Sample records for modulated pulse power

  1. Harmonic generation with a dual frequency pulse.

    PubMed

    Keravnou, Christina P; Averkiou, Michalakis A

    2014-05-01

    Nonlinear imaging was implemented in commercial ultrasound systems over the last 15 years offering major advantages in many clinical applications. In this work, pulsing schemes coupled with a dual frequency pulse are presented. The pulsing schemes considered were pulse inversion, power modulation, and power modulated pulse inversion. The pulse contains a fundamental frequency f and a specified amount of its second harmonic 2f. The advantages and limitations of this method were evaluated with both acoustic measurements of harmonic generation and theoretical simulations based on the KZK equation. The use of two frequencies in a pulse results in the generation of the sum and difference frequency components in addition to the other harmonic components. While with single frequency pulses, only power modulation and power modulated pulse inversion contained odd harmonic components, with the dual frequency pulse, pulse inversion now also contains odd harmonic components.

  2. Linear transformer driver for pulse generation with fifth harmonic

    DOEpatents

    Mazarakis, Michael G.; Kim, Alexander A.; Sinebryukhov, Vadim A.; Volkov, Sergey N.; Kondratiev, Sergey S.; Alexeenko, Vitaly M.; Bayol, Frederic; Demol, Gauthier; Stygar, William A.; Leckbee, Joshua; Oliver, Bryan V.; Kiefer, Mark L.

    2017-03-21

    A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first, second, and third power delivery module. The first power delivery module sends a first energy in the form of a first pulse to the load. The second power delivery module sends a second energy in the form of a second pulse to the load. The third power delivery module sends a third energy in the form of a third pulse to the load. The linear transformer driver is configured to form a flat-top pulse by the superposition of the first, second, and third pulses. The first, second, and third pulses have different frequencies.

  3. Pulse Shaped 8-PSK Bandwidth Efficiency and Spectral Spike Elimination

    NASA Technical Reports Server (NTRS)

    Tao, Jian-Ping

    1998-01-01

    The most bandwidth-efficient communication methods are imperative to cope with the congested frequency bands. Pulse shaping methods have excellent effects on narrowing bandwidth and increasing band utilization. The position of the baseband filters for the pulse shaping is crucial. Post-modulation pulse shaping (a low pass filter is located after the modulator) can change signals from constant envelope to non-constant envelope, and non-constant envelope signals through non-linear device (a SSPA or TWT) can further spread the power spectra. Pre-modulation pulse shaping (a filter is located before the modulator) will have constant envelope. These two pulse shaping methods have different effects on narrowing the bandwidth and producing bit errors. This report studied the effect of various pre-modulation pulse shaping filters with respect to bandwidth, spectral spikes and bit error rate. A pre-modulation pulse shaped 8-ary Phase Shift Keying (8PSK) modulation was used throughout the simulations. In addition to traditional pulse shaping filters, such as Bessel, Butterworth and Square Root Raised Cosine (SRRC), other kinds of filters or pulse waveforms were also studied in the pre-modulation pulse shaping method. Simulations were conducted by using the Signal Processing Worksystem (SPW) software package on HP workstations which simulated the power spectral density of pulse shaped 8-PSK signals, end to end system performance and bit error rates (BERS) as a function of Eb/No using pulse shaping in an AWGN channel. These results are compared with the post-modulation pulse shaped 8-PSK results. The simulations indicate traditional pulse shaping filters used in pre-modulation pulse shaping may produce narrower bandwidth, but with worse BER than those in post-modulation pulse shaping. Theory and simulations show pre- modulation pulse shaping could also produce discrete line power spectra (spikes) at regular frequency intervals. These spikes may cause interference with adjacent channel and reduce power efficiency. Some particular pulses (filters), such as trapezoid and pulses with different transits (such as weighted raised cosine transit) were found to reduce bandwidth and not generate spectral spikes. Although a solid state power amplifier (SSPA) was simulated in the non-linear (saturation) region, output power spectra did not spread due to the constant envelope 8-PSK signals.

  4. Linear transformer driver for pulse generation

    DOEpatents

    Kim, Alexander A; Mazarakis, Michael G; Sinebryukhov, Vadim A; Volkov, Sergey N; Kondratiev, Sergey S; Alexeenko, Vitaly M; Bayol, Frederic; Demol, Gauthier; Stygar, William A

    2015-04-07

    A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first power delivery module that includes a first charge storage devices and a first switch. The first power delivery module sends a first energy in the form of a first pulse to the load. The linear transformer driver also includes a second power delivery module including a second charge storage device and a second switch. The second power delivery module sends a second energy in the form of a second pulse to the load. The second pulse has a frequency that is approximately three times the frequency of the first pulse. The at least one ferrite ring is positioned to force the first pulse and the second pulse to the load by temporarily isolating the first pulse and the second pulse from an electrical ground.

  5. Solid-state pulse modulator using Marx generator for a medical linac electron-gun

    NASA Astrophysics Data System (ADS)

    Lim, Heuijin; Hyeok Jeong, Dong; Lee, Manwoo; Lee, Mujin; Yi, Jungyu; Yang, Kwangmo; Ro, Sung Chae

    2016-04-01

    A medical linac is used for the cancer treatment and consists of an accelerating column, waveguide components, a magnetron, an electron-gun, a pulse modulator, and an irradiation system. The pulse modulator based on hydrogen thyratron-switched pulse-forming network is commonly used in linac. As the improvement of the high power semiconductors in switching speed, voltage rating, and current rating, an insulated gate bipolar transistor has become the more popular device used for pulsed power systems. We propose a solid-state pulse modulator to generator high voltage by multi-stacked storage-switch stages based on the Marx generator. The advantage of our modulator comes from the use of two semiconductors to control charging and discharging of the storage capacitor at each stage and it allows to generate the pulse with various amplitudes, widths, and shapes. In addition, a gate driver for two semiconductors is designed to reduce the control channels and to protect the circuits. It is developed for providing the pulsed power to a medical linac electron-gun that requires 25 kV and 1 A as the first application. In order to improve the power efficiency and achieve the compactness modulator, a capacitor charging power supply, a Marx pulse generator, and an electron-gun heater isolated transformer are constructed and integrated. This technology is also being developed to extend the high power pulsed system with > 1 MW and also other applications such as a plasma immersed ion implantation and a micro pulse electrostatic precipitator which especially require variable pulse shape and high repetition rate > 1 kHz. The paper describes the design features and the construction of this solid-state pulse modulator. Also shown are the performance results into the linac electron-gun.

  6. Rise time analysis of pulsed klystron-modulator for efficiency improvement of linear colliders

    NASA Astrophysics Data System (ADS)

    Oh, J. S.; Cho, M. H.; Namkung, W.; Chung, K. H.; Shintake, T.; Matsumoto, H.

    2000-04-01

    In linear accelerators, the periods during the rise and fall of a klystron-modulator pulse cannot be used to generate RF power. Thus, these periods need to be minimized to get high efficiency, especially in large-scale machines. In this paper, we present a simplified and generalized voltage rise time function of a pulsed modulator with a high-power klystron load using the equivalent circuit analysis method. The optimum pulse waveform is generated when this pulsed power system is tuned with a damping factor of ˜0.85. The normalized rise time chart presented in this paper allows one to predict the rise time and pulse shape of the pulsed power system in general. The results can be summarized as follows: The large distributed capacitance in the pulse tank and operating parameters, Vs× Tp , where Vs is load voltage and Tp is the pulse width, are the main factors determining the pulse rise time in the high-power RF system. With an RF pulse compression scheme, up to ±3% ripple of the modulator voltage is allowed without serious loss of compressor efficiency, which allows the modulator efficiency to be improved as well. The wiring inductance should be minimized to get the fastest rise time.

  7. Interference Resilient Sigma Delta-Based Pulse Oximeter.

    PubMed

    Shokouhian, Mohsen; Morling, Richard; Kale, Izzet

    2016-06-01

    Ambient light and optical interference can severely affect the performance of pulse oximeters. The deployment of a robust modulation technique to drive the pulse oximeter LEDs can reduce these unwanted effects and increases the resilient of the pulse oximeter against artificial ambient light. The time division modulation technique used in conventional pulse oximeters can not remove the effect of modulated light coming from surrounding environment and this may cause huge measurement error in pulse oximeter readings. This paper presents a novel cross-coupled sigma delta modulator which ensures that measurement accuracy will be more robust in comparison with conventional fixed-frequency oximeter modulation technique especially in the presence of pulsed artificial ambient light. Moreover, this novel modulator gives an extra control over the pulse oximeter power consumption leading to improved power management.

  8. Self-pulsing in a 2 km single-mode fiber with the seed source broadened via WNS phase modulation

    NASA Astrophysics Data System (ADS)

    Zha, Congwen; Sun, Yinhong; Wang, Yanshan; Li, Tenglong; Peng, Wanjing; Ma, Yi; Zhang, Kai

    2018-03-01

    The seed source with spectral linewidth broadening via phase modulation is potential to achieve the higher output power with effective SBS suppression. However, self-pulsing from the amplifier output is harmful. In this work, we study the self-pulsing characteristics in a long single-mode fiber with lower self-pulsing threshold instead of the high power amplifier. We provide a powerful experimental support for the self-pulsing mechanism in high-power narrow-linewidth fiber lasers, which is important for further output power scaling.

  9. 180 MW/180 KW pulse modulator for S-band klystron of LUE-200 linac of IREN installation of JINR

    NASA Astrophysics Data System (ADS)

    Su, Kim Dong; Sumbaev, A. P.; Shvetsov, V. N.

    2014-09-01

    The offer on working out of the pulse modulator with 180 MW pulse power and 180 kW average power for pulse S-band klystrons of LUE-200 linac of IREN installation at the Laboratory of neutron physics (FLNP) at JINR is formulated. Main requirements, key parameters and element base of the modulator are presented. The variant of the basic scheme on the basis of 14 (or 11) stage 2 parallel PFN with the thyratron switchboard (TGI2-10K/50) and six parallel high voltage power supplies (CCPS Power Supply) is considered.

  10. Combinatorial pulse position modulation for power-efficient free-space laser communications

    NASA Technical Reports Server (NTRS)

    Budinger, James M.; Vanderaar, M.; Wagner, P.; Bibyk, Steven

    1993-01-01

    A new modulation technique called combinatorial pulse position modulation (CPPM) is presented as a power-efficient alternative to quaternary pulse position modulation (QPPM) for direct-detection, free-space laser communications. The special case of 16C4PPM is compared to QPPM in terms of data throughput and bit error rate (BER) performance for similar laser power and pulse duty cycle requirements. The increased throughput from CPPM enables the use of forward error corrective (FEC) encoding for a net decrease in the amount of laser power required for a given data throughput compared to uncoded QPPM. A specific, practical case of coded CPPM is shown to reduce the amount of power required to transmit and receive a given data sequence by at least 4.7 dB. Hardware techniques for maximum likelihood detection and symbol timing recovery are presented.

  11. Influence of the cubic spectral phase of high-power laser pulses on their self-phase modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginzburg, V N; Kochetkov, A A; Yakovlev, I V

    2016-02-28

    Spectral broadening of high-power transform-limited laser pulses under self-phase modulation in a medium with cubic nonlinearity is widely used to reduce pulse duration and to increase its power. It is shown that the cubic spectral phase of the initial pulse leads to a qualitatively different broadening of its spectrum: the spectrum has narrow peaks and broadening decreases. However, the use of chirped mirrors allows such pulses to be as effectively compressed as transform-limited pulses. (nonlinear optical phenomena)

  12. Modular compact solid-state modulators for particle accelerators

    NASA Astrophysics Data System (ADS)

    Zavadtsev, A. A.; Zavadtsev, D. A.; Churanov, D. V.

    2017-12-01

    The building of the radio frequency (RF) particle accelerator needs high-voltage pulsed modulator as a power supply for klystron or magnetron to feed the RF accelerating system. The development of a number of solid-state modulators for use in linear accelerators has allowed to develop a series of modular IGBT based compact solid-state modulators with different parameters. This series covers a wide range of needs in accelerator technology to feed a wide range of loads from the low power magnetrons to powerful klystrons. Each modulator of the series is built on base of a number of unified solid-state modules connected to the pulse transformer, and covers a wide range of modulators: voltage up to 250 kV, a peak current up to 250 A, average power up to 100 kW and the pulse duration up to 20 μsec. The parameters of the block with an overall dimensions 880×540×250 mm are: voltage 12 kV, peak current 1600 A, pulse duration 20 μsec, average power 10 kW with air-cooling and 40 kW with liquidcooling. These parameters do not represent a physical limit, and modulators to parameters outside these ranges can be created on request.

  13. Power supply circuit for an ion engine sequentially operated power inverters

    NASA Technical Reports Server (NTRS)

    Cardwell, Jr., Gilbert I. (Inventor)

    2000-01-01

    A power supply circuit for an ion engine suitable for a spacecraft has a voltage bus having input line and a return line. The power supply circuit includes a pulse width modulation circuit. A plurality of bridge inverter circuits is coupled to the bus and the pulse width modulation circuit. The pulse width modulation circuit generates operating signals having a variable duty cycle. Each bridge inverter has a primary winding and a secondary winding. Each secondary winding is coupled to a rectifier bridge. Each secondary winding is coupled in series with another of the plurality of rectifier bridges.

  14. Solid state modulator for klystron power supply XFEL TDS INJ

    NASA Astrophysics Data System (ADS)

    Zavadtsev, A. A.; Zavadtsev, D. A.; Zybin, D. A.; Churanov, D. V.; Shemarykin, P. V.

    2016-09-01

    The transverse deflecting system XFEL TDS INJ for European X-ray Free Electron Laser includes power supply for the CPI VKS-8262HS klystron. It has been designed for pulse high-voltage, cathode heating, solenoid and klystron ion pump. The klystron power supply includes solid state modulator, pulse transformer, controlled power supply for cathode heating and commercial power supplies for solenoid and ion pump. Main parameters of the modulator are 110 kV of peak voltage, 72 A peak current, and pulse length up to 6 μs. The klystron power supply has been developed, designed, manufactured, tuned, tested and installed in the XFEL building. All designed parameters are satisfied.

  15. Pulse transmission transceiver architecture for low power communications

    DOEpatents

    Dress, Jr., William B.; Smith, Stephen F.

    2003-08-05

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A method of pulse transmission communications includes: generating a modulated pulse signal waveform; transforming said modulated pulse signal waveform into at least one higher-order derivative waveform; and transmitting said at least one higher-order derivative waveform as an emitted pulse. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  16. Discharge conditions for CW and pulse-modulated surface-wave plasmas in low-temperature sterilization

    NASA Astrophysics Data System (ADS)

    Xu, L.; Terashita, F.; Nonaka, H.; Ogino, A.; Nagata, T.; Koide, Y.; Nanko, S.; Kurawaki, I.; Nagatsu, M.

    2006-01-01

    The discharge conditions required for low-temperature plasma sterilization were investigated using low-pressure surface-wave plasma (SWP). The discharge conditions for both continuous wave (CW) and pulse-modulated SWPs in low-temperature sterilization of Geobacillus stearothermophilus with a population of 1.5 × 106 and 3.0 × 106 were studied by varying the microwave input power from 500 W to 3 kW, and the effective plasma treatment time from 40 to 300 s. Results showed that sterilization was possible in a shorter treatment time using a higher microwave power for both CW and pulse-modulated SWPs. Pulse-modulated SWPs gave effective sterilization at a temperature roughly 10 to 20 °C below that of CW SWPs under the same average microwave power.

  17. Active/passive mode-locked laser oscillator

    DOEpatents

    Fountain, William D.; Johnson, Bertram C.

    1977-01-01

    A Q-switched/mode-locked Nd:YAG laser oscillator employing simultaneous active (electro-optic) and passive (saturable absorber) loss modulation within the optical cavity is described. This "dual modulation" oscillator can produce transform-limited pulses of duration ranging from about 30 psec to about 5 nsec with greatly improved stability compared to other mode-locked systems. The pulses produced by this system lack intrapulse frequency or amplitude modulation, and hence are idealy suited for amplification to high energies and for other applications where well-defined pulses are required. Also, the pulses of this system have excellent interpulse characteristics, wherein the optical noise between the individual pulses of the pulse train has a power level well below the power of the peak pulse of the train.

  18. New hybrid reverse differential pulse position width modulation scheme for wireless optical communication

    NASA Astrophysics Data System (ADS)

    Liao, Renbo; Liu, Hongzhan; Qiao, Yaojun

    2014-05-01

    In order to improve the power efficiency and reduce the packet error rate of reverse differential pulse position modulation (RDPPM) for wireless optical communication (WOC), a hybrid reverse differential pulse position width modulation (RDPPWM) scheme is proposed, based on RDPPM and reverse pulse width modulation. Subsequently, the symbol structure of RDPPWM is briefly analyzed, and its performance is compared with that of other modulation schemes in terms of average transmitted power, bandwidth requirement, and packet error rate over ideal additive white Gaussian noise (AWGN) channels. Based on the given model, the simulation results show that the proposed modulation scheme has the advantages of improving the power efficiency and reducing the bandwidth requirement. Moreover, in terms of error probability performance, RDPPWM can achieve a much lower packet error rate than that of RDPPM. For example, at the same received signal power of -28 dBm, the packet error rate of RDPPWM can decrease to 2.6×10-12, while that of RDPPM is 2.2×10. Furthermore, RDPPWM does not need symbol synchronization at the receiving end. These considerations make RDPPWM a favorable candidate to select as the modulation scheme in the WOC systems.

  19. An experimental investigation of using carbon foam-PCM-MWCNTs composite materials for thermal management of electronic devices under pulsed power modes

    NASA Astrophysics Data System (ADS)

    Alshaer, W. G.; Rady, M. A.; Nada, S. A.; Palomo Del Barrio, Elena; Sommier, Alain

    2017-02-01

    The present article reports on a detailed experimental investigation of using carbon foam-PCM-MWCNTs composite materials for thermal management (TM) of electronic devices subjected to pulsed power. The TM module was fabricated by infiltrating paraffin wax (RT65) as a phase change material (PCM) and multi walled carbon nanotubes (MWCNTs) as a thermal conductivity enhancer in a carbon foam as a base structure. Two carbon foam materials of low and high values of thermal conductivities, CF20 and KL1-250 (3.1 and 40 W/m K), were tested as a base structure for the TM modules. Tests were conducted at different power intensities and power cycling/loading modes. Results showed that for all power varying modes and all carbon foams, the infiltration of RT65 into carbon foam reduces the temperature of TM module and results in damping the temperature spikes height. Infiltration of MWCNTS into RT65 further improves the effectiveness of TM module. Temperature damping was more pronounced in stand-alone pulsed power cycles as compared to pulsed power spikes modes. The effectiveness of inclusion of RT65 and RT65/MWCNTs in damping the temperature spikes height is remarkable in TM modules based on KL1-250 as compared to CF-20.

  20. Pulse-Width-Modulating Driver for Brushless dc Motor

    NASA Technical Reports Server (NTRS)

    Salomon, Phil M.

    1991-01-01

    High-current pulse-width-modulating driver for brushless dc motor features optical coupling of timing signals from low-current control circuitry to high-current motor-driving circuitry. Provides high electrical isolation of motor-power supply, helping to prevent fast, high-current motor-driving pulses from being coupled through power supplies into control circuitry, where they interfere with low-current control signals.

  1. Thermal Simulation of Switching Pulses in an Insulated Gate Bipolar Transistor (IGBT) Power Module

    DTIC Science & Technology

    2015-02-01

    executed with SolidWorks Flow Simulation , a computational fluid-dynamics code. The graph in Fig. 2 shows the timing and amplitudes of power pulses...defined a convective flow of air perpendicular to the bottom surface of the mounting plate, with a velocity of 10 ft/s. The thermal simulations were...Thermal Simulation of Switching Pulses in an Insulated Gate Bipolar Transistor (IGBT) Power Module by Gregory K Ovrebo ARL-TR-7210

  2. Optimisation of thulium fibre laser parameters with generation of pulses by pump modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obronov, I V; Larin, S V; Sypin, V E

    2015-07-31

    The formation of relaxation pulses of a thulium fibre laser (λ = 1.9 μm) by modulating the power of a pump erbium fibre laser (λ = 1.55 μm) is studied. A theoretical model is developed to find the dependences of pulse duration and peak power on different cavity parameters. The optimal cavity parameters for achieving the minimal pulse duration are determined. The results are confirmed by experimental development of a laser emitting pulses with a duration shorter than 10 ns, a peak power of 1.8 kW and a repetition rate of 50 kHz. (control of radiation parameters)

  3. Prototype Solid State Induction Modulator for SLAC NLC

    NASA Astrophysics Data System (ADS)

    Cassel, R. L.; DeLamare, J. E.; Nguyen, M. N.; Pappas, G. C.; Cook, E.

    2002-08-01

    The Next Linear Collider accelerator proposal at SLAC requires a high efficiency, highly reliable, and low cost pulsed power modulator to drive the X band klystrons. The present NLC envisions a solid-state induction modulator design to drive up to 8 klystrons to 500kV for 3muS at 120 PPS with one modulator (>1,000 megawatt pulse, 500kW average). A prototype modulator is presently under construction, which well power 4 each 5045 SLAC klystron to greater than 380 kV for 3muS (>600 megawatt pulse, >300 kW Ave.). The modulator will be capable of driving the 8 each X band klystrons when they become available. The paper covers the design, construction, fabrication and preliminary testing of the prototype modulator.

  4. Chirped-pulse coherent-OTDR with predistortion

    NASA Astrophysics Data System (ADS)

    Xiong, Ji; Jiang, Jialin; Wu, Yue; Chen, Yongxiang; Xie, Lianlian; Fu, Yun; Wang, Zinan

    2018-03-01

    In this paper, a novel method for generating high-quality chirped pulses with IQ modulator is studied theoretically and experimentally, which is a crucial building block for high-performance coherent optical time-domain reflectometry (COTDR). In order to compensate the nonlinearity of the modulator transfer function, we present a predistortion technique for chirped-pulse coherent optical time-domain reflectometry (CP-COTDR), the arcsin predistortion method and the single sideband with a suppressed carrier analog modulation used to generate the high quality chirped optical pulse. The high order sidebands, due to the large amplitude of the modulation signal and the nonlinear transfer function of the IQ modulator, can be relieved by the predistortion process, which means the power and the quality of the generated chirped pulse has been improved. In the experiment, this method increases the peak power of the chirped pulse by 4.2 dB compared to the case without predistortion process, as for the CP-COTDR system, this method increases the signal-to-noise ratio of the demodulated phase variation by 6.3 dB.

  5. Graphene Oxide: A Perfect Material for Spatial Light Modulation Based on Plasma Channels

    PubMed Central

    Tan, Chao; Wu, Xinghua; Wang, Qinkai; Tang, Pinghua; Shi, Xiaohui; Zhan, Shiping; Xi, Zaifang; Fu, Xiquan

    2017-01-01

    The graphene oxide (GO) is successfully prepared from a purified natural graphite through a pressurized oxidation method. We experimentally demonstrate that GO as an optical media can be used for spatial light modulation based on plasma channels induced by femtosecond pulses. The modulated beam exhibits good propagation properties in free space. It is easy to realize the spatial modulation on the probe beam at a high concentration of GO dispersion solutions, high power and smaller pulse width of the pump beam. We also find that the spatial modulation on the probe beam can be conveniently adjusted through the power and pulse width of pump lasers, dispersion solution concentration. PMID:28772712

  6. Fiber Bragg grating Fabry-Perot cavity sensor based on pulse laser demodulation technique

    NASA Astrophysics Data System (ADS)

    Gao, Fangfang; Chen, Jianfeng; Liu, Yunqi; Wang, Tingyun

    2011-12-01

    We demonstrate a fiber laser sensing technique based on fiber Bragg grating Fabry-Perot (FBG-FP) cavity interrogated by pulsed laser, where short pulses generated from active mode-locked erbium-doped fiber ring laser and current modulated DFB laser are adopted. The modulated laser pulses launched into the FBG-FP cavity produce a group of reflected pulses. The optical loss in the cavity can be determined from the power ratio of the first two pulses reflected from the cavity. This technique does not require high reflectivity FBGs and is immune to the power fluctuation of the light source. Two short pulse laser sources were compared experimentally with each other on pulse width, pulse stability, pulse chirp and sensing efficiency.

  7. Increased first and second pulse harmonics in Tai Chi Chuan practitioners.

    PubMed

    Lu, Wan-An; Chen, Yung-Sheng; Kuo, Cheng-Deng

    2016-02-29

    Tai Chi Chuan (TCC) is known to be a good calisthenics for people. This study examined the relationship between pulse harmonics and autonomic nervous modulation in TCC practitioners. Power spectral measures of right pulse wave and heart rate variability (HRV) measures were compared between TCC practitioners and control subjects. Correlation analyses between pulse harmonics and HRV measures were performed using linear regression analysis. At baseline, the total power of pulse (TPp), powers of all individual pulse harmonics, normalized power of the 1(st) harmonics (nPh1) of TCC practitioners were greater, while the normalized power of the 4(th) pulse harmonics (nPh4) of TCC practitioners was smaller, than those of the controls. Similarly, the baseline standard deviation (SD(RR)), coefficient of variation (CV(RR)), and normalized high-frequency power (nHFP) of RR intervals were smaller, while the normalized very low-frequency power (nVLFP) and low-/high- frequency power ratio (LHR) were larger in the TCC practitioners. The TCC age correlated significantly and negatively with nPh1, and nearly significantly and negatively with nPh2 in the TCC practitioners. Thirty min after TCC exercise, the percentage changes in mRRI, SDRR, TP, VLFP were decreased, while the percentage changes in HR, ULFP, nLFP, and Ph2 were increased, relative to the controls. Correlation analysis shows that the %Ph2 correlates significantly and negatively with %mRRI and significantly and positively with %HR. The TCC practitioners had increased baseline total power of pulse and the 1(st) and 2(nd) pulse harmonics, and decreased power of the 4(th) pulse harmonics, along with decreased vagal modulation and increased sympathetic modulation. After TCC exercise, the power of the 2(nd) harmonics of TCC practitioners was increased which might be related to the increase in HR due to decreased vascular resistance after TCC exercise.

  8. High average power magnetic modulator for metal vapor lasers

    DOEpatents

    Ball, Don G.; Birx, Daniel L.; Cook, Edward G.; Miller, John L.

    1994-01-01

    A three-stage magnetic modulator utilizing magnetic pulse compression designed to provide a 60 kV pulse to a copper vapor laser at a 4.5 kHz repetition rate is disclosed. This modulator operates at 34 kW input power. The circuit includes a step up auto transformer and utilizes a rod and plate stack construction technique to achieve a high packing factor.

  9. Solid state pulsed power generator

    DOEpatents

    Tao, Fengfeng; Saddoughi, Seyed Gholamali; Herbon, John Thomas

    2014-02-11

    A power generator includes one or more full bridge inverter modules coupled to a semiconductor opening switch (SOS) through an inductive resonant branch. Each module includes a plurality of switches that are switched in a fashion causing the one or more full bridge inverter modules to drive the semiconductor opening switch SOS through the resonant circuit to generate pulses to a load connected in parallel with the SOS.

  10. Three-Level 48-Pulse STATCOM with Pulse Width Modulation

    NASA Astrophysics Data System (ADS)

    Singh, Bhim; Srinivas, Kadagala Venkata

    2016-03-01

    In this paper, a new control strategy of a three-level 48-pulse static synchronous compensator (STATCOM) is proposed with a constant dc link voltage and pulse width modulation at fundamental frequency switching. The proposed STATCOM is realized using eight units of three-level voltage source converters (VSCs) to form a three-level 48-pulse STATCOM. The conduction angle of each three-level VSC is modulated to control the ac converter output voltage, which controls the reactive power of the STATCOM. A fuzzy logic controller is used to control the STATCOM. The dynamic performance of the STATCOM is studied for the control of the reference reactive power, the reference terminal voltage and under the switching of inductive and capacitive loads.

  11. Generation of ultra-wideband triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion.

    PubMed

    Li, Wei; Wang, Li Xian; Hofmann, Werner; Zhu, Ning Hua; Bimberg, Dieter

    2012-08-27

    We propose and demonstrate a novel scheme to generate ultra-wideband (UWB) triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion. First a phase-modulated Gaussian doublet pulse is generated by four-wave mixing in a highly nonlinear fiber. Then an UWB triplet pulse is generated by generating the first-order derivative of the phase-modulated Gaussian doublet pulse using an optical filter serving as a frequency discriminator. By locating the optical signal at the linear slope of the optical filter, the phase modulated Gaussian doublet pulse is converted to an intensity-modulated UWB triplet pulse which well satisfies the Federal Communications Commission spectral mask requirements, even in the extremely power-restricted global positioning system band.

  12. 1995 second modulator-klystron workshop: A modulator-klystron workshop for future linear colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    This second workshop examined the present state of modulator design and attempted an extrapolation for future electron-positron linear colliders. These colliders are currently viewed as multikilometer-long accelerators consisting of a thousand or more RF sources with 500 to 1,000, or more, pulsed power systems. The workshop opened with two introductory talks that presented the current approaches to designing these linear colliders, the anticipated RF sources, and the design constraints for pulse power. The cost of main AC power is a major economic consideration for a future collider, consequently the workshop investigated efficient modulator designs. Techniques that effectively apply the artmore » of power conversion, from the AC mains to the RF output, and specifically, designs that generate output pulses with very fast rise times as compared to the flattop. There were six sessions that involved one or more presentations based on problems specific to the design and production of thousands of modulator-klystron stations, followed by discussion and debate on the material.« less

  13. Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre

    PubMed Central

    Lin, Yuechuan; Jin, Wei; Yang, Fan; Ma, Jun; Wang, Chao; Ho, Hoi Lut; Liu, Yang

    2016-01-01

    Gas detection with hollow-core photonic bandgap fibre (HC-PBF) and pulsed photothermal (PT) interferometry spectroscopy are studied theoretically and experimentally. A theoretical model is developed and used to compute the gas-absorption-induced temperature and phase modulation in a HC-PBF filled with low-concentration of C2H2 in nitrogen. The PT phase modulation dynamics for different pulse duration, peak power and energy of pump beam are numerically modelled, which are supported by the experimental results obtained around the P(9) absorption line of C2H2 at 1530.371 nm. Thermal conduction is identified as the main process responsible for the phase modulation dynamics. For a constant peak pump power level, the phase modulation is found to increase with pulse duration up to ~1.2 μs, while it increases with decreasing pulse duration for a constant pulse energy. It is theoretically possible to achieve ppb level detection of C2H2 with ~1 m length HC-PBF and a pump beam with ~10 ns pulse duration and ~100 nJ pulse energy. PMID:28009011

  14. Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre.

    PubMed

    Lin, Yuechuan; Jin, Wei; Yang, Fan; Ma, Jun; Wang, Chao; Ho, Hoi Lut; Liu, Yang

    2016-12-23

    Gas detection with hollow-core photonic bandgap fibre (HC-PBF) and pulsed photothermal (PT) interferometry spectroscopy are studied theoretically and experimentally. A theoretical model is developed and used to compute the gas-absorption-induced temperature and phase modulation in a HC-PBF filled with low-concentration of C 2 H 2 in nitrogen. The PT phase modulation dynamics for different pulse duration, peak power and energy of pump beam are numerically modelled, which are supported by the experimental results obtained around the P(9) absorption line of C 2 H 2 at 1530.371 nm. Thermal conduction is identified as the main process responsible for the phase modulation dynamics. For a constant peak pump power level, the phase modulation is found to increase with pulse duration up to ~1.2 μs, while it increases with decreasing pulse duration for a constant pulse energy. It is theoretically possible to achieve ppb level detection of C 2 H 2 with ~1 m length HC-PBF and a pump beam with ~10 ns pulse duration and ~100 nJ pulse energy.

  15. Phase matching of high order harmonic generation using dynamic phase modulation caused by a non-collinear modulation pulse

    DOEpatents

    Cohen, Oren; Kapteyn, Henry C.; Mumane, Margaret M.

    2010-02-16

    Phase matching high harmonic generation (HHG) uses a single, long duration non-collinear modulating pulse intersecting the driving pulse. A femtosecond driving pulse is focused into an HHG medium (such as a noble gas) to cause high-harmonic generation (HHG), for example in the X-ray region of the spectrum, via electrons separating from and recombining with gas atoms. A non-collinear pulse intersects the driving pulse within the gas, and modulates the field seen by the electrons while separated from their atoms. The modulating pulse is low power and long duration, and its frequency and amplitude is chosen to improve HHG phase matching by increasing the areas of constructive interference between the driving pulse and the HHG, relative to the areas of destructive interference.

  16. Solid-state YVO4/Nd:YVO4/KTP green laser system for the generation of subnanosecond pulses with adjustable kilohertz repetition rate.

    PubMed

    Zhang, Haijuan; Zhao, Shengzhi; Yang, Kejian; Li, Guiqiu; Li, Dechun; Zhao, Jia; Wang, Yonggang

    2013-09-20

    A solid-state green laser generating subnanosecond pulses with adjustable kilohertz repetition rate is presented. This pulse laser system is composed of a Q-switched and mode-locked YVO(4)/Nd:YVO(4)/KTP laser simultaneously modulated by an electro-optic (EO) modulator and a central semiconductor saturable absorption mirror. Because the repetition rate of the Q-switched envelope in this laser depends on the modulation frequency of the EO modulator, so long as the pulsewidth of the Q-switched envelope is shorter than the cavity roundtrip transmit time, i.e., the time interval of two neighboring mode-locking pulses, only one mode-locking pulse exists underneath a Q-switched envelope, resulting in the generation of subnanosecond pulses with kilohertz repetition rate. The experimental results show that the pulsewidth of subnanosecond pulses decreases with increasing pump power and the shortest pulse generated at 1 kHz was 450 ps with pulse energy as high as 252 μJ, corresponding to a peak power of 560 kW. In addition, this laser was confirmed to have high stability, and the pulse repetition rate could be freely adjusted from 1 to 4 kHz.

  17. Modulation and coding for throughput-efficient optical free-space links

    NASA Technical Reports Server (NTRS)

    Georghiades, Costas N.

    1993-01-01

    Optical direct-detection systems are currently being considered for some high-speed inter-satellite links, where data-rates of a few hundred megabits per second are evisioned under power and pulsewidth constraints. In this paper we investigate the capacity, cutoff-rate and error-probability performance of uncoded and trellis-coded systems for various modulation schemes and under various throughput and power constraints. Modulation schemes considered are on-off keying (OOK), pulse-position modulation (PPM), overlapping PPM (OPPM) and multi-pulse (combinatorial) PPM (MPPM).

  18. Improving the therapeutic window of retinal photocoagulation by spatial and temporal modulation of the laser beam

    NASA Astrophysics Data System (ADS)

    Sramek, Christopher; Leung, Loh-Shan; Leng, Theodore; Brown, Jefferson; Paulus, Yannis M.; Schuele, Georg; Palanker, Daniel

    2011-02-01

    Decreasing the pulse duration helps confine damage, shorten treatment time, and minimize pain during retinal photocoagulation. However, the safe therapeutic window (TW), the ratio of threshold powers for thermomechanical rupture of Bruch's membrane and mild coagulation, also decreases with shorter exposures. Two potential approaches toward increasing TW are investigated: (a) decreasing the central irradiance of the laser beam and (b) temporally modulating the pulse. An annular beam with adjustable central irradiance was created by coupling a 532-nm laser into a 200-μm core multimode optical fiber at a 4-7 deg angle to normal incidence. Pulse shapes were optimized using a computational model, and a waveform generator was used to drive a PASCAL photocoagulator (532 nm), producing modulated laser pulses. Acute thresholds for mild coagulation and rupture were measured in Dutch-Belted rabbit in vivo with an annular beam (154-163 μm retinal diameter) and modulated pulse (132 μm, uniform irradiance ``flat-top'' beam) with 2-50 ms pulse durations. Thresholds with conventional constant-power pulse and a flat-top beam were also determined. Both annular beam and modulated pulse provided a 28% increase in TW at 10-ms duration, affording the same TW as 20-ms pulses with conventional parameters.

  19. CIDME: Short distances measured with long chirp pulses.

    PubMed

    Doll, Andrin; Qi, Mian; Godt, Adelheid; Jeschke, Gunnar

    2016-12-01

    Frequency-swept pulses have recently been introduced as pump pulses into double electron-electron resonance (DEER) experiments. A limitation of this approach is that the pump pulses need to be short in comparison to dipolar evolution periods. The "chirp-induced dipolar modulation enhancement" (CIDME) pulse sequence introduced in this work circumvents this limitation by means of longitudinal storage during the application of one single or two consecutive pump pulses. The resulting six-pulse sequence is closely related to the five-pulse "relaxation-induced dipolar modulation enhancement" (RIDME) pulse sequence: While dipolar modulation in RIDME is due to stochastic spin flips during longitudinal storage, modulation in CIDME is due to the pump pulse during longitudinal storage. Experimentally, CIDME is examined for Gd-Gd and nitroxide-nitroxide distance determination using a high-power Q-band spectrometer. Since longitudinal storage results in a 50% signal loss, comparisons between DEER using short chirp pump pulses of 64ns duration and CIDME using longer pump pulses are in favor of DEER. While the lower sensitivity restrains the applicability of CIDME for routine distance determination on high-power spectrometers, this result is not to be generalized to spectrometers having lower power and to specialized "non-routine" applications or different types of spin labels. In particular, the advantage of prolonged CIDME pump pulses is demonstrated for experiments at large frequency offset between the pumped and observed spins. At a frequency separation of 1GHz, where broadening due to dipolar pseudo-secular contributions becomes largely suppressed, a Gd-Gd modulation depth larger than 10% is achieved. Moreover, a CIDME experiment at deliberately reduced power underlines the potential of the new technique for spectrometers with lower power, as often encountered at higher microwave frequencies. With longitudinal storage times T below 10μs, however, CIDME appears rather susceptible to artifacts. For nitroxide-nitroxide experiments, these currently inhibit a faithful data analysis. To facilitate further developments, the artifacts are characterized experimentally. In addition, effects that are specific to the high spin of S=7/2 Gd-centers are examined. Herein, population transfer within the observer spin's multiplet due to the pump pulse as well as excitation of dipolar harmonics are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Optimal time-domain technique for pulse width modulation in power electronics

    NASA Astrophysics Data System (ADS)

    Mayergoyz, I.; Tyagi, S.

    2018-05-01

    Optimal time-domain technique for pulse width modulation is presented. It is based on exact and explicit analytical solutions for inverter circuits, obtained for any sequence of input voltage rectangular pulses. Two optimal criteria are discussed and illustrated by numerical examples.

  1. Development of a 33 kV, 20 A long pulse converter modulator for high average power klystron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reghu, T.; Mandloi, V.; Shrivastava, Purushottam

    Research, design, and development of high average power, long pulse modulators for the proposed Indian Spallation Neutron Source are underway at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of long pulse modulator capable of delivering 33 kV, 20 A at 5 Hz repetition rate has been designed and developed. Three Insulated Gate Bipolar Transistors (IGBT) based switching modules driving high frequency, high voltage transformers have been used to generate high voltage output. The IGBT based switching modules are shifted in phase by 120° with respect to each other. The switching frequency is 25 kHz. Pulses ofmore » 1.6 ms pulse width, 80 μs rise time, and 70 μs fall time have been achieved at the modulator output. A droop of ±0.6% is achieved using a simple segmented digital droop correction technique. The total fault energy transferred to the load during fault has been measured by conducting wire burn tests and is found to be within 3.5 J.« less

  2. Development of a 33 kV, 20 A long pulse converter modulator for high average power klystron

    NASA Astrophysics Data System (ADS)

    Reghu, T.; Mandloi, V.; Shrivastava, Purushottam

    2014-05-01

    Research, design, and development of high average power, long pulse modulators for the proposed Indian Spallation Neutron Source are underway at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of long pulse modulator capable of delivering 33 kV, 20 A at 5 Hz repetition rate has been designed and developed. Three Insulated Gate Bipolar Transistors (IGBT) based switching modules driving high frequency, high voltage transformers have been used to generate high voltage output. The IGBT based switching modules are shifted in phase by 120° with respect to each other. The switching frequency is 25 kHz. Pulses of 1.6 ms pulse width, 80 μs rise time, and 70 μs fall time have been achieved at the modulator output. A droop of ±0.6% is achieved using a simple segmented digital droop correction technique. The total fault energy transferred to the load during fault has been measured by conducting wire burn tests and is found to be within 3.5 J.

  3. High power high repetition rate VCSEL array side-pumped pulsed blue laser

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Robert; Zhao, Pu; Chen, Tong; Xu, Bing; Watkins, Laurence; Seurin, Jean-Francois; Xu, Guoyang; Miglo, Alexander; Wang, Qing; Ghosh, Chuni

    2013-03-01

    High power, kW-class, 808 nm pump modules based on the vertical-cavity surface-emitting laser (VCSEL) technology were developed for side-pumping of solid-state lasers. Two 1.2 kW VCSEL pump modules were implemented in a dual side-pumped Q-switched Nd:YAG laser operating at 946 nm. The laser output was frequency doubled in a BBO crystal to produce pulsed blue light. With 125 μs pump pulses at a 300 Hz repetition rate 6.1 W QCW 946 nm laser power was produced. The laser power was limited by thermal lensing in the Nd:YAG rod.

  4. Pulse width modulation inverter with battery charger

    DOEpatents

    Slicker, James M.

    1985-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  5. Pulse width modulation inverter with battery charger

    NASA Technical Reports Server (NTRS)

    Slicker, James M. (Inventor)

    1985-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.

  6. Phase coded, micro-power impulse radar motion sensor

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a "IF homodyne" receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses.

  7. Phase coded, micro-power impulse radar motion sensor

    DOEpatents

    McEwan, T.E.

    1996-05-21

    A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a ``IF homodyne`` receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses. 5 figs.

  8. GRC-2013-C-02448

    NASA Image and Video Library

    2009-06-23

    Environmental Portrait, Electrical Power Systems Employee, hardware for the High Power 300-Volt Power Processing Unit (PPU). The Printed Circuit Boards (PCBs) are the Discharge Module Inverter and the Pulse Width Modulation (PWM) Controller

  9. Multiple polarization states of vector soliton in fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, Weicheng; Xu, Wencheng; Cao, Hui; Han, Dingan

    2007-11-01

    Vector soliton is obtained in erbium-doped fiber laser via nonlinear polarization rotation techniques. In experiment, we observe the every 4- and 7-pulse sinusoidal peak modulation. Temporal pulse sinusoidal peak modulation owes to evolution behavior of vector solitons in multiple polarization states. The polarizer in the laser modulates the mode-locked pulses with different polarization states into periodical pulse train intensities modulation. Moreover, the increasing pumping power lead to the appearance of the harmonic pulses and change the equivalent beat length to accelerate the polarization rotation. When the laser cavity length is the n-th multiple ratios to the beat length to maintain the mode-locking, the mode-locked vector soliton is in n-th multiple polarization states, exhibiting every n-pulse sinusoidal peak modulation.

  10. Experimental Observation of Thermal Self-Modulation in OPO

    NASA Technical Reports Server (NTRS)

    Gao, Jiangrui; Wang, Hai; Xie, Changde; Peng, Kunchi

    1996-01-01

    The thermal self-modulation has been observed experimentally via SHG in OPO. The threshold pump power for the thermal self- modulation is much smaller than that of the nonlinear self-pulsing. The thermal effect prevent from realizing the theoretical prediction for the self-pulsing.

  11. High power solid state laser modulator

    DOEpatents

    Birx, Daniel L.; Ball, Don G.; Cook, Edward G.

    2004-04-27

    A multi-stage magnetic modulator provides a pulse train of .+-.40 kV electrical pulses at a 5-7 kHz repetition rate to a metal vapor laser. A fractional turn transformer steps up the voltage by a factor of 80 to 1 and magnetic pulse compression is used to reduce the pulse width of the pulse train. The transformer is fabricated utilizing a rod and plate stack type of construction to achieve a high packing factor. The pulses are controlled by an SCR stack where a plurality of SCRs are electrically connected in parallel, each SCR electrically connected to a saturable inductor, all saturable inductors being wound on the same core of magnetic material for enhanced power handling characteristics.

  12. Extended Pulse-Powered Humidity-Freeze Cycling for Testing Module-Level Power Electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hacke, Peter L; Rodriguez, Miguel; Kempe, Michael D

    An EMI suppression capacitor (polypropylene film type) failed by 'popcorning' due to vapor outgassing in pulse powered humidity-freeze cycles. No shorts or shunts could be detected despite mildly corroded metallization visible in the failed capacitor. Humidity-freeze cycling is optimized to break into moisture barriers. However, further studies will be required on additional module level power electronic (MLPE) devices to optimize the stress testing for condensation to precipitate any weakness to short circuiting and other humidity/bias failure modes.

  13. 30W, 10μJ, 10-ps SPM-induced spectrally compressed pulse generation in a low non-linearity ytterbium-doped rod-type fibre amplifier

    NASA Astrophysics Data System (ADS)

    Zaouter, Y.; Cormier, E.; Rigail, P.; Hönninger, C.; Mottay, E.

    2007-02-01

    The concept of spectral compression induced by self phase modulation is used to generate transform-limited 10ps pulses in a rare-earth-doped low nonlinearity fibre amplifier. The seed source of the amplifier stage is a high power, Yb 3+:KGW bulk oscillator which delivers 500 fs transform-limited pulses at 10MHz repetition rate. After a reduction of the repetition rate down to 3MHz, the femtosecond pulses are negatively chirped by transmission gratings in a compressor arrangement. The resulting 10ps pulses are further seeded into the power amplifier and up to 32W output power is obtained while the spectral bandwidth is reduced to less than 0.5 nm by means of self phase modulation.

  14. Width-tunable pulse laser via optical injection induced gain modulation of semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Pan, Honggang; Zhang, Ailing; Tong, Zhengrong; Zhang, Yue; Song, Hongyun; Yao, Yuan

    2018-03-01

    A width-tunable pulse laser via an optical injection induced gain modulation of a semiconductor optical amplifier (SOA) is demonstrated. When the pump current of the SOA is 330 mA or 400 mA and a continuous wave is injected into the laser cavity with different powers, bright or dark pulses with different pulse widths and frequency repetition rates are obtained. The bright and dark pulses are formed by the effect of gain dispersion and cross-gain modulation of the SOA.

  15. On the power spectral density of quadrature modulated signals. [satellite communication

    NASA Technical Reports Server (NTRS)

    Yan, T. Y.

    1981-01-01

    The conventional (no-offset) quadriphase modulation technique suffers from the fact that hardlimiting will restore the frequency sidelobes removed by proper filtering. Thus, offset keyed quadriphase modulation techniques are often proposed for satellite communication with bandpass hardlimiting. A unified theory is developed which is capable of describing the power spectral density before and after the hardlimiting process. Using the in-phase and the quadrature phase channel with arbitrary pulse shaping, analytical results are established for generalized quadriphase modulation. In particular MSK, OPSK or the recently introduced overlapped raised cosine keying all fall into this general category. It is shown that for a linear communication channel, the power spectral density of the modulated signal remains unchanged regardless of the offset delay. Furthermore, if the in phase and the quadrature phase channel have identical pulse shapes without offset, the spectrum after bandpass hardlimiting will be identical to that of the conventional QPSK modulation. Numerical examples are given for various modulation techniques. A case of different pulse shapes in the in phase and the quadrature phase channel is also considered.

  16. Effect of different methods of pulse width modulation on power losses in an induction motor

    NASA Astrophysics Data System (ADS)

    Gulyaev, Alexander; Fokin, Dmitrii; Shuharev, Sergey; Ten, Evgenii

    2017-10-01

    We consider the calculation of modulation power losses in a system “induction motor-inverter” for various pulse width modulation (PWM) methods of the supply voltage. Presented values of modulation power losses are the result of modeling a system “DC link - two-level three-phase voltage inverter - induction motor - load”. In this study the power losses in a system “induction motor - inverter” are computed, as well as losses caused by higher harmonics of PWM supply voltage, followed by definition of active power consumed by the DC link for a specified value mechanical power on the induction motor shaft. Mechanical power was determined by the rotation speed and the torque on the motor shaft in various quasi-sinusoidal supply voltage PWM modes. These calculations reveal the best coefficient of performance (COP) in a system of a variable frequency drive (VFD) with independent voltage inverter controlled by induction motor PWM.

  17. Study of the electromagnetic characteristics of multiple HTSPPT modules based on the configuration of toroidal structure for inductive pulsed power supply

    NASA Astrophysics Data System (ADS)

    Zhang, Cunshan; Zheng, Xinxin; Li, Haitao; Li, Zhenmei; Zhang, Tao; Jiao, Can

    2018-04-01

    High temperature superconducting pulsed power transformer (HTSPPT) is an important device for pulsed power supplies. It consists of a superconducting primary and a normal conducting secondary, which is used for energy storage and current amplification. The critical current density, the energy storage, and the coupling coefficient are three main performance indexes. They are affected by the geometry parameters of HTSPPT modules, such as the height and the width of the superconducting coils. In addition, the hoop stress of the HTSPPT coils is limited by the maximum tensile strength of high temperature superconducting (HTS) tapes. In this paper, Bi-2223/Ag HTS tapes are selected as the wire of primary inductor and the toroidal structure model is selected for multiple HTSPPT modules. The relationships between the geometry parameters of HTSPPT modules and the electrical performance are studied.

  18. Development and performance of pulse-width-modulated static inverter and converter modules

    NASA Technical Reports Server (NTRS)

    Pittman, P. F.; Gourash, F.; Birchenough, A. G.; Pittman, P. F.; Ravas, R. J.; Hall, W. G.

    1971-01-01

    Pulse-width-modulated inverter and converter modules are being developed for modular aerospace electrical power systems. The modules, rate 2.5 kilowatts per module and 10-minute - 150-percent overload, operate from 56 volts dc. The converter module provides two output voltages: a nominal link voltage of 200 volts dc when used with the inverter, and 150 volts dc to a load bus when used separately. The inverter module output is 400-hertz, sinusoidal, three-phase, 120/208 volts. Tests of breadboard models with standard parts and integrated circuits show rated power efficiencies of 71.4 and 85.1 percent and voltage regulation of 5 and 3.1 percent for inverter and converter modules, respectively. Sine-wave output distortion is 0.74 percent.

  19. Method and apparatus for pulse width modulation control of an AC induction motor

    DOEpatents

    Geppert, Steven; Slicker, James M.

    1984-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  20. Method and apparatus for pulse width modulation control of an AC induction motor

    NASA Technical Reports Server (NTRS)

    Geppert, Steven (Inventor); Slicker, James M. (Inventor)

    1984-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.

  1. Modulated heat pulse propagation and partial transport barriers in chaotic magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castillo-Negrete, Diego del; Blazevski, Daniel

    2016-04-15

    Direct numerical simulations of the time dependent parallel heat transport equation modeling heat pulses driven by power modulation in three-dimensional chaotic magnetic fields are presented. The numerical method is based on the Fourier formulation of a Lagrangian-Green's function method that provides an accurate and efficient technique for the solution of the parallel heat transport equation in the presence of harmonic power modulation. The numerical results presented provide conclusive evidence that even in the absence of magnetic flux surfaces, chaotic magnetic field configurations with intermediate levels of stochasticity exhibit transport barriers to modulated heat pulse propagation. In particular, high-order islands andmore » remnants of destroyed flux surfaces (Cantori) act as partial barriers that slow down or even stop the propagation of heat waves at places where the magnetic field connection length exhibits a strong gradient. Results on modulated heat pulse propagation in fully stochastic fields and across magnetic islands are also presented. In qualitative agreement with recent experiments in large helical device and DIII-D, it is shown that the elliptic (O) and hyperbolic (X) points of magnetic islands have a direct impact on the spatio-temporal dependence of the amplitude of modulated heat pulses.« less

  2. Reducing Energy Degradation Due to Back-bombardment Effect with Modulated RF Input in S-band Thermionic RF Gun

    NASA Astrophysics Data System (ADS)

    Kii, Toshiteru; Nakai, Yoko; Fukui, Toshio; Zen, Heishun; Kusukame, Kohichi; Okawachi, Norihito; Nakano, Masatsugu; Masuda, Kai; Ohgaki, Hideaki; Yoshikawa, Kiyoshi; Yamazaki, Tetsuo

    2007-01-01

    Energy degradation due to back-bombardment effect is quite serious to produce high-brightness electron beam with long macro-pulse with thermionic rf gun. To avoid the back-bombardment problem, a laser photo cathode is used at many FEL facilities, but usually it costs high and not easy to operate. Thus we have studied long pulse operation of the rf gun with thermionic cathode, which is inexpensive and easy to operate compared to the photocathode rf gun. In this work, to reduce the energy degradation, we controlled input rf power amplitude by controlling pulse forming network of the power modulator for klystron. We have successfully increased the pulse duration up to 4 μs by increasing the rf power from 7.8 MW to 8.5 MW during the macro pulse.

  3. Modulators for the S-band test linac at DESY

    NASA Astrophysics Data System (ADS)

    Bieler, M.; Choroba, S.; Hameister, J.; Lewin, H.-Ch.

    1995-07-01

    The development of adequate modulators for high peak power klystrons is one of the focus points for linear collider R&D programs. For the DESY/THD S-band linear collider study 150 MW rf-pulse power at 50 Hz repetition rate and 3 μs pulse duration is required [1]. Two different modulator schemes are under investigation. One is the conventional line type pulser, using a pulse forming network and a step up transformer, the other one is a hard tube pulser, using a dc power source at the full klystron voltage and a switch tube. This paper is focused on the modulator development for the S-band Test Linac at DESY. After a short overview over the test linac and a brief description of the 150 MW S-band klystron the circuitry of the line type pulse (LTP) is given. A hard tube pulser (HTP), which switches the high voltage directly from a storage capacitor to the klystron, has been built up at DESY. Circuitry and the results of the commissioning of the switch tube are reported.

  4. Design of power electronics for TVC EMA systems

    NASA Technical Reports Server (NTRS)

    Nelms, R. Mark

    1993-01-01

    The Composite Development Division of the Propulsion Laboratory at Marshall Space Flight Center (MSFC) is currently developing a class of electromechanical actuators (EMA's) for use in space transportation applications such as thrust vector control (TVC) and propellant control valves (PCV). These high power servomechanisms will require rugged, reliable, and compact power electronic modules capable of modulating several hundred amperes of current at up to 270 volts. MSFC has selected the brushless dc motor for implementation in EMA's. This report presents the results of an investigation into the applicability of two new technologies, MOS-controlled thyristors (MCT's) and pulse density modulation (PDM), to the control of brushless dc motors in EMA systems. MCT's are new power semiconductor devices, which combine the high voltage and current capabilities of conventional thyristors and the low gate drive requirements of metal oxide semiconductor field effect transistors (MOSFET's). The commanded signals in a PDM system are synthesized using a series of sinusoidal pulses instead of a series of square pulses as in a pulse width modulation (PWM) system. A resonant dc link inverter is employed to generate the sinusoidal pulses in the PDM system. This inverter permits zero-voltage switching of all semiconductors which reduces switching losses and switching stresses. The objectives of this project are to develop and validate an analytical model of the MCT device when used in high power motor control applications and to design, fabricate, and test a prototype electronic circuit employing both MCT and PDM technology for controlling a brushless dc motor.

  5. Improved safety of retinal photocoagulation with a shaped beam and modulated pulse

    NASA Astrophysics Data System (ADS)

    Sramek, Christopher; Brown, Jefferson; Paulus, Yannis M.; Nomoto, Hiroyuki; Palanker, Daniel

    2010-02-01

    Shorter pulse durations help confine thermal damage during retinal photocoagulation, decrease treatment time and minimize pain. However, safe therapeutic window (the ratio of threshold powers for rupture and mild coagulation) decreases with shorter exposures. A ring-shaped beam enables safer photocoagulation than conventional beams by reducing the maximum temperature in the center of the spot. Similarly, a temporal pulse modulation decreasing its power over time improves safety by maintaining constant temperature for a significant portion of the pulse. Optimization of the beam and pulse shapes was performed using a computational model. In vivo experiments were performed to verify the predicted improvement. With each of these approaches, the pulse duration can be decreased by a factor of two, from 20 ms down to 10 ms while maintaining the same therapeutic window.

  6. Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive

    DOEpatents

    Konrad, C.E.; Boothe, R.W.

    1994-02-15

    A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements. 6 figures.

  7. Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive

    DOEpatents

    Konrad, C.E.; Boothe, R.W.

    1996-01-23

    A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements. 6 figs.

  8. Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive

    DOEpatents

    Konrad, Charles E.; Boothe, Richard W.

    1996-01-01

    A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements.

  9. Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive

    DOEpatents

    Konrad, Charles E.; Boothe, Richard W.

    1994-01-01

    A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements.

  10. Oscillations of absorption of a probe picosecond light pulse caused by its interaction with stimulated picosecond emission of GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ageeva, N. N.; Bronevoi, I. L., E-mail: bil@cplire.ru; Zabegaev, D. N.

    2015-04-15

    The self-modulation of absorption of a picosecond light pulse was observed earlier [1] in a thin (∼1-μm thick) GaAs layer pumped by a high-power picosecond pulse. Analysis of the characteristics of this self-modulation predicted [5] that the dependences of the probe pulse absorption on the pump pulse energy and picosecond delay between pump and probe pulses should be self-modulated by oscillations. Such self-modulation was experimentally observed in this work. Under certain conditions, absorption oscillations proved to be a function of part of the energy of picosecond stimulated emission of GaAs lying above a certain threshold in the region where themore » emission front overlapped the probe pulse front. Absorption oscillations are similar to self-modulation of the GaAs emission characteristics observed earlier [4]. This suggests that the self-modulation of absorption and emission is determined by the same type of interaction of light pulses in the active medium, the physical mechanism of which has yet to be determined.« less

  11. Pulse Shaped Constant Envelope 8-PSK Modulation Study

    NASA Technical Reports Server (NTRS)

    Tao, Jianping; Horan, Sheila

    1997-01-01

    This report provides simulation results for constant envelope pulse shaped 8 Level Phase Shift Keying (8 PSK) modulation for end to end system performance. In order to increase bandwidth utilization, pulse shaping is applied to signals before they are modulated. This report provides simulation results of power spectra and measurement of bit errors produced by pulse shaping in a non-linear channel with Additive White Gaussian Noise (AWGN). The pulse shaping filters can placed before (Type B) or after (Type A) signals are modulated. Three kinds of baseband filters, 5th order Butterworth, 3rd order Bessel and Square-Root Raised Cosine with different BTs or roll off factors, are utilized in the simulations. The simulations were performed on a Signal Processing Worksystem (SPW).

  12. rf design of a pulse compressor with correction cavity chain for klystron-based compact linear collider

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Zha, Hao; Syratchev, Igor; Shi, Jiaru; Chen, Huaibi

    2017-11-01

    We present an X-band high-power pulse compression system for a klystron-based compact linear collider. In this system design, one rf power unit comprises two klystrons, a correction cavity chain, and two SLAC Energy Doubler (SLED)-type X-band pulse compressors (SLEDX). An rf pulse passes the correction cavity chain, by which the pulse shape is modified. The rf pulse is then equally split into two ways, each deploying a SLEDX to compress the rf power. Each SLEDX produces a short pulse with a length of 244 ns and a peak power of 217 MW to power four accelerating structures. With the help of phase-to-amplitude modulation, the pulse has a dedicated shape to compensate for the beam loading effect in accelerating structures. The layout of this system and the rf design and parameters of the new pulse compressor are described in this work.

  13. The 30 GHz solid state amplifier for low cost low data rate ground terminals

    NASA Technical Reports Server (NTRS)

    Ngan, Y. C.; Quijije, M. A.

    1984-01-01

    This report details the development of a 20-W solid state amplifier operating near 30 GHz. The IMPATT amplifier not only met or exceeded all the program objectives, but also possesses the ability to operate in the pulse mode, which was not called for in the original contract requirements. The ability to operate in the pulse mode is essential for TDMA (Time Domain Multiple Access) operation. An output power of 20 W was achieved with a 1-dB instantaneous bandwidth of 260 MHz. The amplifier has also been tested in pulse mode with 50% duty for pulse lengths ranging from 200 ns to 2 micro s with 10 ns rise and fall times and no degradation in output power. This pulse mode operation was made possible by the development of a stable 12-diode power combiner/amplifier and a single-diode pulsed driver whose RF output power was switched on and off by having its bias current modulated via a fast-switching current pulse modulator. Essential to the overall amplifier development was the successful development of state-of-the-art silicon double-drift IMPATT diodes capable of reproducible 2.5 W CW output power with 12% dc-to-RF conversion efficiency. Output powers of as high as 2.75 W has been observed. Both the device and circuit design are amenable to low cost production.

  14. Multi-mJ energy extraction using Yb-fiber based coherent pulse stacking amplification of fs pulses (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ruppe, John M.; Pei, Hanzhang; Chen, Siyun; Sheikhsofla, Morteza; Wilcox, Russell B.; Nees, John A.; Galvanauskas, Almantas

    2017-03-01

    We report multi-mJ energy (>5mJ) extraction from femtosecond-pulse Yb-doped fiber CPA using coherent pulse stacking amplification (CPSA) technique. This high energy extraction has been enabled by amplifying 10's of nanosecond long pulse sequence, and by using 85-µm core Yb-doped CCC fiber based power amplification stage. The CPSA system consists of 1-GHz repetition rate mode-locked fiber oscillator, followed by a pair of fast phase and amplitude electro-optic modulators, a diffraction-grating based pulse stretcher, a fiber amplifier chain, a GTI-cavity based pulse stacker, and a diffraction grating pulse compressor. Electro-optic modulators are used to carve out from the 1-GHz mode-locked pulse train an amplitude and phase modulated pulse burst, which after stretching and amplification, becomes equal-amplitude pulse burst consisting of 27 stretched pulses, each approximately 1-ns long. Initial pulse-burst shaping accounts for the strong amplifier saturation effects, so that it is compensated at the power amplifier output. This 27-pulse burst is then coherently stacked into a single pulse using a multiplexed sequence of 5 GTI cavities. The compact-footprint 4+1 multiplexed pulse stacker consists of 4 cavities having rountrip of 1 ns, and one Herriott-cell folded cavity - with 9ns roundtrip. After stacking, stretched pulses are compressed down to the bandwidth-limited 300 fs duration using a standard diffraction-grating pulse compressor.

  15. Driver Circuit For High-Power MOSFET's

    NASA Technical Reports Server (NTRS)

    Letzer, Kevin A.

    1991-01-01

    Driver circuit generates rapid-voltage-transition pulses needed to switch high-power metal oxide/semiconductor field-effect transistor (MOSFET) modules rapidly between full "on" and full "off". Rapid switching reduces time of overlap between appreciable current through and appreciable voltage across such modules, thereby increasing power efficiency.

  16. ASDTIC control and standardized interface circuits applied to buck, parallel and buck-boost dc to dc power converters

    NASA Technical Reports Server (NTRS)

    Schoenfeld, A. D.; Yu, Y.

    1973-01-01

    Versatile standardized pulse modulation nondissipatively regulated control signal processing circuits were applied to three most commonly used dc to dc power converter configurations: (1) the series switching buck-regulator, (2) the pulse modulated parallel inverter, and (3) the buck-boost converter. The unique control concept and the commonality of control functions for all switching regulators have resulted in improved static and dynamic performance and control circuit standardization. New power-circuit technology was also applied to enhance reliability and to achieve optimum weight and efficiency.

  17. Electro-Optical Modulator Bias Control Using Bipolar Pulses

    NASA Technical Reports Server (NTRS)

    Farr, William; Kovalik, Joseph

    2007-01-01

    An improved method has been devised for controlling the DC bias applied to an electro-optical crystal that is part of a Mach-Zehnder modulator that generates low-duty-cycle optical pulses for a pulse-position modulation (PPM) optical data-communication system. In such a system, it is desirable to minimize the transmission of light during the intervals between pulses, and for this purpose, it is necessary to maximize the extinction ratio of the modulator (the ratio between the power transmitted during an "on" period and the power transmitted during an "off" period). The present method is related to prior dither error feedback methods, but unlike in those methods, there is no need for an auxiliary modulation subsystem to generate a dithering signal. Instead, as described below, dither is effected through alternation of the polarity of the modulation signal. The upper part of Figure 1 schematically depicts a Mach-Zehnder modulator. The signal applied to the electro-optical crystal consists of a radio-frequency modulating pulse signal, VRF, superimposed on a DC bias Vbias. Maximum extinction occurs during the off (VRF = 0) period if Vbias is set at a value that makes the two optical paths differ by an odd integer multiple of a half wavelength so that the beams traveling along the two paths interfere destructively at the output beam splitter. Assuming that the modulating pulse signal VRF has a rectangular waveform, maximum transmission occurs during the "on" period if the amplitude of VRF is set to a value, V , that shifts the length of the affected optical path by a half wavelength so that now the two beams interfere constructively at the output beam splitter. The modulating pulse signal is AC-coupled from an amplifier to the electro-optical crystal. Sometimes, two successive pulses occur so close in time that the operating point of the amplifier drifts, one result being that there is not enough time for the signal level to return to ground between pulses. Also, the difference between the optical-path lengths can drift with changes in temperature and other spurious effects. The effects of both types of drift are suppressed in the present method, in which one takes advantage of the fact that when Vbias is set at the value for maximum extinction, equal-magnitude positive and negative pulses applied to the electro-optical crystal produce equal output light pulses.

  18. Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes.

    PubMed

    Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi

    2017-01-06

    In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced thus. It is demonstrated that 40% of the UV LED consumed power and 25.9% of the total load power consumption can be saved, and the trapped mosquitoes are about 250% increased when the PWM method is applied in the bug zapper experiments.

  19. Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi

    2017-01-01

    In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced thus. It is demonstrated that 40% of the UV LED consumed power and 25.9% of the total load power consumption can be saved, and the trapped mosquitoes are about 250% increased when the PWM method is applied in the bug zapper experiments.

  20. Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes

    PubMed Central

    Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi

    2017-01-01

    In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced thus. It is demonstrated that 40% of the UV LED consumed power and 25.9% of the total load power consumption can be saved, and the trapped mosquitoes are about 250% increased when the PWM method is applied in the bug zapper experiments. PMID:28059148

  1. Gain and power optimization of the wireless optical system with multilevel modulation.

    PubMed

    Liu, Xian

    2008-06-01

    When used in an outdoor environment to expedite networking access, the performance of wireless optical communication systems is affected by transmitter sway. In the design of such systems, much attention has been paid to developing power-efficient schemes. However, the bandwidth efficiency is also an important issue. One of the most natural approaches to promote bandwidth efficiency is to use multilevel modulation. This leads to multilevel pulse amplitude modulation in the context of intensity modulation and direct detection. We develop a model based on the four-level pulse amplitude modulation. We show that the model can be formulated as an optimization problem in terms of the transmitter power, bit error probability, transmitter gain, and receiver gain. The technical challenges raised by modeling and solving the problem include the analytical and numerical treatments for the improper integrals of the Gaussian functions coupled with the erfc function. The results demonstrate that, at the optimal points, the power penalty paid to the doubled bandwidth efficiency is around 3 dB.

  2. Experimental studies of the overshoot and undershoot in pulse-modulated radio-frequency atmospheric discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huo, W. G.; Li, R. M.; Shi, J. J.

    The overshoot and undershoot of the applied voltage on the electrodes, the discharge current, and radio frequency (RF) power were observed at the initial phase of pulse-modulated (PM) RF atmospheric pressure discharges, but factors influencing the overshoot and undershoot have not been fully elucidated. In this paper, the experimental studies were performed to seek the reasons for the overshoot and undershoot. The experimental results show that the overshoot and undershoot are associated with the pulse frequency, the rise time of pulse signal, and the series capacitor C{sub s} in the inversely L-shaped matching network. In the case of a highmore » RF power discharge, these overshoot and undershoot become serious when shortening the rise time of a pulse signal (5 ns) or operating at a moderate pulse frequency (500 Hz or 1 kHz).« less

  3. Analysis of High Power IGBT Short Circuit Failures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pappas, G.

    2005-02-11

    The Next Linear Collider (NLC) accelerator proposal at SLAC requires a highly efficient and reliable, low cost, pulsed-power modulator to drive the klystrons. A solid-state induction modulator has been developed at SLAC to power the klystrons; this modulator uses commercial high voltage and high current Insulated Gate Bipolar Transistor (IGBT) modules. Testing of these IGBT modules under pulsed conditions was very successful; however, the IGBTs failed when tests were performed into a low inductance short circuit. The internal electrical connections of a commercial IGBT module have been analyzed to extract self and mutual partial inductances for the main current pathsmore » as well as for the gate structure. The IGBT module, together with the partial inductances, has been modeled using PSpice. Predictions for electrical paths that carry the highest current correlate with the sites of failed die under short circuit tests. A similar analysis has been carried out for a SLAC proposal for an IGBT module layout. This paper discusses the mathematical model of the IGBT module geometry and presents simulation results.« less

  4. Plasma optical modulators for intense lasers

    PubMed Central

    Yu, Lu-Le; Zhao, Yao; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D. A.; Mori, W. B.; Zhang, Jie

    2016-01-01

    Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 1016 W cm−2 to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations. PMID:27283369

  5. Microwave influence on the isolated heart function. 1: Effect of modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pakhomov, A.G.; Dubovick, B.V.; Degtyariov, I.G.

    1995-09-01

    Dependence of the microwave effect on modulation parameters (pulse width, duty ratio, and peak intensity) was studied in an isolated frog auricle preparation. The rate and amplitude of spontaneous auricle twitches were measured during and after a 2 min exposure to 915 or 885 MHz microwaves and were compared to preexposure values. The studied ranges of modulation parameters were: pulse width, 10{sup {minus}6}--10{sup {minus}2} s; duty ratio, 7:100000, and peak specific absorption rate, 100--3,000 W/kg. Combinations of the parameters were chosen by chance, and about 400 various exposure regimes were tested. The experiments established that no regime was effective unlessmore » the average microwave power was high enough to induce preparation heating (0.1--0.4 C). The twitch rate instantly increased, and the amplitude decreased, as the temperature rose; similar changes could be induced by equivalent conventional heating. the data provide evidence that the effect of short-term microwave exposure on the isolated heart pacemaker and contractile functions depends on pulse modulation just as much as modulation determines the average absorbed power. These functions demonstrated no specific dependence on exposure parameters such as frequency or power windows.« less

  6. FM-to-AM modulations induced by a weak residual reflection stack of sine-modulated pulses in inertial confinement fusion laser systems

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoxia; Deng, Xuewei; Zhou, Wei; Hu, Dongxia; Guo, Huaiwen; Wang, Yuancheng; Zhao, Bowang; Zhong, Wei; Deng, Wu

    2018-02-01

    We report on frequency to amplitude modulation (FM-to-AM) conversion induced by a weak residual reflection stack of sine-modulated pulses in a complex laser system. Theoretical and experimental investigations reveal that when weak residual reflected pulses stack on the main pulse, the spectral intensity changes in the stacked region, which then converts to obvious AM. This kind of FM-to-AM effect often occurs in the tail of the pulse and cannot be eliminated by common compensation methods, which even enhance the modulation depth. Furthermore, the actual intensity modulation frequency and depth induced by the residual reflection stack are much higher and deeper than observed on the oscilloscope, which is harmful for safe operation of the laser facility and the driving power balance during inertial confinement fusion. To eliminate this kind of FM-to-AM effect, any possible on-axis and near-axis residual reflection in laser systems must be avoided.

  7. The application of pulse modulated plasma to the plasma enhanced chemical vapor deposition of dielectric materials

    NASA Astrophysics Data System (ADS)

    Qi, Yu

    This dissertation work applied the pulse modulated plasma to the plasma enhanced chemical vapor deposition (PECVD) of two types of dielectric materials: SiO2-like coatings and Teflon-like coatings. SiO2-like coatings were firstly implemented with continuous plasma. It was proven that three different precursors: hexamethyldisiloxane (HMDSO), 1, 3, 5, 7-tetramethylcyclotetrasiloxane (TMCTS) and octamethylcyclotetrasiloxane (OMCTS) can be used to generate hard, clear and high density SiO2 deposition with coupled high growth rate and low processing temperature via PECVD. Under similar conditions, HMDSO has the lowest growth rate, lowest hardness and highest carbon content; TMCTS has the highest growth rate and hardness, and lowest carbon content; and OMCTS has moderate rates of these deposition qualities, but the best corrosion resistance. Substrate bias seems to have no effect on any deposition quality. High chamber pressure can significantly lower the carbon content in the thin films but does not affect any other qualities; the O2/precursor ratio is the most influential factor among all variables considered in this experiment. The deposition hardness and O:Si ratio always increase with this ratio while the carbon content always decreases. However, different precursors require different optimal ratios to achieve the highest growth rate. Pulse modulation was introduced into PECVD of SiO2-like coatings and OMCTS was selected as the precursor. It was demonstrated that pulse frequency, duty ratio and peak power have significant effects on deposition qualities. The proper combination of the pulse parameters and other traditional plasma parameters can significantly lower the processing temperature while retaining or even improving other deposition qualities, such as growth rate, corrosion resistance and elemental composition. Hardness is the only sacrifice of the lower time-average power caused by pulsing. Therefore, pulse modulation can effectively expand the possible range of combinations of desired deposition qualities. Finally, the pulsed plasma was used to implement PECVD of teflon-like coatings. An important discovery in this application is that in addition to pulse period, on-time and on-time peak power, the power level during the off-time is an important factor. The density of CF2 is a function of all these pulse parameters. The best result obtained is up to 67.2% CF2 and a 1.87:1 of F:C ratio when the off-time power level is ˜100--130 W the frequency is several Hz, the on-time peak power is ˜1000 W and the duty ratio is ˜7--10%.

  8. Electrical system for pulse-width modulated control of a power inverter using phase-shifted carrier signals and related operating methods

    DOEpatents

    Welchko, Brian A [Torrance, CA

    2012-02-14

    Systems and methods are provided for pulse-width modulated control of power inverter using phase-shifted carrier signals. An electrical system comprises an energy source and a motor. The motor has a first set of windings and a second set of windings, which are electrically isolated from each other. An inverter module is coupled between the energy source and the motor and comprises a first set of phase legs coupled to the first set of windings and a second set of phase legs coupled to the second set of windings. A controller is coupled to the inverter module and is configured to achieve a desired power flow between the energy source and the motor by modulating the first set of phase legs using a first carrier signal and modulating the second set of phase legs using a second carrier signal. The second carrier signal is phase-shifted relative to the first carrier signal.

  9. A Study on the Transient Behavior of Pulse Modulated Dual-Frequency Capacitive Discharges based on Circuit Analysis

    NASA Astrophysics Data System (ADS)

    Na, Byungkeun; Bae, Inshik; Park, Gi Jung; Chang, Hong-Young

    2016-09-01

    Multi-frequency capacitively coupled plasma (CCP) has been studied to independently control the ion energy and the ion flux; pulsing technique is used to reduce the electron temperature and finally the charging effects. The use of these techniques is a key to high aspect ratio contact (HARC) etching in the recent semiconductor processing. In this study, the characteristics of pulsed dual frequency (DF) CCP is investigated. Two separate powers of 3 MHz and 40 MHz are delivered to the powered electrode of an asymmetric CCP, and each frequency is modulated by an external 1 kHz pulse. Due to the complexity of the RF compensation in DF CCP, the characteristics of the plasma and the sheath are analyzed by high speed impedance measurement. The transient behavior of pulse modulated DF CCP is analyzed based on the result of continuous wave (CW) DF CCP. The optimized experimental condition for high ion energy will be presented. The difference between electronegative oxygen plasma and electropositive argon plasma is discussed as well.

  10. Demonstration of pulse controlled all-optical switch/modulator.

    PubMed

    Akin, Osman; Dinleyici, M S

    2014-03-15

    An all-optical pulse controlled switch/modulator based on evanescent coupling between a polymer slab waveguide and a single mode fiber is demonstrated. Very fast all-optical modulation/switching is achieved via Kerr effect of the nonlinear polymer placed in the evanescent region of the optical fiber. Local refractive index perturbation (Δn=-1.45612×10(-5)) on the thin film leads to 0.374 nW power modulation at the fiber output, which results in a switching efficiency of ≈1.5%.

  11. RF pulse compression for future linear colliders

    NASA Astrophysics Data System (ADS)

    Wilson, Perry B.

    1995-07-01

    Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0-1.5 TeV, 5 TeV, and 25 TeV. In order to keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0-1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150-200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30-40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-II system) can be used to reduce the klystron peak power by about a factor of two, or alternatively, to cut the number of klystrons in half for a 1.0-1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.

  12. A novel compact low impedance Marx generator with quasi-rectangular pulse output

    NASA Astrophysics Data System (ADS)

    Liu, Hongwei; Jiang, Ping; Yuan, Jianqiang; Wang, Lingyun; Ma, Xun; Xie, Weiping

    2018-04-01

    In this paper, a novel low impedance compact Marx generator with near-square pulse output based on the Fourier theory is developed. Compared with the traditional Marx generator, capacitors with different capacity have been used. It can generate a high-voltage quasi-rectangular pulse with a width of 100 ns at low impedance load, and it also has high energy density and power density. The generator consists of 16 modules. Each module comprises an integrative single-ended plastic case capacitor with a nominal value of 54 nF, four ceramic capacitors with a nominal value of 1.5 nF, a gas switch, a charging inductor, a grounding inductor, and insulators which provide mechanical support for all elements. In the module, different discharge periods from different capacitors add to the main circuit to form a quasi-rectangular pulse. The design process of the generator is analyzed, and the test results are provided here. The generator achieved pulse output with a rise time of 32 ns, pulse width of 120 ns, flat-topped width (95%-95%) of 50 ns, voltage of 550 kV, and power of 20 GW.

  13. Modeling of power control schemes in induction cooking devices

    NASA Astrophysics Data System (ADS)

    Beato, Alessio; Conti, Massimo; Turchetti, Claudio; Orcioni, Simone

    2005-06-01

    In recent years, with remarkable advancements of power semiconductor devices and electronic control systems, it becomes possible to apply the induction heating technique for domestic use. In order to achieve the supply power required by these devices, high-frequency resonant inverters are used: the force commutated, half-bridge series resonant converter is well suited for induction cooking since it offers an appropriate balance between complexity and performances. Power control is a key issue to attain efficient and reliable products. This paper describes and compares four power control schemes applied to the half-bridge series resonant inverter. The pulse frequency modulation is the most common control scheme: according to this strategy, the output power is regulated by varying the switching frequency of the inverter circuit. Other considered methods, originally developed for induction heating industrial applications, are: pulse amplitude modulation, asymmetrical duty cycle and pulse density modulation which are respectively based on variation of the amplitude of the input supply voltage, on variation of the duty cycle of the switching signals and on variation of the number of switching pulses. Each description is provided with a detailed mathematical analysis; an analytical model, built to simulate the circuit topology, is implemented in the Matlab environment in order to obtain the steady-state values and waveforms of currents and voltages. For purposes of this study, switches and all reactive components are modelled as ideal and the "heating-coil/pan" system is represented by an equivalent circuit made up of a series connected resistance and inductance.

  14. Introduction

    NASA Astrophysics Data System (ADS)

    Takayama, Ken; Briggs*, Richard J.

    The motivation for the initial development of linear induction accelerators starting in the early 1960s came mainly from applications requiring intense electron pulses with beam currents and a charge per pulse above the range accessible to RF accelerators, and with particle energies beyond the capabilities of single stage pulsed-power diodes. The linear induction accelerators developed to meet these needs utilize a series of induction cells containing magnetic cores (torroidal geometry) driven directly by pulse modulators (pulsed power sources). This multistage "one-to-one transformer" configuration with non-resonant, low impedance induction cells accelerates kilo-Ampere-scale electron beam current pulses in induction linacs.

  15. Method to generate a pulse train of few-cycle coherent radiation

    DOE PAGES

    Garcia, Bryant; Hemsing, Erik; Raubenheimer, Tor; ...

    2016-09-06

    We develop a method to generate a long pulse train of few-cycle coherent radiation by modulating an electron beam with a high power laser. The large energy modulation disperses the beam in a radiating undulator and leads to the production of phase-locked few-cycle coherent radiation pulses. These pulses are produced at a high harmonic of the modulating laser, and are longitudinally separated by the modulating laser wavelength. Here, we discuss an analytical model for this scheme and investigate the temporal and spectral properties of this radiation. This model is compared with numerical simulation results using the unaveraged code Puffin. Wemore » examine various harmful effects and how they might be avoided, as well as a possible experimental realization of this scheme.« less

  16. The light ion pulsed power induction accelerator for ETF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazarakis, M.G.; Olson, R.E.; Olson, C.L.

    1994-12-31

    Our Engineering Test Facility (ETF) driver concept is based on HERMES III and RHEPP technologies. Actually, it is a scaled-down version of the LMF design incorporating repetition rate capabilities of up to 10 Hz CW. The preconceptual design presented here provides 200-TW peak power to the ETF target during 10 ns, equal to 2-MJ total ion beam energy. Linear inductive voltage addition driving a self-magnetically insulated transmission line (MITL) is utilized to generate the 36-MV peak voltage needed for lithium ion beams. The {approximately} 3-MA ion current is achieved by utilizing many accelerating modules in parallel. Since the current permore » module is relatively modest ({approximately}300 kA), two-stage or one-stage extraction diodes can be utilized for the generation of singly charged lithium ions. The accelerating modules are arranged symmetrically around the fusion chamber in order to provide uniform irradiation onto the ETF target. In addition, the modules are fired in a programmed sequence in order to generate the optimum power pulse shape onto the target. This design utilizes RHEPP accelerator modules as the principal power source.« less

  17. Temporally resolved diagnosis of an atmospheric-pressure pulse-modulated argon surface wave plasma by optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Chuan-Jie; Li, Shou-Zhe; Zhang, Jialiang; Liu, Dongping

    2018-01-01

    A pulse-modulated argon surface wave plasma generated at atmospheric pressure is characterized by means of temporally resolved optical emission spectroscopy (OES). The temporal evolution of the gas temperature, the electron temperature and density, the radiative species of atomic Ar, and the molecular band of OH(A) and N2(C) are investigated experimentally by altering the instantaneous power, pulse repetitive frequency, and duty ratio. We focused on the physical phenomena occurring at the onset of the time-on period and after the power interruption at the start of the time-off period. Meanwhile, the results are discussed qualitatively for an in-depth insight of its dynamic evolution.

  18. Pulse Compression Techniques for Laser Generated Ultrasound

    NASA Technical Reports Server (NTRS)

    Anastasi, R. F.; Madaras, E. I.

    1999-01-01

    Laser generated ultrasound for nondestructive evaluation has an optical power density limit due to rapid high heating that causes material damage. This damage threshold limits the generated ultrasound amplitude, which impacts nondestructive evaluation inspection capability. To increase ultrasound signal levels and improve the ultrasound signal-to-noise ratio without exceeding laser power limitations, it is possible to use pulse compression techniques. The approach illustrated here uses a 150mW laser-diode modulated with a pseudo-random sequence and signal correlation. Results demonstrate the successful generation of ultrasonic bulk waves in aluminum and graphite-epoxy composite materials using a modulated low-power laser diode and illustrate ultrasound bandwidth control.

  19. FPGA Techniques Based New Hybrid Modulation Strategies for Voltage Source Inverters

    PubMed Central

    Sudha, L. U.; Baskaran, J.; Elankurisil, S. A.

    2015-01-01

    This paper corroborates three different hybrid modulation strategies suitable for single-phase voltage source inverter. The proposed method is formulated using fundamental switching and carrier based pulse width modulation methods. The main tale of this proposed method is to optimize a specific performance criterion, such as minimization of the total harmonic distortion (THD), lower order harmonics, switching losses, and heat losses. The proposed method is articulated using fundamental switching and carrier based pulse width modulation methods. Thus, the harmonic pollution in the power system will be reduced and the power quality will be augmented with better harmonic profile for a target fundamental output voltage. The proposed modulation strategies are simulated in MATLAB r2010a and implemented in a Xilinx spartan 3E-500 FG 320 FPGA processor. The feasibility of these modulation strategies is authenticated through simulation and experimental results. PMID:25821852

  20. Design and development of line type modulators for high impedance electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixit, Kavita P.; Tillu, Abhijit; Chavan, Ramchandra

    Conventional line type modulators are routinely used for powering pulsed power microwave devices such as magnetrons and klystrons used for radar, medical and scientific applications. The load impedance (operating point) is fairly well defined in these cases, and makes the design of the discharging circuit of the modulator straight forward. This paper describes the Line type modulators that have been developed and being routinely used for powering the Triode Electron Gun of industrial electron linacs. The beam parameters of such guns are user defined and the pulse current varies from few mA to 800mA (typ). The beam energies requirement variesmore » from 40 keV to 80 keV. Hence the impedance offered by the electron gun to the power source (modulator) is not well defined. The load capacitance which is inclusive of the various stray capacitances along with the intrinsic gun capacitance is ∼ 200-400 pF. This capacitance, which depends on the configuration, shunts the load and makes the effective load highly capacitive with the resistive part varying over a wide range. The paper describes the design and development of conventional line type modulators for powering Electron gun load of the type described above. (author)« less

  1. Photonic generation of background-free millimeter-wave ultra-wideband pulses based on a single dual-drive Mach-Zehnder modulator.

    PubMed

    Li, Wei; Wang, Wen Ting; Sun, Wen Hui; Wang, Li Xian; Zhu, Ning Hua

    2014-03-01

    We propose a novel photonic approach for generating a background-free millimeter-wave (MMW) ultra-wideband (UWB) signal based on a conventional dual-drive Mach-Zehnder modulator (DMZM). One arm of the DMZM is driven by a local oscillator (LO) signal. The LO power is optimized to realize optical carrier suppressed modulation. The other arm is fed by a rectangular signal. The MMW UWB pulses are generated by truncating the continuous wave LO signal into a pulsed one in a photodetector (PD). The generated MMW UWB signal is background-free by eliminating the baseband frequency components because the optical power launched to the PD keeps constant all the time. The proposed method is theoretically analyzed and experimentally verified. The generated MMW UWB signal centered at a frequency of 26 GHz meets the Federal Communications Commission spectral mask very well.

  2. Novel ultra-wideband (UWB) photonic generation through photodetection and cross-absorption modulation in a single electroabsorption modulator.

    PubMed

    Wu, Tsu-Hsiu; Wu, Jui-pin; Chiu, Yi-Jen

    2010-02-15

    We propose and demonstrate, by proof of concept, a novel method of ultra-wide band (UWB) photonic generation using photodetection and cross-absorption modulation (XAM) of multiple quantum wells (MQW) in a single short-terminated electroabsorption modulator (SEAM). As an optical pump pulse excite the MQWs of SEAM waveguide, the probe light pulse with the same polarity can be generated through XAM, simultaneously creating photocurrent pulse propagating along the waveguide. Using the short termination of SEAM accompanied by the delayed microwave line, the photocurrent pulse can be reversed in polarity and re-modulated the waveguide, forming a monocycle UWB optical pulse. An 89 ps cycle of monocycle pulse with 114% fractional bandwidth is obtained, where the electrical power spectrum centered at 4 GHz of frequency ranges from 0.1 GHz to 8 GHz for -10 dB drops. Meanwhile, the generation processing is also confirmed by observing the same cycle of monocycle electrical pulse from the photodetection of SEAM. The whole optical processing is performed inside a compact semiconductor device, suggesting the optoelectronic integration template has a potential for the application of UWB photonic generation.

  3. A powerful graphical pulse sequence programming tool for magnetic resonance imaging.

    PubMed

    Jie, Shen; Ying, Liu; Jianqi, Li; Gengying, Li

    2005-12-01

    A powerful graphical pulse sequence programming tool has been designed for creating magnetic resonance imaging (MRI) applications. It allows rapid development of pulse sequences in graphical mode (allowing for the visualization of sequences), and consists of three modules which include a graphical sequence editor, a parameter management module and a sequence compiler. Its key features are ease to use, flexibility and hardware independence. When graphic elements are combined with a certain text expressions, the graphical pulse sequence programming is as flexible as text-based programming tool. In addition, a hardware-independent design is implemented by using the strategy of two step compilations. To demonstrate the flexibility and the capability of this graphical sequence programming tool, a multi-slice fast spin echo experiment is performed on our home-made 0.3 T permanent magnet MRI system.

  4. Arbitrary waveform modulated pulse EPR at 200 GHz

    NASA Astrophysics Data System (ADS)

    Kaminker, Ilia; Barnes, Ryan; Han, Songi

    2017-06-01

    We report here on the implementation of arbitrary waveform generation (AWG) capabilities at ∼200 GHz into an Electron Paramagnetic Resonance (EPR) and Dynamic Nuclear Polarization (DNP) instrument platform operating at 7 T. This is achieved with the integration of a 1 GHz, 2 channel, digital to analog converter (DAC) board that enables the generation of coherent arbitrary waveforms at Ku-band frequencies with 1 ns resolution into an existing architecture of a solid state amplifier multiplier chain (AMC). This allows for the generation of arbitrary phase- and amplitude-modulated waveforms at 200 GHz with >150 mW power. We find that the non-linearity of the AMC poses significant difficulties in generating amplitude-modulated pulses at 200 GHz. We demonstrate that in the power-limited regime of ω1 < 1 MHz phase-modulated pulses were sufficient to achieve significant improvements in broadband (>10 MHz) spin manipulation in incoherent (inversion), as well as coherent (echo formation) experiments. Highlights include the improvement by one order of magnitude in inversion bandwidth compared to that of conventional rectangular pulses, as well as a factor of two in improvement in the refocused echo intensity at 200 GHz.

  5. A compact 10 kW solid-state RF power amplifier at 352 MHz

    NASA Astrophysics Data System (ADS)

    Dancila, Dragos; Hoang Duc, Long; Jobs, Magnus; Holmberg, Måns; Hjort, Adam; Rydberg, Anders; Ruber, Roger

    2017-07-01

    A compact 10 kW RF power amplifier at 352 MHz was developed at FREIA for the European Spallation Source, ESS. The specifications of ESS for the conception of amplifiers are related to its pulsed operation: 3.5 ms pulse length and a duty cycle of 5%. The realized amplifier is composed of eight kilowatt level modules, combined using a planar Gysel 8-way combiner. The combiner has a low insertion loss of only 0.2 dB, measured at 10 kW peak power. Each module is built around a commercially available LDMOS transistor in a singleended architecture. During the final tests, a total output peak power of 10.5 kW was measured.

  6. Modulation of frequency doubled DFB-tapered diode lasers for medical treatment

    NASA Astrophysics Data System (ADS)

    Christensen, Mathias; Hansen, Anders K.; Noordegraaf, Danny; Jensen, Ole B.; Skovgaard, Peter M. W.

    2017-02-01

    The use of visible lasers for medical treatments is on the rise, and together with this comes higher expectations for the laser systems. For many medical treatments, such as ophthalmology, doctors require pulse on demand operation together with a complete extinction of the light between pulses. We have demonstrated power modulation from 0.1 Hz to 10 kHz at 532 nm with a modulation depth above 97% by wavelength detuning of the laser diode. The laser diode is a 1064 nm monolithic device with a distributed feedback (DFB) laser as the master oscillator (MO), and a tapered power amplifier (PA). The MO and PA have separate electrical contacts and the modulation is achieved with wavelength tuning by adjusting the current through the MO 40 mA.

  7. Interaction between pulsed discharge and radio frequency discharge burst at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; College of Science, Donghua University, Shanghai 201620; Guo, Ying

    The atmospheric pressure glow discharges (APGD) with dual excitations in terms of pulsed voltage and pulse-modulation radio frequency (rf) power are studied experimentally between two parallel plates electrodes. Pulse-modulation applied in rf APGD temporally separates the discharge into repetitive discharge bursts, between which the high voltage pulses are introduced to ignite sub-microsecond pulsed discharge. The discharge characteristics and spatio-temporal evolution are investigated by means of current voltage characteristics and time resolved imaging, which suggests that the introduced pulsed discharge assists the ignition of rf discharge burst and reduces the maintain voltage of rf discharge burst. Furtherly, the time instant ofmore » pulsed discharge between rf discharge bursts is manipulated to study the ignition dynamics of rf discharge burst.« less

  8. Power supply and pulsing strategies for the future linear colliders

    NASA Astrophysics Data System (ADS)

    Brogna, A. S.; Göttlicher, P.; Weber, M.

    2012-02-01

    The concept of the power delivery systems of the future linear colliders exploits the pulsed bunch structure of the beam in order to minimize the average current in the cables and the electronics and thus to reduce the material budget and heat dissipation. Although modern integrated circuit technologies are already available to design a low-power system, the concepts on how to pulse the front-end electronics and further reduce the power are not yet well understood. We propose a possible implementation of a power pulsing system based on a DC/DC converter and we choose the Analog Hadron Calorimeter as a specific example. The model features large switching currents of electronic modules in short time intervals to stimulate the inductive components along the cables and interconnections.

  9. Design and Simulation of Control Technique for Permanent Magnet Synchronous Motor Using Space Vector Pulse Width Modulation

    NASA Astrophysics Data System (ADS)

    Khan, Mansoor; Yong, Wang; Mustafa, Ehtasham

    2017-07-01

    After the rapid advancement in the field of power electronics devices and drives for last few decades, there are different kinds of Pulse Width Modulation techniques which have been brought to the market. The applications ranging from industrial appliances to military equipment including the home appliances. The vey common application for the PWM is three phase voltage source inverter, which is used to convert DC to AC in the homes to supply the power to the house in case electricity failure, usually named as Un-interrupted Power Supply. In this paper Space Vector Pulse Width Modulation techniques is discussed and analysed under the control technique named as Field Oriented Control. The working and implementation of this technique has been studied by implementing on the three phase bridge inverter. The technique is used to control the Permanente Magnet Synchronous Motor. The drive system is successfully implemented in MATLAB/Simulink using the mathematical equation and algorithm to achieve the satisfactory results. PI type of controller is used to tuned ers of the motothe parametr i.e. torque and current.

  10. Large-area tungsten disulfide for ultrafast photonics.

    PubMed

    Yan, Peiguang; Chen, Hao; Yin, Jinde; Xu, Zihan; Li, Jiarong; Jiang, Zike; Zhang, Wenfei; Wang, Jinzhang; Li, Irene Ling; Sun, Zhipei; Ruan, Shuangchen

    2017-02-02

    Two-dimensional (2D) layered transition metal dichalcogenides (TMDs) have attracted significant interest in various optoelectronic applications due to their excellent nonlinear optical properties. One of the most important applications of TMDs is to be employed as an extraordinary optical modulation material (e.g., the saturable absorber (SA)) in ultrafast photonics. The main challenge arises while embedding TMDs into fiber laser systems to generate ultrafast pulse trains and thus constraints their practical applications. Herein, few-layered WS 2 with a large-area was directly transferred on the facet of the pigtail and acted as a SA for erbium-doped fiber laser (EDFL) systems. In our study, WS 2 SA exhibited remarkable nonlinear optical properties (e.g., modulation depth of 15.1% and saturable intensity of 157.6 MW cm -2 ) and was used for ultrafast pulse generation. The soliton pulses with remarkable performances (e.g., ultrashort pulse duration of 1.49 ps, high stability of 71.8 dB, and large pulse average output power of 62.5 mW) could be obtained in a telecommunication band. To the best of our knowledge, the average output power of the mode-locked pulse trains is the highest by employing TMD materials in fiber laser systems. These results indicate that atomically large-area WS 2 could be used as excellent optical modulation materials in ultrafast photonics.

  11. Hybrid simulation of electron energy distributions and plasma characteristics in pulsed RF CCP sustained in Ar and SiH4/Ar discharges

    NASA Astrophysics Data System (ADS)

    Wang, Xi-Feng; Jia, Wen-Zhu; Song, Yuan-Hong; Zhang, Ying-Ying; Dai, Zhong-Ling; Wang, You-Nian

    2017-11-01

    Pulsed-discharge plasmas offer great advantages in deposition of silicon-based films due to the fact that they can suppress cluster agglomeration, moderate the energy of bombarding ions, and prolong the species' diffusion time on the substrate. In this work, a one-dimensional fluid/Monte-Carlo hybrid model is applied to study pulse modulated radio-frequency (RF) plasmas sustained in capacitively coupled Ar and SiH4/Ar discharges. First, the electron energy distributions in pulsed Ar and SiH4/Ar plasmas have been investigated and compared under identical discharge-circuit conditions. The electron energy distribution function (EEDF) in Ar discharge exhibits a familiar bi-Maxwellian shape during the power-on phase of the pulse, while a more complex (resembling a multi-Maxwellian) distribution with extra inflection points at lower energies is observed in the case of the SiH4/Ar mixture. These features become more prominent with the increasing fraction of SiH4 in the gas mixture. The difference in the shape of the EEDF (which is pronounced inside the plasma but not in the RF sheath where electron heating occurs) is mainly attributed to the electron-impact excitations of SiH4. During the power-off phase of the pulse, the EEDFs in both Ar and SiH4/Ar discharges evolve into bi-Maxwellian shapes, with shrinking high energy tails. Furthermore, the parameter of ion species in the case of SiH4/Ar discharge is strongly modulated by pulsing. For positive ions, such as SiH3+ and Si2H4+ , the particle fluxes overshoot at the beginning of the power-on interval. Meanwhile, for negative ions such as SiH2- and SiH3- , density profiles observed between the electrodes are saddle-shaped due to the repulsion by the self-bias electric field as it builds up. During the power-off phase, the wall fluxes of SiH2- and SiH3- gradually increase, leading to a significant decrease in the net surface charge density on the driven electrode. Compared with ions, the density of SiH3 is poorly modulated by pulsed power and is nearly constant over the entire modulation period, but the density of SiH2 shows a detectable decline in the afterglow. However, because of a much smaller content of SiH2, the deposition rate hardly shows any variation under the selected waveform of the pulse.

  12. Preliminary results of Linear Induction Accelerator LIA-200

    NASA Astrophysics Data System (ADS)

    Sharma, Archana; Senthil, K.; Praveen Kumar, D. D.; Mitra, S.; Sharma, V.; Patel, A.; Sharma, D. K.; Rehim, R.; Kolge, T. S.; Saroj, P. C.; Acharya, S.; Amitava, Roy; Rakhee, M.; Nagesh, K. V.; Chakravarthy, D. P.

    2010-05-01

    Repetitive Pulsed Power Technology is being developed keeping in mind the potential applications of this technology in material modifications, disinfections of water, timber, and food pasteurization etc. BARC has indigenously developed a Linear Induction Accelerator (LIA-200) rated for 200 kV, 4 kA, 100 ns, 10 Hz. The satisfactory performance of all the sub-systems including solid state power modulator, amorphous core based pulsed transformers, magnetic switches, water capacitors, water pulse- forming line, induction adder and field-emission diode have been demonstrated. This paper presents some design details and operational results of this pulsed power system. It also highlights the need for further research and development to build reliable and economic high-average power systems for industrial applications.

  13. Pseudo-Random Modulation of a Laser Diode for Generating Ultrasonic Longitudinal Waves

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Anatasi, Robert F.

    2004-01-01

    Laser generated ultrasound systems have historically been more complicated and expensive than conventional piezoelectric based systems, and this fact has relegated the acceptance of laser based systems to niche applications for which piezoelectric based systems are less suitable. Lowering system costs, while improving throughput, increasing ultrasound signal levels, and improving signal-to-noise are goals which will help increase the general acceptance of laser based ultrasound. One current limitation with conventional laser generated ultrasound is a material s damage threshold limit. Increasing the optical power to generate more signal eventually damages the material being tested due to rapid, high heating. Generation limitations for laser based ultrasound suggests the use of pulse modulation techniques as an alternate generation method. Pulse modulation techniques can spread the laser energy over time or space, thus reducing laser power densities and minimizing damage. Previous experiments by various organizations using spatial or temporal pulse modulation have been shown to generate detectable surface, plate, and bulk ultrasonic waves with narrow frequency bandwidths . Using narrow frequency bandwidths improved signal detectability, but required the use of expensive and powerful lasers and opto-electronic systems. The use of a laser diode to generate ultrasound is attractive because of its low cost, small size, light weight, simple optics and modulation capability. The use of pulse compression techniques should allow certain types of laser diodes to produce usable ultrasonic signals. The method also does not need to be limited to narrow frequency bandwidths. The method demonstrated here uses a low power laser diode (approximately 150 mW) that is modulated by controlling the diode s drive current and the resulting signal is recovered by cross correlation. A potential application for this system which is briefly demonstrated is in detecting signals in thick composite materials where attenuation is high and signal amplitude and bandwidth are at a premium.

  14. Compact, Portable Pulsed-Power

    DTIC Science & Technology

    2006-08-31

    adding this fast pulse to a slow, 30kV pulse which is below the threshold for significant corona emission. This scheme is presently being explored with...the smaller stressed electrode area. Further results from these systems were reported at the 2006 Power Modulator Conference in Washington, D.C...BLT and the medium-BLT is similar. The mini BLT electrodes are made of 3 mm thick molybdenum disks with a 3 mm central hole, capped on a hollow OFHC 1

  15. Dimmable electronic ballasts by variable power density modulation technique

    NASA Astrophysics Data System (ADS)

    Borekci, Selim; Kesler, Selami

    2014-11-01

    Dimming can be accomplished commonly by switching frequency and pulse density modulation techniques and a variable inductor. In this study, a variable power density modulation (VPDM) control technique is proposed for dimming applications. A fluorescent lamp is operated in several states to meet the desired lamp power in a modulation period. The proposed technique has the same advantages of magnetic dimming topologies have. In addition, a unique and flexible control technique can be achieved. A prototype dimmable electronic ballast is built and experiments related to it have been conducted. As a result, a 36WT8 fluorescent lamp can be driven for a desired lamp power from several alternatives without modulating the switching frequency.

  16. Nd:YAG-laser-Q-switching with a photo-elastic modulator and applications

    NASA Astrophysics Data System (ADS)

    Bammer, F.; Petkovšek, R.; Dominguez, H.; Liedl, G.

    2010-05-01

    We present a rod-Nd:YAG-Laser, side-pumped with eight 50W-laser diode bars at 808nm, and Q-switched with a Single Crystal Photo-Elastic Modulator at 95.1 kHz. The latter is made of a z-cut LiNbO3-crystal, which is electrically y-excited on the mechanical resonance frequency of the x-longitudinal oscillation. With a voltage amplitude of 3 V the crystal shows a strong oscillation such that due to the photo-elastic effect a high polarization modulation is achieved, which, together with a polarizer, can be used as a simple optical switch. With this inside the laser resonator the average power is 47.8W in cw-mode and 45.5W in pulsed mode, with pulse peak powers of 4 kW and pulse widths of 100ns. This kind of operation is similar to cw-operation but offers due to the high peak powers different interaction physics with matter. The source is therefore suited for micro-welding of metals, LIDAR, rapid prototyping of plastics, marking/engraving/cutting of plastics, marking of glasses. In cases where high precision and a small heat affected zone are necessary this simple kind of pulsed operation may be advantageous, when compared to cw-operation.

  17. Single event effects in pulse width modulation controllers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penzin, S.H.; Crain, W.R.; Crawford, K.B.

    1996-12-01

    SEE testing was performed on pulse width modulation (PWM) controllers which are commonly used in switching mode power supply systems. The devices are designed using both Set-Reset (SR) flip-flops and Toggle (T) flip-flops which are vulnerable to single event upset (SEU) in a radiation environment. Depending on the implementation of the different devices the effect can be significant in spaceflight hardware.

  18. Antibody responses of mice exposed to low-power microwaves under combined, pulse-and-amplitude modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veyret, B.; Bouthet, C.; Deschaux, P.

    Irradiation by pulsed microwaves (9.4 GHz, 1 microsecond pulses at 1,000/s), both with and without concurrent amplitude modulation (AM) by a sinusoid at discrete frequencies between 14 and 41 MHz, was assessed for effects on the immune system of Balb/C mice. The mice were immunized either by sheep red blood cells (SRBC) or by glutaric-anhydride conjugated bovine serum albumin (GA-BSA), then exposed to the microwaves at a low rms power density (30 microW/cm2; whole-body-averaged SAR approximately 0.015 W/kg). Sham exposure or microwave irradiation took place during each of five contiguous days, 10 h/day. The antibody response was evaluated by themore » plaque-forming cell assay (SRBC experiment) or by the titration of IgM and IgG antibodies (GA-BSA experiment). In the absence of AM, the pulsed field did not greatly alter immune responsiveness. In contrast, exposure to the field under the combined-modulation condition resulted in significant, AM-frequency-dependent augmentation or weakening of immune responses.« less

  19. Controller for a High-Power, Brushless dc Motor

    NASA Technical Reports Server (NTRS)

    Fleming, David J.; Makdad, Terence A.

    1987-01-01

    Driving and braking torques controllable. Control circuit operates 7-kW, 45-lb-ft (61-N-m), three-phase, brushless dc motor in both motor and generator modes. In motor modes, energy from power source is pulse-width modulated to motor through modified "H-bridge" circuit, in generator mode, energy from motor is pulse-width modulated into bank of load resistors to provide variable braking torques. Circuit provides high-resolution torque control in both directions over wide range of speeds and torques. Tested successfully at bus voltages up to 200 Vdc and currents up to 45 A.

  20. Femtosecond fiber CPA system based on picosecond master oscillator and power amplifier with CCC fiber.

    PubMed

    Želudevičius, J; Danilevičius, R; Viskontas, K; Rusteika, N; Regelskis, K

    2013-03-11

    Results of numerical and experimental investigations of the simple fiber CPA system seeded by nearly bandwidth-limited pulses from the picosecond oscillator are presented. We utilized self-phase modulation in a stretcher fiber to broaden the pulse spectrum and dispersion of the fiber to stretch pulses in time. During amplification in the ytterbium-doped CCC fiber, gain-shaping and self-phase modulation effects were observed, which improved pulse compression with a bulk diffraction grating compressor. After compression with spectral filtering, pulses with the duration of 400 fs and energy as high as 50 µJ were achieved, and the output beam quality was nearly diffraction-limited.

  1. Development of a high-power solid-state switch using static induction thyristors for a klystron modulator

    NASA Astrophysics Data System (ADS)

    Tokuchi, Akira; Kamitsukasa, Fumiyoshi; Furukawa, Kazuya; Kawase, Keigo; Kato, Ryukou; Irizawa, Akinori; Fujimoto, Masaki; Osumi, Hiroki; Funakoshi, Sousuke; Tsutsumi, Ryouta; Suemine, Shoji; Honda, Yoshihide; Isoyama, Goro

    2015-01-01

    We developed a solid-state switch with static induction thyristors for the klystron modulator of the L-band electron linear accelerator (linac) at the Institute of Scientific and Industrial Research, Osaka University. This switch is designed to have maximum specifications of a holding voltage of 25 kV and a current of 6 kA at the repetition frequency of 10 Hz for forced air cooling. The turn-on time of the switch was measured with a matched resistor to be 270 ns, which is sufficiently fast for the klystron modulator. The switch is retrofitted in the modulator to generate 1.3 GHz RF pulses with durations of either 4 or 8 μs using a 30 MW klystron, and the linac is successfully operated under maximum conditions. This finding demonstrates that the switch can be used as a high-power switch for the modulator. Pulse-to-pulse variations of the klystron voltage are measured to be less than 0.015%, and those of RF power and phase are lower than 0.15% and 0.1°, respectively. These values are significantly smaller than those obtained with a thyratron; hence, the stability of the main RF system is improved. The solid-state switch has been used in normal operation of the linac for more than a year without any serious trouble. Thus, we confirmed the switch's robustness and long-term reliability.

  2. Arcjet power supply and start circuit

    NASA Technical Reports Server (NTRS)

    Gruber, Robert P. (Inventor)

    1988-01-01

    A dc power supply for spacecraft arcjet thrusters has an integral automatic starting circuit and an output averaging inductor. The output averaging inductor, in series with the load, provides instantaneous current control, and ignition pulse and an isolated signal proportional to the arc voltage. A pulse width modulated converter, close loop configured, is also incorporated to give fast response output current control.

  3. Miniature Optical Communications Transceiver (MOCT)

    NASA Technical Reports Server (NTRS)

    Conklin, John W.; Hunter, Roger C.; Baker, Christopher

    2017-01-01

    This project will advance the technology readiness of the Miniature Optical Communications Transceiver (MOCT) from TRL 3 to TRL 4. MOCT consists of a novel software-defined pulse modulator (SDPM),integrated laser system, and avalanche photodetection system, and is designed for optical communications between small spacecraft, including CubeSats, using a pulse position modulation (PPM) scheme. PPM encodes data in the timing of optical pulses with respect to a set of timing windows known as slots. The MOCT design focuses on power-efficiency making it particularly interesting for small satellites. We have demonstrated in the laboratory that this technology can generate shorter than 1 nanosecond-wide 1550 nanometer (nm) optical pulses with better than 50 picosecond (ps) timing accuracy. The timing resolution of this system is roughly a factor of four better than previously flown systems, meaning that it can transmit more bits of data with each optical pulse. Because this technology can both generate and time stamp the arrival of short optical pulses with 50 ps precision, it simultaneously provides power efficient communications and relative ranging between small spacecraft at the centimeter (cm) level.

  4. Design and testing of 45 kV, 50 kHz pulse power supply for dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Sharma, Surender Kumar; Shyam, Anurag

    2016-10-01

    The design, construction, and testing of high frequency, high voltage pulse power supply are reported. The purpose of the power supply is to generate dielectric barrier discharges for industrial applications. The power supply is compact and has the advantage of low cost, over current protection, and convenient control for voltage and frequency selection. The power supply can generate high voltage pulses of up to 45 kV at the repetitive frequency range of 1 kHz-50 kHz with 1.2 kW input power. The output current of the power supply is limited to 500 mA. The pulse rise time and fall time are less than 2 μs and the pulse width is 2 μs. The power supply is short circuit proof and can withstand variable plasma load conditions. The power supply mainly consists of a half bridge series resonant converter to charge an intermediate capacitor, which discharges through a step-up transformer at high frequency to generate high voltage pulses. Semiconductor switches and amorphous cores are used for power modulation at higher frequencies. The power supply is tested with quartz tube dielectric barrier discharge load and worked stably. The design details and the performance of the power supply on no load and dielectric barrier discharge load are presented.

  5. Design and testing of 45 kV, 50 kHz pulse power supply for dielectric barrier discharges.

    PubMed

    Sharma, Surender Kumar; Shyam, Anurag

    2016-10-01

    The design, construction, and testing of high frequency, high voltage pulse power supply are reported. The purpose of the power supply is to generate dielectric barrier discharges for industrial applications. The power supply is compact and has the advantage of low cost, over current protection, and convenient control for voltage and frequency selection. The power supply can generate high voltage pulses of up to 45 kV at the repetitive frequency range of 1 kHz-50 kHz with 1.2 kW input power. The output current of the power supply is limited to 500 mA. The pulse rise time and fall time are less than 2 μs and the pulse width is 2 μs. The power supply is short circuit proof and can withstand variable plasma load conditions. The power supply mainly consists of a half bridge series resonant converter to charge an intermediate capacitor, which discharges through a step-up transformer at high frequency to generate high voltage pulses. Semiconductor switches and amorphous cores are used for power modulation at higher frequencies. The power supply is tested with quartz tube dielectric barrier discharge load and worked stably. The design details and the performance of the power supply on no load and dielectric barrier discharge load are presented.

  6. An all-solid-state microsecond-range quasi-square pulse generator based on fractional-turn ratio saturable pulse transformer and anti-resonance network.

    PubMed

    Chen, Rong; Yang, Jianhua; Cheng, Xinbing; Pan, Zilong

    2017-03-01

    High voltage pulse generators are widely applied in a number of fields. Defense and industrial applications stimulated intense interests in the area of pulsed power technology towards the system with high power, high repetition rate, solid state characteristics, and compact structure. An all-solid-state microsecond-range quasi-square pulse generator based on a fractional-turn ratio saturable pulse transformer and anti-resonance network is proposed in this paper. This generator consists of a charging system, a step-up system, and a modulating system. In this generator, the fractional-turn ratio saturable pulse transformer is the key component since it acts as a step-up transformer and a main switch during the working process. Demonstrative experiments show that if the primary storage capacitors are charged to 400 V, a quasi-square pulse with amplitude of about 29 kV can be achieved on a 3500 Ω resistive load, as well as the pulse duration (full width at half maximum) of about 1.3 μs. Preliminary repetition rate experiments are also carried out, which indicate that this pulse generator could work stably with the repetition rates of 30 Hz and 50 Hz. It can be concluded that this kind of all-solid-state microsecond-range quasi-square pulse generator can not only lower both the operating voltage of the primary windings and the saturable inductance of the secondary windings, thus ideally realizing the magnetic switch function of the fractional-turn ratio saturable pulse transformer, but also achieve a quasi-square pulse with high quality and fixed flat top after the modulation of a two-section anti-resonance network. This generator can be applied in areas of large power microwave sources, sterilization, disinfection, and wastewater treatment.

  7. Frequency-domain nonlinear optics in two-dimensionally patterned quasi-phase-matching media.

    PubMed

    Phillips, C R; Mayer, B W; Gallmann, L; Keller, U

    2016-07-11

    Advances in the amplification and manipulation of ultrashort laser pulses have led to revolutions in several areas. Examples include chirped pulse amplification for generating high peak-power lasers, power-scalable amplification techniques, pulse shaping via modulation of spatially-dispersed laser pulses, and efficient frequency-mixing in quasi-phase-matched nonlinear crystals to access new spectral regions. In this work, we introduce and demonstrate a new platform for nonlinear optics which has the potential to combine these separate functionalities (pulse amplification, frequency transfer, and pulse shaping) into a single monolithic device that is bandwidth- and power-scalable. The approach is based on two-dimensional (2D) patterning of quasi-phase-matching (QPM) gratings combined with optical parametric interactions involving spatially dispersed laser pulses. Our proof of principle experiment demonstrates this technique via mid-infrared optical parametric chirped pulse amplification of few-cycle pulses. Additionally, we present a detailed theoretical and numerical analysis of such 2D-QPM devices and how they can be designed.

  8. Power requirements reducing of FBG based all-optical switching

    NASA Astrophysics Data System (ADS)

    Scholtz, Ľubomír.; Solanská, Michaela; Ladányi, Libor; Müllerová, Jarmila

    2017-12-01

    Although Fiber Bragg gratings (FBGs) are well known devices, their using as all-optical switching elements has been still examined. Current research is focused on optimization of their properties for their using in future all-optical networks. The main problem are high switching intensities needed for achieving the changes of the transmission state. Over several years switching intensities have been reduced from hundreds of GW/cm2 to tens of MW/cm2 by selecting appropriate gratings and signal parameters or using suitable materials. Two principal nonlinear effects with similar power requirements can result in the bistable transmission/reflection of an input optical pulse. In the self-phase modulation (SPM) regime switching is achieved by the intense probe pulse itself. Using cross-phase modulation (XPM) a strong pump alters the FBG refractive index experienced by a weak probe pulse. As a result of this the detuning of the probe pulse from the center of the photonic band gap occurs. Using of XPM the effect of modulation instability is reduced. Modulation instability which is the main SPM degradation mechanism. We focused on nonlinear FBGs based on chalcogenide glasses which are very often used in various applications. Thanks to high nonlinear parameters chalcogenide glasses are suitable candidates for reducing switching intensities of nonlinear FBGs.

  9. Power-Stepped HF Cross Modulation Experiments at HAARP

    NASA Astrophysics Data System (ADS)

    Greene, S.; Moore, R. C.; Langston, J. S.

    2013-12-01

    High frequency (HF) cross modulation experiments are a well established means for probing the HF-modified characteristics of the D-region ionosphere. In this paper, we apply experimental observations of HF cross-modulation to the related problem of ELF/VLF wave generation. HF cross-modulation measurements are used to evaluate the efficiency of ionospheric conductivity modulation during power-stepped modulated HF heating experiments. The results are compared to previously published dependencies of ELF/VLF wave amplitude on HF peak power. The experiments were performed during the March 2013 campaign at the High Frequency Active Auroral Research Program (HAARP) Observatory. HAARP was operated in a dual-beam transmission format: the first beam heated the ionosphere using sinusoidal amplitude modulation while the second beam broadcast a series of low-power probe pulses. The peak power of the modulating beam was incremented in 1-dB steps. We compare the minimum and maximum cross-modulation effect and the amplitude of the resulting cross-modulation waveform to the expected power-law dependence of ELF/VLF wave amplitude on HF power.

  10. Effects of nanomaterial saturable absorption on gain-guide soliton in a positive group-dispersion fiber laser: Simulations and experiments

    NASA Astrophysics Data System (ADS)

    Du, Tuanjie; Wan, Xiaojiao; Yang, Runhua; Li, Weiwei; Ruan, Qiujun; Chen, Nan; Luo, Zhengqian

    2018-01-01

    In recent years, several kinds of nanomaterials have been discovered, and successfully used as saturable absorbers (SAs) for passively mode-locked fiber lasers. However, it is found that most of nanomaterials-based SAs cannot stably generate gain-guide solitons in positive group-dispersion fiber lasers, which is urgently expected to fully understand the inherent reasons. In this paper, we numerically and experimentally investigate the effects of nanomaterial saturable absorption (e.g. modulation depth and saturation optical power) on gain-guide soliton in positive group-dispersion Er3+-doped fiber laser (PGD-EDFL). By numerically solving the Ginzburg-Landau equation, the evolutions of both the mode-locked optical spectrum and pulse duration as a function of modulation depth and saturation optical power are analyzed, respectively. In experiment, we firstly prepare five nanomaterial SAs with the similar insertion loss, which have the different modulation depth from 1.80% to 23.36%, and the different saturation optical power from 8.8 to 536 W. We then perform the experimental comparison by incorporating the five SAs in a same PGD-EDFL cavity, respectively. The experimental results are in good agreement with the numerical ones. Our result reveals that: (1) a low modulation depth cannot support the formation of gain-guide soliton, (2) as the modulation depth increases, the spectral bandwidth of gain-guide soliton increases, the pulse duration decreases and the pulse chirp becomes large, (3) the saturation optical power has the weak influences on the gain-guide soliton performances.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. E. Lawson, R. Marsala, S. Ramakrishnan, X. Zhao, P. Sichta

    In order to provide improved and expanded experimental capabilities, the existing Transrex power supplies at PPPL are to be upgraded and modernized. Each of the 39 power supplies consists of two six pulse silicon controlled rectifier sections forming a twelve pulse power supply. The first modification is to split each supply into two independent six pulse supplies by replacing the existing obsolete twelve pulse firing generator with two commercially available six pulse firing generators. The second change replaces the existing control link with a faster system, with greater capacity, which will allow for independent control of all 78 power supplymore » sections. The third change replaces the existing Computer Automated Measurement and Control (CAMAC) based fault detector with an Experimental Physics and Industrial Control System (EPICS) compatible unit, eliminating the obsolete CAMAC modules. Finally the remaining relay logic and interfaces to the "Hardwired Control System" will be replaces with a Programmable Logic Controller (PLC).« less

  12. A 13.56-mbps pulse delay modulation based transceiver for simultaneous near-field data and power transmission.

    PubMed

    Kiani, Mehdi; Ghovanloo, Maysam

    2015-02-01

    A fully-integrated near-field wireless transceiver has been presented for simultaneous data and power transmission across inductive links, which operates based on pulse delay modulation (PDM) technique. PDM is a low-power carrier-less modulation scheme that offers wide bandwidth along with robustness against strong power carrier interference, which makes it suitable for implantable neuroprosthetic devices, such as retinal implants. To transmit each bit, a pattern of narrow pulses are generated at the same frequency of the power carrier across the transmitter (Tx) data coil with specific time delays to initiate decaying ringing across the tuned receiver (Rx) data coil. This ringing shifts the zero-crossing times of the undesired power carrier interference on the Rx data coil, resulting in a phase shift between the signals across Rx power and data coils, from which the data bit stream can be recovered. A PDM transceiver prototype was fabricated in a 0.35- μm standard CMOS process, occupying 1.6 mm(2). The transceiver achieved a measured 13.56 Mbps data rate with a raw bit error rate (BER) of 4.3×10(-7) at 10 mm distance between figure-8 data coils, despite a signal-to-interference ratio (SIR) of -18.5 dB across the Rx data coil. At the same time, a class-D power amplifier, operating at 13.56 MHz, delivered 42 mW of regulated power across a separate pair of high-Q power coils, aligned with the data coils. The PDM data Tx and Rx power consumptions were 960 pJ/bit and 162 pJ/bit, respectively, at 1.8 V supply voltage.

  13. Hybrid Modeling of SiH4/Ar Discharge in a Pulse Modulated RF Capacitively Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Xi-Feng, Wang; Yuan-Hong, Song; You-Nian, Wang; PSEG Team

    2015-09-01

    Pulsed plasmas have offered important advantages in future micro-devices, especially for electronegative gas plasmas. In this work, a one-dimensional fluid and Monte-Carlo (MC) hybrid model is developed to simulate SiH4/Ar discharge in a pulse modulated radio-frequency (RF) capacitively coupled plasma (CCP). Time evolution densities of different species, such as electrons, ions, radicals, are calculated, as well as the electron energy probability function (EEPF) which is obtained by a MC simulation. By pulsing the RF source, the electron energy distributions and plasma properties can be modulated by pulse frequency and duty cycle. High electron energy tails are obtained during power-on period, with the SiHx densities increasing rapidly mainly by SiH4 dissociation. As the RF power is off, the densities in the bulk region decrease rapidly owing to high energy electrons disappear, but increase near electrodes since diffusion without the confinement of high electric field, which can prolong the time of radials deposition on the plate. Especially, in the afterglow, the increase of negative ions near the electrodes results from cool electron attachment, which are good for film deposition. This work was supported by the National Natural Science Foundation of China (Grant No. 11275038).

  14. Method and apparatus for stabilizing pulsed microwave amplifiers

    DOEpatents

    Hopkins, Donald B.

    1993-01-01

    Phase and amplitude variations at the output of a high power pulsed microwave amplifier arising from instabilities of the driving electron beam are suppressed with a feed-forward system that can stabilize pulses which are too brief for regulation by conventional feedback techniques. Such variations tend to be similar during successive pulses. The variations are detected during each pulse by comparing the amplifier output with the low power input signal to obtain phase and amplitude error signals. This enables storage of phase and amplitude correction signals which are used to make compensating changes in the low power input signal during the following amplifier output pulse which suppress the variations. In the preferred form of the invention, successive increments of the correction signals for each pulse are stored in separate channels of a multi-channel storage. Sequential readout of the increments during the next pulse provides variable control voltages to a voltage controlled phase shifter and voltage controlled amplitude modulator in the amplifier input signal path.

  15. Method and apparatus for stabilizing pulsed microwave amplifiers

    DOEpatents

    Hopkins, D.B.

    1993-01-26

    Phase and amplitude variations at the output of a high power pulsed microwave amplifier arising from instabilities of the driving electron beam are suppressed with a feed-forward system that can stabilize pulses which are too brief for regulation by conventional feedback techniques. Such variations tend to be similar during successive pulses. The variations are detected during each pulse by comparing the amplifier output with the low power input signal to obtain phase and amplitude error signals. This enables storage of phase and amplitude correction signals which are used to make compensating changes in the low power input signal during the following amplifier output pulse which suppress the variations. In the preferred form of the invention, successive increments of the correction signals for each pulse are stored in separate channels of a multi-channel storage. Sequential readout of the increments during the next pulse provides variable control voltages to a voltage controlled phase shifter and voltage controlled amplitude modulator in the amplifier input signal path.

  16. Ultra-low-power wireless transmitter for neural prostheses with modified pulse position modulation.

    PubMed

    Goodarzy, Farhad; Skafidas, Stan E

    2014-01-01

    An ultra-low-power wireless transmitter for embedded bionic systems is proposed, which achieves 40 pJ/b energy efficiency and delivers 500 kb/s data using the medical implant communication service frequency band (402-405 MHz). It consumes a measured peak power of 200 µW from a 1.2 V supply while occupying an active area of 0.0016 mm(2) in a 130 nm technology. A modified pulse position modulation technique called saturated amplified signal is proposed and implemented, which can reduce the overall and per bit transferred power consumption of the transmitter while reducing the complexity of the transmitter architectures, and hence potentially shrinking the size of the implemented circuitry. The design is capable of being fully integrated on single-chip solutions for surgically implanted bionic systems, wearable devices and neural embedded systems.

  17. Zero-voltage DC/DC converter with asymmetric pulse-width modulation for DC micro-grid system

    NASA Astrophysics Data System (ADS)

    Lin, Bor-Ren

    2018-04-01

    This paper presents a zero-voltage switching DC/DC converter for DC micro-grid system applications. The proposed circuit includes three half-bridge circuit cells connected in primary-series and secondary-parallel in order to lessen the voltage rating of power switches and current rating of rectifier diodes. Thus, low voltage stress of power MOSFETs can be adopted for high-voltage input applications with high switching frequency operation. In order to achieve low switching losses and high circuit efficiency, asymmetric pulse-width modulation is used to turn on power switches at zero voltage. Flying capacitors are used between each circuit cell to automatically balance input split voltages. Therefore, the voltage stress of each power switch is limited at Vin/3. Finally, a prototype is constructed and experiments are provided to demonstrate the circuit performance.

  18. Merging and energy exchange between optical filaments

    NASA Astrophysics Data System (ADS)

    Georgieva, D. A.; Kovachev, L. M.

    2015-10-01

    We investigate nonlinear interaction between collinear femtosecond laser pulses with power slightly above the critical for self-focusing Pcr trough the processes of cross-phase modulation (CPM) and degenerate four-photon parametric mixing (FPPM). When there is no initial phase difference between the pulses we observe attraction between pulses due to CPM. The final result is merging between the pulses in a single filament with higher power. By method of moments it is found that the attraction depends on the distance between the pulses and has potential character. In the second case we study energy exchange between filaments. This process is described through FPPM scheme and requests initial phase difference between the waves.

  19. Merging and energy exchange between optical filaments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Georgieva, D. A., E-mail: dgeorgieva@tu-sofia.bg; Kovachev, L. M.

    2015-10-28

    We investigate nonlinear interaction between collinear femtosecond laser pulses with power slightly above the critical for self-focusing P{sub cr} trough the processes of cross-phase modulation (CPM) and degenerate four-photon parametric mixing (FPPM). When there is no initial phase difference between the pulses we observe attraction between pulses due to CPM. The final result is merging between the pulses in a single filament with higher power. By method of moments it is found that the attraction depends on the distance between the pulses and has potential character. In the second case we study energy exchange between filaments. This process is describedmore » through FPPM scheme and requests initial phase difference between the waves.« less

  20. Optically powered oil tank multichannel detection system with optical fiber link

    NASA Astrophysics Data System (ADS)

    Yu, Zhijing

    1998-08-01

    A novel oil tanks integrative parameters measuring system with optically powered are presented. To realize optical powered and micro-power consumption multiple channels and parameters detection, the system has taken the PWM/PPM modulation, ratio measurement, time division multiplexing and pulse width division multiplexing techniques. Moreover, the system also used special pulse width discriminator and single-chip microcomputer to accomplish signal pulse separation, PPM/PWM signal demodulation, the error correction of overlapping pulse and data processing. This new transducer has provided with high characteristics: experimental transmitting distance is 500m; total consumption of the probes is less than 150 (mu) W; measurement error: +/- 0.5 degrees C and +/- 0.2 percent FS. The measurement accuracy of the liquid level and reserves is mainly determined by the pressure accuracy. Finally, some points of the experiment are given.

  1. Components for monolithic fiber chirped pulse amplification laser systems

    NASA Astrophysics Data System (ADS)

    Swan, Michael Craig

    The first portion of this work develops techniques for generating femtosecond-pulses from conventional fabry-perot laser diodes using nonlinear-spectral-broadening techniques in Yb-doped positive dispersion fiber ampliers. The approach employed an injection-locked fabry-perot laser diode followed by two stages of nonlinear-spectral-broadening to generate sub-200fs pulses. This thesis demonstrated that a 60ps gain-switched fabry-perot laser-diode can be injection-locked to generate a single-longitudinal-mode pulse and compressed by nonlinear spectral broadening to 4ps. Two problems have been identified that must be resolved before moving forward with this approach. First, gain-switched pulses from a standard diode-laser have a number of characteristics not well suited for producing clean self-phase-modulation-broadened pulses, such as an asymmetric temporal shape, which has a long pulse tail. Second, though parabolic pulse formation occurs for any arbitrary temporal input pulse profile, deviation from the optimum parabolic input results in extensively spectrally modulated self-phase-modulation-broadened pulses. In conclusion, the approach of generating self-phase-modulation-broadened pulses from pulsed laser diodes has to be modified from the initial approach explored in this thesis. The first Yb-doped chirally-coupled-core ber based systems are demonstrated and characterized in the second portion of this work. Robust single-mode performance independent of excitation or any other external mode management techniques have been demonstrated in Yb-doped chirally-coupled-core fibers. Gain and power efficiency characteristics are not compromised in any way in this novel fiber structure up to the 87W maximum power achieved. Both the small signal gain at 1064nm of 30.3dB, and the wavelength dependence of the small signal gain were comparable to currently deployed large-mode-area-fiber technology. The efficiencies of the laser and amplifier were measured to be 75% and 54% respectively. With the inherent design tradeoff between the fundamental mode loss and higher order mode suppression, loss effects on system efficiency in different configurations were investigated. From these investigations it was seen that the slope-efficiency depends only on the total loss of the active fiber, and that when loss is present, the counter-propagating configuration has substantial advantages over the co-propagating case. In this thesis chirally-coupled-core fiber as the technological basis for the next generation of monolithic high power fiber laser systems has been established.

  2. Direct coupling of pulsed radio frequency and pulsed high power in novel pulsed power system for plasma immersion ion implantation.

    PubMed

    Gong, Chunzhi; Tian, Xiubo; Yang, Shiqin; Fu, Ricky K Y; Chu, Paul K

    2008-04-01

    A novel power supply system that directly couples pulsed high voltage (HV) pulses and pulsed 13.56 MHz radio frequency (rf) has been developed for plasma processes. In this system, the sample holder is connected to both the rf generator and HV modulator. The coupling circuit in the hybrid system is composed of individual matching units, low pass filters, and voltage clamping units. This ensures the safe operation of the rf system even when the HV is on. The PSPICE software is utilized to optimize the design of circuits. The system can be operated in two modes. The pulsed rf discharge may serve as either the seed plasma source for glow discharge or high-density plasma source for plasma immersion ion implantation (PIII). The pulsed high-voltage glow discharge is induced when a rf pulse with a short duration or a larger time interval between the rf and HV pulses is used. Conventional PIII can also be achieved. Experiments conducted on the new system confirm steady and safe operation.

  3. Cascaded Raman shifting of high-peak-power nanosecond pulses in As₂S₃ and As₂Se₃ optical fibers.

    PubMed

    White, Richard T; Monro, Tanya M

    2011-06-15

    We report efficient cascaded Raman scattering of near-IR nanosecond pulses in large-core (65 μm diameter) As₂S₃ and As₂Se₃ optical fibers. Raman scattering dominates other spectral broadening mechanisms, such as four-wave mixing, modulation instability, and soliton dynamics, because the fibers have large normal group-velocity dispersion in the spectral range of interest. With ~2 ns pump pulses at a wavelength of 1.9 μm, four Stokes peaks, all with peak powers greater than 1 kW, have been measured.

  4. Higher-order power harmonics of pulsed electrical stimulation modulates corticospinal contribution of peripheral nerve stimulation.

    PubMed

    Chen, Chiun-Fan; Bikson, Marom; Chou, Li-Wei; Shan, Chunlei; Khadka, Niranjan; Chen, Wen-Shiang; Fregni, Felipe

    2017-03-03

    It is well established that electrical-stimulation frequency is crucial to determining the scale of induced neuromodulation, particularly when attempting to modulate corticospinal excitability. However, the modulatory effects of stimulation frequency are not only determined by its absolute value but also by other parameters such as power at harmonics. The stimulus pulse shape further influences parameters such as excitation threshold and fiber selectivity. The explicit role of the power in these harmonics in determining the outcome of stimulation has not previously been analyzed. In this study, we adopted an animal model of peripheral electrical stimulation that includes an amplitude-adapted pulse train which induces force enhancements with a corticospinal contribution. We report that the electrical-stimulation-induced force enhancements were correlated with the amplitude of stimulation power harmonics during the amplitude-adapted pulse train. In an exploratory analysis, different levels of correlation were observed between force enhancement and power harmonics of 20-80 Hz (r = 0.4247, p = 0.0243), 100-180 Hz (r = 0.5894, p = 0.0001), 200-280 Hz (r = 0.7002, p < 0.0001), 300-380 Hz (r = 0.7449, p < 0.0001), 400-480 Hz (r = 0.7906, p < 0.0001), 500-600 Hz (r = 0.7717, p < 0.0001), indicating a trend of increasing correlation, specifically at higher order frequency power harmonics. This is a pilot, but important first demonstration that power at high order harmonics in the frequency spectrum of electrical stimulation pulses may contribute to neuromodulation, thus warrant explicit attention in therapy design and analysis.

  5. System design and operation of a 100 kilovolt, 2 kilohertz pulse modulator for plasma source ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reass, W.A.

    1994-07-01

    This paper describes the electrical design and operation of a high power modulator system implemented for the Los Alamos Plasma Source Ion Implantation (PSII) facility. To test the viability of the PSII process for various automotive components, the modulator must accept wide variations of load impedance. Components have varying area and composition which must be processed with different plasmas. Additionally, the load impedance may change by large factors during the typical 20 uS pulse, due to plasma displacement currents and sheath growth. As a preliminary design to test the system viability for automotive component implantation, suitable for a manufacturing environment,more » circuit topology must be able to directly scale to high power versions, for increased component through-put. We have chosen an evolutionary design approach with component families of characterized performance, which should Ion result in a reliable modulator system with component lifetimes. The modulator utilizes a pair of Litton L-3408 hollow beam amplifier tubes as switching elements in a ``hot-deck`` configuration. Internal to the main of planar triode hot deck, an additional pair decks, configured in a totem pole circuit, provide input drive to the L-3408 mod-anodes. The modulator can output over 2 amps average current (at 100 kV) with 1 kW of modanode drive. Diagnostic electronics monitor the load and stops pulses for 100 mS when a load arcs occur. This paper, in addition to providing detailed engineering design information, will provide operational characteristics and reliability data that direct the design to the higher power, mass production line capable modulators.« less

  6. The Study of Phase-shift Super-Frequency Induction Heating Power Supply

    NASA Astrophysics Data System (ADS)

    Qi, Hairun; Peng, Yonglong; Li, Yabin

    This paper combines pulse-width phase-shift power modulation with fixed-angle phase-locked-control to adjust the inverter's output power, this method not only meets the work conditions of voltage inverter, but also realizes the large-scale of power modulation, and the main circuit is simple, the switching devices realize soft switching. This paper analyzes the relationship between the output power and phase-shift angle, the control strategy is simulated by Matlab/Simulink, and the results show that the method is feasible and meets the theoretical analysis

  7. Nonlinear processes associated with the amplification of MHz-linewidth laser pulses in single-mode Tm:fiber

    NASA Astrophysics Data System (ADS)

    Sincore, Alex; Bodnar, Nathan; Bradford, Joshua; Abdulfattah, Ali; Shah, Lawrence; Richardson, Martin C.

    2017-03-01

    This work studies the accumulated nonlinearities when amplifying a narrow linewidth 2053 nm seed in a single mode Tm:fiber amplifier. A <2 MHz linewidth CW diode seed is externally modulated using a fiberized acousto-optic modulator. This enables independent control of repetition rate and pulse duration (>30 ns). The pulses are subsequently amplified and the repetition rate is further reduced using a second acousto-optic modulator. It is well known that spectral degradation occurs in such fibers for peak powers over 100's of watts due to self-phase modulation, four-wave mixing, and stimulated Raman scattering. In addition to enabling a thorough test bed to study such spectral broadening, this system will also enable the investigation of stimulated Brillouin scattering thresholds in the same system. This detailed study of the nonlinearities encountered in 2 μm fiber amplifiers is important in a range of applications from telecommunications to the amplification of ultrashort laser pulses.

  8. Polarized millijoule fiber laser system with high beam quality and pulse shaping ability

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Tian, Xiaocheng; Xu, Dangpeng; Zhou, Dandan; Zong, Zhaoyu; Li, Hongxun; Fan, Mengqiu; Huang, Zhihua; Zhu, Na; Su, Jingqin; Zhu, Qihua; Jing, Feng

    2017-05-01

    The coherent amplification network (CAN) aims at developing a laser system based on the coherent combination of multiple laser beams, which are produced through a network of high beam quality optical fiber amplifiers. The scalability of the CAN laser facilitates the development of many novel applications, such as fiber-based acceleration, orbital debris removal and inertial confinement fusion energy. According to the requirements of CAN and the front end of high-power laser facilities, a millijoule polarized fiber laser system was studied in this paper. Using polarization maintaining Ytterbium-fiber laser system as the seed, and 10-μm core Yb-doped fiber amplifier as the first power amplifier and 40-μm core polarizing (PZ) photonic crystal fiber (PCF) as the second power amplifier, the all-fiber laser system outputs 1.06-mJ energy at 10 ns and diffraction limited mode quality. Using 85-μm rod-type PCF as the third power amplifiers, 2.5-mJ energy at 10-ns pulse width was obtained with better than 500:1 peak-to-foot pulse shaping ability and fundamental mode beam quality. The energy fluctuation of the system is 1.3% rms with 1-mJ output in one hour. When using phase-modulated pulse as the seed, the frequency modulation to amplitude modulation (FM-to-AM) conversion ratio of the system is better than 5%. This fiber laser system has the advantages of high beam quality, high beam shaping ability, good stability, small volume and free of maintenance, which can be used in many applications.

  9. A Pulse Code Modulated Fiber Optic Link Design for Quinault Under-Water Tracking Range.

    DTIC Science & Technology

    1980-09-01

    invented and patented a light-wave communications device, the Photophone . The light beam was acoustically modulated, transmitted through the atmosphere and...a load resistor or feedback resistor. This voltage can be cal- culated by multiplying the received power, the respcnsiv ity and the effective load...frequency is not real critical since the clock, in effect , is synchronized after every eight bits by the timing pulse. The more interesting part of the

  10. Modified Dual Three-Pulse Modulation technique for single-phase inverter topology

    NASA Astrophysics Data System (ADS)

    Sree Harsha, N. R.; Anitha, G. S.; Sreedevi, A.

    2016-01-01

    In a recent paper, a new modulation technique called Dual Three Pulse Modulation (DTPM) was proposed to improve the efficiency of the power converters of the Electric/Hybrid/Fuel-cell vehicles. It was simulated in PSIM 9.0.4 and uses analog multiplexers to generate the modulating signals for the DC/DC converter and inverter. The circuit used is complex and many other simulation softwares do not support the analog multiplexers as well. Also, the DTPM technique produces modulating signals for the converter, which are essentially needed to produce the modulating signals for the inverter. Hence, it cannot be used efficiently to switch the valves of a stand-alone inverter. We propose a new method to generate the modulating signals to switch MOSFETs of a single phase Dual-Three pulse Modulation based stand-alone inverter. The circuits proposed are simulated in Multisim 12.0. We also show an alternate way to switch a DC/DC converter in a way depicted by DTPM technique both in simulation (MATLAB/Simulink) and hardware. The circuitry is relatively simple and can be used for the further investigations of DTPM technique.

  11. Low power arcjet thruster pulse ignition

    NASA Technical Reports Server (NTRS)

    Sarmiento, Charles J.; Gruber, Robert P.

    1987-01-01

    An investigation of the pulse ignition characteristics of a 1 kW class arcjet using an inductive energy storage pulse generator with a pulse width modulated power converter identified several thruster and pulse generator parameters that influence breakdown voltage including pulse generator rate of voltage rise. This work was conducted with an arcjet tested on hydrogen-nitrogen gas mixtures to simulate fully decomposed hydrazine. Over all ranges of thruster and pulser parameters investigated, the mean breakdown voltages varied from 1.4 to 2.7 kV. Ignition tests at elevated thruster temperatures under certain conditions revealed occasional breakdowns to thruster voltages higher than the power converter output voltage. These post breakdown discharges sometimes failed to transition to the lower voltage arc discharge mode and the thruster would not ignite. Under the same conditions, a transition to the arc mode would occur for a subsequent pulse and the thruster would ignite. An automated 11 600 cycle starting and transition to steady state test demonstrated ignition on the first pulse and required application of a second pulse only two times to initiate breakdown.

  12. A Q-band low noise GaAs pHEMT MMIC power amplifier for pulse electron spin resonance spectrometer

    NASA Astrophysics Data System (ADS)

    Sitnikov, A.; Kalabukhova, E.; Oliynyk, V.; Kolisnichenko, M.

    2017-05-01

    We present the design and development of a single stage pulse power amplifier working in the frequency range 32-38 GHz based on a monolithic microwave integrated circuit (MMIC). We have designed the MMIC power amplifier by using the commercially available packaged GaAs pseudomorphic high electron mobility transistor. The circuit fabrication and assembly process includes the elaboration of the matching networks for the MMIC power amplifier and their assembling as well as the topology outline and fabrication of the printed circuit board of the waveguide-microstrip line transitions. At room ambient temperature, the measured peak output power from the prototype amplifier is 35.5 dBm for 16.6 dBm input driving power, corresponding to 19 dB gain. The measured rise/fall time of the output microwave signal modulated by a high-speed PIN diode was obtained as 5-6 ns at 20-250 ns pulse width with 100 kHz pulse repetition rate frequency.

  13. A Q-band low noise GaAs pHEMT MMIC power amplifier for pulse electron spin resonance spectrometer.

    PubMed

    Sitnikov, A; Kalabukhova, E; Oliynyk, V; Kolisnichenko, M

    2017-05-01

    We present the design and development of a single stage pulse power amplifier working in the frequency range 32-38 GHz based on a monolithic microwave integrated circuit (MMIC). We have designed the MMIC power amplifier by using the commercially available packaged GaAs pseudomorphic high electron mobility transistor. The circuit fabrication and assembly process includes the elaboration of the matching networks for the MMIC power amplifier and their assembling as well as the topology outline and fabrication of the printed circuit board of the waveguide-microstrip line transitions. At room ambient temperature, the measured peak output power from the prototype amplifier is 35.5 dBm for 16.6 dBm input driving power, corresponding to 19 dB gain. The measured rise/fall time of the output microwave signal modulated by a high-speed PIN diode was obtained as 5-6 ns at 20-250 ns pulse width with 100 kHz pulse repetition rate frequency.

  14. Novel packaging for CW and QCW diode laser modules for operation with high power and duty cycles

    NASA Astrophysics Data System (ADS)

    Fassbender, Wilhelm; Lotz, Jens; Kissel, Heiko; Biesenbach, Jens

    2018-02-01

    Continuous wave (CW) and quasi-continuous wave (QCW) operated diode laser bars and arrays have found a wide range of industrial, medical, scientific, military and space applications with a broad variety in wavelength, pulse energy, pulse duration and beam quality. Recent applications require even higher power, duty cycles and power density. The heat loss will be dissipated by conductive cooling or liquid cooling close to the bars. We present the latest performance and reliability data of two novel high-brightness CW and QCW arrays of customized and mass-production modules, in compact and robust industry design for operation with high power and high duty cycles. All designs are based on single diode packages consisting of 10mm laser bars, soft or hard soldered between expansion matched submounts. The modular components cover a wide span of designs which differ basically in water/conduction (active/passive) cooled, single, linear (horizontal and vertical) arranged designs, as well as housed and unhoused modules. The different assembling technologies of active and passive cooled base plates affect the heat dissipation and therefore the reachable power at different QCW operating conditions, as well as the lifetime. As an example, a package consisting of 8 laser diodes, connected to a 28.8*13.5*7.0mm3 DCB (direct copper bonded) submount, passively or actively cooled is considered. This design is of particular interest for mobile applications seamless module to module building system, with an infinite number of laser bars at 1.7mm pitch. Using 940nm bars we can reach an optical output power per bar of 450W at 25°C base plate temperature with 10Hz, 1.2% duty cycle and 1.2ms pulse duration. As an additional example, micro channel coolers can be vertically stacked up to 50 diodes with a 1,15mm pitch. This design is suitable for all applications, demanding also compactness and light weight and high power density. Using near infrared bars and others, we can reach an optical output power of 250W per bar at 25°C coolant temperature at CW operation.

  15. Pulse power 350 V nickel-metal hydride battery power-D-005-00181

    NASA Astrophysics Data System (ADS)

    Eskra, Michael D.; Ralston, Paula; Salkind, Alvin; Plivelich, Robert F.

    Energy-storage devices are needed for applications requiring very high-power over short periods of time. Such devices have various military (rail guns, electromagnetic launchers, and DEW) and commercial applications, such as hybrid electric vehicles, vehicle starting (SLI), and utility peak shaving. The storage and delivery of high levels of burst power can be achieved with a capacitor, flywheel, or rechargeable battery. In order to reduce the weight and volume of many systems they must contain advanced state-of-the-art electrochemical or electromechanical power sources. There is an opportunity and a need to develop energy-storage devices that have improved high-power characteristics compared to existing ultra capacitors, flywheels or rechargeable batteries. Electro Energy, Inc. has been engaged in the development of bipolar nickel-metal hydride batteries, which may fulfil the requirements of some of these applications. This paper describes a module rated at 300 V (255 cells) (6 Ah). The volume of the module is 23 L and the mass is 56 kg. The module is designed to deliver 50 kW pulses of 10 s duration at 50% state-of-charge. Details of the mechanical design of the module, safety considerations, along with the results of initial electrical characterization testing by the customer will be discussed. Some discussion of the possibilities for design optimization is also included.

  16. Recent advances in Reltron and Super-Reltron HPM source development

    NASA Astrophysics Data System (ADS)

    Miller, Robert B.; Muehlenweg, Carl A.; Habiger, Kerry W.; Smith, John R.; Shiffler, Donald A.

    1994-05-01

    Reltron and super-reltron microwave tubes use post acceleration of a well-modulated beam and multiple output cavity extraction sections to generate high power microwave pulses with excellent efficiency. We have continued our development of these tubes with emphasis being given to four specific topics: (1) Recent experiments with our 1-GHz super-reltron tube have demonstrated operation at a peak power level of 600 MW. With pulse durations of several hundred nanoseconds, the microwave energy per pulse is about 250 J. (2) We have extracted significant power (several tens of megawatts) at the third multiple (3 GHz) of our 1-GHz super-reltron tube using output cavities designed for operation in S-band. (3) We have fielded a small S-band super-reltron tube on our 260 kV modulator. We have obtained lifetime data for this tube under repetitive (20 Hz), long pulse (2 microsecond(s) ec) operating conditions. (4) We have initiated feasibility experiments of the reltron concept by post accelerating the bunched beam produced by a SLAC XK-5 klystron. In this paper we report our experimental results and discuss relevant theoretical considerations related to each of these four topics.

  17. Plasma-assisted CO2 conversion: optimizing performance via microwave power modulation

    NASA Astrophysics Data System (ADS)

    Britun, Nikolay; Silva, Tiago; Chen, Guoxing; Godfroid, Thomas; van der Mullen, Joost; Snyders, Rony

    2018-04-01

    Significant improvement in the energy efficiency of plasma-assisted CO2 conversion is achieved with applied power modulation in a surfaguide microwave discharge. The obtained values of CO2 conversion and energy efficiency are, respectively, 0.23 and 0.33 for a 0.95 CO2  +  0.05 N2 gas mixture. Analysis of the energy relaxation mechanisms shows that power modulation can potentially affect the vibrational-translational energy exchange in plasma. In our case, however, this mechanism does not play a major role, likely due to the low degree of plasma non-equilibrium in the considered pressure range. Instead, the gas residence time in the discharge active zone together with plasma pulse duration are found to be the main factors affecting the CO2 conversion efficiency at low plasma pulse repetition rates. This effect is confirmed experimentally by the in situ time-resolved two-photon absorption laser-induced fluorescence measurements of CO molecular density produced in the discharge as a result of CO2 decomposition.

  18. A low-power high-speed ultra-wideband pulse radio transmission system.

    PubMed

    Wei Tang; Culurciello, E

    2009-10-01

    We present a low-power high-speed ultra-wideband (UWB) transmitter with a wireless transmission test platform. The system is specifically designed for low-power high-speed wireless implantable biosensors. The integrated transmitter consists of a compact pulse generator and a modulator. The circuit is fabricated in the 0.5-mum silicon-on-sapphire process and occupies 420 mum times 420 mum silicon area. The transmitter is capable of generating pulses with 1-ns width and the pulse rate can be controlled between 90 MHz and 270 MHz. We built a demonstration/testing system for the transmitter. The transmitter achieves a 14-Mb/s data rate. With 50% duty cycle data, the power consumption of the chip is between 10 mW and 21 mW when the transmission distance is from 3.2 to 4 m. The core circuit size is 70 mum times 130 mum.

  19. High power all-polarization-maintaining photonic crystal fiber monolithic femtosecond nonlinear chirped-pulse amplifier

    NASA Astrophysics Data System (ADS)

    Lv, Zhiguo; Yang, Zhi; Li, Feng; Yang, Xiaojun; Li, Qianglong; Zhang, Xin; Wang, Yishan; Zhao, Wei

    2018-03-01

    We report on an experimental study on fully fusion spliced high power all-polarization-maintaining Yb-doped photonic crystal fiber (PCF) femtosecond nonlinear chirped-pulse amplifier (CPA), which features large values of the positive third-order dispersion (TOD) superposed from the single-mode fiber stretcher (SMFs) and grating-pair compressor. Compensation of the TOD is realized by means of self-phase modulation (SPM) induced nonlinear phase shift during amplification. Up to 9.8 W of compressed average power at 275 kHz repetition rates with 36 μJ pulse energy and 495 fs pulse width has been obtained. To the best of our knowledge, this is the highest output power generated from the strictly all-fiber nonlinear CPA amplifier in femtosecond domain, which provides a possibility for the industrialized promotion and development of the high energy femtosecond fiber laser.

  20. Development, Fabrication, and Testing of Inverter Power System for Metroliner

    DOT National Transportation Integrated Search

    1979-11-01

    This report documents the development and subsequent fabrication of a solid state auxiliary power conditioning unit (APCU) for the upgraded Metroliner. The APCU is an inverter of the pulse width modulated type having multiple parallel transistors in ...

  1. High rate lithium/thionyl chloride bipolar battery development

    NASA Technical Reports Server (NTRS)

    Russell, Philip G.; Goebel, F.

    1994-01-01

    Presented in viewgraph format are results and accomplishments on the development of lithium/thionyl chloride bipolar batteries. Results include the development of manufacturing capability for producing large quantities of uniform cathodes and bipolar plates; the development of assembly, sealing, and activation procedures for fabrication of battery modules containing up to 150 cells in bipolar configuration; and the successful demonstration of a 10.7 kW 150-cell module with constant power pulse discharge, 20 second pulse, and 10 percent duty cycle.

  2. Development of High Power Vacuum Tubes for Accelerators and Plasma Heating

    NASA Astrophysics Data System (ADS)

    Srivastava, Vishnu

    2012-11-01

    High pulsed power magnetrons and klystrons for medical and industrial accelerators, and high CW power klystrons and gyrotrons for plasma heating in tokamak, are being developed at CEERI. S-band 2.0MW pulsed tunable magnetrons of centre frequency 2856MHz and 2998 MHz were developed, and S-band 2.6MW pulsed tunable magnetron is being developed for medical LINAC, and 3MW pulsed tunable magnetron is being developed for industrial accelerator. S-band (2856MHz), 5MW pulsed klystron was developed for particle accelerator, and S-band 6MW pulsed klystron is under development for 10MeV industrial accelerator. 350MHz, 100kW (CW) klystron is being developed for proton accelerator, and C-band 250kW (CW) klystron is being developed for plasma heating. 42GHz, 200kW (CW/Long pulse) gyrotron is under development for plasma heating. Plasma filled tubes are also being developed for switching. 25kV/1kA and 40kV/3kA thyratrons were developed for high voltage high current switching in pulse modulators for magnetrons and klystrons. 25kV/3kA Pseudospark switch of current rise time of 1kA/|a-sec and pulse repetition rate of 500Hz is being developed. Plasma assisted high power microwave device is also being investigated.

  3. Single frequency RF powered ECG telemetry system

    NASA Technical Reports Server (NTRS)

    Ko, W. H.; Hynecek, J.; Homa, J.

    1979-01-01

    It has been demonstrated that a radio frequency magnetic field can be used to power implanted electronic circuitry for short range telemetry to replace batteries. A substantial reduction in implanted volume can be achieved by using only one RF tank circuit for receiving the RF power and transmitting the telemetered information. A single channel telemetry system of this type, using time sharing techniques, was developed and employed to transmit the ECG signal from Rhesus monkeys in primate chairs. The signal from the implant is received during the period when the RF powering radiation is interrupted. The ECG signal is carried by 20-microsec pulse position modulated pulses, referred to the trailing edge of the RF powering pulse. Satisfactory results have been obtained with this single frequency system. The concept and the design presented may be useful for short-range long-term implant telemetry systems.

  4. Field-Oriented Control Of Induction Motors

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Roth, Mary Ellen; Zinger, Don S.

    1993-01-01

    Field-oriented control system provides for feedback control of torque or speed or both. Developed for use with commercial three-phase, 400-Hz, 208-V, 5-hp motor. Systems include resonant power supply operating at 20 kHz. Pulse-population-modulation subsystem selects individual pulses of 20-kHz single-phase waveform as needed to synthesize three waveforms of appropriate lower frequency applied to three phase windings of motor. Electric actuation systems using technology currently being built to peak powers of 70 kW. Amplitude of voltage of effective machine-frequency waveform determined by momentary frequency of pulses, while machine frequency determined by rate of repetition of overall temporal pattern of pulses. System enables independent control of both voltage and frequency.

  5. Stabilization and control of the carrier-envelope phase of high-power femtosecond laser pulses using the direct locking technique.

    PubMed

    Imran, Tayyab; Lee, Yong S; Nam, Chang H; Hong, Kyung-Han; Yu, Tae J; Sung, Jae H

    2007-01-08

    We have stabilized and electronically controlled the carrier-envelope phase (CEP) of high-power femtosecond laser pulses, generated in a grating-based chirped-pulse amplification kHz Ti:sapphire laser, using the direct locking technique [Opt. Express 13, 2969 (2005)] combined with a slow feedback loop. An f-2f spectral interferometer has shown the CEP stabilities of 1.2 rad with the direct locking loop applied to the oscillator and of 180 mrad with an additional slow feedback loop, respectively. The electronic CEP modulations that can be easily realized in the direct locking loop are also demonstrated with the amplified pulses.

  6. Dc-To-Dc Converter Uses Reverse Conduction Of MOSFET's

    NASA Technical Reports Server (NTRS)

    Gruber, Robert P.; Gott, Robert W.

    1991-01-01

    In modified high-power, phase-controlled, full-bridge, pulse-width-modulated dc-to-dc converters, switching devices power metal oxide/semiconductor field-effect transistors (MOSFET's). Decreases dissipation of power during switching by eliminating approximately 0.7-V forward voltage drop in anti-parallel diodes. Energy-conversion efficiency increased.

  7. Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk

    PubMed Central

    Shumakova, V.; Malevich, P.; Ališauskas, S.; Voronin, A.; Zheltikov, A. M.; Faccio, D.; Kartashov, D.; Baltuška, A.; Pugžlys, A.

    2016-01-01

    The physics of strong-field applications requires driver laser pulses that are both energetic and extremely short. Whereas optical amplifiers, laser and parametric, boost the energy, their gain bandwidth restricts the attainable pulse duration, requiring additional nonlinear spectral broadening to enable few or even single cycle compression and a corresponding peak power increase. Here we demonstrate, in the mid-infrared wavelength range that is important for scaling the ponderomotive energy in strong-field interactions, a simple energy-efficient and scalable soliton-like pulse compression in a mm-long yttrium aluminium garnet crystal with no additional dispersion management. Sub-three-cycle pulses with >0.44 TW peak power are compressed and extracted before the onset of modulation instability and multiple filamentation as a result of a favourable interplay between strong anomalous dispersion and optical nonlinearity around the wavelength of 3.9 μm. As a manifestation of the increased peak power, we show the evidence of mid-infrared pulse filamentation in atmospheric air. PMID:27620117

  8. Modulated heat pulse propagation and partial transport barriers in chaotic magnetic fields

    DOE PAGES

    del-Castillo-Negrete, Diego; Blazevski, Daniel

    2016-04-01

    Direct numerical simulations of the time dependent parallel heat transport equation modeling heat pulses driven by power modulation in 3-dimensional chaotic magnetic fields are presented. The numerical method is based on the Fourier formulation of a Lagrangian-Green's function method that provides an accurate and efficient technique for the solution of the parallel heat transport equation in the presence of harmonic power modulation. The numerical results presented provide conclusive evidence that even in the absence of magnetic flux surfaces, chaotic magnetic field configurations with intermediate levels of stochasticity exhibit transport barriers to modulated heat pulse propagation. In particular, high-order islands and remnants of destroyed flux surfaces (Cantori) act as partial barriers that slow down or even stop the propagation of heat waves at places where the magnetic field connection length exhibits a strong gradient. The key parameter ismore » $$\\gamma=\\sqrt{\\omega/2 \\chi_\\parallel}$$ that determines the length scale, $$1/\\gamma$$, of the heat wave penetration along the magnetic field line. For large perturbation frequencies, $$\\omega \\gg 1$$, or small parallel thermal conductivities, $$\\chi_\\parallel \\ll 1$$, parallel heat transport is strongly damped and the magnetic field partial barriers act as robust barriers where the heat wave amplitude vanishes and its phase speed slows down to a halt. On the other hand, in the limit of small $$\\gamma$$, parallel heat transport is largely unimpeded, global transport is observed and the radial amplitude and phase speed of the heat wave remain finite. Results on modulated heat pulse propagation in fully stochastic fields and across magnetic islands are also presented. In qualitative agreement with recent experiments in LHD and DIII-D, it is shown that the elliptic (O) and hyperbolic (X) points of magnetic islands have a direct impact on the spatio-temporal dependence of the amplitude and the time delay of modulated heat pulses.« less

  9. Hybrid Simulation of Duty Cycle Influences on Pulse Modulated RF SiH4/Ar Discharge

    NASA Astrophysics Data System (ADS)

    Wang, Xifeng; Song, Yuanhong; Zhao, Shuxia; Dai, Zhongling; Wang, Younian

    2016-04-01

    A one-dimensional fluid/Monte-Carlo (MC) hybrid model is developed to describe capacitively coupled SiH4/Ar discharge, in which the lower electrode is applied by a RF source and pulse modulated by a square-wave, to investigate the modulation effects of the pulse duty cycle on the discharge mechanism. An electron Monte Carlo simulation is used to calculate the electron energy distribution as a function of position and time phase. Rate coefficients in chemical reactions can then be obtained and transferred to the fluid model for the calculation of electron temperature and densities of different species, such as electrons, ions, and radicals. The simulation results show that, the electron energy distribution f(ɛ) is modulated evidently within a pulse cycle, with its tail extending to higher energies during the power-on period, while shrinking back promptly in the afterglow period. Thus, the rate coefficients could be controlled during the discharge, resulting in modulation of the species composition on the substrate compared with continuous excitation. Meanwhile, more negative ions, like SiH-3 and SiH-2, may escape to the electrodes owing to the collapse of ambipolar electric fields, which is beneficial to films deposition. Pulse modulation is thus expected to provide additional methods to customize the plasma densities and components. supported by National Natural Science Foundation of China (No. 11275038)

  10. Direct diode lasers and their advantages for materials processing and other applications

    NASA Astrophysics Data System (ADS)

    Fritsche, Haro; Ferrario, Fabio; Koch, Ralf; Kruschke, Bastian; Pahl, Ulrich; Pflueger, Silke; Grohe, Andreas; Gries, Wolfgang; Eibl, Florian; Kohl, Stefanie; Dobler, Michael

    2015-03-01

    The brightness of diode lasers is improving continuously and has recently started to approach the level of some solid state lasers. The main technology drivers over the last decade were improvements of the diode laser output power and divergence, enhanced optical stacking techniques and system design, and most recently dense spectral combining. Power densities at the work piece exceed 1 MW/cm2 with commercially available industrial focus optics. These power densities are sufficient for cutting and welding as well as ablation. Single emitter based diode laser systems further offer the advantage of fast current modulation due their lower drive current compared to diode bars. Direct diode lasers may not be able to compete with other technologies as fiber or CO2-lasers in terms of maximum power or beam quality. But diode lasers offer a range of features that are not possible to implement in a classical laser. We present an overview of those features that will make the direct diode laser a very valuable addition in the near future, especially for the materials processing market. As the brightness of diode lasers is constantly improving, BPP of less than 5mm*mrad have been reported with multikW output power. Especially single emitter-based diode lasers further offer the advantage of very fast current modulation due to their low drive current and therefore low drive voltage. State of the art diode drivers are already demonstrated with pulse durations of <10μs and repetition rates can be adjusted continuously from several kHz up to cw mode while addressing power levels from 0-100%. By combining trigger signals with analog modulations nearly any kind of pulse form can be realized. Diode lasers also offer a wide, adaptable range of wavelengths, and wavelength stabilization. We report a line width of less than 0.1nm while the wavelength stability is in the range of MHz which is comparable to solid state lasers. In terms of applications, especially our (broad) wavelength combining technology for power scaling opens the window to new processes of cutting or welding and process control. Fast power modulation through direct current control allows pulses of several microseconds with hundreds of watts average power. Spot sizes of less than 100 μm are obtained at the work piece. Such a diode system allows materials processing with a pulse parameter range that is hardly addressed by any other laser system. High productivity material ablation with cost effective lasers is enabled. The wide variety of wavelengths, high brightness, fast power modulation and high efficiency of diode lasers results in a strong pull of existing markets, but also spurs the development of a wide variety of new applications.

  11. Exciting Alfven Waves using Modulated Electron Heating by High Power Microwaves

    NASA Astrophysics Data System (ADS)

    Wang, Yuhou; Gekelman, Walter; Pribyl, Patrick; van Compernolle, Bart; Papadopoulos, Konstantinos

    2014-10-01

    Experiments exploring the physics of ionospheric modification with intense perpendicular propagating waves (k-> ⊥B->0) on the Large Plasma Device (LaPD) at UCLA have been upgraded with the addition of a high power rapidly pulsed microwave source. The plasma is irradiated with ten pulses (250 kW X-band) near the upper-hybrid frequency. The pulses are modulated at a frequency of a fraction (0.1-1.0) of fci (ion cyclotron frequency). Based on a previous single-pulse experiment, the modulated electron heating may drive a large amplitude shear Alfvén wave (f

  12. Microprocessor control of multiple peak power tracking DC/DC converters for use with solar cell arrays

    NASA Technical Reports Server (NTRS)

    Frederick, Martin E. (Inventor); Jermakian, Joel (Inventor)

    1991-01-01

    A method and an apparatus is provided for efficiently controlling the power output of a solar cell array string or a plurality of solar cell array strings to achieve a maximum amount of output power from the strings under varying conditions of use. Maximum power output from a solar array string is achieved through control of a pulse width modulated DC/DC buck converter which transfers power from a solar array to a load or battery bus. The input voltage from the solar array to the converter is controlled by a pulse width modulation duty cycle, which in turn is controlled by a differential signal controller. By periodically adjusting the control voltage up or down by a small amount and comparing the power on the load or bus with that generated at different voltage values a maximum power output voltage may be obtained. The system is totally modular and additional solar array strings may be added to the system simply by adding converter boards to the system and changing some constants in the controller's control routines.

  13. Self-phase-modulation induced spectral broadening in silicon waveguides

    NASA Astrophysics Data System (ADS)

    Boyraz, Ozdal; Indukuri, Tejaswi; Jalali, Bahram

    2004-03-01

    The prospect for generating supercontinuum pulses on a silicon chip is studied. Using ~4ps optical pulses with 2.2GW/cm2 peak power, a 2 fold spectral broadening is obtained. Theoretical calculations, that include the effect of two-photon-absorption, indicate up to 5 times spectral broadening is achievable at 10x higher peak powers. Representing a nonlinear loss mechanism at high intensities, TPA limits the maximum optical bandwidth that can be generated.

  14. Self-phase-modulation induced spectral broadening in silicon waveguides.

    PubMed

    Boyraz, Ozdal; Indukuri, Tejaswi; Jalali, Bahram

    2004-03-08

    The prospect for generating supercontinuum pulses on a silicon chip is studied. Using ~4ps optical pulses with 2.2GW/cm(2) peak power, a 2 fold spectral broadening is obtained. Theoretical calculations, that include the effect of two-photon-absorption, indicate up to 5 times spectral broadening is achievable at 10x higher peak powers. Representing a nonlinear loss mechanism at high intensities, TPA limits the maximum optical bandwidth that can be generated.

  15. Modulated Pulsed Laser Sources for Imaging Lidars

    DTIC Science & Technology

    2007-10-01

    doped PM fiber . The ytterbium ions in the fiber are cladding-pumped to their excited states using four, 6-Watt multimode lasers at 976 nm. Yh-dop...next amplified using a fiber amplifier to an average power of 10-15 Watts. A highly efficient, periodically poled nonlinear optical material will be...establish the feasibility of both pulsing a 1064 nm laser to produce enough average power to successfully seed a Yb- doped fiber amplifier so it will

  16. Method for exciting inductive-resistive loads with high and controllable direct current

    DOEpatents

    Hill, Jr., Homer M.

    1976-01-01

    Apparatus and method for transmitting dc power to a load circuit by applying a dc voltage from a standard waveform synthesizer to duration modulate a bipolar rectangular wave generator. As the amplitude of the dc voltage increases, the widths of the rectangular wave generator output pulses increase, and as the amplitude of the dc voltage decreases, the widths of the rectangular wave generator output pulses decrease. Thus, the waveform synthesizer selectively changes the durations of the rectangular wave generator bipolar output pulses so as to produce a rectangular wave ac carrier that is duration modulated in accordance with and in direct proportion to the voltage amplitude from the synthesizer. Thereupon, by transferring the carrier to the load circuit through an amplifier and a rectifier, the load current also corresponds directly to the voltage amplitude from the synthesizer. To this end, the rectified wave at less than 100% duty factor, amounts to a doubled frequency direct voltage pulse train for applying a direct current to the load, while the current ripple is minimized by a high L/R in the load circuit. In one embodiment, a power transmitting power amplifier means having a dc power supply is matched to the load circuit through a transformer for current magnification without sacrificing load current duration capability, while negative voltage and current feedback are provided in order to insure good output fidelity.

  17. Intracavity KTP optical parametric oscillator driven by a KLM Nd:GGG laser with a single AO modulator

    NASA Astrophysics Data System (ADS)

    Chu, Hongwei; Zhao, Shengzhi; Yang, Kejian; Zhao, Jia; Li, Yufei; Li, Tao; Li, Guiqiu; Li, Dechun; Qiao, Wenchao

    2015-05-01

    An intracavity KTiOPO4 (KTP) optical parametric oscillator (OPO) pumped by a Kerr lens mode-locking (KLM) Nd:GGG laser near 1062 nm with a single AO modulator was realized for the first time. The mode-locking pulses of the signal wave were obtained with a short duration of subnanosecond and a repetition rate of several kilohertz (kHz). Under a diode pump power of 8.25 W, a maximum output power of 104 mW at signal wavelength near 1569 nm was obtained at a repetition rate of 2 kHz. The highest pulse energy and peak power were estimated to be 80 μJ and 102 kW at a repetition rate of 1 kHz, respectively. The shortest pulse duration was measured to be 749 ps. By considering the Gaussian spatial distribution of the photon density and the Kerr-lens effect in the gain medium, a set of the coupled rate equations for QML intracavity optical parametric oscillator are given and the numerical simulations are basically fitted with the experimental results.

  18. Pulsed laser-based optical frequency comb generator for high capacity wavelength division multiplexed passive optical network supporting 1.2 Tbps

    NASA Astrophysics Data System (ADS)

    Ullah, Rahat; Liu, Bo; Zhang, Qi; Saad Khan, Muhammad; Ahmad, Ibrar; Ali, Amjad; Khan, Razaullah; Tian, Qinghua; Yan, Cheng; Xin, Xiangjun

    2016-09-01

    An architecture for flattened and broad spectrum multicarriers is presented by generating 60 comb lines from pulsed laser driven by user-defined bit stream in cascade with three modulators. The proposed scheme is a cost-effective architecture for optical line terminal (OLT) in wavelength division multiplexed passive optical network (WDM-PON) system. The optical frequency comb generator consists of a pulsed laser in cascade with a phase modulator and two Mach-Zehnder modulators driven by an RF source incorporating no phase shifter, filter, or electrical amplifier. Optical frequency comb generation is deployed in the simulation environment at OLT in WDM-PON system supports 1.2-Tbps data rate. With 10-GHz frequency spacing, each frequency tone carries data signal of 20 Gbps-based differential quadrature phase shift keying (DQPSK) in downlink transmission. We adopt DQPSK-based modulation technique in the downlink transmission because it supports 2 bits per symbol, which increases the data rate in WDM-PON system. Furthermore, DQPSK format is tolerant to different types of dispersions and has a high spectral efficiency with less complex configurations. Part of the downlink power is utilized in the uplink transmission; the uplink transmission is based on intensity modulated on-off keying. Minimum power penalties have been observed with excellent eye diagrams and other transmission performances at specified bit error rates.

  19. Generation of sub-100-fs pulses from a CW mode-locked chromium-doped forsterite laser

    NASA Technical Reports Server (NTRS)

    Seas, A.; Petricevic, V.; Alfano, R. R.

    1992-01-01

    Generation of femtosecond pulses from a continuous-wave mode-locked chromium-doped forsterite laser is reported. The forsterite laser was actively mode locked by using an acoustooptic modulator operating at 78 MHz with two Brewster high-dispersion glass prisms for intracavity chirp compensation. Transform-limited sub-100-fs pulses were routinely generated in the TEM(00) mode with 85 mW of continuous power (with 1 percent output coupler), tunable over 1230-1280 nm. The shortest pulses measured had a 60-fs pulse width.

  20. Modulation instability initiated high power all-fiber supercontinuum lasers and their applications

    NASA Astrophysics Data System (ADS)

    Alexander, Vinay V.; Kulkarni, Ojas P.; Kumar, Malay; Xia, Chenan; Islam, Mohammed N.; Terry, Fred L.; Welsh, Michael J.; Ke, Kevin; Freeman, Michael J.; Neelakandan, Manickam; Chan, Allan

    2012-09-01

    High average power, all-fiber integrated, broadband supercontinuum (SC) sources are demonstrated. Architecture for SC generation using amplified picosecond/nanosecond laser diode (LD) pulses followed by modulation instability (MI) induced pulse breakup is presented and used to demonstrate SC sources from the mid-IR to the visible wavelengths. In addition to the simplicity in implementation, this architecture allows scaling up of the SC average power by increasing the pulse repetition rate and the corresponding pump power, while keeping the peak power, and, hence, the spectral extent approximately constant. Using this process, we demonstrate >10 W in a mid-IR SC extending from ˜0.8 to 4 μm, >5 W in a near IR SC extending from ˜0.8 to 2.8 μm, and >0.7 W in a visible SC extending from ˜0.45 to 1.2 μm. SC modulation capability is also demonstrated in a mid-IR SC laser with ˜3.9 W in an SC extending from ˜0.8 to 4.3 μm. The entire system and SC output in this case is modulated by a 500 Hz square wave at 50% duty cycle without any external chopping or modulation. We also explore the use of thulium doped fiber amplifier (TDFA) stages for mid-IR SC generation. In addition to the higher pump to signal conversion efficiency demonstrated in TDFAs compared to erbium/ytterbium doped fiber amplifier (EYFA), the shifting of the SC pump from ˜1.5 to ˜2 μm is pursued with an attempt to generate a longer extending SC into the mid-IR. We demonstrate ˜2.5 times higher optical conversion efficiency from pump to SC generation in wavelengths beyond 3.8 μm in the TDFA versus the EYFA based SC systems. The TDFA SC spectrum extends from ˜1.9 to 4.5 μm with ˜2.6 W at 50% modulation with a 250 Hz square wave. A variety of applications in defense, health care and metrology are also demonstrated using the SC laser systems presented in this paper.

  1. Effects of pulse frequency of input power on the physical and chemical properties of pulsed streamer discharge plasmas in water

    NASA Astrophysics Data System (ADS)

    Ruma; Lukes, P.; Aoki, N.; Spetlikova, E.; Hosseini, S. H. R.; Sakugawa, T.; Akiyama, H.

    2013-03-01

    A repetitive pulsed-power modulator, which employs a magnetic pulse compression circuit with a high-speed thyristor switch, was used to study the effects of the pulse repetition rate of input power on the physical and chemical properties of pulsed discharges in water. Positive high-voltage pulses of 20 kV with repetition rates of up to 1 kHz were used to generate a discharge in water using the point-to-plane electrode geometry. By varying the pulse repetition rate, two distinct modes of the discharge plasma were formed in water. The first mode was characterized by the formation of a corona-like discharge propagating through water in the form of streamer channels. The second mode was formed typically above 500 Hz, when the formation of streamer channels in water was suppressed and all plasmas occurred inside a spheroidal aggregate of very fine gas bubbles surrounding the tip of the high-voltage electrode. The production of hydrogen peroxide, degradation of organic dye Acid Orange 7 (AO7) and inactivation of bacteria Escherichia coli by the discharge in water were studied under different discharge plasma modes in dependence on the pulse repetition rate of input power. The efficiency of both chemical and biocidal processes induced by the plasma in water decreased significantly with pulse repetition rates above 500 Hz.

  2. In-line monitoring technique with visible light from 1.3 microm-band SHG module for optical access systems.

    PubMed

    Kubo, Takahiro; Taniguchi, Tomohiro; Tadanaga, Osamu; Sakurai, Naoya; Kimura, Hideaki; Hadama, Hisaya; Asobe, Masaki

    2010-02-01

    We propose an in-line monitoring technique that uses 650 nm visible light for performing maintenance work on Fiber-to-the-home (FTTH) network quickly without the need for measuring skills or external devices. This technique is characterized by visible light (650 nm) generated by an SHG module from the 1.3 microm-band line signal. We fabricate a 1.3 microm-band quasi phase matched LiNbO(3) (QPM-LN) module, and the measure the 650 nm second harmonic (SH) power to test the proposed short-pulse modulation method. The results confirm the feasibility of the short-pulse modulation method with different peak factors (PFs) (1.0-7.3). We also examine the effect of short-pulse modulation on system performance at the optical receiver by measuring the bit error rate (BER) of received data (1.25 Gb/s). The BER is basically unaffected by the PF (1.0-5.5). This means that the proposed technique has little influence on data reception as regards PF (1.0-5.5).

  3. Femtosecond solid-state laser based on a few-layered black phosphorus saturable absorber.

    PubMed

    Su, Xiancui; Wang, Yiran; Zhang, Baitao; Zhao, Ruwei; Yang, Kejian; He, Jingliang; Hu, Qiangqiang; Jia, Zhitai; Tao, Xutang

    2016-05-01

    In this Letter, a high-quality, few-layered black phosphorus (BP) saturable absorber (SA) was fabricated successfully, and a femtosecond solid-state laser modulated by BP-SA was experimentally demonstrated for the first time, to the best of our knowledge. Pulses as short as 272 fs were achieved with an average output power of 0.82 W, corresponding to the pulse energy of 6.48 nJ and peak power of 23.8 MW. So far, these represent the shortest pulse duration and highest output power ever obtained with a BP-based mode-locked solid-state laser. The results indicate the promising potential of few-layered BP-SA for applications in solid-state femtosecond mode-locked lasers.

  4. Power electronics for low power arcjets

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Hill, Gerald M.

    1991-01-01

    In anticipation of the needs of future light-weight, low-power spacecraft, arcjet power electronics in the 100 to 400 W operating range were developed. Limited spacecraft power and thermal control capacity of these small spacecraft emphasized the need for high efficiency. Power topologies similar to those in the higher 2 kW and 5 to 30 kW power range were implemented, including a four transistor bridge switching circuit, current mode pulse-width modulated control, and an output current averaging inductor with an integral pulse generation winding. Reduction of switching transients was accomplished using a low inductance power distribution network, and no passive snubber circuits were necessary for power switch protection. Phase shift control of the power bridge was accomplished using an improved pulse width modulation to phase shift converter circuit. These features, along with conservative magnetics designs allowed power conversion efficiencies of greater than 92.5 percent to be achieved into resistive loads over the entire operating range of the converter. Electromagnetic compatibility requirements were not considered in this work, and control power for the converter was derived from AC mains. Addition of input filters and control power converters would result in an efficiency of on the order of 90 percent for a flight unit. Due to the developmental nature of arcjet systems at this power level, the exact nature of the thruster/power processor interface was not quantified. Output regulation and current ripple requirements of 1 and 20 percent respectively, as well as starting techniques, were derived from the characteristics of the 2 kW system but an open circuit voltage in excess of 175 V was specified. Arcjet integration tests were performed, resulting in successful starts and stable arcjet operation at power levels as low as 240 W with simulated hydrazine propellants.

  5. Development of thermally controlled HALNA DPSSL for inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Matsumoto, Osamu; Yasuhara, Ryo; Kurita, Takashi; Ikegawa, Tadashi; Sekine, Takashi; Kawashima, Toshiyuki; Kawanaka, Junji; Norimatsu, Takayoshi; Miyanaga, Noriaki; Izawa, Yasukazu; Nakatsuka, Masahiro; Miyamoto, Masahiro; Kan, Hirofumi; Furukawa, Hiroyuki; Motokoshi, Shinji

    2006-02-01

    We have been developing a high average-power laser system for science and industry applications that can generate an output of 20 J per pulse at 10-Hz operation. Water-cooled Nd:glass zig-zag slab is pumped with 803-nm AlGaAs laser-diode modules. To efficiently extract energy from the laser medium, the laser beam alternately passes through dual zig-zag slab amplifier modules. Twin LD modules equipped on each slab amplifier module pump the laser medium with a peak power density of 2.5 kW/cm2. In high power laser system, thermal load in the laser medium causes serious thermal effects. We arranged cladding glasses on the top and bottom of the laser slab to reduce thermal effects.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harper, Jason; Dobrzynski, Daniel S.

    A smart charging system for charging a plug-in electric vehicle (PEV) includes an electric vehicle supply equipment (EVSE) configured to supply electrical power to the PEV through a smart charging module coupled to the EVSE. The smart charging module comprises an electronic circuitry which includes a processor. The electronic circuitry includes electronic components structured to receive electrical power from the EVSE, and supply the electrical power to the PEV. The electronic circuitry is configured to measure a charging parameter of the PEV. The electronic circuitry is further structured to emulate a pulse width modulated signal generated by the EVSE. Themore » smart charging module can also include a first coupler structured to be removably couple to the EVSE and a second coupler structured to be removably coupled to the PEV.« less

  7. Experimental demonstration of PAM-DWMT for passive optical network

    NASA Astrophysics Data System (ADS)

    Lin, Bangjiang; Zhang, Kaiwei; Tang, Xuan; Ghassemlooy, Zabih; Lin, Chun; Zhou, Zhenlei

    2018-07-01

    We experimentally demonstrate a discrete wavelet multitone (DWMT) modulation scheme based on pulse amplitude modulation (PAM) for next generation passive optical network (PON), which offers high tolerance against chromatic dispersion, high spectral efficiency, low peak to average power ratio (PAPR) and low side lobes. The experimental results show the chromatic dispersion induced power penalties are negligible after 20km fiber transmission. Compared with orthogonal frequency division multiplexing (OFDM), DWMT offers a better receiver sensitivity.

  8. 760nm: a new laser diode wavelength for hair removal modules

    NASA Astrophysics Data System (ADS)

    Wölz, Martin; Zorn, Martin; Pietrzak, Agnieszka; Kindsvater, Alex; Meusel, Jens; Hülsewede, Ralf; Sebastian, Jürgen

    2015-02-01

    A new high-power semiconductor laser diode module, emitting at 760 nm is introduced. This wavelength permits optimum treatment results for fair skin individuals, as demonstrated by the use of Alexandrite lasers in dermatology. Hair removal applications benefit from the industry-standard diode laser design utilizing highly efficient, portable and light-weight construction. We show the performance of a tap-water-cooled encapsulated laser diode stack with a window for use in dermatological hand-pieces. The stack design takes into account the pulse lengths required for selectivity in heating the hair follicle vs. the skin. Super-long pulse durations place the hair removal laser between industry-standard CW and QCW applications. The new 760 nm laser diode bars are 30% fill factor devices with 1.5 mm long resonator cavities. At CW operation, these units provide 40 W of optical power at 43 A with wall-plug-efficiency greater than 50%. The maximum output power before COMD is 90 W. Lifetime measurements starting at 40 W show an optical power loss of 20% after about 3000 h. The hair removal modules are available in 1x3, 1x8 and 2x8 bar configurations.

  9. Design of 5 V DC to 20 V DC switching regulator for power supply module

    NASA Astrophysics Data System (ADS)

    Azmi, N. A.; Murad, S. A. Z.; Harun, A.; Ismail, R. C.; Isa, M. N. M.; Zulkifeli, M. A.

    2017-09-01

    This paper presents the design of 5 V to 20 V DC switching regulator for power supply module. A voltage multiplier which consists of cascaded diode-capacitor combination is used in order to obtain a high voltage power supply. Due to power loss that has occurred in a stray of component arrangement, the proposed design employs a pulse width modulation (PWM) controller circuit with an inclusion of a capacitor, diode, and inductor components. The input supply of 5 V DC to LT1618 controller circuit has produced 20.35 V based from simulation results. Meanwhile, the measurement results of 19.36 V are obtained and the feedback signal is required for the purpose of stabilizing the output. The proposed design can reduce the components as well as the PCB size, thus minimizing the overall cost of making a switching regulator for power supply module.

  10. Control and performance of the AGS and AGS Booster Main Magnet Power Supplies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reece, R.K.; Casella, R.; Culwick, B.

    1993-06-01

    Techniques for precision control of the main magnet power supplies for the AGS and AGS Booster synchrotron will be discussed. Both synchrotrons are designed to operate in a Pulse-to-Pulse Modulation (PPM) environment with a Supercycle Generator defining and distributing global timing events for the AGS Facility. Details of modelling, real-time feedback and feedforward systems, generation and distribution of real time field data, operational parameters and an overview of performance for both machines are included.

  11. Control and performance of the AGS and AGS Booster Main Magnet Power Supplies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reece, R.K.; Casella, R.; Culwick, B.

    1993-01-01

    Techniques for precision control of the main magnet power supplies for the AGS and AGS Booster synchrotron will be discussed. Both synchrotrons are designed to operate in a Pulse-to-Pulse Modulation (PPM) environment with a Supercycle Generator defining and distributing global timing events for the AGS Facility. Details of modelling, real-time feedback and feedforward systems, generation and distribution of real time field data, operational parameters and an overview of performance for both machines are included.

  12. Generation of spectrally-stable continuous-wave emission and ns pulses at 800 nm and 975 nm with a peak power of 4 W using a distributed Bragg reflector laser and a ridge-waveguide power amplifier

    NASA Astrophysics Data System (ADS)

    Klehr, A.; Wenzel, H.; Fricke, J.; Bugge, F.; Liero, A.; Hoffmann, Th.; Erbert, G.; Tränkle, G.

    2015-03-01

    Semiconductor based sources which emit high-power spectrally stable nearly diffraction-limited optical pulses in the nanosecond range are ideally suited for a lot of applications, such as free-space communications, metrology, material processing, seed lasers for fiber or solid state lasers, spectroscopy, LIDAR and frequency doubling. Detailed experimental investigations of 975 nm and 800 nm diode lasers based on master oscillator power amplifier (MOPA) light sources are presented. The MOPA systems consist of distributed Bragg reflector lasers (DBR) as master oscillators driven by a constant current and ridge waveguide power amplifiers which can be driven DC and by current pulses. In pulse regime the amplifiers modulated with rectangular current pulses of about 5 ns width and a repetition frequency of 200 kHz act as optical gates, converting the continuous wave (CW) input beam emitted by the DBR lasers into a train of short optical pulses which are amplified. With these experimental MOPA arrangements no relaxation oscillations in the pulse power occur. With a seed power of about 5 mW at a wavelength of 973 nm output powers behind the amplifier of about 1 W under DC injection and 4 W under pulsed operation, corresponding to amplification factors of 200 (amplifier gain 23 dB) and 800 (gain 29 dB) respectively, are reached. At 800 nm a CW power of 1 W is obtained for a seed power of 40 mW. The optical spectra of the emission of the amplifiers exhibit a single peak at a constant wavelength with a line width < 10 pm in the whole investigated current ranges. The ratios between laser and ASE levels were > 50 dB. The output beams are nearly diffraction limited with beam propagation ratios M2lat ~ 1.1 and M2ver ~ 1.2 up to 4 W pulse power.

  13. 1540-nm single frequency single-mode pulsed all fiber laser for coherent Doppler lidar

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Diao, Weifeng; Liu, Yuan; Liu, Jiqiao; Hou, Xia; Chen, Weibiao

    2015-02-01

    A single-mode single frequency eye-safe pulsed all fiber laser based on master oscillator power amplification structure is presented. This laser is composed of a narrow linewidth distributed laser diode seed laser and two-stage cascade amplifiers. 0.8 m longitudinally gradient strained erbium/ytterbium co-doped polarization-maintaining fiber with a core diameter of 10 μm is used as the gain fiber and two acoustic-optics modulators are adopted to enhance pulse extinction ratio. A peak power of 160 W and a pulse width of 200 ns at 10 kHz repetition rate are achieved with transform-limited linewidth and diffraction-limited beam quality. This laser will be employed in a compact short range coherent Doppler wind lidar.

  14. Research on multi-switch synchronization based on single trigger generator

    NASA Astrophysics Data System (ADS)

    Geng, Jiuyuan; Cheng, Xinbing; Yang, Jianhua; Yang, Xiao; Chen, Rong

    2018-05-01

    Multi-switch synchronous operation is an effective approach to provide high-voltage high-current for a high-power device. In this paper, we present a synchronization system with a corona stabilized triggered switch (CSTS) as main switch and an all-solid modularized quasi-square pulse forming system. In addition, this paper provides explanations of low jitter and accurate triggering of CSTS based on streamer theory. Different switches of the module are triggered by an electrical pulse created by a trigger generator, a quasi-square pulse can be created on the load. The experimental results show that it is able to switch voltages in excess of 40kV with nanosecond system jitter for three-module synchronous operation.

  15. A novel pulse compression algorithm for frequency modulated active thermography using band-pass filter

    NASA Astrophysics Data System (ADS)

    Chatterjee, Krishnendu; Roy, Deboshree; Tuli, Suneet

    2017-05-01

    This paper proposes a novel pulse compression algorithm, in the context of frequency modulated thermal wave imaging. The compression filter is derived from a predefined reference pixel in a recorded video, which contains direct measurement of the excitation signal alongside the thermal image of a test piece. The filter causes all the phases of the constituent frequencies to be adjusted to nearly zero value, so that on reconstruction a pulse is obtained. Further, due to band-limited nature of the excitation, signal-to-noise ratio is improved by suppressing out-of-band noise. The result is similar to that of a pulsed thermography experiment, although the peak power is drastically reduced. The algorithm is successfully demonstrated on mild steel and carbon fibre reference samples. Objective comparisons of the proposed pulse compression algorithm with the existing techniques are presented.

  16. Impact Of The Pulse Width Modulation On The Temperature Distribution In The Armature Of A Solenoid Valve

    NASA Astrophysics Data System (ADS)

    Goraj, R.

    2015-12-01

    In order to estimate the inductive power set in the armature of the high-speed solenoid valve (HSV) during the open loop control (OLC) using pulse width modulation (PWM) an analytical explicit formula has been derived. The simplifications taken both in the geometry and in the physical behavior of the HSV were described. The inductive power was calculated for different boundary conditions and shown as a function of the frequency of the coil current. The power set in the armature was used as an input to the thermal calculation. The thermal calculation had an objective to estimate the time dependent temperature distribution in the armature of the HSV. All the derivation steps were presented and the influence of different boundary conditions was shown and discussed. The increase of the temperature during the heating with inductive power has been evaluated both in the core and on the side surface of the HSV.

  17. LDMOS Channel Thermometer Based on a Thermal Resistance Sensor for Balancing Temperature in Monolithic Power ICs.

    PubMed

    Lin, Tingyou; Ho, Yingchieh; Su, Chauchin

    2017-06-15

    This paper presents a method of thermal balancing for monolithic power integrated circuits (ICs). An on-chip temperature monitoring sensor that consists of a poly resistor strip in each of multiple parallel MOSFET banks is developed. A temperature-to-frequency converter (TFC) is proposed to quantize on-chip temperature. A pulse-width-modulation (PWM) methodology is developed to balance the channel temperature based on the quantization. The modulated PWM pulses control the hottest of metal-oxide-semiconductor field-effect transistor (MOSFET) bank to reduce its power dissipation and heat generation. A test chip with eight parallel MOSFET banks is fabricated in TSMC 0.25 μm HV BCD processes, and total area is 900 × 914 μm². The maximal temperature variation among the eight banks can reduce to 2.8 °C by the proposed thermal balancing system from 9.5 °C with 1.5 W dissipation. As a result, our proposed system improves the lifetime of a power MOSFET by 20%.

  18. LDMOS Channel Thermometer Based on a Thermal Resistance Sensor for Balancing Temperature in Monolithic Power ICs

    PubMed Central

    Lin, Tingyou; Ho, Yingchieh; Su, Chauchin

    2017-01-01

    This paper presents a method of thermal balancing for monolithic power integrated circuits (ICs). An on-chip temperature monitoring sensor that consists of a poly resistor strip in each of multiple parallel MOSFET banks is developed. A temperature-to-frequency converter (TFC) is proposed to quantize on-chip temperature. A pulse-width-modulation (PWM) methodology is developed to balance the channel temperature based on the quantization. The modulated PWM pulses control the hottest of metal-oxide-semiconductor field-effect transistor (MOSFET) bank to reduce its power dissipation and heat generation. A test chip with eight parallel MOSFET banks is fabricated in TSMC 0.25 μm HV BCD processes, and total area is 900 × 914 μm2. The maximal temperature variation among the eight banks can reduce to 2.8 °C by the proposed thermal balancing system from 9.5 °C with 1.5 W dissipation. As a result, our proposed system improves the lifetime of a power MOSFET by 20%. PMID:28617346

  19. High-Power X-Band Semiconductor RF Switch for Pulse Compression Systems of Future Colliders

    NASA Astrophysics Data System (ADS)

    Tantawi, Sami G.; Tamura, Fumihiko

    2000-04-01

    We describe the potential of semiconductor X-band RF switch arrays as a means of developing high power RF pulse compression systems for future linear colliders. The switch systems described here have two designs. Both designs consist of two 3dB hybrids and active modules. In the first design the module is composed of a cascaded active phase shifter. In the second design the module uses arrays of SPST (Single Pole Single Throw) switches. Each cascaded element of the phase shifter and the SPST switch has similar design. The active element consists of symmetrical three-port tee-junctions and an active waveguide window in the symmetrical arm of the tee-junction. The design methodology of the elements and the architecture of the whole switch system are presented. We describe the scaling law that governs the relation between power handling capability and number of elements. The design of the active waveguide window is presented. The waveguide window is a silicon wafer with an array of four hundred PIN/NIP diodes covering the surface of the window. This waveguide window is located in an over-moded TE01 circular waveguide. The results of high power RF measurements of the active waveguide window are presented. The experiment is performed at power levels of tens of megawatts at X-band.

  20. Simple pre-distortion schemes for improving the power efficiency of SOA-based IR-UWB over fiber systems

    NASA Astrophysics Data System (ADS)

    Taki, H.; Azou, S.; Hamie, A.; Al Housseini, A.; Alaeddine, A.; Sharaiha, A.

    2017-01-01

    In this paper, we investigate the usage of SOA for reach extension of an impulse radio over fiber system. Operating in the saturated regime translates into strong nonlinearities and spectral distortions, which drops the power efficiency of the propagated pulses. After studying the SOA response versus operating conditions, we have enhanced the system performance by applying simple analog pre-distortion schemes for various derivatives of the Gaussian pulse and their combination. A novel pulse shape has also been designed by linearly combining three basic Gaussian pulses, offering a very good spectral efficiency (> 55 %) for a high power (0 dBm) at the amplifier input. Furthermore, the potential of our technique has been examined considering a 1.5 Gbps-OOK and 0.75 Gbps-PPM modulation schemes. Pre-distortion proved an advantage for a large extension of optical link (150 km), with an inline amplification via SOA at 40 km.

  1. Pulse compression in an electro-optic Q-switched diode-pumped YVO4/Nd:YVO4 laser with a Cr4+:YAG saturable absorber.

    PubMed

    Li, Tao; Zhao, Shengzhi; Zhuo, Zhuang; Yang, Kejian; Li, Guiqiu; Li, Dechun

    2009-04-20

    A diode end-pumped doubly Q-switched YVO4/Nd:YVO4 laser has been realized for the first time to our knowledge by using both an electro-optic (EO) modulator and a Cr4):YAG saturable absorber. A 3.8 ns pulse width is generated by this laser under a pump power of 15 W at 2 kHz, which is obviously compressed in comparison with that of 8.8 ns from a single actively EO Q-switched laser. Under the same conditions, peak power values of 174.7 and 93 kW are also obtained. A coupled equation is given to theoretically analyze the experimental data. The experimental and theoretical results show that the doubly Q-switched laser has the advantages of a shorter pulse width and higher pulse peak power in contrast with a singly Q-switched laser.

  2. Q-switched all-fiber laser with short pulse duration based on tungsten diselenide

    NASA Astrophysics Data System (ADS)

    Li, Wenyi; OuYang, Yuyi; Ma, Guoli; Liu, Mengli; Liu, Wenjun

    2018-05-01

    Fiber lasers are widely used in industrial processing, sensing, medical and communications applications due to their simple structure, good stability and low cost. With the rapid development of fiber lasers and the sustained improvement of industrial laser quality requirements, researchers in ultrafast optics focus on how to get laser pulses with high output power and narrow pulse duration. Q-switched technology is one of the most effective techniques to generate ultrashort pulses. In this paper, a tungsten diselenide saturable absorber with 16.82% modulation depth is prepared by chemical vapor deposition. Experimental results show that when the pump power changes from 115.7 mW to 630 mW, the all-fiber laser can achieve a stable Q-switched pulse output. The repetition rate of the output pulse varies from 80.32 kHz to 204.2 kHz, the pulse duration is 581 ns, the maximum output power is 17.1 mW and the maximum pulse energy is 83.7 nJ. Results in this paper show that tungsten diselenide can be applied to ultrafast optics, which is a kind of saturable absorption material with excellent properties.

  3. Narrow linewidth picosecond UV pulsed laser with mega-watt peak power.

    PubMed

    Huang, Chunning; Deibele, Craig; Liu, Yun

    2013-04-08

    We demonstrate a master oscillator power amplifier (MOPA) burst mode laser system that generates 66 ps/402.5 MHz pulses with mega-watt peak power at 355 nm. The seed laser consists of a single frequency fiber laser (linewidth < 5 KHz), a high bandwidth electro-optic modulator (EOM), a picosecond pulse generator, and a fiber based preamplifier. A very high extinction ratio (45 dB) has been achieved by using an adaptive bias control of the EOM. The multi-stage Nd:YAG amplifier system allows a uniformly temporal shaping of the macropulse with a tunable pulse duration. The light output from the amplifier is converted to 355 nm, and over 1 MW peak power is obtained when the laser is operating in a 5-μs/10-Hz macropulse mode. The laser output has a transform-limited spectrum with a very narrow linewidth of individual longitudinal modes. The immediate application of the laser system is the laser-assisted hydrogen ion beam stripping for the Spallation Neutron Source (SNS).

  4. Doping management for high-power fiber lasers: 100 W, few-picosecond pulse generation from an all-fiber-integrated amplifier.

    PubMed

    Elahi, P; Yılmaz, S; Akçaalan, O; Kalaycıoğlu, H; Oktem, B; Senel, C; Ilday, F Ö; Eken, K

    2012-08-01

    Thermal effects, which limit the average power, can be minimized by using low-doped, longer gain fibers, whereas the presence of nonlinear effects requires use of high-doped, shorter fibers to maximize the peak power. We propose the use of varying doping levels along the gain fiber to circumvent these opposing requirements. By analogy to dispersion management and nonlinearity management, we refer to this scheme as doping management. As a practical first implementation, we report on the development of a fiber laser-amplifier system, the last stage of which has a hybrid gain fiber composed of high-doped and low-doped Yb fibers. The amplifier generates 100 W at 100 MHz with pulse energy of 1 μJ. The seed source is a passively mode-locked fiber oscillator operating in the all-normal-dispersion regime. The amplifier comprises three stages, which are all-fiber-integrated, delivering 13 ps pulses at full power. By optionally placing a grating compressor after the first stage amplifier, chirp of the seed pulses can be controlled, which allows an extra degree of freedom in the interplay between dispersion and self-phase modulation. This way, the laser delivers 4.5 ps pulses with ~200 kW peak power directly from fiber, without using external pulse compression.

  5. Acousto-optic modulation in diode pumped solid state lasers

    NASA Astrophysics Data System (ADS)

    Jabczynski, Jan K.; Zendzian, Waldemar; Kwiatkowski, Jacek

    2007-02-01

    The main properties of acousto-optic modulators (AOM) applied in laser technology are presented and discussed in the paper. The critical review of application of AOMs in several types of diode pumped solid state lasers (DPSSL) is given. The short description of few DPSSLs developed in our group is presented in the following chapters of the paper. The parameters of a simple AO-Q-switched Nd:YVO 4 laser (peak power up to 60 kW, pulse duration of 5-15 ns, repetition rate in the range 10-100 kHz, with average power above 5 W) are satisfactory for different application as follows: higher harmonic generation, pumping of 'eye-safe' OPOs etc. The achieved brightness of 10 17 W/m2/srd is comparable to the strongest technological Q-switched lasers of kW class of average power. The main aim of paper is to present novel type of lasers with acousto-optic modulation namely: AO-q-switched and mode locked (AO-QML) lasers. We have designed the 3.69-m long Z-type resonator of the frequency matched to the RF frequency of AOM. As a gain medium the Nd:YVO 4 crystal end pumped by 20 W laser diode was applied. The energy of envelope of QML pulse train was up to 130 μJ with sub-nanosecond mode locked pulse of maximum 30-μJ energy.

  6. Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber.

    PubMed

    Fu, L; Rochette, M; Ta'eed, V; Moss, D; Eggleton, B

    2005-09-19

    We investigate the feasibility of all-optical regeneration based on self-phase modulation in single mode As2Se3 chalcogenide fiber. By combining the chalcogenide fiber with a bandpass filter, we achieve a near step-like power transfer function with no pulse distortion. The device is shown to operate with 5.8 ps duration pulses, thus demonstrating the feasibility of this device operating with high bit-rate data signals. These results are achieved with pulse peak powers <10 W in a fully passive device, including only 2.8 m of chalcogenide fiber. We obtain an excellent agreement between theory and experiment and show that both the high nonlinearity of the chalcogenide glass along with its high normal dispersion near 1550 nm enables a significant device length reduction in comparison with silica-based devices, without compromise on the performance. We find that even for only a few meters of fiber, the large normal dispersion of the chalcogenide glass inhibits spectral oscillations that would appear with self-phase modulation alone. We measure the two photon absorption attenuation coefficient and find that it advantageously affects the device transfer function.

  7. Compact 1 mJ fiber MOPA for space-based laser-ablation resonant ionization mass spectrometry (LARIMS)

    NASA Astrophysics Data System (ADS)

    Mu, Xiaodong; Crain, William; Nguyen, Can; Ionov, Pavel; Steinvurzel, Paul; Dotan, Yaniv; Karuza, Petras; Lotshaw, William; Rose, Todd; Beck, Steven; Anderson, F. Scott

    2018-02-01

    A 1064 nm, 1 mJ pulsed fiber MOPA module, housed in 16"x14"x2.5" package for application in a lunar and planetary in-situ surface dating instrument is demonstrated. The module is based on a three-stage MOPA with a 60 μm core tapered fiber terminal amplifier. The master oscillator and first two preamplifier stages, which generate 20 μJ pulses, are all contained on a 13"x11"x1" board. Several improvements to the electronic signal control were instrumental to the laser development, including bipolar drive of the phase modulator for SBS suppression, shaping of the seed pulse to compensate pulse steepening, and pulsed operation of the power amplifier pump to reduce spontaneous emission at low pulse repetition frequency. The packaged laser runs at a repetition rate of 10 kHz and generates 10 ns pulses at 1 mJ with a 40 GHz linewidth, an M2 1.2 beam quality, and an 18 dB polarization extinction ratio. The modular design enables seven independent lasers to be stacked in a 20"x18"x16.25" enclosure, supporting a path towards a fiber laser based LARIMS for advanced materials characterization and chronological dating in harsh and remote environments.

  8. Air and water cooled modulator

    DOEpatents

    Birx, Daniel L.; Arnold, Phillip A.; Ball, Don G.; Cook, Edward G.

    1995-01-01

    A compact high power magnetic compression apparatus and method for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air.

  9. Quinary excitation method for pulse compression ultrasound measurements.

    PubMed

    Cowell, D M J; Freear, S

    2008-04-01

    A novel switched excitation method for linear frequency modulated excitation of ultrasonic transducers in pulse compression systems is presented that is simple to realise, yet provides reduced signal sidelobes at the output of the matched filter compared to bipolar pseudo-chirp excitation. Pulse compression signal sidelobes are reduced through the use of simple amplitude tapering at the beginning and end of the excitation duration. Amplitude tapering using switched excitation is realised through the use of intermediate voltage switching levels, half that of the main excitation voltages. In total five excitation voltages are used creating a quinary excitation system. The absence of analogue signal generation and power amplifiers renders the excitation method attractive for applications with requirements such as a high channel count or low cost per channel. A systematic study of switched linear frequency modulated excitation methods with simulated and laboratory based experimental verification is presented for 2.25 MHz non-destructive testing immersion transducers. The signal to sidelobe noise level of compressed waveforms generated using quinary and bipolar pseudo-chirp excitation are investigated for transmission through a 0.5m water and kaolin slurry channel. Quinary linear frequency modulated excitation consistently reduces signal sidelobe power compared to bipolar excitation methods. Experimental results for transmission between two 2.25 MHz transducers separated by a 0.5m channel of water and 5% kaolin suspension shows improvements in signal to sidelobe noise power in the order of 7-8 dB. The reported quinary switched method for linear frequency modulated excitation provides improved performance compared to pseudo-chirp excitation without the need for high performance excitation amplifiers.

  10. Influence of the four-photon parametric processes and cross-phase modulation on the relative motion of optical filaments

    NASA Astrophysics Data System (ADS)

    Kovachev, L. M.; Georgieva, D. A.; Dakova, A. M.

    2015-10-01

    We investigate two types of nonlinear interaction between collinear femtosecond laser pulses with power slightly above the critical for self-focusing {{P}\\text{cr}} . In the first case we study energy exchange between filaments. The model describes this process through a degenerate four-photon parametric mixing (FPPM) scheme and requests initial phase difference between the waves. When there is no initial phase difference between the pulses, the FPPM process does not work. In this case the second type of interaction is obtained as merging between two, three or four filaments in a single filament with higher power. It is found that in the second case the interflow between the filaments has the potential for interaction due to cross-phase modulation (CPM).

  11. Conceptual design of laser fusion reactor KOYO-fast Concepts of reactor system and laser driver

    NASA Astrophysics Data System (ADS)

    Kozaki, Y.; Miyanaga, N.; Norimatsu, T.; Soman, Y.; Hayashi, T.; Furukawa, H.; Nakatsuka, M.; Yoshida, K.; Nakano, H.; Kubomura, H.; Kawashima, T.; Nishimae, J.; Suzuki, Y.; Tsuchiya, N.; Kanabe, T.; Jitsuno, T.; Fujita, H.; Kawanaka, J.; Tsubakimoto, K.; Fujimoto, Y.; Lu, J.; Matsuoka, S.; Ikegawa, T.; Owadano, Y.; Ueda, K.; Tomabechi, K.; Reactor Design Committee in Ife Forum, Members Of

    2006-06-01

    We have carried out the design studies of KOYO-Fast laser fusion power plant, using fast ignition cone targets, DPSSL lasers, and LiPb liquid wall chambers. Using fast ignition targets, we could design a middle sized 300 MWe reactor module, with 200 MJ fusion pulse energy and 4 Hz rep-rates, and 1200MWe modular power plants with 4 reactor modules and a 16 Hz laser driver. The liquid wall chambers with free surface cascade flows are proposed for cooling surface quickly enough to a 4 Hz pulse operation. We examined the potential of Yb-YAG ceramic lasers operated at 150˜ 225 K for both implosion and heating laser systems required for a 16-Hz repetition and 8 % total efficiency.

  12. Strong polarization-dependent terahertz modulation of aligned Ag nanowires on Si substrate.

    PubMed

    Lee, Gyuseok; Maeng, Inhee; Kang, Chul; Oh, Myoung-Kyu; Kee, Chul-Sik

    2018-05-14

    Optically tunable, strong polarization-dependent transmission of terahertz pulses through aligned Ag nanowires on a Si substrate is demonstrated. Terahertz pulses primarily pass through the Ag nanowires and the transmittance is weakly dependent on the angle between the direction of polarization of the terahertz pulse and the direction of nanowire alignment. However, the transmission of a terahertz pulse through optically excited materials strongly depends on the polarization direction. The extinction ratio increases as the power of the pumping laser increases. The enhanced polarization dependency is explained by the redistribution of photocarriers, which accelerates the sintering effect along the direction of alignment of the Ag nanowires. The photocarrier redistribution effect is examined by the enhancement of terahertz emission from the sample. Oblique metal nanowires on Si could be utilized for designing optically tunable terahertz polarization modulators.

  13. New Light Sources and Concepts for Electro-Optic Sampling

    DTIC Science & Technology

    1994-03-01

    Research to improve electro - optic sampling led to the development of several high performance optical phase modulators. These phase modulators serve...method of optical pulse shape measurement was demonstrated with 3 ps time resolution, excellent power sensitivity and relative system simplicity. These experiments have opened up the field of temporal optics. Electro - optic sampling.

  14. Simulation study of the sub-terawatt laser wakefield acceleration operated in self-modulated regime

    NASA Astrophysics Data System (ADS)

    Hsieh, C.-Y.; Lin, M.-W.; Chen, S.-H.

    2018-02-01

    Laser wakefield acceleration (LWFA) can be accomplished by introducing a sub-terawatt (TW) laser pulse into a thin, high-density gas target. In this way, the self-focusing effect and the self-modulation that happened on the laser pulse produce a greatly enhanced laser peak intensity that can drive a nonlinear plasma wave to accelerate electrons. A particle-in-cell model is developed to study sub-TW LWFA when a 0.6-TW laser pulse interacts with a dense hydrogen plasma. Gas targets having a Gaussian density profile or a flat-top distribution are defined for investigating the properties of sub-TW LWFA when conducting with a gas jet or a gas cell. In addition to using 800-nm laser pulses, simulations are performed with 1030-nm laser pulses, as they represent a viable approach to realize the sub-TW LWFA driven by high-frequency, diode-pumped laser systems. The peak density which allows the laser peak power PL˜2 Pc r of self-focusing critical power is favourable for conducting sub-TW LWFA. Otherwise, an excessively high peak density can induce an undesired filament effect which rapidly disintegrates the laser field envelope and violates the process of plasma wave excitation. The plateau region of a flat-top density distribution allows the self-focusing and the self-modulation of the laser pulse to develop, from which well-established plasma bubbles can be produced to accelerate electrons. The process of electron injection is complicated in such high-density plasma conditions; however, increasing the length of the plateau region represents a straightforward method to realize the injection and acceleration of electrons within the first bubble, such that an improved LWFA performance can be accomplished.

  15. Molecular solid-state inverter-converter system

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.

    1973-01-01

    A modular approach for aerospace electrical systems has been developed, using lightweight high efficiency pulse width modulation techniques. With the modular approach, a required system is obtained by paralleling modules. The modular system includes the inverters and converters, a paralleling system, and an automatic control and fault-sensing protection system with a visual annunciator. The output is 150 V dc, or a low distortion three phase sine wave at 120 V, 400 Hz. Input power is unregulated 56 V dc. Each module is rated 2.5 kW or 3.6 kVA at 0.7 power factor.

  16. Design of a ZVS PWM inverter for a brushless DC motor in an EMA application

    NASA Technical Reports Server (NTRS)

    Bell, J. Brett; Nelms, R. M.; Shepherd, Michael T.

    1993-01-01

    The Component Development Division of the Propulsion Laboratory at Marshall Space Flight Center (MSFC) is currently investigating the use of electromechanical actuators for use in space transportation applications such as Thrust Vector Control (TVC). These high power servomechanisms will require rugged, reliable, and compact power electronic modules capable of modulating several hundred amperes of current at up to 270 Vdc. This paper will discuss the design and implementation of a zero-voltage-switched PWM (Pulse Width Modulation) inverter which operates from a 270 Vdc source at currents up to 100 A.

  17. Free space optical communication based on pulsed lasers

    NASA Astrophysics Data System (ADS)

    Drozd, Tadeusz; Mierczyk, Zygmunt; Zygmunt, Marek; Wojtanowski, Jacek

    2016-12-01

    Most of the current optical data transmission systems are based on continuous wave (cw) lasers. It results from the tendency to increase data transmission speed, and from the simplicity in implementation (straightforward modulation). Pulsed lasers, which find many applications in a variety of industrial, medical and military systems, in this field are not common. Depending on the type, pulsed lasers can generate instantaneous power which is many times greater when compared with cw lasers. As such, they seem to be very attractive to be used in data transmission technology, especially due to the potentially larger ranges of transmission, or in adverse atmospheric conditions where low power cw-lasersbased transmission is no longer feasible. It is also a very practical idea to implement data transmission capability in the pulsed laser devices that have been around and already used, increasing the functionality of this type of equipment. At the Institute of Optoelectronics at Military University of Technology, a unique method of data transmission based on pulsed laser radiation has been developed. This method is discussed in the paper in terms of both data transmission speed and transmission range. Additionally, in order to verify the theoretical assumptions, modules for voice and data transmission were developed and practically tested which is also reported, including the measurements of Bit Error Rate (BER) and performance vs. range analysis.

  18. Generation of 70 fs broadband pulses in a hybrid nonlinear amplification system with mode-locked Yb:YAG ceramic oscillator

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Wang, Chao; Luo, Daping; Yang, Chao; Li, Jiang; Ge, Lin; Pan, Yubai; Li, Wenxue

    2017-12-01

    We demonstrate the passively mode-locked laser performances of bulk Yb:YAG ceramic prepared by non-aqueous tape casting, which generates initial pulses in temporal width of 3 ps and spectrum width of 3 nm without intra-cavity dispersion management. The ceramic laser is further used as seeding oscillator in a fiber nonlinear amplification system, where ultrashort pulses in maximum output power of ˜100 W and pulse duration of 70 fs are achieved. Moreover, the laser spectrum is broadened to be ˜41 nm due to self-phase modulation effects in the gain fiber, overcoming the narrow spectrum limitations of ceramic materials. Our approach opens a new avenue for power-scaling and spectrum-expanding of femtosecond ceramic lasers.

  19. Dark soliton synthesis using an optical pulse synthesizer and transmission through a normal-dispersion optical fiber.

    PubMed

    Kashiwagi, Ken; Mozawa, Kiyonobu; Tanaka, Yosuke; Kurokawa, Takashi

    2013-12-16

    We precisely generate dark solitons using an optical pulse synthesizer (OPS) at a repetition rate of 25 GHz and experimentally investigate soliton transmission through a normal-dispersion fiber. Because of their particular waveform, there are not many experimental studies. The OPS provides frequency-domain line-by-line modulation and produces arbitrary pulse waveforms. The soliton waveform has an intensity contrast greater than 20 dB. At certain input peak power, the pulse exhibits soliton transmission and maintains its initial waveform. The power agrees with soliton transmission theory. We confirm that the π phase shift at the center of the dark soliton is maintained after transmission through the fiber. We also investigate the influence of stimulated Brillouin scattering for long-distance transmission.

  20. Subcarrier intensity modulation for MIMO visible light communications

    NASA Astrophysics Data System (ADS)

    Celik, Yasin; Akan, Aydin

    2018-04-01

    In this paper, subcarrier intensity modulation (SIM) is investigated for multiple-input multiple-output (MIMO) visible light communication (VLC) systems. A new modulation scheme called DC-aid SIM (DCA-SIM) is proposed for the spatial modulation (SM) transmission plan. Then, DCA-SIM is extended for multiple subcarrier case which is called DC-aid Multiple Subcarrier Modulation (DCA-MSM). Bit error rate (BER) performances of the considered system are analyzed for different MIMO schemes. The power efficiencies of DCA-SIM and DCA-MSM are shown in correlated MIMO VLC channels. The upper bound BER performances of the proposed models are obtained analytically for PSK and QAM modulation types in order to validate the simulation results. Additionally, the effect of power imbalance method on the performance of SIM is studied and remarkable power gains are obtained compared to the non-power imbalanced cases. In this work, Pulse amplitude modulation (PAM) and MSM-Index are used as benchmarks for single carrier and multiple carrier cases, respectively. And the results show that the proposed schemes outperform PAM and MSM-Index for considered single carrier and multiple carrier communication scenarios.

  1. Investigation of laser dynamics, modulation and control by means of intra-cavity time varying perturbation

    NASA Technical Reports Server (NTRS)

    Harris, S. E.; Siegman, A. E.; Kuizenga, D. J.; Kung, A. H.; Young, J. F.; Bekkers, G. W.; Bloom, D. M.; Newton, J. H.; Phillion, D. W.

    1975-01-01

    The generation of tunable visible, infrared, and ultraviolet light is examined, along with the control of this light by means of novel mode-locking and modulation techniques. Transient mode-locking of the Nd:YAG laser and generation of short tunable pulses in the visible and the alkali metal inert gas excimer laser systems were investigated. Techniques for frequency conversion of high power and high energy laser radiation are discussed, along with high average power blue and UV laser light sources.

  2. High energy, narrow linewidth 1572nm ErYb-fiber based MOPA for a multi-aperture CO2 trace-gas laser space transmitter

    NASA Astrophysics Data System (ADS)

    Engin, Doruk; Mathason, Brian; Stephen, Mark; Yu, Anthony; Cao, He; Fouron, Jean-Luc; Storm, Mark

    2016-03-01

    A cladding-pumped, LMA ErYb fiber-based, amplifier is presented for use in a LIDAR transmitter for remote sensing of atmospheric CO2 from space. The amplifier is optimized for high peak power, high efficiency, and narrow linewidth operation at 1572.3nm. Using highly reliable COTS components, the amplifier achieves 0.5kW peak power (440uJ pulse energy), 3.3W average power with transform limited (TL) linewidth and M2<1.3. The power amplifier supports a 30% increase in pulse energy when linewidth is increased to 100MHz. A preliminary conductively cooled laser optical module (LOM) concept has size 9x10x1.25 in (113 in3) and estimated weight of 7.2lb (3.2 kg). Energy scaling with pulse width up to 645uJ, 1.5usec is demonstrated. A novel doubleclad ErYb LMA fiber (30/250um) with high pump absorption (6 dB/m at 915nm) was designed, fabricated, and characterized for power scaling. The upgraded power amplifier achieves 0.8kW peak power (720uJ pulse energy) 5.4W average power with TL linewidth and M2<1.5.

  3. Optical rangefinding applications using communications modulation technique

    NASA Astrophysics Data System (ADS)

    Caplan, William D.; Morcom, Christopher John

    2010-10-01

    A novel range detection technique combines optical pulse modulation patterns with signal cross-correlation to produce an accurate range estimate from low power signals. The cross-correlation peak is analyzed by a post-processing algorithm such that the phase delay is proportional to the range to target. This technique produces a stable range estimate from noisy signals. The advantage is higher accuracy obtained with relatively low optical power transmitted. The technique is useful for low cost, low power and low mass sensors suitable for tactical use. The signal coding technique allows applications including IFF and battlefield identification systems.

  4. Design, implementation, and dosimetry analysis of an S-band waveguide in vitro system for the exposure of cell culture samples to pulsed fields.

    PubMed

    Varela, José E; Page, Juan E; Esteban, Jaime

    2010-09-01

    The interaction between electromagnetic fields and biological media, particularly regarding very high power, short pulses as in radar signals, is not a fully understood phenomenon. In the past few years, many in vitro, cellular communications-oriented exposure studies have been carried out. This article presents a high-power waveguide exposure system capable of dealing with monochromatic, multicarrier or pulsed signals between 1.8 and 3.2 GHz (L- and S-band) with a pulse duration as low as 90 ns, minimum pulse repetition of 100 Hz, and maximum instantaneous power of 100 W. The setup is currently being used with a 2.2 GHz carrier modulated by 5 micros pulses with a 100 Hz repetition period and approximately 30 W of instantaneous power. After a worst-case temperature analysis, which does not account for conduction and convection thermal effects, the experiment's exposure is considered sub-thermal. Evaluation of the results through the specific absorption rate distribution is not considered sufficient enough in these cases. An electromagnetic field distribution analysis is needed. For monochromatic signals, the representation of the modulus of the electric and magnetic field components is proposed as a suitable method of assessment. 2010 Wiley-Liss, Inc.

  5. Design and operating experience of a 40 MW, highly-stabilized power supply

    NASA Astrophysics Data System (ADS)

    Boenig, Heinrich J.; Ferner, James A.; Bogdan, Ferenc; Morris, Gary C.; Rumrill, Ron S.

    Four 10 MW, highly-stabilized power supply modules have been installed at the National High Magnetic Field Laboratory in Tallahassee, FL, to energize water-cooled, resistive, high-field research magnets. The power supply modules achieve a long term current stability if 10 ppM over a 12 h period with a short term ripple and noise variation of less than 10 ppM over a time period of one cycle. The power supply modules can operate independently, feeding four separate magnets, or two, three or four modules can operate in parallel. Each power supply module consists of a 12.5 kV vacuum circuit breaker, two three-winding, step-down transformers, a 24-pulse rectifier with interphase reactors, and a passive and an active filter. Two different transformer tap settings allow rated dc supply output voltages of 400 and 500 V. The rated current of a supply module is 17 kA and each supply module has a one-hour overload capability of 20 kA. The isolated output terminals of each power supply module are connected to a reversing switch. An extensive high-current bus system allows the modules to be connected to 16 magnet cells. This paper presents the detailed design of the power supply components. Various test results taken during the commissioning phase with a 10 MW resistive load and results taken with the research magnets are shown. The effects of the modules on the electrical supply system and the operational behavior of the power factor correction/harmonic filters are described. Included also are results of a power supply module feeding a superconducting magnet during quench propagation tests. Problems with the power supply design and solutions are presented. Some suggestions on how to improve the performance of these supplies are outlined.

  6. Efficient, diode-laser-pumped, diode-laser-seeded, high-peak-power Nd:YLF regenerative amplifier.

    PubMed

    Selker, M D; Afzal, R S; Dallas, J L; Yu, A W

    1994-04-15

    Optical amplification of 11 orders of magnitude in a microlens-collimated, diode-laser-pumped regenerative amplifier has been demonstrated. The amplifier was seeded with 20-ps pulses from an FM mode-locked oscillator and with 0.9-ns pulses from a modulated diode laser. Seed pulses from both sources were amplified to energies exceeding 2.5 mJ. With the thermoelectric coolers and the Pockels cell electronics neglected, the diode-seeded system exhibited an electrical-to-optical efficiency of 2.2%.

  7. Design of an Advanced Modular Automated Evaluation System for Experimental High Power SGTOS

    DTIC Science & Technology

    2013-06-01

    POWER SGTOS Shelby Lacouture, Kevin Lawson, Stephen Bayne, Michael Giesselmann, Heather O’Brien 1 , Aderinto Ogunniyi 1 , Charles J...Travis T. Vollmer and Michael G. Giesselmann, Rapid Capacitor Charging Power Supply for an 1800J PFN, Proceedings of the 2012 Power Modulator and High Voltage Conference, San Diego, CA, June 3-7, 2012. 1023 ...Scozzie 1 Center for Pulsed Power and Power Electronics Department of Electrical & Computer Engineering Texas Tech

  8. A hybrid pulse combining topology utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer.

    PubMed

    Li, Jiangtao; Zhao, Zheng; Sun, Yi; Liu, Yuhao; Ren, Ziyuan; He, Jiaxin; Cao, Hui; Zheng, Minjun

    2017-03-01

    Numerous applications driven by pulsed voltage require pulses to be with high amplitude, high repetitive frequency, and narrow width, which could be satisfied by utilizing avalanche transistors. The output improvement is severely limited by power capacities of transistors. Pulse combining is an effective approach to increase the output amplitude while still adopting conventional pulse generating modules. However, there are drawbacks in traditional topologies including the saturation tendency of combining efficiency and waveform oscillation. In this paper, a hybrid pulse combining topology was adopted utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer. The factors affecting the combining efficiency were determined including the output time synchronization of Marx circuits, and the quantity and position of magnetic cores. The numbers of the parallel modules and the stages were determined by the output characteristics of each combining method. Experimental results illustrated the ability of generating pulses with 2-14 kV amplitude, 7-11 ns width, and a maximum 10 kHz repetitive rate on a matched 50-300 Ω resistive load. The hybrid topology would be a convinced pulse combining method for similar nanosecond pulse generators based on the solid-state switches.

  9. A hybrid pulse combining topology utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer

    NASA Astrophysics Data System (ADS)

    Li, Jiangtao; Zhao, Zheng; Sun, Yi; Liu, Yuhao; Ren, Ziyuan; He, Jiaxin; Cao, Hui; Zheng, Minjun

    2017-03-01

    Numerous applications driven by pulsed voltage require pulses to be with high amplitude, high repetitive frequency, and narrow width, which could be satisfied by utilizing avalanche transistors. The output improvement is severely limited by power capacities of transistors. Pulse combining is an effective approach to increase the output amplitude while still adopting conventional pulse generating modules. However, there are drawbacks in traditional topologies including the saturation tendency of combining efficiency and waveform oscillation. In this paper, a hybrid pulse combining topology was adopted utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer. The factors affecting the combining efficiency were determined including the output time synchronization of Marx circuits, and the quantity and position of magnetic cores. The numbers of the parallel modules and the stages were determined by the output characteristics of each combining method. Experimental results illustrated the ability of generating pulses with 2-14 kV amplitude, 7-11 ns width, and a maximum 10 kHz repetitive rate on a matched 50-300 Ω resistive load. The hybrid topology would be a convinced pulse combining method for similar nanosecond pulse generators based on the solid-state switches.

  10. Power-Stepped HF Cross-Modulation Experiments: Simulations and Experimental Observations

    NASA Astrophysics Data System (ADS)

    Greene, S.; Moore, R. C.

    2014-12-01

    High frequency (HF) cross modulation experiments are a well established means for probing the HF-modified characteristics of the D-region ionosphere. The interaction between the heating wave and the probing pulse depends on the ambient and modified conditions of the D-region ionosphere. Cross-modulation observations are employed as a measure of the HF-modified refractive index. We employ an optimized version of Fejer's method that we developed during previous experiments. Experiments were performed in March 2013 at the High Frequency Active Auroral Research Program (HAARP) observatory in Gakona, Alaska. During these experiments, the power of the HF heating signal incrementally increased in order to determine the dependence of cross-modulation on HF power. We found that a simple power law relationship does not hold at high power levels, similar to previous ELF/VLF wave generation experiments. In this paper, we critically compare these experimental observations with the predictions of a numerical ionospheric HF heating model and demonstrate close agreement.

  11. Ground-echo characteristics for a ground-target pulse-Doppler radar fuze of high duty ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, C.S.

    1973-11-21

    From Tri-service electronic fuse symposium; Washington, District of Columbia, USA (26 Nov 1973). A pulse-Doppler radar fuze for use against ground targets at high burst heights can operate at low peak power provided a high duty ratio is used. The high duty ratio brings about ambiguous ground return that is prevented from firing the fuze by randomly coding the phase of the transmitted pulses. This causes the ambiguous return to appear as random noise. This paper provides formulas for the calculation of the clutter-noise power density and of the signal power so that the performance of the radar can bemore » determined. The paper also discusses the myth of decorrelation'' that is alleged to destroy the transmittedphase modulation in the echo and so make it useless. (auth)« less

  12. Constant peak-power single-frequency linearly-polarized all-fiber laser for coherent detection based on closed-loop feedback technology

    NASA Astrophysics Data System (ADS)

    Ding, Yaqian; Zhang, Xiang; Li, Dong; Wang, Dapeng; Zhang, Renzhong; Song, Chengying; Che, Haozhao; Wang, Rui; Guo, Baoling; Chen, Guanghui

    2015-10-01

    In this paper, a practical single-frequency high-repetition linearly-polarized eye-safe all-fiber laser with constant peak power is demonstrated. It is based on master-oscillator power amplifier (MOPA) system. A distributed feedback laser diode simulating at 1550nm with narrow linewidth of 2.3 kHz is employed as the seed source. It is modulated to a pulse laser with high repetition of 20 kHz and peak power of 10mW by an acousto-optic modulator (AOM). The pulse width is tunable between 100ns to 400ns. Two-stage cascade amplifier is established, which consists of a pre-amplifier and a power-amplifier. Amplified spontaneous emission (ASE) and stimulated billion scattering are well suppressed by special management. The output peak power of 30W is obtained, which has nearly diffraction-limited beam quality. It operates in linewidth of 1.2MHz, polarization-extinction ratio (PER) of 25dB and signal-to-noise ratio (SNR) of more than 40dB. Gain of the whole amplifier achieves nearly 35dB. Furthermore, an embedded control system (ECS) based on the WinCE operating system (OS) and the chip of S3C2440 is proposed. This control system based on closed-loop feedback technology makes the peak power keeping constant even the pulse width tunable, which is convenient for the end user of the radar. This robust portable laser is remarkable and fulfills the desire of coherent detection excellently.

  13. Measurement of free radical kinetics in pulsed plasmas by UV and VUV absorption spectroscopy and by modulated beam mass spectrometry

    NASA Astrophysics Data System (ADS)

    Cunge, G.; Bodart, P.; Brihoum, M.; Boulard, F.; Chevolleau, T.; Sadeghi, N.

    2012-04-01

    This paper reviews recent progress in the development of time-resolved diagnostics to probe high-density pulsed plasma sources. We focus on time-resolved measurements of radicals' densities in the afterglow of pulsed discharges to provide useful information on production and loss mechanisms of free radicals. We show that broad-band absorption spectroscopy in the ultraviolet and vacuum ultraviolet spectral domain and threshold ionization modulated beam mass spectrometry are powerful techniques for the determination of the time variation of the radicals' densities in pulsed plasmas. The combination of these complementary techniques allows detection of most of the reactive species present in industrial etching plasmas, giving insights into the physico-chemistry reactions involving these species. As an example, we discuss briefly the radicals' kinetics in the afterglow of a SiCl4/Cl2/Ar discharge.

  14. Femtosecond pulses generated from a synchronously pumped chromium-doped forsterite laser

    NASA Technical Reports Server (NTRS)

    Seas, A.; Petricevic, V.; Alfano, R. R.

    1993-01-01

    Kerr lens mode-locking (KLM) has become a standard method to produce femtosecond pulses from tunable solid state lasers. High power inside the laser resonator propagating through the laser-medium with nonlinear index of refraction, coupled with the stability conditions of the laser modes in the resonator, result in a passive amplitude modulation which explains the mechanism for pulse shortening. Recently, chromium doped forsterite was shown to exhibit similar pulse behavior. A successful attempt to generate femtosecond pulses from a synchronously pumped chromium-doped forsterite laser with intracavity dispersion compensation is reported. Stable, transform limited pulses with duration of 105 fs were routinely generated, tunable between 1240 to 1270 nm.

  15. Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy.

    PubMed

    Akemann, Walther; Léger, Jean-François; Ventalon, Cathie; Mathieu, Benjamin; Dieudonné, Stéphane; Bourdieu, Laurent

    2015-11-02

    Acousto-optic deflection (AOD) devices offer unprecedented fast control of the entire spatial structure of light beams, most notably their phase. AOD light modulation of ultra-short laser pulses, however, is not straightforward to implement because of intrinsic chromatic dispersion and non-stationarity of acousto-optic diffraction. While schemes exist to compensate chromatic dispersion, non-stationarity remains an obstacle. In this work we demonstrate an efficient AOD light modulator for stable phase modulation using time-locked generation of frequency-modulated acoustic waves at the full repetition rate of a high power laser pulse amplifier of 80 kHz. We establish the non-local relationship between the optical phase and the generating acoustic frequency function and verify the system for temporal stability, phase accuracy and generation of non-linear two-dimensional phase functions.

  16. A Range Ambiguity Suppression Processing Method for Spaceborne SAR with Up and Down Chirp Modulation.

    PubMed

    Wen, Xuejiao; Qiu, Xiaolan; Han, Bing; Ding, Chibiao; Lei, Bin; Chen, Qi

    2018-05-07

    Range ambiguity is one of the factors which affect the SAR image quality. Alternately transmitting up and down chirp modulation pulses is one of the methods used to suppress the range ambiguity. However, the defocusing range ambiguous signal can still hold the stronger backscattering intensity than the mainlobe imaging area in some case, which has a severe impact on visual effects and subsequent applications. In this paper, a novel hybrid range ambiguity suppression method for up and down chirp modulation is proposed. The method can obtain the ambiguity area image and reduce the ambiguity signal power appropriately, by applying pulse compression using a contrary modulation rate and CFAR detecting method. The effectiveness and correctness of the approach is demonstrated by processing the archive images acquired by Chinese Gaofen-3 SAR sensor in full-polarization mode.

  17. Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor

    NASA Astrophysics Data System (ADS)

    Afiqah Zainal, Nurul; Sooi Tat, Chan; Ajisman

    2016-02-01

    Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's ou tput is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor.

  18. High power radiators of ultra-short electromagnetic quasi-unipolar pulses

    NASA Astrophysics Data System (ADS)

    Fedorov, V. M.; Ostashev, V. E.; Tarakanov, V. P.; Ul'yanov, A. V.

    2017-05-01

    Results of creation, operation, and diagnostics of the high power radiators for ultra-short length electromagnetic pulses (USEMPs) with a quasi-unipolar profile, which have been developed in our laboratory, are presented. The radiating module contains: the ultra-wideband (UWB) antenna array, the exciting high voltage pulse semiconductor generator (a pulser), the power source and the control unit. The principles of antenna array with a high efficiency aperture about 0.9 were developed using joint four TEM-horns with shielding electrodes in every TEM-horn. Sizes of the antenna apertures were (16-60) cm. The pulsers produced by “FID Technology” company had the following parameters: 50 Ohm connector impedance, unipolar pulses voltages (10-100) kV, the rise-time (0.04-0.15) ns, and the width (0.2-1) ns. The modules radiate the USEMPs of (0.1-10) GHz spectrum, their repetition rate is (1-100) kHz, and the effective potential is E*R = (20-400) kV, producing the peak E-field into the far-zone of R-distance. Parameters of the USEMP waves were measured by a calibrated sensor with the following characteristics: the sensitivity 0.32V/(kV/m), the rise-time 0.03 ns, the duration up to 7 ns. The measurements were in agreement with the simulation results, which were obtained using the 3-D code “KARAT”. The USEMP waves with amplitudes (1-10) kV/m and the pulse repetition rate (0.5-100) kHz were successfully used to examine various electronic devices for an electromagnetic immunity.

  19. Linear induction accelerators made from pulse-line cavities with external pulse injection.

    PubMed

    Smith, I

    1979-06-01

    Two types of linear induction accelerator have been reported previously. In one, unidirectional voltage pulses are generated outside the accelerator and injected into the accelerator cavity modules, which contain ferromagnetic material to reduce energy losses in the form of currents induced, in parallel with the beam, in the cavity structure. In the other type, the accelerator cavity modules are themselves pulse-forming lines with energy storage and switches; parallel current losses are made zero by the use of circuits that generate bidirectional acceleration waveforms with a zero voltage-time integral. In a third type of design described here, the cavities are externally driven, and 100% efficient coupling of energy to the beam is obtained by designing the external pulse generators to produce bidirectional voltage waveforms with zero voltage-time integral. A design for such a pulse generator is described that is itself one hundred percent efficient and which is well suited to existing pulse power techniques. Two accelerator cavity designs are described that can couple the pulse from such a generator to the beam; one of these designs provides voltage doubling. Comparison is made between the accelerating gradients that can be obtained with this and the preceding types of induction accelerator.

  20. Idler-resonant intracavity KTA-based OPO pumped by a dual-loss modulated-Q-switched-laser with AOM and Cr4+:YAG

    NASA Astrophysics Data System (ADS)

    Qiao, Junpeng; Zhao, Shengzhi; Yang, Kejian; Zhao, Jia; Li, Guiqiu; Li, Dechun; Li, Tao; Qiao, Wenchao

    2017-06-01

    An idler-resonant KTiOAsO4 (KTA)-based intracavity optical parametric oscillator (IOPO) pumped by a dual-loss-modulated Q-switched laser with an acousto-optic modulator (AOM) and a Cr4+:YAG saturable absorber (Cr4+:YAG-SA) has been presented. By utilizing a type-II non-critically phase-matched KTA crystal, signal wave at 1535 nm and idler wave at 3467 nm have been generated. Under an incident pump power of 18.3 W, maximum output powers of 615 mW for signal wave and 228 mW for idler wave were obtained at an AOM modulation rate of 10 kHz, corresponding to a whole optical-to-optical conversion efficiency of 4.6%. The shortest pulse widths of signal and idler wave were measured to be 898 ps and 2.9 ns, corresponding to the highest peak powers of 68.4 and 7.9 kW, respectively. In comparison with IOPO pumped by a singly Q-switched laser with an AOM, the IOPO pumped by a doubly Q-switched laser (DIOPO) with an AOM and a Cr4+:YAG-SA can generate signal wave and idler wave with shorter pulse width and higher peak power. By considering the spatial Gaussian distribution of intracavity photon density, a set of coupled rate equations for the idler-resonant DIOPO were built for the first time to the best of our knowledge. The simulation results agreed well with the experimental results.

  1. Design of a Modular 5-kW Power Processing Unit for the Next-Generation 40-cm Ion Engine

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Bond, Thomas; Okada, Don; Pyter, Janusz; Wiseman, Steve

    2002-01-01

    NASA Glenn Research Center is developing a 5/10-kW ion engine for a broad range of mission applications. Simultaneously, a 5-kW breadboard poster processing unit is being designed and fabricated. The design includes a beam supply consisting of four 1.1 kW power modules connected in parallel, equally sharing the output current. A novel phase-shifted/pulse-width-modulated dual full-bridge topology was chosen for its soft-switching characteristics. The proposed modular approach allows scalability to higher powers as well as the possibility of implementing an N+1 redundant beam supply. Efficiencies in excess of 96% were measured during testing of a breadboard beam power module. A specific mass of 3.0 kg/kW is expected for a flight PRO. This represents a 50% reduction from the state of the art NSTAR power processor.

  2. Air and water cooled modulator

    DOEpatents

    Birx, D.L.; Arnold, P.A.; Ball, D.G.; Cook, E.G.

    1995-09-05

    A compact high power magnetic compression apparatus and method are disclosed for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air. 9 figs.

  3. 175 fs-long pulses from a high-power single-mode Er-doped fiber laser at 1550 nm

    NASA Astrophysics Data System (ADS)

    Elahi, Parviz; Kalaycıoğlu, Hamit; Li, Huihui; Akçaalan, Önder; Ilday, F. Ömer

    2017-11-01

    Development of Er-doped ultrafast lasers have lagged behind the corresponding developments in Yb- and Tm-doped lasers, in particular, fiber lasers. Various applications benefit from operation at a central wavelength of 1.5 μm and its second harmonic, including emerging applications such as 3D processing of silicon and 3D printing based on two-photon polymerization. We report a simple, robust fiber master oscillator power amplifier operating at 1.55 μm, implementing chirp pulse amplification using single-mode fibers for diffraction-limited beam quality. The laser generates 80 nJ pulses at a repetition rate of 43 MHz, corresponding to an average power of 3.5 W, which can be compressed down to 175 fs. The generation of short pulses was achieved using a design which is guided by numerical simulations of pulse propagation and amplification and manages to overturn gain narrowing with self-phase modulation, without invoking excessive Raman scattering processes. The seed source for the two-stage amplifier is a dispersion-managed passively mode-locked oscillator, which generates a ∼40 nm-wide spectrum and 1.7-ps linearly chirped pulses.

  4. The 5-kW arcjet power electronics

    NASA Technical Reports Server (NTRS)

    Gruber, R. P.; Gott, R. W.; Haag, T. W.

    1989-01-01

    The initial design and evaluation of a 5 kW arcjet power electronics breadboard which as been integrated with a modified 1 kW design laboratory arcjet is presented. A single stage, 5 kW full bridge, pulse width modulated (PWM), power converter was developed which was phase shift regulated. The converter used metal oxide semiconductor field effect transistor (MOSFET) power switches and incorporated current mode control and an integral arcjet pulse ignition circuit. The unoptimized power efficiency was 93.5 and 93.9 percent at 5 kW and 50A output at input voltages of 130 and 150V, respectively. Line and load current regulation at 50A output was within one percent. The converter provided up to 6.6 kW to the arcjet with simulated ammonia used as a propellant.

  5. Quantum-dot saturable absorber and Kerr-lens mode-locked Yb:KGW laser with >450  kW of peak power.

    PubMed

    Akbari, R; Zhao, H; Fedorova, K A; Rafailov, E U; Major, A

    2016-08-15

    The hybrid action of quantum-dot saturable absorber and Kerr-lens mode locking in a diode-pumped Yb:KGW laser was demonstrated. Using a quantum-dot saturable absorber with a 0.7% (0.5%) modulation depth, the mode-locked laser delivered 90 fs (93 fs) pulses with 3.2 W (2.9 W) of average power at the repetition rate of 77 MHz, corresponding to 462 kW (406 kW) of peak power and 41 nJ (38 nJ) of pulse energy. To the best of our knowledge, this represents the highest average and peak powers generated to date from quantum-dot saturable absorber-based mode-locked lasers.

  6. Versatile monolithic 2-micron laser systems

    NASA Astrophysics Data System (ADS)

    Wysmolek, M.; Steinke, M.; Neumann, J.; Kracht, D.

    2018-02-01

    To answer a growing demand in development of high power pulsed and continuous wave sources at 2 micron spectral range we have participated in several projects, which resulted in a delivery of versatile monolithic sources providing picosecond, nanosecond and CW laser signal. As an example of pulsed sources we developed all-fiber monolithic devices based on a directly modulated laser diode and gain-switched laser diode to generate nanosecond and picosecond pulses, respectively, which are amplified in the same fiber amplifier chain up to 50 µJ with 96 ps and more than 1 mJ with pulses longer than 35 ns.

  7. Modulation characteristics of a high-power semiconductor Master Oscillator Power Amplifier (MOPA)

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald Mitchell, Jr.

    1992-01-01

    A semiconductor master oscillator-power amplifier was demonstrated using an anti-reflection (AR) coated broad area laser as the amplifier. Under CW operation, diffraction-limited single-longitudinal-mode powers up to 340 mW were demonstrated. The characteristics of the far-field pattern were measured and compared to a two-dimensional reflective Fabry-Perot amplifier model of the device. The MOPA configuration was modulated by the master oscillator. Prior to injection into the amplifier, the amplitude and frequency modulation properties of the master oscillator were characterized. The frequency response of the MOPA configuration was characterized for an AM/FM modulated injection beam, and was found to be a function of the frequency detuning between the master oscillator and the resonant amplifier. A shift in the phase was also observed as a function of frequency detuning; this phase shift is attributed to the optical phase shift imparted to a wave reflected from a Fabry-Perot cavity. Square-wave optical pulses were generated at 10 MHz and 250 MHz with diffraction-limited peak powers of 200 mW and 250 mW. The peak power for a given modulation frequency is found to be limited by the injected power and the FM modulation at that frequency. The modulation results make the MOPA attractive for use as a transmitter source in applications such as free-space communications and ranging/altimetry.

  8. IEEE Conference Record of 1976 Twelfth Modulator Symposium, New York City, 4-5 February 1976.

    DTIC Science & Technology

    1976-01-01

    itches; ig Power Switches for Intermittent Operation; High Power M’ dulators for Intermittent Operation; Charging Systems; Circuit Techniques; Line Type... INTERMITTENT OPERATION Adiabatic Mode Operation Of Thyratrons For Megawatt Average Power Applications, John E. Creedon. Joseph W. McGowan. Anthon J...142 The SPS Fast Pulsed Magnet Systems. P. F Faugeras. E. Frick, C. G. Harrison, H. Kuhn

  9. Homogeneous spectral broadening of pulsed terahertz quantum cascade lasers by radio frequency modulation.

    PubMed

    Wan, W J; Li, H; Cao, J C

    2018-01-22

    The authors present an experimental investigation of radio frequency modulation on pulsed terahertz quantum cascade lasers (QCLs) emitting around 4.3 THz. The QCL chip used in this work is based on a resonant phonon design which is able to generate a 1.2 W peak power at 10 K from a 400-µm-wide and 4-mm-long laser with a single plasmon waveguide. To enhance the radio frequency modulation efficiency and significantly broaden the terahertz spectra, the QCLs are also processed into a double-metal waveguide geometry with a Silicon lens out-coupler to improve the far-field beam quality. The measured beam patterns of the double-metal QCL show a record low divergence of 2.6° in vertical direction and 2.4° in horizontal direction. Finally we perform the inter-mode beat note and terahertz spectra measurements for both single plasmon and double-metal QCLs working in pulsed mode. Since the double-metal waveguide is more suitable for microwave signal transmission, the radio frequency modulation shows stronger effects on the spectral broadening for the double-metal QCL. Although we are not able to achieve comb operation in this work for the pulsed lasers due to the large phase noise, the homogeneous spectral broadening resulted from the radio frequency modulation can be potentially used for spectroscopic applications.

  10. 20 kHz main inverter unit. [for space station power supplies

    NASA Technical Reports Server (NTRS)

    Hussey, S.

    1989-01-01

    A proof-of-concept main inverter unit has demonstrated the operation of a pulse-width-modulated parallel resonant power stage topology as a 20-kHz ac power source driver, showing simple output regulation, parallel operation, power sharing and short-circuit operation. The use of a two-stage dc input filter controls the electromagnetic compatibility (EMC) characteristics of the dc power bus, and the use of an ac harmonic trap controls the EMC characteristics of the 20-kHz ac power bus.

  11. Pulsed-DC selfsputtering of copper

    NASA Astrophysics Data System (ADS)

    Wiatrowski, A.; Posadowski, W. M.; Radzimski, Z. J.

    2008-03-01

    At standard magnetron sputtering conditions (argon pressure ~0.5 Pa) inert gas particles are often entrapped in the formed films. Inert gas contamination can be eliminated by using the self-sustained magnetron sputtering process because it is done in the absence of the inert gas atmosphere. The self-sustained sputtering (SSS) gives also a unique condition during the transport of sputtered particles to the substrate. It is especially useful for filling high aspect ratio submicron scale structures for microelectronics. So far it has been shown that the self-sputtering process can be sustained in the DC operation mode (DC-SSS) only. The main disadvantage of DC-SSS process is instability related to possible arc formation. Usage of pulsed sputtering, similarly to reactive pulsed magnetron sputtering, could eliminate this problem. In this paper results of pulsed-DC self-sustained magnetron sputtering (pulsed DC-SSS) of copper are presented for the first time. The planar magnetron equipped with a 50 mm in diameter and 6 mm thick copper target was powered by DC-power supply modulated by power switch. The maximum target power was about 11 kW (~550W/cm2). The magnetron operation was investigated as a function of pulsing frequency (20-100 kHz) and duty factor (50-90%). The discharge extinction pressure was determined for these conditions. The plasma emission spectra (400-410nm range) and deposition rates were observed for both DC and pulsed DC sustained self-sputtering processes. The presented results illustrate that stable pulsed DC-SSS process can be obtained at pulsing frequency in the range of 60-100 kHz and duty factor of 70-90%.

  12. Injectable microstimulator for functional electrical stimulation.

    PubMed

    Loeb, G E; Zamin, C J; Schulman, J H; Troyk, P R

    1991-11-01

    A family of digitally controlled devices is constructed for functional electrical stimulation in which each module is an hermetically sealed glass capsule that is small enough to be injected through the lumen of a hypodermic needle. The overall design and component characteristics of microstimulators that receive power and command signals by inductive coupling from a single, externally worn coil are described. Each device stores power between stimulus pulses by charging an electrolytic capacitor formed by its two electrodes, made of sintered, anodised tantalum and electrochemically activated iridium, respectively. Externally, a highly efficient class E amplifier provides power and digitally encoded command signals to control the amplitude, duration and timing of pulses from up to 256 such microstimulators.

  13. Pure antimony film as saturable absorber for Q-switched erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Rahman, M. F. A.; Zhalilah, M. Z.; Latiff, A. A.; Rosol, A. H. A.; Lokman, M. Q.; Bushroa, A. R.; Dimyati, K.; Harun, S. W.

    2018-04-01

    This paper reports on the use of Antimony (Sb) polymer film to generate stable Q-switching pulses in Erbium-doped fiber laser (EDFL) cavity. The SA is fabricated by coating a thin layer of Sb on a polyvinyl alcohol (PVA) film through physical vapour deposition (PVD) process. A 1 × 1 mm area of the film SA is cut and integrated into between two fiber ferrules inside the laser cavity for intra-cavity loss modulation. Self-starting and stable Q-switched pulses are obtained within a pump power range from 60 to 142 mW. Within this range, the repetition rate increases from 70.82 to 98.04 kHz, while pulse width decreases from 7.42 to 5.36 μs. The fundamental frequency signal-to-noise ratio of the pulse signal is 74 dB, which indicates the excellent stability of the pulses. The maximum output power and pulse energy are 8.45 mW and 86.19 nJ, respectively. Our demonstration shows that Sb film SA capable of generating stable pulses train operating at 1.55-micron region.

  14. High-Power, High-Speed Electro-Optic Pockels Cell Modulator

    NASA Technical Reports Server (NTRS)

    Hawthorne, Justin; Battle, Philip

    2013-01-01

    Electro-optic modulators rely on a change in the index of refraction for the optical wave as a function of an applied voltage. The corresponding change in index acts to delay the wavefront in the waveguide. The goal of this work was to develop a high-speed, high-power waveguide- based modulator (phase and amplitude) and investigate its use as a pulse slicer. The key innovation in this effort is the use of potassium titanyl phosphate (KTP) waveguides, making the highpower, polarization-based waveguide amplitude modulator possible. Furthermore, because it is fabricated in KTP, the waveguide component will withstand high optical power and have a significantly higher RF modulation figure of merit (FOM) relative to lithium niobate. KTP waveguides support high-power TE and TM modes - a necessary requirement for polarization-based modulation as with a Pockels cell. High-power fiber laser development has greatly outpaced fiber-based modulators in terms of its maturity and specifications. The demand for high-performance nonlinear optical (NLO) devices in terms of power handling, efficiency, bandwidth, and useful wavelength range has driven the development of bulk NLO options, which are limited in their bandwidth, as well as waveguide based LN modulators, which are limited by their low optical damage threshold. Today, commercially available lithium niobate (LN) modulators are used for laser formatting; however, because of photorefractive damage that can reduce transmission and increase requirements on bias control, LN modulators cannot be used with powers over several mW, dependent on wavelength. The high-power, high-speed modulators proposed for development under this effort will enable advancements in several exciting fields including lidarbased remote sensing, atomic interferometry, free-space laser communications, and others.

  15. On the performance evaluation of LQAM-MPPM techniques over exponentiated Weibull fading free-space optical channels

    NASA Astrophysics Data System (ADS)

    Khallaf, Haitham S.; Elfiqi, Abdulaziz E.; Shalaby, Hossam M. H.; Sampei, Seiichi; Obayya, Salah S. A.

    2018-06-01

    We investigate the performance of hybrid L-ary quadrature-amplitude modulation-multi-pulse pulse-position modulation (LQAM-MPPM) techniques over exponentiated Weibull (EW) fading free-space optical (FSO) channel, considering both weather and pointing-error effects. Upper bound and approximate-tight upper bound expressions for the bit-error rate (BER) of LQAM-MPPM techniques over EW FSO channels are obtained, taking into account the effects of fog, beam divergence, and pointing-error. Setup block diagram for both the transmitter and receiver of the LQAM-MPPM/FSO system are introduced and illustrated. The BER expressions are evaluated numerically and the results reveal that LQAM-MPPM technique outperforms ordinary LQAM and MPPM schemes under different fading levels and weather conditions. Furthermore, the effect of modulation-index is investigated and it turned out that a modulation-index greater than 0.4 is required in order to optimize the system performance. Finally, the effect of pointing-error introduces a great power penalty on the LQAM-MPPM system performance. Specifically, at a BER of 10-9, pointing-error introduces power penalties of about 45 and 28 dB for receiver aperture sizes of DR = 50 and 200 mm, respectively.

  16. Proceedings of the SDIO/ONR Pulse Power Meeting 󈨞 (3rd) Held in Norfolk, Virginia on August 2-3, 1990

    DTIC Science & Technology

    1990-08-01

    Modulators", - ’ 6:30 pm Evening Dinner Cruise on the "American Rover’ I U I iii I I I I Friday August 3, 1990 Session III Panel Session I 9:00 am Panel ...Session WHAT ARE THE ACCOMPLISHMENTS TO I DATE? WHAT ARE THE GOALS FOR THE PULSE POWER RESEARCH? i Moderator Arthur Guenther Panel Members Garscadden...Mourou Gundersen Roy Kristiansen Rustan Kushner Schoenbach Lee 10:30 am Coffee Break 10:45 am Panel Session Continued I 12:00 pm Closing Remarks Gabriel

  17. Improving the power efficiency of SOA-based UWB over fiber systems via pulse shape randomization

    NASA Astrophysics Data System (ADS)

    Taki, H.; Azou, S.; Hamie, A.; Al Housseini, A.; Alaeddine, A.; Sharaiha, A.

    2016-09-01

    A simple pulse shape randomization scheme is considered in this paper for improving the performance of ultra wide band (UWB) communication systems using On Off Keying (OOK) or pulse position modulation (PPM) formats. The advantage of the proposed scheme, which can be either employed for impulse radio (IR) or for carrier-based systems, is first theoretically studied based on closed-form derivations of power spectral densities. Then, we investigate an application to an IR-UWB over optical fiber system, by utilizing the 4th and 5th orders of Gaussian derivatives. Our approach proves to be effective for 1 Gbps-PPM and 2 Gbps-OOK transmissions, with an advantage in terms of power efficiency for short distances. We also examine the performance for a system employing an in-line Semiconductor Optical Amplifier (SOA) with the view to achieve a reach extension, while limiting the cost and system complexity.

  18. Modulated electron cyclotron drift instability in a high-power pulsed magnetron discharge.

    PubMed

    Tsikata, Sedina; Minea, Tiberiu

    2015-05-08

    The electron cyclotron drift instability, implicated in electron heating and anomalous transport, is detected in the plasma of a planar magnetron. Electron density fluctuations associated with the mode are identified via an adapted coherent Thomson scattering diagnostic, under direct current and high-power pulsed magnetron operation. Time-resolved analysis of the mode amplitude reveals that the instability, found at MHz frequencies and millimeter scales, also exhibits a kHz-scale modulation consistent with the observation of larger-scale plasma density nonuniformities, such as the rotating spoke. Sharply collimated axial fluctuations observed at the magnetron axis are consistent with the presence of escaping electrons in a region where the magnetic and electric fields are antiparallel. These results distinguish aspects of magnetron physics from other plasma sources of similar geometry, such as the Hall thruster, and broaden the scope of instabilities which may be considered to dictate magnetron plasma features.

  19. Dynamic Average-Value Modeling of Doubly-Fed Induction Generator Wind Energy Conversion Systems

    NASA Astrophysics Data System (ADS)

    Shahab, Azin

    In a Doubly-fed Induction Generator (DFIG) wind energy conversion system, the rotor of a wound rotor induction generator is connected to the grid via a partial scale ac/ac power electronic converter which controls the rotor frequency and speed. In this research, detailed models of the DFIG wind energy conversion system with Sinusoidal Pulse-Width Modulation (SPWM) scheme and Optimal Pulse-Width Modulation (OPWM) scheme for the power electronic converter are developed in detail in PSCAD/EMTDC. As the computer simulation using the detailed models tends to be computationally extensive, time consuming and even sometimes not practical in terms of speed, two modified approaches (switching-function modeling and average-value modeling) are proposed to reduce the simulation execution time. The results demonstrate that the two proposed approaches reduce the simulation execution time while the simulation results remain close to those obtained using the detailed model simulation.

  20. Non-parametric PCM to ADM conversion. [Pulse Code to Adaptive Delta Modulation

    NASA Technical Reports Server (NTRS)

    Locicero, J. L.; Schilling, D. L.

    1977-01-01

    An all-digital technique to convert pulse code modulated (PCM) signals into adaptive delta modulation (ADM) format is presented. The converter developed is shown to be independent of the statistical parameters of the encoded signal and can be constructed with only standard digital hardware. The structure of the converter is simple enough to be fabricated on a large scale integrated circuit where the advantages of reliability and cost can be optimized. A concise evaluation of this PCM to ADM translation technique is presented and several converters are simulated on a digital computer. A family of performance curves is given which displays the signal-to-noise ratio for sinusoidal test signals subjected to the conversion process, as a function of input signal power for several ratios of ADM rate to Nyquist rate.

  1. Pulsed depressed collector

    DOEpatents

    Kemp, Mark A

    2015-11-03

    A high power RF device has an electron beam cavity, a modulator, and a circuit for feed-forward energy recovery from a multi-stage depressed collector to the modulator. The electron beam cavity include a cathode, an anode, and the multi-stage depressed collector, and the modulator is configured to provide pulses to the cathode. Voltages of the electrode stages of the multi-stage depressed collector are allowed to float as determined by fixed impedances seen by the electrode stages. The energy recovery circuit includes a storage capacitor that dynamically biases potentials of the electrode stages of the multi-stage depressed collector and provides recovered energy from the electrode stages of the multi-stage depressed collector to the modulator. The circuit may also include a step-down transformer, where the electrode stages of the multi-stage depressed collector are electrically connected to separate taps on the step-down transformer.

  2. 1W frequency-doubled VCSEL-pumped blue laser with high pulse energy

    NASA Astrophysics Data System (ADS)

    Van Leeuwen, Robert; Chen, Tong; Watkins, Laurence; Xu, Guoyang; Seurin, Jean-Francois; Wang, Qing; Zhou, Delai; Ghosh, Chuni

    2015-02-01

    We report on a Q-switched VCSEL side-pumped 946 nm Nd:YAG laser that produces high average power blue light with high pulse energy after frequency doubling in BBO. The gain medium was water cooled and symmetrically pumped by three 1 kW 808 nm VCSEL pump modules. More than 1 W blue output was achieved at 210 Hz with 4.9 mJ pulse energy and at 340 Hz with 3.2 mJ pulse energy, with 42% and 36% second harmonic conversion efficiency respectively. Higher pulse energy was obtained at lower repetition frequencies, up to 9.3 mJ at 70 Hz with 52% conversion efficiency.

  3. Picosecond pulse generation in a hybrid Q-switched laser source by using a microelectromechanical mirror.

    PubMed

    Couderc, Vincent; Crunteanu, Aurelian; Fabert, Marc; Doutre, Florent; El Bassri, Farid; Pagnoux, Dominique; Jalocha, Alain

    2012-02-27

    We present a novel Q-switched laser source using a micro-optical-electromechanical mirror (MOEM) designed for short pulse emission. It is based on a hybrid configuration including a passively Q-switched microchip laser coupled to a fiber cavity closed by a cantilever type MOEM acting as an active modulator. This specially designed mirror with a single reflecting gold membrane is switched by low bias voltage ~50 V (peak to peak). This device emits pulses at tunable repetition rates up to 1.6 kHz, with ~564 ps duration and 3.4 kW peak power, which constitutes the shortest pulse duration ever reported with MOEMs based pulsed lasers.

  4. Impact of pumping configuration on all-fibered femtosecond chirped pulse amplification

    NASA Astrophysics Data System (ADS)

    Lecourt, Jean-Bernard; Duterte, Charles; Bertrand, Anthony; Liégeois, Flavien; Hernandez, Yves; Giannone, Domenico

    2008-04-01

    We experimentally compared the co- and counter-propagative pumping scheme for the amplification of ultra-short optical pulses. According to pumping direction we show that optical pulses with a duration of 75 fs and 100mW of average output power can be obtained for co-propagative pumping, while pulse duration is never shorter than 400 fs for the counter-propagative case. We show that the impact of non-linear effects on pulse propagation is different for the two pumping configurations. We assume that Self Phase Modulation (SPM) is the main effect in the copropagative case, whereas the impact of Stimulated Raman Scattering is bigger for the counter-propagative case.

  5. Analysis of originating ultra-short optical dissipative solitary pulses in the actively mode-locked semiconductor heterolasers with an external fiber cavity

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Campos Acosta, Joaquin; Pons Aglio, Alicia; Moreno Zarate, Pedro; Mansurova, Svetlana

    2010-06-01

    We present an advanced approach to describing low-power trains of bright picosecond optical dissipative solitary pulses with an internal frequency modulation in practically important case of exploiting semiconductor heterolaser operating in near-infrared range in the active mode-locking regime. In the chosen schematic arrangement, process of the active mode-locking is caused by a hybrid nonlinear cavity consisting of this heterolaser and an external rather long single-mode optical fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and small linear optical losses. Our analysis of shaping dissipative solitary pulses includes three principal contributions associated with the modulated gain, total optical losses, as well as with linear and nonlinear phase shifts. In fact, various trains of the non-interacting to one another optical dissipative solitons appear within simultaneous balance between the second-order dispersion and cubic-law Kerr nonlinearity as well as between active medium gain and linear optical losses in a hybrid cavity. Our specific approach makes possible taking the modulating signals providing non-conventional composite regimes of a multi-pulse active mode-locking. Within our model, a contribution of the appearing nonlinear Ginzburg-Landau operator to the parameters of dissipative solitary pulses is described via exploiting an approximate variational procedure involving the technique of trial functions.

  6. Novel Modulation Method for Multidirectional Matrix Converter

    PubMed Central

    Misron, Norhisam; Aris, Ishak Bin; Yamada, Hiroaki

    2014-01-01

    This study presents a new modulation method for multidirectional matrix converter (MDMC), based on the direct duty ratio pulse width modulation (DDPWM). In this study, a new structure of MDMC has been proposed to control the power flow direction through the stand-alone battery based system and hybrid vehicle. The modulation method acts based on the average voltage over one switching period concept. Therefore, in order to determine the duty ratio for each switch, the instantaneous input voltages are captured and compared with triangular waveform continuously. By selecting the proper switching pattern and changing the slope of the carriers, the sinusoidal input current can be synthesized with high power factor and desired output voltage. The proposed system increases the discharging time of the battery by injecting the power to the system from the generator and battery at the same time. Thus, it makes the battery life longer and saves more energy. This paper also derived necessary equation for proposed modulation method as well as detail of analysis and modulation algorithm. The theoretical and modulation concepts presented have been verified in MATLAB simulation. PMID:25298969

  7. Solar photovoltaic power stations

    NASA Technical Reports Server (NTRS)

    Chowaniec, C. R.; Pittman, P. F.; Ferber, R. R.; Marshall, B. W.

    1977-01-01

    The subsystems of a solar photovoltaic central power system are identified and the cost of major components are estimated. The central power system, which would have a peak power capability in the range of 50 to 1000 MW, utilizes two types of subsystems - a power conditioner and a solar array. Despite differences in costs of inverters, the overall cost of the total power conditioning subsystem is about the same for all approaches considered. A combination of two inverters operating from balanced dc buses as a pair of 6-pulse groups is recommended. A number of different solar cell modules and tracking array structures were analyzed. It is concluded that when solar cell costs are high (greater than $500/kW), high concentration modules are more cost effective than those with low concentration. Vertical-axis tracking is the most effective of the studied tracking modes. For less expensive solar cells (less than $400/kW), fixed tilt collector/reflector modules are more cost effective than those which track.

  8. Pulse Width Modulator Controller Design for a Brushless DC Motor Position Servo.

    DTIC Science & Technology

    1987-06-01

    C. POWER CONDITIONER SIMULATION Accurate modeling of power conditioning and commutation in brushless dc motors requires explicit definition of the...Study of a Brushless DC Motor Power Conditioner for a Cruise Missile Fin Control Actuator, Master’s Thesis, Naval Postgraduate School, Monterey, Ca...DESIGN FOR A BRUSHLESS DC MOTOR POSITION SERVO by Vincent S. Rossitto June 1987 Thesis Advisor: Alex Gerba, Jr. Approved for public release

  9. Sub-5-ps, multimegawatt peak-power pulses from a fiber-amplified and optically compressed passively Q-switched microchip laser.

    PubMed

    Steinmetz, A; Jansen, F; Stutzki, F; Lehneis, R; Limpert, J; Tünnermann, A

    2012-07-01

    We report on high-energy picosecond pulse generation from a passively Q-switched and fiber-amplified microchip laser system. Initially, the utilized microchip lasers produce pulses with durations of around 100 ps at 1064 nm central wavelength. These pulses are amplified to energies exceeding 100 μJ, simultaneously chirped and spectrally broadened by self-phase modulation using a double stage amplifier based on single-mode LMA photonic crystal fibers at repetition rates of up to 1 MHz. Subsequently, the pulse duration of chirped pulses is reduced by means of nonlinear pulse compression to durations of 2.7 ps employing a conventional grating compressor and 4.7 ps using a compact compressor based on a chirped volume Bragg grating.

  10. Long-range distributed optical fiber hot-wire anemometer based on chirped-pulse ΦOTDR.

    PubMed

    Garcia-Ruiz, Andres; Dominguez-Lopez, Alejandro; Pastor-Graells, Juan; Martins, Hugo F; Martin-Lopez, Sonia; Gonzalez-Herraez, Miguel

    2018-01-08

    We demonstrate a technique allowing to develop a fully distributed optical fiber hot-wire anemometer capable of reaching a wind speed uncertainty of ≈ ±0.15m/s (±0.54km/h) at only 60 mW/m of dissipated power in the sensing fiber, and within only four minutes of measurement time. This corresponds to similar uncertainty values than previous papers on distributed optical fiber anemometry but requires two orders of magnitude smaller dissipated power and covers at least one order of magnitude longer distance. This breakthrough is possible thanks to the extreme temperature sensitivity and single-shot performance of chirped-pulse phase-sensitive optical time domain reflectometry (ΦOTDR), together with the availability of metal-coated fibers. To achieve these results, a modulated current is fed through the metal coating of the fiber, causing a modulated temperature variation of the fiber core due to Joule effect. The amplitude of this temperature modulation is strongly dependent on the wind speed at which the fiber is subject. Continuous monitoring of the temperature modulation along the fiber allows to determine the wind speed with singular low power injection requirements. Moreover, this procedure makes the system immune to temperature drifts of the fiber, potentially allowing for a simple field deployment. Being a much less power-hungry scheme, this method also allows for monitoring over much longer distances, in the orders of 10s of km. We expect that this system can have application in dynamic line rating and lateral wind monitoring in railway catenary wires.

  11. Short-pulse excitation of microwave plasma for efficient diamond growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Hideaki, E-mail: yamada-diamond@aist.go.jp; Chayahara, Akiyoshi; Mokuno, Yoshiaki

    To realize a variety of potential applications of diamonds, particularly in the area of power electronics, it is indispensable to improve their growth efficiency. Most conventional approaches have tried to achieve this simply by increasing the gas temperature; however, this makes it difficult to grow large diamond crystals. To improve the growth efficiency while lowering the gas temperature, we propose that using a pulse-modulated microwave plasma with a sub-millisecond pulse width can enhance the power efficiency of the growth rate of single-crystal diamonds. We found that using a sub-millisecond pulse-mode discharge could almost double the growth rate obtained using continuousmore » mode discharge for a fixed average microwave power and gas pressure. A comparison between experimental observations of the optical emission spectra of the discharge and a numerical simulation of the gas temperature suggests that a decrease in the gas temperature was achieved, and highlights the importance of electron-dominated reactions for obtaining the enhancement of the growth rate. This result will have a large impact in the area of diamond growth because it enables diamond growth to be more power efficient at reduced temperatures.« less

  12. Ultra-narrow band diode lasers with arbitrary pulse shape modulation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ryasnyanskiy, Aleksandr I.; Smirnov, Vadim; Mokhun, Oleksiy; Glebov, Alexei L.; Glebov, Leon B.

    2017-03-01

    Wideband emission spectra of laser diode bars (several nanometers) can be largely narrowed by the usage of thick volume Bragg gratings (VBGs) recorded in photo-thermo-refractive glass. Such narrowband systems, with GHz-wide emission spectra, found broad applications for Diode Pumped Alkali vapor Lasers, optically pumped rare gas metastable lasers, Spin Exchange Optical Pumping, atom cooling, etc. Although the majority of current applications of narrow line diode lasers require CW operation, there are a variety of fields where operation in a different pulse mode regime is necessary. Commercial electric pulse generators can provide arbitrary current pulse profiles (sinusoidal, rectangular, triangular and their combinations). The pulse duration and repetition rate however, have an influence on the laser diode temperature, and therefore, the emitting wavelength. Thus, a detailed analysis is needed to understand the correspondence between the optical pulse profiles from a diode laser and the current pulse profiles; how the pulse profile and duty cycle affects the laser performance (e.g. the wavelength stability, signal to noise ratio, power stability etc.). We present the results of detailed studies of the narrowband laser diode performance operating in different temporal regimes with arbitrary pulse profiles. The developed narrowband (16 pm) tunable laser systems at 795 nm are capable of operating in different pulse regimes while keeping the linewidth, wavelength, and signal-to-noise ratio (>20 dB) similar to the corresponding CW modules.

  13. Pulse width modulated push-pull driven parallel resonant converter with active free-wheel

    DOEpatents

    Reass, William A.; Schrank, Louis

    2004-06-22

    An apparatus and method for high frequency alternating power generation to control kilowatts of supplied power in microseconds. The present invention includes a means for energy storage, push-pull switching means, control electronics, transformer means, resonant circuitry and means for excess energy recovery, all in electrical communication. A push-pull circuit works synchronously with a force commutated free-wheel transistor to provide current pulses to a transformer. A change in the conduction angle of the push-pull circuit changes the amount of energy coupled into the transformer's secondary oscillating circuit, thereby altering the induced secondary resonating voltage. At the end of each pulse, the force commutated free-wheel transistor causes residual excess energy in the primary circuit to be transmitted back to the storage capacitor for later use.

  14. Noise-like pulse generation in an ytterbium-doped fiber laser using tungsten disulphide

    NASA Astrophysics Data System (ADS)

    Zhang, Wenping; Song, Yanrong; Guoyu, Heyang; Xu, Runqin; Dong, Zikai; Li, Kexuan; Tian, Jinrong; Gong, Shuang

    2017-12-01

    We demonstrated the noise-like pulse (NLP) generation in an ytterbium-doped fiber (YDF) laser with tungsten disulphide (WS2). Stable fundamental mode locking and second-order harmonic mode locking were observed. The saturable absorber (SA) was a WS2-polyvinyl alcohol film. The modulation depth of the WS2 film was 2.4%, and the saturable optical intensity was 155 MW cm-2. Based on this SA, the fundamental NLP with a pulse width of 20 ns and repetition rate of 7 MHz were observed. The autocorrelation trace of output pulses had a coherent spike, which came from NLP. The average pulse width of the spike was 550 fs on the top of a broad pedestal. The second-order harmonic NLP had a spectral bandwidth of 1.3 nm and pulse width of 10 ns. With the pump power of 400 mW, the maximum output power was 22.2 mW. To the best of our knowledge, this is the first time a noise-like mode locking in an YDF laser based on WS2-SA in an all normal dispersion regime was obtained.

  15. An Electro-Optic Spatial Light Modulator for Thermoelastic Generation of Programmably Focused Ultrasound.

    DTIC Science & Technology

    1984-12-01

    The concept proposed is an electro - optic technique that would make it possible to spatially modulate a high power pulsed laser beam to thermoelastically induce focused ultrasound in a test material. Being a purely electro - optic device, the modulator, and therefore the depth at which the acoustic focus occurs, can be programmed electronically at electronic speeds. If successful, it would become possible to scan ultrasound continuously in three dimensions within the component or structure under test. (Author)

  16. An electro-optic spatial light modulator for thermoelastic generation of programmably focused ultrasound

    NASA Astrophysics Data System (ADS)

    1984-12-01

    The concept proposed is an electro-optic technique that would make it possible to spatially modulate a high power pulsed laser beam to thermoelastically induce focused ultrasound in a test material. Being a purely electro-optic device, the modulator, and therefore the depth at which the acoustic focus occurs, can be programmed electronically at electronic speeds. If successful, it would become possible to scan ultrasound continuously in three dimensions within the component or structure under test.

  17. Carrier envelope offset frequency detection and stabilization of a diode-pumped mode-locked Ti:sapphire laser.

    PubMed

    Gürel, Kutan; Wittwer, Valentin J; Hakobyan, Sargis; Schilt, Stéphane; Südmeyer, Thomas

    2017-03-15

    We demonstrate the first diode-pumped Ti:sapphire laser frequency comb. It is pumped by two green laser diodes with a total pump power of 3 W. The Ti:sapphire laser generates 250 mW of average output power in 61-fs pulses at a repetition rate of 216 MHz. We generated an octave-spanning supercontinuum spectrum in a photonic-crystal fiber and detected the carrier envelope offset (CEO) frequency in a standard f-to-2f interferometer setup. We stabilized the CEO-frequency through direct current modulation of one of the green pump diodes with a feedback bandwidth of 55 kHz limited by the pump diode driver used in this experiment. We achieved a reduction of the CEO phase noise power spectral density by 140 dB at 1 Hz offset frequency. An advantage of diode pumping is the ability for high-bandwidth modulation of the pump power via direct current modulation. After this experiment, we studied the modulation capabilities and noise properties of green pump laser diodes with improved driver electronics. The current-to-output-power modulation transfer function shows a bandwidth larger than 1 MHz, which should be sufficient to fully exploit the modulation bandwidth of the Ti:sapphire gain for CEO stabilization in future experiments.

  18. High-power Yb-fiber comb based on pre-chirped-management self-similar amplification

    NASA Astrophysics Data System (ADS)

    Luo, Daping; Liu, Yang; Gu, Chenglin; Wang, Chao; Zhu, Zhiwei; Zhang, Wenchao; Deng, Zejiang; Zhou, Lian; Li, Wenxue; Zeng, Heping

    2018-02-01

    We report a fiber self-similar-amplification (SSA) comb system that delivers a 250-MHz, 109-W, 42-fs pulse train with a 10-dB spectral width of 85 nm at 1056 nm. A pair of grisms is employed to compensate the group velocity dispersion and third-order dispersion of pre-amplified pulses for facilitating a self-similar evolution and a self-phase modulation (SPM). Moreover, we analyze the stabilities and noise characteristics of both the locked carrier envelope phase and the repetition rate, verifying the stability of the generated high-power comb. The demonstration of the SSA comb at such high power proves the feasibility of the SPM-based low-noise ultrashort comb.

  19. Pulse position modulation for compact all-fiber vehicle laser rangefinder development

    NASA Astrophysics Data System (ADS)

    Mao, Xuesong; Cheng, Yongzhi; Xiong, Ying; Inoue, Daisuke; Kagami, Manabu

    2017-10-01

    We propose a method for developing small all-fiber vehicle laser rangefinders that is based on pulse position modulation (PPM) and data integration and present a theoretical study on its performance. Compared with spatial coupling, which is employed by most of the current commercial vehicle laser rangefinders, fiber coupling has the advantage that it can guide laser echoes into the interior of a car, so the electronic components following the photodiode can operate in a moderate-temperature environment. However, optical fibers have numerical apertures (NAs), which means that a laser beam from a receiving lens cannot be coupled into an optical fiber if its incident angle exceeds the critical value. Therefore, the effective size of the receiving lens is typically small since it is limited by its focal length and the NA of the fiber, causing the power of the laser echoes gathered by the receiving lens to be insufficient for performing target identification. Instead of increasing the peak transmitting laser power unrestrictedly, PPM and data integration effectively compensate for the low signal-to-noise ratio that results from the effective receiving lens size reduction. We validated the proposed method by conducting numerical simulations and performance analysis. Finally, we compared the proposed method with pseudorandom noise (PN) code modulation and found that, although the two methods perform equally well in single-target measurement scenarios, PPM is more effective than PN code modulation for multitarget measurement. In addition, PPM enables the transmission of laser beams with higher peak powers and requires less computation than PN code modulation does.

  20. Diaper-Embedded Urinary Tract Infection Monitoring Sensor Module Powered by Urine-Activated Batteries.

    PubMed

    Seo, Weeseong; Yu, Wuyang; Tan, Tianlin; Ziaie, Babak; Jung, Byunghoo

    2017-06-01

    Urinary tract infection (UTI) is one of the most common infections in humans. UTI is easily treatable using antibiotics if identified in early stage. However, without early identification and treatment, UTI can be a major source of serious complications in geriatric patients, in particular, those suffering from neurodegenerative diseases. Also, for infants who have difficulty in describing their symptoms, UTI may lead to serious development of the disease making early identification of UTI crucial. In this paper, we present a diaper-embedded, wireless, self-powered, and autonomous UTI monitoring sensor module that allows an early detection of UTI with minimal effort. The sensor module consists of a paper-based colorimetric nitrite sensor, urine-activated batteries, a boost dc-dc converter, a low-power sensor interface utilizing pulse width modulation, and a Bluetooth low energy module for wireless transmission. Experimental results show a better detection of nitrite, a surrogate of UTI, than that of conventional dipstick testing. The proposed sensor module achieves a sensitivity of 1.35 ms/(mg/L) and a detection limit of 4 mg/L for nitrite.

  1. Radar Range Sidelobe Reduction Using Adaptive Pulse Compression Technique

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Coon, Michael; McLinden, Matthew

    2013-01-01

    Pulse compression has been widely used in radars so that low-power, long RF pulses can be transmitted, rather than a highpower short pulse. Pulse compression radars offer a number of advantages over high-power short pulsed radars, such as no need of high-power RF circuitry, no need of high-voltage electronics, compact size and light weight, better range resolution, and better reliability. However, range sidelobe associated with pulse compression has prevented the use of this technique on spaceborne radars since surface returns detected by range sidelobes may mask the returns from a nearby weak cloud or precipitation particles. Research on adaptive pulse compression was carried out utilizing a field-programmable gate array (FPGA) waveform generation board and a radar transceiver simulator. The results have shown significant improvements in pulse compression sidelobe performance. Microwave and millimeter-wave radars present many technological challenges for Earth and planetary science applications. The traditional tube-based radars use high-voltage power supply/modulators and high-power RF transmitters; therefore, these radars usually have large size, heavy weight, and reliability issues for space and airborne platforms. Pulse compression technology has provided a path toward meeting many of these radar challenges. Recent advances in digital waveform generation, digital receivers, and solid-state power amplifiers have opened a new era for applying pulse compression to the development of compact and high-performance airborne and spaceborne remote sensing radars. The primary objective of this innovative effort is to develop and test a new pulse compression technique to achieve ultrarange sidelobes so that this technique can be applied to spaceborne, airborne, and ground-based remote sensing radars to meet future science requirements. By using digital waveform generation, digital receiver, and solid-state power amplifier technologies, this improved pulse compression technique could bring significant impact on future radar development. The novel feature of this innovation is the non-linear FM (NLFM) waveform design. The traditional linear FM has the limit (-20 log BT -3 dB) for achieving ultra-low-range sidelobe in pulse compression. For this study, a different combination of 20- or 40-microsecond chirp pulse width and 2- or 4-MHz chirp bandwidth was used. These are typical operational parameters for airborne or spaceborne weather radars. The NLFM waveform design was then implemented on a FPGA board to generate a real chirp signal, which was then sent to the radar transceiver simulator. The final results have shown significant improvement on sidelobe performance compared to that obtained using a traditional linear FM chirp.

  2. Receiver Signal to Noise Ratios for IPDA Lidars Using Sine-wave and Pulsed Laser Modulation and Direct Detections

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Abshire, James B.

    2011-01-01

    Integrated path differential absorption (IPDA) lidar can be used to remotely measure the column density of gases in the path to a scattering target [1]. The total column gas molecular density can be derived from the ratio of the laser echo signal power with the laser wavelength on the gas absorption line (on-line) to that off the line (off-line). 80th coherent detection and direct detection IPDA lidar have been used successfully in the past in horizontal path and airborne remote sensing measurements. However, for space based measurements, the signal propagation losses are often orders of magnitude higher and it is important to use the most efficient laser modulation and detection technique to minimize the average laser power and the electrical power from the spacecraft. This paper gives an analysis the receiver signal to noise ratio (SNR) of several laser modulation and detection techniques versus the average received laser power under similar operation environments. Coherent detection [2] can give the best receiver performance when the local oscillator laser is relatively strong and the heterodyne mixing losses are negligible. Coherent detection has a high signal gain and a very narrow bandwidth for the background light and detector dark noise. However, coherent detection must maintain a high degree of coherence between the local oscillator laser and the received signal in both temporal and spatial modes. This often results in a high system complexity and low overall measurement efficiency. For measurements through atmosphere the coherence diameter of the received signal also limits the useful size of the receiver telescope. Direct detection IPDA lidars are simpler to build and have fewer constraints on the transmitter and receiver components. They can use much larger size 'photon-bucket' type telescopes to reduce the demands on the laser transmitter. Here we consider the two most widely used direct detection IPDA lidar techniques. The first technique uses two CW seeder lasers, one on-line and one offline that are intensity modulated by two different frequency sine-waves signals before being amplified by a common laser amplifier. The receiver uses narrowband amplitude demodulation, or lock-in, Signal processing at the given laser modulation frequencies [3,4]. The laser transmitter operates in a quasi CW mode with the peak power equal to twice the average power. The on-line and off-line lasers can be transmitted at the same time without interference. Another direct detection technique uses a low duty cycle pulsed laser modulation [5,6] with the laser wavelengths alternating between on-line and off-line on successive pulses. The receiver uses time resolved detection and can also provide simultaneous target range measurement. With a lower laser duty cycle it requires a much higher peak laser power for the same average power.

  3. Low Temperature Operation of a Switching Power Converter

    NASA Technical Reports Server (NTRS)

    Anglada-Sanchez, Carlos R.; Perez-Feliciano, David; Ray, Biswajit

    1997-01-01

    The low temperature operation of a 48 W, 50 kHz, 36/12 V pulse width modulated (PWM) buck de-de power converter designed with standard commercially available components and devices is reported. The efficiency of the converter increased from 85.6% at room temperature (300 K) to 92.0% at liquid nitrogen temperature (77 K). The variation of power MOSFET, diode rectifier, and output filter inductor loss with temperature is discussed. Relevant current, voltage. and power waveforms are also included.

  4. Graphene mode-lockers for fiber lasers functioned with evanescent field interaction

    NASA Astrophysics Data System (ADS)

    Song, Yong-Won; Jang, Sung-Yeon; Han, Won-Suk; Bae, Mi-Kyung

    2010-02-01

    Employing graphene as an intracavity passive power modulating element, we demonstrate the efficient laser pulsation in high pulse-energy regime with evanescent field interaction between the propagating light and graphene layer. Graphene is prepared by the solution based reduction of graphene oxide, and dispersed homogeneously into the water for spray onto an all-fiber substrate, side-polished fiber. With the intracavity power up to 21.41 dBm, we ensure the robust high-energy operation without any thermal damage of graphene. Resultant output pulses have center wavelength, spectral width, and repetition rate of 1561.6 nm, 1.96 nm, and 6.99 MHz, respectively.

  5. Homodyne impulse radar hidden object locator

    DOEpatents

    McEwan, T.E.

    1996-04-30

    An electromagnetic detector is designed to locate an object hidden behind a separator or a cavity within a solid object. The detector includes a PRF generator for generating 2 MHz pulses, a homodyne oscillator for generating a 2 kHz square wave, and for modulating the pulses from the PRF generator. A transmit antenna transmits the modulated pulses through the separator, and a receive antenna receives the signals reflected off the object. The receiver path of the detector includes a sample and hold circuit, an AC coupled amplifier which filters out DC bias level shifts in the sample and hold circuit, and a rectifier circuit connected to the homodyne oscillator and to the AC coupled amplifier, for synchronously rectifying the modulated pulses transmitted over the transmit antenna. The homodyne oscillator modulates the signal from the PRF generator with a continuous wave (CW) signal, and the AC coupled amplifier operates with a passband centered on that CW signal. The present detector can be used in several applications, including the detection of metallic and non-metallic objects, such as pipes, studs, joists, nails, rebars, conduits and electrical wiring, behind wood wall, ceiling, plywood, particle board, dense hardwood, masonry and cement structure. The detector is portable, light weight, simple to use, inexpensive, and has a low power emission which facilitates the compliance with Part 15 of the FCC rules. 15 figs.

  6. Homodyne impulse radar hidden object locator

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    An electromagnetic detector is designed to locate an object hidden behind a separator or a cavity within a solid object. The detector includes a PRF generator for generating 2 MHz pulses, a homodyne oscillator for generating a 2 kHz square wave, and for modulating the pulses from the PRF generator. A transmit antenna transmits the modulated pulses through the separator, and a receive antenna receives the signals reflected off the object. The receiver path of the detector includes a sample and hold circuit, an AC coupled amplifier which filters out DC bias level shifts in the sample and hold circuit, and a rectifier circuit connected to the homodyne oscillator and to the AC coupled amplifier, for synchronously rectifying the modulated pulses transmitted over the transmit antenna. The homodyne oscillator modulates the signal from the PRF generator with a continuous wave (CW) signal, and the AC coupled amplifier operates with a passband centered on that CW signal. The present detector can be used in several applications, including the detection of metallic and non-metallic objects, such as pipes, studs, joists, nails, rebars, conduits and electrical wiring, behind wood wall, ceiling, plywood, particle board, dense hardwood, masonry and cement structure. The detector is portable, light weight, simple to use, inexpensive, and has a low power emission which facilitates the compliance with Part 15 of the FCC rules.

  7. Control of pulse format in high energy per pulse all-fiber erbium/ytterbium laser systems

    NASA Astrophysics Data System (ADS)

    Klopfer, Michael; Block, Matthew K.; Deffenbaugh, James; Fitzpatrick, Zak G.; Urioste, Michael T.; Henry, Leanne J.; Jain, Ravinder

    2017-02-01

    A multi-stage linearly polarized (PM) (15 dB) pulsed fiber laser system at 1550 nm capable of operating at repetition rates between 3 and 20 kHz was investigated. A narrow linewidth seed source was linewidth broadened to approximately 20 GHz and pulses were created and shaped via an electro-optic modulator (EOM) in conjunction with a home built arbitrary waveform generator. As expected, a high repetition rate pulse train with a near diffraction limited beam quality (M2 1.12) was achieved. However, the ability to store energy was limited by the number of active ions within the erbium/ytterbium doped gain fiber within the various stages. As a result, the maximum energy per pulse achievable from the system was approximately 0.3 and 0.38 mJ for 300 ns and 1 μs pulses, respectively, at 3 kHz. Because the system was operated at high inversion, the erbium/ytterbium doped optical fiber preferred to lase at 1535 nm versus 1550 nm resulting in amplified spontaneous emission (ASE) both intra- and inter-pulse. For the lower power stages, the ASE was controllable via a EOM whose function was to block the energy between pulses as well as ASE filters whose purpose was to block spectral components outside of the 1550 nm passband. For the higher power stages, the pump diodes were pulsed to enable strategic placement of an inversion resulting in higher intrapulse energies as well as an improved spectrum of the signal. When optimized, this system will be used to seed higher power solid state amplifier stages.

  8. 180 mJ, long-pulse-duration, master-oscillator power amplifier with linewidth less than 25.6 kHz for laser guide stars.

    PubMed

    Wang, Chunhua; Zhang, Xiang; Ye, Zhibin; Liu, Chong; Chen, Jun

    2013-07-01

    A high-energy single-frequency hundred-microsecond long-pulse solid-state laser is demonstrated, which features an electro-optically modulated seed laser and two-stage double-passed pulse-pumped solid-state laser rod amplifier. Laser output with energy of 180 mJ, repetition rate of 50 Hz, and pulse width of 150 μs is achieved. The laser linewidth is measured to be less than 25.52 kHz by a fiber delay self-heterodyne method. In addition, a closed-loop controlling system is adopted to lock the center wavelength. No relaxation oscillation spikes appear in the pulse temporal profile, which is beneficial for further amplification.

  9. Generation of Shear Alfvén Waves by Repetitive High Power Microwave Pulses Near the Electron Plasma Frequency - A laboratory study of a ``Virtual Antenna''

    NASA Astrophysics Data System (ADS)

    Wang, Yuhou; Gekelman, Walter; Pribyl, Patrick; van Compernolle, Bart; Papadopoulos, Konstantinos

    2015-11-01

    ELF / ULF waves are important in terrestrial radio communications but difficult to launch using ground-based structures due to their enormous wavelengths. In spite of this generation of such waves by field-aligned ionospheric heating modulation was first demonstrated using the HAARP facility. In the future heaters near the equator will be constructed and laboratory experiments on cross-field wave propagation could be key to the program's success. Here we report a detailed laboratory study conducted on the Large Plasma Device (LaPD) at UCLA. In this experiment, ten rapid pulses of high power microwaves (250 kW X-band) near the plasma frequency were launched transverse to the background field, and were modulated at a variable fraction (0.1-1.0) of fci. Along with bulk electron heating and density modification, the microwave pulses generated a population of fast electrons. The field-aligned current carried by the fast electrons acted as an antenna that radiated shear Alfvén waves. It was demonstrated that a controllable arbitrary frequency (f

  10. A wideband wireless neural stimulation platform for high-density microelectrode arrays.

    PubMed

    Myers, Frank B; Simpson, Jim A; Ghovanloo, Maysam

    2006-01-01

    We describe a system that allows researchers to control an implantable neural microstimulator from a PC via a USB 2.0 interface and a novel dual-carrier wireless link, which provides separate data and power transmission. Our wireless stimulator, Interestim-2B (IS-2B), is a modular device capable of generating controlled-current stimulation pulse trains across 32 sites per module with support for a variety of stimulation schemes (biphasic/monophasic, bipolar/monopolar). We have developed software to generate multi-site stimulation commands for the IS-2B based on streaming data from artificial sensory devices such as cameras and microphones. For PC interfacing, we have developed a USB 2.0 microcontroller-based interface. Data is transmitted using frequency-shift keying (FSK) at 6/12 MHz to achieve a data rate of 3 Mb/s via a pair of rectangular coils. Power is generated using a class-E power amplifier operating at 1 MHz and transmitted via a separate pair of spiral planar coils which are oriented perpendicular to the data coils to minimize cross-coupling. We have successfully demonstrated the operation of the system by applying it as a visual prosthesis. Pulse-frequency modulated stimuli are generated in real-time based on a grayscale image from a webcam. These pulses are projected onto an 11x11 LED matrix that represents a 2D microelectrode array.

  11. Interface Control Document for the EMPACT Module that Estimates Electric Power Transmission System Response to EMP-Caused Damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werley, Kenneth Alan; Mccown, Andrew William

    The EPREP code is designed to evaluate the effects of an Electro-Magnetic Pulse (EMP) on the electric power transmission system. The EPREP code embodies an umbrella framework that allows a user to set up analysis conditions and to examine analysis results. The code links to three major physics/engineering modules. The first module describes the EM wave in space and time. The second module evaluates the damage caused by the wave on specific electric power (EP) transmission system components. The third module evaluates the consequence of the damaged network on its (reduced) ability to provide electric power to meet demand. Thismore » third module is the focus of the present paper. The EMPACT code serves as the third module. The EMPACT name denotes EMP effects on Alternating Current Transmission systems. The EMPACT algorithms compute electric power transmission network flow solutions under severely damaged network conditions. Initial solutions are often characterized by unacceptible network conditions including line overloads and bad voltages. The EMPACT code contains algorithms to adjust optimally network parameters to eliminate network problems while minimizing outages. System adjustments include automatically adjusting control equipment (generator V control, variable transformers, and variable shunts), as well as non-automatic control of generator power settings and minimal load shedding. The goal is to evaluate the minimal loss of customer load under equilibrium (steady-state) conditions during peak demand.« less

  12. Tetravalent chromium (Cr(4+)) as laser-active ion for tunable solid-state lasers

    NASA Technical Reports Server (NTRS)

    Seas, A.; Petricevic, V.; Alfano, Robert R.

    1992-01-01

    Generation of femtosecond pulses from a continuous-wave mode-locked chromium-doped forsterite (Cr(4+):Mg2SiO4) laser has been accomplished. The forsterite laser was actively mode-locked using an acousto-optic modulator operating at 78 MHz with two Brewster high-dispersion glass prisms for intra-cavity chirp compensation. Transform-limited sub-100-fs pulses were routinely generated in the TEM(sub 00) mode with 85 mW of continuous power (with 1 percent output coupler), tunable over 1230-1280 nm. The shortest pulses of 60-fs pulsewidth were measured.

  13. Picosecond laser with 11 W output power at 1342 nm based on composite multiple doping level Nd:YVO4 crystal

    NASA Astrophysics Data System (ADS)

    Rodin, Aleksej M.; Grishin, Mikhail; Michailovas, Andrejus

    2016-01-01

    We report results of design and optimization of high average output power picosecond and nanosecond laser operating at 1342 nm wavelength. Developed for selective micromachining, this DPSS laser is comprised of master oscillator, regenerative amplifier and output pulse control module. Passively mode-locked by means of semiconductor saturable absorber mirror and pumped with 808 nm wavelength Nd:YVO4 master oscillator emits 12.5 ps pulses at repetition rate of 55 MHz with average output power of ∼100 mW. The four-pass confocal delay line forms a longest part of the oscillator cavity in order to suppress thermo-mechanical misalignment. Picked from the train seed pulses were injected to the cavity of regenerative amplifier based on composite Nd:YVO4 crystal with diffusion-bonded segments of multiple Nd doping concentration end-pumped at 880 nm wavelength. Laser produces pulses of ∼13 ps duration at 300 kHz repetition rate with average output power of 11 W and nearly diffraction limited beam quality of M2∼1.03. Attained high peak power ∼2.8 MW facilitates conversion to the 2nd, 3rd and 6th harmonics at 671 nm, 447 nm and 224 nm wavelengths with 80%, 50% and 15% efficiency respectively. Without seeding the regenerative amplifier transforms to electro-optically cavity-dumped Q-switched laser providing 10 ns output pulses at high repetition rates with beam propagation factor of M2∼1.06.

  14. Microwave influence on the isolated heart function. 2: Combined effect of radiation and some drugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pakhomov, A.G.; Dubovick, B.V.; Degtyariov, I.G.

    1995-09-01

    The combined effects of microwave radiation and some drugs were studied in an isolated frog auricle preparation. The experiments established that exposure to pulse-modulated 915 Mhz microwaves for up to 40 min had no effect on either the rate or the amplitude of spontaneous auricle twitches, unless the average absorbed power was high enough to produce preparation heating. Treatment of the preparation with saline containing (0.6--3.0) 10{sup {minus}5} M of propranolol or (0.5--1.5) 10{sup {minus}7} M of atropine altered neither its pacemaker nor its contractile functions; these drugs also had no effect when they were combined with nonthermal microwave irradiation.more » Caffeine (1 mM) strongly increased the average heart power, which was calculated as the product of twitch rate ad amplitude. The caffeine effect appeared to be significantly augmented (by about 15%, P<0.02) under exposure to burst-type pulsed microwaves (pulse width, 1.5 msec; pause, 2.5 msec; 8 pulses/burst, 16 bursts/s; average SAR, 8--10 W/kg). By itself, this modulation was not effective; the heating of the preparation and saline during exposure was approximately 0.1 C, which could not account for the detected changes. The experimental results demonstrate that caffeine treatment increases the microwave sensitivity of the frog auricle preparation and reveals primarily subthreshold, nonthermal microwave effect.« less

  15. ''Smart'' watchdog safety switch

    DOEpatents

    Kronberg, J.W.

    1991-10-01

    A method and apparatus for monitoring a process having a periodic output so that the process equipment is not damaged in the event of a controller failure, comprising a low-pass and peak clipping filter, an event detector that generates an event pulse for each valid change in magnitude of the filtered periodic output, a timing pulse generator, a counter that increments upon receipt of any timing pulse and resets to zero on receipt of any event pulse, an alarm that alerts when the count reaches some preselected total count, and a set of relays that opens to stop power to process equipment. An interface module can be added to allow the switch to accept a variety of periodic output signals. 21 figures.

  16. "Smart" watchdog safety switch

    DOEpatents

    Kronberg, James W.

    1991-01-01

    A method and apparatus for monitoring a process having a periodic output so that the process equipment is not damaged in the event of a controller failure, comprising a low-pass and peak clipping filter, an event detector that generates an event pulse for each valid change in magnitude of the filtered periodic output, a timing pulse generator, a counter that increments upon receipt of any timing pulse and resets to zero on receipt of any event pulse, an alarm that alerts when the count reaches some preselected total count, and a set of relays that opens to stop power to process equipment. An interface module can be added to allow the switch to accept a variety of periodic output signals.

  17. Energy storage options for space power

    NASA Astrophysics Data System (ADS)

    Hoffman, H. W.; Martin, J. F.; Olszewski, M.

    Including energy storage in a space power supply enhances the feasibility of using thermal power cycles (Rankine or Brayton) and providing high-power pulses. Superconducting magnets, capacitors, electrochemical batteries, thermal phase-change materials (PCM), and flywheels are assessed; the results obtained suggest that flywheels and phase-change devices hold the most promise. Latent heat storage using inorganic salts and metallic eutectics offers thermal energy storage densities of 1500 kJ/kg to 2000 kJ/kg at temperatures to 1675 K. Innovative techniques allow these media to operate in direct contact with the heat engine working fluid. Enhancing thermal conductivity and/or modifying PCM crystallization habit provide other options. Flywheels of low-strain graphite and Kevlar fibers have achieved mechanical energy storage densities of 300 kJ/kg. With high-strain graphite fibers, storage densities appropriate to space power needs (about 500 kJ/kg) seem feasible. Coupling advanced flywheels with emerging high power density homopolar generators and compulsators could result in electric pulse-power storage modules of significantly higher energy density.

  18. Wavelength locking of CW and Q-switched Er(3+) microchip lasers to acetylene absorption lines using pump-power modulation.

    PubMed

    Brunel, Marc; Vallet, Marc

    2007-02-19

    We show that modulating the diode-pump power of a microchip solid-state laser enables to lock its wavelength to a reference molecular line. The method is applied to two different types of Er,Yb:glass monolithic microchip lasers operating at 1.53 microm. First, wavelength locking of a continuous-wave dual-polarization microchip laser to acetylene absorption lines is demonstrated, without using any additional modulator, internal or external. We then show that, remarkably, this simple method is also suitable for stabilizing a passively Q-switched microchip laser. A pulsed wavelength stability of 10(-8) over 1 hour is readily observed. Applications to lidars and to microwave photonics are discussed.

  19. New PVD Technologies for New Ordnance Coatings

    DTIC Science & Technology

    2012-04-01

    characteristics using a Tantalum and a Chrome target; 4) Deposition of Ta coatings and reactive deposition of CrN; 5) Deposition parameters affecting film...Vapor Deposition (PVD); High Power Impulse Magnetron Sputtering (HIPIMS); Modulated Pulsed Power (MPP); Tantalum; Chrome ; Ta coatings; CrN; coating...The pre-production chemicals and acids are hazardous and hexavalent Cr is a known carcinogen. Significant annual expenditures are necessary to

  20. The 120V 20A PWM switch for applications in high power distribution

    NASA Astrophysics Data System (ADS)

    Borelli, V.; Nimal, W.

    1989-08-01

    A 20A/120VDC (voltage direct current) PWM (Pulse Width Modulation) Solid State Power Controller (SSPC) developed under ESA contract to be used in the power distribution system of Columbus is described. The general characteristics are discussed and the project specification defined. The benefits of a PWM solution over a more conventional approach, for the specific application considered are presented. An introduction to the SSPC characteristics and a functional description are presented.

  1. Graphene-doped polymer nanofibers for low-threshold nonlinear optical waveguiding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Chao; Yu, Shao-Liang; Wang, Hong -Qing

    Graphene-doped polymer nanofibers are fabricated by taper drawing of solvated polyvinyl alcohol doped with liquid-phase exfoliated graphene flakes. Nanofibers drawn this way typically have diameters measured in hundreds of nanometers and lengths in tens of millimeters; they show excellent uniformity and surface smoothness for optical waveguiding. Owing to their tightly confined waveguiding behavior, light–matter interaction in these subwavelength-diameter nanofibers is significantly enhanced. Using approximately 1350-nm-wavelength femto-second pulses, we demonstrate saturable absorption behavior in these nanofibers with a saturation threshold down to 0.25 pJ pulse -1 (peak power ~1.3 W). Additionally, using 1064-nm-wavelength nanosecond pulses as switching light, we show all-opticalmore » modulation of a 1550-nm-wavelength signal light guided along a single nanofiber with a switching peak power of ~3.2 W.« less

  2. Graphene-doped polymer nanofibers for low-threshold nonlinear optical waveguiding

    DOE PAGES

    Meng, Chao; Yu, Shao-Liang; Wang, Hong -Qing; ...

    2015-11-06

    Graphene-doped polymer nanofibers are fabricated by taper drawing of solvated polyvinyl alcohol doped with liquid-phase exfoliated graphene flakes. Nanofibers drawn this way typically have diameters measured in hundreds of nanometers and lengths in tens of millimeters; they show excellent uniformity and surface smoothness for optical waveguiding. Owing to their tightly confined waveguiding behavior, light–matter interaction in these subwavelength-diameter nanofibers is significantly enhanced. Using approximately 1350-nm-wavelength femto-second pulses, we demonstrate saturable absorption behavior in these nanofibers with a saturation threshold down to 0.25 pJ pulse -1 (peak power ~1.3 W). Additionally, using 1064-nm-wavelength nanosecond pulses as switching light, we show all-opticalmore » modulation of a 1550-nm-wavelength signal light guided along a single nanofiber with a switching peak power of ~3.2 W.« less

  3. Passively mode-locked Yb fiber laser with PbSe colloidal quantum dots as saturable absorber.

    PubMed

    Wei, Kaihua; Fan, Shanhui; Chen, Qingguang; Lai, Xiaomin

    2017-10-16

    A passively mode-locked Yb fiber laser using PbSe colloidal quantum dots (CQDs) as saturable absorber (SA) is experimentally demonstrated. An all-fiber experimental scheme was designed to understand the SA property of PbSe CQDs. The non-saturable loss, modulation depth, and saturable intensity of SA measured were 23%, 7%, and 12 MW/cm 2 , respectively. The PbSe CQDs were sandwiched in a fiber connector, which was further inserted into the Yb fiber laser for mode-locking. As the pump power up to 110 mW, the self-starting mode-locking pulses were observed. Under the pump power of 285 mW, a maximum average laser power with fundamental mode-locking operation was obtained to be 21.3 mW. In this situation, the pulse full width at half maximum (FWHM), pulse repetition rate, and spectral FWHM were measured to be 70 ps, 8.3 MHz, and 4.5 nm, respectively.

  4. Fully automatic control of paraplegic FES pedaling using higher-order sliding mode and fuzzy logic control.

    PubMed

    Farhoud, Aidin; Erfanian, Abbas

    2014-05-01

    In this paper, a fully automatic robust control strategy is proposed for control of paraplegic pedaling using functional electrical stimulation (FES). The method is based on higher-order sliding mode (HOSM) control and fuzzy logic control. In FES, the strength of muscle contraction can be altered either by varying the pulse width (PW) or by the pulse amplitude (PA) of the stimulation signal. The proposed control strategy regulates simultaneously both PA and PW (i.e., PA/PW modulation). A HOSM controller is designed for regulating the PW and a fuzzy logic controller for the PA. The proposed control scheme is free-model and does not require any offline training phase and subject-specific information. Simulation studies on a virtual patient and experiments on three paraplegic subjects demonstrate good tracking performance and robustness of the proposed control strategy against muscle fatigue and external disturbances during FES-induced pedaling. The results of simulation studies show that the power and cadence tracking errors are 5.4% and 4.8%, respectively. The experimental results indicate that the proposed controller can improve pedaling system efficacy and increase the endurance of FES pedaling. The average of power tracking error over three paraplegic subjects is 7.4±1.4% using PA/PW modulation, while the tracking error is 10.2±1.2% when PW modulation is used. The subjects could pedal for 15 min with about 4.1% power loss at the end of experiment using proposed control strategy, while the power loss is 14.3% using PW modulation. The controller could adjust the stimulation intensity to compensate the muscle fatigue during long period of FES pedaling.

  5. Nearly fully compressed 1053 nm pulses directly obtained from 800 nm laser-seeded photonic crystal fiber below zero dispersion point

    NASA Astrophysics Data System (ADS)

    Refaeli, Zaharit; Shamir, Yariv; Ofir, Atara; Marcus, Gilad

    2018-02-01

    We report a simple robust and broadly spectral-adjustable source generating near fully compressed 1053 nm 62 fs pulses directly out of a highly-nonlinear photonic crystal fiber. A dispersion-nonlinearity balance of 800 nm Ti:Sa 20 fs pulses was obtained initially by negative pre-chirping and then launching the pulses into the fibers' normal dispersion regime. Following a self-phase modulation spectral broadening, some energy that leaked below the zero dispersion point formed a soliton whose central wavelength could be tuned by Self-Frequency-Raman-Shift effect. Contrary to a common approach of power, or, fiber-length control over the shift, here we continuously varied the state of polarization, exploiting the Raman and Kerr nonlinearities responsivity for state of polarization. We obtained soliton pulses with central wavelength tuned over 150 nm, spanning from well below 1000 to over 1150 nm, of which we could select stable pulses around the 1 μm vicinity. With linewidth of > 20 nm FWHM Gaussian-like temporal-shape pulses with 62 fs duration and near flat phase structure we confirmed high quality pulse source. We believe such scheme can be used for high energy or high power glass lasers systems, such as Nd or Yb ion-doped amplifiers and systems.

  6. Thermal effect of microburst and hyperpulse settings during sleeveless bimanual phacoemulsification with advanced power modulations.

    PubMed

    Braga-Mele, Rosa

    2006-04-01

    To assess wound temperature during bimanual sleeveless phacoemulsification using customizable power modulations such as hyperpulse and microburst technology. In vitro laboratory. The Millennium Microsurgical System (Bausch & Lomb) with custom control software (CCS) was used to perform phacoemulsification in 5 porcine eyes with MicroFlow needles (Bausch & Lomb) and with power varied from 20% to 80% in 10% increments. Pulse modes were set for fixed microburst (4 ms on, 4 ms off; and 6 ms on, 12 or 24 ms off) and for hyperpulse (30% duty cycle with 8 or 75 pulses per second [pps]), with and without aspiration-line occlusion. Wound temperatures were measured 3 times per second. Using 80% total power, the wound temperature during 3 minutes of occlusion did not exceed 39.0 degrees C. The maximum temperature with fixed microbursts of 4 ms on, 4 ms off was 29.0 degrees C without occlusion and 37.8 degrees C with occlusion (duration 3 minutes). At 6 ms on, 12 ms off, the maximum temperatures were 28.1 degrees C and 38.7 degrees C, respectively. At 6 ms on, 24 ms off, peak temperatures were 24 degrees C and 23.6 degrees C, respectively. The hyperpulse mode of 30% duty cycle and 8 pps produced maximum temperatures of 25.5 degrees C nonoccluded and 33.4 degrees C occluded. With 30% duty cycle, 75 pps, temperatures were 28 degrees C and 38.0 degrees C, respectively. For all power below 80%, temperatures were lower. Customizable power modulation with microburst and hyperpulse technology further reduced wound temperatures during bimanual sleeveless phacoemulsification. This enhances the safety and effectiveness of phacoemulsification through a sleeveless needle and a small stab incision.

  7. Ozone and dinitrogen monoxide production in atmospheric pressure air dielectric barrier discharge plasma effluent generated by nanosecond pulse superimposed alternating current voltage

    NASA Astrophysics Data System (ADS)

    Takashima, Keisuke; Kaneko, Toshiro

    2017-06-01

    The effects of nanosecond pulse superposition to alternating current voltage (NS + AC) on the generation of an air dielectric barrier discharge (DBD) plasma and reactive species are experimentally studied, along with measurements of ozone (O3) and dinitrogen monoxide (N2O) in the exhausted gas through the air DBD plasma (air plasma effluent). The charge-voltage cycle measurement indicates that the role of nanosecond pulse superposition is to induce electrical charge transport and excess charge accumulation on the dielectric surface following the nanosecond pulses. The densities of O3 and N2O in NS + AC DBD are found to be significantly increased in the plasma effluent, compared to the sum of those densities generated in NS DBD and AC DBD operated individually. The production of O3 and N2O is modulated significantly by the phase in which the nanosecond pulse is superimposed. The density increase and modulation effects by the nanosecond pulse are found to correspond with the electrical charge transport and the excess electrical charge accumulation induced by the nanosecond pulse. It is suggested that the electrical charge transport by the nanosecond pulse might result in the enhancement of the nanosecond pulse current, which may lead to more efficient molecular dissociation, and the excess electrical charge accumulation induced by the nanosecond pulse increases the discharge coupling power which would enhance molecular dissociation.

  8. A flexible master oscillator for a pulse-burst laser system

    NASA Astrophysics Data System (ADS)

    Den Hartog, D. J.; Young, W. C.

    2015-12-01

    A new master oscillator is being installed in the pulse-burst laser system used for high-rep-rate Thomson scattering on the MST experiment. This new master oscillator will enable pulse repetition rates up to 1 MHz, with the ability to program a burst of pulses with arbitrary and varying time separation between each pulse. In addition, the energy of each master oscillator pulse can be adjusted to compensate for gain variations in the power amplifier section of the laser system. This flexibility is accomplished by chopping a CW laser source with a high-bandwidth acousto-optic modulator (AOM). The laser source is a Laser Quantum ventus 1064 diode-pumped solid-state laser with continuous output power variable from 100 to 500 mW. The 1064 nm, 2.7 mm diameter polarized beam is focused into the gallium phosphide crystal of a Brimrose AOM, which deflects the beam by approximately 60 mR when driven by the 400 MHz fixed frequency driver. Beam deflection is controlled by a simple digital input pulse, and is capable of producing deflected pulses of less than 20 ns width at repetition rates much greater than 1 MHz. These deflected pulses from the output of the AOM are collimated and propagated into the laser amplifier system, where they will be amplified to ~ 2 J/pulse and injected into the MST plasma.

  9. Design of a Radiographic Integrated Test Stand (RITS) Based on a Voltage Adder, To Drive a Diode Immersed in a High Magnetic Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, V.L.; Corcoran, P.; Droemer, D.

    Recent experiments (1) have adapted existing magne-tically insulated induction voltage adders (Sabre, Hermes III) to drive a 10 MV diode immersed in magnetic fields as high as 50 T. In such a diode, an electron beam of tens of kA can be confined by the magnetic field to a diameter of about 1 mm, and when it strikes a high-Z anode it can create a bremsstrahlung x-ray source intense enough to radiograph massive objects with high resolution. RITS is an adder system designed specially to drive such diodes, and it will be used to develop and exploit them. As inmore » other adder-based pulsers such as Sabre, Hermes III, and Kalif-Heliq the induction cells have amorphous- iron cores, and the pulse-forming system consists of water dielectric pulse lines and self-closing water switches that are pulse-charged from Marx-charged intermediate water capacitors through laser-triggered Rimfire switches. An oil prepulse switch in series with each pulse line is designed to reduce cathode prepulse to less than ± 5 kV, and a means is provided to bias the cathode and avoid negative prepulse entirely. The RITS pulse-forming system consists of two modules. Each module has one Marx that charges two 3 MV intermediate stores, each of which charges three 7.8 ohm pulselines, making six pulselines per module. The two modules in concert can supply 1.35 MV, 50 ns pulses to a twelve-cell adder and thus drive a 16 MV diode with a single pulse. The 1.35 MV induction cells each have a single-point feed, from which a single, slotted azimuthal oil transmission line distributes energy uniformly around the cell. The modules can also be pulsed separately at different times, either to power two 8 MV adders that each drive one of two closely-spaced cathodes immersed in a common magnetic field, or to provide two separate pulses to a common six- cell adder and a single 8 NIV diode; in these two-pulse modes, the spacing of the two 50 ns pulses may be chosen to be anything from a few hundred ns upward. The use of only one pulse line per cell has been shown to increase the extent to which the cell voltages can vary with the timing of closure of the water switches. This and all other functions of RITS have been simulated in detail, and a conservative electrical design has been developed. This will be illustrated, along with the conceptual design of a pulse-sorting network that can couple two pulselines efilciently to one cell when the two RITS modules drive a common adder in two-pulse mode.« less

  10. POWER SUPPLY CONTROL AND MONITORING FOR THE SNS RING AND TRANSPORT SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LAMBIASE,R.; OERTER,B.; PENG,S.

    2001-06-28

    There are approximately 300 magnet power supplies in the SNS accumulator ring and transport lines. Control and monitoring of the these converters will be primarily accomplished with a new Power Supply Interface and Controller (PSI/PSC) system developed for the SNS project. This PSI/PSC system provides all analog and digital commands and status readbacks in one fiber isolated module. With a maximum rate of 10KHz, the PSI/PSC must be supplemented with higher speed systems for the wide bandwidth pulsed injection supplies, and the even wider bandwidth extraction kickers. This paper describes the implementation of this PSI/PSC system, which was developed throughmore » an industry/laboratory collaboration, and the supplementary equipment used to support the wider bandwidth pulsed supplies.« less

  11. Modular, Microprocessor-Controlled Flash Lighting System

    NASA Technical Reports Server (NTRS)

    Kiefer, Dwayne; Gray, Elizabeth; Skupinski, Robert; Stachowicz, Arthur; Birchenough, William

    2006-01-01

    A microprocessor-controlled lighting system generates brief, precisely timed, high-intensity flashes of light for scientific imaging at frame rates up to about 1 kHz. The system includes an array of light-emitting diodes (LEDs) that are driven in synchronism with an externally generated timing signal (for example, a timing signal generated by a video camera). The light output can be varied in peak intensity, pulse duration, pulse delay, and pulse rate, all depending on the timing signal and associated externally generated control signals. The array of LEDs comprises as many as 16 LED panels that can be attached together. Each LED panel is a module consisting of a rectangular subarray of 10 by 20 LEDs of advanced design on a printed-circuit board in a mounting frame with a power/control connector. The LED panels are controlled by an LED control module that contains an AC-to-DC power supply, a control board, and 8 LED-panel driver boards. In prior LED panels, the LEDs are packaged at less than maximum areal densities in bulky metal housings that reduce effective active areas. In contrast, in the present LED panels, the LEDs are packed at maximum areal density so as to afford 100-percent active area and so that when panels are joined side by side to form the array, there are no visible seams between them and the proportion of active area is still 100 percent. Each panel produces an illuminance of .5 x 10( exp 4) lux at a distance of 5.8 in. (approx.1.6 cm). The LEDs are driven according to a pulse-width-modulation control scheme that makes it safe to drive the LEDs beyond their rated steady-state currents in order to generate additional light during short periods. The drive current and the pulse-width modulation for each LED panel can be controlled independently of those of the other 15 panels. The maximum allowable duration of each pulse of drive current is a function of the amount of overdrive, the total time to be spent in overdrive operation, and the limitations of the LEDs. The system is configured to limit the overdrive according to values specific to each type of LED in the array. These values are coded into firmware to prevent inadvertent damage to the LED panels.

  12. Spectral effects in the propagation of chirped laser pulses in uniform underdense plasma

    NASA Astrophysics Data System (ADS)

    Pathak, Naveen; Zhidkov, Alexei; Hosokai, Tomonao; Kodama, Ryosuke

    2018-01-01

    Propagation of linearly chirped and linearly polarized, powerful laser pulses in uniform underdense plasma with their duration exceeding the plasma wave wavelength is examined via 3D fully relativistic particle-in-cell simulations. Spectral evolution of chirped laser pulses, determined by Raman scattering, essentially depends on the nonlinear electron evacuation from the first wake bucket via modulation of the known parameter /n e ( r ) ω0 2 γ . Conversely, the relative motion of different spectral components inside a pulse changes the evolution of the pulse length and, therefore, the ponderomotive forces at the pulse rear. Such longitudinal dynamics of the pulse length provoke a parametric resonance in the laser wake with continuous electron self-injection for any chirped pulses. However, the total charge of accelerated electrons and their energy distribution essentially depends on the chirp. Besides, negatively chirped laser pulses are shown to be useful for spatially resolved measurements of the plasma density profiles and for rough estimations of the laser pulse intensity evolution in underdense plasma.

  13. Linear transformer and primary low-inductance switch and capacitor modules for fast charging of PFL

    NASA Astrophysics Data System (ADS)

    Bykov, Yu A.; Krastelev, E. G.; Popov, G. V.; Sedin, A. A.; Feduschak, V. F.

    2017-05-01

    A step-up linear pulse transformer and a modular primary powering system were developed for fast (≈350 ns) charging of a pulse forming line (PFL) of a high-current electron accelerator. The linear transformer is assembled of a set of 20 inductors with circular ferromagnetic cores and one-turn primary windings. The secondary turn is formed by housing tube walls and a voltage adder with a film-glycerol insulation installed inside of the inductors. The primary powering system assembles 10 modules, each of them is a low-inductance site of two capacitors of 0,35 µF and one gas switch mounted at the same enclosure. The total stored energy is 5.5 kJ at the charging voltage of 40 kV. According to test results, the equivalent parameters at the output of the transformer are the next: a capacity - 17.5 nF, an inductance - 2 µH, a resistance - 3.2 Ohms.

  14. Synchronization of pairs of nanosecond pulses from a laser with two gain crystals pumped with two different sources.

    PubMed

    Staufert, Daniel; Cudney, Roger S

    2018-05-10

    We report a laser that emits two Q-switched pulses, one at 1.047 μm and the other at 1.064 μm, generated by a Nd:YLF and a Nd:YVO 4 , respectively. The crystals are pumped by two fiber-coupled diode lasers (808 nm and 880 nm); the delay between the pulses can be controlled by adjusting the power of the pumps. Two kinds of Q-switching techniques are reported, passive (Cr:YAG saturable absorber) and active (electro-optic modulator). We model both the active and passive Q switching and make a comparison between numerical simulations and experiments. We show experimentally and theoretically that in both cases the pulses can be synchronized; however, the stability of the synchronization (sensitivity to pump power fluctuations) is better for active than for passive Q switching. We also report that under certain experimental conditions a third wavelength is obtained, 1156 nm, which corresponds to the first Stokes shift of the 1047 nm pulse produced by stimulated Raman scattering from the Nd:YVO 4 crystal.

  15. Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi₂Se₃.

    PubMed

    Dou, Zhiyuan; Song, Yanrong; Tian, Jinrong; Liu, Jinghui; Yu, Zhenhua; Fang, Xiaohui

    2014-10-06

    We demonstrated an all-normal-dispersion Yb-doped mode-locked fiber laser based on Bi₂Se₃ topological insulator (TI). Different from previous TI-mode-locked fiber lasers in which TIs were mixed with film-forming agent, we used a special way to paste a well-proportioned pure TI on a fiber end-facet. In this way, the effect of the film-forming agent could be removed, thus the heat deposition was relieved and damage threshold could be improved. The modulation depth of the Bi₂Se₃ film was measured to be 5.2%. When we used the Bi₂Se₃ film in the Yb-doped fiber laser, the mode locked pulses with pulse energy of 0.756 nJ, pulse width of 46 ps and the repetition rate of 44.6 MHz were obtained. The maximum average output power was 33.7 mW. When the pump power exceeded 270 mW, the laser can operate in multiple pulse state that six-pulse regime can be realized. This contribution indicates that Bi₂Se₃ has an attractive optoelectronic property at 1μm waveband.

  16. Mechanisms of amplification of ultrashort electromagnetic pulses in gyrotron traveling wave tube with helically corrugated waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginzburg, N. S., E-mail: ginzburg@appl.sci-nnov.ru; Zaslavsky, V. Yu.; Nizhny Novgorod State University, 23 Gagarin Ave., 603950 Nizhny Novgorod

    A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of themore » incident signal with respect to the electron beam provides feeding of the signal by “fresh” electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam.« less

  17. Different Solutions for the Generator-accelerator Module

    NASA Astrophysics Data System (ADS)

    Savin, E. A.; Matsievskiy, S. V.; Sobenin, N. P.; Zavadtsev, A. A.; Zavadtsev, D. A.

    The most important part of the particle accelerators [1] - is the power generator together with the whole feeding system [2]. All types of generators, such as klystrons, magnetrons, solid state generators cover their own field of power and pulse length values. For the last couple of year the Inductive Output Tubes (IOT) becomes very popular because of their comparative construction simplicity: it represents the klystron output cavity with the grid modulated electron beam injected in it. Now such IOTs are used with the superconductive particle accelerators at 700 MHz operating frequency with around 1MW output power. Higher frequencies problem - is the inability to apply high frequency modulated voltage to the grid. Thus we need to figure out some kind of RF gun. But this article is about the first steps of the geometry and beam dynamics simulation in the six beam S-band IOT, which will be used with the compact biperiodic accelerating structure.

  18. High-performance flexible energy storage and harvesting system for wearable electronics

    NASA Astrophysics Data System (ADS)

    Ostfeld, Aminy E.; Gaikwad, Abhinav M.; Khan, Yasser; Arias, Ana C.

    2016-05-01

    This paper reports on the design and operation of a flexible power source integrating a lithium ion battery and amorphous silicon solar module, optimized to supply power to a wearable health monitoring device. The battery consists of printed anode and cathode layers based on graphite and lithium cobalt oxide, respectively, on thin flexible current collectors. It displays energy density of 6.98 mWh/cm2 and demonstrates capacity retention of 90% at 3C discharge rate and ~99% under 100 charge/discharge cycles and 600 cycles of mechanical flexing. A solar module with appropriate voltage and dimensions is used to charge the battery under both full sun and indoor illumination conditions, and the addition of the solar module is shown to extend the battery lifetime between charging cycles while powering a load. Furthermore, we show that by selecting the appropriate load duty cycle, the average load current can be matched to the solar module current and the battery can be maintained at a constant state of charge. Finally, the battery is used to power a pulse oximeter, demonstrating its effectiveness as a power source for wearable medical devices.

  19. High-performance flexible energy storage and harvesting system for wearable electronics.

    PubMed

    Ostfeld, Aminy E; Gaikwad, Abhinav M; Khan, Yasser; Arias, Ana C

    2016-05-17

    This paper reports on the design and operation of a flexible power source integrating a lithium ion battery and amorphous silicon solar module, optimized to supply power to a wearable health monitoring device. The battery consists of printed anode and cathode layers based on graphite and lithium cobalt oxide, respectively, on thin flexible current collectors. It displays energy density of 6.98 mWh/cm(2) and demonstrates capacity retention of 90% at 3C discharge rate and ~99% under 100 charge/discharge cycles and 600 cycles of mechanical flexing. A solar module with appropriate voltage and dimensions is used to charge the battery under both full sun and indoor illumination conditions, and the addition of the solar module is shown to extend the battery lifetime between charging cycles while powering a load. Furthermore, we show that by selecting the appropriate load duty cycle, the average load current can be matched to the solar module current and the battery can be maintained at a constant state of charge. Finally, the battery is used to power a pulse oximeter, demonstrating its effectiveness as a power source for wearable medical devices.

  20. High-performance flexible energy storage and harvesting system for wearable electronics

    PubMed Central

    Ostfeld, Aminy E.; Gaikwad, Abhinav M.; Khan, Yasser; Arias, Ana C.

    2016-01-01

    This paper reports on the design and operation of a flexible power source integrating a lithium ion battery and amorphous silicon solar module, optimized to supply power to a wearable health monitoring device. The battery consists of printed anode and cathode layers based on graphite and lithium cobalt oxide, respectively, on thin flexible current collectors. It displays energy density of 6.98 mWh/cm2 and demonstrates capacity retention of 90% at 3C discharge rate and ~99% under 100 charge/discharge cycles and 600 cycles of mechanical flexing. A solar module with appropriate voltage and dimensions is used to charge the battery under both full sun and indoor illumination conditions, and the addition of the solar module is shown to extend the battery lifetime between charging cycles while powering a load. Furthermore, we show that by selecting the appropriate load duty cycle, the average load current can be matched to the solar module current and the battery can be maintained at a constant state of charge. Finally, the battery is used to power a pulse oximeter, demonstrating its effectiveness as a power source for wearable medical devices. PMID:27184194

  1. Generation of UV light by intense ultrashort laser pulses in air

    NASA Astrophysics Data System (ADS)

    Alexeev, Ilya; Ting, Antonio; Gordon, Daniel; Briscoe, Eldridge; Penano, Joe; Sprangle, Phillip

    2004-11-01

    The propagation of collimated high-peak-power ultrashort laser pulses in air has attracted considerable attention, which may have a variety of important applications including remote sensing and chemical-biological aerosols standoff detection. Sub-millimeter diameter laser filaments can develop without any focusing optics and instead solely from laser self-focusing and plasma formation in air. These filaments can produce ultraviolet radiations in the form of the 3rd harmonic of the fundamental frequency and also through spectral broadening due to self-phase modulation of the laser pulse. Using femtosecond laser pulses produced by a high power Ti:Sapphire laser (0.8 TW, 50 fs, 800 nm) we observed generation of the third harmonic radiation light in air (centered around 267 nm) by the laser filaments. Characterization of the 3rd harmonic generation with respect to the major gas components of the air will be reported. Supported by the ONR and RDECOM. I. Alexeev is NRC/NRL Post-Doc.

  2. Sub-20-ps pulses from a passively Q-switched microchip laser at 1  MHz repetition rate.

    PubMed

    Mehner, Eva; Bernard, Benjamin; Giessen, Harald; Kopf, Daniel; Braun, Bernd

    2014-05-15

    We present a 50 μm Nd3+:YVO4 microchip laser that is passively Q-switched by a semiconductor saturable absorber mirror. To reduce handling problems caused by the small crystal dimensions, the 50 μm Nd3+:YVO4 crystal is optically bonded to an undoped YVO4 crystal of a length of about 500 μm. By using a saturable absorber mirror with an effective modulation depth of >10% the system is able to deliver 16 ps pulses at a repetition rate of up to 1.0 MHz. The average laser power is 16 mW at 1064 nm. To our knowledge these are the shortest Q-switched pulses ever reported from a solid-state laser. The limits in terms of pulse width, repetition rate, output power, and system stability are discussed. Additionally, continuous-wave behavior is analyzed. Experimental data is compared with the simulation results of the coupled rate equations.

  3. Passive Q-switching of a Tm,Ho:KLu(WO4)2 microchip laser by a Cr:ZnS saturable absorber.

    PubMed

    Serres, J M; Loiko, P; Mateos, X; Jambunathan, V; Yasukevich, A S; Yumashev, K V; Petrov, V; Griebner, U; Aguiló, M; Díaz, F

    2016-05-10

    A diode-pumped Tm,Ho:KLu(WO4)2 microchip laser passively Q-switched with a Cr:ZnS saturable absorber generated an average output power of 131 mW at 2063.6 nm with a slope efficiency of 11% and a Q-switching conversion efficiency of 58%. The pulse characteristics were 14  ns/9  μJ at a pulse repetition frequency of 14.5 kHz. With higher modulation depth of the saturable absorber, 9  ns/10.4  μJ/8.2  kHz pulses were generated at 2061.1 nm, corresponding to a record peak power extracted from a passively Q-switched Tm,Ho laser of 1.15 kW. A theoretical model is presented, predicting the pulse energy and duration. The simulations are in good agreement with the experimental results.

  4. IEEE Conference Record of 1978 Thirteenth Pulse Power Modulator Symposium, Buffalo, New York, 20-22 June 1978.

    DTIC Science & Technology

    1978-01-01

    Advantagas possessed tage mast be high enough to effectively couple energy by water include the self - healing nature of the di- into the excimer gas mix, which...optimum input chosen aggregate of section self -inductances and mutual inductance between sections was module parameters and the Rayleigh module upset...6b0 cm in diam- eter and 6.86 cm long. A solid copper wire with the same number of circular mls has a diameter of 0.583 cm. The self -inductance o 60

  5. Distributed optical fiber vibration sensor based on Sagnac interference in conjunction with OTDR.

    PubMed

    Pan, Chao; Liu, Xiaorui; Zhu, Hui; Shan, Xuekang; Sun, Xiaohan

    2017-08-21

    A real-time distributed optical fiber vibration sensing prototype based on the Sagnac interference in conjunction with the optical time domain reflectometry (OTDR) was developed. The sensing mechanism for single- and multi-points vibrations along the sensing fiber was analyzed theoretically and demonstrated experimentally. The experimental results show excellent agreement with the theoretical models. It is verified that single-point vibration induces a significantly abrupt and monotonous power change in the corresponding position of OTDR trace. As to multi-points vibrations, the detection of the following vibration is influenced by all previous ones. However, if the distance between the adjacent two vibrations is larger than half of the input optical pulse width, abrupt power changes induced by them are separate and still monotonous. A time-shifting differential module was developed and carried out to convert vibration-induced power changes to pulses. Consequently, vibrations can be located accurately by measuring peak or valley positions of the vibration-induced pulses. It is demonstrated that when the width and peak power of input optical pulse are set to 1 μs and 35 mW, respectively, the position error is less than ± 0.5 m in a sensing range of more than 16 km, with the spatial resolution of ~110 m.

  6. Improvement of laser keyhole formation with the assistance of arc plasma in the hybrid welding process of magnesium alloy

    NASA Astrophysics Data System (ADS)

    Liu, Liming; Hao, Xinfeng

    2009-11-01

    In the previous work, low-power laser/arc hybrid welding technique is used to weld magnesium alloy and high-quality weld joints are obtained. In order to make clear the interactions between low-power laser pulse and arc plasma, the effect of arc plasma on laser pulse is studied in this article. The result shows that the penetration of low-power laser welding with the assistance of TIG arc is more than two times deeper than that of laser welding alone and laser welding transforms from thermal-conduction mode to keyhole mode. The plasma behaviors and spectra during the welding process are studied, and the transition mechanism of laser-welding mode is analyzed in detail. It is also found that with the assistance of arc plasma, the threshold value of average power density to form keyhole welding for YAG laser is only 3.3×10 4 W/cm 2, and the average peak power density is 2.6×10 5 W/cm 2 in the present experiment. Moreover, the distribution of energy density during laser pulse is modulated to improve the formation and stability of laser keyholes.

  7. Cascade pulse-tube cryocooler using a displacer for efficient work recovery

    NASA Astrophysics Data System (ADS)

    Xu, Jingyuan; Hu, Jianying; Hu, Jiangfeng; Luo, Ercang; Zhang, Limin; Gao, Bo

    2017-09-01

    Expansion work is generally wasted as heat in a pulse-tube cryocooler and thus represents an obstacle to obtaining higher Carnot efficiency. Recovery of this dissipated power is crucial to improvement of these cooling systems, particularly when the cooling temperature is not very low. In this paper, an efficient cascade cryocooler that is capable of recovering acoustic power is introduced. The cryocooler is composed of two coolers and a displacer unit. The displacer, which fulfills both phase modulation and power transmission roles, is sandwiched in the structure by the two coolers. This means that the expansion work from the first stage cooler can then be used by the second stage cooler. The expansion work of the second stage cooler is much lower than the total input work and it is thus not necessary to recover it. Analyses and experiments were conducted to verify the proposed configuration. At an input power of 1249 W, the cascade cryocooler achieved its highest overall relative Carnot efficiency of 37.2% and a cooling power of 371 W at 130 K. When compared with the performance of a traditional pulse-tube cryocooler, the cooling efficiency was improved by 32%.

  8. Progress in high duty cycle, highly efficient fiber coupled 940-nm pump modules for high-energy class solid-state lasers

    NASA Astrophysics Data System (ADS)

    Platz, R.; Frevert, C.; Eppich, B.; Rieprich, J.; Ginolas, A.; Kreutzmann, S.; Knigge, S.; Erbert, G.; Crump, P.

    2018-03-01

    Diode lasers pump sources for future high-energy-class laser systems based on Yb-doped solid state amplifiers must deliver high optical intensities, high conversion efficiency (ηE = > 50%) at high repetition rates (f = 100 Hz) and long pulse widths (τ = 0.5…2 ms). Over the last decade, a series of pump modules has been developed at the Ferdinand-BraunInstitut to address these needs. The latest modules use novel wide-aperture single emitter diode lasers in passively side cooled stacks, operate at τ = 1 ms, f = 100…200 Hz and deliver 5…6 kW optical output power from a fiber with 1.9 mm core diameter and NA of 0.22, for spatial brightness BΩ > 1 MW/cm2 sr. The performance to date and latest developments in these high brightness modules are summarized here with recent work focusing on extending operation to other pumping conditions, as needed for alternative solid state laser designs. Specifically, the electro-optic, spectral and beam propagation characteristics of the module and its components are studied as a function of τ for a fixed duty cycle DC = 10% for τ = 1...100 ms, and first data is shown for continuous wave operation. Clear potential is seen to fulfill more demanding specifications without design changes. For example, high power long-pulse operation is demonstrated, with a power of > 5 kW at τ = 100 ms. Higher brightness operation is also confirmed at DC = 10% and τ = 1 ms, with > 5 kW delivered in a beam with BΩ > 4 MW/cm2 sr.

  9. Demonstration of an optical directed half-subtracter using integrated silicon photonic circuits.

    PubMed

    Liu, Zilong; Zhao, Yongpeng; Xiao, Huifu; Deng, Lin; Meng, Yinghao; Guo, Xiaonan; Liu, Guipeng; Tian, Yonghui; Yang, Jianhong

    2018-04-01

    An integrated silicon photonic circuit consisting of two silicon microring resonators (MRRs) is proposed and experimentally demonstrated for the purpose of half-subtraction operation. The thermo-optic modulation scheme is employed to modulate the MRRs due to its relatively simple fabrication process. The high and low levels of the electrical pulse signal are utilized to define logic 1 and 0 in the electrical domain, respectively, and the high and low levels of the optical power represent logic 1 and 0 in the optical domain, respectively. Two electrical pulse sequences regarded as the operands are applied to the corresponding micro-heaters fabricated on the top of the MRRs to achieve their dynamic modulations. The final operation results of bit-wise borrow and difference are obtained at their corresponding output ports in the form of light. At last, the subtraction operation of two bits with the operation speed of 10 kbps is demonstrated successfully.

  10. Improved heteronuclear dipolar decoupling sequences for liquid-crystal NMR

    NASA Astrophysics Data System (ADS)

    Thakur, Rajendra Singh; Kurur, Narayanan D.; Madhu, P. K.

    2007-04-01

    Recently we introduced a radiofrequency pulse scheme for heteronuclear dipolar decoupling in solid-state nuclear magnetic resonance under magic-angle spinning [R.S. Thakur, N.D. Kurur, P.K. Madhu, Swept-frequency two-pulse phase modulation for heteronuclear dipolar decoupling in solid-state NMR, Chem. Phys. Lett. 426 (2006) 459-463]. Variants of this sequence, swept-frequency TPPM, employing frequency modulation of different types have been further tested to improve the efficiency of heteronuclear dipolar decoupling. Among these, certain sequences that were found to perform well at lower spinning speeds are demonstrated here on a liquid-crystal sample of MBBA for application in static samples. The new sequences are compared with the standard TPPM and SPINAL schemes and are shown to perform better than them. These modulated schemes perform well at low decoupler radiofrequency power levels and are easy to implement on standard spectrometers.

  11. Double Q-switch Ho:Sc2SiO5 laser by acousto-optic modulator combined with Cr2+:ZnSe saturable absorber

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-tao; Zhang, Peng; Xie, Wen-qiang; Li, Lin-jun

    2018-01-01

    A double Q-switch (DQS) Ho:Sc2SiO5 laser modulated by a acousto-optic modulators (AOM) combined with a Cr2+:ZnSe saturable absorber (SA) was reported for the first time. The actively Q-switch (AQS) and passively Q-switch (PQS) were also studied. For the DQS mode, a maximum average output power of 2.49 W under the incident pump power of 12.5 W was obtained, corresponding to a slope efficiency of 24%. The characteristics of the DQS Ho:SSO laser versus different repetition frequencies (RF) of the AOM were researched. The maximum single-pulse energy of the DQS Ho:SSO laser was calculated to 1.98 mJ. The maximum peak power of the DQS Ho:SSO laser was 49.5 kW. The output beam quality factor M2 of DQS Ho:SSO laser was measured to be 1.15 with the highest peak power by knife-edge method at different positions.

  12. Implementation and validation of a CubeSat laser transmitter

    NASA Astrophysics Data System (ADS)

    Kingsbury, R. W.; Caplan, D. O.; Cahoy, K. L.

    2016-03-01

    The paper presents implementation and validation results for a CubeSat-scale laser transmitter. The master oscillator power amplifier (MOPA) design produces a 1550 nm, 200mW average power optical signal through the use of a directly modulated laser diode and a commercial fiber amplifier. The prototype design produces high-fidelity M-ary pulse position modulated (PPM) waveforms (M=8 to 128), targeting data rates > 10 Mbit/s while meeting a constraining 8W power allocation. We also present the implementation of an avalanche photodiode (APD) receiver with measured transmitter-to-receiver performance within 3 dB of theory. Via loopback, the compact receiver design can provide built-in self-test and calibration capabilities, and supports incremental on-orbit testing of the design.

  13. Femtosecond pulse with THz repetition frequency based on the coupling between quantum emitters and a plasmonic resonator

    NASA Astrophysics Data System (ADS)

    Li, Shilei; Ding, Yinxing; Jiao, Rongzhen; Duan, Gaoyan; Yu, Li

    2018-03-01

    Nanoscale pulsed light is highly desirable in nano-integrated optics. In this paper, we obtained femtosecond pulses with THz repetition frequency via the coupling between quantum emitters (QEs) and plasmonic resonators. Our structure consists of a V -groove (VG) plasmonic resonator and a nanowire embedded with two-level QEs. The influences of the incident light intensity and QE number density on the transmission response for this hybrid system are investigated through semiclassical theory and simulation. The results show that the transmission response can be modulated to the pulse form. And the repetition frequency and extinction ratio of the pulses can be controlled by the incident light intensity and QE number density. The reason is that the coupling causes the output power of nanowire to behave as an oscillating form, the oscillating output power in turn causes the field amplitude in the resonator to oscillate over time. A feedback system is formed between the plasmonic resonator and the QEs in the nanowire. This provides a method for generating narrow pulsed lasers with ultrahigh repetition frequencies in plasmonic systems using a continuous wave input, which has potential applications in generating optical clock signals at the nanoscale.

  14. LDPC-coded MIMO optical communication over the atmospheric turbulence channel using Q-ary pulse-position modulation.

    PubMed

    Djordjevic, Ivan B

    2007-08-06

    We describe a coded power-efficient transmission scheme based on repetition MIMO principle suitable for communication over the atmospheric turbulence channel, and determine its channel capacity. The proposed scheme employs the Q-ary pulse-position modulation. We further study how to approach the channel capacity limits using low-density parity-check (LDPC) codes. Component LDPC codes are designed using the concept of pairwise-balanced designs. Contrary to the several recent publications, bit-error rates and channel capacities are reported assuming non-ideal photodetection. The atmospheric turbulence channel is modeled using the Gamma-Gamma distribution function due to Al-Habash et al. Excellent bit-error rate performance improvement, over uncoded case, is found.

  15. Continuous-wave and acousto-optically Q-switched 1066 nm laser performance of a novel Nd:GdTaO4 crystal

    NASA Astrophysics Data System (ADS)

    Ma, Yufei; He, Ying; Peng, Zhenfang; Sun, Haiyue; Peng, Fang; Yan, Renpeng; Li, Xudong; Yu, Xin; Zhang, Qingli; Ding, Shoujun

    2018-05-01

    A diode-pumped acousto-optically (AO) Q-switched 1066 nm laser with a novel Nd:GdTaO4 crystal was demonstrated for the first time to the best of our knowledge. The optimization selection of output coupler was carried out in the continuous-wave (CW) operation. After that the pulsed Nd:GdTaO4 laser performances using different modulation repetition rates of 10 kHz and 20 kHz were investigated. At an absorbed pump power of 10 W and repetition rates of 10 kHz, the obtained minimum pulse width was 28 ns and the maximum peak power was 5.4 kW.

  16. Sub-100-ps amplitude-modulation mode-locked Tm-Ho:BaY2F8 laser at 2.06 μm

    NASA Astrophysics Data System (ADS)

    Galzerano, G.; Marano, M.; Longhi, S.; Sani, E.; Toncelli, A.; Tonelli, M.; Laporta, P.

    2003-11-01

    We report the generation of sub-100-ps pulse trains near the 2.06-μm wavelength in an actively mode-locked diode-pumped Tm-Ho:BaYF laser operating at room temperature. Transform-limited, 97-ps Gaussian pulses at a 100-MHz repetition rate with an average power in excess of 20 mW and with a carrier wavelength tunable by ~50 nm near 2.066 μm are demonstrated.

  17. Cross-Phase Modulation: A New Technique for Controlling the Spectral, Temporal, and Spatial Properties of Ultrashort Pulses

    NASA Astrophysics Data System (ADS)

    Baldeck, P. L.; Ho, P. P.; Alfano, Robert R.

    Self-phase modulation (SPM) is the principal mechanism responsible for the generation of picosecond and femtosecond white-light supercontinua. When an intense ultrashort pulse progagates through a medium, it distorts the atomic configuration of the material, which changes the refractive index. The pulse phase is time modulated, which causes the generation of new frequencies. This phase modulation originates from the pulse itself (self-phase modulation). It can also be generated by a copropagating pulse (cross-phase modulation).

  18. EMU Battery/module Service Tool Characterization Study

    NASA Technical Reports Server (NTRS)

    Palandati, C. F.

    1984-01-01

    The power tool which will be used to replace the attitude control system in the SMM spacecraft is being modified to operate from a self contained battery. The extravehicular mobility unit (EMU) battery, a silver zinc battery, was tested for the power tool application. The results obtained during show the EMU battery is capable of operating the power tool within the pulse current range of 2.0 to 15.0 amperes and battery temperature range of -10 to 40 degrees Celsius.

  19. System-wide power management control via clock distribution network

    DOEpatents

    Coteus, Paul W.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Reed, Don D.

    2015-05-19

    An apparatus, method and computer program product for automatically controlling power dissipation of a parallel computing system that includes a plurality of processors. A computing device issues a command to the parallel computing system. A clock pulse-width modulator encodes the command in a system clock signal to be distributed to the plurality of processors. The plurality of processors in the parallel computing system receive the system clock signal including the encoded command, and adjusts power dissipation according to the encoded command.

  20. Range Resolved CO2 Atmospheric Backscattering Measurements Using Fiber Lasers and RZPN Code Modulation

    NASA Technical Reports Server (NTRS)

    Burris, John

    2011-01-01

    We report the use of a return-to- zero (RZPN) pseudo noise modulation technique for making range resolved measurements of CO2 within the planetary boundary layer (PBL) using commercial, off-the-shelf, components. Conventional, range resolved, DIAL measurements require laser pulse widths that are significantly shorter than the desired spatial resolution and necessitate using pulses whose temporal spacing is such that scattered returns from only a single pulse are observed by the receiver at any one time (for the PBL pulse separations must be greater than approximately 20 microseconds). This imposes significant operational limitations when using currently available fiber lasers because of the resulting low duty cycle (less than approximately 0.0005) and consequent low average laser output power. The RZPN modulation technique enables a fiber laser to operate at much higher duty cycles (approaching 0.04) thereby more effectively utilizing the amplifier's output. This increases the counts received by approximately two orders of magnitude. Our approach involves employing two distributed feedback lasers (DFB), each modulated by a different RPZN code, whose outputs are then amplified by a CW fiber amplifier. One laser is tuned to a CO2 absorption line; the other operates offline thereby permitting the simultaneous acquisition of both on and offline signals using independent RZPN codes. This minimizes the impact of atmospheric turbulence on the measurement. The on and offline signals are retrieved by deconvolving the return signal using the appropriate kernels.

  1. Biotelemetry system for ambulatory patients

    NASA Technical Reports Server (NTRS)

    Fryer, T. B.

    1978-01-01

    Compact transmitter for multichannel telemetry of medical data is carried in patient's belt. Pulse-code modulation (PCM), is used for high-quality signal, and low-power CMOS integrated circuits make miniaturization possible. Transmitter is useful for electro-encephalograms (EEG) and electro-cardiograms (EKG) and other biomedical patient-monitoring situations.

  2. RF pulse shape control in the compact linear collider test facility

    NASA Astrophysics Data System (ADS)

    Kononenko, Oleksiy; Corsini, Roberto

    2018-07-01

    The Compact Linear Collider (CLIC) is a study for an electron-positron machine aiming at accelerating and colliding particles at the next energy frontier. The CLIC concept is based on the novel two-beam acceleration scheme, where a high-current low-energy drive beam generates RF in series of power extraction and transfer structures accelerating the low-current main beam. To compensate for the transient beam-loading and meet the energy spread specification requirements for the main linac, the RF pulse shape must be carefully optimized. This was recently modelled by varying the drive beam phase switch times in the sub-harmonic buncher so that, when combined, the drive beam modulation translates into the required voltage modulation of the accelerating pulse. In this paper, the control over the RF pulse shape with the phase switches, that is crucial for the success of the developed compensation model, is studied. The results on the experimental verification of this control method are presented and a good agreement with the numerical predictions is demonstrated. Implications for the CLIC beam-loading compensation model are also discussed.

  3. Directional spectra of ocean waves from microwave backscatter: A physical optics solution with application to the short-pulse and two-frequency measurement techniques

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.

    1979-01-01

    Two simple microwave radar techniques that are potentially capable of providing routine satellite measurements of the directional spectrum of ocean waves were developed. One technique, the short pulse technique, makes use of very short pulses to resolve ocean surface wave contrast features in the range direction; the other technique, the two frequency correlation technique makes use of coherency in the transmitted waveform to detect the large ocean wave contrast modulation as a beat or mixing frequency in the power backscattered at two closely separated microwave frequencies. A frequency domain analysis of the short pulse and two frequency systems shows that the two measurement systems are essentially duals; they each operate on the generalized (three frequency) fourth-order statistical moment of the surface transfer function in different, but symmetrical ways, and they both measure the same directional contrast modulation spectrum. A three dimensional physical optics solution for the fourth-order moment was obtained for backscatter in the near vertical, specular regime, assuming Gaussian surface statistics.

  4. Control of the amplifications of large-band amplitude-modulated pulses in an Nd-glass amplifier chain

    NASA Astrophysics Data System (ADS)

    Videau, Laurent; Bar, Emmanuel; Rouyer, Claude; Gouedard, Claude; Garnier, Josselin C.; Migus, Arnold

    1999-07-01

    We study nonlinear effects in amplification of partially coherent pulses in a high power laser chain. We compare statistical models with experimental results for temporal and spatial effects. First we show the interplay between self-phase modulation which broadens spectrum bandwidth and gain narrowing which reduces output spectrum. Theoretical results are presented for spectral broadening and energy limitation in case of time-incoherent pulses. In a second part, we introduce spatial incoherence with a multimode optical fiber which provides a smoothed beam. We show with experimental result that spatial filter pinholes are responsible for additive energy losses in the amplification. We develop a statistical model which takes into account the deformation of the focused beam as a function of B integral. We estimate the energy transmission of the spatial filter pinholes and compare this model with experimental data. We find a good agreement between theory and experiments. As a conclusion, we present an analogy between temporal and spatial effects with spectral broadening and spectral filter. Finally, we propose some solutions to control energy limitations in smoothed pulses amplification.

  5. High efficiency H6 single-phase transformerless grid-tied PV inverter with proposed modulation for reactive power generation

    NASA Astrophysics Data System (ADS)

    Almasoudi, Fahad M.; Alatawi, Khaled S.; Matin, Mohammad

    2017-08-01

    Implementation of transformerless inverters in PV grid-tied system offer great benefits such as high efficiency, light weight, low cost, etc. Most of the proposed transformerless inverters in literature are verified for only real power application. Currently, international standards such as VDE-AR-N 4105 has demanded that PV grid-tied inverters should have the ability of controlling a specific amount of reactive power. Generation of reactive power cannot be accomplished in single phase transformerless inverter topologies because the existing modulation techniques are not adopted for a freewheeling path in the negative power region. This paper enhances a previous high efficiency proposed H6 trnasformerless inverter with SiC MOSFETs and demonstrates new operating modes for the generation of reactive power. A proposed pulse width modulation (PWM) technique is applied to achieve bidirectional current flow through freewheeling state. A comparison of the proposed H6 transformerless inverter using SiC MOSFETs and Si MOSFTEs is presented in terms of power losses and efficiency. The results show that reactive power control is attained without adding any additional active devices or modification to the inverter structure. Also, the proposed modulation maintains a constant common mode voltage (CM) during every operating mode and has low leakage current. The performance of the proposed system verifies its effectiveness in the next generation PV system.

  6. High-order UWB pulses scheme to generate multilevel modulation formats based on incoherent optical sources.

    PubMed

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2013-11-18

    We present a high-order UWB pulses generator based on a microwave photonic filter which provides a set of positive and negative samples by using the slicing of an incoherent optical source and the phase inversion in a Mach-Zehnder modulator. The simple scalability and high reconfigurability of the system permit a better accomplishment of the FCC requirements. Moreover, the proposed scheme permits an easy adaptation to pulse amplitude modulation, bi phase modulation, pulse shape modulation and pulse position modulation. The flexibility of the scheme for being adaptable to multilevel modulation formats permits to increase the transmission bit rate by using hybrid modulation formats.

  7. Photonic ultra-wideband pulse generation, hybrid modulation and dispersion-compensation-free transmission in multi-access communication systems.

    PubMed

    Tan, Kang; Shao, Jing; Sun, Junqiang; Wang, Jian

    2012-01-16

    We propose and demonstrate a scheme for optical ultrawideband (UWB) pulse generation by exploiting a half-carrier-suppressed Mach-Zehnder modulator (MZM) and a delay-interferometer- and wavelength-division-multiplexer-based, reconfigurable and multi-channel differentiator (DWRMD). Multi-wavelength, polarity- and shape-switchable UWB pulses of monocycle, doublet, triplet, and quadruplet are experimentally generated simply by tuning two bias voltages to modify the carrier-suppression ratio of MZM and the differential order of DWRMD respectively. The pulse position modulation, pulse shape modulation, pulse amplitude modulation and binary phase-shift keying modulation of UWB pulses can also be conveniently realized with the same scheme structure, which indicates that the hybrid modulation of those four formats can be achieved. Consequently, the proposed approach has potential applications in multi-shape, multi-modulation and multi-access UWB-over-fiber communication systems.

  8. High energy Er-doped Q-switched fiber laser with WS2 saturable absorber

    NASA Astrophysics Data System (ADS)

    Li, Lu; Wang, Yonggang; Wang, Zhen Fu; Wang, Xi; Yang, Guowen

    2018-01-01

    The report presents a stable Q-switched Er-doped fiber (EDF) laser with WS2-based saturable absorber (SA). The SA is obtained by mixing WS2 dispersion with polyvinyl alcohol (PVA) into polystyrene cells, and then evaporating them to form WS2/PVA film. The modulation depth (MD) of WS2/PVA is 2% and the saturable intensity (Isat) is 27.2 MW/cm2. Employing the WS2/PVA film into EDF laser cavity, stable Q-switched operation is achieved with central wavelength of 1560 nm. The repetition rate can be tuned from 16.15 to 60.88 kHz with increasing pump power from 30 to 320 mW. The single pulse energy increases from 82 to 195 nJ and then decreases down to 156 nJ with increasing pump power from 30 to 320 mW. The pulse width shows the same variation trend. The shortest pulse duration of 2.396 μs and the maximum single pulse energy of 195 nJ are obtained at the pump power of 220 mW. To the best of our knowledge, 195 nJ is the largest single pulse energy at 1.55 μm region with TMDs as Q-switcher. The signal-to-noise ratio (SNR) is measured to be 60 dB at the pump power of 130 mW. The long term stability of working is good too. The experimental results evidently show that the WS2/PVA SA can work as a promising Q-switcher for high power fiber lasers.

  9. Practical continuous-variable quantum key distribution without finite sampling bandwidth effects.

    PubMed

    Li, Huasheng; Wang, Chao; Huang, Peng; Huang, Duan; Wang, Tao; Zeng, Guihua

    2016-09-05

    In a practical continuous-variable quantum key distribution system, finite sampling bandwidth of the employed analog-to-digital converter at the receiver's side may lead to inaccurate results of pulse peak sampling. Then, errors in the parameters estimation resulted. Subsequently, the system performance decreases and security loopholes are exposed to eavesdroppers. In this paper, we propose a novel data acquisition scheme which consists of two parts, i.e., a dynamic delay adjusting module and a statistical power feedback-control algorithm. The proposed scheme may improve dramatically the data acquisition precision of pulse peak sampling and remove the finite sampling bandwidth effects. Moreover, the optimal peak sampling position of a pulse signal can be dynamically calibrated through monitoring the change of the statistical power of the sampled data in the proposed scheme. This helps to resist against some practical attacks, such as the well-known local oscillator calibration attack.

  10. A fiber-coupled 9xx module with tap water cooling

    NASA Astrophysics Data System (ADS)

    Schleuning, D.; Anthon, D.; Chryssis, A.; Ryu, G.; Liu, G.; Winhold, H.; Fan, L.; Xu, Z.; Tanbun-Ek, T.; Lehkonen, S.; Acklin, B.

    2016-03-01

    A novel, 9XX nm fiber-coupled module using arrays of highly reliable laser diode bars has been developed. The module is capable of multi-kW output power in a beam parameter product of 80 mm-mrad. The module incorporates a hard-soldered, isolated stack package compatible with tap-water cooling. Using extensive, accelerated multi-cell life-testing, with more than ten million device hours of test, we have demonstrated a MTTF for emitters of >500,000 hrs. In addition we have qualified the module in hard-pulse on-off cycling and stringent environmental tests. Finally we have demonstrated promising results for a next generation 9xx nm chip design currently in applications and qualification testing

  11. RELAP5 Model of the First Wall/Blanket Primary Heat Transfer System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popov, Emilian L; Yoder Jr, Graydon L; Kim, Seokho H

    2010-06-01

    ITER inductive power operation is modeled and simulated using a system level computer code to evaluate the behavior of the Primary Heat Transfer System (PHTS) and predict parameter operational ranges. The control algorithm strategy and derivation are summarized in this report as well. A major feature of ITER is pulsed operation. The plasma does not burn continuously, but the power is pulsed with large periods of zero power between pulses. This feature requires active temperature control to maintain a constant blanket inlet temperature and requires accommodation of coolant thermal expansion during the pulse. In view of the transient nature ofmore » the power (plasma) operation state a transient system thermal-hydraulics code was selected: RELAP5. The code has a well-documented history for nuclear reactor transient analyses, it has been benchmarked against numerous experiments, and a large user database of commonly accepted modeling practices exists. The process of heat deposition and transfer in the blanket modules is multi-dimensional and cannot be accurately captured by a one-dimensional code such as RELAP5. To resolve this, a separate CFD calculation of blanket thermal power evolution was performed using the 3-D SC/Tetra thermofluid code. A 1D-3D co-simulation more realistically models FW/blanket internal time-dependent thermal inertia while eliminating uncertainties in the time constant assumed in a 1-D system code. Blanket water outlet temperature and heat release histories for any given ITER pulse operation scenario are calculated. These results provide the basis for developing time dependent power forcing functions which are used as input in the RELAP5 calculations.« less

  12. Moderate high power 1 to 20μs and kHz Ho:YAG thin disk laser pulses for laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Renz, Günther

    2015-02-01

    An acousto-optically or self-oscillation pulsed thin disk Ho:YAG laser system at 2.1 μm with an average power in the 10 W range will be presented for laser lithotripsy. In the case of cw operation the thin disk Ho:YAG is either pumped with InP diode stacks or with a thulium fiber laser which leads to a laser output power of 20 W at an optical-to-optical efficiency of 30%. For the gain switched mode of operation a modulated Tm-fiber laser is used to produce self-oscillation pulses. A favored pulse lengths for uric acid stone ablation is known to be at a few μs pulse duration which can be delivered by the thin disk laser technology. In the state of the art laser lithotripter, stone material is typically ablated with 250 to 750 μs pulses at 5 to 10 Hz and with pulse energies up to a few Joule. The ablation mechanism is performed in this case by vaporization into stone dust and fragmentation. With the thin disk laser technology, 1 to 20 μs-laser pulses with a repetition rate of a few kHz and with pulse energies in the mJ-range are available. The ablation mechanism is in this case due to a local heating of the stone material with a decomposition of the crystalline structure into calcium carbonate powder which can be handled by the human body. As a joint process to this thermal effect, imploding water vapor bubbles between the fiber end and the stone material produce sporadic shock waves which help clear out the stone dust and biological material.

  13. Qualitative analysis of ultra-short optical dissipative solitary pulses in the actively mode-locked semiconductor heterolasers with an external fiber cavity

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Campos Acosta, Joaquin; Moreno Zarate, Pedro; Pons Aglio, Alicia

    2011-02-01

    An advanced qualitative characterization of simultaneously existing various low-power trains of ultra-short optical pulses with an internal frequency modulation in a distributed laser system based on semiconductor heterostructure is presented. The scheme represents a hybrid cavity consisting of a single-mode heterolaser operating in the active mode-locking regime and an external long single-mode optical fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and linear optical losses. In fact, we consider the trains of optical dissipative solitons, which appear within double balance between the second-order dispersion and cubic-law nonlinearity as well as between the active-medium gain and linear optical losses in a hybrid cavity. Moreover, we operate on specially designed modulating signals providing non-conventional composite regimes of simultaneous multi-pulse active mode-locking. As a result, the mode-locking process allows shaping regular trains of picosecond optical pulses excited by multi-pulse independent on each other sequences of periodic modulations. In so doing, we consider the arranged hybrid cavity as a combination of a quasi-linear part responsible for the active mode-locking by itself and a nonlinear part determining the regime of dissipative soliton propagation. Initially, these parts are analyzed individually, and then the primarily obtained data are coordinated with each other. Within this approach, a contribution of the appeared cubically nonlinear Ginzburg-Landau operator is analyzed via exploiting an approximate variational procedure involving the technique of trial functions.

  14. Role of the blocking capacitor in control of ion energy distributions in pulsed capacitively coupled plasmas sustained in Ar/CF{sub 4}/O{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Sang-Heon, E-mail: ssongs@umich.edu; Kushner, Mark J., E-mail: mjkush@umich.edu

    2014-03-15

    In plasma etching for microelectronics fabrication, the quality of the process is in large part determined by the ability to control the ion energy distribution (IED) onto the wafer. To achieve this control, dual frequency capacitively coupled plasmas (DF-CCPs) have been developed with the goal of separately controlling the magnitude of the fluxes of ions and radicals with the high frequency (HF) and the shape of the IED with the low frequency (LF). In steady state operation, plasma properties are determined by a real time balance between electron sources and losses. As such, for a given geometry, pressure, and frequencymore » of operation, the latitude for controlling the IED may be limited. Pulsed power is one technique being investigated to provide additional degrees of freedom to control the IED. In one configuration of a DF-CCP, the HF power is applied to the upper electrode and LF power is applied to the lower electrode which is serially connected to a blocking capacitor (BC) which generates a self dc-bias. In the steady state, the value of the dc-bias is, in fact, constant. During pulsed operation, however, there may be time modulation of the dc-bias which provides an additional means to control the IED. In this paper, IEDs to the wafer in pulsed DF-CCPs sustained in Ar/CF{sub 4}/O{sub 2} are discussed with results from a two-dimensional plasma hydrodynamics model. The IED can be manipulated depending on whether the LF or HF power is pulsed. The dynamic range of the control can be tuned by the dc-bias generated on the substrate, whose time variation depends on the size of the BC during pulsed operation. It was found that high energy ions can be preferentially produced when pulsing the HF power and low energy ions are preferentially produced when pulsing the LF power. A smaller BC value which allows the bias to follow the change in charged particle fluxes produces a larger dynamic range with which to control IEDs.« less

  15. Simultaneous Wireless Power Transfer and Data Communication Using Synchronous Pulse-Controlled Load Modulation.

    PubMed

    Mao, Shitong; Wang, Hao; Zhu, Chunbo; Mao, Zhi-Hong; Sun, Mingui

    2017-10-01

    Wireless Power Transfer (WPT) and wireless data communication are both important problems of research with various applications, especially in medicine. However, these two problems are usually studied separately. In this work, we present a joint study of both problems. Most medical electronic devices, such as smart implants, must have both a power supply to allow continuous operation and a communication link to pass information. Traditionally, separate wireless channels for power transfer and communication are utilized, which complicate the system structure, increase power consumption and make device miniaturization difficult. A more effective approach is to use a single wireless link with both functions of delivering power and passing information. We present a design of such a wireless link in which power and data travel in opposite directions. In order to aggressively miniaturize the implant and reduce power consumption, we eliminate the traditional multi-bit Analog-to-Digital Converter (ADC), digital memory and data transmission circuits all together. Instead, we use a pulse stream, which is obtained from the original biological signal, by a sigma-delta converter and an edge detector, to alter the load properties of the WPT channel. The resulting WPT signal is synchronized with the load changes therefore requiring no memory elements to record inter-pulse intervals. We take advantage of the high sensitivity of the resonant WPT to the load change, and the system dynamic response is used to transfer each pulse. The transient time of the WPT system is analyzed using the coupling mode theory (CMT). Our experimental results show that the memoryless approach works well for both power delivery and data transmission, providing a new wireless platform for the design of future miniaturized medical implants.

  16. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    EPA Science Inventory

    The paper describes a variable-speed wind generation system where fuzzy logic principles are used to optimize efficiency and enhance performance control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which either pump...

  17. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    EPA Science Inventory

    The report gives results of a demonstration of the successful application of fuzzy logic to enhance the performance and control of a variable-speed wind generation system. A squirrel cage induction generator feeds the power to either a double-sided pulse-width modulation converte...

  18. 47 CFR 80.209 - Transmitter frequency tolerances.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... output power of 25 watts or less the frequency tolerance is 10 parts in 10 6. (b) When pulse modulation... 47 Telecommunication 5 2010-10-01 2010-10-01 false Transmitter frequency tolerances. 80.209... SERVICES STATIONS IN THE MARITIME SERVICES General Technical Standards § 80.209 Transmitter frequency...

  19. Active mode locking of lasers by piezoelectrically induced diffraction modulation

    NASA Astrophysics Data System (ADS)

    Krausz, F.; Turi, L.; Kuti, Cs.; Schmidt, A. J.

    1990-04-01

    A new amplitude-modulation mode-locking technique is presented. Acoustic waves are generated directly on the faces of a resonant photoelastic medium. The created standing waves cause a highly efficient diffraction modulation of light. The modulation depth of standing-wave mode lockers is related to material and drive parameters and a figure of merit is introduced. With a lithium niobate crystal modulation depths over 10 are achieved at 1.054 μm and 1 W of radio frequency power. Using this device for the active mode locking of a continuous-wave Nd:glass laser pulses as short as 3.8 ps are produced at a repetition rate of 66 MHz. Limitations of amplitude-modulation mode locking by standing acoustic waves are discussed.

  20. Flexible digital modulation and coding synthesis for satellite communications

    NASA Technical Reports Server (NTRS)

    Vanderaar, Mark; Budinger, James; Hoerig, Craig; Tague, John

    1991-01-01

    An architecture and a hardware prototype of a flexible trellis modem/codec (FTMC) transmitter are presented. The theory of operation is built upon a pragmatic approach to trellis-coded modulation that emphasizes power and spectral efficiency. The system incorporates programmable modulation formats, variations of trellis-coding, digital baseband pulse-shaping, and digital channel precompensation. The modulation formats examined include (uncoded and coded) binary phase shift keying (BPSK), quatenary phase shift keying (QPSK), octal phase shift keying (8PSK), 16-ary quadrature amplitude modulation (16-QAM), and quadrature quadrature phase shift keying (Q squared PSK) at programmable rates up to 20 megabits per second (Mbps). The FTMC is part of the developing test bed to quantify modulation and coding concepts.

  1. Pulsed optical fibre lasers: Self-pulsation, Q-switching and tissue interactions

    NASA Astrophysics Data System (ADS)

    El-Sherif, Ashraf Fathy

    The experimental and theoretical aspects of self-pulsing and dynamics effects of a CW Tm3+-doped silica fibre laser operating near 2 mum are investigated and examined for the first time. Various self-pulsing regimes are observed for a range of pumping rates when the fibre is end-pumped with a high power Nd:YAG laser operating at 1.319 mum in a linear bidirectional cavity. A theoretical model based on pair induced quenching (PIQ) is considered. The quenching effect acts as a saturable absorber or an additional dynamical loss mechanism, this additional absorber then may make the laser system unstable depending on whether the obtained steady-state solution is stable or not. A comparison between measured self-pulsation frequency and calculated relaxation oscillation frequency as a function of pumping rate is presented and discussed. High performance operation of a mechanical shutter Q-switched Tm3+-doped silica fibre laser operating near 2 mum is observed and presented. A single Q-switched pulse with peak power of 18.5 W and pulse duration at full width half maximum (FWHM) of 300 ns at higher mechanical chopper frequencies of nearly 20 kHz is achieved. The pulse-to-pulse stability was measured and improved to be more less than 5 %. The development, optimisation of the performance and analysis of an acousto-optic modulator (AOM) Q-switched Tm3+-doped silica fibre laser operating near 2 mum are presented. The shortest pulse duration obtained was 150 ns, giving a highest peak power of 4.1 kW, and is the highest yet reported from any type of active Q-switched fibre laser operating in low order mode. The maximum peak power was obtained for an optimum cavity length of 1.15 meters made up of fibre length, Q-switch crystal and passive space. The pulse train with high pulse-to-pulse stability of 1 % occurred at a range of high repetition rates from 10 to 30 kHz. High energy, high brightness of an electro-optic modulator (EOM) Q-switched Tm3+-doped silica fibre laser operating near 2 mum is presented. Appropriate design precautions have been undertaken to ensure that prelasing does not occur. In this system, the main Q-switched pulse may be followed by one pulse of lower amplitude "postlasing" when an optimised quarter wave voltage of 750 V is applied. It was found that the laser produced 320 ns pulses with 2.5 mJ pulse energy and 3.3 kW peak power at low repetition rates of 50-70 Hz. This is the first time that such studies of electro-optic modulator (EOM) Q-switched Tm3+ fibre lasers have been reported. The maximum peak power was obtained for an optimum cavity length of 2.15 meters, made up of fibre length, broadband beamsplitter polarizer, Q-switch crystal and passive space. Computer simulation of Tm3+doped silica and Er2-doped fluorozirconate fibre lasers using general laser analysis and design (GLAD) software has been successfully investigated for the first time. Input files, which are very similar to language are created to model three designs of fibre lasers, two for Tm3+-doped silica fibre lasers, core pumped at 1.57 mum and cladding pumped at 790 nm, and one for a 2.7 mum Er3+-doped fluorozirconate fibre laser cladding pumped at 975 nm. Results are presented from a relatively comprehensive computer model, which simulates CW operation of the fibre lasers. The simulation suggests that to enhance the conversion energy we have to optimise between the absorption coefficient of the fibre and the diffraction algorithms. Comparison of soft and hard tissue ablation with high peak power Q-switched and CW Tm3+-silica fibre lasers are presented. The ablation of chicken breast and lamb liver tissues as a soft tissue and cartilage as a hard tissue have been investigated using a free running CW-Tm3+-doped fibre laser (wavelength 1.99 mum, with self-pulsation duration ranging over 1 to few tens of microseconds) and for Q-switched operation of the same laser (pulse duration ranging from 150 ns to 900 ns and pulse repetition rates from 100 Hz to 17 kHz). Residual damage and affected zones using the CW laser were nearly 6 times greater than using the Q-switched fibre laser for about 50 s of exposure time, and increased with pulse repetition rate. The energy required to ablate tissues with the CW-fibre laser ranged from 153 to 334 kJ/cm3 and was significantly smaller from 0.2 to 0.6 kJ/cm3 for the Q-switched fibre laser. This study is the first direct comparison of tissue interaction of CW and Q- switched Tm3+-doped silica fibre lasers on crater depth, heat of ablation and collateral damage. The Q-switched Tm3+-doped silica fibre laser effectively ablates tissue with little secondary damage.

  2. Sampling modulation technique in radio-frequency helium glow discharge emission source by use of pulsed laser ablation.

    PubMed

    Naeem, Tariq Mahmood; Matsuta, Hideyuki; Wagatsuma, Kazuaki

    2004-05-01

    An emission excitation source comprising a high-frequency diode-pumped Q-switched Nd:YAG laser and a radio-frequency powered glow discharge lamp is proposed. In this system sample atoms ablated by the laser irradiation are introduced into the lamp chamber and subsequently excited by the helium glow discharge plasma. The pulsed operation of the laser can produce a cyclic variation in the emission intensities of the sample atoms whereas the plasma gas species emit the radiation continuously. The salient feature of the proposed technique is the selective detection of the laser modulation signal from the rest of the continuous background emissions, which can be achieved with the phase sensitive detection of the lock-in amplifier. The arrangement may be used to estimate the emission intensity of the laser ablated atom, free from the interference of other species present in the plasma. The experiments were conducted with a 13.56 MHz radio-frequency (rf) generator operated at 80 W power to produce plasma and the laser at a wavelength of 1064 nm (pulse duration:34 ns, repetition rate:7 kHz and average pulse energy of about 0.36 mJ) was employed for sample ablation. The measurements resulted in almost complete removal of nitrogen molecular bands (N(2)(+) 391.44 nm). Considerable reduction (about 75%) in the emission intensity of a carbon atomic line (C I 193.03 nm) was also observed.

  3. Slow and fast light via SBS in optical fibers for short pulses and broadband pump

    NASA Astrophysics Data System (ADS)

    Kalosha, V. P.; Chen, Liang; Bao, Xiaoyi

    2006-12-01

    Slow-light effect via stimulated Brillouin scattering (SBS) in single-mode optical fibers was considered for short probe pulses of nanosecond duration relevant to Gb/s data streams. Unlike recent estimations of delay versus pump based on steady-state small-signal approximation we have used numerical solution of three-wave equations describing SBS for a realistic fiber length. Both regimes of small signal and pump depletion (gain saturation) were considered. The physical origin of Stokes pulse distortion is revealed which is related to excitation of long-living acoustic field behind the pulse and prevents effective delay control by pump power increase at cw pumping. We have shown different slope of the gain-dependent delay for different pulse durations. Spectrally broadened pumping by multiple cw components, frequency-modulated pump and pulse train were studied for short pulses which allow to obtain large delay and suppress pulse distortion. In the pump-depletion regime of pumping by pulse train, both pulse delay and distortion decrease with increasing pump, and the pulse achieves advancement.

  4. Fiber laser driven dual photonic crystal fiber femtosecond mid-infrared source tunable in the range of 4.2 to 9 μm

    NASA Astrophysics Data System (ADS)

    Yao, Yuhong; Knox, Wayne H.

    2014-02-01

    We report a fiber based approach to broadly tunable femtosecond mid-IR source based on difference frequency mixing of the outputs from dual photonic crystal fibers (PCF) pumped by a femtosecond fiber laser, which is a custom-built Yb-doped fiber chirped pulse amplifier (CPA) delivering 1.35 W, 300 fs, 40 MHz pulses centered at 1035 nm. The CPA output is split into two arms to pump two different types of PCFs for generation of the spectrally separated pulses. The shorter wavelength pulses are generated in one PCF with its single zero dispersion wavelength (ZDW) at 1040 nm. Low normal dispersion around the pumping wavelength enables spectral broadening dominated by self-phase modulation (SPM), which extends from 970 to 1092 nm with up to 340 mW of average power. The longer wavelength pulses are generated in a second PCF which has two closely spaced ZDWs around the laser wavelength. Facilitated by its special dispersion profile, the laser wavelength is converted to the normal dispersion region of the fiber, leading to the generation of the narrow-band intense Stokes pulses with 1 to 1.25 nJ of pulse energy at a conversion efficiency of ~30% from the laser pulses. By difference mixing the outputs from both PCFs in a type-II AgGaS2 crystal, mid-IR pulses tunable from 4.2 to 9 μm are readily generated with its average power ranging from 135 - 640 μW, corresponding to 3 - 16 pJ of pulse energy which is comparable to the reported fiber based mid-IR sources enabled by the solitons self-frequency shift (for example, 3 - 10 μm with 10 pJ of maximum pulse energy in [10]). The reported approach provides a power-scalable route to the generation of broadly tunable femtosecond mid-IR pulses, which we believe to be a promising solution for developing compact, economic and high performance mid-IR sources.

  5. Generation of high-power, tunable terahertz radiation from laser interaction with a relativistic electron beam

    DOE PAGES

    Zhang, Zhen; Yan, Lixin; Du, Yingchao; ...

    2017-05-01

    We propose a method based on the slice energy spread modulation to generate strong subpicosecond density bunching in high-intensity relativistic electron beams. A laser pulse with periodic intensity envelope is used to modulate the slice energy spread of the electron beam, which can then be converted into density modulation after a dispersive section. It is found that the double-horn slice energy distribution of the electron beam induced by the laser modulation is very effective to increase the density bunching. Since the modulation is performed on a relativistic electron beam, the process does not suffer from strong space charge force ormore » coupling between phase spaces, so that it is straightforward to preserve the beam quality for terahertz (THz) radiation and other applications. We show in both theory and simulations that the tunable radiation from the beam can cover the frequency range of 1 - 10 THz with high power and narrow-band spectra.« less

  6. A New Technique for Troubleshooting Large Capacitive Energy Storage Banks

    DTIC Science & Technology

    2013-06-01

    The Power Conditioning System (PCS) of the National Ignition Facility ( NIF ) like many pulse power systems relies on large numbers of inductively...troubleshooting time. II. THEORY OF OPERATION A simplified schematic diagram of the National Ignition Facility ( NIF ) Main Energy Storage Module (MESM...across the capacitor or a null in the current supplied by the generator. In the case of the NIF bank the resonant frequency turns out to be very close

  7. Electric vehicle power train instrumentation: Some constraints and considerations

    NASA Technical Reports Server (NTRS)

    Triner, J. E.; Hansen, I. G.

    1977-01-01

    The application of pulse modulation control (choppers) to dc motors creates unique instrumentation problems. In particular, the high harmonic components contained in the current waveforms require frequency response accommodations not normally considered in dc instrumentation. In addition to current sensing, accurate power measurement requires not only adequate frequency response but must also address phase errors caused by the finite bandwidths and component characteristics involved. The implications of these problems are assessed.

  8. A method searching for optimum fractional order and its application in self-phase modulation induced nonlinear phase noise estimation in coherent optical fiber transmission systems

    NASA Astrophysics Data System (ADS)

    Huang, Chuan; Guo, Peng; Yang, Aiying; Qiao, Yaojun

    2018-07-01

    In single channel systems, the nonlinear phase noise only comes from the channel itself through self-phase modulation (SPM). In this paper, a fast-nonlinear effect estimation method is proposed based on fractional Fourier transformation (FrFT). The nonlinear phase noise caused by Self-phase modulation effect is accurately estimated for single model 10Gbaud OOK and RZ-QPSK signals with the fiber length range of 0-200 km and the launch power range of 1-10 mW. The pulse windowing is adopted to search the optimum fractional order for the OOK and RZ-QPSK signals. Since the nonlinear phase shift caused by the SPM effect is very small, the accurate optimum fractional order of the signal cannot be found based on the traditional method. In this paper, a new method magnifying the phase shift is proposed to get the accurate optimum order and thus the nonlinear phase shift is calculated. The simulation results agree with the theoretical analysis and the method is applicable to signals whose pulse type has the similar characteristics with Gaussian pulse.

  9. Acousto-optical imaging using a powerful long pulse laser

    NASA Astrophysics Data System (ADS)

    Rousseau, Guy; Blouin, Alain; Monchalin, Jean-Pierre

    2008-06-01

    Acousto-optical imaging is an emerging biodiagnostic technique which provides an optical spectroscopic signature and a spatial localization of an optically absorbing target embedded in a strongly scattering medium. The transverse resolution of the technique is determined by the lateral extent of ultrasound beam focal zone while the axial resolution is obtained by using short ultrasound pulses. Although very promising for medical diagnostic, the practical application of this technique is presently limited by its poor sensitivity. Moreover, any method to enhance the signal-to-noise ratio must obviously satisfy the in vivo safety limits regarding the acceptable power level of both the ultrasonic pressure wave and the laser beam. In this paper, we propose to improve the sensitivity by using a pulsed single-frequency laser source to raise the optical peak power applied to the scattering medium and to collect more ultrasonically tagged photons. Such a laser source also allows illuminating the tissues mainly during the transit time of the ultrasonic wave to maintain the average optical power below the maximum permissible exposure. In our experiment, a single-frequency Nd:YAG laser emitting 500-μs pulses with a peak power superior to 100 W was used. Photons were tagged in few-cm thick optical phantoms with tone bursts generated by an ultrasonic transducer. Tagged photons were detected with a GaAs photorefractive interferometer characterized by a large optical etendue to process simultaneously a large number of speckle grains. When pumped by high intensity laser pulses, such an interferometer also provides the fast response time essential to obtain an apparatus insensitive to the speckle decorrelation due to mechanical vibrations or tissues movements. The use of a powerful long pulse laser appears promising to enhance the signal level in ultrasound modulated optical imaging. When combined with a photorefractive interferometer of large optical etendue, such a source could allow obtaining both the sensitivity and the fast response time necessary for biodiagnostic applications.

  10. Remote Optical Control of an Optical Flip-Flop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maywar, D.N.; Solomon, K.P.; Agrawal, G.P.

    2007-11-01

    We experimentally demonstrate control of a holding-beam–enabled optical flip-flop by means of optical signals that act in a remote fashion. These optical-control signals vary the holding-beam power by means of cross-gain modulation within a remotely located semiconductor optical amplifier (SOA). The power-modulated holding beam then travels through a resonant-type SOA, where flip-flop action occurs as the holding-beam power falls above and below the switching thresholds of the bistable hysteresis. Control is demonstrated using submilliwatt pulses whose wavelengths are not restricted to the vicinity of the holding beam. Benefits of remote control include the potential for controlling multiple flip-flops with amore » single pair of optical signals and for realizing all-optical control of any holding-beam–enabled flip-flop.« less

  11. TruMicro Series 2000 sub-400 fs class industrial fiber lasers: adjustment of laser parameters to process requirements

    NASA Astrophysics Data System (ADS)

    Kanal, Florian; Kahmann, Max; Tan, Chuong; Diekamp, Holger; Jansen, Florian; Scelle, Raphael; Budnicki, Aleksander; Sutter, Dirk

    2017-02-01

    The matchless properties of ultrashort laser pulses, such as the enabling of cold processing and non-linear absorption, pave the way to numerous novel applications. Ultrafast lasers arrived in the last decade at a level of reliability suitable for the industrial environment.1 Within the next years many industrial manufacturing processes in several markets will be replaced by laser-based processes due to their well-known benefits: These are non-contact wear-free processing, higher process accuracy or an increase of processing speed and often improved economic efficiency compared to conventional processes. Furthermore, new processes will arise with novel sources, addressing previously unsolved challenges. One technical requirement for these exciting new applications will be to optimize the large number of available parameters to the requirements of the application. In this work we present an ultrafast laser system distinguished by its capability to combine high flexibility and real time process-inherent adjustments of the parameters with industry-ready reliability. This industry-ready reliability is ensured by a long experience in designing and building ultrashort-pulse lasers in combination with rigorous optimization of the mechanical construction, optical components and the entire laser head for continuous performance. By introducing a new generation of mechanical design in the last few years, TRUMPF enabled its ultrashort-laser platforms to fulfill the very demanding requirements for passively coupling high-energy single-mode radiation into a hollow-core transport fiber. The laser architecture presented here is based on the all fiber MOPA (master oscillator power amplifier) CPA (chirped pulse amplification) technology. The pulses are generated in a high repetition rate mode-locked fiber oscillator also enabling flexible pulse bursts (groups of multiple pulses) with 20 ns intra-burst pulse separation. An external acousto-optic modulator (XAOM) enables linearization and multi-level quad-loop stabilization of the output power of the laser.2 In addition to the well-established platform latest developments addressed single-pulse energies up to 50 μJ and made femtosecond pulse durations available for the TruMicro Series 2000. Beyond these stabilization aspects this laser architecture together with other optical modules and combined with smart laser control software enables process-driven adjustments of the parameters (e. g. repetition rate, multi-pulse functionalities, pulse energy, pulse duration) by external signals, which will be presented in this work.

  12. A Multi-Cycle Q-Modulation for Dynamic Optimization of Inductive Links.

    PubMed

    Lee, Byunghun; Yeon, Pyungwoo; Ghovanloo, Maysam

    2016-08-01

    This paper presents a new method, called multi-cycle Q-modulation, which can be used in wireless power transmission (WPT) to modulate the quality factor (Q) of the receiver (Rx) coil and dynamically optimize the load impedance to maximize the power transfer efficiency (PTE) in two-coil links. A key advantage of the proposed method is that it can be easily implemented using off-the-shelf components without requiring fast switching at or above the carrier frequency, which is more suitable for integrated circuit design. Moreover, the proposed technique does not need any sophisticated synchronization between the power carrier and Q-modulation switching pulses. The multi-cycle Q-modulation is analyzed theoretically by a lumped circuit model, and verified in simulation and measurement using an off-the-shelf prototype. Automatic resonance tuning (ART) in the Rx, combined with multi-cycle Q-modulation helped maximizing PTE of the inductive link dynamically in the presence of environmental and loading variations, which can otherwise significantly degrade the PTE in multi-coil settings. In the prototype conventional 2-coil link, the proposed method increased the power amplifier (PA) plus inductive link efficiency from 4.8% to 16.5% at ( R L = 1 kΩ, d 23 = 3 cm), and from 23% to 28.2% at ( R L = 100 Ω, d 23 = 3 cm) after 11% change in the resonance capacitance, while delivering 168.1 mW to the load (PDL).

  13. Proposal and performance analysis on the PDM microwave photonic link for the mm-wave signal with hybrid QAM-MPPM-RZ modulation

    NASA Astrophysics Data System (ADS)

    Tian, Bo; Zhang, Qi; Ma, Jianxin; Tao, Ying; Shen, Yufei; Wang, Yang; Zhang, Geng; Zhou, Wenmao; Zhao, Yi; Pan, Xiaolong

    2018-07-01

    A polarization division multiplexed (PDM) microwave photonic link for the millimeter (MM)-wave signal with hybrid modulation scheme is proposed in this paper, which is based on the combination of quadrature amplitude modulation, multi-pulse pulse-position modulation and return to zero modulation (QAM-MPPM-RZ). In this scheme, the two orthogonal polarization states enable simultaneous transmission of four data flows, which can provide different services for users according to the data rate requirement. To generate hybrid QAM-MPPM-RZ mm-wave signal, the QAM mm-wave signal is directly modulated by MPPM-RZ signal without using digital signal processing (DSP) devices, which reduces the overhead of the encoding process. Then, the generated QAM-MPPM-RZ mm-wave signal is transmitted in PDM microwave photonic link based on SSB modulation. The sparsity characteristic of QAM-MPPM-RZ not only improves the power efficiency, but also decreases the degradation caused by the fiber chromatic dispersion. The simulation results show that, under the constraint of the same transmitted data rate, the PDM microwave photonic link with 50 GHz QAM-MPPM-RZ mm-wave signal achieves much lower levels of bit-error rate than ordinary 32-QAM. In addition, the increase of laser linewidth brings no additional impact to the proposed scheme.

  14. Passively Q-switched Nd3+ solid-state lasers with antimonene as saturable absorber.

    PubMed

    Wang, Mengixa; Zhang, Fang; Wang, Zhengping; Wu, Zhixin; Xu, Xinguang

    2018-02-19

    Based on the saturable absorption feature of a two-dimensional (2D) nano-material, antimonene, the passively Q-switched operation for solid-state laser was realized for the first time. For the 946 and 1064 nm laser emissions of the Nd:YAG crystal, the Q-switched pulse widths were 209 and 129 ns, and the peak powers were 1.48, 1.77 W, respectively. For the 1342 nm laser emission of the Nd:YVO 4 crystal, the Q-switched pulse width was 48 ns, giving a peak power of 28.17 W. Our research shows that antimonene can be used as a stable, broadband optical modulating device for a solid-state laser, which will be particularly effective for long wavelength operation.

  15. Physics Goals for the Planned Next Linear Collider Engineering Test Facility

    NASA Astrophysics Data System (ADS)

    Raubenheimer, T. O.

    2001-10-01

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well as of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.

  16. J-modulation effects in DOSY experiments and their suppression: the Oneshot45 experiment.

    PubMed

    Botana, Adolfo; Aguilar, Juan A; Nilsson, Mathias; Morris, Gareth A

    2011-02-01

    Diffusion-ordered spectroscopy (DOSY) is a powerful NMR method for identifying compounds in mixtures. DOSY experiments are very demanding of spectral quality; even small deviations from expected behaviour in NMR signals can cause significant distortions in the diffusion domain. This is a particular problem when signals overlap, so it is very important to be able to acquire clean data with as little overlap as possible. DOSY experiments all suffer to a greater or lesser extent from multiplet phase distortions caused by J-modulation, requiring a trade-off between such distortions and gradient pulse width. Multiplet distortions increase spectral overlap and may cause unexpected and misleading apparent diffusion coefficients in DOSY spectra. These effects are described here and a simple and effective remedy, the addition of a 45° purging pulse immediately before the onset of acquisition to remove the unwanted anti-phase terms, is demonstrated. As well as affording significantly cleaner results, the new method allows much longer diffusion-encoding pulses to be used without problems from J-modulation, and hence greatly increases the range of molecular sizes that can be studied for coupled spin systems. The sensitivity loss is negligible and the added phase cycling is modest. The new method is illustrated for a widely-used general purpose DOSY pulse sequence, Oneshot. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Repetitive transcranial magnetic stimulator with controllable pulse parameters

    NASA Astrophysics Data System (ADS)

    Peterchev, Angel V.; Murphy, David L.; Lisanby, Sarah H.

    2011-06-01

    The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.

  18. Repetitive transcranial magnetic stimulator with controllable pulse parameters.

    PubMed

    Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H

    2011-06-01

    The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.

  19. High temperature energy harvesters utilizing ALN/3C-SiC composite diaphragms

    NASA Astrophysics Data System (ADS)

    Lai, Yun-Ju; Li, Wei-Chang; Felmetsger, Valery V.; Senesky, Debbie G.; Pisano, Albert P.

    2014-06-01

    Microelectromechanical systems (MEMS) energy harvesting devices aiming at powering wireless sensor systems for structural health monitoring in harsh environments are presented. For harsh environment wireless sensor systems, sensor modules are required to operate at elevated temperatures (> 250°C) with capabilities to resist harsh chemical conditions, thereby the use of battery-based power sources becomes challenging and not economically efficient if considering the required maintenance efforts. To address this issue, energy harvesting technology is proposed to replace batteries and provide a sustainable power source for the sensor systems towards autonomous harsh environment wireless sensor networks. In particular, this work demonstrates a micromachined aluminum nitride/cubic silicon carbide (AlN/3C-SiC) composite diaphragm energy harvester, which enables high temperature energy harvesting from ambient pulsed pressure sources. The fabricated device yields an output power density of 87 μW/cm2 under 1.48-psi pressure pulses at 1 kHz while connected to a 14.6-kΩ load resistor. The effects of pulse profile on output voltage have been studied, showing that the output voltage can be maximized by optimizing the diaphragm resonance frequency based on specific pulse characteristics. In addition, temperature dependence of the diaphragm resonance frequency over the range of 20°C to 600°C has been investigated and the device operation at temperatures as high as 600°C has been verified.

  20. Ultrasonic Power Output Measurement by Pulsed Radiation Pressure

    PubMed Central

    Fick, Steven E.; Breckenridge, Franklin R.

    1996-01-01

    Direct measurements of time-averaged spatially integrated output power radiated into reflectionless water loads can be made with high accuracy using techniques which exploit the radiation pressure exerted by sound on all objects in its path. With an absorptive target arranged to intercept the entirety of an ultrasound beam, total beam power can be determined as accurately as the radiation force induced on the target can be measured in isolation from confounding forces due to buoyancy, streaming, surface tension, and vibration. Pulse modulation of the incident ultrasound at a frequency well above those characteristics of confounding phenomena provides the desired isolation and other significant advantages in the operation of the radiation force balance (RFB) constructed in 1974. Equipped with purpose-built transducers and electronics, the RFB is adjusted to equate the radiation force and a counterforce generated by an actuator calibrated against reference masses using direct current as the transfer variable. Improvements made during its one overhaul in 1988 have nearly halved its overall measurement uncertainty and extended the capabilities of the RFB to include measuring the output of ultrasonic systems with arbitrary pulse waveforms. PMID:27805084

  1. Temporal and spectral properties of the songs of the southern green stink bug Nezara viridula (L.) from Slovenia.

    PubMed

    Cokl, A; Virant-Doberlet, M; Stritih, N

    2000-01-01

    Substrate born songs of the southern green stinkbug Nezara viridula (L.) from Slovenia were recorded and analysed. The male calling song is composed of narrow-band regularly repeated single pulses and of broad-band frequency modulated pulses grouped into pulse trains. The female calling song is characterised by broad-band pulsed and narrow-band non-pulsed pulse trains. A frequency modulated pre-pulse precedes the narrow-band pulse train. A frequency-modulated post-pulse usually follows the pulse train of the male courtship song. The male calling song triggers broad-band pulse trains of the female courtship song. The female also produces a repelling low-frequency vibration that inhibits male calling and courtship. The male rival song is characterised by prolonged pulses with a typical frequency modulation.

  2. 140 GHz pulsed Fourier transform microwave spectrometer

    DOEpatents

    Kolbe, W.F.; Leskovar, B.

    1985-07-29

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer, including means for generating a high frequency carrier signal, and means for generating a low frequency modulating signal. The carrier signal is continuously fed to a modulator and the modulating signal is fed through a pulse switch to the modulator. When the pulse switch is on, the modulator will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device is tuned to one of the sideband signals and sway from the carrier frequency so that the high frequency energization of the frequency-responsive device is controlled by the pulse switch.

  3. 140 GHz pulsed Fourier transform microwave spectrometer

    DOEpatents

    Kolbe, W.F.; Leskovar, B.

    1987-10-27

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer, including means for generating a high frequency carrier signal, and means for generating a low frequency modulating signal is disclosed. The carrier signal is continuously fed to a modulator and the modulating signal is fed through a pulse switch to the modulator. When the pulse switch is on, the modulator will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device is tuned to one of the sideband signals and away from the carrier frequency so that the high frequency energization of the frequency-responsive device is controlled by the pulse switch. 5 figs.

  4. System for adjusting frequency of electrical output pulses derived from an oscillator

    DOEpatents

    Bartholomew, David B.

    2006-11-14

    A system for setting and adjusting a frequency of electrical output pulses derived from an oscillator in a network is disclosed. The system comprises an accumulator module configured to receive pulses from an oscillator and to output an accumulated value. An adjustor module is configured to store an adjustor value used to correct local oscillator drift. A digital adder adds values from the accumulator module to values stored in the adjustor module and outputs their sums to the accumulator module, where they are stored. The digital adder also outputs an electrical pulse to a logic module. The logic module is in electrical communication with the adjustor module and the network. The logic module may change the value stored in the adjustor module to compensate for local oscillator drift or change the frequency of output pulses. The logic module may also keep time and calculate drift.

  5. Non-intrusive beam power monitor for high power pulsed or continuous wave lasers

    DOEpatents

    Hawsey, Robert A.; Scudiere, Matthew B.

    1993-01-01

    A system and method for monitoring the output of a laser is provided in which the output of a photodiode disposed in the cavity of the laser is used to provide a correlated indication of the laser power. The photodiode is disposed out of the laser beam to view the extraneous light generated in the laser cavity whose intensity has been found to be a direct correlation of the laser beam output power level. Further, the system provides means for monitoring the phase of the laser output beam relative to a modulated control signal through the photodiode monitor.

  6. Engineering information on an Analog Signal to Discrete Time Interval Converter (ASDT-IC)

    NASA Technical Reports Server (NTRS)

    Schwarz, F. C.

    1974-01-01

    An electronic control system for nondissipative dc power converters is presented which improves (1) the routinely attainable static output voltage accuracy to the order of + or - 1% for ambient temperatures from -55 to 100 C and (2) the dynamic stability by utilizing approximately one tenth of the feedback gain needed otherwise. Performance is due to a functional philosophy of deterministic pulse modulation based on pulse area control and to an autocompensated signal processing principle. The system can be implemented with commercially available unselected components.

  7. Exploring the limits to energy scaling and distant-target delivery of high-intensity midinfrared pulses

    NASA Astrophysics Data System (ADS)

    Panagiotopoulos, Paris; Kolesik, Miroslav; Moloney, Jerome V.

    2016-09-01

    We numerically investigate the scaling behavior of midinfrared filaments at extremely high input energies. It is shown that, given sufficient power, kilometer-scale, low-loss atmospheric filamentation is attainable by prechirping the pulse. Fully resolved four-dimensional (x y z t ) simulations show that, while in a spatially imperfect beam the modulation instability can lead to multiple hot-spot formation, the individual filaments are still stabilized by the recently proposed mechanism that relies on the temporal walk-off of short-wavelength radiation.

  8. 47 CFR 2.201 - Emission, modulation, and transmission characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... carrier is amplitude-modulated (including cases where sub-carriers are angle-modulated): —Double-sideband... is amplitude and angle-modulated either simultaneously or in a pre-established sequence D (5) Emission of pulses: 1 —Sequence of unmodulated pulses P —A sequence of pulses: —Modulated in amplitude K...

  9. 47 CFR 2.201 - Emission, modulation, and transmission characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... carrier is amplitude-modulated (including cases where sub-carriers are angle-modulated): —Double-sideband... is amplitude and angle-modulated either simultaneously or in a pre-established sequence D (5) Emission of pulses: 1 —Sequence of unmodulated pulses P —A sequence of pulses: —Modulated in amplitude K...

  10. 47 CFR 2.201 - Emission, modulation, and transmission characteristics.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... carrier is amplitude-modulated (including cases where sub-carriers are angle-modulated): —Double-sideband... is amplitude and angle-modulated either simultaneously or in a pre-established sequence D (5) Emission of pulses: 1 —Sequence of unmodulated pulses P —A sequence of pulses: —Modulated in amplitude K...

  11. Development of a High Average Current Thermionic Injector for Free-Electron Lasers

    DTIC Science & Technology

    2013-02-11

    high   average   power   FEL   should   produce   high ...The  cathode  heater   is   powered  by  a  60  Hz  AC   feed  that  floats  on  the   high  voltage  pulse... high -­‐voltage   power  supply  for  the  IOT  gun  is  a  70  kV  Rockwell  hard  tube   modulator   with  

  12. Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLong, K.W.; Fittinghoff, D.N.; Trebino, R.

    1996-07-01

    The authors explore several practical experimental issues in measuring ultrashort laser pulses using the technique of frequency-resolved optical gating (FROG). They present a simple method for checking the consistency of experimentally measured FROG data with the independently measured spectrum and autocorrelation of the pulse. This method is a powerful way of discovering systematic errors in FROG experiments. They show how to determine the optimum sampling rate for FROG and show that this satisfies the Nyquist criterion for the laser pulse. They explore the low- and high-power limits to FROG and determine that femtojoule operation should be possible, while the effectsmore » of self-phase modulation limit the highest signal efficiency in FROG to 1%. They also show quantitatively that the temporal blurring due to a finite-thickness medium in single-shot geometries does not strongly limit the FROG technique. They explore the limiting time-bandwidth values that can be represented on a FROG trace of a given size. Finally, they report on a new measure of the FROG error that improves convergence in the presence of noise.« less

  13. Timing noise measurement of 320 GHz optical pulses using an improved optoelectronic harmonic mixer.

    PubMed

    Tsuchida, Hidemi

    2006-03-01

    An improved optoelectronic harmonic mixer (OEHM) has been employed for measuring the timing noise of 320 GHz optical pulses that are generated from a 160 GHz mode-locked laser diode by the temporal Talbot effect. The OEHM makes use of a low-drive voltage LiNbO3 modulator and a W-band unitraveling carrier photodiode for converting the 320 GHz pulse intensity into a low-frequency electrical signal. The time domain demodulation technique has been used for the precise evaluation of phase noise power spectral density. The rms timing jitter has been estimated to be 311 fs for the 10 Hz-18.6 MHz bandwidth.

  14. Demonstration of an 8 × 25-Gb/s optical time-division multiplexing system

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Huo, Li; Li, Yunbo; Wang, Lei; Li, Han; Jiang, Xiangyu; Chen, Xin; Lou, Caiyun

    2017-11-01

    An 8 × 25-Gb/s optical time-division multiplexing (OTDM) system is demonstrated experimentally. The optical pulse source is based on optical frequency comb (OFC) generation and pulse shaping, which can generate nearly chirp-free 25-GHz 1.6-ps optical Gaussian pulse. The eightfold optical time-division demultiplexer consists of a single-driven dual-parallel Mach-Zehnder modulator (DPMZM) and a Mamyshev reshaper. Error-free demultiplexing of 8 × 25-Gb/s back-to-back (B2B) signal with a power penalty of 4.1 dB to 4.4 dB at a bit error rate (BER) of 10-9 is achieved to confirm the performance of the proposed system.

  15. Attenuation, dispersion and nonlinearity effects in graphene-based waveguides

    PubMed Central

    Mota, João Cesar Moura; Sombra, Antonio Sergio Bezerra

    2015-01-01

    Summary We simulated and analyzed in detail the behavior of ultrashort optical pulses, which are typically used in telecommunications, propagating through graphene-based nanoribbon waveguides. In this work, we showed the changes that occur in the Gaussian and hyperbolic secant input pulses due to the attenuation, high-order dispersive effects and nonlinear effects. We concluded that it is possible to control the shape of the output pulses with the value of the input signal power and the chemical potential of the graphene nanoribbon. We believe that the obtained results will be highly relevant since they can be applied to other nanophotonic devices, for example, filters, modulators, antennas, switches and other devices. PMID:26171299

  16. Synchronizable Q-switched, mode-locked, and cavity-dumped ruby laser for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Houtman, H.; Meyer, J.

    1985-06-01

    We report on the design and operation of an optimized version of a Q-switched, mode-locked, and cavity-dumped ruby-laser oscillator. The modulator window is much narrower than that assumed in conventional active mode-lock theory, and is shown to yield much shorter pulses than the latter in cases where the number of round trips is restricted. To allow a high-power pulse (≊1 GW) to evolve in the oscillator, and to allow simple synchronization to a (˜100 ns fixed delay) CO2 laser, a limit of 23 round trips was chosen, but similar limits may be imposed by lasers having short-gain duration as in an excimer laser. Details are given on the single spark gap switching element and Pockels cells, with an analysis of their expected switching speeds, in order to establish the effectiveness of the modulator, as compared to conventional sinusoidally driven active mode lockers. Single pulses of 50-70 mJ are reliably cavity-dumped after only 100-ns delay (23 round trips) with pulse length adjustable from 50-100 ps with ±5-ps stability. Relative timing between the main (CO2) and probe (ruby) pulses allows a measurement accuracy of ±50 ps to be attained.

  17. Synchronizable Q-switched, mode-locked, and cavity-dumped ruby laser for plasma diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houtman, H.; Meyer, J.

    We report on the design and operation of an optimized version of a Q-switched, mode-locked, and cavity-dumped ruby-laser oscillator. The modulator window is much narrower than that assumed in conventional active mode-lock theory, and is shown to yield much shorter pulses than the latter in cases where the number of round trips is restricted. To allow a high-power pulse (roughly-equal1 GW) to evolve in the oscillator, and to allow simple synchronization to a (approx.100 ns fixed delay) CO/sub 2/ laser, a limit of 23 round trips was chosen, but similar limits may be imposed by lasers having short-gain duration asmore » in an excimer laser. Details are given on the single spark gap switching element and Pockels cells, with an analysis of their expected switching speeds, in order to establish the effectiveness of the modulator, as compared to conventional sinusoidally driven active mode lockers. Single pulses of 50--70 mJ are reliably cavity-dumped after only 100-ns delay (23 round trips) with pulse length adjustable from 50--100 ps with +- 5-ps stability. Relative timing between the main (CO/sub 2/) and probe (ruby) pulses allows a measurement accuracy of +- 50 ps to be attained.« less

  18. Jumping the energetics queue: Modulation of pulsar signals by extraterrestrial civilizations

    NASA Astrophysics Data System (ADS)

    Chennamangalam, Jayanth; Siemion, Andrew P. V.; Lorimer, D. R.; Werthimer, Dan

    2015-01-01

    It has been speculated that technological civilizations evolve along an energy consumption scale first formulated by Kardashev, ranging from human-like civilizations that consume energy at a rate of ∼1019 erg s-1 to hypothetical highly advanced civilizations that can consume ∼1044 erg s-1. Since the transmission power of a beacon a civilization can build depends on the energy it possesses, to make it bright enough to be seen across the Galaxy would require high technological advancement. In this paper, we discuss the possibility of a civilization using naturally-occurring radio transmitters - specifically, radio pulsars - to overcome the Kardashev limit of their developmental stage and transmit super-Kardashev power. This is achieved by the use of a modulator situated around a pulsar, that modulates the pulsar signal, encoding information onto its natural emission. We discuss a simple modulation model using pulse nulling and considerations for detecting such a signal. We find that a pulsar with a nulling modulator will exhibit an excess of thermal emission peaking in the ultraviolet during its null phases, revealing the existence of a modulator.

  19. High Power Amplifier and Power Supply

    NASA Technical Reports Server (NTRS)

    Duong, Johnny; Stride, Scot; Harvey, Wayne; Haque, Inam; Packard, Newton; Ng, Quintin; Ispirian, Julie Y.; Waian, Christopher; Janes, Drew

    2008-01-01

    A document discusses the creation of a high-voltage power supply (HVPS) that is able to contain voltages up to -20 kV, keep electrical field strengths to below 200 V/mil (approximately equal to 7.87 kV/mm), and can provide a 200-nanosecond rise/fall time focus modulator swinging between cathode potential of 16.3 kV and -19.3 kV. This HVPS can protect the 95-GHz, pulsed extended interaction klystron (EIK) from arcs/discharges from all sources, including those from within the EIK fs vacuum envelope. This innovation has a multi-winding pulse transformer design, which uses new winding techniques to provide the same delays and rise/fall times (less than 10 nanoseconds) at different potential levels ranging from -20 kV to -16 kV. Another feature involves a high-voltage printed-wiring board that was corona-free at -20 kV DC with a 3- kV AC swing. The corona-free multilayer high-voltage board is used to simulate fields of less than 200 V/mil (approximately equal to 7.87 kV/mm) at 20 kV DC. Drive techniques for the modulator FETs (field-effect transistors) (four to 10 in a series) were created to change states (3,000-V swing) without abrupt steps, while still maintaining required delays and transition times. The packing scheme includes a potting mold to house a ten-stage modulator in the space that, in the past, only housed a four-stage modulator. Problems keeping heat down were solved using aluminum oxide substrate in the high-voltage section to limit temperature rise to less than 10 while withstanding -20 kV DC voltage and remaining corona-free.

  20. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    DOEpatents

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  1. A computerized tomography system for transcranial ultrasound imaging.

    PubMed

    Tang, Sai Chun; Clement, Gregory T

    Hardware for tomographic imaging presents both challenge and opportunity for simplification when compared with traditional pulse-echo imaging systems. Specifically, point diffraction tomography does not require simultaneous powering of elements, in theory allowing just a single transmit channel and a single receive channel to be coupled with a switching or multiplexing network. In our ongoing work on transcranial imaging, we have developed a 512-channel system designed to transmit and/or receive a high voltage signal from/to arbitrary elements of an imaging array. The overall design follows a hierarchy of modules including a software interface, microcontroller, pulse generator, pulse amplifier, high-voltage power converter, switching mother board, switching daughter board, receiver amplifier, analog-to-digital converter, peak detector, memory, and USB communication. Two pulse amplifiers are included, each capable of producing up to 400Vpp via power MOSFETS. Switching is based around mechanical relays that allow passage of 200V, while still achieving switching times of under 2ms, with an operating frequency ranging from below 100kHz to 10MHz. The system is demonstrated through ex vivo human skulls using 1MHz transducers. The overall system design is applicable to planned human studies in transcranial image acquisition, and may have additional tomographic applications for other materials necessitating a high signal output.

  2. Active mode locking of lasers by piezoelectrically induced diffraction modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krausz, F.; Turi, L.; Kuti, C.

    A new amplitude-modulation mode-locking technique is presented. Acoustic waves are generated directly on the faces of a resonant photoelastic medium. The created standing waves cause a highly efficient diffraction modulation of light. The modulation depth of standing-wave mode lockers is related to material and drive parameters and a figure of merit is introduced. With a lithium niobate crystal modulation depths over 10 are achieved at 1.054 {mu}m and 1 W of radio frequency power. Using this device for the active mode locking of a continuous-wave Nd:glass laser pulses as short as 3.8 ps are produced at a repetition rate ofmore » 66 MHz. Limitations of amplitude-modulation mode locking by standing acoustic waves are discussed.« less

  3. Method and split cavity oscillator/modulator to generate pulsed particle beams and electromagnetic fields

    DOEpatents

    Clark, M. Collins; Coleman, P. Dale; Marder, Barry M.

    1993-01-01

    A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.

  4. Method and split cavity oscillator/modulator to generate pulsed particle beams and electromagnetic fields

    DOEpatents

    Clark, M.C.; Coleman, P.D.; Marder, B.M.

    1993-08-10

    A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.

  5. 408-fs SESAM mode locked Cr:ZnSe laser

    NASA Astrophysics Data System (ADS)

    Bu, Xiangbao; Shi, Yuhang; Xu, Jia; Li, Huijuan; Wang, Pu

    2018-01-01

    We report self-starting femtosecond operation of a 127-MHz SESAM mode locked Cr:ZnSe laser around 2420 nm. A thulium doped double clad fiber laser at 1908 nm was used as the pumping source. In the normal dispersion regime, stable pulse pairs with constant phase differences in the multipulse regime were observed. The maximum output power was 342 mW with respect to incident pump power of 4.8 W and the corresponding slope efficiency was 10.4%. By inserting a piece of sapphire plate, dispersion compensation was achieved and the intra-cavity dispersion was moved to the anomalous regime. A maximum output power of 403 mW was obtained and the corresponding slope efficiency was 12.2%. Pulse width was measured to be 408 fs by a collinear autocorrelator using two-photon absorption in an InGaAs photodiode. The laser spectrum in multipulse operation showed a clear periodic modulation.

  6. 140 GHz pulsed fourier transform microwave spectrometer

    DOEpatents

    Kolbe, William F.; Leskovar, Branko

    1987-01-01

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer (10), including means (11, 19) for generating a high frequency carrier signal, and means (12) for generating a low frequency modulating signal. The carrier signal is continuously fed to a modulator (20) and the modulating signal is fed through a pulse switch (23) to the modulator. When the pulse switch (23) is on, the modulator (20) will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device (31) is tuned to one of the sideband signals and away from the carrier frequency so that the high frequency energization of the frequency-responsive device (31) is controlled by the pulse switch (23).

  7. All-optical UWB generation and modulation using SOA-XPM effect and DWDM-based multi-channel frequency discrimination.

    PubMed

    Wang, Fei; Dong, Jianji; Xu, Enming; Zhang, Xinliang

    2010-11-22

    An all-optical UWB pulses generation and modulation scheme using cross phase modulation (XPM) effect of semiconductor optical amplifier (SOA) and DWDM-based multi-channel frequency discrimination is proposed and demonstrated, which has potential application in multiuser UWB-Over-Fiber communication systems. When a Gaussian pulse light and a wavelength-tunable CW probe light are together injected into the SOA, the probe light out from the SOA will have a temporal chirp due to SOA-XPM effect. When the chirped probe light is tuned to the slopes of single DWDM channel transmittance curve, the optical phase modulation to intensity modulation conversion is achieved at DWDM that serves as a multi-channel frequency discriminator, the inverted polarity Gaussian monocycle and doublet pulse is detected by a photodetector, respectively. If the probe lights are simultaneously aimed to different slopes of several DWDM channels, multi-channel or binary-phase-coded UWB signal generation can be acquired. Using proposed scheme, pulse amplitude modulation (PAM), pulse polarity modulation (PPM) and pulse shape modulation (PSM) to UWB pulses also can be conveniently realized.

  8. Production of extended plasma channels in atmospheric air by amplitude-modulated UV radiation of GARPUN-MTW Ti : sapphire—KrF laser. Part 2. Accumulation of plasma electrons and electric discharge control

    NASA Astrophysics Data System (ADS)

    Zvorykin, V. D.; Ionin, Andrei A.; Levchenko, A. O.; Mesyats, Gennadii A.; Seleznev, L. V.; Sinitsyn, D. V.; Smetanin, Igor V.; Sunchugasheva, E. S.; Ustinovskii, N. N.; Shutov, A. V.

    2013-04-01

    The problem of the production of extended (~1 m) plasma channels is studied in atmospheric air by amplitude-modulated laser pulses of UV radiation, which are a superposition of a subpicosecond USP train amplified in a regenerative KrF amplifier with an unstable confocal resonator and a quasi-stationary lasing pulse. The USPs possess a high (0.2-0.3 TW) peak power and efficiently ionise oxygen molecules due to multiphoton ionisation, and the quasi-stationary lasing pulse, which has a relatively long duration (~100 ns), maintains the electron density at a level ne = (3-5) × 1014 cm—3 by suppressing electron attachment to oxygen. Experiments in laser triggering of high-voltage electric discharges suggest that the use of combined pulses results in a significant lowering of the breakdown threshold and enables controlling the discharge trajectory with a higher efficiency in comparison with smooth pulses. It was shown that controlled breakdowns may develop with a delay of tens of microseconds relative to the laser pulse, which is many orders of magnitude greater than the lifetime of free electrons in the laser-induced plasma. We propose a mechanism for this breakdown, which involves speeding-up of the avalanche ionisation of the air by negative molecular oxygen ions with a low electron binding energy (~0.5 eV) and a long lifetime (~1 ms), which are produced upon cessation of the laser pulse.

  9. High-energy, high-repetition-rate picosecond pulses from a quasi-CW diode-pumped Nd:YAG system.

    PubMed

    Noom, Daniel W E; Witte, Stefan; Morgenweg, Jonas; Altmann, Robert K; Eikema, Kjeld S E

    2013-08-15

    We report on a high-power quasi-CW pumped Nd:YAG laser system, producing 130 mJ, 64 ps pulses at 1064 nm wavelength with a repetition rate of 300 Hz. Pulses from a Nd:YVO(4) oscillator are first amplified by a regenerative amplifier to the millijoule level and then further amplified in quasi-CW diode-pumped Nd:YAG modules. Pulsed diode pumping enables a high gain at repetition rates of several hundred hertz, while keeping thermal effects manageable. Birefringence compensation and multiple thermal-lensing-compensated relay-imaging stages are used to maintain a top-hat beam profile. After frequency doubling, 75 mJ pulses are obtained at 532 nm. The intensity stability is better than 1.1%, which makes this laser an attractive pump source for a high-repetition-rate optical parametric amplification system.

  10. Microscopy imaging system and method employing stimulated raman spectroscopy as a contrast mechanism

    DOEpatents

    Xie, Xiaoliang Sunney [Lexington, MA; Freudiger, Christian [Boston, MA; Min, Wei [Cambridge, MA

    2011-09-27

    A microscopy imaging system includes a first light source for providing a first train of pulses at a first center optical frequency .omega..sub.1, a second light source for providing a second train of pulses at a second center optical frequency .omega..sub.2, a modulator system, an optical detector, and a processor. The modulator system is for modulating a beam property of the second train of pulses at a modulation frequency f of at least 100 kHz. The optical detector is for detecting an integrated intensity of substantially all optical frequency components of the first train of pulses from the common focal volume by blocking the second train of pulses being modulated. The processor is for detecting, a modulation at the modulation frequency f, of the integrated intensity of the optical frequency components of the first train of pulses to provide a pixel of an image for the microscopy imaging system.

  11. Photonic ultrawideband impulse radio generation and modulation over a fiber link using a phase modulator and a delay interferometer.

    PubMed

    Shao, Jing; Sun, Junqiang

    2012-08-15

    We propose and experimentally demonstrate a simple and flexible photonic scheme for generation and modulation of ultrawideband (UWB) using a phase modulator and a fiber delay interferometer (DI)-based multichannel frequency discrimination. By introducing a Gaussian signal to the phase modulator, the UWB polarity-switchable doublet pulses can be achieved by combining the pair of UWB monocycle pulses with inverted polarities at the DI outputs under proper time delay. Furthermore, the pulse shape modulation, pulse position modulation, and on-off keying can be performed by coding the electrical data patterns and adjusting the time delay between the two monocycle pulses. Only a laser source introduced in the architecture guarantees the excellent dispersion tolerance over 75 km optical fiber link for UWB pulse sequence, which has potential application in future high-speed UWB impulse radio over optical fiber access networks.

  12. Electron density modulation in a pulsed dual-frequency (2/13.56 MHz) dual-antenna inductively coupled plasma discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirse, Nishant, E-mail: nishant.sirse@dcu.ie; Mishra, Anurag; Yeom, Geun Y.

    The electron density, n{sub e}, modulation is measured experimentally using a resonance hairpin probe in a pulsed, dual-frequency (2/13.56 MHz), dual-antenna, inductively coupled plasma discharge produced in argon-C{sub 4}F{sub 8} (90–10) gas mixtures. The 2 MHz power is pulsed at a frequency of 1 kHz, whereas 13.56 MHz power is applied in continuous wave mode. The discharge is operated at a range of conditions covering 3–50 mTorr, 100–600 W 13.56 MHz power level, 300–600 W 2 MHz peak power level, and duty ratio of 10%–90%. The experimental results reveal that the quasisteady state n{sub e} is greatly affected by the 2 MHz power levels and slightly affected by 13.56 MHzmore » power levels. It is observed that the electron density increases by a factor of 2–2.5 on increasing 2 MHz power level from 300 to 600 W, whereas n{sub e} increases by only ∼20% for 13.56 MHz power levels of 100–600 W. The rise time and decay time constant of n{sub e} monotonically decrease with an increase in either 2 or 13.56 MHz power level. This effect is stronger at low values of 2 MHz power level. For all the operating conditions, it is observed that the n{sub e} overshoots at the beginning of the on-phase before relaxing to a quasisteady state value. The relative overshoot density (in percent) depends on 2 and 13.56 MHz power levels. On increasing gas pressure, the n{sub e} at first increases, reaching to a maximum value, and then decreases with a further increase in gas pressure. The decay time constant of n{sub e} increases monotonically with pressure, increasing rapidly up to 10 mTorr gas pressure and at a slower rate of rise to 50 mTorr. At a fixed 2/13.56 MHz power level and 10 mTorr gas pressure, the quasisteady state n{sub e} shows maximum for 30%–40% duty ratio and decreases with a further increase in duty ratio.« less

  13. Quantitative two-dimensional HSQC experiment for high magnetic field NMR spectrometers

    NASA Astrophysics Data System (ADS)

    Koskela, Harri; Heikkilä, Outi; Kilpeläinen, Ilkka; Heikkinen, Sami

    2010-01-01

    The finite RF power available on carbon channel in proton-carbon correlation experiments leads to non-uniform cross peak intensity response across carbon chemical shift range. Several classes of broadband pulses are available that alleviate this problem. Adiabatic pulses provide an excellent magnetization inversion over a large bandwidth, and very recently, novel phase-modulated pulses have been proposed that perform 90° and 180° magnetization rotations with good offset tolerance. Here, we present a study how these broadband pulses (adiabatic and phase-modulated) can improve quantitative application of the heteronuclear single quantum coherence (HSQC) experiment on high magnetic field strength NMR spectrometers. Theoretical and experimental examinations of the quantitative, offset-compensated, CPMG-adjusted HSQC (Q-OCCAHSQC) experiment are presented. The proposed experiment offers a formidable improvement to the offset performance; 13C offset-dependent standard deviation of the peak intensity was below 6% in range of ±20 kHz. This covers the carbon chemical shift range of 150 ppm, which contains the protonated carbons excluding the aldehydes, for 22.3 T NMR magnets. A demonstration of the quantitative analysis of a fasting blood plasma sample obtained from a healthy volunteer is given.

  14. Gaussian temporal modulation for the behavior of multi-sinc Schell-model pulses in dispersive media

    NASA Astrophysics Data System (ADS)

    Liu, Xiayin; Zhao, Daomu; Tian, Kehan; Pan, Weiqing; Zhang, Kouwen

    2018-06-01

    A new class of pulse source with correlation being modeled by the convolution operation of two legitimate temporal correlation function is proposed. Particularly, analytical formulas for the Gaussian temporally modulated multi-sinc Schell-model (MSSM) pulses generated by such pulse source propagating in dispersive media are derived. It is demonstrated that the average intensity of MSSM pulses on propagation are reshaped from flat profile or a train to a distribution with a Gaussian temporal envelope by adjusting the initial correlation width of the Gaussian pulse. The effects of the Gaussian temporal modulation on the temporal degree of coherence of the MSSM pulse are also analyzed. The results presented here show the potential of coherence modulation for pulse shaping and pulsed laser material processing.

  15. Rapid Speed Modulation of a Rotary Total Artificial Heart Impeller.

    PubMed

    Kleinheyer, Matthias; Timms, Daniel L; Tansley, Geoffrey D; Nestler, Frank; Greatrex, Nicholas A; Frazier, O Howard; Cohn, William E

    2016-09-01

    Unlike the earlier reciprocating volume displacement-type pumps, rotary blood pumps (RBPs) typically operate at a constant rotational speed and produce continuous outflow. When RBP technology is used in constructing a total artificial heart (TAH), the pressure waveform that the TAH produces is flat, without the rise and fall associated with a normal arterial pulse. Several studies have suggested that pulseless circulation may impair microcirculatory perfusion and the autoregulatory response and may contribute to adverse events such as gastrointestinal bleeding, arteriovenous malformations, and pump thrombosis. It may therefore be beneficial to attempt to reproduce pulsatile output, similar to that generated by the native heart, by rapidly modulating the speed of an RBP impeller. The choice of an appropriate speed profile and control strategy to generate physiologic waveforms while minimizing power consumption and blood trauma becomes a challenge. In this study, pump operation modes with six different speed profiles using the BiVACOR TAH were evaluated in vitro. These modes were compared with respect to: hemodynamic pulsatility, which was quantified as surplus hemodynamic energy (SHE); maximum rate of change of pressure (dP/dt); pulse power index; and motor power consumption as a function of pulse pressure. The results showed that the evaluated variables underwent different trends in response to changes in the speed profile shape. The findings indicated a possible trade-off between SHE levels and flow rate pulsatility related to the relative systolic duration in the speed profile. Furthermore, none of the evaluated measures was sufficient to fully characterize hemodynamic pulsatility. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  16. Data acquisition system

    DOEpatents

    Phillips, David T.

    1979-01-01

    A data acquisition system capable of resolving transient pulses in the subnanosecond range. A pulse in an information carrying medium such as light is transmitted through means which disperse the pulse, such as a fiber optic light guide which time-stretches optical pulses by chromatic dispersion. This time-stretched pulse is used as a sampling pulse and is modulated by the signal to be recorded. The modulated pulse may be further time-stretched prior to being recorded. The recorded modulated pulse is unfolded to derive the transient signal by utilizing the relationship of the time-stretching that occurred in the original pulse.

  17. Effects of different excitation waveforms on detection and characterisation of delamination in PV modules by active infrared thermography

    NASA Astrophysics Data System (ADS)

    Sinha, Archana; Gupta, Rajesh

    2017-10-01

    Delamination significantly affects the performance and reliability of photovoltaic (PV) modules. Recently, an active infrared thermography approach using step heating has been exploited for the detection and characterisation of delamination in PV modules. However, step heating takes longer observation time and causes overheating problems. This paper presents the effects of different thermal excitation waveforms namely rectangular, half-sine and short pulse, on the detection and characterisation of delamination in PV module by experiments and simulations. For simulation, a 3-dimensional electro-thermal model of heat conduction, based on resistance-capacitance network approach, has been exploited to study the variation in maximum thermal contrast and peak contrast time with the delamination thickness and heating parameters. Results show that the rectangular waveform provides better detection of delamination due to higher absolute contrast, while the half-sine waveform allows better characterisation of delamination in the PV modules with low-cost and low-power heat source. The high-energy short pulse enabled quick visualisation of delamination, but has limited practical implementation. The advantages and limitations of each waveform have been highlighted to assess the specific requirement for appropriate choice in the non-destructive thermographic inspection of delamination in PV modules at the manufacturing units or outdoor fields.

  18. Ultrasound neuro-modulation chip: activation of sensory neurons in Caenorhabditis elegans by surface acoustic waves.

    PubMed

    Zhou, Wei; Wang, Jingjing; Wang, Kaiyue; Huang, Bin; Niu, Lili; Li, Fei; Cai, Feiyan; Chen, Yan; Liu, Xin; Zhang, Xiaoyan; Cheng, Hankui; Kang, Lijun; Meng, Long; Zheng, Hairong

    2017-05-16

    Ultrasound neuro-modulation has gained increasing attention as a non-invasive method. In this paper, we present an ultrasound neuro-modulation chip, capable of initiating reversal behaviour and activating neurons of C. elegans under the stimulation of a single-shot, short-pulsed ultrasound. About 85.29% ± 6.17% of worms respond to the ultrasound stimulation exhibiting reversal behaviour. Furthermore, the worms can adapt to the ultrasound stimulation with a lower acoustic pulse duration of stimulation. In vivo calcium imaging shows that the activity of ASH, a polymodal sensory neuron in C. elegans, can be directly evoked by the ultrasound stimulation. On the other hand, AFD, a thermal sensitive neuron, cannot be activated by the ultrasound stimulation using the same parameter and the temperature elevation during the stimulation process is relatively small. Consistent with the calcium imaging results, the tax-4 mutants, which are insensitive to temperature increase, do not show a significant difference in avoidance probability compared to the wild type. Therefore, the mechanical effects induced by ultrasound are the main reason for neural and behavioural modulation of C. elegans. With the advantages of confined acoustic energy on the surface, compatible with standard calcium imaging, this neuro-modulation chip could be a powerful tool for revealing the molecular mechanisms of ultrasound neuro-modulation.

  19. A Flexible Master Oscillator for a Thomson Scattering Pulse-Burst Laser System

    NASA Astrophysics Data System (ADS)

    den Hartog, D. J.; Young, W. C.

    2015-11-01

    A new master oscillator will be installed in the pulse-burst laser system used for high-rep-rate Thomson scattering on the MST experiment. This new master oscillator will enable pulse repetition rates up to 1 MHz, with the ability to program a burst of pulses with arbitrary and varying time separation between each pulse. In addition, the energy of each master oscillator pulse can be adjusted to compensate for gain variations in the power amplifier section of the laser system. This flexibility is accomplished by chopping a CW laser source with a high-bandwidth acousto-optic modulator (AOM). The laser source is a 1064 nm diode-pumped solid-state laser with continuous output power variable from 100 to 500 mW. The 2 mm diameter polarized beam is focused into the gallium phosphide crystal of the AOM, which deflects the beam by approximately 60 mrad. Beam deflection is controlled by a simple digital input pulse, and is capable of producing laser pulses of less than 20 ns width at repetition rates much greater than 1 MHz. These pulses from the output of the AOM will be collimated and propagated into the laser amplifier system, where they will be amplified to ~ 2 J/pulse and injected into the MST plasma. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Number DE-FC02-05ER54814, and by the National Science Foundation under Award Number PHY-0821899.

  20. Wireless and Powerless Sensing Node System Developed for Monitoring Motors.

    PubMed

    Lee, Dasheng

    2008-08-27

    Reliability and maintainability of tooling systems can be improved through condition monitoring of motors. However, it is difficult to deploy sensor nodes due to the harsh environment of industrial plants. Sensor cables are easily damaged, which renders the monitoring system deployed to assure the machine's reliability itself unreliable. A wireless and powerless sensing node integrated with a MEMS (Micro Electro-Mechanical System) sensor, a signal processor, a communication module, and a self-powered generator was developed in this study for implementation of an easily mounted network sensor for monitoring motors. A specially designed communication module transmits a sequence of electromagnetic (EM) pulses in response to the sensor signals. The EM pulses can penetrate through the machine's metal case and delivers signals from the sensor inside the motor to the external data acquisition center. By using induction power, which is generated by the motor's shaft rotation, the sensor node is self-sustaining; therefore, no power line is required. A monitoring system, equipped with novel sensing nodes, was constructed to test its performance. The test results illustrate that, the novel sensing node developed in this study can effectively enhance the reliability of the motor monitoring system and it is expected to be a valuable technology, which will be available to the plant for implementation in a reliable motor management program.

  1. W-band PELDOR with 1 kW microwave power: molecular geometry, flexibility and exchange coupling.

    PubMed

    Reginsson, Gunnar W; Hunter, Robert I; Cruickshank, Paul A S; Bolton, David R; Sigurdsson, Snorri Th; Smith, Graham M; Schiemann, Olav

    2012-03-01

    A technique that is increasingly being used to determine the structure and conformational flexibility of biomacromolecules is Pulsed Electron-Electron Double Resonance (PELDOR or DEER), an Electron Paramagnetic Resonance (EPR) based technique. At X-band frequencies (9.5 GHz), PELDOR is capable of precisely measuring distances in the range of 1.5-8 nm between paramagnetic centres but the orientation selectivity is weak. In contrast, working at higher frequencies increases the orientation selection but usually at the expense of decreased microwave power and PELDOR modulation depth. Here it is shown that a home-built high-power pulsed W-band EPR spectrometer (HiPER) with a large instantaneous bandwidth enables one to achieve PELDOR data with a high degree of orientation selectivity and large modulation depths. We demonstrate a measurement methodology that gives a set of PELDOR time traces that yield highly constrained data sets. Simulating the resulting time traces provides a deeper insight into the conformational flexibility and exchange coupling of three bisnitroxide model systems. These measurements provide strong evidence that W-band PELDOR may prove to be an accurate and quantitative tool in assessing the relative orientations of nitroxide spin labels and to correlate those orientations to the underlying biological structure and dynamics. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Wireless and Powerless Sensing Node System Developed for Monitoring Motors

    PubMed Central

    Lee, Dasheng

    2008-01-01

    Reliability and maintainability of tooling systems can be improved through condition monitoring of motors. However, it is difficult to deploy sensor nodes due to the harsh environment of industrial plants. Sensor cables are easily damaged, which renders the monitoring system deployed to assure the machine's reliability itself unreliable. A wireless and powerless sensing node integrated with a MEMS (Micro Electro-Mechanical System) sensor, a signal processor, a communication module, and a self-powered generator was developed in this study for implementation of an easily mounted network sensor for monitoring motors. A specially designed communication module transmits a sequence of electromagnetic (EM) pulses in response to the sensor signals. The EM pulses can penetrate through the machine's metal case and delivers signals from the sensor inside the motor to the external data acquisition center. By using induction power, which is generated by the motor's shaft rotation, the sensor node is self-sustaining; therefore, no power line is required. A monitoring system, equipped with novel sensing nodes, was constructed to test its performance. The test results illustrate that, the novel sensing node developed in this study can effectively enhance the reliability of the motor monitoring system and it is expected to be a valuable technology, which will be available to the plant for implementation in a reliable motor management program. PMID:27873798

  3. Generation of powerful microwave pulses by channel power summation of two X-band phase-locked relativistic backward wave oscillators

    NASA Astrophysics Data System (ADS)

    Xiao, Renzhen; Deng, Yuqun; Chen, Changhua; Shi, Yanchao; Sun, Jun

    2018-03-01

    We demonstrate both theoretically and experimentally the possibility of the generation of powerful microwave pulses by channel power summation of two X-band phase-locked relativistic backward wave oscillators (RBWOs). A modulated electron beam induced by an external signal can lead the microwave field with an arbitrary initial phase to the same equilibrium phase, which is determined by the initial phase of the external signal. A high-current dual-beam accelerator was built to drive the two RBWOs. An external signal was divided into two channels with an adjusted relative phase and injected into the two RBWOs through two TE10-TEM mode converters. The generated microwaves were combined with a power combiner consisting of two TM01-TE11 serpentine mode converters with a common output. In the experiments, as the input power for each channel was 150 kW, the two RBWOs output 3.1 GW and 3.7 GW, respectively, the jitter of the relative phase of two output microwaves was about 20°, and the summation power from the power combiner is 6.2 GW, corresponding to a combination efficiency of 91%.

  4. Charger 1: A New Facility for Z-Pinch Research

    NASA Technical Reports Server (NTRS)

    Taylor, Brian; Cassibry, Jason; Cortez, Ross; Doughty, Glen; Adams, Robert; DeCicco, Anthony

    2017-01-01

    Charger 1 is a multipurpose pulsed power laboratory located on Redstone Arsenal, with a focus on fusion propulsion relevant experiments involving testing z-pinch diodes, pulsed magnetic nozzle and other related physics experiments. UAH and its team of pulsed power researchers are investigating ways to increase and optimize fusion production from Charger 1. Currently the team has reached high-power testing. Due to the unique safety issues related to high power operations the UAH/MSFC team has slowed repair efforts to develop safety and operations protocols. The facility is expected to be operational by the time DZP 2017 convenes. Charger 1 began life as the Decade Module 2, an experimental prototype built to prove the Decade Quad pinch configuration. The system was donated to UAH by the Defense Threat Reduction Agency (DRTA) in 2012. For the past 5 years a UAH/MSFC/Boeing team has worked to refurbish, assemble and test the system. With completion of high power testing in summer 2017 Charger 1 will become operational for experimentation. Charger 1 utilizes a Marx Bank of 72 100-kV capacitors that are charged in parallel and discharged in series. The Marx output is compressed to a pulse width of approximately 200 ns via a pulse forming network of 32 coaxial stainless steel tubes using water as a dielectric. After pulse compression a set of SF6 switches are triggered, allowing the wave front to propagate through the output line to the load. Charger 1 is capable of storing 572-kJ of energy and time compressing discharge to less than 250 ns discharge time producing a discharge of about 1 TW of discharge with 1 MV and 1 MA peak voltage and current, respectively. This capability will be used to study energy yield scaling and physics from solid density target as applied to advanced propulsion research.

  5. Self-phase modulation enabled, wavelength-tunable ultrafast fiber laser sources: an energy scalable approach.

    PubMed

    Liu, Wei; Li, Chen; Zhang, Zhigang; Kärtner, Franz X; Chang, Guoqing

    2016-07-11

    We propose and demonstrate a new approach to implement a wavelength-tunable ultrafast fiber laser source suitable for multiphoton microscopy. We employ fiber-optic nonlinearities to broaden a narrowband optical spectrum generated by an Yb-fiber laser system and then use optical bandpass filters to select the leftmost or rightmost spectral lobes from the broadened spectrum. Detailed numerical modeling shows that self-phase modulation dominates the spectral broadening, self-steepening tends to blue shift the broadened spectrum, and stimulated Raman scattering is minimal. We also find that optical wave breaking caused by fiber dispersion slows down the shift of the leftmost/rightmost spectral lobes and therefore limits the wavelength tuning range of the filtered spectra. We show both numerically and experimentally that shortening the fiber used for spectral broadening while increasing the input pulse energy can overcome this dispersion-induced limitation; as a result, the filtered spectral lobes have higher power, constituting a powerful and practical approach for energy scaling the resulting femtosecond sources. We use two commercially available photonic crystal fibers to verify the simulation results. More specific, use of 20-mm fiber NL-1050-ZERO-2 enables us to implement an Yb-fiber laser based ultrafast source, delivering femtosecond (70-120 fs) pulses tunable from 825 nm to 1210 nm with >1 nJ pulse energy.

  6. Theoretical and experimental study of a laser-diode-pumped actively Q-switched Yb:NaY(WO4)2 laser with acoustic-optic modulator

    NASA Astrophysics Data System (ADS)

    Zhang, Haikun; Xia, Wei; Song, Peng; Wang, Jing; Li, Xin

    2018-03-01

    A laser-diode-pumped actively Q-switched Yb:NaY(WO4)2 laser operating at around 1040 nm is presented for the first time with acoustic-optic modulator. The dependence of pulse width on incident pump power for different pulse repetition rates is measured. By considering the Guassian spatial distribution of the intracavity photon density and the initial population-inversion density as well as the longitudinal distribution of the photon density along the cavity axis and the turn off time of the acoustic-optic Q-switch, the coupled equations of the actively Q-switched Yb:NaY(WO4)2 laser are given. The coupled rate equations are used to simulate the Q-switched process of laser, and the numerical solutions agree with the experimental results.

  7. Quasi-periodic dynamics in system with multilevel pulse modulated control

    NASA Astrophysics Data System (ADS)

    Gol'tsov, Yu A.; Kizhuk, A. S.; Rubanov, V. G.

    2018-03-01

    In this paper, the authors describe the transitions from the regular periodic mode to quasiperiodicity that can be observed in a multilevel pulse-width modulated control system for a high-power heating unit. The behavior of such system can be described by a set of two coupled non-autonomous differential equations with discontinuous right-hand sides. The authors reduce the investigation of this system to the studying of a two-dimensional piecewise-smooth map. The authors demonstrate how a closed invariant curve associated with quasiperiodic dynamics can arise from a stable periodic motion through a border-collision bifurcation. The paper also considers a variety of interesting nonlinear phenomena, including phase-locking modes, the coexistence of several stable closed invariant curves, embedded one into the other and with their basins of attraction separated by intervening repelling closed curves.

  8. Physics Goals for the Planned Next Linear Collider Engineering Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raubenheimer, Tor O

    2001-10-02

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less

  9. Physics goals for the planned next linear collider engineering test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courtlandt L Bohn et al.

    2001-06-26

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less

  10. Physics goals for the planned next linear collider engineering test facility.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohn, C.; Michelotti, L.; Ostiguy, J.-F.

    2001-07-17

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less

  11. Submicrosecond linear pulse transformer for 800 kV voltage with modular low-inductance primary power supply

    NASA Astrophysics Data System (ADS)

    Bykov, Yu. A.; Krastelev, E. G.; Popov, G. V.; Sedin, A. A.; Feduschak, V. F.

    2016-12-01

    A pulsed power source with voltage amplitude up to 800 kV for fast charging (350-400 ns) of the forming line of a high-current nanosecond accelerator is developed. The source includes capacitive energy storage and a linear pulse transformer. The linear transformer consists of a set of 20 inductors with circular ferromagnetic cores surrounded by primary windings inside of which a common stock adder of voltage with film-glycerol insulation is placed. The primary energy storage consists of ten modules, each of which is a low-inductance assembly of two capacitors with a capacitance of 0.35 μF and one gas switch mounted in the same frame. The total energy stored in capacitors is 5.5 kJ at the operating voltage of 40 kV. According to test results, the parameters of the equivalent circuit of the source are the following: shock capacitance = 17.5 nF, inductance = 2 μH, resistance = 3.2 Ω.

  12. Submicrosecond linear pulse transformer for 800 kV voltage with modular low-inductance primary power supply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bykov, Yu. A.; Krastelev, E. G., E-mail: ekrastelev@yandex.ru; Popov, G. V.

    A pulsed power source with voltage amplitude up to 800 kV for fast charging (350–400 ns) of the forming line of a high-current nanosecond accelerator is developed. The source includes capacitive energy storage and a linear pulse transformer. The linear transformer consists of a set of 20 inductors with circular ferromagnetic cores surrounded by primary windings inside of which a common stock adder of voltage with film-glycerol insulation is placed. The primary energy storage consists of ten modules, each of which is a low-inductance assembly of two capacitors with a capacitance of 0.35 μF and one gas switch mounted inmore » the same frame. The total energy stored in capacitors is 5.5 kJ at the operating voltage of 40 kV. According to test results, the parameters of the equivalent circuit of the source are the following: shock capacitance = 17.5 nF, inductance = 2 μH, resistance = 3.2 Ω.« less

  13. Performance measurement results for a 220 Mbps QPPM optical communication receiver with an EG/G Slik APD

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli

    1992-01-01

    The performance of a 220 Mbps quaternary pulse position modulation (QPPM) optical communication receiver with a 'Slik' silicon avalanche photodiode (APD) and a wideband transimpedance preamplifier in a small hybrid circuit module was measured. The receiver performance had been poor due to the lack of a wideband and low noise transimpedance preamplifier. With the new APB preamplifier module, the receiver achieved a bit error rate (BER) of 10 exp -6 at an average received input optical signal power of 4.2 nW, which corresponds to an average of 80 received (incident) signal photons per information bit.

  14. Frequency comb generation in a silicon ring resonator modulator.

    PubMed

    Demirtzioglou, Iosif; Lacava, Cosimo; Bottrill, Kyle R H; Thomson, David J; Reed, Graham T; Richardson, David J; Petropoulos, Periklis

    2018-01-22

    We report on the generation of an optical comb of highly uniform in power frequency lines (variation less than 0.7 dB) using a silicon ring resonator modulator. A characterization involving the measurement of the complex transfer function of the ring is presented and five frequency tones with a 10-GHz spacing are produced using a dual-frequency electrical input at 10 and 20 GHz. A comb shape comparison is conducted for different modulator bias voltages, indicating optimum operation at a small forward-bias voltage. A time-domain measurement confirmed that the comb signal was highly coherent, forming 20.3-ps-long pulses.

  15. High Intensity Mirror-Free Nanosecond Ytterbium Fiber Laser System in Master Oscillator Power Amplification

    NASA Astrophysics Data System (ADS)

    Chun-Lin, Louis Chang

    Rare-earth-doped fiber lasers and amplifiers are relatively easy to efficiently produce a stable and high quality laser beam in a compact, robust, and alignment-free configuration. Recently, high power fiber laser systems have facilitated wide spread applications in academics, industries, and militaries in replacement of bulk solid-state laser systems. The master oscillator power amplifier (MOPA) composed of a highly-controlled seed, high-gain preamplifiers, and high-efficiency power amplifiers are typically utilized to scale up the pulse energy, peak power, or average power. Furthermore, a direct-current-modulated nanosecond diode laser in single transverse mode can simply provide a compact and highly-controlled seed to result in the flexible output parameters, such as repetition rate, pulse duration, and even temporal pulse shape. However, when scaling up the peak power for high intensity applications, such a versatile diode-seeded nanosecond MOPA laser system using rare-earth-doped fibers is unable to completely save its own advantages compared to bulk laser systems. Without a strong seeding among the amplifiers, the guided amplified spontaneous amplification is easy to become dominant during the amplification, leading to the harmful self-lasing or pulsing effects, and the difficulty of the quantitative numerical comparison. In this dissertation, we study a high-efficiency and intense nanosecond ytterbium fiber MOPA system with good beam quality and stability for high intensity applications. The all-PM-fiber structure is achieved with the output extinction ratio of >12 dB by optimizing the interconnection of high power optical fibers. The diode-seeded MOPA configuration without parasitic stimulated amplification (PAS) is implemented using the double-pass scheme to extract energy efficiently for scaling peak power. The broadband PAS was studied experimentally, which matches well with our numerical simulation. The 1064-nm nanosecond seed was a direct-current-modulated Fabry-Perot diode laser associated with a weak and pulsed noise spanning from 1045 to 1063 nm. Even though the contribution of input noise pulse is only <5%, it becomes a significant transient spike during amplification. The blue-shifted pulsed noise may be caused by band filling effect for quantum-well seed laser driven by high peak current. The study helps the development of adaptive pulse shaping for scaling peak power or energy at high efficiency. On the other hand, the broadband spike with a 3-dB bandwidth of 8.8 nm can support pulses to seed the amplifier for sub-nanosecond giant pulse generation. Because of the very weak seed laser, the design of high-gain preamplifier becomes critical. The utilization of single-mode core-pumped fiber preamplifier can not only improve the mode contrast without fiber coiling effect but also significantly suppress the fiber nonlinearity. The double-pass scheme was therefore studied both numerically and experimentally to improve energy extraction efficiency for the lack of attainable seed and core-pumped power. As a result, a record-high peak power of > 30 kW and energy of > 0.23 mJ was successfully achieved to the best of our knowledge from the output of clad-pumped power amplifier with a beam quality of M2 ˜1.1 in a diode-seeded 15-microm-core fiber MOPA system. After the power amplifier, the MOPA conversion efficiency can be dramatically improved to >56% for an energy gain of >63 dB at a moderate repetition rate of 20 kHz with a beam quality of M 2 <1.5. The output energy of >1.1 mJ with a pulse duration of ˜6.1 ns can result in a peak power up to >116 kW which is limited by fiber fuse in long-term operation. Such a condition able to generate the on-target laser intensity of > 60 GW/cm2 for applications is qualified to preliminarily create a laser-plasma light source. Moreover, the related simulation results also reveal the double-passed power amplifier can further simplify MOPA. Such an intense clad-pumped power amplifier can further become a nonlinear fiber amplifier in all-normal dispersion instead of a nonlinear passive fiber. The combination of laser amplification and nonlinear conversion together can therefore overcome the significant pump depletion during the propagation along the passive fiber for power scaling. As a result, an intense spectrum spanning from 980 to 1600 nm as a high-power nanosecond supercontinuum source can be successfully generated with a conversion efficiency of >65% and a record-high peak power of >116 kW to the best of our knowledge. Because of MOPA structure, the influence of input parameters of nonlinear fiber amplifier on supercontinuum parameters can also be studied. The onset and interplay of fiber nonlinearities can be revealed stage by stage. Such an unique and linearly-polarized light source composed of an intense pump and broad sideband seed is beneficial for efficiently driving the broadband tunable optical parametric amplification free from the bulkiness and timing jitter. Keywords: High power fiber laser and amplifier, ytterbium fiber, master oscillator power amplification, parasitic stimulated amplification, multi-pass fiber amplification, peak power/pulse energy scaling, fiber nonlinear optics, supercontinuum generation.

  16. Laser-excited pulse propagation in a crystallized complex plasma

    NASA Astrophysics Data System (ADS)

    Nosenko, V.; Nunomura, S.; Goree, J.

    2000-10-01

    A complex plasma, so-called in analogy with complex fluids, is an ionized gas containing small solid particles. This medium is also called a dusty plasma. The particles acquire a large negative electric charge. In an experiment, polymer microspheres were shaken into a parallel-plate rf plasma. The particles were levitated by the electric field in the sheath above the lower electrode. The particles settled in a single horizontal layer, and were arranged in a hexagonal lattice. They were imaged using a video camera to record the particle motion. Like any crystal, this so-called ``plasma crystal'' sustains compressional sound waves, which can be launched as a pulse. By modulating an argon laser beam directed tangentially at the lattice, we launched a pulsed wave in the lattice. We evaluated the pulse shape and propagation speed, while varying the pulse power and duration. This allowed a test for dispersion and nonlinearity, as well as a test of whether the pulse has the properties of a shock.

  17. Innovative Advances in HPM: From Metamaterials to Buridan’s Ass

    DTIC Science & Technology

    2014-07-17

    beam kinetic energy into electromagnetic radiation. The output can be from S - to X- band microwave frequencies with powers over 100 MW. These...Modulator Symposium and High Voltage Workshop (San Diego, CA, June 3-7, 2012), p. 752-755. 12. A. Elfrgani, M. Fuks, S . Prasad, and E. Schamiloglu, “X- band ...field in the device and they weigh about 250 lbs for an S - band source [13]. Output power levels up to 1 GW are feasible. Pulse repetition rate and

  18. Generation of subterawatt-attosecond pulses in a soft x-ray free-electron laser

    DOE PAGES

    Huang, Senlin; Ding, Yuantao; Huang, Zhirong; ...

    2016-08-15

    Here, we propose a novel scheme to generate attosecond soft x rays in a self-seeded free-electron laser (FEL) suitable for enabling attosecond spectroscopic investigations. A time-energy chirped electron bunch with additional sinusoidal energy modulation is adopted to produce a short seed pulse through a self-seeding monochromator. This short seed pulse, together with high electron current spikes and a cascaded delay setup, enables a high-efficiency FEL with a fresh bunch scheme. Simulations show that using the Linac Coherent Light Source (LCLS) parameters, soft x-ray pulses with a FWHM of 260 attoseconds and a peak power of 0.5 TW can be obtained.more » This scheme also has the feature of providing a stable central wavelength determined by the self-seeding monochromator.« less

  19. The Phelix Pulsed Power Project: Bringing Portable Magnetic Drive to World Class Radiography

    DTIC Science & Technology

    2011-06-01

    vitreous carbon damping resistors are used on the output headers of each module for a total of 25.1 mΩ of resistance. Figure 6. The PHELIX portable...4 MA peak current in the secondary winding for driving a liner. In order to not produce too much reverse voltage on the capacitors, reticulated

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mourey, Odile; Petit-Etienne, Camille; Cunge, Gilles, E-mail: gilles.cunge@cea.fr

    Pulsed plasmas are promising candidates to go beyond limitations of continuous waves' plasma. However, their interaction with surfaces remains poorly understood. The authors investigated the silicon etching mechanism in inductively coupled plasma (ICP) Cl{sub 2} operated either in an ICP-pulsed mode or in a bias-pulsed mode (in which only the bias power is pulsed). The authors observed systematically the development of an important surface roughness at a low duty cycle. By using plasma diagnostics, they show that the roughness is correlated to an anomalously large (Cl atoms flux)/(energetic ion flux) ratio in the pulsed mode. The rational is that themore » Cl atom flux is not modulated on the timescale of the plasma pulses although the ion fluxes and energy are modulated. As a result, a very strong surface chlorination occurs during the OFF period when the surface is not exposed to energetic ions. Therefore, each energetic ion in the ON period will bombard a heavily chlorinated silicon surface, leading to anomalously high etching yield. In the ICP pulsed mode (in which the ion energy is high), the authors report yields as high as 40, which mean that each individual ion impacts will generate a “crater” of about 2 nm depth at the surface. Since the ion flux is very small in the pulsed ICP mode, this process is stochastic and is responsible for the roughness initiation. The roughness expansion can then be attributed partly to the ion channeling effect and is probably enhanced by the formation of a SiClx reactive layer with nonhomogeneous thickness over the topography of the surface. This phenomenon could be a serious limitation of pulsed plasma processes.« less

  1. Electromagnetic braking for Mars spacecraft

    NASA Technical Reports Server (NTRS)

    Holt, A. C.

    1986-01-01

    Aerobraking concepts are being studied to improve performance and cost effectiveness of propulsion systems for Mars landers and Mars interplanetary spacecraft. Access to megawatt power levels (nuclear power coupled to high-storage inductive or capacitive devices) on a manned Mars interplanetary spacecraft may make feasible electromagnetic braking and lift modulation techniques which were previously impractical. Using pulsed microwave and magnetic field technology, potential plasmadynamic braking and hydromagnetic lift modulation techniques have been identified. Entry corridor modulation to reduce loads and heating, to reduce vertical descent rates, and to expand horizontal and lateral landing ranges are possible benefits. In-depth studies are needed to identify specific design concepts for feasibility assessments. Standing wave/plasma sheath interaction techniques appear to be promising. The techniques may require some tailoring of spacecraft external structures and materials. In addition, rapid response guidance and control systems may require the use of structurally embedded sensors coupled to expert systems or to artificial intelligence systems.

  2. Underwater wireless optical MIMO system with spatial modulation and adaptive power allocation

    NASA Astrophysics Data System (ADS)

    Huang, Aiping; Tao, Linwei; Niu, Yilong

    2018-04-01

    In this paper, we investigate the performance of underwater wireless optical multiple-input multiple-output communication system combining spatial modulation (SM-UOMIMO) with flag dual amplitude pulse position modulation (FDAPPM). Channel impulse response for coastal and harbor ocean water links are obtained by Monte Carlo (MC) simulation. Moreover, we obtain the closed-form and upper bound average bit error rate (BER) expressions for receiver diversity including optical combining, equal gain combining and selected combining. And a novel adaptive power allocation algorithm (PAA) is proposed to minimize the average BER of SM-UOMIMO system. Our numeric results indicate an excellent match between the analytical results and numerical simulations, which confirms the accuracy of our derived expressions. Furthermore, the results show that adaptive PAA outperforms conventional fixed factor PAA and equal PAA obviously. Multiple-input single-output system with adaptive PAA obtains even better BER performance than MIMO one, at the same time reducing receiver complexity effectively.

  3. Bandwidth Efficient Wireless Digital Modem Developed

    NASA Technical Reports Server (NTRS)

    Kifle, Muli

    1999-01-01

    NASA Lewis Research Center has developed a digital approach for broadcasting highfidelity audio (nearly compact disk (CD) quality sound) in the commercial frequencymodulated (FM) broadcast band. This digital approach provides a means of achieving high data transmission rates with low hardware complexity--including low mass, size, and power consumption. Lewis has completed the design and prototype development of a bandwidth-efficient digital modem (modulator and demodulator) that uses a spectrally efficient modulation scheme: 16-ary rectangular quadrature amplitude modulation, or 16- ary QAM. The digital implementation is based strictly on inexpensive, commercial off-theshelf digital signal processing (DSP) hardware to perform up and down conversions and pulse shaping. The digital modem transmits data at rates up to 76 kilobits per second (kbps), which is almost 3 times faster than standard 28.8-kbps telephone modems. In addition, the modem offers improved power and spectral performance, flexible operation, and low-cost implementation.

  4. Removal of slow-pulsing artifacts in in-phase 15N relaxation dispersion experiments using broadband 1H decoupling.

    PubMed

    Chatterjee, Soumya Deep; Ubbink, Marcellus; van Ingen, Hugo

    2018-06-02

    Understanding of the molecular mechanisms of protein function requires detailed insight into the conformational landscape accessible to the protein. Conformational changes can be crucial for biological processes, such as ligand binding, protein folding, and catalysis. NMR spectroscopy is exquisitely sensitive to such dynamic changes in protein conformations. In particular, Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments are a powerful tool to investigate protein dynamics on a millisecond time scale. CPMG experiments that probe the chemical shift modulation of 15 N in-phase magnetization are particularly attractive, due to their high sensitivity. These experiments require high power 1 H decoupling during the CPMG period to keep the 15 N magnetization in-phase. Recently, an improved version of the in-phase 15 N-CPMG experiment was introduced, offering greater ease of use by employing a single 1 H decoupling power for all CPMG pulsing rates. In these experiments however, incomplete decoupling of off-resonance amide 1 H spins introduces an artefactual dispersion of relaxation rates, the so-called slow-pulsing artifact. Here, we analyze the slow-pulsing artifact in detail and demonstrate that it can be suppressed through the use of composite pulse decoupling (CPD). We report the performances of various CPD schemes and show that CPD decoupling based on the 90 x -240 y -90 x element results in high-quality dispersion curves free of artifacts, even for amides with high 1 H offset.

  5. External control of electron energy distributions in a dual tandem inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Sridhar, Shyam; Zhu, Weiye; Donnelly, Vincent M.; Economou, Demetre J.; Logue, Michael D.; Kushner, Mark J.

    2015-08-01

    The control of electron energy probability functions (EEPFs) in low pressure partially ionized plasmas is typically accomplished through the format of the applied power. For example, through the use of pulse power, the EEPF can be modulated to produce shapes not possible under continuous wave excitation. This technique uses internal control. In this paper, we discuss a method for external control of EEPFs by transport of electrons between separately powered inductively coupled plasmas (ICPs). The reactor incorporates dual ICP sources (main and auxiliary) in a tandem geometry whose plasma volumes are separated by a grid. The auxiliary ICP is continuously powered while the main ICP is pulsed. Langmuir probe measurements of the EEPFs during the afterglow of the main ICP suggests that transport of hot electrons from the auxiliary plasma provided what is effectively an external source of energetic electrons. The tail of the EEPF and bulk electron temperature were then elevated in the afterglow of the main ICP by this external source of power. Results from a computer simulation for the evolution of the EEPFs concur with measured trends.

  6. Power consumption of rotary blood pumps: pulsatile versus constant-speed mode.

    PubMed

    Pirbodaghi, Tohid; Cotter, Chris; Bourque, Kevin

    2014-12-01

    We investigated the power consumption of a HeartMate III rotary blood pump based on in vitro experiments performed in a cardiovascular simulator. To create artificial-pulse mode, we modulated the pump speed by decreasing the mean speed by 2000 rpm for 200 ms and then increasing speed by 4000 rpm (mean speeds plus 2000 rpm) for another 200 ms, creating a square waveform shape. The HeartMate III was connected to a cardiovascular simulator consisting of a hydraulic pump system to simulate left ventricle pumping action, arterial and venous compliance chambers, and an adjustable valve for peripheral resistance to facilitate the desired aortic pressure. The simulator operated based on Suga's elastance model to mimic the Starling response of the heart, thereby reproducing physiological blood flow and pressure conditions. We measured the instantaneous total electrical current and voltage of the pump to evaluate its power consumption. The aim was to answer these fundamental questions: (i) How does pump speed modulation affect pump power consumption? (ii) How does the power consumption vary in relation to external pulsatile flow? The results indicate that speed modulation and external pulsatile flow both moderately increase the power consumption. Increasing the pump speed reduces the impact of external pulsatile flow. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  7. The Use of a Pseudo Noise Code for DIAL Lidar

    NASA Technical Reports Server (NTRS)

    Burris, John F.

    2010-01-01

    Retrievals of CO2 profiles within the planetary boundary layer (PBL) are required to understand CO2 transport over regional scales and for validating the future space borne CO2 remote sensing instrument, such as the CO2 Laser Sounder, for the ASCENDS mission, We report the use of a return-to-zero (RZ) pseudo noise (PN) code modulation technique for making range resolved measurements of CO2 within the PBL using commercial, off-the-shelf, components. Conventional, range resolved, measurements require laser pulse widths that are s#rorter than the desired spatial resolution and have pulse spacing such that returns from only a single pulse are observed by the receiver at one time (for the PBL pulse separations must be greater than approximately 2000m). This imposes a serious limitation when using available fiber lasers because of the resulting low duty cycle (less than 0.001) and consequent low average laser output power. RZ PN code modulation enables a fiber laser to operate at much higher duty cycles (approaching 0.1) thereby more effectively utilizing the amplifier's output. This results in an increase in received counts by approximately two orders of magnitude. The approach involves employing two, back to back, CW fiber amplifiers seeded at the appropriate on and offline CO2 wavelengths (approximately 1572 nm) using distributed feedback diode lasers modulated by a PN code at rates significantly above 1 megahertz. An assessment of the technique, discussions of measurement precision and error sources as well as preliminary data will be presented.

  8. Cytostatic response of NB69 cells to weak pulse-modulated 2.2 GHz radar-like signals.

    PubMed

    Trillo, María A; Cid, María Antonia; Martínez, Maria Antonia; Page, Juan E; Esteban, Jaime; Úbeda, Alejandro

    2011-07-01

    The present study investigates the response of two human cancer cell lines to a 24-h treatment with a 2.2-GHz, pulse-modulated (5 µs pulse duration, 100 Hz repetition rate) radar-like signal at an average SAR = 0.023 W/kg, using a newly designed setup for in vitro exposure to radiofrequency (RF) fields. A complete discretized model of the setup was created for numerical dosimetry using finite-difference time-domain (FDTD) software, SEMCAD X. The average dose of RF radiation absorbed by the cultures was calculated to be subthermal (ΔT < 0.1 °C). The RF exposure induced a consistent, statistically significant reduction in the cell number (13.5% below controls, P < 0.001) in the neuroblastoma NB69 line. This effect was accompanied with slight but statistically significant increases in the proportions of cells in phases G0/G1 and G2/M of the cell cycle (6% and 9%, respectively; P < 0.05 over controls). By contrast, the hepatocarcinoma cell line HepG2 did not respond to the same RF treatment. These results indicate that a pulse-modulated RF radiation with high instantaneous amplitude and low average power can induce cytostatic responses on specific, sensitive cancer cell lines. The effect would be mediated, at least in part, by alterations in the kinetics of the cell cycle. Copyright © 2011 Wiley-Liss, Inc.

  9. Design of High Frequency Pulse Tube Cryocooler for Onboard Space Applications

    NASA Astrophysics Data System (ADS)

    Srikanth, Thota; Padmanabhan; Gurudath, C. S.; Amrit, A.; Basavaraj, S.; Dinesh, K.

    2017-02-01

    To meet the growing demands of on-board applications such as cooling meteorological payloads and the satellite operational constraints like power, lower mass, reduced size and redundancy; a Pulse Tube Cryocooler (PTC) is designed by arriving at an operating frequency of 100 Hz and Helium gas pressure of 35 bar based on insights obtained from combination of phasor diagram, pulse tube and regenerator geometries with overall system mass of ≤ 2.0 kg. High frequency operation would allow reducing the size and mass of pressure wave modulator for a given input power. High Frequency also helps in reducing the volume of regenerator for a given cooling power, which increases the power density and leads to faster cool down. A component level modelling of the regenerator for optimising length and diameter for maximum Coefficient of Performance (COP) is carried out using REGEN3.3. The overall system level modelling of PTC is carried out using 1-D software SAGE. The cold end mass flow rate of the optimised regenerator is taken as reference for the system modelling. The performance achieved in REGEN3.3 is 2.15 W of net heat lift against the performance of 1.02 W of net heat lift at 80 K in SAGE.

  10. Design of intelligent vehicle control system based on single chip microcomputer

    NASA Astrophysics Data System (ADS)

    Zhang, Congwei

    2018-06-01

    The smart car microprocessor uses the KL25ZV128VLK4 in the Freescale series of single-chip microcomputers. The image sampling sensor uses the CMOS digital camera OV7725. The obtained track data is processed by the corresponding algorithm to obtain track sideline information. At the same time, the pulse width modulation control (PWM) is used to control the motor and servo movements, and based on the digital incremental PID algorithm, the motor speed control and servo steering control are realized. In the project design, IAR Embedded Workbench IDE is used as the software development platform to program and debug the micro-control module, camera image processing module, hardware power distribution module, motor drive and servo control module, and then complete the design of the intelligent car control system.

  11. Repetitive Transcranial Magnetic Stimulator with Controllable Pulse Parameters

    PubMed Central

    Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H

    2013-01-01

    The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10–310 μs and positive/negative phase amplitude ratio of 1–56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation by up to 82% and 57%, and decreases coil heating by up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3,000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications, and could lead to clinical applications with potentially enhanced potency. PMID:21540487

  12. Experimental prototype of an electric elevator

    NASA Astrophysics Data System (ADS)

    Gaiceanu, M.; Epure, S.; Ciuta, S.

    2016-08-01

    The main objective is to achieve an elevator prototype powered by a three-phase voltage system via a bidirectional static power converter ac-ac with regenerating capability. In order to diminish the power size of the electric motor up to 1/3 of rated power, the elevator contains two carriages of the same weight, one serving as the payload, and the other as counterweight. Before proper operation of the static power converter, the capacitor must be charged at rated voltage via a precharge circuit. At the moment of stabilizing the DC voltage at nominal value, the AC-AC power converter can operates in the proper limits. The functions of the control structure are: the load control task, speed and torque controls. System includes transducers for current measuring, voltage sensors and encoder. As reserve power sources the hybrid battery-photovoltaic panels are used. The control voltage is modulated by implementing four types of pulse width modulations: sinusoidal, with reduced commutation, third order harmonic insertion, and the space vector modulation. Therefore, the prototype could operates with an increased efficiency, in spite of the existing ones. The experimental results confirm the well design of the chosen solution. The control solution assures bidirectional power flow control, precharge control, and load control and it is implemented on a digital signal processor. The elevator capacity is between 300-450 kg, and it is driven by using a 1.5 kW three-phase asynchronous machine.

  13. Ti : sapphire laser synchronised with femtosecond Yb pump laser via nonlinear pulse coupling in Ti : sapphire active medium

    NASA Astrophysics Data System (ADS)

    Didenko, N. V.; Konyashchenko, A. V.; Konyashchenko, D. A.; Kostryukov, P. V.; Kuritsyn, I. I.; Lutsenko, A. P.; Mavritskiy, A. O.

    2017-02-01

    A laser system utilising the method of synchronous pumping of a Ti : sapphire laser by a high-power femtosecond Yb3+-doped laser is described. The pulse repetition rate of the Ti : sapphire laser is successfully locked to the repetition rate of the Yb laser for more than 6 hours without the use of any additional electronics. The measured timing jitter is shown to be less than 1 fs. A simple qualitative model addressing the synchronisation mechanism utilising the cross-phase modulation of oscillation and pump pulses within a Ti : sapphire active medium is proposed. Output parameters of the Ti : sapphire laser as functions of its cavity length are discussed in terms of this model.

  14. A simple 5-DoF MR-compatible motion signal measurement system.

    PubMed

    Chung, Soon-Cheol; Kim, Hyung-Sik; Yang, Jae-Woong; Lee, Su-Jeong; Choi, Mi-Hyun; Kim, Ji-Hye; Yeon, Hong-Won; Park, Jang-Yeon; Yi, Jeong-Han; Tack, Gye-Rae

    2011-09-01

    The purpose of this study was to develop a simple motion measurement system with magnetic resonance (MR) compatibility and safety. The motion measurement system proposed here can measure 5-DoF motion signals without deteriorating the MR images, and it has no effect on the intense and homogeneous main magnetic field, the temporal-gradient magnetic field (which varies rapidly with time), the transceiver radio frequency (RF) coil, and the RF pulse during MR data acquisition. A three-axis accelerometer and a two-axis gyroscope were used to measure 5-DoF motion signals, and Velcro was used to attach a sensor module to a finger or wrist. To minimize the interference between the MR imaging system and the motion measurement system, nonmagnetic materials were used for all electric circuit components in an MR shield room. To remove the effect of RF pulse, an amplifier, modulation circuit, and power supply were located in a shielded case, which was made of copper and aluminum. The motion signal was modulated to an optic signal using pulse width modulation, and the modulated optic signal was transmitted outside the MR shield room using a high-intensity light-emitting diode and an optic cable. The motion signal was recorded on a PC by demodulating the transmitted optic signal into an electric signal. Various kinematic variables, such as angle, acceleration, velocity, and jerk, can be measured or calculated by using the motion measurement system developed here. This system also enables motion tracking by extracting the position information from the motion signals. It was verified that MR images and motion signals could reliably be measured simultaneously.

  15. Experimental realization of SDA-method for the detection of substance at long distance

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Denisov, Anton D.; Tikhomirov, Vasily V.

    2013-10-01

    Nowadays, the detection and identification of dangerous substances at long distance (several metres, for example) by using of THz pulse reflected from the object is an important problem. The main problem with this technique is the absorption of THz energy by water vapor. However, using THz pulsed radiation is possible at distance of some metres as it is well-known. Below we demonstrate possibility of THz signal measuring reflected from a flat metallic mirror placed about 3.2 metres from the parabolic mirror. Investigated object is placed before this mirror. Therefore, at present time our measurements contain features of both transmission and reflection modes. The reflecting mirror is used because of weak averaged power of femtosecond laser. This power is about 1 W. Nevertheless, the laser beam splits many times. Therefore, the averaged power falling on the THz emitter decreases at least 8 times. The pulse duration generated by the femtosecond laser is equal to 68 fs. In this mode of measurements we took measurements for a chocolate brick, cookies, a bag made from thick paperboard, many layers of thin papers (paper napkin for computer monitor). In particular, it should be stressed that a spectrum of the measured signal is highly sensitive to a angle position of the flat mirror. Therefore, at long distance the position of object, that reflects the THz pulse, will influence essentially on the measured spectrum. Other very important features of the measurements with the multilayer of paper are the strong modulation of the spectrum of the reflected signal. As a consequence, we see additional frequencies, which correspond to absorption frequencies of various explosives, in the spectrum of the reflected signal. In fact, these substances are absent in our experiment. The last important result consists of unusual influence of the cookies on the measured signal: it becomes strong modulated. Consequently, cookies act as disordered structures.

  16. A Novel Approach to Photonic Generation and Modulation of Ultra-Wideband Pulses

    NASA Astrophysics Data System (ADS)

    Xiang, Peng; Guo, Hao; Chen, Dalei; Zhu, Huatao

    2016-01-01

    A novel approach to photonic generation of ultra-wideband (UWB) signals is proposed in this paper. The proposed signal generator is capable of generating UWB doublet pulses with flexible reconfigurability, and many different pulse modulation formats, including the commonly used pulse-position modulation (PPM) and bi-phase modulation (BPM) can be realized. Moreover, the photonic UWB pulse generator is capable of generating UWB signals with a tunable spectral notch-band, which is desirable to realize the interference avoidance between UWB and other narrow band systems, such as Wi-Fi. A mathematical model describing the proposed system is developed and the generation of UWB signals with different modulation formats is demonstrated via computer simulations.

  17. NONLINEAR OPTICAL EFFECTS AND FIBER OPTICS: Modulation of radiation in a fiber Sagnac interferometer induced by an external field

    NASA Astrophysics Data System (ADS)

    Zakhidov, É. A.; Kasymdzhanov, M. A.; Mirtadzhiev, F. M.; Tartakovskiĭ, G. Kh; Khabibullaev, P. K.

    1988-12-01

    A study was made of the influence of the Kerr nonlinearity of a fiber waveguide on fluctuations of the output signal from a fiber-optic interferometer. The intensity fluctuations were modeled using the radiation from a pulsed high-power laser with a controlled intensity and pulse profile. Interferograms of the output radiation were obtained for different interferometer configurations. A comparison of the experiment and theory made it possible to explain the observed changes in the signal and to estimate the phase noise due to the Kerr nonlinearity in the investigated fiber waveguide.

  18. Testing Omega P’s 650 KW, 1.3 GHZ Low-Voltage Multi-Beam Klystron for the Project X Pulsed LINAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fermi Research Alliance; Omega-P Inc.

    Omega-P Inc. had developed a multi beam 1.3 GHz klystron (MBK) for the Project X pulsed linac application. Testing of the klystron require a special hardware such as a modulator, RF components, control system, power supplies, etc, as well as associated infrastructure( electricity, water, safety). This is an expensive part of klystron development for which Omega-P does not have the required equipment. Fermilab will test the MBK at Fermilab site providing contribution to the project all the necessary facilities, infrastructure and manpower for MBK test performance and analysis.

  19. Application of low-power, high-rate PCM telemetry in a helicopter instrumentation system

    NASA Technical Reports Server (NTRS)

    Thomas, Mitchel E.; Diamond, John K.

    1987-01-01

    The use of low-power, high-rate pulse code modulation (PCM) in a helicopter instrumentation system is examined. A Helicopter Instrumentation and Recording System (HIARS) was developed to obtain main rotor blade measurements and fuselage performance measurements. The HIARS consists of a low-power PCM telemeter, a digital PCM system, an optical rotor position sensor, and a PCM decommutation unit; the components and functions of these subsystems are described. Flight tests were conducted to evaluate the ability of the HIARS to measure aircraft parameters. The test data reveal that the PCM telemetry is applicable to helicopter instrumentation systems.

  20. Laser-driven plasma photonic crystals for high-power lasers

    NASA Astrophysics Data System (ADS)

    Lehmann, G.; Spatschek, K. H.

    2017-05-01

    Laser-driven plasma density gratings in underdense plasma are shown to act as photonic crystals for high power lasers. The gratings are created by counterpropagating laser beams that trap electrons, followed by ballistic ion motion. This leads to strong periodic plasma density modulations with a lifetime on the order of picoseconds. The grating structure is interpreted as a plasma photonic crystal time-dependent property, e.g., the photonic band gap width. In Maxwell-Vlasov and particle-in-cell simulations it is demonstrated that the photonic crystals may act as a frequency filter and mirror for ultra-short high-power laser pulses.

  1. High voltage requirements and issues for the 1990's. [for spacecraft power supplies

    NASA Technical Reports Server (NTRS)

    Dunbar, W. G.; Faymon, K. A.

    1984-01-01

    The development of high-power high-voltage space systems will require advances in power generation and processing. The systems must be reliable, adaptable, and durable for space mission success. The issues, which must be resolved in order to produce a high power system, are weight and volume reduction of components and modules and the creation of a reliable high repetition pulse power processor. Capacitor energy density must be increased by twice the present capacity and packaging must be reduced by a factor of 10 to 20 times. The packaging must also protect the system from interaction with the natural space environment and the induced environment, produced from spacecraft systems and environment interaction.

  2. Liquid Nitrogen Temperature Operation of a Switching Power Converter

    NASA Technical Reports Server (NTRS)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.

    1995-01-01

    The performance of a 42/28 V, 175 W, 50 kHz pulse-width modulated buck dc/dc switching power converter at liquid nitrogen temperature (LNT) is compared with room temperature operation. The power circuit as well as the control circuit of the converter, designed with commercially available components, were operated at LNT and resulted in a slight improvement in converter efficiency. The improvement in power MOSFET operation was offset by deteriorating performance of the output diode rectifier at LNT. Performance of the converter could be further improved at low temperatures by using only power MOSFET's as switches. The use of a resonant topology will further improve the circuit performance by reducing the switching noise and loss.

  3. Q-switched dual-wavelength pumped 3.5-μm erbium-doped mid-Infrared fiber laser

    NASA Astrophysics Data System (ADS)

    Bawden, Nathaniel; Matsukuma, Hiraku; Henderson-Sapir, Ori; Klantsataya, Elizaveta; Tokita, Shigeki; Ottaway, David J.

    2018-02-01

    Short pulse operation of fiber lasers operating at wavelengths up 3 micron have been reported in recent years. At longer wavelengths, fiber lasers have only been demonstrated with a continuous operation mode. Short pulse operation in the mid-IR is necessary for utilizing such lasers in laser radars and for medical applications. Our previous numerical work suggested that Q-switching is possible on the 3.5 μm transition in erbium-doped ZBLAN in a similar manner to work demonstrated on the 2.8 μm transition in erbium. In this work we report on initial experimental results of a Q-switched, dualwavelength pumped fiber laser operating on the 3.5 μm transition in erbium-doped ZBLAN glass fibers. Using a hybrid fiber and open resonator configuration utilizing an acousto-optic modulator we demonstrated stable single pulse Q-switching while operating at repetition rates of 20 kHz and up to 120 kHz. The laser achieved a peak power of 8 W with pulse energy of 7 μJ while operating at 25 kHz. Long pulse widths on the order of 1 μs were obtained. The low peak power and long pulses are likely the result of both low gain of the transition and additional losses in the resonator which are currently being investigated. Our latest results will be presented.

  4. Tribological and structural properties of titanium nitride and titanium aluminum nitride coatings deposited with modulated pulsed power magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ward, Logan

    The demand for economical high-performance materials has brought attention to the development of advanced coatings. Recent advances in high power magnetron sputtering (HPPMS) have shown to improve tribological properties of coatings. These coatings offer increased wear and oxidation resistance, which may facilitate the use of more economical materials in harsh applications. This study demonstrates the use of novel forms of HPPMS, namely modulated pulsed-power magnetron sputtering (MPPMS) and deep oscillation magnetron sputtering (DOMS), for depositing TiN and Ti1-xAlxN tribological coatings on commonly used alloys, such as Ti-6Al-4V and Inconel 718. Both technologies have been shown to offer unique plasma characteristics in the physical vapor deposition (PVD) process. High power pulses lead to a high degree of ionization compared to traditional direct-current magnetron sputtering (DCMS) and pulsed magnetron sputtering (PMS). Such a high degree of ionization was previously only achievable by cathodic arc deposition (CAD); however, CAD can lead to increased macroparticles that are unfavorable in high friction and corrosive environments. MPPMS, DOMS, and other HPPMS techniques offer unique plasma characteristics and have been shown to produce coatings with refined grain structure, improved density, hardness, adhesion, and wear resistance. Using DOMS and MPPMS, TiN and Ti1-xAlxN coatings were deposited using PMS to compare microstructures and tribological performance. For Ti1-xAlxN, two sputtering target compositions, Ti 0.5Al0.5 and Ti0.3Al0.7, were used to evaluate the effects of MPPMS on the coating's composition and tribological properties. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) were used to characterize microstructure and crystallographic texture. Several tribological properties were evaluated including: wear rate, coefficient of friction, adhesion, and nanohardness. Results show that substrate material can have a significant effect on adhesion and the mechanical response between the coating and substrate. Depending on deposition parameters and the selected material MPPMS and DOMS are promising alternatives to DCMS, PMS, and CAD.

  5. Modeling and Simulation of the ITER First Wall/Blanket Primary Heat Transfer System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ying, Alice; Popov, Emilian L

    2011-01-01

    ITER inductive power operation is modeled and simulated using a thermal-hydraulics system code (RELAP5) integrated with a 3-D CFD (SC-Tetra) code. The Primary Heat Transfer System (PHTS) functions are predicted together with the main parameters operational ranges. The control algorithm strategy and derivation are summarized as well. The First Wall and Blanket modules are the primary components of PHTS, used to remove the major part of the thermal heat from the plasma. The modules represent a set of flow channels in solid metal structure that serve to absorb the radiation heat and nuclear heating from the fusion reactions and tomore » provide shield for the vacuum vessel. The blanket modules are water cooled. The cooling is forced convective with constant blanket inlet temperature and mass flow rate. Three independent water loops supply coolant to the three blanket sectors. The main equipment of each loop consists of a pump, a steam pressurizer and a heat exchanger. A major feature of ITER is the pulsed operation. The plasma does not burn continuously, but on intervals with large periods of no power between them. This specific feature causes design challenges to accommodate the thermal expansion of the coolant during the pulse period and requires active temperature control to maintain a constant blanket inlet temperature.« less

  6. Amplitude Modulator Chassis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erbert, G

    2009-09-01

    The Amplitude Modulator Chassis (AMC) is the final component in the MOR system and connects directly to the PAM input through a 100-meter fiber. The 48 AMCs temporally shape the 48 outputs of the MOR using an arbitrary waveform generator coupled to an amplitude modulator. The amplitude modulation element is a two stage, Lithium Niobate waveguide device, where the intensity of the light passing through the device is a function of the electrical drive applied. The first stage of the modulator is connected to a programmable high performance Arbitrary Waveform Generator (AWG) consisting of 140 impulse generators space 250 psmore » apart. An arbitrary waveform is generated by independently varying the amplitude of each impulse generator and then summing the impulses together. In addition to the AWG a short pulse generator is also connected to the first stage of the modulator to provide a sub 100-ps pulse used for timing experiments. The second stage of the modulator is connect to a square pulse generator used to further attenuate any pre or post pulse light passing through the first stage of the modulator. The fast rise and fall time of the square pulse generator is also used to produce fast rise and fall times of the AWG by clipping the AWG pulse. For maximum extinction, a pulse bias voltage is applied to each stage of the modulator. A pulse voltage is applied as opposed to a DC voltage to prevent charge buildup on the modulator. Each bias voltage is adjustable to provide a minimum of 50-dB extinction. The AMC is controlled through ICCS to generate the desired temporal pulse shape. This process involves a closed-loop control algorithm, which compares the desired temporal waveform to the produced optical pulse, and iterates the programming of the AWG until the two waveforms agree within an allowable tolerance.« less

  7. Diverse Long-Term Variability of Five Candidate High-Mass X-Ray Binaries from Swift Burst Alert Telescope Observations

    NASA Technical Reports Server (NTRS)

    Corbet, Robin H. D.; Coley, Joel B.; Krimm, Hans A.

    2017-01-01

    We present an investigation of long-term modulation in the X-ray light curves of five little-studied candidate high-mass X-ray binaries using the Swift Burst Alert Telescope (SWIFT-BAT). IGR J14488-5942 and AX J1700.2-4220 show strong modulation at periods of 49.6 and 44 days, respectively, which are interpreted as orbital periods of Be star systems. For IGR J14488-5942, observations with the Swift X-ray Telescope show a hint of pulsations at 33.4 seconds. For AX J1700.2-4220, 54 second-pulsations were previously found with XMM-Newton. Swift J1816.7-1613 exhibits complicated behavior. The strongest peak in the power spectrum is at a period near 150 days, but this conflicts with a determination of a period of 118.5 days by La Parola et al. AX J1820.5-1434 has been proposed to exhibit modulation near 54 days, but the extended BAT observations suggest modulation at slightly longer than double this at approximately 111 days. There appears to be a long-term change in the shape of the modulation near 111 days, which may explain the apparent discrepancy. The X-ray pulsar XTE J1906+090,which was previously proposed to be a Be star system with an orbital period of approximately 30 days from pulse timing, shows peaks in the power spectrum at 81 and 173 days. The origins of these periods are unclear, although theymight be the orbital period and a superorbital period respectively. For all five sources, the long-term variability, together with the combination of orbital and proposed pulse periods, suggests that the sources contain Be starmass donors.

  8. Diverse Long-term Variability of Five Candidate High-mass X-Ray Binaries from Swift Burst Alert Telescope Observations

    NASA Astrophysics Data System (ADS)

    Corbet, Robin H. D.; Coley, Joel B.; Krimm, Hans A.

    2017-09-01

    We present an investigation of long-term modulation in the X-ray light curves of five little-studied candidate high-mass X-ray binaries using the Swift Burst Alert Telescope. IGR J14488-5942 and AX J1700.2-4220 show strong modulation at periods of 49.6 and 44 days, respectively, which are interpreted as orbital periods of Be star systems. For IGR J14488-5942, observations with the Swift X-ray Telescope show a hint of pulsations at 33.4 s. For AX J1700.2-4220, 54 s pulsations were previously found with XMM-Newton. Swift J1816.7-1613 exhibits complicated behavior. The strongest peak in the power spectrum is at a period near 150 days, but this conflicts with a determination of a period of 118.5 days by La Parola et al. AX J1820.5-1434 has been proposed to exhibit modulation near 54 days, but the extended BAT observations suggest modulation at slightly longer than double this at approximately 111 days. There appears to be a long-term change in the shape of the modulation near 111 days, which may explain the apparent discrepancy. The X-ray pulsar XTE J1906+090, which was previously proposed to be a Be star system with an orbital period of ˜30 days from pulse timing, shows peaks in the power spectrum at 81 and 173 days. The origins of these periods are unclear, although they might be the orbital period and a superorbital period respectively. For all five sources, the long-term variability, together with the combination of orbital and proposed pulse periods, suggests that the sources contain Be star mass donors.

  9. Diverse Long-Term Variability of Five Candidate High-Mass X-ray Binaries from Swift Burst Alert Telescope Observations

    NASA Astrophysics Data System (ADS)

    Corbet, Robin; Coley, Joel Barry; Krimm, Hans A.

    2017-08-01

    We present an investigation of long-term modulation in the X-ray light curves of five little-studied candidate high-mass X-ray binaries using the Swift Burst Alert Telescope. IGR J14488-5942 and AX J1700.2-4220 show strong modulation at periods of 49.6 and 44 days, respectively, which are interpreted as orbital periods of Be star systems. For IGR J14488-5942, observations with Swift X-ray Telescope show a hint of pulsations at 33.4 s. For AX J1700.2-4220, 54 s pulsations were previously found with XMM-Newton. Swift J1816.7-1613 exhibits complicated behavior. The strongest peak in the power spectrum is at a period near 150 days, but this conflicts with a determination of a period of 118.5 days by La Parola et al. (2014). AX J1820.5-1434 has been proposed to exhibit modulation near 54 days, but the extended BAT observations suggest modulation at slightly longer than double this at approximately 111 days. There appears to be a long-term change in the shape of the modulation near 111 days, which may explain the apparent discrepancy. The X-ray pulsar XTE J1906+090, which was previously proposed to be a Be star system with an orbital period of ˜30 days from pulse timing, shows peaks in the power spectrum at 81 and 173 days. The origins of these periods are unclear, although they might be the orbital period and a superorbital period respectively. For all five sources, the long-term variability, together with the combination of orbital and proposed pulse periods, suggests that the sources contain Be star mass donors.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbet, Robin H. D.; Coley, Joel B.; Krimm, Hans A., E-mail: corbet@umbc.edu

    We present an investigation of long-term modulation in the X-ray light curves of five little-studied candidate high-mass X-ray binaries using the Swift Burst Alert Telescope. IGR J14488-5942 and AX J1700.2-4220 show strong modulation at periods of 49.6 and 44 days, respectively, which are interpreted as orbital periods of Be star systems. For IGR J14488-5942, observations with the Swift X-ray Telescope show a hint of pulsations at 33.4 s. For AX J1700.2-4220, 54 s pulsations were previously found with XMM-Newton . Swift J1816.7-1613 exhibits complicated behavior. The strongest peak in the power spectrum is at a period near 150 days, butmore » this conflicts with a determination of a period of 118.5 days by La Parola et al. AX J1820.5-1434 has been proposed to exhibit modulation near 54 days, but the extended BAT observations suggest modulation at slightly longer than double this at approximately 111 days. There appears to be a long-term change in the shape of the modulation near 111 days, which may explain the apparent discrepancy. The X-ray pulsar XTE J1906+090, which was previously proposed to be a Be star system with an orbital period of ∼30 days from pulse timing, shows peaks in the power spectrum at 81 and 173 days. The origins of these periods are unclear, although they might be the orbital period and a superorbital period respectively. For all five sources, the long-term variability, together with the combination of orbital and proposed pulse periods, suggests that the sources contain Be star mass donors.« less

  11. Overview of radar intra-pulse modulation recognition

    NASA Astrophysics Data System (ADS)

    Zang, Hanlin; Li, Yanling

    2018-05-01

    This paper introduces the current radar intra-pulse modulation method, describes the status quo and development direction of the intentional modulation and unintentional modulation in the pulse, and summarizes the existing problems and prospects for the future. Looking forward to the future, and providing a reference direction for the research on radar signal recognition in the next step.

  12. Stimulation of the brain with radiofrequency electromagnetic field pulses affects sleep-dependent performance improvement.

    PubMed

    Lustenberger, Caroline; Murbach, Manuel; Dürr, Roland; Schmid, Marc Ralph; Kuster, Niels; Achermann, Peter; Huber, Reto

    2013-09-01

    Sleep-dependent performance improvements seem to be closely related to sleep spindles (12-15 Hz) and sleep slow-wave activity (SWA, 0.75-4.5 Hz). Pulse-modulated radiofrequency electromagnetic fields (RF EMF, carrier frequency 900 MHz) are capable to modulate these electroencephalographic (EEG) characteristics of sleep. The aim of our study was to explore possible mechanisms how RF EMF affect cortical activity during sleep and to test whether such effects on cortical activity during sleep interact with sleep-dependent performance changes. Sixteen male subjects underwent 2 experimental nights, one of them with all-night 0.25-0.8 Hz pulsed RF EMF exposure. All-night EEG was recorded. To investigate RF EMF induced changes in overnight performance improvement, subjects were trained for both nights on a motor task in the evening and the morning. We obtained good sleep quality in all subjects under both conditions (mean sleep efficiency > 90%). After pulsed RF EMF we found increased SWA during exposure to pulse-modulated RF EMF compared to sham exposure (P < 0.05) toward the end of the sleep period. Spindle activity was not affected. Moreover, subjects showed an increased RF EMF burst-related response in the SWA range, indicated by an increase in event-related EEG spectral power and phase changes in the SWA range. Notably, during exposure, sleep-dependent performance improvement in the motor sequence task was reduced compared to the sham condition (-20.1%, P = 0.03). The changes in the time course of SWA during the exposure night may reflect an interaction of RF EMF with the renormalization of cortical excitability during sleep, with a negative impact on sleep-dependent performance improvement. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Investigation of giant Kerr nonlinearity in quantum cascade lasers using mid-infrared femtosecond pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Hong; Liu, Sheng; Department of Physics, University of Maryland, Baltimore County

    2015-02-02

    We study the Kerr nonlinearity of quantum cascade lasers (QCLs) by coupling resonant and off-resonant mid-infrared (mid-IR) femtosecond (fs) pulses into an active QCL waveguide. We observe an increase in the spectral width of the transmitted fs pulses as the coupled mid-infrared (mid-IR) pulse power increases. This is explained by the self-phase modulation effect due to the large Kerr nonlinearity of QCL waveguides. We further confirm this effect by observing the intensity dependent far-field profile of the transmitted mid-IR pulses, showing the pulses undergo self-focusing as they propagate through the active QCL due to the intensity dependent refractive index. Wemore » experimentally estimate the nonlinear refractive index n{sub 2} of a QCL to be ∼8 × 10{sup −9 }cm{sup 2}/W using the far-field beam profile of the transmitted pulses. The finite-difference time-domain simulations of QCL waveguides with Kerr nonlinearity incorporated show similar behavior to the experimental results.« less

  14. Evolution of metastable state molecules N2(A3 Σu+) in a nanosecond pulsed discharge: A particle-in-cell/Monte Carlo collisions simulation

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Sun, Jizhong; Feng, Chunlei; Bai, Jing; Ding, Hongbin

    2012-01-01

    A particle-in-cell plus Monte Carlo collisions method has been employed to investigate the nitrogen discharge driven by a nanosecond pulse power source. To assess whether the production of the metastable state N2(A3 Σu+) can be efficiently enhanced in a nanosecond pulsed discharge, the evolutions of metastable state N2(A3 Σu+) density and electron energy distribution function have been examined in detail. The simulation results indicate that the ultra short pulse can modulate the electron energy effectively: during the early pulse-on time, high energy electrons give rise to quick electron avalanche and rapid growth of the metastable state N2(A3 Σu+) density. It is estimated that for a single pulse with amplitude of -9 kV and pulse width 30 ns, the metastable state N2(A3 Σu+) density can achieve a value in the order of 109 cm-3. The N2(A3 Σu+) density at such a value could be easily detected by laser-based experimental methods.

  15. Generation of individually modulated femtosecond pulse string by multilayer volume holographic gratings.

    PubMed

    Yan, Xiaona; Gao, Lirun; Yang, Xihua; Dai, Ye; Chen, Yuanyuan; Ma, Guohong

    2014-10-20

    A scheme to generate individually modulated femtosecond pulse string by multilayer volume holographic grating (MVHG) is proposed. Based on Kogelnik's coupled-wave theory and matrix optics, temporal and spectral expressions of diffracted field are given when a femtosecond pulse is diffracted by a MVHG. It is shown that the number of diffracted sub-pulses in the pulse string equals to the number of grating layers of the MVHG, peak intensity and duration of each diffracted sub-pulse depend on thickness of the corresponding grating layer, whereas pulse interval between adjacent sub-pulses is related to thickness of the corresponding buffer layer. Thus by modulating parameters of the MVHG, individually modulated femtosecond pulse string can be acquired. Based on Bragg selectivity of the volume grating and phase shift provided by the buffer layers, we give an explanation on these phenomena. The result is useful to design MVHG-based devices employed in optical communications, pulse shaping and processing.

  16. Q-switched Erbium-doped fiber laser at 1600 nm for photoacoustic imaging application

    PubMed Central

    Zeng, Lvming; Chen, Zhongping; Kim, Chang-Seok

    2016-01-01

    We present a nanosecond Q-switched Erbium-doped fiber (EDF) laser system operating at 1600 nm with a tunable repetition rate from 100 kHz to 1 MHz. A compact fiber coupled, acousto-optic modulator-based EDF ring cavity was used to generate a nanosecond seed laser at 1600 nm, and a double-cladding EDF based power amplifier was applied to achieve the maximum average power of 250 mW. In addition, 12 ns laser pulses with the maximum pulse energy of 2.4 μJ were obtained at 100 kHz. Furthermore, the Stokes shift by Raman scattering over a 25 km long fiber was measured, indicating that the laser can be potentially used to generate the high repetition rate pulses at the 1.7 μm region. Finally, we detected the photoacoustic signal from a human hair at 200 kHz repetition rate with a pulse energy of 1.2 μJ, which demonstrates that a Q-switched Er-doped fiber laser can be a promising light source for the high speed functional photoacoustic imaging. PMID:27110032

  17. Q-switched Erbium-doped fiber laser at 1600 nm for photoacoustic imaging application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piao, Zhonglie; Beckman Laser Institute, Department of Biomedical Engineering, University of California, Irvine, California 92612; Zeng, Lvming

    We present a nanosecond Q-switched Erbium-doped fiber (EDF) laser system operating at 1600 nm with a tunable repetition rate from 100 kHz to 1 MHz. A compact fiber coupled, acousto-optic modulator-based EDF ring cavity was used to generate a nanosecond seed laser at 1600 nm, and a double-cladding EDF based power amplifier was applied to achieve the maximum average power of 250 mW. In addition, 12 ns laser pulses with the maximum pulse energy of 2.4 μJ were obtained at 100 kHz. Furthermore, the Stokes shift by Raman scattering over a 25 km long fiber was measured, indicating that the laser can be potentially used to generate the highmore » repetition rate pulses at the 1.7 μm region. Finally, we detected the photoacoustic signal from a human hair at 200 kHz repetition rate with a pulse energy of 1.2 μJ, which demonstrates that a Q-switched Er-doped fiber laser can be a promising light source for the high speed functional photoacoustic imaging.« less

  18. Global synchronization of parallel processors using clock pulse width modulation

    DOEpatents

    Chen, Dong; Ellavsky, Matthew R.; Franke, Ross L.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Jeanson, Mark J.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Littrell, Daniel; Ohmacht, Martin; Reed, Don D.; Schenck, Brandon E.; Swetz, Richard A.

    2013-04-02

    A circuit generates a global clock signal with a pulse width modification to synchronize processors in a parallel computing system. The circuit may include a hardware module and a clock splitter. The hardware module may generate a clock signal and performs a pulse width modification on the clock signal. The pulse width modification changes a pulse width within a clock period in the clock signal. The clock splitter may distribute the pulse width modified clock signal to a plurality of processors in the parallel computing system.

  19. Time-reversing light pulses by adiabatic coupling modulation in coupled-resonator optical waveguides

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Martini, Rainer; Search, Christopher P.

    2012-12-01

    We introduce a mechanism to time reverse short optical pulses in coupled resonator optical waveguides (CROWs) by direct modulation of the coupling coefficients between microresonators. The coupling modulation is achieved using phase modulation of a Mach-Zehnder interferometer coupler. We demonstrate that by adiabatic modulation of the coupling between resonators we can time reverse or store light pulses with bandwidths up to a few hundred GHz. The large pulse bandwidths, small device footprint, robustness with respect to resonator losses, and easy tuning process of the coupling coefficients make this method more practical than previous proposals.

  20. Optical ultra-wide-band pulse bipolar and shape modulation based on a symmetric PM-IM conversion architecture.

    PubMed

    Wang, Shiguang; Chen, Hongwei; Xin, Ming; Chen, Minghua; Xie, Shizhong

    2009-10-15

    A simple and feasible technique for ultra-wide-band (UWB) pulse bipolar modulation (PBM) and pulse shape modulation (PSM) in the optical domain is proposed and demonstrated. The PBM and PSM are performed using a symmetric phase modulation to intensity modulation conversion architecture, including a couple of phase modulators and an optical bandpass filter (OBPF). Two optical carriers, which are separately phase modulated by two appropriate electrical pulse patterns, are at the long- and short-wavelength linear slopes of the OBPF spectrum, respectively. The high-speed PBM and PSM without limit of chip length, polarity, and shape are implemented in simulation and are also verified by experiment. (c) 2009 Optical Society of America.

  1. Analytical modeling of eddy-current losses caused by pulse-width-modulation switching in permanent-magnet brushless direct-current motors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, F.; Nehl, T.W.

    1998-09-01

    Because of their high efficiency and power density the PM brushless dc motor is a strong candidate for electric and hybrid vehicle propulsion systems. An analytical approach is developed to predict the inverter high frequency pulse width modulation (PWM) switching caused eddy-current losses in a permanent magnet brushless dc motor. The model uses polar coordinates to take curvature effects into account, and is also capable of including the space harmonic effect of the stator magnetic field and the stator lamination effect on the losses. The model was applied to an existing motor design and was verified with the finite elementmore » method. Good agreement was achieved between the two approaches. Hence, the model is expected to be very helpful in predicting PWM switching losses in permanent magnet machine design.« less

  2. Short optical pulse generation at 40 GHz with a bulk electro-absorption modulator packaged device

    NASA Astrophysics Data System (ADS)

    Langlois, Patrick; Moore, Ronald; Prosyk, Kelvin; O'Keefe, Sean; Oosterom, Jill A.; Betty, Ian; Foster, Robert; Greenspan, Jonathan; Singh, Priti

    2003-12-01

    Short optical pulse generation at 40GHz and 1540nm wavelength is achieved using fully packaged bulk quaternary electro-absorption modulator modules. Experimental results obtained with broadband and narrowband optimized packaged modules are presented and compared against empirical model predictions. Pulse duty cycle, extinction ratio and chirp are studied as a function of sinusoidal drive voltage and detuning between operating wavelength and modulator absorption band edge. Design rules and performance trade-offs are discussed. Low-chirp pulses with a FWHM of ~12ps and sub-4ps at a rate of 40GHz are demonstrated. Optical time-domain demultiplexing of a 40GHz to a 10GHz pulse train is also demonstrated with better than 20dB extinction ratio.

  3. Regulation of a lightweight high efficiency capacitator diode voltage multiplier dc-dc converter

    NASA Technical Reports Server (NTRS)

    Harrigill, W. T., Jr.; Myers, I. T.

    1976-01-01

    A method for the regulation of a capacitor diode voltage multiplier dc-dc converter has been developed which has only minor penalties in weight and efficiency. An auxiliary inductor is used, which only handles a fraction of the total power, to control the output voltage through a pulse width modulation method in a buck boost circuit.

  4. Fine-Structure Artifact of the Velocity Distribution of Cs Beam Tubes as Measured by the Pulsed Microwave Power Technique

    DTIC Science & Technology

    1990-10-15

    Officer MOIE Program manager SSD/MSSB AFSTC/WCO OL-AB UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE REPORT DOCUMENTATION PAGE la . REPORT SECURITY...34 Metrologia , 9, 1973, pp. 107-112. 2. H. Hellwig, S. Jarvis, D. J. Glaze, D. Halford, and H. E. Bell, "Time domain velocity selection modulation as a

  5. An adaptive neuro fuzzy inference system controlled space cector pulse width modulation based HVDC light transmission system under AC fault conditions

    NASA Astrophysics Data System (ADS)

    Ajay Kumar, M.; Srikanth, N. V.

    2014-03-01

    In HVDC Light transmission systems, converter control is one of the major fields of present day research works. In this paper, fuzzy logic controller is utilized for controlling both the converters of the space vector pulse width modulation (SVPWM) based HVDC Light transmission systems. Due to its complexity in the rule base formation, an intelligent controller known as adaptive neuro fuzzy inference system (ANFIS) controller is also introduced in this paper. The proposed ANFIS controller changes the PI gains automatically for different operating conditions. A hybrid learning method which combines and exploits the best features of both the back propagation algorithm and least square estimation method is used to train the 5-layer ANFIS controller. The performance of the proposed ANFIS controller is compared and validated with the fuzzy logic controller and also with the fixed gain conventional PI controller. The simulations are carried out in the MATLAB/SIMULINK environment. The results reveal that the proposed ANFIS controller is reducing power fluctuations at both the converters. It also improves the dynamic performance of the test power system effectively when tested for various ac fault conditions.

  6. Modular 5-kW Power-Processing Unit Being Developed for the Next-Generation Ion Engine

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Bond, Thomas H.; Okada, Don; Phelps, Keith; Pyter, Janusz; Wiseman, Steve

    2001-01-01

    The NASA Glenn Research Center is developing a 5- to 10-kW ion engine for a broad range of mission applications. Simultaneously, a 5-kW breadboard power-processing unit (PPU) is being designed and fabricated by Boeing Electron Dynamic Devices, Torrance, California, under contract with Glenn. The beam supply, which processes up to 90 percent of the power into this unit, consists of four 1.1-kW power modules connected in parallel, equally sharing the output current. The modular design allows scalability to higher powers as well as the possibility of implementing an N + 1 redundant beam supply. A novel phaseshifted/pulse-width-modulated, dual full-bridge topology was chosen for this module design for its efficient switching characteristics. A breadboard version of the beam power supply module was assembled. Efficiencies ranging between 91.6 and 96.9 percent were measured for an input voltage range of 80 to 160 V, an output voltage range of 800 to 1500 V, and output powers from 0.3 to 1.0 kW. This beam supply could result in a PPU with a total efficiency between 93 and 95 percent at a nominal input voltage of 100 V. This is up to a 4-percent improvement over the state-of-the-art PPU used for the Deep Space 1 mission. A flight-packaged PPU is expected to weigh no more than 15 kg, which represents a 50-percent reduction in specific mass from the Deep Space 1 design. This will make 5-kW ion propulsion very attractive for many planetary missions.

  7. Power budget enhancement in NG-EPON system employing novel twisted-PAM4

    NASA Astrophysics Data System (ADS)

    Li, Longsheng; Bi, Meihua; Fu, Yan; Miao, Xin; Zhu, Qingming; Hu, Weisheng

    2018-03-01

    In this paper, we firstly design a novel modulation format named Twisted-PAM4 (T-PAM4) for the high-speed NG-EPON and the PON-based digital fronthaul system. Compared to other high-order modulation formats like 4-ary pulse amplitude modulation (PAM4), T-PAM4 provides two independent sampling values in each symbol period and enables two-dimensional symbol decision, which significantly improves the receiver sensitivity and hence enlarges the system power budget. Based on this advantage, six types of T-PAM4 are experimentally demonstrated in 28-Gb/s/ λ NG-PON and 32-Gb/s/ λ PON-based digital fronthaul system. The experimental results show that, compared to the ordinary PAM4, the T-PAM4 can bring 5-dB and 4-dB extra power budget in NG-EPON and PON-based fronthaul system respectively. In addition, by experiment, it is also depicted that the T-PAM4 is remarkably robust to system nonlinearity, which would ease the linearity requirement on system components and hence reduce system cost.

  8. Fiber optics frequency comb enabled linear optical sampling with operation wavelength range extension.

    PubMed

    Liao, Ruolin; Wu, Zhichao; Fu, Songnian; Zhu, Shengnan; Yu, Zhe; Tang, Ming; Liu, Deming

    2018-02-01

    Although the linear optical sampling (LOS) technique is powerful enough to characterize various advanced modulation formats with high symbol rates, the central wavelength of a pulsed local oscillator (LO) needs to be carefully set according to that of the signal under test, due to the coherent mixing operation. Here, we experimentally demonstrate wideband LOS enabled by a fiber optics frequency comb (FOFC). Meanwhile, when the broadband FOFC acts as the pulsed LO, we propose a scheme to mitigate the enhanced sampling error arising in the non-ideal response of a balanced photodetector. Finally, precise characterizations of arbitrary 128 Gbps PDM-QPSK wavelength channels from 1550 to 1570 nm are successfully achieved, when a 101.3 MHz frequency spaced comb with a 3 dB spectral power ripple of 20 nm is used.

  9. High voltage power supply

    NASA Technical Reports Server (NTRS)

    Ruitberg, A. P.; Young, K. M. (Inventor)

    1985-01-01

    A high voltage power supply is formed by three discrete circuits energized by a battery to provide a plurality of concurrent output signals floating at a high output voltage on the order of several tens of kilovolts. In the first two circuits, the regulator stages are pulse width modulated and include adjustable ressistances for varying the duty cycles of pulse trains provided to corresponding oscillator stages while the third regulator stage includes an adjustable resistance for varying the amplitude of a steady signal provided to a third oscillator stage. In the first circuit, the oscillator, formed by a constant current drive network and a tuned resonant network included a step up transformer, is coupled to a second step up transformer which, in turn, supplies an amplified sinusoidal signal to a parallel pair of complementary poled rectifying, voltage multiplier stages to generate the high output voltage.

  10. Multifunction audio digitizer. [producing direct delta and pulse code modulation

    NASA Technical Reports Server (NTRS)

    Monford, L. G., Jr. (Inventor)

    1974-01-01

    An illustrative embodiment of the invention includes apparatus which simultaneously produces both direct delta modulation and pulse code modulation. An input signal, after amplification, is supplied to a window comparator which supplies a polarity control signal to gate the output of a clock to the appropriate input of a binary up-down counter. The control signals provide direct delta modulation while the up-down counter output provides pulse code modulation.

  11. Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats.

    PubMed

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2009-03-30

    We propose theoretically and demonstrate experimentally an optical architecture for flexible Ultra-Wideband pulse generation. It is based on an N-tap reconfigurable microwave photonic filter fed by a laser array by using phase inversion in a Mach-Zehnder modulator. Since a large number of positive and negative coefficients can be easily implemented, UWB pulses fitted to the FCC mask requirements can be generated. As an example, a four tap pulse generator is experimentally demonstrated which complies with the FCC regulation. The proposed pulse generator allows different pulse modulation formats since the amplitude, polarity and time delay of generated pulse is controlled.

  12. Wrist Pulse Rate Monitor Using Self-Injection-Locked Radar Technology

    PubMed Central

    Wang, Fu-Kang; Tang, Mu-Cyun; Su, Sheng-Chao; Horng, Tzyy-Sheng

    2016-01-01

    To achieve sensitivity, comfort, and durability in vital sign monitoring, this study explores the use of radar technologies in wearable devices. The study first detected the respiratory rates and heart rates of a subject at a one-meter distance using a self-injection-locked (SIL) radar and a conventional continuous-wave (CW) radar to compare the sensitivity versus power consumption between the two radars. Then, a pulse rate monitor was constructed based on a bistatic SIL radar architecture. This monitor uses an active antenna that is composed of a SIL oscillator (SILO) and a patch antenna. When attached to a band worn on the subject’s wrist, the active antenna can monitor the pulse on the subject’s wrist by modulating the SILO with the associated Doppler signal. Subsequently, the SILO’s output signal is received and demodulated by a remote frequency discriminator to obtain the pulse rate information. PMID:27792176

  13. Behavioral assessment of sensitivity to intracortical microstimulation of primate somatosensory cortex.

    PubMed

    Kim, Sungshin; Callier, Thierri; Tabot, Gregg A; Gaunt, Robert A; Tenore, Francesco V; Bensmaia, Sliman J

    2015-12-08

    Intracortical microstimulation (ICMS) is a powerful tool to investigate the functional role of neural circuits and may provide a means to restore sensation for patients for whom peripheral stimulation is not an option. In a series of psychophysical experiments with nonhuman primates, we investigate how stimulation parameters affect behavioral sensitivity to ICMS. Specifically, we deliver ICMS to primary somatosensory cortex through chronically implanted electrode arrays across a wide range of stimulation regimes. First, we investigate how the detectability of ICMS depends on stimulation parameters, including pulse width, frequency, amplitude, and pulse train duration. Then, we characterize the degree to which ICMS pulse trains that differ in amplitude lead to discriminable percepts across the range of perceptible and safe amplitudes. We also investigate how discriminability of pulse amplitude is modulated by other stimulation parameters-namely, frequency and duration. Perceptual judgments obtained across these various conditions will inform the design of stimulation regimes for neuroscience and neuroengineering applications.

  14. REVIEW ARTICLE: Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources

    NASA Astrophysics Data System (ADS)

    Quinlan, F.; Ozharar, S.; Gee, S.; Delfyett, P. J.

    2009-10-01

    Recent experimental work on semiconductor-based harmonically mode-locked lasers geared toward low noise applications is reviewed. Active, harmonic mode-locking of semiconductor-based lasers has proven to be an excellent way to generate 10 GHz repetition rate pulse trains with pulse-to-pulse timing jitter of only a few femtoseconds without requiring active feedback stabilization. This level of timing jitter is achieved in long fiberized ring cavities and relies upon such factors as low noise rf sources as mode-lockers, high optical power, intracavity dispersion management and intracavity phase modulation. When a high finesse etalon is placed within the optical cavity, semiconductor-based harmonically mode-locked lasers can be used as optical frequency comb sources with 10 GHz mode spacing. When active mode-locking is replaced with regenerative mode-locking, a completely self-contained comb source is created, referenced to the intracavity etalon.

  15. Wrist Pulse Rate Monitor Using Self-Injection-Locked Radar Technology.

    PubMed

    Wang, Fu-Kang; Tang, Mu-Cyun; Su, Sheng-Chao; Horng, Tzyy-Sheng

    2016-10-26

    To achieve sensitivity, comfort, and durability in vital sign monitoring, this study explores the use of radar technologies in wearable devices. The study first detected the respiratory rates and heart rates of a subject at a one-meter distance using a self-injection-locked (SIL) radar and a conventional continuous-wave (CW) radar to compare the sensitivity versus power consumption between the two radars. Then, a pulse rate monitor was constructed based on a bistatic SIL radar architecture. This monitor uses an active antenna that is composed of a SIL oscillator (SILO) and a patch antenna. When attached to a band worn on the subject's wrist, the active antenna can monitor the pulse on the subject's wrist by modulating the SILO with the associated Doppler signal. Subsequently, the SILO's output signal is received and demodulated by a remote frequency discriminator to obtain the pulse rate information.

  16. Gold nanorod as saturable absorber for Q-switched Yb-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Wang, Xu-De; Luo, Zhi-Chao; Liu, Hao; Zhao, Nian; Liu, Meng; Zhu, Yan-Fang; Xue, Jian-Ping; Luo, Ai-Ping; Xu, Wen-Cheng

    2015-07-01

    We reported on the generation of Q-switched pulse in an Yb-doped fiber laser by using a filmy polyvinyl alcohol (PVA)-based gold nanorods (GNRs) saturable absorber (SA). The GNRs are synthesized through seed-mediated method whose longitudinal surface plasmon resonance (SPR) absorption peak is located at 1038 nm. The modulation depth of the GNRs SA is ∼4.06%. By gradually increasing the pump power from 62 mW to 128 mW, the repetition rate of Q-switched pulse increases from 8.78 kHz to 20.78 kHz and the pulse duration decreases from 9.43 μs to 3.65 μs. In addition, the dual-wavelength switchable Q-switched operation was also observed. The obtained results further expand the applications of GNRs SA to the field of Q-switched pulsed fiber lasers at 1.0 μm waveband.

  17. Laser-driven dielectric electron accelerator for radiobiology researches

    NASA Astrophysics Data System (ADS)

    Koyama, Kazuyoshi; Matsumura, Yosuke; Uesaka, Mitsuru; Yoshida, Mitsuhiro; Natsui, Takuya; Aimierding, Aimidula

    2013-05-01

    In order to estimate the health risk associated with a low dose radiation, the fundamental process of the radiation effects in a living cell must be understood. It is desired that an electron bunch or photon pulse precisely knock a cell nucleus and DNA. The required electron energy and electronic charge of the bunch are several tens keV to 1 MeV and 0.1 fC to 1 fC, respectively. The smaller beam size than micron is better for the precise observation. Since the laser-driven dielectric electron accelerator seems to suite for the compact micro-beam source, a phase-modulation-masked-type laser-driven dielectric accelerator was studied. Although the preliminary analysis made a conclusion that a grating period and an electron speed must satisfy the matching condition of LG/λ = v/c, a deformation of a wavefront in a pillar of the grating relaxed the matching condition and enabled the slow electron to be accelerated. The simulation results by using the free FDTD code, Meep, showed that the low energy electron of 20 keV felt the acceleration field strength of 20 MV/m and gradually felt higher field as the speed was increased. Finally the ultra relativistic electron felt the field strength of 600 MV/m. The Meep code also showed that a length of the accelerator to get energy of 1 MeV was 3.8 mm, the required laser power and energy were 11 GW and 350 mJ, respectively. Restrictions on the laser was eased by adopting sequential laser pulses. If the accelerator is illuminated by sequential N pulses, the pulse power, pulse width and the pulse energy are reduced to 1/N, 1/N and 1/N2, respectively. The required laser power per pulse is estimated to be 2.2 GW when ten pairs of sequential laser pulse is irradiated.

  18. Systems and methods for selective detection and imaging in coherent Raman microscopy by spectral excitation shaping

    DOEpatents

    Xie, Xiaoliang Sunney; Freudiger, Christian; Min, Wei

    2016-03-15

    A microscopy imaging system is disclosed that includes a light source system, a spectral shaper, a modulator system, an optics system, an optical detector and a processor. The light source system is for providing a first train of pulses and a second train of pulses. The spectral shaper is for spectrally modifying an optical property of at least some frequency components of the broadband range of frequency components such that the broadband range of frequency components is shaped producing a shaped first train of pulses to specifically probe a spectral feature of interest from a sample, and to reduce information from features that are not of interest from the sample. The modulator system is for modulating a property of at least one of the shaped first train of pulses and the second train of pulses at a modulation frequency. The optical detector is for detecting an integrated intensity of substantially all optical frequency components of a train of pulses of interest transmitted or reflected through the common focal volume. The processor is for detecting a modulation at the modulation frequency of the integrated intensity of substantially all of the optical frequency components of the train of pulses of interest due to the non-linear interaction of the shaped first train of pulses with the second train of pulses as modulated in the common focal volume, and for providing an output signal for a pixel of an image for the microscopy imaging system.

  19. Virtual welding equipment for simulation of GMAW processes with integration of power source regulation

    NASA Astrophysics Data System (ADS)

    Reisgen, Uwe; Schleser, Markus; Mokrov, Oleg; Zabirov, Alexander

    2011-06-01

    A two dimensional transient numerical analysis and computational module for simulation of electrical and thermal characteristics during electrode melting and metal transfer involved in Gas-Metal-Arc-Welding (GMAW) processes is presented. Solution of non-linear transient heat transfer equation is carried out using a control volume finite difference technique. The computational module also includes controlling and regulation algorithms of industrial welding power sources. The simulation results are the current and voltage waveforms, mean voltage drops at different parts of circuit, total electric power, cathode, anode and arc powers and arc length. We describe application of the model for normal process (constant voltage) and for pulsed processes with U/I and I/I-modulation modes. The comparisons with experimental waveforms of current and voltage show that the model predicts current, voltage and electric power with a high accuracy. The model is used in simulation package SimWeld for calculation of heat flux into the work-piece and the weld seam formation. From the calculated heat flux and weld pool sizes, an equivalent volumetric heat source according to Goldak model, can be generated. The method was implemented and investigated with the simulation software SimWeld developed by the ISF at RWTH Aachen University.

  20. Detonation control

    DOEpatents

    Mace, Jonathan L.; Seitz, Gerald J.; Bronisz, Lawrence E.

    2016-10-25

    Detonation control modules and detonation control circuits are provided herein. A trigger input signal can cause a detonation control module to trigger a detonator. A detonation control module can include a timing circuit, a light-producing diode such as a laser diode, an optically triggered diode, and a high-voltage capacitor. The trigger input signal can activate the timing circuit. The timing circuit can control activation of the light-producing diode. Activation of the light-producing diode illuminates and activates the optically triggered diode. The optically triggered diode can be coupled between the high-voltage capacitor and the detonator. Activation of the optically triggered diode causes a power pulse to be released from the high-voltage capacitor that triggers the detonator.

Top