Science.gov

Sample records for modulated radiation therapy

  1. Intensity-Modulated Radiation Therapy (IMRT)

    MedlinePlus

    ... modulating—or controlling—the intensity of the radiation beam in multiple small volumes. IMRT also allows higher ... of multiple intensity-modulated fields coming from different beam directions produce a custom tailored radiation dose that ...

  2. Film Dosimetry for Intensity Modulated Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Benites-Rengifo, J.; Martínez-Dávalos, A.; Celis, M.; Lárraga, J.

    2004-09-01

    Intensity Modulated Radiation Therapy (IMRT) is an oncology treatment technique that employs non-uniform beam intensities to deliver highly conformal radiation to the targets while minimizing doses to normal tissues and critical organs. A key element for a successful clinical implementation of IMRT is establishing a dosimetric verification process that can ensure that delivered doses are consistent with calculated ones for each patient. To this end we are developing a fast quality control procedure, based on film dosimetry techniques, to be applied to the 6 MV Novalis linear accelerator for IMRT of the Instituto Nacional de Neurología y Neurocirugía (INNN) in Mexico City. The procedure includes measurements of individual fluence maps for a limited number of fields and dose distributions in 3D using extended dose-range radiographic film. However, the film response to radiation might depend on depth, energy and field size, and therefore compromise the accuracy of measurements. In this work we present a study of the dependence of Kodak EDR2 film's response on the depth, field size and energy, compared with those of Kodak XV2 film. The first aim is to devise a fast and accurate method to determine the calibration curve of film (optical density vs. doses) commonly called a sensitometric curve. This was accomplished by using three types of irradiation techniques: Step-and-shoot, dynamic and static fields.

  3. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study.

    PubMed

    Lee, Katrina; Lenards, Nishele; Holson, Janice

    2016-01-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient׳s neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient׳s data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain. PMID:26235550

  4. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study.

    PubMed

    Lee, Katrina; Lenards, Nishele; Holson, Janice

    2016-01-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient׳s neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient׳s data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain.

  5. Intensity-modulated radiation therapy: dynamic MLC (DMLC) therapy, multisegment therapy and tomotherapy. An example of QA in DMLC therapy.

    PubMed

    Webb, S

    1998-10-01

    Intensity-modulated radiation therapy will make a quantum leap in tumor control. It is the new radiation therapy for the new millennium. The major methods to achieve IMRT are: 1. dynamic multileaf collimator (DMLC) therapy, 2. multisegment therapy, and 3. tomotherapy. The principles of these 3 techniques are briefly reviewed. Each technique presents unique QA issues which are outlined. As an example this paper will present the results of a recent new study of an important QA concern in DMLC therapy.

  6. Stereotactic Body Radiation Therapy Versus Intensity-Modulated Radiation Therapy for Prostate Cancer: Comparison of Toxicity

    PubMed Central

    Yu, James B.; Cramer, Laura D.; Herrin, Jeph; Soulos, Pamela R.; Potosky, Arnold L.; Gross, Cary P.

    2014-01-01

    Purpose Stereotactic body radiation therapy (SBRT) is a technically demanding prostate cancer treatment that may be less expensive than intensity-modulated radiation therapy (IMRT). Because SBRT may deliver a greater biologic dose of radiation than IMRT, toxicity could be increased. Studies comparing treatment cost to the Medicare program and toxicity are needed. Methods We performed a retrospective study by using a national sample of Medicare beneficiaries age ≥ 66 years who received SBRT or IMRT as primary treatment for prostate cancer from 2008 to 2011. Each SBRT patient was matched to two IMRT patients with similar follow-up (6, 12, or 24 months). We calculated the cost of radiation therapy treatment to the Medicare program and toxicity as measured by Medicare claims; we used a random effects model to compare genitourinary (GU), GI, and other toxicity between matched patients. Results The study sample consisted of 1,335 SBRT patients matched to 2,670 IMRT patients. The mean treatment cost was $13,645 for SBRT versus $21,023 for IMRT. In the 6 months after treatment initiation, 15.6% of SBRT versus 12.6% of IMRT patients experienced GU toxicity (odds ratio [OR], 1.29; 95% CI, 1.05 to 1.53; P = .009). At 24 months after treatment initiation, 43.9% of SBRT versus 36.3% of IMRT patients had GU toxicity (OR, 1.38; 95% CI, 1.12 to 1.63; P = .001). The increase in GU toxicity was due to claims indicative of urethritis, urinary incontinence, and/or obstruction. Conclusion Although SBRT was associated with lower treatment costs, there appears to be a greater rate of GU toxicity for patients undergoing SBRT compared with IMRT, and prospective correlation with randomized trials is needed. PMID:24616315

  7. Prone Breast Intensity Modulated Radiation Therapy: 5-Year Results

    SciTech Connect

    Osa, Etin-Osa O.; DeWyngaert, Keith; Roses, Daniel; Speyer, James; Guth, Amber; Axelrod, Deborah; Fenton Kerimian, Maria; Goldberg, Judith D.; Formenti, Silvia C.

    2014-07-15

    Purpose: To report the 5-year results of a technique of prone breast radiation therapy delivered by a regimen of accelerated intensity modulated radiation therapy with a concurrent boost to the tumor bed. Methods and Materials: Between 2003 and 2006, 404 patients with stage I-II breast cancer were prospectively enrolled into 2 consecutive protocols, institutional trials 03-30 and 05-181, that used the same regimen of 40.5 Gy/15 fractions delivered to the index breast over 3 weeks, with a concomitant daily boost to the tumor bed of 0.5 Gy (total dose 48 Gy). All patients were treated after segmental mastectomy and had negative margins and nodal assessment. Patients were set up prone: only if lung or heart volumes were in the field was a supine setup attempted and chosen if found to better spare these organs. Results: Ninety-two percent of patients were treated prone, 8% supine. Seventy-two percent had stage I, 28% stage II invasive breast cancer. In-field lung volume ranged from 0 to 228.27 cm{sup 3}, mean 19.65 cm{sup 3}. In-field heart volume for left breast cancer patients ranged from 0 to 21.24 cm{sup 3}, mean 1.59 cm{sup 3}. There was no heart in the field for right breast cancer patients. At a median follow-up of 5 years, the 5-year cumulative incidence of isolated ipsilateral breast tumor recurrence was 0.82% (95% confidence interval [CI] 0.65%-1.04%). The 5-year cumulative incidence of regional recurrence was 0.53% (95% CI 0.41%-0.69%), and the 5-year overall cumulative death rate was 1.28% (95% CI 0.48%-3.38%). Eighty-two percent (95% CI 77%-85%) of patients judged their final cosmetic result as excellent/good. Conclusions: Prone accelerated intensity modulated radiation therapy with a concomitant boost results in excellent local control and optimal sparing of heart and lung, with good cosmesis. Radiation Therapy Oncology Group protocol 1005, a phase 3, multi-institutional, randomized trial is ongoing and is evaluating the equivalence of a similar dose and

  8. Approaching Oxygen-Guided Intensity-Modulated Radiation Therapy.

    PubMed

    Epel, Boris; Redler, Gage; Pelizzari, Charles; Tormyshev, Victor M; Halpern, Howard J

    2016-01-01

    The outcome of cancer radiation treatment is strongly correlated with tumor oxygenation. The aim of this study is to use oxygen tension distributions in tumors obtained using Electron Paramagnetic Resonance (EPR) imaging to devise better tumor radiation treatment. The proposed radiation plan is delivered in two steps. In the first step, a uniform 50% tumor control dose (TCD50) is delivered to the whole tumor. For the second step an additional dose boost is delivered to radioresistant, hypoxic tumor regions. FSa fibrosarcomas grown in the gastrocnemius of the legs of C3H mice were used. Oxygen tension images were obtained using a 250 MHz pulse imager and injectable partially deuterated trityl OX63 (OX71) spin probe. Radiation was delivered with a novel animal intensity modulated radiation therapy (IMRT) XRAD225Cx microCT/radiation therapy delivery system. In a simplified scheme for boost dose delivery, the boost area is approximated by a sphere, whose radius and position are determined using an EPR O2 image. The sphere that irradiates the largest fraction of hypoxic voxels in the tumor was chosen using an algorithm based on Receiver Operator Characteristic (ROC) analysis. We used the fraction of irradiated hypoxic volume as the true positive determinant and the fraction of irradiated normoxic volume as the false positive determinant in the terms of that analysis. The most efficient treatment is the one that demonstrates the shortest distance from the ROC curve to the upper left corner of the ROC plot. The boost dose corresponds to the difference between TCD90 and TCD50 values. For the control experiment an identical radiation dose to the normoxic tumor area is delivered.

  9. Intensity modulating and other radiation therapy devices for dose painting.

    PubMed

    Galvin, James M; De Neve, Wilfried

    2007-03-10

    The introduction of intensity-modulated radiation therapy (IMRT) in the early 1990s created the possibility of generating dramatically improved dose distributions that could be tailored to fit a complex geometric arrangement of targets that push against or even surround healthy critical structures. IMRT is a new treatment paradigm that goes beyond the capabilities of the earlier technology called three-dimensional radiation therapy (3DCRT). IMRT took the older approach of using fields that conformed to the silhouette of the target to deliver a relatively homogeneous intensity of radiation and separated the conformal fields into many subfields so that intensity could be varied to better control the final dose distribution. This technique makes it possible to generate radiation dose clouds that have indentations in their surface. Initially, this technology was mainly used to avoid and thus control the dose delivered to critical structures so that they are not seriously damaged in the process of irradiating nearby targets to an appropriately high dose. Avoidance of critical structures allowed homogeneous dose escalation that led to improved local control for small tumors. However, the normal tissue component of large tumors often prohibits homogeneous dose escalation. A newer concept of dose-painting IMRT is aimed at exploiting inhomogeneous dose distributions adapted to tumor heterogeneity. Tumor regions of increased radiation resistance receive escalated dose levels, whereas radiation-sensitive regions receive conventional or even de-escalated dose levels. Dose painting relies on biologic imaging such as positron emission tomography, functional magnetic resonance imaging, and magnetic resonance spectroscopy. This review will describe the competing techologies for dose painting with an emphasis on their commonalities.

  10. Comparison of three dimensional conformal radiation therapy, intensity modulated radiation therapy and volumetric modulated arc therapy for low radiation exposure of normal tissue in patients with prostate cancer.

    PubMed

    Cakir, Aydin; Akgun, Zuleyha; Fayda, Merdan; Agaoglu, Fulya

    2015-01-01

    Radiotherapy has an important role in the treatment of prostate cancer. Three-dimensional conformal radiation therapy (3D-CRT), intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) techniques are all applied for this purpose. However, the risk of secondary radiation-induced bladder cancer is significantly elevated in irradiated patients compared surgery-only or watchful waiting groups. There are also reports of risk of secondary cancer with low doses to normal tissues. This study was designed to compare received volumes of low doses among 3D-CRT, IMRT and VMAT techniques for prostate patients. Ten prostate cancer patients were selected retrospectively for this planning study. Treatment plans were generated using 3D-CRT, IMRT and VMAT techniques. Conformity index (CI), homogenity index (HI), receiving 5 Gy of the volume (V5%), receiving 2 Gy of the volume (V2%), receiving 1 Gy of the volume (V1%) and monitor units (MUs) were compared. This study confirms that VMAT has slightly better CI while thev olume of low doses was higher. VMAT had lower MUs than IMRT. 3D-CRT had the lowest MU, CI and HI. If target coverage and normal tissue sparing are comparable between different treatment techniques, the risk of second malignancy should be a important factor in the selection of treatment.

  11. Advances in three-dimensional conformal radiation therapy physics with intensity modulation.

    PubMed

    Webb, S

    2000-09-01

    Intensity-modulated radiation therapy, a specific form of conformal radiation therapy, is currently attracting a lot of attention, and there are high expectations for this class of treatment techniques. Several new technologies are in development, but physicists are still working to improve the physical basis of radiation therapy.

  12. Intensity-modulated radiation therapy: supportive data for prostate cancer.

    PubMed

    Cahlon, Oren; Hunt, Margie; Zelefsky, Michael J

    2008-01-01

    Since its introduction into clinical use in the mid-1990s, intensity-modulated radiation therapy (IMRT) has emerged as the most effective and widely used form of external-beam radiotherapy for localized prostate cancer. Multiple studies have confirmed the importance of delivering sufficiently high doses to the prostate to achieve cure. The dosimetric superiority of IMRT over conventional techniques to produce conformal dose distributions that allow for organ sparing has been shown. A growing number of reports have confirmed that IMRT is the safest way to deliver high doses of external-beam irradiation to the prostate and the regional lymph nodes. Advances in imaging and onboard verification systems continue to advance the capabilities of IMRT and have potential implications with regards to further dose escalation and hypofractionated regimens. The clinical data in support of IMRT and the associated technical aspects of IMRT treatment planning and implementation are highlighted in this review.

  13. Application of Histogram Analysis in Radiation Therapy (HART) in Intensity Modulation Radiation Therapy (IMRT) Treatments

    NASA Astrophysics Data System (ADS)

    Pyakuryal, Anil

    2009-03-01

    A carcinoma is a malignant cancer that emerges from epithelial cells in structures through out the body.It invades the critical organs, could metastasize or spread to lymph nodes.IMRT is an advanced mode of radiation therapy treatment for cancer. It delivers more conformal doses to malignant tumors sparing the critical organs by modulating the intensity of radiation beam.An automated software, HART (S. Jang et al.,2008,Med Phys 35,p.2812) was used for efficient analysis of dose volume histograms (DVH) for multiple targets and critical organs in four IMRT treatment plans for each patient. IMRT data for ten head and neck cancer patients were exported as AAPM/RTOG format files from a commercial treatment planning system at Northwestern Memorial Hospital (NMH).HART extracted DVH statistics were used to evaluate plan indices and to analyze dose tolerance of critical structures at prescription dose (PD) for each patient. Mean plan indices (n=10) were found to be in good agreement with published results for Linac based plans. The least irradiated volume at tolerance dose (TD50) was observed for brainstem and the highest volume for larynx in SIB treatment techniques. Thus HART, an open source platform, has extensive clinical implications in IMRT treatments.

  14. The radiation techniques of tomotherapy & intensity-modulated radiation therapy applied to lung cancer

    PubMed Central

    Zhu, Zhengfei

    2015-01-01

    Radiotherapy (RT) plays an important role in the management of lung cancer. Development of radiation techniques is a possible way to improve the effect of RT by reducing toxicities through better sparing the surrounding normal tissues. This article will review the application of two forms of intensity-modulated radiation therapy (IMRT), fixed-field IMRT and helical tomotherapy (HT) in lung cancer, including dosimetric and clinical studies. The advantages and potential disadvantages of these two techniques are also discussed. PMID:26207214

  15. Dosimetric comparison of volumetric modulated arc therapy and intensity-modulated radiation therapy for pancreatic malignancies

    SciTech Connect

    Ali, Arif N.; Dhabaan, Anees H.; Jarrio, Christie S.; Siddiqi, Arsalan K.; Landry, Jerome C.

    2012-10-01

    Volumetric-modulated arc therapy (VMAT) has been previously evaluated for several tumor sites and has been shown to provide significant dosimetric and delivery benefits when compared with intensity-modulated radiation therapy (IMRT). To date, there have been no published full reports on the benefits of VMAT use in pancreatic patients compared with IMRT. Ten patients with pancreatic malignancies treated with either IMRT or VMAT were retrospectively identified. Both a double-arc VMAT and a 7-field IMRT plan were generated for each of the 10 patients using the same defined tumor volumes, organs at risk (OAR) volumes, dose, fractionation, and optimization constraints. The planning tumor volume (PTV) maximum dose (55.8 Gy vs. 54.4 Gy), PTV mean dose (53.9 Gy vs. 52.1 Gy), and conformality index (1.11 vs. 0.99) were statistically similar between the IMRT and VMAT plans, respectively. The VMAT plans had a statistically significant reduction in monitor units compared with the IMRT plans (1109 vs. 498, p < 0.001). In addition, the doses to the liver, small bowel, and spinal cord were comparable between the IMRT and VMAT plans. However, the VMAT plans demonstrated a statistically significant reduction in the mean left kidney V{sub 25} (9.4 Gy vs. 2.3 Gy, p = 0.018), mean right kidney V{sub 15} (53.4 Gy vs. 45.9 Gy, p = 0.035), V{sub 20} (32.2 Gy vs. 25.5 Gy, p = 0.016), and V{sub 25} (21.7 Gy vs. 14.9 Gy, p = 0.001). VMAT was investigated in patients with pancreatic malignancies and compared with the current standard of IMRT. VMAT was found to have similar or improved dosimetric parameters for all endpoints considered. Specifically, VMAT provided reduced monitor units and improved bilateral kidney normal tissue dose. The clinical relevance of these benefits in the context of pancreatic cancer patients, however, is currently unclear and requires further investigation.

  16. [Modalities of breast cancer irradiation in 2016: Aims and indications of intensity modulated radiation therapy].

    PubMed

    Bourgier, C; Fenoglietto, P; Lemanski, C; Ducteil, A; Charissoux, M; Draghici, R; Azria, D

    2016-10-01

    Irradiation techniques for breast cancer (arctherapy, tomotherapy) are evolving and intensity-modulated radiation therapy is being increasingly considered for the management of these tumours. Here, we propose a review of intensity-modulated radiation therapy planning issues, clinical toxicities and indications for breast cancer. PMID:27614497

  17. Survey of resident education in intensity-modulated radiation therapy.

    PubMed

    Malik, Renuka; Oh, Julia L; Roeske, John C; Mundt, Arno J

    2005-06-01

    Intensity-modulated radiation therapy (IMRT) has been gaining increasing popularity among practicing physicians in the U.S., but the extent to which radiation oncology residents are taught the principles of this technology and are trained to use IMRT remains unknown. In this paper, we assessed the current level of resident education in IMRT in the United States. Chief residents at all 77 accredited radiation oncology programs were sent a 13-question survey addressing formal didactics and hands-on experience in IMRT. The survey assessed the frequency, subject, and format of IMRT didactics. Questions also addressed the number of IMRT patients and anatomical sites treated, resident involvement in the IMRT process, and the intent of IMRT use. Finally, residents were asked for their opinions on their IMRT education. Sixty-one surveys (79%) were completed. Overall, forty-three respondents (71%) reported receiving formal IMRT didactics, with nearly one-third reporting extensive didactics (> or = 3 lectures/seminars et cetera per year). The most common didactic formats were lectures (95%) and journal clubs (63%), most commonly supervised by physicists (98%). Involvement by physicians and radiobiologists were reported by 63% and 7% of respondents, respectively. Overall, 87% of respondents had hands-on IMRT training, with nearly one-half having treated > 25 patients. The most common sites treated were head and neck (94%) and prostate (81%). Involvement in all aspects of the IMRT process was common, particularly target and tissue delineation (98%) and plan evaluation (93%). Most respondents (79%) with hands-on experience reported receiving formal didactics. However, nearly one-third received no or only minimal formal didactics. The percentage of respondents desiring increased IMRT didactics and hands-on experience were 70% and 47%, respectively. Our results suggest that the great majority of radiation oncology residents in the United States are currently exposed to didactics

  18. Intensity-modulated radiation therapy for head and neck carcinoma.

    PubMed

    Grégoire, Vincent; De Neve, Wilfried; Eisbruch, Avraham; Lee, Nancy; Van den Weyngaert, Danielle; Van Gestel, Dirk

    2007-05-01

    Intensity-modulated radiation therapy (IMRT) for head and neck tumors refers to a new approach that aims at increasing the radiation dose gradient between the target tissues and the surrounding normal tissues at risk, thus offering the prospect of increasing the locoregional control probability while decreasing the complication rate. As a prerequisite, IMRT requires a proper selection and delineation of target volumes. For the latter, recent data indicate the potential of functional imaging to complement anatomic imaging modalities. Nonrandomized clinical series in paranasal sinuses and pharyngolaryngeal carcinoma have shown that IMRT was able to achieve a very high rate of locoregional control with less morbidity, such as dry-eye syndrome, xerostomia, and swallowing dysfunction. The promising results of IMRT are likely to be achieved when many treatment conditions are met, for example, optimal selection and delineation of the target volumes and organs at risk, appropriate physical quality control of the irradiation, and accurate patient setup with the use of onboard imaging. Because of the complexity of the various tasks, it is thus likely that these conditions will only be met in institutions having large patient throughput and experience with IMRT. Therefore, patient referral to those institutions is recommended.

  19. Ultrasound-based guidance of intensity-modulated radiation therapy.

    PubMed

    Fung, Albert Y C; Ayyangar, Komanduri M; Djajaputra, David; Nehru, Ramasamy M; Enke, Charles A

    2006-01-01

    In ultrasound-guided intensity-modulated radiation therapy (IMRT) of prostate cancer, ultrasound imaging ascertains the anatomical position of patients during x-ray therapy delivery. The ultrasound transducers are made of piezoelectric ceramics. The same crystal is used for both ultrasound production and reception. Three-dimensional (3D) ultrasound devices capture and correlate series of 2-dimensional (2D) B-mode images. The transducers are often arranged in a convex array for focusing. Lower frequency reaches greater depth, but results in low resolution. For clear image, some gel is usually applied between the probe and the skin contact surface. For prostate positioning, axial and sagittal scans are performed, and the volume contours from computed tomography (CT) planning are superimposed on the ultrasound images obtained before radiation delivery at the linear accelerator. The planning volumes are then overlaid on the ultrasound images and adjusted until they match. The computer automatically deduces the offset necessary to move the patient so that the treatment area is in the correct location. The couch is translated as needed. The currently available commercial equipment can attain a positional accuracy of 1-2 mm. Commercial manufacturer designs differ in the detection of probe coordinates relative to the isocenter. Some use a position-sensing robotic arm, while others have infrared light-emitting diodes or pattern-recognition software with charge-couple-device cameras. Commissioning includes testing of image quality and positional accuracy. Ultrasound is mainly used in prostate positioning. Data for 7825 daily fractions of 234 prostate patients indicated average 3D inter-fractional displacement of about 7.8 mm. There was no perceivable trend of shift over time. Scatter plots showed slight prevalence toward superior-posterior directions. Uncertainties of ultrasound guidance included tissue inhomogeneities, speckle noise, probe pressure, and inter

  20. Ultrasound-based guidance of intensity-modulated radiation therapy

    SciTech Connect

    Fung, Albert Y.C. . E-mail: afung@unmc.edu; Ayyangar, Komanduri M.; Djajaputra, David; Nehru, Ramasamy M.; Enke, Charles A.

    2006-04-01

    In ultrasound-guided intensity-modulated radiation therapy (IMRT) of prostate cancer, ultrasound imaging ascertains the anatomical position of patients during x-ray therapy delivery. The ultrasound transducers are made of piezoelectric ceramics. The same crystal is used for both ultrasound production and reception. Three-dimensional (3D) ultrasound devices capture and correlate series of 2-dimensional (2D) B-mode images. The transducers are often arranged in a convex array for focusing. Lower frequency reaches greater depth, but results in low resolution. For clear image, some gel is usually applied between the probe and the skin contact surface. For prostate positioning, axial and sagittal scans are performed, and the volume contours from computed tomography (CT) planning are superimposed on the ultrasound images obtained before radiation delivery at the linear accelerator. The planning volumes are then overlaid on the ultrasound images and adjusted until they match. The computer automatically deduces the offset necessary to move the patient so that the treatment area is in the correct location. The couch is translated as needed. The currently available commercial equipment can attain a positional accuracy of 1-2 mm. Commercial manufacturer designs differ in the detection of probe coordinates relative to the isocenter. Some use a position-sensing robotic arm, while others have infrared light-emitting diodes or pattern-recognition software with charge-couple-device cameras. Commissioning includes testing of image quality and positional accuracy. Ultrasound is mainly used in prostate positioning. Data for 7825 daily fractions of 234 prostate patients indicated average 3D inter-fractional displacement of about 7.8 mm. There was no perceivable trend of shift over time. Scatter plots showed slight prevalence toward superior-posterior directions. Uncertainties of ultrasound guidance included tissue inhomogeneities, speckle noise, probe pressure, and inter

  1. Dosimetrically Triggered Adaptive Intensity Modulated Radiation Therapy for Cervical Cancer

    SciTech Connect

    Lim, Karen; Stewart, James; Kelly, Valerie; Xie, Jason; Brock, Kristy K.; Moseley, Joanne; Cho, Young-Bin; Fyles, Anthony; Lundin, Anna; Rehbinder, Henrik; Löf, Johan; Jaffray, David A.; Milosevic, Michael

    2014-09-01

    Purpose: The widespread use of intensity modulated radiation therapy (IMRT) for cervical cancer has been limited by internal target and normal tissue motion. Such motion increases the risk of underdosing the target, especially as planning margins are reduced in an effort to reduce toxicity. This study explored 2 adaptive strategies to mitigate this risk and proposes a new, automated method that minimizes replanning workload. Methods and Materials: Thirty patients with cervical cancer participated in a prospective clinical study and underwent pretreatment and weekly magnetic resonance (MR) scans over a 5-week course of daily external beam radiation therapy. Target volumes and organs at risk (OARs) were contoured on each of the scans. Deformable image registration was used to model the accumulated dose (the real dose delivered to the target and OARs) for 2 adaptive replanning scenarios that assumed a very small PTV margin of only 3 mm to account for setup and internal interfractional motion: (1) a preprogrammed, anatomy-driven midtreatment replan (A-IMRT); and (2) a dosimetry-triggered replan driven by target dose accumulation over time (D-IMRT). Results: Across all 30 patients, clinically relevant target dose thresholds failed for 8 patients (27%) if 3-mm margins were used without replanning. A-IMRT failed in only 3 patients and also yielded an additional small reduction in OAR doses at the cost of 30 replans. D-IMRT assured adequate target coverage in all patients, with only 23 replans in 16 patients. Conclusions: A novel, dosimetry-triggered adaptive IMRT strategy for patients with cervical cancer can minimize the risk of target underdosing in the setting of very small margins and substantial interfractional motion while minimizing programmatic workload and cost.

  2. Intensity-Modulated Radiation Therapy in Childhood Ependymoma

    SciTech Connect

    Schroeder, Thomas M.; Chintagumpala, Murali; Okcu, M. Fatih; Chiu, J. Kam; Teh, Bin S.; Woo, Shiao Y.; Paulino, Arnold C.

    2008-07-15

    Purpose: To determine the patterns of failure after intensity-modulated radiation therapy (IMRT) for localized intracranial ependymoma. Methods and Materials: From 1994 to 2005, 22 children with pathologically proven, localized, intracranial ependymoma were treated with adjuvant IMRT. Of the patients, 12 (55%) had an infratentorial tumor and 14 (64%) had anaplastic histology. Five patients had a subtotal resection (STR), as evidenced by postoperative magnetic resonance imaging. The clinical target volume encompassed the tumor bed and any residual disease plus margin (median dose 54 Gy). Median follow-up for surviving patients was 39.8 months. Results: The 3-year overall survival rate was 87% {+-} 9%. The 3-year local control rate was 68% {+-} 12%. There were six local recurrences, all in the high-dose region of the treatment field. Median time to recurrence was 21.7 months. Of the 5 STR patients, 4 experienced recurrence and 3 died. Patients with a gross total resection had significantly better local control (p = 0.024) and overall survival (p = 0.008) than those with an STR. At last follow-up, no patient had developed visual loss, brain necrosis, myelitis, or a second malignancy. Conclusions: Treatment with IMRT provides local control and survival rates comparable with those in historic publications using larger treatment volumes. All failures were within the high-dose region, suggesting that IMRT does not diminish local control. The degree of surgical resection was shown to be significant for local control and survival.

  3. Survey of resident education in intensity-modulated radiation therapy.

    PubMed

    Malik, Renuka; Oh, Julia L; Roeske, John C; Mundt, Arno J

    2005-06-01

    Intensity-modulated radiation therapy (IMRT) has been gaining increasing popularity among practicing physicians in the U.S., but the extent to which radiation oncology residents are taught the principles of this technology and are trained to use IMRT remains unknown. In this paper, we assessed the current level of resident education in IMRT in the United States. Chief residents at all 77 accredited radiation oncology programs were sent a 13-question survey addressing formal didactics and hands-on experience in IMRT. The survey assessed the frequency, subject, and format of IMRT didactics. Questions also addressed the number of IMRT patients and anatomical sites treated, resident involvement in the IMRT process, and the intent of IMRT use. Finally, residents were asked for their opinions on their IMRT education. Sixty-one surveys (79%) were completed. Overall, forty-three respondents (71%) reported receiving formal IMRT didactics, with nearly one-third reporting extensive didactics (> or = 3 lectures/seminars et cetera per year). The most common didactic formats were lectures (95%) and journal clubs (63%), most commonly supervised by physicists (98%). Involvement by physicians and radiobiologists were reported by 63% and 7% of respondents, respectively. Overall, 87% of respondents had hands-on IMRT training, with nearly one-half having treated > 25 patients. The most common sites treated were head and neck (94%) and prostate (81%). Involvement in all aspects of the IMRT process was common, particularly target and tissue delineation (98%) and plan evaluation (93%). Most respondents (79%) with hands-on experience reported receiving formal didactics. However, nearly one-third received no or only minimal formal didactics. The percentage of respondents desiring increased IMRT didactics and hands-on experience were 70% and 47%, respectively. Our results suggest that the great majority of radiation oncology residents in the United States are currently exposed to didactics

  4. Intensity Modulated Radiation Therapy With Dose Painting to Treat Rhabdomyosarcoma

    SciTech Connect

    Yang, Joanna C.; Dharmarajan, Kavita V.; Wexler, Leonard H.; La Quaglia, Michael P.; Happersett, Laura; Wolden, Suzanne L.

    2012-11-01

    Purpose: To examine local control and patterns of failure in rhabdomyosarcoma patients treated with intensity modulated radiation therapy (RT) with dose painting (DP-IMRT). Patients and Methods: A total of 41 patients underwent DP-IMRT with chemotherapy for definitive treatment. Nineteen also underwent surgery with or without intraoperative RT. Fifty-six percent had alveolar histologic features. The median interval from beginning chemotherapy to RT was 17 weeks (range, 4-25). Very young children who underwent second-look procedures with or without intraoperative RT received reduced doses of 24-36 Gy in 1.4-1.8-Gy fractions. Young adults received 50.4 Gy to the primary tumor and lower doses of 36 Gy in 1.8-Gy fractions to at-risk lymph node chains. Results: With 22 months of median follow-up, the actuarial local control rate was 90%. Patients aged {<=}7 years who received reduced overall and fractional doses had 100% local control, and young adults had 79% (P=.07) local control. Three local failures were identified in young adults whose primary target volumes had received 50.4 Gy in 1.8-Gy fractions. Conclusions: DP-IMRT with lower fractional and cumulative doses is feasible for very young children after second-look procedures with or without intraoperative RT. DP-IMRT is also feasible in adolescents and young adults with aggressive disease who would benefit from prophylactic RT to high-risk lymph node chains, although dose escalation might be warranted for improved local control. With limited follow-up, it appears that DP-IMRT produces local control rates comparable to those of sequential IMRT in patients with rhabdomyosarcoma.

  5. A comprehensive dosimetric study of pancreatic cancer treatment using three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), volumetric-modulated radiation therapy (VMAT), and passive-scattering and modulated-scanning proton therapy (PT)

    SciTech Connect

    Ding, Xuanfeng; Dionisi, Francesco; Tang, Shikui; Ingram, Mark; Hung, Chun-Yu; Prionas, Evangelos; Lichtenwalner, Phil; Butterwick, Ian; Zhai, Huifang; Yin, Lingshu; Lin, Haibo; Kassaee, Alireza; Avery, Stephen

    2014-07-01

    With traditional photon therapy to treat large postoperative pancreatic target volume, it often leads to poor tolerance of the therapy delivered and may contribute to interrupted treatment course. This study was performed to evaluate the potential advantage of using passive-scattering (PS) and modulated-scanning (MS) proton therapy (PT) to reduce normal tissue exposure in postoperative pancreatic cancer treatment. A total of 11 patients with postoperative pancreatic cancer who had been previously treated with PS PT in University of Pennsylvania Roberts Proton Therapy Center from 2010 to 2013 were identified. The clinical target volume (CTV) includes the pancreatic tumor bed as well as the adjacent high-risk nodal areas. Internal (iCTV) was generated from 4-dimensional (4D) computed tomography (CT), taking into account target motion from breathing cycle. Three-field and 4-field 3D conformal radiation therapy (3DCRT), 5-field intensity-modulated radiation therapy, 2-arc volumetric-modulated radiation therapy, and 2-field PS and MS PT were created on the patients’ average CT. All the plans delivered 50.4 Gy to the planning target volume (PTV). Overall, 98% of PTV was covered by 95% of the prescription dose and 99% of iCTV received 98% prescription dose. The results show that all the proton plans offer significant lower doses to the left kidney (mean and V{sub 18} {sub Gy}), stomach (mean and V{sub 20} {sub Gy}), and cord (maximum dose) compared with all the photon plans, except 3-field 3DCRT in cord maximum dose. In addition, MS PT also provides lower doses to the right kidney (mean and V{sub 18} {sub Gy}), liver (mean dose), total bowel (V{sub 20} {sub Gy} and mean dose), and small bowel (V{sub 15} {sub Gy} absolute volume ratio) compared with all the photon plans and PS PT. The dosimetric advantage of PT points to the possibility of treating tumor bed and comprehensive nodal areas while providing a more tolerable treatment course that could be used for dose

  6. Inverse planning optimization method for intensity modulated radiation therapy.

    PubMed

    Lan, Yihua; Ren, Haozheng; Li, Cunhua; Min, Zhifang; Wan, Jinxin; Ma, Jianxin; Hung, Chih-Cheng

    2013-10-01

    In order to facilitate the leaf sequencing process in intensity modulated radiation therapy (IMRT), and design of a practical leaf sequencing algorithm, it is an important issue to smooth the planned fluence maps. The objective is to achieve both high-efficiency and high-precision dose delivering by considering characteristics of leaf sequencing process. The key factor which affects total number of monitor units for the leaf sequencing optimization process is the max flow value of the digraph which formulated from the fluence maps. Therefore, we believe that one strategy for compromising dose conformity and total number of monitor units in dose delivery is to balance the dose distribution function and the max flow value mentioned above. However, there are too many paths in the digraph, and we don't know the flow value of which path is the maximum. The maximum flow value among the horizontal paths was selected and used in the objective function of the fluence map optimization to formulate the model. The model is a traditional linear constrained quadratic optimization model which can be solved by interior point method easily. We believe that the smoothed maps from this model are more suitable for leaf sequencing optimization process than other smoothing models. A clinical head-neck case and a prostate case were tested and compared using our proposed model and the smoothing model which is based on the minimization of total variance. The optimization results with the same level of total number of monitor units (TNMU) show that the fluence maps obtained from our model have much better dose performance for the target/non-target region than the maps from total variance based on the smoothing model. This indicates that our model achieves better dose distribution when the algorithm suppresses the TNMU at the same level. Although we have just used the max flow value of the horizontal paths in the diagraph in the objective function, a good balance has been achieved between

  7. Intensity-Modulated Radiation Therapy, Proton Therapy, or Conformal Radiation Therapy and Morbidity and Disease Control in Localized Prostate Cancer

    PubMed Central

    Sheets, Nathan C.; Goldin, Gregg H.; Meyer, Anne-Marie; Wu, Yang; Chang, YunKyung; Stürmer, Til; Holmes, Jordan A.; Reeve, Bryce B.; Godley, Paul A.; Carpenter, William R.; Chen, Ronald C.

    2013-01-01

    Context There has been rapid adoption of newer radiation treatments such as intensitymodulated radiation therapy (IMRT) and proton therapy despite greater cost and limited demonstrated benefit compared with previous technologies. Objective To determine the comparative morbidity and disease control of IMRT, proton therapy, and conformal radiation therapy for primary prostate cancer treatment. Design, Setting, and Patients Population-based study using Surveillance, Epidemiology, and End Results–Medicare-linked data from 2000 through 2009 for patients with nonmetastatic prostate cancer. Main Outcome Measures Rates of gastrointestinal and urinary morbidity, erectile dysfunction, hip fractures, and additional cancer therapy. Results Use of IMRT vs conformal radiation therapy increased from 0.15% in 2000 to 95.9% in 2008. In propensity score–adjusted analyses (N=12 976), men who received IMRT vs conformal radiation therapy were less likely to receive a diagnosis of gastrointestinal morbidities (absolute risk, 13.4 vs 14.7 per 100 person-years; relative risk [RR], 0.91; 95% CI, 0.86–0.96) and hip fractures (absolute risk, 0.8 vs 1.0 per 100 person-years; RR, 0.78; 95% CI, 0.65–0.93) but more likely to receive a diagnosis of erectile dysfunction (absolute risk, 5.9 vs 5.3 per 100 person-years; RR, 1.12; 95% CI, 1.03–1.20). Intensitymodulated radiation therapy patients were less likely to receive additional cancer therapy (absolute risk, 2.5 vs 3.1 per 100 person-years; RR, 0.81; 95% CI, 0.73–0.89). In a propensity score–matched comparison between IMRT and proton therapy (n=1368), IMRT patients had a lower rate of gastrointestinal morbidity (absolute risk, 12.2 vs 17.8 per 100 person-years; RR, 0.66; 95% CI, 0.55–0.79). There were no significant differences in rates of other morbidities or additional therapies between IMRT and proton therapy. Conclusions Among patients with nonmetastatic prostate cancer, the use of IMRT compared with conformal radiation

  8. Strategies for quality assurance of intensity modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Benedek, Hunor; Isacsson, Ulf; Olevik-Dunder, Maria; Westermark, Mathias; Hållström, Per; Olofsson, Jörgen; Gustafsson, Magnus

    2015-01-01

    In late 2011 The Swedish Society of Radiation Physics formed a working group to concentrate on the Quality Assurance of modern radiation therapy techniques. The given task was to identify and summarise the different QA strategies in Sweden and also the international recommendations. This was used to formulate recommendations for practical guidelines within Sweden. In this paper a brief summery of the group's work is presented. All the Swedish radiation therapy centres do a pre treatment verification measurement as QA for every new IMRT and VMAT plan. Physicists do it and they believe it to be time consuming. A general standpoint from all the centres was that new guidelines and legislation is needed to allow QA that does not require a measurement. Based on various international publications and recommendations the working group has presented two strategies, one where all new plans are checked through measurement and one where no measurement is needed. The measurement- based strategy is basically the same as the one used today with an extended machine QA part. The other presented strategy is process oriented where all the different parts of the treatment chain are checked separately. The final report can be found in Swedish on http://www.radiofysik.org.

  9. Accuracy of Real-time Couch Tracking During 3-dimensional Conformal Radiation Therapy, Intensity Modulated Radiation Therapy, and Volumetric Modulated Arc Therapy for Prostate Cancer

    SciTech Connect

    Wilbert, Juergen; Baier, Kurt; Hermann, Christian; Flentje, Michael; Guckenberger, Matthias

    2013-01-01

    Purpose: To evaluate the accuracy of real-time couch tracking for prostate cancer. Methods and Materials: Intrafractional motion trajectories of 15 prostate cancer patients were the basis for this phantom study; prostate motion had been monitored with the Calypso System. An industrial robot moved a phantom along these trajectories, motion was detected via an infrared camera system, and the robotic HexaPOD couch was used for real-time counter-steering. Residual phantom motion during real-time tracking was measured with the infrared camera system. Film dosimetry was performed during delivery of 3-dimensional conformal radiation therapy (3D-CRT), step-and-shoot intensity modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT). Results: Motion of the prostate was largest in the anterior-posterior direction, with systematic ( N-Ary-Summation ) and random ({sigma}) errors of 2.3 mm and 2.9 mm, respectively; the prostate was outside a threshold of 5 mm (3D vector) for 25.0%{+-}19.8% of treatment time. Real-time tracking reduced prostate motion to N-Ary-Summation =0.01 mm and {sigma} = 0.55 mm in the anterior-posterior direction; the prostate remained within a 1-mm and 5-mm threshold for 93.9%{+-}4.6% and 99.7%{+-}0.4% of the time, respectively. Without real-time tracking, pass rates based on a {gamma} index of 2%/2 mm in film dosimetry ranged between 66% and 72% for 3D-CRT, IMRT, and VMAT, on average. Real-time tracking increased pass rates to minimum 98% on average for 3D-CRT, IMRT, and VMAT. Conclusions: Real-time couch tracking resulted in submillimeter accuracy for prostate cancer, which transferred into high dosimetric accuracy independently of whether 3D-CRT, IMRT, or VMAT was used.

  10. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    PubMed Central

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    2013-01-01

    Introduction Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. Methods A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. Results The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. Conclusion The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques. PMID:26229623

  11. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    SciTech Connect

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    2013-12-15

    Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.

  12. Feasibility of a unified approach to intensity-modulated radiation therapy and volume-modulated arc therapy optimization and delivery

    SciTech Connect

    Hoover, Douglas A. Chen, Jeff Z.; MacFarlane, Michael; Wong, Eugene; Battista, Jerry J.

    2015-02-15

    Purpose: To study the feasibility of unified intensity-modulated arc therapy (UIMAT) which combines intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) optimization and delivery to produce superior radiation treatment plans, both in terms of dose distribution and efficiency of beam delivery when compared with either VMAT or IMRT alone. Methods: An inverse planning algorithm for UIMAT was prototyped within the PINNACLE treatment planning system (Philips Healthcare). The IMRT and VMAT deliveries are unified within the same arc, with IMRT being delivered at specific gantry angles within the arc. Optimized gantry angles for the IMRT and VMAT phases are assigned automatically by the inverse optimization algorithm. Optimization of the IMRT and VMAT phases is done simultaneously using a direct aperture optimization algorithm. Five treatment plans each for prostate, head and neck, and lung were generated using a unified optimization technique and compared with clinical IMRT or VMAT plans. Delivery verification was performed with an ArcCheck phantom (Sun Nuclear) on a Varian TrueBeam linear accelerator (Varian Medical Systems). Results: In this prototype implementation, the UIMAT plans offered the same target dose coverage while reducing mean doses to organs at risk by 8.4% for head-and-neck cases, 5.7% for lung cases, and 3.5% for prostate cases, compared with the VMAT or IMRT plans. In addition, UIMAT can be delivered with similar efficiency as VMAT. Conclusions: In this proof-of-concept work, a novel radiation therapy optimization and delivery technique that interlaces VMAT or IMRT delivery within the same arc has been demonstrated. Initial results show that unified VMAT/IMRT has the potential to be superior to either standard IMRT or VMAT.

  13. Quantitative analysis of tomotherapy, linear-accelerator-based 3D conformal radiation therapy, intensity-modulated radiation therapy, and 4D conformal radiation therapy

    NASA Astrophysics Data System (ADS)

    Cho, Jae-Hwan; Lee, Hae-Kag; Dong, Kyung-Rae; Chung, Woon-Kwan; Lee, Jong-Woong; Park, Hoon-Hee

    2012-04-01

    This study quantified, evaluated and analyzed the radiation dose to which tumors and normal tissues were exposed in 3D conformal radiation therapy (CRT), intensity-modulated radiation therapy (IMRT) and tomotherapy by using a dose volume histogram (DVH) that represented the volume dose and the dose distribution of anatomical structures in the evaluation of treatment planning. Furthermore, a comparison was made for the dose to the gross tumor volume (GTV) and the planning target volume (PTV) of organ to be treated based on the change in field size for three- and four-dimensional computed tomography (3D-CT and 4D-CT) (gating based) and in the histogram with a view to proving the usefulness of 4D-CT therapy, which corresponds to respiration-gated radiation therapy. According to the study results, a comparison of 3D CRT, IMRT with a linear accelerator (LINAC), and tomotherapy demonstrated that the GTV of the cranium was higher for tomotherapy than for 3D CRT and IMRT with a LINAC by 5.2% and 4.6%, respectively. The GTV of the neck was higher for tomotherapy than for 3D CRT and IMRT with a LINAC by 6.5% and 2.0%, respectively. The GTV of the pelvis was higher for tomotherapy than for 3D CRT and IMRT with a LINAC by 8.6% and 3.7%, respectively. When the comparison was made for the 3D-CT and the 4D-CT (gating based) treatment equipment, the GTV and the PTV became smaller for 4D-CT treatment planning than for 3D-CT, which could reduce the area in which normal tissues in the surroundings are exposed to an unnecessary radiation dose. In addition, when 4D-CT treatment planning (gating based) was used, the radiation dose could be concentrated on the GTV, CTV or PTV, which meant that the treatment area exceeded that when 3D-CT's treatment planning was used. Moreover, the radiation dose on nearby normal tissues could be reduced. When 4D-CT treatment planning (gating based) was utilized, unnecessary areas that were exposed to a radiation dose could be reduced more than they could

  14. Radiation Therapy

    MedlinePlus

    ... people who have radiation therapy may feel more tired than usual, not feel hungry, or lose their ... of radiation therapy include: Fatigue. Fatigue, or feeling tired, is the most common side effect of radiation ...

  15. Radiation therapy

    MedlinePlus

    ... Because radiation is most harmful to quickly growing cells, radiation therapy damages cancer cells more than normal cells. ... cells from growing and dividing, and leads to cell death. Radiation therapy is used to fight many types of ...

  16. Imaging Changes in Pediatric Intracranial Ependymoma Patients Treated With Proton Beam Radiation Therapy Compared to Intensity Modulated Radiation Therapy

    SciTech Connect

    Gunther, Jillian R.; Sato, Mariko; Chintagumpala, Murali; Ketonen, Leena; Jones, Jeremy Y.; Allen, Pamela K.; Paulino, Arnold C.; Okcu, M. Fatih; Su, Jack M.; Weinberg, Jeffrey; Boehling, Nicholas S.; Khatua, Soumen; Adesina, Adekunle; Dauser, Robert; Whitehead, William E.; Mahajan, Anita

    2015-09-01

    Purpose: The clinical significance of magnetic resonance imaging (MRI) changes after radiation therapy (RT) in children with ependymoma is not well defined. We compared imaging changes following proton beam radiation therapy (PBRT) to those after photon-based intensity modulated RT (IMRT). Methods and Materials: Seventy-two patients with nonmetastatic intracranial ependymoma who received postoperative RT (37 PBRT, 35 IMRT) were analyzed retrospectively. MRI images were reviewed by 2 neuroradiologists. Results: Sixteen PBRT patients (43%) developed postradiation MRI changes at 3.8 months (median) with resolution by 6.1 months. Six IMRT patients (17%) developed changes at 5.3 months (median) with 8.3 months to resolution. Mean age at radiation was 4.4 and 6.9 years for PBRT and IMRT, respectively (P=.06). Age at diagnosis (>3 years) and time of radiation (≥3 years) was associated with fewer imaging changes on univariate analysis (odds ratio [OR]: 0.35, P=.048; OR: 0.36, P=.05). PBRT (compared to IMRT) was associated with more frequent imaging changes, both on univariate (OR: 3.68, P=.019) and multivariate (OR: 3.89, P=.024) analyses. Seven (3 IMRT, 4 PBRT) of 22 patients with changes had symptoms requiring intervention. Most patients were treated with steroids; some PBRT patients also received bevacizumab and hyperbaric oxygen therapy. None of the IMRT patients had lasting deficits, but 2 patients died from recurrent disease. Three PBRT patients had persistent neurological deficits, and 1 child died secondarily to complications from radiation necrosis. Conclusions: Postradiation MRI changes are more common with PBRT and in patients less than 3 years of age at diagnosis and treatment. It is difficult to predict causes for development of imaging changes that progress to clinical significance. These changes are usually self-limiting, but some require medical intervention, especially those involving the brainstem.

  17. Stereotactic body radiation therapy planning with duodenal sparing using volumetric-modulated arc therapy vs intensity-modulated radiation therapy in locally advanced pancreatic cancer: A dosimetric analysis

    SciTech Connect

    Kumar, Rachit; Wild, Aaron T.; Ziegler, Mark A.; Hooker, Ted K.; Dah, Samson D.; Tran, Phuoc T.; Kang, Jun; Smith, Koren; Zeng, Jing; Pawlik, Timothy M.; Tryggestad, Erik; Ford, Eric; Herman, Joseph M.

    2013-10-01

    Stereotactic body radiation therapy (SBRT) achieves excellent local control for locally advanced pancreatic cancer (LAPC), but may increase late duodenal toxicity. Volumetric-modulated arc therapy (VMAT) delivers intensity-modulated radiation therapy (IMRT) with a rotating gantry rather than multiple fixed beams. This study dosimetrically evaluates the feasibility of implementing duodenal constraints for SBRT using VMAT vs IMRT. Non–duodenal sparing (NS) and duodenal-sparing (DS) VMAT and IMRT plans delivering 25 Gy in 1 fraction were generated for 15 patients with LAPC. DS plans were constrained to duodenal D{sub max} of<30 Gy at any point. VMAT used 1 360° coplanar arc with 4° spacing between control points, whereas IMRT used 9 coplanar beams with fixed gantry positions at 40° angles. Dosimetric parameters for target volumes and organs at risk were compared for DS planning vs NS planning and VMAT vs IMRT using paired-sample Wilcoxon signed rank tests. Both DS VMAT and DS IMRT achieved significantly reduced duodenal D{sub mean}, D{sub max}, D{sub 1cc}, D{sub 4%}, and V{sub 20} {sub Gy} compared with NS plans (all p≤0.002). DS constraints compromised target coverage for IMRT as demonstrated by reduced V{sub 95%} (p = 0.01) and D{sub mean} (p = 0.02), but not for VMAT. DS constraints resulted in increased dose to right kidney, spinal cord, stomach, and liver for VMAT. Direct comparison of DS VMAT and DS IMRT revealed that VMAT was superior in sparing the left kidney (p<0.001) and the spinal cord (p<0.001), whereas IMRT was superior in sparing the stomach (p = 0.05) and the liver (p = 0.003). DS VMAT required 21% fewer monitor units (p<0.001) and delivered treatment 2.4 minutes faster (p<0.001) than DS IMRT. Implementing DS constraints during SBRT planning for LAPC can significantly reduce duodenal point or volumetric dose parameters for both VMAT and IMRT. The primary consequence of implementing DS constraints for VMAT is increased dose to other organs at

  18. Stereotactic body radiation therapy planning with duodenal sparing using volumetric-modulated arc therapy vs intensity-modulated radiation therapy in locally advanced pancreatic cancer: a dosimetric analysis.

    PubMed

    Kumar, Rachit; Wild, Aaron T; Ziegler, Mark A; Hooker, Ted K; Dah, Samson D; Tran, Phuoc T; Kang, Jun; Smith, Koren; Zeng, Jing; Pawlik, Timothy M; Tryggestad, Erik; Ford, Eric; Herman, Joseph M

    2013-01-01

    Stereotactic body radiation therapy (SBRT) achieves excellent local control for locally advanced pancreatic cancer (LAPC), but may increase late duodenal toxicity. Volumetric-modulated arc therapy (VMAT) delivers intensity-modulated radiation therapy (IMRT) with a rotating gantry rather than multiple fixed beams. This study dosimetrically evaluates the feasibility of implementing duodenal constraints for SBRT using VMAT vs IMRT. Non-duodenal sparing (NS) and duodenal-sparing (DS) VMAT and IMRT plans delivering 25Gy in 1 fraction were generated for 15 patients with LAPC. DS plans were constrained to duodenal Dmax of<30Gy at any point. VMAT used 1 360° coplanar arc with 4° spacing between control points, whereas IMRT used 9 coplanar beams with fixed gantry positions at 40° angles. Dosimetric parameters for target volumes and organs at risk were compared for DS planning vs NS planning and VMAT vs IMRT using paired-sample Wilcoxon signed rank tests. Both DS VMAT and DS IMRT achieved significantly reduced duodenal Dmean, Dmax, D1cc, D4%, and V20Gy compared with NS plans (all p≤0.002). DS constraints compromised target coverage for IMRT as demonstrated by reduced V95% (p = 0.01) and Dmean (p = 0.02), but not for VMAT. DS constraints resulted in increased dose to right kidney, spinal cord, stomach, and liver for VMAT. Direct comparison of DS VMAT and DS IMRT revealed that VMAT was superior in sparing the left kidney (p<0.001) and the spinal cord (p<0.001), whereas IMRT was superior in sparing the stomach (p = 0.05) and the liver (p = 0.003). DS VMAT required 21% fewer monitor units (p<0.001) and delivered treatment 2.4 minutes faster (p<0.001) than DS IMRT. Implementing DS constraints during SBRT planning for LAPC can significantly reduce duodenal point or volumetric dose parameters for both VMAT and IMRT. The primary consequence of implementing DS constraints for VMAT is increased dose to other organs at risk, whereas for IMRT it is compromised target coverage

  19. FusionArc optimization: A hybrid volumetric modulated arc therapy (VMAT) and intensity modulated radiation therapy (IMRT) planning strategy

    SciTech Connect

    Matuszak, Martha M.; McShan, Daniel L.; Ten Haken, Randall K.; Steers, Jennifer M.; Long, Troy; Edwin Romeijn, H.; Fraass, Benedick A.

    2013-07-15

    Purpose: To introduce a hybrid volumetric modulated arc therapy/intensity modulated radiation therapy (VMAT/IMRT) optimization strategy called FusionArc that combines the delivery efficiency of single-arc VMAT with the potentially desirable intensity modulation possible with IMRT.Methods: A beamlet-based inverse planning system was enhanced to combine the advantages of VMAT and IMRT into one comprehensive technique. In the hybrid strategy, baseline single-arc VMAT plans are optimized and then the current cost function gradients with respect to the beamlets are used to define a metric for predicting which beam angles would benefit from further intensity modulation. Beams with the highest metric values (called the gradient factor) are converted from VMAT apertures to IMRT fluence, and the optimization proceeds with the mixed variable set until convergence or until additional beams are selected for conversion. One phantom and two clinical cases were used to validate the gradient factor and characterize the FusionArc strategy. Comparisons were made between standard IMRT, single-arc VMAT, and FusionArc plans with one to five IMRT/hybrid beams.Results: The gradient factor was found to be highly predictive of the VMAT angles that would benefit plan quality the most from beam modulation. Over the three cases studied, a FusionArc plan with three converted beams achieved superior dosimetric quality with reductions in final cost ranging from 26.4% to 48.1% compared to single-arc VMAT. Additionally, the three beam FusionArc plans required 22.4%-43.7% fewer MU/Gy than a seven beam IMRT plan. While the FusionArc plans with five converted beams offer larger reductions in final cost-32.9%-55.2% compared to single-arc VMAT-the decrease in MU/Gy compared to IMRT was noticeably smaller at 12.2%-18.5%, when compared to IMRT.Conclusions: A hybrid VMAT/IMRT strategy was implemented to find a high quality compromise between gantry-angle and intensity-based degrees of freedom. This

  20. FusionArc optimization: A hybrid volumetric modulated arc therapy (VMAT) and intensity modulated radiation therapy (IMRT) planning strategy

    PubMed Central

    Matuszak, Martha M.; Steers, Jennifer M.; Long, Troy; McShan, Daniel L.; Fraass, Benedick A.; Edwin Romeijn, H.; Ten Haken, Randall K.

    2013-01-01

    Purpose: To introduce a hybrid volumetric modulated arc therapy/intensity modulated radiation therapy (VMAT/IMRT) optimization strategy called FusionArc that combines the delivery efficiency of single-arc VMAT with the potentially desirable intensity modulation possible with IMRT. Methods: A beamlet-based inverse planning system was enhanced to combine the advantages of VMAT and IMRT into one comprehensive technique. In the hybrid strategy, baseline single-arc VMAT plans are optimized and then the current cost function gradients with respect to the beamlets are used to define a metric for predicting which beam angles would benefit from further intensity modulation. Beams with the highest metric values (called the gradient factor) are converted from VMAT apertures to IMRT fluence, and the optimization proceeds with the mixed variable set until convergence or until additional beams are selected for conversion. One phantom and two clinical cases were used to validate the gradient factor and characterize the FusionArc strategy. Comparisons were made between standard IMRT, single-arc VMAT, and FusionArc plans with one to five IMRT/hybrid beams. Results: The gradient factor was found to be highly predictive of the VMAT angles that would benefit plan quality the most from beam modulation. Over the three cases studied, a FusionArc plan with three converted beams achieved superior dosimetric quality with reductions in final cost ranging from 26.4% to 48.1% compared to single-arc VMAT. Additionally, the three beam FusionArc plans required 22.4%–43.7% fewer MU/Gy than a seven beam IMRT plan. While the FusionArc plans with five converted beams offer larger reductions in final cost—32.9%–55.2% compared to single-arc VMAT—the decrease in MU/Gy compared to IMRT was noticeably smaller at 12.2%–18.5%, when compared to IMRT. Conclusions: A hybrid VMAT/IMRT strategy was implemented to find a high quality compromise between gantry-angle and intensity-based degrees of freedom

  1. Dosimetric comparison of volumetric modulated arc therapy with robotic stereotactic radiation therapy in hepatocellular carcinoma

    PubMed Central

    Paik, Eun Kyung; Choi, Chul Won; Jang, Won Il; Lee, Sung Hyun; Choi, Sang Hyoun; Kim, Kum Bae; Lee, Dong Han

    2015-01-01

    Purpose To compare volumetric modulated arc therapy of RapidArc with robotic stereotactic body radiation therapy (SBRT) of CyberKnife in the planning and delivery of SBRT for hepatocellular carcinoma (HCC) treatment by analyzing dosimetric parameters. Materials and Methods Two radiation treatment plans were generated for 29 HCC patients, one using Eclipse for the RapidArc plan and the other using Multiplan for the CyberKnife plan. The prescription dose was 60 Gy in 3 fractions. The dosimetric parameters of planning target volume (PTV) coverage and normal tissue sparing in the RapidArc and the CyberKnife plans were analyzed. Results The conformity index was 1.05 ± 0.02 for the CyberKnife plan, and 1.13 ± 0.10 for the RapidArc plan. The homogeneity index was 1.23 ± 0.01 for the CyberKnife plan, and 1.10 ± 0.03 for the RapidArc plan. For the normal liver, there were significant differences between the two plans in the low-dose regions of V1 and V3. The normalized volumes of V60 for the normal liver in the RapidArc plan were drastically increased when the mean dose of the PTVs in RapidArc plan is equivalent to the mean dose of the PTVs in the CyberKnife plan. Conclusion CyberKnife plans show greater dose conformity, especially in small-sized tumors, while RapidArc plans show good dosimetric distribution of low dose sparing in the normal liver and body. PMID:26484307

  2. Redox-Modulated Phenomena and Radiation Therapy: The Central Role of Superoxide Dismutases

    PubMed Central

    Holley, Aaron K.; Miao, Lu; St. Clair, Daret K.

    2014-01-01

    Abstract Significance: Ionizing radiation is a vital component in the oncologist's arsenal for the treatment of cancer. Approximately 50% of all cancer patients will receive some form of radiation therapy as part of their treatment regimen. DNA is considered the major cellular target of ionizing radiation and can be damaged directly by radiation or indirectly through reactive oxygen species (ROS) formed from the radiolysis of water, enzyme-mediated ROS production, and ROS resulting from altered aerobic metabolism. Recent Advances: ROS are produced as a byproduct of oxygen metabolism, and superoxide dismutases (SODs) are the chief scavengers. ROS contribute to the radioresponsiveness of normal and tumor tissues, and SODs modulate the radioresponsiveness of tissues, thus affecting the efficacy of radiotherapy. Critical Issues: Despite its prevalent use, radiation therapy suffers from certain limitations that diminish its effectiveness, including tumor hypoxia and normal tissue damage. Oxygen is important for the stabilization of radiation-induced DNA damage, and tumor hypoxia dramatically decreases radiation efficacy. Therefore, auxiliary therapies are needed to increase the effectiveness of radiation therapy against tumor tissues while minimizing normal tissue injury. Future Directions: Because of the importance of ROS in the response of normal and cancer tissues to ionizing radiation, methods that differentially modulate the ROS scavenging ability of cells may prove to be an important method to increase the radiation response in cancer tissues and simultaneously mitigate the damaging effects of ionizing radiation on normal tissues. Altering the expression or activity of SODs may prove valuable in maximizing the overall effectiveness of ionizing radiation. Antioxid. Redox Signal. 20, 1567–1589. PMID:24094070

  3. Radiation Therapy

    MedlinePlus

    Radiation therapy is a cancer treatment. It uses high doses of radiation to kill cancer cells and stop them from ... half of all cancer patients receive it. The radiation may be external, from special machines, or internal, ...

  4. Cost-Effectiveness Analysis of Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy for Anal Cancer

    SciTech Connect

    Hodges, Joseph C.; Beg, Muhammad S.; Das, Prajnan; Meyer, Jeffrey

    2014-07-15

    Purpose: To compare the cost-effectiveness of intensity modulated radiation therapy (IMRT) and 3-dimensional conformal radiation therapy (3D-CRT) for anal cancer and determine disease, patient, and treatment parameters that influence the result. Methods and Materials: A Markov decision model was designed with the various disease states for the base case of a 65-year-old patient with anal cancer treated with either IMRT or 3D-CRT and concurrent chemotherapy. Health states accounting for rates of local failure, colostomy failure, treatment breaks, patient prognosis, acute and late toxicities, and the utility of toxicities were informed by existing literature and analyzed with deterministic and probabilistic sensitivity analysis. Results: In the base case, mean costs and quality-adjusted life expectancy in years (QALY) for IMRT and 3D-CRT were $32,291 (4.81) and $28,444 (4.78), respectively, resulting in an incremental cost-effectiveness ratio of $128,233/QALY for IMRT compared with 3D-CRT. Probabilistic sensitivity analysis found that IMRT was cost-effective in 22%, 47%, and 65% of iterations at willingness-to-pay thresholds of $50,000, $100,000, and $150,000 per QALY, respectively. Conclusions: In our base model, IMRT was a cost-ineffective strategy despite the reduced acute treatment toxicities and their associated costs of management. The model outcome was sensitive to variations in local and colostomy failure rates, as well as patient-reported utilities relating to acute toxicities.

  5. Quality of Intensity Modulated Radiation Therapy Treatment Plans Using a {sup 60}Co Magnetic Resonance Image Guidance Radiation Therapy System

    SciTech Connect

    Wooten, H. Omar Green, Olga; Yang, Min; DeWees, Todd; Kashani, Rojano; Olsen, Jeff; Michalski, Jeff; Yang, Deshan; Tanderup, Kari; Hu, Yanle; Li, H. Harold; Mutic, Sasa

    2015-07-15

    Purpose: This work describes a commercial treatment planning system, its technical features, and its capabilities for creating {sup 60}Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. Methods and Materials: The ViewRay treatment planning system (Oakwood Village, OH) was used to create {sup 60}Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup plans using a third-party linear accelerator (linac)-based planning system were also created. Plans were evaluated by attending physicians and approved for treatment. The {sup 60}Co and linac plans were compared by evaluating conformity numbers (CN) with 100% and 95% of prescription reference doses and heterogeneity indices (HI) for planning target volumes (PTVs) and maximum, mean, and dose-volume histogram (DVH) values for OARs. Results: All {sup 60}Co IMRT plans achieved PTV coverage and OAR sparing that were similar to linac plans. PTV conformity for {sup 60}Co was within <1% and 3% of linac plans for 100% and 95% prescription reference isodoses, respectively, and heterogeneity was on average 4% greater. Comparisons of OAR mean dose showed generally better sparing with linac plans in the low-dose range <20 Gy, but comparable sparing for organs with mean doses >20 Gy. The mean doses for all {sup 60}Co plan OARs were within clinical tolerances. Conclusions: A commercial {sup 60}Co MR-IGRT device can produce highly conformal IMRT treatment plans similar in quality to linac IMRT for a variety of disease sites. Additional work is in progress to evaluate the clinical benefit of other novel features of this MR-IGRT system.

  6. Dosimetric comparison of hybrid volumetric-modulated arc therapy, volumetric-modulated arc therapy, and intensity-modulated radiation therapy for left-sided early breast cancer

    SciTech Connect

    Lin, Jia-Fu; Yeh, Dah-Cherng; Yeh, Hui-Ling; Chang, Chen-Fa; Lin, Jin-Ching

    2015-10-01

    To compare the dosimetric performance of 3 different treatment techniques: hybrid volumetric-modulated arc therapy (hybrid-VMAT), pure-VMAT, and fixed-field intensity-modulated radiation therapy (F-IMRT) for whole-breast irradiation of left-sided early breast cancer. The hybrid-VMAT treatment technique and 2 other treatment techniques—pure-VMAT and F-IMRT—were compared retrospectively in 10 patients with left-sided early breast cancer. The treatment plans of these patients were replanned using the same contours based on the original computed tomography (CT) data sets. Dosimetric parameters were calculated to evaluate plan quality. Total monitor units (MUs) and delivery time were also recorded and evaluated. The hybrid-VMAT plan generated the best results in dose coverage of the target and the dose uniformity inside the target (p < 0.0001 for conformal index [CI]; p = 0.0002 for homogeneity index [HI] of planning target volume [PTV]{sub 50.4} {sub Gy} and p < 0.0001 for HI of PTV{sub 62} {sub Gy}). Volumes of ipsilateral lung irradiated to doses of 20 Gy (V{sub 20} {sub Gy}) and 5 Gy (V{sub 5} {sub Gy}) by the hybrid-VMAT plan were significantly less than those of the F-IMRT and the pure-VMAT plans. The volume of ipsilateral lung irradiated to a dose of 5 Gy was significantly less using the hybrid-VMAT plan than that using the F-IMRT or the pure-VMAT plan. The total mean MUs for the hybrid-VMAT plan were significantly less than those for the F-IMRT or the pure-VMAT plan. The mean machine delivery time was 3.23 ± 0.29 minutes for the hybrid-VMAT plans, which is longer than that for the pure-VMAT plans but shorter than that for the F-IMRT plans. The hybrid-VMAT plan is feasible for whole-breast irradiation of left-sided early breast cancer.

  7. Biological-based optimization and volumetric modulated arc therapy delivery for stereotactic body radiation therapy

    SciTech Connect

    Diot, Quentin; Kavanagh, Brian; Timmerman, Robert; Miften, Moyed

    2012-01-15

    Purpose: To describe biological-based optimization and Monte Carlo (MC) dose calculation-based treatment planning for volumetric modulated arc therapy (VMAT) delivery of stereotactic body radiation therapy (SBRT) in lung, liver, and prostate patients. Methods: Optimization strategies and VMAT planning parameters using a biological-based optimization MC planning system were analyzed for 24 SBRT patients. Patients received a median dose of 45 Gy [range, 34-54 Gy] for lung tumors in 1-5 fxs and a median dose of 52 Gy [range, 48-60 Gy] for liver tumors in 3-6 fxs. Prostate patients received a fractional dose of 10 Gy in 5 fxs. Biological-cost functions were used for plan optimization, and its dosimetric quality was evaluated using the conformity index (CI), the conformation number (CN), the ratio of the volume receiving 50% of the prescription dose over the planning target volume (Rx/PTV50). The quality and efficiency of the delivery were assessed according to measured quality assurance (QA) passing rates and delivery times. For each disease site, one patient was replanned using physical cost function and compared to the corresponding biological plan. Results: Median CI, CN, and Rx/PTV50 for all 24 patients were 1.13 (1.02-1.28), 0.79 (0.70-0.88), and 5.3 (3.1-10.8), respectively. The median delivery rate for all patients was 410 MU/min with a maximum possible rate of 480 MU/min (85%). Median QA passing rate was 96.7%, and it did not significantly vary with the tumor site. Conclusions: VMAT delivery of SBRT plans optimized using biological-motivated cost-functions result in highly conformal dose distributions. Plans offer shorter treatment-time benefits and provide efficient dose delivery without compromising the plan conformity for tumors in the prostate, lung, and liver, thereby improving patient comfort and clinical throughput. The short delivery times minimize the risk of patient setup and intrafraction motion errors often associated with long SBRT treatment

  8. Intensity-modulated radiation therapy, protons, and the risk of second cancers

    SciTech Connect

    Hall, Eric J. . E-mail: ejh1@columbia.edu

    2006-05-01

    Intensity-modulated radiation therapy (IMRT) allows dose to be concentrated in the tumor volume while sparing normal tissues. However, the downside to IMRT is the potential to increase the number of radiation-induced second cancers. The reasons for this potential are more monitor units and, therefore, a larger total-body dose because of leakage radiation and, because IMRT involves more fields, a bigger volume of normal tissue is exposed to lower radiation doses. Intensity-modulated radiation therapy may double the incidence of solid cancers in long-term survivors. This outcome may be acceptable in older patients if balanced by an improvement in local tumor control and reduced acute toxicity. On the other hand, the incidence of second cancers is much higher in children, so that doubling it may not be acceptable. IMRT represents a special case for children for three reasons. First, children are more sensitive to radiation-induced cancer than are adults. Second, radiation scattered from the treatment volume is more important in the small body of the child. Third, the question of genetic susceptibility arises because many childhood cancers involve a germline mutation. The levels of leakage radiation in current Linacs are not inevitable. Leakage can be reduced but at substantial cost. An alternative strategy is to replace X-rays with protons. However, this change is only an advantage if the proton machine employs a pencil scanning beam. Many proton facilities use passive modulation to produce a field of sufficient size, but the use of a scattering foil produces neutrons, which results in an effective dose to the patient higher than that characteristic of IMRT. The benefit of protons is only achieved if a scanning beam is used in which the doses are 10 times lower than with IMRT.

  9. Optimization and quality assurance of an image-guided radiation therapy system for intensity-modulated radiation therapy radiotherapy

    SciTech Connect

    Tsai, Jen-San; Micaily, Bizhan; Miyamoto, Curtis

    2012-10-01

    To develop a quality assurance (QA) of XVI cone beam system (XVIcbs) for its optimal imaging-guided radiotherapy (IGRT) implementation, and to construe prostate tumor margin required for intensity-modulated radiation therapy (IMRT) if IGRT is unavailable. XVIcbs spatial accuracy was explored with a humanoid phantom; isodose conformity to lesion target with a rice phantom housing a soap as target; image resolution with a diagnostic phantom; and exposure validation with a Radcal ion chamber. To optimize XVIcbs, rotation flexmap on coincidency between gantry rotational axis and that of XVI cone beam scan was investigated. Theoretic correlation to image quality of XVIcbs rotational axis stability was elaborately studied. Comprehensive QA of IGRT using XVIcbs has initially been explored and then implemented on our general IMRT treatments, and on special IMRT radiotherapies such as head and neck (H and N), stereotactic radiation therapy (SRT), stereotactic radiosurgery (SRS), and stereotactic body radiotherapy (SBRT). Fifteen examples of prostate setup accounted for 350 IGRT cone beam system were analyzed. IGRT accuracy results were in agreement {+-} 1 mm. Flexmap 0.25 mm met the manufacturer's specification. Films confirmed isodose coincidence with target (soap) via XVIcbs, otherwise not. Superficial doses were measured from 7.2-2.5 cGy for anatomic diameters 15-33 cm, respectively. Image quality was susceptible to rotational stability or patient movement. IGRT using XVIcbs on general IMRT treatments such as prostate, SRT, SRS, and SBRT for setup accuracy were verified; and subsequently coordinate shifts corrections were recorded. The 350 prostate IGRT coordinate shifts modeled to Gaussian distributions show central peaks deviated off the isocenter by 0.6 {+-} 3.0 mm, 0.5 {+-} 4.5 mm in the X(RL)- and Z(SI)-coordinates, respectively; and 2.0 {+-} 3.0 mm in the Y(AP)-coordinate as a result of belly and bladder capacity variations. Sixty-eight percent of confidence was

  10. Breast Intensity-Modulated Radiation Therapy Reduces Time Spent With Acute Dermatitis for Women of All Breast Sizes During Radiation

    SciTech Connect

    Freedman, Gary M. Li Tianyu; Nicolaou, Nicos; Chen Yan; Ma, Charlie C.-M.; Anderson, Penny R.

    2009-07-01

    Purpose: To study the time spent with radiation-induced dermatitis during a course of radiation therapy for breast cancer in women treated with conventional or intensity-modulated radiation therapy (IMRT). Methods and Materials: The study population consisted of 804 consecutive women with early-stage breast cancer treated with breast-conserving surgery and radiation from 2001 to 2006. All patients were treated with whole-breast radiation followed by a boost to the tumor bed. Whole-breast radiation consisted of conventional wedged photon tangents (n = 405) earlier in the study period and mostly of photon IMRT (n = 399) in later years. All patients had acute dermatitis graded each week of treatment. Results: The breakdown of the cases of maximum acute dermatitis by grade was as follows: 3%, Grade 0; 34%, Grade 1; 61%, Grade 2; and 2%, Grade 3. The breakdown of cases of maximum toxicity by technique was as follows: 48%, Grade 0/1, and 52%, Grade 2/3, for IMRT; and 25%, Grade 0/1, and 75%, Grade 2/3, for conventional radiation therapy (p < 0.0001). The IMRT patients spent 82% of weeks during treatment with Grade 0/1 dermatitis and 18% with Grade 2/3 dermatitis, compared with 29% and 71% of patients, respectively, treated with conventional radiation (p < 0.0001). Furthermore, the time spent with Grade 2/3 toxicity was decreased in IMRT patients with small (p = 0.0015), medium (p < 0.0001), and large (p < 0.0001) breasts. Conclusions: Breast IMRT is associated with a significant decrease both in the time spent during treatment with Grade 2/3 dermatitis and in the maximum severity of dermatitis compared with that associated with conventional radiation, regardless of breast size.

  11. Intensity-modulated radiation therapy to bilateral lower limb extremities concurrently: a planning case study

    SciTech Connect

    Fitzgerald, Emma Miles, Wesley; Fenton, Paul; Frantzis, Jim

    2014-09-15

    Non-melanomatous skin cancers represent 80% of all newly diagnosed cancers in Australia with basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) being the most common. A previously healthy 71-year-old woman presented with widespread and tender superficial skin cancers on the lower bilateral limbs. External beam radiation therapy through the use of intensity-modulated radiation therapy (IMRT) was employed as the treatment modality of choice as this technique provides conformal dose distribution to a three-dimensional treatment volume while reducing toxicity to surrounding tissues. The patient was prescribed a dose of 60 Gy to the planning target volume (PTV) with 1.0 cm bolus over the ventral surface of each limb. The beam arrangement consisted of six treatment fields that avoided entry and exit through the contralateral limb. The treatment plans met the International Commission on Radiation Units and Measurements (ICRU) guidelines and produced highly conformal dosimetric results. Skin toxicity was measured against the National Cancer Institute: Common Terminology Criteria for Adverse Events (NCI: CTCAE) version 3. A well-tolerated treatment was delivered with excellent results given the initial extent of the disease. This case study has demonstrated the feasibility and effectiveness of IMRT for skin cancers as an alternative to surgery and traditional superficial radiation therapy, utilising a complex PTV of the extremities for patients with similar presentations.

  12. Radiation efficacy and biological risk from whole-breast irradiation via intensity modulated radiation therapy (IMRT)

    NASA Astrophysics Data System (ADS)

    Desantis, David M.

    Radiotherapy is an established modality for women with breast cancer. During the delivery of external beam radiation to the breast, leakage, scattered x-rays from the patient and the linear accelerator also expose healthy tissues and organs outside of the breast, thereby increasing the patient's whole-body dose, which then increases the chance of developing a secondary, radiation-induced cancer. Generally, there are three IntensityModulated Radiotherapy (IMRT) delivery techniques from a conventional linear accelerator; forward planned (FMLC), inverse planned 'sliding window' (DMLC), and inverse planned 'step-and-shoot' (SMLC). The goal of this study was to determine which of these three techniques delivers an optimal dose to the breast with the least chance of causing a fatal, secondary, radiation-induced cancer. A conventional, non-IMRT, 'Wedge' plan also was compared. Computerized Tomography (CT) data sets for both a large and small sized patient were used in this study. With Varian's Eclipse AAA algorithm, the organ doses specified in the revised ICRP 60 publication were used to calculate the whole-body dose. Also, an anthropomorphic phantom was irradiated with thermoluminescent dosimeters (TLD) at each organ site for measured doses. The risk coefficient from the Biological Effects of Ionizing Radiation (BEIR) VII report of 4.69 x 10-2 deaths per Gy was used to convert whole-body dose to risk of a fatal, secondary, radiation-induced cancer. The FMLC IMRT delivered superior tumor coverage over the 3D conventional plan and the inverse DMLC or SMLC treatment plans delivered clinically equivalent tumor coverage. However, the FMLC plan had the least likelihood of inadvertently causing a fatal, secondary, radiation-induced cancer compared to the inverse DMLC, SMLC, and Wedge plans.

  13. Radiation-Induced Cancers From Modern Radiotherapy Techniques: Intensity-Modulated Radiotherapy Versus Proton Therapy

    SciTech Connect

    Yoon, Myonggeun; Ahn, Sung Hwan; Kim, Jinsung; Shin, Dong Ho; Park, Sung Yong; Lee, Se Byeong; Shin, Kyung Hwan; Cho, Kwan Ho

    2010-08-01

    Purpose: To assess and compare secondary cancer risk resulting from intensity-modulated radiotherapy (IMRT) and proton therapy in patients with prostate and head-and-neck cancer. Methods and Materials: Intensity-modulated radiotherapy and proton therapy in the scattering mode were planned for 5 prostate caner patients and 5 head-and-neck cancer patients. The secondary doses during irradiation were measured using ion chamber and CR-39 detectors for IMRT and proton therapy, respectively. Organ-specific radiation-induced cancer risk was estimated by applying organ equivalent dose to dose distributions. Results: The average secondary doses of proton therapy for prostate cancer patients, measured 20-60cm from the isocenter, ranged from 0.4 mSv/Gy to 0.1 mSv/Gy. The average secondary doses of IMRT for prostate patients, however, ranged between 3 mSv/Gy and 1 mSv/Gy, approximately one order of magnitude higher than for proton therapy. Although the average secondary doses of IMRT were higher than those of proton therapy for head-and-neck cancers, these differences were not significant. Organ equivalent dose calculations showed that, for prostate cancer patients, the risk of secondary cancers in out-of-field organs, such as the stomach, lungs, and thyroid, was at least 5 times higher for IMRT than for proton therapy, whereas the difference was lower for head-and-neck cancer patients. Conclusions: Comparisons of organ-specific organ equivalent dose showed that the estimated secondary cancer risk using scattering mode in proton therapy is either significantly lower than the cases in IMRT treatment or, at least, does not exceed the risk induced by conventional IMRT treatment.

  14. Four-Week Course of Radiation for Breast Cancer Using Hypofractionated Intensity Modulated Radiation Therapy With an Incorporated Boost

    SciTech Connect

    Freedman, Gary M. . E-mail: Gary.Freedman@FCCC.edu; Anderson, Penny R.; Goldstein, Lori J.; Ma Changming; Li Jinsheng; Swaby, Ramona F.; Litwin, Samuel; Watkins-Bruner, Deborah; Sigurdson, Elin R.; Morrow, Monica

    2007-06-01

    Purpose: Standard radiation for early breast cancer requires daily treatment for 6 to 7 weeks. This is an inconvenience to many women, and for some a barrier for breast conservation. We present the acute toxicity of a 4-week course of hypofractionated radiation. Methods and Materials: A total of 75 patients completed radiation on a Phase II trial approved by the hospital institutional review board. Eligibility criteria were broad to include any patient normally eligible for standard radiation: age {>=}18 years, invasive or in situ cancer, American Joint Committee on Cancer Stage 0 to II, breast-conserving surgery, and any systemic therapy not given concurrently. The median age was 52 years (range, 31-81 years). Of the patients, 15% had ductal carcinoma in situ, 67% T1, and 19% T2; 71% were N0, 17% N1, and 12% NX. Chemotherapy was given before radiation in 44%. Using photon intensity-modulated radiation therapy and incorporated electron beam boost, the whole breast received 45 Gy and the lumpectomy bed 56 Gy in 20 treatments over 4 weeks. Results: The maximum acute skin toxicity by the end of treatment was Grade 0 in 9 patients (12%), Grade 1 in 49 (65%) and Grade 2 in 17 (23%). There was no Grade 3 or higher skin toxicity. After radiation, all Grade 2 toxicity had resolved by 6 weeks. Hematologic toxicity was Grade 0 in most patients except for Grade 1 neutropenia in 2 patients, and Grade 1 anemia in 11 patients. There were no significant differences in baseline vs. 6-week posttreatment patient-reported or physician-reported cosmetic scores. Conclusions: This 4-week course of postoperative radiation using intensity-modulated radiation therapy is feasible and is associated with acceptable acute skin toxicity and quality of life. Long-term follow-up data are needed. This radiation schedule may represent an alternative both to longer 6-week to 7-week standard whole-breast radiation and more radically shortened 1-week, partial-breast treatment schedules.

  15. Synthetic single crystal diamond dosimeters for Intensity Modulated Radiation Therapy applications

    NASA Astrophysics Data System (ADS)

    Almaviva, S.; Ciancaglioni, I.; Consorti, R.; De Notaristefani, F.; Manfredotti, C.; Marinelli, Marco; Milani, E.; Petrucci, A.; Prestopino, G.; Verona, C.; Verona-Rinati, G.

    2009-09-01

    A synthetic single crystal diamond Schottky diode, in a p-type/intrinsic/metal structure, deposited by Chemical Vapour Deposition (CVD) and operating in photovoltaic regime, with no external bias voltage applied, was tested as a dosimeter for Intensity Modulated Radiation Therapy (IMRT) applications. The device response was compared with dose measurements from two commercial ionization chambers and a 2D diode array in an IMRT prostate cancer treatment plan. The obtained results indicate that CVD synthetic single crystal diamond-based dosimeters can successfully be used for highly conformed radiotherapy and IMRT dosimetry, due to their small size and high sensitivity per unit volume.

  16. Quantification of beam complexity in intensity-modulated radiation therapy treatment plans

    SciTech Connect

    Du, Weiliang Cho, Sang Hyun; Zhang, Xiaodong; Kudchadker, Rajat J.; Hoffman, Karen E.

    2014-02-15

    Purpose: Excessive complexity in intensity-modulated radiation therapy (IMRT) plans increases the dose uncertainty, prolongs the treatment time, and increases the susceptibility to changes in patient or target geometry. To date, the tools for quantitative assessment of IMRT beam complexity are still lacking. In this study, The authors have sought to develop metrics to characterize different aspects of beam complexity and investigate the beam complexity for IMRT plans of different disease sites. Methods: The authors evaluated the beam complexity scores for 65 step-and-shoot IMRT plans from three sites (prostate, head and neck, and spine) and 26 volumetric-modulated arc therapy (VMAT) plans for the prostate. On the basis of the beam apertures and monitor unit weights of all segments, the authors calculated the mean aperture area, extent of aperture shape irregularity, and degree of beam modulation for each beam. Then the beam complexity values were averaged to obtain the complexity metrics of the IMRT plans. The authors studied the correlation between the beam complexity metrics and the quality assurance (QA) results. Finally, the effects of treatment planning parameters on beam complexity were studied. Results: The beam complexity scores were not uniform among the prostate IMRT beams from different gantry angles. The lateral beams had larger monitor units and smaller shape irregularity, while the anterior-posterior beams had larger modulation values. On average, the prostate IMRT plans had the smallest aperture irregularity, beam modulation, and normalized monitor units; the head and neck IMRT plans had large beam irregularity and beam modulation; and the spine stereotactic radiation therapy plans often had small beam apertures, which may have been associated with the relatively large discrepancies between planned and QA measured doses. There were weak correlations between the beam complexity scores and the measured dose errors. The prostate VMAT beams showed

  17. Simple tool for prediction of parotid gland sparing in intensity-modulated radiation therapy

    SciTech Connect

    Gensheimer, Michael F.; Hummel-Kramer, Sharon M.; Cain, David; Quang, Tony S.

    2015-10-01

    Sparing one or both parotid glands is a key goal when planning head and neck cancer radiation treatment. If the planning target volume (PTV) overlaps one or both parotid glands substantially, it may not be possible to achieve adequate gland sparing. This finding results in physicians revising their PTV contours after an intensity-modulated radiation therapy (IMRT) plan has been run and reduces workflow efficiency. We devised a simple formula for predicting mean parotid gland dose from the overlap of the parotid gland and isotropically expanded PTV contours. We tested the tool using 44 patients from 2 institutions and found agreement between predicted and actual parotid gland doses (mean absolute error = 5.3 Gy). This simple method could increase treatment planning efficiency by improving the chance that the first plan presented to the physician will have optimal parotid gland sparing.

  18. Predictors of Radiation Pneumonitis in Patients Receiving Intensity Modulated Radiation Therapy for Hodgkin and Non-Hodgkin Lymphoma

    SciTech Connect

    Pinnix, Chelsea C.; Smith, Grace L.; Milgrom, Sarah; Osborne, Eleanor M.; Reddy, Jay P.; Akhtari, Mani; Reed, Valerie; Arzu, Isidora; Allen, Pamela K.; Wogan, Christine F.; Fanale, Michele A.; Oki, Yasuhiro; Turturro, Francesco; Romaguera, Jorge; Fayad, Luis; Fowler, Nathan; Westin, Jason; Nastoupil, Loretta; Hagemeister, Fredrick B.; Rodriguez, M. Alma [Department of Lymphoma and others

    2015-05-01

    Purpose: Few studies to date have evaluated factors associated with the development of radiation pneumonitis (RP) in patients with Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL), especially in patients treated with contemporary radiation techniques. These patients represent a unique group owing to the often large radiation target volumes within the mediastinum and to the potential to receive several lines of chemotherapy that add to pulmonary toxicity for relapsed or refractory disease. Our objective was to determine the incidence and clinical and dosimetric risk factors associated with RP in lymphoma patients treated with intensity modulated radiation therapy (IMRT) at a single institution. Methods and Materials: We retrospectively reviewed clinical charts and radiation records of 150 consecutive patients who received mediastinal IMRT for HL and NHL from 2009 through 2013. Clinical and dosimetric predictors associated with RP according to Radiation Therapy Oncology Group (RTOG) acute toxicity criteria were identified in univariate analysis using the Pearson χ{sup 2} test and logistic multivariate regression. Results: Mediastinal radiation was administered as consolidation therapy in 110 patients with newly diagnosed HL or NHL and in 40 patients with relapsed or refractory disease. The overall incidence of RP (RTOG grades 1-3) was 14% in the entire cohort. Risk of RP was increased for patients who received radiation for relapsed or refractory disease (25%) versus those who received consolidation therapy (10%, P=.019). Several dosimetric parameters predicted RP, including mean lung dose of >13.5 Gy, V{sub 20} of >30%, V{sub 15} of >35%, V{sub 10} of >40%, and V{sub 5} of >55%. The likelihood ratio χ{sup 2} value was highest for V{sub 5} >55% (χ{sup 2} = 19.37). Conclusions: In using IMRT to treat mediastinal lymphoma, all dosimetric parameters predicted RP, although small doses to large volumes of lung had the greatest influence. Patients with relapsed

  19. Radiation Therapy (For Parents)

    MedlinePlus

    ... 5 Things to Know About Zika & Pregnancy Radiation Therapy KidsHealth > For Parents > Radiation Therapy Print A A ... many questions and concerns about it. About Radiation Therapy In radiation therapy, high-energy radiation from X- ...

  20. Molecular switch of Cre/loxP for radiation modulated gene therapy on hepatoma

    NASA Astrophysics Data System (ADS)

    Hsieh, Ya-Ju; Chen, Fu-Du; Wang, Fu Hui; Ke, Chien Chih; Wang, Hsin-Ell; Liu, Ren-Shyan

    2007-02-01

    For the purpose of enhancement of AFP promoter for the use of radiation modulated gene therapy for hepatocellular carcinoma (HCC), we combined hepatitis B virus (HBV) enhancer II with AFP promoter which shows the selectivity to the target cells to control the Cre/loxP system. Different gene constructs, pE4luc, pE4Tk, EIIAPA-Cre, E4CMV-STOP-Tk and chimeric promoters combined with HBV enhancer were constructed and transfected into HepG2, HeLa and NIH-3T3 cell lines. Cell experiments revealed that E4 enhancer responses to radiation best after 60 h irradiation at a dose range of 5-7 Gy in HepG2 stable clone. The EIIAPA promoter provided high specificity to hepatoma and activated the Cre downstream and removed the stop cassette only in hepatoma cells. After removal of the stop cassette, the E4 response to radiation could encode more Tk protein and kill more tumor cells. In summary, the chimeric EIIAPA promoter can stringently control the expression of Cre recombinase only in HCC. The radiation effect of the EIIAPA-Cre and E4CMV-STOP-Tk system shows promising results in terms of cell survival of HCC.

  1. SU-E-T-62: Cardiac Toxicity in Dynamic Conformal Arc Therapy, Intensity-Modulated Radiation Therapy and Volumetric Modulated Arc Therapy of Lung Cancers

    SciTech Connect

    Ming, X; Zhang, Y; Feng, Y; Zhou, L; Deng, J

    2014-06-01

    Purpose: The cardiac toxicity for lung cancer patients, each treated with dynamic conformal arc therapy (DAT), intensity-modulated radiation therapy (IMRT), or volumetric modulated arc therapy (VMAT) is investigated. Methods: 120 lung patients were selected for this study: 25 treated with DAT, 50 with IMRT and 45 with VMAT. For comparison, all plans were generated in the same treatment planning system, normalized such that the 100% isodose lines encompassed 95% of planning target volume. The plan quality was evaluated in terms of homogeneity index (HI) and 95% conformity index (%95 CI) for target dose coverage and mean dose, maximum dose, V{sub 30} Gy as well as V{sub 5} Gy for cardiac toxicity analysis. Results: When all the plans were analyzed, the VMAT plans offered the best target coverage with 95% CI = 0.992 and HI = 1.23. The DAT plans provided the best heart sparing with mean heart dose = 2.3Gy and maximum dose = 11.6Gy, as compared to 5.7 Gy and 31.1 Gy by IMRT as well as 4.6 Gy and 30.9 Gy by VMAT. The mean V30Gy and V5Gy of the heart in the DAT plans were up to 11.7% lower in comparison to the IMRT and VMAT plans. When the tumor volume was considered, the VMAT plans spared up to 70.9% more doses to the heart when the equivalent diameter of the tumor was larger than 4cm. Yet the maximum dose to the heart was reduced the most in the DAT plans with up to 139.8% less than that of the other two plans. Conclusion: Overall, the VMAT plans achieved the best target coverage among the three treatment modalities, and would spare the heart the most for the larger tumors. The DAT plans appeared advantageous in delivering the least maximum dose to the heart as compared to the IMRT and VMAT plans.

  2. Intensity-Modulated Radiation Therapy With Concurrent Chemotherapy as Preoperative Treatment for Localized Gastric Adenocarcinoma

    SciTech Connect

    Chakravarty, Twisha; Crane, Christopher H.; Ajani, Jaffer A.; Mansfield, Paul F.; Briere, Tina M.; Beddar, A. Sam; Mok, Henry; Reed, Valerie K.; Krishnan, Sunil; Delclos, Marc E.; Das, Prajnan

    2012-06-01

    Purpose: The goal of this study was to evaluate dosimetric parameters, acute toxicity, pathologic response, and local control in patients treated with preoperative intensity-modulated radiation therapy (IMRT) and concurrent chemotherapy for localized gastric adenocarcinoma. Methods: Between November 2007 and April 2010, 25 patients with localized gastric adenocarcinoma were treated with induction chemotherapy, followed by preoperative IMRT and concurrent chemotherapy and, finally, surgical resection. The median radiation therapy dose was 45 Gy. Concurrent chemotherapy was 5-fluorouracil and oxaliplatin in 18 patients, capecitabine in 3, and other regimens in 4. Subsequently, resection was performed with total gastrectomy in 13 patients, subtotal gastrectomy in 7, and other surgeries in 5. Results: Target coverage, expressed as the ratio of the minimum dose received by 99% of the planning target volume to the prescribed dose, was a median of 0.97 (range, 0.92-1.01). The median V{sub 30} (percentage of volume receiving at least 30 Gy) for the liver was 26%; the median V{sub 20} (percentage of volume receiving at least 20 Gy) for the right and left kidneys was 14% and 24%, respectively; and the median V{sub 40} (percentage of volume receiving at least 40 Gy) for the heart was 18%. Grade 3 acute toxicity developed in 14 patients (56%), including dehydration in 10, nausea in 8, and anorexia in 5. Grade 4 acute toxicity did not develop in any patient. There were no significant differences in the rates of acute toxicity, hospitalization, or feeding tube use in comparison to those in a group of 50 patients treated with preoperative three-dimensional conformal radiation therapy with concurrent chemotherapy. R0 resection was obtained in 20 patients (80%), and pathologic complete response occurred in 5 (20%). Conclusions: Preoperative IMRT for gastric adenocarcinoma was well tolerated, accomplished excellent target coverage and normal structure sparing, and led to appropriate

  3. Prostate Stereotactic Ablative Radiation Therapy Using Volumetric Modulated Arc Therapy to Dominant Intraprostatic Lesions

    SciTech Connect

    Murray, Louise J.; Lilley, John; Thompson, Christopher M.; Cosgrove, Vivian; Mason, Josh; Sykes, Jonathan; Franks, Kevin; Sebag-Montefiore, David; Henry, Ann M.

    2014-06-01

    Purpose: To investigate boosting dominant intraprostatic lesions (DILs) in the context of stereotactic ablative radiation therapy (SABR) and to examine the impact on tumor control probability (TCP) and normal tissue complication probability (NTCP). Methods and Materials: Ten prostate datasets were selected. DILs were defined using T2-weighted, dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging. Four plans were produced for each dataset: (1) no boost to DILs; (2) boost to DILs, no seminal vesicles in prescription; (3) boost to DILs, proximal seminal vesicles (proxSV) prescribed intermediate dose; and (4) boost to DILs, proxSV prescribed higher dose. The prostate planning target volume (PTV) prescription was 42.7 Gy in 7 fractions. DILs were initially prescribed 115% of the PTV{sub Prostate} prescription, and PTV{sub DIL} prescriptions were increased in 5% increments until organ-at-risk constraints were reached. TCP and NTCP calculations used the LQ-Poisson Marsden, and Lyman-Kutcher-Burman models respectively. Results: When treating the prostate alone, the median PTV{sub DIL} prescription was 125% (range: 110%-140%) of the PTV{sub Prostate} prescription. Median PTV{sub DIL} D50% was 55.1 Gy (range: 49.6-62.6 Gy). The same PTV{sub DIL} prescriptions and similar PTV{sub DIL} median doses were possible when including the proxSV within the prescription. TCP depended on prostate α/β ratio and was highest with an α/β ratio = 1.5 Gy, where the additional TCP benefit of DIL boosting was least. Rectal NTCP increased with DIL boosting and was considered unacceptably high in 5 cases, which, when replanned with an emphasis on reducing maximum dose to 0.5 cm{sup 3} of rectum (Dmax{sub 0.5cc}), as well as meeting existing constraints, resulted in considerable rectal NTCP reductions. Conclusions: Boosting DILs in the context of SABR is technically feasible but should be approached with caution. If this therapy is adopted, strict rectal

  4. Bile Acid Malabsorption After Pelvic and Prostate Intensity Modulated Radiation Therapy: An Uncommon but Treatable Condition

    SciTech Connect

    Harris, Victoria; Benton, Barbara; Sohaib, Aslam; Dearnaley, David; Andreyev, H. Jervoise N.

    2012-12-01

    Purpose: Intensity modulated radiation therapy (IMRT) is a significant therapeutic advance in prostate cancer, allowing increased tumor dose delivery and increased sparing of normal tissues. IMRT planning uses strict dose constraints to nearby organs to limit toxicity. Bile acid malabsorption (BAM) is a treatable disorder of the terminal ileum (TI) that presents with symptoms similar to radiation therapy toxicity. It has not been described in patients receiving RT for prostate cancer in the contemporary era. We describe new-onset BAM in men after IMRT for prostate cancer. Methods and Materials: Diagnosis of new-onset BAM was established after typical symptoms developed, selenium-75 homocholic acid taurine (SeHCAT) scanning showed 7-day retention of <15%, and patients' symptoms unequivocally responded to a bile acid sequestrant. The TI was identified on the original radiation therapy plan, and the radiation dose delivered was calculated and compared with accepted dose-volume constraints. Results: Five of 423 men treated in a prospective series of high-dose prostate and pelvic IMRT were identified with new onset BAM (median age, 65 years old). All reported having normal bowel habits before RT. The volume of TI ranged from 26-141 cc. The radiation dose received by the TI varied between 11.4 Gy and 62.1 Gy (uncorrected). Three of 5 patients had TI treated in excess of 45 Gy (equivalent dose calculated in 2-Gy fractions, using an {alpha}/{beta} ratio of 3) with volumes ranging from 1.6 cc-49.0 cc. One patient had mild BAM (SeHCAT retention, 10%-15%), 2 had moderate BAM (SeHCAT retention, 5%-10%), and 2 had severe BAM (SeHCAT retention, <5%). The 3 patients whose TI received {>=}45 Gy developed moderate to severe BAM, whereas those whose TI received <45 Gy had only mild to moderate BAM. Conclusions: Radiation delivered to the TI during IMRT may cause BAM. Identification of the TI from unenhanced RT planning computed tomography scans is difficult and may impede accurate

  5. Matching Intensity-Modulated Radiation Therapy to an Anterior Low Neck Field

    SciTech Connect

    Amdur, Robert J. Liu, Chihray; Li, Jonathan; Mendenhall, William; Hinerman, Russell

    2007-10-01

    When using intensity-modulated radiation therapy (IMRT) to treat head and neck cancer with the primary site above the level of the larynx, there are two basic options for the low neck lymphatics: to treat the entire neck with IMRT, or to match the IMRT plan to a conventional anterior 'low neck' field. In view of the potential advantages of using a conventional low neck field, it is important to look for ways to minimize or manage the problems of matching IMRT to a conventional radiotherapy field. Treating the low neck with a single anterior field and the standard larynx block decreases the dose to the larynx and often results in a superior IMRT plan at the primary site. The purpose of this article is to review the most applicable studies and to discuss our experience with implementing a technique that involves moving the position of the superior border of the low neck field several times during a single treatment fraction.

  6. Dosimetric effects of weight loss or gain during volumetric modulated arc therapy and intensity-modulated radiation therapy for prostate cancer

    SciTech Connect

    Pair, Matthew L.; Du, Weiliang; Rojas, Hector D.; Kanke, James E.; McGuire, Sean E.; Lee, Andrew K.; Kuban, Deborah A.; Kudchadker, Rajat J.

    2013-10-01

    Weight loss or gain during the course of radiation therapy for prostate cancer can alter the planned dose to the target volumes and critical organs. Typically, source-to-surface distance (SSD) measurements are documented by therapists on a weekly basis to ensure that patients' exterior surface and isocenter-to-skin surface distances remain stable. The radiation oncology team then determines whether the patient has undergone a physical change sufficient to require a new treatment plan. The effect of weight change (SSD increase or decrease) on intensity-modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT) dosimetry is not well known, and it is unclear when rescanning or replanning is needed. The purpose of this study was to determine the effects of weight change (SSD increase or decrease) on IMRT or VMAT dose delivery in patients with prostate cancer and to determine the SSD change threshold for replanning. Whether IMRT or VMAT provides better dose stability under weight change conditions was also determined. We generated clinical IMRT and VMAT prostate and seminal vesicle treatment plans for varying SSDs for 10 randomly selected patients with prostate cancer. The differences due to SSD change were quantified by a specific dose change for a specified volume of interest. The target mean dose, decreased or increased by 2.9% per 1-cm SSD decrease or increase in IMRT and by 3.6% in VMAT. If the SSD deviation is more than 1 cm, the radiation oncology team should determine whether to continue treatment without modifications, to adjust monitor units, or to resimulate and replan.

  7. Dosimetric effects of weight loss or gain during volumetric modulated arc therapy and intensity-modulated radiation therapy for prostate cancer.

    PubMed

    Pair, Matthew L; Du, Weiliang; Rojas, Hector D; Kanke, James E; McGuire, Sean E; Lee, Andrew K; Kuban, Deborah A; Kudchadker, Rajat J

    2013-01-01

    Weight loss or gain during the course of radiation therapy for prostate cancer can alter the planned dose to the target volumes and critical organs. Typically, source-to-surface distance (SSD) measurements are documented by therapists on a weekly basis to ensure that patients' exterior surface and isocenter-to-skin surface distances remain stable. The radiation oncology team then determines whether the patient has undergone a physical change sufficient to require a new treatment plan. The effect of weight change (SSD increase or decrease) on intensity-modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT) dosimetry is not well known, and it is unclear when rescanning or replanning is needed. The purpose of this study was to determine the effects of weight change (SSD increase or decrease) on IMRT or VMAT dose delivery in patients with prostate cancer and to determine the SSD change threshold for replanning. Whether IMRT or VMAT provides better dose stability under weight change conditions was also determined. We generated clinical IMRT and VMAT prostate and seminal vesicle treatment plans for varying SSDs for 10 randomly selected patients with prostate cancer. The differences due to SSD change were quantified by a specific dose change for a specified volume of interest. The target mean dose, decreased or increased by 2.9% per 1-cm SSD decrease or increase in IMRT and by 3.6% in VMAT. If the SSD deviation is more than 1cm, the radiation oncology team should determine whether to continue treatment without modifications, to adjust monitor units, or to resimulate and replan.

  8. Disease Control After Reduced Volume Conformal and Intensity Modulated Radiation Therapy for Childhood Craniopharyngioma

    SciTech Connect

    Merchant, Thomas E.; Kun, Larry E.; Hua, Chia-Ho; Wu, Shengjie; Xiong, Xiaoping; Sanford, Robert A.; Boop, Frederick A.

    2013-03-15

    Purpose: To estimate the rate of disease control after conformal radiation therapy using reduced clinical target volume (CTV) margins and to determine factors that predict for tumor progression. Methods and Materials: Eighty-eight children (median age, 8.5 years; range, 3.2-17.6 years) received conformal or intensity modulated radiation therapy between 1998 and 2009. The study group included those prospectively treated from 1998 to 2003, using a 10-mm CTV, defined as the margin surrounding the solid and cystic tumor targeted to receive the prescription dose of 54 Gy. The CTV margin was subsequently reduced after 2003, yielding 2 groups of patients: those treated with a CTV margin greater than 5 mm (n=26) and those treated with a CTV margin less than or equal to 5 mm (n=62). Disease progression was estimated on the basis of additional variables including sex, race, extent of resection, tumor interventions, target volume margins, and frequency of weekly surveillance magnetic resonance (MR) imaging during radiation therapy. Median follow-up was 5 years. Results: There was no difference between progression-free survival rates based on CTV margins (>5 mm vs ≤5 mm) at 5 years (88.1% ± 6.3% vs 96.2% ± 4.4% [P=.6386]). There were no differences based on planning target volume (PTV) margins (or combined CTV plus PTV margins). The PTV was systematically reduced from 5 to 3 mm during the time period of the study. Factors predictive of superior progression-free survival included Caucasian race (P=.0175), no requirement for cerebrospinal fluid shunting (P=.0066), and number of surveillance imaging studies during treatment (P=.0216). Patients whose treatment protocol included a higher number of weekly surveillance MR imaging evaluations had a lower rate of tumor progression. Conclusions: These results suggest that targeted volume reductions for radiation therapy using smaller margins are feasible and safe but require careful monitoring. We are currently investigating

  9. Utility of Smart Arc CDR for intensity-modulated radiation therapy for prostate cancer.

    PubMed

    Hatanaka, Shogo; Tamaki, Seiichi; Endo, Haruna; Mizuno, Norifumi; Nakamura, Naoki

    2014-07-01

    Volumetric-modulated arc therapy (VMAT) is a widespread intensity-modulated radiation therapy (IMRT) method, however, VMAT requires adaptation of the radiation treatment planning system (RTPS) and linear accelerator (linac); these upgrades are quite expensive. The Smart Arc of Pinnacle(3) (Philips), which is the software used in VMAT calculations, can select constant dose rate (CDR) mode. This approach has a low initial cost because the linac upgrade is not required. The objective of this study was to clarify the utility of CDR mode for prostate IMRT. Pinnacle(3) and Clinac 21EX linac (Varian, 10 MV X-rays) were used for planning. The plans were created for 28 patients using a fixed multi-field IMRT (f-IMRT), VMAT and CDR techniques. The dose distribution results were classified into three groups: optimal, suboptimal and reject. For the f-IMRT, VMAT and CDR results, 25, 26 and 21 patients were classified as 'optimal', respectively. Our results show a significant reduction in the achievement rate of 'optimal' for a CDR when the bladder volume is <100 cm(3). The total numbers of monitoring units (MUs) (average ± 1σ) were 469 ± 53, 357 ± 35 and 365 ± 33; the average optimization times were ∼50 min, 2 h and 2 h 40 min, and the irradiation times were ∼280 s, 60 s and 110 s, respectively. CDR can reduce the total MUs and irradiation time compared with f-IMRT, and CDR has a lower initial cost compared with VMAT. Thus, for institutions that do not currently perform VMAT, CDR is a useful option. Additionally, in the context of patient identification, bladder volume may be useful.

  10. Intensity Modulated Radiation Therapy for Primary Soft Tissue Sarcoma of the Extremity: Preliminary Results

    SciTech Connect

    Alektiar, Kaled M. . E-mail: alektiak@mskcc.org; Hong, Linda; Brennan, Murray F.; Della-Biancia, Cesar; Singer, Samuel

    2007-06-01

    Purpose: To report preliminary results on using intensity modulated radiation therapy (IMRT) as an adjuvant treatment in primary soft tissue sarcoma (STS) of the extremity. Methods and Materials: Between February 2002 and March 2005, 31 adult patients with primary STS of the extremity were treated with surgery and adjuvant IMRT. Tumor size was >10 cm in 74% of patients and grade was high in 77%. Preoperative IMRT was given to 7 patients (50 Gy) and postoperative IMRT (median dose, 63 Gy) was given to 24 patients. Complete gross resection including periosteal stripping or bone resection was required in 10, and neurolysis or nerve resection in 20. The margins were positive or within 1 mm in 17. Complications from surgery and radiation therapy (RT) were assessed using the Common Terminology Criteria for Adverse Events grading system. Results: Median follow-up time was 23 months. Grade 1 RT dermatitis developed in 71% of patients, Grade 2 in 16%, and Grade 3 in 10%. Infectious wound complications developed in 13% and noninfectious complications in 10%. Two patients (6.4%) developed fractures. Grade 1 neuropathy developed in 28% of patients and Grade 2 in 5%. The rates of Grade 1 and 2 joint stiffness were each 19%. Grade 1 edema was observed in 19% of patients and Grade 2 in 13%. The 2-year local control, distant control, and overall survival were 95%, 65%, and 81%, respectively. Conclusion: Intensity modulated RT appears to provide excellent local control in a difficult group of high-risk patients. The morbidity profile is also favorable, but longer follow-up is needed to confirm the results from this study.

  11. Spherical cluster analysis for beam angle optimization in intensity-modulated radiation therapy treatment planning

    NASA Astrophysics Data System (ADS)

    Bangert, Mark; Oelfke, Uwe

    2010-10-01

    An intuitive heuristic to establish beam configurations for intensity-modulated radiation therapy is introduced as an extension of beam ensemble selection strategies applying scalar scoring functions. It is validated by treatment plan comparisons for three intra-cranial, pancreas, and prostate cases each. Based on a patient specific matrix listing the radiological quality of candidate beam directions individually for every target voxel, a set of locally ideal beam angles is generated. The spherical distribution of locally ideal beam angles is characteristic for every treatment site and patient: ideal beam angles typically cluster around distinct orientations. We interpret the cluster centroids, which are identified with a spherical K-means algorithm, as irradiation angles of an intensity-modulated radiation therapy treatment plan. The fluence profiles are subsequently optimized during a conventional inverse planning process. The average computation time for the pre-optimization of a beam ensemble is six minutes on a state-of-the-art work station. The treatment planning study demonstrates the potential benefit of the proposed beam angle optimization strategy. For the three prostate cases under investigation, the standard treatment plans applying nine coplanar equi-spaced beams and treatment plans applying an optimized non-coplanar nine-beam ensemble yield clinically comparable dose distributions. For symmetric patient geometries, the dose distribution formed by nine equi-spaced coplanar beams cannot be improved significantly. For the three pancreas and intra-cranial cases under investigation, the optimized non-coplanar beam ensembles enable better sparing of organs at risk while guaranteeing equivalent target coverage. Beam angle optimization by spherical cluster analysis shows the biggest impact for target volumes located asymmetrically within the patient and close to organs at risk.

  12. Acute Esophagus Toxicity in Lung Cancer Patients After Intensity Modulated Radiation Therapy and Concurrent Chemotherapy

    SciTech Connect

    Kwint, Margriet; Uyterlinde, Wilma; Nijkamp, Jasper; Chen, Chun; Bois, Josien de; Sonke, Jan-Jakob; Heuvel, Michel van den; Knegjens, Joost; Herk, Marcel van; Belderbos, Jose

    2012-10-01

    Purpose: The purpose of this study was to investigate the dose-effect relation between acute esophageal toxicity (AET) and the dose-volume parameters of the esophagus after intensity modulated radiation therapy (IMRT) and concurrent chemotherapy for patients with non-small cell lung cancer (NSCLC). Patients and Methods: One hundred thirty-nine patients with inoperable NSCLC treated with IMRT and concurrent chemotherapy were prospectively analyzed. The fractionation scheme was 66 Gy in 24 fractions. All patients received concurrently a daily dose of cisplatin (6 mg/m Superscript-Two ). Maximum AET was scored according to Common Toxicity Criteria 3.0. Dose-volume parameters V5 to V70, D{sub mean} and D{sub max} of the esophagus were calculated. A logistic regression analysis was performed to analyze the dose-effect relation between these parameters and grade {>=}2 and grade {>=}3 AET. The outcome was compared with the clinically used esophagus V35 prediction model for grade {>=}2 after radical 3-dimensional conformal radiation therapy (3DCRT) treatment. Results: In our patient group, 9% did not experience AET, and 31% experienced grade 1 AET, 38% grade 2 AET, and 22% grade 3 AET. The incidence of grade 2 and grade 3 AET was not different from that in patients treated with CCRT using 3DCRT. The V50 turned out to be the most significant dosimetric predictor for grade {>=}3 AET (P=.012). The derived V50 model was shown to predict grade {>=}2 AET significantly better than the clinical V35 model (P<.001). Conclusions: For NSCLC patients treated with IMRT and concurrent chemotherapy, the V50 was identified as most accurate predictor of grade {>=}3 AET. There was no difference in the incidence of grade {>=}2 AET between 3DCRT and IMRT in patients treated with concurrent chemoradiation therapy.

  13. Intensity-Modulated Radiation Therapy in the Salvage of Locally Recurrent Nasopharyngeal Carcinoma

    SciTech Connect

    Qiu Sufang; Lin Shaojun; Tham, Ivan W.K.; Pan Jianji; Lu Jun; Lu, Jiade J.

    2012-06-01

    Purpose: Local recurrences of nasopharyngeal carcinoma (NPC) may be salvaged by reirradiation with conventional techniques, but with significant morbidity. Intensity-modulated radiation therapy (IMRT) may improve the therapeutic ratio by reducing doses to normal tissue. The aim of this study was to address the efficacy and toxicity profile of IMRT for a cohort of patients with locally recurrent NPC. Methods and Materials: Between August 2003 and June 2009, 70 patients with radiologic or pathologically proven locally recurrent NPC were treated with IMRT. The median time to recurrence was 30 months after the completion of conventional radiation to definitive dose. Fifty-seven percent of the tumors were classified asrT3-4. The minimum planned doses were 59.4 to 60 Gy in 1.8- to 2-Gy fractions per day to the gross disease with margins, with or without chemotherapy. Results: The median dose to the recurrent tumor was 70 Gy (range, 50-77.4 Gy). Sixty-five patients received the planned radiation therapy; 5 patients received between 50 and 60 Gy because of acute side effects. With a median follow-up time of 25 months, the rates of 2-year locoregional recurrence-free survival, disease-free survival, and overall survival were 65.8%, 65.8%, and 67.4%, respectively. Moderate to severe late toxicities were noted in 25 patients (35.7%). Eleven patients (15.7%) had posterior nasal space ulceration, 17 (24.3%) experienced cranial nerve palsies, 12 (17.1%) had trismus, and 12 (17.1%) experienced deafness. Extended disease-free interval (relative risk 2.049) and advanced T classification (relative risk 3.895) at presentation were adverse prognostic factors. Conclusion: Reirradiation with IMRT provides reasonable long-term control in patients with locally recurrent NPC.

  14. Comparative outcomes for three-dimensional conformal versus intensity-modulated radiation therapy for esophageal cancer.

    PubMed

    Freilich, J; Hoffe, S E; Almhanna, K; Dinwoodie, W; Yue, B; Fulp, W; Meredith, K L; Shridhar, R

    2015-01-01

    Emerging data suggests a benefit for using intensity modulated radiation therapy (IMRT) for the management of esophageal cancer. We retrospectively reviewed patients treated at our institution who received definitive or preoperative chemoradiation with either IMRT or 3D conformal radiation therapy (3DCRT) between October 2000 and January 2012. Kaplan Meier analysis and the Cox proportional hazard model were used to evaluate survival outcomes. We evaluated a total of 232 patients (138 IMRT, 94 3DCRT) who received a median dose of 50.4 Gy (range, 44-64.8) to gross disease. Median follow up for all patients, IMRT patients alone, and 3DCRT patients alone was 18.5 (range, 2.5-124.2), 16.5 (range, 3-59), and 25.9 months (range, 2.5-124.2), respectively. We observed no significant difference based on radiation technique (3DCRT vs. IMRT) with respect to median overall survival (OS) (median 29 vs. 32 months; P = 0.74) or median relapse free survival (median 20 vs. 25 months; P = 0.66). On multivariable analysis (MVA), surgical resection resulted in improved OS (HR 0.444; P < 0.0001). Superior OS was also associated on MVA with stage I/II disease (HR 0.523; P = 0.010) and tumor length ≤5 cm (HR 0.567; P = 0.006). IMRT was also associated on univariate analysis with a significant decrease in acute weight loss (mean 6% + 4.3% vs 9% + 7.4%, P = 0.012) and on MVA with a decrease in objective grade ≥3 toxicity, defined as any hospitalization, feeding tube, or >20% weight loss (OR 0.51; P = 0.050). Our data suggest that while IMRT-based chemoradiation for esophageal cancer does not impact survival there was significantly less toxicity. In the IMRT group there was significant decrease in weight loss and grade ≥3 toxicity compared to 3DCRT.

  15. Expert Consensus Contouring Guidelines for Intensity Modulated Radiation Therapy in Esophageal and Gastroesophageal Junction Cancer

    SciTech Connect

    Wu, Abraham J.; Bosch, Walter R.; Chang, Daniel T.; Hong, Theodore S.; Jabbour, Salma K.; Kleinberg, Lawrence R.; Mamon, Harvey J.; Thomas, Charles R.; Goodman, Karyn A.

    2015-07-15

    Purpose/Objective(s): Current guidelines for esophageal cancer contouring are derived from traditional 2-dimensional fields based on bony landmarks, and they do not provide sufficient anatomic detail to ensure consistent contouring for more conformal radiation therapy techniques such as intensity modulated radiation therapy (IMRT). Therefore, we convened an expert panel with the specific aim to derive contouring guidelines and generate an atlas for the clinical target volume (CTV) in esophageal or gastroesophageal junction (GEJ) cancer. Methods and Materials: Eight expert academically based gastrointestinal radiation oncologists participated. Three sample cases were chosen: a GEJ cancer, a distal esophageal cancer, and a mid-upper esophageal cancer. Uniform computed tomographic (CT) simulation datasets and accompanying diagnostic positron emission tomographic/CT images were distributed to each expert, and the expert was instructed to generate gross tumor volume (GTV) and CTV contours for each case. All contours were aggregated and subjected to quantitative analysis to assess the degree of concordance between experts and to generate draft consensus contours. The panel then refined these contours to generate the contouring atlas. Results: The κ statistics indicated substantial agreement between panelists for each of the 3 test cases. A consensus CTV atlas was generated for the 3 test cases, each representing common anatomic presentations of esophageal cancer. The panel agreed on guidelines and principles to facilitate the generalizability of the atlas to individual cases. Conclusions: This expert panel successfully reached agreement on contouring guidelines for esophageal and GEJ IMRT and generated a reference CTV atlas. This atlas will serve as a reference for IMRT contours for clinical practice and prospective trial design. Subsequent patterns of failure analyses of clinical datasets using these guidelines may require modification in the future.

  16. Whole Abdominopelvic Intensity-Modulated Radiation Therapy for Desmoplastic Small Round Cell Tumor After Surgery

    SciTech Connect

    Pinnix, Chelsea C.; Fontanilla, Hiral P.; Hayes-Jordan, Andrea; Subbiah, Vivek; Bilton, Stephen D.; Chang, Eric L.; Grosshans, David R.; McAleer, Mary F.; Sulman, Eric P.; Woo, Shiao Y.; Anderson, Peter; Green, Holly L.; Mahajan, Anita

    2012-05-01

    Purpose: Desmoplastic small round cell tumor (DSCRT) is an uncommon pediatric tumor with a poor prognosis. Aggressive multimodality therapy is the current treatment approach; however. treatment toxicity is of concern. We report our results with whole abdominopelvic intensity-modulated radiation therapy (WAP-IMRT) as a component of multimodality therapy for DSCRT at a single institution. Materials/Methods: Medical records of all patients with DSCRT who received WAP-IMRT as part of definitive treatment at MD Anderson (2006-2010) were identified and reviewed. Results: Eight patients with DSRCT received WAP-IMRT with a median follow-up of 15.2 months. All patients received multiple courses of chemotherapy followed by surgical debulking of intra-abdominal disease; seven also had intraoperative hyperthermic cisplatin. WAP-IMRT was delivered to a total dose of 30 Gy postoperatively; four patients received a simultaneous boost (6-10 Gy) to sites of gross residual disease. Seven patients received concurrent chemotherapy during WAP-IMRT. No Radiation Therapy Oncology Group Grade 4 nausea, vomiting, or diarrhea occurred during RT. Red-cell transfusions were given to two patients to maintain hemoglobin levels >10 g/dL. Grade 4 cytopenia requiring growth factor support occurred in only one patient; no other significant cytopenias were noted. WAP-IMRT resulted in 25% lower radiation doses to the lumbosacral vertebral bodies and pelvic bones than conventional RT plans. The median time to local or distant failure after WAP-IMRT was 8.73 months in seven patients. One patient who had completed RT 20 months before the last follow-up remains alive without evidence of disease. Five patients (63%) experienced treatment failure in the abdomen. Distant failure occurred in three patients (37.5%). Conclusions: WAP-IMRT with concurrent radiosensitizing chemotherapy was well tolerated after aggressive surgery for DSCRT. Enhanced bone sparing with IMRT probably accounts for the low hematologic

  17. Comparison of testicular dose delivered by intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) in patients with prostate cancer.

    PubMed

    Martin, Jeffrey M; Handorf, Elizabeth A; Price, Robert A; Cherian, George; Buyyounouski, Mark K; Chen, David Y; Kutikov, Alexander; Johnson, Matthew E; Ma, Chung-Ming Charlie; Horwitz, Eric M

    2015-01-01

    A small decrease in testosterone level has been documented after prostate irradiation, possibly owing to the incidental dose to the testes. Testicular doses from prostate external beam radiation plans with either intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT) were calculated to investigate any difference. Testicles were contoured for 16 patients being treated for localized prostate cancer. For each patient, 2 plans were created: 1 with IMRT and 1 with VMAT. No specific attempt was made to reduce testicular dose. Minimum, maximum, and mean doses to the testicles were recorded for each plan. Of the 16 patients, 4 received a total dose of 7800 cGy to the prostate alone, 7 received 8000 cGy to the prostate alone, and 5 received 8000 cGy to the prostate and pelvic lymph nodes. The mean (range) of testicular dose with an IMRT plan was 54.7 cGy (21.1 to 91.9) and 59.0 cGy (25.1 to 93.4) with a VMAT plan. In 12 cases, the mean VMAT dose was higher than the mean IMRT dose, with a mean difference of 4.3 cGy (p = 0.019). There was a small but statistically significant increase in mean testicular dose delivered by VMAT compared with IMRT. Despite this, it unlikely that there is a clinically meaningful difference in testicular doses from either modality.

  18. Comparison of testicular dose delivered by intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) in patients with prostate cancer

    SciTech Connect

    Martin, Jeffrey M.; Handorf, Elizabeth A.; Price, Robert A.; Cherian, George; Buyyounouski, Mark K.; Chen, David Y.; Kutikov, Alexander; Johnson, Matthew E.; Ma, Chung-Ming Charlie; Horwitz, Eric M.

    2015-10-01

    A small decrease in testosterone level has been documented after prostate irradiation, possibly owing to the incidental dose to the testes. Testicular doses from prostate external beam radiation plans with either intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT) were calculated to investigate any difference. Testicles were contoured for 16 patients being treated for localized prostate cancer. For each patient, 2 plans were created: 1 with IMRT and 1 with VMAT. No specific attempt was made to reduce testicular dose. Minimum, maximum, and mean doses to the testicles were recorded for each plan. Of the 16 patients, 4 received a total dose of 7800 cGy to the prostate alone, 7 received 8000 cGy to the prostate alone, and 5 received 8000 cGy to the prostate and pelvic lymph nodes. The mean (range) of testicular dose with an IMRT plan was 54.7 cGy (21.1 to 91.9) and 59.0 cGy (25.1 to 93.4) with a VMAT plan. In 12 cases, the mean VMAT dose was higher than the mean IMRT dose, with a mean difference of 4.3 cGy (p = 0.019). There was a small but statistically significant increase in mean testicular dose delivered by VMAT compared with IMRT. Despite this, it unlikely that there is a clinically meaningful difference in testicular doses from either modality.

  19. A Phase II Study of Intensity Modulated Radiation Therapy to the Pelvis for Postoperative Patients With Endometrial Carcinoma: Radiation Therapy Oncology Group Trial 0418

    SciTech Connect

    Jhingran, Anuja; Winter, Kathryn; Portelance, Lorraine; Miller, Brigitte; Salehpour, Mohammad; Gaur, Rakesh; Souhami, Luis; Small, William; Berk, Lawrence; Gaffney, David

    2012-09-01

    Purpose: To determine the feasibility of pelvic intensity modulated radiation therapy (IMRT) for patients with endometrial cancer in a multi-institutional setting and to determine whether this treatment is associated with fewer short-term bowel adverse events than standard radiation therapy. Methods: Patients with adenocarcinoma of the endometrium treated with pelvic radiation therapy alone were eligible. Guidelines for target definition and delineation, dose prescription, and dose-volume constraints for the targets and critical normal structures were detailed in the study protocol and a web-based atlas. Results: Fifty-eight patients were accrued by 25 institutions; 43 were eligible for analysis. Forty-two patients (98%) had an acceptable IMRT plan; 1 had an unacceptable variation from the prescribed dose to the nodal planning target volume. The proportions of cases in which doses to critical normal structures exceeded protocol criteria were as follows: bladder, 67%; rectum, 76%; bowel, 17%; and femoral heads, 33%. Twelve patients (28%) developed grade {>=}2 short-term bowel adverse events. Conclusions: Pelvic IMRT for endometrial cancer is feasible across multiple institutions with use of a detailed protocol and centralized quality assurance (QA). For future trials, contouring of vaginal and nodal tissue will need continued monitoring with good QA and better definitions will be needed for organs at risk.

  20. Intensity-modulated radiation therapy for the treatment of nonanaplastic thyroid cancer

    SciTech Connect

    Rosenbluth, Benjamin D.; Serrano, Victoria B.S.; Happersett, Laura; Shaha, Ashok R.; Tuttle, R. Michael; Narayana, Ashwatha; Wolden, Suzanne L.; Rosenzweig, Kenneth E.; Chong, Lanceford M.; Lee, Nancy Y. . E-mail: leen2@mskcc.org

    2005-12-01

    Purpose: Intensity-modulated radiation therapy (IMRT) enables highly conformal treatment for thyroid cancer (TC). In this study, we review outcomes/toxicity in a series of TC patients treated with IMRT. Methods and Materials: Between July 2001 and January 2004, 20 nonanaplastic TC patients underwent IMRT. Mean age was 55. There were 3 T2 and 17 T4 patients. Sixteen patients had N1 disease. Seven patients had metastases before RT. Fifteen underwent surgery before RT. Radioactive iodine (RAI) and chemotherapy were used in 70% and 40%, respectively. Median total RT dose was 63 Gy. Results: With two local failures, 2-year local progression-free rate was 85%. There were six deaths, with a 2-year overall survival rate of 60%. For patients with M0 disease, the 2-year distant metastases-free rate was 46%. The worst acute mucositis and pharyngitis was Grade 3 (n = 7 and 3, respectively). Two patients had Grade 3 acute skin toxicity and 2 had Grade 3 acute laryngeal toxicity. No significant radiation-related late effects were reported. Conclusions: IMRT for TC is feasible and effective in appropriately selected cases. Acute toxicity is manageable with proactive clinical care. Ideal planning target volume doses have yet to be determined. Additional patients and long-term follow-up are needed to confirm these preliminary findings and to clarify late toxicities.

  1. SU-E-P-18: Intensity-Modulated Radiation Therapy for Cervical Esophageal Squamous Cell Carcinoma

    SciTech Connect

    Bai, W; Qiao, X; Zhou, Z; Song, Y; Zhang, R; Zhen, C

    2015-06-15

    Purpose: To retrospectively analyze the outcomes and prognostic factors of cervical esophageal squamous cell carcinoma (SCC) treated with intensity modulated radiation therapy (IMRT). Methods: Thirty-seven patients with cervical esophageal SCC treated with IMRT were analyzed retrospectively. They received 54–66 Gy in 27–32 fractions. Nineteen patients received concurrent (n=12) or sequential (n=7) platinum-based two drugs chemoradiotherapy. Overall survival (OS), local control rates (LCR) and prognostic factors were evaluated. Acute toxicities and patterns of first failures were observed. Results: The median follow-up was 46 months for alive patients. The l-, 3-, 4- and 5-year OS of the all patients were 83.8%, 59.1%, 47.5% and 32.6% respectively. The median survival time was 46 months. The l-, 3-,4- and 5-year LCR were 82.9%, 63.0%, 54.5% and 54.5%, respectively. Univariate and Multivariate analysis all showed that size of GTV was an independent prognostic factor (p=0.033, p=0.039). There were no patients with Grade 3 acute radiation esophagitis and Grade 2–4 acute pneumonitis. The local failure accounted for 70.0% of all treatment-related failures. Conclusion: IMRT is safe and effective in the treatment of cervical esophageal squamous cell carcinoma. Size of GTV is an independent prognostic factor. Local failure still remains the main reason of treatment failures. The authors declare no conflicts of interest in preparing this article.

  2. Comparison of optimization algorithms in intensity-modulated radiation therapy planning

    NASA Astrophysics Data System (ADS)

    Kendrick, Rachel

    Intensity-modulated radiation therapy is used to better conform the radiation dose to the target, which includes avoiding healthy tissue. Planning programs employ optimization methods to search for the best fluence of each photon beam, and therefore to create the best treatment plan. The Computational Environment for Radiotherapy Research (CERR), a program written in MATLAB, was used to examine some commonly-used algorithms for one 5-beam plan. Algorithms include the genetic algorithm, quadratic programming, pattern search, constrained nonlinear optimization, simulated annealing, the optimization method used in Varian EclipseTM, and some hybrids of these. Quadratic programing, simulated annealing, and a quadratic/simulated annealing hybrid were also separately compared using different prescription doses. The results of each dose-volume histogram as well as the visual dose color wash were used to compare the plans. CERR's built-in quadratic programming provided the best overall plan, but avoidance of the organ-at-risk was rivaled by other programs. Hybrids of quadratic programming with some of these algorithms seems to suggest the possibility of better planning programs, as shown by the improved quadratic/simulated annealing plan when compared to the simulated annealing algorithm alone. Further experimentation will be done to improve cost functions and computational time.

  3. SU-D-213-06: Dosimetry of Modulated Electron Radiation Therapy Using Fricke Gel Dosimeter

    SciTech Connect

    Gawad, M Abdel; Elgohary, M; Hassaan, M; Emam, M; Desouky, O; Eldib, A; Ma, C

    2015-06-15

    Purpose: Modulated electron radiation therapy (MERT) has been proposed as an effective modality for treatment of superficial targets. MERT utilizes multiple beams of different energies which are intensity modulated to deliver optimized dose distribution. Energy independent dosimeters are thus needed for quantitative evaluations of MERT dose distributions and measurements of absolute doses delivered to patients. Thus in the current work we study the feasibility of Fricke gel dosimeters in MERT dosimetry. Methods: Batches of radiation sensitive Fricke gel is fabricated and poured into polymethyl methacrylate cuvettes. The samples were irradiated in solid water phantom and a thick layer of bolus was used as a buildup. A spectrophotometer system was used for measuring the color changes (the absorbance) before and after irradiation and then we calculate net absorbance. We constructed calibration curves to relate the measured absorbance in terms of absorbed dose for all available electron energies. Dosimetric measurements were performed for mixed electron beam delivery and we also performed measurement for segmented field delivery with the dosimeter placed at the junction of two adjacent electron beams of different energies. Dose measured by our gel dosimetry is compared to that calculation from our precise treatment planning system. We also initiated a Monte Carlo study to evaluate the water equivalence of our dosimeters. MCBEAM and MCSIM codes were used for treatment head simulation and phantom dose calculation. PDDs and profiles were calculated for electron beams incident on a phantom designed with 1cm slab of Fricke gel. Results: The calibration curves showed no observed energy dependence with all studied electron beam energies. Good agreement was obtained between dose calculated and that obtained by gel dosimetry. Monte Carlo results illustrated the tissue equivalency of our Gel dosimeters. Conclusion: Fricke Gel dosimeters represent a good option for the dosimetric

  4. Intensity-Modulated Radiation Therapy for Anal Malignancies: A Preliminary Toxicity and Disease Outcomes Analysis

    SciTech Connect

    Pepek, Joseph M.; Willett, Christopher G.; Wu, Q. Jackie; Yoo, Sua; Clough, Robert W.; Czito, Brian G.

    2010-12-01

    Purpose: Intensity-modulated radiation therapy (IMRT) has the potential to reduce toxicities associated with chemoradiotherapy in the treatment of anal cancer. This study reports the results of using IMRT in the treatment of anal cancer. Methods and Materials: Records of patients with anal malignancies treated with IMRT at Duke University were reviewed. Acute toxicity was graded using the NCI CTCAEv3.0 scale. Overall survival (OS), metastasis-free survival (MFS), local-regional control (LRC) and colostomy-free survival (CFS) were calculated using the Kaplan-Meier method. Results: Forty-seven patients with anal malignancy (89% canal, 11% perianal skin) were treated with IMRT between August 2006 and September 2008. Median follow-up was 14 months (19 months for SCC patients). Median radiation dose was 54 Gy. Eight patients (18%) required treatment breaks lasting a median of 5 days (range, 2-7 days). Toxicity rates were as follows: Grade 4: leukopenia (7%), thrombocytopenia (2%); Grade 3: leukopenia (18%), diarrhea (9%), and anemia (4%); Grade 2: skin (93%), diarrhea (24%), and leukopenia (24%). The 2-year actuarial overall OS, MFS, LRC, and CFS rates were 85%, 78%, 90% and 82%, respectively. For SCC patients, the 2-year OS, MFS, LRC, and CFS rates were 100%, 100%, 95%, and 91%, respectively. Conclusions: IMRT-based chemoradiotherapy for anal cancer results in significant reductions in normal tissue dose and acute toxicities versus historic controls treated without IMRT, leading to reduced rates of toxicity-related treatment interruption. Early disease-related outcomes seem encouraging. IMRT is emerging as a standard therapy for anal cancer.

  5. Fast voxel and polygon ray-tracing algorithms in intensity modulated radiation therapy treatment planning

    SciTech Connect

    Fox, Christopher; Romeijn, H. Edwin; Dempsey, James F.

    2006-05-15

    We present work on combining three algorithms to improve ray-tracing efficiency in radiation therapy dose computation. The three algorithms include: An improved point-in-polygon algorithm, incremental voxel ray tracing algorithm, and stereographic projection of beamlets for voxel truncation. The point-in-polygon and incremental voxel ray-tracing algorithms have been used in computer graphics and nuclear medicine applications while the stereographic projection algorithm was developed by our group. These algorithms demonstrate significant improvements over the current standard algorithms in peer reviewed literature, i.e., the polygon and voxel ray-tracing algorithms of Siddon for voxel classification (point-in-polygon testing) and dose computation, respectively, and radius testing for voxel truncation. The presented polygon ray-tracing technique was tested on 10 intensity modulated radiation therapy (IMRT) treatment planning cases that required the classification of between 0.58 and 2.0 million voxels on a 2.5 mm isotropic dose grid into 1-4 targets and 5-14 structures represented as extruded polygons (a.k.a. Siddon prisms). Incremental voxel ray tracing and voxel truncation employing virtual stereographic projection was tested on the same IMRT treatment planning cases where voxel dose was required for 230-2400 beamlets using a finite-size pencil-beam algorithm. Between a 100 and 360 fold cpu time improvement over Siddon's method was observed for the polygon ray-tracing algorithm to perform classification of voxels for target and structure membership. Between a 2.6 and 3.1 fold reduction in cpu time over current algorithms was found for the implementation of incremental ray tracing. Additionally, voxel truncation via stereographic projection was observed to be 11-25 times faster than the radial-testing beamlet extent approach and was further improved 1.7-2.0 fold through point-classification using the method of translation over the cross product technique.

  6. Disease-control rates following intensity-modulated radiation therapy for small primary oropharyngeal carcinoma

    SciTech Connect

    Garden, Adam S. . E-mail: agarden@mdanderson.org; Morrison, William H.; Wong, P.-F.; Tung, Sam S.; Rosenthal, David I.; Dong Lei; Mason, Brian M.S.; Perkins, George H.; Ang, K. Kian

    2007-02-01

    Background: The purpose of this study was to assess the ability of intensity-modulated radiation therapy (IMRT) to achieve favorable disease-control rates while minimizing parotid gland doses in patients treated for small primary tumors of the oropharynx. Methods and Materials: We retrospectively identified all patients who received IMRT as treatment for a small (<4 cm) primary tumor of the oropharynx between October 2000 and June 2002. Tumor characteristics, IMRT parameters, and patient outcomes were assessed. Results: Fifty-one patients met the criteria for our study. All patients had treatment to gross disease with margin (CTV1), and all but 1 had treatment to the bilateral necks. The most common treatment schedule (39 patients) was a once-daily fractionation of prescribed doses of 63-66 Gy to the CTV1 and 54 Gy to subclinical sites, delivered in 30 fractions. Twenty-one patients (40%) had gastrostomy tubes placed during therapy; in 4 patients, the tube remained in place for more than 6 months after completion of IMRT. The median follow-up was 45 months. The 2-year actuarial locoregional control, recurrence-free, and overall survival rates were 94%, 88%, and 94%, respectively. Conclusions: These preliminary data suggest that treatment with IMRT results in favorable locoregional control of small primary oropharynx tumors. IMRT did not appear to have a more favorable acute toxicity profile in this group with respect to the use of a feeding tube; however, the mean dose of radiation delivered to the parotid gland by IMRT was decreased, because 95% of patients had a mean dose of <30 Gy to at least one gland.

  7. Intensity-Modulated Radiation Therapy Significantly Improves Acute Gastrointestinal Toxicity in Pancreatic and Ampullary Cancers

    SciTech Connect

    Yovino, Susannah; Poppe, Matthew; Jabbour, Salma; David, Vera; Garofalo, Michael; Pandya, Naimesh; Alexander, Richard; Hanna, Nader; Regine, William F.

    2011-01-01

    Purpose: Among patients with upper abdominal malignancies, intensity-modulated radiation therapy (IMRT) can improve dose distributions to critical dose-limiting structures near the target. Whether these improved dose distributions are associated with decreased toxicity when compared with conventional three-dimensional treatment remains a subject of investigation. Methods and Materials: 46 patients with pancreatic/ampullary cancer were treated with concurrent chemoradiation (CRT) using inverse-planned IMRT. All patients received CRT based on 5-fluorouracil in a schema similar to Radiation Therapy Oncology Group (RTOG) 97-04. Rates of acute gastrointestinal (GI) toxicity for this series of IMRT-treated patients were compared with those from RTOG 97-04, where all patients were treated with three-dimensional conformal techniques. Chi-square analysis was used to determine if there was a statistically different incidence in acute GI toxicity between these two groups of patients. Results: The overall incidence of Grade 3-4 acute GI toxicity was low in patients receiving IMRT-based CRT. When compared with patients who had three-dimensional treatment planning (RTOG 97-04), IMRT significantly reduced the incidence of Grade 3-4 nausea and vomiting (0% vs. 11%, p = 0.024) and diarrhea (3% vs. 18%, p = 0.017). There was no significant difference in the incidence of Grade 3-4 weight loss between the two groups of patients. Conclusions: IMRT is associated with a statistically significant decrease in acute upper and lower GI toxicity among patients treated with CRT for pancreatic/ampullary cancers. Future clinical trials plan to incorporate the use of IMRT, given that it remains a subject of active investigation.

  8. Adoption of Intensity Modulated Radiation Therapy For Early-Stage Breast Cancer From 2004 Through 2011

    SciTech Connect

    Wang, Elyn H.; Mougalian, Sarah S.; Soulos, Pamela R.; Smith, Benjamin D.; Haffty, Bruce G.; Gross, Cary P.; Yu, James B.

    2015-02-01

    Purpose: Intensity modulated radiation therapy (IMRT) is a newer method of radiation therapy (RT) that has been increasingly adopted as an adjuvant treatment after breast-conserving surgery (BCS). IMRT may result in improved cosmesis compared to standard RT, although at greater expense. To investigate the adoption of IMRT, we examined trends and factors associated with IMRT in women under the age of 65 with early stage breast cancer. Methods and Materials: We performed a retrospective study of early stage breast cancer patients treated with BCS followed by whole-breast irradiation (WBI) who were ≤65 years old in the National Cancer Data Base from 2004 to 2011. We used logistic regression to identify factors associated with receipt of IMRT (vs standard RT). Results: We identified 11,089 women with early breast cancer (9.6%) who were treated with IMRT and 104,448 (90.4%) who were treated with standard RT, after BCS. The proportion of WBI patients receiving IMRT increased yearly from 2004 to 2009, with 5.3% of WBI patients receiving IMRT in 2004 and 11.6% receiving IMRT in 2009. Further use of IMRT declined afterward, with the proportion remaining steady at 11.0% and 10.7% in 2010 and 2011, respectively. Patients treated in nonacademic community centers were more likely to receive IMRT (odds ratio [OR], 1.36; 95% confidence interval [CI], 1.30-1.43 for nonacademic vs academic center). Compared to privately insured patients, the uninsured patients (OR, 0.81; 95% CI, 0.70-0.95) and those with Medicaid insurance (OR, 0.87; 95% CI, 0.79-0.95) were less likely to receive IMRT. Conclusions: The use of IMRT rose from 2004 to 2009 and then stabilized. Important nonclinical factors associated with IMRT use included facility type and insurance status.

  9. DICOM-based computer-aided evaluation of intensity modulated radiation therapy (IMRT) treatment plans

    NASA Astrophysics Data System (ADS)

    Cheung, Fion W. K.; Law, Maria Y. Y.

    2011-03-01

    Intensity-modulated radiation therapy (IMRT) has gained popularity in the treatment of cancers because of its excellent local control with decreased normal tissue complications. Yet, computer planning for the treatment relies heavily on human inspection of resultant radiation dose distribution within the irradiated region of the body. Even for experienced planners, comparison of IMRT plans is definitely cumbersome and not error-free. To solve this problem, a computer-aided decision-support system was built for automatic evaluation of IMRT plans based on the DICOM standard. A DICOM based IMRT plan with DICOM and DICOM-RT objects including CT images, RT Structure Set, RT Dose and RT Plan were retrieved from the Treatment Planning System for programming. Utilizing the MATLAB program language, the decoding-encoding software applications were developed on the basis of the DICOM information object definitions. After tracing the clinical workflow and understanding the needs and expectations from radiation oncologists, a set of routines were written to parse key data items such as isodose curves, region of interests, dose-volume histogram from the DICOM-RT objects. Then graphical user interfaces (GUIs) were created to allow planners to query for parameters such as overdose or underdose areas. A total of 30 IMRT plans were collected in a Department of Clinical Oncology for systematic testing of the DICOM-based decision-support system. Both structural and functional tests were implemented as a major step on the road to software maturity. With promising test results, this decision-support system could represent a major breakthrough in the routine IMRT planning workflow.

  10. Dosimetric effects of jaw tracking in step-and-shoot intensity-modulated radiation therapy.

    PubMed

    Joy, Sarah; Starkschall, George; Kry, Stephen; Salehpour, Mohammed; White, R Allen; Lin, Steven H; Balter, Peter

    2012-03-08

    The purpose of this work was to determine the dosimetric benefit to normal tissues by tracking the multi-leaf collimator (MLC) apertures with the photon jaws in step-and-shoot intensity-modulated radiation therapy (IMRT) on the Varian 2100 platform. Radiation treatment plans for ten thoracic, three pediatric, and three head and neck cancer patients were converted to plans with the jaws tracking each segment's MLC apertures, and compared to the original plans in a commercial radiation treatment planning system (TPS). The change in normal tissue dose was evaluated in the new plan by using the parameters V5, V10, and V20 (volumes receiving 5, 10 and 20 Gy, respectively) in the cumulative dose-volume histogram for the following structures: total lung minus gross target volume, heart, esophagus, spinal cord, liver, parotids, and brainstem. To validate the accuracy of our beam model, MLC transmission was measured and compared to that predicted by the TPS. The greatest changes between the original and new plans occurred at lower dose levels. In all patients, the reduction in V20 was never more than 6.3% and was typically less than 1%; the maximum reduction in V5 was 16.7% and was typically less than 3%. The variation in normal tissue dose reduction was not predictable, and we found no clear parameters that indicated which patients would benefit most from jaw tracking. Our TPS model of MLC transmission agreed with measurements with absolute transmission differences of less than 0.1% and, thus, uncertainties in the model did not contribute significantly to the uncertainty in the dose determination. We conclude that the amount of dose reduction achieved by collimating the jaws around each MLC aperture in step-and-shoot IMRT is probably not clinically significant.

  11. Patterns of Care and Outcomes Associated With Intensity-Modulated Radiation Therapy Versus Conventional Radiation Therapy for Older Patients With Head-and-Neck Cancer

    SciTech Connect

    Yu, James B.; Soulos, Pamela R.; Sharma, Richa; Makarov, Danil V.; Decker, Roy H.; Smith, Benjamin D.; Desai, Rani A.; Cramer, Laura D.; Gross, Cary P.

    2012-05-01

    Purpose: Intensity-modulated radiation therapy (IMRT) requires a high degree of expertise compared with standard radiation therapy (RT). We performed a retrospective cohort study of Medicare patients treated with IMRT compared with standard RT to assess outcomes in national practice. Methods and Materials: Using the National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER)-Medicare linked database, we identified patients treated with radiation for cancer of the head and neck from 2002 to 2005. We used multivariate Cox models to determine whether the receipt of IMRT was associated with differences in survival. Results: We identified 1613 patients, 33.7% of whom received IMRT. IMRT was not associated with differences in survival: the 3-year overall survival was 50.5% for IMRT vs. 49.6% for standard RT (p = 0.47). The 3-year cancer-specific survival was 60.0% for IMRT vs. 58.8% (p = 0.45). Conclusion: Despite its complexity and resource intensive nature, IMRT use seems to be as safe as standard RT in national community practice, because the use of IMRT did not have an adverse impact on survival.

  12. A dosimetric comparative study: Volumetric modulated arc therapy vs intensity-modulated radiation therapy in the treatment of nasal cavity carcinomas

    SciTech Connect

    Nguyen, Kham; Cummings, David; Lanza, Vincent C.; Morris, Kathleen; Wang, Congjun; Sutton, Jordan; Garcia, John

    2013-10-01

    The purpose of this study was to evaluate the differences between volumetric modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) in the treatment of nasal cavity carcinomas. The treatment of 10 patients, who had completed IMRT treatment for resected tumors of the nasal cavity, was replanned with the Philips Pinnacle{sup 3} Version 9 treatment-planning system. The IMRT plans used a 9-beam technique whereas the VMAT (known as SmartArc) plans used a 3-arc technique. Both types of plans were optimized using Philips Pinnacle{sup 3} Direct Machine Parameter Optimization algorithm. IMRT and VMAT plans' quality was compared by evaluating the maximum, minimum, and mean doses to the target volumes and organs at risk, monitor units (MUs), and the treatment delivery time. Our results indicate that VMAT is capable of greatly reducing treatment delivery time and MUs compared with IMRT. The reduction of treatment delivery time and MUs can decrease the effects of intrafractional uncertainties that can occur because of patient movement during treatment delivery. VMAT's plans further reduce doses to critical structures that are in close proximity to the target volume.

  13. SmartArc-Based Volumetric Modulated Arc Therapy for Oropharyngeal Cancer: A Dosimetric Comparison With Both Intensity-Modulated Radiation Therapy and Helical Tomotherapy

    SciTech Connect

    Clemente, Stefania; Wu, BinBin; Sanguineti, Giuseppe; Fusco, Vincenzo; Ricchetti, Francesco; Wong, John; McNutt, Todd

    2011-07-15

    Purpose: To investigate the roles of volumetric modulated arc therapy with SmartArc (VMAT-S), intensity-modulated radiation therapy (IMRT), and helical tomotherapy (HT) for oropharyngeal cancer using a simultaneous integrated boost (SIB) approach. Methods and Materials: Eight patients treated with IMRT were selected at random. Plans were computed for both IMRT and VMAT-S (using Pinnacle TPS for an Elekta Infinity linac) along with HT. A three-dose level prescription was used to deliver 70 Gy, 63 Gy, and 58.1 Gy to regions of macroscopic, microscopic high-risk, and microscopic low-risk disease, respectively. All doses were given in 35 fractions. Comparisons were performed on dose-volume histogram data, monitor units per fraction (MU/fx), and delivery time. Results: VMAT-S target coverage was close to that achieved by IMRT, but inferior to HT. The conformity and homogeneity within the PTV were improved for HT over all strategies. Sparing of the organs at risk (OAR) was achieved with all modalities. VMAT-S (along with HT) shortened delivery time (mean, -38%) and reduced MU/fx (mean, -28%) compared with IMRT. Conclusion: VMAT-S represents an attractive solution because of the shorter delivery time and the lower number of MU/fx compared with IMRT. However, in this complex clinical setting, current VMAT-S does not appear to provide any distinct advantage compared with helical tomotherapy.

  14. Bridging the gap between IMRT and VMAT: Dense angularly sampled and sparse intensity modulated radiation therapy

    SciTech Connect

    Li, Ruijiang; Xing, Lei

    2011-09-15

    Purpose: To propose an alternative radiation therapy (RT) planning and delivery scheme with optimal angular beam sampling and intrabeam modulation for improved dose distribution while maintaining high delivery efficiency. Methods: In the proposed approach, coined as dense angularly sampled and sparse intensity modulated RT (DASSIM-RT), a large number of beam angles are used to increase the angular sampling, leading to potentially more conformal dose distributions as compared to conventional IMRT. At the same time, intensity modulation of the incident beams is simplified to eliminate the dispensable segments, compensating the increase in delivery time caused by the increased number of beams and facilitating the plan delivery. In a sense, the proposed approach shifts and transforms, in an optimal fashion, some of the beam segments in conventional IMRT to the added beams. For newly available digital accelerators, the DASSIM-RT delivery can be made very efficient by concatenating the beams so that they can be delivered sequentially without operator's intervention. Different from VMAT, the level of intensity modulation in DASSIS-RT is field specific and optimized to meet the need of each beam direction. Three clinical cases (a head and neck (HN) case, a pancreas case, and a lung case) are used to evaluate the proposed RT scheme. DASSIM-RT, VMAT, and conventional IMRT plans are compared quantitatively in terms of the conformality index (CI) and delivery efficiency. Results: Plan quality improves generally with the number and intensity modulation of the incident beams. For a fixed number of beams or fixed level of intensity modulation, the improvement saturates after the intensity modulation or number of beams reaches to a certain level. An interplay between the two variables is observed and the saturation point depends on the values of both variables. For all the cases studied here, the CI of DASSIM-RT with 15 beams and 5 intensity levels (0.90, 0.79, and 0.84 for the HN

  15. Cherenkov imaging during volumetric modulated arc therapy for real-time radiation beam tracking and treatment response monitoring

    NASA Astrophysics Data System (ADS)

    Andreozzi, Jacqueline M.; Zhang, Rongxiao; Glaser, Adam K.; Gladstone, David J.; Jarvis, Lesley A.; Pogue, Brian W.

    2016-03-01

    External beam radiotherapy utilizes high energy radiation to target cancer with dynamic, patient-specific treatment plans. The otherwise invisible radiation beam can be observed via the optical Cherenkov photons emitted from interaction between the high energy beam and tissue. Using a specialized camera-system, the Cherenkov emission can thus be used to track the radiation beam on the surface of the patient in real-time, even for complex cases such as volumetric modulated arc therapy (VMAT). Two patients undergoing VMAT of the head and neck were imaged and analyzed, and the viability of the system to provide clinical feedback was established.

  16. Sci—Fri AM: Mountain — 05: Unified Optimization and Delivery of Intensity-modulated Radiation Therapy and Volume-modulated Arc Therapy

    SciTech Connect

    Chen, J; Hoover, D; MacFarlane, M; Wong, E

    2014-08-15

    Purpose: To study the feasibility of a unified intensity-modulated arc therapy (UIMAT) that combines IMRT and VMAT optimization and delivery in order to produce efficient and superior radiation treatment plans. Methods: Inverse planning for UIMAT was prototyped on the Pinnacle treatment planning system (Philips Medical Systems). UIMAT integrates IMRT and VMAT delivery in the same arc where IMRT was delivered with gantry speed close to zero. Optimal gantry angles for the IMRT phases were selected automatically by the inverse optimization algorithm. Optimization of the VMAT phases and IMRT phases were done simultaneously using Pinnacle's direct machine parameter optimization algorithm. Five treatment plans each for prostate, head and neck, and lung were generated using our unified technique and compared with clinical VMAT or IMRT plans. Delivery verification was performed on an ArcCheck phantom (Sun Nuclear) and delivered in clinical mode on a Varian TrueBeam linear accelerator. Results: In this prototype implementation, compared to the VMAT or IMRT plans, with the plans normalized to the same dose coverage to the planning target volumes, the UIMAT plans produced improved OAR sparing for head and neck cases, while for lung and prostate cases, the dosimetric improvements for OARs were not as significant. In this proof-of-concept work, we demonstrated that a novel radiation therapy delivery technique combining VMAT and IMRT delivery in the same arc is feasible. Initial results showed UIMAT has the potential to be superior to either standard IMRT or VMAT.

  17. Dosimetric comparison of tools for intensity modulated radiation therapy with gamma analysis: a phantom study

    NASA Astrophysics Data System (ADS)

    Akbas, Ugur; Okutan, Murat; Demir, Bayram; Koksal, Canan

    2015-07-01

    Dosimetry of the Intensity Modulated Radiation Therapy (IMRT) is very important because of the complex dose distributions. Diode arrays are the most common and practical measurement tools for clinical usage for IMRT. Phantom selection is critical for QA process. IMRT treatment plans are recalculated for the phantom irradiation in QA. Phantoms are made in different geometrical shapes to measure the doses of different types of irradiation techniques. Comparison of measured and calculated dose distributions for IMRT can be made by using gamma analysis. In this study, 10 head-and-neck IMRT QA plans were created with Varian Eclipse 8.9 treatment planning system. Water equivalent RW3-slab phantoms, Octavius-2 phantom and PTW Seven29 2D-array were used for QA measurements. Gantry, collimator and couch positions set to 00 and QA plans were delivered to RW3 and Octavius phantoms. Then the positions set to original angles and QA plans irradiated again. Measured and calculated fluence maps were evaluated with gamma analysis for different DD and DTA criteria. The effect of different set-up conditions for RW3 and Octavius phantoms in QA plan delivery evaluated by gamma analysis. Results of gamma analysis show that using RW3-slab phantoms with setting parameters to 00 is more appropriate for IMRT QA.

  18. Intensity-modulated radiation therapy for malignancies of the nasal cavity and paranasal sinuses

    SciTech Connect

    Daly, Megan E.; Chen, Allen M. . E-mail: allenmchen@yahoo.com; Bucci, M. Kara; El-Sayed, Ivan; Xia Ping; Kaplan, Michael J.; Eisele, David W.

    2007-01-01

    Purpose: To report the clinical outcome of patients treated with intensity-modulated radiation therapy (IMRT) for malignancies of the nasal cavity and paranasal sinuses. Methods and Materials: Between 1998 and 2004, 36 patients with malignancies of the sinonasal region were treated with IMRT. Thirty-two patients (89%) were treated in the postoperative setting after gross total resection. Treatment plans were designed to provide a dose of 70 Gy to 95% or more of the gross tumor volume (GTV) and 60 Gy to 95% or more of the clinical tumor volume (CTV) while sparing neighboring critical structures including the optic chiasm, optic nerves, eyes, and brainstem. The primary sites were: 13 ethmoid sinus, 10 maxillary sinus, 7 nasal cavity, and 6 other. Histology was: 12 squamous cell, 7 esthesioneuroblastoma, 5 adenoid cystic, 5 undifferentiated, 5 adenocarcinoma, and 2 other. Median follow-up was 51 months among surviving patients (range, 9-82 months). Results: The 2-year and 5-year estimates of local control were 62% and 58%, respectively. One patient developed isolated distant metastasis, and none developed isolated regional failure. The 5-year rates of disease-free and overall survival were 55% and 45%, respectively. The incidence of ocular toxicity was minimal with no patients reporting decreased vision. Late complications included xerophthalmia (1 patient), lacrimal stenosis (1 patient), and cataract (1 patient). Conclusion: Although IMRT for malignancies of the sinonasal region does not appear to lead to significant improvements in disease control, the low incidence of complications is encouraging.

  19. The Accuracy of Inhomogeneity Corrections in Intensity Modulated Radiation Therapy Planning in Philips Pinnacle System

    SciTech Connect

    Alaei, Parham; Higgins, Patrick D.

    2011-10-01

    The degree of accuracy of inhomogeneity corrections in a treatment planning system is dependent on the algorithm used by the system. The choice of field size, however, could have an effect on the calculation accuracy as well. There have been several evaluation studies on the accuracy of inhomogeneity corrections used by different algorithms. Most of these studies, however, focus on evaluating the dose in phantom using simplified geometry and open/static fields. This work focuses on evaluating the degree of dose accuracy in calculations involving intensity-modulated radiation therapy (IMRT) fields incident on a phantom containing both lung- and bone-equivalent heterogeneities using 6 and 10 MV beams. IMRT treatment plans were generated using the Philips Pinnacle treatment planning system and delivered to a phantom containing 55 thermoluminescent dosimeter (TLD) locations within the lung and bone and near the lung and bone interfaces with solid water. The TLD readings were compared with the dose predicted by the planning system. We find satisfactory agreement between planned and delivered doses, with an overall absolute average difference between measurement and calculation of 1.2% for the 6 MV and 3.1% for the 10 MV beam with larger variations observed near the interfaces and in areas of high-dose gradient. The results presented here demonstrate that the convolution algorithm used in the Pinnacle treatment planning system produces accurate results in IMRT plans calculated and delivered to inhomogeneous media, even in regions that potentially lack electronic equilibrium.

  20. Meningioma Causing Visual Impairment: Outcomes and Toxicity After Intensity Modulated Radiation Therapy

    SciTech Connect

    Maclean, Jillian; Fersht, Naomi; Bremner, Fion; Stacey, Chris; Sivabalasingham, Suganya; Short, Susan

    2013-03-15

    Purpose: To evaluate ophthalmologic outcomes and toxicity of intensity modulated radiation therapy (IMRT) in patients with meningiomas causing visual deficits. Methods and Materials: A prospective observational study with formal ophthalmologic and clinical assessment of 30 consecutive cases of meningioma affecting vision treated with IMRT from 2007 to 2011. Prescriptions were 50.4 Gy to mean target dose in 28 daily fractions. The median follow-up time was 28 months. Twenty-six meningiomas affected the anterior visual pathway (including 3 optic nerve sheath meningiomas); 4 were posterior to the chiasm. Results: Vision improved objectively in 12 patients (40%). Improvements were in visual field (5/16 patients), color vision (4/9 patients), acuity (1/15 patients), extraocular movements (3/11 patients), ptosis (1/5 patients), and proptosis (2/6 patients). No predictors of clinical response were found. Two patients had minor reductions in tumor dimensions on magnetic resonance imaging, 1 patient had radiological progression, and the other patients were stable. One patient experienced grade 2 keratitis, 1 patient had a minor visual field loss, and 5 patients had grade 1 dry eye. Conclusion: IMRT is an effective method for treating meningiomas causing ophthalmologic deficits, and toxicity is minimal. Thorough ophthalmologic assessment is important because clinical responses often occur in the absence of radiological change.

  1. Organisational standards for the delivery of intensity-modulated radiation therapy in Ontario.

    PubMed

    Whitton, A; Warde, P; Sharpe, M; Oliver, T K; Bak, K; Leszczynski, K; Etheridge, S; Fleming, K; Gutierrez, E; Favell, L; Green, E

    2009-04-01

    By minimising the effect of irradiation on surrounding tissue, intensity-modulated radiation therapy (IMRT) can deliver higher, more effective doses to the targeted tumour site, minimising treatment-related morbidity and possibly improving cancer control and cure. A multidisciplinary IMRT Expert Panel was convened to develop the organisational standards for the delivery of IMRT. The systematic literature search used MEDLINE, EMBASE, the Cochrane Database, the National Guidelines Clearing House and the Health Technology Assessment Database. An environmental scan of unpublished literature used the Google search engine to review the websites of key organisations, cancer agencies/centres and vendor sites in Canada, the USA, Australia and Europe. In total, 22 relevant guidance documents were identified; 12 from the published literature and 10 from the environmental scan. Professional and organisational standards for the provision of IMRT were developed through the analysis of this evidence and the consensus opinion of the IMRT Expert Panel. The resulting standards address the following domains: planning of new IMRT programmes, practice setting requirements, tools, devices and equipment requirements; professional training requirements; role of personnel; and requirements for quality assurance and safety. Here the IMRT Expert Panel offers organisational and professional standards for the delivery of IMRT, with the intent of promoting innovation, improving access and enhancing patient care.

  2. Dosimetric evaluations of the interplay effect in respiratory-gated intensity-modulated radiation therapy

    SciTech Connect

    Chen Hungcheng; Wu, Andrew; Brandner, Edward D.; Heron, Dwight E.; Huq, M. Saiful; Yue, Ning J.; Chen Wencheng

    2009-03-15

    The interplay between a mobile target and a dynamic multileaf collimator can compromise the accuracy of intensity-modulated radiation therapy (IMRT). Our goal in this study is to investigate the dosimetric effects caused by the respiratory motion during IMRT. A moving phantom was built to simulate the typical breathing motion. Different sizes of the gating windows were selected for gated deliveries. The residual motions during the beam-on period ranged from 0.5 to 3 cm. An IMRT plan with five treatment fields from different gantry angles were delivered to the moving phantom for three irradiation conditions: Stationary condition, moving with the use of gating system, and moving without the use of gating system. When the residual motion was 3 cm, the results showed significant differences in dose distributions between the stationary condition and the moving phantom without gating beam control. The overdosed or underdosed areas enclosed about 33% of the treatment area. In contrast, the dose distribution on the moving phantom with gating window set to 0.5 cm showed no significant differences from the stationary phantom. With the appropriate setting of the gating window, the deviation of dose from the respiratory motion can be minimized. It appeals that limiting the residual motion to less than 0.5 cm is critical for the treatments of mobile structures.

  3. Possible fractionated regimens for image-guided intensity-modulated radiation therapy of large arteriovenous malformations

    NASA Astrophysics Data System (ADS)

    Qi, X. Sharon; Schultz, Christopher J.; Li, X. Allen

    2007-09-01

    The aim of this study was to estimate a plausible α/β ratio for arteriovenous malformations (AVMs) based on reported clinical data, and to design possible fractionation regimens suitable for image-guided intensity-modulated radiation therapy (IG-IMRT) for large AVMs based on the newly obtained α/β ratio. The commonly used obliteration rate (OR) for AVMs with a three year angiographic follow-up from many institutes was fitted to linear-quadratic (LQ) formalism and the Poisson OR model. The determined parameters were then used to calculate possible fractionation regimens for IG-IMRT based on the concept of a biologically effective dose (BED) and an equivalent uniform dose (EUD). The radiobiological analysis yields a α/β ratio of 2.2 ± 1.6 Gy for AVMs. Three sets of possible fractionated schemes were designed to achieve equal or better biological effectiveness than the single-fraction treatments while maintaining the same probability of normal brain complications. A plausible α/β ratio was derived for AVMs and possible fractionation regimens that may be suitable for IG-IMRT for large AVM treatment are proposed. The sensitivity of parameters on the calculation was also studied. The information may be useful to design new clinical trials that use IG-IMRT for the treatment of large AVMs.

  4. A nested partitions framework for beam angle optimization in intensity-modulated radiation therapy.

    PubMed

    D'Souza, Warren D; Zhang, Hao H; Nazareth, Daryl P; Shi, Leyuan; Meyer, Robert R

    2008-06-21

    Coupling beam angle optimization with dose optimization in intensity-modulated radiation therapy (IMRT) increases the size and complexity of an already large-scale combinatorial optimization problem. We have developed a novel algorithm, nested partitions (NP), that is capable of finding suitable beam angle sets by guiding the dose optimization process. NP is a metaheuristic that is flexible enough to guide the search of a heuristic or deterministic dose optimization algorithm. The NP method adaptively samples from the entire feasible region, or search space, and coordinates the sampling effort with a systematic partitioning of the feasible region at successive iterations, concentrating the search in promising subsets. We used a 'warm-start' approach by initiating NP with beam angle samples derived from an integer programming (IP) model. In this study, we describe our implementation of the NP framework with a commercial optimization algorithm. We compared the NP framework with equi-spaced beam angle selection, the IP method, greedy heuristic and random sampling heuristic methods. The results of the NP approach were evaluated using two clinical cases (head and neck and whole pelvis) involving the primary tumor and nodal volumes. Our results show that NP produces better quality solutions than the alternative considered methods. PMID:18523351

  5. A nested partitions framework for beam angle optimization in intensity-modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    D'Souza, Warren D.; Zhang, Hao H.; Nazareth, Daryl P.; Shi, Leyuan; Meyer, Robert R.

    2008-06-01

    Coupling beam angle optimization with dose optimization in intensity-modulated radiation therapy (IMRT) increases the size and complexity of an already large-scale combinatorial optimization problem. We have developed a novel algorithm, nested partitions (NP), that is capable of finding suitable beam angle sets by guiding the dose optimization process. NP is a metaheuristic that is flexible enough to guide the search of a heuristic or deterministic dose optimization algorithm. The NP method adaptively samples from the entire feasible region, or search space, and coordinates the sampling effort with a systematic partitioning of the feasible region at successive iterations, concentrating the search in promising subsets. We used a 'warm-start' approach by initiating NP with beam angle samples derived from an integer programming (IP) model. In this study, we describe our implementation of the NP framework with a commercial optimization algorithm. We compared the NP framework with equi-spaced beam angle selection, the IP method, greedy heuristic and random sampling heuristic methods. The results of the NP approach were evaluated using two clinical cases (head and neck and whole pelvis) involving the primary tumor and nodal volumes. Our results show that NP produces better quality solutions than the alternative considered methods.

  6. In vivo measurements with MOSFET detectors in oropharynx and nasopharynx intensity-modulated radiation therapy

    SciTech Connect

    Marcie, Serge . E-mail: serge.marcie@cal.nice.fnclcc.fr; Charpiot, Elisabeth; Bensadoun, Rene-Jean; Ciais, Gaston; Herault, Joel; Costa, Andre; Gerard, Jean-Pierre

    2005-04-01

    Purpose: To evaluate the feasibility of in vivo measurements with metal oxide semiconductor field effect transistor (MOSFET) dosimeters for oropharynx and nasopharynx intensity-modulated radiation therapy (IMRT). Methods and Materials: During a 1-year period, in vivo measurements of the dose delivered to one or two points of the oral cavity by IMRT were obtained with MOSFET dosimeters. Measurements were obtained during each session of 48 treatment plans for 21 patients, all of whom were fitted with a custom-made mouth plate. Calculated and measured values were compared. Results: A total of 344 and 452 measurements were performed for the right and left sides, respectively, of the oral cavity. Seventy percent of the discrepancies between calculated and measured values were within {+-}5%. Uncertainties were due to interfraction patient positions, intrafraction patient movements, and interfraction MOSFET positions. Nevertheless, the discrepancies between the measured and calculated means were within {+-}5% for 92% and 95% of the right and left sides, respectively. Comparison of these discrepancies and the discrepancies between calculated values and measurements made on a phantom revealed that all differences were within {+-}5%. Conclusion: Our experience demonstrates the feasibility of in vivo measurements with MOSFET dosimeters for oropharynx and nasopharynx IMRT.

  7. Racial Differences in Diffusion of Intensity-Modulated Radiation Therapy for Localized Prostate Cancer.

    PubMed

    Cobran, Ewan K; Chen, Ronald C; Overman, Robert; Meyer, Anne-Marie; Kuo, Tzy-Mey; O'Brien, Jonathon; Sturmer, Til; Sheets, Nathan C; Goldin, Gregg H; Penn, Dolly C; Godley, Paul A; Carpenter, William R

    2016-09-01

    Intensity-modulated radiation therapy (IMRT), an innovative treatment option for prostate cancer, has rapidly diffused over the past decade. To inform our understanding of racial disparities in prostate cancer treatment and outcomes, this study compared diffusion of IMRT in African American (AA) and Caucasian American (CA) prostate cancer patients during the early years of IMRT diffusion using the Surveillance, Epidemiology and End Results (SEER)-Medicare linked database. A retrospective cohort of 947 AA and 10,028 CA patients diagnosed with localized prostate cancer from 2002 through 2006, who were treated with either IMRT or non-IMRT as primary treatment within 1 year of diagnoses was constructed. Logistic regression was used to examine potential differences in diffusion of IMRT in AA and CA patients, while adjusting for socioeconomic and clinical covariates. A significantly smaller proportion of AA compared with CA patients received IMRT for localized prostate cancer (45% vs. 53%, p < .0001). Racial differences were apparent in multivariable analysis though did not achieve statistical significance, as time and factors associated with race (socioeconomic, geographic, and tumor related factors) explained the preponderance of variance in use of IMRT. Further research examining improved access to innovative cancer treatment and technologies is essential to reducing racial disparities in cancer care.

  8. Direct-aperture optimization applied to selection of beam orientations in intensity-modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Bedford, J. L.; Webb, S.

    2007-01-01

    Direct-aperture optimization (DAO) was applied to iterative beam-orientation selection in intensity-modulated radiation therapy (IMRT), so as to ensure a realistic segmental treatment plan at each iteration. Nested optimization engines dealt separately with gantry angles, couch angles, collimator angles, segment shapes, segment weights and wedge angles. Each optimization engine performed a random search with successively narrowing step sizes. For optimization of segment shapes, the filtered backprojection (FBP) method was first used to determine desired fluence, the fluence map was segmented, and then constrained direct-aperture optimization was used thereafter. Segment shapes were fully optimized when a beam angle was perturbed, and minimally re-optimized otherwise. The algorithm was compared with a previously reported method using FBP alone at each orientation iteration. An example case consisting of a cylindrical phantom with a hemi-annular planning target volume (PTV) showed that for three-field plans, the method performed better than when using FBP alone, but for five or more fields, neither method provided much benefit over equally spaced beams. For a prostate case, improved bladder sparing was achieved through the use of the new algorithm. A plan for partial scalp treatment showed slightly improved PTV coverage and lower irradiated volume of brain with the new method compared to FBP alone. It is concluded that, although the method is computationally intensive and not suitable for searching large unconstrained regions of beam space, it can be used effectively in conjunction with prior class solutions to provide individually optimized IMRT treatment plans.

  9. Replanning During Intensity Modulated Radiation Therapy Improved Quality of Life in Patients With Nasopharyngeal Carcinoma

    SciTech Connect

    Yang Haihua; Hu Wei; Wang Wei; Chen Peifang; Ding Weijun; Luo Wei

    2013-01-01

    Purpose: Anatomic and dosimetric changes have been reported during intensity modulated radiation therapy (IMRT) in patients with nasopharyngeal carcinoma (NPC). The purpose of this study was to evaluate the effects of replanning on quality of life (QoL) and clinical outcomes during the course of IMRT for NPC patients. Methods and Materials: Between June 2007 and August 2011, 129 patients with NPC were enrolled. Forty-three patients received IMRT without replanning, while 86 patients received IMRT replanning after computed tomography (CT) images were retaken part way through therapy. Chinese versions of the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire C30 and Head and Neck Quality of Life Questionnaire 35 were completed before treatment began and at the end of treatment and at 1, 3, 6, and 12 months after the completion of treatment. Overall survival (OS) data were compared using the Kaplan-Meier method. Results: IMRT replanning had a profound impact on the QoL of NPC patients, as determined by statistically significant changes in global QoL and other QoL scales. Additionally, the clinical outcome comparison indicates that replanning during IMRT for NPC significantly improved 2-year local regional control (97.2% vs 92.4%, respectively, P=.040) but did not improve 2-year OS (89.8% vs 82.2%, respectively, P=.475). Conclusions: IMRT replanning improves QoL as well as local regional control in patients with NPC. Future research is needed to determine the criteria for replanning for NPC patients undergoing IMRT.

  10. American College of Radiology (ACR) and American Society for Radiation Oncology (ASTRO) Practice Guideline for Intensity-modulated Radiation Therapy (IMRT).

    PubMed

    Hartford, Alan C; Galvin, James M; Beyer, David C; Eichler, Thomas J; Ibbott, Geoffrey S; Kavanagh, Brian; Schultz, Christopher J; Rosenthal, Seth A

    2012-12-01

    Intensity-modulated radiation therapy (IMRT) is a complex technique for the delivery of radiation therapy preferentially to target structures while minimizing doses to adjacent normal critical structures. It is widely utilized in the treatment of a variety of clinical indications in radiation oncology, including tumors of the central nervous system, head and neck, breast, prostate, gastrointestinal tract, and gynecologic organs, as well as in situations where previous radiation therapy has been delivered, and has allowed for significant therapeutic advances in many clinical areas. IMRT treatment planning and delivery is a complex process. Safe and reliable delivery of IMRT requires appropriate process design and adherence to quality assurance (QA) standards. A collaborative effort of the American College of Radiology and American Society for Therapeutic Radiation Oncology has produced a practice guideline for IMRT. The guideline defines the qualifications and responsibilities of all the involved personnel, including the radiation oncologist, physicist, dosimetrist, and radiation therapist. Factors with respect to the QA of the treatment planning system, treatment-planning process, and treatment-delivery process are discussed, as are issues related to the utilization of volumetric modulated arc therapy. Patient-specific QA procedures are presented. Successful IMRT programs involve integration of many processes: patient selection, patient positioning/immobilization, target definition, treatment plan development, and accurate treatment delivery. Appropriate QA procedures, including patient-specific QA procedures, are essential to ensure quality in an IMRT program and to assure patient safety.

  11. American College of Radiology (ACR) and American Society for Radiation Oncology (ASTRO) Practice Guideline for Intensity-modulated Radiation Therapy (IMRT).

    PubMed

    Hartford, Alan C; Galvin, James M; Beyer, David C; Eichler, Thomas J; Ibbott, Geoffrey S; Kavanagh, Brian; Schultz, Christopher J; Rosenthal, Seth A

    2012-12-01

    Intensity-modulated radiation therapy (IMRT) is a complex technique for the delivery of radiation therapy preferentially to target structures while minimizing doses to adjacent normal critical structures. It is widely utilized in the treatment of a variety of clinical indications in radiation oncology, including tumors of the central nervous system, head and neck, breast, prostate, gastrointestinal tract, and gynecologic organs, as well as in situations where previous radiation therapy has been delivered, and has allowed for significant therapeutic advances in many clinical areas. IMRT treatment planning and delivery is a complex process. Safe and reliable delivery of IMRT requires appropriate process design and adherence to quality assurance (QA) standards. A collaborative effort of the American College of Radiology and American Society for Therapeutic Radiation Oncology has produced a practice guideline for IMRT. The guideline defines the qualifications and responsibilities of all the involved personnel, including the radiation oncologist, physicist, dosimetrist, and radiation therapist. Factors with respect to the QA of the treatment planning system, treatment-planning process, and treatment-delivery process are discussed, as are issues related to the utilization of volumetric modulated arc therapy. Patient-specific QA procedures are presented. Successful IMRT programs involve integration of many processes: patient selection, patient positioning/immobilization, target definition, treatment plan development, and accurate treatment delivery. Appropriate QA procedures, including patient-specific QA procedures, are essential to ensure quality in an IMRT program and to assure patient safety. PMID:23165357

  12. Ototoxicity After Intensity-Modulated Radiation Therapy and Cisplatin-Based Chemotherapy in Children With Medulloblastoma

    SciTech Connect

    Paulino, Arnold C.; Lobo, Mark; Teh, Bin S.; Okcu, M. Fatih; South, Michael; Butler, E. Brian; Su, Jack; Chintagumpala, Murali

    2010-12-01

    Purpose: To report the incidence of Pediatric Oncology Group (POG) Grade 3 or 4 ototoxicity in a cohort of patients treated with craniospinal irradiation (CSI) followed by posterior fossa (PF) and/or tumor bed (TB) boost using intensity-modulated radiation therapy (IMRT). Methods and Materials: From 1998 to 2006, 44 patients with medulloblastoma were treated with CSI followed by IMRT to the PF and/or TB and cisplatin-based chemotherapy. Patients with standard-risk disease were treated with 18 to 23.4 Gy CSI followed by either a (1) PF boost to 36 Gy and TB boost to 54 to 55.8 Gy or (2) TB boost to 55.8 Gy. Patients with high-risk disease received 36 to 39.6 Gy CSI followed by a (1) PF boost to 54 to 55.8 Gy, (2) PF boost to 45 Gy and TB boost to 55.8 Gy, or (3) TB boost to 55.8 Gy. Median audiogram follow-up was 41 months (range, 11-92.4 months). Results: POG Grade Ototoxicity 0, 1, 2, 3. and 4 was found in 29, 32, 11, 13. and 3 ears. respectively, with POG Grade 3 or 4 accounting for 18.2% of cases. There was a statistically significant difference in mean radiation dose (D{sub mean}) cochlea according to degree of ototoxicity, with D{sub mean} cochlea increasing with severity of hearing loss (p = 0.027). Conclusions: Severe ototoxicity was seen in 18.2% of ears in children treated with IMRT boost and cisplatin-based chemotherapy. Increasing dose to the cochlea was associated with increasing severity of hearing loss.

  13. Vaginal Motion and Bladder and Rectal Volumes During Pelvic Intensity-Modulated Radiation Therapy After Hysterectomy

    SciTech Connect

    Jhingran, Anuja; Salehpour, Mohammad; Sam, Marianne; Levy, Larry; Eifel, Patricia J.

    2012-01-01

    Purpose: To evaluate variations in bladder and rectal volume and the position of the vaginal vault during a 5-week course of pelvic intensity-modulated radiation therapy (IMRT) after hysterectomy. Methods and Materials: Twenty-four patients were instructed how to fill their bladders before simulation and treatment. These patients underwent computed tomography simulations with full and empty bladders and then underwent rescanning twice weekly during IMRT; patients were asked to have full bladder for treatment. Bladder and rectal volumes and the positions of vaginal fiducial markers were determined, and changes in volume and position were calculated. Results: The mean full and empty bladder volumes at simulation were 480 cc (range, 122-1,052) and 155 cc (range, 49-371), respectively. Bladder volumes varied widely during IMRT: the median difference between the maximum and minimum volumes was 247 cc (range, 96-585). Variations in rectal volume during IMRT were less pronounced. For the 16 patients with vaginal fiducial markers in place throughout IMRT, the median maximum movement of the markers during IMRT was 0.59 cm in the right-left direction (range, 0-0.9), 1.46 cm in the anterior-posterior direction (range, 0.8-2.79), and 1.2 cm in the superior-inferior direction (range, 0.6-2.1). Large variations in rectal or bladder volume frequently correlated with significant displacement of the vaginal apex. Conclusion: Although treatment with a full bladder is usually preferred because of greater sparing of small bowel, our data demonstrate that even with detailed instruction, patients are unable to maintain consistent bladder filling. Variations in organ position during IMRT can result in marked changes in the position of the target volume and the volume of small bowel exposed to high doses of radiation.

  14. Hypofractionated Dose-Painting Intensity Modulated Radiation Therapy With Chemotherapy for Nasopharyngeal Carcinoma: A Prospective Trial

    SciTech Connect

    Bakst, Richard L.; Lee, Nancy; Pfister, David G.; Zelefsky, Michael J.; Hunt, Margie A.; Kraus, Dennis H.; Wolden, Suzanne L.

    2011-05-01

    Purpose: To evaluate the feasibility of dose-painting intensity-modulated radiation therapy (DP-IMRT) with a hypofractionated regimen to treat nasopharyngeal carcinoma (NPC) with concomitant toxicity reduction. Methods and Materials: From October 2002 through April 2007, 25 newly diagnosed NPC patients were enrolled in a prospective trial. DP-IMRT was prescribed to deliver 70.2 Gy using 2.34-Gy fractions to the gross tumor volume for the primary and nodal sites while simultaneously delivering 54 Gy in 1.8-Gy fractions to regions at risk of microscopic disease. Patients received concurrent and adjuvant platin-based chemotherapy similar to the Intergroup 0099 trial. Results: Patient and disease characteristics are as follows: median age, 46; 44% Asian; 68% male; 76% World Health Organization III; 20% T1, 52% T2, 16% T3, 12% T4; 20% N0, 36% N1, 36% N2, 8% N3. With median follow-up of 33 months, 3-year local control was 91%, regional control was 91%, freedom from distant metastases was 91%, and overall survival was 89%. The average mean dose to each cochlea was 43 Gy. With median audiogram follow-up of 14 months, only one patient had clinically significant (Grade 3) hearing loss. Twelve percent of patients developed temporal lobe necrosis; one patient required surgical resection. Conclusions: Preliminary findings using a hypofractionated DP-IMRT regimen demonstrated that local control, freedom from distant metastases, and overall survival compared favorably with other series of IMRT and chemotherapy. The highly conformal boost to the tumor bed resulted low rates of severe ototoxicity (Grade 3-4). However, the incidence of in-field brain radiation necrosis indicates that 2.34 Gy per fraction is not safe in this setting.

  15. Intensity modulated radiation therapy or stereotactic fractionated radiotherapy for infratentorial ependymoma in children: a multicentric study.

    PubMed

    Weber, Damien C; Zilli, Thomas; Do, Hans Peter; Nouet, Philippe; Gumy Pause, Fabienne; Pause, Fabienne Gumy; Pica, Alessia

    2011-04-01

    This study was to evaluate the treatment dosimetry, efficacy and toxicity of intensity modulated radiation therapy (IMRT) and fractionated stereotactic radiotherapy (FSRT) in the management of infratentorial ependymoma. Between 1999 and 2007, seven children (median age, 3.1 years) with infratentorial ependymoma were planned with either IMRT (3 patients) or SFRT (4 patients), the latter after conventional posterior fossa irradiation. Two children underwent gross total resection. Median prescribed dose was 59.4 Gy (range, 55.8-60). The median follow-up for surviving patients was 4.8 years (range, 1.3-8). IMRT (median dose, 59.4 Gy) and FSRT (median dose, 55.8 Gy) achieved similar optimal target coverage. Percentages of maximum doses delivered to the cochleae (59.5 vs 85.0% Gy; P = 0.05) were significantly inferior with IMRT, when compared to FSRT planning. Percentages of maximum doses administered to the pituitary gland (38.2 vs 20.1%; P = 0.05) and optic chiasm (38.1 vs 14.1%; P = 0.001) were, however, significantly higher with IMRT, when compared to FSRT planning. No recurrences were observed at the last follow-up. The estimated 3-year progression-free survival and overall survival were 87.5 and 100%, respectively. No grade >1 acute toxicity was observed. Two patients presented late adverse events (grade 2 hypoacousia) during follow-up, without cognitive impairment. IMRT or FSRT for infratentorial ependymomas is effective and associated with a tolerable toxicity level. Both treatment techniques were able to capitalize their intrinsic conformal ability to deliver high-dose radiation. Larger series of patients treated with these two modalities will be necessary to more fully evaluate these delivery techniques.

  16. Intensity modulated radiation-therapy for preoperative posterior abdominal wall irradiation of retroperitoneal liposarcomas

    SciTech Connect

    Bossi, Alberto . E-mail: alberto.bossi@uz.kuleuven.ac.be; De Wever, Ivo; Van Limbergen, Erik; Vanstraelen, Bianca

    2007-01-01

    Purpose: Preoperative external-beam radiation therapy (preop RT) in the management of Retroperitoneal Liposarcomas (RPLS) typically involves the delivery of radiation to the entire tumor mass: yet this may not be necessary. The purpose of this study is to evaluate a new strategy of preop RT for RPLS in which the target volume is limited to the contact area between the tumoral mass and the posterior abdominal wall. Methods and Materials: Between June 2000 and Jan 2005, 18 patients with the diagnosis of RPLS have been treated following a pilot protocol of pre-op RT, 50 Gy in 25 fractions of 2 Gy/day. The Clinical Target Volume (CTV) has been limited to the posterior abdominal wall, region at higher risk for local relapse. A Three-Dimensional conformal (3D-CRT) and an Intensity Modulated (IMRT) plan were generated and compared; toxicity was reported following the National Cancer Institute (NCI) Common Terminology Criteria for Adverse Events v3.0. Results: All patients completed the planned treatment and the acute toxicity was tolerable: 2 patients experienced Grade 3 and 1 Grade 2 anorexia while 2 patients developed Grade 2 nausea. IMRT allows a better sparing of the ipsilateral and the contralateral kidney. All tumors were successfully resected without major complications. At a median follow-up of 27 months 2 patients developed a local relapse and 1 lung metastasis. Conclusions: Our strategy of preop RT is feasible and well tolerated: the rate of resectability is not compromised by limiting the preop CTV to the posterior abdominal wall and a better critical-structures sparing is obtained with IMRT.

  17. Two-Year and Lifetime Cost-Effectiveness of Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy for Head-and-Neck Cancer

    SciTech Connect

    Kohler, Racquel E.; Sheets, Nathan C.; Wheeler, Stephanie B.; Nutting, Chris; Hall, Emma; Chera, Bhishamjit S.

    2013-11-15

    Purpose: To assess the cost-effectiveness of intensity modulated radiation therapy (IMRT) versus 3-dimensional conformal radiation therapy (3D-CRT) in the treatment of head-and neck-cancer (HNC). Methods and Materials: We used a Markov model to simulate radiation therapy-induced xerostomia and dysphagia in a hypothetical cohort of 65-year-old HNC patients. Model input parameters were derived from PARSPORT (CRUK/03/005) patient-level trial data and quality-of-life and Medicare cost data from published literature. We calculated average incremental cost-effectiveness ratios (ICERs) from the US health care perspective as cost per quality-adjusted life-year (QALY) gained and compared our ICERs with current cost-effectiveness standards whereby treatment comparators less than $50,000 per QALY gained are considered cost-effective. Results: In the first 2 years after initial treatment, IMRT is not cost-effective compared with 3D-CRT, given an average ICER of $101,100 per QALY gained. However, over 15 years (remaining lifetime on the basis of average life expectancy of a 65-year-old), IMRT is more cost-effective at $34,523 per QALY gained. Conclusion: Although HNC patients receiving IMRT will likely experience reduced xerostomia and dysphagia symptoms, the small quality-of-life benefit associated with IMRT is not cost-effective in the short term but may be cost-effective over a patient's lifetime, assuming benefits persist over time and patients are healthy and likely to live for a sustained period. Additional data quantifying the long-term benefits of IMRT, however, are needed.

  18. Tumor trailing strategy for intensity-modulated radiation therapy of moving targets

    SciTech Connect

    Trofimov, Alexei; Vrancic, Christian; Chan, Timothy C. Y.; Sharp, Gregory C.; Bortfeld, Thomas

    2008-05-15

    Internal organ motion during the course of radiation therapy of cancer affects the distribution of the delivered dose and, generally, reduces its conformality to the targeted volume. Previously proposed approaches aimed at mitigating the effect of internal motion in intensity-modulated radiation therapy (IMRT) included expansion of the target margins, motion-correlated delivery (e.g., respiratory gating, tumor tracking), and adaptive treatment plan optimization employing a probabilistic description of motion. We describe and test the tumor trailing strategy, which utilizes the synergy of motion-adaptive treatment planning and delivery methods. We regard the (rigid) target motion as a superposition of a relatively fast cyclic component (e.g., respiratory) and slow aperiodic trends (e.g., the drift of exhalation baseline). In the trailing approach, these two components of motion are decoupled and dealt with separately. Real-time motion monitoring is employed to identify the 'slow' shifts, which are then corrected by applying setup adjustments. The delivery does not track the target position exactly, but trails the systematic trend due to the delay between the time a shift occurs, is reliably detected, and, subsequently, corrected. The ''fast'' cyclic motion is accounted for with a robust motion-adaptive treatment planning, which allows for variability in motion parameters (e.g., mean and extrema of the tidal volume, variable period of respiration, and expiratory duration). Motion-surrogate data from gated IMRT treatments were used to provide probability distribution data for motion-adaptive planning and to test algorithms that identified systematic trends in the character of motion. Sample IMRT fields were delivered on a clinical linear accelerator to a programmable moving phantom. Dose measurements were performed with a commercial two-dimensional ion-chamber array. The results indicate that by reducing intrafractional motion variability, the trailing strategy

  19. An integral quality monitoring system for real-time verification of intensity modulated radiation therapy

    SciTech Connect

    Islam, Mohammad K.; Norrlinger, Bernhard D.; Smale, Jason R.; Heaton, Robert K.; Galbraith, Duncan; Fan, Cary; Jaffray, David A.

    2009-12-15

    Purpose: To develop an independent and on-line beam monitoring system, which can validate the accuracy of segment-by-segment energy fluence delivery for each treatment field. The system is also intended to be utilized for pretreatment dosimetric quality assurance of intensity modulated radiation therapy (IMRT), on-line image-guided adaptive radiation therapy, and volumetric modulated arc therapy. Methods: The system, referred to as the integral quality monitor (IQM), utilizes an area integrating energy fluence monitoring sensor (AIMS) positioned between the final beam shaping device [i.e., multileaf collimator (MLC)] and the patient. The prototype AIMS consists of a novel spatially sensitive large area ionization chamber with a gradient along the direction of the MLC motion. The signal from the AIMS provides a simple output for each beam segment, which is compared in real time to the expected value. The prototype ionization chamber, with a physical area of 22x22 cm{sup 2}, has been constructed out of aluminum with the electrode separations varying linearly from 2 to 20 mm. A calculation method has been developed to predict AIMS signals based on an elementwise integration technique, which takes into account various predetermined factors, including the spatial response function of the chamber, MLC characteristics, beam transmission through the secondary jaws, and field size factors. The influence of the ionization chamber on the beam has been evaluated in terms of transmission, surface dose, beam profiles, and depth dose. The sensitivity of the system was tested by introducing small deviations in leaf positions. A small set of IMRT fields for prostate and head and neck plans was used to evaluate the system. The ionization chamber and the data acquisition software systems were interfaced to two different types of linear accelerators: Elekta Synergy and Varian iX. Results: For a 10x10 cm{sup 2} field, the chamber attenuates the beam intensity by 7% and 5% for 6 and 18

  20. Assessing software upgrades, plan properties and patient geometry using intensity modulated radiation therapy (IMRT) complexity metrics

    SciTech Connect

    McGarry, Conor K.; Chinneck, Candice D.; O'Toole, Monica M.; O'Sullivan, Joe M; Prise, Kevin M.; Hounsell, Alan R.

    2011-04-15

    Purpose: The aim of this study is to compare the sensitivity of different metrics to detect differences in complexity of intensity modulated radiation therapy (IMRT) plans following upgrades, changes to planning parameters, and patient geometry. Correlations between complexity metrics are also assessed. Method: A program was developed to calculate a series of metrics used to describe the complexity of IMRT fields using monitor units (MUs) and multileaf collimator files: Modulation index (MI), modulation complexity score (MCS), and plan intensity map variation (PIMV). Each metric, including the MUs, was used to assess changes in beam complexity for six prostate patients, following upgrades in the inverse planning optimization software designed to incorporate direct aperture optimization (DAO). All beams were delivered to a 2D ionization chamber array and compared to those calculated using gamma analysis. Each complexity metric was then calculated for all beams, on a different set of six prostate IMRT patients, to assess differences between plans calculated using different minimum field sizes and different maximum segment numbers. Different geometries, including CShape, prostate, and head and neck phantoms, were also assessed using the metrics. Correlations between complexity metrics were calculated for 20 prostate IMRT patients. Results: MU, MCS, MI, and PIMV could all detect reduced complexity following an upgrade to the optimization leaf sequencer, although only MI and MCS could detect a reduction in complexity when one-step optimization (DAO) was employed rather than two-step optimization. All metrics detected a reduction in complexity when the minimum field size was increased from 1 to 4 cm and all apart from PIMV detected reduced complexity when the number of segments was significantly reduced. All metrics apart from MI showed differences in complexity depending on the treatment site. Significant correlations exist between all metrics apart from MI and PIMV for

  1. EBT GAFCHROMIC{sup TM} film dosimetry in compensator-based intensity modulated radiation therapy

    SciTech Connect

    Vaezzadeh, Seyedali; Allahverdi, Mahmoud; Nedaie, Hasan A.; Ay, Mohammadreza; Shirazi, Alireza; Yarahmadi, Mehran

    2013-07-01

    The electron benefit transfer (EBT) GAFCHROMIC films possess a number of features making them appropriate for high-quality dosimetry in intensity-modulated radiation therapy (IMRT). Compensators to deliver IMRT are known to change the beam-energy spectrum as well as to produce scattered photons and to contaminate electrons; therefore, the accuracy and validity of EBT-film dosimetry in compensator-based IMRT should be investigated. Percentage-depth doses and lateral-beam profiles were measured using EBT films in perpendicular orientation with respect to 6 and 18 MV photon beam energies for: (1) different thicknesses of cerrobend slab (open, 1.0, 2.0, 4.0, and 6.0 cm), field sizes (5×5, 10×10, and 20×20 cm{sup 2}), and measurement depths (D{sub max}, 5.0 and 10.0 cm); and (2) step-wedged compensator in a solid phantom. To verify results, same measurements were implemented using a 0.125 cm{sup 3} ionization chamber in a water phantom and also in Monte Carlo simulations using the Monte Carlo N-particle radiation transport computer code. The mean energy of photons was increased due to beam hardening in comparison with open fields at both 6 and 18 MV energies. For a 20×20 cm{sup 2} field size of a 6 MV photon beam and a 6.0 cm thick block, the surface dose decreased by about 12% and percentage-depth doses increased up to 3% at 30.0 cm depth, due to the beam-hardening effect induced by the block. In contrast, at 18 MV, the surface dose increased by about 8% and depth dose reduced by 3% at 30.0 cm depth. The penumbral widths (80% to 20%) increase with block thickness, field size, and beam energy. The EBT film results were in good agreement with the ionization chamber dose profiles and Monte Carlo N-particle radiation transport computer code simulation behind the step-wedged compensator. Also, there was a good agreement between the EBT-film and the treatment-planning results on the anthropomorphic phantom. The EBT films can be accurately used as a 2D dosimeter for dose

  2. In vitro study of cell survival following dynamic MLC intensity-modulated radiation therapy dose delivery

    SciTech Connect

    Moiseenko, Vitali; Duzenli, Cheryl; Durand, Ralph E.

    2007-04-15

    The possibility of reduced cell kill following intensity-modulated radiation therapy (IMRT) compared to conventional radiation therapy has been debated in the literature. This potential reduction in cell kill relates to prolonged treatment times typical of IMRT dose delivery and consequently increased repair of sublethal lesions. While there is some theoretical support to this reduction in cell kill published in the literature, direct experimental evidence specific to IMRT dose delivery patterns is lacking. In this study we present cell survival data for three cell lines: Chinese hamster V79 fibroblasts, human cervical carcinoma, SiHa and colon adenocarcinoma, WiDr. Cell survival was obtained for 2.1 Gy delivered as acute dose with parallel-opposed pair (POP), irradiation time 75 s, which served as a reference; regular seven-field IMRT, irradiation time 5 min; and IMRT with a break for multiple leaf collimator (MLC) re-initialization after three fields were delivered, irradiation time 10 min. An actual seven-field dynamic MLC IMRT plan for a head and neck patient was used. The IMRT plan was generated for a Varian EX or iX linear accelerator with 120 leaf Millenium MLC. Survival data were also collected for doses 1x, 2x, 3x, 4x, and 5x 2.1 Gy to establish parameters of the linear-quadratic equation describing survival following acute dose delivery. Cells were irradiated inside an acrylic cylindrical phantom specifically designed for this study. Doses from both IMRT and POP were validated using ion chamber measurements. A reproducible increase in cell survival was observed following IMRT dose delivery. This increase varied from small for V79, with a surviving fraction of 0.8326 following POP vs 0.8420 following uninterrupted IMRT, to very pronounced for SiHa, with a surviving fraction of 0.3903 following POP vs 0.5330 for uninterrupted IMRT. When compared to IMRT or IMRT with a break for MLC initialization, cell survival following acute dose delivery was

  3. Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams

    SciTech Connect

    Hofmann, K. M.; Schell, S.; Wilkens, J. J.

    2013-07-26

    Laser-accelerated particles can provide a promising opportunity for radiation therapy of cancer. Potential advantages arise from combining a compact, cost-efficient treatment unit with the physical advantages in dose delivery of charged particle beams. We consider different dose delivery schemes and the required devices to design a possible treatment unit. The secondary radiation produced in several beam line elements remains a challenge to be addressed.

  4. Radiation Therapy for Cancer

    MedlinePlus

    ... What is radiation therapy? Radiation therapy uses high-energy radiation to shrink tumors and kill cancer cells ( ... is a measure of the amount of radiation energy absorbed by 1 kilogram of human tissue. Different ...

  5. Simultaneous modulated accelerated radiation therapy for esophageal cancer: A feasibility study

    PubMed Central

    Zhang, Wu-Zhe; Chen, Jian-Zhou; Li, De-Rui; Chen, Zhi-Jian; Guo, Hong; Zhuang, Ting-Ting; Li, Dong-Sheng; Zhou, Ming-Zhen; Chen, Chuang-Zhen

    2014-01-01

    AIM: To establish the feasibility of simultaneous modulated accelerated radiation therapy (SMART) in esophageal cancer (EC). METHODS: Computed tomography (CT) datasets of 10 patients with upper or middle thoracic squamous cell EC undergoing chemoradiotherapy were used to generate SMART, conventionally-fractionated three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiation therapy (cf-IMRT) plans, respectively. The gross target volume (GTV) of the esophagus, positive regional lymph nodes (LN), and suspected lymph nodes (LN±) were contoured for each patient. The clinical target volume (CTV) was delineated with 2-cm longitudinal and 0.5- to 1.0-cm radial margins with respect to the GTV and with 0.5-cm uniform margins for LN and LN(±). For the SMART plans, there were two planning target volumes (PTVs): PTV66 = (GTV + LN) + 0.5 cm and PTV54 = CTV + 0.5 cm. For the 3DCRT and cf-IMRT plans, there was only a single PTV: PTV60 = CTV + 0.5 cm. The prescribed dose for the SMART plans was 66 Gy/30 F to PTV66 and 54 Gy/30 F to PTV54. The dose prescription to the PTV60 for both the 3DCRT and cf-IMRT plans was set to 60 Gy/30 F. All the plans were generated on the Eclipse 10.0 treatment planning system. Fulfillment of the dose criteria for the PTVs received the highest priority, followed by the spinal cord, heart, and lungs. The dose-volume histograms were compared. RESULTS: Clinically acceptable plans were achieved for all the SMART, cf-IMRT, and 3DCRT plans. Compared with the 3DCRT plans, the SMART plans increased the dose delivered to the primary tumor (66 Gy vs 60 Gy), with improved sparing of normal tissues in all patients. The Dmax of the spinal cord, V20 of the lungs, and Dmean and V50 of the heart for the SMART and 3DCRT plans were as follows: 38.5 ± 2.0 vs 44.7 ± 0.8 (P = 0.002), 17.1 ± 4.0 vs 25.8 ± 5.0 (P = 0.000), 14.4 ± 7.5 vs 21.4 ± 11.1 (P = 0.000), and 4.9 ± 3.4 vs 12.9 ± 7.6 (P = 0.000), respectively. In contrast to the cf

  6. Gamma evaluation combined with isocenter optimal matching in intensity modulated radiation therapy quality assurance

    NASA Astrophysics Data System (ADS)

    Bak, Jino; Choi, Jin Hwa; Park, Suk Won; Park, Kwangwoo; Park, Sungho

    2015-12-01

    Two-dimensional (2D) dose comparisons are widely performed by using a gamma evaluation with patient-specific intensity modulated radiation therapy quality assurance (IMRT QA) or dose delivery quality assurance (DQA). In this way, a pass/fail determination is made for a particular treatment plan. When gamma evaluation results are close to the failure criterion, the pass/fail decision may change applying a small shift to the center of the 2D dose distribution. In this study, we quantitatively evaluated the meaning of such a small relative shift in a 2D dose distribution comparison. In addition, we propose the use of a small shift for a pass/fail criterion in gamma analysis, where the concept of isocenter optimal matching (IOM) is applied to IMRT QA of 20 patients. Gamma evaluations were performed to compare two dose distributions, one with and the other without IOM. In-house software was developed in C++ in order to find IOM values including both translational and rotational shifts. Upon gamma evaluation failure, further investigation was initiated using IOM. In this way, three groups were categorized: group 1 for `pass' on gamma evaluation, group 21 for `fail' on the gamma evaluation and `pass' on the gamma the evaluation with IOM, and group 22 for `fail' on the both gamma evaluations and the IOM calculation. IOM results revealed that some failures could be considered as a `pass'. In group 21, 88.98% (fail) of the averaged gamma pass rate changed to 90.45% (pass) when IOM was applied. On average, a ratio of γ ≥ 1 was reduced by 11.06% in 20 patients. We propose that gamma evaluations that do not pass with a rate of 85% to 90% may be augmented with IOM to reveal a potential pass result.

  7. An Anatomically Validated Brachial Plexus Contouring Method for Intensity Modulated Radiation Therapy Planning

    SciTech Connect

    Van de Velde, Joris; Audenaert, Emmanuel; Speleers, Bruno; Vercauteren, Tom; Mulliez, Thomas; Vandemaele, Pieter; Achten, Eric; Kerckaert, Ingrid; D'Herde, Katharina; De Neve, Wilfried; Van Hoof, Tom

    2013-11-15

    Purpose: To develop contouring guidelines for the brachial plexus (BP) using anatomically validated cadaver datasets. Magnetic resonance imaging (MRI) and computed tomography (CT) were used to obtain detailed visualizations of the BP region, with the goal of achieving maximal inclusion of the actual BP in a small contoured volume while also accommodating for anatomic variations. Methods and Materials: CT and MRI were obtained for 8 cadavers positioned for intensity modulated radiation therapy. 3-dimensional reconstructions of soft tissue (from MRI) and bone (from CT) were combined to create 8 separate enhanced CT project files. Dissection of the corresponding cadavers anatomically validated the reconstructions created. Seven enhanced CT project files were then automatically fitted, separately in different regions, to obtain a single dataset of superimposed BP regions that incorporated anatomic variations. From this dataset, improved BP contouring guidelines were developed. These guidelines were then applied to the 7 original CT project files and also to 1 additional file, left out from the superimposing procedure. The percentage of BP inclusion was compared with the published guidelines. Results: The anatomic validation procedure showed a high level of conformity for the BP regions examined between the 3-dimensional reconstructions generated and the dissected counterparts. Accurate and detailed BP contouring guidelines were developed, which provided corresponding guidance for each level in a clinical dataset. An average margin of 4.7 mm around the anatomically validated BP contour is sufficient to accommodate for anatomic variations. Using the new guidelines, 100% inclusion of the BP was achieved, compared with a mean inclusion of 37.75% when published guidelines were applied. Conclusion: Improved guidelines for BP delineation were developed using combined MRI and CT imaging with validation by anatomic dissection.

  8. Automatically-generated rectal dose constraints in intensity-modulated radiation therapy for prostate cancer

    NASA Astrophysics Data System (ADS)

    Hwang, Taejin; Kim, Yong Nam; Kim, Soo Kon; Kang, Sei-Kwon; Cheong, Kwang-Ho; Park, Soah; Yoon, Jai-Woong; Han, Taejin; Kim, Haeyoung; Lee, Meyeon; Kim, Kyoung-Joo; Bae, Hoonsik; Suh, Tae-Suk

    2015-06-01

    The dose constraint during prostate intensity-modulated radiation therapy (IMRT) optimization should be patient-specific for better rectum sparing. The aims of this study are to suggest a novel method for automatically generating a patient-specific dose constraint by using an experience-based dose volume histogram (DVH) of the rectum and to evaluate the potential of such a dose constraint qualitatively. The normal tissue complication probabilities (NTCPs) of the rectum with respect to V %ratio in our study were divided into three groups, where V %ratio was defined as the percent ratio of the rectal volume overlapping the planning target volume (PTV) to the rectal volume: (1) the rectal NTCPs in the previous study (clinical data), (2) those statistically generated by using the standard normal distribution (calculated data), and (3) those generated by combining the calculated data and the clinical data (mixed data). In the calculated data, a random number whose mean value was on the fitted curve described in the clinical data and whose standard deviation was 1% was generated by using the `randn' function in the MATLAB program and was used. For each group, we validated whether the probability density function (PDF) of the rectal NTCP could be automatically generated with the density estimation method by using a Gaussian kernel. The results revealed that the rectal NTCP probability increased in proportion to V %ratio , that the predictive rectal NTCP was patient-specific, and that the starting point of IMRT optimization for the given patient might be different. The PDF of the rectal NTCP was obtained automatically for each group except that the smoothness of the probability distribution increased with increasing number of data and with increasing window width. We showed that during the prostate IMRT optimization, the patient-specific dose constraints could be automatically generated and that our method could reduce the IMRT optimization time as well as maintain the

  9. Planning Hybrid Intensity Modulated Radiation Therapy for Whole-breast Irradiation

    SciTech Connect

    Farace, Paolo; Zucca, Sergio; Solla, Ignazio; Fadda, Giuseppina; Durzu, Silvia; Porru, Sergio; Meleddu, Gianfranco; Deidda, Maria Assunta; Possanzini, Marco; Orru, Sivia; Lay, Giancarlo

    2012-09-01

    Purpose: To test tangential and not-tangential hybrid intensity modulated radiation therapy (IMRT) for whole-breast irradiation. Methods and Materials: Seventy-eight (36 right-, 42 left-) breast patients were randomly selected. Hybrid IMRT was performed by direct aperture optimization. A semiautomated method for planning hybrid IMRT was implemented using Pinnacle scripts. A plan optimization volume (POV), defined as the portion of the planning target volume covered by the open beams, was used as the target objective during inverse planning. Treatment goals were to prescribe a minimum dose of 47.5 Gy to greater than 90% of the POV and to minimize the POV and/or normal tissue receiving a dose greater than 107%. When treatment goals were not achieved by using a 4-field technique (2 conventional open plus 2 IMRT tangents), a 6-field technique was applied, adding 2 non tangential (anterior-oblique) IMRT beams. Results: Using scripts, manual procedures were minimized (choice of optimal beam angle, setting monitor units for open tangentials, and POV definition). Treatment goals were achieved by using the 4-field technique in 61 of 78 (78%) patients. The 6-field technique was applied in the remaining 17 of 78 (22%) patients, allowing for significantly better achievement of goals, at the expense of an increase of low-dose ({approx}5 Gy) distribution in the contralateral tissue, heart, and lungs but with no significant increase of higher doses ({approx}20 Gy) in heart and lungs. The mean monitor unit contribution to IMRT beams was significantly greater (18.7% vs 9.9%) in the group of patients who required 6-field procedure. Conclusions: Because hybrid IMRT can be performed semiautomatically, it can be planned for a large number of patients with little impact on human or departmental resources, promoting it as the standard practice for whole-breast irradiation.

  10. Incorporation of gantry angle correction for 3D dose prediction in intensity-modulated radiation therapy

    PubMed Central

    Sumida, Iori; Yamaguchi, Hajime; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yamada, Yuji; Yagi, Masashi; Ogawa, Kazuhiko

    2015-01-01

    Pretreatment dose verification with beam-by-beam analysis for intensity-modulated radiation therapy (IMRT) is commonly performed with a gantry angle of 0° using a 2D diode detector array. Any changes in multileaf collimator (MLC) position between the actual treatment gantry angle and 0° may result in deviations from the planned dose. We evaluated the effects of MLC positioning errors between the actual treatment gantry angles and nominal gantry angles. A gantry angle correction (GAC) factor was generated by performing a non-gap test at various gantry angles using an electronic portal imaging device (EPID). To convert pixel intensity to dose at the MLC abutment positions, a non-gap test was performed using an EPID and a film at 0° gantry angle. We then assessed the correlations between pixel intensities and doses. Beam-by-beam analyses for 15 prostate IMRT cases as patient-specific quality assurance were performed with a 2D diode detector array at 0° gantry angle to determine the relative dose error for each beam. The resulting relative dose error with or without GAC was added back to the original dose grid for each beam. We compared the predicted dose distributions with or without GAC for film measurements to validate GAC effects. A gamma pass rate with a tolerance of 2%/2 mm was used to evaluate these dose distributions. The gamma pass rate with GAC was higher than that without GAC (P = 0.01). The predicted dose distribution improved with GAC, although the dosimetric effect to a patient was minimal. PMID:25742866

  11. The effect of photon energy on intensity-modulated radiation therapy (IMRT) plans for prostate cancer

    PubMed Central

    Sung, Wonmo; Park, Jong Min; Choi, Chang Heon; Ha, Sung Whan

    2012-01-01

    Purpose To evaluate the effect of common three photon energies (6-MV, 10-MV, and 15-MV) on intensity-modulated radiation therapy (IMRT) plans to treat prostate cancer patients. Materials and Methods Twenty patients with prostate cancer treated locally to 81.0 Gy were retrospectively studied. 6-MV, 10-MV, and 15-MV IMRT plans for each patient were generated using suitable planning objectives, dose constraints, and 8-field setting. The plans were analyzed in terms of dose-volume histogram for the target coverage, dose conformity, organs at risk (OAR) sparing, and normal tissue integral dose. Results Regardless of the energies chosen at the plans, the target coverage, conformity, and homogeneity of the plans were similar. However, there was a significant dose increase in rectal wall and femoral heads for 6-MV compared to those for 10-MV and 15-MV. The V20 Gy of rectal wall with 6-MV, 10-MV, and 15-MV were 95.6%, 88.4%, and 89.4% while the mean dose to femoral heads were 31.7, 25.9, and 26.3 Gy, respectively. Integral doses to the normal tissues in higher energy (10-MV and 15-MV) plans were reduced by about 7%. Overall, integral doses in mid and low dose regions in 6-MV plans were increased by up to 13%. Conclusion In this study, 10-MV prostate IMRT plans showed better OAR sparing and less integral doses than the 6-MV. The biological and clinical significance of this finding remains to be determined afterward, considering neutron dose contribution. PMID:23120741

  12. Aichi Cancer Center Initial Experience of Intensity Modulated Radiation Therapy for Nasopharyngeal Cancer Using Helical Tomotherapy

    SciTech Connect

    Kodaira, Takeshi Tomita, Natsuo; Tachibana, Hiroyuki; Nakamura, Tatsuya; Nakahara, Rie; Inokuchi, Haruo; Fuwa, Nobukazu

    2009-03-15

    Purpose: To assess the feasibility of helical tomotherapy (HT) for patients with nasopharyngeal carcinoma. Methods and Materials: From June 2006 to June 2007, 20 patients with nasopharyngeal carcinoma were treated with HT with (n = 18) or without (n = 2) systemic chemotherapy. The primary tumor and involved lymph node (PTV1) were prescribed 70 Gy and the prophylactic region 54 Gy at D95, respectively. The majority of patients received 2 Gy per fraction for PTV1 in 35 fractions. Parotid function was evaluated using quantitative scintigraphy at pretreatment, and posttreatment at 3 months and 1 year later. Results: The median patient age was 53 years, ranging from 15 to 83. Our cohort included 5, 8, 4, 2, and 1 patients with disease Stages IIB, III, IVA, IVB, and IVC, respectively. Histopathological record revealed two for World Health Organization Type I and 18 for Type 2 or 3. The median duration time for treatment preparation was 9.5 days, and all plans were thought to be acceptable regarding dose constraints of both the planning target volume and organ at risk. All patients completed their treatment procedure of intensity-modulated radiation therapy (IMRT). All patients achieved clinical remission after IMRT. The majority of patients had Grade 3 or higher toxicity of skin, mucosa, and neutropenia. At the median follow-up of 10.9 months, two patients recurred, and one patient died from cardiac disease. Parotid gland function at 1 year after completion of IMRT was significantly improved compared with that at 3 months. Conclusion: HT was clinically effective in terms of IMRT planning and utility for patients with nasopharyngeal cancer.

  13. Application of influence diagrams to prostate intensity-modulated radiation therapy plan selection

    NASA Astrophysics Data System (ADS)

    Meyer, Jürgen; Phillips, Mark H.; Cho, Paul S.; Kalet, Ira; Doctor, Jason N.

    2004-05-01

    The purpose is to incorporate clinically relevant factors such as patient-specific and dosimetric information as well as data from clinical trials in the decision-making process for the selection of prostate intensity-modulated radiation therapy (IMRT) plans. The approach is to incorporate the decision theoretic concept of an influence diagram into the solution of the multiobjective optimization inverse planning problem. A set of candidate IMRT plans was obtained by varying the importance factors for the planning target volume (PTV) and the organ-at-risk (OAR) in combination with simulated annealing to explore a large part of the solution space. The Pareto set for the PTV and OAR was analysed to demonstrate how the selection of the weighting factors influenced which part of the solution space was explored. An influence diagram based on a Bayesian network with 18 nodes was designed to model the decision process for plan selection. The model possessed nodes for clinical laboratory results, tumour grading, staging information, patient-specific information, dosimetric information, complications and survival statistics from clinical studies. A utility node was utilized for the decision-making process. The influence diagram successfully ranked the plans based on the available information. Sensitivity analyses were used to judge the reasonableness of the diagram and the results. In conclusion, influence diagrams lend themselves well to modelling the decision processes for IMRT plan selection. They provide an excellent means to incorporate the probabilistic nature of data and beliefs into one model. They also provide a means for introducing evidence-based medicine, in the form of results of clinical trials, into the decision-making process.

  14. Evaluation of Parotid Gland Function following Intensity Modulated Radiation Therapy for Head and Neck Cancer

    PubMed Central

    Lee, Seok Ho; Kim, Tae Hyun; Kim, Joo Young; Park, Sung Yong; Pyo, Hong Ryull; Shin, Kyung Hwan; Kim, Dae Yong; Kim, Joo Young

    2006-01-01

    Purpose This study was undertaken to determine the parotid gland tolerance dose levels following intensity modulated radiation therapy (IMRT) for treating patients who suffered with head and neck cancer. Materials and Methods From February 2003 through June 2004, 34 head and neck patients with 6 months of follow-up were evaluated for xerostomia after being treated by IMRT. Their median age was 59 years (range: 29~78). Xerostomia was assessed using a 4-question xerostomia questionnaire score (XQS) and a test for the salivary flow rates (unstimulated and stimulated: USFR and SSFR, respectively). The patients were also given a validated LENT SOMA scale (LSS) questionnaire. Evaluations were performed before IMRT and at 1, 3 and 6 months after IMRT. Results All 34 patients showed significant changes in the XQS, LSS and Salivary Flow rates (USFR and SSFR) after IMRT. No significant changes in the XQS or LSS were noted in 12 patients who received a total parotid mean dose of ≤3,100 cGy at 1, 3 and 6 months post-IMRT relative to the baseline values. However, for the 22 patients who received >3,100 cGy, significant increases in the XQS and LSS were observed. The USFR and SSFR from the parotid glands in 7 patients who received ≤2,750 cGy were significantly preserved at up to 6 months after IMRT. However, the USFR and SSFR in 27 patients who were treated with >2,750 cGy were significantly lower than the baseline values at all times after IMRT. Conclusion We suggest that the total parotid mean dose should be limited to ≤2,750 cGy to preserve the USFR and SSFR and so improve the subsequent quality of life. PMID:19771265

  15. Beam orientation optimization for intensity-modulated radiation therapy using mixed integer programming.

    PubMed

    Yang, Ruijie; Dai, Jianrong; Yang, Yong; Hu, Yimin

    2006-08-01

    The purpose of this study is to extend an algorithm proposed for beam orientation optimization in classical conformal radiotherapy to intensity-modulated radiation therapy (IMRT) and to evaluate the algorithm's performance in IMRT scenarios. In addition, the effect of the candidate pool of beam orientations, in terms of beam orientation resolution and starting orientation, on the optimized beam configuration, plan quality and optimization time is also explored. The algorithm is based on the technique of mixed integer linear programming in which binary and positive float variables are employed to represent candidates for beam orientation and beamlet weights in beam intensity maps. Both beam orientations and beam intensity maps are simultaneously optimized in the algorithm with a deterministic method. Several different clinical cases were used to test the algorithm and the results show that both target coverage and critical structures sparing were significantly improved for the plans with optimized beam orientations compared to those with equi-spaced beam orientations. The calculation time was less than an hour for the cases with 36 binary variables on a PC with a Pentium IV 2.66 GHz processor. It is also found that decreasing beam orientation resolution to 10 degrees greatly reduced the size of the candidate pool of beam orientations without significant influence on the optimized beam configuration and plan quality, while selecting different starting orientations had large influence. Our study demonstrates that the algorithm can be applied to IMRT scenarios, and better beam orientation configurations can be obtained using this algorithm. Furthermore, the optimization efficiency can be greatly increased through proper selection of beam orientation resolution and starting beam orientation while guaranteeing the optimized beam configurations and plan quality.

  16. Disease Control and Ototoxicity Using Intensity-Modulated Radiation Therapy Tumor-Bed Boost for Medulloblastoma

    SciTech Connect

    Polkinghorn, William R.; Dunkel, Ira J.; Souweidane, Mark M.; Khakoo, Yasmin; Lyden, David C.; Gilheeney, Stephen W.; Becher, Oren J.; Budnick, Amy S.; Wolden, Suzanne L.

    2011-11-01

    Purpose: We previously reported excellent local control for treating medulloblastoma with a limited boost to the tumor bed. In order to decrease ototoxicity, we subsequently implemented a tumor-bed boost using intensity-modulated radiation therapy (IMRT), the clinical results of which we report here. Patients and Methods: A total of 33 patients with newly diagnosed medulloblastoma, 25 with standard risk, and 8 with high risk, were treated on an IMRT tumor-bed boost following craniospinal irradiation (CSI). Six standard-risk patients were treated with an institutional protocol with 18 Gy CSI in conjunction with intrathecal iodine-131-labeled monoclonal antibody. The majority of patients received concurrent vincristine and standard adjuvant chemotherapy. Pure-tone audiograms were graded according to National Cancer Institute Common Terminology Criteria for Adverse Events version 3.0. Results: Median age was 9 years old (range, 4-46 years old). Median follow-up was 63 months. Kaplan-Meier estimates of progression-free survival (PFS) and overall survival (OS) rates for standard-risk patients who received 23.4 or 36 Gy CSI (not including those who received 18 Gy CSI with radioimmunotherapy) were 81.4% and 88.4%, respectively, at 5 years; 5-year PFS and OS rates for high-risk patients were both 87.5%. There were no isolated posterior fossa failures outside of the boost volume. Posttreatment audiograms were available for 31 patients, of whom 6%, at a median follow-up of 19 months, had developed Grade 3 hearing loss. Conclusion: An IMRT tumor-bed boost results in excellent local control while delivering a low mean dose to the cochlea, resulting in a low rate of ototoxicity.

  17. Automation and Intensity Modulated Radiation Therapy for Individualized High-Quality Tangent Breast Treatment Plans

    SciTech Connect

    Purdie, Thomas G.; Dinniwell, Robert E.; Fyles, Anthony; Sharpe, Michael B.

    2014-11-01

    Purpose: To demonstrate the large-scale clinical implementation and performance of an automated treatment planning methodology for tangential breast intensity modulated radiation therapy (IMRT). Methods and Materials: Automated planning was used to prospectively plan tangential breast IMRT treatment for 1661 patients between June 2009 and November 2012. The automated planning method emulates the manual steps performed by the user during treatment planning, including anatomical segmentation, beam placement, optimization, dose calculation, and plan documentation. The user specifies clinical requirements of the plan to be generated through a user interface embedded in the planning system. The automated method uses heuristic algorithms to define and simplify the technical aspects of the treatment planning process. Results: Automated planning was used in 1661 of 1708 patients receiving tangential breast IMRT during the time interval studied. Therefore, automated planning was applicable in greater than 97% of cases. The time for treatment planning using the automated process is routinely 5 to 6 minutes on standard commercially available planning hardware. We have shown a consistent reduction in plan rejections from plan reviews through the standard quality control process or weekly quality review multidisciplinary breast rounds as we have automated the planning process for tangential breast IMRT. Clinical plan acceptance increased from 97.3% using our previous semiautomated inverse method to 98.9% using the fully automated method. Conclusions: Automation has become the routine standard method for treatment planning of tangential breast IMRT at our institution and is clinically feasible on a large scale. The method has wide clinical applicability and can add tremendous efficiency, standardization, and quality to the current treatment planning process. The use of automated methods can allow centers to more rapidly adopt IMRT and enhance access to the documented

  18. Multibeam tomotherapy: a new treatment unit devised for multileaf collimation, intensity-modulated radiation therapy.

    PubMed

    Achterberg, Nils; Müller, Reinhold G

    2007-10-01

    A fully integrated system for treatment planning, application, and verification for automated multileaf collimator (MLC) based, intensity-modulated, image-guided, and adaptive radiation therapy (IMRT, IGRT and ART, respectively) is proposed. Patient comfort, which was the major development goal, will be achieved through a new unit design and short treatment times. Our device for photon beam therapy will consist of a new dual energy linac with five fixed treatment heads positioned evenly along one plane but one electron beam generator only. A minimum of moving parts increases technical reliability and reduces motion times to a minimum. Motion is allowed solely for the MLCs, the robotic patient table, and the small angle gantry rotation of +/- 36 degrees. Besides sophisticated electron beam guidance, this compact setup can be built using existing modules. The flattening-filter-free treatment heads are characterized by reduced beam-on time and contain apertures restricted in one dimension to the area of maximum primary fluence output. In the case of longer targets, this leads to a topographic intensity modulation, thanks to the combination of "step and shoot" MLC delivery and discrete patient couch motion. Owing to the limited number of beam directions, this multislice cone beam serial tomotherapy is referred to as "multibeam tomotherapy." Every patient slice is irradiated by one treatment head at any given moment but for one subfield only. The electron beam is then guided to the next head ready for delivery, while the other heads are preparing their leaves for the next segment. The "Multifocal MLC-positioning" algorithm was programmed to enable treatment planning and optimize treatment time. We developed an overlap strategy for the longitudinally adjacent fields of every beam direction, in doing so minimizing the field match problem and the effects of possible table step errors. Clinical case studies show for the same or better planning target volume coverage, better

  19. Multibeam tomotherapy: A new treatment unit devised for multileaf collimation, intensity-modulated radiation therapy

    SciTech Connect

    Achterberg, Nils; Mueller, Reinhold G.

    2007-10-15

    A fully integrated system for treatment planning, application, and verification for automated multileaf collimator (MLC) based, intensity-modulated, image-guided, and adaptive radiation therapy (IMRT, IGRT and ART, respectively) is proposed. Patient comfort, which was the major development goal, will be achieved through a new unit design and short treatment times. Our device for photon beam therapy will consist of a new dual energy linac with five fixed treatment heads positioned evenly along one plane but one electron beam generator only. A minimum of moving parts increases technical reliability and reduces motion times to a minimum. Motion is allowed solely for the MLCs, the robotic patient table, and the small angle gantry rotation of {+-}36 deg. . Besides sophisticated electron beam guidance, this compact setup can be built using existing modules. The flattening-filter-free treatment heads are characterized by reduced beam-on time and contain apertures restricted in one dimension to the area of maximum primary fluence output. In the case of longer targets, this leads to a topographic intensity modulation, thanks to the combination of 'step and shoot' MLC delivery and discrete patient couch motion. Owing to the limited number of beam directions, this multislice cone beam serial tomotherapy is referred to as 'multibeam tomotherapy.' Every patient slice is irradiated by one treatment head at any given moment but for one subfield only. The electron beam is then guided to the next head ready for delivery, while the other heads are preparing their leaves for the next segment. The 'Multifocal MLC-positioning' algorithm was programmed to enable treatment planning and optimize treatment time. We developed an overlap strategy for the longitudinally adjacent fields of every beam direction, in doing so minimizing the field match problem and the effects of possible table step errors. Clinical case studies show for the same or better planning target volume coverage, better

  20. Intensity-modulated radiation therapy and volumetric-modulated arc therapy for adult craniospinal irradiation—A comparison with traditional techniques

    SciTech Connect

    Studenski, Matthew T.; Shen, Xinglei; Yu, Yan; Xiao, Ying; Shi, Wenyin; Biswas, Tithi; Werner-Wasik, Maria; Harrison, Amy S.

    2013-04-01

    Craniospinal irradiation (CSI) poses a challenging planning process because of the complex target volume. Traditional 3D conformal CSI does not spare any critical organs, resulting in toxicity in patients. Here the dosimetric advantages of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) are compared with classic conformal planning in adults for both cranial and spine fields to develop a clinically feasible technique that is both effective and efficient. Ten adult patients treated with CSI were retrospectively identified. For the cranial fields, 5-field IMRT and dual 356° VMAT arcs were compared with opposed lateral 3D conformal radiotherapy (3D-CRT) fields. For the spine fields, traditional posterior-anterior (PA) PA fields were compared with isocentric 5-field IMRT plans and single 200° VMAT arcs. Two adult patients have been treated using this IMRT technique to date and extensive quality assurance, especially for the junction regions, was performed. For the cranial fields, the IMRT technique had the highest planned target volume (PTV) maximum and was the least efficient, whereas the VMAT technique provided the greatest parotid sparing with better efficiency. 3D-CRT provided the most efficient delivery but with the highest parotid dose. For the spine fields, VMAT provided the best PTV coverage but had the highest mean dose to all organs at risk (OAR). 3D-CRT had the highest PTV and OAR maximum doses but was the most efficient. IMRT provides the greatest OAR sparing but the longest delivery time. For those patients with unresectable disease that can benefit from a higher, definitive dose, 3D-CRT–opposed laterals are the most clinically feasible technique for cranial fields and for spine fields. Although inefficient, the IMRT technique is the most clinically feasible because of the increased mean OAR dose with the VMAT technique. Quality assurance of the beams, especially the junction regions, is essential.

  1. Comparative dosimetry of volumetric modulated arc therapy and limited-angle static intensity-modulated radiation therapy for early-stage larynx cancer

    SciTech Connect

    Riegel, Adam C.; Antone, Jeffrey; Schwartz, David L.

    2013-04-01

    To compare relative carotid and normal tissue sparing using volumetric-modulated arc therapy (VMAT) or intensity-modulated radiation therapy (IMRT) for early-stage larynx cancer. Seven treatment plans were retrospectively created on 2 commercial treatment planning systems for 11 consecutive patients with T1-2N0 larynx cancer. Conventional plans consisted of opposed-wedged fields. IMRT planning used an anterior 3-field beam arrangement. Two VMAT plans were created, a full 360° arc and an anterior 180° arc. Given planning target volume (PTV) coverage of 95% total volume at 95% of 6300 cGy and maximum spinal cord dose below 2500 cGy, mean carotid artery dose was pushed as low as possible for each plan. Deliverability was assessed by comparing measured and planned planar dose with the gamma (γ) index. Full-arc planning provided the most effective carotid sparing but yielded the highest mean normal tissue dose (where normal tissue was defined as all soft tissue minus PTV). Static IMRT produced next-best carotid sparing with lower normal tissue dose. The anterior half-arc produced the highest carotid artery dose, in some cases comparable with conventional opposed fields. On the whole, carotid sparing was inversely related to normal tissue dose sparing. Mean γ indexes were much less than 1, consistent with accurate delivery of planned treatment. Full-arc VMAT yields greater carotid sparing than half-arc VMAT. Limited-angle IMRT remains a reasonable alternative to full-arc VMAT, given its ability to mediate the competing demands of carotid and normal tissue dose constraints. The respective clinical significance of carotid and normal tissue sparing will require prospective evaluation.

  2. Leakage-Penumbra effect in intensity modulated radiation therapy step-and-shoot dose delivery

    PubMed Central

    Grigorov, Grigor N; Chow, James CL

    2016-01-01

    AIM: To study the leakage-penumbra (LP) effect with a proposed correction method for the step-and-shoot intensity modulated radiation therapy (IMRT). METHODS: Leakage-penumbra dose profiles from 10 randomly selected prostate IMRT plans were studied. The IMRT plans were delivered by a Varian 21 EX linear accelerator equipped with a 120-leaf multileaf collimator (MLC). For each treatment plan created by the Pinnacle3 treatment planning system, a 3-dimensional LP dose distribution generated by 5 coplanar photon beams, starting from 0o with equal separation of 72o, was investigated. For each photon beam used in the step-and-shoot IMRT plans, the first beam segment was set to have the largest area in the MLC leaf-sequencing, and was equal to the planning target volume (PTV). The overshoot effect (OSE) and the segment positional errors were measured using a solid water phantom with Kodak (TL and X-OMAT V) radiographic films. Film dosimetric analysis and calibration were carried out using a film scanner (Vidar VXR-16). The LP dose profiles were determined by eliminating the OSE and segment positional errors with specific individual irradiations. RESULTS: A non-uniformly distributed leaf LP dose ranging from 3% to 5% of the beam dose was measured in clinical IMRT beams. An overdose at the gap between neighboring segments, represented as dose peaks of up to 10% of the total BP, was measured. The LP effect increased the dose to the PTV and surrounding critical tissues. In addition, the effect depends on the number of beams and segments for each beam. Segment positional error was less than the maximum tolerance of 1 mm under a dose rate of 600 monitor units per minute in the treatment plans. The OSE varying with the dose rate was observed in all photon beams, and the effect increased from 1 to 1.3 Gy per treatment of the rectal intersection. As the dosimetric impacts from the LP effect and OSE may increase the rectal post-radiation effects, a correction of LP was proposed and

  3. A topographic leaf-sequencing algorithm for delivering intensity modulated radiation therapy.

    PubMed

    Desai, Dharmin; Ramsey, Chester R; Breinig, Marianne; Mahan, Stephen L

    2006-08-01

    Topographic treatment is a radiation therapy delivery technique for fixed-gantry (nonrotational) treatments on a helical tomotherapy system. The intensity-modulated fields are created by moving the treatment couch relative to a fan-beam positioned at fixed gantry angles. The delivered dose distribution is controlled by moving multileaf collimator (MLC) leaves into and out of the fan beam. The purpose of this work was to develop a leaf-sequencing algorithm for creating topographic MLC sequences. Topographic delivery was modeled using the analogy of a water faucet moving over a collection of bottles. The flow rate per unit length of the water from the faucet represented the photon fluence per unit length along the width of the fan beam, the collection of bottles represented the pixels in the treatment planning fluence map, and the volume of water collected in each bottle represented the delivered fluence. The radiation fluence per unit length delivered to the target at a given position is given by the convolution of the intensity distribution per unit length over the width of the beam and the time per unit distance along the direction of travel that an MLC leaf is open. The MLC opening times for the desired dose profiles were determined using a technique based on deconvolution using a genetic algorithm. The MLC opening times were expanded in terms of a Fourier series, and a genetic algorithm was used to find the best expansion coefficients for a given dose distribution. A series of wedge shapes (15, 30, 45, and 60 deg) and "dose well" test fluence maps were created to test the algorithm's ability to generate topographic leaf sequences. The accuracy of the leaf-sequencing algorithm was measured on a helical tomotherapy system using radiographic film placed at depth in water equivalent material. The measured dose profiles were compared with the desired dose distributions. The agreement was within +/- 2% or 2 mm distance-to-agreement (DTA) in the high dose gradient

  4. A topographic leaf-sequencing algorithm for delivering intensity modulated radiation therapy

    SciTech Connect

    Desai, Dharmin; Ramsey, Chester R.; Breinig, Marianne; Mahan, Stephen L.

    2006-08-15

    Topographic treatment is a radiation therapy delivery technique for fixed-gantry (nonrotational) treatments on a helical tomotherapy system. The intensity-modulated fields are created by moving the treatment couch relative to a fan-beam positioned at fixed gantry angles. The delivered dose distribution is controlled by moving multileaf collimator (MLC) leaves into and out of the fan beam. The purpose of this work was to develop a leaf-sequencing algorithm for creating topographic MLC sequences. Topographic delivery was modeled using the analogy of a water faucet moving over a collection of bottles. The flow rate per unit length of the water from the faucet represented the photon fluence per unit length along the width of the fan beam, the collection of bottles represented the pixels in the treatment planning fluence map, and the volume of water collected in each bottle represented the delivered fluence. The radiation fluence per unit length delivered to the target at a given position is given by the convolution of the intensity distribution per unit length over the width of the beam and the time per unit distance along the direction of travel that an MLC leaf is open. The MLC opening times for the desired dose profiles were determined using a technique based on deconvolution using a genetic algorithm. The MLC opening times were expanded in terms of a Fourier series, and a genetic algorithm was used to find the best expansion coefficients for a given dose distribution. A series of wedge shapes (15, 30, 45, and 60 deg) and 'dose well' test fluence maps were created to test the algorithm's ability to generate topographic leaf sequences. The accuracy of the leaf-sequencing algorithm was measured on a helical tomotherapy system using radiographic film placed at depth in water equivalent material. The measured dose profiles were compared with the desired dose distributions. The agreement was within {+-}2% or 2 mm distance-to-agreement (DTA) in the high dose gradient

  5. Treatment of Oral Cavity Squamous Cell Carcinoma With Adjuvant or Definitive Intensity-Modulated Radiation Therapy

    SciTech Connect

    Sher, David J.; Thotakura, Vijaya; Balboni, Tracy A.; Norris, Charles M.; Haddad, Robert I.; Posner, Marshall R.; Lorch, Jochen; Goguen, Laura A.; Annino, Donald J.; Tishler, Roy B.

    2011-11-15

    Purpose: The optimal management of oral cavity squamous cell carcinoma (OCSCC) typically involves surgical resection followed by adjuvant radiotherapy or chemoradiotherapy (CRT) in the setting of adverse pathologic features. Intensity-modulated radiation therapy (IMRT) is frequently used to treat oral cavity cancers, but published IMRT outcomes specific to this disease site are sparse. We report the Dana-Farber Cancer Institute experience with IMRT-based treatment for OCSCC. Methods and Materials: Retrospective study of all patients treated at Dana-Farber Cancer Institute for OCSCC with adjuvant or definitive IMRT between August 2004 and December 2009. The American Joint Committee on Cancer disease stage criteria distribution of this cohort included 5 patients (12%) with stage I; 10 patients (24%) with stage II (n = 10, 24%),; 14 patients (33%) with stage III (n = 14, 33%),; and 13 patients (31%) with stage IV. The primary endpoint was overall survival (OS); secondary endpoints were locoregional control (LRC) and acute and chronic toxicity. Results: Forty-two patients with OCSCC were included, 30 of whom were initially treated with surgical resection. Twenty-three (77%) of 30 surgical patients treated with adjuvant IMRT also received concurrent chemotherapy, and 9 of 12 (75%) patients treated definitively without surgery were treated with CRT or induction chemotherapy and CRT. With a median follow-up of 2.1 years (interquartile range, 1.1-3.1 years) for all patients, the 2-year actuarial rates of OS and LRC following adjuvant IMRT were 85% and 91%, respectively, and the comparable results for definitive IMRT were 63% and 64% for OS and LRC, respectively. Only 1 patient developed symptomatic osteoradionecrosis, and among patients without evidence of disease, 35% experienced grade 2 to 3 late dysphagia, with only 1 patient who was continuously gastrostomy-dependent. Conclusions: In this single-institution series, postoperative IMRT was associated with promising LRC

  6. Reduced Toxicity With Intensity Modulated Radiation Therapy (IMRT) for Desmoplastic Small Round Cell Tumor (DSRCT): An Update on the Whole Abdominopelvic Radiation Therapy (WAP-RT) Experience

    SciTech Connect

    Desai, Neil B.; Stein, Nicholas F.; LaQuaglia, Michael P.; Alektiar, Kaled M.; Kushner, Brian H.; Modak, Shakeel; Magnan, Heather M.; Goodman, Karyn; Wolden, Suzanne L.

    2013-01-01

    Purpose: Desmoplastic small round cell tumor (DSRCT) is a rare malignancy typically involving the peritoneum in young men. Whole abdominopelvic radiation therapy (WAP-RT) using conventional 2-dimensional (2D) radiation therapy (RT) is used to address local recurrence but has been limited by toxicity. Our objectives were to assess the benefit of intensity modulated radiation therapy (IMRT) on toxicity and to update the largest series on radiation for DSRCT. Methods and Materials: The records of 31 patients with DSRCT treated with WAP-RT (22 with 2D-RT and 9 with IMRT) between 1992 and 2011 were retrospectively reviewed. All received multi-agent chemotherapy and maximal surgical debulking followed by 30 Gy of WAP-RT. A further focal boost of 12 to 24 Gy was used in 12 cases. Boost RT and autologous stem cell transplantation were nearly exclusive to patients treated with 2D-RT. Toxicities were assessed with the Common Terminology Criteria for Adverse Events. Dosimetric analysis compared IMRT and simulated 2D-RT dose distributions. Results: Of 31 patients, 30 completed WAP-RT, with a median follow-up after RT of 19 months. Acute toxicity was reduced with IMRT versus 2D-RT: P=.04 for gastrointestinal toxicity of grade 2 or higher (33% vs 77%); P=.02 for grade 4 hematologic toxicity (33% vs 86%); P=.01 for rates of granulocyte colony-stimulating factor; and P=.04 for rates of platelet transfusion. Post treatment red blood cell and platelet transfusion rates were also reduced (P=.01). IMRT improved target homogeneity ([D05-D95]/D05 of 21% vs 46%) and resulted in a 21% mean bone dose reduction. Small bowel obstruction was the most common late toxicity (23% overall). Updated 3-year overall survival and progression-free survival rates were 50% and 24%, respectively. Overall survival was associated with distant metastasis at diagnosis on multivariate analysis. Most failures remained intraperitoneal (88%). Conclusions: IMRT for consolidative WAP-RT in DSRCT improves

  7. The Effectiveness of Intensity Modulated Radiation Therapy versus Three-Dimensional Radiation Therapy in Prostate Cancer: A Meta-Analysis of the Literatures

    PubMed Central

    Zheng, Tianying; Shi, Huashan; Liu, Yang; Feng, Shijian; Hao, Meiqin; Ye, Lei; Wu, Xueqian; Yang, Cheng

    2016-01-01

    Background and Purpose Intensity modulated radiation therapy (IMRT) can deliver higher doses with less damage of healthy tissues compared with three-dimensional radiation therapy (3DCRT). However, for the scenarios with better clinical outcomes for IMRT than 3DCRT in prostate cancer, the results remain ambiguous. We performed a meta-analysis to assess whether IMRT can provide better clinical outcomes in comparison with 3DCRT in patients diagnosed with prostate cancer. Materials and Methods We conducted a meta-analysis of 23 studies (n = 9556) comparing the clinical outcomes, including gastrointestinal (GI) toxicity, genitourinary (GU) toxicity, biochemical controland overall survival (OS). Results IMRT was significantly associated with decreased 2–4 grade acute GI toxicity [risk ratio (RR) = 0.59 (95% confidence interval (CI), 0.44, 0.78)], late GI toxicity [RR = 0.54, 95%CI (0.38, 0.78)], late rectal bleeding [RR = 0.48, 95%CI (0.27, 0.85)], and achieved better biochemical control[RR = 1.17, 95%CI (1.08, 1.27)] in comparison with 3DCRT. IMRT and 3DCRT remain the same in regard of grade 2–4 acute rectal toxicity [RR = 1.03, 95%CI (0.45, 2.36)], late GU toxicity [RR = 1.03, 95%CI (0.82, 1.30)] and overall survival [RR = 1.07, 95%CI (0.96, 1.19)], while IMRT slightly increased the morbidity of grade 2–4 acute GU toxicity [RR = 1.08, 95%CI (1.00, 1.17)]. Conclusions Although some bias cannot be ignored, IMRT appears to be a better choice for the treatment of prostate cancer when compared with 3DCRT. PMID:27171271

  8. Postoperative intensity modulated radiation therapy in high risk prostate cancer: a dosimetric comparison.

    PubMed

    Digesú, Cinzia; Cilla, Savino; De Gaetano, Andrea; Massaccesi, Mariangela; Macchia, Gabriella; Ippolito, Edy; Deodato, Francesco; Panunzi, Simona; Iapalucci, Chiara; Mattiucci, Gian Carlo; D'Angelo, Elisa; Padula, Gilbert D A; Valentini, Vincenzo; Cellini, Numa; Piermattei, Angelo; Morganti, Alessio G

    2011-01-01

    The aim of this study was to compare intensity-modulated radiation therapy (IMRT) with 3D conformal technique (3D-CRT), with respect to target coverage and irradiation of organs at risk for high dose postoperative radiotherapy (PORT) of the prostate fossa. 3D-CRT and IMRT treatment plans were compared with respect to dose to the rectum and bladder. The dosimetric comparison was carried out in 15 patients considering 2 different scenarios: (1) exclusive prostate fossa irradiation, and (2) pelvic node irradiation followed by a boost on the prostate fossa. In scenario (1), a 3D-CRT plan (box technique) and an IMRT plan were calculated and compared for each patient. In scenario (2), 3 treatment plans were calculated and compared for each patient: (a) 3D-CRT box technique for both pelvic (prophylactic nodal irradiation) and prostate fossa irradiation (3D-CRT only); (b) 3D-CRT box technique for pelvic irradiation followed by an IMRT boost to the prostatic fossa (hybrid 3D-CRT and IMRT); and (c) IMRT for both pelvic and prostate fossa irradiation (IMRT only). For exclusive prostate fossa irradiation, IMRT significantly reduced the dose to the rectum (lower Dmean, V50%, V75%, V90%, V100%, EUD, and NTCP) and the bladder (lower Dmean, V50%, V90%, EUD and NTCP). When prophylactic irradiation of the pelvis was also considered, plan C (IMRT only) performed better than plan B (hybrid 3D-CRT and IMRT) as respect to both rectum and bladder irradiation (reduction of Dmean, V50%, V75%, V90%, equivalent uniform dose [EUD], and normal tissue complication probability [NTCP]). Plan (b) (hybrid 3D-CRT and IMRT) performed better than plan (a) (3D-CRT only) with respect to dose to the rectum (lower Dmean, V75%, V90%, V100%, EUD, and NTCP) and the bladder (Dmean, EUD, and NTCP). Postoperative IMRT in prostate cancer significantly reduces rectum and bladder irradiation compared with 3D-CRT.

  9. Lateral loss and dose discrepancies of multileaf collimator segments in intensity modulated radiation therapy.

    PubMed

    Cheng, Chee W; Das, Indra J; Huq, M Saiful

    2003-11-01

    In the step-and-shoot technique delivery of intensity modulated radiation therapy (IMRT), each static field consists of a number of beamlets, some of which may be very small. In this study, we measured the dose characteristics for a range of field sizes: 2 x 2 to 12 x 10 cm2 for 6 and 15 MV x rays. For a given field length, a number of treatment fields are set up by sequentially increasing the field width using a multi leaf collimator. A set of fields is delivered with the accelerator operated in the IMRT mode. Using an ion chamber, the output factors at 1 cm and 3 cm laterally from a field edge are measured at different depths in a solid water phantom. Our results show that with insufficient lateral distance in at least one direction, the absorbed dose never reaches the equilibrium values, and can be significantly lower for very small field sizes. For example, the output factor of the 2 x 2 cm2 field relative to 10 x 10 cm2 at d(max0 is 0.832 and 0.790 for 6 MV and 15 MV x rays, respectively. Multiple output factor curves are obtained for different field lengths and different buildup conditions. Thus under nonequilibrium conditions, output factors are critically dependent on the field size and the conventional method of determining the equivalent square does not apply. Comparison of output factors acquired in the commissioning of the accelerator with those measured in the present study under conditions of nonequilibrium shows large discrepancies between the two sets of measurements. Thus monitor units generated by a treatment planning system using beam data commissioned with symmetric fields may be underestimated by > 5%, depending on the size and shape of the segments. To facilitate manual MU calculation as an independent check in step-and-shoot IMRT, the concept of effective equivalent square (EES) is introduced. Using EES, output factors can be calculated using existing beam data for fields with asymmetric collimator settings and under conditions of lateral

  10. Origin of Tumor Recurrence After Intensity Modulated Radiation Therapy for Oropharyngeal Squamous Cell Carcinoma

    SciTech Connect

    Raktoe, Sawan A.S.; Dehnad, Homan; Raaijmakers, Cornelis P.J.; Braunius, Weibel; Terhaard, Chris H.J.

    2013-01-01

    Purpose: To model locoregional recurrences of oropharyngeal squamous cell carcinomas (OSCC) treated with primary intensity modulated radiation therapy (IMRT) in order to find the origins from which recurrences grow and relate their location to original target volume borders. Methods and Materials: This was a retrospective analysis of OSCC treated with primary IMRT between January 2002 and December 2009. Locoregional recurrence volumes were delineated on diagnostic scans and coregistered rigidly with treatment planning computed tomography scans. Each recurrence was analyzed with two methods. First, overlapping volumes of a recurrence and original target were measured ('volumetric approach') and assessed as 'in-field', 'marginal', or 'out-field'. Then, the center of mass (COM) of a recurrence volume was assumed as the origin from where a recurrence expanded, the COM location was compared with original target volume borders and assessed as 'in-field', 'marginal', or 'out-field'. Results: One hundred thirty-one OSCC were assessed. For all patients alive at the end of follow-up, the mean follow-up time was 40 months (range, 12-83 months); 2 patients were lost to follow-up. The locoregional recurrence rate was 27%. Of all recurrences, 51% were local, 23% were regional, and 26% had both local and regional recurrences. Of all recurrences, 74% had imaging available for assessment. Regarding volumetric analysis of local recurrences, 15% were in-field gross tumor volume (GTV), and 65% were in-field clinical tumor volume (CTV). Using the COM approach, we found that 70% of local recurrences were in-field GTV and 90% were in-field CTV. Of the regional recurrences, 25% were volumetrically in-field GTV, and using the COM approach, we found 54% were in-field GTV. The COM of local out-field CTV recurrences were maximally 16 mm outside CTV borders, whereas for regional recurrences, this was 17 mm. Conclusions: The COM model is practical and specific for recurrence assessment. Most

  11. Larynx-sparing techniques using intensity-modulated radiation therapy for oropharyngeal cancer

    SciTech Connect

    Bar Ad, Voichita; Lin, Haibo; Hwang, Wei-Ting; Deville, Curtiland; Dutta, Pinaki R.; Tochner, Zelig; Both, Stefan

    2012-01-01

    The purpose of the current study was to explore whether the laryngeal dose can be reduced by using 2 intensity-modulated radiation therapy (IMRT) techniques: whole-neck field IMRT technique (WF-IMRT) vs. junctioned IMRT (J-IMRT). The effect on planning target volumes (PTVs) coverage and laryngeal sparing was evaluated. WF-IMRT technique consisted of a single IMRT plan, including the primary tumor and the superior and inferior neck to the level of the clavicular heads. The larynx was defined as an organ at risk extending superiorly to cover the arytenoid cartilages and inferiorly to include the cricoid cartilage. The J-IMRT technique consisted of an IMRT plan for the primary tumor and the superior neck, matched to conventional antero-posterior opposing lower neck fields at the level of the thyroid notch. A central block was used for the anterior lower neck field at the level of the larynx to restrict the dose to the larynx. Ten oropharyngeal cancer cases were analyzed. Both the primary site and bilateral regional lymphatics were included in the radiotherapy targets. The averaged V95 for the PTV57.6 was 99.2% for the WF-IMRT technique compared with 97.4% (p = 0.02) for J-IMRT. The averaged V95 for the PTV64 was 99.9% for the WF-IMRT technique compared with 98.9% (p = 0.02) for J-IMRT and the averaged V95 for the PT70 was 100.0% for WF-IMRT technique compared with 99.5% (p = 0.04) for J-IMRT. The averaged mean laryngeal dose was 18 Gy with both techniques. The averaged mean doses within the matchline volumes were 69.3 Gy for WF-MRT and 66.2 Gy for J-IMRT (p = 0.03). The WF-IMRT technique appears to offer an optimal coverage of the target volumes and a mean dose to the larynx similar with J-IMRT and should be further evaluated in clinical trials.

  12. Optimal beam design on intensity-modulated radiation therapy with simultaneous integrated boost in nasopharyngeal cancer

    SciTech Connect

    Cheng, Mei-Chun; Hu, Yu-Wen; Liu, Ching-Sheng; Lee, Jeun-Shenn; Huang, Pin-I; Yen, Sang-Hue; Lee, Yuh-Lin; Hsieh, Chun-Mei; Shiau, Cheng-Ying

    2014-10-01

    This study aims to determine the optimal beam design among various combinations of field numbers and beam trajectories for intensity-modulated radiation therapy (IMRT) with simultaneous integrated boost (SIB) technique for the treatment of nasopharyngeal cancer (NPC). We used 10 fields with gantry angles of 155°, 130°, 75°, 25°, 0° L, 0° R, 335°, 285°, 230°, and 205° denoted as F10. To decrease doses in the spinal cord, the F10 technique was designed by featuring 2 pairs of split-opposed beam fields at 155° to 335° and 205° to 25°, as well as one pair of manually split beam fields at 0°. The F10 technique was compared with 4 other common field arrangements: F7E, 7 fields with 50° equally spaced gantry angles; F7, the basis of F10 with 155°, 130°, 75°, 0°, 285°, 230°, and 205°; F9E, 9 fields with 40° equally spaced gantry angles; and FP, 7 posterior fields with 180°, 150°, 120°, 90°, 270°, 240°, and 210°. For each individual case of 10 patients, the customized constraints derived after optimization with the standard F10 technique were applied to 4 other field arrangements. The 4 new optimized plans of each individual case were normalized to achieve the same coverage of planning target volume (PTV){sub 63} {sub Gy} as that of the standard F10 technique. The F10 field arrangement exhibited the best coverage in PTV{sub 70} {sub Gy} and the least mean dose in the trachea-esophagus region. Furthermore, the F10 field arrangement demonstrated the highest level of conformity in the low-dose region and the least monitor unit. The F10 field arrangement performed more outstandingly than the other field arrangements in PTV{sub 70} {sub Gy} coverage and spared the central organ. This arrangement also exhibited the highest conformity and delivery efficiency. The F10 technique is recommended as the standard beam geometry for the SIB-IMRT of NPC.

  13. SmartArc-based volumetric modulated arc therapy for endometrial cancer: a dosimetric comparison with helical tomotherapy and intensity-modulated radiation therapy

    PubMed Central

    2013-01-01

    Background The purpose of the present study was to investigate the feasibility of using volumetric modulated arc therapy with SmartArc (VMAT-S) to achieve radiation delivery efficiency higher than that of intensity-modulated radiotherapy (IMRT) and helical tomotherapy (HT) when treating endometrial cancer, while maintaining plan quality. Methods Nine patients with endometrial cancer were retrospectively studied. Three plans per patient were generated for VMAT-S, IMRT and HT. The dose distributions for the planning target volume (PTV), organs at risk (OARs) and normal tissue were compared. The monitor units (MUs) and treatment delivery time were also evaluated. Results The average homogeneity index was 1.06, 1.10 and 1.07 for the VMAT-S, IMRT and HT plans, respectively. The V40 for the rectum, bladder and pelvis bone decreased by 9.0%, 3.0% and 3.0%, respectively, in the VMAT-S plan relative to the IMRT plan. The target coverage and sparing of OARs were comparable between the VMAT-S and HT plans. The average MU was 823, 1105 and 8403 for VMAT-S, IMRT and HT, respectively; the average delivery time was 2.6, 8.6 and 9.5 minutes, respectively. Conclusions For endometrial cancer, the VMAT-S plan provided comparable quality with significantly shorter delivery time and fewer MUs than with the IMRT and HT plans. In addition, more homogeneous PTV coverage and superior sparing of OARs in the medium to high dose region were observed in the VMAT-S relative to the IMRT plan. PMID:24175929

  14. Radiation Therapy

    MedlinePlus

    ... Radiation (also called x-rays, gamma rays, or photons) either kills tumor cells directly or interferes with ... treatment per day, five days a week, for two to seven weeks. Potiential Side Effects Most people ...

  15. Comparison of plan optimization for single and dual volumetric-modulated arc therapy versus intensity-modulated radiation therapy during post-mastectomy regional irradiation

    PubMed Central

    ZHAO, LI-RONG; ZHOU, YI-BING; SUN, JIAN-GUO

    2016-01-01

    The aim of the present study was to investigate volumetric-modulated arc therapy (VMAT) with single arc (1ARC) and dual arc (2ARC), and intensity-modulated radiation therapy (IMRT), and to evaluate the quality and delivery efficiency of post-mastectomy regional irradiation. A total of 24 female patients who required post-mastectomy regional irradiation were enrolled into the current study, and 1ARC, 2ARC and IMRT plans were designed for each individual patient. The quality of these plans was evaluated by calculating the homogeneity index (HI), conformity index (CI) and specific volume dose to the ipsilateral lung, double lungs, contralateral breast, heart and spinal cord. For the delivery efficiency of these plans, the total treatment time (TTT) and the number of monitor units (MUs) were evaluated. The 1ARC and 2ARC VMAT plans exhibited significantly better HIs and CIs than IMRT. For dose-volume histogram analysis, 1ARC and 2ARC VMAT spared a more specific volume dose to the ipsilateral lung, double lungs, contralateral breast, heart and spinal cord than IMRT (P<0.05). A lower MU per 2.0-Gy fraction was required for 1ARC (539 MU) and 2ARC (608 MU) than for IMRT (1,051 MU). Thus, TTT was correspondingly reduced in 1ARC and 2ARC compared to IMRT (P<0.05). There was no significant dose-volume difference in all the organs at risk (OARs) between the 1ARC and 2ARC plans (P>0.05), and 2ARC VMAT displayed a better HI and CI than 1ARC VMAT (P<0.05). By contrast, 1ARC VMAT was superior to 2ARC VAMT with regard to MU and TTT (P<0.05). The 1ARC and 2ARC VMAT plans demonstrated significantly better dose distribution in a shorter treatment time than IMRT for post-mastectomy regional irradiation, and spared the majority of OARs without compromising target coverage. The results of the present study suggest that 2ARC VMAT may be an alternative to 1ARC in order to obtain a more optimal HI and CI. PMID:27123122

  16. The impact of daily setup variations on head-and-neck intensity-modulated radiation therapy

    SciTech Connect

    Hong, Theodore S.; Tome, Wolfgang A.; Chappell, Richard J.; Chinnaiyan, Prakash; Mehta, Minesh P.; Harari, Paul M. . E-mail: harari@humonc.wisc.edu

    2005-03-01

    Purpose: Intensity-modulated radiation therapy (IMRT) in the treatment of head-and-neck (H and N) cancer provides the opportunity to diminish normal tissue toxicity profiles and thereby enhance patient quality of life. However, highly conformal treatment techniques commonly establish steep dose gradients between tumor and avoidance structures. Daily setup variations can therefore significantly compromise the ultimate precision of idealized H and N IMRT delivery. This study provides a detailed analysis regarding the potential impact of daily setup variations on the overall integrity of H and N IMRT. Methods and materials: A series of 10 patients with advanced H and N cancer were prospectively enrolled in a clinical trial to examine daily H and N radiation setup accuracy. These patients were treated with conventional shrinking field design using three-dimensional treatment planning techniques (not IMRT). Immobilization and alignment were performed using modern H and N practice techniques including conventional thermoplastic masking, baseplate fixation to the treatment couch, three-point laser alignment, and weekly portal film evaluation. After traditional laser alignment, setup accuracy was assessed daily for each patient by measuring 3 Cartesian and 3 angular deviations from the specified isocenter using a high-precision, optically guided patient localization system, which affords submillimeter setup accuracy. These positional errors were then applied to a distinct series of 10 H and N IMRT plans for detailed analysis regarding the impact of daily setup variation (without optical guidance) on the ultimate integrity of IMRT plans over a 30-day treatment course. Dose-volume histogram (DVH), equivalent uniform dose (EUD), mean total dose (mTd), and maximal total dose (MTD) for normal structures were analyzed for IMRT plans with and without incorporation of daily setup variation. Results: Using conventional H and N masking and laser alignment for daily positioning, the

  17. Impact of geometric uncertainties on dose calculations for intensity modulated radiation therapy of prostate cancer

    NASA Astrophysics Data System (ADS)

    Jiang, Runqing

    Intensity-modulated radiation therapy (IMRT) uses non-uniform beam intensities within a radiation field to provide patient-specific dose shaping, resulting in a dose distribution that conforms tightly to the planning target volume (PTV). Unavoidable geometric uncertainty arising from patient repositioning and internal organ motion can lead to lower conformality index (CI) during treatment delivery, a decrease in tumor control probability (TCP) and an increase in normal tissue complication probability (NTCP). The CI of the IMRT plan depends heavily on steep dose gradients between the PTV and organ at risk (OAR). Geometric uncertainties reduce the planned dose gradients and result in a less steep or "blurred" dose gradient. The blurred dose gradients can be maximized by constraining the dose objective function in the static IMRT plan or by reducing geometric uncertainty during treatment with corrective verification imaging. Internal organ motion and setup error were evaluated simultaneously for 118 individual patients with implanted fiducials and MV electronic portal imaging (EPI). A Gaussian probability density function (PDF) is reasonable for modeling geometric uncertainties as indicated by the 118 patients group. The Gaussian PDF is patient specific and group standard deviation (SD) should not be used for accurate treatment planning for individual patients. In addition, individual SD should not be determined or predicted from small imaging samples because of random nature of the fluctuations. Frequent verification imaging should be employed in situations where geometric uncertainties are expected. Cumulative PDF data can be used for re-planning to assess accuracy of delivered dose. Group data is useful for determining worst case discrepancy between planned and delivered dose. The margins for the PTV should ideally represent true geometric uncertainties. The measured geometric uncertainties were used in this thesis to assess PTV coverage, dose to OAR, equivalent

  18. Critical Appraisal of Volumetric Modulated Arc Therapy in Stereotactic Body Radiation Therapy for Metastases to Abdominal Lymph Nodes

    SciTech Connect

    Bignardi, Mario; Cozzi, Luca; Fogliata, Antonella; Lattuada, Paola; Mancosu, Pietro; Navarria, Piera; Urso, Gaetano; Vigorito, Sabrina; Scorsetti, Marta

    2009-12-01

    Purpose: A planning study was performed comparing volumetric modulated arcs, RapidArc (RA), fixed beam IMRT (IM), and conformal radiotherapy (CRT) with multiple static fields or short conformal arcs in a series of patients treated with hypofractionated stereotactic body radiation therapy (SBRT) for solitary or oligo-metastases from different tumors to abdominal lymph nodes. Methods and Materials: Fourteen patients were included in the study. Dose prescription was set to 45 Gy (mean dose to clinical target volume [CTV]) in six fractions of 7.5 Gy. Objectives for CTV and planning target volume (PTV) were as follows: Dose{sub min} >95%, Dose{sub max} <107%. For organs at risk the following objectives were used: Maximum dose to spine <18 Gy; V{sub 15Gy} <35% for both kidneys, V{sub 36Gy} <1% for duodenum, V{sub 36Gy} <3% for stomach and small bowel, V{sub 15Gy} <(total liver volume - 700 cm{sup 3}) for liver. Dose-volume histograms were evaluated to assess plan quality. Results: Planning objectives on CTV and PTV were achieved by all techniques. Use of RA improved PTV coverage (V{sub 95%} = 90.2% +- 5.2% for RA compared with 82.5% +- 9.6% and 84.5% +- 8.2% for CRT and IM, respectively). Most planning objectives for organs at risk were met by all techniques except for the duodenum, small bowel, and stomach, in which the CRT plans exceeded the dose/volume constraints in some patients. The MU/fraction values were as follows: 2186 +- 211 for RA, 2583 +- 699 for IM, and 1554 +- 153 for CRT. Effective treatment time resulted as follows: 3.7 +- 0.4 min for RA, 10.6 +- 1.2 min for IM, and 6.3 +- 0.5 min for CRT. Conclusions: Delivery of SBRT by RA showed improvements in conformal avoidance with respect to standard conformal irradiation. Delivery parameters confirmed logistical advantages of RA, particularly compared with IM.

  19. Three-dimensional conformal intensity-modulated radiation therapy of left femur foci does not damage the sciatic nerve

    PubMed Central

    Xu, Wanlong; Zhao, Xibin; Wang, Qing; Sun, Jungang; Xu, Jiangbo; Zhou, Wenzheng; Wang, Hao; Yan, Shigui; Yuan, Hong

    2014-01-01

    During radiotherapy to kill femoral hydatid tapeworms, the sciatic nerve surrounding the focus can be easily damaged by the treatment. Thus, it is very important to evaluate the effects of radiotherapy on the surrounding nervous tissue. In the present study, we used three-dimensional, conformal, intensity-modulated radiation therapy to treat bilateral femoral hydatid disease in Meriones meridiani. The focus of the hydatid disease on the left femur was subjected to radiotherapy (40 Gy) for 14 days, and the right femur received sham irradiation. Hematoxylin-eosin staining, electron microscopy, and terminal deoxynucleotidyl transferase-dUTP nick end labeling assays on the left femurs showed that the left sciatic nerve cell structure was normal, with no obvious apoptosis after radiation. Trypan blue staining demonstrated that the overall protoscolex structure in bone parasitized with Echinococcus granulosus disappeared in the left femur of the animals after treatment. The mortality of the protoscolex was higher in the left side than in the right side. The succinate dehydrogenase activity in the protoscolex in bone parasitized with Echinococcus granulosus was lower in the left femur than in the right femur. These results suggest that three-dimensional conformal intensity-modulated radiation therapy achieves good therapeutic effects on the secondary bone in hydatid disease in Meriones meridiani without damaging the morphology or function of the sciatic nerve. PMID:25422645

  20. Preliminary Toxicity Analysis of 3-Dimensional Conformal Radiation Therapy Versus Intensity Modulated Radiation Therapy on the High-Dose Arm of the Radiation Therapy Oncology Group 0126 Prostate Cancer Trial

    SciTech Connect

    Michalski, Jeff M.; Yan, Yan; Watkins-Bruner, Deborah; Bosch, Walter R.; Winter, Kathryn; Galvin, James M.; Bahary, Jean-Paul; Morton, Gerard C.; Parliament, Matthew B.; Sandler, Howard M.

    2013-12-01

    Purpose: To give a preliminary report of clinical and treatment factors associated with toxicity in men receiving high-dose radiation therapy (RT) on a phase 3 dose-escalation trial. Methods and Materials: The trial was initiated with 3-dimensional conformal RT (3D-CRT) and amended after 1 year to allow intensity modulated RT (IMRT). Patients treated with 3D-CRT received 55.8 Gy to a planning target volume that included the prostate and seminal vesicles, then 23.4 Gy to prostate only. The IMRT patients were treated to the prostate and proximal seminal vesicles to 79.2 Gy. Common Toxicity Criteria, version 2.0, and Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer late morbidity scores were used for acute and late effects. Results: Of 763 patients randomized to the 79.2-Gy arm of Radiation Therapy Oncology Group 0126 protocol, 748 were eligible and evaluable: 491 and 257 were treated with 3D-CRT and IMRT, respectively. For both bladder and rectum, the volumes receiving 65, 70, and 75 Gy were significantly lower with IMRT (all P<.0001). For grade (G) 2+ acute gastrointestinal/genitourinary (GI/GU) toxicity, both univariate and multivariate analyses showed a statistically significant decrease in G2+ acute collective GI/GU toxicity for IMRT. There were no significant differences with 3D-CRT or IMRT for acute or late G2+ or 3+ GU toxicities. Univariate analysis showed a statistically significant decrease in late G2+ GI toxicity for IMRT (P=.039). On multivariate analysis, IMRT showed a 26% reduction in G2+ late GI toxicity (P=.099). Acute G2+ toxicity was associated with late G3+ toxicity (P=.005). With dose–volume histogram data in the multivariate analysis, RT modality was not significant, whereas white race (P=.001) and rectal V70 ≥15% were associated with G2+ rectal toxicity (P=.034). Conclusions: Intensity modulated RT is associated with a significant reduction in acute G2+ GI/GU toxicity. There is a trend for a

  1. A comparison of three optimization algorithms for intensity modulated radiation therapy.

    PubMed

    Pflugfelder, Daniel; Wilkens, Jan J; Nill, Simeon; Oelfke, Uwe

    2008-01-01

    In intensity modulated treatment techniques, the modulation of each treatment field is obtained using an optimization algorithm. Multiple optimization algorithms have been proposed in the literature, e.g. steepest descent, conjugate gradient, quasi-Newton methods to name a few. The standard optimization algorithm in our in-house inverse planning tool KonRad is a quasi-Newton algorithm. Although this algorithm yields good results, it also has some drawbacks. Thus we implemented an improved optimization algorithm based on the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) routine. In this paper the improved optimization algorithm is described. To compare the two algorithms, several treatment plans are optimized using both algorithms. This included photon (IMRT) as well as proton (IMPT) intensity modulated therapy treatment plans. To present the results in a larger context the widely used conjugate gradient algorithm was also included into this comparison. On average, the improved optimization algorithm was six times faster to reach the same objective function value. However, it resulted not only in an acceleration of the optimization. Due to the faster convergence, the improved optimization algorithm usually terminates the optimization process at a lower objective function value. The average of the observed improvement in the objective function value was 37%. This improvement is clearly visible in the corresponding dose-volume-histograms. The benefit of the improved optimization algorithm is particularly pronounced in proton therapy plans. The conjugate gradient algorithm ranked in between the other two algorithms with an average speedup factor of two and an average improvement of the objective function value of 30%.

  2. Optimal sensitometric curves of Kodak EDR2 film for dynamic intensity modulated radiation therapy verification

    PubMed Central

    Suriyapee, S; Pitaxtarnin, N; Oonsiri, S; Jumpangern, C; Israngkul Na Ayuthaya, I

    2008-01-01

    Purpose: To investigate the optimal sensitometric curves of extended dose range (EDR2) radiographic film in terms of depth, field size, dose range and processing conditions for dynamic intensity modulated radiation therapy (IMRT) dosimetry verification with 6 MV X-ray beams. Materials and methods: A Varian Clinac 23 EX linear accelerator with 6 MV X-ray beam was used to study the response of Kodak EDR2 film. Measurements were performed at depths of 5, 10 and 15 cm in MedTec virtual water phantom and with field sizes of 2x2, 3x3, 10x10 and 15x15 cm2. Doses ranging from 20 to 450 cGy were used. The film was developed with the Kodak RP X-OMAT Model M6B automatic film processor. Film response was measured with the Vidar model VXR-16 scanner. Sensitometric curves were applied to the dose profiles measured with film at 5 cm in the virtual water phantom with field sizes of 2x2 and 10x10 cm2 and compared with ion chamber data. Scanditronix/Wellhofer OmniProTM IMRT software was used for the evaluation of the IMRT plan calculated by Eclipse treatment planning. Results: Investigation of the reproducibility and accuracy of the film responses, which depend mainly on the film processor, was carried out by irradiating one film nine times with doses of 20 to 450 cGy. A maximum standard deviation of 4.9% was found which decreased to 1.9% for doses between 20 and 200 cGy. The sensitometric curves for various field sizes at fixed depth showed a maximum difference of 4.2% between 2x2 and 15x15 cm2 at 5 cm depth with a dose of 450 cGy. The shallow depth tended to show a greater effect of field size responses than the deeper depths. The sensitometric curves for various depths at fixed field size showed slightly different film responses; the difference due to depth was within 1.8% for all field sizes studied. Both field size and depth effect were reduced when the doses were lower than 450 cGy. The difference was within 2.5% in the dose range from 20 to 300 cGy for all field sizes and

  3. A novel conformity index for intensity modulated radiation therapy plan evaluation

    SciTech Connect

    Cheung, Fion W. K.; Law, Maria Y. Y.

    2012-09-15

    Purpose: Intensity modulated radiation therapy (IMRT) has gained popularity in the treatment of cancers. Manual evaluation of IMRT plans for head-and-neck cancers has been especially challenging necessitating efficient and objective assessment tools. In this work, the authors address this issue by developing a personalized conformity index (CI) for comparison of IMRT plans for head-and-neck cancers and evaluating its plan quality discerning power in comparison with other widely used CIs. Methods: A two-dimensional CI with dose and distance incorporated (CI{sub DD}) was developed using the MATLAB program language, to quantify the planning target volume (PTV) coverage. Valuable information contained in the digital imaging and communication in medicine (DICOM) RT objects were harvested for computation of each of the CI{sub DD} components. Apart from the dose penalty factor, a distance-based exponential function was employed by varying the penalty weight associated with the location of cold spots within the PTV. With the goal of deriving a customized penalty factor, the distances between individual pixel and its nearest PTV boundary was found. Using the exponential function, the impact of distance penalty was substantially larger for cold spots closer to the PTV centroid but petered out quickly wherever they were situated in the vicinity of PTV border. In order to evaluate the CI{sub DD} scoring system, three CT image data sets of nasopharyngeal carcinoma (NPC) patients were collected. Ten IMRT plans with degrading qualities were generated from each dataset and were ranked based on CI{sub DD} and other existing indices. The coefficient of variance was calculated for each dataset to compare the degree of variation. Results: The CI{sub DD} scoring system that considered spatial importance of each voxel within the PTV was successfully developed. The results demonstrated that the CI{sub DD} including four discrete factors could provide accurate rankings of plan quality by

  4. Clinical Value of [{sup 11}C]Methionine PET for Stereotactic Radiation Therapy With Intensity Modulated Radiation Therapy to Metastatic Brain Tumors

    SciTech Connect

    Miwa, Kazuhiro; Matsuo, Masayuki; Shinoda, Jun; Aki, Tatsuki; Yonezawa, Shingo; Ito, Takeshi; Asano, Yoshitaka; Yamada, Mikito; Yokoyama, Kazutoshi; Yamada, Jitsuhiro; Yano, Hirohito; Iwama, Toru

    2012-12-01

    Purpose: This study investigated the clinical impact of {sup 11}C-labeled methionine-positron emission tomography (MET-PET) for stereotactic radiation therapy with intensity modulated radiation therapy (SRT-IMRT) in metastatic brain tumors. Methods and Materials: Forty-two metastatic brain tumors were examined. All tumors were treated with SRT-IMRT using a helical tomotherapy system. Gross tumor volume (GTV) was defined and drawn on the stereotactic magnetic resonance (MR) image, taking into account the respective contributions of MR imaging and MET-PET. Planning target volume (PTV) encompassed the GTV-PET plus a 2-mm margin. SRT-IMRT was performed, keeping the dose for PTV at 25-35 Gy in 5 fractions. The ratio of the mean value of MET uptake to the contralateral normal brain (L/N ratio) was plotted for the PTV prior to SRT-IMRT, at 3 months following SRT-IMRT, and at 6 months following SRT-IMRT. Tumor characteristic changes of MET uptake before and after SRT-IMRT were evaluated quantitatively, comparing them with MRI examination. Results: Mean {+-} SD L/N ratios were 1.95 {+-} 0.83, 1.18 {+-} 0.21, and 1.12 {+-} 0.25 in the pre-SRT-IMRT group, in the 3 months post-SRT-IMRT group, and in the 6 months post-SRT-IMRT group, respectively. Differences in the mean L/N ratio between the pre-SRT-IMRT group and the 3-month post-SRT-IMRT group and between the pre-SRT-IMRT group and the 6 month post-SRT-IMRT group were statistically significant, irrespective of MRI examination. Conclusions: We showed examples of metastatic lesions demonstrating significant decreases in MET uptake following SRT-IMRT. MET-PET seems to have a potential role in providing additional information, although MRI remains the gold standard for diagnosis and follow-up after SRT-IMRT. The present study is a preliminary approach, but to more clearly define the impact of PET-based radiosurgical assessment, further experimental and clinical analyses are required.

  5. Acute Toxicity After Image-Guided Intensity Modulated Radiation Therapy Compared to 3D Conformal Radiation Therapy in Prostate Cancer Patients

    SciTech Connect

    Wortel, Ruud C.; Incrocci, Luca; Pos, Floris J.; Lebesque, Joos V.; Witte, Marnix G.; Heide, Uulke A. van der; Herk, Marcel van; Heemsbergen, Wilma D.

    2015-03-15

    Purpose: Image-guided intensity modulated radiation therapy (IG-IMRT) allows significant dose reductions to organs at risk in prostate cancer patients. However, clinical data identifying the benefits of IG-IMRT in daily practice are scarce. The purpose of this study was to compare dose distributions to organs at risk and acute gastrointestinal (GI) and genitourinary (GU) toxicity levels of patients treated to 78 Gy with either IG-IMRT or 3D-CRT. Methods and Materials: Patients treated with 3D-CRT (n=215) and IG-IMRT (n=260) receiving 78 Gy in 39 fractions within 2 randomized trials were selected. Dose surface histograms of anorectum, anal canal, and bladder were calculated. Identical toxicity questionnaires were distributed at baseline, prior to fraction 20 and 30 and at 90 days after treatment. Radiation Therapy Oncology Group (RTOG) grade ≥1, ≥2, and ≥3 endpoints were derived directly from questionnaires. Univariate and multivariate binary logistic regression analyses were applied. Results: The median volumes receiving 5 to 75 Gy were significantly lower (all P<.001) with IG-IMRT for anorectum, anal canal, and bladder. The mean dose to the anorectum was 34.4 Gy versus 47.3 Gy (P<.001), 23.6 Gy versus 44.6 Gy for the anal canal (P<.001), and 33.1 Gy versus 43.2 Gy for the bladder (P<.001). Significantly lower grade ≥2 toxicity was observed for proctitis, stool frequency ≥6/day, and urinary frequency ≥12/day. IG-IMRT resulted in significantly lower overall RTOG grade ≥2 GI toxicity (29% vs 49%, respectively, P=.002) and overall GU grade ≥2 toxicity (38% vs 48%, respectively, P=.009). Conclusions: A clinically meaningful reduction in dose to organs at risk and acute toxicity levels was observed in IG-IMRT patients, as a result of improved technique and tighter margins. Therefore reduced late toxicity levels can be expected as well; additional research is needed to quantify such reductions.

  6. Assessments of Sequential Intensity Modulated Radiation Therapy Boost (SqIB) Treatments Using HART

    NASA Astrophysics Data System (ADS)

    Pyakuryal, Anil

    2009-05-01

    A retrospective study was pursued to evaluate the SqIB treatments performed on ten head and neck cancer patients(n=10).Average prescription doses (PDs) of 39 Gy,15Gy and 17.8Gy were delivered consecutively from larger to smaller planning target volumes(ptvs) in three different treatment plans using 6 MV X-ray photon beams from a Linear accelerator (SLA Linac, Elekta) on BID weak on-weak off schedules. These plans were statistically evaluated on basis of plan indices (PIs),dose response of targets and critical structures, and dose tolerance(DT) of various organs utilizing the DVH analysis automated software known as Histogram Analysis in Radiation Therapy-HART(S.Jang et al., 2008, Med Phys 35, p.2812). Mean SqIB PIs were found consistent with the reported values for varying radio-surgical systems.The 95.5%(n=10)of each ptvs and the gross tumor volume also received 95% (n=10)of PDs in treatments. The average volume of ten organs (N=10) affected by each PDs shrank with decreasing size of ptvs in above plans.A largest volume of Oropharynx (79%,n=10,N=10) irradiated at PD, but the largest volume of Larynx (98%, n=10, N=10) was vulnerable to DT of structure (TD50).Thus, we have demonstrated the efficiency and accuracy of HART in the assessment of Linac based plans in radiation therapy treatments of cancer.

  7. Preliminary outcome and toxicity report of extended-field, intensity-modulated radiation therapy for gynecologic malignancies

    SciTech Connect

    Salama, Joseph K. . E-mail: jsalama@radonc.uchicago.edu; Mundt, Arno J.; Roeske, John; Mehta, Neil

    2006-07-15

    Purpose: The aim of this article is to report a preliminary analysis of our initial clinical experience with extended-field intensity-modulated radiotherapy for gynecologic malignancies. Methods and Materials: Between November 2002 and May 2005, 13 women with gynecologic malignancies were treated with extended-field radiation therapy. Of the women, 7 had endometrial cancer, 4 cervical cancer, 1 recurrent endometrial cancer, and 1 suspected cervical cancer. All women underwent computed tomography planning, with the upper vagina, parametria, and uterus (if present) contoured within the CTV. In addition, the clinical target volume contained the pelvic and presacral lymph nodes as well as the para-aortic lymph nodes. All acute toxicity was scored according to the Common Terminology Criteria for Adverse Events (CTCAE v 3.0). All late toxicity was scored using the Radiation Therapy Oncology Group late toxicity score. Results: The median follow-up was 11 months. Extended-field intensity-modulated radiation therapy (IMRT) for gynecologic malignancies was well tolerated. Two patients experienced Grade 3 or higher toxicity. Both patients were treated with concurrent cisplatin based chemotherapy. Neither patient was planned with bone marrow sparing. Eleven patients had no evidence of late toxicity. One patient with multiple previous surgeries experienced a bowel obstruction. One patient with bilateral grossly involved and unresectable common iliac nodes experienced bilateral lymphedema. Extended-field-IMRT achieved good local control with only 1 patient, who was metastatic at presentation, and 1 patient not able to complete treatment, experiencing in-field failure. Conclusions: Extended-field IMRT is safe and effective with a low incidence of acute toxicity. Longer follow-up is needed to assess chronic toxicity, although early results are promising.

  8. A Phase 1 Study of Everolimus + Weekly Cisplatin + Intensity Modulated Radiation Therapy in Head-and-Neck Cancer

    SciTech Connect

    Fury, Matthew G.; Lee, Nancy Y.; Sherman, Eric; Ho, Alan L.; Rao, Shyam; Heguy, Adriana; Shen, Ronglai; Korte, Susan; Lisa, Donna; Ganly, Ian; Patel, Snehal; Wong, Richard J.; Shaha, Ashok; Shah, Jatin; Haque, Sofia; Katabi, Nora; Pfister, David G.

    2013-11-01

    Purpose: Elevated expression of eukaryotic protein synthesis initiation factor 4E (eIF4E) in histologically cancer-free margins of resected head and neck squamous cell carcinomas (HNSCCs) is mediated by mammalian target of rapamycin complex 1 (mTORC1) and has been associated with increased risk of disease recurrence. Preclinically, inhibition of mTORC1 with everolimus sensitizes cancer cells to cisplatin and radiation. Methods and Materials: This was single-institution phase 1 study to establish the maximum tolerated dose of daily everolimus given with fixed dose cisplatin (30 mg/m{sup 2} weekly × 6) and concurrent intensity modulated radiation therapy for patients with locally and/or regionally advanced head-and-neck cancer. The study had a standard 3 + 3 dose-escalation design. Results: Tumor primary sites were oral cavity (4), salivary gland (4), oropharynx (2), nasopharynx (1), scalp (1), and neck node with occult primary (1). In 4 of 4 cases in which resected HNSCC surgical pathology specimens were available for immunohistochemistry, elevated expression of eIF4E was observed in the cancer-free margins. The most common grade ≥3 treatment-related adverse event was lymphopenia (92%), and dose-limiting toxicities (DLTs) were mucositis (n=2) and failure to thrive (n=1). With a median follow up of 19.4 months, 2 patients have experienced recurrent disease. The maximum tolerated dose was everolimus 5 mg/day. Conclusions: Head-and-neck cancer patients tolerated everolimus at therapeutic doses (5 mg/day) given with weekly cisplatin and intensity modulated radiation therapy. The regimen merits further evaluation, especially among patients who are status post resection of HNSCCs that harbor mTORC1-mediated activation of eIF4E in histologically negative surgical margins.

  9. A retrospective study on intensity-modulated radiation therapy combined with chemotherapy after D2 radical surgery for gastric carcinoma

    PubMed Central

    LUO, WENGUANG; ZHANG, HONGYAN; ZHAO, YUFEI; WANG, LIN; QI, LIJUN; RAN, JINGJING; LIU, LEI; WU, AIDONG

    2016-01-01

    In order to investigate the clinical value of different chemotherapies, the efficacy of intensity-modulated radiation therapy with concurrent chemotherapy following D2 radical surgery for gastric carcinoma was evaluated in this study. A total of 102 patients who underwent D2 radical surgery for gastric carcinoma followed by concurrent chemoradiotherapy (CRT) between January, 2008 and March, 2012, were selected. The 5/7 field intensity-modulated radiation therapy was used, with a planning target volume dose of 45 Gy in 25 fractions over 5 weeks. Among these patients, 45 were administered 400 mg/m2/day fluorouracil and 20 mg/m2/day tetrahydrofurfuryl alcohol through intravenous infusion 4 days before and 3 days after the radiotherapy (F-CRT group), while 57 patients received 825 mg/m2 capecitabine orally twice a day (C-CRT group). The 3-year overall and the disease-free survival rates were 75.5 and 70.5%, respectively. The overall 3-year survival rates of the F-CRT and C-CRT groups were 72.2 and 78.5% (P>0.05), respectively, and the 3-year disease-free survival rates were 67.7 and 72.8% (P>0.05), respectively. No significant differences were observed between the two groups. However, during the concurrent CRT, significant differences were found in the incidence of grade 1–2 haematological toxicity between the F-CRT and C-CRT groups (73.3 vs. 50.9%, respectively; χ2 =5.320, P=0.021). Significant differences were also found in the incidence of grade 1–2 gastrointestinal reactions between the two groups (77.8 vs. 57.9%, respectively; χ2=4.474, P=0.034). Therefore, intensity-modulated radiation therapy combined with concurrent chemotherapy following D2 radical surgery for gastric cancer was found to be safe and effective. In addition, radiotherapy was better tolerated and more likely to be completed using C-CRT rather than F-CRT. PMID:27123273

  10. Intensity modulated radiation therapy with simultaneous integrated boost based dose escalation on neoadjuvant chemoradiation therapy for locally advanced distal esophageal adenocarcinoma

    PubMed Central

    Zeng, Ming; Aguila, Fernando N; Patel, Taral; Knapp, Mark; Zhu, Xue-Qiang; Chen, Xi-Lin; Price, Phillip D

    2016-01-01

    AIM: To evaluate impact of radiation therapy dose escalation through intensity modulated radiation therapy with simultaneous integrated boost (IMRT-SIB). METHODS: We retrospectively reviewed the patients who underwent four-dimensional-based IMRT-SIB-based neoadjuvant chemoradiation protocol. During the concurrent chemoradiation therapy, radiation therapy was through IMRT-SIB delivered in 28 consecutive daily fractions with total radiation doses of 56 Gy to tumor and 5040 Gy dose-painted to clinical tumor volume, with a regimen at the discretion of the treating medical oncologist. This was followed by surgical tumor resection. We analyzed pathological completion response (pCR) rates its relationship with overall survival and event-free survival. RESULTS: Seventeen patients underwent dose escalation with the IMRT-SIB protocol between 2007 and 2014 and their records were available for analysis. Among the IMRT-SIB-treated patients, the toxicity appeared mild, the most common side effects were grade 1-3 esophagitis (46%) and pneumonitis (11.7%). There were no cardiac events. The Ro resection rate was 94% (n = 16), the pCR rate was 47% (n = 8), and the postoperative morbidity was zero. There was one mediastinal failure found, one patient had local failure at the anastomosis site, and the majority of failures were distant in the lung or bone. The 3-year disease-free survival and overall survival rates were 41% (n = 7) and 53% (n = 9), respectively. CONCLUSION: The dose escalation through IMRT-SIB in the chemoradiation regimen seems responsible for down-staging the distal esophageal with well-tolerated complications. PMID:27190587

  11. Dosimetric and Radiobiological Consequences of Computed Tomography–Guided Adaptive Strategies for Intensity Modulated Radiation Therapy of the Prostate

    SciTech Connect

    Battista, Jerry J.; Johnson, Carol; Turnbull, David; Kempe, Jeff; Bzdusek, Karl; Van Dyk, Jacob; Bauman, Glenn

    2013-12-01

    Purpose: To examine a range of scenarios for image-guided adaptive radiation therapy of prostate cancer, including different schedules for megavoltage CT imaging, patient repositioning, and dose replanning. Methods and Materials: We simulated multifraction dose distributions with deformable registration using 35 sets of megavoltage CT scans of 13 patients. We computed cumulative dose–volume histograms, from which tumor control probabilities and normal tissue complication probabilities (NTCPs) for rectum were calculated. Five-field intensity modulated radiation therapy (IMRT) with 18-MV x-rays was planned to achieve an isocentric dose of 76 Gy to the clinical target volume (CTV). The differences between D{sub 95}, tumor control probability, V{sub 70Gy}, and NTCP for rectum, for accumulated versus planned dose distributions, were compared for different target volume sizes, margins, and adaptive strategies. Results: The CTV D{sub 95} for IMRT treatment plans, averaged over 13 patients, was 75.2 Gy. Using the largest CTV margins (10/7 mm), the D{sub 95} values accumulated over 35 fractions were within 2% of the planned value, regardless of the adaptive strategy used. For tighter margins (5 mm), the average D{sub 95} values dropped to approximately 73.0 Gy even with frequent repositioning, and daily replanning was necessary to correct this deficit. When personalized margins were applied to an adaptive CTV derived from the first 6 treatment fractions using the STAPLE (Simultaneous Truth and Performance Level Estimation) algorithm, target coverage could be maintained using a single replan 1 week into therapy. For all approaches, normal tissue parameters (rectum V{sub 70Gy} and NTCP) remained within acceptable limits. Conclusions: The frequency of adaptive interventions depends on the size of the CTV combined with target margins used during IMRT optimization. The application of adaptive target margins (<5 mm) to an adaptive CTV determined 1 week into therapy minimizes

  12. Intensity-modulated radiation therapy for head and neck cancer: emphasis on the selection and delineation of the targets.

    PubMed

    Eisbruch, Avraham; Foote, Robert L; O'Sullivan, Brian; Beitler, Jonathan J; Vikram, Bhadrasain

    2002-07-01

    The head and neck contain many critical, noninvolved structures in close vicinity to the targets. The tightly conformal doses produced by intensity-modulated radiation therapy (IMRT), and the lack of internal organ motion in the head and neck, provide the potential for organ sparing and improved tumor irradiation. Many studies of treatment planning for head and neck cancer have demonstrated the dosimetric superiority of IMRT over conventional techniques in these respects. The initial results of clinical studies demonstrate reduced xerostomia. They suggest an improvement in tumor control, which needs to be verified in larger studies and longer follow-up. Critical issues for successful outcome of head and neck IMRT are accurate selection of the neck lymph nodes that require adjuvant treatment, and accurate delineation on the planning computed tomography (CT) of the lymph-node bearing areas and subclinical disease adjoining the gross tumor. This review emphasizes these topics and provides some guidelines. PMID:12118389

  13. Limited Advantages of Intensity-Modulated Radiotherapy Over 3D Conformal Radiation Therapy in the Adjuvant Management of Gastric Cancer

    SciTech Connect

    Alani, Shlomo; Soyfer, Viacheslav; Strauss, Natan; Schifter, Dan; Corn, Benjamin W.

    2009-06-01

    Purpose: Although chemoradiotherapy was considered the standard adjuvant treatment for gastric cancer, a recent Phase III trial (Medical Research Council Adjuvant Gastric Infusional Chemotherapy [MAGIC]) did not include radiotherapy in the randomization scheme because it was considered expendable. Given radiotherapy's potential, efforts needed to be made to optimize its use for treating gastric cancer. We assessed whether intensity-modulated radiotherapy (IMRT) could improve upon our published results in patients treated with three-dimensional (3D) conformal therapy. Methods and Materials: Fourteen patients with adenocarcinoma of the stomach were treated with adjuvant chemoradiotherapy using a noncoplanar four-field arrangement. Subsequently, a nine-field IMRT plan was designed using a CMS Xio IMRT version 4.3.3 module. Two IMRT beam arrangements were evaluated: beam arrangement 1 consisted of gantry angles of 0 deg., 53 deg., 107 deg., 158 deg., 204 deg., 255 deg., and 306 deg.. Beam arrangement 2 consisted of gantry angles of 30 deg., 90 deg., 315 deg., and 345 deg.; a gantry angle of 320 deg./couch, 30 deg.; and a gantry angle of 35{sup o}/couch, 312{sup o}. Both the target volume coverage and the dose deposition in adjacent critical organs were assessed in the plans. Dose-volume histograms were generated for the clinical target volume, kidneys, spine, and liver. Results: Comparison of the clinical target volumes revealed satisfactory coverage by the 95% isodose envelope using either IMRT or 3D conformal therapy. However, IMRT was only marginally better than 3D conformal therapy at protecting the spine and kidneys from radiation. Conclusions: IMRT confers only a marginal benefit in the adjuvant treatment of gastric cancer and should be used only in the small subset of patients with risk factors for kidney disease or those with a preexisting nephropathy.

  14. Characterization of Interplay Errors in Step-and-Shoot Intensity-Modulated Radiation Therapy of the Lung

    NASA Astrophysics Data System (ADS)

    McCaw, Travis J.

    Radiation therapy is used for the treatment of inoperable early-stage and advanced-stage lung cancer. Target motion during these treatments due to respiration causes delivery errors relative to the planned dose. Current recommendations for the use of motion management techniques to mitigate these errors are based on the measured amplitude of target motion. However, frequency-dependent errors due to interplay between target motion and intensity modulation of the treatment delivery may not be adequately managed by these recommendations. A radiochromic film stack dosimeter (FSD) was developed to verify Monte Carlo simulations of interplay errors in step-and-shoot intensity-modulated radiation therapy (SS-IMRT). The energy dependence, orientation dependence, and water equivalence of the FSD were characterized. The accuracy of the FSD was verified by comparison with thermoluminescent dosimeter measurements and treatment planning software dose calculations. The FSD was shown to be capable of accurate and precise three-dimensional dose measurements. A Monte Carlo model of a linear accelerator was developed using the EGSnrc transport code for the simulation of interplay errors. The model was verified with the comparison of measured and simulated dose profiles. Conventionally fractionated and hypofractionated SS-IMRT treatment plans were prepared for the investigation of interplay errors. The delivery of each plan was measured with the FSD undergoing modeled respiratory motion. These measurements were reconstructed using the Monte Carlo accelerator model to verify the methodology for the simulation of interplay errors. For each treatment plan, deliveries were simulated for target motion periods from 1s to 180s to identify characteristic modulation frequencies for which interplay errors were greatest. The impact of respiratory motion irregularity on interplay errors was investigated, and cumulative interplay errors over a fractionated treatment course were quantified. It was

  15. Adaptive Planning in Intensity-Modulated Radiation Therapy for Head and Neck Cancers: Single-Institution Experience and Clinical Implications

    SciTech Connect

    Ahn, Peter H.; Chen, Chin-Cheng; Ahn, Andrew I.; Hong, Linda; Scripes, Paola G.; Shen Jin; Lee, Chen-Chiao; Miller, Ekeni; Kalnicki, Shalom; Garg, Madhur K.

    2011-07-01

    Purpose: Anatomic changes and positional variability during intensity-modulated radiation therapy (IMRT) for head and neck cancer can lead to clinically significant dosimetric changes. We report our single-institution experience using an adaptive protocol and correlate these changes with anatomic and positional changes during treatment. Methods and Materials: Twenty-three sequential head and neck IMRT patients underwent serial computed tomography (CT) scans during their radiation course. After undergoing the planning CT scan, patients underwent planned rescans at 11, 22, and 33 fractions; a total of 89 scans with 129 unique CT plan combinations were thus analyzed. Positional variability and anatomic changes during treatment were correlated with changes in dosimetric parameters to target and avoidance structures between planning CT and subsequent scans. Results: A total of 15/23 patients (65%) benefited from adaptive planning, either due to inadequate dose to gross disease or to increased dose to organs at risk. Significant differences in primary and nodal targets (planning target volume, gross tumor volume, and clinical tumor volume), parotid, and spinal cord dosimetric parameters were noted throughout the treatment. Correlations were established between these dosimetric changes and weight loss, fraction number, multiple skin separations, and change in position of the skull, mandible, and cervical spine. Conclusions: Variations in patient positioning and anatomy changes during IMRT for head and neck cancer can affect dosimetric parameters and have wide-ranging clinical implications. The interplay between random positional variability and gradual anatomic changes requires careful clinical monitoring and frequent use of CT- based image-guided radiation therapy, which should determine variations necessitating new plans.

  16. Preoperative Intensity Modulated Radiation Therapy and Chemotherapy for Locally Advanced Vulvar Carcinoma: Analysis of Pattern of Relapse

    SciTech Connect

    Beriwal, Sushil; Shukla, Gaurav; Shinde, Ashwin; Heron, Dwight E.; Kelley, Joseph L.; Edwards, Robert P.; Sukumvanich, Paniti; Richards, Scott; Olawaiye, Alexander B.; Krivak, Thomas C.

    2013-04-01

    Purpose: To examine clinical outcomes and relapse patterns in locally advanced vulvar carcinoma treated using preoperative chemotherapy and intensity modulated radiation therapy (IMRT). Methods and Materials: Forty-two patients with stage I-IV{sub A} (stage I, n=3; stage II, n=13; stage III, n=23; stage IV{sub A}, n=3) vulvar cancer were treated with chemotherapy and IMRT via a modified Gynecological Oncology Group schema using 5-fluorouracil and cisplatin with twice-daily IMRT during the first and last weeks of treatment or weekly cisplatin with daily radiation therapy. Median dose of radiation was 46.4 Gy. Results: Thirty-three patients (78.6%) had surgery for resection of vulva; 13 of these patients also had inguinal lymph node dissection. Complete pathologic response was seen in 48.5% (n=16) of these patients. Of these, 15 had no recurrence at a median time of 26.5 months. Of the 17 patients with partial pathological response, 8 (47.1%) developed recurrence in the vulvar surgical site within a median of 8 (range, 5-34) months. No patient had grade ≥3 chronic gastrointestinal/genitourinary toxicity. Of those having surgery, 8 (24.2%) developed wound infections requiring debridement. Conclusions: Preoperative chemotherapy/IMRT was well tolerated, with good pathologic response and clinical outcome. The most common pattern of recurrence was local in patients with partial response, and strategies to increase pathologic response rate with increasing dose or adding different chemotherapy need to be explored to help further improve outcomes.

  17. Ototoxicity evaluation in medulloblastoma patients treated with involved field boost using intensity-modulated radiation therapy (IMRT): a retrospective review

    PubMed Central

    2014-01-01

    Background Ototoxicity is a known side effect of combined radiation therapy and cisplatin chemotherapy for the treatment of medulloblastoma. The delivery of an involved field boost by intensity modulated radiation therapy (IMRT) may reduce the dose to the inner ear when compared with conventional radiotherapy. The dose of cisplatin may also affect the risk of ototoxicity. A retrospective study was performed to evaluate the impact of involved field boost using IMRT and cisplatin dose on the rate of ototoxicity. Methods Data from 41 medulloblastoma patients treated with IMRT were collected. Overall and disease-free survival rates were calculated by Kaplan-Meier method Hearing function was graded according to toxicity criteria of Pediatric Oncology Group (POG). Doses to inner ear and total cisplatin dose were correlated with hearing function by univariate and multivariate data analysis. Results After a mean follow-up of 44 months (range: 14 to 72 months), 37 patients remained alive, with two recurrences, both in spine with CSF involvement, resulting in a disease free-survival and overall survival of 85.2% and 90.2%, respectively. Seven patients (17%) experienced POG Grade 3 or 4 toxicity. Cisplatin dose was a significant factor for hearing loss in univariate analysis (p < 0.03). In multivariate analysis, median dose to inner ear was significantly associated with hearing loss (p < 0.01). POG grade 3 and 4 toxicity were uncommon with median doses to the inner ear bellow 42 Gy (p < 0.05) and total cisplatin dose of less than 375 mg/m2 (p < 0.01). Conclusions IMRT leads to a low rate of severe ototoxicity. Median radiation dose to auditory apparatus should be kept below 42 Gy. Cisplatin doses should not exceed 375 mg/m2. PMID:25041714

  18. A new Monte Carlo-based treatment plan optimization approach for intensity modulated radiation therapy.

    PubMed

    Li, Yongbao; Tian, Zhen; Shi, Feng; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun

    2015-04-01

    Intensity-modulated radiation treatment (IMRT) plan optimization needs beamlet dose distributions. Pencil-beam or superposition/convolution type algorithms are typically used because of their high computational speed. However, inaccurate beamlet dose distributions may mislead the optimization process and hinder the resulting plan quality. To solve this problem, the Monte Carlo (MC) simulation method has been used to compute all beamlet doses prior to the optimization step. The conventional approach samples the same number of particles from each beamlet. Yet this is not the optimal use of MC in this problem. In fact, there are beamlets that have very small intensities after solving the plan optimization problem. For those beamlets, it may be possible to use fewer particles in dose calculations to increase efficiency. Based on this idea, we have developed a new MC-based IMRT plan optimization framework that iteratively performs MC dose calculation and plan optimization. At each dose calculation step, the particle numbers for beamlets were adjusted based on the beamlet intensities obtained through solving the plan optimization problem in the last iteration step. We modified a GPU-based MC dose engine to allow simultaneous computations of a large number of beamlet doses. To test the accuracy of our modified dose engine, we compared the dose from a broad beam and the summed beamlet doses in this beam in an inhomogeneous phantom. Agreement within 1% for the maximum difference and 0.55% for the average difference was observed. We then validated the proposed MC-based optimization schemes in one lung IMRT case. It was found that the conventional scheme required 10(6) particles from each beamlet to achieve an optimization result that was 3% difference in fluence map and 1% difference in dose from the ground truth. In contrast, the proposed scheme achieved the same level of accuracy with on average 1.2 × 10(5) particles per beamlet. Correspondingly, the computation

  19. A new Monte Carlo-based treatment plan optimization approach for intensity modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Li, Yongbao; Tian, Zhen; Shi, Feng; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun

    2015-04-01

    Intensity-modulated radiation treatment (IMRT) plan optimization needs beamlet dose distributions. Pencil-beam or superposition/convolution type algorithms are typically used because of their high computational speed. However, inaccurate beamlet dose distributions may mislead the optimization process and hinder the resulting plan quality. To solve this problem, the Monte Carlo (MC) simulation method has been used to compute all beamlet doses prior to the optimization step. The conventional approach samples the same number of particles from each beamlet. Yet this is not the optimal use of MC in this problem. In fact, there are beamlets that have very small intensities after solving the plan optimization problem. For those beamlets, it may be possible to use fewer particles in dose calculations to increase efficiency. Based on this idea, we have developed a new MC-based IMRT plan optimization framework that iteratively performs MC dose calculation and plan optimization. At each dose calculation step, the particle numbers for beamlets were adjusted based on the beamlet intensities obtained through solving the plan optimization problem in the last iteration step. We modified a GPU-based MC dose engine to allow simultaneous computations of a large number of beamlet doses. To test the accuracy of our modified dose engine, we compared the dose from a broad beam and the summed beamlet doses in this beam in an inhomogeneous phantom. Agreement within 1% for the maximum difference and 0.55% for the average difference was observed. We then validated the proposed MC-based optimization schemes in one lung IMRT case. It was found that the conventional scheme required 106 particles from each beamlet to achieve an optimization result that was 3% difference in fluence map and 1% difference in dose from the ground truth. In contrast, the proposed scheme achieved the same level of accuracy with on average 1.2 × 105 particles per beamlet. Correspondingly, the computation time

  20. Sensorineural Hearing Loss after Combined Intensity Modulated Radiation Therapy and Cisplatin-Based Chemotherapy for Nasopharyngeal Carcinoma12

    PubMed Central

    Wang, Jin; Chen, Yuan-Yuan; Tai, An; Chen, Xue-Lin; Huang, Shao-Ming; Yang, Cungen; Bao, Yong; Li, Ning-Wei; Deng, Xiao-Wu; Zhao, Chong; Chen, Ming; Li, X. Allen

    2015-01-01

    PURPOSE: The incidence of sensorineural hearing loss (SNHL) after treatment with combination of intensity-modulated radiation therapy (IMRT) and cisplatin-based chemotherapy in nasopharyngeal carcinoma (NPC) patients was evaluated, and relationships of SNHL with host factors, treatment-related factors, and radiation dosimetric parameters were investigated. METHODS: Fifty-one NPC patients treated with IMRT from 2004 to 2009 were analyzed. All patients received neoadjuvant, concurrent, or adjuvant use of cisplatin. Pure tone audiometry was performed during the follow-up period with a median time of 60 months, ranging from 28 to 84 months. Correlation of SNHL at low frequencies (pure tone average, 0.5-2 kHz) with a series of factors was analyzed. RESULTS: Among 102 ears, 12.7% had low-frequency SNHL and 42.2% had high-frequency (4 kHz) SNHL. The incidence of low-frequency SNHL was greater in patients with age > 40, with T-stage 4, or who received cumulative cisplatin dose (CCD) > 200 mg/m2 (P = .034, .011, and .003, respectively) and in ears with secretory otitis media (SOM) (P = .002). Several dosimetric parameters were found to be correlated with SNHL. Univariate analysis showed that the minimum radiation dose to 0.1 ml highest dose volume (D0.1 ml) of the cochlea was the best radiation-related predictive parameter. Multivariate analysis indicated that CCD, SOM, and D0.1 ml of cochlea (P = .035, .012, and .022, respectively) were the factors associated with SNHL. CONCLUSION: For NPC patients treated with IMRT and chemotherapy, the incidence of treatment-related SNHL was associated with CCD, D0.1 ml of cochlea, and SOM. PMID:26692526

  1. Verification of the dose attenuation of a newly developed vacuum cushion for intensity-modulated radiation therapy of prostate cancer.

    PubMed

    Takakura, Toru; Ito, Yoshiyuki; Higashikawa, Akinori; Nishiyama, Tomohiro; Sakamoto, Takashi

    2016-07-01

    This study measured the dose attenuation of a newly developed vacuum cushion for intensity-modulated radiation therapy (IMRT) of prostate cancer, and verified the effect of dose-correction accuracy in a radiation treatment planning system (RTPS). The new cushion was filled with polystyrene foams inflated 15-fold (Sφ ≒ 1 mm) to reduce contraction caused by air suction and was compared to normal polystyrene foam inflated to 50-fold (Sφ ≒ 2 mm). The dose attenuation at several thicknesses of compression bag filled with normal and low-inflation materials was measured using an ionization chamber; and then the calculated RTPS dose was compared to ionization chamber measurements, while the new cushion was virtually included as region of interest in the calculation area. The dose attenuation rate of the normal cushion was 0.010 %/mm (R (2) = 0.9958), compared to 0.031 %/mm (R (2) = 0.9960) in the new cushion. Although the dose attenuation rate of the new cushion was three times that of the normal cushion, the high agreement between calculated dose by RTPS and ionization chamber measurements was within approximately 0.005 %/mm. Thus, the results of the current study indicate that the new cushion may be effective in clinical use for dose calculation accuracy in RTPS. PMID:27260347

  2. Proton Arc Reduces Range Uncertainty Effects and Improves Conformality Compared With Photon Volumetric Modulated Arc Therapy in Stereotactic Body Radiation Therapy for Non-Small Cell Lung Cancer

    SciTech Connect

    Seco, Joao; Gu, Guan; Marcelos, Tiago; Kooy, Hanne; Willers, Henning

    2013-09-01

    Purpose: To describe, in a setting of non-small cell lung cancer (NSCLC), the theoretical dosimetric advantages of proton arc stereotactic body radiation therapy (SBRT) in which the beam penumbra of a rotating beam is used to reduce the impact of range uncertainties. Methods and Materials: Thirteen patients with early-stage NSCLC treated with proton SBRT underwent repeat planning with photon volumetric modulated arc therapy (Photon-VMAT) and an in-house-developed arc planning approach for both proton passive scattering (Passive-Arc) and intensity modulated proton therapy (IMPT-Arc). An arc was mimicked with a series of beams placed at 10° increments. Tumor and organ at risk doses were compared in the context of high- and low-dose regions, represented by volumes receiving >50% and <50% of the prescription dose, respectively. Results: In the high-dose region, conformality index values are 2.56, 1.91, 1.31, and 1.74, and homogeneity index values are 1.29, 1.22, 1.52, and 1.18, respectively, for 3 proton passive scattered beams, Passive-Arc, IMPT-Arc, and Photon-VMAT. Therefore, proton arc leads to a 30% reduction in the 95% isodose line volume to 3-beam proton plan, sparing surrounding organs, such as lung and chest wall. For chest wall, V30 is reduced from 21 cm{sup 3} (3 proton beams) to 11.5 cm{sup 3}, 12.9 cm{sup 3}, and 8.63 cm{sup 3} (P=.005) for Passive-Arc, IMPT-Arc, and Photon-VMAT, respectively. In the low-dose region, the mean lung dose and V20 of the ipsilateral lung are 5.01 Gy(relative biological effectiveness [RBE]), 4.38 Gy(RBE), 4.91 Gy(RBE), and 5.99 Gy(RBE) and 9.5%, 7.5%, 9.0%, and 10.0%, respectively, for 3-beam, Passive-Arc, IMPT-Arc, and Photon-VMAT, respectively. Conclusions: Stereotactic body radiation therapy with proton arc and Photon-VMAT generate significantly more conformal high-dose volumes than standard proton SBRT, without loss of coverage of the tumor and with significant sparing of nearby organs, such as chest wall. In addition

  3. SU-E-T-187: Feasibility Study of Stereotactic Liver Radiation Therapy Using Multiple Divided Partial Arcs in Volumetric Modulated Arc Therapy

    SciTech Connect

    Lin, Y; Ozawa, S; Tsegmed, U; Nakashima, T; Shintaro, T; Ochi, Y; Kawahara, D; Kimura, T; Nagata, Y

    2014-06-01

    Purpose: To verify volumetric modulated arc therapy (VMAT) using flattening filter free (FFF) mode with jaw tracking (JT) feature for single breath hold as long as 15 s per arc in liver stereotactic body radiation therapy (SBRT) against intensity modulated radiation therapy (IMRT) FFF-JT. Methods: Ten hepatocellular carcinoma (HCC) cases were planned with 10 MV FFF using Pinnacle3 treatment planning system which delivered by TrueBeam to administer 48 Gy/ 4 fractions. Eight non-coplanar beams were assigned to IMRT using step-and-shoot technique. For VMAT, two or three non-coplanar partial arcs (up to 180 degrees) were further divided into subarcs with gantry rotation less than 80 degrees to limit delivery time within 15 s. Dose distributions were verified using OCTAVIUS II system and pass rates were evaluated using gamma analysis with criteria of 3%/3 mm at threshold of 5% to the maximum dose. The actual irradiation time was measured. Results: The VMAT-FFF-JT of partial-arcs with sub-divided arcs was able to produce a highly conformal plan as well as IMRT-FFF-JT. Isodose lines and DVH showed slight improvement in dosimetry when JT was employed for both IMRT and VMAT. Consequently, VMAT-FFF-JT was superior in reducing the dose to liver minus gross tumor volume. VMAT-FFF-JT has shorter total treatment time compared with 3D conformal radiation therapy (3D-CRT) FFF because the gantry was rotated simultaneously with the beam delivery in VMAT. Moreover, due to the small and regular shape of HCC, VMAT-FFF-JT offered less multileaf collimator motion, thus the interplay effect is expected to be reduced. The patient specific QA of IMRT and VMAT acquired the pass rates higher than 90%. Conclusion: VMAT-FFF-JT could be a promising technique for liver SBRT as the sub-divided arcs method was able to accommodate a single breath hold irradiation time of less than 15 s without deterioration of the dose distribution compared with IMRT-FFF-JT.

  4. Dosimetric evaluation of planning target volume margin reduction for prostate cancer via image-guided intensity-modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Hwang, Taejin; Kang, Sei-Kwon; Cheong, Kwang-Ho; Park, Soah; Yoon, Jai-Woong; Han, Taejin; Kim, Haeyoung; Lee, Meyeon; Kim, Kyoung-Joo; Bae, Hoonsik; Suh, Tae-Suk

    2015-07-01

    The aim of this study was to quantitatively estimate the dosimetric benefits of the image-guided radiation therapy (IGRT) system for the prostate intensity-modulated radiation therapy (IMRT) delivery. The cases of eleven patients who underwent IMRT for prostate cancer without a prostatectomy at our institution between October 2012 and April 2014 were retrospectively analyzed. For every patient, clinical target volume (CTV) to planning target volume (PTV) margins were uniformly used: 3 mm, 5 mm, 7 mm, 10 mm, 12 mm, and 15 mm. For each margin size, the IMRT plans were independently optimized by one medical physicist using Pinnalce3 (ver. 8.0.d, Philips Medical System, Madison, WI) in order to maintain the plan quality. The maximum geometrical margin (MGM) for every CT image set, defined as the smallest margin encompassing the rectum at least at one slice, was between 13 mm and 26 mm. The percentage rectum overlapping PTV (%V ROV ), the rectal normal tissue complication probability (NTCP) and the mean rectal dose (%RD mean ) increased in proportion to the increase of PTV margin. However the bladder NTCP remained around zero to some extent regardless of the increase of PTV margin while the percentage bladder overlapping PTV (%V BOV ) and the mean bladder dose (%BD mean ) increased in proportion to the increase of PTV margin. Without relatively large rectum or small bladder, the increase observed for rectal NTCP, %RDmean and %BD mean per 1-mm PTV margin size were 1.84%, 2.44% and 2.90%, respectively. Unlike the behavior of the rectum or the bladder, the maximum dose on each femoral head had little effect on PTV margin. This quantitative study of the PTV margin reduction supported that IG-IMRT has enhanced the clinical effects over prostate cancer with the reduction of normal organ complications under the similar level of PTV control.

  5. Developing a novel method to analyse Gafchromic EBT2 films in intensity modulated radiation therapy quality assurance.

    PubMed

    Hu, Yunfei; Wang, Yang; Fogarty, Gerald; Liu, Guilin

    2013-12-01

    Recently individual intensity modulated radiation therapy quality assurances (IMRT QA) have been more and more performed with Gafchromic™ EBT series films processed in red-green-blue (R-G-B) channel due to their extremely high spatial resolution. However, the efficiency of this method is relatively low, as for each box of film, a calibration curve must be established prior to the film being used for measurement. In this study, the authors find a novel method to process the Gafchromic™ EBT series, that is, to use the 16-bit greyscale channel to process the exposed film rather than the conventional 48-bit R-G-B channel, which greatly increases the efficiency and even accuracy of the whole IMRT procedure. The main advantage is that when processed in greyscale channel, the Gafchromic™ EBT2 films exhibits a linear relationship between the net pixel value and the dose delivered. This linear relationship firstly reduces the error in calibration-curve fitting, and secondly saves the need of establishing a calibration curve for each box of films if it is only to be used for relative measurements. Clinical testing for this novel method was carried out in two radiation therapy centres that involved a total of 743 IMRT cases, and 740 cases passed the 3 mm 3 % gamma analysis criteria. The cases were also tested with small ionization chambers (cc-13) and the results were convincing. Consequently the authors recommend the use of this novel method to improve the accuracy and efficiency of individual IMRT QA procedure using Gafchromic EBT2 films.

  6. A dosimetric analysis of dose escalation using two intensity-modulated radiation therapy techniques in locally advanced pancreatic carcinoma

    SciTech Connect

    Brown, Michael W.; Ning, Holly; Arora, Barbara; Albert, Paul S.; Poggi, Matthew; Camphausen, Kevin; Citrin, Deborah . E-mail: citrind@mail.nih.gov

    2006-05-01

    Purpose: To perform an analysis of three-dimensional conformal radiation therapy (3D-CRT), sequential boost intensity-modulated radiation therapy (IMRTs), and integrated boost IMRT (IMRTi) for dose escalation in unresectable pancreatic carcinoma. Methods and Materials: Computed tomography images from 15 patients were used. Treatment plans were generated using 3D-CRT, IMRTs, and IMRTi for dose levels of 54, 59.4, and 64.8 Gy. Plans were analyzed for target coverage, doses to liver, kidneys, small bowel, and spinal cord. Results: Three-dimensional-CRT exceeded tolerance to small bowel in 1 of 15 (6.67%) patients at 54 Gy, and 4 of 15 (26.7%) patients at 59.4 and 64.8 Gy. 3D-CRT exceeded spinal cord tolerance in 1 of 15 patients (6.67%) at 59.4 Gy and liver constraints in 1 of 15 patients (6.67%) at 64.8 Gy; no IMRT plans exceeded tissue tolerance. Both IMRT techniques reduced the percentage of total kidney volume receiving 20 Gy (V20), the percentage of small bowel receiving 45 Gy (V45), and the percentage of liver receiving 35 Gy (V35). IMRTi appeared superior to IMRTs in reducing the total kidney V20 (p < 0.0001), right kidney V20 (p < 0.0001), and small bowel V45 (p = 0.02). Conclusions: Sequential boost IMRT and IMRTi improved the ability to achieve normal tissue dose goals compared with 3D-CRT. IMRTi allowed dose escalation to 64.8 Gy with acceptable normal tissue doses and superior dosimetry compared with 3D-CRT and IMRTs.

  7. Multicriteria Optimization in Intensity-Modulated Radiation Therapy Treatment Planning for Locally Advanced Cancer of the Pancreatic Head

    SciTech Connect

    Hong, Theodore S. Craft, David L.; Carlsson, Fredrik; Bortfeld, Thomas R.

    2008-11-15

    Purpose: Intensity-modulated radiation therapy (IMRT) affords the potential to decrease radiation therapy-associated toxicity by creating highly conformal dose distributions. However, the inverse planning process can create a suboptimal plan despite meeting all constraints. Multicriteria optimization (MCO) may reduce the time-consuming iteration loop necessary to develop a satisfactory plan while providing information regarding trade-offs between different treatment planning goals. In this exploratory study, we examine the feasibility and utility of MCO in physician plan selection in patients with locally advanced pancreatic cancer (LAPC). Methods and Materials: The first 10 consecutive patients with LAPC treated with IMRT were evaluated. A database of plans (Pareto surface) was created that met the inverse planning goals. The physician then navigated to an 'optimal' plan from the point on the Pareto surface at which kidney dose was minimized. Results: Pareto surfaces were created for all 10 patients. A physician was able to select a plan from the Pareto surface within 10 minutes for all cases. Compared with the original (treated) IMRT plans, the plan selected from the Pareto surface had a lower stomach mean dose in 9 of 10 patients, although often at the expense of higher kidney dose than with the treated plan. Conclusion: The MCO is feasible in patients with LAPC and allows the physician to choose a satisfactory plan quickly. Generally, when given the opportunity, the physician will choose a plan with a lower stomach dose. The MCO enables a physician to provide greater active clinical input into the IMRT planning process.

  8. Convex reformulation of biologically-based multi-criteria intensity-modulated radiation therapy optimization including fractionation effects

    NASA Astrophysics Data System (ADS)

    Hoffmann, Aswin L.; den Hertog, Dick; Siem, Alex Y. D.; Kaanders, Johannes H. A. M.; Huizenga, Henk

    2008-11-01

    Finding fluence maps for intensity-modulated radiation therapy (IMRT) can be formulated as a multi-criteria optimization problem for which Pareto optimal treatment plans exist. To account for the dose-per-fraction effect of fractionated IMRT, it is desirable to exploit radiobiological treatment plan evaluation criteria based on the linear-quadratic (LQ) cell survival model as a means to balance the radiation benefits and risks in terms of biologic response. Unfortunately, the LQ-model-based radiobiological criteria are nonconvex functions, which make the optimization problem hard to solve. We apply the framework proposed by Romeijn et al (2004 Phys. Med. Biol. 49 1991-2013) to find transformations of LQ-model-based radiobiological functions and establish conditions under which transformed functions result in equivalent convex criteria that do not change the set of Pareto optimal treatment plans. The functions analysed are: the LQ-Poisson-based model for tumour control probability (TCP) with and without inter-patient heterogeneity in radiation sensitivity, the LQ-Poisson-based relative seriality s-model for normal tissue complication probability (NTCP), the equivalent uniform dose (EUD) under the LQ-Poisson model and the fractionation-corrected Probit-based model for NTCP according to Lyman, Kutcher and Burman. These functions differ from those analysed before in that they cannot be decomposed into elementary EUD or generalized-EUD functions. In addition, we show that applying increasing and concave transformations to the convexified functions is beneficial for the piecewise approximation of the Pareto efficient frontier.

  9. Dose as a function of liver volume and planning target volume in helical tomotherapy, intensity-modulated radiation therapy-based stereotactic body radiation therapy for hepatic metastasis

    SciTech Connect

    Baisden, Joseph M.; Reish, Andrew G.; Sheng Ke; Larner, James M.; Kavanagh, Brian D.; Read, Paul W. . E-mail: PWR3U@virginia.edu

    2006-10-01

    Purpose: Stereotactic body radiation therapy (SBRT) has been shown to be an effective, well-tolerated treatment for local control of tumors metastatic to the liver. Multi-institutional Phase II trials are examining 60 Gy in 3 fractions delivered by linac-based, 3D-conformal IMRT. HiArt Helical TomoTherapy is a treatment unit that delivers co-planar helical IMRT that is capable of image-guided SBRT. We hypothesized that the maximum tolerable dose (MTD) delivered to a lesion by Helical TomoTherapy-based SBRT could be predicted based on the planning target volume (PTV) and liver volume. Methods and Materials: To test this, we performed inverse treatment planning and analyzed the dosimetry for multiple hypothetical liver gross tumor volumes (GTV) with conventional PTV expansions. Inverse planning was carried out to find the maximum tolerated SBRT dose up to 60 Gy to be delivered in 3 fractions based on the dose constraint that 700 cc of normal liver would receive less than 15 Gy. Results: Regression analysis indicated a linear relationship between the MTD, the PTV and the liver volume, supporting our hypothesis. A predictive equation was generated, which was found to have an accuracy of {+-}3 Gy. In addition, dose constraints based on proximity to other normal tissues were tested. Inverse planning for PTVs located at varying distances from the heart, small bowel, and spinal cord revealed a predictable decrease in the MTD as the PTV increased in size or approached normal organs. Conclusions: These data provide a framework for predicting the likely MTD for patients considered for Helical TomoTherapy liver SBRT.

  10. [Personnel requirements of medical radiation physics in radiotherapy in comparison to the current guidelines "radiation protection in medicine" : Special consideration of intensity-modulated radiation therapy].

    PubMed

    Leetz, H-K; Eipper, H H; Gfirtner, H; Schneider, P; Welker, K

    2014-08-01

    In 1994 and 1998 reports on staffing levels in medical radiation physics for radiation therapy were published by the "Deutsche Gesellschaft für Medizinische Physik" (DGMP, German Society for Medical Physics). Because of the technical and methodological progress, changes in recommended qualifications of staff and new governmental regulations, it was necessary to establish new staffing levels. The data were derived from a new survey in clinics. Some of the previously established results from the old reports were adapted to the new conditions by conversion.The staffing requirements were normalized to main components as in the earlier reports resulting in a simple method for calculation of staffing levels. The results were compared with the requirements in the "Richtlinie Strahlenschutz in der Medizin" (guidelines on radiation protection in medicine) and showed satisfactory agreement.

  11. SU-E-T-353: Decoding the Beam Complexity in Intensity-Modulated Radiation Therapy Plans

    SciTech Connect

    Du, W; Cho, S; Zhang, X; Hoffman, K; Kudchadker, R

    2014-06-01

    Purpose: Modern IMRT relies on computers to generate treatment plans of varied complexity. A highly complex treatment plan may use a large number of small and irregular beam apertures in order to achieve high dose conformity. However, excessive beam complexity can increase dosimetric uncertainty, prolong treatment time, and increase susceptibility to target or organ motion. In this study we sought to develop metrics to assess the complexity of IMRT beams and plans. Methods: Based the information of leaf positions and MU for each beam segment, we calculated the following beam complexity metrics: aperture area, shape irregularity, and beam modulation. Then these beam complexity metrics were averaged to obtain the corresponding plan complexity metrics, using the beam MUs as weighting factors. We evaluated and compared the beam and plan complexity scores for 65 IMRT plans from 3 sites (prostate, head and neck, and spine). We also studied how the plan complexity scores were affected by adjusting inverse planning parameters. Results: For prostate IMRT, the lateral beams had large MUs and smaller shape irregularity, while the anterior or posterior beams had larger modulation values. On average, the prostate IMRT plans had the smallest shape irregularity and beam modulation; the HN IMRT plans had the largest aperture area, shape irregularity, and beam modulation; and the spine stereotactic IMRT plans often had small aperture area, which may be associated with relatively large discrepancies between calculated and measures doses. The plan complexity increased as the number of optimization iterations and the number of beam segments increased and as the minimum segment area decreased. Conclusion: Complexity of IMRT beams and plans were quantified in terms of aperture area, shape irregularity and beam modulation. The complexity metrics varied among IMRT plans for different disease sites and were affected when the planning parameters were adjusted.

  12. Spot-scanning beam proton therapy vs intensity-modulated radiation therapy for ipsilateral head and neck malignancies: A treatment planning comparison

    SciTech Connect

    Kandula, Shravan; Zhu, Xiaorong; Garden, Adam S.; Gillin, Michael; Rosenthal, David I.; Ang, Kie-Kian; Mohan, Radhe; Amin, Mayankkumar V.; Garcia, John A.; Wu, Richard; Sahoo, Narayan; Frank, Steven J.

    2013-01-01

    Radiation therapy for head and neck malignancies can have side effects that impede quality of life. Theoretically, proton therapy can reduce treatment-related morbidity by minimizing the dose to critical normal tissues. We evaluated the feasibility of spot-scanning proton therapy for head and neck malignancies and compared dosimetry between those plans and intensity-modulated radiation therapy (IMRT) plans. Plans from 5 patients who had undergone IMRT for primary tumors of the head and neck were used for planning proton therapy. Both sets of plans were prepared using computed tomography (CT) scans with the goals of achieving 100% of the prescribed dose to the clinical target volume (CTV) and 95% to the planning TV (PTV) while maximizing conformity to the PTV. Dose-volume histograms were generated and compared, as were conformity indexes (CIs) to the PTVs and mean doses to the organs at risk (OARs). Both modalities in all cases achieved 100% of the dose to the CTV and 95% to the PTV. Mean PTV CIs were comparable (0.371 IMRT, 0.374 protons, p = 0.953). Mean doses were significantly lower in the proton plans to the contralateral submandibular (638.7 cGy IMRT, 4.3 cGy protons, p = 0.002) and parotid (533.3 cGy IMRT, 48.5 cGy protons, p = 0.003) glands; oral cavity (1760.4 cGy IMRT, 458.9 cGy protons, p = 0.003); spinal cord (2112.4 cGy IMRT, 249.2 cGy protons, p = 0.002); and brainstem (1553.52 cGy IMRT, 166.2 cGy protons, p = 0.005). Proton plans also produced lower maximum doses to the spinal cord (3692.1 cGy IMRT, 2014.8 cGy protons, p = 0.034) and brainstem (3412.1 cGy IMRT, 1387.6 cGy protons, p = 0.005). Normal tissue V{sub 10}, V{sub 30}, and V{sub 50} values were also significantly lower in the proton plans. We conclude that spot-scanning proton therapy can significantly reduce the integral dose to head and neck critical structures. Prospective studies are underway to determine if this reduced dose translates to improved quality of life.

  13. Intensity modulated proton therapy.

    PubMed

    Kooy, H M; Grassberger, C

    2015-07-01

    Intensity modulated proton therapy (IMPT) implies the electromagnetic spatial control of well-circumscribed "pencil beams" of protons of variable energy and intensity. Proton pencil beams take advantage of the charged-particle Bragg peak-the characteristic peak of dose at the end of range-combined with the modulation of pencil beam variables to create target-local modulations in dose that achieves the dose objectives. IMPT improves on X-ray intensity modulated beams (intensity modulated radiotherapy or volumetric modulated arc therapy) with dose modulation along the beam axis as well as lateral, in-field, dose modulation. The clinical practice of IMPT further improves the healthy tissue vs target dose differential in comparison with X-rays and thus allows increased target dose with dose reduction elsewhere. In addition, heavy-charged-particle beams allow for the modulation of biological effects, which is of active interest in combination with dose "painting" within a target. The clinical utilization of IMPT is actively pursued but technical, physical and clinical questions remain. Technical questions pertain to control processes for manipulating pencil beams from the creation of the proton beam to delivery within the patient within the accuracy requirement. Physical questions pertain to the interplay between the proton penetration and variations between planned and actual patient anatomical representation and the intrinsic uncertainty in tissue stopping powers (the measure of energy loss per unit distance). Clinical questions remain concerning the impact and management of the technical and physical questions within the context of the daily treatment delivery, the clinical benefit of IMPT and the biological response differential compared with X-rays against which clinical benefit will be judged. It is expected that IMPT will replace other modes of proton field delivery. Proton radiotherapy, since its first practice 50 years ago, always required the highest level of

  14. Intensity modulated proton therapy

    PubMed Central

    Grassberger, C

    2015-01-01

    Intensity modulated proton therapy (IMPT) implies the electromagnetic spatial control of well-circumscribed “pencil beams” of protons of variable energy and intensity. Proton pencil beams take advantage of the charged-particle Bragg peak—the characteristic peak of dose at the end of range—combined with the modulation of pencil beam variables to create target-local modulations in dose that achieves the dose objectives. IMPT improves on X-ray intensity modulated beams (intensity modulated radiotherapy or volumetric modulated arc therapy) with dose modulation along the beam axis as well as lateral, in-field, dose modulation. The clinical practice of IMPT further improves the healthy tissue vs target dose differential in comparison with X-rays and thus allows increased target dose with dose reduction elsewhere. In addition, heavy-charged-particle beams allow for the modulation of biological effects, which is of active interest in combination with dose “painting” within a target. The clinical utilization of IMPT is actively pursued but technical, physical and clinical questions remain. Technical questions pertain to control processes for manipulating pencil beams from the creation of the proton beam to delivery within the patient within the accuracy requirement. Physical questions pertain to the interplay between the proton penetration and variations between planned and actual patient anatomical representation and the intrinsic uncertainty in tissue stopping powers (the measure of energy loss per unit distance). Clinical questions remain concerning the impact and management of the technical and physical questions within the context of the daily treatment delivery, the clinical benefit of IMPT and the biological response differential compared with X-rays against which clinical benefit will be judged. It is expected that IMPT will replace other modes of proton field delivery. Proton radiotherapy, since its first practice 50 years ago, always required the

  15. Rectal wall sparing by dosimetric effect of rectal balloon used during intensity-modulated radiation therapy (IMRT) for prostate cancer.

    PubMed

    Teh, Bin S; Dong, Lei; McGary, John E; Mai, Wei-Yuan; Grant, Walter; Butler, E Brian

    2005-01-01

    The use of an air-filled rectal balloon has been shown to decrease prostate motion during prostate radiotherapy. However, the perturbation of radiation dose near the air-tissue interfaces has raised clinical concerns of underdosing the prostate gland. The aim of this study was to investigate the dosimetric effects of an air-filled rectal balloon on the rectal wall/mucosa and prostate gland. Clinical rectal toxicity and dose-volume histogram (DVH) were also assessed to evaluate for any correlation. A film phantom was constructed to simulate the 4-cm diameter air cavity created by a rectal balloon. Kodak XV2 films were utilized to measure and compare dose distribution with and without air cavity. To study the effect in a typical clinical situation, the phantom was computed tomography (CT) scanned on a Siemens DR CT scanner for intensity-modulated radiation therapy (IMRT) treatment planning. A target object was drawn on the phantom CT images to simulate the treatment of prostate cancer. Because patients were treated in prone position, the air cavity was situated superiorly to the target. The treatment used a serial tomotherapy technique with the Multivane Intensity Modulating Collimator (MIMiC) in arc treatment mode. Rectal toxicity was assessed in 116 patients treated with IMRT to a mean dose of 76 Gy over 35 fractions (2.17-Gy fraction size). They were treated in the prone position, immobilized using a Vac-Loktrade mark bag and carrier-box system. Rectal balloon inflated with 100 cc of air was used for prostate gland immobilization during daily treatment. Rectal toxicity was assessed using modifications of the Radiation Therapy Oncology Group (RTOG) and late effects Normal Tissue Task Force (LENT) scales systems. DVH of the rectum was also evaluated. From film dosimetry, there was a dose reduction at the distal air-tissue interface as much as 60% compared with the same geometry without the air cavity for 15-MV photon beam and 2x2-cm field size. The dose beyond the

  16. A Comparison of Helical Intensity-Modulated Radiotherapy, Intensity-Modulated Radiotherapy, and 3D-Conformal Radiation Therapy for Pancreatic Cancer

    SciTech Connect

    Poppe, Matthew M.; Narra, Venkat; Yue, Ning J.; Zhou Jinghao; Nelson, Carl; Jabbour, Salma K.

    2011-01-01

    We assessed dosimetric differences in pancreatic cancer radiotherapy via helical intensity-modulated radiotherapy (HIMRT), linac-based IMRT, and 3D-conformal radiation therapy (3D-CRT) with regard to successful plan acceptance and dose to critical organs. Dosimetric analysis was performed in 16 pancreatic cases that were planned to 54 Gy; both post-pancreaticoduodenectomy (n = 8) and unresected (n = 8) cases were compared. Without volume modification, plans met constraints 75% of the time with HIMRT and IMRT and 13% with 3D-CRT. There was no statistically significantly improvement with HIMRT over conventional IMRT in reducing liver V35, stomach V45, or bowel V45. HIMRT offers improved planning target volume (PTV) dose homogeneity compared with IMRT, averaging a lower maximum dose and higher volume receiving the prescription dose (D100). HIMRT showed an increased mean dose over IMRT to bowel and liver. Both HIMRT and IMRT offer a statistically significant improvement over 3D-CRT in lowering dose to liver, stomach, and bowel. The results were similar for both unresected and resected patients. In pancreatic cancer, HIMRT offers improved dose homogeneity over conventional IMRT and several significant benefits to 3D-CRT. Factors to consider before incorporating IMRT into pancreatic cancer therapy are respiratory motion, dose inhomogeneity, and mean dose.

  17. Prospective Randomized Phase 2 Trial of Intensity Modulated Radiation Therapy With or Without Oncolytic Adenovirus-Mediated Cytotoxic Gene Therapy in Intermediate-Risk Prostate Cancer

    SciTech Connect

    Freytag, Svend O.; Stricker, Hans; Lu, Mei; Elshaikh, Mohamed; Aref, Ibrahim; Pradhan, Deepak; Levin, Kenneth; Kim, Jae Ho; Peabody, James; Siddiqui, Farzan; Barton, Kenneth; Pegg, Jan; Zhang, Yingshu; Cheng, Jingfang; Oja-Tebbe, Nancy; Bourgeois, Renee; Gupta, Nilesh; Lane, Zhaoli; Rodriguez, Ron; DeWeese, Theodore; and others

    2014-06-01

    Purpose: To assess the safety and efficacy of combining oncolytic adenovirus-mediated cytotoxic gene therapy (OAMCGT) with intensity modulated radiation therapy (IMRT) in intermediate-risk prostate cancer. Methods and Materials: Forty-four men with intermediate-risk prostate cancer were randomly assigned to receive either OAMCGT plus IMRT (arm 1; n=21) or IMRT only (arm 2; n=23). The primary phase 2 endpoint was acute (≤90 days) toxicity. Secondary endpoints included quality of life (QOL), prostate biopsy (12-core) positivity at 2 years, freedom from biochemical/clinical failure (FFF), freedom from metastases, and survival. Results: Men in arm 1 exhibited a greater incidence of low-grade influenza-like symptoms, transaminitis, neutropenia, and thrombocytopenia than men in arm 2. There were no significant differences in gastrointestinal or genitourinary events or QOL between the 2 arms. Two-year prostate biopsies were obtained from 37 men (84%). Thirty-three percent of men in arm 1 were biopsy-positive versus 58% in arm 2, representing a 42% relative reduction in biopsy positivity in the investigational arm (P=.13). There was a 60% relative reduction in biopsy positivity in the investigational arm in men with <50% positive biopsy cores at baseline (P=.07). To date, 1 patient in each arm exhibited biochemical failure (arm 1, 4.8%; arm 2, 4.3%). No patient developed hormone-refractory or metastatic disease, and none has died from prostate cancer. Conclusions: Combining OAMCGT with IMRT does not exacerbate the most common side effects of prostate radiation therapy and suggests a clinically meaningful reduction in positive biopsy results at 2 years in men with intermediate-risk prostate cancer.

  18. Effect of Radiotherapy and Chemotherapy on the Risk of Mucositis During Intensity-Modulated Radiation Therapy for Oropharyngeal Cancer

    SciTech Connect

    Sanguineti, Giuseppe; Sormani, Maria Pia; Marur, Shanthi; Gunn, G. Brandon; Rao, Nikhil; Cianchetti, Marco; Ricchetti, Francesco; McNutt, Todd; Wu Binbin; Forastiere, Arlene

    2012-05-01

    Purpose: To define the roles of radiotherapy and chemotherapy on the risk of Grade 3+ mucositis during intensity-modulated radiation therapy (IMRT) for oropharyngeal cancer. Methods and Materials: 164 consecutive patients treated with IMRT at two institutions in nonoverlapping treatment eras were selected. All patients were treated with a dose painting approach, three dose levels, and comprehensive bilateral neck treatment under the supervision of the same radiation oncologist. Ninety-three patients received concomitant chemotherapy (cCHT) and 14 received induction chemotherapy (iCHT). Individual information of the dose received by the oral mucosa (OM) was extracted as absolute cumulative dose-volume histogram (DVH), corrected for the elapsed treatment days and reported as weekly (w) DVH. Patients were seen weekly during treatment, and peak acute toxicity equal to or greater than confluent mucositis at any point during the course of IMRT was considered the endpoint. Results: Overall, 129 patients (78.7%) reached the endpoint. The regions that best discriminated between patients with/without Grade 3+ mucositis were found at 10.1 Gy/w (V10.1) and 21 cc (D21), along the x-axis and y-axis of the OM-wDVH, respectively. On multivariate analysis, D21 (odds ratio [OR] = 1.016, 95% confidence interval [CI], 1.009-1.023, p < 0.001) and cCHT (OR = 4.118, 95% CI, 1.659-10.217, p = 0.002) were the only independent predictors. However, V10.1 and D21 were highly correlated (rho = 0.954, p < 0.001) and mutually interchangeable. cCHT would correspond to 88.4 cGy/w to at least 21 cc of OM. Conclusions: Radiotherapy and chemotherapy act independently in determining acute mucosal toxicity; cCHT increases the risk of mucosal Grade 3 toxicity Almost-Equal-To 4 times over radiation therapy alone, and it is equivalent to an extra Almost-Equal-To 6.2 Gy to 21 cc of OM over a 7-week course.

  19. Radiation Therapy: Additional Treatment Options

    MedlinePlus

    ... This is refered to as immunotherapy . Intraoperative Radiation Therapy Radiation therapy given during surgery is called intraoperative ... external beam therapy or as brachytherapy . Novel Targeted Therapies Cancer doctors now know much more about how ...

  20. A case study of radiotherapy planning for Intensity Modulation Radiation Therapy for the whole scalp with matching electron treatment

    SciTech Connect

    Sponseller, Patricia; Paravathaneni, Upendra

    2013-07-01

    The purpose of this report is to communicate a technique to match an electron field to the dose distribution of an Intensity-Modulated Radiation Therapy (IMRT) plan. A patient with multiple areas of squamous cell carcinoma over the scalp was treated using 60 Gy in 2.0-Gy fractions to the entire scalp and first echelon nodes with multiple 6-MV photon fields. To deliver an adequate dose to the scalp, a custom 1.0-cm bolus helmet was fashioned using a solid piece of aquaplast. Along with the IMRT scalp treatment, a left zygoma area was treated with electrons matching the anterior border of the IMRT dose distribution. The border was matched by creating a left lateral field with the multileaf collimator shaped to the IMRT dose distribution. The result indicated an adequate dose to the skin match between the IMRT plan and the electron field. Results were confirmed using optically stimulated luminescence placed at the skin match area, so that the dose matched the prescription within 10%.

  1. Dose reconstruction for intensity-modulated radiation therapy using a non-iterative method and portal dose image

    NASA Astrophysics Data System (ADS)

    Yeo, Inhwan Jason; Jung, Jae Won; Chew, Meng; Kim, Jong Oh; Wang, Brian; Di Biase, Steven; Zhu, Yunping; Lee, Dohyung

    2009-09-01

    A straightforward and accurate method was developed to verify the delivery of intensity-modulated radiation therapy (IMRT) and to reconstruct the dose in a patient. The method is based on a computational algorithm that linearly describes the physical relationship between beamlets and dose-scoring voxels in a patient and the dose image from an electronic portal imaging device (EPID). The relationship is expressed in the form of dose response functions (responses) that are quantified using Monte Carlo (MC) particle transport techniques. From the dose information measured by the EPID the received patient dose is reconstructed by inversely solving the algorithm. The unique and novel non-iterative feature of this algorithm sets it apart from many existing dose reconstruction methods in the literature. This study presents the algorithm in detail and validates it experimentally for open and IMRT fields. Responses were first calculated for each beamlet of the selected fields by MC simulation. In-phantom and exit film dosimetry were performed on a flat phantom. Using the calculated responses and the algorithm, the exit film dose was used to inversely reconstruct the in-phantom dose, which was then compared with the measured in-phantom dose. The dose comparison in the phantom for all irradiated fields showed a pass rate of higher than 90% dose points given the criteria of dose difference of 3% and distance to agreement of 3 mm.

  2. [An electronic medical record information system of DICOM-RT module-based in radiation therapy].

    PubMed

    Xia, Deguo; Zhou, Linghong; Lei, Li

    2012-06-01

    Electronic medical records (EMR) is the clinical diagnosis, guiding intervention and digital medical service record of outpatient, hospital patients (or care object) in medical institution. And it is the complete, detailed clinical information resource which has produced and recorded in all previous medical treatments. Radiotherapy electronic medical records contain texts, images and graphics, therefore the information is more complicated. This paper proposes an EMR information system based on DICOM-RT standard, through the use of seven objects of DICOM-RT to achieve the information exchange and sharing between different systems, equipments, convenient radiotherapy treatment data management, improve the efficiency of radiation treatment.

  3. Skin Dose Impact from Vacuum Immobilization Device and Carbon Fiber Couch in Intensity Modulated Radiation Therapy for Prostate Cancer

    SciTech Connect

    Lee, K.-W.; Wu, J.-K.; Jeng, S.-C.; Hsueh Liu Yen-Wan; Cheng, Jason Chia-Hsien

    2009-10-01

    To investigate the unexpected skin dose increase from intensity-modulated radiation therapy (IMRT) on vacuum cushions and carbon-fiber couches and then to modify the dosimetric plan accordingly. Eleven prostate cancer patients undergoing IMRT were treated in prone position with a vacuum cushion. Two under-couch beams scattered the radiation from the vacuum cushion and carbon-fiber couch. The IMRT plans with both devices contoured were compared with the plans not contouring them. The skin doses were measured using thermoluminescent dosimeters (TLDs) placed on the inguinal regions in a single IMRT fraction. Tissue equivalent thickness was transformed for both devices with the relative densities. The TLD-measured skin doses (59.5 {+-} 9.5 cGy and 55.6 {+-} 5.9 cGy at left and right inguinal regions, respectively) were significantly higher than the calculated doses (28.7 {+-} 4.7 cGy; p = 2.2 x 10{sup -5} and 26.2 {+-} 4.3 cGy; p = 1.5 x 10{sup -5}) not contouring the vacuum cushion and carbon-fiber couch. The calculated skin doses with both devices contoured (59.1 {+-} 8.8 cGy and 55.5 {+-} 5.7 cGy) were similar to the TLD-measured doses. In addition, the calculated skin doses using the vacuum cushion and a converted thickness of the simulator couch were no different from the TLD-measured doses. The recalculated doses of rectum and bladder did not change significantly. The dose that covered 95% of target volume was less than the prescribed dose in 4 of 11 patients, and this problem was solved after re-optimization applying the corrected contours. The vacuum cushion and carbon-fiber couch contributed to increased skin doses. The tissue-equivalent-thickness method served as an effective way to correct the dose variations.

  4. Treatment of nasopharyngeal carcinoma using simultaneous modulated accelerated radiation therapy via helical tomotherapy: a phase II study

    PubMed Central

    Du, Lei; Zhang, Xin Xin; Feng, Lin Chun; Chen, Jing; Yang, Jun; Liu, Hai Xia; Xu, Shou Ping; Xie, Chuan Bin

    2016-01-01

    Abstract Background The aim of the study was to evaluate short-term safety and efficacy of simultaneous modulated accelerated radiation therapy (SMART) delivered via helical tomotherapy in patients with nasopharyngeal carcinoma (NPC). Methods Between August 2011 and September 2013, 132 newly diagnosed NPC patients were enrolled for a prospective phase II study. The prescription doses delivered to the gross tumor volume (pGTVnx) and positive lymph nodes (pGTVnd), the high risk planning target volume (PTV1), and the low risk planning target volume (PTV2), were 67.5 Gy (2.25 Gy/F), 60 Gy (2.0 Gy/F), and 54 Gy (1.8 Gy/F), in 30 fractions, respectively. Acute toxicities were evaluated according to the established RTOG/EORTC criteria. This group of patients was compared with the 190 patients in the retrospective P70 study, who were treated between September 2004 and August 2009 with helical tomotherapy, with a dose of 70-74 Gy/33F/6.5W delivered to pGTVnx and pGTVnd. Results The median follow-up was 23.7 (12–38) months. Acute radiation related side-effects were mainly problems graded as 1 or 2. Only a small number of patients suffered from grade 4 leucopenia (4.5%) or thrombocytopenia (2.3%). The local relapse-free survival (LRFS), nodal relapse-free survival (NRFS), local-nodal relapse-free survival (LNRFS), distant metastasis-free survival (DMFS) and overall survival (OS) were 96.7%, 95.5%, 92.2%, 92.7% and 93.2%, at 2 years, respectively, with no significant difference compared with the P70 study. Conclusions Smart delivered via the helical tomotherapy technique appears to be associated with an acceptable acute toxicity profile and favorable short-term outcomes for patients with NPC. Long-term toxicities and patient outcomes are under investigation. PMID:27247555

  5. Dosimetric Comparison of High-Dose-Rate Brachytherapy and Intensity-Modulated Radiation Therapy as a Boost to the Prostate

    SciTech Connect

    Hermesse, Johanne; Biver, Sylvie; Jansen, Nicolas; Lenaerts, Eric; Nickers, Philippe

    2010-01-15

    Purpose: We compared the dose conformity of two radiation modalities: high-dose-rate brachytherapy (HDR BT) and intensity-modulated radiation therapy (IMRT) to deliver a boost to the prostate after external beam radiotherapy (EBRT). Methods and Materials: Ten successive patients with prostate adenocarcinoma treated with a single 10-Gy HDR BT boost after EBRT were investigated. Four theoretical IMRT plans were computed: (a) 32.85 Gy IMRT and (b) 26 Gy IMRT with CTV-PTV expansions, doses corresponding to the equivalent dose in 2-Gy fractions (EQD2) of one 10-Gy fraction calculated with a prostate alpha/beta ratio of respectively 1.5 and 3 Gy; and (c) 32.85 Gy IMRT and (d) 26 Gy IMRT without CTV-PTV expansions. The dose-volume histogram values converted in EQD2 with an alpha/beta ratio of 3 Gy for the organs at risk were compared. Results: The HDR BT plan delivered higher mean doses to the PTV compared with IMRT plans. In all, 33% of the rectal volume received a mean dose of 5.32 +- 0.65 Gy and 20% of bladder volume received 4.61 +- 1.24 Gy with HDR BT. In comparison, doses delivered with IMRT were respectively 13.4 +- 1.49 Gy and 10.81 +- 4 Gy, even if only 26 Gy was prescribed to the PTV with no CTV-PTV expansion (p < 0.0001). The hot spots inside the urethra were greater with HDR BT but acceptable. Conclusions: Use of HDR BT produced a more conformal plan for the boost to the prostate than IMRT even without CTV-PTV expansions.

  6. Cognitive Function Before and After Intensity-Modulated Radiation Therapy in Patients With Nasopharyngeal Carcinoma: A Prospective Study

    SciTech Connect

    Hsiao, Kuan-Yin; Yeh, Shyh-An; Chang, Chiung-Chih

    2010-07-01

    Purpose: To evaluate the effects of radiation therapy (RT) on neurocognitive function in patients with nasopharyngeal carcinoma (NPC). Methods and Materials: Thirty patients with NPC treated with intensity-modulated RT were included. Dose-volume histograms of the temporal lobes were obtained in every patient. Neurocognitive tests were administered individually to each patient 1 day before initiation of RT and at least 12 months after completion of RT. Cognitive functioning status was evaluated as change in scores over time. Results: Among the total of 30 patients, 23 patients (76.7%) had significantly lower post-RT cognitive functioning scores compared with their pre-RT scores (p = 0.033). The cognitive functioning scores had significantly declined in the domains of short-term memory, language abilities, and list-generating fluency (p = 0.020, 0.023, and 0.001, respectively). Compared with patients with a mean dose to the temporal lobes of 36 Gy or less, patients with a mean dose of greater than 36 Gy had a significantly greater reduction in cognitive functioning scores (p = 0.017). Patients in whom V60 of the temporal lobes (i.e., the percentage of the temporal lobe volume that had received >60 Gy) was greater than 10% also had a greater reduction in cognitive functioning scores than those in whom V60 was 10% or less (p = 0.039). Conclusions: The results of our study indicated that RT could have deleterious effects on cognitive function in patients with NPC. Efforts should be made to reduce the radiation dose and irradiated volume of temporal lobes without compromising the coverage of target volume.

  7. Advantages of Whole-liver Intensity Modulated Radiation Therapy in Children With Wilms Tumor and Liver Metastasis

    SciTech Connect

    Kalapurakal, John A.; Pokhrel, Damodar; Gopalakrishnan, Mahesh; Zhang, Yunkai

    2013-03-01

    Purpose: To demonstrate the dosimetric advantages of intensity modulated radiation therapy (IMRT) in children with Wilms tumor (WT) undergoing whole-liver (WL) RT. Methods and Materials: Computed tomography simulation scans of 10 children, either 3 (3D) or 4-dimensional (4D), were used for this study. The WL PTV was determined by the 3D or 4D liver volumes, with a margin of 1 cm. A total of 40 WL RT plans were performed: 10 each for left- and right-sided WT with IMRT and anteroposterior-posteroanterior (AP-PA) techniques. The radiation dose-volume coverage of the WL planning target volume (PTV), remaining kidney, and other organs were analyzed and compared. Results: The 95% dose coverage to WL PTV for left and right WT were as follows: 97% ± 4% (IMRT), 83% ± 8% (AP-PA) (P<.01) and 99% ± 1% (IMRT), 94% ± 5% (AP-PA) (P<.01), respectively. When 3D WL PTV was used for RT planning, the AP-PA technique delivered 95% of dose to only 78% ± 13% and 88% ± 8% of 4D liver volume. For left WT, the right kidney V15 and V10 for IMRT were 29% ± 7% and 55% ± 8%, compared with 61% ± 29% (P<.01) and 78% ± 25% (P<.01) with AP-PA. For right WT, the left kidney V15 and V10 were 0 ± 0 and 2% ± 3% for IMRT, compared with 25% ± 19% (P<.01) and 40% ± 31% (P<.01) for AP-PA. Conclusions: The use of IMRT and 4D treatment planning resulted in the delivery of a higher RT dose to the liver compared with the standard AP-PA technique. Whole-liver IMRT also delivered a significantly lower dose to the remaining kidney.

  8. Prospective Study of Functional Bone Marrow-Sparing Intensity Modulated Radiation Therapy With Concurrent Chemotherapy for Pelvic Malignancies

    SciTech Connect

    Liang Yun; Bydder, Mark; Yashar, Catheryn M.; Rose, Brent S.; Cornell, Mariel; Hoh, Carl K.; Lawson, Joshua D.; Einck, John; Saenz, Cheryl; Fanta, Paul; Mundt, Arno J.; Bydder, Graeme M.; and others

    2013-02-01

    Purpose: To test the hypothesis that intensity modulated radiation therapy (IMRT) can reduce radiation dose to functional bone marrow (BM) in patients with pelvic malignancies (phase IA) and estimate the clinical feasibility and acute toxicity associated with this technique (phase IB). Methods and Materials: We enrolled 31 subjects (19 with gynecologic cancer and 12 with anal cancer) in an institutional review board-approved prospective trial (6 in the pilot study, 10 in phase IA, and 15 in phase IB). The mean age was 52 years; 8 of 31 patients (26%) were men. Twenty-one subjects completed {sup 18}F-fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) simulation and magnetic resonance imaging by use of quantitative IDEAL (IDEAL IQ; GE Healthcare, Waukesha, WI). The PET/CT and IDEAL IQ were registered, and BM subvolumes were segmented above the mean standardized uptake value and below the mean fat fraction within the pelvis and lumbar spine; their intersection was designated as functional BM for IMRT planning. Functional BM-sparing vs total BM-sparing IMRT plans were compared in 12 subjects; 10 were treated with functional BM-sparing pelvic IMRT per protocol. Results: In gynecologic cancer patients, the mean functional BM V{sub 10} (volume receiving {>=}10 Gy) and V{sub 20} (volume receiving {>=}20 Gy) were 85% vs 94% (P<.0001) and 70% vs 82% (P<.0001), respectively, for functional BM-sparing IMRT vs total BM-sparing IMRT. In anal cancer patients, the corresponding values were 75% vs 77% (P=.06) and 62% vs 67% (P=.002), respectively. Of 10 subjects treated with functional BM-sparing pelvic IMRT, 3 (30%) had acute grade 3 hematologic toxicity or greater. Conclusions: IMRT can reduce dose to BM subregions identified by {sup 18}F-fluorodeoxyglucose-PET/CT and IDEAL IQ. The efficacy of BM-sparing IMRT is being tested in a phase II trial.

  9. Comparison of dose accuracy between film and two-dimensional detectors in intensity-modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Onishi, Yuichi; Nakayama, Shinichi; Watanabe, Shinsaku; Kaneshige, Souichirou; Monzen, Hajime; Matsumoto, Kenji; Shintani, Naoya; Kamomae, Takeshi

    2015-07-01

    We constructed seven intensity-modulated radiation therapy (IMRT) treatment plans for prostate cancer (49 irradiation fields which contained seven randomly-sampled patients and seven fields) and evaluated the dose distributions by using a radiochromic film (EBT3 film) and a 2D detector. We superposed the calculated dose distribution of the IMRT treatment plan on EBT3 film and the 2D detector results and then compared those with the γ-analysis pass rate. The relative positions of the beam and the detector were varied; the results of the analysis of the superior-inferior (SI) direction potentially differed, depending on the detector position, under an irradiation beam with the same fluence map. The detector was moved over a range of' 8 mm in the SI direction in 1-mm step increments, measurement were made at each position, and the results were analyzed. The γ-analysis compared the dose distributions from EBT3 film and the radiation treatment planning system (RTPS) for each patient and field; the pass rate with the γ-analysis from 98 to 100% was 2.04%. When we compared the dose distributions of the 2D detector and the RTPS, the pass rate from 98 to 100% was 63.2%. The mean values for the ?-analysis pass rates for EBT3 film and the 2D detector were 94.2 and 97.6%, respectively. Volume averaging of the data indicated a mean pass rate and standard deviation of 98.6 and 0.91%, respectively, and a pass rate of more than 96% for all positions. A 2D detector can, therefore, be used as an alternative apparatus for IMRT dose verification.

  10. Proton Radiotherapy for Pediatric Bladder/Prostate Rhabdomyosarcoma: Clinical Outcomes and Dosimetry Compared to Intensity-Modulated Radiation Therapy

    SciTech Connect

    Cotter, Shane E.; Herrup, David A.; Friedmann, Alison; Macdonald, Shannon M.; Pieretti, Raphael V.; Robinson, Gregoire; Adams, Judith; Tarbell, Nancy J.; Yock, Torunn I.

    2011-12-01

    Purpose: In this study, we report the clinical outcomes of 7 children with bladder/prostate rhabdomyosarcoma (RMS) treated with proton radiation and compare proton treatment plans with matched intensity-modulated radiation therapy (IMRT) plans, with an emphasis on dose savings to reproductive and skeletal structures. Methods and Materials: Follow-up consisted of scheduled clinic appointments at our institution or direct communication with the treating physicians for referred patients. Each proton radiotherapy plan used for treatment was directly compared to an IMRT plan generated for the study. Clinical target volumes and normal tissue volumes were held constant to facilitate dosimetric comparisons. Each plan was optimized for target coverage and normal tissue sparing. Results: Seven male patients were treated with proton radiotherapy for bladder/prostate RMS at the Massachusetts General Hospital between 2002 and 2008. Median age at treatment was 30 months (11-70 months). Median follow-up was 27 months (10-90 months). Four patients underwent a gross total resection prior to radiation, and all patients received concurrent chemotherapy. Radiation doses ranged from 36 cobalt Gray equivalent (CGE) to 50.4 CGE. Five of 7 patients were without evidence of disease and with intact bladders at study completion. Target volume dosimetry was equivalent between the two modalities for all 7 patients. Proton radiotherapy led to a significant decrease in mean organ dose to the bladder (25.1 CGE vs. 33.2 Gy; p = 0.03), testes (0.0 CGE vs. 0.6 Gy; p = 0.016), femoral heads (1.6 CGE vs. 10.6 Gy; p = 0.016), growth plates (21.7 CGE vs. 32.4 Gy; p = 0.016), and pelvic bones (8.8 CGE vs. 13.5 Gy; p = 0.016) compared to IMRT. Conclusions: This study provides evidence of significant dose savings to normal structures with proton radiotherapy compared to IMRT and is well tolerated in this patient population. The long-term impact of these reduced doses can be tested in future studies

  11. A treatment-planning comparison of three beam arrangement strategies for stereotactic body radiation therapy for centrally located lung tumors using volumetric-modulated arc therapy

    PubMed Central

    Ishii, Kentaro; Okada, Wataru; Ogino, Ryo; Kubo, Kazuki; Kishimoto, Shun; Nakahara, Ryuta; Kawamorita, Ryu; Ishii, Yoshie; Tada, Takuhito; Nakajima, Toshifumi

    2016-01-01

    The purpose of this study was to determine appropriate beam arrangement for volumetric-modulated arc therapy (VMAT)-based stereotactic body radiation therapy (SBRT) in the treatment of patients with centrally located lung tumors. Fifteen consecutive patients with centrally located lung tumors treated at our institution were enrolled. For each patient, three VMAT plans were generated using two coplanar partial arcs (CP VMAT), two non-coplanar partial arcs (NCP VMAT), and one coplanar full arc (Full VMAT). All plans were designed to deliver 70 Gy in 10 fractions. Target coverage and sparing of organs at risk (OARs) were compared across techniques. PTV coverage was almost identical for all approaches. The whole lung V10Gy was significantly lower with CP VMAT plans than with NCP VMAT plans, whereas no significant differences in the mean lung dose, V5Gy, V20Gy or V40Gy were observed. Full VMAT increased mean contralateral lung V5Gy by 12.57% and 9.15% when compared with NCP VMAT and CP VMAT, respectively. Although NCP VMAT plans best achieved the dose–volume constraints for mediastinal OARs, the absolute differences in dose were small when compared with CP VMAT. These results suggest that partial-arc VMAT may be preferable to minimize unnecessary exposure to the contralateral lung, and use of NCP VMAT should be considered when the dose–volume constraints are not achieved by CP VMAT. PMID:26951076

  12. Synchronized delivery of DMLC intensity modulated radiation therapy for stationary and moving targets

    SciTech Connect

    Rangaraj, Dharanipathy; Papiez, Lech

    2005-06-15

    When delivering intensity modulated treatments the 'tongue-and-groove' underdosage effect is a concern that should not be ignored. Algorithms aimed at removing the tongue-and-groove underdosage have been investigated in the past for irradiation of stationary targets. This paper is devoted to algorithms that remove tongue and grove effect for stationary and moving targets. To this end this paper develops original mid-time based algorithms for leaf synchronization. These algorithms exhibit a few additional advantageous properties for DMLC IMRT delivery beyond the removal of tongue-and-grove underdosage. In particular, they safeguard the minimization of time of delivery (for mid-time synchronized algorithms). Moreover, they avoid iterative procedures for synchronization of delivery for multiple pairs of leaves.

  13. Advances in radiation therapy dosimetry

    PubMed Central

    Paliwal, Bhudatt; Tewatia, Dinesh

    2009-01-01

    During the last decade, there has been an explosion of new radiation therapy planning and delivery tools. We went through a rapid transition from conventional three-dimensional (3D) conformal radiation therapy to intensity-modulated radiation therapy (IMRT) treatments, and additional new techniques for motion-adaptive radiation therapy are being introduced. These advances push the frontiers in our effort to provide better patient care; and with the addition of IMRT, temporal dimensions are major challenges for the radiotherapy patient dosimetry and delivery verification. Advanced techniques are less tolerant to poor implementation than are standard techniques. Mis-administrations are more difficult to detect and can possibly lead to poor outcomes for some patients. Instead of presenting a manual on quality assurance for radiation therapy, this manuscript provides an overview of dosimetry verification tools and a focused discussion on breath holding, respiratory gating and the applications of four-dimensional computed tomography in motion management. Some of the major challenges in the above areas are discussed. PMID:20098555

  14. Intensity-modulated radiation therapy (IMRT) for nasopharynx cancer: Update of the Memorial Sloan-Kettering experience

    SciTech Connect

    Wolden, Suzanne L. . E-mail: woldens@mskcc.org; Chen, William C.; Pfister, David G.; Kraus, Dennis H.; Berry, Sean L.; Zelefsky, Michael J.

    2006-01-01

    Purpose: We previously demonstrated that intensity-modulated radiation therapy (IMRT) significantly improves radiation dose distribution over three-dimensional planning for nasopharynx cancer and reported positive early clinical results. We now evaluate whether IMRT has resulted in improved outcomes for a larger cohort of patients with longer follow-up. Methods and Materials: Since 1998, all 74 patients with newly diagnosed, nonmetastatic nasopharynx cancer were treated with IMRT using accelerated fractionation to 70 Gy; 59 received a hyperfractionated concomitant boost, and more recently 15 received once-daily treatment with dose painting. With the exception of Stage I disease (n = 5) and patient preference (n = 1), 69 patients received concurrent and adjuvant platinum-based chemotherapy similar to that in the Intergroup 0099 trial. Results: Patient characteristics: median age 45; 32% Asian; 72% male; 65% World Health Organization III; 6% Stage I, 16% Stage II, 30% Stage III, 47% Stage IV. Median follow-up is 35 months. The 3-year actuarial rate of local control is 91%, and regional control is 93%; freedom from distant metastases, progression-free survival, and overall survival at 3 years are 78%, 67%, and 83%, respectively. There was 100% local control for Stage T1/T2 disease, compared to 83% for T3/T4 disease (p = 0.01). Six patients failed at the primary site, with median time to local tumor progression 16 months; 5 were exclusively within the 70 Gy volume, and 1 was both within and outside the target volume. There is a trend for improved local control with IMRT when compared to local control of 79% for 35 patients treated before 1998 with three-dimensional planning and chemotherapy (p 0.11). Six months posttherapy, 21%, 13%, 15%, and 0% of patients with follow-up audiograms (n = 24 patients) had Grade 1, 2, 3, and 4 sensorineural hearing loss, respectively. For patients with >1 year follow-up (n = 59), rates of long-term xerostomia were as follows: 26% none

  15. A Dosimetric Comparison of Tomotherapy and Volumetric Modulated Arc Therapy in the Treatment of High-Risk Prostate Cancer With Pelvic Nodal Radiation Therapy

    SciTech Connect

    Pasquier, David; Cavillon, Fabrice; Lacornerie, Thomas; Touzeau, Claire; Tresch, Emmanuelle; Lartigau, Eric

    2013-02-01

    Purpose: To compare the dosimetric results of volumetric modulated arc therapy (VMAT) and helical tomotherapy (HT) in the treatment of high-risk prostate cancer with pelvic nodal radiation therapy. Methods and Materials: Plans were generated for 10 consecutive patients treated for high-risk prostate cancer with prophylactic whole pelvic radiation therapy (WPRT) using VMAT and HT. After WPRT, a sequential boost was delivered to the prostate. Plan quality was assessed according to the criteria of the International Commission on Radiation Units and Measurements 83 report: the near-minimal (D98%), near-maximal (D2%), and median (D50%) doses; the homogeneity index (HI); and the Dice similarity coefficient (DSC). Beam-on time, integral dose, and several organs at risk (OAR) dosimetric indexes were also compared. Results: For WPRT, HT was able to provide a higher D98% than VMAT (44.3 {+-} 0.3 Gy and 43.9 {+-} 0.5 Gy, respectively; P=.032) and a lower D2% than VMAT (47.3 {+-} 0.3 Gy and 49.1 {+-} 0.7 Gy, respectively; P=.005), leading to a better HI. The DSC was better for WPRT with HT (0.89 {+-} 0.009) than with VMAT (0.80 {+-} 0.02; P=.002). The dosimetric indexes for the prostate boost did not differ significantly. VMAT provided better rectum wall sparing at higher doses (V70, V75, D2%). Conversely, HT provided better bladder wall sparing (V50, V60, V70), except at lower doses (V20). The beam-on times for WPRT and prostate boost were shorter with VMAT than with HT (3.1 {+-} 0.1 vs 7.4 {+-} 0.6 min, respectively; P=.002, and 1.5 {+-} 0.05 vs 3.7 {+-} 0.3 min, respectively; P=.002). The integral dose was slightly lower for VMAT. Conclusion: VMAT and HT provided very similar and highly conformal plans that complied well with OAR dose-volume constraints. Although some dosimetric differences were statistically significant, they remained small. HT provided a more homogeneous dose distribution, whereas VMAT enabled a shorter delivery time.

  16. Dose Volume Histogram (DVH) Analysis in Intensity Modulation Radiation Therapy (IMRT) Treatments for Prostate Cancers

    NASA Astrophysics Data System (ADS)

    Pyakuryal, Anil

    2009-05-01

    Studies have shown that as many as 8 out of 10 men had prostate cancer by age 80.Prostate cancer begins with small changes (prostatic intraepithelial neoplasia(PIN)) in size and shape of prostate gland cells,known as prostate adenocarcinoma.With advent in technology, prostate cancer has been the most widely used application of IMRT with the longest follow-up periods.Prostate cancer fits the ideal target criteria for IMRT of adjacent sensitive dose-limiting tissue (rectal, bladder).A retrospective study was performed on 10 prostate cancer patients treated with radiation to a limited pelvic field with a standard 4 field arrangements at dose 45 Gy, and an IMRT boost field to a total isocenter dose of 75 Gy.Plans were simulated for 4 field and the supplementary IMRT treatments with proposed dose delivery at 1.5 Gy/fraction in BID basis.An automated DVH analysis software, HART (S. Jang et al., 2008,Med Phys 35,p.2812)was used to perform DVH assessments in IMRT plans.A statistical analysis of dose coverage at targets in prostate gland and neighboring critical organs,and the plan indices(homogeneity, conformality etc) evaluations were also performed using HART extracted DVH statistics.Analyzed results showed a better correlation with the proposed outcomes (TCP, NTCP) of the treatments.

  17. Dosimetric effects of endorectal balloons on intensity-modulated radiation therapy plans for prostate cancer

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Sung; Chung, Jin-Beom; Kim, In-Ah; Eom, Keun-Yong

    2013-10-01

    We used an endorectal balloon (ERB) for prostate immobilization during intensity-modulated radiotherapy (IMRT) for prostate cancer treatment. To investigate the dosimetric effects of ERB-filling materials, we changed the ERB Hounsfield unit (HU) from 0 to 1000 HU in 200-HU intervals to simulate the various ERB fillings; 0 HU simulated a water-filled ERB, and 1000 HU simulated the densest material-filled ERB. Dosimetric data (coverage, homogeneity, conformity, maximal dose, and typical volume dose) for the tumor and the organs at risk (OARs) were evaluated in prostate IMRT treatment plans with 6-MV and 15-MV beams. The tumor coverage appeared to differ by approximately 1%, except for the clinical target volume (CTV) V100% and the planning target volume (PTV) V100%. The largest difference for the various ERB fillings was observed in the PTV V100%. In spite of increasing HU, the prostate IMRT plans at both energies had relatively low dosimetric effects on the PTV and the CTV. However, the maximal and the typical volume doses (D25%, D30%, and D50%) to the rectal wall and the bladder increased with increasing HU. For an air-filled ERB, the maximal doses to the rectal wall and the monitor units were lower than the corresponding values for the water-filled and the densest material-filled ERBs. An air-filled ERB spared the rectal wall because of its dosimetric effect. Thus, we conclude that the use of an air-filled ERB provides a dosimetric benefit to the rectal wall without a loss of target coverage and is an effective option for prostate IMRT treatment.

  18. Potential for Improved Intelligence Quotient Using Volumetric Modulated Arc Therapy Compared With Conventional 3-Dimensional Conformal Radiation for Whole-Ventricular Radiation in Children

    SciTech Connect

    Qi, X. Sharon; Stinauer, Michelle; Rogers, Brion; Madden, Jennifer R.; Wilkening, Greta N.; Liu, Arthur K.

    2012-12-01

    Purpose: To compare volumetric modulated arc therapy (VMAT) with 3-dimensional conformal radiation therapy (3D-CRT) in the treatment of localized intracranial germinoma. We modeled the effect of the dosimetric differences on intelligence quotient (IQ). Method and Materials: Ten children with intracranial germinomas were used for planning. The prescription doses were 23.4 Gy to the ventricles followed by 21.6 Gy to the tumor located in the pineal region. For each child, a 3D-CRT and full arc VMAT was generated. Coverage of the target was assessed by computing a conformity index and heterogeneity index. We also generated VMAT plans with explicit temporal lobe sparing and with smaller ventricular margin expansions. Mean dose to the temporal lobe was used to estimate IQ 5 years after completion of radiation, using a patient age of 10 years. Results: Compared with the 3D-CRT plan, VMAT improved conformality (conformity index 1.10 vs 1.85), with slightly higher heterogeneity (heterogeneity index 1.09 vs 1.06). The averaged mean doses for left and right temporal lobes were 31.3 and 31.7 Gy, respectively, for VMAT plans and 37.7 and 37.6 Gy for 3D-CRT plans. This difference in mean temporal lobe dose resulted in an estimated IQ difference of 3.1 points at 5 years after radiation therapy. When the temporal lobes were explicitly included in the VMAT optimization, the mean temporal lobe dose was reduced 5.6-5.7 Gy, resulting in an estimated IQ difference of an additional 3 points. Reducing the ventricular margin from 1.5 cm to 0.5 cm decreased mean temporal lobe dose 11.4-13.1 Gy, corresponding to an estimated increase in IQ of 7 points. Conclusion: For treatment of children with intracranial pure germinomas, VMAT compared with 3D-CRT provides increased conformality and reduces doses to normal tissue. This may result in improvements in IQ in these children.

  19. Four-Dimensional Computed Tomography-Based Treatment Planning for Intensity-Modulated Radiation Therapy and Proton Therapy for Distal Esophageal Cancer

    SciTech Connect

    Zhang Xiaodong; Zhao Kuaile; Guerrero, Thomas M.; Mcguire, Sean E.; Yaremko, Brian; Komaki, Ritsuko; Cox, James D.; Hui Zhouguang; Li Yupeng; Newhauser, Wayne D.; Mohan, Radhe; Liao Zhongxing

    2008-09-01

    Purpose: To compare three-dimensional (3D) and four-dimensional (4D) computed tomography (CT)-based treatment plans for proton therapy or intensity-modulated radiation therapy (IMRT) for esophageal cancer in terms of doses to the lung, heart, and spinal cord and variations in target coverage and normal tissue sparing. Methods and Materials: The IMRT and proton plans for 15 patients with distal esophageal cancer were designed from the 3D average CT scans and then recalculated on 10 4D CT data sets. Dosimetric data were compared for tumor coverage and normal tissue sparing. Results: Compared with IMRT, median lung volumes exposed to 5, 10, and 20 Gy and mean lung dose were reduced by 35.6%, 20.5%, 5.8%, and 5.1 Gy for a two-beam proton plan and by 17.4%, 8.4%, 5%, and 2.9 Gy for a three-beam proton plan. The greater lung sparing in the two-beam proton plan was achieved at the expense of less conformity to the target (conformity index [CI], 1.99) and greater irradiation of the heart (heart-V40, 41.8%) compared with the IMRT plan(CI, 1.55, heart-V40, 35.7%) or the three-beam proton plan (CI, 1.46, heart-V40, 27.7%). Target coverage differed by more than 2% between the 3D and 4D plans for patients with substantial diaphragm motion in the three-beam proton and IMRT plans. The difference in spinal cord maximum dose between 3D and 4D plans could exceed 5 Gy for the proton plans partly owing to variations in stomach gas filling. Conclusions: Proton therapy provided significantly better sparing of lung than did IMRT. Diaphragm motion and stomach gas-filling must be considered in evaluating target coverage and cord doses.

  20. Involved-Site Image-Guided Intensity Modulated Versus 3D Conformal Radiation Therapy in Early Stage Supradiaphragmatic Hodgkin Lymphoma

    SciTech Connect

    Filippi, Andrea Riccardo; Ciammella, Patrizia; Piva, Cristina; Ragona, Riccardo; Botto, Barbara; Gavarotti, Paolo; Merli, Francesco; Vitolo, Umberto; Iotti, Cinzia; Ricardi, Umberto

    2014-06-01

    Purpose: Image-guided intensity modulated radiation therapy (IG-IMRT) allows for margin reduction and highly conformal dose distribution, with consistent advantages in sparing of normal tissues. The purpose of this retrospective study was to compare involved-site IG-IMRT with involved-site 3D conformal RT (3D-CRT) in the treatment of early stage Hodgkin lymphoma (HL) involving the mediastinum, with efficacy and toxicity as primary clinical endpoints. Methods and Materials: We analyzed 90 stage IIA HL patients treated with either involved-site 3D-CRT or IG-IMRT between 2005 and 2012 in 2 different institutions. Inclusion criteria were favorable or unfavorable disease (according to European Organization for Research and Treatment of Cancer criteria), complete response after 3 to 4 cycles of an adriamycin- bleomycin-vinblastine-dacarbazine (ABVD) regimen plus 30 Gy as total radiation dose. Exclusion criteria were chemotherapy other than ABVD, partial response after ABVD, total radiation dose other than 30 Gy. Clinical endpoints were relapse-free survival (RFS) and acute toxicity. Results: Forty-nine patients were treated with 3D-CRT (54.4%) and 41 with IG-IMRT (45.6%). Median follow-up time was 54.2 months for 3D-CRT and 24.1 months for IG-IMRT. No differences in RFS were observed between the 2 groups, with 1 relapse each. Three-year RFS was 98.7% for 3D-CRT and 100% for IG-IMRT. Grade 2 toxicity events, mainly mucositis, were recorded in 32.7% of 3D-CRT patients (16 of 49) and in 9.8% of IG-IMRT patients (4 of 41). IG-IMRT was significantly associated with a lower incidence of grade 2 acute toxicity (P=.043). Conclusions: RFS rates at 3 years were extremely high in both groups, albeit the median follow-up time is different. Acute tolerance profiles were better for IG-IMRT than for 3D-CRT. Our preliminary results support the clinical safety and efficacy of advanced RT planning and delivery techniques in patients affected with early stage HL, achieving complete

  1. Dosimetric evaluation of a moving tumor target in intensity-modulated radiation therapy (IMRT) for lung cancer patients

    NASA Astrophysics Data System (ADS)

    Kim, Sung Kyu; Kang, Min Kyu; Yea, Ji Woon; Oh, Se An

    2013-07-01

    Immobilization plays an important role in intensity-modulated radiation therapy (IMRT). The application of IMRT in lung cancer patients is very difficult due to the movement of the tumor target. Patient setup in radiation treatment demands high accuracy because IMRT employs a treatment size of a 1mm pixel unit. Hence, quality assurance of the dose delivered to patients must be at its highest. The radiation dose was evaluated for breathing rates of 9, 14, and 18 breaths per minute (bpm) for tumor targets moving up and down by 1.0 cm and 1.5 cm. The dose of the moving planned target volume (PTV) was measured by using a thermo-luminescent dosimeter (TLD) and Gafchromic™ EBT film. The measurement points were 1.0 cm away from the top, the bottom and the left and the right sides of the PTV center. The evaluated dose differences ranged from 94.2 to 103.8%, from 94.4 to 105.4%, and from 90.7 to 108.5% for 9, 14 and 18 bpm, respectively, for a tumor movement of 1.0 cm. The mean values of the doses were 101.4, 99.9, and 99.5% for 9, 14 and 18 bpm, respectively, for a tumor movement of 1.0 cm. Meanwhile, the evaluated dose differences ranged from 93.6 to 105.8%, from 95.9 to 111.5%, and from 96.2 to 111.7% for 9, 14 and 18 bpm, respectively, for a tumor movement of 1.5 cm. The mean values of the doses were 102.3, 103.4, and 103.1% for 9, 14 and 18 bpm, respectively, for a tumor movement of 1.5 cm. Therefore, we suggest that IMRT can be used in the treatment of lung cancer patients with vertical target movements within the range of 1.0 to 1.5 cm.

  2. Treatment and prognosis of patients with late rectal bleeding after intensity-modulated radiation therapy for prostate cancer

    PubMed Central

    2012-01-01

    Background Radiation proctitis after intensity-modulated radiation therapy (IMRT) differs from that seen after pelvic irradiation in that this adverse event is a result of high-dose radiation to a very small area in the rectum. We evaluated the results of treatment for hemorrhagic proctitis after IMRT for prostate cancer. Methods Between November 2004 and February 2010, 403 patients with prostate cancer were treated with IMRT at 2 institutions. Among these patients, 64 patients who developed late rectal bleeding were evaluated. Forty patients had received IMRT using a linear accelerator and 24 by tomotherapy. Their median age was 72 years. Each patient was assessed clinically and/or endoscopically. Depending on the severity, steroid suppositories or enemas were administered up to twice daily and Argon plasma coagulation (APC) was performed up to 3 times. Response to treatment was evaluated using the Rectal Bleeding Score (RBS), which is the sum of Frequency Score (graded from 1 to 3 by frequency of bleeding) and Amount Score (graded from 1 to 3 by amount of bleeding). Stoppage of bleeding over 3 months was scored as RBS 1. Results The median follow-up period for treatment of rectal bleeding was 35 months (range, 12–69 months). Grade of bleeding was 1 in 31 patients, 2 in 26, and 3 in 7. Nineteen of 45 patients (42%) observed without treatment showed improvement and bleeding stopped in 17 (38%), although mean RBS did not change significantly. Eighteen of 29 patients (62%) treated with steroid suppositories or enemas showed improvement (mean RBS, from 4.1 ± 1.0 to 3.0 ± 1.8, p = 0.003) and bleeding stopped in 9 (31%). One patient treated with steroid enema 0.5-2 times a day for 12 months developed septic shock and died of multiple organ failure. All 12 patients treated with APC showed improvement (mean RBS, 4.7 ± 1.2 to 2.3 ± 1.4, p < 0.001) and bleeding stopped in 5 (42%). Conclusions After adequate periods of observation

  3. Resource Letter MPRT-1: Medical Physics in Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Ratliff, Steven T.

    2009-09-01

    This resource letter provides a guide to the literature on medical physics in the field of radiation therapy. Journal articles, books, and websites are cited for the following topics: radiological physics, particle accelerators, radiation dose measurements, protocols for radiation dose measurements, radiation shielding and radiation protection, neutron, proton, and heavy-ion therapies, imaging for radiation therapy, brachytherapy, quality assurance, treatment planning, dose calculations, and intensity-modulated and image-guided therapy.

  4. Risk of Fracture After Single Fraction Image-Guided Intensity-Modulated Radiation Therapy to Spinal Metastases

    PubMed Central

    Rose, Peter S.; Laufer, Ilya; Boland, Patrick J.; Hanover, Andrew; Bilsky, Mark H.; Yamada, Josh; Lis, Eric

    2009-01-01

    Purpose Single-fraction image-guided intensity-modulated radiation therapy (IG-IMRT) allows for tumoricidal treatment of traditionally radioresistant cancers while sparing critical adjacent structures. Risk of vertebral fracture after IG-IMRT for spinal metastases has not been defined. Patients and Methods We evaluated 62 consecutive patients undergoing single fraction IG-IMRT at 71 sites for solid organ metastases. A neuroradiologist and three spine surgeons evaluated prospectively obtained magnetic resonance/computed tomography (CT) imaging studies for post-treatment fracture development and tumor recurrence. Results Fracture progression was noted in 27 vertebrae (39%). Multivariate logistic regression analysis showed that CT appearance, lesion location, and percent vertebral body involvement independently predicted fracture progression. Lesions located between T10 and the sacrum were 4.6 times more likely to fracture than were lesions above T10 (95% CI, 1.1 to 19.7). Lytic lesions were 6.8 times more likely to fracture than were sclerotic and mixed lesions (95% CI, 1.4 to 33.3). As percent vertebral body involvement increased, odds of fracture also increased. Patients with fracture progression had significantly higher narcotic use, change in Karnofsky performance score, and a strong trend toward higher pain scores. Local tumor progression occurred in seven patients and contributed to one fracture. Obesity, posterior element involvement, bisphosphonate use, and local kyphosis did not confer increased risk. Conclusion Vertebral fracture is common after single fraction IG-IMRT for metastatic spine lesions. Lytic disease involving more than 40% of the vertebral body and location at or below T10 confer a high risk of fracture, the presence of which yields significantly poorer clinical outcomes. These results may help clinicians identify high-risk patients who would benefit from prophylactic vertebro- or kyphoplasty. PMID:19738130

  5. Hypofractionated Intensity Modulated Radiation Therapy in Combined Modality Treatment for Bladder Preservation in Elderly Patients With Invasive Bladder Cancer

    SciTech Connect

    Turgeon, Guy-Anne; Souhami, Luis; Cury, Fabio L.; Faria, Sergio L.; Duclos, Marie; Sturgeon, Jeremy; Kassouf, Wassim

    2014-02-01

    Purpose/Objective(s): To review our experience with bladder-preserving trimodality treatment (TMT) using hypofractionated intensity modulated radiation therapy (IMRT) for the treatment of elderly patients with muscle-invasive bladder cancer. Methods and Materials: Retrospective study of elderly patients treated with TMT using hypofractionated IMRT (50 Gy in 20 fractions) with concomitant weekly radiosensitizing chemotherapy. Eligibility criteria were as follows: age ≥70 years, a proven diagnosis of muscle-invasive transitional cell bladder carcinoma, stage T2-T3N0M0 disease, and receipt of TMT with curative intent. Response rate was assessed by cystoscopic evaluation and bladder biopsy. Results: 24 patients with a median age of 79 years were eligible. A complete response was confirmed in 83% of the patients. Of the remaining patients, 1 of them underwent salvage cystectomy, and no disease was found in the bladder on histopathologic assessment. After a median follow-up time of 28 months, of the patients with a complete response, 2 patients had muscle-invasive recurrence, 1 experienced locoregional failure, and 3 experienced distant metastasis. The overall and cancer-specific survival rates at 3 years were 61% and 71%, respectively. Of the surviving patients, 75% have a disease-free and functioning bladder. All patients completed hypofractionated IMRT, and 19 patients tolerated all 4 cycles of chemotherapy. Acute grade 3 gastrointestinal or genitourinary toxicities occurred in only 4% of the patients, and acute grade 3 or 4 hematologic toxicities, liver toxicities, or both were experienced by 17% of the cohort. No patient experienced grade 4 gastrointestinal or genitourinary toxicity. Conclusions: Hypofractionated IMRT with concurrent radiosensitizing chemotherapy appears to be an effective and well-tolerated curative treatment strategy in the elderly population and should be considered for patients who are not candidates for cystectomy or who wish to avoid

  6. Development and commissioning of a multileaf collimator model in Monte Carlo dose calculations for intensity-modulated radiation therapy

    SciTech Connect

    Jang Siyoung; Vassiliev, Oleg N.; Liu, H. Helen; Mohan, Radhe; Siebers, Jeffrey V.

    2006-03-15

    A multileaf collimator (MLC) model, 'MATMLC', was developed to simulate MLCs for Monte Carlo (MC) dose calculations of intensity-modulated radiation therapy (IMRT). This model describes MLCs using matrices of regions, each of which can be independently defined for its material and geometry, allowing flexibility in simulating MLCs from various manufacturers. The free parameters relevant to the dose calculations with this MLC model included MLC leaf density, interleaf air gap, and leaf geometry. To commission the MLC model and its free parameters for the Varian Millennium MLC-120 (Varian Oncology Systems, Palo Alto, CA), we used the following leaf patterns: (1) MLC-blocked fields to test the effects of leaf transmission and leakage; (2) picket-fence fields to test the effects of the interleaf air gap and tongue-groove design; and (3) abutting-gap fields to test the effects of rounded leaf ends. Transmission ratios and intensity maps for these leaf patterns were calculated with various sets of modeling parameters to determine their dosimetric effects, sensitivities, and their optimal combinations to give the closest agreement with measured results. Upon commissioning the MLC model, we computed dose distributions for clinical IMRT plans using the MC system and verified the results with those from ion chamber and thermoluminescent dosimeter measurements in water phantoms and anthropomorphic phantoms. This study showed that the MLC transmission ratios were strongly dependent on both leaf density and the interleaf air gap. The effect of interleaf air gap and tongue-groove geometry can be determined most effectively through fence-type MLC patterns. Using the commissioned MLC model, we found that the calculated dose from the MC system agreed with the measured data within clinically acceptable criteria from low- to high-dose regions, showing that the model is acceptable for clinical applications.

  7. A Fully Automated Method for CT-on-Rails-Guided Online Adaptive Planning for Prostate Cancer Intensity Modulated Radiation Therapy

    SciTech Connect

    Li, Xiaoqiang; Quan, Enzhuo M.; Li, Yupeng; Pan, Xiaoning; Zhou, Yin; Wang, Xiaochun; Du, Weiliang; Kudchadker, Rajat J.; Johnson, Jennifer L.; Kuban, Deborah A.; Lee, Andrew K.; Zhang, Xiaodong

    2013-08-01

    Purpose: This study was designed to validate a fully automated adaptive planning (AAP) method which integrates automated recontouring and automated replanning to account for interfractional anatomical changes in prostate cancer patients receiving adaptive intensity modulated radiation therapy (IMRT) based on daily repeated computed tomography (CT)-on-rails images. Methods and Materials: Nine prostate cancer patients treated at our institution were randomly selected. For the AAP method, contours on each repeat CT image were automatically generated by mapping the contours from the simulation CT image using deformable image registration. An in-house automated planning tool incorporated into the Pinnacle treatment planning system was used to generate the original and the adapted IMRT plans. The cumulative dose–volume histograms (DVHs) of the target and critical structures were calculated based on the manual contours for all plans and compared with those of plans generated by the conventional method, that is, shifting the isocenters by aligning the images based on the center of the volume (COV) of prostate (prostate COV-aligned). Results: The target coverage from our AAP method for every patient was acceptable, while 1 of the 9 patients showed target underdosing from prostate COV-aligned plans. The normalized volume receiving at least 70 Gy (V{sub 70}), and the mean dose of the rectum and bladder were reduced by 8.9%, 6.4 Gy and 4.3%, 5.3 Gy, respectively, for the AAP method compared with the values obtained from prostate COV-aligned plans. Conclusions: The AAP method, which is fully automated, is effective for online replanning to compensate for target dose deficits and critical organ overdosing caused by interfractional anatomical changes in prostate cancer.

  8. Four-dimensional intensity-modulated radiation therapy planning for dynamic tracking using a direct aperture deformation (DAD) method

    SciTech Connect

    Gui Minzhi; Feng Yuanming; Yi Byongyong; Dhople, Anil Arvind; Yu, Cedric

    2010-05-15

    Purpose: Planning for the delivery of intensity-modulated radiation therapy (IMRT) to a moving target, referred to as four-dimensional (4D) IMRT planning, is a crucial step for achieving the treatment objectives for sites that move during treatment delivery. The authors proposed a simplistic method that accounts for both rigid and nonrigid respiration-induced target motion based on 4D computed tomography (4DCT) data sets. Methods: A set of MLC apertures and weights was first optimized on a reference phase of a 4DCT data set. At each beam angle, the apertures were morphed from the reference phase to each of the remaining phases according to the relative shape changes in the beam's eye view of the target. Three different planning schemes were evaluated for two lung cases and one pancreas patient: (1) Individually optimizing each breathing phase; (2) optimizing the reference phase and shifting the optimized apertures to other breathing phases based on a rigid-body image registration; and (3) optimizing the reference phase and deforming the optimized apertures to the other phases based on the deformation and translation of target contours. Planning results using scheme 1 serves as the ''gold standard'' for plan quality assessment; scheme 2 is the method previously proposed in the literature; and scheme 3 is the method the authors proposed in this article. The optimization results were compared between the three schemes for all three cases. Results: The proposed scheme 3 is comparable to scheme 1 in plan quality, and provides improved target coverage and conformity with similar normal tissue dose compared with scheme 2. Conclusions: Direct aperture deformation method for 4D IMRT planning improves upon methods that only consider rigid-body motion and achieves a plan quality close to that optimized for each of the phases.

  9. Choosing an Intensity-Modulated Radiation Therapy Technique in the Treatment of Head-and-Neck Cancer

    SciTech Connect

    Lee, Nancy . E-mail: leen2@mskcc.org; Mechalakos, James; Puri, Dev R.; Hunt, Margie

    2007-08-01

    Purpose: With the emerging use of intensity-modulated radiation therapy (IMRT) in the treatment of head-and-neck cancer, selection of technique becomes a critical issue. The purpose of this article is to establish IMRT guidelines for head-and-neck cancer at a given institution. Methods and Materials: Six common head-and-neck cancer cases were chosen to illustrate the points that must be considered when choosing between split-field (SF) IMRT, in which the low anterior neck (LAN) is treated with an anterior field, and the extended whole-field (EWF) IMRT in which the LAN is included with the IMRT fields. For each case, the gross tumor, clinical target, and planning target volumes and the surrounding critical normal tissues were delineated. Subsequently, the SF and EWF IMRT plans were compared using dosimetric parameters from dose-volume histograms. Results: Target coverage and doses delivered to the critical normal structures were similar between the two different techniques. Cancer involving the nasopharynx and oropharynx are best treated with the SF IMRT technique to minimize the glottic larynx dose. The EWF IMRT technique is preferred in situations in which the glottic larynx is considered as a target, i.e., cancer of the larynx, hypopharynx, and unknown head-and-neck primary. When the gross disease extends inferiorly and close to the glottic larynx, EWF IMRT technique is also preferred. Conclusion: Depending on the clinical scenario, different IMRT techniques and guidelines are suggested to determine a preferred IMRT technique. We found that having this treatment guideline when treating these tumors ensures a smoother flow for the busy clinic.

  10. Evaluation of Four Techniques Using Intensity-Modulated Radiation Therapy for Comprehensive Locoregional Irradiation of Breast Cancer

    SciTech Connect

    Jagsi, Reshma; Moran, Jean; Marsh, Robin; Masi, Kathryn; Griffith, Kent A.; Pierce, Lori J.

    2010-12-01

    Purpose: To establish optimal intensity-modulated radiation therapy (IMRT) techniques for treating the left breast and regional nodes, using moderate deep-inspiration breath hold. Methods and Materials: We developed four IMRT plans of differing complexity for each of 10 patients following lumpectomy for left breast cancer. A dose of 60 Gy was prescribed to the boost planning target volume (PTV) and 52.2 Gy to the breast and supraclavicular, infraclavicular, and internal mammary nodes. Two plans used inverse-planned beamlet techniques: a 9-field technique, with nine equispaced axial beams, and a tangential beamlet technique, with three to five ipsilateral beams. The third plan (a segmental technique) used a forward-planned multisegment technique, and the fourth plan (a segmental blocked technique) was identical but included a block to limit heart dose. Dose--volume histograms were generated, and metrics chosen for comparison were analyzed using the paired t test. Results: Mean heart and left anterior descending coronary artery doses were similar with the tangential beamlet and segmental blocked techniques but higher with the segmental and 9-field techniques (mean paired difference of 15.1 Gy between segmental and tangential beamlet techniques, p < 0.001). Substantial volumes of contralateral tissue received dose with the 9-field technique (mean right breast V2, 58.9%; mean right lung V2, 75.3%). Minimum dose to {>=}95% of breast PTV was, on average, 45.9 Gy with tangential beamlet, 45.0 Gy with segmental blocked, 51.4 Gy with segmental, and 50.2 Gy with 9-field techniques. Coverage of the internal mammary region was substantially better with the two beamlet techniques than with the segmental blocked technique. Conclusions: Compared to the 9-field beamlet and segmental techniques, a tangential beamlet IMRT technique reduced exposure to normal tissues and maintained reasonable target coverage.

  11. On the use of computed radiography plates for quality assurance of intensity modulated radiation therapy dose distributions

    SciTech Connect

    Day, R. A.; Sankar, A. P.; Nailon, W. H.; MacLeod, A. S.

    2011-02-15

    Purpose: As traditional film is phased out in most radiotherapy centers, computed radiography (CR) systems are increasingly being purchased as a replacement. CR plates can be used for patient imaging, but may also be used for a variety of quality assurance (QA) purposes and can be calibrated in terms of dose. This study looks at their suitability for verification of intensity modulated radiation therapy (IMRT) dose distributions. Methods: A CR plate was calibrated in terms of the relative dose and the stability of response over 1 year was studied. The effect of exposing the CR plate to ambient light and of using different time delays before scanning was quantified. The CR plate was used to verify the relative dose distributions for ten IMRT patients and the results were compared to those obtained using a two dimensional (2D) diode array. Results: Exposing the CR plate to 10 s of ambient light between irradiation (174 cGy) and scanning erased approximately 80% of the signal. Changes in delay time between irradiation and scanning also affected the measurement results. The signal on the plate was found to decay at a rate of approximately 3.6 cGy/min in the first 10 min after irradiation. The use of a CR plate for IMRT patient-specific QA resulted in a significantly lower distance to agreement (DTA) and gamma pass rate than when using a 2D diode array for the measurement. This was primarily due to the over-response of the CR phosphor to low energy scattered radiation. For the IMRT QA using the CR plate, the average gamma pass rate was 97.3%. For the same IMRT QA using a diode array, the average gamma pass rate was 99.7%. The gamma criteria used were 4% dose difference and 4 mm DTA for head and neck treatments and 3% dose difference and 3 mm DTA for prostate treatments. The gamma index tolerance was 1. The lowest 10% of the dose distribution was excluded from all gamma and DTA analyses. Conclusions: Although the authors showed that CR plates can be used for patient

  12. Radiation transport requirements for clinical applications of neutron capture therapy: The rtt-MC Monte Carlo module

    SciTech Connect

    Wheeler, F.J.; Wessol, D.E.

    1995-12-31

    The rtt-MC dose calculation module of the BNCT-Rtpe treatment planning system has been developed specifically for boron neutron cancer therapy. Due to the complicated nature of combined gamma, fast-, epithermal- and thermal-energy neutron transport in tissue, all approaches to treatment planning to date for this treatment modality rely on Monte Carlo or three-dimensional discrete ordinates methods. Simple, fast and accurate methods for this modality have simply not been developed. In this paper the authors discuss some of the unique attributes of this therapy and the approaches they have used to begin to merge into clinical applications. As this paper is under draft, the modern implementation of boron neutron cancer therapy in the US is being realized. Research of skin and tumor effect for superficial melanoma of the extremities has been initiated at the Massachusetts Institute of Technology and brain cancer therapy (using this planning system) has begun at Brookhaven National Laboratory.

  13. Verification of Planning Target Volume Settings in Volumetric Modulated Arc Therapy for Stereotactic Body Radiation Therapy by Using In-Treatment 4-Dimensional Cone Beam Computed Tomography

    SciTech Connect

    Takahashi, Wataru; Yamashita, Hideomi; Kida, Satoshi; Masutani, Yoshitaka; Sakumi, Akira; Ohtomo, Kuni; Nakagawa, Keiichi; Haga, Akihiro

    2013-07-01

    Purpose: To evaluate setup error and tumor motion during beam delivery by using 4-dimensional cone beam computed tomography (4D CBCT) and to assess the adequacy of the planning target volume (PTV) margin for lung cancer patients undergoing volumetric modulated arc therapy for stereotactic body radiation therapy (VMAT-SBRT). Methods and Materials: Fifteen lung cancer patients treated by single-arc VMAT-SBRT were selected in this analysis. All patients were treated with an abdominal compressor. The gross tumor volumes were contoured on maximum inspiration and maximum expiration CT datasets from 4D CT respiratory sorting and merged into internal target volumes (ITVs). The PTV margin was isotropically taken as 5 mm. Registration was automatically performed using “pre-3D” CBCT. Treatment was performed with a D95 prescription of 50 Gy delivered in 4 fractions. The 4D tumor locations during beam delivery were determined using in-treatment 4D CBCT images acquired in each fraction. Then, the discrepancy between the actual tumor location and the ITV was evaluated in the lateral, vertical, and longitudinal directions. Results: Overall, 55 4D CBCT sets during VMAT-SBRT were successfully obtained. The amplitude of tumor motion was less than 10 mm in all directions. The average displacements between ITV and actual tumor location during treatment were 0.41 ± 0.93 mm, 0.15 ± 0.58 mm, and 0.60 ± 0.99 mm for the craniocaudal, left-right, and anteroposterior directions, respectively. The discrepancy in each phase did not exceed 5 mm in any direction. Conclusions: With in-treatment 4D CBCT, we confirmed the required PTV margins when the registration for moving target was performed using pre-3D CBCT. In-treatment 4D CBCT is a direct method for quantitatively assessing the intrafractional location of a moving target.

  14. Dosimetric comparison study between intensity modulated radiation therapy and three-dimensional conformal proton therapy for pelvic bone marrow sparing in the treatment of cervical cancer.

    PubMed

    Song, William Y; Huh, Soon N; Liang, Yun; White, Greg; Nichols, R Charles; Watkins, W Tyler; Mundt, Arno J; Mell, Loren K

    2010-08-15

    The objective was to compare intensity-modulated radiation therapy (IMRT) with 3D conformal proton therapy (3DCPT) in the treatment of cervical cancer. In particular, each technique's ability to spare pelvic bone marrow (PBM) was of primary interest in this study. A total of six cervical cancer patients (3 postoperative and 3 intact) were planned and analyzed. All plans had uniform 1.0 cm CTV-PTV margin and satisfied the 95% PTV with 100% isodose (prescription dose = 45 Gy) coverage. Dose-volume histograms (DVH) were analyzed for comparison. The overall PTV and PBM volumes were 1035.9 ± 192.2 cc and 1151.4 ± 198.3 cc, respectively. In terms of PTV dose conformity index (DCI) and dose homogeneity index (DHI), 3DCPT was slightly superior to IMRT with 1.00 ± 0.001, 1.01 ± 0.02, and 1.10 ± 0.02, 1.13 ± 0.01, respectively. In addition, 3DCPT demonstrated superiority in reducing lower doses (i.e., V30 or less) to PBM, small bowel and bladder. Particularly in PBM, average V10 and V20 reductions of 10.8% and 7.4% (p = 0.001 and 0.04), respectively, were observed. However, in the higher dose range, IMRT provided better sparing (> V30). For example, in small bowel and PBM, average reductions in V45 of 4.9% and 10.0% (p = 0.048 and 0.008), respectively, were observed. Due to its physical characteristics such as low entrance dose, spread-out Bragg peak and finite particle range of protons, 3DCPT illustrated superior target coverage uniformity and sparing of the lower doses in PBM and other organs. Further studies are, however, needed to fully exploit the benefits of protons for general use in cervical cancer.

  15. Dosimetric characteristics of intensity-modulated radiation therapy and RapidArc® therapy using a 3D N-isopropylacrylamide gel dosimeter

    NASA Astrophysics Data System (ADS)

    Yao, Chun-Hsu; Tsai, Ting-Yu; Hsieh, Bor-Tsung; Tsang, Yuk-Wah; Chiu, Chung-Yu; Chao, His-Ya; Chang, Yuan-Jen

    2016-09-01

    This study aimed to investigate the dosimetric characteristics of intensity-modulated radiation therapy (IMRT) and RapidArc therapy by using 3D N-isopropylacrylamide (NIPAM) polymer gel. Optical computed tomography, specifically OCTOPUSTM-10X fast optical computed tomography scanner, was used as a readout tool. Two cylindrical acrylic phantoms (10 cm in diameter, 10 cm in height, and 3 mm in thickness) were filled with NIPAM gel and used for IMRT and RapidArc irradiation by using the Clinac iX treatment machine. The irradiation energies for IMRT and RapidArc® were set as 6 MV photons, but their irradiation angles and dose rates differed during irradiation. The irradiation angles of IMRT were 120°, 155°, 180°, 215°, and 245°, and the dose rate was fixed at 400 cGy/min. RapidArc® rotated continuously during irradiation, and the dose rate varied from 330 cGy/min to 400 cGy/min. The pass rates were 98.02% and 97.48% for IMRT and RapidArc®, respectively, and the rejected area appeared at the edge of the irradiated region. The isodose lines of IMRT and RapidArc® were consistent with those of TPS in most regions. Scattering and edge enhancement effects are main factors that cause dose inaccuracy in the edge region and reduced pass rates. Considering dose rate dependence, we used variable dose rates during irradiation with RapidArc®. Results showed that the dose distribution of NIPAM gel was consistent with that of TPS. The pass rates were also the same for IMRT and RapidArc® irradiation. This study proposes a preliminary profile of dosimetric characteristics of IMRT and RapidArc® by using a NIPAM gel dosimeter.

  16. Volumetric modulated arc therapy versus step-and-shoot intensity modulated radiation therapy in the treatment of large nerve perineural spread to the skull base: a comparative dosimetric planning study

    SciTech Connect

    Gorayski, Peter; Fitzgerald, Rhys; Barry, Tamara; Burmeister, Elizabeth; Foote, Matthew

    2014-06-15

    Cutaneous squamous cell carcinoma with large nerve perineural (LNPN) infiltration of the base of skull is a radiotherapeutic challenge given the complex target volumes to nearby organs at risk (OAR). A comparative planning study was undertaken to evaluate dosimetric differences between volumetric modulated arc therapy (VMAT) versus intensity modulated radiation therapy (IMRT) in the treatment of LNPN. Five consecutive patients previously treated with IMRT for LNPN were selected. VMAT plans were generated for each case using the same planning target volumes (PTV), dose prescriptions and OAR constraints as IMRT. Comparative parameters used to assess target volume coverage, conformity and homogeneity included V95 of the PTV (volume encompassed by the 95% isodose), conformity index (CI) and homogeneity index (HI). In addition, OAR maximum point doses, V20, V30, non-target tissue (NTT) point max doses, NTT volume above reference dose, monitor units (MU) were compared. IMRT and VMAT plans generated were comparable for CI (P = 0.12) and HI (P = 0.89). VMAT plans achieved better V95 (P = < 0.001) and reduced V20 and V30 by 652 cubic centimetres (cc) (28.5%) and 425.7 cc (29.1%), respectively. VMAT increased MU delivered by 18% without a corresponding increase in NTT dose. Compared with IMRT plans for LNPN, VMAT achieved comparable HI and CI.

  17. Intensity-modulated radiation therapy for pancreatic and prostate cancer using pulsed low-dose rate delivery techniques.

    PubMed

    Li, Jie; Lang, Jinyi; Wang, Pei; Kang, Shengwei; Lin, Mu-Han; Chen, Xiaoming; Chen, Fu; Guo, Ming; Chen, Lili; Ma, Chang-Ming Charlie

    2014-01-01

    Reirradiation of patients who were previously treated with radiotherapy is vastly challenging. Pulsed low-dose rate (PLDR) external beam radiotherapy has the potential to reduce normal tissue toxicities while providing significant tumor control for recurrent cancers. This work investigates treatment planning techniques for intensity-modulated radiation therapy (IMRT)-based PLDR treatment of various sites, including cases with pancreatic and prostate cancer. A total of 20 patients with clinical recurrence were selected for this study, including 10 cases with pancreatic cancer and 10 with prostate cancer. Large variations in the target volume were included to test the ability of IMRT using the existing treatment planning system and optimization algorithm to deliver uniform doses in individual gantry angles/fields for PLDR treatments. Treatment plans were generated with 10 gantry angles using the step-and-shoot IMRT delivery technique, which can be delivered in 3-minute intervals to achieve an effective low dose rate of 6.7cGy/min. Instead of dose constraints on critical structures, ring structures were mainly used in PLDR-IMRT optimization. In this study, the PLDR-IMRT plans were compared with the PLDR-3-dimensional conformal radiation therapy (3DCRT) plans and the PLDR-RapidArc plans. For the 10 cases with pancreatic cancer that were investigated, the mean planning target volume (PTV) dose for each gantry angle in the PLDR-IMRT plans ranged from 17.6 to 22.4cGy. The maximum doses ranged between 22.9 and 34.8cGy. The minimum doses ranged from 8.2 to 17.5cGy. For the 10 cases with prostate cancer that were investigated, the mean PTV doses for individual gantry angles ranged from 18.8 to 22.6cGy. The maximum doses per gantry angle were between 24.0 and 34.7cGy. The minimum doses per gantry angle ranged from 4.4 to 17.4cGy. A significant reduction in the organ at risk (OAR) dose was observed with the PLDR-IMRT plan when compared with that using the PLDR-3DCRT plan. The

  18. Intensity-modulated radiation therapy for pancreatic and prostate cancer using pulsed low–dose rate delivery techniques

    SciTech Connect

    Li, Jie; Lang, Jinyi; Wang, Pei; Kang, Shengwei; Lin, Mu-han; Chen, Xiaoming; Chen, Fu; Guo, Ming; Chen, Lili; Ma, Chang-Ming Charlie

    2014-01-01

    Reirradiation of patients who were previously treated with radiotherapy is vastly challenging. Pulsed low–dose rate (PLDR) external beam radiotherapy has the potential to reduce normal tissue toxicities while providing significant tumor control for recurrent cancers. This work investigates treatment planning techniques for intensity-modulated radiation therapy (IMRT)-based PLDR treatment of various sites, including cases with pancreatic and prostate cancer. A total of 20 patients with clinical recurrence were selected for this study, including 10 cases with pancreatic cancer and 10 with prostate cancer. Large variations in the target volume were included to test the ability of IMRT using the existing treatment planning system and optimization algorithm to deliver uniform doses in individual gantry angles/fields for PLDR treatments. Treatment plans were generated with 10 gantry angles using the step-and-shoot IMRT delivery technique, which can be delivered in 3-minute intervals to achieve an effective low dose rate of 6.7 cGy/min. Instead of dose constraints on critical structures, ring structures were mainly used in PLDR-IMRT optimization. In this study, the PLDR-IMRT plans were compared with the PLDR-3-dimensional conformal radiation therapy (3DCRT) plans and the PLDR-RapidArc plans. For the 10 cases with pancreatic cancer that were investigated, the mean planning target volume (PTV) dose for each gantry angle in the PLDR-IMRT plans ranged from 17.6 to 22.4 cGy. The maximum doses ranged between 22.9 and 34.8 cGy. The minimum doses ranged from 8.2 to 17.5 cGy. For the 10 cases with prostate cancer that were investigated, the mean PTV doses for individual gantry angles ranged from 18.8 to 22.6 cGy. The maximum doses per gantry angle were between 24.0 and 34.7 cGy. The minimum doses per gantry angle ranged from 4.4 to 17.4 cGy. A significant reduction in the organ at risk (OAR) dose was observed with the PLDR-IMRT plan when compared with that using the PLDR-3DCRT

  19. Torticollis following radiation therapy

    SciTech Connect

    Landan, I.; Cullis, P.A.

    1987-01-01

    A patient with adenocarcinoma in the apical portion of the lung producing a Pancoast's syndrome developed torticollis a few months after receiving a course of radiation therapy (5,040 rad) to his upper chest and neck. We describe this case, in which local radiation fibrosis of the neck muscles and perhaps segmental demyelination of the 11th cranial nerve resulted in peripheral nervous system lesion causing torticollis.

  20. The Evaluation and Study of Modern Radiation Dosimetry Methods as Applied to Advanced Radiation Therapy Treatments Using Intensity Modulated Megavoltage Photon Beams

    NASA Astrophysics Data System (ADS)

    Stambaugh, Cassandra K. K.

    The purpose of this work is to evaluate quasi-3D arrays for use with intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) and to determine their clinical relevance. This is achieved using a Delta4 from Scandidos and ArcCheck from Sun Nuclear and the associated software. While certain aspects of these devices and software have been previously evaluated, the main goal of this work is to evaluate the new aspects, such as reconstructing dose on a patient CT set, and extending the capabilities. This includes the capability to reconstruct the dose based on a helical delivery as well as studying the dose to a moving target using measurement-guided motion simulations. It was found that Sun Nuclear's ArcCheck/3DVH system exhibited excellent agreement for dose reconstruction for IMRT/VMAT using a traditional C-arm linear accelerator and stringent 2%/2mm comparison constraints. It also is a powerful tool for measurement-guided dose estimates for moving targets, allowing for many simulations to be performed based on one measurement and the target motion data. For dose reconstruction for a helical delivery, the agreement was not as good for the stringent comparison but was reasonable for the clinically acceptable 3%/3mm comparison. Scandidos' Delta4 shows good agreement with stringent 2%/2mm constraints for its dose reconstruction on the phantom. However, the dose reconstruction on the patient CT set was poor and needs more work. Overall, it was found that quasi-3D arrays are powerful tools for dose reconstruction and treatment plan comparisons. The ability to reconstruct the dose allows for a dose resolution comparable to the treatment plan, which negates the previous issues with inadequate sampling and resolution issues found when just comparing the diodes. The ability to quickly and accurately compare many plans and target motions with minimum setup makes the quasi-3D array an attractive tool for both commissioning and patient specific

  1. [Radiation therapy of pancreatic cancer].

    PubMed

    Huguet, F; Mornex, F; Orthuon, A

    2016-09-01

    Currently, the use of radiation therapy for patients with pancreatic cancer is subject to discussion. In adjuvant setting, the standard treatment is 6 months of chemotherapy with gemcitabine and capecitabine. Chemoradiation (CRT) may improve the survival of patients with incompletely resected tumors (R1). This should be confirmed by a prospective trial. Neoadjuvant CRT is a promising treatment especially for patients with borderline resectable tumors. For patients with locally advanced tumors, there is no a standard. An induction chemotherapy followed by CRT for non-progressive patients reduces the rate of local relapse. Whereas in the first trials of CRT large fields were used, the treated volumes have been reduced to improve tolerance. Tumor movements induced by breathing should be taken in account. Intensity modulated radiation therapy allows a reduction of doses to the organs at risk. Whereas widely used, this technique is not recommended. PMID:27523418

  2. [Radiation therapy of pancreatic cancer].

    PubMed

    Huguet, F; Mornex, F; Orthuon, A

    2016-09-01

    Currently, the use of radiation therapy for patients with pancreatic cancer is subject to discussion. In adjuvant setting, the standard treatment is 6 months of chemotherapy with gemcitabine and capecitabine. Chemoradiation (CRT) may improve the survival of patients with incompletely resected tumors (R1). This should be confirmed by a prospective trial. Neoadjuvant CRT is a promising treatment especially for patients with borderline resectable tumors. For patients with locally advanced tumors, there is no a standard. An induction chemotherapy followed by CRT for non-progressive patients reduces the rate of local relapse. Whereas in the first trials of CRT large fields were used, the treated volumes have been reduced to improve tolerance. Tumor movements induced by breathing should be taken in account. Intensity modulated radiation therapy allows a reduction of doses to the organs at risk. Whereas widely used, this technique is not recommended.

  3. A retrospective planning analysis comparing intensity modulated radiation therapy (IMRT) to volumetric modulated arc therapy (VMAT) using two optimization algorithms for the treatment of early-stage prostate cancer

    SciTech Connect

    Elith, Craig A; Dempsey, Shane E; Warren-Forward, Helen M

    2013-09-15

    The primary aim of this study is to compare intensity modulated radiation therapy (IMRT) to volumetric modulated arc therapy (VMAT) for the radical treatment of prostate cancer using version 10.0 (v10.0) of Varian Medical Systems, RapidArc radiation oncology system. Particular focus was placed on plan quality and the implications on departmental resources. The secondary objective was to compare the results in v10.0 to the preceding version 8.6 (v8.6). Twenty prostate cancer cases were retrospectively planned using v10.0 of Varian's Eclipse and RapidArc software. Three planning techniques were performed: a 5-field IMRT, VMAT using one arc (VMAT-1A), and VMAT with two arcs (VMAT-2A). Plan quality was assessed by examining homogeneity, conformity, the number of monitor units (MUs) utilized, and dose to the organs at risk (OAR). Resource implications were assessed by examining planning and treatment times. The results obtained using v10.0 were also compared to those previously reported by our group for v8.6. In v10.0, each technique was able to produce a dose distribution that achieved the departmental planning guidelines. The IMRT plans were produced faster than VMAT plans and displayed improved homogeneity. The VMAT plans provided better conformity to the target volume, improved dose to the OAR, and required fewer MUs. Treatments using VMAT-1A were significantly faster than both IMRT and VMAT-2A. Comparison between versions 8.6 and 10.0 revealed that in the newer version, VMAT planning was significantly faster and the quality of the VMAT dose distributions produced were of a better quality. VMAT (v10.0) using one or two arcs provides an acceptable alternative to IMRT for the treatment of prostate cancer. VMAT-1A has the greatest impact on reducing treatment time.

  4. The Use of Biologically Related Model (Eclipse) for the Intensity-Modulated Radiation Therapy Planning of Nasopharyngeal Carcinomas

    PubMed Central

    Kan, Monica W. K.; Leung, Lucullus H. T.; Yu, Peter K. N.

    2014-01-01

    Purpose Intensity-modulated radiation therapy (IMRT) is the most common treatment technique for nasopharyngeal carcinoma (NPC). Physical quantities such as dose/dose-volume parameters are used conventionally for IMRT optimization. The use of biological related models has been proposed and can be a new trend. This work was to assess the performance of the biologically based IMRT optimization model installed in a popular commercial treatment planning system (Eclipse) as compared to its dose/dose volume optimization model when employed in the clinical environment for NPC cases. Methods Ten patients of early stage NPC and ten of advanced stage NPC were selected for this study. IMRT plans optimized using biological related approach (BBTP) were compared to their corresponding plans optimized using the dose/dose volume based approach (DVTP). Plan evaluation was performed using both biological indices and physical dose indices such as tumor control probability (TCP), normal tissue complication probability (NTCP), target coverage, conformity, dose homogeneity and doses to organs at risk. The comparison results of the more complex advanced stage cases were reported separately from those of the simpler early stage cases. Results The target coverage and conformity were comparable between the two approaches, with BBTP plans producing more hot spots. For the primary targets, BBTP plans produced comparable TCP for the early stage cases and higher TCP for the advanced stage cases. BBTP plans reduced the volume of parotid glands receiving doses of above 40 Gy compared to DVTP plans. The NTCP of parotid glands produced by BBTP were 8.0±5.8 and 7.9±8.7 for early and advanced stage cases, respectively, while those of DVTP were 21.3±8.3 and 24.4±12.8, respectively. There were no significant differences in the NTCP values between the two approaches for the serial organs. Conclusions Our results showed that the BBTP approach could be a potential alternative approach to the DVTP

  5. Role of Principal Component Analysis in Predicting Toxicity in Prostate Cancer Patients Treated With Hypofractionated Intensity-Modulated Radiation Therapy

    SciTech Connect

    Vesprini, Danny; Sia, Michael; Lockwood, Gina; Moseley, Douglas; Rosewall, Tara; Bayley, Andrew; Bristow, Robert; Chung, Peter; Menard, Cynthia; Milosevic, Michael; Warde, Padraig; Catton, Charles

    2011-11-15

    Purpose: To determine if principal component analysis (PCA) and standard parameters of rectal and bladder wall dose-volume histograms (DVHs) of prostate cancer patients treated with hypofractionated image-guided intensity-modulated radiotherapy (hypo-IMRT) can predict acute and late gastrointestinal (GI) toxicity. Methods and Materials: One hundred twenty-one patients underwent hypo-IMRT at 3 Gy/fraction, 5 days/week to either 60 Gy or 66 Gy, with daily online image guidance. Acute and late GI and genitourinary (GU) toxicity were recorded weekly during treatment and at each follow-up. All Radiation Therapy Oncology Group (RTOG) criteria toxicity scores were dichotomized as <2 and {>=}2. Standard dosimetric parameters and the first five to six principal components (PCs) of bladder and rectal wall DVHs were tested for association with the dichotomized toxicity outcomes, using logistic regression. Results: Median follow-up of all patients was 47 months (60 Gy cohort= 52 months; 66 Gy cohort= 31 months). The incidence rates of {>=}2 acute GI and GU toxicity were 14% and 29%, respectively, with no Grade {>=}3 acute GU toxicity. Late GI and GU toxicity scores {>=}2 were 16% and 15%, respectively. There was a significant difference in late GI toxicity {>=}2 when comparing the 66 Gy to the 60 Gy cohort (38% vs. 8%, respectively, p = 0.0003). The first PC of the rectal DVH was associated with late GI toxicity (odds ratio [OR], 6.91; p < 0.001), though it was not significantly stronger than standard DVH parameters such as Dmax (OR, 6.9; p < 0.001) or percentage of the organ receiving a 50% dose (V50) (OR, 5.95; p = 0 .001). Conclusions: Hypofractionated treatment with 60 Gy in 3 Gy fractions is well tolerated. There is a steep dose response curve between 60 Gy and 66 Gy for RTOG Grade {>=}2 GI effects with the dose constraints employed. Although PCA can predict late GI toxicity for patients treated with hypo-IMRT for prostate cancer, it provides no additional information

  6. Inter fractional dose variation during intensity-modulated radiation therapy for cervical cancer assessed by weekly CT evaluation

    SciTech Connect

    Han, Youngyih; Shin, Eun Hyuk; Huh, Seung Jae . E-mail: sjhuh@smc.samsung.co.kr; Lee, Jung Eun; Park, Won

    2006-06-01

    Purpose: To investigate the inter fractional dose variation of a small-bowel displacement system (SBDS)-assisted intensity-modulated radiation therapy (IMRT) for the treatment of cervical cancer. Methods: Four computed tomography (CT) scans were carried out in 10 patients who received radiotherapy for uterine cervical cancer. The initial CT was taken by use of the SBDS, before the beginning of radiotherapy, and 3 additional CT scans with the SBDS were done in subsequent weeks. IMRT was planned by use of the initial CT, and the subsequent images were fused with the initial CT set. Dose-volume histogram (DVH) changes of the targets (planning target volume [PTV] = clinical target volume [CTV] + 1.5 cm) and of the critical organs were evaluated after obtaining the volumes of each organ on 4 CT sets. Results: No significant differences were found in PTV volumes. Changes on the DVH of the CTVs were not significant, whereas DVH changes of the PTVs at 40% to 100% of the prescription dose level were significant (V{sub 90%}; 2nd week: p = 0.0091, 3rd week: p = 0.0029, 4th week: p = 0.0050). The changes in the small-bowel volume included in the treatment field were significant. These were 119.5 cm{sup 3} (range, 26.9-251.0 cm{sup 3}), 126 cm{sup 3} (range, 38.3-336 cm{sup 3}), 161.9 cm{sup 3} (range, 37.7-294.6 cm{sup 3}), and 149.1 cm{sup 3} (range, 38.6-277.8 cm{sup 3}) at the 1st, 2nd, 3rd, and 4th weeks, respectively, and were significantly correlated with the DVH change in the small bowel, which were significant at the 3rd (V{sub 80%}; p = 0.0230) and 4th (V{sub 80%}; p = 0.0263) weeks. The bladder-volume change correlated to the large volume change (>20%) of the small-bowel volume. Conclusions: Significant DVH differences for the small bowel can result because of interfractional position variations, whereas the DVH differences of the CTV were not significant. Strict bladder-filling control and an accurate margin for the PTV, as well as image-guided position verification

  7. Outcomes and Patterns of Failure for Grade 2 Meningioma Treated With Reduced-Margin Intensity Modulated Radiation Therapy

    SciTech Connect

    Press, Robert H.; Prabhu, Roshan S.; Appin, Christina L.; Brat, Daniel J.; Shu, Hui-Kuo G.; Hadjipanayis, Constantinos; Olson, Jeffrey J.; Oyesiku, Nelson M.; Curran, Walter J.; Crocker, Ian

    2014-04-01

    Purpose: The purpose of this study was to evaluate intracranial control and patterns of local recurrence (LR) for grade 2 meningiomas treated with intensity modulated radiation therapy (IMRT) with limited total margin expansions of ≤1 cm. Methods and Materials: We reviewed records of patients with a neuropathological diagnosis of grade 2 meningioma who underwent IMRT at our institution between 2002 and 2012. Actuarial rates were determined by the Kaplan-Meier method from the end of RT. LR was defined as in-field if ≥90% of the recurrence was within the prescription isodose, out-of-field (marginal) if ≥90% was outside of the prescription isodose, and both if neither criterion was met. Results: Between 2002 and 2012, a total of 54 consecutive patients underwent IMRT for grade 2 meningioma. Eight of these patients had total initial margins >1 cm and were excluded, leaving 46 patients for analysis. The median imaging follow-up period was 26.2 months (range, 7-107 months). The median dose for fractionated IMRT was 59.4 Gy (range, 49.2-61.2 Gy). Median clinical target volume (CTV), planning target volume (PTV), and total margin expansion were 0.5 cm, 0.3 cm, and 0.8 cm, respectively. LR occurred in 8 patients (17%), with 2-year and 3-year actuarial local control (LC) of 92% and 74%, respectively. Six of 8 patients (85%) had a known pattern of failure. Five patients (83%) had in-field LR; no patients had marginal LR; and 1 patient (17%) had both. Conclusions: The use of IMRT to treat grade 2 meningiomas with total initial margins (CTV + PTV) ≤1 cm did not appear to compromise outcomes or increase marginal failures compared with other modern retrospective series. Of the 46 patients who had margins ≤1 cm, none experienced marginal failure only. These results demonstrate efficacy and low risk of marginal failure after IMRT treatment of grade 2 meningiomas with reduced margins, warranting study within a prospective clinical trial.

  8. Dosimetric study for cervix carcinoma treatment using intensity modulated radiation therapy (IMRT) compensation based on 3D intracavitary brachytherapy technique

    PubMed Central

    Yin, Gang; Wang, Pei; Lang, Jinyi; Tian, Yin; Luo, Yangkun; Fan, Zixuan

    2016-01-01

    Purpose Intensity modulated radiation therapy (IMRT) compensation based on 3D high-dose-rate (HDR) intracavitary brachytherapy (ICBT) boost technique (ICBT + IMRT) has been used in our hospital for advanced cervix carcinoma patients. The purpose of this study was to compare the dosimetric results of the four different boost techniques (the conventional 2D HDR intracavitary brachytherapy [CICBT], 3D optimized HDR intracavitary brachytherapy [OICBT], and IMRT-alone with the applicator in situ). Material and methods For 30 patients with locally advanced cervical carcinoma, after the completion of external beam radiotherapy (EBRT) for whole pelvic irradiation 45 Gy/25 fractions, five fractions of ICBT + IMRT boost with 6 Gy/fractions for high risk clinical target volume (HRCTV), and 5 Gy/fractions for intermediate risk clinical target volume (IRCTV) were applied. Computed tomography (CT) and magnetic resonance imaging (MRI) scans were acquired using an in situ CT/MRI-compatible applicator. The gross tumor volume (GTV), the high/intermediate-risk clinical target volume (HRCTV/IRCTV), bladder, rectum, and sigmoid were contoured by CT scans. Results For ICBT + IMRT plan, values of D90, D100 of HRCTV, D90, D100, and V100 of IRCTV significantly increased (p < 0.05) in comparison to OICBT and CICBT. The D2cc values for bladder, rectum, and sigmoid were significantly lower than that of CICBT and IMRT alone. In all patients, the mean rectum V60 Gy values generated from ICBT + IMRT and OICBT techniques were very similar but for bladder and sigmoid, the V60 Gy values generated from ICBT + IMRT were higher than that of OICBT. For the ICBT + IMRT plan, the standard deviations (SD) of D90 and D2cc were found to be lower than other three treatment plans. Conclusions The ICBT + IMRT technique not only provides good target coverage but also maintains low doses (D2cc) to the OAR. ICBT + IMRT is an optional technique to boost parametrial region or tumor of large size and irregular shape

  9. SU-C-BRD-01: A Statistical Modeling Method for Quality Control of Intensity- Modulated Radiation Therapy Planning

    SciTech Connect

    Gao, S; Meyer, R; Shi, L; D'Souza, W; Zhang, H

    2014-06-15

    Purpose: To apply a statistical modeling approach, threshold modeling (TM), for quality control of intensity-modulated radiation therapy (IMRT) treatment plans. Methods: A quantitative measure, which was the weighted sum of violations of dose/dose-volume constraints, was first developed to represent the quality of each IMRT plan. Threshold modeling approach, which is is an extension of extreme value theory in statistics and is an effect way to model extreme values, was then applied to analyze the quality of the plans summarized by our quantitative measures. Our approach modeled the plans generated by planners as a series of independent and identically distributed random variables and described the behaviors of them if the plan quality was controlled below certain threshold. We tested our approach with five locally advanced head and neck cancer patients retrospectively. Two statistics were incorporated for numerical analysis: probability of quality improvement (PQI) of the plans and expected amount of improvement on the quantitative measure (EQI). Results: After clinical planners generated 15 plans for each patient, we applied our approach to obtain the PQI and EQI as if planners would generate additional 15 plans. For two of the patients, the PQI was significantly higher than the other three (0.17 and 0.18 comparing to 0.08, 0.01 and 0.01). The actual percentage of the additional 15 plans that outperformed the best of initial 15 plans was 20% and 27% comparing to 11%, 0% and 0%. EQI for the two potential patients were 34.5 and 32.9 and the rest of three patients were 9.9, 1.4 and 6.6. The actual improvements obtained were 28.3 and 20.5 comparing to 6.2, 0 and 0. Conclusion: TM is capable of reliably identifying the potential quality improvement of IMRT plans. It provides clinicians an effective tool to assess the trade-off between extra planning effort and achievable plan quality. This work was supported in part by NIH/NCI grant CA130814.

  10. Survival following reirradiation using intensity-modulated radiation therapy with temozolomide in selected patients with recurrent high grade gliomas

    PubMed Central

    Koc, Mehmet; Kanyilmaz, Gul

    2015-01-01

    Background High grade gliomas often recur after initial treatment. Despite so many treatment options, there is no standard treatment for recurrent gliomas. The aim of this study is to offer survival following reirradiation (re-RT) using intensity-modulated radiation therapy (IMRT) with temozolomide in selected patients with recurrent high grade gliomas. Methods We examined the medical records of 21 adult patients with recurrent high grade gliomas who were reirradiated with IMRT at the time of tumor recurrence or progression. Tumor recurrence was shown by gadolinium-enhanced magnetic resonance imaging (MRI) and diagnosis was established by pathology review. Statistical analyses were performed with SPSS version 18.0.1 using Cox regression analyses, log-rank test and Kaplan-Meier method. Results Eighteen patients presented by localized recurrence, three patients with diffuse recurrence. Median radiotherapy (RT) dose was 54 Gy. About 81% patients received temozolomide with re-RT. The time interval between two courses RT was median 39.3 months (range, 9.6-140.8 months). The response was checked by MRI. About 24% patients achieved complete response (CR) and 29% patient partial response (PR). Stable disease (SD) was observed in 47% patients. Median follow-up time from diagnosis was 41.4 months (range, 16.6-145.4 months) and 12.3 months (range, 2-27.6 months) from re-RT. Median time to recurrence was 39.3 months (range, 9.6-140.8 months). Median survival after re-RT was 18 months for anaplastic astrocytoma (AA), 14.1 months for glioblastoma multiforme (GBM) (range, 11-17.2 months) (P=0.1) and 7.1 months for patients with Karnofsky performance status (KPS) <70 before re-RT and 17.4 months for KPS >70 (P=0.02). Conclusions re-RT is one of the treatment options for recurrent high grade gliomas and IMRT can be an effective treatment modality for recurrent high grade brain tumors with only mild side effects. Survival is better in patients with good performance status and in

  11. The Effect of Flattening Filter Free on Three-dimensional Conformal Radiation Therapy (3D-CRT), Intensity-Modulated Radiation Therapy (IMRT), and Volumetric Modulated Arc Therapy (VMAT) Plans for Metastatic Brain Tumors from Non-small Cell Lung Cancer.

    PubMed

    Shi, Li-Wan; Lai, You-Qun; Lin, Qin; Ha, Hui-Ming; Fu, Li-Rong

    2015-07-01

    Flattening filter free (FFF) may affect outcome measures of radiotherapy. The objective of this study is to compare the dosimetric parameters in three types of radiotherapy plans, three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT), with or without the flattening filter (FF), developed for the treatment of metastatic brain tumors from non-small cell lung cancer (NSCLC). From July 2013 to October 2013, 3D-CRT, IMRT, and VMAT treatment plans were designed using 6 MV and 10 MV, with and without FF, for 10 patients with brain metastasis from NSCLC. The evaluation of the treatment plans included homogeneity index (HI), conformity index (CI), monitor units (MU), mean dose (Dmean), treatment time, and the influence of FFF on volumes. There was no difference in CI or HI between FFF and FF models with 3D-CRT, IMRT, and VMAT plans. At 6 MV, a lower Dmean was seen in the FFF model of 3D-CRT and in the VMAT plan at 10 MV. In the IMRT 6 MV, IMRT 10 MV, and VMAT 10 MV plans, higher MUs were seen in the FFF models. FFF treatments are similar in quality to FF plans, generally lead to more monitor units, and are associated with shorter treatment times. FFF plans ranked by the order of superiority in terms of a time advantage are VMAT, 3D-CRT, and IMRT.

  12. The Effect of Flattening Filter Free on Three-dimensional Conformal Radiation Therapy (3D-CRT), Intensity-Modulated Radiation Therapy (IMRT), and Volumetric Modulated Arc Therapy (VMAT) Plans for Metastatic Brain Tumors from Non-small Cell Lung Cancer.

    PubMed

    Shi, Li-Wan; Lai, You-Qun; Lin, Qin; Ha, Hui-Ming; Fu, Li-Rong

    2015-07-01

    Flattening filter free (FFF) may affect outcome measures of radiotherapy. The objective of this study is to compare the dosimetric parameters in three types of radiotherapy plans, three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT), with or without the flattening filter (FF), developed for the treatment of metastatic brain tumors from non-small cell lung cancer (NSCLC). From July 2013 to October 2013, 3D-CRT, IMRT, and VMAT treatment plans were designed using 6 MV and 10 MV, with and without FF, for 10 patients with brain metastasis from NSCLC. The evaluation of the treatment plans included homogeneity index (HI), conformity index (CI), monitor units (MU), mean dose (Dmean), treatment time, and the influence of FFF on volumes. There was no difference in CI or HI between FFF and FF models with 3D-CRT, IMRT, and VMAT plans. At 6 MV, a lower Dmean was seen in the FFF model of 3D-CRT and in the VMAT plan at 10 MV. In the IMRT 6 MV, IMRT 10 MV, and VMAT 10 MV plans, higher MUs were seen in the FFF models. FFF treatments are similar in quality to FF plans, generally lead to more monitor units, and are associated with shorter treatment times. FFF plans ranked by the order of superiority in terms of a time advantage are VMAT, 3D-CRT, and IMRT. PMID:26011493

  13. Using decision analysis to determine the cost-effectiveness of intensity-modulated radiation therapy in the treatment of intermediate risk prostate cancer

    SciTech Connect

    Konski, Andre . E-mail: andre.konski@fccc.edu; Watkins-Bruner, Deborah; Feigenberg, Steven; Hanlon, Alexandra; Kulkarni, Sachin M.S.; Beck, J. Robert; Horwitz, Eric M.; Pollack, Alan

    2006-10-01

    Background: The specific aim of this study is to evaluate the cost-effectiveness of intensity-modulated radiation therapy (IMRT) compared with three-dimensional conformal radiation therapy (3D-CRT) in the treatment of a 70-year-old with intermediate-risk prostate cancer. Methods: A Markov model was designed with the following states; posttreatment, hormone therapy, chemotherapy, and death. Transition probabilities from one state to another were calculated from rates derived from the literature for IMRT and 3D-CRT. Utility values for each health state were obtained from preliminary studies of preferences conducted at Fox Chase Cancer Center. The analysis took a payer's perspective. Expected mean costs, cost-effectiveness scatterplots, and cost acceptability curves were calculated with commercially available software. Results: The expected mean cost of patients undergoing IMRT was $47,931 with a survival of 6.27 quality-adjusted life years (QALYs). The expected mean cost of patients having 3D-CRT was $21,865 with a survival of 5.62 QALYs. The incremental cost-effectiveness comparing IMRT with CRT was $40,101/QALYs. Cost-effectiveness acceptability curve analysis revealed a 55.1% probability of IMRT being cost-effective at a $50,000/QALY willingness to pay. Conclusion: Intensity-modulated radiation therapy was found to be cost-effective, however, at the upper limits of acceptability. The results, however, are dependent on the assumptions of improved biochemical disease-free survival with fewer patients undergoing subsequent salvage therapy and improved quality of life after the treatment. In the absence of prospective randomized trials, decision analysis can help inform physicians and health policy experts on the cost-effectiveness of emerging technologies.

  14. Temporal characterization and in vitro comparison of cell survival following the delivery of 3D-conformal, intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT)

    NASA Astrophysics Data System (ADS)

    McGarry, Conor K.; Butterworth, Karl T.; Trainor, Colman; O'Sullivan, Joe M.; Prise, Kevin M.; Hounsell, Alan R.

    2011-04-01

    A phantom was designed and implemented for the delivery of treatment plans to cells in vitro. Single beam, 3D-conformal radiotherapy (3D-CRT) plans, inverse planned five-field intensity-modulated radiation therapy (IMRT), nine-field IMRT, single-arc volumetric modulated arc therapy (VMAT) and dual-arc VMAT plans were created on a CT scan of the phantom to deliver 3 Gy to the cell layer and verified using a Farmer chamber, 2D ionization chamber array and gafchromic film. Each plan was delivered to a 2D ionization chamber array to assess the temporal characteristics of the plan including delivery time and 'cell's eye view' for the central ionization chamber. The effective fraction time, defined as the percentage of the fraction time where any dose is delivered to each point examined, was also assessed across 120 ionization chambers. Each plan was delivered to human prostate cancer DU-145 cells and normal primary AGO-1522b fibroblast cells. Uniform beams were delivered to each cell line with the delivery time varying from 0.5 to 20.54 min. Effective fraction time was found to increase with a decreasing number of beams or arcs. For a uniform beam delivery, AGO-1552b cells exhibited a statistically significant trend towards increased survival with increased delivery time. This trend was not repeated when the different modulated clinical delivery methods were used. Less sensitive DU-145 cells did not exhibit a significant trend towards increased survival with increased delivery time for either the uniform or clinical deliveries. These results confirm that dose rate effects are most prevalent in more radiosensitive cells. Cell survival data generated from uniform beam deliveries over a range of dose rates and delivery times may not always be accurate in predicting response to more complex delivery techniques, such as IMRT and VMAT.

  15. NRG Oncology Radiation Therapy Oncology Group 0822: A Phase 2 Study of Preoperative Chemoradiation Therapy Using Intensity Modulated Radiation Therapy in Combination With Capecitabine and Oxaliplatin for Patients With Locally Advanced Rectal Cancer

    SciTech Connect

    Hong, Theodore S.; Moughan, Jennifer; Garofalo, Michael C.; Bendell, Johanna; Berger, Adam C.; Oldenburg, Nicklas B.E.; Anne, Pramila Rani; Perera, Francisco; Jabbour, Salma K.; Nowlan, Adam; DeNittis, Albert; Crane, Christopher

    2015-09-01

    Purpose: To evaluate the rate of gastrointestinal (GI) toxicity of neoadjuvant chemoradiation with capecitabine, oxaliplatin, and intensity modulated radiation therapy (IMRT) in cT3-4 rectal cancer. Methods and Materials: Patients with localized, nonmetastatic T3 or T4 rectal cancer <12 cm from the anal verge were enrolled in a prospective, multi-institutional, single-arm study of preoperative chemoradiation. Patients received 45 Gy with IMRT in 25 fractions, followed by a 3-dimensional conformal boost of 5.4 Gy in 3 fractions with concurrent capecitabine/oxaliplatin (CAPOX). Surgery was performed 4 to 8 weeks after the completion of therapy. Patients were recommended to receive FOLFOX chemotherapy after surgery. The primary endpoint of the study was acute grade 2 to 5 GI toxicity. Seventy-one patients provided 80% probability to detect at least a 12% reduction in the specified GI toxicity with the treatment of CAPOX and IMRT, at a significance level of .10 (1-sided). Results: Seventy-nine patients were accrued, of whom 68 were evaluable. Sixty-one patients (89.7%) had cT3 disease, and 37 (54.4%) had cN (+) disease. Postoperative chemotherapy was given to 42 of 68 patients. Fifty-eight patients had target contours drawn per protocol, 5 patients with acceptable variation, and 5 patients with unacceptable variations. Thirty-five patients (51.5%) experienced grade ≥2 GI toxicity, 12 patients (17.6%) experienced grade 3 or 4 diarrhea, and pCR was achieved in 10 patients (14.7%). With a median follow-up time of 3.98 years, the 4-year rate of locoregional failure was 7.4% (95% confidence interval [CI]: 1.0%-13.7%). The 4-year rates of OS and DFS were 82.9% (95% CI: 70.1%-90.6%) and 60.6% (95% CI: 47.5%-71.4%), respectively. Conclusion: The use of IMRT in neoadjuvant chemoradiation for rectal cancer did not reduce the rate of GI toxicity.

  16. Radiation Therapy for Testicular Cancer

    MedlinePlus

    ... therapy for testicular cancer Radiation therapy uses a beam of high-energy rays (such as gamma rays ... machine outside the body is known as external beam radiation . The treatment is much like getting an ...

  17. Radiation Therapy for Skin Cancer

    MedlinePlus

    ... Laser surgery Cancer cells are killed by laser beams.  Electrodessication The cancer is dried with an electric ... a chemical reaction that kills nearby cells. EXTERNAL BEAM RADIATION THERAPY External beam radiation therapy may be ...

  18. Phase II trial of hypofractionated intensity-modulated radiation therapy combined with temozolomide and bevacizumab for patients with newly diagnosed glioblastoma.

    PubMed

    Ney, Douglas E; Carlson, Julie A; Damek, Denise M; Gaspar, Laurie E; Kavanagh, Brian D; Kleinschmidt-DeMasters, B K; Waziri, Allen E; Lillehei, Kevin O; Reddy, Krishna; Chen, Changhu

    2015-03-01

    Bevacizumab blocks the effects of VEGF and may allow for more aggressive radiotherapy schedules. We evaluated the efficacy and toxicity of hypofractionated intensity-modulated radiation therapy with concurrent and adjuvant temozolomide and bevacizumab in patients with newly diagnosed glioblastoma. Patients with newly diagnosed glioblastoma were treated with hypofractionated intensity modulated radiation therapy to the surgical cavity and residual tumor with a 1 cm margin (PTV1) to 60 Gy and to the T2 abnormality with a 1 cm margin (PTV2) to 30 Gy in 10 daily fractions over 2 weeks. Concurrent temozolomide (75 mg/m(2) daily) and bevacizumab (10 mg/kg) was administered followed by adjuvant temozolomide (200 mg/m(2)) on a standard 5/28 day cycle and bevacizumab (10 mg/kg) every 2 weeks for 6 months. Thirty newly diagnosed patients were treated on study. Median PTV1 volume was 131.1 cm(3) and the median PTV2 volume was 342.6 cm(3). Six-month progression-free survival (PFS) was 90 %, with median follow-up of 15.9 months. The median PFS was 14.3 months, with a median overall survival (OS) of 16.3 months. Grade 4 hematologic toxicity included neutropenia (10 %) and thrombocytopenia (17 %). Grades 3/4 non-hematologic toxicity included fatigue (13 %), wound dehiscence (7 %) and stroke, pulmonary embolism and nausea each in 1 patient. Presumed radiation necrosis with clinical decline was seen in 50 % of patients, two with autopsy documentation. The study was closed early to accrual due to this finding. This study demonstrated 90 % 6-month PFS and OS comparable to historic data in patients receiving standard treatment. Bevacizumab did not prevent radiation necrosis associated with this hypofractionated radiation regimen and large PTV volumes may have contributed to high rates of presumed radiation necrosis. PMID:25524817

  19. Radiation Therapy for Lung Cancer

    MedlinePlus

    ... whether surgery will be helpful for you EXTERNAL BEAM RADIATION THER APY External beam radiation therapy is the safe delivery of high- ... your cancer. A linear accelerator focuses the radiation beam to a precise location in your body for ...

  20. Under conditions of large geometric miss, tumor control probability can be higher for static gantry intensity-modulated radiation therapy compared to volume-modulated arc therapy for prostate cancer.

    PubMed

    Balderson, Michael; Brown, Derek; Johnson, Patricia; Kirkby, Charles

    2016-01-01

    The purpose of this work was to compare static gantry intensity-modulated radiation therapy (IMRT) with volume-modulated arc therapy (VMAT) in terms of tumor control probability (TCP) under scenarios involving large geometric misses, i.e., those beyond what are accounted for when margin expansion is determined. Using a planning approach typical for these treatments, a linear-quadratic-based model for TCP was used to compare mean TCP values for a population of patients who experiences a geometric miss (i.e., systematic and random shifts of the clinical target volume within the planning target dose distribution). A Monte Carlo approach was used to account for the different biological sensitivities of a population of patients. Interestingly, for errors consisting of coplanar systematic target volume offsets and three-dimensional random offsets, static gantry IMRT appears to offer an advantage over VMAT in that larger shift errors are tolerated for the same mean TCP. For example, under the conditions simulated, erroneous systematic shifts of 15mm directly between or directly into static gantry IMRT fields result in mean TCP values between 96% and 98%, whereas the same errors on VMAT plans result in mean TCP values between 45% and 74%. Random geometric shifts of the target volume were characterized using normal distributions in each Cartesian dimension. When the standard deviations were doubled from those values assumed in the derivation of the treatment margins, our model showed a 7% drop in mean TCP for the static gantry IMRT plans but a 20% drop in TCP for the VMAT plans. Although adding a margin for error to a clinical target volume is perhaps the best approach to account for expected geometric misses, this work suggests that static gantry IMRT may offer a treatment that is more tolerant to geometric miss errors than VMAT. PMID:27067229

  1. Microbeam radiation therapy

    NASA Astrophysics Data System (ADS)

    Laissue, Jean A.; Lyubimova, Nadia; Wagner, Hans-Peter; Archer, David W.; Slatkin, Daniel N.; Di Michiel, Marco; Nemoz, Christian; Renier, Michel; Brauer, Elke; Spanne, Per O.; Gebbers, Jan-Olef; Dixon, Keith; Blattmann, Hans

    1999-10-01

    The central nervous system of vertebrates, even when immature, displays extraordinary resistance to damage by microscopically narrow, multiple, parallel, planar beams of x rays. Imminently lethal gliosarcomas in the brains of mature rats can be inhibited and ablated by such microbeams with little or no harm to mature brain tissues and neurological function. Potentially palliative, conventional wide-beam radiotherapy of malignant brain tumors in human infants under three years of age is so fraught with the danger of disrupting the functional maturation of immature brain tissues around the targeted tumor that it is implemented infrequently. Other kinds of therapy for such tumors are often inadequate. We suggest that microbeam radiation therapy (MRT) might help to alleviate the situation. Wiggler-generated synchrotron x-rays were first used for experimental microplanar beam (microbeam) radiation therapy (MRT) at Brookhaven National Laboratory's National Synchrotron Light Source in the early 1990s. We now describe the progress achieved in MRT research to date using immature and adult rats irradiated at the European Synchrotron Radiation Facility in Grenoble, France, and investigated thereafter at the Institute of Pathology of the University of Bern.

  2. Dosimetric influences of rotational setup errors on head and neck carcinoma intensity-modulated radiation therapy treatments

    SciTech Connect

    Fu, Weihua; Yang, Yong; Yue, Ning J.; Heron, Dwight E.; Saiful Huq, M.

    2013-07-01

    The purpose of this work is to investigate the dosimetric influence of the residual rotational setup errors on head and neck carcinoma (HNC) intensity-modulated radiation therapy (IMRT) with routine 3 translational setup corrections and the adequacy of this routine correction. A total of 66 kV cone beam computed tomography (CBCT) image sets were acquired on the first day of treatment and weekly thereafter for 10 patients with HNC and were registered with the corresponding planning CT images, using 2 3-dimensional (3D) rigid registration methods. Method 1 determines the translational setup errors only, and method 2 determines 6-degree (6D) setup errors, i.e., both rotational and translational setup errors. The 6D setup errors determined by method 2 were simulated in the treatment planning system and were then corrected using the corresponding translational data determined by method 1. For each patient, dose distributions for 6 to 7 fractions with various setup uncertainties were generated, and a plan sum was created to determine the total dose distribution through an entire course and was compared with the original treatment plan. The average rotational setup errors were 0.7°± 1.0°, 0.1°±1.9°, and 0.3°±0.7° around left-right (LR), anterior-posterior (AP), and superior-inferior (SI) axes, respectively. With translational corrections determined by method 1 alone, the dose deviation could be large from fraction to fraction. For a certain fraction, the decrease in prescription dose coverage (V{sub p}) and the dose that covers 95% of target volume (D{sub 95}) could be up to 15.8% and 13.2% for planning target volume (PTV), and the decrease in V{sub p} and the dose that covers 98% of target volume (D{sub 98}) could be up to 9.8% and 5.5% for the clinical target volume (CTV). However, for the entire treatment course, for PTV, the plan sum showed that the average V{sub p} was decreased by 4.2% and D{sub 95} was decreased by 1.2 Gy for the first phase of IMRT with a

  3. Paraspinal volumetric modulated arc therapy

    PubMed Central

    Bedford, J L; Convery, H M; Hansen, V N; Saran, F H

    2012-01-01

    Objectives : The processes involved in the treatment of paraspinal tumours by volumetric modulated arc therapy (VMAT) are described here by means of an illustrative case. Methods : Az single anticlockwise arc from gantry angle 179° to 181° was constructed using SmartArc (Philips Radiation Oncology Systems, Fitchburg, WI) with control points spaced at 2°. The dose prescription was 60 Gy in 30 fractions to cover the planning target volume (PTV) as uniformly as possible while sparing the 0.3-cm planning risk volume (PRV) around the spinal cord. The plan was verified before treatment using a diode array phantom and radiochromic film. Treatment delivery was on a Synergy linear accelerator with a beam modulator head (Elekta Ltd, Crawley, UK). Results Homogeneous dose coverage of the PTV was achieved with a D2% of 62.0 Gy and D98% of 55.6 Gy. Maximum spinal cord dose was 49.9 Gy to 0.1 cm3 and maximum dose to the spinal cord PRV was 55.4 Gy to 0.1 cm3. At pre-treatment verification, the percentage of the high-dose region receiving a dose within 3% and 3 mm of the planned dose was 98.8% with the diode array and 93.4% with film. Delivery time was 2 min 15 s and the course of treatment was successfully completed. Conclusions VMAT was successfully planned, verified and delivered for this challenging tumour site. VMAT provides a very suitable method of treating complex paraspinal tumours, offering a high-quality conformal dose distribution with a short delivery time. PMID:22215885

  4. Intensity-Modulated Radiation Therapy for the Treatment of Squamous Cell Anal Cancer With Para-aortic Nodal Involvement

    SciTech Connect

    Hodges, Joseph C.; Das, Prajnan; Eng, Cathy; Reish, Andrew G.; Beddar, A. Sam; Delclos, Marc E.; Krishnan, Sunil; Crane, Christopher H.

    2009-11-01

    Purpose: To determine the rates of toxicity, locoregional control, distant control, and survival in anal cancer patients with para-aortic nodal involvement, treated with intensity-modulated radiotherapy (IMRT) and concurrent chemotherapy at a single institution. Methods and Materials: Between 2001 and 2007, 6 patients with squamous cell anal cancer and para-aortic nodal involvement were treated with IMRT and concurrent infusional 5-fluorouracil and cisplatin. The primary tumor was treated with a median dose of 57.5 Gy (range, 54-60 Gy), involved para-aortic, pelvic, and inguinal lymph nodes were treated with a median dose of 55 Gy (range, 50.5-55 Gy), and noninvolved nodal regions were treated with a median dose of 45 Gy (range, 43.5-45 Gy). Results: After a median follow-up of 25 months, none of the patients had a recurrence at the primary tumor, pelvic/inguinal nodes, or para-aortic nodes, whereas 2 patients developed distant metastases to the liver. Four of the 6 patients are alive. The 3-year actuarial locoregional control, distant control, and overall survival rates were 100%, 56%, and 63%, respectively. Four of the 6 patients developed Grade 3 acute gastrointestinal toxicity during chemoradiation. Conclusions: Intensity-modulated radiotherapy and concurrent chemotherapy could potentially serve as definitive therapy in anal cancer patients with para-aortic nodal involvement. Adjuvant chemotherapy may be indicated in these patients, as demonstrated by the distant failure rates. These patients need to be followed carefully because of the potential for treatment-related toxicities.

  5. Image-guided, intensity-modulated radiation therapy (IG-IMRT) for skull base chordoma and chondrosarcoma: preliminary outcomes

    PubMed Central

    Sahgal, Arjun; Chan, Michael W.; Atenafu, Eshetu G.; Masson-Cote, Laurence; Bahl, Gaurav; Yu, Eugene; Millar, Barbara-Ann; Chung, Caroline; Catton, Charles; O'Sullivan, Brian; Irish, Jonathan C.; Gilbert, Ralph; Zadeh, Gelareh; Cusimano, Michael; Gentili, Fred; Laperriere, Normand J.

    2015-01-01

    Background We report our preliminary outcomes following high-dose image-guided intensity modulated radiotherapy (IG-IMRT) for skull base chordoma and chondrosarcoma. Methods Forty-two consecutive IG-IMRT patients, with either skull base chordoma (n = 24) or chondrosarcoma (n = 18) treated between August 2001 and December 2012 were reviewed. The median follow-up was 36 months (range, 3–90 mo) in the chordoma cohort, and 67 months (range, 15–125) in the chondrosarcoma cohort. Initial surgery included biopsy (7% of patients), subtotal resection (57% of patients), and gross total resection (36% of patients). The median IG-IMRT total doses in the chondrosarcoma and chordoma cohorts were 70 Gy and 76 Gy, respectively, delivered with 2 Gy/fraction. Results For the chordoma and chondrosarcoma cohorts, the 5-year overall survival and local control rates were 85.6% and 65.3%, and 87.8% and 88.1%, respectively. In total, 10 patients progressed locally: 8 were chordoma patients and 2 chondrosarcoma patients. Both chondrosarcoma failures were in higher-grade tumors (grades 2 and 3). None of the 8 patients with grade 1 chondrosarcoma failed, with a median follow-up of 77 months (range, 34–125). There were 8 radiation-induced late effects—the most significant was a radiation-induced secondary malignancy occurring 6.7 years following IG-IMRT. Gross total resection and age were predictors of local control in the chordoma and chondrosarcoma patients, respectively. Conclusions We report favorable survival, local control and adverse event rates following high dose IG-IMRT. Further follow-up is needed to confirm long-term efficacy. PMID:25543126

  6. Analysis of Intensity-Modulated Radiation Therapy (IMRT), Proton and 3D Conformal Radiotherapy (3D-CRT) for Reducing Perioperative Cardiopulmonary Complications in Esophageal Cancer Patients

    PubMed Central

    Ling, Ted C.; Slater, Jerry M.; Nookala, Prashanth; Mifflin, Rachel; Grove, Roger; Ly, Anh M.; Patyal, Baldev; Slater, Jerry D.; Yang, Gary Y.

    2014-01-01

    Background. While neoadjuvant concurrent chemoradiotherapy has improved outcomes for esophageal cancer patients, surgical complication rates remain high. The most frequent perioperative complications after trimodality therapy were cardiopulmonary in nature. The radiation modality utilized can be a strong mitigating factor of perioperative complications given the location of the esophagus and its proximity to the heart and lungs. The purpose of this study is to make a dosimetric comparison of Intensity-Modulated Radiation Therapy (IMRT), proton and 3D conformal radiotherapy (3D-CRT) with regard to reducing perioperative cardiopulmonary complications in esophageal cancer patients. Materials. Ten patients with esophageal cancer treated between 2010 and 2013 were evaluated in this study. All patients were simulated with contrast-enhanced CT imaging. Separate treatment plans using proton radiotherapy, IMRT, and 3D-CRT modalities were created for each patient. Dose-volume histograms were calculated and analyzed to compare plans between the three modalities. The organs at risk (OAR) being evaluated in this study are the heart, lungs, and spinal cord. To determine statistical significance, ANOVA and two-tailed paired t-tests were performed for all data parameters. Results. The proton plans showed decreased dose to various volumes of the heart and lungs in comparison to both the IMRT and 3D-CRT plans. There was no difference between the IMRT and 3D-CRT plans in dose delivered to the lung or heart. This finding was seen consistently across the parameters analyzed in this study. Conclusions. In patients receiving radiation therapy for esophageal cancer, proton plans are technically feasible while achieving adequate coverage with lower doses delivered to the lungs and cardiac structures. This may result in decreased cardiopulmonary toxicity and less morbidity to esophageal cancer patients. PMID:25489937

  7. Dosimetric Evaluation and Treatment Outcome of Intensity Modulated Radiation Therapy After Doxorubicin-Based Chemotherapy for Primary Mediastinal Large B-Cell Lymphoma

    SciTech Connect

    Xu, Li-Ming; Li, Ye-Xiong; Fang, Hui; Jin, Jing; Wang, Wei-Hu; Wang, Shu-Lian; Liu, Yue-Ping; Song, Yong-Wen; Liu, Qing-Feng; Chen, Bo; Qi, Shu-Nan; Ren, Hua; Dai, Jian-Rong

    2013-04-01

    Purpose: The value of intensity-modulated radiation therapy (IMRT) after doxorubicin-based chemotherapy in primary mediastinal large B-cell lymphoma (PMBCL) is unknown. We assessed the dosimetric parameters, treatment outcomes, and toxicity of IMRT in PMBCL. Methods and Materials: Forty-one PMBCL patients underwent mediastinal IMRT after doxorubicin-based chemotherapy. Thirty-eight patients had stage I-II disease, and 3 patients had stage III-IV disease. Most patients presented with bulky mediastinal disease (65.9%) and local invasion (82.9%). The dose-volume histograms of the target volume and critical normal structures were evaluated. Results: The average planning target volume (PTV) mean dose was 39 Gy. Only 0.5% and 1.4% of the PTV received <90% and <95% of the prescribed dose, respectively, indicating excellent target coverage. The median mean lung dose and percentage lung volume receiving 20 Gy (V20) were 16.3 Gy and 30.6%. The 5-year overall survival (OS) and local control (LC) were 95.1% and 89.8%. After chemotherapy, consolidation radiation therapy in patients with complete/partial response resulted in significantly better survival than salvage radiation therapy in patients with stable/progressive disease (3-year OS 100% vs 75%; 3-year LC 96.6% vs 62.5%). No grade 4 or 5 acute or late toxicities occurred. Conclusions: Mediastinal IMRT after doxorubicin-based chemotherapy can be safely and efficiently delivered, and it provides favorable outcomes in PMBCL patients with a large target volume and high-risk features.

  8. Relationship between prostate volume changes and treatment duration of neoadjuvant androgen deprivation during intensity-modulated radiation therapy for Japanese patients with prostate cancer

    PubMed Central

    Tomida, Masashi; Okudaira, Kuniyasu; Kamomae, Takeshi; Oguchi, Hiroshi; Miyake, Yoshikazu; Yoneda, Kazuo; Itoh, Yoshiyuki

    2016-01-01

    ABSTRACT The application of neoadjuvant androgen deprivation (NAD) in prostate cancer leads to a reduction in prostate volume, and the trends in volume reduction differ according to the treatment duration of NAD. A reduction in volume during external beam radiation therapy may lead to the exposure of normal tissues to an unexpected dose. In fact, prostate volume reductions have primarily been reported in European and American institutions. Although the prostate volume of Japanese patients is known to be small, the trends in prostate volume change during radiation therapy remain unclear. In the present study, we aimed to evaluate the changes in prostate volume of Japanese patients during intensity-modulated radiation therapy (IMRT) with NAD. Nineteen Japanese patients with prostate cancer underwent IMRT with NAD. Kilovoltage computed tomography (CT) images were obtained for treatment planning and verification of the treatment position for each treatment fraction. The patients were divided into 3 groups based on the duration of NAD, as follows: NAD < 3 months (short NAD: S-NAD), 3 months ≤ NAD < 6 months (middle NAD: M-NAD), and NAD ≥ 6 months (long NAD: L-NAD). The prostate volume reductions at the 36th treatment fraction, relative to the planning CT, were 7.8%, 2.0%, and 1.7% for the S-NAD, M-NAD, and L-NAD groups, respectively. Prostate volume shrunk greater in the S-NAD group than in the M-NAD and L-NAD groups; this finding was consistent with those of previous studies. The prostate volume changes in Japanese patients were smaller compared to those in European and American patients. PMID:27578915

  9. Relationship between prostate volume changes and treatment duration of neoadjuvant androgen deprivation during intensity-modulated radiation therapy for Japanese patients with prostate cancer.

    PubMed

    Tomida, Masashi; Okudaira, Kuniyasu; Kamomae, Takeshi; Oguchi, Hiroshi; Miyake, Yoshikazu; Yoneda, Kazuo; Itoh, Yoshiyuki

    2016-08-01

    The application of neoadjuvant androgen deprivation (NAD) in prostate cancer leads to a reduction in prostate volume, and the trends in volume reduction differ according to the treatment duration of NAD. A reduction in volume during external beam radiation therapy may lead to the exposure of normal tissues to an unexpected dose. In fact, prostate volume reductions have primarily been reported in European and American institutions. Although the prostate volume of Japanese patients is known to be small, the trends in prostate volume change during radiation therapy remain unclear. In the present study, we aimed to evaluate the changes in prostate volume of Japanese patients during intensity-modulated radiation therapy (IMRT) with NAD. Nineteen Japanese patients with prostate cancer underwent IMRT with NAD. Kilovoltage computed tomography (CT) images were obtained for treatment planning and verification of the treatment position for each treatment fraction. The patients were divided into 3 groups based on the duration of NAD, as follows: NAD < 3 months (short NAD: S-NAD), 3 months ≤ NAD < 6 months (middle NAD: M-NAD), and NAD ≥ 6 months (long NAD: L-NAD). The prostate volume reductions at the 36th treatment fraction, relative to the planning CT, were 7.8%, 2.0%, and 1.7% for the S-NAD, M-NAD, and L-NAD groups, respectively. Prostate volume shrunk greater in the S-NAD group than in the M-NAD and L-NAD groups; this finding was consistent with those of previous studies. The prostate volume changes in Japanese patients were smaller compared to those in European and American patients. PMID:27578915

  10. Forward-planned intensity modulated radiation therapy using a cobalt source: A dosimetric study in breast cancer

    PubMed Central

    Cilla, Savino; Kigula-Mugambe, Joseph; Digesù, Cinzia; Macchia, Gabriella; Bogale, Solomon; Massaccesi, Mariangela; Dawotola, David; Deodato, Francesco; Buwenge, Milly; Caravatta, Luciana; Piermattei, Angelo; Valentini, Vincenzo; Morganti, Alessio G.

    2013-01-01

    This analysis evaluates the feasibility and dosimetric results of a simplified intensity-modulated radiotherapy (IMRT) treatment using a cobalt-therapy unit for post-operative breast cancer. Fourteen patients were included. Three plans per patient were produced by a cobalt-60 source: A standard plan with two wedged tangential beams, a standard tangential plan optimized without the use of wedges and a plan based on the forward-planned “field-in-field” IMRT technique (Co-FinF) where the dose on each of the two tangential beams was split into two different segments and the two segments weight was determined with an iterative process. For comparison purposes, a 6-MV photon standard wedged tangential treatment plan was generated. Dmean, D98%, D2%, V95%, V107%, homogeneity, and conformity indices were chosen as parameters for comparison. Co-FinF technique improved the planning target volume dose homogeneity compared to other cobalt-based techniques and reduced maximum doses (D2%) and high-dose volume (V110%). Moreover, it showed a better lung and heart dose sparing with respect to the standard approach. The higher dose homogeneity may encourage the adoption of accelerated-hypofractionated treatments also with the cobalt sources. This approach can promote the spread of breast conservative treatment in developing countries. PMID:24049319

  11. The role of Cobalt-60 source in Intensity Modulated Radiation Therapy: From modeling finite sources to treatment planning and conformal dose delivery

    NASA Astrophysics Data System (ADS)

    Dhanesar, Sandeep Kaur

    Cobalt-60 (Co-60) units played an integral role in radiation therapy from the mid-1950s to the 1970s. Although they continue to be used to treat cancer in some parts of the world, their role has been significantly reduced due to the invention of medical linear accelerators. A number of groups have indicated a strong potential for Co-60 units in modern radiation therapy. The Medical Physics group at the Cancer Center of the Southeastern Ontario and Queen's University has shown the feasibility of Intensity Modulated Radiation Therapy (IMRT) via simple conformal treatment planning and dose delivery using a Co-60 unit. In this thesis, initial Co-60 tomotherapy planning investigations on simple uniform phantoms are extended to actual clinical cases based on patient CT data. The planning is based on radiation dose data from a clinical Co-60 unit fitted with a multileaf collimator (MLC) and modeled in the EGSnrc Monte Carlo system. An in house treatment planning program is used to calculate IMRT dose distributions. Conformal delivery in a single slice on a uniform phantom based on sequentially delivered pencil beams is verified by Gafchromic film. Volumetric dose distributions for Co-60 serial tomotherapy are then generated for typical clinical sites that had been treated at our clinic by conventional 6MV IMRT using Varian Eclipse treatment plans. The Co-60 treatment plans are compared with the clinical IMRT plans using conventional matrices such as dose volume histograms (DVH). Dose delivery based on simultaneously opened MLC leaves is also explored and a novel MLC segmentation method is proposed. In order to increase efficiency of dose calculations, a novel convolution based fluence model for treatment planning is also proposed. The ion chamber measurements showed that the Monte Carlo modeling of the beam data under the MIMiC MLC is accurate. The film measurements from the uniform phantom irradiations confirm that IMRT plans from our in-house treatment planning system

  12. Aspiration pneumonia after chemo–intensity-modulated radiation therapy of oropharyngeal carcinoma and its clinical and dysphagia-related predictors

    PubMed Central

    Hunter, Klaudia U.; Lee, Oliver E.; Lyden, Teresa H.; Haxer, Marc J.; Feng, Felix Y.; Schipper, Mathew; Worden, Francis; Prince, Mark E.; McLean, Scott A.; Wolf, Gregory T.; Bradford, Carol R.; Chepeha, Douglas B.; Eisbruch, Avraham

    2014-01-01

    Background The purpose of this study was to assess aspiration pneumonia (AsPn) rates and predictors after chemo-irradiation for head and neck cancer. Methods The was a prospective study of 72 patients with stage III to IV oropharyngeal cancer treated definitively with intensity-modulated radiotherapy (IMRT) concurrent with weekly carboplatin and paclitaxel. AsPn was recorded prospectively and dysphagia was evaluated longitudinally through 2 years posttherapy by observer-rated (Common Toxicity Criteria version [CTCAE]) scores, patient-reported scores, and videofluoroscopy. Results Sixteen patients (20%) developed AsPn. Predictive factors included T classification (p = .01), aspiration detected on videofluoroscopy (videofluoroscopy-asp; p = .0007), and patient-reported dysphagia (p = .02–.0003), but not observer-rated dysphagia (p = .4). Combining T classification, patient reported dysphagia, and videofluoroscopy-asp, provided the best predictive model. Conclusion AsPn continues to be an under-reported consequence of chemo-irradiation for head and neck cancer. These data support using patient-reported dysphagia to identify high-risk patients requiring videofluoroscopy evaluation for preventive measures. Reducing videofluoroscopy-asp rates, by reducing swallowing structures radiation doses and by trials reducing treatment intensity in patients predicted to do well, are likely to reduce AsPn rates. PMID:23729173

  13. Bile Duct (Cholangiocarcinoma) Cancer: Radiation Therapy

    MedlinePlus

    ... form of radiation for bile duct cancer. External beam radiation therapy (EBRT) This type of radiation therapy ... determine the correct angles for aiming the radiation beams and the proper dose of radiation. The treatment ...

  14. New method of collecting output factors for commissioning linear accelerators with special emphasis on small fields and Intensity Modulated Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Smith, Cindy D.

    Common methods for commissioning linear accelerators often neglect beam data for small fields. Examining the methods of beam data collection and modeling for commissioning linear accelerators revealed little to no discussion of the protocols for fields smaller than 4 cm x 4 cm. This leads to decreased confidence levels in the dose calculations and associated monitor units (MUs) for Intensity Modulated Radiation Therapy (IMRT). The parameters of commissioning the Novalis linear accelerator (linac) on the Eclipse Treatment Planning System (TPS) led to the study of challenges collecting data for very small fields. The focus of this thesis is the examination of the protocols for output factor collection and their impact on dose calculations by the TPS for IMRT treatment plans. Improving output factor collection methods, led to significant improvement in absolute dose calculations which correlated with the complexity of the plans.

  15. Risk of Late Toxicity in Men Receiving Dose-Escalated Hypofractionated Intensity Modulated Prostate Radiation Therapy: Results From a Randomized Trial

    SciTech Connect

    Hoffman, Karen E. Voong, K. Ranh; Pugh, Thomas J.; Skinner, Heath; Levy, Lawrence B.; Takiar, Vinita; Choi, Seungtaek; Du, Weiliang; Frank, Steven J.; Johnson, Jennifer; Kanke, James; Kudchadker, Rajat J.; Lee, Andrew K.; Mahmood, Usama; McGuire, Sean E.; Kuban, Deborah A.

    2014-04-01

    Objective: To report late toxicity outcomes from a randomized trial comparing conventional and hypofractionated prostate radiation therapy and to identify dosimetric and clinical parameters associated with late toxicity after hypofractionated treatment. Methods and Materials: Men with localized prostate cancer were enrolled in a trial that randomized men to either conventionally fractionated intensity modulated radiation therapy (CIMRT, 75.6 Gy in 1.8-Gy fractions) or to dose-escalated hypofractionated IMRT (HIMRT, 72 Gy in 2.4-Gy fractions). Late (≥90 days after completion of radiation therapy) genitourinary (GU) and gastrointestinal (GI) toxicity were prospectively evaluated and scored according to modified Radiation Therapy Oncology Group criteria. Results: 101 men received CIMRT and 102 men received HIMRT. The median age was 68, and the median follow-up time was 6.0 years. Twenty-eight percent had low-risk, 71% had intermediate-risk, and 1% had high-risk disease. There was no difference in late GU toxicity in men treated with CIMRT and HIMRT. The actuarial 5-year grade ≥2 GU toxicity was 16.5% after CIMRT and 15.8% after HIMRT (P=.97). There was a nonsignificant numeric increase in late GI toxicity in men treated with HIMRT compared with men treated with CIMRT. The actuarial 5-year grade ≥2 GI toxicity was 5.1% after CIMRT and 10.0% after HIMRT (P=.11). In men receiving HIMRT, the proportion of rectum receiving 36.9 Gy, 46.2 Gy, 64.6 Gy, and 73.9 Gy was associated with the development of late GI toxicity (P<.05). The 5-year actuarial grade ≥2 GI toxicity was 27.3% in men with R64.6Gy ≥ 20% but only 6.0% in men with R64.6Gy < 20% (P=.016). Conclusions: Dose-escalated IMRT using a moderate hypofractionation regimen (72 Gy in 2.4-Gy fractions) can be delivered safely with limited grade 2 or 3 late toxicity. Minimizing the proportion of rectum that receives moderate and high dose decreases the risk of late rectal toxicity after this

  16. Evaluation of relative transmitted dose for a step and shoot head and neck intensity modulated radiation therapy using a scanning liquid ionization chamber electronic portal imaging device

    PubMed Central

    Mohammadi, Mohammad; Bezak, Eva

    2012-01-01

    The dose delivery verification for a head and neck static intensity modulated radiation therapy (IMRT) case using a scanning liquid ionization chamber electronic portal imaging device (SLIC-EPID) was investigated. Acquired electronic portal images were firstly converted into transmitted dose maps using an in-house developed method. The dose distributions were then compared with those calculated in a virtual EPID using the Pinnacle3 treatment planning system (TPS). Using gamma evaluation with the ΔDmax and DTA criteria of 3%/2.54 mm, an excellent agreement was observed between transmitted dose measured using SLIC-EPID and that calculated by TPS (gamma score approximately 95%) for large MLC fields. In contrast, for several small subfields, due to SLIC-EPID image blurring, significant disagreement was found in the gamma results. Differences between EPID and TPS dose maps were also observed for several parts of the radiation subfields, when the radiation beam passed through air on the outside of tissue. The transmitted dose distributions measured using portal imagers such as SLIC-EPID can be used to verify the dose delivery to a patient. However, several aspects such as accurate calibration procedure and imager response under different conditions should be taken into the consideration. In addition, SLIC-EPID image blurring is another important issue, which should be considered if the SLIC-EPID is used for clinical dosimetry verification. PMID:22363108

  17. Evaluation of relative transmitted dose for a step and shoot head and neck intensity modulated radiation therapy using a scanning liquid ionization chamber electronic portal imaging device.

    PubMed

    Mohammadi, Mohammad; Bezak, Eva

    2012-01-01

    The dose delivery verification for a head and neck static intensity modulated radiation therapy (IMRT) case using a scanning liquid ionization chamber electronic portal imaging device (SLIC-EPID) was investigated. Acquired electronic portal images were firstly converted into transmitted dose maps using an in-house developed method. The dose distributions were then compared with those calculated in a virtual EPID using the Pinnacle(3) treatment planning system (TPS). Using gamma evaluation with the ΔD(max) and DTA criteria of 3%/2.54 mm, an excellent agreement was observed between transmitted dose measured using SLIC-EPID and that calculated by TPS (gamma score approximately 95%) for large MLC fields. In contrast, for several small subfields, due to SLIC-EPID image blurring, significant disagreement was found in the gamma results. Differences between EPID and TPS dose maps were also observed for several parts of the radiation subfields, when the radiation beam passed through air on the outside of tissue. The transmitted dose distributions measured using portal imagers such as SLIC-EPID can be used to verify the dose delivery to a patient. However, several aspects such as accurate calibration procedure and imager response under different conditions should be taken into the consideration. In addition, SLIC-EPID image blurring is another important issue, which should be considered if the SLIC-EPID is used for clinical dosimetry verification.

  18. Constituent Components of Out-of-Field Scatter Dose for 18-MV Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy: A Comparison With 6-MV and Implications for Carcinogenesis

    SciTech Connect

    Ruben, Jeremy D.; Smith, Ryan; Lancaster, Craig M.; Haynes, Matthew; Jones, Phillip; Panettieri, Vanessa

    2014-11-01

    Purpose: To characterize and compare the components of out-of-field dose for 18-MV intensity modulated radiation therapy (IMRT) versus 3-dimensional conformal radiation therapy (3D-CRT) and their 6-MV counterparts and consider implications for second cancer induction. Methods and Materials: Comparable plans for each technique/energy were delivered to a water phantom with a sloping wall; under full scatter conditions; with field edge abutting but outside the bath to prevent internal/phantom scatter; and with shielding below the linear accelerator head to attenuate head leakage. Neutron measurements were obtained from published studies. Results: Eighteen-megavolt IMRT produces 1.7 times more out-of-field scatter than 18-MV 3D-CRT. In absolute terms, however, differences are just approximately 0.1% of central axis dose. Eighteen-megavolt IMRT reduces internal/patient scatter by 13%, but collimator scatter (C) is 2.6 times greater than 18-MV 3D-CRT. Head leakage (L) is minimal. Increased out-of-field photon scatter from 18-MV IMRT carries out-of-field second cancer risks of approximately 0.2% over and above the 0.4% from 18-MV 3D-CRT. Greater photoneutron dose from 18-MV IMRT may result in further maximal, absolute increased risk to peripheral tissue of approximately 1.2% over 18-MV 3D-CRT. Out-of-field photon scatter remains comparable for the same modality irrespective of beam energy. Machine scatter (C+L) from 18 versus 6 MV is 1.2 times higher for IMRT and 1.8 times for 3D-CRT. It is 4 times higher for 6-MV IMRT versus 3D-CRT. Reduction in internal scatter with 18 MV versus 6 MV is 27% for 3D-CRT and 29% for IMRT. Compared with 6-MV 3D-CRT, 18-MV IMRT increases out-of-field second cancer risk by 0.2% from photons and adds 0.28-2.2% from neutrons. Conclusions: Out-of-field photon dose seems to be independent of beam energy for both techniques. Eighteen-megavolt IMRT increases out-of-field scatter 1.7-fold over 3D-CRT because of greater collimator scatter despite

  19. Dosimetric verification of radiation therapy including intensity modulated treatments, using an amorphous-silicon electronic portal imaging device

    NASA Astrophysics Data System (ADS)

    Chytyk-Praznik, Krista Joy

    Radiation therapy is continuously increasing in complexity due to technological innovation in delivery techniques, necessitating thorough dosimetric verification. Comparing accurately predicted portal dose images to measured images obtained during patient treatment can determine if a particular treatment was delivered correctly. The goal of this thesis was to create a method to predict portal dose images that was versatile and accurate enough to use in a clinical setting. All measured images in this work were obtained with an amorphous silicon electronic portal imaging device (a-Si EPID), but the technique is applicable to any planar imager. A detailed, physics-motivated fluence model was developed to characterize fluence exiting the linear accelerator head. The model was further refined using results from Monte Carlo simulations and schematics of the linear accelerator. The fluence incident on the EPID was converted to a portal dose image through a superposition of Monte Carlo-generated, monoenergetic dose kernels specific to the a-Si EPID. Predictions of clinical IMRT fields with no patient present agreed with measured portal dose images within 3% and 3 mm. The dose kernels were applied ignoring the geometrically divergent nature of incident fluence on the EPID. A computational investigation into this parallel dose kernel assumption determined its validity under clinically relevant situations. Introducing a patient or phantom into the beam required the portal image prediction algorithm to account for patient scatter and attenuation. Primary fluence was calculated by attenuating raylines cast through the patient CT dataset, while scatter fluence was determined through the superposition of pre-calculated scatter fluence kernels. Total dose in the EPID was calculated by convolving the total predicted incident fluence with the EPID-specific dose kernels. The algorithm was tested on water slabs with square fields, agreeing with measurement within 3% and 3 mm. The

  20. Helical Tomotherapy Versus Conventional Intensity-Modulated Radiation Therapy for Primary Chemoradiation in Cervical Cancer Patients: An Intraindividual Comparison

    SciTech Connect

    Marnitz, Simone; Lukarski, Dusko; Koehler, Christhardt; Wlodarczyk, Waldemar; Ebert, Andreas; Budach, Volker; Schneider, Achim; Stromberger, Carmen

    2011-10-01

    Purpose: To compare intensity-modulated radiotherapy (IMRT) delivered by helical tomotherapy (HT) with conventional IMRT for primary chemoradiation in cervical cancer patients. Methods and Materials: Twenty cervical cancer patients undergoing primary chemoradiation received radiation with HT; 10 patients underwent pelvic irradiation (PEL) and 10 extended-field irradiation (EXT). For treatment planning, the simultaneously integrated boost (SIB) concept was applied. Tumor, pelvic, with or without para-aortic lymph nodes were defined as planning target volume A (PTV-A) with a prescribed dose of 1.8/50.4 Gy (28 fractions). The SIB dose for the parametrium (PTV-B), was 2.12/59.36 Gy. The lower target constraints were 95% of the prescribed dose in 95% of the target volume, and the upper dose constraint was 107%. The irradiated small-bowel volumes were kept as low as possible. For every HT plan, a conventional IMRT plan was calculated and compared with regard to dose-volume histogram, conformity index and conformity number, and homogeneity index. Results: Both techniques allowed excellent target volume coverage and sufficient SB sparing. Conformity index and conformity number results for both PTV-A and PTV-B, homogeneity index for PTV-B, and SB sparing for V45, V50, Dmax, and D1% were significantly better with HT. SB sparing was significantly better for conventional IMRT at low doses (V10). Conclusions: Both HT and conventional IMRT provide optimal treatment of cervical cancer patients. The HT technique was significantly favored with regard to target conformity, homogeneity, and SB sparing. Randomized trials are needed to assess the oncological outcome, toxicity, and clinical relevance of these differences.

  1. A Treatment Planning Analysis of Inverse-Planned and Forward-Planned Intensity-Modulated Radiation Therapy in Nasopharyngeal Carcinoma

    SciTech Connect

    Poon, Ian M Xia Ping; Weinberg, Vivien; Sultanem, Khalil; Akazawa, Clayton C.; Akazawa, Pamela C.; Verhey, Lynn; Quivey, Jeanne Marie; Lee, Nancy

    2007-12-01

    Purpose: To compare dose-volume histograms of target volumes and organs at risk in 57 patients with nasopharyngeal carcinoma (NPC) with inverse- (IP) or forward-planned (FP) intensity-modulated radiation treatment (IMRT). Methods and Materials: The DVHs of 57 patients with NPC with IMRT with or without chemotherapy were reviewed. Thirty-one patients underwent IP IMRT, and 26 patients underwent FP IMRT. Treatment goals were to prescribe a minimum dose of 66-70 Gy for gross tumor volume and 59.4 Gy for planning target volume to greater than 95% of the volume. Multiple selected end points were used to compare dose-volume histograms of the targets, including minimum, mean, and maximum doses; percentage of target volume receiving less than 90% (1-V90%), less than 95% (1-V95%), and greater than 105% (1-V105%). Dose-volume histograms of organs at risk were evaluated with characteristic end points. Results: Both planning methods provided excellent target coverage with no statistically significant differences found, although a trend was suggested in favor of improved target coverage with IP IMRT in patients with T3/T4 NPC (p = 0.10). Overall, IP IMRT statistically decreased the dose to the parotid gland, temporomandibular joint, brain stem, and spinal cord overall, whereas IP led to a dose decrease to the middle/inner ear in only the T1/T2 subgroup. Conclusions: Use of IP and FP IMRT can lead to good target coverage while maintaining critical structures within tolerance. The IP IMRT selectively spared these critical organs to a greater degree and should be considered the standard of treatment in patients with NPC, particularly those with T3/T4. The FP IMRT is an effective second option in centers with limited IP IMRT capacity. As a modification of conformal techniques, the human/departmental resources to incorporate FP-IMRT should be nominal.

  2. THERMOPLASTIC MATERIALS APPLICATIONS IN RADIATION THERAPY.

    PubMed

    Munteanu, Anca; Moldoveanu, Sinziana; Manea, Elena

    2016-01-01

    This is an example of the use of thermoplastic materials in a high-tech medicine field, oncology radiation therapy, in order to produce the rigid masks for positioning and immobilization of the patient during simulation of the treatment procedure, the imaging verification of position and administration of the indicated radiation dose. Implementation of modern techniques of radiation therapy is possible only if provided with performant equipment (CT simulators, linear accelerators of high energy particles provided with multilamellar collimators and imaging verification systems) and accessories that increase the precision of the treatment (special supports for head-neck, thorax, pelvis, head-neck and thorax immobilization masks, compensating materials like bolus type material). The paper illustrates the main steps in modern radiation therapy service and argues the role of thermoplastics in reducing daily patient positioning errors during treatment. As part of quality assurance of irradiation procedure, using a rigid mask is mandatory when applying 3D conformal radiation therapy techniques, radiation therapy with intensity modulated radiation or rotational techninques.

  3. THERMOPLASTIC MATERIALS APPLICATIONS IN RADIATION THERAPY.

    PubMed

    Munteanu, Anca; Moldoveanu, Sinziana; Manea, Elena

    2016-01-01

    This is an example of the use of thermoplastic materials in a high-tech medicine field, oncology radiation therapy, in order to produce the rigid masks for positioning and immobilization of the patient during simulation of the treatment procedure, the imaging verification of position and administration of the indicated radiation dose. Implementation of modern techniques of radiation therapy is possible only if provided with performant equipment (CT simulators, linear accelerators of high energy particles provided with multilamellar collimators and imaging verification systems) and accessories that increase the precision of the treatment (special supports for head-neck, thorax, pelvis, head-neck and thorax immobilization masks, compensating materials like bolus type material). The paper illustrates the main steps in modern radiation therapy service and argues the role of thermoplastics in reducing daily patient positioning errors during treatment. As part of quality assurance of irradiation procedure, using a rigid mask is mandatory when applying 3D conformal radiation therapy techniques, radiation therapy with intensity modulated radiation or rotational techninques. PMID:27125096

  4. Multi-Institutional Trial of Accelerated Hypofractionated Intensity-Modulated Radiation Therapy for Early-Stage Oropharyngeal Cancer (RTOG 00-22)

    SciTech Connect

    Eisbruch, Avraham; Harris, Jonathan; Garden, Adam S.; Chao, Clifford K.S.; Straube, William; Harari, Paul M.; Sanguineti, Giuseppe; Jones, Christopher U.; Bosch, Walter R.; Ang, K. Kian

    2010-04-15

    Purpose: To assess the results of a multi-institutional study of intensity-modulated radiation therapy (IMRT) for early oropharyngeal cancer. Patients and Methods: Patients with oropharyngeal carcinoma Stage T1-2, N0-1, M0 requiring treatment of the bilateral neck were eligible. Chemotherapy was not permitted. Prescribed planning target volumes (PTVs) doses to primary tumor and involved nodes was 66 Gy at 2.2 Gy/fraction over 6 weeks. Subclinical PTVs received simultaneously 54-60 Gy at 1.8-2.0 Gy/fraction. Participating institutions were preapproved for IMRT, and quality assurance review was performed by the Image-Guided Therapy Center. Results: 69 patients were accrued from 14 institutions. At median follow-up for surviving patients (2.8 years), the 2-year estimated local-regional failure (LRF) rate was 9%. 2/4 patients (50%) with major underdose deviations had LRF compared with 3/49 (6%) without such deviations (p = 0.04). All cases of LRF, metastasis, or second primary cancer occurred among patients who were current/former smokers, and none among patients who never smoked. Maximal late toxicities Grade >=2 were skin 12%, mucosa 24%, salivary 67%, esophagus 19%, osteoradionecrosis 6%. Longer follow-up revealed reduced late toxicity in all categories. Xerostomia Grade >=2 was observed in 55% of patients at 6 months but reduced to 25% and 16% at 12 and 24 months, respectively. In contrast, salivary output did not recover over time. Conclusions: Moderately accelerated hypofractionatd IMRT without chemotherapy for early oropharyngeal cancer is feasible, achieving high tumor control rates and reduced salivary toxicity compared with similar patients in previous Radiation Therapy Oncology Group studies. Major target underdose deviations were associated with higher LRF rate.

  5. Split-field vs extended-field intensity-modulated radiation therapy plans for oropharyngeal cancer: Which spares the larynx? Which spares the thyroid?

    PubMed

    Yu, Yao; Chen, Josephine; Leary, Celeste I; Shugard, Erin; Yom, Sue S

    2016-01-01

    Radiation of the low neck can be accomplished using split-field intensity-modulated radiation therapy (sf-IMRT) or extended-field intensity-modulated radiation therapy (ef-IMRT). We evaluated the effect of these treatment choices on target coverage and thyroid and larynx doses. Using data from 14 patients with cancers of the oropharynx, we compared the following 3 strategies for radiating the low neck: (1) extended-field IMRT, (2) traditional split-field IMRT with an initial cord-junction block to 40Gy, followed by a full-cord block to 50Gy, and (3) split-field IMRT with a full-cord block to 50Gy. Patients were planned using each of these 3 techniques. To facilitate comparison, extended-field plans were normalized to deliver 50Gy to 95% of the neck volume. Target coverage was assessed using the dose to 95% of the neck volume (D95). Mean thyroid and larynx doses were computed. Extended-field IMRT was used as the reference arm; the mean larynx dose was 25.7 ± 7.4Gy, and the mean thyroid dose was 28.6 ± 2.4Gy. Split-field IMRT with 2-step blocking reduced laryngeal dose (mean larynx dose 15.2 ± 5.1Gy) at the cost of a moderate reduction in target coverage (D95 41.4 ± 14Gy) and much higher thyroid dose (mean thyroid dose 44.7 ± 3.7Gy). Split-field IMRT with initial full-cord block resulted in greater laryngeal sparing (mean larynx dose 14.2 ± 5.1Gy) and only a moderately higher thyroid dose (mean thyroid dose 31 ± 8Gy) but resulted in a significant reduction in target coverage (D95 34.4 ± 15Gy). Extended-field IMRT comprehensively covers the low neck and achieves acceptable thyroid and laryngeal sparing. Split-field IMRT with a full-cord block reduces laryngeal doses to less than 20Gy and spares the thyroid, at the cost of substantially reduced coverage of the low neck. Traditional 2-step split-field IMRT similarly reduces the laryngeal dose but also reduces low-neck coverage and delivers very high doses to the thyroid.

  6. Integration of Real-Time Internal Electromagnetic Position Monitoring Coupled With Dynamic Multileaf Collimator Tracking: An Intensity-Modulated Radiation Therapy Feasibility Study

    SciTech Connect

    Smith, Ryan L.; Sawant, Amit PhD.; Santanam, Lakshmi PhD.; Venkat, Raghu B.; Newell, Laurence J.; Cho, Byung-chul; Poulsen, Per; Catell, Herbert; Keall, Paul J.; Parikh, Parag J.

    2009-07-01

    Purpose: Continuous tumor position measurement coupled with a tumor tracking system would result in a highly accurate radiation therapy system. Previous internal position monitoring systems have been limited by fluoroscopic radiation dose and low delivery efficiency. We aimed to incorporate a continuous, electromagnetic, three-dimensional position tracking system (Calypso 4D Localization System) with a dynamic multileaf collimator (DMLC)-based dose delivery system. Methods and Materials: A research version of the Calypso System provided real-time position of three Beacon transponders. These real-time three-dimensional positions were sent to research MLC controller with a motion-tracking algorithm that changed the planned leaf sequence. Electromagnetic transponders were embedded in a solid water film phantom that moved with patient lung trajectories while being irradiated with two different plans: a step-and-shoot intensity-modulated radiation therapy (S-IMRT) field and a dynamic IMRT (D-IMRT) field. Dosimetric results were recorded under three conditions: no intervention, DMLC tracking, and a spatial gating system. Results: Dosimetric accuracy was comparable for gating and DMLC tracking. Failure rates for gating/DMLC tracking are as follows: {+-}3 cGy 10.9/ 7.5% for S-IMRT, 3.3/7.2% for D-IMRT; gamma (3mm/3%) 0.2/1.2% for S-IMRT, 0.2/0.2% for D-IMRT. DMLC tracking proved to be as efficient as standard delivery, with a two- to fivefold efficiency increase over gating. Conclusions: Real-time target position information was successfully integrated into a DMLC effector system to modify dose delivery. Experimental results show both comparable dosimetric accuracy as well as improved efficiency compared with spatial gating.

  7. Five-year Local Control in a Phase II Study of Hypofractionated Intensity Modulated Radiation Therapy With an Incorporated Boost for Early Stage Breast Cancer

    SciTech Connect

    Freedman, Gary M.; Anderson, Penny R.; Bleicher, Richard J.; Litwin, Samuel; Li Tianyu; Swaby, Ramona F.; Ma, Chang-Ming Charlie; Li Jinsheng; Sigurdson, Elin R.; Watkins-Bruner, Deborah; Morrow, Monica; Goldstein, Lori J.

    2012-11-15

    Purpose: Conventional radiation fractionation of 1.8-2 Gy per day for early stage breast cancer requires daily treatment for 6-7 weeks. We report the 5-year results of a phase II study of intensity modulated radiation therapy (IMRT), hypofractionation, and incorporated boost that shortened treatment time to 4 weeks. Methods and Materials: The study design was phase II with a planned accrual of 75 patients. Eligibility included patients aged {>=}18 years, Tis-T2, stage 0-II, and breast conservation. Photon IMRT and an incorporated boost was used, and the whole breast received 2.25 Gy per fraction for a total of 45 Gy, and the tumor bed received 2.8 Gy per fraction for a total of 56 Gy in 20 treatments over 4 weeks. Patients were followed every 6 months for 5 years. Results: Seventy-five patients were treated from December 2003 to November 2005. The median follow-up was 69 months. Median age was 52 years (range, 31-81). Median tumor size was 1.4 cm (range, 0.1-3.5). Eighty percent of tumors were node negative; 93% of patients had negative margins, and 7% of patients had close (>0 and <2 mm) margins; 76% of cancers were invasive ductal type: 15% were ductal carcinoma in situ, 5% were lobular, and 4% were other histology types. Twenty-nine percent of patients 29% had grade 3 carcinoma, and 20% of patients had extensive in situ carcinoma; 11% of patients received chemotherapy, 36% received endocrine therapy, 33% received both, and 20% received neither. There were 3 instances of local recurrence for a 5-year actuarial rate of 2.7%. Conclusions: This 4-week course of hypofractionated radiation with incorporated boost was associated with excellent local control, comparable to historical results of 6-7 weeks of conventional whole-breast fractionation with sequential boost.

  8. Correlation of Osteoradionecrosis and Dental Events With Dosimetric Parameters in Intensity-Modulated Radiation Therapy for Head-and-Neck Cancer

    SciTech Connect

    Gomez, Daniel R.; Estilo, Cherry L.; Wolden, Suzanne L.; Zelefsky, Michael J.; Kraus, Dennis H.; Wong, Richard J.; Shaha, Ashok R.; Shah, Jatin P.; Mechalakos, James G.; Lee, Nancy Y.

    2011-11-15

    Purpose: Osteoradionecrosis (ORN) is a known complication of radiation therapy to the head and neck. However, the incidence of this complication with intensity-modulated radiation therapy (IMRT) and dental sequelae with this technique have not been fully elucidated. Methods and Materials: From December 2000 to July 2007, 168 patients from our institution have been previously reported for IMRT of the oral cavity, nasopharynx, larynx/hypopharynx, sinus, and oropharynx. All patients underwent pretreatment dental evaluation, including panoramic radiographs, an aggressive fluoride regimen, and a mouthguard when indicated. The median maximum mandibular dose was 6,798 cGy, and the median mean mandibular dose was 3,845 cGy. Patient visits were retrospectively reviewed for the incidence of ORN, and dental records were reviewed for the development of dental events. Univariate analysis was then used to assess the effect of mandibular and parotid gland dosimetric parameters on dental endpoints. Results: With a median clinic follow-up of 37.4 months (range, 0.8-89.6 months), 2 patients, both with oral cavity primaries, experienced ORN. Neither patient had preradiation dental extractions. The maximum mandibular dose and mean mandibular dose of the 2 patients were 7,183 and 6,828 cGy and 5812 and 5335 cGy, respectively. In all, 17% of the patients (n = 29) experienced a dental event. A mean parotid dose of >26 Gy was predictive of a subsequent dental caries, whereas a maximum mandibular dose >70 Gy and a mean mandibular dose >40 Gy were correlated with dental extractions after IMRT. Conclusions: ORN is rare after head-and-neck IMRT, but is more common with oral cavity primaries. Our results suggest different mechanisms for radiation-induced caries versus extractions.

  9. Dark radiation from modulated reheating

    SciTech Connect

    Kobayashi, Takeshi; Takahashi, Fuminobu; Takahashi, Tomo; Yamaguchi, Masahide E-mail: fumi@tuhep.phys.tohoku.ac.jp E-mail: gucci@phys.titech.ac.jp

    2012-03-01

    We show that the modulated reheating mechanism can naturally account for dark radiation, whose existence is hinted by recent observations of the cosmic microwave background radiation and the primordial Helium abundance. In this mechanism, the inflaton decay rate depends on a light modulus which acquires almost scale-invariant quantum fluctuations during inflation. We find that the light modulus is generically produced by the inflaton decay and therefore a prime candidate for the dark radiation. Interestingly, an almost scale-invariant power spectrum predicted in the modulated reheating mechanism gives a better fit to the observation in the presence of the extra radiation. We discuss the production mechanism of the light modulus in detail taking account of its associated isocurvature fluctuations. We also consider a case where the modulus becomes the dominant component of dark matter.

  10. Consensus Guidelines and Contouring Atlas for Pelvic Node Delineation in Prostate and Pelvic Node Intensity Modulated Radiation Therapy

    SciTech Connect

    Harris, Victoria A.; Staffurth, John; Naismith, Olivia; Esmail, Alikhan; Gulliford, Sarah; Khoo, Vincent; Lewis, Rebecca; Littler, John; McNair, Helen; Sadoyze, Azmat; Scrase, Christopher; Sohaib, Aslam; Syndikus, Isabel; Zarkar, Anjali; Hall, Emma; Dearnaley, David

    2015-07-15

    Purpose: The purpose of this study was to establish reproducible guidelines for delineating the clinical target volume (CTV) of the pelvic lymph nodes (LN) by combining the freehand Royal Marsden Hospital (RMH) and Radiation Therapy Oncology Group (RTOG) vascular expansion techniques. Methods and Materials: Seven patients with prostate cancer underwent standard planning computed tomography scanning. Four different CTVs (RMH, RTOG, modified RTOG, and Prostate and pelvIs Versus prOsTate Alone treatment for Locally advanced prostate cancer [PIVOTAL] trial) were created for each patient, and 6 different bowel expansion margins (BEM) were created to assess bowel avoidance by the CTV. The resulting CTVs were compared visually and by using Jaccard conformity indices. The volume of overlap between bowel and planning target volume (PTV) was measured to aid selection of an appropriate BEM to enable maximal LN yet minimal normal tissue coverage. Results: In total, 84 nodal contours were evaluated. LN coverage was similar in all groups, with all of the vascular-expansion techniques (RTOG, modified RTOG, and PIVOTAL), resulting in larger CTVs than that of the RMH technique (mean volumes: 287.3 cm{sup 3}, 326.7 cm{sup 3}, 310.3 cm{sup 3}, and 256.7 cm{sup 3}, respectively). Mean volumes of bowel within the modified RTOG PTV were 19.5 cm{sup 3} (with 0 mm BEM), 17.4 cm{sup 3} (1-mm BEM), 10.8 cm{sup 3} (2-mm BEM), 6.9 cm{sup 3} (3-mm BEM), 5.0 cm{sup 3} (4-mm BEM), and 1.4 cm{sup 3} (5-mm BEM) in comparison with an overlap of 9.2 cm{sup 3} seen using the RMH technique. Evaluation of conformity between LN-CTVs from each technique revealed similar volumes and coverage. Conclusions: Vascular expansion techniques result in larger LN-CTVs than the freehand RMH technique. Because the RMH technique is supported by phase 1 and 2 trial safety data, we proposed modifications to the RTOG technique, including the addition of a 3-mm BEM, which resulted in LN-CTV coverage similar

  11. Simultaneous Integrated Boost–Intensity Modulated Radiation Therapy With Concomitant Capecitabine and Mitomycin C for Locally Advanced Anal Carcinoma: A Phase 1 Study

    SciTech Connect

    Deenen, Maarten J.; Dewit, Luc; Boot, Henk; Beijnen, Jos H.; Schellens, Jan H.M.; Cats, Annemieke

    2013-04-01

    Purpose: Newer radiation techniques, and the application of continuous 5-FU exposure during radiation therapy using oral capecitabine may improve the treatment of anal cancer. This phase 1, dose-finding study assessed the feasibility and efficacy of simultaneous integrated boost–intensity modulated radiation therapy (SIB-IMRT) with concomitant capecitabine and mitomycin C in locally advanced anal cancer, including pharmacokinetic and pharmacogenetic analyses. Methods and Materials: Patients with locally advanced anal carcinoma were treated with SIB-IMRT in 33 daily fractions of 1.8 Gy to the primary tumor and macroscopically involved lymph nodes and 33 fractions of 1.5 Gy electively to the bilateral iliac and inguinal lymph node areas. Patients received a sequential radiation boost dose of 3 × 1.8 Gy on macroscopic residual tumor if this was still present in week 5 of treatment. Mitomycin C 10 mg/m{sup 2} (maximum 15 mg) was administered intravenously on day 1, and capecitabine was given orally in a dose-escalated fashion (500-825 mg/m{sup 2} b.i.d.) on irradiation days, until dose-limiting toxicity emerged in ≥2 of maximally 6 patients. An additional 8 patients were treated at the maximum tolerated dose (MTD). Results: A total of 18 patients were included. The MTD of capecitabine was determined to be 825 mg/m{sup 2} b.i.d. The predominant acute grade ≥3 toxicities included radiation dermatitis (50%), fatigue (22%), and pain (6%). Fifteen patients (83% [95%-CI: 66%-101%]) achieved a complete response, and 3 (17%) patients a partial response. With a median follow-up of 28 months, none of the complete responders, and 2 partial responders had relapsed. Conclusions: SIB-IMRT with concomitant single dose mitomycin C and capecitabine 825 mg/m{sup 2} b.i.d. on irradiation days resulted in an acceptable safety profile, and proved to be a tolerable and effective treatment regimen for locally advanced anal cancer.

  12. Impact of Dose to the Bladder Trigone on Long-Term Urinary Function After High-Dose Intensity Modulated Radiation Therapy for Localized Prostate Cancer

    SciTech Connect

    Ghadjar, Pirus; Zelefsky, Michael J.; Spratt, Daniel E.; Munck af Rosenschöld, Per; Oh, Jung Hun; Hunt, Margie; Kollmeier, Marisa; Happersett, Laura; Yorke, Ellen; Deasy, Joseph O.; Jackson, Andrew

    2014-02-01

    Purpose: To determine the potential association between genitourinary (GU) toxicity and planning dose–volume parameters for GU pelvic structures after high-dose intensity modulated radiation therapy in localized prostate cancer patients. Methods and Materials: A total of 268 patients who underwent intensity modulated radiation therapy to a prescribed dose of 86.4 Gy in 48 fractions during June 2004-December 2008 were evaluated with the International Prostate Symptom Score (IPSS) questionnaire. Dose–volume histograms of the whole bladder, bladder wall, urethra, and bladder trigone were analyzed. The primary endpoint for GU toxicity was an IPSS sum increase ≥10 points over baseline. Univariate and multivariate analyses were done by the Kaplan-Meier method and Cox proportional hazard models, respectively. Results: Median follow-up was 5 years (range, 3-7.7 years). Thirty-nine patients experienced an IPSS sum increase ≥10 during follow-up; 84% remained event free at 5 years. After univariate analysis, lower baseline IPSS sum (P=.006), the V90 of the trigone (P=.006), and the maximal dose to the trigone (P=.003) were significantly associated with an IPSS sum increase ≥10. After multivariate analysis, lower baseline IPSS sum (P=.009) and increased maximal dose to the trigone (P=.005) remained significantly associated. Seventy-two patients had both a lower baseline IPSS sum and a higher maximal dose to the trigone and were defined as high risk, and 68 patients had both a higher baseline IPSS sum and a lower maximal dose to the trigone and were defined as low risk for development of an IPSS sum increase ≥10. Twenty-one of 72 high-risk patients (29%) and 5 of 68 low-risk patients (7%) experienced an IPSS sum increase ≥10 (P=.001; odds ratio 5.19). Conclusions: The application of hot spots to the bladder trigone was significantly associated with relevant changes in IPSS during follow-up. Reduction of radiation dose to the lower bladder and specifically the

  13. Radiation Therapy for Soft Tissue Sarcomas

    MedlinePlus

    ... called palliative treatment . Types of radiation therapy External beam radiation therapy: For this treatment, radiation delivered from ... impact on healthy tissue. In some centers, proton beam radiation is an option. This uses streams of ...

  14. Definitive Reirradiation for Locoregionally Recurrent Non-Small Cell Lung Cancer With Proton Beam Therapy or Intensity Modulated Radiation Therapy: Predictors of High-Grade Toxicity and Survival Outcomes

    SciTech Connect

    McAvoy, Sarah; Ciura, Katherine; Wei, Caimiao; Rineer, Justin; Liao, Zhongxing; Chang, Joe Y.; Palmer, Matthew B.; Cox, James D.; Komaki, Ritsuko; Gomez, Daniel R.

    2014-11-15

    Purpose: Intrathoracic recurrence of non-small cell lung cancer (NSCLC) after initial treatment remains a dominant cause of death. We report our experience using proton beam therapy and intensity modulated radiation therapy for reirradiation in such cases, focusing on patterns of failure, criteria for patient selection, and predictors of toxicity. Methods and Materials: A total of 102 patients underwent reirradiation for intrathoracic recurrent NSCLC at a single institution. All doses were recalculated to an equivalent dose in 2-Gy fractions (EQD2). All patients had received radiation therapy for NSCLC (median initial dose of 70 EQD2 Gy), with median interval to reirradiation of 17 months and median reirradiation dose of 60.48 EQD2 Gy. Median follow-up time was 6.5 months (range, 0-72 months). Results: Ninety-nine patients (97%) completed reirradiation. Median local failure-free survival, distant metastasis-free survival (DMFS), and overall survival times were 11.43 months (range, 8.6-22.66 months), 11.43 months (range, 6.83-23.84 months), and 14.71 (range, 10.34-20.56 months), respectively. Toxicity was acceptable, with rates of grade ≥3 esophageal toxicity of 7% and grade ≥3 pulmonary toxicity of 10%. Of the patients who developed local failure after reirradiation, 88% had failure in either the original or the reirradiation field. Poor local control was associated with T4 disease, squamous histology, and Eastern Cooperative Oncology Group performance status score >1. Concurrent chemotherapy improved DMFS, but T4 disease was associated with poor DMFS. Higher T status, Eastern Cooperative Oncology Group performance status ≥1, squamous histology, and larger reirradiation target volumes led to worse overall survival; receipt of concurrent chemotherapy and higher EQD2 were associated with improved OS. Conclusions: Intensity modulated radiation therapy and proton beam therapy are options for treating recurrent non-small cell lung cancer. However, rates of

  15. Dosimetric Impact of Using the Acuros XB Algorithm for Intensity Modulated Radiation Therapy and RapidArc Planning in Nasopharyngeal Carcinomas

    SciTech Connect

    Kan, Monica W.K.; Leung, Lucullus H.T.; Yu, Peter K.N.

    2013-01-01

    Purpose: To assess the dosimetric implications for the intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy with RapidArc (RA) of nasopharyngeal carcinomas (NPC) due to the use of the Acuros XB (AXB) algorithm versus the anisotropic analytical algorithm (AAA). Methods and Materials: Nine-field sliding window IMRT and triple-arc RA plans produced for 12 patients with NPC using AAA were recalculated using AXB. The dose distributions to multiple planning target volumes (PTVs) with different prescribed doses and critical organs were compared. The PTVs were separated into components in bone, air, and tissue. The change of doses by AXB due to air and bone, and the variation of the amount of dose changes with number of fields was also studied using simple geometric phantoms. Results: Using AXB instead of AAA, the averaged mean dose to PTV{sub 70} (70 Gy was prescribed to PTV{sub 70}) was found to be 0.9% and 1.2% lower for IMRT and RA, respectively. It was approximately 1% lower in tissue, 2% lower in bone, and 1% higher in air. The averaged minimum dose to PTV{sub 70} in bone was approximately 4% lower for both IMRT and RA, whereas it was approximately 1.5% lower for PTV{sub 70} in tissue. The decrease in target doses estimated by AXB was mostly contributed from the presence of bone, less from tissue, and none from air. A similar trend was observed for PTV{sub 60} (60 Gy was prescribed to PTV{sub 60}). The doses to most serial organs were found to be 1% to 3% lower and to other organs 4% to 10% lower for both techniques. Conclusions: The use of the AXB algorithm is highly recommended for IMRT and RapidArc planning for NPC cases.

  16. The Impact of Pretreatment Prostate Volume on Severe Acute Genitourinary Toxicity in Prostate Cancer Patients Treated With Intensity-Modulated Radiation Therapy

    SciTech Connect

    Aizer, Ayal A.; Anderson, Nicole S.; Oh, Steven C.; Yu, James B.; McKeon, Anne M.; Decker, Roy H.; Peschel, Richard E.

    2011-02-01

    Purpose: To assess the impact of pretreatment prostate volume on the development of severe acute genitourinary toxicity in patients undergoing intensity-modulated radiation therapy (IMRT) for prostate cancer. Methods and Materials: Between 2004 and 2007, a consecutive sample of 214 patients who underwent IMRT (75.6 Gy) for prostate cancer at two referral centers was analyzed. Prostate volumes were obtained from computed tomography scans taken during treatment simulation. Genitourinary toxicity was defined using the National Cancer Institute Common Terminology Criteria for Adverse Events Version 3.0 guidelines. Acute toxicity was defined as any toxicity originating within 90 days of the completion of radiation therapy. Patients were characterized as having a small or large prostate depending on whether their prostate volume was less than or greater than 50 cm{sup 3}, respectively. Genitourinary toxicity was compared in these groups using the chi-square or Fisher's exact test, as appropriate. Bivariate and multivariate logistic regression analysis was performed to further assess the impact of prostate volume on severe (Grade 3) acute genitourinary toxicity. Results: Patients with large prostates (>50 cm{sup 3}) had a higher rate of acute Grade 3 genitourinary toxicity (p = .02). Prostate volume was predictive of the likelihood of developing acute Grade 3 genitourinary toxicity on bivariate (p = .004) and multivariate (p = .006) logistic regression. Every 27.0 cm{sup 3} increase in prostate volume doubled the likelihood of acute Grade 3 genitourinary toxicity. Conclusions: Patients with larger prostates are at higher risk for the development of severe acute genitourinary toxicity when treated with IMRT for prostate cancer.

  17. Analysis of dose distribution in organs at risk in patients with prostate cancer treated with the intensity-modulated radiation therapy and arc technique

    PubMed Central

    Biegała, Michał; Hydzik, Adam

    2016-01-01

    This study describes a comparative analysis of treatment plans in 48 patients with prostate cancer treated with ionizing radiation. Each patient was subjected to the intensity-modulated radiation therapy (IMRT) and arc technique. In each treatment plan, the organs at risk were assessed: the urinary bladder, rectum and heads of the femur, as well as the volume of normal tissue. The following features were compared: treatment time, conformity indices for the planning target volume, mean doses and standard deviation in organs at risk, and organ volumes for each particular dose. The treatment period in the arc technique is 13.7% shorter than in the IMRT technique. Comparing the results of the IMRT and arc techniques (arc vs. IMRT), the mean values were 29.21 ± 12.91 Gy versus 28.36 ± 13.79 Gy for the bladder, 20.36 ± 3.16 Gy versus 18.17 ± 5.11 Gy for the right femoral head, and 18.98 ± 3.28 Gy versus 16.67 ± 5.15 Gy for the left femoral head. For the rectum, lower values were obtained after application of the arc technique, not the IMRT technique: 35.84 ± 12.28 Gy versus 35.90 ± 13.05 Gy. The results indicate that the applied therapy has a statistically significant influence on the volume for a particular dose with regard to the urinary bladder. It is advisable to apply the IMRT technique to patients who need the femur heads and urinary bladder protected by exposing them to low irradiation doses. PMID:27651567

  18. Clinical Toxicities and Dosimetric Parameters After Whole-Pelvis Versus Prostate-Only Intensity-Modulated Radiation Therapy for Prostate Cancer

    SciTech Connect

    Deville, Curtiland; Both, Stefan; Hwang, Wei-Ting; Tochner, Zelig; Vapiwala, Neha

    2010-11-01

    Purpose: To assess whether whole-pelvis (WP) intensity-modulated radiation therapy (IMRT) is associated with increased toxicity compared with prostate-only (PO) IMRT. Methods and Materials: We retrospectively analyzed all patients with prostate cancer undergoing definitive IMRT to 79.2 Gy with concurrent androgen deprivation at our institution from November 2005 to May 2007 with a minimum follow-up of 12 months. Thirty patients received initial WP IMRT to 45 Gy in 1.8-Gy fractions, and thirty patients received PO IMRT. Study patients underwent computed tomography simulation and treatment planning by use of predefined dose constraints. Bladder and rectal dose-volume histograms, maximum genitourinary (GU) and gastrointestinal (GI) Radiation Therapy Oncology Group toxicity grade, and late Grade 2 or greater toxicity-free survival curves were compared between the two groups by use of the Student t test, Fisher exact test, and Kaplan-Meier curve, respectively. Results: Bladder minimum dose, mean dose, median dose, volume receiving 5 Gy, volume receiving 20 Gy, volume receiving 40 Gy, and volume receiving 45 Gy and rectal minimum dose, median dose, and volume receiving 20 Gy were significantly increased in the WP group (all p values < 0.01). Maximum acute GI toxicity was limited to Grade 2 and was significantly increased in the WP group at 50% vs. 13% the PO group (p = 0.006). With a median follow-up of 24 months (range, 12-35 months), there was no difference in late GI toxicity (p = 0.884) or in acute or late GU toxicity. Conclusions: Despite dosimetric differences in the volume of bowel, bladder, and rectum irradiated in the low-dose and median-dose regions, WP IMRT results only in a clinically significant increase in acute GI toxicity, in comparison to PO IMRT, with no difference in GU or late GI toxicity.

  19. A Comparison of Acute and Chronic Toxicity for Men With Low-Risk Prostate Cancer Treated With Intensity-Modulated Radiation Therapy or {sup 125}I Permanent Implant

    SciTech Connect

    Eade, Thomas N.; Horwitz, Eric M. Ruth, Karen; Buyyounouski, Mark K.; D'Ambrosio, David J.; Feigenberg, Steven J.; Chen, David Y.T.; Pollack, Alan

    2008-06-01

    Purpose: To compare the toxicity and biochemical outcomes of intensity-modulated radiation therapy (IMRT) and {sup 125}I transperineal permanent prostate seed implant ({sup 125}I) for patients with low-risk prostate cancer. Methods and Materials: Between 1998 and 2004, a total of 374 low-risk patients (prostate-specific antigen < 10 ng/ml, T1c-T2b, Gleason score of 6 or less, and no neoadjuvant hormones) were treated at Fox Chase Cancer Center (216 IMRT and 158 {sup 125}I patients). Median follow-up was 43 months for IMRT and 48 months for {sup 125}I. The IMRT prescription dose ranged from 74-78 Gy, and {sup 125}I prescription was 145 Gy. Acute and late gastrointestinal (GI) and genitourinary (GU) toxicity was recorded by using a modified Radiation Therapy Oncology Group scale. Freedom from biochemical failure was defined by using the Phoenix definition (prostate-specific antigen nadir + 2.0 ng/ml). Results: Patients treated by using IMRT were more likely to be older and have a higher baseline American Urological Association symptom index score, history of previous transurethral resection of the prostate, and larger prostate volumes. On multivariate analysis, IMRT was an independent predictor of lower acute and late Grade 2 or higher GU toxicity and late Grade 2 or higher GI toxicity. Three-year actuarial estimates of late Grade 2 or higher toxicity were 2.4% for GI and 3.5% for GU by using IMRT compared with 7.7% for GI and 19.2% for GU for {sup 125}I, respectively. Four-year actuarial estimates of freedom from biochemical failure were 99.5% for IMRT and 93.5% for {sup 125}I (p = 0.09). Conclusions: The IMRT and {sup 125}I produce similar outcomes, although IMRT appears to have less acute and late toxicity.

  20. Analysis of dose distribution in organs at risk in patients with prostate cancer treated with the intensity-modulated radiation therapy and arc technique.

    PubMed

    Biegała, Michał; Hydzik, Adam

    2016-01-01

    This study describes a comparative analysis of treatment plans in 48 patients with prostate cancer treated with ionizing radiation. Each patient was subjected to the intensity-modulated radiation therapy (IMRT) and arc technique. In each treatment plan, the organs at risk were assessed: the urinary bladder, rectum and heads of the femur, as well as the volume of normal tissue. The following features were compared: treatment time, conformity indices for the planning target volume, mean doses and standard deviation in organs at risk, and organ volumes for each particular dose. The treatment period in the arc technique is 13.7% shorter than in the IMRT technique. Comparing the results of the IMRT and arc techniques (arc vs. IMRT), the mean values were 29.21 ± 12.91 Gy versus 28.36 ± 13.79 Gy for the bladder, 20.36 ± 3.16 Gy versus 18.17 ± 5.11 Gy for the right femoral head, and 18.98 ± 3.28 Gy versus 16.67 ± 5.15 Gy for the left femoral head. For the rectum, lower values were obtained after application of the arc technique, not the IMRT technique: 35.84 ± 12.28 Gy versus 35.90 ± 13.05 Gy. The results indicate that the applied therapy has a statistically significant influence on the volume for a particular dose with regard to the urinary bladder. It is advisable to apply the IMRT technique to patients who need the femur heads and urinary bladder protected by exposing them to low irradiation doses. PMID:27651567

  1. Phase II Trial of Hyperfractionated Intensity-Modulated Radiation Therapy and Concurrent Weekly Cisplatin for Stage III and IVa Head-and-Neck Cancer

    SciTech Connect

    Maguire, Patrick D.; Papagikos, Michael; Hamann, Sue; Neal, Charles; Meyerson, Martin; Hayes, Neil; Ungaro, Peter; Kotz, Kenneth; Couch, Marion; Pollock, Hoke; Tepper, Joel

    2011-03-15

    Purpose: To investigate a novel chemoradiation regimen designed to maximize locoregional control (LRC) and minimize toxicity for patients with advanced head-and-neck squamous cell carcinoma (HNSCC). Methods and Materials: Patients received hyperfractionated intensity modulated radiation therapy (HIMRT) in 1.25-Gy fractions b.i.d. to 70 Gy to high-risk planning target volume (PTV). Intermediate and low-risk PTVs received 60 Gy and 50 Gy, at 1.07, and 0.89 Gy per fraction, respectively. Concurrent cisplatin 33 mg/m{sup 2}/week was started Week 1. Patients completed the Quality of Life Radiation Therapy Instrument pretreatment (PRE), at end of treatment (EOT), and at 1, 3, 6, 9, and 12 months. Overall survival (OS), progression-free (PFS), LRC, and toxicities were assessed. Results: Of 39 patients, 30 (77%) were alive without disease at median follow-up of 37.5 months. Actuarial 3-year OS, PFS, and LRC were 80%, 82%, and 87%, respectively. No failures occurred in the electively irradiated neck and there were no isolated neck failures. Head and neck QOL was significantly worse in 18 of 35 patients (51%): mean 7.8 PRE vs. 3.9 EOT. By month 1, H and N QOL returned near baseline (mean 6.2, SD = 1.7). The most common acute Grade 3+ toxicities were mucositis (38%), fatigue (28%), dysphagia (28%), and leukopenia (26%). Conclusions: Hyperfractionated IMRT with low-dose weekly cisplatin resulted in good LRC with acceptable toxicity and QOL. Lack of elective nodal failures despite very low dose per fraction has led to an attempt to further minimize toxicity by reducing elective nodal doses in our subsequent protocol.

  2. Analysis of dose distribution in organs at risk in patients with prostate cancer treated with the intensity-modulated radiation therapy and arc technique

    PubMed Central

    Biegała, Michał; Hydzik, Adam

    2016-01-01

    This study describes a comparative analysis of treatment plans in 48 patients with prostate cancer treated with ionizing radiation. Each patient was subjected to the intensity-modulated radiation therapy (IMRT) and arc technique. In each treatment plan, the organs at risk were assessed: the urinary bladder, rectum and heads of the femur, as well as the volume of normal tissue. The following features were compared: treatment time, conformity indices for the planning target volume, mean doses and standard deviation in organs at risk, and organ volumes for each particular dose. The treatment period in the arc technique is 13.7% shorter than in the IMRT technique. Comparing the results of the IMRT and arc techniques (arc vs. IMRT), the mean values were 29.21 ± 12.91 Gy versus 28.36 ± 13.79 Gy for the bladder, 20.36 ± 3.16 Gy versus 18.17 ± 5.11 Gy for the right femoral head, and 18.98 ± 3.28 Gy versus 16.67 ± 5.15 Gy for the left femoral head. For the rectum, lower values were obtained after application of the arc technique, not the IMRT technique: 35.84 ± 12.28 Gy versus 35.90 ± 13.05 Gy. The results indicate that the applied therapy has a statistically significant influence on the volume for a particular dose with regard to the urinary bladder. It is advisable to apply the IMRT technique to patients who need the femur heads and urinary bladder protected by exposing them to low irradiation doses.

  3. Five-year Results of Whole Breast Intensity Modulated Radiation Therapy for the Treatment of Early Stage Breast Cancer: The Fox Chase Cancer Center Experience

    SciTech Connect

    Keller, Lanea M.M.; Sopka, Dennis M.; Li Tianyu; Klayton, Tracy; Li Jinsheng; Anderson, Penny R.; Bleicher, Richard J.; Sigurdson, Elin R.; Freedman, Gary M.

    2012-11-15

    Purpose: To report the 5-year outcomes using whole-breast intensity-modulated radiation therapy (IMRT) for the treatment of early-stage-breast cancer at the Fox Chase Cancer Center. Methods and Materials: A total of 946 women with early-stage breast cancer (stage 0, I, or II) were treated with IMRT after surgery with or without systemic therapy from 2003-2010. Whole-breast radiation was delivered via an IMRT technique with a median whole-breast radiation dose of 46 Gy and median tumor bed boost of 14 Gy. Endpoints included local-regional recurrence, cosmesis, and late complications. Results: With a median follow-up of 31 months (range, 1-97 months), there were 12 ipsilateral breast tumor recurrences (IBTR) and one locoregional recurrence. The 5-year actuarial IBTR and locoregional recurrence rates were 2.0% and 2.4%. Physician-reported cosmestic outcomes were available for 645 patients: 63% were considered 'excellent', 33% 'good', and <1.5% 'fair/poor'. For physician-reported cosmesis, boost doses {>=}16 Gy, breast size >900 cc, or boost volumes >34 cc were significantly associated with a 'fair/poor' cosmetic outcome. Fibrosis, edema, erythema, and telangectasia were also associated with 'fair/poor' physician-reported cosmesis; erythema and telangectasia remained significant on multivariate analysis. Patient-reported cosmesis was available for 548 patients, and 33%, 50%, and 17% of patients reported 'excellent', 'good', and 'fair/poor' cosmesis, respectively. The use of a boost and increased boost volume: breast volume ratio were significantly associated with 'fair/poor' outcomes. No parameter for patient-reported cosmesis was significant on multivariate analysis. The chances of experiencing a treatment related effect was significantly associated with a boost dose {>=}16 Gy, receipt of chemotherapy and endocrine therapy, large breast size, and electron boost energy. Conclusions: Whole-breast IMRT is associated with very low rates of local recurrence at 5 years, 83

  4. Early Clinical Outcomes and Toxicity of Intensity Modulated Versus Conventional Pelvic Radiation Therapy for Locally Advanced Cervix Carcinoma: A Prospective Randomized Study

    SciTech Connect

    Gandhi, Ajeet Kumar; Sharma, Daya Nand; Rath, Goura Kisor; Julka, Pramod Kumar; Subramani, Vellaiyan; Sharma, Seema; Manigandan, Durai; Laviraj, M.A.; Kumar, Sunesh; Thulkar, Sanjay

    2013-11-01

    Purpose: To evaluate the toxicity and clinical outcome in patients with locally advanced cervical cancer (LACC) treated with whole pelvic conventional radiation therapy (WP-CRT) versus intensity modulated radiation therapy (WP-IMRT). Methods and Materials: Between January 2010 and January 2012, 44 patients with International Federation of Gynecology and Obstetrics (FIGO 2009) stage IIB-IIIB squamous cell carcinoma of the cervix were randomized to receive 50.4 Gy in 28 fractions delivered via either WP-CRT or WP-IMRT with concurrent weekly cisplatin 40 mg/m{sup 2}. Acute toxicity was graded according to the Common Terminology Criteria for Adverse Events, version 3.0, and late toxicity was graded according to the Radiation Therapy Oncology Group system. The primary and secondary endpoints were acute gastrointestinal toxicity and disease-free survival, respectively. Results: Of 44 patients, 22 patients received WP-CRT and 22 received WP-IMRT. In the WP-CRT arm, 13 patients had stage IIB disease and 9 had stage IIIB disease; in the IMRT arm, 12 patients had stage IIB disease and 10 had stage IIIB disease. The median follow-up time in the WP-CRT arm was 21.7 months (range, 10.7-37.4 months), and in the WP-IMRT arm it was 21.6 months (range, 7.7-34.4 months). At 27 months, disease-free survival was 79.4% in the WP-CRT group versus 60% in the WP-IMRT group (P=.651), and overall survival was 76% in the WP-CRT group versus 85.7% in the WP-IMRT group (P=.645). Patients in the WP-IMRT arm experienced significantly fewer grade ≥2 acute gastrointestinal toxicities (31.8% vs 63.6%, P=.034) and grade ≥3 gastrointestinal toxicities (4.5% vs 27.3%, P=.047) than did patients receiving WP-CRT and had less chronic gastrointestinal toxicity (13.6% vs 50%, P=.011). Conclusion: WP-IMRT is associated with significantly less toxicity compared with WP-CRT and has a comparable clinical outcome. Further studies with larger sample sizes and longer follow-up times are warranted to justify

  5. [Radiation therapy for prostate cancer in modern era].

    PubMed

    Nishimura, Takuya

    2016-01-01

    The purpose of this paper is to provide overview of the latest research trend on technique of radiation therapy of prostate cancer. Three-dimensional conformal radiation therapy(3D -CRT) has achieved better outcome of treatment for prostate cancer than 2-dimensional radiation therapy. Intensity-modulated radiation therapy(IMRT) is considered to be superior to 3D-CRT at certain points. Image-guided (IG) radiation therapy (IGRT), mainly IG-IMRT, is investigated what kind of influence it has on an outcome, both tumor control rate and adverse events. Particle therapy is a most ideal therapy theoretically. There is, however, few evidence which revealed that the therapy is superior to any other modalities.

  6. [Radiation therapy and redox imaging].

    PubMed

    Matsumoto, Ken-ichiro

    2015-01-01

    Radiation therapy kills cancer cells in part by flood of free radicals. Radiation ionizes and/or excites water molecules to create highly reactive species, i.e. free radicals and/or reactive oxygen species. Free radical chain reactions oxidize biologically important molecules and thereby disrupt their function. Tissue oxygen and/or redox status, which can influence the course of the free radical chain reaction, can affect the efficacy of radiation therapy. Prior observation of tissue oxygen and/or redox status is helpful for planning a safe and efficient course of radiation therapy. Magnetic resonance-based redox imaging techniques, which can estimate tissue redox status non-invasively, have been developed not only for diagnostic information but also for estimating the efficacy of treatment. Redox imaging is now spotlighted to achieve radiation theranostics. PMID:25948308

  7. [Radiation therapy and redox imaging].

    PubMed

    Matsumoto, Ken-ichiro

    2015-01-01

    Radiation therapy kills cancer cells in part by flood of free radicals. Radiation ionizes and/or excites water molecules to create highly reactive species, i.e. free radicals and/or reactive oxygen species. Free radical chain reactions oxidize biologically important molecules and thereby disrupt their function. Tissue oxygen and/or redox status, which can influence the course of the free radical chain reaction, can affect the efficacy of radiation therapy. Prior observation of tissue oxygen and/or redox status is helpful for planning a safe and efficient course of radiation therapy. Magnetic resonance-based redox imaging techniques, which can estimate tissue redox status non-invasively, have been developed not only for diagnostic information but also for estimating the efficacy of treatment. Redox imaging is now spotlighted to achieve radiation theranostics.

  8. Particle therapy for cancers: a new weapon in radiation therapy.

    PubMed

    Jiang, Guo-Liang

    2012-06-01

    Particle irradiation started to draw attention in the past decade and has now become a hotspot in the radiation oncology community. This article reviews the most advanced developments in particle irradiation, focusing on the characteristics of proton and carbon ions in radiation physics and radiobiology. The Bragg peak of physical dose distribution causes proton and carbon beams to optimally meet the requirement for cancer irradiation because the Bragg peak permits the accurate concentration of the dose on the tumor, thus sparing the adjacent normal tissues. Moreover, carbon ion has more radiobiological benefits than photon and proton beams. These benefits include stronger sterilization effects on intrinsic radio-resistant tumors and more effective killing of hypoxic, G(0), and S phase cells. Compared with the most advanced radiation techniques using photon, such as three-dimensional conformal radiation therapy and intensity-modulated radiation therapy, proton therapy has yielded more promising outcomes in local control and survival for head and neck cancers, prostate carcinoma, and pediatric cancers. Carbon therapy in Japan showed even more promising results than proton therapy. The local controls and overall survivals were as good as that treated by surgery in early stages of non-small cell lung cancer, hepatocellular carcinoma, prostate carcinoma, and head and neck cancers, especially for such highly resistant tumors as melanoma. The non-invasive nature of particle therapy affords more patients with chances to receive and benefit from treatment. Particle therapy is gradually getting attention from the oncology community. However, the cost of particle therapy facilities has limited the worldwide use of this technology.

  9. Comparison of the performance between portal dosimetry and a commercial two-dimensional array system on pretreatment quality assurance for volumetric-modulated arc and intensity-modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Kim, Yon-Lae; Chung, Jin-Beom; Kim, Jae-Sung; Lee, Jeong-Woo; Choi, Kyoung-Sik

    2014-04-01

    The aim of this study was to compare the dosimetric performance and to evaluate the pretreatment quality assurance (QA) of a portal dosimetry and a commercial two-dimensional (2-D) array system. In the characteristics comparison study, the measured values for the dose linearity, dose rate response, reproducibility, and field size dependence for 6-MV photon beams were analyzed for both detector systems. To perform the qualitative evaluations of the 10 IMRT and the 10 VMAT plans, we used the Gamma index for quantifying the agreement between calculations and measurements. The performance estimates for both systems show that overall, minimal differences in the dosimetric characteristics exist between the Electron portal imaging device (EPID) and 2-D array system. In the qualitative analysis for pretreatment quality assurance, the EPID and 2-D array system yield similar passing rate results for the majority of clinical Intensity-modulated radiation therapy (IMRT) and Volumetric-modulated arc therapy (VMAT) cases. These results were satisfactory for IMRT and VMAT fields and were within the acceptable criteria of γ%≤1, γ avg <0.5. The EPDI and the 2-D array systems showed comparable dosimetric results. In this study, the results revealed both systems to be suitable for patient-specific QA measurements for IMRT and VMAT. We conclude that, depending on the status of clinic, both systems can be used interchangeably for routine pretreatment QA.

  10. Hemithoracic Intensity Modulated Radiation Therapy After Pleurectomy/Decortication for Malignant Pleural Mesothelioma: Toxicity, Patterns of Failure, and a Matched Survival Analysis

    SciTech Connect

    Chance, William W.; Rice, David C.; Allen, Pamela K.; Tsao, Anne S.; Liao, Zhongxing; Chang, Joe Y.; Tang, Chad; Pan, Hubert Y.; Welsh, James W.; Mehran, Reza J.; Gomez, Daniel R.

    2015-01-01

    Purpose: To investigate safety, efficacy, and recurrence after hemithoracic intensity modulated radiation therapy after pleurectomy/decortication (PD-IMRT) and after extrapleural pneumonectomy (EPP-IMRT). Methods and Materials: In 2009-2013, 24 patients with mesothelioma underwent PD-IMRT to the involved hemithorax to a dose of 45 Gy, with an optional integrated boost; 22 also received chemotherapy. Toxicity was scored with the Common Terminology Criteria for Adverse Events v4.0. Pulmonary function was compared at baseline, after surgery, and after IMRT. Kaplan-Meier analysis was used to calculate overall survival (OS), progression-free survival (PFS), time to locoregional failure, and time to distant metastasis. Failures were in-field, marginal, or out of field. Outcomes were compared with those of 24 patients, matched for age, nodal status, performance status, and chemotherapy, who had received EPP-IMRT. Results: Median follow-up time was 12.2 months. Grade 3 toxicity rates were 8% skin and 8% pulmonary. Pulmonary function declined from baseline to after surgery (by 21% for forced vital capacity, 16% for forced expiratory volume in 1 second, and 19% for lung diffusion of carbon monoxide [P for all = .01]) and declined still further after IMRT (by 31% for forced vital capacity [P=.02], 25% for forced expiratory volume in 1 second [P=.01], and 30% for lung diffusion of carbon monoxide [P=.01]). The OS and PFS rates were 76% and 67%, respectively, at 1 year and 56% and 34% at 2 years. Median OS (28.4 vs 14.2 months, P=.04) and median PFS (16.4 vs 8.2 months, P=.01) favored PD-IMRT versus EPP-IMRT. No differences were found in grade 4-5 toxicity (0 of 24 vs 3 of 24, P=.23), median time to locoregional failure (18.7 months vs not reached, P not calculable), or median time to distant metastasis (18.8 vs 11.8 months, P=.12). Conclusions: Hemithoracic intensity modulated radiation therapy after pleurectomy/decortication produced little high-grade toxicity but

  11. Correlating planned radiation dose to the cochlea with primary site and tumor stage in patients with head and neck cancer treated with intensity-modulated radiation therapy

    SciTech Connect

    Zhang, Jeanette; Qureshi, Muhammad M.; Kovalchuk, Nataliya; Truong, Minh Tam

    2014-04-01

    The aim of the study was to determine tumor characteristics that predict higher planned radiation (RT) dose to the cochlea in patients with head and neck cancer (HNC) treated with intensity-modulated radiotherapy (IMRT). From 2004 to 2012, 99 patients with HNC underwent definitive IMRT to a median dose of 69.96 Gy in 33 fractions, with the right and left cochlea-vestibular apparatus contoured for IMRT optimization as avoidance structures. If disease involvement was adjacent to the cochlea, preference was given to tumor coverage by prescription dose. Descriptive statistics were calculated for dose-volume histogram planning data, and mean planning dose to the cochlea (from left or right cochlea, receiving the greater amount of RT dose) was correlated to primary site and tumor stage. Mean (standard deviation) cochlear volume was 1.0 (0.60) cm{sup 3} with maximum and mean planned doses of 31.9 (17.5) Gy and 22.1 (13.7) Gy, respectively. Mean planned dose (Gy) to cochlea by tumor site was as follows: oral cavity (18.6, 14.4), oropharynx (21.7, 9.1), nasopharynx (36.3, 10.4), hypopharynx (14.9, 7.1), larynx (2.1, 0.62), others including the parotid gland, temporal bone, and paranasal sinus (33.6, 24.0), and unknown primary (25.6, 6.7). Average mean planned dose (Gy) to the cochlea in T0-T2 and T3-T4 disease was 22.0 and 29.2 Gy, respectively (p = 0.019). By site, a significant difference was noted for nasopharynx and others (31.6 and 50.7, p = 0.012) but not for oropharynx, oral cavity, and hypopharynx. Advanced T category predicted for higher mean cochlear dose, particularly for nasopharyngeal, parotid gland, temporal bone, and paranasal sinus HNC sites.

  12. Intensity-modulated radiation therapy (IMRT) by a dynamic-jaws-only (DJO) technique in rotate-translate mode.

    PubMed

    Webb, S; Poludniowski, G

    2010-11-01

    In this note it is shown how the use of a rotate-translate methodology employing only jaws, which move dynamically with the beam continuously on, can lead to a delivery of a two-dimensional intensity-modulated beam wherein the modulation is spatially slowly varying. All that is necessary is that a pair of jaws sweep across the face of an accelerator with the aperture between them suitably varying in width and defined by a position-time trajectory function for each jaw. This is then repeated, at the same gantry angle, with the jaws rotated to a different head twist and with a different jaw-pair trajectory for a number of sequential head twists. The result of superposing the individual beams at the same gantry angle is a two-dimensional variation of fluence at this gantry angle. A powerful theorem is developed which shows that there is an infinity of jaw trajectories for some specified number of head twists, each of which corresponds to the same delivered two-dimensional modulated beam.

  13. Late Toxicity After Intensity-Modulated Radiation Therapy for Localized Prostate Cancer: An Exploration of Dose-Volume Histogram Parameters to Limit Genitourinary and Gastrointestinal Toxicity

    SciTech Connect

    Pederson, Aaron W.; Fricano, Janine; Correa, David; Pelizzari, Charles A.; Liauw, Stanley L.

    2012-01-01

    Purpose: To characterize the late genitourinary (GU) and gastrointestinal (GI) toxicity for prostate cancer patients treated with intensity-modulated radiation therapy (IMRT) and propose dose-volume histogram (DVH) guidelines to limit late treatment-related toxicity. Methods and Materials: In this study 296 consecutive men were treated with IMRT for adenocarcinoma of the prostate. Most patients received treatment to the prostate with or without proximal seminal vesicles (90%), to a median dose of 76 Gy. Concurrent androgen deprivation therapy was given to 150 men (51%) for a median of 4 months. Late toxicity was defined by Common Toxicity Criteria version 3.0 as greater than 3 months after radiation therapy completion. Four groupings of DVH parameters were defined, based on the percentage of rectal or bladder tissue receiving 70 Gy (V{sub 70}), 65 Gy (V{sub 65}), and 40 Gy (V{sub 40}). These DVH groupings, as well as clinical and treatment characteristics, were correlated to maximal Grade 2+ GU and GI toxicity. Results: With a median follow-up of 41 months, the 4-year freedom from maximal Grade 2+ late toxicity was 81% and 91% for GU and GI systems, respectively, and by last follow-up, the rates of Grade 2+ GU and GI toxicity were 9% and 5%, respectively. On multivariate analysis, whole-pelvic IMRT was associated with Grade 2+ GU toxicity and age was associated with Grade 2+ GI toxicity. Freedom from Grade 2+ GI toxicity at 4 years was 100% for men with rectal V{sub 70} {<=}10%, V{sub 65} {<=}20%, and V{sub 40} {<=}40%; 92% for men with rectal V{sub 70} {<=}20%, V{sub 65} {<=}40%, and V{sub 40} {<=}80%; and 85% for men exceeding these criteria (p = 0.13). These criteria were more highly associated with GI toxicity in men aged {>=}70 years (p = 0.07). No bladder dose-volume relationships were associated with the risk of GU toxicity. Conclusions: IMRT is associated with low rates of severe GU or GI toxicity after treatment for prostate cancer. Rectal dose constraints

  14. A dosimetric evaluation of dose escalation for the radical treatment of locally advanced vulvar cancer by intensity-modulated radiation therapy

    SciTech Connect

    Bloemers, Monique C.W.M.; Portelance, Lorraine; Ruo, Russell; Parker, William; Souhami, Luis

    2012-10-01

    The purpose of this planning study was to determine whether intensity-modulated radiation therapy (IMRT) reduces the radiation dose to organs at risk (OAR) when compared with 3D conventional radiation therapy (3D-CRT) in patients with vulvar cancer treated by irradiation. This study also investigated the use of sequential IMRT boost (seq-IMRT) and simultaneous integrated boost (SIB-IMRT) for dose escalation in the treatment of locally advanced vulvar cancer. Five vulvar cancer patients treated in the postoperative setting and 5 patients treated with definitive intent (def-group) were evaluated. For the postoperative group, 3D-CRT and IMRT plans to a total dose (TD) of 45 Gy were generated. For the def-group, 4 plans were generated: a 3D-CRT and an IMRT plan to a TD of 56.4 Gy, a SIB-IMRT plan to a TD of 56 Gy, and a SIB-IMRT with dose escalation (SIB-IMRT-esc): TD of 67.2 Gy. Mean dose and dose-volume histograms were compared using Student's t-test. IMRT significantly (all p < 0.05) reduced the D{sub mean}, V30, and V40 for all OAR in the adjuvant setting. The V45 was also significantly reduced for all OAR except the bladder. For patients treated in the def-group, all IMRT techniques significantly reduced the D{sub mean}, V40, and V45 for all OAR. The mean femur doses with SIB-IMRT and SIB-IMRT-esc were 47% and 49% lower compared with 3D-CRT. SIB-IMRT-esc reduced the doses to the OAR compared with seq-3D-CRT but increased the D{sub max.} for the small bowel, rectum, and bladder. IMRT reduces the dose to the OAR compared with 3D-CRT in patients with vulvar cancer receiving irradiation to a volume covering the vulvar region and nodal areas without compromising the dosimetric coverage of the target volume. IMRT for vulvar cancer is feasible and an attractive option for dose escalation studies.

  15. Normal Tissue Complication Probability Analysis of Acute Gastrointestinal Toxicity in Cervical Cancer Patients Undergoing Intensity Modulated Radiation Therapy and Concurrent Cisplatin

    SciTech Connect

    Simpson, Daniel R.; Song, William Y.; Moiseenko, Vitali; Rose, Brent S.; Yashar, Catheryn M.; Mundt, Arno J.; Mell, Loren K.

    2012-05-01

    Purpose: To test the hypothesis that increased bowel radiation dose is associated with acute gastrointestinal (GI) toxicity in cervical cancer patients undergoing concurrent chemotherapy and intensity-modulated radiation therapy (IMRT), using a previously derived normal tissue complication probability (NTCP) model. Methods: Fifty patients with Stage I-III cervical cancer undergoing IMRT and concurrent weekly cisplatin were analyzed. Acute GI toxicity was graded using the Radiation Therapy Oncology Group scale, excluding upper GI events. A logistic model was used to test correlations between acute GI toxicity and bowel dosimetric parameters. The primary objective was to test the association between Grade {>=}2 GI toxicity and the volume of bowel receiving {>=}45 Gy (V{sub 45}) using the logistic model. Results: Twenty-three patients (46%) had Grade {>=}2 GI toxicity. The mean (SD) V{sub 45} was 143 mL (99). The mean V{sub 45} values for patients with and without Grade {>=}2 GI toxicity were 176 vs. 115 mL, respectively. Twenty patients (40%) had V{sub 45} >150 mL. The proportion of patients with Grade {>=}2 GI toxicity with and without V{sub 45} >150 mL was 65% vs. 33% (p = 0.03). Logistic model parameter estimates V50 and {gamma} were 161 mL (95% confidence interval [CI] 60-399) and 0.31 (95% CI 0.04-0.63), respectively. On multivariable logistic regression, increased V{sub 45} was associated with an increased odds of Grade {>=}2 GI toxicity (odds ratio 2.19 per 100 mL, 95% CI 1.04-4.63, p = 0.04). Conclusions: Our results support the hypothesis that increasing bowel V{sub 45} is correlated with increased GI toxicity in cervical cancer patients undergoing IMRT and concurrent cisplatin. Reducing bowel V{sub 45} could reduce the risk of Grade {>=}2 GI toxicity by approximately 50% per 100 mL of bowel spared.

  16. Pirfenidone enhances the efficacy of combined radiation and sunitinib therapy

    SciTech Connect

    Choi, Seo-Hyun; Nam, Jae-Kyung; Jang, Junho; Lee, Hae-June Lee, Yoon-Jin

    2015-06-26

    Radiotherapy is a widely used treatment for many tumors. Combination therapy using anti-angiogenic agents and radiation has shown promise; however, these combined therapies are reported to have many limitations in clinical trials. Here, we show that radiation transformed tumor endothelial cells (ECs) to fibroblasts, resulting in reduced vascular endothelial growth factor (VEGF) response and increased Snail1, Twist1, Type I collagen, and transforming growth factor (TGF)-β release. Irradiation of radioresistant Lewis lung carcinoma (LLC) tumors greater than 250 mm{sup 3} increased collagen levels, particularly in large tumor vessels. Furthermore, concomitant sunitinib therapy did not show a significant difference in tumor inhibition versus radiation alone. Thus, we evaluated multimodal therapy that combined pirfenidone, an inhibitor of TGF-induced collagen production, with radiation and sunitinib treatment. This trimodal therapy significantly reduced tumor growth, as compared to radiation alone. Immunohistochemical analysis revealed that radiation-induced collagen deposition and tumor microvessel density were significantly reduced with trimodal therapy, as compared to radiation alone. These data suggest that combined therapy using pirfenidone may modulate the radiation-altered tumor microenvironment, thereby enhancing the efficacy of radiation therapy and concurrent chemotherapy. - Highlights: • Radiation changes tumor endothelial cells to fibroblasts. • Radio-resistant tumors contain collagen deposits, especially in tumor vessels. • Pirfenidone enhances the efficacy of combined radiation and sunitinib therapy. • Pirfenidone reduces radiation-induced collagen deposits in tumors.

  17. SU-E-T-424: Dosimetric Verification of Modulated Electron Radiation Therapy Delivered Using An Electron Specific Multileaf Collimator for Treatment of Scalp Cases

    SciTech Connect

    Eldib, A; Jin, L; Martin, J; Li, J; Chibani, O; Galloway, T; Ma, C; Mora, G

    2014-06-01

    Purpose: Modulated electron radiotherapy (MERT) has the potential to achieve better treatment outcome for shallow tumors such as those of breast and scalp. In a separate study with scalp lesions, MERT was compared to volumetric modulated arc therapy. Our results showed a reduction in the dose reaching the brain with MERT. However dose calculation accuracy and delivery efficiency challenges remain. Thus in the current study we proceed to add more cases to demonstrate MERT beneficial outcome and its delivery accuracy using an electron specific multileaf collimator (eMLC). Methods: We have used the MCBEAM code for treatment head simulation and for generating phase space files to be used as radiation source input for our Monte Carlo based treatment planning system (MC TPS). MCPLAN code is used for calculation of patient specific dose deposition coefficient and for final MERT plan dose calculation. An in-house developed optimization code is used for the optimization process. MERT plans were generated for real patients and head and neck phantom. Film was used for dosimetric verification. The film was cut following the contour of the curved phantom surface and then sealed with black masking tape. In the measurement, the sealed film packet was sandwiched between two adjacent slabs of the head and neck phantom. The measured 2D dose distribution was then compared with calculations. Results: The eMLC allows effective treatment of scalps with multi-lesions spreading around the patient head, which was usually difficult to plan or very time consuming with conventional applicators. MERT continues to show better reduction in the brain dose. The dosimetric measurements showed slight discrepancy, which was attributed to the film setup. Conclusion: MERT can improve treatment plan quality for patients with scalp cancers. Our in-house MC TPS is capable of performing treatment planning and accurate dose calculation for MERT using the eMLC.

  18. The effect of uterine motion and uterine margins on target and normal tissue doses in intensity modulated radiation therapy of cervical cancer

    NASA Astrophysics Data System (ADS)

    Gordon, J. J.; Weiss, E.; Abayomi, O. K.; Siebers, J. V.; Dogan, N.

    2011-05-01

    In intensity modulated radiation therapy (IMRT) of cervical cancer, uterine motion can be larger than cervix motion, requiring a larger clinical target volume to planning target volume (CTV-to-PTV) margin around the uterine fundus. This work simulates different motion models and margins to estimate the dosimetric consequences. A virtual study used image sets from ten patients. Plans were created with uniform margins of 1 cm (PTVA) and 2.4 cm (PTVC), and a margin tapering from 2.4 cm at the fundus to 1 cm at the cervix (PTVB). Three inter-fraction motion models (MM) were simulated. In MM1, all structures moved with normally distributed rigid body translations. In MM2, CTV motion was progressively magnified as one moved superiorly from the cervix to the fundus. In MM3, both CTV and normal tissue motion were magnified as in MM2, modeling the scenario where normal tissues move into the void left by the mobile uterus. Plans were evaluated using static and percentile DVHs. For a conventional margin (PTVA), quasi-realistic uterine motion (MM3) reduces fundus dose by about 5 Gy and increases normal tissue volumes receiving 30-50 Gy by ~5%. A tapered CTV-to-PTV margin can restore fundus and CTV doses, but will increase normal tissue volumes receiving 30-50 Gy by a further ~5%.

  19. Define baseline levels of segments per beam for intensity-modulated radiation therapy delivery for brain, head and neck, thoracic, abdominal, and prostate applications

    SciTech Connect

    Sutton, Jordan; Kabiru, David; Neu, Michael; Turner, Lehendrick; Balter, Peter; Palmer, Matthew

    2012-04-01

    The purpose of this study was to evaluate the number of segments per beam for intensity-modulated radiation therapy (IMRT) treatments and its effects on the plan quality, treatment delivery time, machine quality assurance, and machine maintenance. We have retrospectively analyzed 24 patients treated with IMRT. Five were selected within each of the following regions: head and neck, thoracic, abdomen, and prostate. Four patients were optimized within the brain region. The clinically treated plans were re-optimized using Philips Pinnacle3 v. 8 with the direct machine parameter optimization algorithm. The number of segments per beam from the treated plan was systematically reduced by 80%, 60%, 40%, and 30%, and the following statistics have been analyzed for plan quality: target min, mean, and max doses; critical structure doses; and integral dose. We have attempted to define the smallest number of segments per beam for IMRT treatment plans. Results indicate that IMRT plans can be delivered with acceptable quality with approximately 3-6 segments per beam for the anatomical regions analyzed. A reduction in the number of segments decreases treatment delivery time, reduces machine wear and tear, and minimizes the amount of time the patient is on the treatment table, which in turn reduces the chances of intrafractional uncertainties.

  20. A quantitative analysis of intensity-modulated radiation therapy plans and comparison of homogeneity indices for the treatment of gynecological cancers

    PubMed Central

    Pathak, Pushpraj; Vashisht, Sanjeev

    2013-01-01

    The aim of present study was to evaluate the intensity-modulated radiation therapy (IMRT) plans using different homogeneity and conformity indices in gynecological cancers, as well as to compare and find out the most reliable and accurate measure of the dose homogeneity among the available indices. In this study, a cohort of 12 patients were registered for evaluation, those receiving dynamic IMRT treatment on Clinac-2300C/D linear accelerator with 15-Mega Voltage (MV) photon beam. Dynamic IMRT plans were created on Eclipse treatment planning system with Helios dose volume optimization software. Homogeneity indices (HI) such as H index, modified H index, HI index, modified HI index, and S-index (sigma-index) proposed by M Yoon et al. (2007) were calculated and compared. The values of S-index vary from 1.63 to 2.99. The results indicate that the H and HI indices and their modified versions may not provide the correct dose homogeneity information, but the S-index provides accurate information about the dose homogeneity in the Planning Target Volume (PTV). Each plan was compared with 6-MV photon energy on the basis of S-index and conformity index (CI). Organs at risk (OAR) doses with 6-MV and 15-MV beams were also reported. PMID:23776309

  1. SU-E-P-58: Dosimetric Study of Conventional Intensity-Modulated Radiotherapy and Knowledge-Based Radiation Therapy for Postoperation of Cervix Cancer

    SciTech Connect

    Ma, C; Yin, Y

    2015-06-15

    Purpose: To compare the dosimetric difference of the target volume and organs at risk(OARs) between conventional intensity-modulated radiotherapy(C-IMRT) and knowledge-based radiation therapy (KBRT) plans for cervix cancer. Methods: 39 patients with cervical cancer after surgery were randomly selected, 20 patient plans were used to create the model, the other 19 cases used for comparative evaluation. All plans were designed in Eclipse system. The prescription dose was 30.6Gy, 17 fractions, OARs dose satisfied to the clinical requirement. A paired t test was used to evaluate the differences of dose-volume histograms (DVH). Results: Comparaed to C-IMRT plan, the KBRT plan target can achieve the similar target dose coverage, D98,D95,D2,HI and CI had no difference (P≥0.05). The dose of rectum, bladder and femoral heads had no significant differences(P≥0.05). The time was used to design treatment plan was significant reduced. Conclusion: This study shows that postoperative radiotherapy of cervical KBRT plans can achieve the similar target and OARs dose, but the shorter designing time.

  2. Intensity-modulated Radiation Therapy (IMRT) for Inoperable Non-small Cell Lung Cancer: the Memorial Sloan-Kettering Cancer Center (MSKCC) Experience

    PubMed Central

    Sura, Sonal; Gupta, Vishal; Yorke, Ellen; Jackson, Andrew; Amols, Howard; Rosenzweig, Kenneth E.

    2009-01-01

    Introduction Intensity-modulated radiation therapy (IMRT) is an advanced treatment delivery technique that can improve the therapeutic dose ratio. Its use in the treatment of inoperable non-small cell lung cancer (NSCLC) has not been well studied. This report reviews our experience with IMRT for patients with inoperable NSCLC. Methods and Materials We performed a retrospective review of fifty-five patients with stage I–IIIB inoperable NSCLC treated with IMRT at our institution between 2001–2005. The study endpoints were toxicity, local control, and overall survival. Results With a median follow-up of 26 months, the 2-year local control and overall survival rates for stage I/II patients were 50% and 55% respectively. For the stage III patients, 2-year local control and overall survival rates were 58% and 58% respectively with median survival time of 25 months. Six patients (11%) experienced grade 3 acute pulmonary toxicity. There were no acute treatment-related deaths. Two patients (4%) had grade 3 or worse late treatment-related pulmonary toxicity. Conclusions IMRT treatment resulted in promising outcomes for inoperable NSCLC patients. PMID:18343515

  3. Four-Week Neoadjuvant Intensity-Modulated Radiation Therapy With Concurrent Capecitabine and Oxaliplatin in Locally Advanced Rectal Cancer Patients: A Validation Phase II Trial

    SciTech Connect

    Arbea, Leire; Martinez-Monge, Rafael; Diaz-Gonzalez, Juan A.; Moreno, Marta; Rodriguez, Javier; Hernandez, Jose Luis; Sola, Jesus Javier; Ramos, Luis Isaac; Subtil, Jose Carlos; Nunez, Jorge; Chopitea, Ana; Cambeiro, Mauricio; Gaztanaga, Miren; Garcia-Foncillas, Jesus; Aristu, Javier

    2012-06-01

    Purpose: To validate tolerance and pathological complete response rate (pCR) of a 4-week preoperative course of intensity-modulated radiation therapy (IMRT) with concurrent capecitabine and oxaliplatin (CAPOX) in patients with locally advanced rectal cancer. Methods and Materials: Patients with T3 to T4 and/or N+ rectal cancer received preoperative IMRT (47.5 Gy in 19 fractions) with concurrent capecitabine (825 mg/m{sup 2} b.i.d., Monday to Friday) and oxaliplatin (60 mg/m{sup 2} on Days 1, 8, and 15). Surgery was scheduled 4 to 6 weeks after the completion of chemoradiation. Primary end points were toxicity and pathological response rate. Local control (LC), disease-free survival (DFS), and overall survival (OS) were also analyzed. Results: A total of 100 patients were evaluated. Grade 1 to 2 proctitis was observed in 73 patients (73%). Grade 3 diarrhea occurred in 9% of the patients. Grade 3 proctitis in 18% of the first 50 patients led to reduction of the dose per fraction to 47.5 Gy in 20 treatments. The rate of Grade 3 proctitis decreased to 4% thereafter (odds ratio, 0.27). A total of 99 patients underwent surgery. A pCR was observed in 13% of the patients, major response (96-100% of histological response) in 48%, and pN downstaging in 78%. An R0 resection was performed in 97% of the patients. After a median follow-up of 55 months, the LC, DFS, and OS rates were 100%, 84%, and 87%, respectively. Conclusions: Preoperative CAPOX-IMRT therapy (47.5 Gy in 20 fractions) is feasible and safe, and produces major pathological responses in approximately 50% of patients.

  4. Prognostic significance of p16 in locoregionally advanced head and neck cancer treated with concurrent 5-fluorouracil, hydroxyurea, cetuximab and intensity-modulated radiation therapy.

    PubMed

    Tong, Charles C L; Lau, K H Vincent; Rivera, Michael; Cannan, David; Aguirre-Ghiso, Julio; Sikora, Andrew G; Gupta, Vishal; Forsythe, Kevin; Ko, Eric C; Misiukiewicz, Krzysztof; Gurudutt, Vivek; Teng, Marita S; Packer, Stuart H; Genden, Eric M; Kao, Johnny

    2012-05-01

    A phase II trial was conducted to evaluate the tolerability and efficacy of incorporating cetuximab and simultaneous integrated boost intensity-modulated radiation therapy (SIB-IMRT) into a well-described 5-fluorouracil (5-FU) and hydroxyurea (HU)-based chemoradiation regimen. Patients with stage IVa-IVb or high-risk stage III squamous cell carcinomas were enrolled. Prior organ-conserving surgery or induction chemotherapy was allowed. IMRT was administered in 1.5 Gy fractions twice daily on days 1-5 of weeks 1, 3, 5, 7±9 for a total dose of 60-73.5 Gy. Concurrent systemic therapy consisted of 5-FU (600 mg/m2), HU (500 mg BID) and cetuximab (250 mg/m2). p16INK4A expression was assessed by immunohistochemistry. From January 2007 to January 2010, 65 patients (61 with stage IV disease; 31 with oropharyngeal primaries) were enrolled. At a median follow-up of 28 months, 2-year locoregional control, distant control, progression-free survival, event-free survival and overall survival were 79, 83, 72, 63 and 80%, respectively. In 48 patients with available pre-treatment tissue, p16 overexpression was associated with significantly increased distant control (p=0.03), progression-free survival (p=0.02), event-free survival (p=0.007) and overall survival (p=0.03). The most common grade 3-4 toxicities were mucositis (46%), leukopenia (18%), anemia (18%) and dermatitis (17%). Concurrent 5-FU, HU, cetuximab and SIB-IMRT is a highly active regimen, particularly in patients with p16-positive disease. PMID:22322320

  5. PET/CT Dose Planning for Volumetric Modulated Arc Radiation Therapy (VMAT) -Comparison with Conventional Approach in Advanced Prostate Cancer Patients.

    PubMed

    Kairemo, Kalevi; Rasulova, Nigora; Kiljunen, Timo; Partanen, Kaarina; Kangasmäki, Aki; Joensuu, Timo

    2015-01-01

    Molecular imaging is the only way of defining biological target volume (BTV) for externalbeam radiation therapy (EBRT) and may be used for advanced targeting in dose planning and dose painting. There are, however, no reports about the EBRT response when dose planning is based on BTV target definition in advanced prostate cancer. Clinical and biochemical results of two clinically equal group of patients with advanced prostate cancer patients were compared. Both groups were treated with volumetric modulated arc therapy (VMAT) based on target definition by PET/CT (1(st) group) or conventional imaging (2(nd) group). Biochemical relapse occurred in 16.6% (in 1 out of 6) of the patients in the first group and 50% (3 out of 6) patients in the second group during the follow up period. Clinical manifestation of disease occurred in 33% (2 out of 6) patients of the first group and in 5 out of 6 (83,3%) patients in the second one. 4 patients in the first group had no biochemical relapse and no clinical manifestation during the follow up period. The difference in the duration of progression free period was statistically significant between the groups (p<0.010) being in the first group 16.5±5.4 (10-24) months and 4.6±2.9 (2-10) months in the second one. Because patients with PET/CT based VMAT had lower incidence of biochemical relapse, less clinical manifestations and longer, statistically significant duration of progression free period as compared to patients treated with VMAT based on conventional imaging, our preliminary results suggest introducing BTV definition based on PET imaging for VMAT in the EBRT of prostate cancer.

  6. Comparative Toxicity and Dosimetric Profile of Whole-Pelvis Versus Prostate Bed-Only Intensity-Modulated Radiation Therapy After Prostatectomy

    SciTech Connect

    Deville, Curtiland; Vapiwala, Neha; Hwang, Wei-Ting; Lin Haibo; Bar Ad, Voichita; Tochner, Zelig; Both, Stefan

    2012-03-15

    Purpose: To assess whether whole-pelvis (WP) intensity modulated radiation therapy (IMRT) for prostate cancer (PCa) after prostatectomy is associated with increased toxicity compared to prostate-bed only (PB) IMRT. Methods and Materials: All patients (n = 67) undergoing postprostatectomy IMRT to 70.2 Gy at our institution from January 2006 to January 2009 with minimum 12-month follow-up were divided into WP (n = 36) and PB (n = 31) comparison groups. WP patients received initial pelvic nodal IMRT to 45 Gy. Pretreatment demographics, bladder and rectal dose-volume histograms, and maximum genitourinary (GU) and gastrointestinal (GI) toxicities were compared. Logistic regression models evaluated uni- and multivariate associations between pretreatment demographics and toxicities. Results: Pretreatment demographics including age and comorbidities were similar between groups. WP patients had higher Gleason scores, T stages, and preoperative prostate-specific antigen (PSA) levels, and more WP patients underwent androgen deprivation therapy (ADT). WP minimum (Dmin) and mean bladder doses, bladder volumes receiving more than 5 Gy (V5) and V20, rectal Dmin, and PB bladder and rectal V65 were significantly increased. Maximum acute GI toxicity was Grade 2 and was increased for WP (61%) vs. PB (29%) patients (p = 0.001); there was no significant difference in acute Grade {>=}2 GU toxicity (22% WP vs. 10% PB; p = 0.193), late Grade {>=}2 GI toxicity (3% WP vs. 0% PB; p = 0.678), or late Grade {>=}2 GU toxicity (28% WP vs. 19% PB; p = 0.274) with 25-month median follow-up (range, 12-44 months). On multivariate analysis, long-term ADT use was associated with Grade {>=}2 late GU toxicity (p = 0.02). Conclusion: Despite dosimetric differences in irradiated bowel, bladder, and rectum, WP IMRT resulted only in clinically significant increased acute GI toxicity in comparison to that with PB IMRT, with no differences in GU or late GI toxicity.

  7. Effect of Brain Stem and Dorsal Vagus Complex Dosimetry on Nausea and Vomiting in Head and Neck Intensity-Modulated Radiation Therapy

    SciTech Connect

    Ciura, Katherine; McBurney, Michelle; Nguyen, Baongoc; Pham, Mary; Rebueno, Neal; Fuller, Clifton D.; Guha-Thakurta, Nandita; Rosenthal, David I.

    2011-04-01

    Intensity-modulated radiation therapy (IMRT) is becoming the treatment of choice for many head and neck cancer patients. IMRT reduces some toxicities by reducing radiation dose to uninvolved normal tissue near tumor targets; however, other tissues not irradiated using previous 3D techniques may receive clinically significant doses, causing undesirable side effects including nausea and vomiting (NV). Irradiation of the brainstem, and more specifically, the area postrema and dorsal vagal complex (DVC), has been linked to NV. We previously reported preliminary hypothesis-generating dose effects associated with NV in IMRT patients. The goal of this study is to relate brainstem dose to NV symptoms. We retrospectively studied 100 consecutive patients that were treated for oropharyngeal cancer with IMRT. We contoured the brainstem, area postrema, and DVC with the assistance of an expert diagnostic neuroradiologist. We correlated dosimetry for the 3 areas contoured with weekly NV rates during IMRT. NV rates were significantly higher for patients who received concurrent chemotherapy. Post hoc analysis demonstrated that chemoradiation cases exhibited a trend towards the same dose-response relationship with both brainstem mean dose (p = 0.0025) and area postrema mean dose (p = 0.004); however, both failed to meet statistical significance at the p {<=} 0.002 level. Duration of toxicity was also greater for chemoradiation patients, who averaged 3.3 weeks with reported Common Terminology Criteria for Adverse Events (CTC-AE), compared with an average of 2 weeks for definitive RT patients (p = 0.002). For definitive RT cases, no dose-response trend could be ascertained. The mean brainstem dose emerged as a key parameter of interest; however, no one dose parameter (mean/median/EUD) best correlated with NV. This study does not address extraneous factors that would affect NV incidence, including the use of antiemetics, nor chemotherapy dose schedule specifics before and during RT. A

  8. A comparative analysis of 3D conformal deep inspiratory–breath hold and free-breathing intensity-modulated radiation therapy for left-sided breast cancer

    SciTech Connect

    Reardon, Kelli A.; Read, Paul W.; Morris, Monica M.; Reardon, Michael A.; Geesey, Constance; Wijesooriya, Krishni

    2013-07-01

    Patients undergoing radiation for left-sided breast cancer have increased rates of coronary artery disease. Free-breathing intensity-modulated radiation therapy (FB-IMRT) and 3-dimensional conformal deep inspiratory–breath hold (3D-DIBH) reduce cardiac irradiation. The purpose of this study is to compare the dose to organs at risk in FB-IMRT vs 3D-DIBH for patients with left-sided breast cancer. Ten patients with left-sided breast cancer had 2 computed tomography scans: free breathing and voluntary DIBH. Optimization of the IMRT plan was performed on the free-breathing scan using 6 noncoplanar tangential beams. The 3D-DIBH plan was optimized on the DIBH scan and used standard tangents. Mean volumes of the heart, the left anterior descending coronary artery (LAD), the total lung, and the right breast receiving 5% to 95% (5% increments) of the prescription dose were calculated. Mean volumes of the heart and the LAD were lower (p<0.05) in 3D-DIBH for volumes receiving 5% to 80% of the prescription dose for the heart and 5% for the LAD. Mean dose to the LAD and heart were lower in 3D-DIBH (p≤0.01). Mean volumes of the total lung were lower in FB-IMRT for dose levels 20% to 75% (p<0.05), but mean dose was not different. Mean volumes of the right breast were not different for any dose; however, mean dose was lower for 3D-DIBH (p = 0.04). 3D-DIBH is an alternative approach to FB-IMRT that provides a clinically equivalent treatment for patients with left-sided breast cancer while sparing organs at risk with increased ease of implementation.

  9. Cochlea sparing effects of intensity modulated radiation therapy in head and neck cancers patients: a long-term follow-up study

    PubMed Central

    2014-01-01

    Background Radiation to the inner ear may lead to (irreversible) sensorineural hearing loss. The purpose of this study was to evaluate the long-term effect of radiotherapy on hearing in patients treated with Intensity Modulated Radiation Therapy (IMRT), sparing the inner ear from high radiation dose as much as possible. Methods Between 2003 and 2006, 101 patients with head and neck cancer were treated with IMRT. Audiometry was performed before, short-term, and long-term after treatment. Data were compared to normal hearing levels according to the International Organisation for Standardization (ISO). Statistical analysis was done using repeated measurements. None of the patients received chemotherapy. Results In 36 patients an audiogram at long-term follow-up (median 7.6 years) was available. The mean dose to the cochlea was 17.8 Gy (1.0-66.6 Gy). A hearing deterioration of 1.8 dB at Pure Tone Average (PTA) 0.5-1-2 kHz (p = 0.11), 2.3 dB at PTA 1-2-4 kHz (p = 0.02), and 4.4 dB at PTA 8-10-12.5 kHz (p = 0.01) was found. According to the ISO, the expected age-related hearing loss was 2.7, 4.8, and 8.8 dB at PTA 0.5-1-2 kHz, 1-2-4 kHz, and 8-10-12.5 kHz, respectively. Conclusions After IMRT with radiation dose constraint to the cochlea, potential long-term adverse effects of IMRT remained subclinical. The progressive hearing loss over time was mild and could be attributed to the natural effects of ageing. Therefore, we recommend that a dose constraint to the cochlea should be incorporated in the head and neck radiotherapy protocols. PMID:25095702

  10. Method for microbeam radiation therapy

    DOEpatents

    Slatkin, Daniel N.; Dilmanian, F. Avraham; Spanne, Per O.

    1994-01-01

    A method of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation, in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue.

  11. Method for microbeam radiation therapy

    DOEpatents

    Slatkin, D.N.; Dilmanian, F.A.; Spanne, P.O.

    1994-08-16

    A method is disclosed of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation. The dose is in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue. No Drawings

  12. External Radiation Therapy

    MedlinePlus Videos and Cool Tools

    Narrator: When the cancer is not completely contained in the prostate or when the patient is older the treatment that is frequently used ... There are different forms of radiation for prostate cancer. They really boil down to two different types. ...

  13. Intensity-Modulated Radiation Therapy in the Treatment of Head and Neck Cancer Involving the Base of the Skull

    SciTech Connect

    Lee, Nancy Y.

    2007-10-01

    Tumors invading the skull base pose a difficult problem for the treating radiation oncologist. When confronting these highly complex tumors where the gross tumor abuts the optic apparatus or brain stem, the physician often has to make a difficult choice regarding coverage of the tumor, i.e., underdosing portions of the tumor to protect the critical normal tissues versus accepting the risk of late complication while ensuring full coverage of the tumor. This situation is often encountered in advanced T4 disease originating either in the paranasal sinuses or the nasopharynx. In this case report, the author presents a case in which difficult decisions were made when treating a complex, locally advanced, T4 nasopharyngeal cancer that invaded the skull base.

  14. A Multi-institutional Clinical Trial of Rectal Dose Reduction via Injected Polyethylene-Glycol Hydrogel During Intensity Modulated Radiation Therapy for Prostate Cancer: Analysis of Dosimetric Outcomes

    SciTech Connect

    Song, Danny Y.; Herfarth, Klaus K.; Uhl, Matthias; Eble, Michael J.; Pinkawa, Michael; Triest, Baukelien van; Kalisvaart, Robin; DeWeese, Theodore L.; Ford, Eric C.

    2013-09-01

    Purpose: To characterize the effect of a prostate-rectum spacer on dose to rectum during external beam radiation therapy for prostate cancer and to assess for factors correlated with rectal dose reduction. Methods and Materials: Fifty-two patients at 4 institutions were enrolled into a prospective pilot clinical trial. Patients underwent baseline scans and then were injected with perirectal spacing hydrogel and rescanned. Intensity modulated radiation therapy plans were created on both scans for comparison. The objectives were to establish rates of creation of ≥7.5 mm of prostate-rectal separation, and decrease in rectal V70 of ≥25%. Multiple regression analysis was performed to evaluate the associations between preinjection and postinjection changes in rectal V70 and changes in plan conformity, rectal volume, bladder volume, bladder V70, planning target volume (PTV), and postinjection midgland separation, gel volume, gel thickness, length of PTV/gel contact, and gel left-to-right symmetry. Results: Hydrogel resulted in ≥7.5-mm prostate-rectal separation in 95.8% of patients; 95.7% had decreased rectal V70 of ≥25%, with a mean reduction of 8.0 Gy. There were no significant differences in preinjection and postinjection prostate, PTV, rectal, and bladder volumes. Plan conformities were significantly different before versus after injection (P=.02); plans with worse conformity indexes after injection compared with before injection (n=13) still had improvements in rectal V70. In multiple regression analysis, greater postinjection reduction in V70 was associated with decreased relative postinjection plan conformity (P=.01). Reductions in V70 did not significantly vary by institution, despite significant interinstitutional variations in plan conformity. There were no significant relationships between reduction in V70 and the other characteristics analyzed. Conclusions: Injection of hydrogel into the prostate-rectal interface resulted in dose reductions to rectum

  15. Accelerated Partial Breast Irradiation Is Safe and Effective Using Intensity-Modulated Radiation Therapy in Selected Early-Stage Breast Cancer

    SciTech Connect

    Lewin, Alan A.; Derhagopian, Robert; Saigal, Kunal; Panoff, Joseph E.; Abitbol, Andre; Wieczorek, D. Jay; Mishra, Vivek; Reis, Isildinha; Ferrell, Annapoorna; Moreno, Lourdes; Takita, Cristiane

    2012-04-01

    Purpose: To report the feasibility, toxicity, cosmesis, and efficacy of using intensity-modulated radiation therapy (IMRT) with respiratory gating to deliver accelerated partial breast irradiation (APBI) in selected Stage I/II breast cancer after breast-conserving surgery. Methods and Materials: Eligible patients with node-negative Stage I/II breast cancer were prospectively enrolled in an institutional review board approved protocol to receive APBI using IMRT after breast-conserving surgery. The target volume was treated at 3.8 Gy/fraction twice daily for 5 days, to a total dose of 38 Gy. Results: Thirty-six patients were enrolled for a median follow-up time of 44.8 months. The median tumor size was 0.98 cm (range, 0.08-3 cm). The median clinical target volume (CTV) treated was 71.4 cc (range, 19-231 cc), with the mean dose to the CTV being 38.96 Gy. Acute toxicities included Grade 1 erythema in 44% of patients and Grade 2 in 6%, Grade 1 hyperpigmentation in 31% of patients and Grade 2 in 3%, and Grade 1 breast/chest wall tenderness in 14% of patients. No Grade 3/4 acute toxicities were observed. Grade 1 and 2 late toxicities as edema, fibrosis, and residual hyperpigmentation occurred in 14% and 11% of patients, respectively; Grade 3 telangiectasis was observed in 3% of patients. The overall cosmetic outcome was considered 'excellent' or 'good' by 94% of patients and 97% when rated by the physician, respectively. The local control rate was 97%; 1 patient died of a non-cancer-related cause. Conclusions: APBI can be safely and effectively administered using IMRT. In retrospective analysis, IMRT enabled the achievement of normal tissue dose constraints as outlined by Radiation Therapy Oncology Group 04-13/NSABP B-13 while providing excellent conformality for the CTV. Local control and cosmesis have remained excellent at current follow-up, with acceptable rates of acute/late toxicities. Our data suggest that cosmesis is dependent on target volume size. Further

  16. Long-term Survival and Toxicity in Patients Treated With High-Dose Intensity Modulated Radiation Therapy for Localized Prostate Cancer

    SciTech Connect

    Spratt, Daniel E.; Pei, Xin; Yamada, Josh; Kollmeier, Marisa A.; Cox, Brett; Zelefsky, Michael J.

    2013-03-01

    Purpose: To report long-term survival and toxicity outcomes with the use of high-dose intensity modulated radiation therapy (IMRT) to 86.4 Gy for patients with localized prostate cancer. Methods and Materials: Between August 1997 and December 2008, 1002 patients were treated to a dose of 86.4 Gy using a 5-7 field IMRT technique. Patients were stratified by prognostic risk group based on National Comprehensive Cancer Network risk classification criteria. A total of 587 patients (59%) were treated with neoadjuvant and concurrent androgen deprivation therapy. The median follow-up for the entire cohort was 5.5 years (range, 1-14 years). Results: For low-, intermediate-, and high-risk groups, 7-year biochemical relapse-free survival outcomes were 98.8%, 85.6%, and 67.9%, respectively (P<.001), and distant metastasis-free survival rates were 99.4%, 94.1%, and 82.0% (P<.001), respectively. On multivariate analysis, T stage (P<.001), Gleason score (P<.001), and >50% of initial biopsy positive core (P=.001) were predictive for distant mestastases. No prostate cancer-related deaths were observed in the low-risk group. The 7-year prostate cancer-specific mortality (PCSM) rates, using competing risk analysis for intermediate- and high-risk groups, were 3.3% and 8.1%, respectively (P=.008). On multivariate analysis, Gleason score (P=.004), percentage of biopsy core positivity (P=.003), and T-stage (P=.033) were predictive for PCSM. Actuarial 7-year grade 2 or higher late gastrointestinal and genitourinary toxicities were 4.4% and 21.1%, respectively. Late grade 3 gastrointestinal and genitourinary toxicity was experienced by 7 patients (0.7%) and 22 patients (2.2%), respectively. Of the 427 men with full potency at baseline, 317 men (74%) retained sexual function at time of last follow-up. Conclusions: This study represents the largest cohort of patients treated with high-dose radiation to 86.4 Gy, using IMRT for localized prostate cancer, with the longest follow-up to date

  17. Dosimetric Predictors of Duodenal Toxicity After Intensity Modulated Radiation Therapy for Treatment of the Para-aortic Nodes in Gynecologic Cancer

    SciTech Connect

    Verma, Jonathan; Sulman, Erik P.; Jhingran, Anuja; Tucker, Susan L.; Rauch, Gaiane M.; Eifel, Patricia J.; Klopp, Ann H.

    2014-02-01

    Purpose: To determine the incidence of duodenal toxicity in patients receiving intensity modulated radiation therapy (IMRT) for treatment of para-aortic nodes and to identify dosimetric parameters predictive of late duodenal toxicity. Methods and Materials: We identified 105 eligible patients with gynecologic malignancies who were treated with IMRT for gross metastatic disease in the para-aortic nodes from January 1, 2005, through December 31, 2009. Patients were treated to a nodal clinical target volume to 45 to 50.4 Gy with a boost to 60 to 66 Gy. The duodenum was contoured, and dosimetric data were exported for analysis. Duodenal toxicity was scored according to Radiation Therapy Oncology Group criteria. Univariate Cox proportional hazards analysis and recursive partitioning analysis were used to determine associations between dosimetric variables and time to toxicity and to identify the optimal threshold that separated patients according to risk of toxicity. Results: Nine of the 105 patients experienced grade 2 to grade 5 duodenal toxicity, confirmed by endoscopy in all cases. The 3-year actuarial rate of any duodenal toxicity was 11.7%. A larger volume of the duodenum receiving 55 Gy (V55) was associated with higher rates of duodenal toxicity. The 3-year actuarial rates of duodenal toxicity with V55 above and below 15 cm{sup 3} were 48.6% and 7.4%, respectively (P<.01). In Cox univariate analysis of dosimetric variables, V55 was associated with duodenal toxicity (P=.029). In recursive partitioning analysis, V55 less than 13.94% segregated all patients with duodenal toxicity. Conclusions: Dose-escalated IMRT can safely and effectively treat para-aortic nodal disease in gynecologic malignancies, provided that care is taken to limit the dose to the duodenum to reduce the risk of late duodenal toxicity. Limiting V55 to below 15 cm{sup 3} may reduce the risk of duodenal complications. In cases where the treatment cannot be delivered within these constraints

  18. A simple geometric algorithm to predict optimal starting gantry angles using equiangular-spaced beams for intensity modulated radiation therapy of prostate cancer

    SciTech Connect

    Potrebko, Peter S.; McCurdy, Boyd M. C.; Butler, James B.; El-Gubtan, Adel S.; Nugent, Zoann

    2007-10-15

    A fast, geometric beam angle optimization (BAO) algorithm for clinical intensity-modulated radiation therapy (IMRT) was implemented on ten localized prostate cancer patients on the Radiation Therapy Oncology Group (RTOG) 0126 protocol. The BAO algorithm computed the beam intersection volume (BIV) within the rectum and bladder using five and seven equiangular-spaced beams as a function of starting gantry angle for comparison to the V 75 Gy and V 70 Gy. A mathematical theory was presented to explain the correlation of BIV with dose and dose-volume metrics. The class solution 'W' pattern in the rectal V 75 Gy and V 70 Gy as a function of starting gantry angle using five equiangular-spaced beams (with two separate minima centered near 20 deg. and 50 deg. ) was reproduced by the 5 BIV within the rectum. A strong correlation was found between the rectal 5 BIV and the rectal V 75 Gy and V 70 Gy as a function of starting gantry angle. The BAO algorithm predicted the location of the two dosimetric minima in rectal V 75 Gy and V 70 Gy (optimal starting gantry angles) to within 5 deg. . It was demonstrated that the BIV geometric variations for seven equiangular-spaced beams were too small to translate into a strong dosimetric effect in the rectal V 75 Gy and V 70 Gy. The relatively flat distribution with starting gantry angle of the bladder V 75 Gy and V 70 Gy was reproduced by the bladder five and seven BIV for each patient. A geometric BAO method based on BIV has the advantage over dosimetric BAO methods of simplicity and rapid computation time. This algorithm can be used as a standalone optimization method or act as a rapid calculation filter to reduce the search space for a dosimetric BAO method. Given the clinically infeasible computation times of many dosimetric beam orientation optimization algorithms, this robust geometric BIV algorithm has the potential to facilitate beam angle selection for prostate IMRT in clinical practice.

  19. Assessment of Interfraction Patient Setup for Head-and-Neck Cancer Intensity Modulated Radiation Therapy Using Multiple Computed Tomography-Based Image Guidance

    SciTech Connect

    Qi, X. Sharon; Hu, Angie Y.; Lee, Steve P.; Lee, Percy; DeMarco, John; Li, X. Allen; Steinberg, Michael L.; Kupelian, Patrick; Low, Daniel

    2013-07-01

    Purpose: Various image guidance systems are commonly used in conjunction with intensity modulated radiation therapy (IMRT) in head-and-neck cancer irradiation. The purpose of this study was to assess interfraction patient setup variations for 3 computed tomography (CT)-based on-board image guided radiation therapy (IGRT) modalities. Methods and Materials: A total of 3302 CT scans for 117 patients, including 53 patients receiving megavoltage cone-beam CT (MVCBCT), 29 receiving kilovoltage cone-beam CT (KVCBCT), and 35 receiving megavoltage fan-beam CT (MVFBCT), were retrospectively analyzed. The daily variations in the mediolateral (ML), craniocaudal (CC), and anteroposterior (AP) dimensions were measured. The clinical target volume-to-planned target volume (CTV-to-PTV) margins were calculated using 2.5Σ + 0.7 σ, where Σ and σ were systematic and random positioning errors, respectively. Various patient characteristics for the MVCBCT group, including weight, weight loss, tumor location, and initial body mass index, were analyzed to determine their possible correlation with daily patient setup. Results: The average interfraction displacements (± standard deviation) in the ML, CC, and AP directions were 0.5 ± 1.5, −0.3 ± 2.0, and 0.3 ± 1.7 mm (KVCBCT); 0.2 ± 1.9, −0.2 ± 2.4, and 0.0 ± 1.7 mm (MVFBCT); and 0.0 ± 1.8, 0.5 ± 1.7, and 0.8 ± 3.0 mm (MVCBCT). The day-to-day random errors for KVCBCT, MVFBCT, and MVCBCT were 1.4-1.6, 1.7, and 2.0-2.1 mm. The interobserver variations were 0.8, 1.1, and 0.7 mm (MVCBCT); 0.5, 0.4, and 0.8 mm (MVFBCT); and 0.5, 0.4, and 0.6 mm (KVCBCT) in the ML, CC, and AP directions, respectively. The maximal calculated uniform CTV-to-PTV margins were 5.6, 6.9, and 8.9 mm for KVCBCT, MVFBCT, and MVCBCT, respectively. For the evaluated patient characteristics, the calculated margins for different patient parameters appeared to differ; analysis of variance (ANOVA) and/or t test analysis found no statistically significant setup

  20. Evaluation of two tomotherapy-based techniques for the delivery of whole-breast intensity-modulated radiation therapy

    SciTech Connect

    Gonzalez, Victor J.; Buchholz, Daniel J.; Langen, Katja M.; Olivera, Gustavo H.; Chauhan, Bhavin; Meeks, Sanford L.; Ruchala, Kenneth J.; Haimerl, Jason; Lu Weiguo; Kupelian, Patrick A. . E-mail: patrick.kupelian@orhs.org

    2006-05-01

    Purpose: To evaluate two different techniques for whole-breast treatments delivered using the Hi-ART II tomotherapy device. Methods and Materials: Tomotherapy uses the standard rotational helical delivery. Topotherapy uses a stationary gantry while delivering intensity-modulated treatments. CT scans from 5 breast cancer patients were used. The prescription dose was 50.4 Gy. Results: On average, 99% of the target volume received 95% of prescribed dose with either technique. If treatment times are restricted to less than 9 min, the average percentage ipsilateral lung receiving {>=}20 Gy was 22% for tomotherapy vs. 10% for topotherapy. The ipsilateral lung receiving {>=}50.4 Gy was 4 cc for tomotherapy vs. 27 cc for topotherapy. The percentage of left ventricle receiving {>=}30 Gy was 14% with tomotherapy vs. 4% for topotherapy. The average doses to the contralateral breast and lung were 0.6 and 0.8 Gy, respectively, for tomotherapy vs. 0.4 and 0.3 Gy for topotherapy. Conclusions: Tomotherapy provides improved target dose homogeneity and conformality over topotherapy. If delivery times are restricted, topotherapy reduces the amount of heart and ipsilateral lung volumes receiving low doses. For whole-breast treatments, topotherapy is an efficient technique that achieves adequate target uniformity while maintaining low doses to sensitive structures.

  1. Longitudinal assessment of quality of life after surgery, conformal brachytherapy, and intensity-modulated radiation therapy for prostate cancer

    PubMed Central

    Zelefsky, Michael J.; Poon, Bing Ying; Eastham, James; Vickers, Andrew; Pei, Xin; Scardino, Peter T.

    2016-01-01

    Purpose We evaluated quality-of-life changes (QoL) in 907 patients treated with either radical prostatectomy (open or laparoscopic), real-time planned conformal brachytherapy, or high-dose intensity-modulated radiotherapy (IMRT) on a prospective IRB-approved longitudinal study. Methods Validated questionnaires given pretreatment (baseline) and at 3, 6, 9, 12, 15, 18, 24, 36, and 48 months addressed urinary function, urinary bother, bowel function, bowel bother, sexual function, and sexual bother. Results At 48 months, surgery had significantly higher urinary incontinence than others (both P<.001), but fewer urinary irritation/obstruction symptoms (all P<.001). Very low levels of bowel dysfunction were observed and only small subsets in each group showed rectal bleeding. Brachytherapy and IMRT showed better sexual function than surgery accounting for baseline function and other factors (delta 14.29 of 100, 95% CI, 8.57–20.01; and delta 10.5, 95% CI, 3.78–17.88). Sexual bother was similar. Four-year outcomes showed persistent urinary incontinence for surgery with more obstructive urinary symptoms for radiotherapy. Using modern radiotherapy delivery, bowel function deterioration is less-often observed. Sexual function was strongly affected in all groups yet significantly less for radiotherapy. Conclusions Treatment selection should include patient preferences and balance predicted disease-free survival over a projected time vs potential impairment of QoL important for the patient. PMID:26780999

  2. Influence of photon energy on the quality of prostate intensity modulated radiation therapy plans based on analysis of physical indices.

    PubMed

    Thangavelu, Sundaram; Jayakumar, S; Govindarajan, K N; Supe, Sanjay S; Nagarajan, V; Nagarajan, M

    2011-01-01

    The goal of the present study was to study the effects of low- and high-energy intensity-modulated photon beams on the planning of target volume and the critical organs in cases of localized prostate tumors in a cohort of 8 patients. To ensure that the difference between the plans is due to energy alone, all other parameters were kept constant. A mean dose volume histogram (DVH) for each value of energy and for each contoured structure was created and was considered as completely representative for all patients. To facilitate comparison between 6-MV and 15-MV beams, the DVH-s were normalized. The different parameters that were compared for 6-MV and 15-MV beams included mean DVH, different homogeneity indices, conformity index, etc. Analysis of several indices depicts more homogeneous dose for 15-MV beam and more conformity for 6-MV beam. Comparison of all these parameters showed that there was little difference between the 6-MV and 15-MV beams. For rectum, 2 to 4 % more volume received high dose with the 6-MV beam in comparison with the 15-MV beam, which was not clinically significant, since in practice much tighter constraints are maintained, such that Normal Tissue Complication Probability (NTCP) is kept within 5 %. Such tighter constraints might increase the dose to other regions and other critical organs but are unlikely to increase their complication probabilities. Hence the slight advantages of 15-MV beam in providing benefits of better normal-tissue sparing and better coverage cannot be considered to outweigh its well-known risk of non-negligible neutron production.

  3. Phase 2 Trial of Hypofractionated High-Dose Intensity Modulated Radiation Therapy With Concurrent and Adjuvant Temozolomide for Newly Diagnosed Glioblastoma

    SciTech Connect

    Iuchi, Toshihiko; Hatano, Kazuo; Kodama, Takashi; Sakaida, Tsukasa; Yokoi, Sana; Kawasaki, Koichiro; Hasegawa, Yuzo; Hara, Ryusuke

    2014-03-15

    Purpose/Objectives: To assess the effect and toxicity of hypofractionated high-dose intensity modulated radiation therapy (IMRT) with concurrent and adjuvant temozolomide (TMZ) in 46 patients with newly diagnosed glioblastoma multiforme (GBM). Methods and Materials: All patients underwent postsurgical hypofractionated high-dose IMRT. Three layered planning target volumes (PTVs) were contoured. PTV1 was the surgical cavity and residual tumor on T1-weighted magnetic resonance images with 5-mm margins, PTV2 was the area with 15-mm margins surrounding the PTV1, and PTV3 was the high-intensity area on fluid-attenuated inversion recovery images. Irradiation was performed in 8 fractions at total doses of 68, 40, and 32 Gy for PTV1, PTV2, and PTV3, respectively. Concurrent TMZ was given at 75 mg/m{sup 2}/day for 42 consecutive days. Adjuvant TMZ was given at 150 to 200 mg/m{sup 2}/day for 5 days every 28 days. Overall and progression-free survivals were evaluated. Results: No acute IMRT-related toxicity was observed. The dominant posttreatment failure pattern was dissemination. During a median follow-up time of 16.3 months (range, 4.3-80.8 months) for all patients and 23.7 months (range, 12.4-80.8 months) for living patients, the median overall survival was 20.0 months after treatment. Radiation necrosis was diagnosed in 20 patients and was observed not only in the high-dose field but also in the subventricular zone (SVZ). Necrosis in the SVZ was significantly correlated with prolonged survival (hazard ratio, 4.08; P=.007) but caused deterioration in the performance status of long-term survivors. Conclusions: Hypofractionated high-dose IMRT with concurrent and adjuvant TMZ altered the dominant failure pattern from localized to disseminated and prolonged the survival of patients with GBM. Necrosis in the SVZ was associated with better patient survival, but the benefit of radiation to this area remains controversial.

  4. Intensity-modulated radiation therapy using static ports of tomotherapy (TomoDirect): comparison with the TomoHelical mode

    PubMed Central

    2013-01-01

    Purpose With the new mode of Tomotherapy, irradiation can be delivered using static ports of the TomoDirect mode. The purpose of this study was to evaluate the characteristics of TomoDirect plans compared to conventional TomoHelical plans. Methods TomoDirect and TomoHelical plans were compared in 46 patients with a prostate, thoracic wall or lung tumor. The mean target dose was used as the prescription dose. The minimum coverage dose of 95% of the target (D95%), conformity index (CI), uniformity index (UI), dose distribution in organs at risk and treatment time were evaluated. For TomoDirect, 2 to 5 static ports were used depending on the tumor location. Results For the prostate target volume, TomoDirect plans could not reduce the rectal dose and required a longer treatment time than TomoHelical. For the thoracic wall target volume, the V5Gy of the lung or liver was lower in TomoDirect than in TomoHelical (p = 0.02). For the lung target volume, TomoDirect yielded higher CI (p = 0.009) but smaller V5Gy of the lung (p = 0.005) than TomoHelical. Treatment time did not differ significantly between the thoracic wall and lung plans. Conclusion Prostate cancers should be treated with the TomoHelical mode. Considering the risk of low-dose radiation to the lung, the TomoDirect mode could be an option for thoracic wall and lung tumors. PMID:23517931

  5. Dosimetric Comparison Between 2-Dimensional Radiation Therapy and Intensity Modulated Radiation Therapy in Treatment of Advanced T-Stage Nasopharyngeal Carcinoma: To Treat Less or More in the Planning Organ-At-Risk Volume of the Brainstem and Spinal Cord

    SciTech Connect

    Chau, Ricky Teo, Peter; Kam, Michael; Leung, S.F.; Cheung, K.Y.; Chan, Anthony

    2007-01-01

    The aim of this study is to evaluate the deficiencies in target coverage and organ protection of 2-dimensional radiation therapy (2DRT) in the treatment of advanced T-stage (T3-4) nasopharyngeal carcinoma (NPC), and assess the extent of improvement that could be achieved with intensity modulated radiation therapy (IMRT), with special reference to of the dose to the planning organ-at-risk volume (PRV) of the brainstem and spinal cord. A dosimetric study was performed on 10 patients with advanced T-stage (T3-4 and N0-2) NPC. Computer tomography (CT) images of 2.5-mm slice thickness of the head and neck were acquired with the patient immobilized in semi-extended-head position. A 2D plan based on Ho's technique, and an IMRT plan based on a 7-coplanar portals arrangement, were established for each patient. 2DRT was planned with the field borders and shielding drawn on the simulator radiograph with reference to bony landmarks, digitized, and entered into a planning computer for reconstruction of the 3D dose distribution. The 2DRT and IMRT treatment plans were evaluated and compared with respect to the dose-volume histograms (DVHs) of the targets and the organs-at-risk (OARs), tumor control probability (TCP), and normal tissue complication probabilities (NTCPs). With IMRT, the dose coverage of the target was superior to that of 2DRT. The mean minimum dose of the GTV and PTV were increased from 33.7 Gy (2DRT) to 62.6 Gy (IMRT), and 11.9 Gy (2DRT) to 47.8 Gy (IMRT), respectively. The D{sub 95} of the GTV and PTV were also increased from 57.1 Gy (2DRT) to 67 Gy (IMRT), and 45 Gy (2DRT) to 63.6 Gy (IMRT), respectively. The TCP was substantially increased to 78.5% in IMRT. Better protection of the critical normal organs was also achieved with IMRT. The mean maximum dose delivered to the brainstem and spinal cord were reduced significantly from 61.8 Gy (2DRT) to 52.8 Gy (IMRT) and 56 Gy (2DRT) to 43.6 Gy (IMRT), respectively, which were within the conventional dose limits of 54

  6. Hybrid plan verification for intensity-modulated radiation therapy (IMRT) using the 2D ionization chamber array I'mRT MatriXX--a feasibility study.

    PubMed

    Dobler, Barbara; Streck, Natalia; Klein, Elisabeth; Loeschel, Rainer; Haertl, Petra; Koelbl, Oliver

    2010-01-21

    The 2D ionization chamber array I'mRT MatriXX (IBA, Schwarzenbruck, Germany) has been developed for absolute 2D dosimetry and verification of intensity-modulated radiation therapy (IMRT) for perpendicular beam incidence. The aim of this study is to evaluate the applicability of I'mRT MatriXX for oblique beam incidence and hybrid plan verification of IMRT with original gantry angles. For the assessment of angular dependence, open fields with gantry angles in steps of 10 degrees were calculated on a CT scan of I'mRT MatriXX. For hybrid plan verification, 17 clinical IMRT plans and one rotational plan were used. Calculations were performed with pencil beam (PB), collapsed cone (CC) and Monte Carlo (MC) methods, which had been previously validated. Measurements were conducted on an Elekta SynergyS linear accelerator. To assess the potential and limitations of the system, gamma evaluation was performed with different dose tolerances and distances to agreement. Hybrid plan verification passed the gamma test with 4% dose tolerance and 3 mm distance to agreement in all cases, in 82-88% of the cases for tolerances of 3%/3 mm, and in 59-76% of the cases if 3%/2 mm were used. Separate evaluation of the low dose and high dose regions showed that I'mRT MatriXX can be used for hybrid plan verification of IMRT plans within 3% dose tolerance and 3 mm distance to agreement with a relaxed dose tolerance of 4% in the low dose region outside the multileaf collimator (MLC).

  7. A Knowledge-Based Approach to Improving and Homogenizing Intensity Modulated Radiation Therapy Planning Quality Among Treatment Centers: An Example Application to Prostate Cancer Planning

    SciTech Connect

    Good, David; Lo, Joseph; Lee, W. Robert; Wu, Q. Jackie; Yin, Fang-Fang; Das, Shiva K.

    2013-09-01

    Purpose: Intensity modulated radiation therapy (IMRT) treatment planning can have wide variation among different treatment centers. We propose a system to leverage the IMRT planning experience of larger institutions to automatically create high-quality plans for outside clinics. We explore feasibility by generating plans for patient datasets from an outside institution by adapting plans from our institution. Methods and Materials: A knowledge database was created from 132 IMRT treatment plans for prostate cancer at our institution. The outside institution, a community hospital, provided the datasets for 55 prostate cancer cases, including their original treatment plans. For each “query” case from the outside institution, a similar “match” case was identified in the knowledge database, and the match case’s plan parameters were then adapted and optimized to the query case by use of a semiautomated approach that required no expert planning knowledge. The plans generated with this knowledge-based approach were compared with the original treatment plans at several dose cutpoints. Results: Compared with the original plan, the knowledge-based plan had a significantly more homogeneous dose to the planning target volume and a significantly lower maximum dose. The volumes of the rectum, bladder, and femoral heads above all cutpoints were nominally lower for the knowledge-based plan; the reductions were significantly lower for the rectum. In 40% of cases, the knowledge-based plan had overall superior (lower) dose–volume histograms for rectum and bladder; in 54% of cases, the comparison was equivocal; in 6% of cases, the knowledge-based plan was inferior for both bladder and rectum. Conclusions: Knowledge-based planning was superior or equivalent to the original plan in 95% of cases. The knowledge-based approach shows promise for homogenizing plan quality by transferring planning expertise from more experienced to less experienced institutions.

  8. Will weight loss cause significant dosimetric changes of target volumes and organs at risk in nasopharyngeal carcinoma treated with intensity-modulated radiation therapy?

    SciTech Connect

    Chen, Chuanben; Fei, Zhaodong; Chen, Lisha; Bai, Penggang; Lin, Xiang; Pan, Jianji

    2014-04-01

    This study aimed to quantify dosimetric effects of weight loss for nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiation therapy (IMRT). Overall, 25 patients with NPC treated with IMRT were enrolled. We simulated weight loss during IMRT on the computer. Weight loss model was based on the planning computed tomography (CT) images. The original external contour of head and neck was labeled plan 0, and its volume was regarded as pretreatment normal weight. We shrank the external contour with different margins (2, 3, and 5 mm) and generated new external contours of head and neck. The volumes of reconstructed external contours were regarded as weight during radiotherapy. After recontouring outlines, the initial treatment plan was mapped to the redefined CT scans with the same beam configurations, yielding new plans. The computer model represented a theoretical proportional weight loss of 3.4% to 13.7% during the course of IMRT. The dose delivered to the planning target volume (PTV) of primary gross tumor volume and clinical target volume significantly increased by 1.9% to 2.9% and 1.8% to 2.9% because of weight loss, respectively. The dose to the PTV of gross tumor volume of lymph nodes fluctuated from −2.0% to 1.0%. The dose to the brain stem and the spinal cord was increased (p < 0.001), whereas the dose to the parotid gland was decreased (p < 0.001). Weight loss may lead to significant dosimetric change during IMRT. Repeated scanning and replanning for patients with NPC with an obvious weight loss may be necessary.

  9. Dose verification of a clinical intensity-modulated radiation therapy eye case by the magnetic resonance imaging of N-isopropylacrylamide gel dosimeters

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Li; Hsieh, Bor-Tsung; Chiang, Chih-Ming; Shih, Cheng-Ting; Cheng, Kai-Yuan; Hsieh, Ling-Ling

    2014-11-01

    In this study, N-isopropylacrylamide (NIPAM) polymer gel, together with magnetic resonance imaging (MRI), was used to measure the relative three-dimensional (3D) dose distribution of an intensity-modulated radiation therapy (IMRT) eye case. The gels were enclosed in cylindrical acrylic vessels with 10 cm outer diameter and 10 cm length. The gels were subsequently irradiated by delivering 5 Gy of a prescribed dose with a 6 MV linear accelerator using five fields. The 3D maps of the proton relaxation rate R2 were obtained using a 1.5 T MRI system correlated with the dose. The treatment planning system (TPS) data and NIPAM gel dosimeter data were compared with the experimental results in the form of relative dose distributions, including isodose curves, dose profiles, and gamma index maps. Results indicated that the linear relationship of the R2-dose for NIPAM gel dosimeters reached 0.999 within the dose range of 0 Gy to 12 Gy. Comparison of planar dose distributions among the gel dosimeters and TPS showed that the isodose lines corresponded to selected planes in the axial plane. For the 50% to 110% dose analysis, the maximum dose differences varied from 4.04% to 13.53%. Gamma evaluation of the planar dose profile resulted in pass rates of 96.84%, 83.16%, and 53.42% when the acceptance criteria of 3%/3 mm, 2%/2 mm, and 1%/1 mm, respectively, were used in the axial plane. Overall, the results showed that NIPAM polymer gel dosimeters can serve as a high-resolution, accurate, 3D tool for IMRT dose distribution verification.

  10. Intensity-modulated radiation therapy (IMRT) dosimetry of the head and neck: A comparison of treatment plans using linear accelerator-based IMRT and helical tomotherapy

    SciTech Connect

    Sheng Ke . E-mail: ks2mc@virginia.edu; Molloy, Janelle A.; Read, Paul W.

    2006-07-01

    Purpose: To date, most intensity-modulated radiation therapy (IMRT) delivery has occurred using linear accelerators (linacs), although helical tomotherapy has become commercially available. To quantify the dosimetric difference, we compared linac-based and helical tomotherapy-based treatment plans for IMRT of the oropharynx. Methods and Materials: We compared the dosimetry findings of 10 patients who had oropharyngeal carcinoma. Five patients each had cancers in the base of the tongue and tonsil. Each plan was independently optimized using either the CORVUS planning system (Nomos Corporation, Sewickly, PA), commissioned for a Varian 2300 CD linear accelerator (Varian Medical Systems, Palo Alto, CA) with 1-cm multileaf collimator leaves, or helical tomotherapy. The resulting treatment plans were evaluated by comparing the dose-volume histograms, equivalent uniform dose (EUD), dose uniformity, and normal tissue complication probabilities. Results: Helical tomotherapy plans showed improvement of critical structure avoidance and target dose uniformity for all patients. The average equivalent uniform dose reduction for organs at risk (OARs) surrounding the base of tongue and the tonsil were 17.4% and 27.14% respectively. An 80% reduction in normal tissue complication probabilities for the parotid glands was observed in the tomotherapy plans relative to the linac-based plans. The standard deviation of the planning target volume dose was reduced by 71%. In our clinic, we use the combined dose-volume histograms for each class of plans as a reference goal for helical tomotherapy treatment planning optimization. Conclusions: Helical tomotherapy provides improved dose homogeneity and normal structure dose compared with linac-based IMRT in the treatment of oropharyngeal carcinoma resulting in a reduced risk for complications from focal hotspots within the planning target volume and for the adjacent parotid glands.

  11. Patterns of Response After Preoperative Intensity-Modulated Radiation Therapy and Capecitabine/Oxaliplatin in Rectal Cancer: Is There Still a Place for Ecoendoscopic Ultrasound?

    SciTech Connect

    Arbea, Leire; Diaz-Gonzalez, Juan A.; Subtil, Jose Carlos; Sola, Josu; Hernandez-Lizoain, Jose Luis; Martinez-Monge, Rafael; Moreno, Marta; Aristu, Javier

    2011-10-01

    Purpose: The main goals of preoperative chemoradiotherapy (CHRT) in rectal cancer are to achieve pathological response and to ensure tumor control with functional surgery when possible. Assessment of the concordance between clinical and pathological responses is necessary to make decisions regarding alternative conservative procedures. The present study evaluates the patterns of response after a preoperative CHRT regimen, and the value of endoscopic ultrasound (EUS) in assessing response. Methods and Materials: A total of 51 EUS-staged T3 to T4 and/or N0 to N+ rectal cancer patients received preoperative CHRT (intensity-modulated radiation therapy and capecitabine/oxaliplatin (XELOX) followed by radical resection. Clinical response was assesed by EUS. Rates of pathological tumor regression grade (TRG) and lymph node (LN) involvement were determined in the surgical specimen. Clinical and pathological responses were compared, and the accuracy of EUS in assessing response was calculated. Results: Twenty-four patients (45%) achieved a major pathological response (complete or >95% pathological response (TRG 3+/4)). Sensitivity, specificity, negative predictive value, and positive predictive value of EUS in predicting pathological T response after preoperative CHRT were 77.8%, 37.5%, 60%, and 58%, respectively. The EUS sensitivity, specificity, negative predictive value, and positive predictive value for nodal staging were 44%, 88%, 88%, and 44%, respectively. Furthermore, EUS after CHRT accurately predicted the absence of LN involvement in 7 of 7 patients (100%) with major pathological response of the primary tumor. Conclusion: Preoperative IMRT with concomitant XELOX induces favorable rates of major pathological response. EUS has a limited ability to predict primary tumor response after preoperative CHRT, but it is useful for accurately determining LN status. EUS may have a potential value in identifying patients with a very low risk of LN involvement in association

  12. Sci—Thur PM: Planning and Delivery — 03: Automated delivery and quality assurance of a modulated electron radiation therapy plan

    SciTech Connect

    Connell, T; Papaconstadopoulos, P; Alexander, A; Serban, M; Devic, S; Seuntjens, J

    2014-08-15

    Modulated electron radiation therapy (MERT) offers the potential to improve healthy tissue sparing through increased dose conformity. Challenges remain, however, in accurate beamlet dose calculation, plan optimization, collimation method and delivery accuracy. In this work, we investigate the accuracy and efficiency of an end-to-end MERT plan and automated-delivery workflow for the electron boost portion of a previously treated whole breast irradiation case. Dose calculations were performed using Monte Carlo methods and beam weights were determined using a research-based treatment planning system capable of inverse optimization. The plan was delivered to radiochromic film placed in a water equivalent phantom for verification, using an automated motorized tertiary collimator. The automated delivery, which covered 4 electron energies, 196 subfields and 6183 total MU was completed in 25.8 minutes, including 6.2 minutes of beam-on time with the remainder of the delivery time spent on collimator leaf motion and the automated interfacing with the accelerator in service mode. The delivery time could be reduced by 5.3 minutes with minor electron collimator modifications and the beam-on time could be reduced by and estimated factor of 2–3 through redesign of the scattering foils. Comparison of the planned and delivered film dose gave 3%/3 mm gamma pass rates of 62.1, 99.8, 97.8, 98.3, and 98.7 percent for the 9, 12, 16, 20 MeV, and combined energy deliveries respectively. Good results were also seen in the delivery verification performed with a MapCHECK 2 device. The results showed that accurate and efficient MERT delivery is possible with current technologies.

  13. Effect of Dosimetric Factors on Occurrence and Volume of Temporal Lobe Necrosis Following Intensity Modulated Radiation Therapy for Nasopharyngeal Carcinoma: A Case-Control Study

    SciTech Connect

    Zhou, Xin; Ou, Xiaomin; Xu, Tingting; Wang, Xiaosheng; Shen, Chunying; Ding, Jianhui; Hu, Chaosu

    2014-10-01

    Purpose: To determine dosimetric risk factors for the occurrence of temporal lobe necrosis (TLN) among nasopharyngeal carcinoma (NPC) patients treated with intensity modulated radiation therapy (IMRT) and to investigate the impact of dose-volume histogram (DVH) parameters on the volume of TLN lesions (V-N). Methods and Materials: Forty-three NPC patients who had developed TLN following IMRT and 43 control subjects free of TLN were retrospectively assessed. DVH parameters included maximum dose (Dmax), minimum dose (Dmin), mean dose (Dmean), absolute volumes receiving specific dose (Vds) from 20 to 76 Gy (V20-V76), and doses covering certain volumes (Dvs) from 0.25 to 6.0 cm{sup 3} (D0.25-D6.0). V-Ns were quantified with axial magnetic resonance images. Results: DVH parameters were ubiquitously higher in temporal lobes with necrosis than in healthy temporal lobes. Increased Vds and Dvs were significantly associated with higher risk of TLN occurrence (P<.05). In particular, Vds at a dose of ≥70 Gy were found with the highest odds ratios. A common increasing trend was detected between V-N and DVH parameters through trend tests (P for trend of <.05). Linear regression analysis showed that V45 had the strongest predictive power for V-N (adjusted R{sup 2} = 0.305, P<.0001). V45 of <15.1 cm{sup 3} was relatively safe as the dose constraint for preventing large TLN lesions with V-N of >5 cm{sup 3}. Conclusions: Dosimetric parameters are significantly associated with TLN occurrence and the extent of temporal lobe injury. To better manage TLN, it would be important to avoid both focal high dose and moderate dose delivered to a large area in TLs.

  14. The use of intensity-modulated radiation therapy photon beams for improving the dose uniformity of electron beams shaped with MLC

    SciTech Connect

    Mosalaei, Homeira; Karnas, Scott; Shah, Sheel; Van Doodewaard, Sharon; Foster, Tim; Chen, Jeff

    2012-04-01

    Electrons are ideal for treating shallow tumors and sparing adjacent normal tissue. Conventionally, electron beams are collimated by cut-outs that are time-consuming to make and difficult to adapt to tumor shape throughout the course of treatment. We propose that electron cut-outs can be replaced using photon multileaf collimator (MLC). Two major problems of this approach are that the scattering of electrons causes penumbra widening because of a large air gap, and available commercial treatment planning systems (TPSs) do not support MLC-collimated electron beams. In this study, these difficulties were overcome by (1) modeling electron beams collimated by photon MLC for a commercial TPS, and (2) developing a technique to reduce electron beam penumbra by adding low-energy intensity-modulated radiation therapy (IMRT) photons (4 MV). We used blocks to simulate MLC shielding in the TPS. Inverse planning was used to optimize boost photon beams. This technique was applied to a parotid and a central nervous system (CNS) clinical case. Combined photon and electron plans were compared with conventional plans and verified using ion chamber, film, and a 2D diode array. Our studies showed that the beam penumbra for mixed beams with 90 cm source to surface distance (SSD) is comparable with electron applicators and cut-outs at 100 cm SSD. Our mixed-beam technique yielded more uniform dose to the planning target volume and lower doses to various organs at risk for both parotid and CNS clinical cases. The plans were verified with measurements, with more than 95% points passing the gamma criteria of 5% in dose difference and 5 mm for distance to agreement. In conclusion, the study has demonstrated the feasibility and potential advantage of using photon MLC to collimate electron beams with boost photon IMRT fields.

  15. Duodenal and Other Gastrointestinal Toxicity in Cervical and Endometrial Cancer Treated With Extended-Field Intensity Modulated Radiation Therapy to Paraaortic Lymph Nodes

    SciTech Connect

    Poorvu, Philip D.; Sadow, Cheryl A.; Townamchai, Kanokpis; Damato, Antonio L.; Viswanathan, Akila N.

    2013-04-01

    Purpose: To characterize the rates of acute and late duodenal and other gastrointestinal (GI) toxicities among patients treated for cervical and endometrial cancers with extended-field intensity modulated radiation therapy (EF-IMRT) to the paraaortic nodes and to analyze dose-volume relationships of GI toxicities. Methods and Materials: Fifty-three patients with endometrial or cervical cancer underwent EF-IMRT to the paraaortic nodes, of whom 46 met the inclusion criteria for GI toxicity and 45 for duodenal toxicity analysis. The median prescribed dose to the paraaortic nodes was 54 Gy (range, 41.4-65 Gy). The 4 duodenal segments, whole duodenum, small bowel loops, peritoneum, and peritoneum plus retroperitoneal segments of colon were contoured retrospectively, and dosimetric analysis was performed to identify dose-volume relationships to grade ≥3 acute (<90 day) and late (≥90 day) GI toxicity. Results: Only 3/46 patients (6.5%) experienced acute grade ≥3 GI toxicity and 3/46 patients (6.5%) experienced late grade ≥3 GI toxicity. The median dose administered to these 6 patients was 50.4 Gy. One of 12 patients who received 63 to 65 Gy at the level of the renal hilum experienced grade 3 GI toxicity. Dosimetric analysis of patients with and without toxicity revealed no differences between the mean absolute or fractional volumes at any 5-Gy interval between 5 Gy and the maximum dose. None of the patients experienced duodenal toxicity. Conclusions: Treatment of paraaortic nodes with IMRT is associated with low rates of GI toxicities and no duodenal-specific toxicity, including patients treated with concurrent chemotherapy. This technique may allow sufficient dose sparing of the bowel to enable safe dose escalation to at least 65 Gy.

  16. Fully Automated Simultaneous Integrated Boosted-Intensity Modulated Radiation Therapy Treatment Planning Is Feasible for Head-and-Neck Cancer: A Prospective Clinical Study

    SciTech Connect

    Wu Binbin; McNutt, Todd; Zahurak, Marianna; Simari, Patricio; Pang, Dalong; Taylor, Russell; Sanguineti, Giuseppe

    2012-12-01

    Purpose: To prospectively determine whether overlap volume histogram (OVH)-driven, automated simultaneous integrated boosted (SIB)-intensity-modulated radiation therapy (IMRT) treatment planning for head-and-neck cancer can be implemented in clinics. Methods and Materials: A prospective study was designed to compare fully automated plans (APs) created by an OVH-driven, automated planning application with clinical plans (CPs) created by dosimetrists in a 3-dose-level (70 Gy, 63 Gy, and 58.1 Gy), head-and-neck SIB-IMRT planning. Because primary organ sparing (cord, brain, brainstem, mandible, and optic nerve/chiasm) always received the highest priority in clinical planning, the study aimed to show the noninferiority of APs with respect to PTV coverage and secondary organ sparing (parotid, brachial plexus, esophagus, larynx, inner ear, and oral mucosa). The sample size was determined a priori by a superiority hypothesis test that had 85% power to detect a 4% dose decrease in secondary organ sparing with a 2-sided alpha level of 0.05. A generalized estimating equation (GEE) regression model was used for statistical comparison. Results: Forty consecutive patients were accrued from July to December 2010. GEE analysis indicated that in APs, overall average dose to the secondary organs was reduced by 1.16 (95% CI = 0.09-2.33) with P=.04, overall average PTV coverage was increased by 0.26% (95% CI = 0.06-0.47) with P=.02 and overall average dose to the primary organs was reduced by 1.14 Gy (95% CI = 0.45-1.8) with P=.004. A physician determined that all APs could be delivered to patients, and APs were clinically superior in 27 of 40 cases. Conclusions: The application can be implemented in clinics as a fast, reliable, and consistent way of generating plans that need only minor adjustments to meet specific clinical needs.

  17. Dependences of mucosal dose on photon beams in head-and-neck intensity-modulated radiation therapy: a Monte Carlo study

    SciTech Connect

    Chow, James C.L.; Owrangi, Amir M.

    2012-07-01

    Dependences of mucosal dose in the oral or nasal cavity on the beam energy, beam angle, multibeam configuration, and mucosal thickness were studied for small photon fields using Monte Carlo simulations (EGSnrc-based code), which were validated by measurements. Cylindrical mucosa phantoms (mucosal thickness = 1, 2, and 3 mm) with and without the bone and air inhomogeneities were irradiated by the 6- and 18-MV photon beams (field size = 1 Multiplication-Sign 1 cm{sup 2}) with gantry angles equal to 0 Degree-Sign , 90 Degree-Sign , and 180 Degree-Sign , and multibeam configurations using 2, 4, and 8 photon beams in different orientations around the phantom. Doses along the central beam axis in the mucosal tissue were calculated. The mucosal surface doses were found to decrease slightly (1% for the 6-MV photon beam and 3% for the 18-MV beam) with an increase of mucosal thickness from 1-3 mm, when the beam angle is 0 Degree-Sign . The variation of mucosal surface dose with its thickness became insignificant when the beam angle was changed to 180 Degree-Sign , but the dose at the bone-mucosa interface was found to increase (28% for the 6-MV photon beam and 20% for the 18-MV beam) with the mucosal thickness. For different multibeam configurations, the dependence of mucosal dose on its thickness became insignificant when the number of photon beams around the mucosal tissue was increased. The mucosal dose with bone was varied with the beam energy, beam angle, multibeam configuration and mucosal thickness for a small segmental photon field. These dosimetric variations are important to consider improving the treatment strategy, so the mucosal complications in head-and-neck intensity-modulated radiation therapy can be minimized.

  18. [{sup 18}F]fluoromisonidazole and a New PET System With Semiconductor Detectors and a Depth of Interaction System for Intensity Modulated Radiation Therapy for Nasopharyngeal Cancer

    SciTech Connect

    Yasuda, Koichi; Onimaru, Rikiya; Okamoto, Shozo; Shiga, Tohru; Katoh, Norio; Tsuchiya, Kazuhiko; Suzuki, Ryusuke; Takeuchi, Wataru; Kuge, Yuji; Tamaki, Nagara; Shirato, Hiroki

    2013-01-01

    Purpose: The impact of a new type of positron emission tomography (New PET) with semiconductor detectors using {sup 18}F-labeled fluoromisonidazole (FMISO)-guided intensity modulated radiation therapy (IMRT) was compared with a state-of-the-art PET/computed tomography (PET/CT) system in nasopharyngeal cancer (NPC) patients. Methods and Materials: Twenty-four patients with non-NPC malignant tumors (control group) and 16 patients with NPC were subjected to FMISO-PET. The threshold of the tumor-to-muscle (T/M) ratio in each PET scan was calculated. The hypoxic volume within the gross tumor volume (GTVh) was determined using each PET ({sub NewPET}GTVh and {sub PET/CT}GTVh, respectively). Dose escalation IMRT plans prescribing 84 Gy to each GTVh were carried out. Results: The threshold of the T/M ratio was 1.35 for New PET and 1.23 for PET/CT. The mean volume of {sub NewPET}GTVh was significantly smaller than that of {sub PET/CT}GTVh (1.5 {+-} 1.6 cc vs 4.7 {+-} 4.6 cc, respectively; P=.0020). The dose escalation IMRT plans using New PET were superior in dose distribution to those using PET/CT. Dose escalation was possible in all 10 New PET-guided plans but not in 1 PET/CT-guided plan, because the threshold dose to the brainstem was exceeded. Conclusions: New PET was found to be useful for accurate dose escalation in FMISO-guided IMRT for patients with NPC.

  19. High-Dose and Extended-Field Intensity Modulated Radiation Therapy for Early-Stage NK/T-Cell Lymphoma of Waldeyer's Ring: Dosimetric Analysis and Clinical Outcome

    SciTech Connect

    Bi, Xi-Wen; Li, Ye-Xiong Fang, Hui; Jin, Jing; Wang, Wei-Hu; Wang, Shu-Lian; Liu, Yue-Ping; Song, Yong-Wen; Ren, Hua; Dai, Jian-Rong

    2013-12-01

    Purpose: To assess the dosimetric benefit, treatment outcome, and toxicity of high-dose and extended-field intensity modulated radiation therapy (IMRT) in patients with early-stage NK/T-cell lymphoma of Waldeyer's ring (WR-NKTCL). Methods and Materials: Thirty patients with early-stage WR-NKTCL who received extended-field IMRT were retrospectively reviewed. The prescribed dose was 50 Gy to the primary involved regions and positive cervical lymph nodes (planning target volume requiring radical irradiation [PTV{sub 50}]) and 40 Gy to the negative cervical nodes (PTV{sub 40}). Dosimetric parameters for the target volume and critical normal structures were evaluated. Locoregional control (LRC), overall survival (OS), and progression-free survival (PFS) were calculated using the Kaplan-Meier method. Results: The median mean doses to the PTV{sub 50} and PTV{sub 40} were 53.2 Gy and 43.0 Gy, respectively. Only 1.4% of the PTV{sub 50} and 0.9% of the PTV{sub 40} received less than 95% of the prescribed dose, indicating excellent target coverage. The average mean doses to the left and right parotid glands were 27.7 and 28.4 Gy, respectively. The 2-year OS, PFS, and LRC rates were 71.2%, 57.4%, and 87.8%. Most acute toxicities were grade 1 to 2, except for grade ≥3 dysphagia and mucositis. The most common late toxicity was grade 1-2 xerostomia, and no patient developed any ≥grade 3 late toxicities. A correlation between the mean dose to the parotid glands and the degree of late xerostomia was observed. Conclusions: IMRT achieves excellent target coverage and dose conformity, as well as favorable survival and locoregional control rates with acceptable toxicities in patients with WR-NKTCL.

  20. Dosimetric benefits of placing dose constraints on the brachial plexus in patients with nasopharyngeal carcinoma receiving intensity-modulated radiation therapy: a comparative study.

    PubMed

    Jiang, Hailan; Lu, Heming; Yuan, Hong; Huang, Huixian; Wei, Yinglin; Zhang, Yanxian; Liu, Xu

    2015-01-01

    This study aimed to evaluate whether placing dose constraints on the brachial plexus (BP) could provide dosimetric benefits in patients with nasopharyngeal carcinoma (NPC) undergoing intensity-modulated radiation therapy (IMRT). Planning CT images for 30 patients with NPC treated with definitive IMRT were retrospectively reviewed. Target volumes, the BP and other critical structures were delineated; two separate IMRT plans were designed for each patient: one set no restrictions for the BP; the other considered the BP as a critical structure for which a maximum dose limit of ≤66 Gy was set. No significant differences between the two plans were observed in the conformity index, homogeneity index, maximum dose to the planning target volumes (PTVs), minimum dose to the PTVs, percentages of the volume of the PTVnx and PTVnd receiving more than 110% of the prescribed dose, or percentages of the volume of the PTVs receiving 95% and > 93% of the prescribed dose. Dose constraints significantly reduced the maximum dose, mean dose, V45, V50, V54, V60, V66 and V70 to the BP. Dose constraints significantly reduced the maximum dose to the BP, V45, V60 and V66 in both N0-1 and N2-3 disease; however, the magnitude of the dosimetric gain for each parameter between N0-1 and N2-3 disease was not significantly different, except for the V60 and V66. In conclusion, placing dose constraints on the BP can significantly decrease the irradiated volume and dose, without compromising adequate dose delivery to the target volume.

  1. Impact of the number of control points has on isodose distributions in a dynamic multileaf collimator intensity-modulated radiation therapy delivery

    SciTech Connect

    Goraj, Andrew; Boer, Steven F. de

    2012-01-01

    Intensity-modulated radiation therapy (IMRT) is a powerful technique in planning the delivery of dose. The most common IMRT delivery requires the use of moving multileaf collimators (MLCs) to deliver the requested fluence pattern. A dynamic delivery IMRT field file will contain several control points that are defined MLC shapes at a marked fraction of the delivered monitor units. The size of this file and the fidelity of the deliverable fluence are proportional to the number of control points defined. This study investigates the effect of reducing the number of control points has on the resultant dose distribution quality in complex IMRT in efforts to reduce transfer times, loading times, check sum times and file storage. Analysis was performed with 6 head and neck patients on an Eclipse version 8.5 treatment planning system (Varian, Palo Alto, CA). To ensure the quality of all treatments, Eclipse defines a minimum of 64 and a maximum of 320 control points per subfield (Eclipse Algorithms Reference guide). All 6 patients' plans were calculated with fixed 64, 166, and 320 control points using the sliding window technique. In addition, each plan was calculated in variable mode (Normal mode) in which the planning system determined the required number of control points. Each of the 4 plans for each patient was renormalized to provide the same mean planning target volume (PTV) 70 dose. Dose values for critical and target structures were examined for each patient. When examining the minimum, maximum, and mean doses to all target structures, it was noted that the greatest reduction in target dose coverage caused by reduced number of control points was 0.5%, which occurred for the minimum dose to the PTV56 structure in one plan.' Dose analysis for critical structures showed no clinically significant increase in dose when compared with the 320 control point plan.

  2. An Automated Treatment Plan Quality Control Tool for Intensity-Modulated Radiation Therapy Using a Voxel-Weighting Factor-Based Re-Optimization Algorithm

    PubMed Central

    Song, Ting; Li, Nan; Zarepisheh, Masoud; Li, Yongbao; Gautier, Quentin; Zhou, Linghong; Mell, Loren; Jiang, Steve; Cerviño, Laura

    2016-01-01

    Intensity-modulated radiation therapy (IMRT) currently plays an important role in radiotherapy, but its treatment plan quality can vary significantly among institutions and planners. Treatment plan quality control (QC) is a necessary component for individual clinics to ensure that patients receive treatments with high therapeutic gain ratios. The voxel-weighting factor-based plan re-optimization mechanism has been proved able to explore a larger Pareto surface (solution domain) and therefore increase the possibility of finding an optimal treatment plan. In this study, we incorporated additional modules into an in-house developed voxel weighting factor-based re-optimization algorithm, which was enhanced as a highly automated and accurate IMRT plan QC tool (TPS-QC tool). After importing an under-assessment plan, the TPS-QC tool was able to generate a QC report within 2 minutes. This QC report contains the plan quality determination as well as information supporting the determination. Finally, the IMRT plan quality can be controlled by approving quality-passed plans and replacing quality-failed plans using the TPS-QC tool. The feasibility and accuracy of the proposed TPS-QC tool were evaluated using 25 clinically approved cervical cancer patient IMRT plans and 5 manually created poor-quality IMRT plans. The results showed high consistency between the QC report quality determinations and the actual plan quality. In the 25 clinically approved cases that the TPS-QC tool identified as passed, a greater difference could be observed for dosimetric endpoints for organs at risk (OAR) than for planning target volume (PTV), implying that better dose sparing could be achieved in OAR than in PTV. In addition, the dose-volume histogram (DVH) curves of the TPS-QC tool re-optimized plans satisfied the dosimetric criteria more frequently than did the under-assessment plans. In addition, the criteria for unsatisfied dosimetric endpoints in the 5 poor-quality plans could typically be

  3. An Automated Treatment Plan Quality Control Tool for Intensity-Modulated Radiation Therapy Using a Voxel-Weighting Factor-Based Re-Optimization Algorithm.

    PubMed

    Song, Ting; Li, Nan; Zarepisheh, Masoud; Li, Yongbao; Gautier, Quentin; Zhou, Linghong; Mell, Loren; Jiang, Steve; Cerviño, Laura

    2016-01-01

    Intensity-modulated radiation therapy (IMRT) currently plays an important role in radiotherapy, but its treatment plan quality can vary significantly among institutions and planners. Treatment plan quality control (QC) is a necessary component for individual clinics to ensure that patients receive treatments with high therapeutic gain ratios. The voxel-weighting factor-based plan re-optimization mechanism has been proved able to explore a larger Pareto surface (solution domain) and therefore increase the possibility of finding an optimal treatment plan. In this study, we incorporated additional modules into an in-house developed voxel weighting factor-based re-optimization algorithm, which was enhanced as a highly automated and accurate IMRT plan QC tool (TPS-QC tool). After importing an under-assessment plan, the TPS-QC tool was able to generate a QC report within 2 minutes. This QC report contains the plan quality determination as well as information supporting the determination. Finally, the IMRT plan quality can be controlled by approving quality-passed plans and replacing quality-failed plans using the TPS-QC tool. The feasibility and accuracy of the proposed TPS-QC tool were evaluated using 25 clinically approved cervical cancer patient IMRT plans and 5 manually created poor-quality IMRT plans. The results showed high consistency between the QC report quality determinations and the actual plan quality. In the 25 clinically approved cases that the TPS-QC tool identified as passed, a greater difference could be observed for dosimetric endpoints for organs at risk (OAR) than for planning target volume (PTV), implying that better dose sparing could be achieved in OAR than in PTV. In addition, the dose-volume histogram (DVH) curves of the TPS-QC tool re-optimized plans satisfied the dosimetric criteria more frequently than did the under-assessment plans. In addition, the criteria for unsatisfied dosimetric endpoints in the 5 poor-quality plans could typically be

  4. Dependence of Achievable Plan Quality on Treatment Technique and Planning Goal Refinement: A Head-and-Neck Intensity Modulated Radiation Therapy Application

    SciTech Connect

    Qi, X. Sharon Ruan, Dan; Lee, Steve P.; Pham, Andrew; Kupelian, Patrick; Low, Daniel A.; Steinberg, Michael; Demarco, John

    2015-03-15

    Purpose: To develop a practical workflow for retrospectively analyzing target and normal tissue dose–volume endpoints for various intensity modulated radiation therapy (IMRT) delivery techniques; to develop technique-specific planning goals to improve plan consistency and quality when feasible. Methods and Materials: A total of 165 consecutive head-and-neck patients from our patient registry were selected and retrospectively analyzed. All IMRT plans were generated using the same dose–volume guidelines for TomoTherapy (Tomo, Accuray), TrueBeam (TB, Varian) using fixed-field IMRT (TB-IMRT) or RAPIDARC (TB-RAPIDARC), or Siemens Oncor (Siemens-IMRT, Siemens). A MATLAB-based dose–volume extraction and analysis tool was developed to export dosimetric endpoints for each patient. With a fair stratification of patient cohort, the variation of achieved dosimetric endpoints was analyzed among different treatment techniques. Upon identification of statistically significant variations, technique-specific planning goals were derived from dynamically accumulated institutional data. Results: Retrospective analysis showed that although all techniques yielded comparable target coverage, the doses to the critical structures differed. The maximum cord doses were 34.1 ± 2.6, 42.7 ± 2.1, 43.3 ± 2.0, and 45.1 ± 1.6 Gy for Tomo, TB-IMRT, TB-RAPIDARC, and Siemens-IMRT plans, respectively. Analyses of variance showed significant differences for the maximum cord doses but no significant differences for other selected structures among the investigated IMRT delivery techniques. Subsequently, a refined technique-specific dose–volume guideline for maximum cord dose was derived at a confidence level of 95%. The dosimetric plans that failed the refined technique-specific planning goals were reoptimized according to the refined constraints. We observed better cord sparing with minimal variations for the target coverage and other organ at risk sparing for the Tomo cases, and higher

  5. The dosimetric impact of daily setup error on target volumes and surrounding normal tissue in the treatment of prostate cancer with intensity-modulated radiation therapy

    SciTech Connect

    Algan, Ozer; Jamgade, Ambarish; Ali, Imad; Christie, Alana; Thompson, J. Spencer; Thompson, David; Ahmad, Salahuddin; Herman, Terence

    2012-01-01

    The purpose of this study was to evaluate the impact of daily setup error and interfraction organ motion on the overall dosimetric radiation treatment plans. Twelve patients undergoing definitive intensity-modulated radiation therapy (IMRT) treatments for prostate cancer were evaluated in this institutional review board-approved study. Each patient had fiducial markers placed into the prostate gland before treatment planning computed tomography scan. IMRT plans were generated using the Eclipse treatment planning system. Each patient was treated to a dose of 8100 cGy given in 45 fractions. In this study, we retrospectively created a plan for each treatment day that had a shift available. To calculate the dose, the patient would have received under this plan, we mathematically 'negated' the shift by moving the isocenter in the exact opposite direction of the shift. The individualized daily plans were combined to generate an overall plan sum. The dose distributions from these plans were compared with the treatment plans that were used to treat the patients. Three-hundred ninety daily shifts were negated and their corresponding plans evaluated. The mean isocenter shift based on the location of the fiducial markers was 3.3 {+-} 6.5 mm to the right, 1.6 {+-} 5.1 mm posteriorly, and 1.0 {+-} 5.0 mm along the caudal direction. The mean D95 doses for the prostate gland when setup error was corrected and uncorrected were 8228 and 7844 cGy (p < 0.002), respectively, and for the planning target volume (PTV8100) was 8089 and 7303 cGy (p < 0.001), respectively. The mean V95 values when patient setup was corrected and uncorrected were 99.9% and 87.3%, respectively, for the PTV8100 volume (p < 0.0001). At an individual patient level, the difference in the D95 value for the prostate volume could be >1200 cGy and for the PTV8100 could approach almost 2000 cGy when comparing corrected against uncorrected plans. There was no statistically significant difference in the D35 parameter

  6. Impact of Chemotherapy on Normal Tissue Complication Probability Models of Acute Hematologic Toxicity in Patients Receiving Pelvic Intensity Modulated Radiation Therapy

    SciTech Connect

    Bazan, Jose G.; Luxton, Gary; Kozak, Margaret M.; Anderson, Eric M.; Hancock, Steven L.; Kapp, Daniel S.; Kidd, Elizabeth A.; Koong, Albert C.; Chang, Daniel T.

    2013-12-01

    Purpose: To determine how chemotherapy agents affect radiation dose parameters that correlate with acute hematologic toxicity (HT) in patients treated with pelvic intensity modulated radiation therapy (P-IMRT) and concurrent chemotherapy. Methods and Materials: We assessed HT in 141 patients who received P-IMRT for anal, gynecologic, rectal, or prostate cancers, 95 of whom received concurrent chemotherapy. Patients were separated into 4 groups: mitomycin (MMC) + 5-fluorouracil (5FU, 37 of 141), platinum ± 5FU (Cis, 32 of 141), 5FU (26 of 141), and P-IMRT alone (46 of 141). The pelvic bone was contoured as a surrogate for pelvic bone marrow (PBM) and divided into subsites: ilium, lower pelvis, and lumbosacral spine (LSS). The volumes of each region receiving 5-40 Gy were calculated. The endpoint for HT was grade ≥3 (HT3+) leukopenia, neutropenia or thrombocytopenia. Normal tissue complication probability was calculated using the Lyman-Kutcher-Burman model. Logistic regression was used to analyze association between HT3+ and dosimetric parameters. Results: Twenty-six patients experienced HT3+: 10 of 37 (27%) MMC, 14 of 32 (44%) Cis, 2 of 26 (8%) 5FU, and 0 of 46 P-IMRT. PBM dosimetric parameters were correlated with HT3+ in the MMC group but not in the Cis group. LSS dosimetric parameters were well correlated with HT3+ in both the MMC and Cis groups. Constrained optimization (0

  7. Intensity-modulated radiation therapy (IMRT) of cancers of the head and neck: Comparison of split-field and whole-field techniques

    SciTech Connect

    Dabaja, Bouthaina; Salehpour, Mohammad R.; Rosen, Isaac; Tung, Sam; Morrison, William H.; Ang, K. Kian; Garden, Adam S. . E-mail: agarden@mdanderson.org

    2005-11-15

    Background: Oropharynx cancers treated with intensity-modulated radiation (IMRT) are often treated with a monoisocentric or half-beam technique (HB). IMRT is delivered to the primary tumor and upper neck alone, while the lower neck is treated with a matching anterior beam. Because IMRT can treat the entire volume or whole field (WF), the primary aim of the study was to test the ability to plan cases using WF-IMRT while obtaining an optimal plan and acceptable dose distribution and also respecting normal critical structures. Methods and Materials: Thirteen patients with early-stage oropharynx cancers had treatment plans created with HB-IMRT and WF-IMRT techniques. Plans were deemed acceptable if they met the planning guidelines (as defined or with minor violations) of the Radiation Therapy Oncology Group protocol H0022. Comparisons included coverage to the planning target volume (PTV) of the primary (PTV66) and subclinical disease (PTV54). We also compared the ability of both techniques to respect the tolerance of critical structures. Results: The volume of PTV66 treated to >110% was less in 9 of the 13 patients in the WF-IMRT plan as compared to the HB-IMRT plan. The calculated mean volume receiving >110% for all patients planned with WF-IMRT was 9.3% (0.8%-25%) compared to 13.7% (2.7%-23.7%) with HB-IMRT (p = 0.09). The PTV54 volume receiving >110% of dose was less in 10 of the 13 patients planned with WF-IMRT compared to HB-IMRT. The mean doses to all critical structures except the larynx were comparable with each plan. The mean dose to the larynx was significantly less (p = 0.001), 18.7 Gy, with HB-IMRT compared to 47 Gy with WF-IMRT. Conclusions: Regarding target volumes, acceptable plans can be generated with either WF-IMRT or HB-IMRT. WF-IMRT has an advantage if uncertainty at the match line is a concern, whereas HB-IMRT, particularly in cases not involving the base of tongue, can achieve much lower doses to the larynx.

  8. Intensity-Modulated Proton Therapy Reduces the Dose to Normal Tissue Compared With Intensity-Modulated Radiation Therapy or Passive Scattering Proton Therapy and Enables Individualized Radical Radiotherapy for Extensive Stage IIIB Non-Small-Cell Lung Cancer: A Virtual Clinical Study

    SciTech Connect

    Zhang Xiaodong; Li Yupeng; Pan Xiaoning; Xiaoqiang, Li; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.; Chang, Joe Y.

    2010-06-01

    Purpose: To compare dose volume histograms of intensity-modulated proton therapy (IMPT) with those of intensity-modulated radiation therapy (IMRT) and passive scattering proton therapy (PSPT) for the treatment of stage IIIB non-small-cell lung cancer (NSCLC) and to explore the possibility of individualized radical radiotherapy. Methods and Materials: Dose volume histograms designed to deliver IMRT at 60 to 63 Gy, PSPT at 74 Gy, and IMPT at the same doses were compared and the use of individualized radical radiotherapy was assessed in patients with extensive stage IIIB NSCLC (n = 10 patients for each approach). These patients were selected based on their extensive disease and were considered to have no or borderline tolerance to IMRT at 60 to 63 Gy, based on the dose to normal tissue volume constraints (lung volume receiving 20 Gy [V20] of <35%, total mean lung dose <20 Gy; spinal cord dose, <45 Gy). The possibility of increasing the total tumor dose with IMPT for each patient without exceeding the dose volume constraints (maximum tolerated dose [MTD]) was also investigated. Results: Compared with IMRT, IMPT spared more lung, heart, spinal cord, and esophagus, even with dose escalation from 63 Gy to 83.5 Gy, with a mean MTD of 74 Gy. Compared with PSPT, IMPT allowed further dose escalation from 74 Gy to a mean MTD of 84.4 Gy (range, 79.4-88.4 Gy) while all parameters of normal tissue sparing were kept at lower or similar levels. In addition, IMPT prevented lower-dose target coverage in patients with complicated tumor anatomies. Conclusions: IMPT reduces the dose to normal tissue and allows individualized radical radiotherapy for extensive stage IIIB NSCLC.

  9. Radiation therapy of esophageal cancer

    SciTech Connect

    Hancock, S.L.; Glatstein, E.

    1984-06-01

    Radiation therapy has been used extensively in the management of patients with cancer of the esophagus. It has demonstrated an ability to cure a small minority of patients. Cure is likely to be limited to patients who have lesions less than 5 cm in length and have minimal, if any, involvement of lymph nodes. Esophagectomy is likely to cure a similar, small percentage of patients with the same presentation of minimal disease but has a substantial acute postoperative mortality rate and greater morbidity than irradiation. Combining surgery and either preoperative or postoperative irradiation may cure a small percentage of patients beyond the number cured with either modality alone. Radiation has demonstrated benefit as an adjuvant to surgery following the resection of minimal disease. However, radiation alone has never been compared directly with surgery for the highly select, minimal lesions managed by surgery. Radiation provides good palliation of dysphagia in the majority of patients, and roughly one third may have adequate swallowing for the duration of their illness when ''radical'' doses have been employed. Surgical bypass procedures have greater acute morbidity but appear to provide more reliable, prolonged palliation of dysphagia. Several approaches to improving the efficacy of irradiation are currently under investigation. These approahces include fractionation schedules, radiosensitizers, neutron-beam therapy, and helium-ion therapy.

  10. Dose optimization with first-order total-variation minimization for dense angularly sampled and sparse intensity modulated radiation therapy (DASSIM-RT)

    SciTech Connect

    Kim, Hojin; Li Ruijiang; Lee, Rena; Goldstein, Thomas; Boyd, Stephen; Candes, Emmanuel; Xing Lei

    2012-07-15

    Purpose: A new treatment scheme coined as dense angularly sampled and sparse intensity modulated radiation therapy (DASSIM-RT) has recently been proposed to bridge the gap between IMRT and VMAT. By increasing the angular sampling of radiation beams while eliminating dispensable segments of the incident fields, DASSIM-RT is capable of providing improved conformity in dose distributions while maintaining high delivery efficiency. The fact that DASSIM-RT utilizes a large number of incident beams represents a major computational challenge for the clinical applications of this powerful treatment scheme. The purpose of this work is to provide a practical solution to the DASSIM-RT inverse planning problem. Methods: The inverse planning problem is formulated as a fluence-map optimization problem with total-variation (TV) minimization. A newly released L1-solver, template for first-order conic solver (TFOCS), was adopted in this work. TFOCS achieves faster convergence with less memory usage as compared with conventional quadratic programming (QP) for the TV form through the effective use of conic forms, dual-variable updates, and optimal first-order approaches. As such, it is tailored to specifically address the computational challenges of large-scale optimization in DASSIM-RT inverse planning. Two clinical cases (a prostate and a head and neck case) are used to evaluate the effectiveness and efficiency of the proposed planning technique. DASSIM-RT plans with 15 and 30 beams are compared with conventional IMRT plans with 7 beams in terms of plan quality and delivery efficiency, which are quantified by conformation number (CN), the total number of segments and modulation index, respectively. For optimization efficiency, the QP-based approach was compared with the proposed algorithm for the DASSIM-RT plans with 15 beams for both cases. Results: Plan quality improves with an increasing number of incident beams, while the total number of segments is maintained to be about the

  11. Prostate and seminal vesicle volume based consideration of prostate cancer patients for treatment with 3D-conformal or intensity-modulated radiation therapy

    SciTech Connect

    Reddy, Nandanuri M. S.; Nori, Dattatreyudu; Chang, Hyesook; Lange, Christopher S.; Ravi, Akkamma

    2010-07-15

    Purpose: The purpose of this article was to determine the suitability of the prostate and seminal vesicle volumes as factors to consider patients for treatment with image-guided 3D-conformal radiation therapy (3D-CRT) or intensity-modulated radiation therapy (IMRT), using common dosimetry parameters as comparison tools. Methods: Dosimetry of 3D and IMRT plans for 48 patients was compared. Volumes of prostate, SV, rectum, and bladder, and prescriptions were the same for both plans. For both 3D and IMRT plans, expansion margins to prostate+SV (CTV) and prostate were 0.5 cm posterior and superior and 1 cm in other dimensions to create PTV and CDPTV, respectively. Six-field 3D plans were prepared retrospectively. For 3D plans, an additional 0.5 cm margin was added to PTV and CDPTV. Prescription for both 3D and IMRT plans was the same: 45 Gy to CTV followed by a 36 Gy boost to prostate. Dosimetry parameters common to 3D and IMRT plans were used for comparison: Mean doses to prostate, CDPTV, SV, rectum, bladder, and femurs; percent volume of rectum and bladder receiving 30 (V30), 50 (V50), and 70 Gy (V70), dose to 30% of rectum and bladder, minimum and maximum point dose to CDPTV, and prescription dose covering 95% of CDPTV (D95). Results: When the data for all patients were combined, mean dose to prostate and CDPTV was higher with 3D than IMRT plans (P<0.01). Mean D95 to CDPTV was the same for 3D and IMRT plans (P>0.2). On average, among all cases, the minimum point dose was less for 3D-CRT plans and the maximum point dose was greater for 3D-CRT than for IMRT (P<0.01). Mean dose to 30% rectum with 3D and IMRT plans was comparable (P>0.1). V30 was less (P<0.01), V50 was the same (P>0.2), and V70 was more (P<0.01) for rectum with 3D than IMRT plans. Mean dose to bladder was less with 3D than IMRT plans (P<0.01). V30 for bladder with 3D plans was less than that of IMRT plans (P<0.01). V50 and V70 for 3D plans were the same for 3D and IMRT plans (P>0.2). Mean dose to femurs

  12. Intensity-modulated radiation therapy after hysterectomy: Comparison with conventional treatment and sensitivity of the normal-tissue-sparing effect to margin size

    SciTech Connect

    Ahamad, Anesa; D'Souza, Warren; Salehpour, Mohammad; Iyer, Revathy; Tucker, Susan L.; Jhingran, Anuja; Eifel, Patricia J. . E-mail: peifel@mdanderson.org

    2005-07-15

    Purpose: To determine the influence of target-volume expansion on the reduction in small-bowel dose achieved with use of intensity-modulated radiation therapy (IMRT) vs. standard conformal treatment of the pelvis after hysterectomy, and to investigate the influence of patient body habitus on the normal-tissue sparing achieved with use of IMRT. Methods and Materials: A clinical target volume (CTV) was contoured on each of 10 planning computed tomography scans of patients who had been treated for cervical or endometrial cancer after a hysterectomy. Treatment planning was based on vaginal CTVs and regional nodal CTVs. To account for internal motion, margins were added to form an initial planning target volume (PTVA) as follows: 0.0 mm were added to the regional nodal CTV; 10 mm were added anteriorly to the vaginal CTV; and 5 mm were added to the vaginal CTV in all other directions. Two further PTVs (PTVB and PTVC) were produced by a 5-mm expansion of PTVA to give PTVB and a further 5-mm expansion to give PTVC. Treatment plans for all 3 PTVs were produced by use of 2 conformal fields (2FC), 4 conformal fields (4FC), or IMRT to deliver 45 Gy to more than 97% of the PTV. The primary goal of IMRT was to spare small bowel. The change in sparing that accompanied the increase in margin size was assessed by comparison of dose-volume histograms that resulted from PTVA, PTVB, and PTVC. Measured patient dimensions were correlated with bowel sparing. Results: Significantly less small bowel was irradiated by IMRT than by 2FC (p < 0.0001) or 4FC (p < 0.0001) for doses greater than 25 Gy. Significantly less rectum was irradiated by IMRT than by 2FC (p < 0.0001) or 4FC (p < 0.0001). Significantly less bladder was irradiated by IMRT than by 2FC (p < 0.0001). However, the magnitude of the sparing achieved by use of IMRT decreased as margins increased. In particular, the volume of small bowel spared by IMRT vs. 2FC or 4FC decreased as margin size increased (p = 0.0002 and p = 0.008 for

  13. Radiation therapy of acromegaly.

    PubMed

    Eastman, R C; Gorden, P; Glatstein, E; Roth, J

    1992-09-01

    Conventional megavoltage irradiation of GH-secreting tumors has predictable effects on tumor mass, GH, and pituitary function. 1. Further growth of the tumor is prevented in more than 99% of patients, with only a fraction of a percent of patients requiring subsequent surgery for tumor mass effects. 2. GH falls predictably with time. By 2 years GH falls by about 50% from the baseline level, and by 5 years by about 75% from the baseline level. The initial GH elevation and the size and erosive features of the sella turcica do not affect the percent decrease in GH from the baseline elevation. 3. With prolonged follow-up, further decrease in GH is seen at 10 and 15 years, with the fraction of surviving patients achieving GH levels less than 5 ng/mL approaching 90% after 15 years in our experience. Gender, previous surgery, and hyperprolactinemia do not seem to affect the response to treatment. Patients with initial GH greater than 100 ng/mL are significantly less likely to achieve GH values less than 5 ng/mL during long-term follow-up. 4. Hypopituitarism is a predictable outcome of treatment, is delayed, and may be more likely in patients who have had surgery prior to irradiation. There is no evidence that this complication is more common in patients with acromegaly than in patients with other pituitary adenomas receiving similar treatment. 5. Vision loss due to megavoltage irradiation--using modern techniques and limiting the total dose to 4680 rad given in 25 fractions over 35 days, with individual fractions not exceeding 180 rad--is extremely rare. The reported cases have occurred almost entirely in patients who have received larger doses or higher fractional doses. The theory that patients with acromegaly are prone to radiation-induced injury to the CNS and optic nerves and chiasm because of small vessel disease is not supported by a review of the reported cases. 6. Brain necrosis and secondary neoplasms induced by irradiation are extremely rare. 7. Although

  14. Dose-Painted Intensity-Modulated Radiation Therapy for Anal Cancer: A Multi-Institutional Report of Acute Toxicity and Response to Therapy

    SciTech Connect

    Kachnic, Lisa A.; Tsai, Henry K.; Coen, John J.; Blaszkowsky, Lawrence S.; Hartshorn, Kevan; Kwak, Eunice L.; Willins, John D.; Ryan, David P.; Hong, Theodore S.

    2012-01-01

    Purpose: Chemoradiation for anal cancer yields effective tumor control, but is associated with significant acute toxicity. We report our multi-institutional experience using dose-painted IMRT (DP-IMRT). Patients and Methods: Between August 2005 and May 2009, 43 patients were treated with DP-IMRT and concurrent chemotherapy for biopsy-proven, squamous cell carcinoma of the anal canal at two academic medical centers. DP-IMRT was prescribed as follows: T2N0: 42 Gy, 1.5 Gy/fraction (fx) to elective nodal planning target volume (PTV) and 50.4 Gy, 1.8 Gy/fx to anal tumor PTV; T3-4N0-3: 45 Gy, 1.5 Gy/fx to elective nodal PTV, and 54 Gy, 1.8 Gy/fx to the anal tumor and metastatic nodal PTV >3 cm with 50.4 Gy, 1.68 Gy/fx to nodal PTVs {<=}3 cm in size. Acute and late toxicity was reported by the treating physician. Actuarial analysis was performed using the Kaplan-Meier method. Results: Median age was 58 years; 67% female; 16% Stage I, 37% II; 42% III; 5% IV. Fourteen patients were immunocompromised: 21% HIV-positive and 12% on chronic immunosuppression. Median follow-up was 24 months (range, 0.6-43.5 months). Sixty percent completed chemoradiation without treatment interruption; median duration of treatment interruption was 2 days (range, 2-24 days). Acute Grade 3+ toxicity included: hematologic 51%, dermatologic 10%, gastrointestinal 7%, and genitourinary 7%. Two-year local control, overall survival, colostomy-free survival, and metastasis-free survival were 95%, 94%, 90%, and 92%, respectively. Conclusions: Dose-painted IMRT appears effective and well-tolerated as part of a chemoradiation therapy regimen for the treatment of anal canal cancer.

  15. Radiation Therapy and Hearing Loss

    SciTech Connect

    Bhandare, Niranjan; Jackson, Andrew; Eisbruch, Avraham; Pan, Charlie C.; Flickinger, John C.; Antonelli, Patrick; Mendenhall, William M.

    2010-03-01

    A review of literature on the development of sensorineural hearing loss after high-dose radiation therapy for head-and-neck tumors and stereotactic radiosurgery or fractionated stereotactic radiotherapy for the treatment of vestibular schwannoma is presented. Because of the small volume of the cochlea a dose-volume analysis is not feasible. Instead, the current literature on the effect of the mean dose received by the cochlea and other treatment- and patient-related factors on outcome are evaluated. Based on the data, a specific threshold dose to cochlea for sensorineural hearing loss cannot be determined; therefore, dose-prescription limits are suggested. A standard for evaluating radiation therapy-associated ototoxicity as well as a detailed approach for scoring toxicity is presented.

  16. Decline of Cosmetic Outcomes Following Accelerated Partial Breast Irradiation Using Intensity Modulated Radiation Therapy: Results of a Single-Institution Prospective Clinical Trial

    SciTech Connect

    Liss, Adam L.; Ben-David, Merav A.; Jagsi, Reshma; Hayman, James A.; Griffith, Kent A.; Moran, Jean M.; Marsh, Robin B.; Pierce, Lori J.

    2014-05-01

    Purpose: To report the final cosmetic results from a single-arm prospective clinical trial evaluating accelerated partial breast irradiation (APBI) using intensity modulated radiation therapy (IMRT) with active-breathing control (ABC). Methods and Materials: Women older than 40 with breast cancer stages 0-I who received breast-conserving surgery were enrolled in an institutional review board-approved prospective study evaluating APBI using IMRT administered with deep inspiration breath-hold. Patients received 38.5 Gy in 3.85-Gy fractions given twice daily over 5 consecutive days. The planning target volume was defined as the lumpectomy cavity with a 1.5-cm margin. Cosmesis was scored on a 4-category scale by the treating physician. Toxicity was scored according to National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE version 3.0). We report the cosmetic and toxicity results at a median follow-up of 5 years. Results: A total of 34 patients were enrolled. Two patients were excluded because of fair baseline cosmesis. The trial was terminated early because fair/poor cosmesis developed in 7 of 32 women at a median follow-up of 2.5 years. At a median follow-up of 5 years, further decline in the cosmetic outcome was observed in 5 women. Cosmesis at the time of last assessment was 43.3% excellent, 30% good, 20% fair, and 6.7% poor. Fibrosis according to CTCAE at last assessment was 3.3% grade 2 toxicity and 0% grade 3 toxicity. There was no correlation of CTCAE grade 2 or greater fibrosis with cosmesis. The 5-year rate of local control was 97% for all 34 patients initially enrolled. Conclusions: In this prospective trial with 5-year median follow-up, we observed an excellent rate of tumor control using IMRT-planned APBI. Cosmetic outcomes, however, continued to decline, with 26.7% of women having a fair to poor cosmetic result. These results underscore the need for continued cosmetic assessment for patients treated with APBI by technique.

  17. Influence of compensator thickness, field size, and off-axis distance on the effective attenuation coefficient of a cerrobend compensator for intensity-modulated radiation therapy

    SciTech Connect

    Haghparast, Abbas; Hashemi, Bijan; Eivazi, Mohammad Taghi

    2013-04-01

    Intensity-modulated radiation therapy (IMRT) can be performed by using compensators. To make a compensator for an IMRT practice, it is required to calculate the effective attenuation coefficient (μ{sub eff}) of its material, which is affected by various factors. We studied the effect of the variation of the most important factors on the calculation of the μ{sub eff} of the cerrobend compensator for 6-MV photon beams, including the field size, compensator thickness, and off-axis distance. Experimental measurements were carried out at 100 cm source-to-surface distance and 10 cm depth for the 6-MV photon beams of an Elekta linac using various field size, compensator thickness, and off-axis settings. The field sizes investigated ranged from 4 × 4 to 25 × 25 cm{sup 2} and the cerrobend compensator thicknesses from 0.5–6 cm. For a fixed compensator thickness, variation of the μ{sub eff} with the field size ranged from 3.7–6.8%, with the highest value attributed to the largest compensator thickness. At the reference field size of 10 × 10 cm{sup 2}, the μ{sub eff} varied by 16.5% when the compensator thickness was increased from 0.5–6 cm. However, the variation of the μ{sub eff} with the off-axis distance was only 0.99% at this field size, whereas for the largest field size, it was more significant. Our results indicated that the compensator thickness and field size have the most significant effect on the calculation of the compensator μ{sub eff} for the 6-MV photon beam. Therefore, it is recommended to consider these parameters when calculating the compensator thickness for an IMRT practice designed for these beams. The off-axis distance had a significant effect on the calculation of the μ{sub eff} only for the largest field size. Hence, it is recommended to consider the effect of this parameter only for field sizes larger than 25 × 25 cm{sup 2}.

  18. An Image-Guided Study of Setup Reproducibility of Postmastectomy Breast Cancer Patients Treated With Inverse-Planned Intensity Modulated Radiation Therapy

    SciTech Connect

    Feng, Christine H.; Gerry, Emily; Chmura, Steven J.; Hasan, Yasmin; Al-Hallaq, Hania A.

    2015-01-01

    Purpose: To calculate planning target volume (PTV) margins for chest wall and regional nodal targets using daily orthogonal kilovolt (kV) imaging and to study residual setup error after kV alignment using volumetric cone-beam computed tomography (CBCT). Methods and Materials: Twenty-one postmastectomy patients were treated with intensity modulated radiation therapy with 7-mm PTV margins. Population-based PTV margins were calculated from translational shifts after daily kV positioning and/or weekly CBCT data for each of 8 patients, whose surgical clips were used as surrogates for target volumes. Errors from kV and CBCT data were mathematically combined to generate PTV margins for 3 simulated alignment workflows: (1) skin marks alone; (2) weekly kV imaging; and (3) daily kV imaging. Results: The kV data from 613 treatment fractions indicated that a 7-mm uniform margin would account for 95% of daily shifts if patients were positioned using only skin marks. Total setup errors incorporating both kV and CBCT data were larger than those from kV alone, yielding PTV expansions of 7 mm anterior–posterior, 9 mm left–right, and 9 mm superior–inferior. Required PTV margins after weekly kV imaging were similar in magnitude as alignment to skin marks, but rotational adjustments of patients were required in 32% ± 17% of treatments. These rotations would have remained uncorrected without the use of daily kV imaging. Despite the use of daily kV imaging, CBCT data taken at the treatment position indicate that an anisotropic PTV margin of 6 mm anterior–posterior, 4 mm left–right, and 8 mm superior–inferior must be retained to account for residual errors. Conclusions: Cone-beam CT provides additional information on 3-dimensional reproducibility of treatment setup for chest wall targets. Three-dimensional data indicate that a uniform 7-mm PTV margin is insufficient in the absence of daily IGRT. Interfraction movement is greater than suggested by 2-dimensional

  19. Correlation of PD-L1 Expression of Tumor Cells with Survival Outcomes after Radical Intensity-Modulated Radiation Therapy for Non-Metastatic Nasopharyngeal Carcinoma

    PubMed Central

    Lee, Victor H. F.; Lo, Anthony W. I.; Leung, Chun-Yin; Shek, Wai-Hung; Kwong, Dora L. W.; Lam, Ka-On; Tong, Chi-Chung; Sze, Chun-Kin; Leung, To-Wai

    2016-01-01

    Purpose We investigated if programmed death-ligand 1 (PD-L1) expression levels were prognostic of survival outcomes after intensity-modulated radiation therapy (IMRT) for non-metastatic nasopharyngeal carcinoma (NPC). Methods and Materials 104 patients with non-metastatic NPC treated with radical IMRT were investigated for their PD-L1 expression by immunohistochemistry (IHC) which were correlated with survival endpoints including locoregional failure-free survival (LRFFS), progression-free survival (PFS), distant metastasis-free survival (DMFS) and overall survival (OS). Results After a median follow-up of 7.6 years, 21 (20.2%), 19 (18.3%) and 31 (29.8%) patients suffered from locoregional failure, distant metastases and overall disease progression, respectively, and 31 (29.8%) patients died. Patients whose tumors had PD-L1 IHC 2+ (moderate to strong membrane staining in ≥ 25% of tumor cells) enjoyed longer LRFFS (5-year 100% vs. 74.4%, Hazard ratio [HR], 0.159, 95% confidence interval [CI], 0.021–0.988; P = 0.042) and marginally longer PFS (5-year 95.0% vs. 65.2%, HR, 0.351, 95% CI, 0.08–0.999, P = 0.067) compared to those whose tumors had PD-L1 IHC 0 (minimal membrane staining with PD-L1 in < 5% tumor cells or no staining with PD-L1) or 1+ (minimal to moderate membrane staining with PD-L1 in between 5–24% tumor cells). PD-L1 IHC 2+ was independently prognostic of both LRFFS (P = 0.014) and PFS (P = 0.045) in multivariable analyses. Only induction chemotherapy followed by concurrent chemoradiation was prognostic of DMFS (P = 0.003) and no prognostic factor for OS was identified. Conclusion PD-L1 expression levels correlated with LRRFS and PFS in non-metastatic NPC treated with radical IMRT. It may play a role in radiosensitivity for NPC, which should be further confirmed in prospective studies using immunotherapy together with IMRT. PMID:27341634

  20. Suggestions for Lymph Node Classification of UICC/AJCC Staging System: A Retrospective Study Based on 1197 Nasopharyngeal Carcinoma Patients Treated With Intensity-Modulated Radiation Therapy

    PubMed Central

    Guo, Qiaojuan; Pan, Jianji; Zong, Jingfeng; Zheng, Wei; Zhang, Chun; Tang, Linbo; Chen, Bijuan; Cui, Xiaofei; Xiao, Youping; Chen, Yunbin; Lin, Shaojun

    2015-01-01

    Abstract This article provides suggestions for N classification of Union for International Cancer Control/American Joint Committee on Cancer (UICC/AJCC) staging system of nasopharyngeal carcinoma (NPC), purely based on magnetic resonance imaging (MRI) in intensity-modulated radiation therapy (IMRT) era. A total of 1197 nonmetastatic NPC patients treated with IMRT were enrolled, and all were scanned by MRI at nasopharynx and neck before treatment. MRI-based nodal variables including level, laterality, maximal axial diameter (MAD), extracapsular spread (ECS), and necrosis were analyzed as potential prognostic factors. Modifications of N classification were then proposed and verified. Only nodal level and laterality were considered to be significant variables affecting the treatment outcome. N classification was thus proposed accordingly: N0, no regional lymph node (LN) metastasis; N1, retropharyngeal LNs involvement (regardless of laterality), and/or unilateral levels I, II, III, and/or Va involvement; N2, bilateral levels I, II, III, and/or Va involvement; and N3, levels IV, Vb, and Vc involvement. This proposal showed significant predicting value in multivariate analysis. N3 patients indicated relatively inferior overall survival (OS) and distant metastasis-free survival (DMFS) than N2 patients; however, the difference showed no statistical significance (P = 0.673 and 0.265 for OS and DMFS, respectively), and this was considered to be correlated with the small sample sizes of N3 patients (79 patients, 6.6%). Nodal level and laterality, but not MAD, ECS, and necrosis, were considered to be significant predicting factors for NPC. The proposed N classification was proved to be powerfully predictive in our cohort; however, treatment outcome of the proposed N2 and N3 patients could not differ significantly from each other. This insignificance may be because of the small sample sizes of N3 patients. Our results are based on a single-center data, to develop a new N

  1. Phase II Study of Long-Term Androgen Suppression With Bevacizumab and Intensity-Modulated Radiation Therapy (IMRT) in High-Risk Prostate Cancer

    SciTech Connect

    Vuky, Jacqueline; Badiozamani, Kasra; Song Guobin

    2012-03-15

    Purpose: We report a Phase II trial assessing the acute and late toxicities of intensity-modulated radiation therapy (IMRT), long-term androgen suppression (LTAS), and bevacizumab in patients with high-risk localized prostate cancer. Methods and Materials: We treated 18 patients with LTAS with bicalutamide and goserelin in combination with bevacizumab and IMRT. Bevacizumab (10 mg/kg every 2 weeks) was administered for the first 16 weeks, and 15 mg/kg was then given every 3 weeks for 12 additional weeks, with an IMRT dose of 77.9 Gy to the prostate, 64.6 Gy to the seminal vesicles, and 57 Gy to the pelvic lymph nodes. Patients were eligible if they had clinical stage T2b to T4, a Gleason sum score of 8 to 10, or a prostate- specific antigen level of 20ng/mL or greater. The primary endpoint of the study was evaluation of acute and late toxicities. Results: The median age was 69 years, with a median pretreatment prostate-specific antigen level of 12.5 ng/mL and Gleason score of 8. The pretreatment clinical stage was T1c in 4 patients, T2 in 11, and T3 in 3. All patients completed IMRT with median follow-up of 34 months (range, 28-40 months) The most common Grade 2 or higher toxicities were hypertension (61% of patients with Grade 2 and 11% with Grade 3), proteinuria (28% with Grade 2 and 6% with Grade 3), and leucopenia (28% with Grade 2). No Grade 4 or higher acute toxicities were reported. Late toxicities included proctitis (6% of patients with Grade 2 and 11% with Grade 3), rectal bleeding (6% with Grade 2 and 11% with Grade 3), hematuria (6% with Grade 2), proteinuria (17% with Grade 2), hyponatremia (6% with Grade 3), cystitis (6% with Grade 3), and urinary retention (6% with Grade 2 and 11% with Grade 3). Grade 4 prostatitis occurred in 1 patient (6%). Conclusions: Bevacizumab does not appear to exacerbate the acute effects of IMRT. Late toxicities may have been worsened with this regimen. Further investigations of bevacizumab with LTAS and IMRT should be

  2. Long-Term Quality of Life After Swallowing and Salivary-Sparing Chemo–Intensity Modulated Radiation Therapy in Survivors of Human Papillomavirus–Related Oropharyngeal Cancer

    SciTech Connect

    Vainshtein, Jeffrey M.; Moon, Dominic H.; Feng, Felix Y.; Chepeha, Douglas B.; Eisbruch, Avraham; Stenmark, Matthew H.

    2015-04-01

    Purpose: To evaluate long-term health-related quality of life (HRQOL) in 2 prospective studies of chemo–intensity modulated radiation therapy (chemo-IMRT) for oropharyngeal cancer (OPC). Methods and Materials: Of 93 patients with stage III/IV OPC treated on prospective studies of swallowing and salivary organ-sparing chemo-IMRT, 69 were eligible for long-term HRQOL assessment. Three validated patient-reported instruments, the Head and Neck QOL (HNQOL) questionnaire, the University of Washington quality of life (UWQOL) questionnaire, and the Xerostomia Questionnaire (XQ), previously administered from baseline through 2 years in the parent studies, were readministered at long-term follow-up, along with the Short-Form 36. Long-term changes in HRQOL from before treatment and 2 years were evaluated. Results: Forty patients (58%) with a median follow-up of 6.5 years participated, 39 of whom (97.5%) had confirmed human papillomavirus–positive OPC. Long term, no clinically significant worsening was detected in mean HRQOL scores compared with 2 years, with stable or improved HRQOL from before treatment in nearly all domains. “Moderate” or greater severity problems were uncommon, reported by 5% of patients for eating, 5% for swallowing, and 2.5% and 5% by HNQOL and UWQOL summary scores, respectively. Freedom from percutaneous endoscopic gastrostomy tube dependence and stricture dilation beyond 2 years was 97.5% and 95%, respectively. Eleven percent and 14% of patients reported “moderate” or “severe” long-term worsening in HNQOL Pain and Overall Bother domains, respectively, which were associated with mean dose to the cervical esophagus, larynx, and pharyngeal constrictors. Conclusions: At more than 6 years' median follow-up, OPC patients treated with swallowing and salivary organ-sparing chemo-IMRT reported stable or improved HRQOL in nearly all domains compared with both before treatment and 2-year follow-up. New late toxicity after 2 years was

  3. Whole breast and excision cavity radiotherapy plan comparison: Conformal radiotherapy with sequential boost versus intensity-modulated radiation therapy with a simultaneously integrated boost

    SciTech Connect

    Small, Katherine; Kelly, Chris; Beldham-Collins, Rachael; Gebski, Val

    2013-03-15

    A comparative study was conducted comparing the difference between (1) conformal radiotherapy (CRT) to the whole breast with sequential boost excision cavity plans and (2) intensity-modulated radiation therapy (IMRT) to the whole breast with simultaneously integrated boost to the excision cavity. The computed tomography (CT) data sets of 25 breast cancer patients were used and the results analysed to determine if either planning method produced superior plans. CT data sets from 25 past breast cancer patients were planned using (1) CRT prescribed to 50 Gy in 25 fractions (Fx) to the whole-breast planning target volume (PTV) and 10 Gy in 5Fx to the excision cavity and (2) IMRT prescribed to 60 Gy in 25Fx, with 60 Gy delivered to the excision cavity PTV and 50 Gy delivered to the whole-breast PTV, treated simultaneously. In total, 50 plans were created, with each plan evaluated by PTV coverage using conformity indices, plan maximum dose, lung dose, and heart maximum dose for patients with left-side lesions. CRT plans delivered the lowest plan maximum doses in 56% of cases (average CRT = 6314.34 cGy, IMRT = 6371.52 cGy). They also delivered the lowest mean lung dose in 68% of cases (average CRT = 1206.64 cGy, IMRT = 1288.37 cGy) and V20 in 88% of cases (average CRT = 20.03%, IMRT = 21.73%) and V30 doses in 92% of cases (average CRT = 16.82%, IMRT = 17.97%). IMRT created more conformal plans, using both conformity index and conformation number, in every instance, and lower heart maximum doses in 78.6% of cases (average CRT = 5295.26 cGy, IMRT = 5209.87 cGy). IMRT plans produced superior dose conformity and shorter treatment duration, but a slightly higher planning maximum and increased lung doses. IMRT plans are also faster to treat on a daily basis, with shorter fractionation.

  4. Single Vocal Cord Irradiation: Image Guided Intensity Modulated Hypofractionated Radiation Therapy for T1a Glottic Cancer: Early Clinical Results

    SciTech Connect

    Al-Mamgani, Abrahim; Kwa, Stefan L.S.; Tans, Lisa; Moring, Michael; Fransen, Dennie; Mehilal, Robert; Verduijn, Gerda M.; Baatenburg de Jong, Rob J.; Heijmen, Ben J.M.; Levendag, Peter C.

    2015-10-01

    Purpose: To report, from a retrospective analysis of prospectively collected data, on the feasibility, outcome, toxicity, and voice-handicap index (VHI) of patients with T1a glottic cancer treated by a novel intensity modulated radiation therapy technique developed at our institution to treat only the involved vocal cord: single vocal cord irradiation (SVCI). Methods and Materials: Thirty patients with T1a glottic cancer were treated by means of SVCI. Dose prescription was set to 16 × 3.63 Gy (total dose 58.08 Gy). The clinical target volume was the entire vocal cord. Setup verification was done by means of an online correction protocol using cone beam computed tomography. Data for voice quality assessment were collected prospectively at baseline, end of treatment, and 4, 6, and 12 weeks and 6, 12, and 18 months after treatment using VHI questionnaires. Results: After a median follow-up of 30 months (range, 7-50 months), the 2-year local control and overall survival rates were 100% and 90% because no single local recurrence was reported and 3 patients died because of comorbidity. All patients have completed the intended treatment schedule; no treatment interruptions and no grade 3 acute toxicity were reported. Grade 2 acute dermatitis or dysphagia was reported in only 5 patients (17%). No serious late toxicity was reported; only 1 patient developed temporary grade 2 laryngeal edema, and responded to a short-course of corticosteroid. The VHI improved significantly, from 33.5 at baseline to 9.5 and 10 at 6 weeks and 18 months, respectively (P<.001). The control group, treated to the whole larynx, had comparable local control rates (92.2% vs 100%, P=.24) but more acute toxicity (66% vs 17%, P<.0001) and higher VHI scores (23.8 and 16.7 at 6 weeks and 18 months, respectively, P<.0001). Conclusion: Single vocal cord irradiation is feasible and resulted in maximal local control rate at 2 years. The deterioration in VHI scores was slight and temporary and

  5. Patient-Reported Voice and Speech Outcomes After Whole-Neck Intensity Modulated Radiation Therapy and Chemotherapy for Oropharyngeal Cancer: Prospective Longitudinal Study

    SciTech Connect

    Vainshtein, Jeffrey M.; Griffith, Kent A.; Feng, Felix Y.; Vineberg, Karen A.; Chepeha, Douglas B.; Eisbruch, Avraham

    2014-08-01

    Purpose: To describe voice and speech quality changes and their predictors in patients with locally advanced oropharyngeal cancer treated on prospective clinical studies of organ-preserving chemotherapy–intensity modulated radiation therapy (chemo-IMRT). Methods and Materials: Ninety-one patients with stage III/IV oropharyngeal cancer were treated on 2 consecutive prospective studies of definitive chemoradiation using whole-field IMRT from 2003 to 2011. Patient-reported voice and speech quality were longitudinally assessed from before treatment through 24 months using the Communication Domain of the Head and Neck Quality of Life (HNQOL-C) instrument and the Speech question of the University of Washington Quality of Life (UWQOL-S) instrument, respectively. Factors associated with patient-reported voice quality worsening from baseline and speech impairment were assessed. Results: Voice quality decreased maximally at 1 month, with 68% and 41% of patients reporting worse HNQOL-C and UWQOL-S scores compared with before treatment, and improved thereafter, recovering to baseline by 12-18 months on average. In contrast, observer-rated larynx toxicity was rare (7% at 3 months; 5% at 6 months). Among patients with mean glottic larynx (GL) dose ≤20 Gy, >20-30 Gy, >30-40 Gy, >40-50 Gy, and >50 Gy, 10%, 32%, 25%, 30%, and 63%, respectively, reported worse voice quality at 12 months compared with before treatment (P=.011). Results for speech impairment were similar. Glottic larynx dose, N stage, neck dissection, oral cavity dose, and time since chemo-IMRT were univariately associated with either voice worsening or speech impairment. On multivariate analysis, mean GL dose remained independently predictive for both voice quality worsening (8.1%/Gy) and speech impairment (4.3%/Gy). Conclusions: Voice quality worsening and speech impairment after chemo-IMRT for locally advanced oropharyngeal cancer were frequently reported by patients, underrecognized by clinicians, and

  6. The Effect of Significant Tumor Reduction on the Dose Distribution in Intensity Modulated Radiation Therapy for Head-And-Neck Cancer: A Case Study

    SciTech Connect

    Mechalakos, James Lee, Nancy; Hunt, Margie; Ling, C. Clifton; Amols, Howard I.

    2009-10-01

    We present a unique case in which a patient with significant tissue loss was monitored for dosimetric changes using weekly cone beam computed tomography (CBCT) scans. A previously treated nasopharynx patient presented with a large, exophytic, recurrent left neck mass. The patient underwent re-irradiation to 70 Gy using intensity modulated radiation therapy (IMRT) with shielding blocks over the spinal cord and brain stem. Weekly CBCT scans were acquired during treatment. Target contours and treatment fields were then transferred from the original treatment planning computed tomography (CT) to the CBCT scans and dose calculations were performed on all CBCT scans and compared to the planning doses. In addition, a 'research' treatment plan was created that assumed the patient had not been previously treated, and the above analysis was repeated. Finally, to remove the effects of setup error, the outer contours of 2 CBCT scans with significant tumor reductions were transferred to the planning scan and dose in the planning scan was recalculated. Planning treatment volume (PTV) decreased 45% during treatment. Spinal cord D05 differed from the planned value by 3.5 {+-} 9.8% (average + standard deviation). Mean dose to the oral cavity and D05 of the mandible differed from the planned value by 0.9 {+-} 2.1% and 0.6 {+-} 1.5%, respectively. Results for the research plan were comparable. Target coverage did not change appreciably (-0.2 {+-} 2.5%). When the planning scan was recalculated with the reduced outer contour from the CBCT, spinal cord D05 decreased slightly due to the reduction in scattered dose. Weekly imaging provided us the unique opportunity to use different methods to examine the dosimetric effects of an unusually large loss of tissue. We did not see that tissue loss alone resulted in a significant effect on the dose delivered to the spinal cord for this case, as most fluctuation was due to setup error. In the IGRT era, delivered dose distributions can be more

  7. Radiation Dose to the Brachial Plexus in Head-and-Neck Intensity-Modulated Radiation Therapy and Its Relationship to Tumor and Nodal Stage

    PubMed Central

    Truong, Minh Tam; Romesser, Paul B.; Qureshi, Muhammad M.; Kovalchuk, Nataliya; Orlina, Lawrence; Willins, John

    2016-01-01

    Purpose The purpose of this retrospective study was to determine tumor factors contributing to brachial plexus (BP) dose in head-and-neck cancer (HNC) patients treated with intensity-modulated radiotherapy (IMRT) when the BP is routinely contoured as an organ at risk (OAR) for IMRT optimization. Methods and Materials From 2004 to 2011, a total of 114 HNC patients underwent IMRT to a total dose of 69.96 Gy in 33 fractions, with the right and left BP prospectively contoured as separate OARs in 111 patients and the ipsilateral BP contoured in 3 patients (total, 225 BP). Staging category T4 and N2/3 disease were present in 34 (29.8%) and 74 (64.9%) patients, respectively. During IMRT optimization, the intent was to keep the maximum BP dose to ≤60 Gy, but prioritizing tumor coverage over achieving the BP constraints. BP dose parameters were compared with tumor and nodal stage. Results With a median follow-up of 16.2 months, 43 (37.7%) patients had ≥24 months of follow-up with no brachial plexopathy reported. Mean BP volume was 8.2 ± 4.5 cm3. Mean BP maximum dose was 58.1 ± 12.2 Gy, and BP mean dose was 42.2 ± 11.3 Gy. The BP maximum dose was ≤60, ≤66, and ≤70 Gy in 122 (54.2%), 185 (82.2%), and 203 (90.2%) BP, respectively. For oropharynx, hypopharynx, and larynx sites, the mean BP maximum dose was 58.4 Gy and 63.4 Gy in T0–3 and T4 disease, respectively (p = 0.002). Mean BP maximum dose with N0/1 and N2/3 disease was 52.8 Gy and 60.9 Gy, respectively (p < 0.0001). Conclusions In head-and-neck IMRT, dose constraints for the BP are difficult to achieve to ≤60 to 66 Gy with T4 disease of the larynx, hypopharynx, and oropharynx or N2/3 disease. The risk of brachial plexopathy is likely very small in HNC patients undergoing IMRT, although longer follow-up is required. PMID:22300574

  8. Radiation Dose to the Brachial Plexus in Head-and-Neck Intensity-Modulated Radiation Therapy and Its Relationship to Tumor and Nodal Stage

    SciTech Connect

    Truong, Minh Tam; Romesser, Paul B.; Qureshi, Muhammad M.; Kovalchuk, Nataliya; Orlina, Lawrence; Willins, John

    2012-09-01

    Purpose: The purpose of this retrospective study was to determine tumor factors contributing to brachial plexus (BP) dose in head-and-neck cancer (HNC) patients treated with intensity-modulated radiotherapy (IMRT) when the BP is routinely contoured as an organ at risk (OAR) for IMRT optimization. Methods and Materials: From 2004 to 2011, a total of 114 HNC patients underwent IMRT to a total dose of 69.96 Gy in 33 fractions, with the right and left BP prospectively contoured as separate OARs in 111 patients and the ipsilateral BP contoured in 3 patients (total, 225 BP). Staging category T4 and N2/3 disease were present in 34 (29.8%) and 74 (64.9%) patients, respectively. During IMRT optimization, the intent was to keep the maximum BP dose to {<=}60 Gy, but prioritizing tumor coverage over achieving the BP constraints. BP dose parameters were compared with tumor and nodal stage. Results: With a median follow-up of 16.2 months, 43 (37.7%) patients had {>=}24 months of follow-up with no brachial plexopathy reported. Mean BP volume was 8.2 {+-} 4.5 cm{sup 3}. Mean BP maximum dose was 58.1 {+-} 12.2 Gy, and BP mean dose was 42.2 {+-} 11.3 Gy. The BP maximum dose was {<=}60, {<=}66, and {<=}70 Gy in 122 (54.2%), 185 (82.2%), and 203 (90.2%) BP, respectively. For oropharynx, hypopharynx, and larynx sites, the mean BP maximum dose was 58.4 Gy and 63.4 Gy in T0-3 and T4 disease, respectively (p = 0.002). Mean BP maximum dose with N0/1 and N2/3 disease was 52.8 Gy and 60.9 Gy, respectively (p < 0.0001). Conclusions: In head-and-neck IMRT, dose constraints for the BP are difficult to achieve to {<=}60 to 66 Gy with T4 disease of the larynx, hypopharynx, and oropharynx or N2/3 disease. The risk of brachial plexopathy is likely very small in HNC patients undergoing IMRT, although longer follow-up is required.

  9. Magnetic tracking system for radiation therapy.

    PubMed

    Wing-Fai Loke; Tae-Young Choi; Maleki, Teimour; Papiez, Lech; Ziaie, Babak; Byunghoo Jung

    2010-08-01

    Intensity-modulated radiation therapy (IMRT) requires precise delivery of the prescribed dose of radiation to the target and surrounding tissue. Irradiation of moving body anatomy is possible only if stable, accurate, and reliable information about the moving body structures are provided in real time. This paper presents a magnetic position tracking system for radiation therapy. The proposed system uses only four transmitting coils and an implantable transponder. The four transmitting coils generate a magnetic field which is sensed and measured by a biaxial magnetoresistive sensor in the transponder in the tumor. The transponder transmits the information back to a computer to determine the position of the transponder allowing it to track the tumor in real time. The transmission of the information from the transponder to the computer can be wired or wireless. Measurements using a biaxial sensor agree well with the field strength calculated from the ideal equations. The translation from the measurement data to the 3-D location and orientation requires a numerical technique because the equations are in nonclosed forms. The algorithm of tracking is implemented using MATLAB. Each calculation of the position along the target trajectory takes 30 ms, which makes the proposed system suitable for real-time tracking of the transponder for radiation assessment and delivery. An error of less than 2 mm is achieved in the demonstration.

  10. Unified Technical Concepts. Module 13: Radiation.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on radiation is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy system.…

  11. Dose as a Function of Lung Volume and Planned Treatment Volume in Helical Tomotherapy Intensity-Modulated Radiation Therapy-Based Stereotactic Body Radiation Therapy for Small Lung Tumors

    SciTech Connect

    Baisden, Joseph M.; Romney, Davis A.; Reish, Andrew G.; Cai Jing; Sheng Ke; Jones, David R.; Benedict, Stanley H.; Read, Paul W.; Larner, James M. . E-mail: JML2P@virginia.edu

    2007-07-15

    Purpose: To evaluate the limitations of Hi-Art Helical Tomotherapy (Middleton, WI) stereotactic body radiotherapy (SBRT) for lung lesions, and to provide an initial report on patients treated with this method. Stereotactic body radiotherapy was shown to be an effective, well-tolerated treatment for early-stage, non-small-cell lung carcinoma (NSCLC). The Radiation Therapy Oncology Group (RTOG) 0236 protocol is currently evaluating three-dimensional conformal SBRT that delivers 60 Gy in three fractions. Methods and Materials: Inverse treatment planning for hypothetical lung gross tumor volumes (GTV) and planned treatment volume (PTV) expansions were performed. We tested the hypothesis that the maximum acceptable dose (MAD) to be delivered to the lesion by SBRT could be predicted by PTV and lung volume. Dose constraints on normal tissue were as designated by the RTOG protocol. Inverse planning was performed to find the maximum tolerated SBRT dose up to 60 Gy. Results: Regression analysis of the data obtained indicated a linear relationship between MAD, PTV, and lung volume. This generated two equations which may be useful predictive tools. Seven patients with Stage I and II NSCLC treated at University of Virginia with this method tolerated the treatment extremely well, and suffered no greater than grade I toxicity, with no evidence of disease recurrence in follow-up from 2-20 months. Conclusions: Helical tomotherapy SBRT for lung lesions is well-tolerated. In addition, the likely MAD for patients considered for this type of treatment can be predicted by PTV and lung volume.

  12. Analysis of dose distribution and risk of pneumonitis in stereotactic body radiation therapy for centrally located lung tumors: a comparison of robotic radiosurgery, helical tomotherapy and volumetric modulated arc therapy.

    PubMed

    Kannarunimit, Danita; Descovich, Martina; Garcia, Aaron; Chen, Josephine; Weinberg, Vivian; Mcguinness, Christopher; Pinnaduwage, Dilini; Murnane, John; Gottschalk, Alexander R; Yom, Sue S

    2015-02-01

    Stereotactic body radiation therapy (SBRT) to central lung tumors is associated with normal -tissue toxicity. Highly conformal technologies may reduce the risk of complications. This study compares physical dose characteristics and anticipated risks of radiation pneumonitis (RP) among three SBRT modalities: robotic radiosurgery (RR), helical tomotherapy (HT) and volumetric modulated arc therapy (VMAT). Nine patients with central lung tumors ≤5 cm were compared. RR, HT and VMAT plans were developed per RTOG 0831. Dosimetric comparisons included target coverage, conformity index, heterogeneity index, gradient index, maximal dose at 2 cm from target (D2 cm), and dose-volume parameters for organs at risk (OARs). Efficiency endpoints included total beam-on time and monitor units. RP risk was derived from Lyman-Kutcher-Burman modeling on in-house software. The average GTV and PTV were 11.6 ± 7.86 cm(3) and 36.8 ± 18.1 cm(3). All techniques resulted in similar target coverage (p = 0.64) and dose conformity (p = 0.88). While RR had sharper fall-off gradient (p = 0.002) and lower D2 cm (p = 0.02), HT and VMAT produced greater homogeneity (p < 0.001) and delivery efficiency (p = 0.001). RP risk predicted from whole or contralateral lung volumes was less than 10%, but was 2-3 times higher using ipsilateral volumes. Using whole (p = 0.04, p = 0.02) or ipsilateral (p = 0.004, p = 0.0008) volumes, RR and VMAT had a lower risk of RP than HT. Using contralateral volumes, RR had the lowest RP risk (p = 0.0002, p = 0.0003 versus HT, VMAT). RR, HT and VMAT were able to provide clinically acceptable plans following the guidelines provided by RTOG 0813. All techniques provided similar coverage and conformity. RR seemed to produce a lower RP risk for a scenario of small PTV-OAR overlap and small PTV. VMAT and HT produced greater homogeneity, potentially desirable for a large PTV-OAR overlap. VMAT probably yields the lowest RP risk for a large

  13. Treatment planning for volumetric modulated arc therapy

    SciTech Connect

    Bedford, James L.

    2009-11-15

    Purpose: Volumetric modulated arc therapy (VMAT) is a specific type of intensity-modulated radiation therapy (IMRT) in which the gantry speed, multileaf collimator (MLC) leaf position, and dose rate vary continuously during delivery. A treatment planning system for VMAT is presented. Methods: Arc control points are created uniformly throughout one or more arcs. An iterative least-squares algorithm is used to generate a fluence profile at every control point. The control points are then grouped and all of the control points in a given group are used to approximate the fluence profiles. A direct-aperture optimization is then used to improve the solution, taking into account the allowed range of leaf motion of the MLC. Dose is calculated using a fast convolution algorithm and the motion between control points is approximated by 100 interpolated dose calculation points. The method has been applied to five cases, consisting of lung, rectum, prostate and seminal vesicles, prostate and pelvic lymph nodes, and head and neck. The resulting plans have been compared with segmental (step-and-shoot) IMRT and delivered and verified on an Elekta Synergy to ensure practicality. Results: For the lung, prostate and seminal vesicles, and rectum cases, VMAT provides a plan of similar quality to segmental IMRT but with faster delivery by up to a factor of 4. For the prostate and pelvic nodes and head-and-neck cases, the critical structure doses are reduced with VMAT, both of these cases having a longer delivery time than IMRT. The plans in general verify successfully, although the agreement between planned and measured doses is not very close for the more complex cases, particularly the head-and-neck case. Conclusions: Depending upon the emphasis in the treatment planning, VMAT provides treatment plans which are higher in quality and/or faster to deliver than IMRT. The scheme described has been successfully introduced into clinical use.

  14. Selecting the optimum particle for radiation therapy.

    PubMed

    Slater, James M

    2007-08-01

    Ionizing radiation therapy is one of the primary modalities for treating cancers. Ideally, the particle selected to deliver ionizing radiation for routine therapy should control the disease, cause minimal side effects, and be affordable. Two major properties for judging the utility of a particle, physical controllability and selective cell destruction, influence the decision for selection. The proton, at present, has the best combination of capabilities for routine radiation therapy. Heavier ions require further study to determine their role in patient treatment. PMID:17668950

  15. Missed Radiation Therapy and Cancer Recurrence

    Cancer.gov

    Patients who miss radiation therapy sessions during cancer treatment have an increased risk of their disease returning, even if they eventually complete their course of radiation treatment, according to a new study.

  16. Exposure Risks Among Children Undergoing Radiation Therapy: Considerations in the Era of Image Guided Radiation Therapy.

    PubMed

    Hess, Clayton B; Thompson, Holly M; Benedict, Stanley H; Seibert, J Anthony; Wong, Kenneth; Vaughan, Andrew T; Chen, Allen M

    2016-04-01

    Recent improvements in toxicity profiles of pediatric oncology patients are attributable, in part, to advances in the field of radiation oncology such as intensity modulated radiation (IMRT) and proton therapy (IMPT). While IMRT and IMPT deliver highly conformal dose to targeted volumes, they commonly demand the addition of 2- or 3-dimensional imaging for precise positioning--a technique known as image guided radiation therapy (IGRT). In this manuscript we address strategies to further minimize exposure risk in children by reducing effective IGRT dose. Portal X rays and cone beam computed tomography (CBCT) are commonly used to verify patient position during IGRT and, because their relative radiation exposure is far less than the radiation absorbed from therapeutic treatment beams, their sometimes significant contribution to cumulative risk can be easily overlooked. Optimizing the conformality of IMRT/IMPT while simultaneously ignoring IGRT dose may result in organs at risk being exposed to a greater proportion of radiation from IGRT than from therapeutic beams. Over a treatment course, cumulative central-axis CBCT effective dose can approach or supersede the amount of radiation absorbed from a single treatment fraction, a theoretical increase of 3% to 5% in mutagenic risk. In select scenarios, this may result in the underprediction of acute and late toxicity risk (such as azoospermia, ovarian dysfunction, or increased lifetime mutagenic risk) in radiation-sensitive organs and patients. Although dependent on variables such as patient age, gender, weight, body habitus, anatomic location, and dose-toxicity thresholds, modifying IGRT use and acquisition parameters such as frequency, imaging modality, beam energy, current, voltage, rotational degree, collimation, field size, reconstruction algorithm, and documentation can reduce exposure, avoid unnecessary toxicity, and achieve doses as low as reasonably achievable, promoting a culture and practice of "gentle IGRT."

  17. Radiation therapy for Graves' disease

    SciTech Connect

    Brennan, M.W.; Leone, C.R. Jr.; Janaki, L.

    1983-08-01

    We used radiation therapy (a total of 2,000 rads) to treat 14 patients (three men and 11 women, ranging in age from 27 to 72 years) with Graves' disease. Three of these patients had refused to take corticosteroids and the other 11 had failed to respond to them, had experienced side effects, or had other contraindications to their use. After follow-up periods ranging from six months to three years, soft-tissue inflammation was reduced in 13 of the 14 patients. All but two patients showed a decrease in proptosis of 1 to 3 mm. Myopathy showed the least improvement. Although we noted transient eyelid erythema, there were no permanent sequelae and none of the patients has had a recurrence of the inflammation.

  18. Melioidosis: reactivation during radiation therapy

    SciTech Connect

    Jegasothy, B.V.; Goslen, J.B.; Salvatore, M.A.

    1980-05-01

    Melioidosis is caused by Pseudomonas pseudomallei, a gram-negative, motile bacillus which is a naturally occurring soil saprophyte. The organism is endemic in Southeast Asia, the Philippines, Australia, and parts of Central and South America. Most human disease occurs from infection acquired in these countries. Infection with P pseudomallei may produce no apparent clinical disease. Acute pneumonitis or septicemia may result from inhalation of the organism, and inoculation into sites of trauma may cause localized skin abscesses, or the disease may remain latent and be reactivated months or years later by trauma, burns, or pneumococcal pneumonia, diabetic ketoacidosis, influenza, or bronchogenic carcinoma. The last is probably the commonest form of melioidosis seen in the United States. We present the first case of reactivation of melioidosis after radiation therapy for carcinoma of the lung, again emphasizing the need to consider melioidosis in a septic patient with a history of travel, especially to Southeast Asia.

  19. Clinical Applications of Volumetric Modulated Arc Therapy

    SciTech Connect

    Matuszak, Martha M.; Yan Di; Grills, Inga; Martinez, Alvaro

    2010-06-01

    Purpose: To present treatment planning case studies for several treatment sites for which volumetric modulated arc therapy (VMAT) could have a positive impact; and to share an initial clinical experience with VMAT for stereotactic body radiotherapy (SBRT). Methods and Materials: Four case studies are presented to show the potential benefit of VMAT compared with conformal and intensity-modulated radiotherapy (IMRT) techniques in pediatric cancer, bone marrow-sparing whole-abdominopelvic irradiation (WAPI), and SBRT of the lung and spine. Details of clinical implementation of VMAT for SBRT are presented. The VMAT plans are compared with conventional techniques in terms of dosimetric quality and delivery efficiency. Results: Volumetric modulated arc therapy reduced the treatment time of spine SBRT by 37% and improved isodose conformality. Conformal and VMAT techniques for lung SBRT had similar dosimetric quality, but VMAT had improved target coverage and took 59% less time to deliver, although monitor units were increased by 5%. In a complex pediatric pelvic example, VMAT reduced treatment time by 78% and monitor units by 25% compared with IMRT. A double-isocenter VMAT technique for WAPI can spare bone marrow while maintaining good delivery efficiency. Conclusions: Volumetric modulated arc therapy is a new technology that may benefit different patient populations, including pediatric cancer patients and those undergoing concurrent chemotherapy and WAPI. Volumetric modulated arc therapy has been used and shown to be beneficial for significantly improving delivery efficiency of lung and spine SBRT.

  20. Advanced Semiconductor Dosimetry in Radiation Therapy

    SciTech Connect

    Rosenfeld, Anatoly B.

    2011-05-05

    Modern radiation therapy is very conformal, resulting in a complexity of delivery that leads to many small radiation fields with steep dose gradients, increasing error probability. Quality assurance in delivery of such radiation fields is paramount and requires real time and high spatial resolution dosimetry. Semiconductor radiation detectors due to their small size, ability to operate in passive and active modes and easy real time multichannel readout satisfy many aspects of in vivo and in a phantom quality assurance in modern radiation therapy. Update on the recent developments and improvements in semiconductor radiation detectors and their application for quality assurance in radiation therapy, based mostly on the developments at the Centre for Medical Radiation Physics (CMRP), University of Wollongong, is presented.

  1. Defining the “Hostile Pelvis” for Intensity Modulated Radiation Therapy: The Impact of Anatomic Variations in Pelvic Dimensions on Dose Delivered to Target Volumes and Organs at Risk in Patients With High-Risk Prostate Cancer Treated With Whole Pelvic Radiation Therapy

    SciTech Connect

    Yirmibeşoğlu Erkal, Eda; Karabey, Sinan; Karabey, Ayşegül; Hayran, Mutlu; Erkal, Haldun Şükrü

    2015-07-15

    Purpose: The aim of this study was to evaluate the impact of variations in pelvic dimensions on the dose delivered to the target volumes and the organs at risk (OARs) in patients with high-risk prostate cancer (PCa) to be treated with whole pelvic radiation therapy (WPRT) in an attempt to define the hostile pelvis in terms of intensity modulated radiation therapy (IMRT). Methods and Materials: In 45 men with high-risk PCa to be treated with WPRT, the target volumes and the OARs were delineated, the dose constraints for the OARs were defined, and treatment plans were generated according to the Radiation Therapy Oncology Group 0924 protocol. Six dimensions to reflect the depth, width, and height of the bony pelvis were measured, and 2 indexes were calculated from the planning computed tomographic scans. The minimum dose (D{sub min}), maximum dose (D{sub max}), and mean dose (D{sub mean}) for the target volumes and OARs and the partial volumes of each of these structures receiving a specified dose (V{sub D}) were calculated from the dose-volume histograms (DVHs). The data from the DVHs were correlated with the pelvic dimensions and indexes. Results: According to an overall hostility score (OHS) calculation, 25 patients were grouped as having a hospitable pelvis and 20 as having a hostile pelvis. Regarding the OHS grouping, the DVHs for the bladder, bowel bag, left femoral head, and right femoral head differed in favor of the hospitable pelvis group, and the DVHs for the rectum differed for a range of lower doses in favor of the hospitable pelvis group. Conclusions: Pelvimetry might be used as a guide to define the challenging anatomy or the hostile pelvis in terms of treatment planning for IMRT in patients with high-risk PCa to be treated with WPRT.

  2. Immunomodulatory effects of radiation: what is next for cancer therapy?

    PubMed

    Kumari, Anita; Simon, Samantha S; Moody, Tomika D; Garnett-Benson, Charlie

    2016-01-01

    Despite its former reputation as being immunosuppressive, it has become evident that radiation therapy can enhance antitumor immune responses. This quality can be harnessed by utilizing radiation as an adjuvant to cancer immunotherapies. Most studies combine the standard radiation dose and regimens indicated for the given disease state, with novel cancer immunotherapies. It has become apparent that low-dose radiation, as well as doses within the hypofractionated range, can modulate tumor cells making them better targets for immune cell reactivity. Herein, we describe the range of phenotypic changes induced in tumor cells by radiation, and explore the diverse mechanisms of immunogenic modulation reported at these doses. We also review the impact of these doses on the immune cell function of cytotoxic cells in vivo and in vitro.

  3. The Dosimetric Importance of Six Degree of Freedom Couch End to End Quality Assurance for SRS/SBRT Treatments when Comparing Intensity Modulated Radiation Therapy to Volumetric Modulated Arc Therapy

    NASA Astrophysics Data System (ADS)

    Ulizio, Vincent Michael

    With the advancement of technology there is an increasing ability for lesions to be treated with higher radiation doses each fraction. This also allows for low fractionated treatments. Because the patient is receiving a higher dose of radiation per fraction and because of the fast dose falloff in these targets there must be extreme accuracy in the delivery. The 6 DOF couch allows for extra rotational corrections and for a more accurate set-up. The movement of the couch needs to be verified to be accurate and because of this, end to end quality assurance tests for the couch have been made. After the set-up is known to be accurate then different treatment techniques can be studied. SBRT of the Spine has a very fast dose falloff near the spinal cord and was typically treated with IMRT. Treatment plans generated using this technique tend to have streaks of low dose radiation, so VMAT is being studied to determine if this treatment technique can reduce the low dose radiation volume as well as improve OAR sparing. For the 6 DOF couch QA, graph paper is placed on the anterior and right lateral sides of the VisionRT OSMS Cube Phantom. Each rotational shift is then applied individually, with a 3 degree shift in the positive and negative directions for pitch and roll. A mark is drawn on the paper to record each shift. A CBCT is then taken of the Cube and known shifts are applied and then an additional CBCT is taken to return the Cube to isocenter. The original IMRT plans for SBRT of the Spine are evaluated and then a plan is made utilizing VMAT. These plans are then compared for low dose radiation, OAR sparing, and conformity. If the original IMRT plan is determined to be an inferior treatment to what is acceptable, then this will be re-planned and compared to the VMAT plan. The 6 DOF couch QA tests have proven to be accurate and reproducible. The average deviations in the 3 degree and -3 degree pitch and roll directions were 0.197, 0.068, 0.091, and 0.110 degrees

  4. [Radiation therapy and immunomodulation: Focus on experimental data].

    PubMed

    Deutsch, É; Lévy, A; Chargari, C

    2015-10-01

    The immunosuppressive effects of radiation therapy have long been the only ones considered. It has been demonstrated that exposure to ionizing radiation induces the release of tumour antigens which activates both the innate immune system and the adaptive immune response of the host. The purpose of tumour immunotherapy is based on the principle that reversal of tolerance to immunogenic tumours would be able to activate an immune response against tumour cells. Preclinical data and clinical studies early phase suggest a potential therapeutic benefit of immunotherapy combined with radiation therapy. The objective of this article is to review how tumour cells interact with the immune system and how ionizing radiation modulate this interaction and finally the combination of perspectives of immunotherapy and ionizing radiation by focusing on existing clinical data.

  5. Radiation therapy facilities in the United States

    SciTech Connect

    Ballas, Leslie K.; Elkin, Elena B. . E-mail: elkine@mskcc.org; Schrag, Deborah; Minsky, Bruce D.; Bach, Peter B.

    2006-11-15

    Purpose: About half of all cancer patients in the United States receive radiation therapy as a part of their cancer treatment. Little is known, however, about the facilities that currently deliver external beam radiation. Our goal was to construct a comprehensive database of all radiation therapy facilities in the United States that can be used for future health services research in radiation oncology. Methods and Materials: From each state's health department we obtained a list of all facilities that have a linear accelerator or provide radiation therapy. We merged these state lists with information from the American Hospital Association (AHA), as well as 2 organizations that audit the accuracy of radiation machines: the Radiologic Physics Center (RPC) and Radiation Dosimetry Services (RDS). The comprehensive database included all unique facilities listed in 1 or more of the 4 sources. Results: We identified 2,246 radiation therapy facilities operating in the United States as of 2004-2005. Of these, 448 (20%) facilities were identified through state health department records alone and were not listed in any other data source. Conclusions: Determining the location of the 2,246 radiation facilities in the United States is a first step in providing important information to radiation oncologists and policymakers concerned with access to radiation therapy services, the distribution of health care resources, and the quality of cancer care.

  6. What to Know about External Beam Radiation Therapy

    MedlinePlus

    ... Understanding Radiation Therapy What To Know About External Beam Radiation Therapy “My wife and I made a ... treatment. He also told me that the external beam radiation therapy wouldn’t make me radioactive. I ...

  7. COSMIC: A Regimen of Intensity Modulated Radiation Therapy Plus Dose-Escalated, Raster-Scanned Carbon Ion Boost for Malignant Salivary Gland Tumors: Results of the Prospective Phase 2 Trial

    SciTech Connect

    Jensen, Alexandra D.; Nikoghosyan, Anna V.; Lossner, Karen; Haberer, Thomas; Jäkel, Oliver; Münter, Marc W.; Debus, Jürgen

    2015-09-01

    Purpose: To investigate the effect of intensity modulated radiation therapy (IMRT) and dose-escalated carbon ion (C12) therapy in adenoid cystic carcinoma (ACC) and other malignant salivary gland tumors (MSGTs) of the head and neck. Patients and Methods: COSMIC (combined treatment of malignant salivary gland tumors with intensity modulated radiation therapy and carbon ions) is a prospective phase 2 trial of 24 Gy(RBE) C12 followed by 50 Gy IMRT in patients with pathologically confirmed MSGT. The primary endpoint is mucositis Common Terminology Criteria grade 3; the secondary endpoints are locoregional control (LC), progression-free survival (PFS), overall survival (OS), and toxicity. Toxicity was scored according to the Common Terminology Criteria for Adverse Events version 3; treatment response was scored according to Response Evaluation Criteria in Solid Tumors 1.1. Results: Between July 2010 and August 2011, 54 patients were accrued, and 53 were available for evaluation. The median follow-up time was 42 months; patients with microscopically incomplete resections (R1, n=20), gross residual disease (R2, n=17), and inoperable disease (n=16) were included. Eighty-nine percent of patients had ACC, and 57% had T4 tumors. The most common primary sites were paranasal sinus (34%), submandibular gland, and palate. At the completion of radiation therapy, 26% of patients experienced grade 3 mucositis, and 20 patients reported adverse events of the ear (38%). The most common observed late effects were grade 1 xerostomia (49%), hearing impairment (25%, 2% ipsilateral hearing loss), and adverse events of the eye (20%), but no visual impairment or loss of vision. Grade 1 central nervous system necrosis occurred in 6%, and 1 grade 4 ICA hemorrhage without neurologic sequelae. The best response was 54% (complete response/partial remission). At 3 years, the LC, PFS, and OS were 81.9%, 57.9%, and 78.4%, respectively. No difference was found regarding resection status. The

  8. Obliquity Modulation of the Incoming Solar Radiation

    NASA Technical Reports Server (NTRS)

    Liu, Han-Shou; Smith, David E. (Technical Monitor)

    2001-01-01

    Based on a basic principle of orbital resonance, we have identified a huge deficit of solar radiation induced by the combined amplitude and frequency modulation of the Earth's obliquity as possibly the causal mechanism for ice age glaciation. Including this modulation effect on solar radiation, we have performed model simulations of climate change for the past 2 million years. Simulation results show that: (1) For the past 1 million years, temperature fluctuation cycles were dominated by a 100-Kyr period due to amplitude-frequency resonance effect of the obliquity; (2) From 2 to 1 million years ago, the amplitude-frequency interactions. of the obliquity were so weak that they were not able to stimulate a resonance effect on solar radiation; (3) Amplitude and frequency modulation analysis on solar radiation provides a series of resonance in the incoming solar radiation which may shift the glaciation cycles from 41-Kyr to 100-Kyr about 0.9 million years ago. These results are in good agreement with the marine and continental paleoclimate records. Thus, the proposed climate response to the combined amplitude and frequency modulation of the Earth's obliquity may be the key to understanding the glaciation puzzles in paleoclimatology.

  9. Radiation Therapy Physics, 3rd Edition

    NASA Astrophysics Data System (ADS)

    Hendee, William R.; Ibbott, Geoffrey S.; Hendee, Eric G.

    2004-08-01

    The Third Edition of Radiation Therapy Physics addresses in concise fashion the fundamental diagnostic radiologic physics principles as well as their clinical implications. Along with coverage of the concepts and applications for the radiation treatment of cancer patients, the authors have included reviews of the most up-to-date instrumentation and critical historical links. The text includes coverage of imaging in therapy planning and surveillance, calibration protocols, and precision radiation therapy, as well as discussion of relevant regulation and compliance activities. It contains an updated and expanded section on computer applications in radiation therapy and electron beam therapy, and features enhanced user-friendliness and visual appeal with a new, easy-to-follow format, including sidebars and a larger trim size. With its user-friendly presentation and broad, comprehensive coverage of radiotherapy physics, this Third Edition doubles as a medical text and handy professional reference.

  10. External beam radiation therapy for orthopaedic pathology.

    PubMed

    Gross, Christopher E; Frank, Rachel M; Hsu, Andrew R; Diaz, Aidnag; Gitelis, Steven

    2015-04-01

    External beam radiation therapy is essential in the management of a wide spectrum of musculoskeletal conditions, both benign and malignant, including bony and soft-tissue sarcomas, metastatic tumors, pigmented villonodular synovitis, and heterotopic ossification. Radiation therapy, in combination with surgery, helps reduce the functional loss from cancer resections. Although the field of radiation therapy is firmly rooted in physics and radiation biology, its indications and delivery methods are rapidly evolving. External beam radiation therapy mainly comes in the form of four sources of radiotherapy: protons, photons, electrons, and neutrons. Each type of energy ha