Gaussian beams in elliptic coordinate is accessed. The Ince-Gaussian (IG) beams constitute the exact and continuous transition modes between Hermite-Gaussian beams and Laguerre-Gaussian (LG) beams, which is controlled by the elliptic parameter. The conditions of conversion in the three types of solitons are given in relation to the Gouy phase invariability in stable propagation. The profiles of the IG breather at a different propagating distance are numerically obtained, and the conversions of a few IG solitons are illustrated. The difference between the IG soliton and the corresponding LG soliton is remarkable from the Poynting vector and phase plots at their profiles along the propagating axis.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Q. G.; Chen, N.; Zhang, M.

    Five IDs will be built for the Shanghai Synchrotron Radiation Facility (SSRF). Two identical mini-gap undulators with the period length 25mm and the minimum gap 6mm will use the in-vacuum technology and can operate in tapered mode. Two wigglers with the period lengths 7.9cm and 14cm and the same minimum gap 14mm will produce the peak fields of 1.2T and 1.94T. A variable polarization undulator of the APPLE-II type with 4.2m long and the period length 10cm can provide linearly, circularly and elliptically polarized radiation in a wide spectral range. This paper describes the magnet designs and the mechanical structuremore » designs of these IDs.« less

  16. Magnetic lineations in the ancient crust of mars

    PubMed

    Connerney; Acuna; Wasilewski; Ness; Reme; Mazelle; Vignes; Lin; Mitchell; Cloutier

    1999-04-30

    The Mars Global Surveyor spacecraft, in a highly elliptical polar orbit, obtained vector magnetic field measurements above the surface of Mars (altitudes >100 kilometers). Crustal magnetization, mainly confined to the most ancient, heavily cratered martian highlands, is frequently organized in east-west-trending linear features, the longest extending over 2000 kilometers. Crustal remanent magnetization exceeds that of terrestrial crust by more than an order of magnitude. Groups of quasi-parallel linear features of alternating magnetic polarity were found. They are reminiscent of similar magnetic features associated with sea floor spreading and crustal genesis on Earth but with a much larger spatial scale. They may be a relic of an era of plate tectonics on Mars.

  17. Testing physical models for dipolar asymmetry with CMB polarization

    NASA Astrophysics Data System (ADS)

    Contreras, D.; Zibin, J. P.; Scott, D.; Banday, A. J.; Górski, K. M.

    2017-12-01

    The cosmic microwave background (CMB) temperature anisotropies exhibit a large-scale dipolar power asymmetry. To determine whether this is due to a real, physical modulation or is simply a large statistical fluctuation requires the measurement of new modes. Here we forecast how well CMB polarization data from Planck and future experiments will be able to confirm or constrain physical models for modulation. Fitting several such models to the Planck temperature data allows us to provide predictions for polarization asymmetry. While for some models and parameters Planck polarization will decrease error bars on the modulation amplitude by only a small percentage, we show, importantly, that cosmic-variance-limited (and in some cases even Planck) polarization data can decrease the errors by considerably better than the expectation of √{2 } based on simple ℓ-space arguments. We project that if the primordial fluctuations are truly modulated (with parameters as indicated by Planck temperature data) then Planck will be able to make a 2 σ detection of the modulation model with 20%-75% probability, increasing to 45%-99% when cosmic-variance-limited polarization is considered. We stress that these results are quite model dependent. Cosmic variance in temperature is important: combining statistically isotropic polarization with temperature data will spuriously increase the significance of the temperature signal with 30% probability for Planck.

  18. Elliptic Capture Orbits for Missions to the Near Planets

    NASA Technical Reports Server (NTRS)

    Casal, Federico G.; Swenson, Byron L.; Mascy, Alfred C.

    1968-01-01

    Elliptic capture orbits around Mars and Venus have often been considered as means for reducing arrival and departure energy requirements for two-way missions. It had also generally been feared that the energy savings obtained by capturing a spacecraft into a highly elliptical orbit (rather than a near circular orbit of the same periapsis) would largely be offset by the penalties incurred in aligning the semi-major axis of the ellipse in such a way as to obtain the proper orientation of the departure hyperbola. This paper, presents the results of an analysis which takes into consideration the penalties arising from the requirement to match the orientation of the elliptical orbit with the asymptote of the departure hyperbola. The scientific aspects of elliptical orbits around the target planet are discussed, and it is shown that such orbits exhibit characteristics which may be considered advantageous or disadvantageous depending on the purpose of the mission. Alignment of ' the semi-major axis of the capture, ellipse relative to the, asymptote of the escape hyperbola was found not to be a critical requirement since the kinetic energy remains high over a substantial portion of the elliptical capture orbit. This 'means that the escape stage can operate efficiently even when ignited at some angle from the true periapsis point. Considerable freedom in choosing this angle is available at little propulsive cost. The resulting latitude in the choice of angles between arrival and escape asymptotes makes it possible to consider a wide variety of interplanetary transfers and planetary staytimes without the need for separate propulsive maneuvers to realign the capture ellipse before departure., Special consideration has also been g1ven to plane change maneuvers around the planet. These may be required for reasons of orbit dynamics or scientific experimentation and are not uniquely tied to elliptical captures. The sensitivity of the mass of the excursion module to the eccentricity of the capture orbit is discussed and mass-penalty diagrams are presented. It is shown that these penalties do not materially offset the large gains obtained through the use of the elliptical capture mode.

  19. Polarimetric Imaging using Two Photoelastic Modulators

    NASA Technical Reports Server (NTRS)

    Wang, Yu; Cunningham, Thomas; Diner, David; Davis, Edgar; Sun, Chao; Hancock, Bruce; Gutt, Gary; Zan, Jason; Raouf, Nasrat

    2009-01-01

    A method of polarimetric imaging, now undergoing development, involves the use of two photoelastic modulators in series, driven at equal amplitude but at different frequencies. The net effect on a beam of light is to cause (1) the direction of its polarization to rotate at the average of two excitation frequencies and (2) the amplitude of its polarization to be modulated at the beat frequency (the difference between the two excitation frequencies). The resulting modulated optical light beam is made to pass through a polarizing filter and is detected at the beat frequency, which can be chosen to equal the frame rate of an electronic camera or the rate of sampling the outputs of photodetectors in an array. The method was conceived to satisfy a need to perform highly accurate polarimetric imaging, without cross-talk between polarization channels, at frame rates of the order of tens of hertz. The use of electro-optical modulators is necessitated by a need to obtain accuracy greater than that attainable by use of static polarizing filters over separate fixed detectors. For imaging, photoelastic modulators are preferable to such other electrio-optical modulators as Kerr cells and Pockels cells in that photoelastic modulators operate at lower voltages, have greater angular acceptances, and are easier to use. Prior to the conception of the present method, polarimetric imaging at frame rates of tens of hertz using photoelastic modulators was not possible because the resonance frequencies of photoelastic modulators usually lie in the range from about 20 to about 100 kHz.

  20. VizieR Online Data Catalog: ynogkm: code for calculating time-like geodesics (Yang+, 2014)

    NASA Astrophysics Data System (ADS)

    Yang, X.-L.; Wang, J.-C.

    2013-11-01

    Here we present the source file for a new public code named ynogkm, aim on calculating the time-like geodesics in a Kerr-Newmann spacetime fast. In the code the four Boyer-Lindquis coordinates and proper time are expressed as functions of a parameter p semi-analytically, i.e., r(p), μ(p), φ(p), t(p), and σ(p), by using the Weiers- trass' and Jacobi's elliptic functions and integrals. All of the ellip- tic integrals are computed by Carlson's elliptic integral method, which guarantees the fast speed of the code.The source Fortran file ynogkm.f90 contains three modules: constants, rootfind, ellfunction, and blcoordinates. (3 data files).

  1. Modulating optical polarization properties of Al-rich AlGaN/AlN quantum well by controlling wavefunction overlap

    NASA Astrophysics Data System (ADS)

    Chen, X. J.; Yu, T. J.; Lu, H. M.; Yuan, G. C.; Shen, B.; Zhang, G. Y.

    2013-10-01

    Using modified k.p perturbation method, the optical polarization properties of Al-rich AlGaN/AlN quantum wells (QWs) are studied. It is found that change of wavefunction overlaps between conduction band and valance subbands of heavy hole, light hole, and crystal-field split off hole is different. Such difference leads to the overturn of polarization degree and modulates optical polarization properties as well width and strain vary. This prompts that changing wavefunction overlaps of electron and hole can lead to a way to modulate optical polarization properties of Al-rich AlGaN/AlN QWs, on no condition that valence band order changes.

  2. Influence of laser linewidth and polarization modulator length on polarization shift keying for free space optical communication.

    PubMed

    Han, Biao; Zhao, Wei; Xie, Xiaoping; Su, Yulong; Wang, Wei; Hu, Hui

    2015-04-06

    Modulating signal with polarization modulator (PolM) is the simplest method for polarization shift keying (PolSK) in free space optical communication. However, this method has an intrinsic drawback on degree of polarization (DOP) reduction for the existence of polarization mode dispersion (PMD) in PolM. In this work, we analyze this change of DOP and its influence on PolSK using coherency matrix. We demonstrate that the decrease of DOP after PolM will generate extra loss and bit error ratio (BER) for PolSK communication, while this loss and BER will aggravate with the increase of laser linewidth and PolM length. For a practical PolSK system, laser linewidth should be less than 0.008nm.

  3. Development of a Precise Polarization Modulator for UV Spectropolarimetry

    NASA Astrophysics Data System (ADS)

    Ishikawa, S.; Shimizu, T.; Kano, R.; Bando, T.; Ishikawa, R.; Giono, G.; Tsuneta, S.; Nakayama, S.; Tajima, T.

    2015-10-01

    We developed a polarization modulation unit (PMU) to rotate a waveplate continuously in order to observe solar magnetic fields by spectropolarimetry. The non-uniformity of the PMU rotation may cause errors in the measurement of the degree of linear polarization (scale error) and its angle (crosstalk between Stokes-Q and -U), although it does not cause an artificial linear polarization signal (spurious polarization). We rotated a waveplate with the PMU to obtain a polarization modulation curve and estimated the scale error and crosstalk caused by the rotation non-uniformity. The estimated scale error and crosstalk were {<} 0.01 % for both. This PMU will be used as a waveplate motor for the Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) rocket experiment. We confirm that the PMU performs and functions sufficiently well for CLASP.

  4. Bound states in the continuum and polarization singularities in periodic arrays of dielectric rods

    NASA Astrophysics Data System (ADS)

    Bulgakov, Evgeny N.; Maksimov, Dmitrii N.

    2017-12-01

    We consider optical bound states in the continuum (BICs) in periodic arrays of dielectric rods. The full classification of BICs in the above system is provided, including the modes propagating along the axes of the rods and bidirectional BICs propagating both along the axes of the rods and the axis of periodicity. It is shown that the leaky zones supporting the BICs generally have elliptically polarized far-field radiation patterns, with the polarization ellipses collapsing on approach to the BICs in momentum space. That allowed us to apply the concept of polarization singularities and demonstrate that the BICs possess a topological charge defined as the winding number of the polarization direction [Phys. Rev. Lett. 113, 257401 (2014), 10.1103/PhysRevLett.113.257401]. It is found that the evolution of the BICs, including their creation and annihilation, under variation of geometric parameters is controlled by the topological charge. Three scenarios of such evolution for different leaky zones are described. Finally, it is shown that the topological properties of the BICs can be extracted from transmission spectra when the system is illuminated by a plane wave of circular polarization.

  5. Multi-layer MOS capacitor based polarization insensitive electro-optic intensity modulator.

    PubMed

    Qiu, Xiaoming; Ruan, Xiaoke; Li, Yanping; Zhang, Fan

    2018-05-28

    In this study, a multi-layer metal-oxide-semiconductor capacitor (MLMOSC) polarization insensitive modulator is proposed. The design is validated by numerical simulation with commercial software LUMERICAL SOLUTION. Based on the epsilon-near-zero (ENZ) effect of indium tin oxide (ITO), the device manages to uniformly modulate both the transverse electric (TE) and the transverse magnetic (TM) modes. With a 20μm-long double-layer metal-oxide-semiconductor capacitor (DLMOSC) polarization insensitive modulator, in which two metal-oxide-semiconductor (MOS) structures are formed by the n-doped Si/HfO 2 /ITO/HfO 2 / n-doped Si stack, the extinction ratios (ERs) of both the TE and the TM modes can be over 20dB. The polarization dependent losses of the device can be as low as 0.05dB for the "OFF" state and 0.004dB for the "ON" state. Within 1dB polarization dependent loss, the device can operate with over 20dB ERs at the S, C, and L bands. The polarization insensitive modulator offers various merits including ultra-compact size, broadband spectrum, and complementary metal oxide semiconductor (CMOS) compatibility.

  6. Multi-pass amplifier architecture for high power laser systems

    DOEpatents

    Manes, Kenneth R; Spaeth, Mary L; Erlandson, Alvin C

    2014-04-01

    A main amplifier system includes a first reflector operable to receive input light through a first aperture and direct the input light along an optical path. The input light is characterized by a first polarization. The main amplifier system also includes a first polarizer operable to reflect light characterized by the first polarization state. The main amplifier system further includes a first and second set of amplifier modules. Each of the first and second set of amplifier modules includes an entrance window, a quarter wave plate, a plurality of amplifier slablets arrayed substantially parallel to each other, and an exit window. The main amplifier system additionally includes a set of mirrors operable to reflect light exiting the first set of amplifier modules to enter the second set of amplifier modules and a second polarizer operable to reflect light characterized by a second polarization state.

  7. Prickle isoforms control the direction of tissue polarity by microtubule independent and dependent mechanisms.

    PubMed

    Sharp, Katherine A; Axelrod, Jeffrey D

    2016-02-10

    Planar cell polarity signaling directs the polarization of cells within the plane of many epithelia. While these tissues exhibit asymmetric localization of a set of core module proteins, in Drosophila, more than one mechanism links the direction of core module polarization to the tissue axes. One signaling system establishes a polarity bias in the parallel, apical microtubules upon which vesicles containing core proteins traffic. Swapping expression of the differentially expressed Prickle isoforms, Prickle and Spiny-legs, reverses the direction of core module polarization. Studies in the proximal wing and the anterior abdomen indicated that this results from their differential control of microtubule polarity. Prickle and Spiny-legs also control the direction of polarization in the distal wing (D-wing) and the posterior abdomen (P-abd). We report here that this occurs without affecting microtubule polarity in these tissues. The direction of polarity in the D-wing is therefore likely determined by a novel mechanism independent of microtubule polarity. In the P-abd, Prickle and Spiny-legs interpret at least two directional cues through a microtubule-polarity-independent mechanism. © 2016. Published by The Company of Biologists Ltd.

  8. Investigations of Polarization Dependent Loss in Polarization Modulated Analog Optical Links

    DTIC Science & Technology

    2015-12-29

    including theory. The general system is discussed as well as the details for measuring and calculating polarization dependent loss in the system. A...modulation link setup…………………………………………………. 5 2.3 PDL Measurement Routine…………………………………………………………. 6 3 MISALIGNING THE MODULATION ARC...nonlinearities due to polarization distortion loss (PDL). A method for measuring PDL within the system is detailed. A number of experiments are performed

  9. Correlation between topological structure and its properties in dynamic singular vector fields.

    PubMed

    Vasilev, Vasyl; Soskin, Marat

    2016-04-20

    A new technique for establishment of topology measurements for static and dynamic singular vector fields is elaborated. It is based on precise measurement of the 3D landscape of ellipticity distribution for a checked singular optical field with C points on the tops of ellipticity hills. Vector fields possess three-component topology: areas with right-hand (RH) and left-hand (LH) ellipses, and delimiting those L lines as the singularities of handedness. The azimuth map of polarization ellipses is common for both RH and LH ellipses of vector fields and do not feel L lines. The strict rules were confirmed experimentally, which define the connection between the sign of underlying optical vortices and morphological parameters of upper-lying C points. Percolation phenomena explain their realization in-between singular vector fields and long duration of their chains of 103  s order.

  10. A Translational Polarization Rotator

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Wollack, Edward J.; Pisano, Giampaolo; Ackiss, Sheridan; U-Yen, Kongpop; Ng, Ming wah

    2012-01-01

    We explore a free-space polarization modulator in which a variable phase introduction between right- and left-handed circular polarization components is used to rotate the linear polarization of the outgoing beam relative to that of the incoming beam. In this device, the polarization states are separated by a circular polarizer that consists of a quarter-wave plate in combination with a wire grid. A movable mirror is positioned behind and parallel to the circular polarizer. As the polarizer-mirror distance is separated, an incident liear polarization will be rotated through an angle that is proportional to the introduced phase delay. We demonstrate a prototype device that modulates Stokes Q and U over a 20% bandwidth.

  11. Constellations of elliptical inclined lunar orbits providing polar and global coverage

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.; Lieb, Erica

    2005-01-01

    Prior results have developed a methodology for selecting a long-lived constellation of 3 satellites that provide persistent, stable coverage to either the North or South Pole with no requirement for stationkeeping under the influence of only gravitational perturbations. In the present study, the sensitivity of this coverage in the presence of non-gravitational forces is determined, and a design strategy is formulated that minimizes any potential sensitivity to these accelerations.

  12. Transparent binary-thickness coatings on metal substrates that produce binary patterns of orthogonal elliptical polarization states in reflected light

    NASA Astrophysics Data System (ADS)

    Azzam, Rasheed M. A.; Angel, Wade W.

    1992-12-01

    A reflective division-of-wavefront polarizing beam splitter is described that uses a dual- thickness transparent thin-film coating on a metal substrate. A previous design that used a partially clad substrate at the principal angle of the metal [Azzam, JOSA A 5, 1576 (1988)] is replaced by a more general one in which the substrate is coated throughout and the film thickness alternates between two non-zero levels. The incident linear polarization azimuth is chosen near, but not restricted to, 45 degree(s) (measured from the plane of incidence), and the angle of incidence may be selected over a range of values. The design procedure, which uses the two-dimensional Newton-Raphson method, is applied to the SiO2-Au film- substrate system at 633 nm wavelength, as an example, and the characteristics of the various possible coatings are presented.

  13. Interference substructure of above-threshold ionization peaks in the stabilization regime

    NASA Astrophysics Data System (ADS)

    Toyota, Koudai; Tolstikhin, Oleg I.; Morishita, Toru; Watanabe, Shinichi

    2008-09-01

    The photoelectron spectra produced in the photodetachment of H- (treated in the single-active-electron approximation) by strong high-frequency laser pulses with adequately chosen laser parameters in the stabilization regime are theoretically studied for elliptic polarization over an extended parameter range. An oscillating substructure in the above-threshold ionization peaks is observed, which confirms similar findings in the one-dimensional (1D) [K. Toyota , Phys. Rev. A 76, 043418 (2007)] and 3D calculations for linear polarization [O. I. Tolstikhin, Phys. Rev. A 77, 032712 (2008)]. The mechanism is an interference between the photoelectron wave packets created in the rising and falling parts of the pulse which is specific to the stabilization regime. We thus conclude that this interference substructure is robust for any polarization and over a wide range of the laser parameters, and hence should be observable experimentally.

  14. Arbitrary spin-to-orbital angular momentum conversion of light.

    PubMed

    Devlin, Robert C; Ambrosio, Antonio; Rubin, Noah A; Mueller, J P Balthasar; Capasso, Federico

    2017-11-17

    Optical elements that convert the spin angular momentum (SAM) of light into vortex beams have found applications in classical and quantum optics. These elements-SAM-to-orbital angular momentum (OAM) converters-are based on the geometric phase and only permit the conversion of left- and right-circular polarizations (spin states) into states with opposite OAM. We present a method for converting arbitrary SAM states into total angular momentum states characterized by a superposition of independent OAM. We designed a metasurface that converts left- and right-circular polarizations into states with independent values of OAM and designed another device that performs this operation for elliptically polarized states. These results illustrate a general material-mediated connection between SAM and OAM of light and may find applications in producing complex structured light and in optical communication. Copyright © 2017, American Association for the Advancement of Science.

  15. Recovery of Large Angular Scale CMB Polarization for Instruments Employing Variable-Delay Polarization Modulators

    NASA Technical Reports Server (NTRS)

    Miller, N. J.; Chuss, D. T.; Marriage, T. A.; Wollack, E. J.; Appel, J. W.; Bennett, C. L.; Eimer, J.; Essinger-Hileman, T.; Fixsen, D. J.; Harrington, K.; hide

    2016-01-01

    Variable-delay Polarization Modulators (VPMs) are currently being implemented in experiments designed to measure the polarization of the cosmic microwave background on large angular scales because of their capability for providing rapid, front-end polarization modulation and control over systematic errors. Despite the advantages provided by the VPM, it is important to identify and mitigate any time-varying effects that leak into the synchronously modulated component of the signal. In this paper, the effect of emission from a 300 K VPM on the system performance is considered and addressed. Though instrument design can greatly reduce the influence of modulated VPM emission, some residual modulated signal is expected. VPM emission is treated in the presence of rotational misalignments and temperature variation. Simulations of time-ordered data are used to evaluate the effect of these residual errors on the power spectrum. The analysis and modeling in this paper guides experimentalists on the critical aspects of observations using VPMs as front-end modulators. By implementing the characterizations and controls as described, front-end VPM modulation can be very powerful for mitigating 1/ f noise in large angular scale polarimetric surveys. None of the systematic errors studied fundamentally limit the detection and characterization of B-modes on large scales for a tensor-to-scalar ratio of r= 0.01. Indeed, r less than 0.01 is achievable with commensurately improved characterizations and controls.

  16. A method for eliminating Faraday rotation in cryostat windows in longitudinal magneto-optical Kerr effect measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polewko-Klim, A., E-mail: anetapol@uwb.edu.pl; Uba, S.; Uba, L.

    2014-07-15

    A solution to the problem of disturbing effect of the background Faraday rotation in the cryostat windows on longitudinal magneto-optical Kerr effect (LMOKE) measured under vacuum conditions and/or at low temperatures is proposed. The method for eliminating the influence of Faraday rotation in cryostat windows is based on special arrangement of additional mirrors placed on sample holder. In this arrangement, the orientation of the cryostat window is perpendicular to the light beam direction and parallel to an external magnetic field generated by the H-frame electromagnet. The operation of the LMOKE magnetometer with the special sample holder based on polarization modulationmore » technique with a photo-elastic modulator is theoretically analyzed with the use of Jones matrices, and formulas for evaluating of the actual Kerr rotation and ellipticity of the sample are derived. The feasibility of the method and good performance of the magnetometer is experimentally demonstrated for the LMOKE effect measured in Fe/Au multilayer structures. The influence of imperfect alignment of the magnetometer setup on the Kerr angles, as derived theoretically through the analytic model and verified experimentally, is examined and discussed.« less

  17. Developments in Polarization and Energy Control of APPLE-II Undulators at Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Longhi, E. C.; Bencok, P.; Dobrynin, A.; Rial, E. C. M.; Rose, A.; Steadman, P.; Thompson, C.; Thomson, A.; Wang, H.

    2013-03-01

    A pair of 2m long APPLE-II type undulators have been built for the I10 BLADE beamline at Diamond Light Source. These 48mm period devices have gap as well as four moveable phase axes which provide the possibility to produce the full range of elliptical polarizations as well as linear polarization tilted through a full 180deg. The mechanical layout chosen has a 'master and slave' arrangement of the phase axes on the top and bottom. This arrangement allows the use of symmetries to provide operational ease for both changing energy using only the master phase while keeping fixed linear horizontal or circular polarization, as well as changing linear polarization angle while keeping fixed energy [1]. The design allows very fast motion of the master phase arrays, without sacrifice of accuracy, allowing the possibility of mechanical polarization switching at 1Hz for dichroism experiments. We present the mechanical design features of these devices, as well as the results of magnetic measurements and shimming from before installation. Finally, we present the results of characterization of these devices by the beamline, including polarimetry, which has been done on the various modes of motion to control energy and polarization. These modes of operation have been available to users since 2011.

  18. Stokes polarimetry probe for skin lesion evaluation: preliminary results

    NASA Astrophysics Data System (ADS)

    Louie, Daniel C.; Tchvialeva, Lioudmilla; Kalia, Sunil; Lui, Harvey; Lee, Tim K.

    2018-02-01

    This paper reports on the design of a prototype in-vivo Stokes polarimetry probe for skin lesion evaluation, and preliminary results from skin phantom and clinical trials of this device. The probe releases a single millisecond-long pulse from a laser diode with either linear or circular polarization. It then captures the resulting backscattered far-field polarization speckle and calculates the Stokes parameters. This probe was designed with three novel innovations in mind. First, the Stokes vector is captured quickly, using low-cost components without the use of moving parts. Second, a compact collimated laser diode was used as the light source. Third, the device and detector geometry were designed to produce and capture a uniform speckle field. In the first clinical trial of this device, measurements were taken from a variety of skin lesions, both cancerous and benign. The Stokes vector was measured and used to calculate the degree of polarization (DOP), the azimuth angle, and the ellipticity angle of the polarization ellipse for two input light polarizations. Among other findings, the DOP for circular polarized input light was consistently lower than the DOP for linear polarized input light. These findings indicate the potential for a fast and low-cost in-vivo skin cancer screening tool, and encourages the continuing development of this probe's techniques.

  19. Apparatus and method for increasing the bandwidth of a laser beam

    DOEpatents

    Wilcox, Russell B.

    1992-01-01

    A method and apparatus using sinusoidal cross-phase modulation, provides a laser pulse having a very broad bandwidth while substantially retaining the input laser's temporal shape. The modulator may be used in a master oscillator system for a laser having a master oscillator-power amplifier (MOPA) configration. The modulator utilizes a first laser providing an output wavelength .lambda. and a second laser providing an output wavelength shifted by a small amount to .lambda.+.DELTA..lambda.. Each beam has a single, linear polarization. Each beam is coupled into a length of polarization-preserving optical fiber. The first laser beam is coupled into the optical fiber with the beam's polarization aligned with the fiber's main axis, and the second beam is coupled into the fiber with its polarization rotated from the main axis by a predetermined angle. Within the fiber, the main axis' polarization defines an interference beam and the orthogonal axis' polarization defines a signal beam. In the interference beam, the first laser beam and the parallel polarized vector component of the other beam interfere to create areas of high and low intensity, which modulates the signal beam by cross phase modulation. Upon exit from the optical fiber, the beams are coupled out and the modulated signal beam is separated out by a polarization selector. The signal beam can be applied to coherence reducing systems to provide an output that is temporally and spatially incoherent. The U.S. Government has rights in this invention pursuant to Contract No. W7405-ENG-48 between the U.S. Department of Energy and the University of California for the operation of Lawrence Livermore National Laboratory.

  20. Synchronous-digitization for Video Rate Polarization Modulated Beam Scanning Second Harmonic Generation Microscopy.

    PubMed

    Sullivan, Shane Z; DeWalt, Emma L; Schmitt, Paul D; Muir, Ryan M; Simpson, Garth J

    2015-03-09

    Fast beam-scanning non-linear optical microscopy, coupled with fast (8 MHz) polarization modulation and analytical modeling have enabled simultaneous nonlinear optical Stokes ellipsometry (NOSE) and linear Stokes ellipsometry imaging at video rate (15 Hz). NOSE enables recovery of the complex-valued Jones tensor that describes the polarization-dependent observables, in contrast to polarimetry, in which the polarization stated of the exciting beam is recorded. Each data acquisition consists of 30 images (10 for each detector, with three detectors operating in parallel), each of which corresponds to polarization-dependent results. Processing of this image set by linear fitting contracts down each set of 10 images to a set of 5 parameters for each detector in second harmonic generation (SHG) and three parameters for the transmittance of the fundamental laser beam. Using these parameters, it is possible to recover the Jones tensor elements of the sample at video rate. Video rate imaging is enabled by performing synchronous digitization (SD), in which a PCIe digital oscilloscope card is synchronized to the laser (the laser is the master clock.) Fast polarization modulation was achieved by modulating an electro-optic modulator synchronously with the laser and digitizer, with a simple sine-wave at 1/10th the period of the laser, producing a repeating pattern of 10 polarization states. This approach was validated using Z-cut quartz, and NOSE microscopy was performed for micro-crystals of naproxen.

  1. Synchronous-digitization for video rate polarization modulated beam scanning second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Sullivan, Shane Z.; DeWalt, Emma L.; Schmitt, Paul D.; Muir, Ryan D.; Simpson, Garth J.

    2015-03-01

    Fast beam-scanning non-linear optical microscopy, coupled with fast (8 MHz) polarization modulation and analytical modeling have enabled simultaneous nonlinear optical Stokes ellipsometry (NOSE) and linear Stokes ellipsometry imaging at video rate (15 Hz). NOSE enables recovery of the complex-valued Jones tensor that describes the polarization-dependent observables, in contrast to polarimetry, in which the polarization stated of the exciting beam is recorded. Each data acquisition consists of 30 images (10 for each detector, with three detectors operating in parallel), each of which corresponds to polarization-dependent results. Processing of this image set by linear fitting contracts down each set of 10 images to a set of 5 parameters for each detector in second harmonic generation (SHG) and three parameters for the transmittance of the fundamental laser beam. Using these parameters, it is possible to recover the Jones tensor elements of the sample at video rate. Video rate imaging is enabled by performing synchronous digitization (SD), in which a PCIe digital oscilloscope card is synchronized to the laser (the laser is the master clock.) Fast polarization modulation was achieved by modulating an electro-optic modulator synchronously with the laser and digitizer, with a simple sine-wave at 1/10th the period of the laser, producing a repeating pattern of 10 polarization states. This approach was validated using Z-cut quartz, and NOSE microscopy was performed for micro-crystals of naproxen.

  2. A Kinematic, Flexure-based Mechanism for Precise, Parallel Motion for the Hertz Variable-delay Polarization Modulator (VPM)

    NASA Technical Reports Server (NTRS)

    Voellmer, G. M.; Chuss, D. T.; Jackson, M.; Krejny, M.; Moseley, S. H.; Novak, G.; Wollack, E. J.

    2008-01-01

    We describe the design of the linear motion stage for a Variable-delay Polarization Modulator (VPM) and of a grid flattener that has been built and integrated into the Hertz ground-based, submillimeter polarimeter. VPMs allow the modulation of a polarized source by controlling the phase difference between two linear, orthogonal polarizations. The size of the gap between a mirror and a very flat polarizing grid determines the amount of the phase difference. This gap must be parallel to better than 1% of the wavelength. A novel, kinematic, flexure-based mechanism is described that passively maintains the parallelism of the mirror and the grid to 1.5 pm over a 150 mm diameter, with a 400 pm throw. A single piezoceramic actuator is used to modulate the gap, and a capacitive sensor provides position feedback for closed-loop control. A simple device that ensures the planarity of the polarizing grid is also described. Engineering results from the deployment of this device in the Hertz instrument April 2006 at the Submillimeter Telescope Observatory (SMTO) in Arizona are presented.

  3. The local surface plasmon resonance property and refractive index sensitivity of metal elliptical nano-ring arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Weihua, E-mail: linwh-whu@hotmail.com; Wang, Qian; Dong, Anhua

    2014-11-15

    In this paper, we systematically investigate the optical property and refractive index sensitivity (RIS) of metal elliptical nano-ring (MENR) arranged in rectangle lattice by finite-difference time-domain method. Eight kinds of considered MENRs are divided into three classes, namely fixed at the same outer size, at the same inner size, and at the same middle size. All MENR arrays show a bonding mode local surface plasmon resonance (LSPR) peak in the near-infrared region under longitudinal and transverse polarizations, and lattice diffraction enhanced LSPR peaks emerge, when the LSPR peak wavelength (LSPRPW) matches the effective lattice constant of the array. The LSPRPWmore » is determined by the charge moving path length, the parallel and cross interactions induced by the stable distributed charges, and the moving charges inter-attraction. High RIS can be achieved by small particle distance arrays composed of MENRs with big inner size and small ring-width. On the other hand, for a MENR array, the comprehensive RIS (including RIS and figure of merit) under transverse polarization is superior to that under longitudinal polarization. Furthermore, on condition that compared arrays are fixed at the same lattice constant, the phenomenon that the RIS of big ring-width MENR arrays may be higher than that of small ring-width MENR arrays only appears in the case of compared arrays with relatively small lattice constant and composed of MENRs fixed at the same inner size simultaneously. Meanwhile, the LSPRPW of the former MENR arrays is also larger than that of the latter MENR arrays. Our systematic results may help experimentalists work with this type of systems.« less

  4. Arabidopsis AIP1-2 restricted by WER-mediated patterning modulates planar polarity

    PubMed Central

    Kiefer, Christian S.; Claes, Andrea R.; Nzayisenga, Jean-Claude; Pietra, Stefano; Stanislas, Thomas; Hüser, Anke; Ikeda, Yoshihisa; Grebe, Markus

    2015-01-01

    The coordination of cell polarity within the plane of the tissue layer (planar polarity) is crucial for the development of diverse multicellular organisms. Small Rac/Rho-family GTPases and the actin cytoskeleton contribute to planar polarity formation at sites of polarity establishment in animals and plants. Yet, upstream pathways coordinating planar polarity differ strikingly between kingdoms. In the root of Arabidopsis thaliana, a concentration gradient of the phytohormone auxin coordinates polar recruitment of Rho-of-plant (ROP) to sites of polar epidermal hair initiation. However, little is known about cytoskeletal components and interactions that contribute to this planar polarity or about their relation to the patterning machinery. Here, we show that ACTIN7 (ACT7) represents a main actin isoform required for planar polarity of root hair positioning, interacting with the negative modulator ACTIN-INTERACTING PROTEIN1-2 (AIP1-2). ACT7, AIP1-2 and their genetic interaction are required for coordinated planar polarity of ROP downstream of ethylene signalling. Strikingly, AIP1-2 displays hair cell file-enriched expression, restricted by WEREWOLF (WER)-dependent patterning and modified by ethylene and auxin action. Hence, our findings reveal AIP1-2, expressed under control of the WER-dependent patterning machinery and the ethylene signalling pathway, as a modulator of actin-mediated planar polarity. PMID:25428588

  5. Evaluation of the polarization properties of a Philips-type prism for the construction of imaging polarimeters

    NASA Astrophysics Data System (ADS)

    Fernandez-Borda, R.; Waluschka, E.; Pellicori, S.; Martins, J. V.; Ramos-Izquierdo, L.; Cieslak, J. D.; Thompson, P.

    2009-08-01

    The design and construction of wide FOV imaging polarimeters for use in atmospheric remote sensing requires significant attention to the prevention of artificial polarization induced by the optical elements. Surface, coatings, and angles of incidence throughout the system must be carefully designed in order to minimize these artifacts because the remaining instrumental bias polarization is the main factor which drives the final polarimetric accuracy of the system. In this work, we present a detailed evaluation and analysis to explore the possibility of retrieving the initial polarization state of the light traveling through a generic system that has inherent instrumental polarization. Our case is a wide FOV lens and a splitter device. In particular, we chose as splitter device a Philips-type prism, because it is able to divide the signal in 3 independent channels that could be simultaneously analyze to retrieve the three first elements of the Stoke vector (in atmospheric applications the elliptical polarization can be neglected [1]). The Philips-type configuration is a versatile, compact and robust prism device that is typically used in three color camera systems. It has been used in some commercial polarimetric cameras which do not claim high accuracy polarization measurements [2]. With this work, we address the accuracy of our polarization inversion and measurements made with the Philips-type beam divider.

  6. Numerical study of the Kadomtsev-Petviashvili equation and dispersive shock waves

    NASA Astrophysics Data System (ADS)

    Grava, T.; Klein, C.; Pitton, G.

    2018-02-01

    A detailed numerical study of the long time behaviour of dispersive shock waves in solutions to the Kadomtsev-Petviashvili (KP) I equation is presented. It is shown that modulated lump solutions emerge from the dispersive shock waves. For the description of dispersive shock waves, Whitham modulation equations for KP are obtained. It is shown that the modulation equations near the soliton line are hyperbolic for the KPII equation while they are elliptic for the KPI equation leading to a focusing effect and the formation of lumps. Such a behaviour is similar to the appearance of breathers for the focusing nonlinear Schrödinger equation in the semiclassical limit.

  7. Transverse gradient in Apple-type undulators

    PubMed Central

    Calvi, M.; Camenzuli, C.; Prat, E.; Schmidt, Th.

    2017-01-01

    Apple-type undulators are globally recognized as the most flexible devices for the production of variable polarized light in the soft X-ray regime, both at synchrotron and free-electron laser facilities. Recently, the implementation of transverse gradient undulators has been proposed to enhance the performance of new generation light sources. In this paper it is demonstrated that Apple undulators do not only generate linear and elliptical polarized light but also variable transverse gradient under certain conditions. A general theoretical framework is introduced to evaluate the K-value and its transverse gradient for an Apple undulator, and formulas for all regular operational modes and different Apple types (including the most recent Delta type and Apple X) are calculated and critically discussed. PMID:28452751

  8. Transfer matrix approach for the Kerr and Faraday rotation in layered nanostructures.

    PubMed

    Széchenyi, Gábor; Vigh, Máté; Kormányos, Andor; Cserti, József

    2016-09-21

    To study the optical rotation of the polarization of light incident on multilayer systems consisting of atomically thin conductors and dielectric multilayers we present a general method based on transfer matrices. The transfer matrix of the atomically thin conducting layer is obtained using the Maxwell equations. We derive expressions for the Kerr (Faraday) rotation angle and for the ellipticity of the reflected (transmitted) light as a function of the incident angle and polarization of the light. The method is demonstrated by calculating the Kerr (Faraday) angle for bilayer graphene in the quantum anomalous Hall state placed on the top of dielectric multilayers. The optical conductivity of the bilayer graphene is calculated in the framework of a four-band model.

  9. Variable-delay Polarization Modulators (VPMs) for Far-infrared through Millimeter Astronomy

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2008-01-01

    This viewgraph presentation reviews the use of Variable-delay Polarization Modulators (VPMs) for Far-infrared through Millimeter Astronomy. The two science goals are to use polarized emission from the partially-aligned dust that provides a probe of the role of magnetic fields in star formation and to use the polarization of the cosmic microwave background radiation CMB to test theories of the very early universe and provide a probe of fundamental physics.

  10. Source characteristics and design consideration for an iron-free variable-period/polarizing undulator for the UV/VUV range on SPEAR (abstract)

    NASA Astrophysics Data System (ADS)

    Tatchyn, Roman

    1992-01-01

    Insertion devices that are tuned by electrical period variation are particularly suited for the design of flexible polarized-light sources [R. Tatchyn, J. Appl. Phys. 65, 4107 (1989); R. Tatchyn and T. Cremer, IEEE Trans. Mag. 26, 3102 (1990)]. Important advantages vis-a-vis mechanical or hybrid variable field designs include: (1) significantly more rapid modulation of both polarization and energy, (2) an inherently larger set of polarization modulation capabilities and (3) polarization/energy modulation at continuously optimized values of K. In this paper we outline some of the general considerations that enter into the design of hysteresis-free variable-period/polarizing undulator structures and present the parameters of a recently-completed prototype design capable of generating intense levels of UV/VUV photon flux on SPEAR running at 3 GeV.

  11. Non-mechanical optical path switching and its application to dual beam spectroscopy including gas filter correlation radiometry

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor); Wang, Liang-Guo (Inventor)

    1992-01-01

    A non-mechanical optical switch is developed for alternately switching a monochromatic or quasi-monochromatic light beam along two optical paths. A polarizer polarizes light into a single, e.g., vertical component which is then rapidly modulated into vertical and horizontal components by a polarization modulator. A polarization beam splitter then reflects one of these components along one path and transmits the other along the second path. In the specific application of gas filter correlation radiometry, one path is directed through a vacuum cell and one path is directed through a gas correlation cell containing a desired gas. Reflecting mirrors cause these two paths to intersect at a second polarization beam splitter which reflects one component and transmits the other to recombine them into a polarization modulated beam which can be detected by an appropriate single sensor.

  12. RECOVERY OF LARGE ANGULAR SCALE CMB POLARIZATION FOR INSTRUMENTS EMPLOYING VARIABLE-DELAY POLARIZATION MODULATORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, N. J.; Marriage, T. A.; Appel, J. W.

    2016-02-20

    Variable-delay Polarization Modulators (VPMs) are currently being implemented in experiments designed to measure the polarization of the cosmic microwave background on large angular scales because of their capability for providing rapid, front-end polarization modulation and control over systematic errors. Despite the advantages provided by the VPM, it is important to identify and mitigate any time-varying effects that leak into the synchronously modulated component of the signal. In this paper, the effect of emission from a 300 K VPM on the system performance is considered and addressed. Though instrument design can greatly reduce the influence of modulated VPM emission, some residualmore » modulated signal is expected. VPM emission is treated in the presence of rotational misalignments and temperature variation. Simulations of time-ordered data are used to evaluate the effect of these residual errors on the power spectrum. The analysis and modeling in this paper guides experimentalists on the critical aspects of observations using VPMs as front-end modulators. By implementing the characterizations and controls as described, front-end VPM modulation can be very powerful for mitigating 1/f noise in large angular scale polarimetric surveys. None of the systematic errors studied fundamentally limit the detection and characterization of B-modes on large scales for a tensor-to-scalar ratio of r = 0.01. Indeed, r < 0.01 is achievable with commensurately improved characterizations and controls.« less

  13. Demonstration of Dispersive Rarefaction Shocks in Hollow Elliptical Cylinder Chains

    NASA Astrophysics Data System (ADS)

    Kim, H.; Kim, E.; Chong, C.; Kevrekidis, P. G.; Yang, J.

    2018-05-01

    We report an experimental and numerical demonstration of dispersive rarefaction shocks (DRS) in a 3D-printed soft chain of hollow elliptical cylinders. We find that, in contrast to conventional nonlinear waves, these DRS have their lower amplitude components travel faster, while the higher amplitude ones propagate slower. This results in the backward-tilted shape of the front of the wave (the rarefaction segment) and the breakage of wave tails into a modulated waveform (the dispersive shock segment). Examining the DRS under various impact conditions, we find the counterintuitive feature that the higher striker velocity causes the slower propagation of the DRS. These unique features can be useful for mitigating impact controllably and efficiently without relying on material damping or plasticity effects.

  14. Rogue periodic waves of the focusing nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Chen, Jinbing; Pelinovsky, Dmitry E.

    2018-02-01

    Rogue periodic waves stand for rogue waves on a periodic background. The nonlinear Schrödinger equation in the focusing case admits two families of periodic wave solutions expressed by the Jacobian elliptic functions dn and cn. Both periodic waves are modulationally unstable with respect to long-wave perturbations. Exact solutions for the rogue periodic waves are constructed by using the explicit expressions for the periodic eigenfunctions of the Zakharov-Shabat spectral problem and the Darboux transformations. These exact solutions generalize the classical rogue wave (the so-called Peregrine's breather). The magnification factor of the rogue periodic waves is computed as a function of the elliptic modulus. Rogue periodic waves constructed here are compared with the rogue wave patterns obtained numerically in recent publications.

  15. Rogue periodic waves of the focusing nonlinear Schrödinger equation.

    PubMed

    Chen, Jinbing; Pelinovsky, Dmitry E

    2018-02-01

    Rogue periodic waves stand for rogue waves on a periodic background. The nonlinear Schrödinger equation in the focusing case admits two families of periodic wave solutions expressed by the Jacobian elliptic functions dn and cn . Both periodic waves are modulationally unstable with respect to long-wave perturbations. Exact solutions for the rogue periodic waves are constructed by using the explicit expressions for the periodic eigenfunctions of the Zakharov-Shabat spectral problem and the Darboux transformations. These exact solutions generalize the classical rogue wave (the so-called Peregrine's breather). The magnification factor of the rogue periodic waves is computed as a function of the elliptic modulus. Rogue periodic waves constructed here are compared with the rogue wave patterns obtained numerically in recent publications.

  16. Demonstration of Dispersive Rarefaction Shocks in Hollow Elliptical Cylinder Chains.

    PubMed

    Kim, H; Kim, E; Chong, C; Kevrekidis, P G; Yang, J

    2018-05-11

    We report an experimental and numerical demonstration of dispersive rarefaction shocks (DRS) in a 3D-printed soft chain of hollow elliptical cylinders. We find that, in contrast to conventional nonlinear waves, these DRS have their lower amplitude components travel faster, while the higher amplitude ones propagate slower. This results in the backward-tilted shape of the front of the wave (the rarefaction segment) and the breakage of wave tails into a modulated waveform (the dispersive shock segment). Examining the DRS under various impact conditions, we find the counterintuitive feature that the higher striker velocity causes the slower propagation of the DRS. These unique features can be useful for mitigating impact controllably and efficiently without relying on material damping or plasticity effects.

  17. HEOS-A2: Press kit

    NASA Technical Reports Server (NTRS)

    Allaway, H. G.; Kukowski, J.

    1972-01-01

    The characteristics of the HEOS-A2 satellite and its assigned mission are discussed. The spacecraft carries seven experiments to investigate the strength and direction of the magnetic fields encountered, the energy distribution of protons and electrons, the nature of the solar winds, detection of micrometeorites, and low frequency solar observations. The highly elliptical polar orbit required for this mission will have an apogee of 38 earth radii. The lifetime of the satellite is expected to be one year minimum.

  18. Optical Realization of Double-Continuum Fano Interference and Coherent Control in Plasmonic Metasurfaces

    NASA Astrophysics Data System (ADS)

    Arju, Nihal; Ma, Tzuhsuan; Khanikaev, Alexander; Purtseladze, David; Shvets, Gennady

    2015-06-01

    Classical realization of a ubiquitous quantum mechanical phenomenon of double-continuum Fano interference using metasurfaces is experimentally demonstrated by engineering the near-field interaction between two bright and one dark plasmonic modes. The competition between the bright modes, one of them effectively suppressing the Fano interference for the orthogonal light polarization, is discovered. Coherent control of optical energy concentration and light absorption by the ellipticity of the incident light is theoretically predicted.

  19. Did glacially induced TPW end the ice age? A reanalysis

    NASA Astrophysics Data System (ADS)

    Chan, Ngai-Ham; Mitrovica, Jerry X.; Daradich, Amy

    2015-09-01

    Previous studies of Earth rotation perturbations due to ice-age loading have predicted a slow secular drift of the rotation axis relative to the surface geography (i.e. true polar wander, TPW) of order of several degrees over the Plio-Pleistocene. It has been argued that this drift and the change in the geographic distribution of solar insolation that it implies may have been responsible for important transitions in ice-age climate, including the termination of ice-age cycles.We use a revised rotational stability theory that incorporates a more accurate treatment of the Earth's background ellipticity to reconsider this issue, and demonstrate that the net displacement of the pole predicted in earlier studies disappears. This more muted polar motion is due to two factors: first, the revised theory no longer predicts the permanent shift in the rotation axis, or the so-called `unidirectional TPW', that appears in the traditional stability theory; and, second, the increased background ellipticity incorporated in the revised predictions acts to reduce the normal mode amplitudes governing the motion of the pole. We conclude that ice-age-induced TPW was not responsible for the termination of the ice age. This does not preclude the possibility that TPW induced by mantle convective flow may have played a role in major Plio-Pleistocene climate transitions, including the onset of Northern Hemisphere glaciation.

  20. High-Efficiency Visible Transmitting Polarizations Devices Based on the GaN Metasurface.

    PubMed

    Guo, Zhongyi; Xu, Haisheng; Guo, Kai; Shen, Fei; Zhou, Hongping; Zhou, Qingfeng; Gao, Jun; Yin, Zhiping

    2018-05-15

    Metasurfaces are capable of tailoring the amplitude, phase, and polarization of incident light to design various polarization devices. Here, we propose a metasurface based on the novel dielectric material gallium nitride (GaN) to realize high-efficiency modulation for both of the orthogonal linear polarizations simultaneously in the visible range. Both modulated transmitted phases of the orthogonal linear polarizations can almost span the whole 2π range by tailoring geometric sizes of the GaN nanobricks, while maintaining high values of transmission (almost all over 90%). At the wavelength of 530 nm, we designed and realized the beam splitter and the focusing lenses successfully. To further prove that our proposed method is suitable for arbitrary orthogonal linear polarization, we also designed a three-dimensional (3D) metalens that can simultaneously focus the X -, Y -, 45°, and 135° linear polarizations on spatially symmetric positions, which can be applied to the linear polarization measurement. Our work provides a possible method to achieve high-efficiency multifunctional optical devices in visible light by extending the modulating dimensions.

  1. Ultrashort polarization-tailored bichromatic fields

    NASA Astrophysics Data System (ADS)

    Kerbstadt, Stefanie; Englert, Lars; Bayer, Tim; Wollenhaupt, Matthias

    2017-06-01

    We present a novel concept for the generation of ultrashort polarization-shaped bichromatic laser fields. The scheme utilizes a 4f polarization pulse shaper based on a liquid crystal spatial light modulator for independent amplitude and phase modulation of femtosecond laser pulses. By choice of either a conventional (p) or a composite (p-s) polarizer in the Fourier plane, the shaper setup enables the generation of parallel linearly and orthogonal linearly polarized bichromatic fields. Additional use of a ? wave plate behind the setup yields co-rotating and counter-rotating circularly polarized bichromatic fields. The scheme allows to independently control the spectral amplitude, phase and polarization profile of the output fields, offering an enormous versatility of bichromatic waveforms.

  2. Entanglement of Ince-Gauss Modes of Photons

    NASA Astrophysics Data System (ADS)

    Krenn, Mario; Fickler, Robert; Plick, William; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2012-02-01

    Ince-Gauss modes are solutions of the paraxial wave equation in elliptical coordinates [1]. They are natural generalizations both of Laguerre-Gauss and of Hermite-Gauss modes, which have been used extensively in quantum optics and quantum information processing over the last decade [2]. Ince-Gauss modes are described by one additional real parameter -- ellipticity. For each value of ellipticity, a discrete infinite-dimensional Hilbert space exists. This conceptually new degree of freedom could open up exciting possibilities for higher-dimensional quantum optical experiments. We present the first entanglement of non-trivial Ince-Gauss Modes. In our setup, we take advantage of a spontaneous parametric down-conversion process in a non-linear crystal to create entangled photon pairs. Spatial light modulators (SLMs) are used as analyzers. [1] Miguel A. Bandres and Julio C. Guti'errez-Vega ``Ince Gaussian beams", Optics Letters, Vol. 29, Issue 2, 144-146 (2004) [2] Adetunmise C. Dada, Jonathan Leach, Gerald S. Buller, Miles J. Padgett, and Erika Andersson, ``Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities", Nature Physics 7, 677-680 (2011)

  3. Electronic polarization-division demultiplexing based on digital signal processing in intensity-modulation direct-detection optical communication systems.

    PubMed

    Kikuchi, Kazuro

    2014-01-27

    We propose a novel configuration of optical receivers for intensity-modulation direct-detection (IM · DD) systems, which can cope with dual-polarization (DP) optical signals electrically. Using a Stokes analyzer and a newly-developed digital signal-processing (DSP) algorithm, we can achieve polarization tracking and demultiplexing in the digital domain after direct detection. Simulation results show that the power penalty stemming from digital polarization manipulations is negligibly small.

  4. Method for Balancing Detector Output to a Desired Level of Balance at a Frequency

    NASA Technical Reports Server (NTRS)

    Sachse, Glenn W. (Inventor)

    2003-01-01

    A multi-gas sensor is provided which modulates a polarized light beam over a broadband of wavelengths between two alternating orthogonal polarization components. The two orthogonal polarization components of the polarization modulated beam are directed along two distinct optical paths. At least one optical path contains one or more spectral discrimination elements, with each spectral discrimination element having spectral absorption features of one or more gases of interest being measured. The two optical paths then intersect, and one orthogonal component of the intersected components is transmitted and the other orthogonal component is reflected. The combined polarization modulated beam is partitioned into one or more smaller spectral regions of interest where one or more gases of interest has an absorption band. The difference in intensity between the two orthogonal polarization components is then determined in each partitioned spectral region of interest as an indication of the spectral emission/absorption of the light beam by the gases of interest in the measurement path. The spectral emission/absorption is indicative of the concentration of the one or more gases of interest in the measurement path. More specifically, one embodiment of the present invention is a gas filter correlation radiometer which comprises a polarizer, a polarization modulator, a polarization beam splitter, a beam combiner, wavelength partitioning element, and detection element. The gases of interest are measured simultaneously and, further, can be measured independently or non-independently. Furthermore, optical or electronic element are provided to balance optical intensities between the two optical paths.

  5. Multi-Gas Sensor

    NASA Technical Reports Server (NTRS)

    Sachse, Glenn W. (Inventor); Wang, Liang-Guo (Inventor); LeBel, Peter J. (Inventor); Steele, Tommy C. (Inventor); Rana, Mauro (Inventor)

    1999-01-01

    A multi-gas sensor is provided which modulates a polarized light beam over a broadband of wavelengths between two alternating orthogonal polarization components. The two orthogonal polarization components of the polarization modulated beam are directed along two distinct optical paths. At least one optical path contains one or more spectral discrimination element, with each spectral discrimination element having spectral absorption features of one or more gases of interest being measured. The two optical paths then intersect, and one orthogonal component of the intersected components is transmitted and the other orthogonal component is reflected. The combined polarization modulated beam is partitioned into one or more smaller spectral regions of interest where one or more gases of interest has an absorption band. The difference in intensity between the two orthogonal polarization components is then determined in each partitioned spectral region of interest as an indication of the spectral emission/absorption of the light beam by the gases of interest in the measurement path. The spectral emission/absorption is indicative of the concentration of the one or more gases of interest in the measurement path. More specifically, one embodiment of the present invention is a gas filter correlation radiometer which comprises a polarizer, a polarization modulator, a polarization beam splitter, a beam combiner, wavelength partitioning element, and detection element. The gases of interest are measured simultaneously and, further, can be measured independently or non-independently. Furthermore, optical or electronic element are provided to balance optical intensities between the two optical paths.

  6. Remote sensing of a NTC radio source from a Cluster tilted spacecraft pair

    NASA Astrophysics Data System (ADS)

    Décréau, P. M. E.; Kougblénou, S.; Lointier, G.; Rauch, J.-L.; Trotignon, J.-G.; Vallières, X.; Canu, P.; Rochel Grimald, S.; El-Lemdani Mazouz, F.; Darrouzet, F.

    2013-11-01

    The Cluster mission operated a "tilt campaign" during the month of May 2008. Two of the four identical Cluster spacecraft were placed at a close distance (~50 km) from each other and the spin axis of one of the spacecraft pair was tilted by an angle of ~46°. This gave the opportunity, for the first time in space, to measure global characteristics of AC electric field, at the sensitivity available with long boom (88 m) antennas, simultaneously from the specific configuration of the tilted pair of satellites and from the available base of three satellites placed at a large characteristic separation (~1 RE). This paper describes how global characteristics of radio waves, in this case the configuration of the electric field polarization ellipse in 3-D-space, are identified from in situ measurements of spin modulation features by the tilted pair, validating a novel experimental concept. In the event selected for analysis, non-thermal continuum (NTC) waves in the 15-25 kHz frequency range are observed from the Cluster constellation placed above the polar cap. The observed intensity variations with spin angle are those of plane waves, with an electric field polarization close to circular, at an ellipticity ratio e = 0.87. We derive the source position in 3-D by two different methods. The first one uses ray path orientation (measured by the tilted pair) combined with spectral signature of magnetic field magnitude at source. The second one is obtained via triangulation from the three spacecraft baseline, using estimation of directivity angles under assumption of circular polarization. The two results are not compatible, placing sources widely apart. We present a general study of the level of systematic errors due to the assumption of circular polarization, linked to the second approach, and show how this approach can lead to poor triangulation and wrong source positioning. The estimation derived from the first method places the NTC source region in the dawn sector, at a large L value (L ~ 10) and a medium geomagnetic latitude (35° S). We discuss these untypical results within the frame of the geophysical conditions prevailing that day, i.e. a particularly quiet long time interval, followed by a short increase of magnetic activity.

  7. Capacity upgrade in short-reach optical fibre networks: simultaneous 4-PAM 20 Gbps data and polarization-modulated PPS clock signal using a single VCSEL carrier

    NASA Astrophysics Data System (ADS)

    Isoe, G. M.; Wassin, S.; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.

    2017-11-01

    In this work, a four-level pulse amplitude modulation (4-PAM) format with a polarization-modulated pulse per second (PPS) clock signal using a single vertical cavity surface emitting laser (VCSEL) carrier is for the first time experimentally demonstrated. We propose uncomplex alternative technique for increasing capacity and flexibility in short-reach optical communication links through multi-signal modulation onto a single VCSEL carrier. A 20 Gbps 4-PAM data signal is directly modulated onto a single mode 10 GHz bandwidth VCSEL carrier at 1310 nm, therefore, doubling the network bit rate. Carrier spectral efficiency is further maximized by exploiting the inherent orthogonal polarization switching of the VCSEL carrier with changing bias in transmission of a PPS clock signal. We, therefore, simultaneously transmit a 20 Gbps 4-PAM data signal and a polarization-based PPS clock signal using a single VCSEL carrier. It is the first time a signal VCSEL carrier is reported to simultaneously transmit a directly modulated 20 Gbps 4-PAM data signal and a polarization-based PPS clock signal. We further demonstrate on the design of a software-defined digital signal processing (DSP)-assisted receiver as an alternative to costly receiver hardware. Experimental results show that a 3.21 km fibre transmission with simultaneous 20 Gbps 4-PAM data signal and polarization-based PPS clock signal introduced a penalty of 3.76 dB. The contribution of polarization-based PPS clock signal to this penalty was found out to be 0.41 dB. Simultaneous distribution of data and timing clock signals over shared network infrastructure significantly increases the aggregated data rate at different optical network units (ONUs), without costly investment.

  8. POLARIZATION MODULATION FROM LENSE–THIRRING PRECESSION IN X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingram, Adam; Maccarone, Thomas J.; Poutanen, Juri

    2015-07-01

    It has long been recognized that quasi-periodic oscillations (QPOs) in the X-ray light curves of accreting black hole and neutron star binaries have the potential to be powerful diagnostics of strong field gravity. However, this potential cannot be fulfilled without a working theoretical model, which has remained elusive. Perhaps, the most promising model associates the QPO with Lense–Thirring precession of the inner accretion flow, with the changes in viewing angle and Doppler boosting modulating the flux over the course of a precession cycle. Here, we consider the polarization signature of a precessing inner accretion flow. We use simple assumptions about themore » Comptonization process generating the emitted spectrum and take all relativistic effects into account, parallel transporting polarization vectors toward the observer along null geodesics in the Kerr metric. We find that both the degree of linear polarization and the polarization angle should be modulated on the QPO frequency. We calculate the predicted absolute rms variability amplitude of the polarization degree and angle for a specific model geometry. We find that it should be possible to detect these modulations for a reasonable fraction of parameter space with a future X-ray polarimeter such as NASA’s Polarization Spectroscopic Telescope Array (the satellite incarnation of the balloon experiment X-Calibur)« less

  9. Generation of circularly polarized XUV and soft-x-ray high-order harmonics by homonuclear and heteronuclear diatomic molecules subject to bichromatic counter-rotating circularly polarized intense laser fields

    NASA Astrophysics Data System (ADS)

    Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.

    2017-12-01

    Recently, studies of bright circularly polarized high-harmonic beams from atoms in the soft-x-ray region as a source for x-ray magnetic circular dichroism measurement in a tabletop-scale setup have received considerable attention. In this paper, we address the problem with molecular targets and perform a detailed quantum study of H2 +, CO, and N2 molecules in bichromatic counter-rotating circularly polarized laser fields where we adopt wavelengths (1300 and 790 nm) and intensities (2 ×1014W /cm2 ) reported in a recent experiment [Proc. Natl. Acad. Sci. USA 112, 14206 (2015), 10.1073/pnas.1519666112]. Our treatment of multiphoton processes in homonuclear and heteronuclear diatomic molecules is nonperturbative and based on the time-dependent density-functional theory for multielectron systems. The calculated radiation spectrum contains doublets of left and right circularly polarized harmonics with high-energy photons in the XUV and soft-x-ray ranges. Our results reveal intriguing and substantially different nonlinear optical responses for homonuclear and heteronuclear diatomic molecules subject to circularly polarized intense laser fields. We study in detail the below- and above-threshold harmonic regions and analyze the ellipticity and phase of the generated harmonic peaks.

  10. The Primordial Inflation Polarization Explorer (PIPER)

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2010-01-01

    The Primordial Inflation Polarization Explorer (PIPER) is a ba1loon-borne instrument designed to search for the faint signature of inflation in the polarized component of the cosmic microwave background (CMB). PIPER will measure the CMB polarization at 4 frequencies (l per flight) using a pair of cryogenic telescopes, one for measuring each of Stokes Q and U in the instrument frame. Each telescope receives both linear orthogonal polarizations in two 32 by 40 element planar arrays that utilize Transition-Edge Sensors (TES). The first element in each telescope is a variable-delay polarization modulator (VPM) that fully modulates the Stokes parameter to which the telescope is sensitive.

  11. Fast and slowly evolving vector solitons in mode-locked fibre lasers.

    PubMed

    Sergeyev, Sergey V

    2014-10-28

    We report on a new vector model of an erbium-doped fibre laser mode locked with carbon nanotubes. This model goes beyond the limitations of the previously used models based on either coupled nonlinear Schrödinger or Ginzburg-Landau equations. Unlike the previous models, it accounts for the vector nature of the interaction between an optical field and an erbium-doped active medium, slow relaxation dynamics of erbium ions, linear birefringence in a fibre, linear and circular birefringence of a laser cavity caused by in-cavity polarization controller and light-induced anisotropy caused by elliptically polarized pump field. Interplay of aforementioned factors changes coherent coupling of two polarization modes at a long time scale and so results in a new family of vector solitons (VSs) with fast and slowly evolving states of polarization. The observed VSs can be of interest in secure communications, trapping and manipulation of atoms and nanoparticles, control of magnetization in data storage devices and many other areas. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  12. Phase-matching of attosecond XUV supercontinuum

    NASA Astrophysics Data System (ADS)

    Gilbertson, Steve; Mashiko, Hiroki; Li, Chengquan; Khan, Sabih; Shakya, Mahendra; Moon, Eric; Chang, Zenghu

    2008-05-01

    Adding a weak second harmonic field to an ellipticity dependent polarization gating field allowed for the production of XUV supercontinua from longer (˜10 fs) input pulses in argon. The spectra support 200 as single isolated pulses. This technique, dubbed double optical gating (DOG), demonstrated a large enhancement of the harmonic yield as compared with polarization gating. These results can be attributed to the reduced depletion of the ground state of the target from the leading edge of the pulse and the increased intensity inside the polarization gate width. Through optimization of the harmonic generation process under the phase matching conditions, we were able to further increase the harmonic flux. The parameters included the target gas pressure, laser focus position, input pulse duration, and polarization gate width. By varying the CE phase of the pulse, we were able to verify that the results were indeed from DOG due to its unique 2 pi dependence on the harmonic spectrum. We were able to extend our results to neon. Its higher ionization potential allowed an extension of the harmonic cutoff for the production of even shorter pulses.

  13. Self-gravity at the scale of the polar cell

    NASA Astrophysics Data System (ADS)

    Huré, J.-M.; Pierens, A.; Hersant, F.

    2009-06-01

    We present the exact calculus of the gravitational potential and acceleration along the symmetry axis of a plane, homogeneous, polar cell as a function of mean radius bar{a}, radial extension Δ a, and opening angle Δ φ. Accurate approximations are derived in the limit of high numerical resolution at the geometrical mean < a > of the inner and outer radii (a key-position in current FFT-based Poisson solvers). Our results are the full extension of the approximate formula given in the textbook of Binney & Tremaine to all resolutions. We also clarify definitely the question about the existence (or not) of self-forces in polar cells. We find that there is always a self-force at radius < a > except if the shape factor ρ ≡ bar{a}Δ φ /Δ a → 3.531, asymptotically. Such cells are therefore well suited to build a polar mesh for high resolution simulations of self-gravitating media in two dimensions. A by-product of this study is a newly discovered indefinite integral involving complete elliptic integral of the first kind over modulus.

  14. Arabidopsis AIP1-2 restricted by WER-mediated patterning modulates planar polarity.

    PubMed

    Kiefer, Christian S; Claes, Andrea R; Nzayisenga, Jean-Claude; Pietra, Stefano; Stanislas, Thomas; Hüser, Anke; Ikeda, Yoshihisa; Grebe, Markus

    2015-01-01

    The coordination of cell polarity within the plane of the tissue layer (planar polarity) is crucial for the development of diverse multicellular organisms. Small Rac/Rho-family GTPases and the actin cytoskeleton contribute to planar polarity formation at sites of polarity establishment in animals and plants. Yet, upstream pathways coordinating planar polarity differ strikingly between kingdoms. In the root of Arabidopsis thaliana, a concentration gradient of the phytohormone auxin coordinates polar recruitment of Rho-of-plant (ROP) to sites of polar epidermal hair initiation. However, little is known about cytoskeletal components and interactions that contribute to this planar polarity or about their relation to the patterning machinery. Here, we show that ACTIN7 (ACT7) represents a main actin isoform required for planar polarity of root hair positioning, interacting with the negative modulator ACTIN-INTERACTING PROTEIN1-2 (AIP1-2). ACT7, AIP1-2 and their genetic interaction are required for coordinated planar polarity of ROP downstream of ethylene signalling. Strikingly, AIP1-2 displays hair cell file-enriched expression, restricted by WEREWOLF (WER)-dependent patterning and modified by ethylene and auxin action. Hence, our findings reveal AIP1-2, expressed under control of the WER-dependent patterning machinery and the ethylene signalling pathway, as a modulator of actin-mediated planar polarity. © 2015. Published by The Company of Biologists Ltd.

  15. Design of polarization imaging system based on CIS and FPGA

    NASA Astrophysics Data System (ADS)

    Zeng, Yan-an; Liu, Li-gang; Yang, Kun-tao; Chang, Da-ding

    2008-02-01

    As polarization is an important characteristic of light, polarization image detecting is a new image detecting technology of combining polarimetric and image processing technology. Contrasting traditional image detecting in ray radiation, polarization image detecting could acquire a lot of very important information which traditional image detecting couldn't. Polarization image detecting will be widely used in civilian field and military field. As polarization image detecting could resolve some problem which couldn't be resolved by traditional image detecting, it has been researched widely around the world. The paper introduces polarization image detecting in physical theory at first, then especially introduces image collecting and polarization image process based on CIS (CMOS image sensor) and FPGA. There are two parts including hardware and software for polarization imaging system. The part of hardware include drive module of CMOS image sensor, VGA display module, SRAM access module and the real-time image data collecting system based on FPGA. The circuit diagram and PCB was designed. Stokes vector and polarization angle computing method are analyzed in the part of software. The float multiply of Stokes vector is optimized into just shift and addition operation. The result of the experiment shows that real time image collecting system could collect and display image data from CMOS image sensor in real-time.

  16. Formation of contour optical traps using a four-channel liquid crystal focusing device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korobtsov, A V; Kotova, S P; Losevsky, N N

    2014-12-31

    The capabilities and specific features of the formation and dynamic control of so-called contour optical traps using a fourchannel liquid crystal modulator are studied theoretically and experimentally. Circular, elliptical and C-shaped traps are formed. Trapping and confinement of absorbing micro-objects by the formed traps are demonstrated. (optical traps)

  17. Extreme diffusion limited electropolishing of niobium radiofrequency cavities

    DOE PAGES

    Crawford, Anthony C.

    2017-01-04

    In this study, a deeply modulated, regular, continuous, oscillating current waveform is reliably and repeatably achieved during electropolishing of niobium single-cell elliptical radiofrequency cavities. Details of the technique and cavity test results are reported here. The method is applicable for cavity frequencies in the range 500 MHz to 3.9 GHz and can be extended to multicell structures.

  18. Wafer defect detection by a polarization-insensitive external differential interference contrast module.

    PubMed

    Nativ, Amit; Feldman, Haim; Shaked, Natan T

    2018-05-01

    We present a system that is based on a new external, polarization-insensitive differential interference contrast (DIC) module specifically adapted for detecting defects in semiconductor wafers. We obtained defect signal enhancement relative to the surrounding wafer pattern when compared with bright-field imaging. The new DIC module proposed is based on a shearing interferometer that connects externally at the output port of an optical microscope and enables imaging thin samples, such as wafer defects. This module does not require polarization optics (such as Wollaston or Nomarski prisms) and is insensitive to polarization, unlike traditional DIC techniques. In addition, it provides full control of the DIC shear and orientation, which allows obtaining a differential phase image directly on the camera (with no further digital processing) while enhancing defect detection capabilities, even if the size of the defect is smaller than the resolution limit. Our technique has the potential of future integration into semiconductor production lines.

  19. Method for measuring retardation of infrared wave-plate by modulated-polarized visible light

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Song, Feijun

    2012-11-01

    A new method for precisely measuring the optical phase retardation of wave-plates in the infrared spectral region is presented by using modulated-polarized visible light. An electro-optic modulator is used to accurately determine the zero point by the frequency-doubled signal of the Modulated-polarized light. A Babinet-Soleil compensator is employed to make the phase delay compensation. Based on this method, an instrument is set up to measure the retardations of the infrared wave-plates with visible region laser. Measurement results with high accuracy and sound repetition are obtained by simple calculation. Its measurement precision is less than and repetitive precision is within 0.3%.

  20. Partial polarizer filter

    NASA Technical Reports Server (NTRS)

    Title, A. M. (Inventor)

    1978-01-01

    A birefringent filter module comprises, in seriatum. (1) an entrance polarizer, (2) a first birefringent crystal responsive to optical energy exiting the entrance polarizer, (3) a partial polarizer responsive to optical energy exiting the first polarizer, (4) a second birefringent crystal responsive to optical energy exiting the partial polarizer, and (5) an exit polarizer. The first and second birefringent crystals have fast axes disposed + or -45 deg from the high transmitivity direction of the partial polarizer. Preferably, the second crystal has a length 1/2 that of the first crystal and the high transmitivity direction of the partial polarizer is nine times as great as the low transmitivity direction. To provide tuning, the polarizations of the energy entering the first crystal and leaving the second crystal are varied by either rotating the entrance and exit polarizers, or by sandwiching the entrance and exit polarizers between pairs of half wave plates that are rotated relative to the polarizers. A plurality of the filter modules may be cascaded.

  1. Optical Gating with Asymmetric Field Ratios for Isolated Attosecond Pulse Generation

    DTIC Science & Technology

    2015-09-01

    field intensity at t = tc. 0 15 30 45 60 75 90 0.0 1:3 1:2 1:1 2:1 3:1 1 2 2 Field ratio Sc alin g f act or Polarization angle θ1 (deg) APG ADOG...of using field asymmetry is low compared to that of using field ellipticity. 0.0 0.2 0.4 0.6 0.8 1.0 5 10 15 20 25 Sc alin g f act or Field

  2. Experimental entangled photon pair generation using crystals with parallel optical axes.

    PubMed

    Villar, Aitor; Lohrmann, Alexander; Ling, Alexander

    2018-05-14

    We present an optical design where polarization-entangled photon pairs are generated within two β-Barium Borate crystals whose optical axes are parallel. This design increases the spatial mode overlap of the emitted photon pairs enhancing single mode collection without the need for additional spatial walk-off compensators. The observed photon pair rate is at least 65 000 pairs/s/mW with a quantum state fidelity of 99.53 ± 0.22% when pumped with an elliptical spatial profile.

  3. Energy behaviour of extraordinary waves in magnetized quantum plasmas

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin

    2018-05-01

    We study the storage and flow of energy in a homogeneous magnetized quantum electron plasma that occurs when an elliptically polarized extraordinary electromagnetic wave propagates in the system. Expressions for the stored energy, energy flow, and energy velocity of extraordinary electromagnetic waves are derived by means of the quantum magnetohydrodynamics theory in conjunction with the Maxwell equations. Numerical results show that the energy flow of the high-frequency mode of extraordinary wave is modified only due to the Bohm potential in the short wavelength limit.

  4. Plasma control and utilization

    DOEpatents

    Ensley, Donald L.

    1976-12-28

    A plasma is confined and heated by a microwave field resonant in a cavity excited in a combination of the TE and TM modes while responding to the resonant frequency of the cavity as the plasma dimensions change to maintain operation at resonance. The microwave field is elliptically or circularly polarized as to prevent the electromagnetic confining field from going to zero. A high Q chamber having superconductive walls is employed to minimize wall losses while providing for extraction of thermonuclear energy produced by fusion of nuclei in the plasma.

  5. Experimental entangled photon pair generation using crystals with parallel optical axes

    NASA Astrophysics Data System (ADS)

    Villar, Aitor; Lohrmann, Alexander; Ling, Alexander

    2018-05-01

    We present an optical design where polarization-entangled photon pairs are generated within two $\\beta$-Barium Borate crystals whose optical axes are parallel. This design increases the spatial mode overlap of the emitted photon pairs enhancing single mode collection without the need for additional spatial walk-off compensators. The observed photon pair rate is at least 65000 pairs/s/mW with a quantum state fidelity of 99.53$\\pm$0.22% when pumped with an elliptical spatial profile.

  6. Complex modulation using tandem polarization modulators

    NASA Astrophysics Data System (ADS)

    Hasan, Mehedi; Hall, Trevor

    2017-11-01

    A novel photonic technique for implementing frequency up-conversion or complex modulation is proposed. The proposed circuit consists of a sandwich of a quarter-wave plate between two polarization modulators, driven, respectively, by an in-phase and quadrature-phase signals. The operation of the circuit is modelled using a transmission matrix method. The theoretical prediction is then validated by simulation using an industry-standard software tool. The intrinsic conversion efficiency of the architecture is improved by 6 dB over a functionally equivalent design based on dual parallel Mach-Zehnder modulators. Non-ideal scenarios such as imperfect alignment of the optical components and power imbalances and phase errors in the electric drive signals are also analysed. As light travels, along one physical path, the proposed design can be implemented using discrete components with greater control of relative optical path length differences. The circuit can further be integrated in any material platform that offers electro-optic polarization modulators.

  7. Spatial light modulators for full cross-connections in optical networks

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Inventor)

    2004-01-01

    A polarization-independent optical switch is disclosed for switching at least one incoming beam from at least one input source to at least one output drain. The switch includes a polarizing beam splitter to split each of the at least one incoming beam into a first input beam and a second input beam, wherein the first input beam and the second input beams are independently polarized; a wave plate optically coupled to the second input beam for converting the polarization of the second input beam to an appropriately polarized second input beam; a beam combiner optically coupled to the first input beam and the modified second input beam, wherein the beam combiner accepts the first input beam and the modified second input beam to produce a combined beam; the combined beam is invariant to the polarization state of the input source's polarization; and a controllable spatial light modulator optically coupled to the combined beam, wherein the combined beam is diffracted by the controllable spatial light modulator to place light at a plurality of output locations.

  8. The Effect of Systematics on Polarized Spectral Indices

    NASA Astrophysics Data System (ADS)

    Wehus, I. K.; Fuskeland, U.; Eriksen, H. K.

    2013-02-01

    We study four particularly bright polarized compact objects (Tau A, Vir A, 3C 273, and For A) in the 7 year Wilkinson Microwave Anisotropy Probe (WMAP) sky maps, with the goal of understanding potential systematics involved in the estimation of foreground spectral indices. First, we estimate the spectral index, the polarization angle, the polarization fraction, and the apparent size and shape of these objects when smoothed to a nominal resolution of 1° FWHM. Second, we compute the spectral index as a function of polarization orientation, α. Because these objects are approximately point sources with constant polarization angle, this function should be constant in the absence of systematics. However, for the K and Ka band WMAP data we find strong index variations for all four sources. For Tau A, we find a spectral index of β = -2.59 ± 0.03 for α = 30°, and β = -2.03 ± 0.01 for α = 50°. On the other hand, the spectral index between the Ka and Q bands is found to be stable. A simple elliptical Gaussian toy model with parameters matching those observed in Tau A reproduces the observed signal, and shows that the spectral index is particularly sensitive to the detector polarization angle. Based on these findings, we first conclude that estimation of spectral indices with the WMAP K band polarization data at 1° scales is not robust. Second, we note that these issues may be of concern for ground-based and sub-orbital experiments that use the WMAP polarization measurements of Tau A for calibration of gain and polarization angles.

  9. All-optical polarization control and noise cleaning based on a nonlinear lossless polarizer

    NASA Astrophysics Data System (ADS)

    Barozzi, Matteo; Vannucci, Armando; Picchi, Giorgio

    2015-01-01

    We propose an all-optical fiber-based device able to accomplish both polarization control and OSNR enhancement of an amplitude modulated optical signal, affected by unpolarized additive white Gaussian noise, at the same time. The proposed noise cleaning device is made of a nonlinear lossless polarizer (NLP), that performs polarization control, followed by an ideal polarizing filter that removes the orthogonally polarized half of additive noise. The NLP transforms every input signal polarization into a unique, well defined output polarization (without any loss of signal energy) and its task is to impose a signal polarization aligned with the transparent eigenstate of the polarizing filter. In order to effectively control the polarization of the modulated signal, we show that two different NLP configurations (with counter- or co-propagating pump laser) are needed, as a function of the signal polarization coherence time. The NLP is designed so that polarization attraction is effective only on the "noiseless" (i.e., information-bearing) component of the signal and not on noise, that remains unpolarized at the NLP output. Hence, the proposed device is able to discriminate signal power (that is preserved) from in-band noise power (that is partly suppressed). Since signal repolarization is detrimental if applied to polarization-multiplexed formats, the noise cleaner application is limited here to "legacy" links, with 10 Gb/s OOK modulation, still representing the most common format in deployed networks. By employing the appropriate NLP configurations, we obtain an OSNR gain close to 3dB. Furthermore, we show how the achievable OSNR gain can be estimated theoretically.

  10. A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90° twisted cell

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsin; Chen, Ming-Syuan; Lin, Wei-Chih; Tsou, Yu-Shih

    2012-07-01

    A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90° twisted cell (T-PNLC) is demonstrated. T-PNLC consists of three layers. Liquid crystal (LC) directors in the two layers near glass substrates are orthogonal to each other and those two layers modulate two eigen-polarizations of an incident light. As a result, two eigen-polarizations of an incident light experience the same phase shift. In the middle layer, LC directors are perpendicular to the glass substrate and contribute no phase shift. The phase shift of T-PNLC is electrically tunable and polarization-independent. T-PNLC does not require any bias voltage for operation. The phase shift is 0.28 π rad for the voltage of 30 Vrms. By measuring and analyzing the optical phase shift of T-PNLC at the oblique incidence of transverse magnetic wave, the pretilt angle of LC directors and the effective thickness of three layers are obtained and discussed. The potential applications are spatial light modulators, laser beam steering, and micro-lens arrays.

  11. Modulation of the Polar Vortex by Energetic Particle Precipitation and Quasi-Biennial Oscillation via Ozone Loss

    NASA Astrophysics Data System (ADS)

    Asikainen, T.; Salminen, A.; Maliniemi, V.; Mursula, K.

    2017-12-01

    Energetic particle precipitation (EPP) has been shown to cause ozone loss in the stratosphere during polar winter. This has been suggested to enhance polar vortex with the effect propagating even to ground level, where it is observed as a more positive phase of the Northern Annular Mode (NAM), the dominant ground circulation pattern in the winter time at high latitudes. Recent research has also shown that the quasi-biennial oscillation (QBO) modulates the relationship between the ground NAM and EPP so that the positive correlation between the two is more clearly seen in the easterly phase of QBO measured at 30 hPa height especially during the late winter season. Here we elaborate the QBO modulated connection between EPP and NAM by studying how the EPP affects the stratospheric polar vortex in the two phases of the QBO. Since the EPP presumably affects the polar stratosphere via indirect ozone loss we will study how the EPP modulates the amount of ozone, the stratospheric temperatures and zonal winds in the two QBO phases.

  12. Modulation of the polar vortex by energetic particle precipitation and Quasi-Biennial Oscillation via ozone loss

    NASA Astrophysics Data System (ADS)

    Salminen, Antti; Asikainen, Timo; Maliniemi, Ville; Mursula, Kalevi

    2017-04-01

    Energetic particle precipitation (EPP) has been shown to cause ozone loss in the stratosphere during polar winter. This has been suggested to enhance polar vortex with the effect propagating even to ground level, where it is observed as a more positive phase of the Northern Annular Mode (NAM), the dominant ground circulation pattern in the winter time at high latitudes. Recent research has also shown that the quasi-biennial oscillation (QBO) modulates the relationship between the ground NAM and EPP so that the positive correlation between the two is more clearly seen in the easterly phase of QBO measured at 30 hPa height especially during the late winter season. Here we elaborate the QBO modulated connection between EPP and NAM by studying how the EPP affects the stratospheric polar vortex in the two phases of the QBO. Since the EPP presumably affects the polar stratosphere via indirect ozone loss we will study how the EPP modulates the amount of ozone, the stratospheric temperatures and zonal winds in the two QBO phases.

  13. Polarization gating of high harmonic generation in the water window

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jie; Ren, Xiaoming; Yin, Yanchun

    2016-06-06

    We implement the polarization gating (PG) technique with a two-cycle, 1.7 μm driving field to generate an attosecond supercontinuum extending to the water window spectral region. The ellipticity dependence of the high harmonic yield over a photon energy range much broader than previous work is measured and compared with a semi-classical model. When PG is applied, the carrier-envelope phase (CEP) is swept to study its influence on the continuum generation. PG with one-cycle (5.7 fs) and two-cycle (11.3 fs) delay are tested, and both give continuous spectra spanning from 50 to 450 eV under certain CEP values, strongly indicating the generation ofmore » isolated attosecond pulses in the water window region.« less

  14. Metal surface coloration by oxide periodic structures formed with nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Veiko, Vadim; Karlagina, Yulia; Moskvin, Mikhail; Mikhailovskii, Vladimir; Odintsova, Galina; Olshin, Pavel; Pankin, Dmitry; Romanov, Valery; Yatsuk, Roman

    2017-09-01

    In this work, we studied a method of laser-induced coloration of metals, where small-scale spatially periodic structures play a key role in the process of color formation. The formation of such structures on a surface of AISI 304 stainless steel was demonstrated for the 1.06 μm fiber laser with nanosecond duration of pulses and random (elliptical) polarization. The color of the surface depends on the period, height and orientation of periodic surface structures. Adjustment of the polarization of the laser radiation or change of laser incidence angle can be used to control the orientation of the structures. The formation of markings that change their color under the different viewing angles becomes possible. The potential application of the method is metal product protection against falsification.

  15. Electromagnetic wave scattering from a forest or vegetation canopy - Ongoing research at the University of Texas at Arlington

    NASA Technical Reports Server (NTRS)

    Karam, Mostafa A.; Amar, Faouzi; Fung, Adrian K.

    1993-01-01

    The Wave Scattering Research Center at the University of Texas at Arlington has developed a scattering model for forest or vegetation, based on the theory of electromagnetic-wave scattering in random media. The model generalizes the assumptions imposed by earlier models, and compares well with measurements from several forest canopies. This paper gives a description of the model. It also indicates how the model elements are integrated to obtain the scattering characteristics of different forest canopies. The scattering characteristics may be displayed in the form of polarimetric signatures, represented by like- and cross-polarized scattering coefficients, for an elliptically-polarized wave, or in the form of signal-distribution curves. Results illustrating both types of scattering characteristics are given.

  16. Physical processes in the strong magnetic fields of accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Meszaros, P.

    1984-01-01

    Analytical formulae are fitted to observational data on physical processes occurring in strong magnetic fields surrounding accreting neutron stars. The propagation of normal modes in the presence of a quantizing magnetic field is discussed in terms of a wave equation in Fourier space, quantum electrodynamic effects, polarization and mode ellipticity. The results are applied to calculating the Thomson scattering, bremsstrahlung and Compton scattering cross-sections, which are a function of the frequency, angle and polarization of the magnetic field. Numerical procedures are explored for solving the radiative transfer equations. When applied to modeling X ray pulsars, a problem arises in the necessity to couple the magnetic angle and frequency dependence of the cross-sections with the hydrodynamic equations. The use of time-dependent averaging and approximation techniques is indicated.

  17. Analysis of Electric Field Propagation in Anisotropically Absorbing and Reflecting Waveplates

    NASA Astrophysics Data System (ADS)

    Carnio, B. N.; Elezzabi, A. Y.

    2018-04-01

    Analytical expressions are derived for half-wave plates (HWPs) and quarter-wave plates (QWPs) based on uniaxial crystals. This general analysis describes the behavior of anisotropically absorbing and reflecting waveplates across the electromagnetic spectrum, which allows for correction to the commonly used equations determined assuming isotropic absorptions and reflections. This analysis is crucial to the design and implementation of HWPs and QWPs in the terahertz regime, where uniaxial crystals used for waveplates are highly birefringent and anisotropically absorbing. The derived HWP equations describe the rotation of linearly polarized light by an arbitrary angle, whereas the QWP analysis focuses on manipulating a linearly polarized electric field to obtain any ellipticity. The HWP and QWP losses are characterized by determining equations for the total electric field magnitude transmitted through these phase-retarding elements.

  18. Do Not Resonate with Actions: Sentence Polarity Modulates Cortico-Spinal Excitability during Action-Related Sentence Reading

    PubMed Central

    Liuzza, Marco Tullio; Candidi, Matteo; Aglioti, Salvatore Maria

    2011-01-01

    Background Theories of embodied language suggest that the motor system is differentially called into action when processing motor-related versus abstract content words or sentences. It has been recently shown that processing negative polarity action-related sentences modulates neural activity of premotor and motor cortices. Methods and Findings We sought to determine whether reading negative polarity sentences brought about differential modulation of cortico-spinal motor excitability depending on processing hand-action related or abstract sentences. Facilitatory paired-pulses Transcranial Magnetic Stimulation (pp-TMS) was applied to the primary motor representation of the right-hand and the recorded amplitude of induced motor-evoked potentials (MEP) was used to index M1 activity during passive reading of either hand-action related or abstract content sentences presented in both negative and affirmative polarity. Results showed that the cortico-spinal excitability was affected by sentence polarity only in the hand-action related condition. Indeed, in keeping with previous TMS studies, reading positive polarity, hand action-related sentences suppressed cortico-spinal reactivity. This effect was absent when reading hand action-related negative polarity sentences. Moreover, no modulation of cortico-spinal reactivity was associated with either negative or positive polarity abstract sentences. Conclusions Our results indicate that grammatical cues prompting motor negation reduce the cortico-spinal suppression associated with affirmative action sentences reading and thus suggest that motor simulative processes underlying the embodiment may involve even syntactic features of language. PMID:21347305

  19. Modulating emission polarization of semiconductor quantum dots through surface plasmon of metal nanorod

    NASA Astrophysics Data System (ADS)

    Cheng, Mu-Tian; Liu, Shao-Ding; Wang, Qu-Quan

    2008-04-01

    We theoretically investigated the dynamics of exciton populations [ρyy(t ) and ρxx(t )] on two orthogonal polarization eigenstates (∣x⟩ and ∣y⟩) and the polarization ratio P(t )=[ρyy(t )-ρxx(t )]/[ρyy(t )+ρxx(t )] of an anisotropic InGaAs quantum dot modulated by the surface plasmon of an Au nanorod (NR). In the resonance of longitudinal surface plasmon of AuNR, the polarization ratio P(t ) increases from 0.22 to 0.99 during the excitation due to the efficient enhancement of Rabi frequency of the transition between the ∣y⟩ and vacuum states, and decreases from 0.02 to -0.92 after the excitation pulse due to the enhancement of decay rate of the ∣y⟩ state. This offers an approach to modulate the dynamic polarization ratio of radiative emissions.

  20. Maximum bandwidth snapshot channeled imaging polarimeter with polarization gratings

    NASA Astrophysics Data System (ADS)

    LaCasse, Charles F.; Redman, Brian J.; Kudenov, Michael W.; Craven, Julia M.

    2016-05-01

    Compact snapshot imaging polarimeters have been demonstrated in literature to provide Stokes parameter estimations for spatially varying scenes using polarization gratings. However, the demonstrated system does not employ aggressive modulation frequencies to take full advantage of the bandwidth available to the focal plane array. A snapshot imaging Stokes polarimeter is described and demonstrated through results. The simulation studies the challenges of using a maximum bandwidth configuration for a snapshot polarization grating based polarimeter, such as the fringe contrast attenuation that results from higher modulation frequencies. Similar simulation results are generated and compared for a microgrid polarimeter. Microgrid polarimeters are instruments where pixelated polarizers are superimposed onto a focal plan array, and this is another type of spatially modulated polarimeter, and the most common design uses a 2x2 super pixel of polarizers which maximally uses the available bandwidth of the focal plane array.

  1. Application of LC and LCoS in Multispectral Polarized Scene Projector (MPSP)

    NASA Astrophysics Data System (ADS)

    Yu, Haiping; Guo, Lei; Wang, Shenggang; Lippert, Jack; Li, Le

    2017-02-01

    A Multispectral Polarized Scene Projector (MPSP) had been developed in the short-wave infrared (SWIR) regime for the test & evaluation (T&E) of spectro-polarimetric imaging sensors. This MPSP generates multispectral and hyperspectral video images (up to 200 Hz) with 512×512 spatial resolution with active spatial, spectral, and polarization modulation with controlled bandwidth. It projects input SWIR radiant intensity scenes from stored memory with user selectable wavelength and bandwidth, as well as polarization states (six different states) controllable on a pixel level. The spectral contents are implemented by a tunable filter with variable bandpass built based on liquid crystal (LC) material, together with one passive visible and one passive SWIR cholesteric liquid crystal (CLC) notch filters, and one switchable CLC notch filter. The core of the MPSP hardware is the liquid-crystal-on-silicon (LCoS) spatial light modulators (SLMs) for intensity control and polarization modulation.

  2. A polarization measurement method for the quantification of retardation in optic nerve fiber layer

    NASA Astrophysics Data System (ADS)

    Fukuma, Yasufumi; Okazaki, Yoshio; Shioiri, Takashi; Iida, Yukio; Kikuta, Hisao; Ohnuma, Kazuhiko

    2008-02-01

    The thickness measurement of the optic nerve fiber layer is one of the most important evaluations for carrying out glaucoma diagnosis. Because the optic nerve fiber layer has birefringence, the thickness can be measured by illuminating eye optics with circular polarized light and analyzing the elliptical rate of the detected polarized light reflected from the optic nerve fiber layer. In this method, the scattering light from the background and the retardation caused by the cornea disturbs the precise measurement. If the Stokes vector expressing the whole state of polarization can be detected, we can eliminate numerically the influence of the background scattering and of the retardation caused by the cornea. Because the retardation process of the eye optics can be represented by a numerical equation using the retardation matrix of each component and also the nonpolarized background scattering light, it can be calculated by using the Stokes vector. We applied a polarization analysis system that can detect the Stokes vector onto the fundus camera. The polarization analysis system is constructed with a CCD area image sensor, a linear polarizing plate, a micro phase plate array, and a circularly polarized light illumination unit. With this simply constructed system, we can calculate the retardation caused only by the optic nerve fiber layer and it can predict the thickness of the optic nerve fiber layer. We report the method and the results graphically showing the retardation of the optic nerve fiber layer without the retardation of the cornea.

  3. Optical harmonic generator

    DOEpatents

    Summers, M.A.; Eimerl, D.; Boyd, R.D.

    1982-06-10

    A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The extraordinary or e directions of the crystal elements are oriented in the integral assembly to be in quadrature (90/sup 0/). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude o and e components. For a third-harmonic generation, the input fundamental wave has o and e components whose amplitudes are in a ratio of 2:1 (o:e reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10/sup 0/. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axeses (o).

  4. Application of Bingham statistics to a paleopole data set: Towards a better definition of APWP trends?

    NASA Astrophysics Data System (ADS)

    Cederquist, D. P.; Mac Niocaill, C.; Van der Voo, R.

    1997-01-01

    Bingham statistical analyses were applied to paleomagnetic data from 50 published studies from North America, of Carboniferous through Early Jurassic age, in an attempt to test whether the azimuths of the long axes of the Bingham ellipses lie tangent to the apparent polar wander path. The underlying assumption is that paleomagnetic directions will form a Fisherian (circular) distribution if no apparent polar wander has taken place during magnetization acquisition. However, the distribution should appear elongated (elliptical) if magnetization acquisition occurred over a significant amount of time involving apparent polar wander. The long axes in direction space yield corresponding azimuths in paleopole space, which can be compared to the North American APWP. We find that, generally, these azimuths are indeed sub-parallel to the APWP, validating the methods and the hypothesis. Plotting a pole as an azimuthal cord, representing the long axis of the ellipse, will provide additional robustness or definition to an APWP based upon temporally sparse paleomagnetic studies.

  5. Exceptional points in anisotropic photonic structures: from non-Hermitian physics to possible device applications

    NASA Astrophysics Data System (ADS)

    Grundmann, Marius; Richter, Steffen; Michalsky, Tom; Sturm, Chris; Zúñiga-Pérez, Jesús; Schmidt-Grund, Rüdiger

    2017-02-01

    We demonstrate that exceptional points exist in fully transparent, optically "effectively" biaxial, anisotropic micro-cavities, fabricated using an uniaxial cavity material with its axis inclined to the Bragg mirror growth direction. This is similar to the existence of singular (optic) axes in absorbing biaxial crystals, but the lack of time reversal symmetry is mediated by the mode broadening, i.e. the photon escape from the - in principle - open cavity system. As a consequence the eigenmodes are generally elliptically polarized, and completely circularly polarized eigenmodes are expected in certain directions. Via geometric and chemical composition design degrees of freedom, the spectral and angular position of these chiral modes can be rationally designed. Possible applications arise from the use of such directions for circularly polarized emission without the use of spin injection or internal or external magnetic fields. Also the coupling of such modes to excitons, adding oscillator strength to the system, seems a promising avenue of research.

  6. Optical harmonic generator

    DOEpatents

    Summers, Mark A.; Eimerl, David; Boyd, Robert D.

    1985-01-01

    A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The "extraordinary" or "e" directions of the crystal elements are oriented in the integral assembly to be in quadrature (90.degree.). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude "o" and "e" components. For a third-harmonic generation, the input fundamental wave has "o" and "e" components whose amplitudes are in a ratio of 2:1 ("o":"e" reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10.degree.. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axes ("o").

  7. Maser Emission from Gravitational States on Isolated Neutron Stars

    NASA Astrophysics Data System (ADS)

    Tepliakov, Nikita V.; Vovk, Tatiana A.; Rukhlenko, Ivan D.; Rozhdestvensky, Yuri V.

    2018-04-01

    Despite years of research on neutron stars, the source of their radio emission is still under debate. Here we propose a new coherent mechanism of pulsar radio emission based on transitions between gravitational states of electrons confined above the pulsar atmosphere. Our mechanism assumes that the coherent radiation is generated upon the electric and magnetic dipole transitions of electrons falling onto the polar caps of the pulsar, and predicts that this radiation occurs at radio frequencies—in full agreement with the observed emission spectra. We show that while the linearly polarized electric dipole radiation propagates parallel to the neutron star surface and has a fan-shape angular spectrum, the magnetic dipole emission comes from the magnetic poles of the pulsar in the form of two narrow beams and is elliptically polarized due to the spin–orbit coupling of electrons confined by the magnetic field. By explaining the main observables of the pulsar radio emission, the proposed mechanism indicates that gravitational quantum confinement plays an essential role in the physics of neutron stars.

  8. Onboard Processing of Electromagnetic Measurements for the Luna - Glob Mission

    NASA Astrophysics Data System (ADS)

    Hruska, F.; Kolmasova, I.; Santolik, O.; Skalski, A.; Pronenko, V.; Belyayev, S.; Lan, R.; Uhlir, L.

    2013-12-01

    The LEMRA-L instrument (Long-wavelength Electro-Magnetic Radiation Analyzer) will be implemented on the LUNA-GLOB spacecraft. It will analyze the data of the three-axial flux gate (DC - 10Hz) and searchcoil (1Hz - 10kHz) magnetometers LEMI. It will measure intensity, polarization, and coherence properties of waves in plasmas of the solar wind, in the lunar wake and its boundaries, and study the magnetic anomalies. We will use new modern robust onboard analysis methods to estimate the wave coherence, sense of polarization, ellipticity, and wave-vector direction, and thus substantially compress the transmitted data volumes, while conserving the important scientific information. In the burst mode data set intended for studying nonlinear phenomena, we will conserve the continuous flux-gate magnetometer data and discrete snapshots of three axial waveform measurements. In the survey-mode data set, continuous flux-gate magnetometer data will be transmitted together with onboard analyzed and averaged spectral matrices from the higher-frequency wave measurements or with onboard calculated propagation and polarization parameters.

  9. Instrumentation for the Future Lunar Missions: Multicomponent Electromagnetic Measurements at Long Wavelengths

    NASA Astrophysics Data System (ADS)

    Kolmasova, Ivana; Santolik, Ondrej; Belyayev, Serhiy; Uhlir, Ludek; Skalsky, Alexander; Pronenko, Vira; Lan, Radek

    The LEMRA-L instrument (Long-wavelength Electro-Magnetic Radiation Analyzer) will be implemented on the LUNA-GLOB spacecraft. It will analyze the data of the three-axial flux gate (DC - 10Hz) and searchcoil (1Hz - 10kHz) magnetometers LEMI. It will measure intensity, polarization, and coherence properties of waves in plasmas of the solar wind, in the lunar wake and its boundaries, and study the magnetic anomalies. We will use new modern robust onboard analysis methods to estimate the wave coherence, sense of polarization, ellipticity, and wave-vector direction, and thus substantially compress the transmitted data volumes, while conserving the important scientific information. In the burst mode data set intended for studying nonlinear phenomena, we will conserve the continuous flux-gate magnetometer data and discrete snapshots of three axial waveform measurements. In the survey-mode data set, continuous flux-gate magnetometer data will be transmitted together with onboard analyzed and averaged spectral matrices from the higher-frequency wave measurements or with onboard calculated propagation and polarization parameters.

  10. Directional coupler based on an elliptic cylindrical nanowire hybrid plasmonic waveguide.

    PubMed

    Zeng, Dezheng; Zhang, Li; Xiong, Qiulin; Ma, Junxian

    2018-06-01

    We present what we believe is a novel directional coupler based on an elliptic cylindrical nanowire hybrid plasmonic waveguide. Using the finite element method, the electric field distributions of y-polarized symmetric and antisymmetric modes of the coupler are compared, and the coupling and transmission characteristics are analyzed; then the optimized separation distance between the two parallel waveguides, 100 nm, is obtained. This optimized architecture fits in the weak coupling regime. Furthermore, the energy transfer is studied, and the performances of the directional coupler are evaluated, including excess loss, coupling degree, and directionality. The results show that when the separation distance is set to 100 nm, the coupling length reaches the shorter value of 1.646 μm, and the propagation loss is as low as 0.076 dB/μm, and the maximum energy transfer can reach 80%. The proposed directional coupler features good energy confinement, ultracompact and low propagation loss, which has potential application in dense photonic-integrated circuits and other photonic devices.

  11. Optically adjustable valley Hall current in single-layer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Sengupta, Parijat; Pavlidis, Dimitris; Shi, Junxia

    2018-02-01

    The illumination of a single-layer transition metal dichalcogenide with an elliptically polarized light beam is shown to give rise to a differential rate of inter-band carrier excitation between the valence and conduction states around the valley edges, K and K' . This rate with a linear dependence on the beam ellipticity and inverse of the optical gap manifests as an asymmetric Fermi distribution between the valleys or a non-equilibrium population which under an external field and a Berry curvature induced anomalous velocity, results in an externally tunable finite valley Hall current. Surface imperfections that influence the excitation rates are included through the self-consistent Born approximation. Further, we describe applications centered around circular dichroism, quantum computing, and spin torque via optically excited spin currents within the framework of the suggested formalism. A closing summary points to the possibility of extending the calculations to composite charged particles like trions. The role of the substrate in renormalizing the fundamental band gap and moderating the valley Hall current is also discussed.

  12. Design study of beam position monitors for measuring second-order moments of charged particle beams

    NASA Astrophysics Data System (ADS)

    Yanagida, Kenichi; Suzuki, Shinsuke; Hanaki, Hirofumi

    2012-01-01

    This paper presents a theoretical investigation on the multipole moments of charged particle beams in two-dimensional polar coordinates. The theoretical description of multipole moments is based on a single-particle system that is expanded to a multiparticle system by superposition, i.e., summing over all single-particle results. This paper also presents an analysis and design method for a beam position monitor (BPM) that detects higher-order (multipole) moments of a charged particle beam. To calculate the electric fields, a numerical analysis based on the finite difference method was created and carried out. Validity of the numerical analysis was proven by comparing the numerical with the analytical results for a BPM with circular cross section. Six-electrode BPMs with circular and elliptical cross sections were designed for the SPring-8 linac. The results of the numerical calculations show that the second-order moment can be detected for beam sizes ≧420μm (circular) and ≧550μm (elliptical).

  13. Transceivers and receivers for quantum key distribution and methods pertaining thereto

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeRose, Christopher; Sarovar, Mohan; Soh, Daniel B.S.

    Various technologies for performing continuous-variable (CV) and discrete-variable (DV) quantum key distribution (QKD) with integrated electro-optical circuits are described herein. An integrated DV-QKD system uses Mach-Zehnder modulators to modulate a polarization of photons at a transmitter and select a photon polarization measurement basis at a receiver. An integrated CV-QKD system uses wavelength division multiplexing to send and receive amplitude-modulated and phase-modulated optical signals with a local oscillator signal while maintaining phase coherence between the modulated signals and the local oscillator signal.

  14. Development of optical modulators for measurements of solar magnetic fields

    NASA Technical Reports Server (NTRS)

    West, E. A.; Smith, J. E.

    1987-01-01

    The measurement of polarized light allows solar astronomers to infer the magnetic field on the Sun. The accuracy of these measurements is dependent on the stable retardation characteristics of the polarization modulators used to minimize the atmospheric effects seen in ground-based observations. This report describes the work by the Space Science Laboratory at Marshall Space Flight Center to improve two types of polarization modulators. As a result, the timing characteristics for both electrooptic crystals (KD*Ps) and liquid crystal devices (LCDs) have been studied and will be used to enhance the capabilities of the MSFC Vector Magnetograph.

  15. Experiments and error analysis of laser ranging based on frequency-sweep polarization modulation

    NASA Astrophysics Data System (ADS)

    Gao, Shuyuan; Ji, Rongyi; Li, Yao; Cheng, Zhi; Zhou, Weihu

    2016-11-01

    Frequency-sweep polarization modulation ranging uses a polarization-modulated laser beam to determine the distance to the target, the modulation frequency is swept and frequency values are measured when transmitted and received signals are in phase, thus the distance can be calculated through these values. This method gets much higher theoretical measuring accuracy than phase difference method because of the prevention of phase measurement. However, actual accuracy of the system is limited since additional phase retardation occurs in the measuring optical path when optical elements are imperfectly processed and installed. In this paper, working principle of frequency sweep polarization modulation ranging method is analyzed, transmission model of polarization state in light path is built based on the theory of Jones Matrix, additional phase retardation of λ/4 wave plate and PBS, their impact on measuring performance is analyzed. Theoretical results show that wave plate's azimuth error dominates the limitation of ranging accuracy. According to the system design index, element tolerance and error correcting method of system is proposed, ranging system is built and ranging experiment is performed. Experiential results show that with proposed tolerance, the system can satisfy the accuracy requirement. The present work has a guide value for further research about system design and error distribution.

  16. High-frequency polarization dynamics in spin-lasers: pushing the limits

    NASA Astrophysics Data System (ADS)

    Gerhardt, Nils C.; Lindemann, Markus; Pusch, Tobias; Michalzik, Rainer; Hofmann, Martin R.

    2017-09-01

    While the high-frequency performance of conventional lasers is limited by the coupled carrier-photon dynamics, spin-polarized lasers have a high potential to overcome this limitation and to push the direct modulation bandwidth beyond 100 GHz. The key is to utilize the ultrafast polarization dynamics in spin-polarized vertical cavity surface-emitting lasers (spin-VCSELs) which is decoupled from the intensity dynamics and its fundamental limitations. The polarization dynamics in such devices, characterized by the polarization oscillation resonance frequency, is mainly determined by the amount of birefringence in the cavity. Using an approach for manipulating the birefringence via mechanical strain we were able to increase the polarization dynamics to resonance frequencies of more than 40 GHz. Up to now these values are only limited by the setup to induce birefringence and do not reflect any fundamental limitations. Taking our record results for the birefringence-induced mode splitting of more than 250 GHz into account, the concept has the potential to provide polarization modulation in spin-VCSELs with modulation frequencies far beyond 100 GHz. This makes them ideal devices for next-generation fast optical interconnects. In this paper we present experimental results for ultrafast polarization dynamics up to 50 GHz and compare them to numerical simulations.

  17. The segment polarity network is a robust developmental module

    NASA Astrophysics Data System (ADS)

    von Dassow, George; Meir, Eli; Munro, Edwin M.; Odell, Garrett M.

    2000-07-01

    All insects possess homologous segments, but segment specification differs radically among insect orders. In Drosophila, maternal morphogens control the patterned activation of gap genes, which encode transcriptional regulators that shape the patterned expression of pair-rule genes. This patterning cascade takes place before cellularization. Pair-rule gene products subsequently `imprint' segment polarity genes with reiterated patterns, thus defining the primordial segments. This mechanism must be greatly modified in insect groups in which many segments emerge only after cellularization. In beetles and parasitic wasps, for instance, pair-rule homologues are expressed in patterns consistent with roles during segmentation, but these patterns emerge within cellular fields. In contrast, although in locusts pair-rule homologues may not control segmentation, some segment polarity genes and their interactions are conserved. Perhaps segmentation is modular, with each module autonomously expressing a characteristic intrinsic behaviour in response to transient stimuli. If so, evolution could rearrange inputs to modules without changing their intrinsic behaviours. Here we suggest, using computer simulations, that the Drosophila segment polarity genes constitute such a module, and that this module is resistant to variations in the kinetic constants that govern its behaviour.

  18. ANALYSIS OF SEEING-INDUCED POLARIZATION CROSS-TALK AND MODULATION SCHEME PERFORMANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casini, R.; De Wijn, A. G.; Judge, P. G.

    2012-09-20

    We analyze the generation of polarization cross-talk in Stokes polarimeters by atmospheric seeing, and its effects on the noise statistics of spectropolarimetric measurements for both single-beam and dual-beam instruments. We investigate the time evolution of seeing-induced correlations between different states of one modulation cycle and compare the response to these correlations of two popular polarization modulation schemes in a dual-beam system. Extension of the formalism to encompass an arbitrary number of modulation cycles enables us to compare our results with earlier work. Even though we discuss examples pertinent to solar physics, the general treatment of the subject and its fundamentalmore » results might be useful to a wider community.« less

  19. Experimental demonstration of polarization encoding quantum key distribution system based on intrinsically stable polarization-modulated units.

    PubMed

    Wang, Jindong; Qin, Xiaojuan; Jiang, Yinzhu; Wang, Xiaojing; Chen, Liwei; Zhao, Feng; Wei, Zhengjun; Zhang, Zhiming

    2016-04-18

    A proof-of-principle demonstration of a one-way polarization encoding quantum key distribution (QKD) system is demonstrated. This approach can automatically compensate for birefringence and phase drift. This is achieved by constructing intrinsically stable polarization-modulated units (PMUs) to perform the encoding and decoding, which can be used with four-state protocol, six-state protocol, and the measurement-device-independent (MDI) scheme. A polarization extinction ratio of about 30 dB was maintained for several hours over a 50 km optical fiber without any adjustments to our setup, which evidences its potential for use in practical applications.

  20. Kinetic Behavior of Leucine and Other Amino Acids Modulating Cognitive Performance via mTOR Pathway

    DTIC Science & Technology

    2011-12-02

    is a potential target for modulation with leucine (or other therapeutic agents), to maintain/enhance normal functioning under stress conditions. Such... functioning under stress conditions. Such an effect has potential for optimizing warfighter cognitive performance under high demand conditions. The... Isoleucine L1 Essential Neutral Non-polar Branched chain Lysine Basic Y+ Essential Basic Polar Proline L1? Neutral Non-polar Aromatic Asparagine Neutral

  1. Leucine Modulation of the mTOR Pathway for Cognition Modulation: Kinetic and In Vitro Studies and Model Development

    DTIC Science & Technology

    2015-09-30

    isoleucine non-polar L1 131 Aromatic side chain phenylalanine non-polar L1 165 tyrosine polar L1 181 tryptophan slightly...Human Performance Wing Human Effectiveness Directorate Bioeffects Division Molecular Bioeffects Branch Wright-Patterson AFB OH 45433-5707 NOTICE...IV, DAF Chief, Bioeffects Division Human Effectiveness Directorate 711th Human Performance Wing Air Force Research Laboratory This report is

  2. Integrated optical modulator manipulating the polarization and rotation handedness of Orbital Angular Momentum states.

    PubMed

    Mousavi, S Faezeh; Nouroozi, Rahman; Vallone, Giuseppe; Villoresi, Paolo

    2017-06-19

    Recent studies demonstrated that the optical channels encoded by Orbital Angular Momentum (OAM) are capable candidates for improving the next generation of communication systems. OAM states can enhance the capacity and security of high-dimensional communication channels in both classical and quantum regimes based on optical fibre and free space. Hence, fast and precise control of the beams encoded by OAM can provide their commercial applications in the compatible communication networks. Integrated optical devices are good miniaturized options to perform this issue. This paper proposes a numerically verified integrated high-frequency electro-optical modulator for manipulation of the guided modes encoded in both OAM and polarization states. The proposed modulator is designed as an electro-optically active Lithium Niobate (LN) core photonic wire with silica as its cladding in a LN on Insulator (LNOI) configuration. It consists of two successive parts; a phase shifter to reverse the rotation handedness of the input OAM state and a polarization converter to change the horizontally polarized OAM state to the vertically polarized one. It is shown that all four possible output polarization-OAM encoded states can be achieved with only 6 V and 7 V applied voltages to the electrodes in the two parts of the modulator.

  3. Metasurface integrated high energy efficient and high linearly polarized InGaN/GaN light emitting diode.

    PubMed

    Wang, Miao; Xu, Fuyang; Lin, Yu; Cao, Bing; Chen, Linghua; Wang, Chinhua; Wang, Jianfeng; Xu, Ke

    2017-07-06

    We proposed and demonstrated an integrated high energy efficient and high linearly polarized InGaN/GaN green LED grown on (0001) oriented sapphire with combined metasurface polarizing converter and polarizer system. It is different from those conventional polarized light emissions generated with plasmonic metallic grating in which at least 50% high energy loss occurs inherently due to high reflection of the transverse electric (TE) component of an electric field. A reflecting metasurface, with a two dimensional elliptic metal cylinder array (EMCA) that functions as a half-wave plate, was integrated at the bottom of a LED such that the back-reflected TE component, that is otherwise lost by a dielectric/metal bi-layered wire grids (DMBiWG) polarizer on the top emitting surface of the LED, can be converted to desired transverse magnetic (TM) polarized emission after reflecting from the metasurface. This significantly enhances the polarized light emission efficiency. Experimental results show that extraction efficiency of the polarized emission can be increased by 40% on average in a wide angle of ±60° compared to that with the naked bottom of sapphire substrate, or 20% compared to reflecting Al film on the bottom of a sapphire substrate. An extinction ratio (ER) of average value 20 dB within an angle of ±60° can be simultaneously obtained directly from an InGaN/GaN LED. Our results show the possibility of simultaneously achieving a high degree of polarization and high polarization extraction efficiency at the integrated device level. This advances the field of GaN LED toward energy efficiency, multi-functional applications in illumination, display, medicine, and light manipulation.

  4. Development and fabrication of the vacuum systems for an elliptically polarized undulator at Taiwan Photon Source

    NASA Astrophysics Data System (ADS)

    Chang, Chin-Chun; Chan, Che-Kai; Wu, Ling-Hui; Shueh, Chin; Shen, I.-Ching; Cheng, Chia-Mu; Yang, I.-Chen

    2017-05-01

    Three sets of a vacuum system were developed and fabricated for elliptically polarized undulators (EPU) of a 3-GeV synchrotron facility. These chambers were shaped with low roughness extrusion and oil-free machining; the design combines aluminium and stainless steel. The use of a bimetallic material to connect the EPU to the vacuum system achieves the vacuum sealing and to resolve the leakage issue due to bake process induced thermal expansion difference. The interior of the EPU chamber consists of a non-evaporable-getter strip pump in a narrow space to absorb photon-stimulated desorption and to provide a RF bridge design to decrease impedance effect in the two ends of EPU chamber. To fabricate these chambers and to evaluate the related performance, we performed a computer simulation to optimize the structure. During the machining and welding, the least deformation was achieved, less than 0.1 mm near 4 m. In the installation, the linear slider can provide a stable and precision moved along parallel the electron beam direction smoothly for the EPU chamber to decrease the twist issue during baking process. The pressure of the EPU chamber attained less than 2×10-8 Pa through baking. These vacuum systems of the EPU magnet have been installed in the electron storage ring of Taiwan Photon Source in 2015 May and have normally operated at 300 mA continuously since, and to keep beam life time achieved over than 12 h.

  5. Yb-doped polarizing fiber

    NASA Astrophysics Data System (ADS)

    Gillooly, A.; Webb, A. S.; Favero, F. C.; Bouchan, T.; Cooper, L. J.; Read, D.; Hill, M.

    2017-02-01

    An ytterbium (Yb) doped polarizing fiber is demonstrated. The fiber offers the opportunity to build all-fiber lasers with single polarization output and without the need for free-space polarizing components. Traditional single polarization fiber lasers utilize polarization-maintaining (PM) gain fiber with a single polarization stimulation signal. Whilst this results in an approximation to a single polarization laser, the spontaneous emission from the unstimulated polarization state limits the polarization extinction ratio (PER). The PER is further limited as the stimulated signal is prone to crosstalk. Furthermore, controlling amplitude modulation of the stimulated signal is critical for maximizing the peak power of an optical pulse, particularly for high energy lasers. If light is allowed to leak in to the unstimulated axis it will travel at a different velocity to the stimulated axis and can cross-couple back into the signal axis, creating an interference effect which leads to amplitude modulation on the signal pulse. Single-polarization Yb-doped fiber ensures that light on the fast axis is constantly attenuated; ensuring that light on the unstimulated axis cannot propagate and thus cannot degrade the PER or create amplitude modulation. In this paper we report on, to the best of our knowledge, the first demonstration of a single polarization Yb-doped bowtie optical fiber manufactured using a combination of Modified Chemical Vapor Deposition (MCVD) and rare-earth solution doping technology. The fiber has a single-polarization window of 80nm at the operating wavelength of 1060nm and a PER of >18dB. The fabrication and characterization of the fiber is reported.

  6. Polarization control of quantum dot emission by chiral photonic crystal slabs

    NASA Astrophysics Data System (ADS)

    Lobanov, Sergey V.; Weiss, Thomas; Gippius, Nikolay A.; Tikhodeev, Sergei G.; Kulakovskii, Vladimir D.; Konishi, Kuniaki; Kuwata-Gonokami, Makoto

    2015-04-01

    We investigate theoretically the polarization properties of the quantum dot's optical emission from chiral photonic crystal structures made of achiral materials in the absence of external magnetic field at room temperature. The mirror symmetry of the local electromagnetic field is broken in this system due to the decreased symmetry of the chiral modulated layer. As a result, the radiation of randomly polarized quantum dots normal to the structure becomes partially circularly polarized. The sign and degree of circular polarization are determined by the geometry of the chiral modulated structure and depend on the radiation frequency. A degree of circular polarization up to 99% can be achieved for randomly distributed quantum dots, and can be close to 100% for some single quantum dots.

  7. Polarization control of quantum dot emission by chiral photonic crystal slabs.

    PubMed

    Lobanov, Sergey V; Weiss, Thomas; Gippius, Nikolay A; Tikhodeev, Sergei G; Kulakovskii, Vladimir D; Konishi, Kuniaki; Kuwata-Gonokami, Makoto

    2015-04-01

    We investigate theoretically the polarization properties of the quantum dot's (QDs) optical emission from chiral photonic crystal structures made of achiral materials in the absence of external magnetic field at room temperature. The mirror symmetry of the local electromagnetic field is broken in this system due to the decreased symmetry of the chiral modulated layer. As a result, the radiation of randomly polarized QDs normal to the structure becomes partially circularly polarized. The sign and degree of circular polarization are determined by the geometry of the chiral modulated structure and depend on the radiation frequency. A degree of circular polarization up to 99% can be achieved for randomly distributed QDs, and can be close to 100% for some single QDs.

  8. Cell polarity proteins and spermatogenesis.

    PubMed

    Gao, Ying; Xiao, Xiang; Lui, Wing-Yee; Lee, Will M; Mruk, Dolores; Cheng, C Yan

    2016-11-01

    When the cross-section of a seminiferous tubule from an adult rat testes is examined microscopically, Sertoli cells and germ cells in the seminiferous epithelium are notably polarized cells. For instance, Sertoli cell nuclei are found near the basement membrane. On the other hand, tight junction (TJ), basal ectoplasmic specialization (basal ES, a testis-specific actin-rich anchoring junction), gap junction (GJ) and desmosome that constitute the blood-testis barrier (BTB) are also located near the basement membrane. The BTB, in turn, divides the epithelium into the basal and the adluminal (apical) compartments. Within the epithelium, undifferentiated spermatogonia and preleptotene spermatocytes restrictively reside in the basal compartment whereas spermatocytes and post-meiotic spermatids reside in the adluminal compartment. Furthermore, the heads of elongating/elongated spermatids point toward the basement membrane with their elongating tails toward the tubule lumen. However, the involvement of polarity proteins in this unique cellular organization, in particular the underlying molecular mechanism(s) by which polarity proteins confer cellular polarity in the seminiferous epithelium is virtually unknown until recent years. Herein, we discuss latest findings regarding the role of different polarity protein complexes or modules and how these protein complexes are working in concert to modulate Sertoli cell and spermatid polarity. These findings also illustrate polarity proteins exert their effects through the actin-based cytoskeleton mediated by actin binding and regulatory proteins, which in turn modulate adhesion protein complexes at the cell-cell interface since TJ, basal ES and GJ utilize F-actin for attachment. We also propose a hypothetical model which illustrates the antagonistic effects of these polarity proteins. This in turn provides a unique mechanism to modulate junction remodeling in the testis to support germ cell transport across the epithelium in particular the BTB during the epithelial cycle of spermatogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A Low-Profile Dual-Layer Patch Antenna with a Circular Polarizer Consisting of Dual Semicircular Resonators.

    PubMed

    Guo, Li; Tang, Ming-Chun; Li, Mei

    2018-06-01

    In this paper, a circular polarizer comprising dual semicircular split-rings (DSSRs) is presented. By placing it above an elliptical radiator that radiates linearly polarized (LP) waves, dual-layer patch antennas capable of radiating right-hand (RH) or left-hand (LH) circularly polarized (CP) waves are achieved in terms of the different offset direction of the bottom splits of the DSSRs. Because of both the capacitive coupling to the radiator and the degenerate modes existing in the excited DSSRs, the DSSRs collaboratively result in a circularly polarized radiation, successfully converting incident LP waves into CP ones. Simulated results show that the impedance, axial ratio (AR), and gain frequency response of both proposed CP antennas are identical, with a simulated 3-dB AR bandwidth of 72 MHz covering 2.402⁻2.474 GHz and a gain enhanced by 3.9 dB. The proposed antennas were fabricated and measured, revealing an operational bandwidth of 65 MHz (2.345⁻2.41 GHz) and a peak gain up to 9 dBi. Moreover, a low profile of 0.063λ₀ is maintained. The proposed CP antennas could be as a candidate for wireless target detection applications in terms of their identical frequency response property.

  10. Sensitivity analysis of periodic errors in heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    Ganguly, Vasishta; Kim, Nam Ho; Kim, Hyo Soo; Schmitz, Tony

    2011-03-01

    Periodic errors in heterodyne displacement measuring interferometry occur due to frequency mixing in the interferometer. These nonlinearities are typically characterized as first- and second-order periodic errors which cause a cyclical (non-cumulative) variation in the reported displacement about the true value. This study implements an existing analytical periodic error model in order to identify sensitivities of the first- and second-order periodic errors to the input parameters, including rotational misalignments of the polarizing beam splitter and mixing polarizer, non-orthogonality of the two laser frequencies, ellipticity in the polarizations of the two laser beams, and different transmission coefficients in the polarizing beam splitter. A local sensitivity analysis is first conducted to examine the sensitivities of the periodic errors with respect to each input parameter about the nominal input values. Next, a variance-based approach is used to study the global sensitivities of the periodic errors by calculating the Sobol' sensitivity indices using Monte Carlo simulation. The effect of variation in the input uncertainty on the computed sensitivity indices is examined. It is seen that the first-order periodic error is highly sensitive to non-orthogonality of the two linearly polarized laser frequencies, while the second-order error is most sensitive to the rotational misalignment between the laser beams and the polarizing beam splitter. A particle swarm optimization technique is finally used to predict the possible setup imperfections based on experimentally generated values for periodic errors.

  11. Bioelectric modulation of macrophage polarization

    NASA Astrophysics Data System (ADS)

    Li, Chunmei; Levin, Michael; Kaplan, David L.

    2016-02-01

    Macrophages play a critical role in regulating wound healing and tissue regeneration by changing their polarization state in response to local microenvironmental stimuli. The native roles of polarized macrophages encompass biomaterials and tissue remodeling needs, yet harnessing or directing the polarization response has been largely absent as a potential strategy to exploit in regenerative medicine to date. Recent data have revealed that specific alteration of cells’ resting potential (Vmem) is a powerful tool to direct proliferation and differentiation in a number of complex tissues, such as limb regeneration, craniofacial patterning and tumorigenesis. In this study, we explored the bioelectric modulation of macrophage polarization by targeting ATP sensitive potassium channels (KATP). Glibenclamide (KATP blocker) and pinacidil (KATP opener) treatment not only affect macrophage polarization, but also influence the phenotype of prepolarized macrophages. Furthermore, modulation of cell membrane electrical properties can fine-tune macrophage plasticity. Glibenclamide decreased the secretion and gene expression of selected M1 markers, while pinacidil augmented M1 markers. More interestingly, glibencalmide promoted macrophage alternative activation by enhancing certain M2 markers during M2 polarization. These findings suggest that control of bioelectric properties of macrophages could offer a promising approach to regulate macrophage phenotype as a useful tool in regenerative medicine.

  12. Independent control of beam astigmatism and ellipticity using a SLM for fs-laser waveguide writing.

    PubMed

    Ruiz de la Cruz, A; Ferrer, A; Gawelda, W; Puerto, D; Sosa, M Galván; Siegel, J; Solis, J

    2009-11-09

    We have used a low repetition rate (1 kHz), femtosecond laser amplifier in combination with a spatial light modulator (SLM) to write optical waveguides with controllable cross-section inside a phosphate glass sample. The SLM is used to induce a controllable amount of astigmatism in the beam wavefront while the beam ellipticity is controlled through the propagation distance from the SLM to the focusing optics of the writing set-up. The beam astigmatism leads to the formation of two separate disk-shaped foci lying in orthogonal planes. Additionally, the ellipticity has the effect of enabling control over the relative peak irradiances of the two foci, making it possible to bring the peak irradiance of one of them below the material transformation threshold. This allows producing a single waveguide with controllable cross-section. Numerical simulations of the irradiance distribution at the focal region under different beam shaping conditions are compared to in situ obtained experimental plasma emission images and structures produced inside the glass, leading to a very satisfactory agreement. Finally, guiding structures with controllable cross-section are successfully produced in the phosphate glass using this approach.

  13. Mars exploration, Venus swingby and conjunction class mission modes, time period 2000 to 2045

    NASA Technical Reports Server (NTRS)

    Young, A. C.; Mulqueen, J. A.; Skinner, J. E.

    1984-01-01

    Trajectory and mission requirement data are presented for Earth-Mars opposition class and conjunction class round trip stopover mission opportunities available during the time period year 2000 to year 2045. The opposition class mission employs the gravitational field of Venus to accelerate the space vehicle on either the outbound or inbound leg. The gravitational field of Venus was used to reduce the propulsion requirement associated with the opposition class mission. Representative space vehicle systems are sized to compare the initial mass required in low Earth orbit of one mission opportunity with another mission opportunity. The interplanetary space vehicle is made up of the spacecraft and the space vehicle acceleration system. The space vehicle acceleration system consists of three propulsion stages. The first propulsion stage performs the Earth escape maneuver; the second stage brakes the spacecraft and Earth braking stage into the Mars elliptical orbit and effects the escape maneuver from the Mars elliptical orbit. The third propulsion stage brakes the mission module into an elliptical orbit at Earth return. The interplanetary space vehicle was assumed to be assembled in and depart from the space station circular orbit.

  14. Comments on, Xuan Li, Shanghong Zhao, Zihang Zhu, Bing Gong, Xingchun Chu, Yongjun Li, Jing Zhao and Yun Liu `an optical millimeter-wave generation scheme based on two parallel dual-parallel Mach-Zehnder modulators and polarization multiplexing', Journal of Modern Optics, 2015

    NASA Astrophysics Data System (ADS)

    Hasan, Mehedi; Hall, Trevor

    2016-11-01

    In the title paper, Li et al. have presented a scheme for filter-less photonic millimetre-wave (mm-wave) generation based on two polarization multiplexed parallel dual-parallel Mach-Zehnder modulators (DP-MZMs). For frequency octo-tupling, all the harmonics are suppressed except those of order 4l, where l is the integer. The carrier is then suppressed by the polarization multiplexing technique, which is the principal innovative step in their design. Frequency 12-tupling and 16-tupling is also described following a similar method. The two DP-MZM are similarly driven and provide identical outputs for the same RF modulation indices. Consequently, a demerit of their design is the requirement to apply two different RF signal modulation indexes in a particular range and set the polarizer to a precise angle which depends on the pair of modulation indices used in order to suppress the unwanted harmonics (e.g. the carrier) without simultaneously suppressing the wanted harmonics. The aim of this comment is to show that, an adjustment of the RF drive phases with a fixed polarizer angle with the design presented by Li, all harmonics can be suppressed except those of order4l, where l is an odd integer. Hence, a filter-less frequency octo-tupling can be generated whose performance is not limited by the careful adjustment of the RF drive signal, rather it can be operated for a wide range of modulation indexes (m 2.5 → 7.5). If the modulation index is adjusted to suppress 4th harmonics, then the design can be used to perform frequency 24-tupling. Since, the carrier is suppressed by design in the modified architecture, the strict requirement to adjust the RF drive (and polarizer angle) can be avoided without any significant change to the circuit complexity.

  15. Optimal strategy for polarization modulation in the LSPE-SWIPE experiment

    NASA Astrophysics Data System (ADS)

    Buzzelli, A.; de Bernardis, P.; Masi, S.; Vittorio, N.; de Gasperis, G.

    2018-01-01

    Context. Cosmic microwave background (CMB) B-mode experiments are required to control systematic effects with an unprecedented level of accuracy. Polarization modulation by a half wave plate (HWP) is a powerful technique able to mitigate a large number of the instrumental systematics. Aims: Our goal is to optimize the polarization modulation strategy of the upcoming LSPE-SWIPE balloon-borne experiment, devoted to the accurate measurement of CMB polarization at large angular scales. Methods: We departed from the nominal LSPE-SWIPE modulation strategy (HWP stepped every 60 s with a telescope scanning at around 12 deg/s) and performed a thorough investigation of a wide range of possible HWP schemes (either in stepped or continuously spinning mode and at different azimuth telescope scan-speeds) in the frequency, map and angular power spectrum domain. In addition, we probed the effect of high-pass and band-pass filters of the data stream and explored the HWP response in the minimal case of one detector for one operation day (critical for the single-detector calibration process). We finally tested the modulation performance against typical HWP-induced systematics. Results: Our analysis shows that some stepped HWP schemes, either slowly rotating or combined with slow telescope modulations, represent poor choices. Moreover, our results point out that the nominal configuration may not be the most convenient choice. While a large class of spinning designs provides comparable results in terms of pixel angle coverage, map-making residuals and BB power spectrum standard deviations with respect to the nominal strategy, we find that some specific configurations (e.g., a rapidly spinning HWP with a slow gondola modulation) allow a more efficient polarization recovery in more general real-case situations. Conclusions: Although our simulations are specific to the LSPE-SWIPE mission, the general outcomes of our analysis can be easily generalized to other CMB polarization experiments.

  16. Measurement of the Circular Dichroism of Electronic Transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, J.C.

    2010-08-11

    This chapter describes the measurement of circular dichroism (CD) for absorption due to transitions between two distinct electronic states. This is distinguished from absorption of lower energy photons, which are associated with changes of only the vibrational modes of the absorber and from the absorption of higher energy photons, which may result in ionizations. From the instrumental viewpoint, the chapter describes the measurement of CD that can be recorded using a photomultiplier or avalanche photodiode to quantify the intensity of a light beam, a photoelastic modulator to periodically alter the beam's polarization, and a monochromator located between the light sourcemore » and the modulator. Using either criterion, the focus is on the spectral domain spanning about a decade in wavelength (photon energy) from roughly 1.2 {micro}m (1 eV {approx} 160 zJ) in the near infrared to 120 nm (10 eV {approx} 1.6 aJ) in the vacuum ultraviolet (VUV). In the near infrared, there is overlap between the domain of electronic and purely vibrational transitions, the use of photomultipliers or avalanche photodiodes versus solid state detectors and dispersive versus Fourier-transform spectrometers. There is also some overlap in the VUV with synchrotron beamlines that use arrays of magnets called 'insertion devices' to cause the emitted synchrotron radiation to be elliptically polarized. To my knowledge, no single spectrometer spans this entire spectral domain discussed here, and the vast majority of laboratory instruments come nowhere close to either the upper or lower limit. However, similar analytical approaches and types of instrumentation are employed throughout this spectral domain and thus are logically treated together. The focus in this chapter is on the measurement of CD resulting from the inherent chirality of the absorbing system. Several spectroscopic methods that are closely related in terms of science or instrumentation are treated in other chapters. These include magnetic circular dichroism (MCD), linear dichroism (LD), optical rotary dispersion (ORD), fluorescence detected circular dichroism (FDCD), and circularly polarized luminescence (CPL). A basic CD instrument of the type described here can be configured by temporary alterations of the sample compartment, an additional or repositioned detector and modified electronics to perform many of the important experiments in the visible and UV regions. These include unpolarized absorption and total fluorescence in addition to most of the experiments mentioned above. Except for absorption, such extensions of the basic technology will not be discussed here. Other reviews of instrumentation related to CD have appeared, some containing information complementary to that included here.« less

  17. Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging

    NASA Astrophysics Data System (ADS)

    Zhou, Jialing; He, Honghui; Chen, Zhenhua; Wang, Ye; Ma, Hui

    2018-01-01

    We have developed a polarization microscope based on a commercial transmission microscope. We replace the halogen light source by a collimated LED light source module of six different colors. We use achromatic polarized optical elements that can cover the six different wavelength ranges in the polarization state generator (PSG) and polarization state analyzer (PSA) modules. The dual-rotating wave plate method is used to measure the Mueller matrix of samples, which requires the simultaneous rotation of the two quarter-wave plates in both PSG and PSA at certain angular steps. A scientific CCD detector is used as the image receiving module. A LabView-based software is developed to control the rotation angels of the wave plates and the exposure time of the detector to allow the system to run fully automatically in preprogrammed schedules. Standard samples, such as air, polarizers, and quarter-wave plates, are used to calibrate the intrinsic Mueller matrix of optical components, such as the objectives, using the eigenvalue calibration method. Errors due to the images walk-off in the PSA are studied. Errors in the Mueller matrices are below 0.01 using air and polarizer as standard samples. Data analysis based on Mueller matrix transformation and Mueller matrix polarization decomposition is used to demonstrate the potential application of this microscope in pathological diagnosis.

  18. Polarization digital holographic microscopy using low-cost liquid crystal polarization rotators

    NASA Astrophysics Data System (ADS)

    Dovhaliuk, Rostyslav Yu

    2018-02-01

    Polarization imaging methods are actively used to study anisotropic objects. A number of methods and systems, such as imaging polarimeters, were proposed to measure the state of polarization of light that passed through the object. Digital holographic and interferometric approaches can be used to quantitatively measure both amplitude and phase of a wavefront. Using polarization modulation optics, the measurement capabilities of such interference-based systems can be extended to measure polarization-dependent parameters, such as phase retardation. Different kinds of polarization rotators can be used to alternate the polarization of a reference beam. Liquid crystals are used in a rapidly increasing number of different optoelectronic devices. Twisted nematic liquid crystals are widely used as amplitude modulators in electronic displays and light valves or shutter glass. Such devices are of particular interest for polarization imaging, as they can be used as polarization rotators, and due to large-scale manufacturing have relatively low cost. A simple Mach-Zehnder polarized holographic setup that uses modified shutter glass as a polarization rotator is demonstrated. The suggested approach is experimentally validated by measuring retardation of quarter-wave film.

  19. Variable-delay Polarization Modulators for the CLASS Telescope

    NASA Astrophysics Data System (ADS)

    Harrington, Kathleen; Ali, A.; Amiri, M.; Appel, J. W.; Araujo, D.; Bennett, C. L.; Boone, F.; Chan, M.; Cho, H.; Chuss, D. T.; Colazo, F.; Crowe, E.; Denis, K.; Dünner, R.; Eimer, J.; Essinger-Hileman, T.; Gothe, D.; Halpern, M.; Hilton, G.; Hinshaw, G. F.; Huang, C.; Irwin, K.; Jones, G.; Karakla, J.; Kogut, A. J.; Larson, D.; Limon, M.; Lowry, L.; Marriage, T.; Mehrle, N.; Miller, A. D.; Miller, N.; Mirel, P.; Moseley, S. H.; Novak, G.; Reintsema, C.; Rostem, K.; Stevenson, T.; Towner, D.; U-Yen, K.; Wagner, E.; Watts, D.; Wollack, E.; Xu, Z.; Zeng, L.

    2014-01-01

    The challenges of measuring faint polarized signals at microwave wavelengths have motivated the development of rapid polarization modulators. One scalable technique, called a Variable-delay Polarization Modulator (VPM), consists of a stationary wire array in front of a movable mirror. The mirror motion creates a changing phase difference between the polarization modes parallel and orthogonal to the wire array. The Cosmology Large Angular Scale Surveyor (CLASS) will use a VPM as the first optical element in a telescope array that will search for the signature of inflation through the “B-mode” pattern in the polarization of the cosmic microwave background. In the CLASS VPMs, parallel transport of the mirror is maintained by a voice-coil actuated flexure system which will translate the mirror in a repeatable manner while holding tight parallelism constraints with respect to the wire array. The wire array will use 51 μm diameter copper-plated tungsten wire with 160 μm pitch over a 60 cm clear aperture. We present the status of the construction and testing of the mirror transport mechanism and wire arrays for the CLASS VPMs.

  20. Modulation of spatial spin polarization at organic spinterface by side groups

    NASA Astrophysics Data System (ADS)

    Qiu, Shuai; Zhang, Zhao; Miao, Yuan-yuan; Zhang, Guang-ping; Ren, Jun-feng; Wang, Chuan-kui; Hu, Gui-chao

    2018-01-01

    Spin polarization at benzene/Ni organic/ferromagnetic interface is investigated by applying different substituting side groups. Based on first-principle calculations, it is demonstrated that the spin polarization of the states may be tuned in magnitude and sign by the side groups, which depends on the type of side groups as well as their position in the aromatic ring. Especially, a spatial spin polarization modulation is realized at the surface with the utilization of electron donating group sbnd NH2 or electron accepting group sbnd NO2. The analysis of projected density of states onto the pz orbital of carbon atoms indicates that the side group reduces the structural symmetry of the molecule and changes the pz orbital of carbon atom at different position, which further modifies the pz-d orbital hybridization as well as the spin transfer between the molecule and the ferromagnet. This work indicates a feasible way to modulate the spatial spin polarization at organic spinterface by side groups, which deserves to be measured by spin-polarized scanning tunneling microscopy.

  1. Polarization observations of broadband VHF signals by the FORTE satellite

    NASA Astrophysics Data System (ADS)

    Shao, Xuan-Min; Jacobson, Abram R.

    2001-01-01

    Coherent very high frequency (VHF) radio observations with the pair of orthogonal log-periodic array antennas of the FORTE satellite allow us to study thoroughly the polarization properties for a received signal. Eighty-one broadband VHF pulses that were generated by the Los Alamos Portable Pulser (LAPP) have been analyzed. The data are analyzed by computing the Stokes parameters in the time-frequency domain. We first examine the LAPP pulses at high time resolution so as to separate the ordinary and extraordinary ionospheric modes. The two modes have been found to be mirror images of each other in terms of polarization, as would be expected. For each mode the polarization degrades from circular toward elliptical as the nadir angle increases. Antenna pattern effects on this observation are discussed. The tilt of the detected polarization ellipse is found to be tightly associated with the azimuthal direction of the pulse source. The same set of data are then examined with much lower time resolution to intentionally mix together the two split modes, so that the ionospheric Faraday rotation can be detected. With the known geomagnetic field the total electron content (TEC) is computed, which shows good agreement with the TEC computed by dechirping the signal. A case study of an impulsive lightning emission shows that it is highly polarized, indicating that the associated breakdown processes are highly coherent and organized. Finally, we discuss the potential use of the polarization observations for locating terrestrial radio signals.

  2. Single attosecond pulse generation by using plasmon-driven double optical gating technology in crossed metal nanostructures

    NASA Astrophysics Data System (ADS)

    Feng, Liqiang; Liu, Katheryn

    2018-05-01

    An effective method to obtain the single attosecond pulses (SAPs) by using the multi-cycle plasmon-driven double optical gating (DOG) technology in the specifically designed metal nanostructures has been proposed and investigated. It is found that with the introduction of the crossed metal nanostructures along the driven and the gating polarization directions, not only the harmonic cutoff can be extended, but also the efficient high-order harmonic generation (HHG) at the very highest orders occurs only at one side of the region inside the nanostructure. As a result, a 93 eV supercontinuum with the near stable phase can be found. Further, by properly introducing an ultraviolet (UV) pulse into the driven laser polarization direction (which is defined as the DOG), the harmonic yield can be enhanced by two orders of magnitude in comparison with the singe polarization gating (PG) technology. However, as the polarized angle or the ellipticity of the UV pulse increase, the enhancement of the harmonic yield is slightly reduced. Finally, by superposing the selected harmonics from the DOG scheme, a 30 as SAP with intensity enhancement of two orders of magnitude can be obtained.

  3. Blind adaptive equalization of polarization-switched QPSK modulation.

    PubMed

    Millar, David S; Savory, Seb J

    2011-04-25

    Coherent detection in combination with digital signal processing has recently enabled significant progress in the capacity of optical communications systems. This improvement has enabled detection of optimum constellations for optical signals in four dimensions. In this paper, we propose and investigate an algorithm for the blind adaptive equalization of one such modulation format: polarization-switched quaternary phase shift keying (PS-QPSK). The proposed algorithm, which includes both blind initialization and adaptation of the equalizer, is found to be insensitive to the input polarization state and demonstrates highly robust convergence in the presence of PDL, DGD and polarization rotation.

  4. Effect of cross-phase-modulation-induced polarization scattering on optical polarization mode dispersion compensation in wavelength-division-multiplexed systems

    NASA Astrophysics Data System (ADS)

    Xie, Chongjin; Möller, Lothar; Kilper, Daniel C.; Mollenauer, Linn F.

    2003-12-01

    Interchannel cross-phase-modulation-induced polarization scattering (XPMIPS) and its effect on the performance of optical polarization mode dispersion (PMD) compensation in wavelength-division-multiplexed (WDM) systems are studied. The level of XPMIPS in long-haul WDM transmission systems is theoretically quantified, and its effect on optical PMD compensation is evaluated with numerical simulations. We show that in 10-Gbit/s ultra-long-haul dense WDM systems XPMIPS could reduce the PMD compensation efficiency by 50%, whereas for 40-Gbit/s systems the effect of XPMIPS is smaller.

  5. Snapshot polarization-sensitive plug-in optical module for a Fourier-domain optical coherence tomography system

    NASA Astrophysics Data System (ADS)

    Marques, Manuel J.; Rivet, Sylvain; Bradu, Adrian; Podoleanu, Adrian

    2018-02-01

    In this communication, we present a proof-of-concept polarization-sensitive Optical Coherence Tomography (PS-OCT) which can be used to characterize the retardance and the axis orientation of a linear birefringent sample. This module configuration is an improvement from our previous work1, 2 since it encodes the two polarization channels on the optical path difference, effectively carrying out the polarization measurements simultaneously (snapshot measurement), whilst retaining all the advantages (namely the insensitivity to environmental parameters when using SM fibers) of these two previous configurations. Further progress consists in employing Master Slave OCT technology,3 which is used to automatically compensate for the dispersion mismatch introduced by the elements in the module. This is essential given the encoding of the polarization states on two different optical path lengths, each of them having dissimilar dispersive properties. By utilizing this method instead of the commonly used re-linearization and numerical dispersion compensation methods an improvement in terms of the calculation time required can be achieved.

  6. Near-surface velocities and attenuation at two boreholes near Anza, California, from logging data

    USGS Publications Warehouse

    Fletcher, Joe B.; Fumal, T.; Hsi-Ping, Liu; Carroll, L.C.

    1990-01-01

    To investigate near-surface site effects in granite rock, we drilled 300-m deep boreholes at two sites which are collocated with stations from the digital array at Anza, California. Significant motion perpendicular to the polarizations of the first shear-wave arrival was recorded within a few meters of the surface. Apparently, the rock structure is sufficiently complicated that body waves are being converted (SH to SV at oblique incidence) very close to the surface. The presence of these elliptical particle motions within a mere few m of the pure shear-wave source suggests that the detection of polarizations perpendicular to the main shear arrival at a single location at the surface is not, by itself, a good method for detecting shear-wave splitting within the upper few tens of kilometers of the earth's crust. -from Authors

  7. Recollision induced excitation-ionization with counter-rotating two-color circularly polarized laser field

    NASA Astrophysics Data System (ADS)

    Ben, Shuai; Guo, Pei-Ying; Pan, Xue-Fei; Xu, Tong-Tong; Song, Kai-Li; Liu, Xue-Shen

    2017-07-01

    Nonsequential double ionization of Ar by a counter-rotating two-color circularly polarized laser field is theoretically investigated. At the combined intensity in the "knee" structure range, the double ionization occurs mainly through recollision induced excitation followed by subsequent ionization of Ar+∗ . By tracing the history of the recollision trajectories, we explain how the relative intensity ratio of the two colors controls the correlated electron dynamics and optimizes the ionization yields. The major channels contributing to enhancing the double ionization are through the elliptical trajectories with smaller travel time but not through the triangle shape or the other long cycle trajectories. Furthermore, the correlated electron dynamics could be limited to the attosecond time scale by adjusting the relative intensity ratio. Finally, the double ionization from doubly excited complex at low laser intensity is qualitatively discussed.

  8. Mars Crustal Remanent Magnetism: An Extinct Dynamo Leaves a Record of Field Reversals in the Heavily Cratered Highlands

    NASA Technical Reports Server (NTRS)

    Connerney, John E.; Acuna, Mario H.; Ness, Norman F.; Wasilewski, Peter J.

    1999-01-01

    The Mars Global Surveyor spacecraft, in a highly elliptical polar orbit about Mars, obtained vector magnetic field measurements just above the surface of Mars (altitudes > 100 kilometers). Crustal magnetization, largely confined to the most ancient, heavily cratered Mars highlands, is frequently organized in east-west trending linear features, the largest of which extends over 2000 km. A representative set of survey passes are modeled using uniformly magnetized thin plates and a generalized inverse methodology. Crustal remanent magnetization exceeds that deduced for the largest terrestrial magnetic anomalies by more than an order of magnitude. Groups of quasi-parallel linear features of alternating magnetic polarity are found. They are reminiscent of similar magnetic features associated with sea floor spreading and crustal genesis on Earth but with a much larger spatial scale.

  9. Incorporating the International Polar Year Into Introductory Geology Laboratories at Ohio State University

    NASA Astrophysics Data System (ADS)

    Judge, S. A.; Wilson, T. J.

    2005-12-01

    The International Polar Year (IPY) provides an excellent opportunity for highlighting polar research in education. The ultimate goal of our outreach and education program is to develop a series of modules that are focused on societally-relevant topics being investigated in Antarctic earth science, while teaching basic geologic concepts that are standard elements of school curricula. For example, we envision a university-level, undergraduate, introductory earth science class with the entire semester/quarter laboratory program focused on polar earth science research during the period of the International Polar Year. To attain this goal, a series of modules will be developed, including inquiry-based exercises founded on imagery (video, digital photos, digital core scans), GIS data layers, maps, and data sets available from OSU research groups. Modules that highlight polar research are also suitable for the K-12 audience. Scaleable/grade appropriate modules that use some of the same data sets as the undergraduate modules can be outlined for elementary through high school earth science classes. An initial module is being developed that focuses on paleoclimate data. The module provides a hands-on investigation of the climate history archived in both ice cores and sedimentary rock cores in order to understand time scales, drivers, and processes of global climate change. The paleoclimate module also demonstrates the types of polar research that are ongoing at OSU, allowing students to observe what research the faculty are undertaking in their respective fields. This will link faculty research with student education in the classroom, enhancing learning outcomes. Finally, this module will provide a direct link to U.S. Antarctic Program research related to the International Polar Year, when new ice and sedimentary rock cores will be obtained and analyzed. As a result of this laboratory exercise, the students will be able to: (1) Define an ice core and a sedimentary rock core. (Knowledge) (2) Identify climate indicators in each type of core by using digital core images. These include layers of particulate material (such as volcanic tephra) in ice cores and layers of larger grains (such as ice-rafted debris) in sedimentary rock cores. (Knowledge) (3) Describe how cores are taken in extreme environments, such as Antarctica. (Comprehension) (4) Use actual data from proxies in the ice and sedimentary records to graph changes through time in the cores. (Application) (5) Recognize variances in data sets that might illustrate periods of climate change. (Analysis) (6) Integrate data results from several proxies in order to construct a climate record for both ice cores and sedimentary rock cores. (Synthesis) (7) Interpret both the ice core and sedimentary rock core records to ascertain the effectiveness of both of these tools in archiving climate records. (Evaluation)

  10. A photoelastic-modulator-based motional Stark effect polarimeter for ITER that is insensitive to polarized broadband background reflections.

    PubMed

    Thorman, A; Michael, C; De Bock, M; Howard, J

    2016-07-01

    A motional Stark effect polarimeter insensitive to polarized broadband light is proposed. Partially polarized background light is anticipated to be a significant source of systematic error for the ITER polarimeter. The proposed polarimeter is based on the standard dual photoelastic modulator approach, but with the introduction of a birefringent delay plate, it generates a sinusoidal spectral filter instead of the usual narrowband filter. The period of the filter is chosen to match the spacing of the orthogonally polarized Stark effect components, thereby increasing the effective signal level, but resulting in the destructive interference of the broadband polarized light. The theoretical response of the system to an ITER like spectrum is calculated and the broadband polarization tolerance is verified experimentally.

  11. Polarization-insensitive PAM-4-carrying free-space orbital angular momentum (OAM) communications.

    PubMed

    Liu, Jun; Wang, Jian

    2016-02-22

    We present a simple configuration incorporating single polarization-sensitive phase-only liquid crystal spatial light modulator (SLM) to facilitate polarization-insensitive free-space optical communications employing orbital angular momentum (OAM) modes. We experimentally demonstrate several polarization-insensitive optical communication subsystems by propagating a single OAM mode, multicasting 4 and 10 OAM modes, and multiplexing 8 OAM modes, respectively. Free-space polarization-insensitive optical communication links using OAM modes that carry four-level pulse-amplitude modulation (PAM-4) signal are demonstrated in the experiment. The observed optical signal-to-noise ratio (OSNR) penalties are less than 1 dB in both polarization-insensitive N-fold OAM modes multicasting and multiple OAM modes multiplexing at a bit-error rate (BER) of 2e-3 (enhanced forward-error correction (EFEC) threshold).

  12. A kinematic flexure-based mechanism for precise parallel motion for the Hertz Variable-delay Polarization Modulator (VPM)

    NASA Astrophysics Data System (ADS)

    Voellmer, G. M.; Chuss, D. T.; Jackson, M.; Krejny, M.; Moseley, S. H.; Novak, G.; Wollack, E. J.

    2006-06-01

    We describe the design and construction of a Variable-delay Polarization Modulator (VPM) that has been built and integrated into the Hertz ground-based, submillimeter polarimeter at the SMTO on Mt. Graham in Arizona. VPMs allow polarization modulation by controlling the phase difference between two linear, orthogonal polarizations. This is accomplished by utilizing a grid-mirror pair with a controlled separation. The size of the gap between the mirror and the polarizing grid determines the amount of the phase difference. This gap must be parallel to better than 1% of the wavelength. The necessity of controlling the phase of the radiation across this device drives the two novel features of the VPM. First, a novel, kinematic, flexure is employed that passively maintains the parallelism of the mirror and the grid to 1.5 μm over a 150 mm diameter, with a 400 μm throw. A single piezoceramic actuator is used to modulate the gap, and a capacitive sensor provides position feedback for closed-loop control. Second, the VPM uses a grid flattener that highly constrains the planarity of the polarizing grid. In doing so, the phase error across the device is minimized. Engineering results from the deployment of this device in the Hertz instrument April 2006 at the Submillimeter Telescope Observatory (SMTO) in Arizona are presented.

  13. Generalized Oseen transformation for and enhancement of Bragg characteristics of electro-optic structurally chiral materials

    NASA Astrophysics Data System (ADS)

    Lakhtakia, Akhlesh

    2006-05-01

    The Oseen transformation is generalized to define a non-electro-optic structurally chiral material, wherein propagation along the axis of chirality is equivalent to that in an electro-optic SCM with local 4¯2m point group symmetry. This generalization shows that the exploitation of the Pockels effect amounts to an enhancement of the effective local birefringence, which in turn can enhance the characteristics of the circular Bragg phenomenon. Electro-optic SCMs can therefore serve as efficient and electrically controllable circular- and elliptical-polarization rejection filters.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahrdt, J.; Frentrup, W.; Gaupp, A.

    BESSY plans to go to topping up operation in the near future. A high injection efficiency is essential to avoid particle losses inside the undulator magnets and to ensure a low radiation background in the beamlines. Dynamic and static multipoles of the insertion devices have to be minimized to accomplish this requirement. APPLE II devices show strong dynamic multipoles in the elliptical and vertical polarization mode. Measurements before and after shimming of these multipoles are presented. The static multipoles of the BESSY UE56-2 which are due to systematic block inhomgeneities have successfully been shimmed recovering the full dynamic aperture.

  15. Leptogenesis from gravity waves in models of inflation.

    PubMed

    Alexander, Stephon H S; Peskin, Michael E; Sheikh-Jabbari, M M

    2006-03-03

    We present a new mechanism for creating the observed cosmic matter-antimatter asymmetry which satisfies all three Sakharov conditions from one common thread, gravitational waves. We generate lepton number through the gravitational anomaly in the lepton number current. The source term comes from elliptically polarized gravity waves that are produced during inflation if the inflaton field contains a CP-odd component. The amount of matter asymmetry generated in our model can be of realistic size for the parameters within the range of some inflationary scenarios and grand unified theories.

  16. Four Years of Venus Express Magnetic Field Observations: Variable Bow Shock Location and Other Features

    NASA Astrophysics Data System (ADS)

    Zhang, Tielong; Baumjohann, Wolfgang; Russell, C. T.

    Since the Venus Express insertion into a highly elliptical polar orbit with a period of 24 h around the planet Venus, the magnetometer has operated continuously for about 4 years and obtained a wealth of data in the solar minimum at rather low altitude, which was not reached by earlier missions. In this paper, we review the magnetic field observations by Venus Express emphasizing on the variable bow shock location and other space environment features such as the magnetic barrier and the magnetotail.

  17. ALMA Dust Polarization Observations of Two Young Edge-on Protostellar Disks

    NASA Astrophysics Data System (ADS)

    Lee, Chin-Fei; Li, Zhi-Yun; Ching, Tao-Chung; Lai, Shih-Ping; Yang, Haifeng

    2018-02-01

    Polarized emission is detected in two young nearly edge-on protostellar disks in 343 GHz continuum at ∼50 au (∼0.″12) resolution with Atacama Large Millimeter/submillimeter Array. One disk is in HH 212 (Class 0) and the other in the HH 111 (early Class I) protostellar system. The polarization fraction is ∼1%. The disk in HH 212 has a radius of ∼60 au. The emission is mainly detected from the nearside of the disk. The polarization orientations are almost perpendicular to the disk major axis, consistent with either self-scattering or emission by grains aligned with a poloidal field around the outer edge of the disk because of the optical depth effect and temperature gradient; the presence of a poloidal field would facilitate the launching of a disk wind, for which there is already tentative evidence in the same source. The disk of HH 111 VLA 1 has a larger radius of ∼220 au and is thus more resolved. The polarization orientations are almost perpendicular to the disk major axis in the nearside, but more along the major axis in the farside, forming roughly half of an elliptical pattern there. It appears that toroidal and poloidal magnetic field may explain the polarization on the near and far sides of the disk, respectively. However, it is also possible that the polarization is due to self-scattering. In addition, alignment of dust grains by radiation flux may play a role in the farside. Our observations reveal a diversity of disk polarization patterns that should be taken into account in future modeling efforts.

  18. Ellipsometer

    NASA Technical Reports Server (NTRS)

    Ducharme, Stephen Paul (Inventor); El Hajj, Hassanayn Machlab (Inventor); Johs, Blaine D. (Inventor); Woollam, John A. (Inventor)

    1997-01-01

    In an ellipsometer, a phase-modulated, polarized light beam is applied to a sample, electrical signals are obtained representing the orthogonal planes of polarization of the light after it has interacted with the sample and the constants of the sample are calculated from the two resulting electrical signals. The phase modulation is sufficiently small so that the calibration errors are negligible. For this purpose, the phase modulator, phase modulates the light within a range of no more than ten degrees peak to peak. The two electrical signals are expanded by Fourier analysis and the coefficients thereof utilized to calculate psi and delta.

  19. Development of a large field-of-view KD potassium di-deuterium phosphate modulator: Center Director's Discretionary Fund

    NASA Technical Reports Server (NTRS)

    West, E. A.

    1993-01-01

    Magnetographs, which measure polarized light, allow solar astronomers to infer the magnetic field intensity on the Sun. The Marshall Space Flight Center (MSFC) Vector Magnetograph is such an imaging instrument. The instrument requires rapid modulation between polarization states to minimize seeing effects. The accuracy of those polarization measurements is dependent on stable modulators with small field-of-view errors. Although these devices are very important in ground-based telescopes, extending the field of view of electro-optical crystals such as KD*Ps (potassium di-deuterium phosphate) could encourage the development of these devices for other imaging applications. The work that was done at MSFC as part of the Center Director's Discretionary Fund (CDDF) to reduce the field-of-view errors of instruments that use KD*P modulators in their polarimeters is described.

  20. Second-harmonic generation in shear wave beams with different polarizations

    NASA Astrophysics Data System (ADS)

    Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-10-01

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.

  1. A Large, Free-Standing Wire Grid for Microwave Variable-delay Polarization Modulation

    NASA Technical Reports Server (NTRS)

    Voellmer, George

    2008-01-01

    One technique for mapping the polarization signature of the cosmic microwave background uses large, polarizing grids in reflection. We present the system requirements, the fabrication, assembly, and alignment procedures, and the test results for the polarizing grid component of a 50 cm clear aperture, Variable-delay Polarization Modulator (VPM). This grid is being built and tested at the Goddard Space Flight Center as part of the Polarimeter for Observing Inflationary Cosmology at the Reionization Epoch (POINCARE). VPMs modulate the polarized component of a radiation source by splitting the incoming beam into two orthogonal polarization components using a free-standing wire grid. The path length difference between these components is varied with a translating mirror, and then they are recombined. This precision instrumentation technique can be used to encode and demodulate the cosmic microwave background's polarization signature. For the demonstration instrument, 64 micrometer diameter tungsten wires are being assembled into a 200 pm pitch, free-standing wire grid with a 50 cm clear aperture, and an expected overall flatness better than 30 micrometers. A rectangular, aluminum stretching frame holds the wires with sufficient tension to achieve a minimum resonant frequency of 185 Hz, allowing VPM mirror translation frequencies of several Hz. A lightly loaded, flattening ring with a 50 cm inside diameter rests against the wires and brings them into accurate planarity.

  2. Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging.

    PubMed

    Zhou, Jialing; He, Honghui; Chen, Zhenhua; Wang, Ye; Ma, Hui

    2018-01-01

    We have developed a polarization microscope based on a commercial transmission microscope. We replace the halogen light source by a collimated LED light source module of six different colors. We use achromatic polarized optical elements that can cover the six different wavelength ranges in the polarization state generator (PSG) and polarization state analyzer (PSA) modules. The dual-rotating wave plate method is used to measure the Mueller matrix of samples, which requires the simultaneous rotation of the two quarter-wave plates in both PSG and PSA at certain angular steps. A scientific CCD detector is used as the image receiving module. A LabView-based software is developed to control the rotation angels of the wave plates and the exposure time of the detector to allow the system to run fully automatically in preprogrammed schedules. Standard samples, such as air, polarizers, and quarter-wave plates, are used to calibrate the intrinsic Mueller matrix of optical components, such as the objectives, using the eigenvalue calibration method. Errors due to the images walk-off in the PSA are studied. Errors in the Mueller matrices are below 0.01 using air and polarizer as standard samples. Data analysis based on Mueller matrix transformation and Mueller matrix polarization decomposition is used to demonstrate the potential application of this microscope in pathological diagnosis. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  3. Demonstrating ultrafast polarization dynamics in spin-VCSELs

    NASA Astrophysics Data System (ADS)

    Lindemann, Markus; Pusch, Tobias; Michalzik, Rainer; Gerhardt, Nils C.; Hofmann, Martin R.

    2018-02-01

    Vertical-cavity surface-emitting lasers (VCSELs) are used for short-haul optical data transmission with increasing bit rates. The optimization involves both enhanced device designs and the use of higher-order modulation formats. In order to improve the modulation bandwidth substantially, the presented work employs spin-pumped VCSELs (spin-VCSELs) and their polarization dynamics instead of relying on intensity-modulated devices. In spin-VCSELs, the polarization state of the emitted light is controllable via spin injection. By optical spin pumping a single-mode VCSEL is forced to emit light composed of both orthogonal linearly polarized fundamental modes. The frequencies of these two modes differ slightly by a value determined by the cavity birefringence. As a result, the circular polarization degree oscillates with their beat frequency, i.e., with the birefringence-induced mode splitting. We used this phenomenon to show so-called polarization oscillations, which are generated by pulsed spin injection. Their frequency represents the polarization dynamics resonance frequency and can be tuned over a wide range via the birefringence, nearly independent from any other laser parameter. In previous work we demonstrated a maximum birefringence-induced mode splitting of more than 250 GHz. In this work, compared to previous publications, we show an almost doubled polarization oscillation frequency of more than 80 GHz. Furthermore, we discuss concepts to achieve even higher values far above 100 GHz.

  4. Optically buffered Jones-matrix-based multifunctional optical coherence tomography with polarization mode dispersion correction

    PubMed Central

    Hong, Young-Joo; Makita, Shuichi; Sugiyama, Satoshi; Yasuno, Yoshiaki

    2014-01-01

    Polarization mode dispersion (PMD) degrades the performance of Jones-matrix-based polarization-sensitive multifunctional optical coherence tomography (JM-OCT). The problem is specially acute for optically buffered JM-OCT, because the long fiber in the optical buffering module induces a large amount of PMD. This paper aims at presenting a method to correct the effect of PMD in JM-OCT. We first mathematically model the PMD in JM-OCT and then derive a method to correct the PMD. This method is a combination of simple hardware modification and subsequent software correction. The hardware modification is introduction of two polarizers which transform the PMD into global complex modulation of Jones matrix. Subsequently, the software correction demodulates the global modulation. The method is validated with an experimentally obtained point spread function with a mirror sample, as well as by in vivo measurement of a human retina. PMID:25657888

  5. Dynamic nuclear polarization by frequency modulation of a tunable gyrotron of 260GHz.

    PubMed

    Yoon, Dongyoung; Soundararajan, Murari; Cuanillon, Philippe; Braunmueller, Falk; Alberti, Stefano; Ansermet, Jean-Philippe

    2016-01-01

    An increase in Dynamic Nuclear Polarization (DNP) signal intensity is obtained with a tunable gyrotron producing frequency modulation around 260GHz at power levels less than 1W. The sweep rate of frequency modulation can reach 14kHz, and its amplitude is fixed at 50MHz. In water/glycerol glassy ice doped with 40mM TEMPOL, the relative increase in the DNP enhancement was obtained as a function of frequency-sweep rate for several temperatures. A 68 % increase was obtained at 15K, thus giving a DNP enhancement of about 80. By employing λ/4 and λ/8 polarizer mirrors, we transformed the polarization of the microwave beam from linear to circular, and achieved an increase in the enhancement by a factor of about 66% for a given power. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. A Large-Diameter Cryogenic Rotation Stage for Half-Wave Plate Polarization Modulation on the POLARBEAR-2 Experiment

    NASA Astrophysics Data System (ADS)

    Hill, C. A.; Kusaka, A.; Barton, P.; Bixler, B.; Droster, A. G.; Flament, M.; Ganjam, S.; Jadbabaie, A.; Jeong, O.; Lee, A. T.; Madurowicz, A.; Matsuda, F. T.; Matsumura, T.; Rutkowski, A.; Sakurai, Y.; Sponseller, D. R.; Suzuki, A.; Tat, R.

    2018-05-01

    We describe the design of a cryogenic rotation stage (CRS) for use with the cryogenic half-wave plate (CHWP) polarization modulator on the POLARBEAR-2b and POLARBEAR-2c (PB2b/c) cosmic microwave background (CMB) experiments, the second and third installments of the Simons Array. Rapid modulation of the CMB polarization signal using a CHWP suppresses 1/f contamination due to atmospheric turbulence and allows a single polarimeter to measure both polarization states, mitigating systematic effects that arise when differencing orthogonal detectors. To modulate the full detector array while avoiding excess photon loading due to thermal emission, the CHWP must have a clear-aperture diameter of > 450 mm and be cooled to < 100 K. We have designed a 454 mm clear-aperture, < 65 K CRS using a superconducting magnetic bearing driven by a synchronous magnetic motor. We present the specifications for the CRS, its interfacing to the PB2b/c receiver cryostat, its performance in a stand-alone test, and plans for future work.

  7. Numerical analysis of fundamental characteristics of superconducting magnetic bearings for a polarization modulator

    NASA Astrophysics Data System (ADS)

    Terachi, Yusuke; Terao, Yutaka; Ohsaki, Hiroyuki; Sakurai, Yuki; Matsumura, Tomotake; Sugai, Hajime; Utsunomiya, Shin; Kataza, Hirokazu; Yamamoto, Ryo

    2017-07-01

    We have carried out numerical analysis of mechanical properties of a superconducting magnetic bearing (SMB). A contactless bearing operating at below 10 K with low rotational energy loss is an attractive feature to be used as a rotational mechanism of a polarization modulator for a cosmic microwave background experiment. In such application, a rotor diameter of about 400 mm forces us to employ a segmented magnet. As a result, there is inevitable spatial gap between the segments. In order to understand the path towards the design optimizations, 2D and 3D FEM analyses were carried out to examine fundamental characteristics of the SMBs for a polarization modulator. Two axial flux type SMBs were dealt with in the analysis: (a) the SMB with axially magnetized permanent magnets (PMs), and (b) the SMB with radially magnetized PMs and steel components for magnetic flux paths. Magnetic flux lines and density distributions, electromagnetic force characteristics, spring constants, etc. were compared among some variations of the SMBs. From the numerical analysis results, it is discussed what type, configuration and design of SMBs are more suitable for a polarization modulator.

  8. Optical filters for linearly polarized light using sculptured nematic thin flim of TiO2

    NASA Astrophysics Data System (ADS)

    Muhammad, Zahir; Wali, Faiz; Rehman, Zia ur

    2018-05-01

    A study of optical filters using sculptured nematic thin films is presented in this article. A central 90◦ twist-defect between two sculptured nematic thin films (SNTFs) sections transmit light of same polarization state and reflect other in the spectral Bragg regime. The SNTFs reflect light of both linearly polarized states in the Bragg regime if the amplitude of modulation of vapor incident angle is increased. A twist-defect in a tilt-modulated sculptured nematic thin films as a result produces bandpass or ultra-narrow bandpass filter depending upon the thickness of the SNTFs. However, both the bandpass or/and ultra-narrow bandpass filters can make polarization-insensitive Bragg mirrors by the appropriate modulation of the tilted 2D nanostructures of a given sculptured nematic thin films. Moreover, it is also observed that the sculptured nematic thin films are very tolerant of the structural defects if the amplitude of modulating vapor incident angle of the structural nano-materials is sufficiently large. Similarly, we observed the affect of incident angles on Bragg filters.

  9. Strong polarization-dependent terahertz modulation of aligned Ag nanowires on Si substrate.

    PubMed

    Lee, Gyuseok; Maeng, Inhee; Kang, Chul; Oh, Myoung-Kyu; Kee, Chul-Sik

    2018-05-14

    Optically tunable, strong polarization-dependent transmission of terahertz pulses through aligned Ag nanowires on a Si substrate is demonstrated. Terahertz pulses primarily pass through the Ag nanowires and the transmittance is weakly dependent on the angle between the direction of polarization of the terahertz pulse and the direction of nanowire alignment. However, the transmission of a terahertz pulse through optically excited materials strongly depends on the polarization direction. The extinction ratio increases as the power of the pumping laser increases. The enhanced polarization dependency is explained by the redistribution of photocarriers, which accelerates the sintering effect along the direction of alignment of the Ag nanowires. The photocarrier redistribution effect is examined by the enhancement of terahertz emission from the sample. Oblique metal nanowires on Si could be utilized for designing optically tunable terahertz polarization modulators.

  10. Dynamically Switching the Polarization State of Light Based on the Phase Transition of Vanadium Dioxide

    NASA Astrophysics Data System (ADS)

    Jia, Zhi-Yong; Shu, Fang-Zhou; Gao, Ya-Jun; Cheng, Feng; Peng, Ru-Wen; Fan, Ren-Hao; Liu, Yongmin; Wang, Mu

    2018-03-01

    There have been great endeavors devoted to manipulating the polarization state of light by plasmonic nanostructures in recent decades. However, the topic of active polarizers has attracted much less attention. We present a composite plasmonic nanostructure consisting of vanadium dioxide that can dynamically modulate the polarization state of the reflected light through a thermally induced phase transition of vanadium dioxide. We design a system consisting of anisotropic plasmonic nanostructures with vanadium dioxide that exhibits distinct reflections subjected to different linearly polarized incidence at room temperature and in the heated state. Under a particular linearly polarized incidence, the polarization state of the reflected light changes at room temperature, and reverts to its original polarization state above the phase-transition temperature. The composite structure can also be used to realize a dynamically switchable infrared image, wherein a pattern can be visualized at room temperature while it disappears above the phase-transition temperature. The composite structure could be potentially used for versatile optical modulators, molecular detection, and polarimetric imaging.

  11. Chemical modulation of electronic structure at the excited state

    NASA Astrophysics Data System (ADS)

    Li, F.; Song, C.; Gu, Y. D.; Saleem, M. S.; Pan, F.

    2017-12-01

    Spin-polarized electronic structures are the cornerstone of spintronics, and have thus attracted a significant amount of interest; in particular, researchers are looking into how to modulate the electronic structure to enable multifunctional spintronics applications, especially in half-metallic systems. However, the control of the spin polarization has only been predicted in limited two-dimensional systems with spin-polarized Dirac structures and is difficult to achieve experimentally. Here, we report the modulation of the electronic structure in the light-induced excited state in a typical half-metal, L a1 /2S r1 /2Mn O3 -δ . According to the spin-transport measurements, there appears a light-induced increase in magnetoresistance due to the enhanced spin scattering, which is closely associated with the excited spin polarization. Strikingly, the light-induced variation can be enhanced via alcohol processing and reduced by oxygen annealing. X-ray photoelectron spectroscopy measurements show that in the chemical process, a redox reaction occurs with a change in the valence of Mn. Furthermore, first-principles calculations reveal that the change in the valence of Mn alters the electronic structure and consequently modulates the spin polarization in the excited state. Our findings thus report a chemically tunable electronic structure, demonstrating interesting physics and the potential for multifunctional applications and ultrafast spintronics.

  12. Solar dynamic power systems for space station

    NASA Technical Reports Server (NTRS)

    Irvine, Thomas B.; Nall, Marsha M.; Seidel, Robert C.

    1986-01-01

    The Parabolic Offset Linearly Actuated Reflector (POLAR) solar dynamic module was selected as the baseline design for a solar dynamic power system aboard the space station. The POLAR concept was chosen over other candidate designs after extensive trade studies. The primary advantages of the POLAR concept are the low mass moment of inertia of the module about the transverse boom and the compactness of the stowed module which enables packaging of two complete modules in the Shuttle orbiter payload bay. The fine pointing control system required for the solar dynamic module has been studied and initial results indicate that if disturbances from the station are allowed to back drive the rotary alpha joint, pointing errors caused by transient loads on the space station can be minimized. This would allow pointing controls to operate in bandwidths near system structural frequencies. The incorporation of the fine pointing control system into the solar dynamic module is fairly straightforward for the three strut concentrator support structure. However, results of structural analyses indicate that this three strut support is not optimum. Incorporation of a vernier pointing system into the proposed six strut support structure is being studied.

  13. Acquisition of a full-resolution image and aliasing reduction for a spatially modulated imaging polarimeter with two snapshots

    PubMed Central

    Zhang, Jing; Yuan, Changan; Huang, Guohua; Zhao, Yinjun; Ren, Wenyi; Cao, Qizhi; Li, Jianying; Jin, Mingwu

    2018-01-01

    A snapshot imaging polarimeter using spatial modulation can encode four Stokes parameters allowing instantaneous polarization measurement from a single interferogram. However, the reconstructed polarization images could suffer a severe aliasing signal if the high-frequency component of the intensity image is prominent and occurs in the polarization channels, and the reconstructed intensity image also suffers reduction of spatial resolution due to low-pass filtering. In this work, a method using two anti-phase snapshots is proposed to address the two problems simultaneously. The full-resolution target image and the pure interference fringes can be obtained from the sum and the difference of the two anti-phase interferograms, respectively. The polarization information reconstructed from the pure interference fringes does not contain the aliasing signal from the high-frequency component of the object intensity image. The principles of the method are derived and its feasibility is tested by both computer simulation and a verification experiment. This work provides a novel method for spatially modulated imaging polarization technology with two snapshots to simultaneously reconstruct a full-resolution object intensity image and high-quality polarization components. PMID:29714224

  14. Analysis of reentry into the White Sands Missile Range (WSMR) for the LifeSat mission

    NASA Technical Reports Server (NTRS)

    Hametz, M.; Roszman, L.; Snow, F.; Cooley, J.

    1993-01-01

    This study investigates the reentry of the LifeSat vehicles into the WSMR. The LifeSat mission consists of two reusable reentry satellites, each carrying a removable payload module, which scientists will use to study long-term effects of microgravity, Van Allen belt radiation, and galactic cosmic rays on living organisms. A series of missions is planned for both low-Earth circular orbits and highly elliptic orbits. To recover the payload module with the specimens intact, a soft parachute landing and recovery at the WSMR is planned. This analysis examines operational issues surrounding the reentry scenario to assess the feasibility of the reentry.

  15. Design and Near-Field Measurement Performance Evaluation of the Sea Winds Dual- Beam Reflector Antenna

    NASA Technical Reports Server (NTRS)

    Hussein, Z.; Rahmat-Samii, Y.; Kellogg, K.

    1997-01-01

    This paper presents the design and performance evaluation of a lightweight, composite material, elliptical-aperture, parabolic-reflector antenna. The performance characterization is obtained using the cylindrical near-field measurement facility at JPL as shown. The reflector has been designed and calibrated for the SeaWinds spaceborne scatterometer instrument. The instrument operates at Ku-band and is designed to accurately measure wind speed and direction over Earth's ocean surface. The SeaWinds antenna design requires two linearly polarized independent beams pointed at 40 deg.and 46 deg. from nadir as shown. The inner beam, pointed at 40 deg. from nadir, is horizontally polarized with 1.6 in x 1.8 in required beamwidths in the elevation and azimuth planes, respectively. The outer beam, pointed at 46 deg. from nadir, is vertically polarized with 1.4 in x 1.7 in required beamwidths. Noteworthy, the reflector boresight axis is pointed at 43 deg. from nadir. Both beams are required to have the first sidelobe level below -15 dB relative to the peak of the beam.

  16. Orbit-induced localized spin angular momentum in strong focusing of optical vectorial vortex beams

    NASA Astrophysics Data System (ADS)

    Li, Manman; Cai, Yanan; Yan, Shaohui; Liang, Yansheng; Zhang, Peng; Yao, Baoli

    2018-05-01

    Light beams may carry optical spin or orbital angular momentum, or both. The spin and orbital parts manifest themselves by the ellipticity of the state of polarization and the vortex structure of phase of light beams, separately. Optical spin and orbit interaction, arising from the interaction between the polarization and the spatial structure of light beams, has attracted enormous interest recently. The optical spin-to-orbital angular momentum conversion under strong focusing is well known, while the converse process, orbital-to-spin conversion, has not been reported so far. In this paper, we predict in theory that the orbital angular momentum can induce a localized spin angular momentum in strong focusing of a spin-free azimuthal polarization vortex beam. This localized longitudinal spin of the focused field can drive the trapped particle to spin around its own axis. This investigation provides a new degree of freedom for spinning particles by using a vortex phase, which may have considerable potentials in optical spin and orbit interaction, light-beam shaping, or optical manipulation.

  17. High Altitude Plasma Instrument (HAPI) data analysis

    NASA Technical Reports Server (NTRS)

    Burch, J. L.

    1994-01-01

    The objectives of the Dynamics Explorer mission are to investigate the coupling of energy, mass, and momentum among the earth's magnetosphere, ionosphere, and upper atmosphere. At launch, on August 3, 1981, DE-1 was placed into an elliptical polar orbit having an apogee of 23,130 km to allow global auroral imaging and crossings of auroral field lines at altitudes of several thousand kilometers. At the same time DE-2 was placed into a polar orbit, coplanar with that of DE-1 but with a perigee altitude low enough (309 km) for neutral measurements and an apogee altitude of 1012 km. The DE-1 High Altitude Plasma Instrument (HAPI) provided data on low and medium energy electrons and ions from August 13, 1981 until December 1, 1981, when a high-voltage failure occured. Analysis of HAPI data for the time period of this contract has produced new results on the source mechanisms for electron conical distributions, particle acceleration phenomena in auroral acceleration regions, Birkeland currents throughout the nightside auroral regions, the source region for auroral kilometric radiation (AKR), and plasma injection phenomena in the polar cusp.

  18. Apparatus using the FARADAY effect to locate the magnetic axis of quadrupole magnets

    NASA Astrophysics Data System (ADS)

    Le Bars, Josette

    1994-07-01

    A development using magneto-optic sensors is underway for the location of the magnetic center of long, small aperture, superconducting quadrupole magnets. The paper will describe the measuring methods and the preliminary results which have been obtained with gradients from 2.5 T/m to 10 T/m. The sensors are made of magneto-optic garnets using the Faraday effect which changes an incident beam of linearly polarized light into a transmitted beam of elliptically polarized light. An optical fiber bundle (phi less than 20 micron) carries the incident light to a polarized film, put above the magneto optic sensor. An analyzer film collects the transmitted light. A second optic fiber bundle carries this light toward a visual (microscope, video camera) or analogic data acquisition system. Furthermore, a level is associated with these crystals to determine the gravity direction. The 'mole' is moving along the axis of a warm bore tube when the magnet is superconducting. The present results are promising for measuring quadrupoles of much higher gradients, up to 100 T/m.

  19. Endothermic decompositions of inorganic monocrystalline thin plates. I. Shape of polycrystalline product domains versus constraints and time

    NASA Astrophysics Data System (ADS)

    Bertrand, G.; Comperat, M.; Lallemant, M.; Watelle, G.

    1980-03-01

    Copper sulfate pentahydrate dehydration into trihydrate was investigated using monocrystalline platelets with varying crystallographic orientations. The morphological and kinetic features of the trihydrate domains were examined. Different shapes were observed: polygons (parallelograms, hexagons) and ellipses; their conditions of occurrence are reported in the (P, T) diagram. At first (for about 2 min), the ratio of the long to the short axes of elliptical domains changes with time; these subsequently develop homothetically and the rate ratio is then only pressure dependent. Temperature influence is inferred from that of pressure. Polygonal shapes are time dependent and result in ellipses. So far, no model can be put forward. Yet, qualitatively, the polygonal shape of a domain may be explained by the prevalence of the crystal arrangement and the elliptical shape by that of the solid tensorial properties. The influence of those factors might be modulated versus pressure, temperature, interface extent, and, thus, time.

  20. Tunable interactions between paramagnetic colloidal particles driven in a modulated ratchet potential.

    PubMed

    Straube, Arthur V; Tierno, Pietro

    2014-06-14

    We study experimentally and theoretically the interactions between paramagnetic particles dispersed in water and driven above the surface of a stripe patterned magnetic garnet film. An external rotating magnetic field modulates the stray field of the garnet film and generates a translating potential landscape which induces directed particle motion. By varying the ellipticity of the rotating field, we tune the inter-particle interactions from net repulsive to net attractive. For attractive interactions, we show that pairs of particles can approach each other and form stable doublets which afterwards travel along the modulated landscape at a constant mean speed. We measure the strength of the attractive force between the moving particles and propose an analytically tractable model that explains the observations and is in quantitative agreement with experiment.

  1. Faraday rotation data analysis with least-squares elliptical fitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Adam D.; McHale, G. Brent; Goerz, David A.

    2010-10-15

    A method of analyzing Faraday rotation data from pulsed magnetic field measurements is described. The method uses direct least-squares elliptical fitting to measured data. The least-squares fit conic parameters are used to rotate, translate, and rescale the measured data. Interpretation of the transformed data provides improved accuracy and time-resolution characteristics compared with many existing methods of analyzing Faraday rotation data. The method is especially useful when linear birefringence is present at the input or output of the sensing medium, or when the relative angle of the polarizers used in analysis is not aligned with precision; under these circumstances the methodmore » is shown to return the analytically correct input signal. The method may be pertinent to other applications where analysis of Lissajous figures is required, such as the velocity interferometer system for any reflector (VISAR) diagnostics. The entire algorithm is fully automated and requires no user interaction. An example of algorithm execution is shown, using data from a fiber-based Faraday rotation sensor on a capacitive discharge experiment.« less

  2. Second-harmonic generation from a thin spherical layer and No-generation conditions

    NASA Astrophysics Data System (ADS)

    Kapshai, V. N.; Shamyna, A. A.

    2017-09-01

    In the Rayleigh-Gans-Debye approximation, we solve the problem of second-harmonic generation by an elliptically polarized electromagnetic wave incident on the surface of a spherical particle that is coated by an optically nonlinear layer and is placed in a dielectric. The formulas obtained characterize the spatial distribution of the electric field of the second harmonic in the far-field zone. The most general form of the second-order dielectric susceptibility tensor is considered, which contains four independent components, with three of them being nonchiral and one, chiral. Consistency and inconsistencies between the obtained solution and formulas from works of other authors are found. We analyze the directivity patterns that characterize the spatial distribution of the generated radiation for the nonchiral layer and their dependences on the anisotropy and ellipticity coefficients of the incident wave. It is found that, with increasing radius of the nonlinear layer, the generated radiation becomes more directional. Combinations of parameters for which no radiation is generated are revealed. Based on this, we propose methods for experimental determination of the anisotropy coefficients.

  3. Multi Station Frequency Response and Polarization of ELF/VLF Signals Generated via Ionospheric Modification

    NASA Astrophysics Data System (ADS)

    Maxworth, Ashanthi; Golkowski, Mark; University of Colorado Denver Team

    2013-10-01

    ELF/VLF wave generation via HF modulated ionospheric heating has been practiced for many years as a unique way to generate waves in the ELF/VLF band (3 Hz - 30 kHz). This paper presents experimental results and associated theoretical modeling from work performed at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska, USA. An experiment was designed to investigate the modulation frequency dependence of the generated ELF/VLF signal amplitudes and polarization at multiple sites at distances of 37 km, 50 km and 99 km from the facility. While no difference is observed for X mode versus O mode modulation of the heating wave, it is found that ELF/VLF amplitude and polarization as a function of modulated ELF/VLF frequency is different for each site. An ionospheric heating code is used to determine the primary current sources leading to the observations.

  4. Colorless ONU implementation for WDM-PON using direct-detection optical OFDM

    NASA Astrophysics Data System (ADS)

    Feng, Min; Luo, Qing-long; Bai, Cheng-lin

    2013-03-01

    A novel architecture for the colorless optical network unit (ONU) is proposed and experimentally demonstrated with direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM). In this architecture, polarization-division multiplexing is used to reduce the cost at ONU. In optical line terminal (OLT), quadrature amplitude modulation (QAM) intensity-modulated OFDM signal with x-polarization at 10 Gbit/s is transmitted as downstream. At each ONU, the optical OFDM signal is demodulated with direct detection, and γ-polarization signal is modulated for upstream on-off keying (OOK) data at 5 Gbit/s. Simulation results show that the power penalty is negligible for both optical OFDM downstream and the on-off keying upstream signals after over 50 km single-mode fiber (SMF) transmission.

  5. Polaron effect on the bandgap modulation in monolayer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Xiao, Yao; Li, Zhi-Qing; Wang, Zi-Wu

    2017-12-01

    We theoretically study the bandgap modulation in monolayer transition metal dichalcogenides (TMDs) originating from the carrier-optical phonon coupling in the Fröhlich polaron model, in which both of the surface optical phonons modes induced by the polar substrate and the intrinsic longitudinal optical phonons modes have been taken into account. We find that the modulated magnitude of the bandgap is in the range of 100-500 meV by altering different polar substrates and tuning the internal distance between TMDs and polar substrate. The large tunability of the bandgap not only provides a possible explanation for the experimental measurements regarding the dielectric environmental sensitivity of the bandgap, but also holds promise for potential applications in optoelectronics and photovoltaics.

  6. Satellite orbits in Levi-Civita space

    NASA Astrophysics Data System (ADS)

    Humi, Mayer

    2018-03-01

    In this paper we consider satellite orbits in central force field with quadratic drag using two formalisms. The first using polar coordinates in which the satellite angular momentum plays a dominant role. The second is in Levi-Civita coordinates in which the energy plays a central role. We then merge these two formalisms by introducing polar coordinates in Levi-Civita space and derive a new equation for satellite orbits which unifies these two paradigms. In this equation energy and angular momentum appear on equal footing and thus characterize the orbit by its two invariants. Using this formalism we show that equatorial orbits around oblate spheroids can be expressed analytically in terms of Elliptic functions. In the second part of the paper we derive in Levi-Civita coordinates a linearized equation for the relative motion of two spacecrafts whose trajectories are in the same plane. We carry out also a numerical verification of these equations.

  7. Communication: Nuclear quadrupole moment-induced Cotton-Mouton effect in noble gas atoms

    NASA Astrophysics Data System (ADS)

    Fu, Li-juan; Rizzo, Antonio; Vaara, Juha

    2013-11-01

    New, high-sensitivity and high-resolution spectroscopic and imaging methods may be developed by exploiting nuclear magneto-optic effects. A first-principles electronic structure formulation of nuclear electric quadrupole moment-induced Cotton-Mouton effect (NQCME) is presented for closed-shell atoms. In NQCME, aligned quadrupole moments alter the index of refraction of the medium along with and perpendicular to the direction of nuclear alignment. The roles of basis-set convergence, electron correlation, and relativistic effects are investigated for three quadrupolar noble gas isotopes: 21Ne, 83Kr, and 131Xe. The magnitude of the resulting ellipticities is predicted to be 10-4-10-6 rad/(M cm) for fully spin-polarized nuclei. These should be detectable in the Voigt setup. Particularly interesting is the case of 131Xe, in which a high degree of spin polarization can be achieved via spin-exchange optical hyperpolarization.

  8. Meta-q-plate for complex beam shaping

    PubMed Central

    Ji, Wei; Lee, Chun-Hong; Chen, Peng; Hu, Wei; Ming, Yang; Zhang, Lijian; Lin, Tsung-Hsien; Chigrinov, Vladimir; Lu, Yan-Qing

    2016-01-01

    Optical beam shaping plays a key role in optics and photonics. In this work, meta-q-plate featured by arbitrarily space-variant optical axes is proposed and demonstrated via liquid crystal photoalignment based on a polarization-sensitive alignment agent and a dynamic micro-lithography system. Meta-q-plates with multiple-, azimuthally/radially variant topological charges and initial azimuthal angles are fabricated. Accordingly, complex beams with elliptical, asymmetrical, multi-ringed and hurricane transverse profiles are generated, making the manipulation of optical vortex up to an unprecedented flexibility. The evolution, handedness and Michelson interferogram of the hurricane one are theoretically analysed and experimentally verified. The design facilitates the manipulation of polarization and spatial degrees of freedom of light in a point-to-point manner. The realization of meta-q-plate drastically enhances the capability of beam shaping and may pave a bright way towards optical manipulations, OAM based informatics, quantum optics and other fields. PMID:27149897

  9. Magnetic hyperbolic optical metamaterials

    DOE PAGES

    Kruk, Sergey S.; Wong, Zi Jing; Pshenay-Severin, Ekaterina; ...

    2016-04-13

    Strongly anisotropic media where the principal components of electric permittivity or magnetic permeability tensors have opposite signs are termed as hyperbolic media. Such media support propagating electromagnetic waves with extremely large wave vectors exhibiting unique optical properties. However, in all artificial and natural optical materials studied to date, the hyperbolic dispersion originates solely from the electric response. This then restricts material functionality to one polarization of light and inhibits free-space impedance matching. Such restrictions can be overcome in media having components of opposite signs for both electric and magnetic tensors. Here we present the experimental demonstration of the magnetic hyperbolicmore » dispersion in three-dimensional metamaterials. We also measure metamaterial isofrequency contours and reveal the topological phase transition between the elliptic and hyperbolic dispersion. In the hyperbolic regime, we demonstrate the strong enhancement of thermal emission, which becomes directional, coherent and polarized. These findings show the possibilities for realizing efficient impedance-matched hyperbolic media for unpolarized light.« less

  10. Triggered emissions close to the proton gyrofrequency seen by Cluster

    NASA Astrophysics Data System (ADS)

    Grison, Benjamin; Pickett, Jolene; Omura, Yoshiharu; Santolik, Ondrej; Decreau, Pierrette; Masson, Arnaud; Engebretson, Mark; Cornilleau-Wehrlin, Nicole; Robert, Patrick; Dandouras, Iannis

    Electromagnetic ion cyclotron (EMIC) triggered emissions have been recently observed onboard the Cluster spacecraft close to the plasmapause in the equatorial region of the magnetosphere. These waves appear as "risers": electromagnetic structures that have a positive frequency drift with time, i.e., the EMIC analogue of rising frequency whistler mode triggered emissions and chorus waves. In our first results concerning the emission process based on a single event, these risers have the following properties: they propagate away from the direction of the magnetic equator, they have elliptical left-handed polarization corresponding to the transverse Alfven mode, and frequency drifts of about 30 mHz/s. These risers are not common in the Cluster data set. Nevertheless a few other events were found with similar properties. Another interesting preliminary result is the existence of risers with a polarization opposite that of the EMIC triggered emissions and which correspond to the fast magnetosonic mode.

  11. Control of surface plasmon excitation via the scattering of light by a nanoparticle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zharov, A. A.; Zharov, A. A.; Zharova, N. A., E-mail: zhani@appl.sci-nnov.ru

    2016-07-15

    We study an excitation of surface plasmons (SPs) due to the scattering of light by a dipole nanoparticle located near a flat air–metal interface. It is well known that such a scattering can reveal asymmetric behavior of excited SPs with respect to the plane of incidence of light. This asymmetric SP excitation, which takes place at the incidence of elliptically polarized light, is often associated with the so-called photonic spin Hall effect caused by the interplay between rotating polarization of a nanoparticle and the intrinsic field angular momentum of the SP. We show that this photonic spin Hall effect canmore » be applied for the SP excitation control, which allows managing the SP directivity pattern and amplitude. The possibilities of SP control can also be extended using nanoparticles with anisotropic polarizability. We believe that manipulations with SPs at a nanometer scale may find some applications in modern nanoplasmonics.« less

  12. An Overview of the Juno Mission to Jupiter

    NASA Technical Reports Server (NTRS)

    Grammier, Richard S.

    2006-01-01

    Arriving in orbit around the planet Jupiter in 2016 after a five-year journey, the Juno spacecraft will begin a one-year investigation of the gas giant in order to understand its origin and evolution by determining its water abundance and constraining its core mass. In addition, Juno will map the planet's magnetic and gravitational fields, map its atmosphere, and explore the three-dimensional structure of Jupiter's polar magnetosphere and auroras. Juno will discriminate among different models for giant planet formation. These investigations will be conducted over the course of thirty-two 11-day elliptical polar orbits of the planet. The orbits are designed to avoid Jupiter's highest radiation regions. The spacecraft is a spinning, solar-powered system carrying a complement of eight science instruments for conducting the investigations. The spacecraft systems and instruments take advantage of significant design and operational heritage from previous space missions.

  13. Meta-q-plate for complex beam shaping.

    PubMed

    Ji, Wei; Lee, Chun-Hong; Chen, Peng; Hu, Wei; Ming, Yang; Zhang, Lijian; Lin, Tsung-Hsien; Chigrinov, Vladimir; Lu, Yan-Qing

    2016-05-06

    Optical beam shaping plays a key role in optics and photonics. In this work, meta-q-plate featured by arbitrarily space-variant optical axes is proposed and demonstrated via liquid crystal photoalignment based on a polarization-sensitive alignment agent and a dynamic micro-lithography system. Meta-q-plates with multiple-, azimuthally/radially variant topological charges and initial azimuthal angles are fabricated. Accordingly, complex beams with elliptical, asymmetrical, multi-ringed and hurricane transverse profiles are generated, making the manipulation of optical vortex up to an unprecedented flexibility. The evolution, handedness and Michelson interferogram of the hurricane one are theoretically analysed and experimentally verified. The design facilitates the manipulation of polarization and spatial degrees of freedom of light in a point-to-point manner. The realization of meta-q-plate drastically enhances the capability of beam shaping and may pave a bright way towards optical manipulations, OAM based informatics, quantum optics and other fields.

  14. In-Flight Performance of the Polarization Modulator in the CLASP Rocket Experiment

    NASA Technical Reports Server (NTRS)

    Ishikawa, S.; Shimizu, T.; Kano, R.; Bando, T.; Ishikawa, R.; Giono, G.; Beabout, D.; Beabout, B.; Nakayama, S.; Tajima, T.

    2016-01-01

    We developed a polarization modulation unit (PMU), a motor system to rotate a waveplate continuously. We applied this PMU for the Chromospheric Lyman-alpha SpectroPolarimeter (CLASP), a sounding rocket experiment to observe the linear polarization of the Lyman-alpha emission (121.6 nm vacuum ultraviolet) from the upper chromosphere and transition region of the Sun with a high polarization sensitivity of 0.1% for the first time and investigate the vector magnetic field. Rotation non-uniformity of the waveplate causes error in the polarization degree (i.e. scale error) and crosstalk between Stokes components. In the ground tests, we confirmed that PMU has superior rotation uniformity. CLASP was successfully launched on September 3, 2015, and PMU functioned well as designed. PMU achieved a good rotation uniformity during the flight and the high precision polarization measurement of CLASP was successfully achieved.

  15. Parallel Polarization State Generation

    NASA Astrophysics Data System (ADS)

    She, Alan; Capasso, Federico

    2016-05-01

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.

  16. Singular Stokes-polarimetry as new technique for metrology and inspection of polarized speckle fields

    NASA Astrophysics Data System (ADS)

    Soskin, Marat S.; Denisenko, Vladimir G.; Egorov, Roman I.

    2004-08-01

    Polarimetry is effective technique for polarized light fields characterization. It was shown recently that most full "finger-print" of light fields with arbitrary complexity is network of polarization singularities: C points with circular polarization and L lines with variable azimuth. The new singular Stokes-polarimetry was elaborated for such measurements. It allows define azimuth, eccentricity and handedness of elliptical vibrations in each pixel of receiving CCD camera in the range of mega-pixels. It is based on precise measurement of full set of Stokes parameters by the help of high quality analyzers and quarter-wave plates with λ/500 preciseness and 4" adjustment. The matrices of obtained data are processed in PC by special programs to find positions of polarization singularities and other needed topological features. The developed SSP technique was proved successfully by measurements of topology of polarized speckle-fields produced by multimode "photonic-crystal" fibers, double side rubbed polymer films, biomedical samples. Each singularity is localized with preciseness up to +/- 1 pixel in comparison with 500 pixels dimensions of typical speckle. It was confirmed that network of topological features appeared in polarized light field after its interaction with specimen under inspection is exact individual "passport" for its characterization. Therefore, SSP can be used for smart materials characterization. The presented data show that SSP technique is promising for local analysis of properties and defects of thin films, liquid crystal cells, optical elements, biological samples, etc. It is able discover heterogeneities and defects, which define essentially merits of specimens under inspection and can"t be checked by usual polarimetry methods. The detected extra high sensitivity of polarization singularities position and network to any changes of samples position and deformation opens quite new possibilities for sensing of deformations and displacement of checked elements in the sub-micron range.

  17. Acoustic backscattering and radiation force on a rigid elliptical cylinder in plane progressive waves.

    PubMed

    Mitri, F G

    2016-03-01

    This work proposes a formal analytical theory using the partial-wave series expansion (PWSE) method in cylindrical coordinates, to calculate the acoustic backscattering form function as well as the radiation force-per-length on an infinitely long elliptical (non-circular) cylinder in plane progressive waves. The major (or minor) semi-axis of the ellipse coincides with the direction of the incident waves. The scattering coefficients for the rigid elliptical cylinder are determined by imposing the Neumann boundary condition for an immovable surface and solving a resulting system of linear equations by matrix inversion. The present method, which utilizes standard cylindrical (Bessel and Hankel) wave functions, presents an advantage over the solution for the scattering that is ordinarily expressed in a basis of elliptical Mathieu functions (which are generally non-orthogonal). Furthermore, an integral equation showing the direct connection of the radiation force function with the square of the scattering form function in the far-field from the scatterer (applicable for plane waves only), is noted and discussed. An important application of this integral equation is the adequate evaluation of the radiation force function from a bistatic measurement (i.e., in the polar plane) of the far-field scattering from any 2D object of arbitrary shape. Numerical predictions are evaluated for the acoustic backscattering form function and the radiation force function, which is the radiation force per unit length, per characteristic energy density, and per unit cross-sectional surface of the ellipse, with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes, as well as the dimensionless size parameter kb, without the restriction to a particular range of frequencies. The results are particularly relevant in acoustic levitation, acousto-fluidics and particle dynamics applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Method to calibrate phase fluctuation in polarization-sensitive swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.

    2011-07-01

    We present a phase fluctuation calibration method for polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) using continuous polarization modulation. The method uses a low-voltage broadband polarization modulator driven by a synchronized sinusoidal burst waveform rather than an asynchronous waveform, together with the removal of the global phases of the measured Jones matrices by the use of matrix normalization. This makes it possible to average the measured Jones matrices to remove the artifact due to the speckle noise of the signal in the sample without introducing auxiliary optical components into the sample arm. This method was validated on measurements of an equine tendon sample by the PS-SS-OCT system.

  19. Dispersion induced power fading for radio frequency signals and its application for fast online PMD and CD monitoring

    NASA Astrophysics Data System (ADS)

    Ning, G.; Shum, P.

    2007-06-01

    We derive the expressions for the power fading including first-order polarization mode dispersion (PMD), chromatic dispersion, chirp parameter as well as polarization-dependent chromatic dispersion (PCD), which is dependent on the angle of precession of output state of polarization around the PMD vector. From the expression for radio frequency (RF) signals power fading, we get the average power fading for chromatic dispersion, chirp parameter, first-order PMD and PCD for both double sideband (DSB) modulation and single sideband (SSB) modulation. We also demonstrate a fast PMD and chromatic dispersion monitoring technology with reduced polarization-dependent gain. The measured results agree well with theoretical analysis.

  20. A Cryogenic Half-Wave Plate Module to Measure Polarization at Multiple FIR Passbands

    NASA Technical Reports Server (NTRS)

    Rennick, Timothy S.; Vaillancourt, John E.; Hildebrand, Roger H.; Heimsath, Stephen J.

    2002-01-01

    One of the key components in a far-infrared polarimeter that is being designed at the University of Chicago is a locally-powered half-wave plate module. This compact, lightweight, and reliable module will operate at cryogenic temperatures, rotating a half-wave plate about its axis within the optical path. By doing so, polarization measurements can be made. Further, by utilizing multiple half-wave plate modules within the polarimeter, multiple wavelengths or passbands can be studied. In this paper, we describe the design and performance of a relatively inexpensive prototype module that was assembled and tested successfully, outline the difficulties that had to be overcome, and recommend improvements to future modules. This effort now lays some of the groundwork for a next-generation polarimeter for far-infrared astronomy.

Top