DOE Office of Scientific and Technical Information (OSTI.GOV)
Pursley, Jennifer, E-mail: jpursley@mgh.harvard.edu; Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA; Damato, Antonio L.
The purpose of this study was to investigate class solutions using RapidArc volumetric-modulated arc therapy (VMAT) planning for ipsilateral and bilateral head and neck (H&N) irradiation, and to compare dosimetric results with intensity-modulated radiotherapy (IMRT) plans. A total of 14 patients who received ipsilateral and 10 patients who received bilateral head and neck irradiation were retrospectively replanned with several volumetric-modulated arc therapy techniques. For ipsilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the contralateral parotid, two 260° or 270° arcs, and two 210° arcs. For bilateral neck irradiation, themore » volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the shoulders, and 3 arcs. All patients had a sliding-window-delivery intensity-modulated radiotherapy plan that was used as the benchmark for dosimetric comparison. For ipsilateral neck irradiation, a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid was dosimetrically comparable to intensity-modulated radiotherapy, with improved conformity (conformity index = 1.22 vs 1.36, p < 0.04) and lower contralateral parotid mean dose (5.6 vs 6.8 Gy, p < 0.03). For bilateral neck irradiation, 3-arc volumetric-modulated arc therapy techniques were dosimetrically comparable to intensity-modulated radiotherapy while also avoiding irradiation through the shoulders. All volumetric-modulated arc therapy techniques required fewer monitor units than sliding-window intensity-modulated radiotherapy to deliver treatment, with an average reduction of 35% for ipsilateral plans and 67% for bilateral plans. Thus, for ipsilateral head and neck irradiation a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid is recommended. For bilateral neck irradiation, 2- or 3-arc techniques are dosimetrically comparable to intensity-modulated radiotherapy, but more work is needed to determine the optimal approaches by disease site.« less
Pursley, Jennifer; Damato, Antonio L; Czerminska, Maria A; Margalit, Danielle N; Sher, David J; Tishler, Roy B
2017-01-01
The purpose of this study was to investigate class solutions using RapidArc volumetric-modulated arc therapy (VMAT) planning for ipsilateral and bilateral head and neck (H&N) irradiation, and to compare dosimetric results with intensity-modulated radiotherapy (IMRT) plans. A total of 14 patients who received ipsilateral and 10 patients who received bilateral head and neck irradiation were retrospectively replanned with several volumetric-modulated arc therapy techniques. For ipsilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the contralateral parotid, two 260° or 270° arcs, and two 210° arcs. For bilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the shoulders, and 3 arcs. All patients had a sliding-window-delivery intensity-modulated radiotherapy plan that was used as the benchmark for dosimetric comparison. For ipsilateral neck irradiation, a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid was dosimetrically comparable to intensity-modulated radiotherapy, with improved conformity (conformity index = 1.22 vs 1.36, p < 0.04) and lower contralateral parotid mean dose (5.6 vs 6.8Gy, p < 0.03). For bilateral neck irradiation, 3-arc volumetric-modulated arc therapy techniques were dosimetrically comparable to intensity-modulated radiotherapy while also avoiding irradiation through the shoulders. All volumetric-modulated arc therapy techniques required fewer monitor units than sliding-window intensity-modulated radiotherapy to deliver treatment, with an average reduction of 35% for ipsilateral plans and 67% for bilateral plans. Thus, for ipsilateral head and neck irradiation a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid is recommended. For bilateral neck irradiation, 2- or 3-arc techniques are dosimetrically comparable to intensity-modulated radiotherapy, but more work is needed to determine the optimal approaches by disease site. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Recent advances in intensity modulated radiotherapy and proton therapy for esophageal cancer.
Xi, Mian; Lin, Steven H
2017-07-01
Radiotherapy is an important component of the standard of care for esophageal cancer. In the past decades, significant improvements in the planning and delivery of radiation techniques have led to better dose conformity to the target volume and improved normal tissue sparing. Areas covered: This review focuses on the advances in radiotherapy techniques and summarizes the availably dosimetric and clinical outcomes of intensity-modulated radiation therapy (IMRT), volumetric modulated arc therapy, proton therapy, and four-dimensional radiotherapy for esophageal cancer, and discusses the challenges and future development of proton therapy. Expert commentary: Although three-dimensional conformal radiotherapy is the standard radiotherapy technique in esophageal cancer, the retrospectively comparative studies strongly suggest that the dosimetric advantage of IMRT over three-dimensional conformal radiotherapy can translate into improved clinical outcomes, despite the lack of prospective randomized evidence. As a novel form of conventional IMRT technique, volumetric modulated arc therapy can produce equivalent or superior dosimetric quality with significantly higher treatment efficiency in esophageal cancer. Compared with photon therapy, proton therapy has the potential to achieve further clinical improvement due to their physical properties; however, prospective clinical data, long-term results, and cost-effectiveness are needed.
Lung Cancer: Posttreatment Imaging: Radiation Therapy and Imaging Findings.
Benveniste, Marcelo F; Welsh, James; Viswanathan, Chitra; Shroff, Girish S; Betancourt Cuellar, Sonia L; Carter, Brett W; Marom, Edith M
2018-05-01
In this review, we discuss the different radiation delivery techniques available to treat non-small cell lung cancer, typical radiologic manifestations of conventional radiotherapy, and different patterns of lung injury and temporal evolution of the newer radiotherapy techniques. More sophisticated techniques include intensity-modulated radiotherapy, stereotactic body radiotherapy, proton therapy, and respiration-correlated computed tomography or 4-dimensional computed tomography for radiotherapy planning. Knowledge of the radiation treatment plan and technique, the completion date of radiotherapy, and the temporal evolution of radiation-induced lung injury is important to identify expected manifestations of radiation-induced lung injury and differentiate them from tumor recurrence or infection. Published by Elsevier Inc.
Cardiac Side-effects From Breast Cancer Radiotherapy.
Taylor, C W; Kirby, A M
2015-11-01
Breast cancer radiotherapy reduces the risk of cancer recurrence and death. However, it usually involves some radiation exposure of the heart and analyses of randomised trials have shown that it can increase the risk of heart disease. Estimates of the absolute risks of radiation-related heart disease are needed to help oncologists plan each individual woman's treatment. The risk for an individual woman varies according to her estimated cardiac radiation dose and her background risk of ischaemic heart disease in the absence of radiotherapy. When it is known, this risk can then be compared with the absolute benefit of the radiotherapy. At present, many UK cancer centres are already giving radiotherapy with mean heart doses of less than 3 Gy and for most women the benefits of the radiotherapy will probably far outweigh the risks. Technical approaches to minimising heart dose in breast cancer radiotherapy include optimisation of beam angles, use of multileaf collimator shielding, intensity-modulated radiotherapy, treatment in a prone position, treatment in deep inspiration (including the use of breath-hold and gating techniques), proton therapy and partial breast irradiation. The multileaf collimator is suitable for many women with upper pole left breast cancers, but for women with central or lower pole cancers, breath-holding techniques are now recommended in national UK guidelines. Ongoing work aims to identify ways of irradiating pan-regional lymph nodes that are effective, involve minimal exposure of organs at risk and are feasible to plan, deliver and verify. These will probably include wide tangent-based field-in-field intensity-modulated radiotherapy or arc radiotherapy techniques in combination with deep inspiratory breath-hold, and proton beam irradiation for women who have a high predicted heart dose from intensity-modulated radiotherapy. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasciuti, Katia, E-mail: k.pasciuti@virgilio.it; Kuthpady, Shrinivas; Anderson, Anne
To examine tumor's and organ's response when different radiotherapy plan techniques are used. Ten patients with confirmed bladder tumors were first treated using 3-dimensional conformal radiotherapy (3DCRT) and subsequently the original plans were re-optimized using the intensity-modulated radiation treatment (IMRT) and volumetric-modulated arc therapy (VMAT)-techniques. Targets coverage in terms of conformity and homogeneity index, TCP, and organs' dose limits, including integral dose analysis were evaluated. In addition, MUs and treatment delivery times were compared. Better minimum target coverage (1.3%) was observed in VMAT plans when compared to 3DCRT and IMRT ones confirmed by a statistically significant conformity index (CI) results.more » Large differences were observed among techniques in integral dose results of the femoral heads. Even if no statistically significant differences were reported in rectum and tissue, a large amount of energy deposition was observed in 3DCRT plans. In any case, VMAT plans provided better organs and tissue sparing confirmed also by the normal tissue complication probability (NTCP) analysis as well as a better tumor control probability (TCP) result. Our analysis showed better overall results in planning using VMAT techniques. Furthermore, a total time reduction in treatment observed among techniques including gantry and collimator rotation could encourage using the more recent one, reducing target movements and patient discomfort.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xin; Li, Guangjun; Zhang, Yingjie
2013-01-01
To compare the dosimetric differences between the single-arc volumetric-modulated arc therapy (sVMAT), 3-dimensional conformal radiotherapy (3D-CRT), and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for gastric cancer as adjuvant radiotherapy. Twelve patients were retrospectively analyzed. In each patient's case, the parameters were compared based on the dose-volume histogram (DVH) of the sVMAT, 3D-CRT, and IMRT plans, respectively. Three techniques showed similar target dose coverage. The maximum and mean doses of the target were significantly higher in the sVMAT plans than that in 3D-CRT plans and in the 3D-CRT/IMRT plans, respectively, but these differences were clinically acceptable. The IMRT and sVMATmore » plans successfully achieved better target dose conformity, reduced the V{sub 20/30}, and mean dose of the left kidney, as well as the V{sub 20/30} of the liver, compared with the 3D-CRT plans. And the sVMAT technique reduced the V{sub 20} of the liver much significantly. Although the maximum dose of the spinal cord were much higher in the IMRT and sVMAT plans, respectively (mean 36.4 vs 39.5 and 40.6 Gy), these data were still under the constraints. Not much difference was found in the analysis of the parameters of the right kidney, intestine, and heart. The IMRT and sVMAT plans achieved similar dose distribution to the target, but superior to the 3D-CRT plans, in adjuvant radiotherapy for gastric cancer. The sVMAT technique improved the dose sparings of the left kidney and liver, compared with the 3D-CRT technique, but showed few dosimetric advantages over the IMRT technique. Studies are warranted to evaluate the clinical benefits of the VMAT treatment for patients with gastric cancer after surgery in the future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yim, Jackie; Suttie, Clare; Bromley, Regina
We report on a retrospective dosimetric study, comparing 3D conformal radiotherapy (3DCRT) and hybrid intensity modulated radiotherapy (hIMRT). We evaluated plans based on their planning target volume coverage, dose homogeneity, dose to organs at risk (OARs) and exposure of normal tissue to radiation. The Homogeneity Index (HI) was used to assess the dose homogeneity in the target region, and we describe a new index, the normal tissue index (NTI), to assess the dose in the normal tissue inside the tangent treatment portal. Plans were generated for 25 early-stage breast cancer patients, using a hIMRT technique. These were compared with themore » 3DCRT plans of the treatment previously received by the patients. Plan quality was evaluated using the HI, NTI and dose to OARs. The hIMRT technique was significantly more homogenous than the 3DCRT technique, while maintaining target coverage. The hIMRT technique was also superior at minimising the amount of tissue receiving D{sub 105%} and above (P < 0.0001). The ipsilateral lung and contralateral breast maximum were significantly lower in the hIMRT plans (P < 0.05 and P < 0.005), but the 3DCRT technique achieved a lower mean heart dose in left-sided breast cancer patients (P < 0.05). Hybrid intensity modulated radiotherapy plans achieved improved dose homogeneity compared to the 3DCRT plans and superior outcome with regard to dose to normal tissues. We propose that the addition of both HI and NTI in evaluating the quality of intensity modulated radiotherapy (IMRT) breast plans provides clinically relevant comparators which more accurately reflect the new paradigm of treatment goals and outcomes in the era of breast IMRT.« less
Şahin, Serdar; Güneş Tanır, A; Meriç, Niyazi; Aydınkarahaliloğlu, Ercan
2015-09-01
The radiation dose delivered to the target by using different radiotherapy applications has been measured with the help of beryllium oxide (BeO) dosimeters to be placed inside the rando phantom. Three-Dimensional Conformal Radiotherapy (3DCRT), Intensity-Modulated Radiotherapy (IMRT) and Intensity-Modulated Arc Therapy (IMAT) have been used as radiotherapy application. Individual treatment plans have been made for the three radiotherapy applications of rando phantom. The section 4 on the phantom was selected as target and 200 cGy doses were delivered. After the dosimeters placed on section 4 (target) and the sections 2 and 6 (non-target) were irradiated, the result was read through the OSL technique on the Risø TL/OSL system. This procedure was repeated three times for each radiotherapy application. The doses delivered to the target and the non-target sections as a result of the 3DCRT, IMRT and IMAT plans were analyzed. The doses received by the target were measured as 204.71 cGy, 204.76 cGy and 205.65 cGy, respectively. The dose values obtained from treatment planning system (TPS) were compared to the dose values obtained using the OSL technique. It has been concluded that, the radiation dose can be measured with the OSL technique by using BeO dosimeters in medical practices. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Matthew Christopher, E-mail: wardm3@ccf.org; Pham, Yvonne D.; Kotecha, Rupesh
2016-04-01
Conventional parallel-opposed radiotherapy (PORT) is the established standard technique for early-stage glottic carcinoma. However, case reports have reported the utility of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) with or without image guidance (image-guided radiotherapy, IGRT) in select patients. The proposed advantages of IMRT/VMAT include sparing of the carotid artery, thyroid gland, and the remaining functional larynx, although these benefits remain unclear. The following case study presents a patient with multiple vascular comorbidities treated with VMAT for early-stage glottic carcinoma. A detailed explanation of the corresponding treatment details, dose-volume histogram (DVH) analysis, and a review of the relevant literaturemore » are provided. Conventional PORT remains the standard of care for early-stage glottic carcinoma. IMRT or VMAT may be beneficial for select patients, although great care is necessary to avoid a geographical miss. Clinical data supporting the benefit of CRT are lacking. Therefore, these techniques should be used with caution and only in selected patients.« less
NASA Astrophysics Data System (ADS)
Jodda, Agata; Urbański, Bartosz; Piotrowski, Tomasz; Malicki, Julian
2016-03-01
Background: The paper shows the methodology of an in-phantom study of the protection level of the bone marrow in patients with cervical or endometrial cancer for three radiotherapy techniques: three-dimensional conformal radiotherapy, intensity modulated radiotherapy, and volumetric modulated arc therapy, preceded by the procedures of image guidance. Methods/Design: The dosimetric evaluation of the doses will be performed in an in-house multi-element anthropomorphic phantom of the female pelvic area created by three-dimensional printing technology. The volume and position of the structures will be regulated according to the guidelines from the Bayesian network. The input data for the learning procedure of the model will be obtained from the retrospective analysis of imaging data obtained for 96 patients with endometrial cancer or cervical cancer treated with radiotherapy in our centre in 2008-2013. Three anatomical representations of the phantom simulating three independent clinical cases will be chosen. Five alternative treatment plans (1 × three-dimensional conformal radiotherapy, 2 × intensity modulated radiotherapy and 2 × volumetric modulated arc therapy) will be created for each representation. To simulate image-guided radiotherapy, ten specific recombinations will be designated, for each anatomical representation separately, reflecting possible changes in the volume and position of the phantom components. Discussion: The comparative analysis of planned measurements will identify discrepancies between calculated doses and doses that were measured in the phantom. Finally, differences between the doses cumulated in the hip plates performed by different techniques simulating the gynaecological patients' irradiation of dose delivery will be established. The results of this study will form the basis of the prospective clinical trial that will be designed for the assessment of hematologic toxicity and its correlation with the doses cumulated in the hip plates, for gynaecologic patients undergoing radiation therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guy, Jean-Baptiste; Falk, Alexander T.; Auberdiac, Pierre
Introduction: For patients with cervical cancer, intensity-modulated radiation therapy (IMRT) improves target coverage and allows dose escalation while reducing the radiation dose to organs at risk (OARs). In this study, we compared dosimetric parameters among 3-dimensional conformal radiotherapy (3D-CRT), “step-and-shoot” IMRT, and volumetric intensity-modulated arc radiotherapy (VMAT) in a series of patients with cervical cancer receiving definitive radiotherapy. Computed tomography (CT) scans of 10 patients with histologically proven cervical cancer treated with definitive radiation therapy (RT) from December 2008 to March 2010 at our department were selected for this study. The gross tumor volume (GTV) and clinical target volume (CTV)more » were delineated following the guidelines of the Gyn IMRT consortium that included cervix, uterus, parametrial tissues, and the pelvic nodes including presacral. The median age was 57 years (range: 30 to 85 years). All 10 patients had squamous cell carcinoma with Federation of Gynecology and Obstetrics (FIGO) stage IB-IIIB. All patients were treated by VMAT. OAR doses were significantly reduced for plans with intensity-modulated technique compared with 3D-CRT except for the dose to the vagina. Between the 2 intensity-modulated techniques, significant difference was observed for the mean dose to the small intestine, to the benefit of VMAT (p < 0.001). There was no improvement in terms of OARs sparing for VMAT although there was a tendency for a slightly decreased average dose to the rectum: − 0.65 Gy but not significant (p = 0.07). The intensity modulation techniques have many advantages in terms of quality indexes, and particularly OAR sparing, compared with 3D-CRT. Following the ongoing technologic developments in modern radiotherapy, it is essential to evaluate the intensity-modulated techniques on prospective studies of a larger scale.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenthal, David I., E-mail: dirosenthal@mdanderson.or; Fuller, Clifton D.; Barker, Jerry L.
2010-06-01
Purpose: To investigate the dosimetry and feasibility of carotid-sparing intensity-modulated radiotherapy (IMRT) for early glottic cancer and to report preliminary clinical experience. Methods and Materials: Digital Imaging and Communications in Medicine radiotherapy (DICOM-RT) datasets from 6 T1-2 conventionally treated glottic cancer patients were used to create both conventional IMRT plans. We developed a simplified IMRT planning algorithm with three fields and limited segments. Conventional and IMRT plans were compared using generalized equivalent uniform dose and dose-volume parameters for in-field carotid arteries, target volumes, and organs at risk. We have treated 11 patients with this simplified IMRT technique. Results: Intensity-modulated radiotherapymore » consistently reduced radiation dose to the carotid arteries (p < 0.05) while maintaining the clinical target volume coverage. With conventional planning, median carotid V35, V50, and V63 were 100%, 100%, and 69.0%, respectively. With IMRT planning these decreased to 2%, 0%, and 0%, respectively (p < 0.01). Radiation planning and treatment times were similar for conventional radiotherapy and IMRT. Treatment results have been excellent thus far. Conclusions: Intensity-modulated radiotherapy significantly reduced unnecessary radiation dose to the carotid arteries compared with conventional lateral fields while maintaining clinical target volume coverage. Further experience and longer follow-up will be required to demonstrate outcomes for cancer control and carotid artery effects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, X; Sun, T; Yin, Y
Purpose: To study the dosimetric impact of intensity-modulated radiotherapy (IMRT), hybrid intensity-modulated radiotherapy (h-IMRT) and volumetric modulated arc therapy(VMAT) for whole-brain radiotherapy (WBRT) with simultaneous integrated boost in patients with multiple brain metastases. Methods: Ten patients with multiple brain metastases were included in this analysis. The prescribed dose was 45 Gy to the whole brain (PTVWBRT) and 55 Gy to individual brain metastases (PTVboost) delivered simultaneously in 25 fractions. Three treatment techniques were designed: the 7 equal spaced fields IMRT plan, hybrid IMRT plan and VMAT with two 358°arcs. In hybrid IMRT plan, two fields(90°and 270°) were planned to themore » whole brain. This was used as a base dose plan. Then 5 fields IMRT plan was optimized based on the two fields plan. The dose distribution in the target, the dose to the organs at risk and total MU in three techniques were compared. Results: For the target dose, conformity and homogeneity in PTV, no statistically differences were observed in the three techniques. For the maximum dose in bilateral lens and the mean dose in bilateral eyes, IMRT and h-IMRT plans showed the highest and lowest value respectively. No statistically significant differences were observed in the dose of optic nerve and brainstem. For the monitor units, IMRT and VMAT plans showed the highest and lowest value respectively. Conclusion: For WBRT with simultaneous integrated boost in patients with multiple brain metastases, hybrid IMRT could reduce the doses to lens and eyes. It is feasible for patients with brain metastases.« less
Current role of modern radiotherapy techniques in the management of breast cancer
Ozyigit, Gokhan; Gultekin, Melis
2014-01-01
Breast cancer is the most common type of malignancy in females. Advances in systemic therapies and radiotherapy (RT) provided long survival rates in breast cancer patients. RT has a major role in the management of breast cancer. During the past 15 years several developments took place in the field of imaging and irradiation techniques, intensity modulated RT, hypofractionation and partial-breast irradiation. Currently, improvements in the RT technology allow us a subsequent decrease in the treatment-related complications such as fibrosis and long-term cardiac toxicity while improving the loco-regional control rates and cosmetic results. Thus, it is crucial that modern radiotherapy techniques should be carried out with maximum care and efficiency. Several randomized trials provided evidence for the feasibility of modern radiotherapy techniques in the management of breast cancer. However, the role of modern radiotherapy techniques in the management of breast cancer will continue to be defined by the mature results of randomized trials. Current review will provide an up-to-date evidence based data on the role of modern radiotherapy techniques in the management of breast cancer. PMID:25114857
NASA Astrophysics Data System (ADS)
Murray, Louise J.; Thompson, Christopher M.; Lilley, John; Cosgrove, Vivian; Franks, Kevin; Sebag-Montefiore, David; Henry, Ann M.
2015-02-01
Risks of radiation-induced second primary cancer following prostate radiotherapy using 3D-conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), flattening filter free (FFF) and stereotactic ablative radiotherapy (SABR) were evaluated. Prostate plans were created using 10 MV 3D-CRT (78 Gy in 39 fractions) and 6 MV 5-field IMRT (78 Gy in 39 fractions), VMAT (78 Gy in 39 fractions, with standard flattened and energy-matched FFF beams) and SABR (42.7 Gy in 7 fractions with standard flattened and energy-matched FFF beams). Dose-volume histograms from pelvic planning CT scans of three prostate patients, each planned using all 6 techniques, were used to calculate organ equivalent doses (OED) and excess absolute risks (EAR) of second rectal and bladder cancers, and pelvic bone and soft tissue sarcomas, using mechanistic, bell-shaped and plateau models. For organs distant to the treatment field, chamber measurements recorded in an anthropomorphic phantom were used to calculate OEDs and EARs using a linear model. Ratios of OED give relative radiation-induced second cancer risks. SABR resulted in lower second cancer risks at all sites relative to 3D-CRT. FFF resulted in lower second cancer risks in out-of-field tissues relative to equivalent flattened techniques, with increasing impact in organs at greater distances from the field. For example, FFF reduced second cancer risk by up to 20% in the stomach and up to 56% in the brain, relative to the equivalent flattened technique. Relative to 10 MV 3D-CRT, 6 MV IMRT or VMAT with flattening filter increased second cancer risks in several out-of-field organs, by up to 26% and 55%, respectively. For all techniques, EARs were consistently low. The observed large relative differences between techniques, in absolute terms, were very low, highlighting the importance of considering absolute risks alongside the corresponding relative risks, since when absolute risks are very low, large relative risks become less meaningful. A calculated relative radiation-induced second cancer risk benefit from SABR and FFF techniques was theoretically predicted, although absolute radiation-induced second cancer risks were low for all techniques, and absolute differences between techniques were small.
Reirradiation of head and neck cancer using modern highly conformal techniques.
Ho, Jennifer C; Phan, Jack
2018-04-23
Locoregional disease recurrence or development of a second primary cancer after definitive radiotherapy for head and neck cancers remains a treatment challenge. Reirradiation utilizing traditional techniques has been limited by concern for serious toxicity. With the advent of newer, more precise radiotherapy techniques, such as intensity-modulated radiotherapy (IMRT), proton radiotherapy, and stereotactic body radiotherapy (SBRT), there has been renewed interest in curative-intent head and neck reirradiation. However, as most studies were retrospective, single-institutional experiences, the optimal modality is not clear. We provide a comprehensive review of the outcomes of relevant studies using these 3 head and neck reirradiation techniques, followed by an analysis and comparison of the toxicity, tumor control, concurrent systemic therapy, and prognostic factors. Overall, there is evidence that IMRT, proton therapy, and SBRT reirradiation are feasible treatment options that offer a chance for durable local control and survival. Prospective studies, particularly randomized trials, are needed. © 2018 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macchia, Gabriella, E-mail: gmacchia@rm.unicatt.i; Cilla, Savino M.P.; Ferrandina, Gabriella
2010-04-15
Purpose: To determine the maximum tolerated dose of short-course radiotherapy (intensity-modulated radiotherapy technique) to the upper two thirds of the vagina in endometrial cancers with low risk of local recurrence. Patients and Methods: A Phase I clinical trial was performed. Eligible patients had low-risk resected primary endometrial adenocarcinomas. Radiotherapy was delivered in 5 fractions over 1 week. The planning target volume was the clinical target volume plus 5 mm. The clinical target volume was defined as the upper two thirds of the vagina as evidenced at CT simulation by a vaginal radio-opaque device. The planning target volume was irradiated bymore » a seven-field intensity-modulated radiotherapy technique, planned by the Plato Sunrise inverse planning system. A first cohort of 6 patients received 25 Gy (5-Gy fractions), and a subsequent cohort received 30 Gy (6-Gy fractions). The Common Toxicity Criteria scale, version 3.0, was used to score toxicity. Results: Twelve patients with endometrial cancer were enrolled. Median age was 58 years (range, 49-74 years). Pathologic stage was IB (83.3%) and IC (16.7%). Median tumor size was 30 mm (range, 15-50 mm). All patients completed the prescribed radiotherapy. No patient experienced a dose-limiting toxicity at the first level, and the radiotherapy dose was escalated from 25 to 30 Gy. No patients at the second dose level experienced dose-limiting toxicity. The most common Grade 2 toxicity was gastrointestinal, which was tolerable and manageable. Conclusions: The maximum tolerated dose of short-course radiotherapy was 30 Gy at 6 Gy per fraction. On the basis of this result, we are conducting a Phase II study with radiotherapy delivered at 30 Gy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Q.
In memory of the significant contribution of Dr. Jacques Ovadia to electron beam techniques, this session will review recent, advanced techniques which are reinvigorating the science of electron beam radiation therapy. Recent research efforts in improving both the applicability and quality of the electron beam therapy will be discussed, including modulated electron beam radiotherapy (MERT) and dynamic electron arc radiotherapy (DEAR). Learning Objectives: To learn about recent advances in electron beam therapy, including modulated electron beam therapy and dynamic electron arc therapy (DEAR). Put recent advances in the context of work that Dr. Ovadia pursued during his career in medicalmore » physics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, J-Y; Huang, B-T; Zhang, J-Y
2015-06-15
Purpose: To compare volumetric modulated arc radiotherapy (VMAT) technique with fixed-gantry intensity-modulated radiotherapy (IMRT) technique for locally recurrent nasopharyngeal carcinoma. Methods: CT datasets of eleven nasopharyngeal-carcinoma patients were included. Dual-arc VMAT and seven-field IMRT plans were created for each case, and were then compared in terms of conformity index (CI), homogeneity index (HI) of the planning target volume (PTV), organ-at-risk (OAR) sparing, monitor unit (MU) and delivery time. Results: The D98% (near-minimal dose) of PTV in the VMAT plans was slightly lower than that of the IMRT plans (P < 0.05), while the CI was higher than that of themore » IMRT plans (P < 0.05). No significant difference was found in the HI between the two plans (P > 0.05). Compared with the IMRT plans, the VMAT plans demonstrated lower Dmean (mean dose) of the bilateral temporal lobes and the whole surrounding normal tissue (P < 0.05), but slightly higher Dmean of brainstem (P < 0.05). In terms of the other OARs, no significant differences were found (P > 0.05). The MUs of the VMAT plans (672 ± 112) was significantly lower than that of the IMRT plans (917 ± 206), by 25 ± 13% (P < 0.05). The average delivery time of the VMAT plans (2.3 ± 0.1 min) was less than that of the IMRT plans (5.1 ± 0.4 min), by 54 ± 3%. Conclusion: For locally recurrent nasopharyngeal carcinoma, the VMAT technique could achieve equivalent or superior dose distribution of the target and better protect the bilateral temporal lobes, compared with the IMRT technique. Moreover, it could reduce the MU and delivery time effectively.« less
Volumetric modulated arc therapy: a review of current literature and clinical use in practice
Teoh, M; Clark, C H; Wood, K; Whitaker, S; Nisbet, A
2011-01-01
Volumetric modulated arc therapy (VMAT) is a novel radiation technique, which can achieve highly conformal dose distributions with improved target volume coverage and sparing of normal tissues compared with conventional radiotherapy techniques. VMAT also has the potential to offer additional advantages, such as reduced treatment delivery time compared with conventional static field intensity modulated radiotherapy (IMRT). The clinical worldwide use of VMAT is increasing significantly. Currently the majority of published data on VMAT are limited to planning and feasibility studies, although there is emerging clinical outcome data in several tumour sites. This article aims to discuss the current use of VMAT techniques in practice and review the available data from planning and clinical outcome studies in various tumour sites including prostate, pelvis (lower gastrointestinal, gynaecological), head and neck, thoracic, central nervous system, breast and other tumour sites. PMID:22011829
Uysal, Bora; Beyzadeoğlu, Murat; Sager, Ömer; Dinçoğlan, Ferrat; Demiral, Selçuk; Gamsız, Hakan; Sürenkök, Serdar; Oysul, Kaan
2013-01-01
Objective: The purpose of this dosimetric study is the targeted dose homogeneity and critical organ dose comparison of 7-field Intensity Modulated Radiotherapy (IMRT) and 3-D 4-field conformal radiotherapy. Study Design: Cross sectional study. Material and Methods: Twenty patients with low and moderate risk prostate cancer treated at Gülhane Military Medical School Radiation Oncology Department between January 2009 and December 2009 are included in this study. Two seperate dosimetric plans both for 7-field IMRT and 3D-CRT have been generated for each patient to comparatively evaluate the dosimetric status of both techniques and all the patients received 7-field IMRT. Results: Dose-comparative evaluation of two techniques revealed the superiority of IMRT technique with statistically significantly lower femoral head doses along with reduced critical organ dose-volume parameters of bladder V60 (the volume receiving 60 Gy) and rectal V40 (the volume receiving 40 Gy) and V60. Conclusion: It can be concluded that IMRT is an effective definitive management tool for prostate cancer with improved critical organ sparing and excellent dose homogenization in target organs of prostate and seminal vesicles. PMID:25207069
Palmer, Antony L; Nash, David; Kearton, John R; Jafari, Shakardokht M; Muscat, Sarah
2017-12-01
External dosimetry audit is valuable for the assurance of radiotherapy quality. However, motion management has not been rigorously audited, despite its complexity and importance for accuracy. We describe the first end-to-end dosimetry audit for non-SABR (stereotactic ablative body radiotherapy) lung treatments, measuring dose accumulation in a moving target, and assessing adequacy of target dose coverage. A respiratory motion lung-phantom with custom-designed insert was used. Dose was measured with radiochromic film, employing triple-channel dosimetry and uncertainty reduction. The host's 4DCT scan, outlining and planning techniques were used. Measurements with the phantom static and then moving at treatment delivery separated inherent treatment uncertainties from motion effects. Calculated and measured dose distributions were compared by isodose overlay, gamma analysis, and we introduce the concept of 'dose plane histograms' for clinically relevant interpretation of film dosimetry. 12 radiotherapy centres and 19 plans were audited: conformal, IMRT (intensity modulated radiotherapy) and VMAT (volumetric modulated radiotherapy). Excellent agreement between planned and static-phantom results were seen (mean gamma pass 98.7% at 3% 2 mm). Dose blurring was evident in the moving-phantom measurements (mean gamma pass 88.2% at 3% 2 mm). Planning techniques for motion management were adequate to deliver the intended moving-target dose coverage. A novel, clinically-relevant, end-to-end dosimetry audit of motion management strategies in radiotherapy is reported. Copyright © 2017 Elsevier B.V. All rights reserved.
Leonard, Charles E; Tallhamer, Michael; Johnson, Tim; Hunter, Kari; Howell, Kathryn; Kercher, Jane; Widener, Jodi; Kaske, Terese; Paul, Devchand; Sedlacek, Scot; Carter, Dennis L
2010-02-01
To explore the feasibility of fiducial markers for the use of image-guided radiotherapy (IGRT) in an accelerated partial breast intensity modulated radiotherapy protocol. Nineteen patients consented to an institutional review board approved protocol of accelerated partial breast intensity-modulated radiotherapy with fiducial marker placement and treatment with IGRT. Patients (1 patient with bilateral breast cancer; 20 total breasts) underwent ultrasound guided implantation of three 1.2- x 3-mm gold markers placed around the surgical cavity. For each patient, table shifts (inferior/superior, right/left lateral, and anterior/posterior) and minimum, maximum, mean error with standard deviation were recorded for each of the 10 BID treatments. The dose contribution of daily orthogonal films was also examined. All IGRT patients underwent successful marker placement. In all, 200 IGRT treatment sessions were performed. The average vector displacement was 4 mm (range, 2-7 mm). The average superior/inferior shift was 2 mm (range, 0-5 mm), the average lateral shift was 2 mm (range, 1-4 mm), and the average anterior/posterior shift was 3 mm (range, 1 5 mm). This study shows that the use of IGRT can be successfully used in an accelerated partial breast intensity-modulated radiotherapy protocol. The authors believe that this technique has increased daily treatment accuracy and permitted reduction in the margin added to the clinical target volume to form the planning target volume. Copyright 2010 Elsevier Inc. All rights reserved.
Tan, Wenyong; Han, Guang; Wei, Shaozhong; Hu, Desheng
2014-08-01
During intensity-modulated radiotherapy, an organ is usually assumed to be functionally homogeneous and, generally, its anatomical and spatial heterogeneity with respect to radiation response are not taken into consideration. However, advances in imaging and radiation techniques as well as an improved understanding of the radiobiological response of organs have raised the possibility of sparing the critical functional structures within various organs at risk during intensity-modulated radiotherapy. Here, we discuss these structures, which include the critical brain structure, or neural nuclei, and the nerve fiber tracts in the CNS, head and neck structures related to radiation-induced salivary and swallowing dysfunction, and functional structures in the heart and lung. We suggest that these structures can be used as potential surrogate organs at risk in order to minimize their radiation dose and/or irradiated volume without compromising the dose coverage of the target volume during radiation treatment.
Dolera, Mario; Malfassi, Luca; Marcarini, Silvia; Mazza, Giovanni; Carrara, Nancy; Pavesi, Simone; Sala, Massimo; Finesso, Sara; Urso, Gaetano
2018-06-08
The aim of this prospective pilot study was to evaluate the feasibility and effectiveness of curative intent high dose hypofractionated frameless volumetric modulated arc radiotherapy for treatment of canine trigeminal peripheral nerve sheath tumors. Client-owned dogs with a presumptive imaging-based diagnosis of trigeminal peripheral nerve sheath tumor were recruited for the study during the period of February 2010 to December 2013. Seven dogs were enrolled and treated with high dose hypofractionated volumetric modulated arc radiotherapy delivered by a 6 MV linear accelerator equipped with a micro-multileaf beam collimator. The plans were computed using a Monte Carlo algorithm with a prescription dose of 37 Gy delivered in five fractions on alternate days. Overall survival was estimated using a Kaplan-Meier curve analysis. Magnetic resonance imaging (MRI) follow-up examinations revealed complete response in one dog, partial response in four dogs, and stable disease in two dogs. Median overall survival was 952 days with a 95% confidence interval of 543-1361 days. Volumetric modulated arc radiotherapy was demonstrated to be feasible and effective for trigeminal peripheral nerve sheath tumor treatment in this sample of dogs. The technique required few sedations and spared organs at risk. Even though larger studies are required, these preliminary results supported the use of high dose hypofractionated volumetric modulated arc radiotherapy as an alternative to other treatment modalities. © 2018 American College of Veterinary Radiology.
Stereotactic body radiotherapy for lung cancer: how much does it really cost?
Lievens, Yolande; Obyn, Caroline; Mertens, Anne-Sophie; Van Halewyck, Dries; Hulstaert, Frank
2015-03-01
Despite the lack of randomized evidence, stereotactic body radiotherapy (SBRT) is being accepted as superior to conventional radiotherapy for patients with T1-2N0 non-small-cell lung cancer in the periphery of the lung and unfit or unwilling to undergo surgery. To introduce SBRT in a system of coverage with evidence development, a correct financing had to be determined. A time-driven activity-based costing model for radiotherapy was developed. Resource cost calculation of all radiotherapy treatments, standard and innovative, was conducted in 10 Belgian radiotherapy centers in the second half of 2012. The average cost of lung SBRT across the 10 centers (6221&OV0556;) is in the range of the average costs of standard fractionated 3D-conformal radiotherapy (5919&OV0556;) and intensity-modulated radiotherapy (7379&OV0556;) for lung cancer. Hypofractionated 3D-conformal radiotherapy and intensity-modulated radiotherapy schemes are less costly (3993&OV0556; respectively 4730&OV0556;). The SBRT cost increases with the number of fractions and is highly dependent of personnel and equipment use. SBRT cost varies more by centre than conventional radiotherapy cost, reflecting different technologies, stages in the learning curve and a lack of clear guidance in this field. Time-driven activity-based costing of radiotherapy is feasible in a multicentre setup, resulting in real-life resource costs that can form the basis for correct reimbursement schemes, supporting an early yet controlled introduction of innovative radiotherapy techniques in clinical practice.
McQuaid, D; Dunlop, A; Nill, S; Franzese, C; Nutting, C M; Harrington, K J; Newbold, K L; Bhide, S A
2016-08-01
The aim of this study was to investigate potential advantages and disadvantages of three-dimensional conformal radiotherapy (3DCRT), multiple fixed-field intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) in terms of dose to the planning target volume (PTV), organs at risk (OARs) and normal tissue complication probability (NTCP) for delivering ipsilateral radiotherapy. 3DCRT, IMRT and VMAT were compared in patients with well-lateralised primary tonsillar cancers who underwent primary radical ipsilateral radiotherapy. The following parameters were compared: conformity index (CI); homogeneity index (HI); dose-volume histograms (DVHs) of PTVs and OARs; NTCP, risk of radiation-induced cancer and dose accumulation during treatment. IMRT and VMAT were superior to 3DCRT in terms of CI, HI and dose to the target volumes, as well as mandible and dose accumulation robustness. The techniques were equivalent in terms of dose and NTCP for the contralateral oral cavity, contralateral submandibular gland and mandible, when specific dose constraint objectives were used on the oral cavity volume. Although the volume of normal tissue exposed to low-dose radiation was significantly higher with IMRT and VMAT, the risk of radiation-induced secondary malignancy was dependant on the mathematical model used. This study demonstrates the superiority of IMRT/VMAT techniques over 3DCRT in terms of dose homogeneity, conformity and consistent dose delivery to the PTV throughout the course of treatment in patients with lateralised oropharyngeal cancers. Dosimetry and NTCP calculations show that these techniques are equivalent to 3DCRT with regard to the risk of acute mucositis when specific dose constraint objectives were used on the contralateral oral cavity OAR.
Adaptive Radiation for Lung Cancer
Gomez, Daniel R.; Chang, Joe Y.
2011-01-01
The challenges of lung cancer radiotherapy are intra/inter-fraction tumor/organ anatomy/motion changes and the need to spare surrounding critical structures. Evolving radiotherapy technologies, such as four-dimensional (4D) image-based motion management, daily on-board imaging and adaptive radiotherapy based on volumetric images over the course of radiotherapy, have enabled us to deliver higher dose to target while minimizing normal tissue toxicities. The image-guided radiotherapy adapted to changes of motion and anatomy has made the radiotherapy more precise and allowed ablative dose delivered to the target using novel treatment approaches such as intensity-modulated radiation therapy, stereotactic body radiation therapy, and proton therapy in lung cancer, techniques used to be considered very sensitive to motion change. Future clinical trials using real time tracking and biological adaptive radiotherapy based on functional images are proposed. PMID:20814539
New Language and Old Problems in Breast Cancer Radiotherapy.
Chiricuţă, Ion Christian
2017-01-01
New developments in breast cancer radiotherapy make possible new standards in treatment recommandations based on international guidelines. Developments in radiotherapy irradiation techniques from 2D to 3D-Conformal RT and to IMRT (Intensity Modulated Arc Therapy) make possible to reduce the usual side effects on the organs at risk as: skin, lung, miocard, bone, esophagus and brahial plexus. Dispite of all these progresses acute and late side effects are present. Side effects are as old as the radiotherapy was used. New solutions are available now by improving irradiation techniques. New techniques as sentinel node procedure (SNP) or partial breast irradiation (PBRT) and immediate breast reconstruction with silicon implants (IBRIS) make necessary new considerations regarding the target volume delineations. A new language for definition of gross tumor volume (GTV), clinical target volume (CTV) based on the new diagnostic methods as PET/CT,nonaparticle MRI will have real impact on target delineation and irradiation techniques. "The new common language in breast cancer therapy" would be the first step to improve the endresults and finally the quality of life of the patients. Celsius.
Development of three-dimensional radiotherapy techniques in breast cancer
NASA Astrophysics Data System (ADS)
Coles, Charlotte E.
Radiotherapy following conservation surgery decreases local relapse and death from breast cancer. Currently, the challenge is to minimise the morbidity caused by this treatment without losing efficacy. Despite many advances in radiation techniques in other sites of the body, the majority of breast cancer patients are still planned and treated using 2-dimensional simple radiotherapy techniques. In addition, breast irradiation currently consumes 30% of the UK's radiotherapy workload. Therefore, any change to more complex treatment should be of proven benefit. The primary objective of this research is to develop and evaluate novel radiotherapy techniques to decrease irradiation of normal structures and improve localisation of the tumour bed. I have developed a forward-planned intensity modulated (IMRT) breast radiotherapy technique, which has shown improved dosimetry results compared to standard breast radiotherapy. Subsequently, I have developed and implemented a phase III randomised controlled breast IMRT trial. This National Cancer Research Network adopted trial will answer an important question regarding the clinical benefit of breast IMRT. It will provide DNA samples linked with high quality clinical outcome data, for a national translational radiogenomics study investigating variation in normal tissue toxicity. Thus, patients with significant late normal tissue side effects despite good dose homogeneity will provide the best model for finding differences due to underlying genetics. I evaluated a novel technique using high definition free-hand 3-dimensional (3D) ultrasound in a phantom study, and the results suggested that this is an accurate and reproducible method for tumour bed localisation. I then compared recognised methods of tumour bed localisation with the 3D ultrasound method in a clinical study. The 3D ultrasound technique appeared to accurately represent the shape and spatial position of the tumour cavity. This tumour bed localisation research facilitated protocol development of a proposed national breast radiotherapy trial investigating IMRT and partial breast irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onal, Cem, E-mail: hcemonal@hotmail.com; Arslan, Gungor; Dolek, Yemliha
2016-01-01
The aim of this study is to evaluate the incidental testicular doses during prostate radiation therapy with intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc radiotherapy (VMAT) at different energies. Dosimetric data of 15 patients with intermediate-risk prostate cancer who were treated with radiotherapy were analyzed. The prescribed dose was 78 Gy in 39 fractions. Dosimetric analysis compared testicular doses generated by 7-field intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy with a single arc at 6, 10, and 15 MV energy levels. Testicular doses calculated from the treatment planning system and doses measured from the detectors were analyzed. Mean testicular doses from themore » intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy per fraction calculated in the treatment planning system were 16.3 ± 10.3 cGy vs 21.5 ± 11.2 cGy (p = 0.03) at 6 MV, 13.4 ± 10.4 cGy vs 17.8 ± 10.7 cGy (p = 0.04) at 10 MV, and 10.6 ± 8.5 cGy vs 14.5 ± 8.6 cGy (p = 0.03) at 15 MV, respectively. Mean scattered testicular doses in the phantom measurements were 99.5 ± 17.2 cGy, 118.7 ± 16.4 cGy, and 193.9 ± 14.5 cGy at 6, 10, and 15 MV, respectively, in the intensity-modulated radiotherapy plans. In the volumetric-modulated arc radiotherapy plans, corresponding testicular doses per course were 90.4 ± 16.3 cGy, 103.6 ± 16.4 cGy, and 139.3 ± 14.6 cGy at 6, 10, and 15 MV, respectively. In conclusions, this study was the first to measure the incidental testicular doses by intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy plans at different energy levels during prostate-only irradiation. Higher photon energy and volumetric-modulated arc radiotherapy plans resulted in higher incidental testicular doses compared with lower photon energy and intensity-modulated radiotherapy plans.« less
Estimating the costs of intensity-modulated and 3-dimensional conformal radiotherapy in Ontario.
Yong, J H E; McGowan, T; Redmond-Misner, R; Beca, J; Warde, P; Gutierrez, E; Hoch, J S
2016-06-01
Radiotherapy is a common treatment for many cancers, but up-to-date estimates of the costs of radiotherapy are lacking. In the present study, we estimated the unit costs of intensity-modulated radiotherapy (imrt) and 3-dimensional conformal radiotherapy (3D-crt) in Ontario. An activity-based costing model was developed to estimate the costs of imrt and 3D-crt in prostate cancer. It included the costs of equipment, staff, and supporting infrastructure. The framework was subsequently adapted to estimate the costs of radiotherapy in breast cancer and head-and-neck cancer. We also tested various scenarios by varying the program maturity and the use of volumetric modulated arc therapy (vmat) alongside imrt. From the perspective of the health care system, treating prostate cancer with imrt and 3D-crt respectively cost $12,834 and $12,453 per patient. The cost of radiotherapy ranged from $5,270 to $14,155 and was sensitive to analytic perspective, radiation technique, and disease site. Cases of head-and-neck cancer were the most costly, being driven by treatment complexity and fractions per treatment. Although imrt was more costly than 3D-crt, its cost will likely decline over time as programs mature and vmat is incorporated. Our costing model can be modified to estimate the costs of 3D-crt and imrt for various disease sites and settings. The results demonstrate the important role of capital costs in studies of radiotherapy cost from a health system perspective, which our model can accommodate. In addition, our study established the need for future analyses of imrt cost to consider how vmat affects time consumption.
Lin, C-Y; Huang, W-Y; Jen, Y-M; Chen, C-M; Su, Y-F; Chao, H-L; Lin, C-S
2014-08-01
The aim of this study was to compare high-dose volumetric modulated arc therapy (VMAT) and fixed-field intensity-modulated radiotherapy (ff-IMRT) plans for the treatment of patients with middle-thoracic esophageal cancer. Eight patients with cT2-3N0M0 middle-thoracic esophageal cancer were enrolled. The treatment planning system was the version 9 of the Pinnacle(3) with SmartArc (Philips Healthcare, Fitchburg, WI, USA). VMAT and ff-IMRT treatment plans were generated for each case, and both techniques were used to deliver 50 Gy to the planning target volume (PTV(50)) and then provided a 16-Gy boost (PTV(66)). The VMAT plans provided superior PTV(66) coverage compared with the ff-IMRT plans (P = 0.034), whereas the ff-IMRT plans provided more appropriate dose homogeneity to the PTV(50) (P = 0.017). In the lung, the V(5) and V(10) were lower for the ff-IMRT plans than for the VMAT plans, whereas the V(20) was lower for the VMAT plans. The delivery time was significantly shorter for the VMAT plans than for the ff-IMRT plans (P = 0.012). In addition, the VMAT plans delivered fewer monitor units. The VMAT technique required a shorter planning time than the ff-IMRT technique (3.8 ± 0.8 hours vs. 5.4 ± 0.6 hours, P = 0.011). The major advantages of VMAT plans are higher efficiency and an approximately 50% reduction in delivery time compared with the ff-IMRT plans, with comparable plan quality. Further clinical investigations to evaluate the use of high-dose VMAT for the treatment of esophageal cancer are warranted. © 2013 Wiley Periodicals, Inc. and the International Society for Diseases of the Esophagus.
Leung, H W C; Chan, A L F; Chang, M B
2016-05-01
We examined the effects of intensity-modulated radiation therapy with dose-sparing and avoidance technique on a pediatric patient with localized intracranial germinoma. We also reviewed the literature regarding modern irradiation techniques in relation to late neurocognitive sequelae. A patient with a localized intracranial germinoma in the third ventricle anterior to the pineal gland received a dose-sparing intensity-modulated radiation therapy. The planning was compared to the radiation oncologist's guide of organs at risk and dose constraints for dosimetric analyses. The patient received radiation therapy alone. The total dose was 54Gy delivered in 2.0Gy fractions to the primary tumour and 37Gy in 1.4Gy fractions to whole ventricles using a dose-sculpting plan. Dosimetry analyses showed that dose-sparing intensity-modulated radiation therapy delivered reduced doses to the whole brain, temporal lobes, hippocampi, cochleae, and optic nerves. With a follow-up of 22 months, failure-free survival was 100% for the patient and no adverse events during radiation treatment process. Intensity-modulated radiation therapy with dose sparing and avoidance technique can spare the limbic circuit, central nervous system, and hippocampus for pineal germ cell tumours. This technique reduces the integral dose delivered to the uninvolved normal brain tissues and may reduce late neurocognitive sequelae caused by cranial radiotherapy. Copyright © 2016 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
Technological advances in radiotherapy of rectal cancer: opportunities and challenges.
Appelt, Ane L; Sebag-Montefiore, David
2016-07-01
This review summarizes the available evidence for the use of modern radiotherapy techniques for chemoradiotherapy for rectal cancer, with specific focus on intensity-modulated radiotherapy (IMRT) and volumetric arc therapy (VMAT) techniques. The dosimetric benefits of IMRT and VMAT are well established, but prospective clinical studies are limited, with phase I-II studies only. Recent years have seen the publication of a few larger prospective patient series as well as some retrospective cohorts, several of which include much needed late toxicity data. Overall results are encouraging, as toxicity levels - although varying across reports - appear lower than for 3D conformal radiotherapy. Innovative treatment techniques and strategies which may be facilitated by the use of IMRT/VMAT include simultaneously integrated tumour boost, adaptive treatment, selective sparing of specific organs to enable chemotherapy escalation, and nonsurgical management. Few prospective studies of IMRT and VMAT exist, which causes uncertainty not just in regards to the clinical benefit of these technologies but also in the optimal use. The priority for future research should be subgroups of patients who might receive relatively greater benefit from innovative treatment techniques, such as patients receiving chemoradiotherapy with definitive intent and patients treated with dose escalation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rehman, Jalil ur, E-mail: jalil_khanphy@yahoo.com; Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, TX; Tailor, Ramesh C.
2015-04-01
This study evaluated the secondary cancer risk from volumetric-modulated arc therapy (VMAT) for spine radiotherapy compared with intensity-modulated radiotherapy (IMRT) and 3-dimensional conformal radiotherapy (3DCRT). Computed tomography images of an Radiological Physics Center spine anthropomorphic phantom were exported to a treatment planning system (Pinnacle{sup 3}, version 9.4). Radiation treatment plans for spine were prepared using VMAT (dual-arc), 7-field IMRT (beam angles: 110°, 130°, 150°, 180°, 210°, 230°, and 250°), and 4-field 3DCRT technique. The mean and maximum doses, dose-volume histograms, and volumes receiving more than 2 and 4 Gy to organs at risk (OARs) were calculated and compared. The lifetimemore » risk for secondary cancers was estimated according to the National Cancer Registry Programme Report 116. VMAT delivered the lowest maximum dose to the esophagus (4.03 Gy), bone (8.11 Gy), heart (2.11 Gy), spinal cord (6.45 Gy), and whole lung (5.66 Gy) as compared with other techniques (IMRT and 3DCRT). The volumes of OAR (esophagus) receiving more than 4 Gy were 0% for VMAT, 27.06% for IMRT, and up to 32.35% for 3DCRT. The estimated risk for secondary cancer in the respective OAR is considerably lower in VMAT compared with other techniques. The results of maximum doses and volumes of OARs suggest that the risk of secondary cancer induction for the spine in VMAT is lower than IMRT and 3DCRT, whereas VMAT has the best target coverage compared with the other techniques.« less
Comparison of 3DCRT,VMAT and IMRT techniques in metastatic vertebra radiotherapy: A phantom Study
NASA Astrophysics Data System (ADS)
Gedik, Sonay; Tunc, Sema; Kahraman, Arda; Kahraman Cetintas, Sibel; Kurt, Meral
2017-09-01
Vertebra metastases can be seen during the prognosis of cancer patients. Treatment ways of the metastasis are radiotherapy, chemotherapy and surgery. Three-dimensional conformal therapy (3D-CRT) is widely used in the treatment of vertebra metastases. Also, Intensity Modulated Radiotherapy (IMRT) and Volumetric Arc Therapy (VMAT) are used too. The aim of this study is to examine the advantages and disadvantages of the different radiotherapy techniques. In the aspect of this goal, it is studied with a randophantom in Uludag University Medicine Faculty, Radiation Oncology Department. By using a computerized tomography image of the phantom, one 3DCRT plan, two VMAT and three IMRT plans for servical vertebra and three different 3DCRT plans, two VMAT and two IMRT plans for lomber vertebra are calculated. To calculate 3DCRT plans, CMS XiO Treatment System is used and to calculate VMAT and IMRT plans Monaco Treatment Planning System is used in the department. The study concludes with the dosimetric comparison of the treatment plans in the spect of critical organ doses, homogeneity and conformity index. As a result of this study, all critical organ doses are suitable for QUANTEC Dose Limit Report and critical organ doses depend on the techniques which used in radiotherapy. According to homogeneity and conformity indices, VMAT and IMRT plans are better than one in 3DCRT plans in servical and lomber vertebra radiotherapy plans.
PRESAGE® as a solid 3-D radiation dosimeter: A review article
NASA Astrophysics Data System (ADS)
Khezerloo, Davood; Nedaie, Hassan Ali; Takavar, Abbas; Zirak, Alireza; Farhood, Bagher; Movahedinejhad, Hadi; Banaee, Nooshin; Ahmadalidokht, Isa; Knuap, Courtney
2017-12-01
Radiation oncology has been rapidly improved by the application of new equipment and techniques. With the advent of new complex and precise radiotherapy techniques such as intensity modulated radiotherapy, stereotactic radiosurgery, and volumetric modulated arc therapy, the demand for an accurate and feasible three-dimensional (3-D) dosimetry system has increased. The most important features of a 3-D dosimeter, apart from being precise, accurate and reproducible, include also its low cost, feasibility, and availability. In 2004 a new generation of solid plastic dosimeters which demonstrate a radiochromic response to ionizing radiation was introduced. PRESAGE® plastic dosimeter lacks the limitations of previous Ferric and polymer plastic 3-D dosimeters such as diffusion, sensitivity to oxygen, fabrication problems, scanning and read out challenges. In this decade, a large number of efforts have been carried out to enhance PRESAGE® structure and scanning methods. This article attempts to review and reflect on the results of these investigations.
Bolukbasi, Yasemin; Saglam, Yucel; Selek, Ugur; Topkan, Erkan; Kataria, Anglina; Unal, Zeynep; Alpan, Vildan
2014-01-01
To investigate the objective utility of our clinical routine of reproducible deep-inspiration breath-hold irradiation for left-sided breast cancer patients on reducing cardiac exposure. Free-breathing and reproducible deep-inspiration breath-hold scans were evaluated for our 10 consecutive left-sided breast cancer patients treated with reproducible deep-inspiration breath-hold. The study was based on the adjuvant dose of 50 Gy in 25 fractions of 2 Gy/fraction. Both inverse and forward intensity-modulated radiotherapy plans were generated for each computed tomography dataset. Reproducible deep-inspiration breath-hold plans with forward intensity-modulated radiotherapy significantly spared the heart and left anterior descending artery compared to generated free-breathing plans based on mean doses - free-breathing vs reproducible deep-inspiration breath-hold, left ventricle (296.1 vs 94.5 cGy, P = 0.005), right ventricle (158.3 vs 59.2 cGy, P = 0.005), left anterior descending artery (171.1 vs 78.1 cGy, P = 0.005), and whole heart (173.9 vs 66 cGy, P = 0.005), heart V20 (2.2% vs 0%, P = 0.007) and heart V10 (4.2% vs 0.3%, P = 0.007) - whereas they revealed no additional burden on the ipsilateral lung. Reproducible deep-inspiration breath-hold and free-breathing plans with inverse intensity-modulated radiotherapy provided similar organ at risk sparing by reducing the mean doses to the left ventricle, left anterior descending artery, heart, V10-V20 of the heart and right ventricle. However, forward intensity-modulated radiotherapy showed significant reduction in doses to the left ventricle, left anterior descending artery, heart, right ventricle, and contralateral breast (mean dose, 248.9 to 12.3 cGy, P = 0.005). The mean doses for free-breathing vs reproducible deep-inspiration breath-hold of the proximal left anterior descending artery were 1.78 vs 1.08 Gy and of the distal left anterior descending artery were 8.11 vs 3.89 Gy, whereas mean distances to the 50 Gy isodose line of the proximal left anterior descending artery were 6.6 vs 3.3 cm and of the distal left anterior descending artery were 7.4 vs 4.1 cm, with forward intensity-modulated radiotherapy. Overall reduction in mean doses to proximal and distal left anterior descending artery with deep-inspiration breath-hold irradiation was 39% (P = 0.02) and 52% (P = 0.002), respectively. We found a significant reduction of radiation exposure to the contralateral breast, left and right ventricles, as well as of proximal and especially distal left anterior descending artery with the deep-inspiration breath-hold technique with forward intensity-modulated radiotherapy planning.
[Radiotherapy in cancers of the oesophagus, the gastric cardia and the stomach].
Créhange, G; Huguet, F; Quero, L; N'Guyen, T V; Mirabel, X; Lacornerie, T
2016-09-01
Localized oesophageal and gastric cancers have a poor prognosis. In oesophageal cancer, external radiotherapy combined with concomitant chemotherapy is accepted as part of the therapeutic armamentarium in a curative intent in the preoperative setting for resectable tumours; or without surgery in inoperable patients or non-resectable tumours due to wide local and/or regional extension. Data from the literature show conflicting results with no clinical evidence in favour of either a unique dose protocol or consensual target volume definition in the setting of exclusive chemoradiation. In the preoperative setting, chemoradiotherapy has become the standard in oesophageal cancer, even though there is no evidence that surgery may be beneficial in locally advanced tumours that respond to radiotherapy and chemotherapy. The main cause of failure after exclusive chemoradiotherapy in oesophageal cancer is locoregional relapse suggesting that doses and volumes usually considered may be inadequate. In gastric cancer, radiotherapy may be indicated postoperatively in patients with resected tumours that include less than D2 lymph node dissection or in the absence of perioperative chemotherapy. Preoperative chemoradiotherapy in gastric cancers is still under investigation. The evolving techniques of external radiotherapy, such as image-guided radiotherapy (IMRT) and volumetric modulated arctherapy (VMAT) have reduced the volume of lung and heart exposed to radiation, which seems to have diminished radiotherapy-related morbi-mortality rates. Given this, quality assurance for radiotherapy and protocols for radiotherapy delivery must be better standardized. This article on the indications for radiotherapy and the techniques used in oesophageal and gastric cancers is included in a special issue dedicated to national recommendations from the French society of radiation oncology (SFRO) on radiotherapy indications, planning, dose prescription, and techniques of radiotherapy delivery. Copyright © 2016 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
Left-sided breast cancer irradiation using rotational and fixed-field radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, X. Sharon, E-mail: xqi@mednet.ucla.edu; Liu, Tian X.; Liu, Arthur K.
2014-10-01
The 3-dimensional conformal radiotherapy (3DCRT) technique is the standard for breast cancer radiotherapy. During treatment planning, not only the coverage of the planning target volume (PTV) but also the minimization of the dose to critical structures, such as the lung, heart, and contralateral breast tissue, need to be considered. Because of the complexity and variations of patient anatomy, more advanced radiotherapy techniques are sometimes desired to better meet the planning goals. In this study, we evaluated external-beam radiation treatment techniques for left breast cancer using various delivery platforms: fixed-field including TomoDirect (TD), static intensity-modulated radiotherapy (sIMRT), and rotational radiotherapy includingmore » Elekta volumetric-modulated arc therapy (VMAT) and tomotherapy helical (TH). A total of 10 patients with left-sided breast cancer who did or did not have positive lymph nodes and were previously treated with 3DCRT/sIMRT to the entire breast were selected, their treatment was planned with Monaco VMAT, TD, and TH. Dosimetric parameters including PTV coverage, organ-at-risk (OAR) sparing, dose-volume histograms, and target minimum/maximum/mean doses were evaluated. It is found that for plans providing comparable PTV coverage, the Elekta VMAT plans were generally more inhomogeneous than the TH and TD plans. For the cases with regional node involvement, the average mean doses administered to the heart were 9.2 (± 5.2) and 8.8 (± 3.0) Gy in the VMAT and TH plans compared with 11.9 (± 6.4) and 11.8 (± 9.2) Gy for the 3DCRT and TD plans, respectively, with slightly higher doses given to the contralateral lung or breast or both. On average, the total monitor units for VMAT plans are 11.6% of those TH plans. Our studies have shown that VMAT and TH plans offer certain dosimetric advantages over fixed-field IMRT plans for advanced breast cancer requiring regional nodal treatment. However, for early-stage breast cancer fixed-field radiotherapy is potentially more beneficial in terms of OAR sparing.« less
Left-sided breast cancer irradiation using rotational and fixed-field radiotherapy.
Qi, X Sharon; Liu, Tian X; Liu, Arthur K; Newman, Francis; Rabinovitch, Rachel; Kavanagh, Brian; Hu, Y Angie
2014-01-01
The 3-dimensional conformal radiotherapy (3DCRT) technique is the standard for breast cancer radiotherapy. During treatment planning, not only the coverage of the planning target volume (PTV) but also the minimization of the dose to critical structures, such as the lung, heart, and contralateral breast tissue, need to be considered. Because of the complexity and variations of patient anatomy, more advanced radiotherapy techniques are sometimes desired to better meet the planning goals. In this study, we evaluated external-beam radiation treatment techniques for left breast cancer using various delivery platforms: fixed-field including TomoDirect (TD), static intensity-modulated radiotherapy (sIMRT), and rotational radiotherapy including Elekta volumetric-modulated arc therapy (VMAT) and tomotherapy helical (TH). A total of 10 patients with left-sided breast cancer who did or did not have positive lymph nodes and were previously treated with 3DCRT/sIMRT to the entire breast were selected, their treatment was planned with Monaco VMAT, TD, and TH. Dosimetric parameters including PTV coverage, organ-at-risk (OAR) sparing, dose-volume histograms, and target minimum/maximum/mean doses were evaluated. It is found that for plans providing comparable PTV coverage, the Elekta VMAT plans were generally more inhomogeneous than the TH and TD plans. For the cases with regional node involvement, the average mean doses administered to the heart were 9.2 (± 5.2) and 8.8 (± 3.0)Gy in the VMAT and TH plans compared with 11.9 (± 6.4) and 11.8 (± 9.2)Gy for the 3DCRT and TD plans, respectively, with slightly higher doses given to the contralateral lung or breast or both. On average, the total monitor units for VMAT plans are 11.6% of those TH plans. Our studies have shown that VMAT and TH plans offer certain dosimetric advantages over fixed-field IMRT plans for advanced breast cancer requiring regional nodal treatment. However, for early-stage breast cancer fixed-field radiotherapy is potentially more beneficial in terms of OAR sparing. Copyright © 2014 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Adams, E J; Warrington, A P
2008-04-01
The simplicity of cobalt units gives them the advantage of reduced maintenance, running costs and downtime when compared with linear accelerators. However, treatments carried out on such units are typically limited to simple techniques. This study has explored the use of cobalt beams for conformal and intensity-modulated radiotherapy (IMRT). Six patients, covering a range of treatment sites, were planned using both X-ray photons (6/10 MV) and cobalt-60 gamma rays (1.17 and 1.33 MeV). A range of conformal and IMRT techniques were considered, as appropriate. Conformal plans created using cobalt beams for small breast, meningioma and parotid cases were found to compare well with those created using X-ray photons. By using additional fields, acceptable conformal plans were also created for oesophagus and prostate cases. IMRT plans were found to be of comparable quality for meningioma, parotid and thyroid cases on the basis of dose-volume histogram analysis. We conclude that it is possible to plan high-quality radical radiotherapy treatments for cobalt units. A well-designed beam blocking/compensation system would be required to enable a practical and efficient alternative to multileaf collimator (MLC)-based linac treatments to be offered. If cobalt units were to have such features incorporated into them, they could offer considerable benefits to the radiotherapy community.
Kilic, Sarah; Khan, Atif J.; Beriwal, Sushil; Small, William
2017-01-01
The management of locally advanced cervical cancer relies on brachytherapy (BT) as an integral part of the radiotherapy delivery armamentarium. Occasionally, intracavitary BT is neither possible nor available. In these circumstances, post-external beam radiotherapy (EBRT) interstitial brachytherapy and/or hysterectomy may represent viable options that must be adequately executed in a timely manner. However, if these options are not applicable due to patient related or facility related reasons, a formal contingency plan should be in place. Innovative EBRT techniques such as intensity modulated and stereotactic radiotherapy may be considered for patients unable to undergo brachytherapy. Relying on provocative arguments and recent data, this review explores the rationale for and limitations of non-brachytherapy substitutes in that setting aiming to establish a formal process for the optimal execution of this alternative plan. PMID:28603722
A Kindler syndrome-associated squamous cell carcinoma treated with radiotherapy.
Caldeira, Ademar; Trinca, William Correia; Flores, Thais Pires; Costa, Andrea Barleze; Brito, Claudio de Sá; Weigert, Karen Loureiro; Matos, Maryana Schwartzhaupt; Nicolini, Carmela; Obst, Fernando Mariano
2016-01-01
Kindler syndrome1, 2 is a genetic disorder mainly characterized by increased skin fragility and photosensitivity,3, 4 making the use of treatments based on radiation difficult or even prohibited. Thus, cases reporting Kindler syndrome patients treated with radiotherapy are rare. In this study, we report clinical outcomes and care provided for a rare case of a Kindler syndrome patient submitted to radiotherapy. Diagnosed with squamous cell carcinoma involving the buccal mucosa, the patient was exclusively treated with radiotherapy, with 70 Gy delivered on the PTV with the Volumetric Modulated Arc technique. The patient's reaction regarding control of the lesion is relevant compared to patients not affected by the syndrome. We noticed acute reactions of the skin and buccal mucosa after few radiotherapy sessions, followed by a fast reduction in the tumor volume. The efficacy of radiotherapy along with multidisciplinary actions allowed treatment continuity, leading to a complete control of the lesion and life quality improvement and showed that the use of radiotherapy on Kindler syndrome patients is possible.
Radiation techniques for esophageal cancer.
Zhang, Minsi; Wu, Abraham J
2017-10-01
Radiotherapy plays a crucial role in the curative management of localized esophageal cancer, both as definitive and preoperative therapy. For definitive therapy, the standard radiation dose is 50.4 Gy in 28 fractions and should be delivered with concurrent chemotherapy. Chemoradiotherapy also has a wellestablished benefit in the preoperative setting, as established in the CROSS randomized trial. Radiation fields are typically generous, to account for subclinical extension of disease along the esophagus and to regional nodes. Three-dimensional conformal radiation is the current standard technique for esophageal cancer, though intensity-modulated radiation therapy is increasingly utilized and may improve the outcomes of esophageal radiotherapy by reducing radiation dose to critical normal tissues.
Clinical utility of RapidArc™ radiotherapy technology
Infusino, Erminia
2015-01-01
RapidArc™ is a radiation technique that delivers highly conformal dose distributions through the complete rotation (360°) and speed variation of the linear accelerator gantry. This technique, called volumetric modulated arc therapy (VMAT), compared with conventional radiotherapy techniques, can achieve high-target volume coverage and sparing damage to normal tissues. RapidArc delivers precise dose distribution and conformity similar to or greater than intensity-modulated radiation therapy in a short time, generally a few minutes, to which image-guided radiation therapy is added. RapidArc has become a currently used technology in many centers, which use RapidArc technology to treat a large number of patients. Large and small hospitals use it to treat the most challenging cases, but more and more frequently for the most common cancers. The clinical use of RapidArc and VMAT technology is constantly growing. At present, a limited number of clinical data are published, mostly concerning planning and feasibility studies. Clinical outcome data are increasing for a few tumor sites, even if only a little. The purpose of this work is to discuss the current status of VMAT techniques in clinical use through a review of the published data of planning systems and clinical outcomes in several tumor sites. The study consisted of a systematic review based on analysis of manuscripts retrieved from the PubMed, BioMed Central, and Scopus databases by searching for the keywords “RapidArc”, “Volumetric modulated arc radiotherapy”, and “Intensity-modulated radiotherapy”. PMID:26648755
Giugliano, Francesca M; Iorio, Vincenzo; Cammarota, Fabrizio; Toledo, Diego; Senese, Rossana; Francomacaro, Ferdinando; Muto, Matteo; Muto, Paolo
2016-04-26
Patients who have undergone solid organ transplants are known to have an increased risk of neoplasia compared with the general population. We report our experience using mediastinal irradiation with helical tomotherapy versus three-dimensional conformal radiation therapy to treat a patient with lung carcinoma 15 years after heart transplantation. Our dosimetric evaluation showed no particular difference between the techniques, with the exception of some organs. Mediastinal irradiation after heart transplantation is feasible and should be considered after evaluation of the risk. Conformal radiotherapy or intensity-modulated radiotherapy appears to be the appropriate treatment in heart-transplanted oncologic patients.
[Rescue cryotherapy for prostate cancer after radiotherapy].
García, Erique Lledó; Amo, Felipe Herranz; San Segundo, Carmen González; Fagundo, Eva Paños; Escudero, Roberto Molina; Alonso, Adrian Husillos; Piniés, Gabriel Ogaya; Rascón, Jose Jara; Fernández, Carlos Hernández
2012-01-01
Radical Radiotherapy constitutes a useful therapeutic option for localized prostate cancer. Almost one third of prostate cancer patients choose this alternative to treat the disease. Despite modifications in the technique as intensity modulation, 3D conformational radiotherapy or computer-assisted brachytherapy, a significant percentage of these patients will show an increase in PSA values after radiation. Local relapse without distant disease and PSA less than 10 ng/ml are candidates for salvage therapy. Cryotherapy has already become a curative treatment option in this group of patients. Recent technological as well as surgical advances in salvage-cryotherapy have reduced dramatically complications and progressively increase the interest on this alternative.
Horsley, Patrick J; Aherne, Noel J; Edwards, Grace V; Benjamin, Linus C; Wilcox, Shea W; McLachlan, Craig S; Assareh, Hassan; Welshman, Richard; McKay, Michael J; Shakespeare, Thomas P
2015-03-01
Magnetic resonance imaging (MRI) scans are increasingly utilized for radiotherapy planning to contour the primary tumors of patients undergoing intensity-modulated radiation therapy (IMRT). These scans may also demonstrate cancer extent and may affect the treatment plan. We assessed the impact of planning MRI detection of extracapsular extension, seminal vesicle invasion, or adjacent organ invasion on the staging, target volume delineation, doses, and hormonal therapy of patients with prostate cancer undergoing IMRT. The records of 509 consecutive patients with planning MRI scans being treated with IMRT for prostate cancer between January 2010 and July 2012 were retrospectively reviewed. Tumor staging and treatment plans before and after MRI were compared. Of the 509 patients, 103 (20%) were upstaged and 44 (9%) were migrated to a higher risk category as a result of findings at MRI. In 94 of 509 patients (18%), the MRI findings altered management. Ninety-four of 509 patients (18%) had a change to their clinical target volume (CTV) or treatment technique, and in 41 of 509 patients (8%) the duration of hormone therapy was changed because of MRI findings. The use of radiotherapy planning MRI altered CTV design, dose and/or duration of androgen deprivation in 18% of patients in this large, single institution series of men planned for dose-escalated prostate IMRT. This has substantial implications for radiotherapy target volumes and doses, as well as duration of androgen deprivation. Further research is required to investigate whether newer MRI techniques can simultaneously fulfill staging and radiotherapy contouring roles. © 2014 Wiley Publishing Asia Pty Ltd.
Loos, G; Moreau, J; Miroir, J; Benhaïm, C; Biau, J; Caillé, C; Bellière, A; Lapeyre, M
2013-10-01
The various image-guided radiotherapy techniques raise the question of how to achieve the control of patient positioning before irradiation session and sharing of tasks between radiation oncologists and radiotherapy technicians. We have put in place procedures and operating methods to make a partial delegation of tasks to radiotherapy technicians and secure the process in three situations: control by orthogonal kV imaging (kV-kV) of bony landmarks, control by kV-kV imaging of intraprostatic fiducial goldmarkers and control by cone beam CT (CBCT) imaging for prostate cancer. Significant medical overtime is required to control these three IGRT techniques. Because of their competence in imaging, these daily controls can be delegated to radiotherapy technicians. However, to secure the process, initial training and regular evaluation are essential. The analysis of the comparison of the use of kV/kV on bone structures allowed us to achieve a partial delegation of control to radiotherapy technicians. Controlling the positioning of the prostate through the use and automatic registration of fiducial goldmarkers allows better tracking of the prostate and can be easily delegated to radiotherapy technicians. The analysis of the use of daily cone beam CT for patients treated with intensity modulated irradiation is underway, and a comparison of practices between radiotherapy technicians and radiation oncologists is ongoing to know if a partial delegation of this control is possible. Copyright © 2013. Published by Elsevier SAS.
NASA Astrophysics Data System (ADS)
Yoon, Jihyung; Heins, David; Zhao, Xiaodong; Sanders, Mary; Zhang, Rui
2017-12-01
More and more advanced radiotherapy techniques have been adopted for post-mastectomy radiotherapies (PMRT). Patient dose reconstruction is challenging for these advanced techniques because they increase the low out-of-field dose area while the accuracy of out-of-field dose calculations by current commercial treatment planning systems (TPSs) is poor. We aim to measure and model the out-of-field radiation doses from various advanced PMRT techniques. PMRT treatment plans for an anthropomorphic phantom were generated, including volumetric modulated arc therapy with standard and flattening-filter-free photon beams, mixed beam therapy, 4-field intensity modulated radiation therapy (IMRT), and tomotherapy. We measured doses in the phantom where the TPS calculated doses were lower than 5% of the prescription dose using thermoluminescent dosimeters (TLD). The TLD measurements were corrected by two additional energy correction factors, namely out-of-beam out-of-field (OBOF) correction factor K OBOF and in-beam out-of-field (IBOF) correction factor K IBOF, which were determined by separate measurements using an ion chamber and TLD. A simple analytical model was developed to predict out-of-field dose as a function of distance from the field edge for each PMRT technique. The root mean square discrepancies between measured and calculated out-of-field doses were within 0.66 cGy Gy-1 for all techniques. The IBOF doses were highly scattered and should be evaluated case by case. One can easily combine the measured out-of-field dose here with the in-field dose calculated by the local TPS to reconstruct organ doses for a specific PMRT patient if the same treatment apparatus and technique were used.
A review of stereotactic body radiotherapy – is volumetric modulated arc therapy the answer?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sapkaroski, Daniel, E-mail: daniel.sapkaroski@gmail.com; Osborne, Catherine; Knight, Kellie A
2015-06-15
Stereotactic body radiotherapy (SBRT) is a high precision radiotherapy technique used for the treatment of small to moderate extra-cranial tumours. Early studies utilising SBRT have shown favourable outcomes. However, major disadvantages of static field SBRT include long treatment times and toxicity complications. Volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) may potentially mitigate these disadvantages. This review aims to assess the feasibility of emerging VMAT and IMRT-based SBRT treatment techniques and qualify which offers the best outcome for patients, whilst identifying any emerging and advantageous SBRT planning trends. A review and synthesis of data from current literature upmore » to September 2013 was conducted on EMBASE, Medline, PubMed, Science Direct, Proquest central, Google Scholar and the Cochrane Database of Systematic reviews. Only full text papers comparing VMAT and or IMRT and or Static SBRT were included. Ten papers were identified that evaluated the results of VMAT/IMRT SBRT. Five related to medically inoperable stage 1 and 2 non-small-cell lung cancer (NSCLC), three to spinal metastasis, one related to abdominal lymph node malignancies, with the final one looking at pancreatic adenocarcinoma. Overall treatment times with VMAT were reduced by 66–70% for lung, 46–58% for spine, 42% and 21% for lymph node and pancreatic metastasis respectively, planning constraints were met with several studies showing improved organs at risk sparing with IMRT/VMAT to static SBRT. Both IMRT and VMAT were able to meet all planning constraints in the studies reviewed, with VMAT offering the greatest treatment efficiency. Early clinical outcomes with VMAT and IMRT SBRT have demonstrated excellent local control and favourable survival outcomes.« less
Ling, Diane C; Hess, Clayton B; Chen, Allen M; Daly, Megan E
2016-01-01
The role of intensity-modulated radiotherapy (IMRT) in reducing treatment-related toxicity for locally advanced non-small-cell lung cancer (NSCLC) remains incompletely defined. We compared acute toxicity and oncologic outcomes in a large cohort of patients treated with IMRT or 3-dimensional conformal radiotherapy (3-DCRT), with or without elective nodal irradiation (ENI). A single-institution retrospective review was performed evaluating 145 consecutive patients with histologically confirmed stage III NSCLC treated with definitive chemoradiotherapy. Sixty-five (44.8%) were treated with 3-DCRT using ENI, 43 (30.0%) with 3-DCRT using involved-field radiotherapy (IFRT), and 37 (25.5%) with IMRT using IFRT. All patients received concurrent chemotherapy. Comparison of acute toxicities by treatment technique (IMRT vs. 3-DCRT) and extent of nodal irradiation (3-DCRT-IFRT vs. 3-DCRT-ENI) was performed for grade 2 or higher esophagitis or pneumonitis, number of acute hospitalizations, incidence of opioid requirement, percutaneous endoscopic gastrostomy utilization, and percentage weight loss during treatment. Local control and overall survival were analyzed by the Kaplan-Meier method. We identified no significant differences in any measures of acute toxicity by treatment technique or extent of nodal irradiation. There was a trend toward lower rates of grade 2 or higher pneumonitis among IMRT patients compared to 3-DCRT patients (5.4% vs. 23.0%; P = .065). Local control and overall survival were similar between cohorts. Acute and subacute toxicities were similar for patients treated with IMRT and with 3-DCRT with or without ENI, with a nonsignificant trend toward a reduction in pneumonitis with IMRT. Larger studies are needed to better define which patients will benefit from IMRT. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gondi, Vinai; Tolakanahalli, Ranjini; Mehta, Minesh P.
2010-11-15
Purpose: Sparing the hippocampus during cranial irradiation poses important technical challenges with respect to contouring and treatment planning. Herein we report our preliminary experience with whole-brain radiotherapy using hippocampal sparing for patients with brain metastases. Methods and Materials: Five anonymous patients previously treated with whole-brain radiotherapy with hippocampal sparing were reviewed. The hippocampus was contoured, and hippocampal avoidance regions were created using a 5-mm volumetric expansion around the hippocampus. Helical tomotherapy and linear accelerator (LINAC)-based intensity-modulated radiotherapy (IMRT) treatment plans were generated for a prescription dose of 30 Gy in 10 fractions. Results: On average, the hippocampal avoidance volume wasmore » 3.3 cm{sup 3}, occupying 2.1% of the whole-brain planned target volume. Helical tomotherapy spared the hippocampus, with a median dose of 5.5 Gy and maximum dose of 12.8 Gy. LINAC-based IMRT spared the hippocampus, with a median dose of 7.8 Gy and maximum dose of 15.3 Gy. On a per-fraction basis, mean dose to the hippocampus (normalized to 2-Gy fractions) was reduced by 87% to 0.49 Gy{sub 2} using helical tomotherapy and by 81% to 0.73 Gy{sub 2} using LINAC-based IMRT. Target coverage and homogeneity was acceptable with both IMRT modalities, with differences largely attributed to more rapid dose fall-off with helical tomotherapy. Conclusion: Modern IMRT techniques allow for sparing of the hippocampus with acceptable target coverage and homogeneity. Based on compelling preclinical evidence, a Phase II cooperative group trial has been developed to test the postulated neurocognitive benefit.« less
The role of a prone setup in breast radiation therapy.
Huppert, Nelly; Jozsef, Gabor; Dewyngaert, Keith; Formenti, Silvia Chiara
2011-01-01
Most patients undergoing breast conservation therapy receive radiotherapy in the supine position. Historically, prone breast irradiation has been advocated for women with large pendulous breasts in order to decrease acute and late toxicities. With the advent of CT planning, the prone technique has become both feasible and reproducible. It was shown to be advantageous not only for women with larger breasts but in most patients since it consistently reduces, if not eliminates, the inclusion of heart and lung within the field. The prone setup has been accepted as the best localizing position for both MRI and stereotactic biopsy, but its adoption has been delayed in radiotherapy. New technological advances including image-modulated radiation therapy and image-guided radiation therapy have made possible the exploration of accelerated fractionation schemes with a concomitant boost to the tumor bed in the prone position, along with better imaging and verification of reproducibility of patient setup. This review describes some of the available techniques for prone breast radiotherapy and the available experience in their application. The NYU prone breast radiotherapy approach is discussed, including a summary of the results from several prospective trials.
Pham, D; Hardcastle, N; Foroudi, F; Kron, T; Bressel, M; Hilder, B; Chesson, B; Oates, R; Montgomery, R; Ball, D; Siva, S
2016-09-01
In technically advanced multicentre clinical trials, participating centres can benefit from a credentialing programme before participating in the trial. Education of staff in participating centres is an important aspect of a successful clinical trial. In the multicentre study of fractionated versus single fraction stereotactic ablative body radiotherapy in lung oligometastases (TROG 13.01), knowledge transfer of stereotactic ablative body radiotherapy techniques to the local multidisciplinary team is intended as part of the credentialing process. In this study, a web-based learning platform was developed to provide education and training for the multidisciplinary trial teams at geographically distinct sites. A web-based platform using eLearning software consisting of seven training modules was developed. These modules were based on extracranial stereotactic theory covering the following discrete modules: Clinical background; Planning technique and evaluation; Planning optimisation; Four-dimensional computed tomography simulation; Patient-specific quality assurance; Cone beam computed tomography and image guidance; Contouring organs at risk. Radiation oncologists, medical physicists and radiation therapists from hospitals in Australia and New Zealand were invited to participate in this study. Each discipline was enrolled into a subset of modules (core modules) and was evaluated before and after completing each module. The effectiveness of the eLearning training will be evaluated based on (i) knowledge retention after participation in the web-based training and (ii) confidence evaluation after participation in the training. Evaluation consisted of a knowledge test and confidence evaluation using a Likert scale. In total, 130 participants were enrolled into the eLearning programme: 81 radiation therapists (62.3%), 27 medical physicists (20.8%) and 22 radiation oncologists (16.9%). There was an average absolute improvement of 14% in test score (P < 0.001) after learning. This score improvement compared with initial testing was also observed in the long-term testing (>4 weeks) after completing the modules (P < 0.001). For most there was significant increase in confidence (P < 0.001) after completing all the modules. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kung, Shiris Wai Sum; Wu, Vincent Wing Cheung; Kam, Michael Koon Ming, E-mail: kamkm@yahoo.co
2011-01-01
Purpose: Locally recurrent nasopharyngeal carcinoma (NPC) patients can be salvaged by reirradiation with a substantial degree of radiation-related complications. Stereotactic radiotherapy (SRT) is widely used in this regard because of its rapid dose falloff and high geometric precision. The aim of this study was to examine whether the newly developed intensity-modulated stereotactic radiotherapy (IMSRT) has any dosimetric advantages over three other stereotactic techniques, including circular arc (CARC), static conformal beam (SmMLC), and dynamic conformal arc (mARC), in treating locally recurrent NPC. Methods and Materials: Computed tomography images of 32 patients with locally recurrent NPC, previously treated with SRT, were retrievedmore » from the stereotactic planning system for contouring and computing treatment plans. Treatment planning of each patient was performed for the four treatment techniques: CARC, SmMLC, mARC, and IMSRT. The conformity index (CI) and homogeneity index (HI) of the planning target volume (PTV) and doses to the organs at risk (OARs) and normal tissue were compared. Results: All four techniques delivered adequate doses to the PTV. IMSRT, SmMLC, and mARC delivered reasonably conformal and homogenous dose to the PTV (CI <1.47, HI <0.53), but not for CARC (p < 0.05). IMSRT presented with the smallest CI (1.37) and HI (0.40). Among the four techniques, IMSRT spared the greatest number of OARs, namely brainstem, temporal lobes, optic chiasm, and optic nerve, and had the smallest normal tissue volume in the low-dose region. Conclusion: Based on the dosimetric comparison, IMSRT was optimal for locally recurrent NPC by delivering a conformal and homogenous dose to the PTV while sparing OARs.« less
Livingston, Gareth C; Last, Andrew J; Shakespeare, Thomas P; Dwyer, Patrick M; Westhuyzen, Justin; McKay, Michael J; Connors, Lisa; Leader, Stephanie; Greenham, Stuart
2016-09-01
For patients receiving radiotherapy for locally advance non-small cell lung cancer (NSCLC), the probability of experiencing severe radiation pneumonitis (RP) appears to rise with an increase in radiation received by the lungs. Intensity modulated radiotherapy (IMRT) provides the ability to reduce planned doses to healthy organs at risk (OAR) and can potentially reduce treatment-related side effects. This study reports toxicity outcomes and provides a dosimetric comparison with three-dimensional conformal radiotherapy (3DCRT). Thirty curative NSCLC patients received radiotherapy using four-dimensional computed tomography and five-field IMRT. All were assessed for early and late toxicity using common terminology criteria for adverse events. All plans were subsequently re-planned using 3DCRT to the same standard as the clinical plans. Dosimetric parameters for lungs, oesophagus, heart and conformity were recorded for comparison between the two techniques. IMRT plans achieved improved high-dose conformity and reduced OAR doses including lung volumes irradiated to 5-20 Gy. One case each of oesophagitis and erythema (3%) were the only Grade 3 toxicities. Rates of Grade 2 oesophagitis were 40%. No cases of Grade 3 RP were recorded and Grade 2 RP rates were as low as 3%. IMRT provides a dosimetric benefit when compared to 3DCRT. While the clinical benefit appears to increase with increasing target size and increasing complexity, IMRT appears preferential to 3DCRT in the treatment of NSCLC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, William; Filion, Edith; Roberge, David
2007-09-01
Purpose: To report the results of an analysis of dose received to tissues and organs outside the target volume, in the setting of spinal axis irradiation for the treatment of medulloblastoma, using three treatment techniques. Methods and Materials: Treatment plans (total dose, 23.4 Gy) for a standard two-dimensional (2D) technique, a three-dimensional (3D) technique using a 3D imaging-based target volume, and an intensity-modulated radiotherapy (IMRT) technique, were compared for 3 patients in terms of dose-volume statistics for target coverage, as well as organ at risk (OAR) and overall tissue sparing. Results: Planning target volume coverage and dose homogeneity was superiormore » for the IMRT plans for V{sub 95%} (IMRT, 100%; 3D, 96%; 2D, 98%) and V{sub 107%} (IMRT, 3%; 3D, 38%; 2D, 37%). In terms of OAR sparing, the IMRT plan was better for all organs and whole-body contour when comparing V{sub 10Gy}, V{sub 15Gy}, and V{sub 20Gy}. The 3D plan was superior for V{sub 5Gy} and below. For the heart and liver in particular, the IMRT plans provided considerable sparing in terms of V{sub 10Gy} and above. In terms of the integral dose, the IMRT plans were superior for liver (IMRT, 21.9 J; 3D, 28.6 J; 2D, 38.6 J) and heart (IMRT, 9 J; 3D, 14.1J; 2D, 19.4 J), the 3D plan for the body contour (IMRT, 349 J; 3D, 337 J; 2D, 555 J). Conclusions: Intensity-modulated radiotherapy is a valid treatment option for spinal axis irradiation. We have shown that IMRT results in sparing of organs at risk without a significant increase in integral dose.« less
Yartsev, Slav; Chen, Jeff; Yu, Edward; Kron, Tomas; Rodrigues, George; Coad, Terry; Trenka, Kristina; Wong, Eugene; Bauman, Glenn; Dyk, Jake Van
2006-02-01
Lung cancer treatment can be one of the most challenging fields in radiotherapy. The aim of the present study was to compare different modalities of radiation delivery based on a balanced scoring scheme for target coverage and normal tissue avoidance. Treatment plans were developed for 15 patients with stage III inoperable non-small cell lung cancer using 3D conformal technique and intensity-modulated radiotherapy (IMRT). Elective nodal irradiation was included for all cases to create the most challenging scenarios with large target volumes. A 2 cm margin was used around the gross tumour volume (GTV) to generate PTV2 and 1cm margin around elective nodes for PTV1 resulting in PTV1 volumes larger than 1000 cm(3) in 13 of the 15 patients. 3D conformal and IMRT plans were generated on a commercial treatment planning system (TheraPlan Plus, Nucletron) with various combinations of beam energies and gantry angles. A 'dose quality factor' (DQF) was introduced to correlate the plan quality with patient specific parameters. A good correlation was found between the quality of the plans and the overlap between PTV1 and lungs. The patient feature factor (PFF), which is a product of several pertinent characteristics, was introduced to facilitate the choice of a particular technique for a particular patient. This approach may allow the evaluation of different treatment options prior to actual planning, subject to validation in larger prospective data sets.
Influence of (11)C-choline PET/CT on radiotherapy planning in prostate cancer.
López, Escarlata; Lazo, Antonio; Gutiérrez, Antonio; Arregui, Gregorio; Núñez, Isabel; Sacchetti, Antonio
2015-01-01
To evaluate the influence of (11)C-choline PET/CT on radiotherapy planning in prostate cancer patients. Precise information on the extension of prostate cancer is crucial for the choice of an appropriate therapeutic strategy. (11)C-choline positron emission tomography ((11)C-choline PET/CT) has two roles in radiation oncology (RT): (1) patient selection for treatment and (2) target volume selection and delineation. In conjunction with high-accuracy techniques, it might offer an opportunity of dose escalation and better tumour control while sparing healthy tissues. We carried out a retrospective study in order to analyse RT planning modification based on (11)C-choline PET/CT in 16 prostate cancer patients. Patients were treated with hypofractionated step-and-shoot Intensity Modulated Radiotherapy (IMRT), or Volumetric Modulated Arc Therapy (VMAT), and a daily cone-beam CT for Image Guided Radiation Therapy (IGRT). All patients underwent a (11)C-choline-PET/CT scan prior to radiotherapy. In 37.5% of cases, a re-delineation and new dose prescription occurred. Data show good preliminary clinical results in terms of biochemical control and toxicity. No gastrointestinal (GI)/genitourinary (GU) grade III toxicities were observed after a median follow-up of 9.5 months. In our experience, concerning the treatment of prostate cancer (PCa), (11)C-choline PET/CT may be helpful in radiotherapy planning, either for dose escalation or exclusion of selected sites.
Cost-effectiveness of modern radiotherapy techniques in locally advanced pancreatic cancer.
Murphy, James D; Chang, Daniel T; Abelson, Jon; Daly, Megan E; Yeung, Heidi N; Nelson, Lorene M; Koong, Albert C
2012-02-15
Radiotherapy may improve the outcome of patients with pancreatic cancer but at an increased cost. In this study, the authors evaluated the cost-effectiveness of modern radiotherapy techniques in the treatment of locally advanced pancreatic cancer. A Markov decision-analytic model was constructed to compare the cost-effectiveness of 4 treatment regimens: gemcitabine alone, gemcitabine plus conventional radiotherapy, gemcitabine plus intensity-modulated radiotherapy (IMRT); and gemcitabine with stereotactic body radiotherapy (SBRT). Patients transitioned between the following 5 health states: stable disease, local progression, distant failure, local and distant failure, and death. Health utility tolls were assessed for radiotherapy and chemotherapy treatments and for radiation toxicity. SBRT increased life expectancy by 0.20 quality-adjusted life years (QALY) at an increased cost of $13,700 compared with gemcitabine alone (incremental cost-effectiveness ratio [ICER] = $69,500 per QALY). SBRT was more effective and less costly than conventional radiotherapy and IMRT. An analysis that excluded SBRT demonstrated that conventional radiotherapy had an ICER of $126,800 per QALY compared with gemcitabine alone, and IMRT had an ICER of $1,584,100 per QALY compared with conventional radiotherapy. A probabilistic sensitivity analysis demonstrated that the probability of cost-effectiveness at a willingness to pay of $50,000 per QALY was 78% for gemcitabine alone, 21% for SBRT, 1.4% for conventional radiotherapy, and 0.01% for IMRT. At a willingness to pay of $200,000 per QALY, the probability of cost-effectiveness was 73% for SBRT, 20% for conventional radiotherapy, 7% for gemcitabine alone, and 0.7% for IMRT. The current results indicated that IMRT in locally advanced pancreatic cancer exceeds what society considers cost-effective. In contrast, combining gemcitabine with SBRT increased clinical effectiveness beyond that of gemcitabine alone at a cost potentially acceptable by today's standards. Copyright © 2011 American Cancer Society.
Delmastro, Elena; Garibaldi, Elisabetta; Gabriele, Domenico; Bresciani, Sara; Cattari, Gabriella; Dia, Amalia Di; Manini, Claudia; Collura, Devis; Redda, Maria Grazia Ruo; Gabriele, Pietro
2016-11-11
Adrenocortical carcinoma (ACC) is a rare tumor in the adult. The main therapy is surgery but in some cases radiotherapy may be needed to control the disease locally. A patient with a surgically removed bulky ACC and pathologic finding of a positive margin was treated at our center by adjuvant mitotane and radiotherapy using an intensity-modulated radiation therapy (IMRT)/image-guided radiotherapy (IGRT) technique by tomotherapy. Dose prescriptions were 63 Gy on the surgical bed and 50.4 Gy on the lymphatic drainage in 28 sessions. Patient compliance was good with no evidence of acute or late toxicities. Thirty months after radiotherapy, the patient is alive without evidence of disease checked by 18F-fluorodeoxyglucose positron emission tomography/computed tomography and without any complication. In patients with adverse prognostic features, the delivery of adequate adjuvant radiotherapy doses with IMRT and daily IGRT is feasible and safe and could result in an improved outcome for patients with ACC.
Cosway, B; Douglas, L; Armstrong, N; Robson, A
2017-06-01
NHS England has commissioned intensity-modulated radiotherapy for head and neck cancers from Newcastle hospitals for patients in North Cumbria. This study assessed whether travel distances affected the decision to travel to Newcastle (to receive intensity-modulated radiotherapy) or Carlisle (to receive conformal radiotherapy). All patients for whom the multidisciplinary team recommended intensity-modulated radiotherapy between December 2013 and January 2016 were included. Index of multiple deprivation scores and travel distances were calculated. Patients were also asked why they chose their treating centre. Sixty-nine patients were included in this study. There were no significant differences in travel distance (p = 0.53) or index of multiple deprivation scores (p = 0.47) between patients opting for treatment in Carlisle or Newcastle. However, 29 of the 33 patients gave travel distance as their main reason for not travelling for treatment. Quantitatively, travel distance and deprivation does not impact on whether patients accept intensity-modulated radiotherapy. However, patients say distance is a major barrier for access. Future research should explore how to reduce this.
Mani, Karthick Raj; Upadhayay, Sagar; Das, K J Maria
2017-03-01
To Study the dosimetric advantage of the Jaw tracking technique in intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) for Head and Neck Cancers. We retrospectively selected 10 previously treated head and neck cancer patients stage (T1/T2, N1, M0) in this study. All the patients were planned for IMRT and VMAT with simultaneous integrated boost technique. IMRT and VMAT plans were performed with jaw tracking (JT) and with static jaw (SJ) technique by keeping the same constraints and priorities for a particular patient. Target conformity, dose to the critical structures and low dose volumes were recorded and analyzed for IMRT and VMAT plans with and without JT for all the patients. The conformity index average of all patients followed by standard deviation ([Formula: see text] ± [Formula: see text]) of the JT-IMRT, SJ-IMRT, JT-VMAT, and SJ-VMAT were 1.72 ± 0.56, 1.67 ± 0.57, 1.83 ± 0.65, and 1.85 ± 0.64, and homogeneity index were 0.059 ± 0.05, 0.064 ± 0.05, 0.064 ± 0.04, and 0.064 ± 0.05. JT-IMRT shows significant mean reduction in right parotid and left parotid shows of 7.64% (p < 0.001) and 7.45% (p < 0.001) compare to SJ-IMRT. JT-IMRT plans also shows considerable dose reduction to thyroid, inferior constrictors, spinal cord and brainstem compared to the SJ-IMRT plans. Significant dose reductions were observed for critical structure in the JT-IMRT compared to SJ-IMRT technique. In JT-VMAT plans dose reduction to the critical structure were not significant compared to the SJ-IMRT due to relatively lesser monitor units.
Ranger, A; Dunlop, A; Hutchinson, K; Convery, H; Maclennan, M K; Chantler, H; Twyman, N; Rose, C; McQuaid, D; Amos, R A; Griffin, C; deSouza, N M; Donovan, E; Harris, E; Coles, C E; Kirby, A
2018-06-01
Radiotherapy target volumes in early breast cancer treatment increasingly include the internal mammary chain (IMC). In order to maximise survival benefits of IMC radiotherapy, doses to the heart and lung should be minimised. This dosimetry study compared the ability of three-dimensional conformal radiotherapy, arc therapy and proton beam therapy (PBT) techniques with and without breath-hold to achieve target volume constraints while minimising dose to organs at risk (OARs). In 14 patients' datasets, seven IMC radiotherapy techniques were compared: wide tangent (WT) three-dimensional conformal radiotherapy, volumetric-modulated arc therapy (VMAT) and PBT, each in voluntary deep inspiratory breath-hold (vDIBH) and free breathing (FB), and tomotherapy in FB only. Target volume coverage and OAR doses were measured for each technique. These were compared using a one-way ANOVA with all pairwise comparisons tested using Bonferroni's multiple comparisons test, with adjusted P-values ≤ 0.05 indicating statistical significance. One hundred per cent of WT(vDIBH), 43% of WT(FB), 100% of VMAT(vDIBH), 86% of VMAT(FB), 100% of tomotherapy FB and 100% of PBT plans in vDIBH and FB passed all mandatory constraints. However, coverage of the IMC with 90% of the prescribed dose was significantly better than all other techniques using VMAT(vDIBH), PBT(vDIBH) and PBT(FB) (mean IMC coverage ± 1 standard deviation = 96.0% ± 4.3, 99.8% ± 0.3 and 99.0% ± 0.2, respectively). The mean heart dose was significantly reduced in vDIBH compared with FB for both the WT (P < 0.0001) and VMAT (P < 0.0001) techniques. There was no advantage in target volume coverage or OAR doses for PBT(vDIBH) compared with PBT(FB). Simple WT radiotherapy delivered in vDIBH achieves satisfactory coverage of the IMC while meeting heart and lung dose constraints. However, where higher isodose coverage is required, VMAT(vDIBH) is the optimal photon technique. The lowest OAR doses are achieved by PBT, in which the use of vDIBH does not improve dose statistics. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
Corradini, Stefanie; Ballhausen, Hendrik; Weingandt, Helmut; Freislederer, Philipp; Schönecker, Stephan; Niyazi, Maximilian; Simonetto, Cristoforo; Eidemüller, Markus; Ganswindt, Ute; Belka, Claus
2018-03-01
Modern breast cancer radiotherapy techniques, such as respiratory-gated radiotherapy in deep-inspiration breath-hold (DIBH) or volumetric-modulated arc radiotherapy (VMAT) have been shown to reduce the high dose exposure of the heart in left-sided breast cancer. The aim of the present study was to comparatively estimate the excess relative and absolute risks of radiation-induced secondary lung cancer and ischemic heart disease for different modern radiotherapy techniques. Four different treatment plans were generated for ten computed tomography data sets of patients with left-sided breast cancer, using either three-dimensional conformal radiotherapy (3D-CRT) or VMAT, in free-breathing (FB) or DIBH. Dose-volume histograms were used for organ equivalent dose (OED) calculations using linear, linear-exponential, and plateau models for the lung. A linear model was applied to estimate the long-term risk of ischemic heart disease as motivated by epidemiologic data. Excess relative risk (ERR) and 10-year excess absolute risk (EAR) for radiation-induced secondary lung cancer and ischemic heart disease were estimated for different representative baseline risks. The DIBH maneuver resulted in a significant reduction of the ERR and estimated 10-year excess absolute risk for major coronary events compared to FB in 3D-CRT plans (p = 0.04). In VMAT plans, the mean predicted risk reduction through DIBH was less pronounced and not statistically significant (p = 0.44). The risk of radiation-induced secondary lung cancer was mainly influenced by the radiotherapy technique, with no beneficial effect through DIBH. VMAT plans correlated with an increase in 10-year EAR for radiation-induced lung cancer as compared to 3D-CRT plans (DIBH p = 0.007; FB p = 0.005, respectively). However, the EARs were affected more strongly by nonradiation-associated risk factors, such as smoking, as compared to the choice of treatment technique. The results indicate that 3D-CRT plans in DIBH pose the lowest risk for both major coronary events and secondary lung cancer.
NASA Astrophysics Data System (ADS)
Lai, Lu-Han; Chuang, Keh-Shih; Lin, Hsin-Hon; Liu, Yi-Chi; Kuo, Chiung-Wen; Lin, Jao-Perng
2017-11-01
The in-vivo dose distributions of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT), a newly developed technique, for head and neck cancer have been investigated for several years. The present study used a head-and-neck RANDO phantom to simulate the clinical conditions of nasopharyngeal carcinoma and compare the radiation doses between VMAT and IMRT. Three types of planning target volume (PTV) profiles were targeted by reducing the PTV surface margin by 0, 3, and 5 mm. An optically stimulated luminescence dosimeter was used to measure the surface doses. The results revealed that VMAT provided on average 16.8-13.8% lower surface doses within the PTV target areas than IMRT. When the PTV margin was reduced by 0 mm, the surface doses for IMRT reached their maximum value, accounting for 75.1% of its prescribed dose (Dp); however, the Dp value of VMAT was only 61.1%. When the PTV margin was reduced by 3 or 5 mm, the surface doses decreased considerably. The observed surface doses were insufficient when the tumours invaded the body surface; however, VMAT exerted larger skin-sparing effects than IMRT when the tumours away from the skin. These results suggest that the skin doses for these two techniques are insufficient for surface tumours. Notably, VMAT can provide lower skin doses for deep tumours.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, J-Y; Huang, B-T; Zhang, W-Z
Purpose: To compare volumetric modulated arc radiotherapy (VMAT) technique with fixed-gantry intensity-modulated radiotherapy (IMRT) technique for locally advanced laryngeal carcinoma. Methods: CT datasets of eleven patients were included. Dual-arc VMAT and 7-field IMRT plans, which were created based on the Eclipse treatment planning system, were compared in terms of dose-volume parameters, conformity index (CI) and homogeneity index (HI) of planning target volume (PTV), as well as organ-at-risk (OAR) sparing, planning time, monitor units (MUs) and delivery time. Results: Compared with the IMRT plans, the VMAT plans provided lower D2% and better CI/HI for the high-risk PTV (PTV1), and provided bettermore » CI and comparable HI for the low-risk PTV (PTV2). Concerning the OAR sparing, the VMAT plans demonstrated significantly lower Dmax of the spinal cord (planning OAR volume, PRV) and brainstem (PRV), as well as lower Dmean and V30Gy of the right parotid. No significant differences were observed between the two plans concerning the doses delivered to the thyroid, carotid, oral cavity and left parotid. Moreover, the VMAT planning (147 ± 18 min) consumed 213% more time than the IMRT planning (48 ± 10 min). The MUs of the VMAT plans (556 ± 52) were 64% less than those of the IMRT plans (1684 ± 409), and the average delivery time (2.1 ± 0.1 min) was 66% less than that of the IMRT plans (6.3 ± 0.7 min). Conclusion: Compared with the IMRT technique, the VMAT technique can achieve superior target dose distribution and better sparing of the spinal cord, brainstem and right parotid, with less MUs and less delivery time. It is recommended for the radiotherapy of locally advanced laryngeal carcinoma.« less
Radiotherapy after surgical resection for head and neck mucosal melanoma.
Wu, Abraham J; Gomez, Jennifer; Zhung, Joanne E; Chan, Kelvin; Gomez, Daniel R; Wolden, Suzanne L; Zelefsky, Michael J; Wolchok, Jedd D; Carvajal, Richard D; Chapman, Paul B; Wong, Richard J; Shaha, Ashok R; Kraus, Dennis H; Shah, Jatin P; Lee, Nancy Y
2010-06-01
To present our single-institution experience with postoperative radiotherapy for mucosal melanoma of the head and neck. Between 1992 and 2007, 27 patients with mucosal melanoma of the head and neck underwent surgical resection followed by postoperative radiotherapy. Median age was 68 years (range: 45-89 years). Sites included were sinonasal in 24 patients, oral cavity in 2, and oropharynx in 1. All but 2 patients had stage I disease. Twenty-two patients received hypofractionated radiation. Radiation techniques were intensity-modulated radiation therapy in 13, 3-dimensional conformal in 4, and conventional in 10. The median follow-up for living patients was 45 months (range: 24-122 months). The 3- and 5-year estimates of local progression-free, loco-regional progression-free, distant metastasis-free, and overall survival were: 47% and 35%; 34% and 22%; 30% and 24%; and 40% and 33%, respectively. Median time to local failure and distant metastasis was 32 and 14 months, respectively. Acute toxicities included 19% with grade 2 or higher mucositis. No late complications related to the optic structures were seen. Modern radiotherapeutic techniques including intensity-modulated radiation therapy appear feasible and well-tolerated in the postoperative treatment of head and neck mucosal melanoma. Unusual or serious late complications have not been observed despite extensive use of hypofractionated regimens. However, rates of local and distant failure remain high.
Song, Sanghyuk; Chang, Ji Hyun; Kim, Hak Jae; Kim, Yeon Sil; Kim, Jin Hee; Ahn, Yong Chan; Kim, Jae-Sung; Song, Si Yeol; Moon, Sung Ho; Cho, Moon June; Youn, Seon Min
2017-07-01
Stereotactic ablative radiotherapy (SABR) is an effective emerging technique for early-stage non-small cell lung cancer (NSCLC). We investigated the current practice of SABR for early-stage NSCLC in Korea. We conducted a nationwide survey of SABR for NSCLC by sending e-mails to all board-certified members of the Korean Society for Radiation Oncology. The survey included 23 questions focusing on the technical aspects of SABR and 18 questions seeking the participants' opinions on specific clinical scenarios in the use of SABR for early-stage NSCLC. Overall, 79 radiation oncologists at 61/85 specialist hospitals in Korea (71.8%) responded to the survey. SABR was used at 33 institutions (54%) to treat NSCLC. Regarding technical aspects, the most common planning methods were the rotational intensity-modulated technique (59%) and the static intensity-modulated technique (49%). Respiratory motion was managed by gating (54%) or abdominal compression (51%), and 86% of the planning scans were obtained using 4-dimensional computed tomography. In the clinical scenarios, the most commonly chosen fractionation schedule for peripherally located T1 NSCLC was 60 Gy in four fractions. For centrally located tumors and T2 NSCLC, the oncologists tended to avoid SABR for radiotherapy, and extended the fractionation schedule. The results of our survey indicated that SABR is increasingly being used to treat NSCLC in Korea. However, there were wide variations in the technical protocols and fractionation schedules of SABR for early-stage NSCLC among institutions. Standardization of SABR is necessary before implementing nationwide, multicenter, randomized studies.
Applicator-guided volumetric-modulated arc therapy for low-risk endometrial cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cilla, Savino, E-mail: savinocilla@gmail.com; Macchia, Gabriella; Sabatino, Domenico
2013-04-01
The aim of this study was to report the feasibility of volumetric-modulated arc therapy (VMAT) in the postoperative irradiation of the vaginal vault. Moreover, the VMAT technique was compared with 3D conformal radiotherapy (3D-CRT) and fixed-field intensity-modulated radiotherapy (IMRT), in terms of target coverage and organs at risk sparing. The number of monitor units and the delivery time were analyzed to score the treatment efficiency. All plans were verified in a dedicated solid water phantom using a 2D array of ionization chambers. Twelve patients with endometrial carcinoma who underwent radical hystero-adenexectomy and fixed-field IMRT treatments were retrospectively included in thismore » analysis; for each patient, plans were compared in terms of dose-volume histograms, homogeneity index, and conformity indexes. All techniques met the prescription goal for planning target volume coverage, with VMAT showing the highest level of conformity at all dose levels. VMAT resulted in significant reduction of rectal and bladder volumes irradiated at all dose levels compared with 3D-CRT. No significant differences were found with respect to IMRT. Moreover, a significant improvement of the dose conformity was reached by VMAT technique not only at the 95% dose level (0.74 vs. 0.67 and 0.62) but also at 50% and 75% levels of dose prescription. In addition, VMAT plans showed a significant reduction of monitor units by nearly 28% with respect to IMRT, and reduced treatment time from 11 to <3 minutes for a single 6-Gy fraction. In conclusion, VMAT plans can be planned and carried out with high quality and efficiency for the irradiation of vaginal vault alone, providing similar or better sparing of organs at risk to fixed-field IMRT and resulting in the most efficient treatment option. VMAT is currently our standard approach for radiotherapy of low-risk endometrial cancer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekici, Kemal, E-mail: drkemal06@hotmail.com; Pepele, Eda K.; Yaprak, Bahaddin
2016-01-01
Various radiotherapy planning methods for T1N0 laryngeal cancer have been proposed to decrease normal tissue toxicity. We compare helical tomotherapy (HT), linac-based intensity-modulated radiation therapy (IMRT), volumetric-modulated arc therapy (VMAT), and 3-D conformal radiotherapy (3D-CRT) techniques for T1N0 laryngeal cancer. Overall, 10 patients with T1N0 laryngeal cancer were selected and evaluated. Furthermore, 10 radiotherapy treatment plans have been created for all 10 patients, including HT, IMRT, VMAT, and 3D-CRT. IMRT, VMAT, and HT plans vs 3D-CRT plans consistently provided superior planning target volume (PTV) coverage. Similar target coverage was observed between the 3 IMRT modalities. Compared with 3D-CRT, IMRT, HT,more » and VMAT significantly reduced the mean dose to the carotid arteries. VMAT resulted in the lowest mean dose to the submandibular and thyroid glands. Compared with 3D-CRT, IMRT, HT, and VMAT significantly increased the maximum dose to the spinal cord It was observed that the 3 IMRT modalities studied showed superior target coverage with less variation between each plan in comparison with 3D-CRT. The 3D-CRT plans performed better at the D{sub max} of the spinal cord. Clinical investigation is warranted to determine if these treatment approaches would translate into a reduction in radiation therapy–induced toxicities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parhar, Preeti K.; Duckworth, Tamara; Shah, Parinda
2010-10-01
Purpose: To compare temporal lobe dose delivered by three pituitary macroadenoma irradiation techniques: three-field three-dimensional conformal radiotherapy (3D-CRT), three-field intensity-modulated radiotherapy (3F IMRT), and a proposed novel alternative of five-field IMRT (5F IMRT). Methods and Materials: Computed tomography-based external beam radiotherapy planning was performed for 15 pituitary macroadenoma patients treated at New York University between 2002 and 2007 using: 3D-CRT (two lateral, one midline superior anterior oblique [SAO] beams), 3F IMRT (same beam angles), and 5F IMRT (same beam angles with additional right SAO and left SAO beams). Prescription dose was 45 Gy. Target volumes were: gross tumor volume (GTV)more » = macroadenoma, clinical target volume (CTV) = GTV, and planning target volume = CTV + 0.5 cm. Structure contouring was performed by two radiation oncologists guided by an expert neuroradiologist. Results: Five-field IMRT yielded significantly decreased temporal lobe dose delivery compared with 3D-CRT and 3F IMRT. Temporal lobe sparing with 5F IMRT was most pronounced at intermediate doses: mean V25Gy (% of total temporal lobe volume receiving {>=}25 Gy) of 13% vs. 28% vs. 29% for right temporal lobe and 14% vs. 29% vs. 30% for left temporal lobe for 5F IMRT, 3D-CRT, and 3F IMRT, respectively (p < 10{sup -7} for 5F IMRT vs. 3D-CRT and 5F IMRT vs. 3F IMRT). Five-field IMRT plans did not compromise target coverage, exceed normal tissue dose constraints, or increase estimated brain integral dose. Conclusions: Five-field IMRT irradiation technique results in a statistically significant decrease in the dose to the temporal lobes and may thus help prevent neurocognitive sequelae in irradiated pituitary macroadenoma patients.« less
Trajectory optimization for dynamic couch rotation during volumetric modulated arc radiotherapy
NASA Astrophysics Data System (ADS)
Smyth, Gregory; Bamber, Jeffrey C.; Evans, Philip M.; Bedford, James L.
2013-11-01
Non-coplanar radiation beams are often used in three-dimensional conformal and intensity modulated radiotherapy to reduce dose to organs at risk (OAR) by geometric avoidance. In volumetric modulated arc radiotherapy (VMAT) non-coplanar geometries are generally achieved by applying patient couch rotations to single or multiple full or partial arcs. This paper presents a trajectory optimization method for a non-coplanar technique, dynamic couch rotation during VMAT (DCR-VMAT), which combines ray tracing with a graph search algorithm. Four clinical test cases (partial breast, brain, prostate only, and prostate and pelvic nodes) were used to evaluate the potential OAR sparing for trajectory-optimized DCR-VMAT plans, compared with standard coplanar VMAT. In each case, ray tracing was performed and a cost map reflecting the number of OAR voxels intersected for each potential source position was generated. The least-cost path through the cost map, corresponding to an optimal DCR-VMAT trajectory, was determined using Dijkstra’s algorithm. Results show that trajectory optimization can reduce dose to specified OARs for plans otherwise comparable to conventional coplanar VMAT techniques. For the partial breast case, the mean heart dose was reduced by 53%. In the brain case, the maximum lens doses were reduced by 61% (left) and 77% (right) and the globes by 37% (left) and 40% (right). Bowel mean dose was reduced by 15% in the prostate only case. For the prostate and pelvic nodes case, the bowel V50 Gy and V60 Gy were reduced by 9% and 45% respectively. Future work will involve further development of the algorithm and assessment of its performance over a larger number of cases in site-specific cohorts.
Khan, Muhammad Isa; Jiang, Runqing; Kiciak, Alexander; ur Rehman, Jalil; Afzal, Muhammad; Chow, James C. L.
2016-01-01
This study reviewed prostate volumetric-modulated arc therapy (VMAT) plans with intensity-modulated radiotherapy (IMRT) plans after prostate IMRT technique was replaced by VMAT in an institution. Characterizations of dosimetry and radiobiological variation in prostate were determined based on treatment plans of 40 prostate IMRT patients (planning target volume = 77.8–335 cm3) and 50 VMAT patients (planning target volume = 120–351 cm3) treated before and after 2013, respectively. Both IMRT and VMAT plans used the same dose-volume criteria in the inverse planning optimization. Dose-volume histogram, mean doses of target and normal tissues (rectum, bladder and femoral heads), dose-volume points (D99% of planning target volume; D30%, D50%, V30 Gy and V35 Gy of rectum and bladder; D5%, V14 Gy, V22 Gy of femoral heads), conformity index (CI), homogeneity index (HI), gradient index (GI), prostate tumor control probability (TCP), and rectal normal tissue complication probability (NTCP) based on the Lyman-Burman-Kutcher algorithm were calculated for each IMRT and VMAT plan. From our results, VMAT plan was found better due to its higher (1.05%) CI, lower (0.83%) HI and (0.75%) GI than IMRT. Comparing doses in normal tissues between IMRT and VMAT, it was found that IMRT mostly delivered higher doses of about 1.05% to the normal tissues than VMAT. Prostate TCP and rectal NTCP were found increased (1%) for VMAT than IMRT. It is seen that VMAT technique can decrease the dose-volume evaluation criteria for the normal tissues. Based on our dosimetric and radiobiological results in treatment plans, it is concluded that our VMAT implementation could produce comparable or slightly better target coverage and normal tissue sparing with a faster treatment time in prostate radiotherapy. PMID:27651562
Immunotherapy and stereotactic ablative radiotherapy (ISABR): a curative approach?
Bernstein, Michael B; Krishnan, Sunil; Hodge, James W; Chang, Joe Y
2016-08-01
Conventional radiotherapy, in addition to its well-established tumoricidal effects, can also activate the host immune system. Radiation therapy modulates tumour phenotypes, enhances antigen presentation and tumour immunogenicity, increases production of cytokines and alters the tumour microenvironment, enabling destruction of the tumour by the immune system. Investigating the combination of radiotherapy with immunotherapeutic agents, which also promote the host antitumour immune response is, therefore, a logical progression. As the spectrum of clinical use of stereotactic radiotherapy continues to broaden, the question arose as to whether the ablative radiation doses used can also stimulate immune responses and, if so, whether we can amplify these effects by combining immunotherapy and stereotactic ablative radiotherapy (SABR). In this Perspectives article, we explore the preclinical and clinical evidence supporting activation of the immune system following SABR. We then examine studies that provide data on the effectiveness of combining these two techniques - immunotherapy and SABR - in an approach that we have termed 'ISABR'. Lastly, we provide general guiding principles for the development of future clinical trials to investigate the efficacy of ISABR in the hope of generating further interest in these exciting developments.
Protons and more: state of the art in radiotherapy.
Hoskin, Peter J; Bhattacharya, Indrani S
2014-12-01
The purpose of modern radiotherapy is to deliver a precise high dose of radiation which will result in reproductive death of the cells. Radiation should transverse within the tumour volume whilst minimising damage to surrounding normal tissue. Overall 40% of cancers which are cured will have received radiotherapy. Current state of the art treatment will incorporate cross-sectional imaging and multiple high energy X-ray beams in processes called intensity modulated radiotherapy and image guided radiotherapy. Brachytherapy enables very high radiation doses to be delivered by the direct passage of a radiation source through or within the tumour volume and similar results can be achieved using rotational stereotactic X-ray beam techniques. Protons have the characteristics of particle beams which deposit their energy in a finite fixed peak at depth in tissue with no dose beyond this point - the Bragg peak. This has advantages in certain sites such as the spine adjacent to the spinal cord and particularly in children when the overall volume of tissue receiving radiation can be minimised. © 2014 Royal College of Physicians.
The role of PET in target localization for radiotherapy treatment planning.
Rembielak, Agata; Price, Pat
2008-02-01
Positron emission tomography (PET) is currently accepted as an important tool in oncology, mostly for diagnosis, staging and restaging purposes. It provides a new type of information in radiotherapy, functional rather than anatomical. PET imaging can also be used for target volume definition in radiotherapy treatment planning. The need for very precise target volume delineation has arisen with the increasing use of sophisticated three-dimensional conformal radiotherapy techniques and intensity modulated radiation therapy. It is expected that better delineation of the target volume may lead to a significant reduction in the irradiated volume, thus lowering the risk of treatment complications (smaller safety margins). Better tumour visualisation also allows a higher dose of radiation to be applied to the tumour, which may lead to better tumour control. The aim of this article is to review the possible use of PET imaging in the radiotherapy of various cancers. We focus mainly on non-small cell lung cancer, lymphoma and oesophageal cancer, but also include current opinion on the use of PET-based planning in other tumours including brain, uterine cervix, rectum and prostate.
Weber, Damien C; Ares, Carmen; Lomax, Antony J; Kurtz, John M
2006-01-01
Postoperative radiation therapy substantially decreases local relapse and moderately reduces breast cancer mortality, but can be associated with increased late mortality due to cardiovascular morbidity and secondary malignancies. Sophistication of breast irradiation techniques, including conformal radiotherapy and intensity modulated radiation therapy, has been shown to markedly reduce cardiac and lung irradiation. The delivery of more conformal treatment can also be achieved with particle beam therapy using protons. Protons have superior dose distributional qualities compared to photons, as dose deposition occurs in a modulated narrow zone, called the Bragg peak. As a result, further dose optimization in breast cancer treatment can be reasonably expected with protons. In this review, we outline the potential indications and benefits of breast cancer radiotherapy with protons. Comparative planning studies and preliminary clinical data are detailed and future developments are considered. PMID:16857055
Lin, Jang-Chun; Tsai, Jo-Ting; Chang, Chih-Chieh; Jen, Yee-Min; Li, Ming-Hsien; Liu, Wei-Hsiu
2015-05-01
The aim of this study was to compare treatment plans of volumetric modulated arc therapy (VMAT) with intensity-modulated radiotherapy (IMRT) for all esophageal cancer (EC) tumor locations.This retrospective study from July 2009 to June 2014 included 20 patients with EC who received definitive concurrent chemoradiotherapy with radiation doses >50.4 Gy. Version 9.2 of Pinnacle with SmartArc was used for treatment planning. Dosimetric quality was evaluated based on doses to several organs at risk, including the spinal cord, heart, and lung, over the same coverage of gross tumor volume.In upper thoracic EC, the IMRT treatment plan had a lower lung mean dose (P = 0.0126) and lung V5 (P = 0.0037) compared with VMAT; both techniques had similar coverage of the planning target volumes (PTVs) (P = 0.3575). In middle thoracic EC, a lower lung mean dose (P = 0.0010) and V5 (P = 0.0145), but higher lung V20 (P = 0.0034), spinal cord Dmax (P = 0.0262), and heart mean dose (P = 0.0054), were observed for IMRT compared with VMAT; IMRT provided better PTV coverage. Patients with lower thoracic ECs had a lower lung mean dose (P = 0.0469) and V5 (P = 0.0039), but higher spinal cord Dmax (P = 0.0301) and heart mean dose (P = 0.0020), with IMRT compared with VMAT. PTV coverage was similar (P = 0.0858) for the 2 techniques.IMRT provided a lower mean dose and lung V5 in upper thoracic EC compared with VMAT, but exhibited different advantages and disadvantages in patients with middle or lower thoracic ECs. Thus, choosing different techniques for different EC locations is warranted.
Muirhead, R; Drinkwater, K; O'Cathail, S M; Adams, R; Glynne-Jones, R; Harrison, M; Hawkins, M A; Sebag-Montefiore, D; Gilbert, D C
2017-03-01
UK guidance was recently developed for the treatment of anal cancer using intensity-modulated radiotherapy (IMRT). We audited the current use of radiotherapy in UK cancer centres for the treatment of anal cancer against such guidance. We describe the acute toxicity of IMRT in comparison with patient population in the audit treated with two-phase conformal radiotherapy and the previous published data from two-phase conformal radiotherapy, in the UK ACT2 trial. A Royal College of Radiologists' prospective national audit of patients treated with radiotherapy in UK cancer centres was carried out over a 6 month period between February and July 2015. Two hundred and forty-two cases were received from 40/56 cancer centres (71%). In total, 231 (95%) underwent full dose radiotherapy with prophylactic nodal irradiation. Of these, 180 (78%) received IMRT or equivalent, 52 (22%) two-phase conformal (ACT2) technique. The number of interruptions in radiotherapy treatment in the ACT2 trial was 15%. Interruptions were noted in 7% (95% confidence interval 0-14%) of courses receiving two-phase conformal and 4% (95% confidence interval 1-7%) of those receiving IMRT. The percentage of patients completing the planned radiotherapy dose, irrelevant of gaps, was 90% (95% confidence interval 82-98%) and 96% (95% confidence interval 93-99%), in two-phase conformal and IMRT respectively. The toxicity reported in the ACT2 trial, in patients receiving two-phase conformal in the audit and in patients receiving IMRT in the audit was: any toxic effect 71%, 54%, 48%, non-haematological 62%, 49%, 40% and haematological 26%, 13%, 18%, respectively. IMRT implementation for anal cancer is well underway in the UK with most patients receiving IMRT delivery, although its usage is not yet universal. This audit confirms that IMRT results in reduced acute toxicity and minimised treatment interruptions in comparison with previous two-phase conformal techniques. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Adaptive radiotherapy for head and neck cancers: Fact or fallacy to improve therapeutic ratio?
Li, Y Q; Tan, J S H; Wee, J T S; Chua, M L K
2018-04-23
Modern standards of precision radiotherapy, primarily driven by the technological advances of intensity modulation and image guidance, have led to increased versatility in radiotherapy planning and delivery. The ability to shape doses around critical normal organs, while simultaneously "painting" boost doses to the tumor have translated to substantial therapeutic gains in head and neck cancer patients. Recently, dose adaptation (or adaptive radiotherapy) has been proposed as a novel concept to enhance the therapeutic ratio of head and neck radiotherapy, facilitated in part by the onset of molecular and functional imaging. These contemporary imaging techniques have enabled visualisation of the spatial molecular architecture of the tumor. Daily cone-beam imaging, besides improving treatment accuracy, offers another unique angle to explore radiomics - a novel high throughput feature extraction and selection workflow, for adapting radiotherapy based on real-time tumor changes. Here, we review the existing evidence of molecular and functional imaging in head and neck cancers, as well as the current application of adaptive radiotherapy in the treatment of this tumor type. We propose that adaptive radiotherapy can be further exploited through a systematic application of molecular and functional imaging, including radiomics, at the different phases of planning and treatment. Copyright © 2018 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
[Brachytherapy for head and neck cancers].
Peiffert, D; Coche-Dequéant, B; Lapeyre, M; Renard, S
2018-05-29
The main indications of the brachytherapy of head and neck cancers are the limited tumours of the lip, the nose, the oral cavity and the oropharynx. Nasopharynx tumours are nowadays treated by intensity-modulated radiotherapy. This technique can be exclusive, associated with external radiotherapy or postoperative. It can also be a salvage treatment for the second primaries in previously irradiated areas. If the low dose rate brachytherapy rules remain the reference, the pulse dose rate technique allows the prescription of the dose rate and the optimisation of the dose distribution. Results of high dose rate brachytherapy are now published. This paper reports the recommendations of the Gec-ESTRO, published in 2017, and takes into account the data of the historical low dose rate series, and is upgraded with the pulsed-dose rate and high dose rate series. Copyright © 2018. Published by Elsevier SAS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Allen M.; Daly, Megan E.; Bucci, M. Kara
Purpose: To compare clinical outcomes of patients with carcinomas of the paranasal sinuses and nasal cavity according to decade of radiation treatment. Methods and Materials: Between 1960 and 2005, 127 patients with sinonasal carcinoma underwent radiotherapy with planning and delivery techniques available at the time of treatment. Fifty-nine patients were treated by conventional radiotherapy; 45 patients by three-dimensional conformal radiotherapy; and 23 patients by intensity-modulated radiotherapy. Eighty-two patients (65%) were treated with radiotherapy after gross total tumor resection. Nineteen patients (15%) received chemotherapy. The most common histology was squamous cell carcinoma (83 patients). Results: The 5-year estimates of overall survival,more » local control, and disease-free survival for the entire patient population were 52%, 62%, and 54%, respectively. There were no significant differences in any of these endpoints with respect to decade of treatment or radiotherapy technique (p > 0.05, for all). The 5-year overall survival rate for patients treated in the 1960s, 1970s, 1980s, 1990s, and 2000s was 46%, 56%, 51%, 53%, and 49%, respectively (p = 0.23). The observed incidence of severe (Grade 3 or 4) late toxicity was 53%, 45%, 39%, 28%, and 16% among patients treated in the 1960s, 1970s, 1980s, 1990s, and 2000s, respectively (p = 0.01). Conclusion: Although we did not detect improvements in disease control or overall survival for patients treated over time, the incidence of complications has significantly declined, thereby resulting in an improved therapeutic ratio for patients with carcinomas of the paranasal sinuses and nasal cavity.« less
Inaba, Koji; Okamoto, Hiroyuki; Wakita, Akihisa; Nakamura, Satoshi; Kobayashi, Kazuma; Harada, Ken; Kitaguchi, Mayuka; Sekii, Shuhei; Takahashi, Kana; Yoshio, Kotaro; Murakami, Naoya; Morota, Madoka; Ito, Yoshinori; Sumi, Minako; Uno, Takashi; Itami, Jun
2014-11-01
During radiotherapy for gastric lymphoma, it is difficult to protect the liver and kidneys in cases where there is considerable overlap between these organs and the target volume. This study was conducted to compare the three radiotherapy planning techniques of four-fields 3D conformal radiotherapy (3DCRT), half-field radiotherapy (the half-beam method) and intensity-modulated radiotherapy (IMRT) used to treat primary gastric lymphoma in which the planning target volume (PTV) had a large overlap with the left kidney. A total of 17 patients with gastric diffuse large B-cell lymphoma (DLBCL) were included. In DLBCL, immunochemotherapy (Rituximab + CHOP) was followed by radiotherapy of 40 Gy to the whole stomach and peri-gastric lymph nodes. 3DCRT, the half-field method, and IMRT were compared with respect to the dose-volume histogram (DVH) parameters and generalized equivalent uniform dose (gEUD) to the kidneys, liver and PTV. The mean dose and gEUD for 3DCRT was higher than for IMRT and the half-beam method in the left kidney and both kidneys. The mean dose and gEUD of the left kidney was 2117 cGy and 2224 cGy for 3DCRT, 1520 cGy and 1637 cGy for IMRT, and 1100 cGy and 1357 cGy for the half-beam method, respectively. The mean dose and gEUD of both kidneys was 1335 cGy and 1559 cGy for 3DCRT, 1184 cGy and 1311 cGy for IMRT, and 700 cGy and 937 cGy for the half-beam method, respectively. Dose-volume histograms (DVHs) of the liver revealed a larger volume was irradiated in the dose range <25 Gy with 3DCRT, while the half-beam method irradiated a larger volume of liver with the higher dose range (>25 Gy). IMRT and the half-beam method had the advantages of dose reduction for the kidneys and liver. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGeachy, P.; Villarreal-Barajas, J. E.; Khan, R.
2014-08-15
We previously reported on a novel, modulated in both energy and intensity; photon radiotherapy (XMRT) optimization technique. The purpose of this investigation was to test this XMRT optimization against conventional intensity modulated radiotherapy (IMRT) optimization on four different organ test geometries. All geometries mimicked clinically relevant scenarios. Both IMRT and XMRT were based on a linear programming approach where the objective function was the mean dose to healthy organs and organ-specific linear dose-point constraints were used. For IMRT, the beam energy was fixed to 6 MV while XMRT optimized in terms of both 6 and 18 MV beams. All plansmore » consisted of a seven beam coplanar arrangement. All organ geometries were contoured on a 25cm diameter cylindrical water phantom in open source radiotherapy research software known as CERR. Solutions for both IMRT and XMRT were obtained for each geometry using a numerical solver Gurobi. Analyzing the quality of the solutions was done by comparing dose distributions and dose volume histograms calculated using CERR. For all four geometries, IMRT and XMRT solutions were comparable in terms of target coverage. For two of the geometries, IMRT provided an advantage in terms of reduced dose to the healthy structures. XMRT showed improved dose reduction to healthy organs for one geometry and a comparable dose distribution to IMRT for the remaining geometry. The inability to exploit the benefits of using multiple energies may be attributed to limited water phantom diameter and having the majority of the organs in close proximity to the transverse axis.« less
Chao, Pei‐Ju; Ting, Hui‐Min; Lo, Su‐Hua; Wang, Yu‐Wen; Tuan, Chiu‐Ching; Fang, Fu‐Min
2011-01-01
The purpose of this study was to evaluate and quantify the planning performance of SmartArc‐based volumetric‐modulated arc radiotherapy (VMAT) versus fixed‐beam intensity‐modulated radiotherapy (IMRT) for nasopharyngeal carcinoma (NPC) using a sequential mode treatment plan. The plan quality and performance of dual arc‐VMAT (DA‐VMAT) using the Pinnacle3 Smart‐Arc system (clinical version 9.0; Philips, Fitchburg, WI, USA) were evaluated and compared with those of seven‐field (7F)‐IMRT in 18 consecutive NPC patients. Analysis parameters included the conformity index (CI) and homogeneity index (HI) for the planning target volume (PTV), maximum and mean dose, normal tissue complication probability (NTCP) for the specified organs at risk (OARs), and comprehensive quality index (CQI) for an overall evaluation in the 11 OARs. Treatment delivery time, monitor units per fraction (MU/fr), and gamma (Γ3mm,3%) evaluations were also analyzed. DA‐VMAT achieved similar target coverage and slightly better homogeneity than conventional 7F‐IMRT with a similar CI and HI. NTCP values were only significantly lower in the left parotid gland (for xerostomia) for DA‐VMAT plans. The mean value of CQI at 0.98±0.02 indicated a 2% benefit in sparing OARs by DA‐VMAT. The MU/fr used and average delivery times appeared to show improved efficiencies in DA‐VMAT. Each technique demonstrated high accuracy in dose delivery in terms of a high‐quality assurance (QA) passing rate (>98%) of the (Γ3mm,3%) criterion. The major difference between DA‐VMAT and 7F‐IMRT using a sequential mode for treating NPC cases appears to be improved efficiency, resulting in a faster delivery time and the use of fewer MU/fr. PACS number: 87.53.Tf, 87.55.x, 87.55.D, 87.55.dk PMID:22089015
[Technological innovations in radiation oncology require specific quality controls].
Lenaerts, E; Mathot, M
2014-01-01
During the last decade, the field of radiotherapy has benefited from major technological innovations and continuously improving treatment efficacy, comfort and safety of patients. This mainly concerns the imaging techniques that allow 4D CT scan recording the respiratory phases, on-board imaging on linear accelerators that ensure perfect positioning of the patient for treatment and irradiation techniques that reduce very significantly the duration of treatment sessions without compromising quality of the treatment plan, including IMRT (Intensity Modulated Radiation Therapy) and VMAT (Volumetric Modulated Arc therapy). In this context of rapid technological change, it is the responsibility of medical physicists to regularly and precisely monitor the perfect functioning of new techniques to ensure patient safety. This requires the use of specific quality control equipment best suited to these new techniques. We will briefly describe the measurement system Delta4 used to control individualized treatment plan for each patient treated with VMAT technology.
Fakhrian, K; Oechsner, M; Kampfer, S; Schuster, T; Molls, M; Geinitz, H
2013-04-01
The goal of this work was to investigate the potential of advanced radiation techniques in dose escalation in the radiotherapy (RT) for the treatment of esophageal carcinoma. A total of 15 locally advanced esophageal cancer (LAEC) patients were selected for the present study. For all 15 patients, we created a 3D conformal RT plan (3D-45) with 45 Gy in fractions of 1.8 Gy to the planning target volume (PTV1), which we usually use to employ in the neoadjuvant treatment of LAEC. Additionally, a 3D boost (as in the primary RT of LAEC) was calculated with 9 Gy in fractions of 1.8 Gy to the boost volume (PTV2) (Dmean) to a total dose of 54 Gy (3D-54 Gy), which we routinely use for the definitive treatment of LAEC. Three plans with a simultaneous integrated boost (SIB) were then calculated for each patient: sliding window intensity-modulated radiotherapy (IMRT-SIB), volumetric modulated arc therapy (VMAT-SIB), and helical tomotherapy (HT-SIB). For the SIB plans, the requirement was that 95 % of the PTV1 receive ≥ 100 % of the prescription dose (45 Gy in fractions of 1.8 Gy, D95) and the PTV2 was dose escalated to 52.5 Gy in fractions of 2.1 Gy (D95). The median PTV2 dose for 3D-45, 3D-54, HT-SIB, VMAT-SIB, and IMRT-SIB was 45, 55, 54, 56, and 55 Gy, respectively. Therefore, the dose to PTV2 in the SIB plans was comparable to the 3D-54 plan. The lung dose in the SIB plans was in the range of the standard 3D-45, which is applied for neoadjuvant radiotherapy. The mean lung dose for the same plans was 13, 15, 12, 12, and 13 Gy, respectively. The V5 lung volumes were 71, 74, 79, 75, and 73 %, respectively. The V20 lung volumes were 20, 25, 16, 18, and 19 %, respectively. New treatment planning techniques enable higher doses to be delivered for neoadjuvant radiotherapy of LAEC without a significant increase in the delivered dose to the organs at risk. Clinical investigations are warranted to study the clinical safety and feasibility of applying higher doses through advanced techniques in the neoadjuvant treatment of LAEC.
Sripathi, Lalitha Kameshwari; Ahlawat, Parveen; Simson, David K; Khadanga, Chira Ranjan; Kamarsu, Lakshmipathi; Surana, Shital Kumar; Arasu, Kavi; Singh, Harpreet
2017-01-01
Different techniques of radiation therapy have been studied to reduce the cardiac dose in left breast cancer. In this prospective dosimetric study, the doses to heart as well as other organs at risk (OAR) were compared between free-breathing (FB) and deep inspiratory breath hold (DIBH) techniques in intensity modulated radiotherapy (IMRT) and opposed-tangent three-dimensional radiotherapy (3DCRT) plans. Fifteen patients with left-sided breast cancer underwent computed tomography simulation and images were obtained in both FB and DIBH. Radiotherapy plans were generated with 3DCRT and IMRT techniques in FB and DIBH images in each patient. Target coverage, conformity index, homogeneity index, and mean dose to heart (Heart D mean ), left lung, left anterior descending artery (LAD) and right breast were compared between the four plans using the Wilcoxon signed rank test. Target coverage was adequate with both 3DCRT and IMRT plans, but IMRT plans showed better conformity and homogeneity. A statistically significant dose reduction of all OARs was found with DIBH. 3DCRT DIBH decreased the Heart D mean by 53.5% (7.1 vs. 3.3 Gy) and mean dose to LAD by 28% compared to 3DCRT FB . IMRT further lowered mean LAD dose by 18%. Heart D mean was lower with 3DCRT DIBH over IMRT DIBH (3.3 vs. 10.2 Gy). Mean dose to the contralateral breast was also lower with 3DCRT over IMRT (0.32 vs. 3.35 Gy). Mean dose and the V 20 of ipsilateral lung were lower with 3DCRT DIBH over IMRT DIBH (13.78 vs. 18.9 Gy) and (25.16 vs. 32.95%), respectively. 3DCRT DIBH provided excellent dosimetric results in patients with left-sided breast cancer without the need for IMRT.
Sripathi, Lalitha Kameshwari; Ahlawat, Parveen; Simson, David K; Khadanga, Chira Ranjan; Kamarsu, Lakshmipathi; Surana, Shital Kumar; Arasu, Kavi; Singh, Harpreet
2017-01-01
Introduction: Different techniques of radiation therapy have been studied to reduce the cardiac dose in left breast cancer. Aim: In this prospective dosimetric study, the doses to heart as well as other organs at risk (OAR) were compared between free-breathing (FB) and deep inspiratory breath hold (DIBH) techniques in intensity modulated radiotherapy (IMRT) and opposed-tangent three-dimensional radiotherapy (3DCRT) plans. Materials and Methods: Fifteen patients with left-sided breast cancer underwent computed tomography simulation and images were obtained in both FB and DIBH. Radiotherapy plans were generated with 3DCRT and IMRT techniques in FB and DIBH images in each patient. Target coverage, conformity index, homogeneity index, and mean dose to heart (Heart Dmean), left lung, left anterior descending artery (LAD) and right breast were compared between the four plans using the Wilcoxon signed rank test. Results: Target coverage was adequate with both 3DCRT and IMRT plans, but IMRT plans showed better conformity and homogeneity. A statistically significant dose reduction of all OARs was found with DIBH. 3DCRTDIBH decreased the Heart Dmean by 53.5% (7.1 vs. 3.3 Gy) and mean dose to LAD by 28% compared to 3DCRTFB. IMRT further lowered mean LAD dose by 18%. Heart Dmean was lower with 3DCRTDIBH over IMRTDIBH (3.3 vs. 10.2 Gy). Mean dose to the contralateral breast was also lower with 3DCRT over IMRT (0.32 vs. 3.35 Gy). Mean dose and the V20 of ipsilateral lung were lower with 3DCRTDIBH over IMRTDIBH (13.78 vs. 18.9 Gy) and (25.16 vs. 32.95%), respectively. Conclusions: 3DCRTDIBH provided excellent dosimetric results in patients with left-sided breast cancer without the need for IMRT. PMID:28974856
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haertl, Petra M., E-mail: petra.haertl@klinik.uni-regensburg.de; Pohl, Fabian; Weidner, Karin
2013-04-01
This case study presents a rare case of left-sided breast cancer in a patient with funnel chest, which is a technical challenge for radiation therapy planning. To identify the best treatment technique for this case, 3 techniques were compared: conventional tangential fields (3D conformal radiotherapy [3D-CRT]), intensity-modulated radiotherapy (IMRT), and volumetric-modulated arc therapy (VMAT). The plans were created for a SynergyS® (Elekta, Ltd, Crawley, UK) linear accelerator with a BeamModulator™ head and 6-MV photons. The planning system was Oncentra Masterplan® v3.3 SP1 (Nucletron BV, Veenendal, Netherlands). Calculations were performed with collapsed cone algorithm. Dose prescription was 50.4 Gy to themore » average of the planning target volume (PTV). PTV coverage and homogeneity was comparable for all techniques. VMAT allowed reducing dose to the ipsilateral organs at risk (OAR) and the contralateral breast compared with IMRT and 3D-CRT: The volume of the left lung receiving 20 Gy was 19.3% for VMAT, 26.1% for IMRT, and 32.4% for 3D-CRT. In the heart, a D{sub 15%} of 9.7 Gy could be achieved with VMAT compared with 14 Gy for IMRT and 46 Gy for 3D-CRT. In the contralateral breast, D{sub 15%} was 6.4 Gy for VMAT, 8.8 Gy for IMRT, and 10.2 Gy for 3D-CRT. In the contralateral lung, however, the lowest dose was achieved with 3D-CRT with D{sub 10%} of 1.7 Gy for 3D-CRT, and 6.7 Gy for both IMRT and VMAT. The lowest number of monitor units (MU) per 1.8-Gy fraction was required by 3D-CRT (192 MU) followed by VMAT (518 MU) and IMRT (727 MU). Treatment time was similar for 3D-CRT (3 min) and VMAT (4 min) but substantially increased for IMRT (13 min). VMAT is considered the best treatment option for the presented case of a patient with funnel chest. It allows reducing dose in most OAR without compromising target coverage, keeping delivery time well below 5 minutes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heins, D; Zhang, R; Hogstrom, K
2016-06-15
Purpose: To determine if bolus electron conformal therapy (Bolus-ECT) combined with intensity modulated x-ray therapy (IMXT) and flattening filter free volumetric modulated arc therapy (FFF-VMAT (6x and 10x)) can maintain equal or better dose coverage than standard volumetric modulated arc therapy (Std-VMAT) while reducing doses to organs at risk (OARs). Methods: Bolus-ECT with IMXT, FFF-VMAT, and Std-VMAT treatment plans were produced for ten post-mastectomy radiotherapy (PMRT) patients previously treated at our clinic. The treatment plans were created on commercially available treatment planning system (TPS) and all completed treatment plans were reviewed and approved by a radiation oncologist. The plans weremore » evaluated based on planning target volume (PTV) coverage, tumor control probability (TCP), dose homogeneity index (DHI), conformity index (CI), and dose to organs at risk (OAR). Results: All techniques produced clinically acceptable PMRT plans. Overall, Bolus-ECT with IMXT exhibited higher maximum dose compared to all VMAT techniques. Bolus-ECT with IMXT and FFF-VMAT10x had slightly improved TCP over FFF-VMAT6x and Std-VMAT. However, all VMAT techniques showed improved CI and DHI over Bolus-ECT with IMXT. All techniques showed very similar mean lung dose. Bolus-ECT with IMXT exhibited a reduced mean heart dose over Std-VMAT. Both FFF-VMAT techniques had higher mean heart dose compared to Std-VMAT. In addition, Bolus-ECT with IMXT was able to reduce mean dose to the contralateral breast compared to Std-VMAT and both FFF-VMAT techniques had comparable but slightly reduced dose compared to Std-VMAT. Conclusion: This work has shown that Bolus-ECT with IMXT produces clinically acceptable plans while reducing OAR doses. Both FFF-VMAT techniques are comparable to Std-VMAT with slight improvements. Even though all VMAT techniques produce more homogenous and conformal dose distributions, Bolus-ECT with IMXT is a viable option for treating post-mastectomy patients possibly leading to reduced risks of normal tissue complications.« less
Rault, Erwann; Lacornerie, Thomas; Dang, Hong-Phuong; Crop, Frederik; Lartigau, Eric; Reynaert, Nick; Pasquier, David
2016-02-27
Accelerated partial breast irradiation (APBI) is a new breast treatment modality aiming to reduce treatment time using hypo fractionation. Compared to conventional whole breast irradiation that takes 5 to 6 weeks, APBI is reported to induce worse cosmetic outcomes both when using three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT). These late normal tissue effects may be attributed to the dose volume effect because a large portion of the non-target breast tissue volume (NTBTV) receives a high dose. In the context of APBI, non-coplanar beams could spare the NTBTV more efficiently. This study evaluates the dosimetric benefit of using the Cyberknife (CK) for APBI in comparison to IMRT (Tomotherapy) and three dimensional conformal radiotherapy (3D-CRT). The possibility of using surgical clips, implanted during surgery, to track target movements is investigated first. A phantom of a female thorax was designed in-house using the measurements of 20 patients. Surgical clips of different sizes were inserted inside the breast. A treatment plan was delivered to the mobile and immobile phantom. The motion compensation accuracy was evaluated using three radiochromic films inserted inside the breast. Three dimensional conformal radiotherapy (3D-CRT), Tomotherapy (TOMO) and CK treatment plans were calculated for 10 consecutive patients who received APBI in Lille. To ensure a fair comparison of the three techniques, margins applied to the CTV were set to 10 mm. However, a second CK plan was prepared using 3 mm margins to evaluate the benefits of motion compensation. Only the larger clips (VITALITEC Medium-Large) could be tracked inside the larger breast (all gamma indices below 1 for 1 % of the maximum dose and 1 mm). All techniques meet the guidelines defined in the NSABP/RTOG and SHARE protocols. As the applied dose volume constraints are very strong, insignificant dosimetric differences exist between techniques regarding the PTV coverage and the sparing of the lung and heart. However, the CK may be used to reduce high doses received by the NTBTV more efficiently. Robotic stereotactic radiotherapy may be used for APBI to more efficiently spare the NTBTV and improve cosmetic results of APBI.
Radhakrishnan, Sivakumar; Chandrasekaran, Anuradha; Sarma, Yugandhar; Balakrishnan, Saranganathan; Nandigam, Janardhan
2017-01-01
Backround: Plan quality and performance of dual arc (DA) volumetric modulated arc therapy (VMAT), single arc (SA) VMAT and nine field (9F) intensity modulated radiotherapy were compared using a simultaneous integrated boost (SIB) technique. Methods: Twelve patients treated in Elekta Synergy Platform (mlci2) by 9F-IMRT were replanned with SA/DA-VMAT using a CMS Monaco Treatment Planning System (TPS) with Monte Carlo simulation. Target delineation was conducted as per Radiation Therapy Oncology Protocols (RTOG0225 and 0615). A 70Gy dose prescribed to PTV70 and 61Gy to PTV61 in 33 fractions was applied for the SIB technique. The conformity index (CI) and homogeneity index (HI) for targets and the mean dose and maximum dose for OAR’s, treatment delivery time (min), monitor units (MUs) per fraction, normal tissue integral dose and patient specific quality assurance were analysed. Results: Acceptable target coverage was achieved for PTV70 and PTV61 with all the planning techniques. No significant differences were observed except for D98 (PTV61), CI(PTV70) and HI(PTV61). Maximum dose (Dmax) to the spinal cord was lower in DA-VMAT than 9F-IMRT (p=0.002) and SA-VMAT (p=0.001). D50 (%) of parotid glands was better controlled by 9F-IMRT (p=0.001) and DA-VMAT (p=0.001) than SA-VMAT. A lower mean dose to the larynx was achieved with 9F-IMRT (P=0.001) and DA-VMAT (p=0.001) than with SA-VMAT. DA-VMAT achieved higher CI of PTV70 (P= 0.005) than SA-VMAT. For PTV61, DA-VMAT (P=0.001) and 9F-IMRT (P=0.001) achieved better HI than SA-VMAT. The average treatment delivery times were 7.67mins, 3.35 mins, 4.65 mins for 9F-IMRT, SA-VMAT and DA-VMAT, respectively. No significant difference were observed in MU/fr (p=0.9) and NTID (P=0.90) and the patient quality assurance pass rates were >95% (gamma analysis I3mm, 3%). Conclusion: DA-VMAT showed better conformity over target dose and spared the OARs better or equal to IMRT. SA-VMAT could not spare the OARs well. DA-VMAT offered shorter delivery time than IMRT without compromising the plan quality. PMID:28612593
Radhakrishnan, Sivakumar; Chandrasekaran, Anuradha; Sarma, Yugandhar; Balakrishnan, Saranganathan; Nandigam, Janardhan
2017-05-01
Backround: Plan quality and performance of dual arc (DA) volumetric modulated arc therapy (VMAT) , single arc (SA) VMAT and nine field (9F) intensity modulated radiotherapy were compared using a simultaneous integrated boost (SIB) technique. Methods: Twelve patients treated in Elekta Synergy Platform (mlci2) by 9F-IMRT were replanned with SA/DA-VMAT using a CMS Monaco Treatment Planning System (TPS) with Monte Carlo simulation. Target delineation was conducted as per Radiation Therapy Oncology Protocols (RTOG0225 and 0615). A 70Gy dose prescribed to PTV70 and 61Gy to PTV61 in 33 fractions was applied for the SIB technique. The conformity index (CI) and homogeneity index (HI) for targets and the mean dose and maximum dose for OAR’s, treatment delivery time (min), monitor units (MUs) per fraction, normal tissue integral dose and patient specific quality assurance were analysed. Results: Acceptable target coverage was achieved for PTV70 and PTV61 with all the planning techniques. No significant differences were observed except for D98 (PTV61), CI(PTV70) and HI(PTV61). Maximum dose (Dmax) to the spinal cord was lower in DA-VMAT than 9F-IMRT (p=0.002) and SA-VMAT (p=0.001). D50 (%) of parotid glands was better controlled by 9F-IMRT (p=0.001) and DA-VMAT (p=0.001) than SA-VMAT. A lower mean dose to the larynx was achieved with 9F-IMRT (P=0.001) and DA-VMAT (p=0.001) than with SA-VMAT. DA-VMAT achieved higher CI of PTV70 (P= 0.005) than SA-VMAT. For PTV61, DA-VMAT (P=0.001) and 9F-IMRT (P=0.001) achieved better HI than SA-VMAT. The average treatment delivery times were 7.67mins, 3.35 mins, 4.65 mins for 9F- IMRT, SA-VMAT and DA-VMAT, respectively. No significant difference were observed in MU/fr (p=0.9) and NTID (P=0.90) and the patient quality assurance pass rates were >95% (gamma analysis Ґ3mm, 3%). Conclusion: DA-VMAT showed better conformity over target dose and spared the OARs better or equal to IMRT. SA-VMAT could not spare the OARs well. DA-VMAT offered shorter delivery time than IMRT without compromising the plan quality. Creative Commons Attribution License
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cashmore, Jason, E-mail: Jason.cashmore@uhb.nhs.uk; Ramtohul, Mark; Ford, Dan
Purpose: Intensity modulated radiotherapy (IMRT) has been linked with an increased risk of secondary cancer induction due to the extra leakage radiation associated with delivery of these techniques. Removal of the flattening filter offers a simple way of reducing head leakage, and it may be possible to generate equivalent IMRT plans and to deliver these on a standard linear accelerator operating in unflattened mode. Methods and Materials: An Elekta Precise linear accelerator has been commissioned to operate in both conventional and unflattened modes (energy matched at 6 MV) and a direct comparison made between the treatment planning and delivery ofmore » pediatric intracranial treatments using both approaches. These plans have been evaluated and delivered to an anthropomorphic phantom. Results: Plans generated in unflattened mode are clinically identical to those for conventional IMRT but can be delivered with greatly reduced leakage radiation. Measurements in an anthropomorphic phantom at clinically relevant positions including the thyroid, lung, ovaries, and testes show an average reduction in peripheral doses of 23.7%, 29.9%, 64.9%, and 70.0%, respectively, for identical plan delivery compared to conventional IMRT. Conclusions: IMRT delivery in unflattened mode removes an unwanted and unnecessary source of scatter from the treatment head and lowers leakage doses by up to 70%, thereby reducing the risk of radiation-induced second cancers. Removal of the flattening filter is recommended for IMRT treatments.« less
Lutkenhaus, Lotte J; van Os, Rob M; Bel, Arjan; Hulshof, Maarten C C M
2016-03-18
For elderly or medically unfit patients with muscle-invasive bladder cancer, cystectomy or chemotherapy are contraindicated. This leaves radical radiotherapy as the only treatment option. It was the aim of this study to retrospectively analyze the treatment outcome and associated toxicity of conformal versus intensity-modulated radiotherapy (IMRT) using a focal simultaneous tumor boost for muscle-invasive bladder cancer in patients not suitable for cystectomy. One hundred eighteen patients with T2-4 N0-1 M0 bladder cancer were analyzed retrospectively. Median age was 80 years. Treatment consisted of either a conformal box technique or IMRT and included a simultaneous boost to the tumor. To enable an accurate boost delivery, fiducial markers were placed around the tumor. Patients were treated with 40 Gy in 20 fractions to the elective treatment volumes, and a daily tumor boost up to 55-60 Gy. Clinical complete response was seen in 87 % of patients. Three-year overall survival was 44 %, with a locoregional control rate of 73 % at 3 years. Toxicity was low, with late urinary and intestinal toxicity rates grade ≥ 2 of 14 and 5 %, respectively. The use of IMRT reduced late intestinal toxicity, whereas fiducial markers reduced acute urinary toxicity. Radical radiotherapy using a focal boost is feasible and effective for elderly or unfit patients, with a 3-year locoregional control of 73 %. Toxicity rates were low, and were reduced by the use of IMRT and fiducial markers.
Andrevska, Adriana; Knight, Kellie A; Sale, Charlotte A
2014-12-01
Radiotherapy management of patients with brain metastases most commonly involve a whole-brain radiation therapy (WBRT) regime, as well as newer techniques such as stereotactic radiosurgery (SRS) and intensity modulated radiotherapy (IMRT). The long treatment times incurred by these techniques indicates the need for a novel technique that has shorter treatment times, whilst still producing highly conformal treatment with the potential to deliver escalated doses to the target area. Volumetric modulated arc therapy (VMAT) is a dynamic, highly conformal technique that may deliver high doses of radiation through a single gantry arc and reduce overall treatment times. The aim of this systematic review is to determine the feasibility and benefits of VMAT treatment in regard to overall survival rates and local control in patients with brain metastases, in comparison with patients treated with WBRT, SRS and IMRT. A search of the literature identified 23 articles for the purpose of this review. Articles were included on the basis they were human-based studies, with sample sizes of more than five patients who were receiving treatment for 1-10 metastatic brain lesions. VMAT was found to be highly conformal, have a reduced treatment delivery time and incurred no significant toxicities in comparison with WBRT, SRS and IMRT. Compared to other treatment techniques, VMAT proved to have fewer toxicities than conventional WBRT, shorter treatment times than SRS and similar dose distributions to IMRT plans. Future prospective studies are needed to accurately assess the prognostic benefits of VMAT as well as the occurrence of late toxicities.
Dosimetric comparison of photon and proton treatment techniques for chondrosarcoma of thoracic spine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Poonam, E-mail: yadav@humonc.wisc.edu; Department of Medical Physics, University of Wisconsin, Madison, WI; University of Wisconsin Riverview Cancer Center, Wisconsin Rapids, WI
2013-10-01
Chondrosarcomas are relatively radiotherapy resistant, and also delivering high radiation doses is not feasible owing to anatomic constraints. In this study, the feasibility of helical tomotherapy for treatment of chondrosarcoma of thoracic spine is explored and compared with other available photon and proton radiotherapy techniques in the clinical setting. A patient was treated for high-grade chondrosarcoma of the thoracic spine using tomotherapy. Retrospectively, the tomotherapy plan was compared with intensity-modulated radiation therapy, dynamic arc photon therapy, and proton therapy. Two primary comparisons were made: (1) comparison of normal tissue sparing with comparable target volume coverage (plan-1), and (2) comparison ofmore » target volume coverage with a constrained maximum dose to the cord center (plan-2). With constrained target volume coverage, proton plans were found to yield lower mean doses for all organs at risk (spinal cord, esophagus, heart, and both lungs). Tomotherapy planning resulted in the lowest mean dose to all organs at risk amongst photon-based methods. For cord dose constrained plans, the static-field intensity-modulated radiation therapy and dynamic arc plans resulted target underdosing in 20% and 12% of planning target volume2 volumes, respectively, whereas both proton and tomotherapy plans provided clinically acceptable target volume coverage with no portion of planning target volume2 receiving less than 90% of the prescribed dose. Tomotherapy plans are comparable to proton plans and produce superior results compared with other photon modalities. This feasibility study suggests that tomotherapy is an attractive alternative to proton radiotherapy for delivering high doses to lesions in the thoracic spine.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C; Zhang, W; Lu, J
2015-06-15
Purpose: To compare the dosimetry of post modified radical mastectomy radiotherapy (PMRMRT) for left-sided breast cancer using 3-dimensional conformal radiotherapy (3DCRT), intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). Methods: We created ten sets of PMRMRT plans for ten consecutive patients and utilized two tangential and one or two supraclavicular beams in 3DCRT, a total of 5 beams in IMRT and two optimized partial arcs in VMAT. The difference in results between any two of the three new plans, between new and previous 3DCRT plans were compared and analyzed by ANOVA (α =0.05) and paired-sample t-test respectively. Pmore » values less than 0.05 were considered statistically significant. Results: Both IMRT and VMAT plans had similar PTV coverage, hotspot area and conformity (all p>0.05), and significantly higher PTV coverage compared with new 3DCRT (both p<0.001). IMRT plans had significantly less heart and left lung radiation exposure compared with VMAT (all p<0.05). The 3DCRT plans with larger estimated CTV displacement had better target coverage but worse OARs sparing compared to those with smaller one. Conclusion: IMRT has dosimetrical advantages over the other two techniques in PMRMRT for left-sided breast cancer. Individually quantifying and minimizing CTV displacement can significantly improve dosage distribution. This work was supported by the Medical Scientific Research Foundation of Guangdong Procvince (A2014455 to Changchun Ma)« less
Optimization of combined electron and photon beams for breast cancer
NASA Astrophysics Data System (ADS)
Xiong, W.; Li, J.; Chen, L.; Price, R. A.; Freedman, G.; Ding, M.; Qin, L.; Yang, J.; Ma, C.-M.
2004-05-01
Recently, intensity-modulated radiation therapy and modulated electron radiotherapy have gathered a growing interest for the treatment of breast and head and neck tumours. In this work, we carried out a study to combine electron and photon beams to achieve differential dose distributions for multiple target volumes simultaneously. A Monte Carlo based treatment planning system was investigated, which consists of a set of software tools to perform accurate dose calculation, treatment optimization, leaf sequencing and plan analysis. We compared breast treatment plans generated using this home-grown optimization and dose calculation software for different treatment techniques. Five different planning techniques have been developed for this study based on a standard photon beam whole breast treatment and an electron beam tumour bed cone down. Technique 1 includes two 6 MV tangential wedged photon beams followed by an anterior boost electron field. Technique 2 includes two 6 MV tangential intensity-modulated photon beams and the same boost electron field. Technique 3 optimizes two intensity-modulated photon beams based on a boost electron field. Technique 4 optimizes two intensity-modulated photon beams and the weight of the boost electron field. Technique 5 combines two intensity-modulated photon beams with an intensity-modulated electron field. Our results show that technique 2 can reduce hot spots both in the breast and the tumour bed compared to technique 1 (dose inhomogeneity is reduced from 34% to 28% for the target). Techniques 3, 4 and 5 can deliver a more homogeneous dose distribution to the target (with dose inhomogeneities for the target of 22%, 20% and 9%, respectively). In many cases techniques 3, 4 and 5 can reduce the dose to the lung and heart. It is concluded that combined photon and electron beam therapy may be advantageous for treating breast cancer compared to conventional treatment techniques using tangential wedged photon beams followed by a boost electron field.
Duma, Marciana-Nona; Münch, Stefan; Oechsner, Markus; Combs, Stephanie E
2017-01-01
The aim of this study was to understand the practice of care in German-speaking countries with regard to heart-sparing radiotherapy techniques. Between August 2015 and September 2015, an e-mail/fax-based survey was sent to radiation oncology departments in Germany, Austria, and the German-speaking Switzerland. The questionnaire was divided into 3 chapters: a general chapter on the department, a chapter specific for heart-sparing techniques in patients with breast cancer, and a third chapter on personal beliefs on the topic of heart sparing in patients with breast cancer. A total of 82 radiation oncology departments answered the questionnaire: 16 university clinics and 66 other departments. In general, heart-sparing techniques are being offered by 90.2% of departments for radiation oncology in the German-speaking countries. However, in the clinical routine, 87.7% of institutions use heart-sparing techniques in less than 50% of patients with breast cancer. Heart-sparing techniques are especially provided for patients with left-sided breast cancer (80%), patients after mastectomy (52.5%), and when the mammaria interna lymph drainage vessels are irradiated (41.3%). In 46.3% of departments, there are written internal guidelines for heart sparing in patients with breast cancer. Breathing-adapted radiotherapy is used as the most frequent heart-sparing technique in 64.7% of the institutions, followed by intensity-modulated radiation therapy, which is most frequently used by 22.1%. The only significant difference between university hospitals and other departments was seen for the offering of partial breast irradiation. The most commonly used heart-sparing technique is breathing-adapted radiotherapy, but there is no coherent approach for heart sparing in patients with breast cancer in the German-speaking countries. Overall, all options for cardiac protection/cardiac avoidance have their advantages and disadvantages, with deep inspiration breath-hold radiotherapyhaving the most clear data, which should be the preferred choice when using heart-sparing techniques. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Surface dose measurement with Gafchromic EBT3 film for intensity modulated radiotherapy technique
NASA Astrophysics Data System (ADS)
Akbas, Ugur; Kesen, Nazmiye Donmez; Koksal, Canan; Okutan, Murat; Demir, Bayram; Becerir, Hatice Bilge
2017-09-01
Accurate dose measurement in the buildup region is extremely difficult. Studies have reported that treatment planning systems (TPS) cannot calculate surface dose accurately. The aim of the study was to compare the film measurements and TPS calculations for surface dose in head and neck cancer treatment using intensity modulated radiation therapy (IMRT). IMRT plans were generated for 5 head and neck cancer patients by using Varian Eclipse TPS. Quality assurance (QA) plans of these IMRT plans were created on rando phantoms for surface dose measurements. EBT3 films were cut in size of 2.5 x 2.5 cm2 and placed on the left side, right side and the center of larynx and then the films were irradiated with 6 MV photon beams. The measured doses were compared with TPS. The results of TPS calculations were found to be lower compared to the EBT3 film measurements at all selected points. The lack of surface dose calculation in TPS should be considered while evaluating the radiotherapy plans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shortt, Ken; Davidsson, Lena; Hendry, Jolyon
2008-05-01
The International Atomic Energy Agency organized an international conference called, 'Quality Assurance and New Techniques in Radiation Medicine' (QANTRM). It dealt with quality assurance (QA) in all aspects of radiation medicine (diagnostic radiology, nuclear medicine, and radiotherapy) at the international level. Participants discussed QA issues pertaining to the implementation of new technologies and the need for education and staff training. The advantage of developing a comprehensive and harmonized approach to QA covering both the technical and the managerial issues was emphasized to ensure the optimization of benefits to patient safety and effectiveness. The necessary coupling between medical radiation imaging andmore » radiotherapy was stressed, particularly for advanced technologies. However, the need for a more systematic approach to the adoption of advanced technologies was underscored by a report on failures in intensity-modulated radiotherapy dosimetry auditing tests in the United States, which could imply inadequate implementation of QA for these new technologies. A plenary session addressed the socioeconomic impact of introducing advanced technologies in resource-limited settings. How shall the dual gaps, one in access to basic medical services and the other in access to high-quality modern technology, be addressed?.« less
Shortt, Ken; Davidsson, Lena; Hendry, Jolyon; Dondi, Maurizio; Andreo, Pedro
2008-01-01
The International Atomic Energy Agency organized an international conference called, "Quality Assurance and New Techniques in Radiation Medicine" (QANTRM). It dealt with quality assurance (QA) in all aspects of radiation medicine (diagnostic radiology, nuclear medicine, and radiotherapy) at the international level. Participants discussed QA issues pertaining to the implementation of new technologies and the need for education and staff training. The advantage of developing a comprehensive and harmonized approach to QA covering both the technical and the managerial issues was emphasized to ensure the optimization of benefits to patient safety and effectiveness. The necessary coupling between medical radiation imaging and radiotherapy was stressed, particularly for advanced technologies. However, the need for a more systematic approach to the adoption of advanced technologies was underscored by a report on failures in intensity-modulated radiotherapy dosimetry auditing tests in the United States, which could imply inadequate implementation of QA for these new technologies. A plenary session addressed the socioeconomic impact of introducing advanced technologies in resource-limited settings. How shall the dual gaps, one in access to basic medical services and the other in access to high-quality modern technology, be addressed?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiao, L; Deng, G; Xie, J
2015-06-15
Purpose: To compare the dosimetric characteristics of volumetric-modulated arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for left-sided breast cancer patients with modified radical mastectomy. Methods: Twenty-four left-sided breast cancer patients treated with modified radical mastectomy were selected in this study. The planning target volume (PTV) was generated by using 7-mm uniform expansion of the clinical target volume (CTV) in all direction except the skin surface. The organs at risk (OARs) included heart, left lung, right lung, and right breast. Dose volume histograms (DVHs) were utilized to evaluate the dose distribution in PTV and OARs. Results: Bothmore » VMAT and IMRT plans met the requirement of PTV coverage. VMAT was superior to IMRT in terms of conformity, with a statistically significant difference (p=0.024). Mean doses, V5 and V10 of heart and both lungs in VMAT plans were significantly decreased compared to IMRT plans (P<0.05), but in terms of heart volume irradiated by high doses (V30 and V45), no significant differences were observed (P>0.05). For right breast, VMAT showed the reduction of V5 in comparison with IMRT (P<0.05). Additionally, the mean number of monitor units (MU) and treatment time in VMAT (357.21, 3.62 min) were significantly less than those in IMRT (1132.85, 8.74 min). Conclusion: VMAT showed similar PTV coverage and significant advantage in OARs sparing compared with IMRT, especially in terms of decreased volumes irradiated by low doses, while significantly reducing the treatment time and MU number.« less
Mendenhall, William M; Amdur, Robert J; Palta, Jatinder R
2006-06-10
The purpose of this article is to review the role of intensity-modulated radiotherapy (IMRT) in the standard management of patients with head and neck cancer through a critical review of the pertinent literature. IMRT may result in a dose distribution that is more conformal than that achieved with three-dimensional conformal radiotherapy (3D CRT), allowing dose reduction to normal structures and thus decreasing toxicity and possibly enhancing locoregional control through dose escalation. Disadvantages associated with IMRT include increased risk of a marginal miss, decreased dose homogeneity, increased total body dose, and increased labor and expense. Outcomes data after IMRT are limited, and follow-up is relatively short. Locoregional control rates appear to be comparable to those achieved with 3D CRT and, depending on the location and extent of the tumor, late toxicity may be lower. Despite limited data on clinical outcomes, IMRT has been widely adopted as a standard technique in routine practice and clinical trials. The use of IMRT involves a learning curve for the practitioner and will continue to evolve, requiring continuing education and monitoring of outcomes from routine practice. Additional standards pertaining to a variety of issues, including target definitions and dose specification, need to be developed. Phase III trials will better define the role of IMRT in coming years.
Wang, Juanqi; Yang, Zhaozhi; Hu, Weigang; Chen, Zhi; Yu, Xiaoli; Guo, Xiaomao
2017-05-16
The purpose of this study is to evaluate the intensity modulated radiotherapy (IMRT) with the fixed collimator jaws technique (FJT) for the left breast and regional lymph node. The targeted breast tissue and the lymph nodes, and the normal tissues were contoured for 16 left-sided breast cancer patients previously treated with radiotherapy after lumpectomy. For each patient, treatment plans using different planning techniques, i.e., volumetric modulated arc therapy (VMAT), tangential IMRT (tangential-IMRT), and IMRT with FJT (FJT-IMRT) were developed for dosimetric comparisons. A dose of 50Gy was prescribed to the planning target volume. The dose-volume histograms were generated, and the paired t-test was used to analyze the dose differences. FJT-IMRT had similar mean heart volume receiving 30Gy (V30 Gy) with tangential-IMRT (1.5% and 1.6%, p = 0.41), but inferior to the VMAT (0.8%, p < 0.001). In the average heart mean dose comparison, FJT-IMRT had the lowest value, and it was 0.6Gy lower than that for the VMAT plans (p < 0.01). A significant dose increase in the contralateral breast and lung was observed in VMAT plans. Compared with tangential-IMRT and VMAT plans, FJT-IMRT reduced the mean dose of thyroid, humeral head and cervical esophageal by 47.6% (p < 0.01) and 45.7% (p < 0.01), 74.3% (p =< 0.01) and 73% (p =< 0.01), and 26.7% (p =< 0.01) and 29.2% (p =< 0.01). In conclusion, compared with tangential-IMRT and VMAT, FJT-IMRT plan has the lowest thyroid, humeral head and cervical esophageal mean dose and it can be a reasonable treatment option for a certain subgroup of patients, such as young left-breast cancer patients and/or patients with previous thyroid disease.
Uses of megavoltage digital tomosynthesis in radiotherapy
NASA Astrophysics Data System (ADS)
Sarkar, Vikren
With the advent of intensity modulated radiotherapy, radiation treatment plans are becoming more conformal to the tumor with the decreasing margins. It is therefore of prime importance that the patient be positioned correctly prior to treatment. Therefore, image guided treatment is necessary for intensity modulated radiotherapy plans to be implemented successfully. Current advanced imaging devices require costly hardware and software upgrade, and radiation imaging solutions, such as cone beam computed tomography, may introduce extra radiation dose to the patient in order to acquire better quality images. Thus, there is a need to extend current existing imaging device ability and functions while reducing cost and radiation dose. Existing electronic portal imaging devices can be used to generate computed tomography-like tomograms through projection images acquired over a small angle using the technique of cone-beam digital tomosynthesis. Since it uses a fraction of the images required for computed tomography reconstruction, use of this technique correspondingly delivers only a fraction of the imaging dose to the patient. Furthermore, cone-beam digital tomosynthesis can be offered as a software-only solution as long as a portal imaging device is available. In this study, the feasibility of performing digital tomosynthesis using individually-acquired megavoltage images from a charge coupled device-based electronic portal imaging device was investigated. Three digital tomosynthesis reconstruction algorithms, the shift-and-add, filtered back-projection, and simultaneous algebraic reconstruction technique, were compared considering the final image quality and radiation dose during imaging. A software platform, DART, was created using a combination of the Matlab and C++ languages. The platform allows for the registration of a reference Cone Beam Digital Tomosynthesis (CBDT) image against a daily acquired set to determine how to shift the patient prior to treatment. Finally, the software was extended to investigate if the digital tomosynthesis dataset could be used in an adaptive radiotherapy regimen through the use of the Pinnacle treatment planning software to recalculate dose delivered. The feasibility study showed that the megavoltage CBDT visually agreed with corresponding megavoltage computed tomography images. The comparative study showed that the best compromise between imaging quality and imaging dose is obtained when 11 projection images, acquired over an imaging angle of 40°, are used with the filtered back-projection algorithm. DART was successfully used to register reference and daily image sets to within 1 mm in-plane and 2.5 mm out of plane. The DART platform was also effectively used to generate updated files that the Pinnacle treatment planning system used to calculate updated dose in a rigidly shifted patient. These doses were then used to calculate a cumulative dose distribution that could be used by a physician as reference to decide when the treatment plan should be updated. In conclusion, this study showed that a software solution is possible to extend existing electronic portal imaging devices to function as cone-beam digital tomosynthesis devices and achieve daily requirement for image guided intensity modulated radiotherapy treatments. The DART platform also has the potential to be used as a part of adaptive radiotherapy solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donovan, E. M.; James, H.; Bonora, M.
2012-10-15
Purpose: To compare organ specific cancer incidence risks for standard and complex external beam radiotherapy (including cone beam CT verification) following breast conservation surgery for early breast cancer.Method: Doses from breast radiotherapy and kilovoltage cone beam CT (CBCT) exposures were obtained from thermoluminescent dosimeter measurements in an anthropomorphic phantom in which the positions of radiosensitive organs were delineated. Five treatment deliveries were investigated: (i) conventional tangential field whole breast radiotherapy (WBRT), (ii) noncoplanar conformal delivery applicable to accelerated partial beast irradiation (APBI), (iii) two-volume simultaneous integrated boost (SIB) treatment, (iv) forward planned three-volume SIB, and (v) inverse-planned three volume SIB.more » Conformal and intensity modulated radiotherapy methods were used to plan the complex treatments. Techniques spanned the range from simple methods appropriate for patient cohorts with a low cancer recurrence risk to complex plans relevant to cohorts with high recurrence risk. Delineated organs at risk included brain, salivary glands, thyroid, contralateral breast, left and right lung, esophagus, stomach, liver, colon, and bladder. Biological Effects of Ionizing Radiation (BEIR) VII cancer incidence models were applied to the measured mean organ doses to determine lifetime attributable risk (LAR) for ages at exposure from 35 to 80 yr according to radiotherapy techniques, and included dose from the CBCT imaging. Results: All LAR decreased with age at exposure and were lowest for brain, thyroid, liver, and bladder (<0.1%). There was little dependence of LAR on radiotherapy technique for these organs and for colon and stomach. LAR values for the lungs for the three SIB techniques were two to three times those from WBRT and APBI. Uncertainties in the LAR models outweigh any differences in lung LAR between the SIB methods. Constraints in the planning of the SIB methods ensured that contralateral breast doses and LAR were comparable to WBRT, despite their added complexity. The smaller irradiated volume of the ABPI plan contributed to a halving of LAR for contralateral breast compared with the other plan types. Daily image guided radiotherapy (IGRT) for a left breast protocol using kilovoltage CBCT contributed <10% to LAR for the majority of organs, and did not exceed 22% of total organ dose. Conclusions: Phantom measurements and calculations of LAR from the BEIR VII models predict that complex breast radiotherapy techniques do not increase the theoretical risk of second cancer incidence for organs distant from the treated breast, or the contralateral breast where appropriate plan constraints are applied. Complex SIB treatments are predicted to increase the risk of second cancer incidence in the lungs compared to standard whole breast radiotherapy; this is outweighed by the threefold reduction in 5 yr local recurrence risk for patients of high risk of recurrence, and young age, from the use of radiotherapy. APBI may have a favorable impact on risk of second cancer in the contralateral breast and lung for older patients at low risk of recurrence. Intensive use of IGRTincreased the estimated values of LAR but these are dominated by the effect of the dose from the radiotherapy, and any increase in LAR from IGRT is much lower than the models' uncertainties.« less
Kawashima, Mitsuhiko; Ariji, Takaki; Kameoka, Satoru; Ueda, Takashi; Kohno, Ryosuke; Nishio, Teiji; Arahira, Satoko; Motegi, Atsushi; Zenda, Sadamoto; Akimoto, Tetsuo; Tahara, Makoto; Hayashi, Ryuichi
2013-12-01
The objective of the study was to evaluate locoregional control after intensity-modulated radiotherapy for nasopharyngeal cancer using a target definition along with anatomical boundaries. Forty patients with biopsy-proven squamous cell or non-keratinizing carcinoma of the nasopharynx who underwent intensity-modulated radiotherapy between April 2006 and November 2009 were reviewed. There were 10 females and 30 males with a median age of 48 years (range, 17-74 years). More than half of the patients had T3/4 (n = 21) and/or N2/3 (n = 24) disease. Intensity-modulated radiotherapy was administered as 70 Gy/33 fractions with or without concomitant chemotherapy. The clinical target volume was contoured along with muscular fascia or periosteum, and the prescribed radiotherapy dose was determined for each anatomical compartment and lymph node level in the head and neck. One local recurrence was observed at Meckel's cave on the periphery of the high-risk clinical target volume receiving a total dose of <63 Gy. Otherwise, six locoregional failures were observed within irradiated volume receiving 70 Gy. Local and nodal control rates at 3 years were 91 and 89%, respectively. Adverse events were acceptable, and 25 (81%) of 31 patients who were alive without recurrence at 2 years had xerostomia of ≤Grade 1. The overall survival rate at 3 years was 87%. Target definition along with anatomically defined boundaries was feasible without compromise of the therapeutic ratio. It is worth testing this method further to minimize the unnecessary irradiated volume and to standardize the target definition in intensity-modulated radiotherapy for nasopharyngeal cancer.
IMRT treatment of anal cancer with a scrotal shield
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hood, Rodney C., E-mail: Rodney.Hood@duke.edu; Wu, Q. Jackie; McMahon, Ryan
The risk of sterility in males undergoing radiotherapy in the pelvic region indicates the use of a shielding device, which offers protection to the testes for patients wishing to maintain fertility. The use of such devices in the realm of intensity-modulated radiotherapy (IMRT) in the pelvic region can pose many obstacles during simulation, treatment planning, and delivery of radiotherapy. This work focuses on the development and execution of an IMRT plan for the treatment of anal cancer using a scrotal shielding device on a clinical patient. An IMRT plan was developed using Eclipse treatment planning system (Varian Medical Systems, Palomore » Alto, CA), using a wide array of gantry angles as well as fixed jaw and fluence editing techniques. When possible, the entire target volume was encompassed by the treatment field. When the beam was incident on the scrotal shield, the jaw was fixed to avoid the device and the collimator rotation optimized to irradiate as much of the target as possible. This technique maximizes genital sparing and allows minimal irradiation of the gonads. When this fixed-jaw technique was found to compromise adequate coverage of the target, manual fluence editing techniques were used to avoid the shielding device. Special procedures for simulation, imaging, and treatment verification were also developed. In vivo dosimetry was used to verify and ensure acceptable dose to the gonads. The combination of these techniques resulted in a highly conformal plan that spares organs and risk and avoids the genitals as well as entrance of primary radiation onto the shielding device.« less
SU-F-J-72: A Clinical Usable Integrated Contouring Quality Evaluation Software for Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, S; Dolly, S; Cai, B
Purpose: To introduce the Auto Contour Evaluation (ACE) software, which is the clinical usable, user friendly, efficient and all-in-one toolbox for automatically identify common contouring errors in radiotherapy treatment planning using supervised machine learning techniques. Methods: ACE is developed with C# using Microsoft .Net framework and Windows Presentation Foundation (WPF) for elegant GUI design and smooth GUI transition animations through the integration of graphics engines and high dots per inch (DPI) settings on modern high resolution monitors. The industrial standard software design pattern, Model-View-ViewModel (MVVM) pattern, is chosen to be the major architecture of ACE for neat coding structure, deepmore » modularization, easy maintainability and seamless communication with other clinical software. ACE consists of 1) a patient data importing module integrated with clinical patient database server, 2) a 2D DICOM image and RT structure simultaneously displaying module, 3) a 3D RT structure visualization module using Visualization Toolkit or VTK library and 4) a contour evaluation module using supervised pattern recognition algorithms to detect contouring errors and display detection results. ACE relies on supervised learning algorithms to handle all image processing and data processing jobs. Implementations of related algorithms are powered by Accord.Net scientific computing library for better efficiency and effectiveness. Results: ACE can take patient’s CT images and RT structures from commercial treatment planning software via direct user input or from patients’ database. All functionalities including 2D and 3D image visualization and RT contours error detection have been demonstrated with real clinical patient cases. Conclusion: ACE implements supervised learning algorithms and combines image processing and graphical visualization modules for RT contours verification. ACE has great potential for automated radiotherapy contouring quality verification. Structured with MVVM pattern, it is highly maintainable and extensible, and support smooth connections with other clinical software tools.« less
The cost of radiotherapy in a decade of technology evolution.
Van de Werf, Evelyn; Verstraete, Jan; Lievens, Yolande
2012-01-01
To quantify changes in radiotherapy costs occurring in a decade of medical-technological evolution. The activity-based costing (ABC) model of the University Hospitals Leuven (UHL) radiotherapy (RT) department was adapted to current RT standards. It allocated actual resource costs to the treatments based on the departmental work-flow and patient mix in 2009. A benchmark with the former model analyzed the cost increases related to changes in RT infrastructure and practice over 10 years. A considerable increase in total RT costs was observed, resulting from higher capital investments (96%) and personnel cost (103%), the latter dominating the total picture. Treatment delivery remains the most costly activity, boosted by the cost of improved quality assurance (QA), 23% of total product costs, coming along with more advanced RT techniques. Hence, cost increases at the product level are most obvious for complex treatments, such as intensity-modulated radiotherapy (IMRT), representing cost increases ranging between 38% and 88% compared to conformal approaches. The ABC model provides insight into the financial consequences of evolving technology and practice. Such data are a mandatory first step in our strive to prove RT cost-effectiveness and thus support optimal reimbursement and provision of radiotherapy departments. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Lee, Hsin-Hua; Hou, Ming-Feng; Chuang, Hung-Yi; Huang, Ming-Yii; Tsuei, Le-Ping; Chen, Fang-Ming; Ou-Yang, Fu; Huang, Chih-Jen
2015-10-01
This study was aimed to assess the acute dermatological adverse effect from two distinct RT techniques for breast cancer patients. We compared intensity-modulated radiotherapy with simultaneous integrated boost (IMRT-SIB) and conventional radiotherapy followed by sequential boost (CRT-SB). The study population was composed of 126 consecutive female breast cancer patients treated with breast conserving surgery. Sixty-six patients received IMRT-SIB to 2 dose levels simultaneously. They received 50.4 Gy at 1.8 Gy per fraction to the whole breast and 60.2 Gy at 2.15 Gy per fraction to the tumor bed by integral boost. Sixty patients in the CRT-SB group received 50 Gy in 25 fractions to the whole breast followed by a boost irradiation to tumor bed in 5-7 fractions to a total dose of 60-64 Gy. Acute skin toxicities were documented in agreement with the Common Terminology Criteria for Adverse Events version 3 (CTCAE v.3.0). Ninety-eight patients had grade 1 radiation dermatitis while 14 patients had grade 2. Among those with grade 2, there were 3 patients in IMRT-SIB group (4.5%) while 11 in CRT-SB group (18.3%). (P = 0.048) There was no patient with higher than grade 2 toxicity. Three year local control was 99.2%, 3-year disease free survival was 97.5% and 3-year overall survival was 99.2%. A significant reduction in the severity of acute radiation dermatitis from IMRT-SIB comparing with CRT-SB is demonstrated. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhao, Yaqin; Chen, Lu; Zhang, Shu; Wu, Qiang; Jiang, Xiaoqin; Zhu, Hong; Wang, Jin; Li, Zhiping; Xu, Yong; Zhang, Ying Jie; Bai, Sen; Xu, Feng
2015-01-01
Radiation pneumonitis (RP) is a common side reaction in radiotherapy for esophageal cancer. There are few reports about RP in esophageal cancer patients receiving postoperative intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). This study aims to analyze clinical or dosimetric factors associated with RP, and provides data for radiotherapy planning. We reviewed 68 postoperative esophageal cancer patients who were treated with radiotherapy at the West China Hospital from October 2010 to November 2012 to identify any correlation between the clinical or dosimetric parameters and acute radiation pneumonitis (ARP) or severe acute radiation pneumonitis (SARP) by t-test, chi-square test, and logistic regression analysis. Of the 68 patients, 33 patients (48.5%) developed ARP, 13 of which (19.1%) developed SARP. Of these 33 patients, 8 (11.8%), 12 (17.6%), 11 (16.2%), and 2 (2.9%) patients were grade 1, 2, 3, and 4 ARP, respectively. Univariate analysis showed that lung infection during radiotherapy, use of VMAT, mean lung dose (MLD), and dosimetric parameters (e.g. V20, V30) are significantly correlated with RP. Multivariate analysis found that lung infection during radiotherapy, MLD ≥ 12 Gy, and V30 ≥ 13% are significantly correlated with an increased risk of RP. Lung infection during radiotherapy and low radiation dose volume distribution were predictive factors associated with RP and should be accounted for during radiation planning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, Roberto; Jaboin, Jerry J.; Morales-Paliza, Manuel
Purpose: To conduct a retrospective review of 168 consecutively treated locally advanced head-and-neck cancer (LAHNC) patients treated with intensity-modulated radiotherapy (IMRT)/chemotherapy, to determine the rate and risk factors for developing hypothyroidism. Methods and Materials: Intensity-modulated radiotherapy was delivered in 33 daily fractions to 69.3 Gy to gross disease and 56.1 Gy to clinically normal cervical nodes. Dose-volume histograms (DVHs) of IMRT plans were used to determine radiation dose to thyroid and were compared with DVHs using conventional three-dimensional radiotherapy (3D-RT) in 10 of these same patients randomly selected for replanning and with DVHs of 16 patients in whom the thyroidmore » was intentionally avoided during IMRT. Weekly paclitaxel (30 mg/m{sup 2}) and carboplatin area under the curve-1 were given concurrently with IMRT. Results: Sixty-one of 128 evaluable patients (47.7%) developed hypothyroidism after a median of 1.08 years after IMRT (range, 2.4 months to 3.9 years). Age and volume of irradiated thyroid were associated with hypothyroidism development after IMRT. Compared with 3D-RT, IMRT with no thyroid dose constraints resulted in significantly higher minimum, maximum, and median dose (p < 0.0001) and percentage thyroid volume receiving 10, 20, and 60 Gy (p < 0.05). Compared with 3D-RT, IMRT with thyroid dose constraints resulted in lower median dose and percentage thyroid volume receiving 30, 40, and 50 Gy (p < 0.005) but higher minimum and maximum dose (p < 0.005). Conclusions: If not protected, IMRT for LAHNC can result in higher radiation to the thyroid than with conventional 3D-RT. Techniques to reduce dose and volume of radiation to thyroid tissue with IMRT are achievable and recommended.« less
Compensators: An alternative IMRT delivery technique
Chang, Sha X.; Cullip, Timothy J.; Deschesne, Katharin M.; Miller, Elizabeth P.; Rosenman, Julian G.
2004-01-01
Seven years of experience in compensator intensity‐modulated radiotherapy (IMRT) clinical implementation are presented. An inverse planning dose optimization algorithm was used to generate intensity modulation maps, which were delivered via either the compensator or segmental multileaf collimator (MLC) IMRT techniques. The in‐house developed compensator‐IMRT technique is presented with the focus on several design issues. The dosimetry of the delivery techniques was analyzed for several clinical cases. The treatment time for both delivery techniques on Siemens accelerators was retrospectively analyzed based on the electronic treatment record in LANTIS for 95 patients. We found that the compensator technique consistently took noticeably less time for treatment of equal numbers of fields compared to the segmental technique. The typical time needed to fabricate a compensator was 13 min, 3 min of which was manual processing. More than 80% of the approximately 700 compensators evaluated had a maximum deviation of less than 5% from the calculation in intensity profile. Seventy‐two percent of the patient treatment dosimetry measurements for 340 patients have an error of no more than 5%. The pros and cons of different IMRT compensator materials are also discussed. Our experience shows that the compensator‐IMRT technique offers robustness, excellent intensity modulation resolution, high treatment delivery efficiency, simple fabrication and quality assurance (QA) procedures, and the flexibility to be used in any teletherapy unit. PACS numbers: 87.53Mr, 87.53Tf PMID:15753937
High dose bystander effects in spatially fractionated radiation therapy
Asur, Rajalakshmi; Butterworth, Karl T.; Penagaricano, Jose A.; Prise, Kevin M.; Griffin, Robert J.
2014-01-01
Traditional radiotherapy of bulky tumors has certain limitations. Spatially fractionated radiation therapy (GRID) and intensity modulated radiotherapy (IMRT) are examples of advanced modulated beam therapies that help in significant reductions in normal tissue damage. GRID refers to the delivery of a single high dose of radiation to a large treatment area that is divided into several smaller fields, while IMRT allows improved dose conformity to the tumor target compared to conventional three-dimensional conformal radiotherapy. In this review, we consider spatially fractionated radiotherapy approaches focusing on GRID and IMRT, and present complementary evidence from different studies which support the role of radiation induced signaling effects in the overall radiobiological rationale for these treatments. PMID:24246848
Clinical evaluation of intensity-modulated radiotherapy for head and neck cancers
Bhide, S A; Newbold, K L; Harrington, K J; Nutting, C M
2012-01-01
Radiotherapy and surgery are the principal curative modalities in treatment of head and neck cancer. Conventional two-dimensional and three-dimensional conformal radiotherapy result in significant side effects and altered quality of life. Intensity-modulated radiotherapy (IMRT) can spare the normal tissues, while delivering a curative dose to the tumour-bearing tissues. This article reviews the current role of IMRT in head and neck cancer from the point of view of normal tissue sparing, and also reviews the current published literature by individual head and neck cancer subsites. In addition, we briefly discuss the role of image guidance in head and neck IMRT, and future directions in this area. PMID:22556403
[Clinical experience of carbon ion radiotherapy for malignant tumors].
Ishikawa, Hitoshi; Tsuji, Hiroshi; Tsujii, Hirohiko
2006-04-01
The carbon ion (C-ion) beams provide unique advantageous biological and physical properties in radiotherapy (RT) for malignant tumors. C-ion beams have a high relative biological effectiveness (RBE) resulting from the high linear energy transfer (LET). In terms of their physical characteristics, C-ion beams exhibit a spread-out Bragg peak (SOBP) and make for a better dose distribution of the target volume by specified beam modulations. Between June 1994 and August 2005, a total of 2,371 patients with malignant tumors were registered in phase I/II dose-escalation studies and clinical phase II trials using C-ion beams generated at Heavy Ion Medical Accelerator in Chiba (HIMAC). In the initial dose-escalation studies, grade 3 or more late rectal complications had developed in some patients. However, the adverse effects were resolved because of the use of appropriate dose levels and modification of the radiation technique. C-ion beams can carry out hypofractionated radiotherapy with a large fraction dose and reduce the overall treatment times compared with conventional radiotherapy. They can also achieve better local tumor control even for radio-resistant tumors such as malignant melanoma, hepatocellular carcinoma and bone and soft tissue sarcomas with minimal morbidity to the normal surrounding tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choe, Kevin S.; Jani, Ashesh B.; Liauw, Stanley L., E-mail: sliauw@radonc.uchicago.ed
Purpose: To characterize the bleeding toxicity associated with external beam radiotherapy for prostate cancer patients receiving anticoagulation (AC) therapy. Methods and Materials: The study cohort consisted of 568 patients with adenocarcinoma of the prostate who were treated with definitive external beam radiotherapy. Of these men, 79 were receiving AC therapy with either warfarin or clopidogrel. All patients were treated with three-dimensional conformal radiotherapy or intensity-modulated radiotherapy. Bleeding complications were recorded during treatment and subsequent follow-up visits. Results: With a median follow-up of 48 months, the 4-year actuarial risk of Grade 3 or worse bleeding toxicity was 15.5% for those receivingmore » AC therapy compared with 3.6% among those not receiving AC (p < .0001). On multivariate analysis, AC therapy was the only significant factor associated with Grade 3 or worse bleeding (p < .0001). For patients taking AC therapy, the crude rate of bleeding was 39.2%. Multivariate analysis within the AC group demonstrated that a higher radiotherapy dose (p = .0408), intensity-modulated radiotherapy (p = 0.0136), and previous transurethral resection of the prostate (p = .0001) were associated with Grade 2 or worse bleeding toxicity. Androgen deprivation therapy was protective against bleeding, with borderline significance (p = 0.0599). Dose-volume histogram analysis revealed that Grade 3 or worse bleeding was minimized if the percentage of the rectum receiving >=70 Gy was <10% or the rectum receiving >=50 Gy was <50%. Conclusion: Patients taking AC therapy have a substantial risk of bleeding toxicity from external beam radiotherapy. In this setting, dose escalation or intensity-modulated radiotherapy should be used judiciously. With adherence to strict dose-volume histogram criteria and minimizing hotspots, the risk of severe bleeding might be reduced.« less
Leonardi, Maria Cristina; Ricotti, Rosalinda; Dicuonzo, Samantha; Cattani, Federica; Morra, Anna; Dell'Acqua, Veronica; Orecchia, Roberto; Jereczek-Fossa, Barbara Alicja
2016-10-01
Radiotherapy improves local control in breast cancer (BC) patients which increases overall survival in the long term. Improvements in treatment planning and delivery and a greater understanding of BC behaviour have laid the groundwork for high-precision radiotherapy, which is bound to further improve the therapeutic index. Precise identification of target volumes, better coverage and dose homogeneity have had a positive impact on toxicity and local control. The conformity of treatment dose due to three-dimensional radiotherapy and new techniques such as intensity modulated radiotherapy makes it possible to spare surrounding normal tissue. The widespread use of dose-volume constraints and histograms have increased awareness of toxicity. Real time image guidance has improved geometric precision and accuracy, together with the implementation of quality assurance programs. Advances in the precision of radiotherapy is also based on the choice of the appropriate fractionation and approach. Adaptive radiotherapy is not only a technical concept, but is also a biological concept based on the knowledge that different types of BC have distinctive patterns of locoregional spread. A greater understanding of cancer biology helps in choosing the treatment best suited to a particular situation. Biomarkers predictive of response play a crucial role. The combination of radiotherapy with molecular targeted therapies may enhance radiosensitivity, thus increasing the cytotoxic effects and improving treatment response. The appropriateness of an alternative fractionation, partial breast irradiation, dose escalating/de-escalating approaches, the extent of nodal irradiation have been examined for all the BC subtypes. The broadened concept of adaptive radiotherapy is vital to high-precision treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mell, Loren K.; Tiryaki, Hanifi; Ahn, Kang-Hyun
2008-08-01
Purpose: To compare bone marrow-sparing intensity-modulated pelvic radiotherapy (BMS-IMRT) with conventional (four-field box and anteroposterior-posteroanterior [AP-PA]) techniques in the treatment of cervical cancer. Methods and Materials: The data from 7 cervical cancer patients treated with concurrent chemotherapy and IMRT without BMS were analyzed and compared with data using four-field box and AP-PA techniques. All plans were normalized to cover the planning target volume with the 99% isodose line. The clinical target volume consisted of the pelvic and presacral lymph nodes, uterus and cervix, upper vagina, and parametrial tissue. Normal tissues included bowel, bladder, and pelvic bone marrow (PBM), which comprisedmore » the lumbosacral spine and ilium and the ischium, pubis, and proximal femora (lower pelvis bone marrow). Dose-volume histograms for the planning target volume and normal tissues were compared for BMS-IMRT vs. four-field box and AP-PA plans. Results: BMS-IMRT was superior to the four-field box technique in reducing the dose to the PBM, small bowel, rectum, and bladder. Compared with AP-PA plans, BMS-IMRT reduced the PBM volume receiving a dose >16.4 Gy. BMS-IMRT reduced the volume of ilium, lower pelvis bone marrow, and bowel receiving a dose >27.7, >18.7, and >21.1 Gy, respectively, but increased dose below these thresholds compared with the AP-PA plans. BMS-IMRT reduced the volume of lumbosacral spine bone marrow, rectum, small bowel, and bladder at all dose levels in all 7 patients. Conclusion: BMS-IMRT reduced irradiation of PBM compared with the four-field box technique. Compared with the AP-PA technique, BMS-IMRT reduced lumbosacral spine bone marrow irradiation and reduced the volume of PBM irradiated to high doses. Therefore BMS-IMRT might reduce acute hematologic toxicity compared with conventional techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Allen M., E-mail: allen.chen@ucdmc.ucdavis.edu; Farwell, D. Gregory; Luu, Quang
2011-07-01
Purpose: To report a single-institutional experience using intensity-modulated radiotherapy with daily image-guided radiotherapy for the reirradiation of recurrent and second cancers of the head and neck. Methods and Materials: Twenty-one consecutive patients were prospectively treated with intensity-modulated radiotherapy from February 2006 to March 2009 to a median dose of 66 Gy (range, 60-70 Gy). None of these patients received concurrent chemotherapy. Daily helical megavoltage CT scans were obtained before each fraction as part of an image-guided radiotherapy registration protocol for patient alignment. Results: The 1- and 2-year estimates of in-field control were 72% and 65%, respectively. A total of 651more » daily megavoltage CT scans were obtained. The mean systematic shift to account for interfraction motion was 1.38 {+-} 1.25 mm, 1.79 {+-} 1.45 mm, and 1.98 {+-} 1.75 mm for the medial-lateral, superior-inferior, and anterior-posterior directions, respectively. Pretreatment shifts of >3 mm occurred in 19% of setups in the medial-lateral, 27% in the superior-inferior, and 33% in the anterior-posterior directions, respectively. There were no treatment-related fatalities or hospitalizations. Complications included skin desquamation, odynophagia, otitis externa, keratitis, naso-lacrimal duct stenosis, and brachial plexopathy. Conclusions: Intensity-modulated radiotherapy with daily image guidance results in effective disease control with relatively low morbidity and should be considered for selected patients with recurrent and second primary cancers of the head and neck.« less
PD-1 Modulates Radiation-Induced Cardiac Toxicity through Cytotoxic T Lymphocytes.
Du, Shisuo; Zhou, Lin; Alexander, Gregory S; Park, Kyewon; Yang, Lifeng; Wang, Nadan; Zaorsky, Nicholas G; Ma, Xinliang; Wang, Yajing; Dicker, Adam P; Lu, Bo
2018-04-01
Combined immune checkpoint blockade has led to rare autoimmune complications, such as fatal myocarditis. Recent approvals of several anti-programmed death 1 (anti-PD-1) drugs for lung cancer treatment prompted ongoing clinical trials that directly combine PD-1 inhibitors with thoracic radiotherapy for locally advanced lung cancer. Overlapping toxicities from either modality have the potential to increase the risk for radiation-induced cardiotoxicity (RICT), which is well documented among patients with Hodgkin's disease and breast cancer. To investigate cardiotoxicity without the compounding pulmonary toxicity from thoracic radiotherapy, we developed a technique to deliver cardiac irradiation (CIR) in a mouse model concurrently with PD-1 blockade to determine the presence of cardiac toxicity by using physiological testing and mortality as end points along with histological analysis. We observed an acute mortality of 30% within 2 weeks after CIR plus anti-PD-1 antibody compared with 0% from CIR plus immunoglobulin G (p = 0.023). Physiological testing demonstrated a reduced left ventricular ejection fraction (p < 0.01) by echocardiogram. Tissue analyses revealed increased immune cell infiltrates within cardiac tissue. Depletion of CD8-positive lymphocytes with anti-CD8 antibody reversed the acute mortality, suggesting that the toxicity is CD8-positive cell-mediated. To validate these findings using a clinically relevant fractionated radiotherapy regimen, we repeated the study by delivering five daily fractions of 6 Gy. Similar mortality, cardiac dysfunction, and histological changes were observed in mice receiving fractionated radiotherapy with concurrent anti-PD-1 therapy. This study provides strong preclinical evidence that radiation-induced cardiotoxicity is modulated by the PD-1 axis and that PD-1 blockade should be administered with careful radiotherapy planning with an effort of reducing cardiac dose. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivakumar, R; Janardhan, N; Bhavani, P
Purpose: To compare the plan quality and performance of Simultaneous Integrated Boost (SIB) Treatment plan between Seven field (7F) and Nine field(9F) Intensity Modulated Radiotherapies and Single Arc (SA) and Dual Arc (DA) Volumetric Modulated Arc Therapy( VMAT). Methods: Retrospective planning study of 16 patients treated in Elekta Synergy Platform (mlci2) by 9F-IMRT were replanned with 7F-IMRT, Single Arc VMAT and Dual Arc VMAT using CMS, Monaco Treatment Planning System (TPS) with Monte Carlo simulation. Target delineation done as per Radiation Therapy Oncology Protocols (RTOG 0225&0615). Dose Prescribed as 70Gy to Planning Target Volumes (PTV70) and 61Gy to PTV61 inmore » 33 fraction as a SIB technique. Conformity Index(CI), Homogeneity Index(HI) were used as analysis parameter for Target Volumes as well as Mean dose and Max dose for Organ at Risk(OAR,s).Treatment Delivery Time(min), Monitor unit per fraction (MU/fraction), Patient specific quality assurance were also analysed. Results: A Poor dose coverage and Conformity index (CI) was observed in PTV70 by 7F-IMRT among other techniques. SA-VMAT achieved poor dose coverage in PTV61. No statistical significance difference observed in OAR,s except Spinal cord (P= 0.03) and Right optic nerve (P=0.03). DA-VMAT achieved superior target coverage, higher CI (P =0.02) and Better HI (P=0.03) for PTV70 other techniques (7F-IMRT/9F-IMRT/SA-VMAT). A better dose spare for Parotid glands and spinal cord were seen in DA-VMAT. The average treatment delivery time were 5.82mins, 6.72mins, 3.24mins, 4.3mins for 7F-IMRT, 9F-IMRT, SA-VMAT and DA-VMAT respectively. Significance difference Observed in MU/fr (P <0.001) and Patient quality assurance pass rate were >95% (Gamma analysis (Γ3mm, 3%). Conclusion: DA-VAMT showed better target dose coverage and achieved better or equal performance in sparing OARs among other techniques. SA-VMAT offered least Treatment Time than other techniques but achieved poor target coverage. DA-VMAT offered shorter delivery time than 7F-IMRT and 9F-IMRT without compromising the plan quality.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, J-Y; Huang, B-T; Zhang, W-Z
Purpose: To compare volumetric modulated arc radiotherapy (VMAT) technique with fixed-gantry intensity-modulated radiotherapy (IMRT) technique for early-stage nasopharyngeal carcinoma. Methods: CT datasets of ten patients with early-stage nasopharyngeal carcinoma were included. Dual-arc VMAT and nine-field IMRT plans were generated for each case, and were then compared in terms of planning-target-volume (PTV) coverage, conformity index (CI) and homogeneity index (HI), as well as organ-at-risk (OAR) sparing, planning time, monitor units (MUs) and delivery time. Results: Compared with the IMRT plans, the VMAT plans provided comparable HI and CI of PTVnx (PTV of primary tumor of nasopharynx), superior CI and inferior HImore » of PTVnd (PTV of lymph nodes), as well as superior CI and comparable HI of PTV60 (high-risk PTV). The VMAT plans provided better sparing of the spinal cord, oral cavity and normal tissue, but inferior sparing of the brainstem planning OAR volume (PRV), larynx and parotids, as well as comparable sparing of the spinal cord PRV, brainstem, lenses, optic nerves, optic chiasm. Moreover, the average planning time (181.6 ± 36.0 min) for the VMAT plans was 171% more than that of the IMRT plans (68.1 ± 7.6 min). The MUs of the VMAT plans (609 ± 43) were 70% lower than those of the IMRT plans (2071 ± 262), while the average delivery time (2.2 ± 0.1 min) was 66% less than that of the IMRT plans (6.6 ± 0.4 min). Conclusion: Compared with the IMRT technique, the VMAT technique can achieve similar or slightly superior target dose distribution, with no significant advantages on OAR sparing, and it can achieve significant reductions of MUs and delivery time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chera, Bhishamjit S.; Amdur, Robert J., E-mail: amdurr@shands.ufl.ed; Morris, Christopher G.
2010-08-01
Purpose: To compare radiation doses to carotid arteries among various radiotherapy techniques for treatment of early-stage squamous cell carcinoma (SCC) of the true vocal cords. Methods and Materials: Five patients were simulated using computed tomography (CT). Clinical and planning target volumes (PTV) were created for bilateral and unilateral stage T1 vocal cord cancers. Planning risk volumes for the carotid arteries and spinal cord were delineated. For each patient, three treatment plans were designed for bilateral and unilateral target volumes: opposed laterals (LATS), three-dimensional conformal radiotherapy (3DCRT), and intensity-modulated radiotherapy (IMRT), for a total of 30 plans. More than 95% ofmore » the PTV received the prescription dose (63Gy at 2.25 Gy per treatment). Results: Carotid dose was lowest with IMRT. With a bilateral vocal cord target, the median carotid dose was 10Gy with IMRT vs. 25 Gy with 3DCRT and 38 Gy with LATS (p < 0.05); with a unilateral target, the median carotid dose was 4 Gy with IMRT vs. 19 Gy with 3DCRT and 39 Gy with LATS (p < 0.05). The dosimetric tradeoff with IMRT is a small area of high dose in the PTV. The worst heterogeneity results were at a maximum point dose of 80 Gy (127%) in a unilateral target that was close to the carotid. Conclusions: There is no question that IMRT can reduce the dose to the carotid arteries in patients with early-stage vocal cord cancer. The question is whether the potential advantage of reducing the carotid dose outweighs the risk of tumor recurrence due to contouring errors and organ motion and the risk of complications from dose heterogeneity.« less
The impact of introducing intensity modulated radiotherapy into routine clinical practice.
Miles, Elizabeth A; Clark, Catharine H; Urbano, M Teresa Guerrero; Bidmead, Margaret; Dearnaley, David P; Harrington, Kevin J; A'Hern, Roger; Nutting, Christopher M
2005-12-01
Intensity modulated radiotherapy (IMRT) at the Royal Marsden Hospital London was introduced in July 2001. Treatment delivery was dynamic using a single-phase technique. Concerns were raised regarding increased clinical workload due to introduction of new technology. The potential increased use of resources was assessed. IMRT patient selection was within guidelines of clinical trials and included patients undergoing prostate plus pelvic lymph node (PPN) irradiation and head and neck cancer (HNC) treatment. Patient planning, quality assurance and treatment times were collected for an initial IMRT patient group. A comparative group of patients with advanced HNC undergoing two- or three-phase conventional radiotherapy, requiring matched photon and electron fields, were also timed. The median overall total planning time for IMRT was greater for HNC patients compared to the PPN cohort. For HNC the overall IMRT planning time was significantly longer than for conventional. The median treatment time for conventional two- or three-phase HNC treatments, encompassing similar volumes to those treated with IMRT, was greater than that for the IMRT HNC patient cohort. A reduction in radiographer man hours per patient of 4.8h was recorded whereas physics time was increased by 4.9h per patient. IMRT currently increases overall planning time. Additional clinician input is required for target volume localisation. Physics time is increased, a significant component of this being patient specific QA. Radiographer time is decreased. For HNC a single phase IMRT treatment has proven to be more efficient than a multiple phase conventional treatment. IMRT has been integrated smoothly and efficiently into the existing treatment working day. This preliminary study suggests that IMRT could be a routine treatment with efficient use of current radiotherapy resources.
Lafond, Caroline; Chiavassa, Sophie; Bertaut, Cindy; Boussion, Nicolas; Chapel, Nathalie; Chapron, Lucie; Coste, Frédéric; Crespin, Sylvain; Dy, Gilles; Faye, Papa Abdoulaye; Leleu, Cyril; Bouvier, Jeanne; Madec, Ludovic; Mesgouez, Jérôme; Palisson, Jérémy; Vela, Anthony; Delpon, Grégory
2016-05-01
Static beam intensity-modulated-radiation-therapy (IMRT) and/or Volumetric-Modulated-Arc-Therapy (VMAT) are now available in many regional radiotherapy departments. The aim of this multi-institutional audit was to design a new methodology based on radiochromic films to perform an independent quality control. A set of data were sent to all participating centres for two clinical localizations: prostate and Head and Neck (H&N) cancers. The agreement between calculations and measurements was verified in the Octavius phantom (PTW) by point measurements using ionization chambers and by 2D measurements using EBT3 radiochromic films. Due to uncertainties in the whole procedure, criteria were set to 5% and 3% in local dose and 3mm in distance excluding doses lower than 10% of the maximum doses. No normalization point or area was used for the quantitative analysis. 13 radiotherapy centres participated in this audit involving 28 plans (12 IMRT, 16 VMAT). For point measurements, mean errors were -0.18±1.54% and 0.00±1.58% for prostate and H&N cases respectively. For 2D measurements with 5%/3mm criteria, gamma map analysis showed a pixel pass rate higher than 95% for prostate and H&N. Mean gamma index was lower than 0.4 for prostate and 0.5 for H&N. Both techniques yielded similar results. This study showed the feasibility of an independent quality control by peers for conventional IMRT and VMAT. Results from all participating centres were found to be in good agreement. This regional study demonstrated the feasibility of our new methodology based on radiochromic films without dose normalization on a specific point. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Chi, Alexander; Ma, Pan; Fu, Guishan; Hobbs, Gerry; Welsh, James S.; Nguyen, Nam P.; Jang, Si Young; Dai, Jinrong; Jin, Jing; Komaki, Ritsuko
2013-01-01
Background Helical tomotherapy (HT) and volumetric modulated arc therapy (VMAT) are both advanced techniques of delivering intensity-modulated radiotherapy (IMRT). Here, we conduct a study to compare HT and partial-arc VMAT in their ability to spare organs at risk (OARs) when stereotactic ablative radiotherapy (SABR) is delivered to treat centrally located early stage non-small-cell lung cancer or lung metastases. Methods 12 patients with centrally located lung lesions were randomly chosen. HT, 2 & 8 arc (Smart Arc, Pinnacle v9.0) plans were generated to deliver 70 Gy in 10 fractions to the planning target volume (PTV). Target and OAR dose parameters were compared. Each technique’s ability to meet dose constraints was further investigated. Results HT and VMAT plans generated essentially equivalent PTV coverage and dose conformality indices, while a trend for improved dose homogeneity by increasing from 2 to 8 arcs was observed with VMAT. Increasing the number of arcs with VMAT also led to some improvement in OAR sparing. After normalizing to OAR dose constraints, HT was found to be superior to 2 or 8-arc VMAT for optimal OAR sparing (meeting all the dose constraints) (p = 0.0004). All dose constraints were met in HT plans. Increasing from 2 to 8 arcs could not help achieve optimal OAR sparing for 4 patients. 2/4 of them had 3 immediately adjacent structures. Conclusion HT appears to be superior to VMAT in OAR sparing mainly in cases which require conformal dose avoidance of multiple immediately adjacent OARs. For such cases, increasing the number of arcs in VMAT cannot significantly improve OAR sparing. PMID:23577071
Sveistrup, Joen; af Rosenschöld, Per Munck; Deasy, Joseph O; Oh, Jung Hun; Pommer, Tobias; Petersen, Peter Meidahl; Engelholm, Svend Aage
2014-02-04
Image-guided radiotherapy (IGRT) facilitates the delivery of a very precise radiation dose. In this study we compare the toxicity and biochemical progression-free survival between patients treated with daily image-guided intensity-modulated radiotherapy (IG-IMRT) and 3D conformal radiotherapy (3DCRT) without daily image guidance for high risk prostate cancer (PCa). A total of 503 high risk PCa patients treated with radiotherapy (RT) and endocrine treatment between 2000 and 2010 were retrospectively reviewed. 115 patients were treated with 3DCRT, and 388 patients were treated with IG-IMRT. 3DCRT patients were treated to 76 Gy and without daily image guidance and with 1-2 cm PTV margins. IG-IMRT patients were treated to 78 Gy based on daily image guidance of fiducial markers, and the PTV margins were 5-7 mm. Furthermore, the dose-volume constraints to both the rectum and bladder were changed with the introduction of IG-IMRT. The 2-year actuarial likelihood of developing grade > = 2 GI toxicity following RT was 57.3% in 3DCRT patients and 5.8% in IG-IMRT patients (p < 0.001). For GU toxicity the numbers were 41.8% and 29.7%, respectively (p = 0.011). On multivariate analysis, 3DCRT was associated with a significantly increased risk of developing grade > = 2 GI toxicity compared to IG-IMRT (p < 0.001, HR = 11.59 [CI: 6.67-20.14]). 3DCRT was also associated with an increased risk of developing GU toxicity compared to IG-IMRT.The 3-year actuarial biochemical progression-free survival probability was 86.0% for 3DCRT and 90.3% for IG-IMRT (p = 0.386). On multivariate analysis there was no difference in biochemical progression-free survival between 3DCRT and IG-IMRT. The difference in toxicity can be attributed to the combination of the IMRT technique with reduced dose to organs-at-risk, daily image guidance and margin reduction.
Aitkenhead, A H; Rowbottom, C G; Mackay, R I
2013-10-07
We report on the design of Marvin, a Model Anatomy for Radiotherapy Verification and audit In the head and Neck and present results demonstrating its use in the development of the Elekta volumetric modulated arc therapy (VMAT) technique at the Christie, and in the audit of TomoTherapy and Varian RapidArc at other institutions. The geometry of Marvin was generated from CT datasets of eight male and female patients lying in the treatment position, with removable inhomogeneities modelling the sinuses and mandible. A modular system allows the phantom to be used with a range of detectors, with the locations of the modules being based on an analysis of a range of typical treatment plans (27 in total) which were mapped onto the phantom geometry. Results demonstrate the use of Gafchromic EBT2/EBT3 film for measurement of relative dose in a plane through the target and organs-at-risk, and the use of a small-volume ionization chamber for measurement of absolute dose in the target and spinal cord. Measurements made during the development of the head and neck VMAT protocol at the Christie quantified the improvement in plan delivery resulting from the installation of the Elekta Integrity upgrade (which permits an effectively continuously variable dose rate), with plans delivered before and after the upgrade having 88.5 ± 9.4% and 98.0 ± 2.2% respectively of points passing a gamma analysis (at 4%, 4 mm, global). Audits of TomoTherapy and Varian RapidArc neck techniques at other institutions showed a similar quality of plan delivery as for post-Integrity Elekta VMAT: film measurements for both techniques had >99% of points passing a gamma analysis at the clinical criteria of 4%, 4 mm, global, and >95% of points passing at tighter criteria of 3%, 3 mm, global; and absolute dose measurements in the PTV and spinal cord were within 1.5% and 3.5% of the planned doses respectively for both techniques. The results demonstrate that Marvin is an efficient and effective means of assessing the quality of delivery of complex radiotherapy in the head and neck, and is a useful tool to assist development and audit of these techniques.
Marvin: an anatomical phantom for dosimetric evaluation of complex radiotherapy of the head and neck
NASA Astrophysics Data System (ADS)
Aitkenhead, A. H.; Rowbottom, C. G.; Mackay, R. I.
2013-10-01
We report on the design of Marvin, a Model Anatomy for Radiotherapy Verification and audit In the head and Neck and present results demonstrating its use in the development of the Elekta volumetric modulated arc therapy (VMAT) technique at the Christie, and in the audit of TomoTherapy and Varian RapidArc at other institutions. The geometry of Marvin was generated from CT datasets of eight male and female patients lying in the treatment position, with removable inhomogeneities modelling the sinuses and mandible. A modular system allows the phantom to be used with a range of detectors, with the locations of the modules being based on an analysis of a range of typical treatment plans (27 in total) which were mapped onto the phantom geometry. Results demonstrate the use of Gafchromic EBT2/EBT3 film for measurement of relative dose in a plane through the target and organs-at-risk, and the use of a small-volume ionization chamber for measurement of absolute dose in the target and spinal cord. Measurements made during the development of the head and neck VMAT protocol at the Christie quantified the improvement in plan delivery resulting from the installation of the Elekta Integrity upgrade (which permits an effectively continuously variable dose rate), with plans delivered before and after the upgrade having 88.5 ± 9.4% and 98.0 ± 2.2% respectively of points passing a gamma analysis (at 4%, 4 mm, global). Audits of TomoTherapy and Varian RapidArc neck techniques at other institutions showed a similar quality of plan delivery as for post-Integrity Elekta VMAT: film measurements for both techniques had >99% of points passing a gamma analysis at the clinical criteria of 4%, 4 mm, global, and >95% of points passing at tighter criteria of 3%, 3 mm, global; and absolute dose measurements in the PTV and spinal cord were within 1.5% and 3.5% of the planned doses respectively for both techniques. The results demonstrate that Marvin is an efficient and effective means of assessing the quality of delivery of complex radiotherapy in the head and neck, and is a useful tool to assist development and audit of these techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGeachy, P; Villarreal-Barajas, JE; Khan, R
2015-06-15
Purpose: The dosimetric outcome of optimized treatment plans obtained by modulating the photon beamlet energy and fluence on a small cohort of four Head and Neck (H and N) patients was investigated. This novel optimization technique is denoted XMRT for modulated photon radiotherapy. The dosimetric plans from XMRT for H and N treatment were compared to conventional, 6 MV intensity modulated radiotherapy (IMRT) optimization plans. Methods: An arrangement of two non-coplanar and five coplanar beams was used for all four H and N patients. Both XMRT and IMRT were subject to the same optimization algorithm, with XMRT optimization allowing bothmore » 6 and 18 MV beamlets while IMRT was restricted to 6 MV only. The optimization algorithm was based on a linear programming approach with partial-volume constraints implemented via the conditional value-at-risk method. H and N constraints were based off of those mentioned in the Radiation Therapy Oncology Group 1016 protocol. XMRT and IMRT solutions were assessed using metrics suggested by International Commission on Radiation Units and Measurements report 83. The Gurobi solver was used in conjunction with the CVX package to solve each optimization problem. Dose calculations and analysis were done in CERR using Monte Carlo dose calculation with VMC{sub ++}. Results: Both XMRT and IMRT solutions met all clinical criteria. Trade-offs were observed between improved dose uniformity to the primary target volume (PTV1) and increased dose to some of the surrounding healthy organs for XMRT compared to IMRT. On average, IMRT improved dose to the contralateral parotid gland and spinal cord while XMRT improved dose to the brainstem and mandible. Conclusion: Bi-energy XMRT optimization for H and N patients provides benefits in terms of improved dose uniformity to the primary target and reduced dose to some healthy structures, at the expense of increased dose to other healthy structures when compared with IMRT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, T; Chen, J; Zhang, G
2015-06-15
Purpose: To compare and analyze the characteristics of intensity-modulated arc therapy(IMAT) versus fixed-gantry intensity-modulated radiotherapy(IMRT) in treatment of non-small-cell lung cancer. Methods: Twelve patients treated in our radiotherapy center were selected for this study. The patient subsequently underwent 4D-CT simulation.Margins of 5mm and 10mm were added to the ITV to generate the CTV and PTV respectively. Three treatment plans (IMRT,one single arc (RA1),double arcs (RA2))were generated with Eclipse ver.8.6 planning systems. Using a dose level of 75Gy in 15fractions to the ITV,60Gy in 15fractions to the CTV and 45Gy in 15fractions to the PTV respectively. The target and normol tissuemore » volumes were compared,as were the dosimetry parameters. Results: There were no significant differences in CI of ITV,PTV,HI of ITV,CTV and PTV, V5,V10,V15,V20,V25,V30,V45,V50 of total-lung and mean lung dose (all p>0.05). However, the differences were significant in terms of CI of CTV,V5 of B-P (all p<0.05). On the MU, IMRT=1540MU,RA1=1006 MU and RA2=1096 MU. (F=12.00,P=0.000).On the treatment time, IMRT= 13.5min,RA1= 1.5min,and RA2=2.5 min (F= 30.11,P=0.000 ). Conclusion: IMAT is equal to IMRT in dosimetril evaluation. Due to much less Mu and delivery time,IMAT is an ideal technique in treating patients by reduceing the uncomfortable influnce which could effect the treatment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiahao, E-mail: mashenglin@medmail.com.cn; Li, Xiadong; Deng, Qinghua
2015-10-01
The purposes of this article were to compare the biophysical dosimetry for postmastectomy left-sided breast cancer using 4 different radiotherapy (RT) techniques. In total, 30 patients with left-sided breast cancer were randomly selected for this treatment planning study. They were planned using 4 RT techniques, including the following: (1) 3-dimensional conventional tangential fields (TFs), (2) tangential intensity-modulated therapy (T-IMRT), (3) 4 fields IMRT (4F-IMRT), and (4) single arc volumetric-modulated arc therapy (S-VMAT). The planning target volume (PTV) dose was prescribed 50 Gy, the comparison of target dose distribution, conformity index, homogeneity index, dose to organs at risk (OARs), tumor controlmore » probability (TCP), normal tissue complication probability (NTCP), and number of monitor units (MUs) between 4 plans were investigated for their biophysical dosimetric difference. The target conformity and homogeneity of S-VMAT were better than the other 3 kinds of plans, but increased the volume of OARs receiving low dose (V{sub 5}). TCP of PTV and NTCP of the left lung showed no statistically significant difference in 4 plans. 4F-IMRT plan was superior in terms of target coverage and protection of OARs and demonstrated significant advantages in decreasing the NTCP of heart by 0.07, 0.03, and 0.05 compared with TFs, T-IMRT, and S-VMAT plan. Compared with other 3 plans, TFs reduced the average number of MUs. Of the 4 techniques studied, this analysis supports 4F-IMRT as the most appropriate balance of target coverage and normal tissue sparing.« less
Radiation therapy for breast cancer: Literature review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balaji, Karunakaran, E-mail: karthik.balaji85@gmail.com; School of Advanced Sciences, VIT University, Vellore; Subramanian, Balaji
Concave shape with variable size target volume makes treatment planning for the breast/chest wall a challenge. Conventional techniques used for the breast/chest wall cancer treatment provided better sparing of organs at risk (OARs), with poor conformity and uniformity to the target volume. Advanced technologies such as intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) improve the target coverage at the cost of higher low dose volumes to OARs. Novel hybrid techniques present promising results in breast/chest wall irradiation in terms of target coverage as well as OARs sparing. Several published data compared these technologies for the benefit ofmore » the breast/chest wall with or without nodal volumes. The aim of this article is to review relevant data and identify the scope for further research in developing optimal treatment plan for breast/chest wall cancer treatment.« less
Crowe, Scott B; Kairn, Tanya; Middlebrook, Nigel; Hill, Brendan; Christie, David R H; Knight, Richard T; Kenny, John; Langton, Christian M; Trapp, Jamie V
2013-01-01
Introduction This study examines and compares the dosimetric quality of radiotherapy treatment plans for prostate carcinoma across a cohort of 163 patients treated across five centres: 83 treated with three-dimensional conformal radiotherapy (3DCRT), 33 treated with intensity modulated radiotherapy (IMRT) and 47 treated with volumetric modulated arc therapy (VMAT). Methods Treatment plan quality was evaluated in terms of target dose homogeneity and organs at risk (OAR), through the use of a set of dose metrics. These included the mean, maximum and minimum doses; the homogeneity and conformity indices for the target volumes; and a selection of dose coverage values that were relevant to each OAR. Statistical significance was evaluated using two-tailed Welch's T-tests. The Monte Carlo DICOM ToolKit software was adapted to permit the evaluation of dose metrics from DICOM data exported from a commercial radiotherapy treatment planning system. Results The 3DCRT treatment plans offered greater planning target volume dose homogeneity than the other two treatment modalities. The IMRT and VMAT plans offered greater dose reduction in the OAR: with increased compliance with recommended OAR dose constraints, compared to conventional 3DCRT treatments. When compared to each other, IMRT and VMAT did not provide significantly different treatment plan quality for like-sized tumour volumes. Conclusions This study indicates that IMRT and VMAT have provided similar dosimetric quality, which is superior to the dosimetric quality achieved with 3DCRT. PMID:26229621
Ng, Sweet Ping; Tran, Thu; Moloney, Philip; Sale, Charlotte; Mathlum, Maitham; Ong, Grace; Lynch, Rod
2015-12-01
Cases of synchronous prostate and colorectal adenocarcinomas have been sporadically reported. There are case reports on patients with synchronous prostate and rectal cancers treated with external beam radiotherapy alone or combined with high-dose rate brachytherapy boost to the prostate. Here, we illustrate a patient with synchronous prostate and rectal cancers treated using the volumetric arc therapy (VMAT) technique. The patient was treated with radical radiotherapy to 50.4 Gy in 28 fractions to the pelvis, incorporating the involved internal iliac node and the prostate. A boost of 24 Gy in 12 fractions was delivered to the prostate only, using VMAT. Treatment-related toxicities and follow-up prostate-specific antigen and carcinoembryonic antigen were collected for data analysis. At 12 months, the patient achieved complete response for both rectal and prostate cancers without significant treatment-related toxicities.
Radiation techniques used in patients with breast cancer: Results of a survey in Spain
Algara, Manuel; Arenas, Meritxell; De las Peñas Eloisa Bayo, Dolores; Muñoz, Julia; Carceller, José Antonio; Salinas, Juan; Moreno, Ferran; Martínez, Francisco; González, Ezequiel; Montero, Ángel
2012-01-01
Aim To evaluate the resources and techniques used in the irradiation of patients with breast cancer after lumpectomy or mastectomy and the status of implementation of new techniques and therapeutic schedules in our country. Background The demand for cancer care has increased among the Spanish population, as long as cancer treatment innovations have proliferated. Radiation therapy in breast cancer has evolved exponentially in recent years with the implementation of three-dimensional conformal radiotherapy, intensity modulated radiotherapy, image guided radiotherapy and hypofractionation. Material and Methods An original survey questionnaire was sent to institutions participating in the SEOR-Mama group (GEORM). In total, the standards of practice in 969 patients with breast cancer after surgery were evaluated. Results The response rate was 70% (28/40 centers). In 98.5% of cases 3D conformal treatment was used. All the institutions employed CT-based planning treatment. Boost was performed in 56.4% of patients: electrons in 59.8%, photons in 23.7% and HDR brachytherapy in 8.8%. Fractionation was standard in 93.1% of patients. Supine position was the most frequent. Only 3 centers used prone position. The common organs of risk delimited were: homolateral lung (80.8%) and heart (80.8%). In 84% histograms were used. An 80.8% of the centers used isocentric technique. In 62.5% asymmetric fields were employed. CTV was delimited in 46.2%, PTV in 65% and both in 38.5%. A 65% of the centers checked with portal films. IMRT and hypofractionation were used in 1% and in 5.5% respectively. Conclusion In most of centers, 3D conformal treatment and CT-based planning treatment were used. IMRT and hypofractionation are currently poorly implemented in Spain. PMID:24377012
Applying the technique of volume-modulated arc radiotherapy to upper esophageal carcinoma.
Ma, Pan; Wang, Xiaozhen; Xu, Yingjie; Dai, Jianrong; Wang, Luhua
2014-05-08
This study aims to evaluate the possibility of using the technique of volume-modulated arc therapy (VMAT) to combine the advantages of simplified intensity-modulated radiation therapy (sIMRT) with that of regular intensity-modulated radiation therapy (IMRT) in upper esophageal cancer. Ten patients with upper esophageal carcinoma were randomly chosen in this retrospective study. sIMRT, IMRT, and VMAT plans were generated to deliver 60 Gy in 30 fractions to the planning target volume (PTV). For each patient, with the same clinical requirements (target dose prescription, and dose/dose-volume constraints to organs at risk (OARs)), three plans were designed for sIMRT (five equispaced coplanar beams), IMRT (seven equispaced coplanar beams), and VMAT (two complete arcs). Comparisons were performed for dosimetric parameters of PTV and of OARs (lungs, spinal cord PRV, heart and normal tissue (NT)). All the plans were delivered to a phantom to evaluate the treatment time. The Wilcoxon matched-pairs, signed-rank test was used for intragroup comparison. For all patients, compared to sIMRT plans, VMAT plans statistically provide: a) significant improvement in HI and CI for PTV; b) significant decrease in delivery time, lung V20, MLD, heart V30 and spinal cord PRV D1cc; c) significant increase in NT V5; and d) no significant reduction in lung V5, V10, and heart MD. For all patients, compared to IMRT plans, VMAT plans statistically provide: a) significant improvement in CI for PTV; b) significant decrease in delivery time, lung V20, MLD, NT and spinal cord PRV D1cc; c) significant increase in NT V5; and d) no significant reduction in HI for PTV, lung V5, V10, heart V30 and heart MD. For patients with upper esophageal carcinoma, using VMAT significantly reduces the delivery time and the dose to the lungs compared with IMRT, and consequently saves as much treatment time as sIMRT. Considering those significant advantages, compared to sIMRT and IMRT, VMAT is the first choice of radiotherapy techniques for upper esophageal carcinoma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakanaka, Katsuyuki; Mizowaki, Takashi, E-mail: mizo@kuhp.kyoto-u.ac.jp; Sato, Sayaka
This study evaluated the dosimetric difference between volumetric-modulated arc therapy (VMAT) and conventional fixed-field intensity-modulated radiotherapy (cIMRT) in whole-ventricular irradiation. Computed tomography simulation data for 13 patients were acquired to create plans for VMAT and cIMRT. In both plans, the same median dose (100% = 24 Gy) was prescribed to the planning target volume (PTV), which comprised a tumor bed and whole ventricles. During optimization, doses to the normal brain and body were reduced, provided that the dose constraints of the target coverage were satisfied. The dose-volume indices of the PTV, normal brain, and body as well as monitor unitsmore » were compared between the 2 techniques by using paired t-tests. The results showed no significant difference in the homogeneity index (0.064 vs 0.065; p = 0.824) of the PTV and conformation number (0.78 vs 0.77; p = 0.065) between the 2 techniques. In the normal brain and body, the dose-volume indices showed no significant difference between the 2 techniques, except for an increase in the volume receiving a low dose in VMAT; the absolute volume of the normal brain and body receiving 1 Gy of radiation significantly increased in VMAT by 1.6% and 8.3%, respectively, compared with that in cIMRT (1044 vs 1028 mL for the normal brain and 3079.2 vs 2823.3 mL for the body; p<0.001). The number of monitor units to deliver a 2.0-Gy fraction was significantly reduced in VMAT compared with that in cIMRT (354 vs 873, respectively; p<0.001). In conclusion, VMAT delivers IMRT to complex target volumes such as whole ventricles with fewer monitor units, while maintaining target coverage and conformal isodose distribution comparable to cIMRT; however, in addition to those characteristics, the fact that the volume of the normal brain and body receiving a low dose would increase in VMAT should be considered.« less
SU-E-T-66: A Prototype for Couch Based Real-Time Dosimetry in External Beam Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramachandran, P
Purpose: The main purpose of this study is to design a prototype for couch-based based real time dosimetry system in external beam radiotherapy Methods: A prototype of 100 ionization chambers was designed on a printed circuit board by etching the copper layer and each ionization chamber was wired to a 50 pin connector. The signals from the two 50 pin connectors collected from the ionization chambers were then transferred to a PXI module from National Instruments. The PXI module houses a current amplifier that amplifies the charge collected from the ionization chamber. The amplified signal is then sent to amore » digital multimeter module for converting the analog signal to digital signal. A software was designed in labview to read and display the signals obtained from the PXI module. A couch attachment frame was designed to house the 100 ionization chamber module. The frame was fixed underneath the treatment couch for measuring the dose during treatment. Resutls: The ionization chamber based prototype dosimetry was tested for simple radiotherapy treatment fields and found to be a useful device for measuring real time dosimetry at the treatment couch plane. This information could be used to assess the delivered dose to a patient during radiotherapy. It could be used as an invivo dosimeter during radiotherapy. Conclusion: In this study, a prototype for couch based real time dosimetry system was designed and tested. The prototype forms a basis for the development of large scale couch based real time dosimetry system that could be used to perform morning QA prior to treatment, assess real time doses delivered to patient and as a device to monitor the output of the treatment beam. Peter MacCallum Cancer Foundation.« less
Gastrointestinal radiation injury: prevention and treatment.
Shadad, Abobakr K; Sullivan, Frank J; Martin, Joseph D; Egan, Laurence J
2013-01-14
With the recent advances in detection and treatment of cancer, there is an increasing emphasis on the efficacy and safety aspects of cancer therapy. Radiation therapy is a common treatment for a wide variety of cancers, either alone or in combination with other treatments. Ionising radiation injury to the gastrointestinal tract is a frequent side effect of radiation therapy and a considerable proportion of patients suffer acute or chronic gastrointestinal symptoms as a result. These side effects often cause morbidity and may in some cases lower the efficacy of radiotherapy treatment. Radiation injury to the gastrointestinal tract can be minimised by either of two strategies: technical strategies which aim to physically shift radiation dose away from the normal intestinal tissues, and biological strategies which aim to modulate the normal tissue response to ionising radiation or to increase its resistance to it. Although considerable improvement in the safety of radiotherapy treatment has been achieved through the use of modern optimised planning and delivery techniques, biological techniques may offer additional further promise. Different agents have been used to prevent or minimize the severity of gastrointestinal injury induced by ionising radiation exposure, including biological, chemical and pharmacological agents. In this review we aim to discuss various technical strategies to prevent gastrointestinal injury during cancer radiotherapy, examine the different therapeutic options for acute and chronic gastrointestinal radiation injury and outline some examples of research directions and considerations for prevention at a pre-clinical level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, K; Chang, X; Wang, J
Purpose: To evaluate whether Auto-Planning based volumetric-modulated radiotherapy (auto-VMAT) can reduce manual interaction time during treatment planning and improve plan quality for rectal cancer radiotherapy. Methods: Ten rectal cancer patients (stage II and III) after radical resection using Dixon surgery were enrolled. All patients were treated with VMAT technique. The manual VMAT plans (man-VMAT) were designed in the Pinnacle treatment planning system (Version 9.10) following the standard treatment planning procedure developed in our department. Clinical plans were manually designed by our experienced dosimetrists. Additionally, an auto-VMAT plan was created for each patient using Auto-Planning module. However, manual interaction was stillmore » applied to meet the clinical requirements. The treatment planning time and plan quality surrogated by the DVH parameters were compared between manual and automated plans. Results: The total planning time and manual interaction time were 50.38 and 4.47 min for the auto-VMAT and 36.81 and 16.94 min for the man-VMAT (t=60.14,−23.86; p=0.000, 0.000). In terms of plan quality, both plans meet the clinical requirements. The PTV homogeneity index (HI) and conformity index (CI) were 0.054 and 0.822 for the auto-VMAT and 0.059 and 0.815 for the man-VMAT (t=−1.72, 0.36;p=0.119,0.730).Compared to the man-VMAT, the auto-VMAT showed reduction of 11.9% and 0.7% in V40 and V50 of the bladder, respectively.The V30 and D mean were reduced by 14.0% and 5.1Gy in the left femur and 12.2% and 3.8Gy in the right femur. Conclusion: The Auto-Planning based VMAT plans not only shows similar or superior plan quality to the manual ones in the rectal cancer radiotherapy, but also improve the planning efficiency significantly. However, manual interactions are still required to achieve a clinically acceptable plan based on our experiences.« less
Dickey, Mike; Roa, Wilson; Drodge, Suzanne; Ghosh, Sunita; Murray, Brad; Scrimger, Rufus; Gabos, Zsolt
2015-01-01
The primary objective of this study was to compare dosimetric variables as well as treatment times of multiple static fields (MSFs), conformal arcs (CAs), and volumetric modulated arc therapy (VMAT) techniques for the treatment of early stage lung cancer using stereotactic body radiotherapy (SBRT). Treatments of 23 patients previously treated with MSF of 48Gy to 95% of the planning target volume (PTV) in 4 fractions were replanned using CA and VMAT techniques. Dosimetric parameters of the Radiation Therapy Oncology Group (RTOG) 0915 trial were evaluated, along with the van׳t Riet conformation number (CN), monitor units (MUs), and actual and calculated treatment times. Paired t-tests for noninferiority were used to compare the 3 techniques. CA had significant dosimetric improvements over MSF for the ratio of the prescription isodose volume to PTV (R100%, p < 0.0001), the maximum dose 2cm away from the PTV (D2cm, p = 0.005), and van׳t Riet CN (p < 0.0001). CA was not statistically inferior to MSF for the 50% prescription isodose volume to PTV (R50%, p = 0.05). VMAT was significantly better than CA for R100% (p < 0.0001), R50% (p < 0.0001), D2cm (p = 0.006), and CN (p < 0.0001). CA plans had significantly shorter treatment times than those of VMAT (p < 0.0001). Both CA and VMAT planning showed significant dosimetric improvements and shorter treatment times over those of MSF. VMAT showed the most favorable dosimetry of all 3 techniques; however, the dosimetric effect of tumor motion was not evaluated. CA plans were significantly faster to treat, and minimize the interplay of tumor motion and dynamic multileaf collimator (MLC) motion effects. Given these results, CA has become the treatment technique of choice at our facility. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
New 2-D dosimetric technique for radiotherapy based on planar thermoluminescent detectors.
Olko, P; Marczewska, B; Czopyk, L; Czermak, M A; Klosowski, M; Waligórski, M P R
2006-01-01
At the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ) in Kraków, a two-dimensional (2-D) thermoluminescence (TL) dosimetry system was developed within the MAESTRO (Methods and Advanced Equipment for Simulation and Treatment in Radio-Oncology) 6 Framework Programme and tested by evaluating 2-D dose distributions around radioactive sources. A thermoluminescent detector (TLD) foil was developed, of thickness 0.3 mm and diameter 60 mm, containing a mixture of highly sensitive LiF:Mg,Cu,P powder and Ethylene TetraFluoroEthylene (ETFE) polymer. Foil detectors were irradiated with (226)Ra brachytherapy sources and a (90)Sr/(90)Y source. 2-D dose distributions were evaluated using a prototype planar (diameter 60 mm) reader, equipped with a 12 bit Charge Coupled Devices (CCD) PCO AG camera, with a resolution of 640 x 480 pixels. The new detectors, showing a spatial resolution better than 0.5 mm and a measurable dose range typical for radiotherapy, can find many applications in clinical dosimetry. Another technology applicable to clinical dosimetry, also developed at IFJ, is the Si microstrip detector of size 95 x 95 mm(2), which may be used to evaluate the dose distribution with a spatial resolution of 120 microm along one direction, in real-time mode. The microstrip and TLD technology will be further improved, especially to develop detectors of larger area, and to make them applicable to some advanced radiotherapy modalities, such as intensity modulated radiotherapy (IMRT) or proton radiotherapy.
Keilholz, L; Willner, J; Thiel, H-J; Zamboglou, N; Sack, H; Popp, W
2014-01-01
In order to evaluate resource requirements, the German Society of Radiation Oncology (DEGRO) recorded the times needed for core procedures in the radio-oncological treatment of various cancer types within the scope of its QUIRO trial. The present study investigated the personnel and infrastructural resources required in radiotherapy of prostate cancer. The investigation was carried out in the setting of definitive radiotherapy of prostate cancer patients between July and October 2008 at two radiotherapy centers, both with well-trained staff and modern technical facilities at their disposal. Personnel attendance times and room occupancy times required for core procedures (modules) were each measured prospectively by two independently trained observers using time measurements differentiated on the basis of professional group (physician, physicist, and technician), 3D conformal (3D-cRT), and intensity-modulated radiotherapy (IMRT). Total time requirements of 983 min for 3D-cRT and 1485 min for step-and-shoot IMRT were measured for the technician (in terms of professional group) in all modules recorded and over the entire course of radiotherapy for prostate cancer (72-76 Gy). Times needed for the medical specialist/physician were 255 min (3D-cRT) and 271 min (IMRT), times of the physicist were 181 min (3D-cRT) and 213 min (IMRT). The difference in time was significant, although variations in time spans occurred primarily as a result of various problems during patient treatment. This investigation has permitted, for the first time, a realistic estimation of average personnel and infrastructural requirements for core procedures in quality-assured definitive radiotherapy of prostate cancer. The increased time needed for IMRT applies to the step-and-shoot procedure with verification measurements for each irradiation planning.
Comparison of IMRT versus 3D-CRT in the treatment of esophagus cancer
Xu, Dandan; Li, Guowen; Li, Hongfei; Jia, Fei
2017-01-01
Abstract Background: Esophageal cancer (EC) is a common cancer with high mortality because of its rapid progression and poor prognosis. Radiotherapy is one of the most effective treatments for EC. Three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) are 2 recently developed radiotherapy techniques. IMRT is believed to be more effective than 3D-CRT in target coverage, dose homogeneity, and reducing toxicity to normal organs. However, these advantages have not been demonstrated in the treatment of EC. This meta-analysis was performed to compare IMRT and 3D-CRT in the treatment of EC in terms of dose–volume histograms and outcomes including survival and toxicity. Methods: A literature search was performed in PubMed, Embase, and the Cochrane library databases from their inceptions to Dec 30, 2016. Two authors independently assessed the included studies and extracted data. The average percent irradiated volumes of adjacent noncancerous organs were calculated and compared between IMRT and 3D-CRT. The odds ratio of overall survival (OS), and radiation pneumonitis and radiation esophagitis was also evaluated. Results: Totally 7 studies were included. Of them, 5 studies (80 patients) were included in the dosimetric comparison, 3 studies (871 patients) were included in the OS analysis, and 2 studies (205 patients) were included in the irradiation toxicity analysis. For lung in patients receiving doses ≥20 Gy and heart in patients receiving dose = 50 Gy, the average irradiated volumes of IMRT were less than those from 3D-CRT. IMRT resulted in a higher OS than 3D-CRT. However, no significant difference was observed in the incidence of radiation pneumonitis and radiation esophagitis between 2 radiotherapy techniques. Conclusion: Our data suggest that IMRT-delivered high radiation dose produces significantly less average percent volumes of irradiated lung and heart than 3D-CRT. IMRT is superior to 3D-CRT in the OS of EC while shows no benefit on radiation toxicity. PMID:28767597
Xu, Dandan; Li, Guowen; Li, Hongfei; Jia, Fei
2017-08-01
Esophageal cancer (EC) is a common cancer with high mortality because of its rapid progression and poor prognosis. Radiotherapy is one of the most effective treatments for EC. Three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) are 2 recently developed radiotherapy techniques. IMRT is believed to be more effective than 3D-CRT in target coverage, dose homogeneity, and reducing toxicity to normal organs. However, these advantages have not been demonstrated in the treatment of EC. This meta-analysis was performed to compare IMRT and 3D-CRT in the treatment of EC in terms of dose-volume histograms and outcomes including survival and toxicity. A literature search was performed in PubMed, Embase, and the Cochrane library databases from their inceptions to Dec 30, 2016. Two authors independently assessed the included studies and extracted data. The average percent irradiated volumes of adjacent noncancerous organs were calculated and compared between IMRT and 3D-CRT. The odds ratio of overall survival (OS), and radiation pneumonitis and radiation esophagitis was also evaluated. Totally 7 studies were included. Of them, 5 studies (80 patients) were included in the dosimetric comparison, 3 studies (871 patients) were included in the OS analysis, and 2 studies (205 patients) were included in the irradiation toxicity analysis. For lung in patients receiving doses ≥20 Gy and heart in patients receiving dose = 50 Gy, the average irradiated volumes of IMRT were less than those from 3D-CRT. IMRT resulted in a higher OS than 3D-CRT. However, no significant difference was observed in the incidence of radiation pneumonitis and radiation esophagitis between 2 radiotherapy techniques. Our data suggest that IMRT-delivered high radiation dose produces significantly less average percent volumes of irradiated lung and heart than 3D-CRT. IMRT is superior to 3D-CRT in the OS of EC while shows no benefit on radiation toxicity.
NASA Astrophysics Data System (ADS)
Gutierrez, Alonso Navar
2007-12-01
Recent improvements in imaging technology and radiation delivery have led to the development of advanced treatment techniques in radiotherapy which have opened the door for novel therapeutic approaches to improve the efficacy of radiation cancer treatments. Among these advances is image-guided, intensity modulated radiation therapy (IG-IMRT), in which imaging is incorporated to aid in inter-/intra-fractional target localization and to ensure accurate delivery of precise and highly conformal dose distributions. In principle, clinical implementation of IG-IMRT should improve normal tissue sparing and permit effective biological dose escalation thus widening the radiation therapeutic window and lead to increases in survival through improved local control of primary neoplastic diseases. Details of the development of three clinical applications made possible solely with IG-IMRT radiation delivery techniques are presented: (1) Laparoscopically implanted tissue expander radiotherapy (LITE-RT) has been developed to enhance conformal avoidance of normal tissue during the treatment of intra-abdominopelvic cancers. LITE-RT functions by geometrically displacing surrounding normal tissue and isolating the target volume through the interfractional inflation of a custom-shaped tissue expander throughout the course of treatment. (2) The unique delivery geometry of helical tomotherapy, a novel form of IG-IMRT, enables the delivery of composite treatment plan m which whole brain radiotherapy (WBRT) with hippocampal avoidance, hypothesized to reduce the risk of memory function decline and improve the patient's quality of life, and simultaneously integrated boost to multiple brain metastases to improve intracranial tumor control is achieved. (3) Escalation of biological dose to targets through integrated, selective subvolume boosts have been shown to efficiently increase tumor dose without significantly increasing normal tissue dose. Helical tomotherapy was used to investigate the feasibility of delivering a simultaneously integrated subvolume boost to canine nasal tumors and was found to dramatically increase estimated 1-year tumor control probability (TCP) without increasing the dose to the eyes, so as to preserve vision, and to the brain, so as to prevent neuropathy.
Lawrence, Jessica A.; Forrest, Lisa J.; Turek, Michelle M.; Miller, Paul E.; Mackie, T. Rockwell; Jaradat, Hazim A.; Vail, David M.; Dubielzig, Richard R.; Chappell, Richard; Mehta, Minesh P.
2010-01-01
Intensity modulated radiation therapy (IMRT) allows optimization of radiation dose delivery to complex tumor volumes with rapid dose drop-off to surrounding normal tissues. A prospective study was performed to evaluate the concept of conformal avoidance using IMRT in canine sinonasal cancer. The potential of IMRT to improve clinical outcome with respect to acute and late ocular toxicity was evaluated. Thirty-one dogs with sinonasal cancer were treated definitively with IMRT using helical tomotherapy and/or dynamic multileaf collimator (DMLC) delivery. Ocular toxicity was evaluated prospectively and compared to a comparable group of historical controls treated with conventional two-dimensional radiotherapy (2D-RT) techniques. Treatment plans were devised for each dog using helical tomotherapy and DMLC that achieved the target dose to the planning treatment volume and limited critical normal tissues to the prescribed dose-volume constraints. Overall acute and late toxicities were limited and minor, detectable by an experienced observer. This was in contrast to the profound ocular morbidity observed in the historical control group treated with 2D-RT. Overall median survival for IMRT treated and 2D treated dogs was 420 days and 411 days, respectively. Compared with conventional techniques, IMRT reduced dose delivered to eyes and resulted in bilateral ocular sparing in the dogs reported herein. These data provide proof-of-principle that conformal avoidance radiotherapy can be delivered through high conformity IMRT, resulting in decreased normal tissue toxicity as compared to historical controls treated with 2D-RT. PMID:20973393
Morris, K
2017-06-01
The dose of radiotherapy is often verified by measuring the dose of radiation at specific points within a phantom. The presence of high-density implant materials such as titanium, however, may cause complications both during calculation and delivery of the dose. Numerous studies have reported photon/electron backscatter and alteration of the dose by high-density implants, but we know of no evidence of a dosimetry phantom that incorporates high density implants or fixtures. The aim of the study was to design and manufacture a tissue-equivalent head phantom for use in verification of the dose in radiotherapy using a combination of traditional laboratory materials and techniques and 3-dimensional technology that can incorporate titanium maxillofacial devices. Digital designs were used together with Mimics® 18.0 (Materialise NV) and FreeForm® software. DICOM data were downloaded and manipulated into the final pieces of the phantom mould. Three-dimensional digital objects were converted into STL files and exported for additional stereolithography. Phantoms were constructed in four stages: material testing and selection, design of a 3-dimensional mould, manufacture of implants, and final fabrication of the phantom using traditional laboratory techniques. Three tissue-equivalent materials were found and used to successfully manufacture a suitable phantom with interchangeable sections that contained three versions of titanium maxillofacial implants. Maxillofacial and other materials can be used to successfully construct a head phantom with interchangeable titanium implant sections for use in verification of doses of radiotherapy. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Nutting, Christopher M; Morden, James P; Harrington, Kevin J; Urbano, Teresa Guerrero; Bhide, Shreerang A; Clark, Catharine; Miles, Elizabeth A; Miah, Aisha B; Newbold, Kate; Tanay, MaryAnne; Adab, Fawzi; Jefferies, Sarah J; Scrase, Christopher; Yap, Beng K; A'Hern, Roger P; Sydenham, Mark A; Emson, Marie; Hall, Emma
2011-01-01
Summary Background Xerostomia is the most common late side-effect of radiotherapy to the head and neck. Compared with conventional radiotherapy, intensity-modulated radiotherapy (IMRT) can reduce irradiation of the parotid glands. We assessed the hypothesis that parotid-sparing IMRT reduces the incidence of severe xerostomia. Methods We undertook a randomised controlled trial between Jan 21, 2003, and Dec 7, 2007, that compared conventional radiotherapy (control) with parotid-sparing IMRT. We randomly assigned patients with histologically confirmed pharyngeal squamous-cell carcinoma (T1–4, N0–3, M0) at six UK radiotherapy centres between the two radiotherapy techniques (1:1 ratio). A dose of 60 or 65 Gy was prescribed in 30 daily fractions given Monday to Friday. Treatment was not masked. Randomisation was by computer-generated permuted blocks and was stratified by centre and tumour site. Our primary endpoint was the proportion of patients with grade 2 or worse xerostomia at 12 months, as assessed by the Late Effects of Normal Tissue (LENT SOMA) scale. Analyses were done on an intention-to-treat basis, with all patients who had assessments included. Long-term follow-up of patients is ongoing. This study is registered with the International Standard Randomised Controlled Trial register, number ISRCTN48243537. Findings 47 patients were assigned to each treatment arm. Median follow-up was 44·0 months (IQR 30·0–59·7). Six patients from each group died before 12 months and seven patients from the conventional radiotherapy and two from the IMRT group were not assessed at 12 months. At 12 months xerostomia side-effects were reported in 73 of 82 alive patients; grade 2 or worse xerostomia at 12 months was significantly lower in the IMRT group than in the conventional radiotherapy group (25 [74%; 95% CI 56–87] of 34 patients given conventional radiotherapy vs 15 [38%; 23–55] of 39 given IMRT, p=0·0027). The only recorded acute adverse event of grade 2 or worse that differed significantly between the treatment groups was fatigue, which was more prevalent in the IMRT group (18 [41%; 99% CI 23–61] of 44 patients given conventional radiotherapy vs 35 [74%; 55–89] of 47 given IMRT, p=0·0015). At 24 months, grade 2 or worse xerostomia was significantly less common with IMRT than with conventional radiotherapy (20 [83%; 95% CI 63–95] of 24 patients given conventional radiotherapy vs nine [29%; 14–48] of 31 given IMRT; p<0·0001). At 12 and 24 months, significant benefits were seen in recovery of saliva secretion with IMRT compared with conventional radiotherapy, as were clinically significant improvements in dry-mouth-specific and global quality of life scores. At 24 months, no significant differences were seen between randomised groups in non-xerostomia late toxicities, locoregional control, or overall survival. Interpretation Sparing the parotid glands with IMRT significantly reduces the incidence of xerostomia and leads to recovery of saliva secretion and improvements in associated quality of life, and thus strongly supports a role for IMRT in squamous-cell carcinoma of the head and neck. Funding Cancer Research UK (CRUK/03/005). PMID:21236730
Intensity Modulated Radiotherapy (IMRT) in head and neck cancers - an overview.
Nutting, C M
2012-07-01
Radiotherapy (RT) is effective in head and neck cancers. Following RT, dryness and dysphagia are the 2 major sequelae which alter the quality of life (QOL) significantly in these patients. There is randomized evidence that Intensity Modulated Radiotherapy (IMRT) effectively spares the parotid glands. IMRT has been attempted in all head and neck subsites with encouraging results (discussed below). Role of IMRT in swallowing structure (constrictor muscles) sparing is less clear.Further improvement in results may be possible by using functional imaging at the time of RT planning and by image guidance/verification at the time of treatment delivery. The following text discusses these issues in detail. Head and neck cancer, IMRT.
Cora, Stefania; Khan, Ehsan Ullah
2017-01-01
Abstract Volumetric-modulated arc therapy (VMAT) is an efficient form of radiotherapy used to deliver intensity-modulated radiotherapy beams. The aim of this study was to investigate the relative insensitivity of VMAT plan quality to gantry angle spacing (GS). Most previous VMAT planning and dosimetric work for GS resolution has been conducted for single arc VMAT. In this work, a quantitative comparison of dose–volume indices (DIs) was made for partial-, single- and double-arc VMAT plans optimized at 2°, 3° and 4° GS, representing a large variation in deliverable multileaf collimator segments. VMAT plans of six prostate cancer and six head-and-neck cancer patients were simulated for an Elekta SynergyS® Linac (Elekta Ltd, Crawley, UK), using the SmartArc™ module of Pinnacle³ TPS, (version 9.2, Philips Healthcare). All optimization techniques generated clinically acceptable VMAT plans, except for the single-arc for the head-and-neck cancer patients. Plan quality was assessed by comparing the DIs for the planning target volume, organs at risk and normal tissue. A GS of 2°, with finest resolution and consequently highest intensity modulation, was considered to be the reference, and this was compared with GS 3° and 4°. The differences between the majority of reference DIs and compared DIs were <2%. The metrics, such as treatment plan optimization time and pretreatment (phantom) dosimetric calculation time, supported the use of a GS of 4°. The ArcCHECK™ phantom–measured dosimetric agreement verifications resulted in a >95.0% passing rate, using the criteria for γ (3%, 3 mm). In conclusion, a GS of 4° is an optimal choice for minimal usage of planning resources without compromise of plan quality. PMID:27974507
Koshy, Matthew; Malik, Renuka; Spiotto, Michael; Mahmood, Usama; Rusthoven, Chad G; Sher, David J
2017-06-01
To determine the effect of radiotherapy (RT) technique on treatment compliance and overall survival (OS) in patients with stage III non-small lung cancer (NSCLC) treated with definitive chemoradiotherapy (CRT). This study included patients with stage III NSCLC in the National Cancer Database treated between 2003 and 2011 with definitive CRT to 60-63 Gray (Gy). Radiation treatment interruption (RTI) was defined as a break of ≥4 days. Treatment technique was dichotomized as intensity modulated (IMRT) or non-IMRT techniques. Out of the cohort of 7492, 35% had a RTI and 10% received IMRT. With a median follow-up of surviving patients of 32 months, the median survival for those with non-IMRT vs. IMRT was 18.2 months vs. 20 months (p<0.0001). Median survival for those with and without an RTI≥4 days was 16.1 months vs. 19.8 months (p<0.0001). Use of IMRT predicted for a decreased likelihood of RTI (odds ratio, 0.84, p=0.04). On multivariable analysis for OS, IMRT had a HR of 0.89 (95% CI: 0.80-0.98, p=0.01) and RTI had a HR of 1.2 (95% confidence interval (CI): 1.14-1.27, p=0.001). IMRT was associated with small but significant survival advantage for patients with stage III NSCLC treated with CRT. A RTI led to inferior survival, and both IMRT and RTI were independently associated with OS. Additional research should investigate whether improved tolerability, reduced normal tissue exposure, or superior coverage drives the association between IMRT and improved survival. Copyright © 2017 Elsevier B.V. All rights reserved.
Radiotherapy of rectal cancer in elderly patients: Real-world data assessment in a decade.
Diao, Peng; Langrand-Escure, Julien; Garcia, Max-Adrien; Espenel, Sophie; Rehailia-Blanchard, Amel; de Lavigerie, Blandine; Vial, Nicolas; de Laroche, Guy; Vallard, Alexis; Magné, Nicolas
2018-06-01
There is paucity of data on the efficacy and toxicity of radiotherapy in rectal cancer (RC) elderly patients. The objective was to identify management strategies and resulting outcomes in RC patients ≥70 years undergoing radiotherapy. A retrospective study included consecutive RC patients ≥70 years undergoing rectal radiotherapy. From 2004-2015, 340 RC patients underwent pre-operative (n = 238; 70%), post-operative (n = 41, 12%), or exclusive (n = 61, 18%) radiotherapy, with a median age of 78.5 years old (range: 70-96). Radiotherapy protocols were tailored, with 54 different radiotherapy programs (alteration of the total dose, and/or fractionation, and/or volume). Median follow-up was 27.1 months. Acute and late grade 3-4 radio-induced toxicities were reported in 3.5% and 0.9% of patients. Metastatic setting (OR = 6.60, CI95% 1.47-46.03, p = 0.02), exclusive radiotherapy (OR = 5.08, CI95% 1.48-18.21, p = 0.009), and intensity-modulated radiotherapy (OR = 6.42, CI95% 1.31-24.73, p = 0.01) were associated with grade ≥3 acute toxicities in univariate analysis. Exclusive radiotherapy (OR = 9.79, CI95% 2.49-43.18, p = 0.001) and intensity-modulated radiotherapy (OR = 12.62, CI95% 2.05-71.26, p = 0.003) were independent predictive factors of grade ≥3 acute toxicities in multivariate analysis. A complete pathological response was achieved in 12 out of 221 pre-operative patients (5.4%). Age, tumor stage, and surgery were independent predictive factors of survival in multivariate analysis. At end of follow-up, 7.1% of patients experienced local relapse. Radiotherapy for RC in elderly patients appeared safe and manageable, perhaps due to the tailoring of radiotherapy protocols. Tailored management resulted in acceptable rate of local tumor control. Copyright © 2018 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
Mehta, Shaesta; Kalyani, Nikhil; Chaudhari, Suresh; Dharia, Tejas; Shetty, Nitin; Chopra, Supriya; Goel, Mahesh; Kulkarni, Suyash; Shrivastava, Shyam Kishore
2017-01-01
Background We present results of patients diagnosed with unresectable hilar cholangiocarcinomas treated with high dose radiotherapy and concurrent chemotherapy. Methods From Aug 2005 to Dec 2012, 68 consecutive patients were treated. Fifty patients (group 1) presenting to us with obstructive jaundice were planned for endobiliary brachytherapy (EBBT 14 Gy) followed external beam radiotherapy (EBRT 45 Gy). Twenty-two patients (group 2) who had previously undergone biliary drainage underwent EBRT (57 Gy). All patients received injection Gemcitabine 300 mg/m2/weekly along with EBRT. Results Twenty-nine patients in group 1 and 22 patients in group 2 completed the treatment. Twenty-six (55%) patients achieved complete radiological response, 16 (64%) belonging to group 1 and 8 (44%) of group 2 (P=0.05). The median overall survival (MOS) was 17.5 and 16 months for group 1 and 2 respectively (P=0.07). The 1- and 2-year survival was 63%, and 18% for group I and 61% and 22% for group II respectively. The MOS was 5 months and 1 year survival was 14% for patients receiving EBBT only. MOS was significantly better after complete response (P=0.001). Conclusions Intensity modulated radiotherapy (IMRT) modulated high dose radiotherapy used either alone or with brachytherapy demonstrates potential to prolonged overall survival in unresectable hilar cholangiocarcinomas. PMID:28280622
Snider, James W; Mutaf, Yildirim; Nichols, Elizabeth; Hall, Andrea; Vadnais, Patrick; Regine, William F; Feigenberg, Steven J
2017-01-01
Accelerated partial breast irradiation has caused higher than expected rates of poor cosmesis. At our institution, a novel breast stereotactic radiotherapy device has demonstrated dosimetric distributions similar to those in brachytherapy. This study analyzed comparative dose distributions achieved with the device and intensity-modulated radiation therapy accelerated partial breast irradiation. Nine patients underwent computed tomography simulation in the prone position using device-specific immobilization on an institutional review board-approved protocol. Accelerated partial breast irradiation target volumes (planning target volume_10mm) were created per the National Surgical Adjuvant Breast and Bowel Project B-39 protocol. Additional breast stereotactic radiotherapy volumes using smaller margins (planning target volume_3mm) were created based on improved immobilization. Intensity-modulated radiation therapy and breast stereotactic radiotherapy accelerated partial breast irradiation plans were separately generated for appropriate volumes. Plans were evaluated based on established dosimetric surrogates of poor cosmetic outcomes. Wilcoxon rank sum tests were utilized to contrast volumes of critical structures receiving a percentage of total dose ( Vx). The breast stereotactic radiotherapy device consistently reduced dose to all normal structures with equivalent target coverage. The ipsilateral breast V20-100 was significantly reduced ( P < .05) using planning target volume_10mm, with substantial further reductions when targeting planning target volume_3mm. Doses to the chest wall, ipsilateral lung, and breast skin were also significantly lessened. The breast stereotactic radiotherapy device's uniform dosimetric improvements over intensity-modulated accelerated partial breast irradiation in this series indicate a potential to improve outcomes. Clinical trials investigating this benefit have begun accrual.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, W; Zhang, R; Zhou, Z
Purpose: To compare elective nodal irradiation with involved-field irradiation for three-dimensional conformal radiotherapy or intensity-modulated radiotherapy in patients with esophageal cancer by a metaanalysis. Methods: Wanfang, CNKI, VIP, CBM databases, PubMed, Embase and Cochrane Library were searched to identify the controlled clinical trials of elective nodal irradiation with involved-field irradiation for three-dimensional conformal radiotherapy or intensity-modulated radiotherapy in patients with esophageal cancer. The obtained data were analyzed using Stata 11.0. The difference between two groups was estimated by calculating the odds ratio (OR) with 95% confidence interval (95% CI). Results: A total of 12 controlled clinical trials involving 1095 esophagealmore » cancer patients, which were selected according to inclusion and exclusion criteria, were included in this meta-analysis. The meta-analysis showed that the elective nodal irradiation group reduced the rates of out-field failure comparing with involved-field irradiation group (OR=3.727, P=0.007). However, the rates of ≥grades 3 acute radiation pneumonitis and esophagitis were significantly higher in the elective nodal irradiation group than in the involved-field irradiation group (OR=0.348, P=0.001, OR=0.385, P=0.000). 1-, 2-, 3-year local control rates (OR=0.966, P=0.837, OR=0.946, P=0.781; OR=0.732P=0.098) and 1-, 3-, 5-year survival rates were similar in the two groups ( OR=0.966, P=0.837; OR=0.946, P=0.781; OR=0.732, P=0.098; OR=0.952, P=0.756; OR=1.149, P=0.422; OR=0.768, P=0.120). It is the same with the rates of distant metastasis (OR=0.986, P=0.937). Conclusion: Compared with involved-field irradiation, the elective nodal irradiation can reduce the rates of out-field failure for three-dimensional conformal radiotherapy or intensity-modulated radiotherapy in patients with esophageal cancer. However, its advantage of local control and survival rates is not obvious and it increases the incidence of toxicities.« less
Kouno, Takuya; Kuga, Noriyuki; Enzaki, Masahiro; Yamashita, Yuuki; Kitazato, Yumiko; Shimotabira, Haruhiko; Jinnouchi, Takashi; Kusuhara, Kazuo; Kawamura, Shinji
2015-04-01
The aim of this study was to reduce the exposed dose of radiotherapy treatment planning computed tomography (CT) by using low tube voltage technique. We used tube voltages of 80 kV, 100 kV, and 120 kV, respectively. First, we evaluated exposure dose with CT dose index (CTDI) for each voltage. Second, we compared image quality indexes such as modulation transfer function (MTF), noise power spectrum (NPS), and contrast to noise ratio (CNR) of phantom images with each voltage. Third, CT to electron density tables were measured in three voltages and monitor unit value was calculated along with clinical cases. Finally, CT surface exposed dose of chest skin was measured by thermoluminescent dosimeter (TLD). In image evaluation MTF and NPS were approximately equal; CNR slightly decreased, 2.0% for 100 kV. We performed check radiation dose accuracy for each tube voltage with each model phantom. As a result, the difference of MU value was not accepted. Finally, compared with 120 kV, CTDIvol and TLD value showed markedly decreased radiation dose, 60% for 80 kV and 30% for 100 kV. Using a technique with low tube voltages, especially 100 kV, is useful in radiotherapy treatment planning to obtain 20% dose reduction without compromising 120 kV image quality.
Ming, Xin; Feng, Yuanming; Liu, Huan; Zhang, Ying; Zhou, Li; Deng, Jun
2015-01-01
Purpose To retrospectively evaluate the cardiac exposure in three cohorts of lung cancer patients treated with dynamic conformal arc therapy (DCAT), intensity-modulated radiotherapy (IMRT), or volumetric modulated arc therapy (VMAT) at our institution in the past seven years. Methods and Materials A total of 140 lung cancer patients were included in this institutional review board approved study: 25 treated with DCAT, 70 with IMRT and 45 with VMAT. All plans were generated in a same commercial treatment planning system and have been clinically accepted and delivered. The dose distribution to the heart and the effects of tumor laterality, the irradiated heart volume and the beam-to-heart distance on the cardiac exposure were investigated. Results The mean dose to the heart among all 140 plans was 4.5 Gy. Specifically, the heart received on average 2.3, 5.2 and 4.6 Gy in the DCAT, IMRT and VMAT plans, respectively. The mean heart doses for the left and right lung tumors were 4.1 and 4.8 Gy, respectively. No patients died with evidence of cardiac disease. Three patients (2%) with preexisting cardiac condition developed cardiac disease after treatment. Furthermore, the cardiac exposure was found to increase linearly with the irradiated heart volume while decreasing exponentially with the beam-to-heart distance. Conclusions Compared to old technologies for lung cancer treatment, modern radiotherapy treatment modalities demonstrated better heart sparing. But the heart dose in lung cancer radiotherapy is still higher than that in the radiotherapy of breast cancer and Hodgkin’s disease where cardiac complications have been extensively studied. With strong correlations of mean heart dose with beam-to-heart distance and irradiated heart volume, cautions should be exercised to avoid long-term cardiac toxicity in the lung cancer patients undergoing radiotherapy. PMID:26630566
Thomsen, Jakob Borup; Arp, Dennis Tideman; Carl, Jesper
2012-05-01
To investigate a novel method for sparing urethra in external beam radiotherapy of prostate cancer and to evaluate the efficacy of such a treatment in terms of tumour control using a mathematical model. This theoretical study includes 20 patients previously treated for prostate cancer using external beam radiotherapy. All patients had a Nickel-Titanium (Ni-Ti) stent inserted into the prostate part of urethra. The stent has been used during the treatment course as an internal marker for patient positioning prior to treatment. In this study the stent is used for delineating urethra while intensity modulated radiotherapy was used for lowering dose to urethra. Evaluation of the dose plans were performed using a tumour control probability model based on the concept of uniform equivalent dose. The feasibility of the urethra dose reduction method is validated and a reduction of about 17% is shown to be possible. Calculations suggest a nearly preserved tumour control probability. A new concept for urethra dose reduction is presented. The method relies on the use of a Ni-Ti stent as a fiducial marker combined with intensity modulated radiotherapy. Theoretical calculations suggest preserved tumour control. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Wilcox, Shea W; Aherne, Noel J; Benjamin, Linus C; Wu, Bosco; de Campos Silva, Thomaz; McLachlan, Craig S; McKay, Michael J; Last, Andrew J; Shakespeare, Thomas P
2014-01-01
Purpose Dose-escalated (DE) radiotherapy in the setting of localized prostate cancer has been shown to improve biochemical disease-free survival (bDFS) in several studies. In the same group of patients, androgen deprivation therapy (ADT) has been shown to confer a survival benefit when combined with radiotherapy doses of up to 70 Gy; however, there is currently little long-term data on patients who have received high-dose intensity-modulated radiotherapy (IMRT) with ADT. We report the long-term outcomes in a large cohort of patients treated with the combination of DE image-guided IMRT (IG-IMRT) and ADT. Methods and materials Patients with localized prostate cancer were identified from a centralized database across an integrated cancer center. All patients received DE IG-IMRT, combined with ADT, and had a minimum follow up of 12 months post-radiotherapy. All relapse and toxicity data were collected prospectively. Actuarial bDFS, metastasis-free survival, prostate cancer-specific survival, and multivariate analyses were calculated using the SPSS v20.0 statistical package. Results Seven hundred and eighty-two eligible patients were identified with a median follow up of 46 months. Overall, 4.3% of patients relapsed, 2.0% developed distant metastases, and 0.6% died from metastatic prostate cancer. At 5-years, bDFS was 88%, metastasis-free survival was 95%, and prostate cancer-specific survival was 98%. Five-year grade 2 genitourinary and gastrointestinal toxicity was 2.1% and 3.4%, respectively. No grade 3 or 4 late toxicities were reported. Pretreatment prostate specific antigen (P=0.001) and Gleason score (P=0.03) were significant in predicting biochemical failure on multivariate analysis. Conclusion There is a high probability of tumor control with DE IG-IMRT combined with androgen deprivation, and this is a technique with a low probability of significant late toxicity. Our long term results corroborate the safety and efficacy of treating with IG-IMRT to high doses and compares favorably with published series for the treatment of prostate cancer. PMID:25210465
Wilcox, Shea W; Aherne, Noel J; Benjamin, Linus C; Wu, Bosco; de Campos Silva, Thomaz; McLachlan, Craig S; McKay, Michael J; Last, Andrew J; Shakespeare, Thomas P
2014-01-01
Dose-escalated (DE) radiotherapy in the setting of localized prostate cancer has been shown to improve biochemical disease-free survival (bDFS) in several studies. In the same group of patients, androgen deprivation therapy (ADT) has been shown to confer a survival benefit when combined with radiotherapy doses of up to 70 Gy; however, there is currently little long-term data on patients who have received high-dose intensity-modulated radiotherapy (IMRT) with ADT. We report the long-term outcomes in a large cohort of patients treated with the combination of DE image-guided IMRT (IG-IMRT) and ADT. Patients with localized prostate cancer were identified from a centralized database across an integrated cancer center. All patients received DE IG-IMRT, combined with ADT, and had a minimum follow up of 12 months post-radiotherapy. All relapse and toxicity data were collected prospectively. Actuarial bDFS, metastasis-free survival, prostate cancer-specific survival, and multivariate analyses were calculated using the SPSS v20.0 statistical package. Seven hundred and eighty-two eligible patients were identified with a median follow up of 46 months. Overall, 4.3% of patients relapsed, 2.0% developed distant metastases, and 0.6% died from metastatic prostate cancer. At 5-years, bDFS was 88%, metastasis-free survival was 95%, and prostate cancer-specific survival was 98%. Five-year grade 2 genitourinary and gastrointestinal toxicity was 2.1% and 3.4%, respectively. No grade 3 or 4 late toxicities were reported. Pretreatment prostate specific antigen (P=0.001) and Gleason score (P=0.03) were significant in predicting biochemical failure on multivariate analysis. There is a high probability of tumor control with DE IG-IMRT combined with androgen deprivation, and this is a technique with a low probability of significant late toxicity. Our long term results corroborate the safety and efficacy of treating with IG-IMRT to high doses and compares favorably with published series for the treatment of prostate cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Santam, E-mail: drsantam@gmail.com; Ghoshal, Sushmita; Patil, Vijay Maruti
2011-08-01
Purpose: To describe the results of conformal radiotherapy in advanced juvenile nasopharyngeal angiofibroma in a tertiary care institution. Methods and Materials: Retrospective chart review was conducted for 8 patients treated with conformal radiotherapy between 2006 and 2009. The median follow-up was 17 months. All patients had Stage IIIB disease with intracranial extension. Radiotherapy was considered as treatment because patients were deemed inoperable owing to extensive intracranial/intraorbital extension or proximity to optic nerve. All but 1 patient were treated with intensity-modulated radiotherapy using seven coplanar fields. Median (range) dose prescribed was 39.6 (30-46) Gy. Actuarial analysis of local control and descriptivemore » analysis of toxicity profile was conducted. Results: Despite the large and complex target volume (median planning target volume, 292 cm{sup 3}), intensity-modulated radiotherapy achieved conformal dose distributions (median van't Reit index, 0.66). Significant sparing of the surrounding organs at risk was obtained. No significant Grade 3/4 toxicities were experienced during or after treatment. Actual local control at 2 years was 87.5%. One patient died 1 month after radiotherapy secondary to massive epistaxis. The remaining 7 patients had progressive resolution of disease and were symptom-free at last follow-up. Persistent rhinitis was the only significant toxicity, seen in 1 patient. Conclusions: Conformal radiotherapy results in good local control with minimal acute and late side effects in juvenile nasopharyngeal angiofibromas, even in the presence of advanced disease.« less
Chen, Jenny Ling-Yu; Cheng, Jason Chia-Hsien; Kuo, Sung-Hsin; Chan, Hsing-Min; Huang, Yu-Sen; Chen, Yu-Hsuan
2013-01-01
Since December 2009, after breast-conserving surgery for Stage 0–I cancer of the left breast, 21 women with relatively pendulous breasts underwent computed tomography prone and supine simulations. The adjuvant radiotherapy was 50 Gy in 25 fractions to the left breast alone. Four plans—conventional wedged tangents and forward intensity-modulated radiotherapy (fIMRT) in supine and prone positions—were generated. fIMRT generated better homogeneity in both positions. Prone position centralized the breast tissue by gravity and also shortened the breast width which led to better conformity in both planning techniques. Prone fIMRT significantly reduced doses to left lung, Level I and Level II axilla. The mean cardiac doses did not differ between positions. Among the four plans, prone fIMRT produced the best target dosimetry and normal organ sparing. In subgroup analysis, patients with absolute breast depth > 7 cm in the prone position or breast depth difference > 3 cm between positions had significant cardiac sparing with prone fIMRT. Sixteen patients with significant cardiac sparing in prone position were treated using prone fIMRT and the others using supine fIMRT. All patients received a supine electron tumor bed boost of 10 Gy in 5 fractions. No patients developed Grade 2 or worse acute or late toxicities. There was no difference in the number of segments or beams, monitor units, treatment time, or positioning reproducibility between prone and supine positions. At a median follow-up time of 26.8 months, no locoregional or distant recurrence or death was noted. PMID:23504450
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fortin, Dominique; Ng, Angela; Tsang, Derek
Purpose: The increased sparing of normal tissues in intensity modulated proton therapy (IMPT) in pediatric brain tumor treatments should translate into improved neurocognitive outcomes. Models were used to estimate the intelligence quotient (IQ) and the risk of hearing loss 5 years post radiotherapy and to compare outcomes of proton against photon in pediatric brain tumors. Methods: Patients who had received intensity modulated radiotherapy (IMRT) were randomly selected from our retrospective database. The existing planning CT and contours were used to generate IMPT plans. The RBE-corrected dose was calculated for both IMPT and IMRT. For each patient, the IQ was estimatedmore » via a Monte Carlo technique, whereas the reported incidence of hearing loss as a function of cochlear dose was used to estimate the probability of occurrence. Results: The integrated brain dose was reduced in all IMPT plans, translating into a gain of 2 IQ points on average for protons for the whole cohort at 5 years post-treatment. In terms of specific diseases, the gains in IQ ranged from 0.8 points for medulloblastoma, to 2.7 points for craniopharyngioma. Hearing loss probability was evaluated on a per-ear-basis and was found to be systematically less for proton versus photon: overall 2.9% versus 7.2%. Conclusions: A method was developed to predict IQ and hearing outcomes in pediatric brain tumor patients on a case-by-case basis. A modest gain was systematically observed for proton in all patients. Given the uncertainties within the model used and our reinterpretation, these gains may be underestimated.« less
Simson, David K; Mitra, Swarupa; Ahlawat, Parveen; Saxena, Upasna; Sharma, Manoj Kumar; Rawat, Sheh; Singh, Harpreet; Bansal, Babita; Sripathi, Lalitha Kameshwari; Tanwar, Aditi
2018-01-01
The past 2 decades witnessed the strengthening of evidence favoring the role of neoadjuvant chemoradiation (CHRT) in the treatment of locally advanced rectal cancer. The study aims to evaluate the response and acute toxicities to neoadjuvant CHRT using intensity-modulated radiotherapy (IMRT) in the treatment of rectal cancer. Predictive factors to achieve pathological complete response (pCR) were analyzed, as a secondary endpoint. All consecutive patients who underwent IMRT as part of neoadjuvant CHRT in the treatment of rectal cancer between August 2014 and December 2016 at a tertiary cancer care center were accrued for the study. The cohort underwent CHRT with IMRT technique at a dose of 50.4 Gy in 28 fractions concurrent with continuous infusion of 5 fluorouracil during the first and the last 4 days of CHRT. Surgery was performed 6 weeks later and the pathological response to CHRT was noted. Forty-three subjects were accrued for the study. Radiation dermatitis and diarrhea were the only observed grade ≥3 acute toxicities. Sphincter preservation rate (SPR) was 43.3%. pCR was observed in 32.6%. Univariate and multivariate logistic regression showed that carcinoembryonic antigen was the only independent predictive factor to achieve pCR. IMRT as part of neoadjuvant CHRT in the treatment of locally advanced rectal cancer is well tolerated and gives comparable results with respect to earlier studies in terms of pathological response and SPR. Further randomized controlled studies are needed to firmly state that IMRT is superior to 3-dimensional conformal radiotherapy.
Choi, Kyu Hye; Kim, Jina; Lee, Sea-Won; Kang, Young-Nam; Jang, HongSeok
2018-03-01
The objective of this study was to compare dosimetric characteristics of three-dimensional conformal radiotherapy (3D-CRT) and two types of intensity-modulated radiotherapy (IMRT) which are step-and-shoot intensity modulated radiotherapy (s-IMRT) and modulated arc therapy (mARC) for thoracic esophageal cancer and analyze whether IMRT could reduce organ-at-risk (OAR) dose. We performed 3D-CRT, s-IMRT, and mARC planning for ten patients with thoracic esophageal cancer. The dose-volume histogram for each plan was extracted and the mean dose and clinically significant parameters were analyzed. Analysis of target coverage showed that the conformity index (CI) and conformation number (CN) in mARC were superior to the other two plans (CI, p = 0.050; CN, p = 0.042). For the comparison of OAR, lung V 5 was lowest in s-IMRT, followed by 3D-CRT, and mARC (p = 0.033). s-IMRT and mARC had lower values than 3D-CRT for heart V 30 (p = 0.039), V 40 (p = 0.040), and V 50 (p = 0.032). Effective conservation of the lung and heart in thoracic esophageal cancer could be expected when using s-IMRT. The mARC was lower in lung V 10 , V 20 , and V 30 than in 3D-CRT, but could not be proven superior in lung V 5 . In conclusion, low-dose exposure to the lung and heart were expected to be lower in s-IMRT, reducing complications such as radiation pneumonitis or heart-related toxicities.
Anderson, N; Lawford, C; Khoo, V; Rolfo, M; Joon, D L; Wada, M
2011-12-01
Intensity-modulated radiotherapy (IMRT) has reduced the impact of acute and late toxicities associated with head and neck radiotherapy. Treatment planning system (TPS) advances in biological cost function based optimization (BBO) and improved segmentation techniques have increased organ at risk (OAR) sparing compared to conventional dose-based optimization (DBO). A planning study was undertaken to compare OAR avoidance in DBO and BBO treatment planning. Simultaneous integrated boost treatment plans were produced for 10 head and neck patients using both planning systems. Plans were compared for tar get coverage and OAR avoidance. Comparisons were made using the BBO TPS Monte Carlo dose engine to eliminate differences due to inherent algorithms. Target coverage (V95%) was maintained for both solutions. BBO produced lower OAR doses, with statistically significant improvement to left (12.3%, p = 0.005) and right parotid mean dose (16.9%, p = 0.004), larynx V50_Gy (71.0%, p = 0.005), spinal cord (21.9%, p < 0.001) and brain stem dose maximums (31.5%, p = 0.002). This study observed improved OAR avoidance with BBO planning. Further investigations will be undertaken to review any clinical benefit of this improved planned dosimetry.
Anderson, N.; Lawford, C.; Khoo, V.; Rolfo, M.; Joon, D. Lim; Wada, M.
2011-01-01
Intensity-modulated radiotherapy (IMRT) has reduced the impact of acute and late toxicities associated with head and neck radiotherapy. Treatment planning system (TPS) advances in biological cost function based optimization (BBO) and improved segmentation techniques have increased organ at risk (OAR) sparing compared to conventional dose-based optimization (DBO). A planning study was undertaken to compare OAR avoidance in DBO and BBO treatment planning. Simultaneous integrated boost treatment plans were produced for 10 head and neck patients using both planning systems. Plans were compared for tar get coverage and OAR avoidance. Comparisons were made using the BBO TPS Monte Carlo dose engine to eliminate differences due to inherent algorithms. Target coverage (V95%) was maintained for both solutions. BBO produced lower OAR doses, with statistically significant improvement to left (12.3%, p = 0.005) and right parotid mean dose (16.9%, p = 0.004), larynx V50 Gy (71.0%, p = 0.005), spinal cord (21.9%, p < 0.001) and brain stem dose maximums (31.5%, p = 0.002). This study observed improved OAR avoidance with BBO planning. Further investigations will be undertaken to review any clinical benefit of this improved planned dosimetry. PMID:22066597
Piermattei, Angelo; Kang, Shengwei; Xiao, Mingyong; Tang, Bin; Liao, Xiongfei; Xin, Xin; Grusio, Mattia
2018-01-01
High conformal techniques such as intensity-modulated radiation therapy and volumetric-modulated arc therapy are widely used in overloaded radiotherapy departments. In vivo dosimetric screening is essential in this environment to avoid important dosimetric errors. This work examines the feasibility of introducing in vivo dosimetry (IVD) checks in a radiotherapy routine. The causes of dosimetric disagreements between delivered and planned treatments were identified and corrected during the course of treatment. The efficiency of the corrections performed and the added workload needed for the entire procedure were evaluated. The IVD procedure was based on an electronic portal imaging device. A total of 3682 IVD tests were performed for 147 patients who underwent head and neck, abdomen, pelvis, breast, and thorax radiotherapy treatments. Two types of indices were evaluated and used to determine if the IVD tests were within tolerance levels: the ratio R between the reconstructed and planned isocentre doses and a transit dosimetry based on the γ-analysis of the electronic portal images. The causes of test outside tolerance level were investigated and corrected and IVD test was repeated during subsequent fraction. The time needed for each step of the IVD procedure was registered. Pelvis, abdomen, and head and neck treatments had 10% of tests out of tolerance whereas breast and thorax treatments accounted for up to 25%. The patient setup was the main cause of 90% of the IVD tests out of tolerance and the remaining 10% was due to patient morphological changes. An average time of 42 min per day was sufficient to monitor a daily workload of 60 patients in treatment. This work shows that IVD performed with an electronic portal imaging device is feasible in an overloaded department and enables the timely realignment of the treatment quality indices in order to achieve a patient’s final treatment compliant with the one prescribed. PMID:29432473
Optimization of Craniospinal Irradiation for Pediatric Medulloblastoma Using VMAT and IMRT.
Al-Wassia, Rolina K; Ghassal, Noor M; Naga, Adly; Awad, Nesreen A; Bahadur, Yasir A; Constantinescu, Camelia
2015-10-01
Intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) provide highly conformal target radiation doses, but also expose large volumes of healthy tissue to low-dose radiation. With improving survival, more children with medulloblastoma (MB) are at risk of late adverse effects of radiotherapy, including secondary cancers. We evaluated the characteristics of IMRT and VMAT craniospinal irradiation treatment plans in children with standard-risk MB to compare radiation dose delivery to target organs and organs at risk (OAR). Each of 10 children with standard-risk MB underwent both IMRT and VMAT treatment planning. Dose calculations used inverse planning optimization with a craniospinal dose of 23.4 Gy followed by a posterior fossa boost to 55.8 Gy. Clinical and planning target volumes were demarcated on axial computed tomography images. Dose distributions to target organs and OAR for each planning technique were measured and compared with published dose-volume toxicity data for pediatric patients. All patients completed treatment planning for both techniques. Analyses and comparisons of dose distributions and dose-volume histograms for the planned target volumes, and dose delivery to the OAR for each technique demonstrated the following: (1) VMAT had a modest, but significantly better, planning target volume-dose coverage and homogeneity compared with IMRT; (2) there were different OAR dose-sparing profiles for IMRT versus VMAT; and (3) neither IMRT nor VMAT demonstrated dose reductions to the published pediatric dose limits for the eyes, the lens, the cochlea, the pituitary, and the brain. The use of both IMRT and VMAT provides good target tissue coverage and sparing of the adjacent tissue for MB. Both techniques resulted in OAR dose delivery within published pediatric dose guidelines, except those mentioned above. Pediatric patients with standard-risk MB remain at risk for late endocrinologic, sensory (auditory and visual), and brain functional impairments.
Barbosa Neto, O; Souhami, L; Faria, S
2015-10-01
In 2002, at the McGill University Health Centre, we began a program of hypofractionated radiotherapy for patients with low risk prostate cancer as an alternative to conventionally fractionated radiotherapy. Our initial hypofractionation regimen was 66 Gy given in 22 fractions, prescribed to the isocenter, delivered with 3D-conformal radiotherapy plan. The clinical target volume was the prostate gland and the planning target volume consisted of the clinical target volume plus a 7-mm margin in all directions. Hormonal therapy was not given to any patient. The long-term results for this group of patients confirmed the feasibility, good tolerance and excellent disease control of the regimen with the extra-benefit of being convenient to both patients and the health system by shortening treatment duration. The outcomes of this approach stimulated us to use hypofractionation in patients with intermediate-risk. Analysis of 100 intermediate-risk patients receiving our hypofractionated radiotherapy regimen (no hormones) shows, at median follow-up of 75 months, 8-year biochemical recurrence free and cancer specific survival rates of 90% and 95%, respectively, with acceptable toxicity. Our technique changed from 3D to intensity modulated radiotherapy with the dose adjusted to 60 Gy in 20 fractions. Lastly, we have expanded the program to high-risk patients where IMRT treatments are given to the pelvic nodes (44 Gy in 20 fractions) with a simultaneous integrated boost delivery to the prostate (60 Gy in the same 20 fractions). Our long-term results have shown that moderate hypofractionated radiotherapy for prostate cancer is safe and provides good tumor control comparable to high-dose conventionally fractionated radiotherapy. This hypofractionated regimen has been routinely used in our institution. Copyright © 2015 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Studenski, Matthew T., E-mail: matthew.studenski@jeffersonhospital.org; Shen, Xinglei; Yu, Yan
2013-04-01
Craniospinal irradiation (CSI) poses a challenging planning process because of the complex target volume. Traditional 3D conformal CSI does not spare any critical organs, resulting in toxicity in patients. Here the dosimetric advantages of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) are compared with classic conformal planning in adults for both cranial and spine fields to develop a clinically feasible technique that is both effective and efficient. Ten adult patients treated with CSI were retrospectively identified. For the cranial fields, 5-field IMRT and dual 356° VMAT arcs were compared with opposed lateral 3D conformal radiotherapy (3D-CRT) fields. Formore » the spine fields, traditional posterior-anterior (PA) PA fields were compared with isocentric 5-field IMRT plans and single 200° VMAT arcs. Two adult patients have been treated using this IMRT technique to date and extensive quality assurance, especially for the junction regions, was performed. For the cranial fields, the IMRT technique had the highest planned target volume (PTV) maximum and was the least efficient, whereas the VMAT technique provided the greatest parotid sparing with better efficiency. 3D-CRT provided the most efficient delivery but with the highest parotid dose. For the spine fields, VMAT provided the best PTV coverage but had the highest mean dose to all organs at risk (OAR). 3D-CRT had the highest PTV and OAR maximum doses but was the most efficient. IMRT provides the greatest OAR sparing but the longest delivery time. For those patients with unresectable disease that can benefit from a higher, definitive dose, 3D-CRT–opposed laterals are the most clinically feasible technique for cranial fields and for spine fields. Although inefficient, the IMRT technique is the most clinically feasible because of the increased mean OAR dose with the VMAT technique. Quality assurance of the beams, especially the junction regions, is essential.« less
Intensity-Modulated Radiotherapy for Cervical Lymph Node Metastases From Unknown Primary Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madani, Indira; Vakaet, Luc; Bonte, Katrien
2008-07-15
Purpose: To compare the effectiveness of intensity-modulated radiotherapy (IMRT) and conventional (two-dimensional) radiotherapy in the treatment of cervical lymph node metastases from unknown primary cancer (UPC). Methods and Materials: Between February 2003 and September 2006, 23 patients with UPC of squamous cell carcinoma were treated with IMRT. Extended putative mucosal and bilateral nodal sites were irradiated to a median dose of 66 Gy. In 19 patients, IMRT was performed after lymph node dissection, and in 4 patients primary radiotherapy was given. The conventional radiotherapy group (historical control group) comprised 18 patients treated to a median dose of 66 Gy betweenmore » August 1994 and October 2003. Results: Twenty patients completed treatment. As compared with conventional radiotherapy, the incidence of Grade 3 acute dysphagia was significantly lower in the IMRT group (4.5% vs. 50%, p = 0.003). By 6 months, Grade 3 xerostomia was detected in 11.8% patients in the IMRT group vs. 53.4% in the historical control group (p = 0.03). No Grade 3 dysphagia or skin fibrosis was observed after IMRT but these were noted after conventional radiotherapy (26.7%, p = 0.01) and 26.7%, p = 0.03) respectively). With median follow-up of living patients of 17 months, there was no emergence of primary cancer. One patient had persistent nodal disease and another had nodal relapse at 5 months. Distant metastases were detected in 4 patients. The 2-year overall survival and distant disease-free probability after IMRT did not differ significantly from those for conventional radiotherapy (74.8% vs. 61.1% and 76.3% vs. 68.4%, respectively). Conclusions: Use of IMRT for UPC resulted in lower toxicity than conventional radiotherapy, and was similar in efficacy.« less
Kim, Eun Seok; Yeo, Seung-Gu
2014-06-01
Previous studies on advanced radiotherapy (RT) techniques for early stage glottic cancer have focused on sparing the carotid artery. However, the aim of the present study was to evaluate the dosimetric advantages of volumetric modulated arc therapy (VMAT) in terms of sparing the thyroid gland in early-stage glottic cancer patients. In total, 15 cT1N0M0 glottic cancer patients treated with definitive RT using VMAT were selected, and for dosimetric comparison, a conventional RT plan comprising opposed-lateral wedged fields was generated for each patient. The carotid artery, thyroid gland and spinal cord were considered organs at risk. The prescription dose was 63 Gy at 2.25 Gy per fraction. For the thyroid gland and carotid artery, all compared parameters were significantly lower with VMAT compared with conventional RT. For the thyroid gland, the median reduction rates of the mean dose (D mean ), the volume receiving ≥30% of the prescription dose (V 30 ) and the V 50 were 32.6, 40.9 and 46.0%, respectively. The D mean was 14.7±2.6 Gy when using VMAT compared with 22.2±3.9 Gy when using conventional RT. The differences between the techniques in terms of planning target volume coverage and dose homogeneity were not significant. When considering a recent normal tissue complication probability model, which indicated the mean thyroid gland dose as the most significant predictor of radiation-induced hypothyroidism, the dosimetric advantage shown in this study may be valuable in reducing hypothyroidism following RT for early stage glottic cancer patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelefsky, Michael J., E-mail: zelefskm@mskcc.org; Greco, Carlo; Motzer, Robert
2012-04-01
Purpose: To report tumor local progression-free outcomes after treatment with single-dose, image-guided, intensity-modulated radiotherapy and hypofractionated regimens for extracranial metastases from renal cell primary tumors. Patients and Methods: Between 2004 and 2010, 105 lesions from renal cell carcinoma were treated with either single-dose, image-guided, intensity-modulated radiotherapy to a prescription dose of 18-24 Gy (median, 24) or hypofractionation (three or five fractions) with a prescription dose of 20-30 Gy. The median follow-up was 12 months (range, 1-48). Results: The overall 3-year actuarial local progression-free survival for all lesions was 44%. The 3-year local progression-free survival for those who received a highmore » single-dose (24 Gy; n = 45), a low single-dose (<24 Gy; n = 14), or hypofractionation regimens (n = 46) was 88%, 21%, and 17%, respectively (high single dose vs. low single dose, p = .001; high single dose vs. hypofractionation, p < .001). Multivariate analysis revealed the following variables were significant predictors of improved local progression-free survival: 24 Gy dose compared with a lower dose (p = .009) and a single dose vs. hypofractionation (p = .008). Conclusion: High single-dose, image-guided, intensity-modulated radiotherapy is a noninvasive procedure resulting in high probability of local tumor control for metastatic renal cell cancer generally considered radioresistant according to the classic radiobiologic ranking.« less
Sultanem, Khalil; Patrocinio, Horacio; Lambert, Christine; Corns, Robert; Leblanc, Richard; Parker, William; Shenouda, George; Souhami, Luis
2004-01-01
Despite major advances in treatment modalities, the prognosis of patients with glioblastoma multiforme (GBM) remains poor. Exploring hypofractionated regimens to replace the standard 6-week radiotherapy schedule is an attractive strategy as an attempt to prevent accelerated tumor cell repopulation. There is equally interest in dose escalation to the gross tumor volume where the majority of failures occur. We report our preliminary results using hypofractionated intensity-modulated accelerated radiotherapy regimen in the treatment of patients with GBM. Between July 1998 and December 2001, 25 patients with histologically proven diagnosis of GBM, Karnofsky performance status > or =60, and a postoperative tumor volume < or =110 cm3 were treated with a hypofractionated accelerated course of radiotherapy. The gross tumor volume (GTV) was defined as the contrast-enhancing lesion on the postoperative MRI T1-weighted images with the latter fused with computed tomography images for treatment planning. The planning target volume was defined as GTV + 1.5-cm margin. Using forward-planning intensity modulation (step-and-shoot technique), 60 Gy in 20 daily fractions of 3 Gy each were given to the GTV, whereas the planning target volume received a minimum of 40 Gy in 20 fractions of 2 Gy each at its periphery. Treatments were delivered over a 4-week period using 5 daily fractions per week. Dose was prescribed at the isocenter (ICRU point). Three beam angles were used in all of the cases. Treatments were well tolerated. Acute toxicity was limited to increased brain edema during radiotherapy in 2 patients who were on tapering doses of corticosteroids. This was corrected by increasing the steroid dose. At a median follow-up of 8.8 months, no late toxicity was observed. One patient experienced visual loss at 9 months after completion of treatment. MRI suggested nonspecific changes to the optic chiasm. On review of the treatment plan, the total dose to the optic chiasm was confirmed to be equal to or less than 40 Gy in 20 fractions. When Radiation Therapy Oncology Group recursive partitioning analysis was used, 10 patients were class III-IV, and 15 patients were class V-VI. To date, 21 patients have had clinical and/or radiologic evidence of disease progression, and 16 patients have died. The median survival was 9.5 months (range: 2.8-22.9 months), the 1-year survival rate was 40%, and the median progression-free survival was 5.2 months (range: 1.9-12.8 months). This hypofractionated accelerated irradiation schedule using forward planning (step-and-shoot) hypofractionated, intensity-modulated accelerated radiotherapy is feasible and seems to be a safe treatment for patients with GBM. A 2-week reduction in the treatment time may be of valuable benefit for this group of patients. However, despite this accelerated regimen, no survival advantage has been observed.
NASA Astrophysics Data System (ADS)
Mutrikah, N.; Winarno, H.; Amalia, T.; Djakaria, M.
2017-08-01
The objective of this study was to compare conventional and conformal techniques of external beam radiotherapy (EBRT) in terms of the dose distribution, tumor response, and side effects in the treatment of locally advanced cervical cancer patients. A retrospective cohort study was conducted on cervical cancer patients who underwent EBRT before brachytherapy in the Radiotherapy Department of Cipto Mangunkusumo Hospital. The prescribed dose distribution, tumor response, and acute side effects of EBRT using conventional and conformal techniques were investigated. In total, 51 patients who underwent EBRT using conventional techniques (25 cases using Cobalt-60 and 26 cases using a linear accelerator (LINAC)) and 29 patients who underwent EBRT using conformal techniques were included in the study. The distribution of the prescribed dose in the target had an impact on the patient’s final response to EBRT. The complete response rate of patients to conformal techniques was significantly greater (58%) than that of patients to conventional techniques (42%). No severe acute local side effects were seen in any of the patients (Radiation Therapy Oncology Group (RTOG) grades 3-4). The distribution of the dose and volume to the gastrointestinal tract affected the proportion of mild acute side effects (RTOG grades 1-2). The urinary bladder was significantly greater using conventional techniques (Cobalt-60/LINAC) than using conformal techniques at 72% and 78% compared to 28% and 22%, respectively. The use of conformal techniques in pelvic radiation therapy is suggested in radiotherapy centers with CT simulators and 3D Radiotherapy Treatment Planning Systems (RTPSs) to decrease some uncertainties in radiotherapy planning. The use of AP/PA pelvic radiation techniques with Cobalt-60 should be limited in body thicknesses equal to or less than 18 cm. When using conformal techniques, delineation should be applied in the small bowel, as it is considered a critical organ according to RTOG consensus guidelines.
Accelerated Partial Breast Irradiation: What is Dosimetric Effect of Advanced Technology Approaches?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moran, Jean M.; Ben-David, Merav A.; Marsh, Robin B.
2009-09-01
Purpose: The present treatment planning study compared whole breast radiotherapy (WBRT) to accelerated partial breast irradiation (APBI) for different external beam techniques and geometries (e.g., free breathing [FB] and deep inspiration breath hold [DIBH]). Methods and Materials: After approval by our institutional review board, a treatment planning study was performed of 10 patients with left-sided Stage 0-I breast cancer enrolled in a Phase I-II study of APBI using intensity-modulated radiotherapy (IMRT). After lumpectomy, patients underwent planning computed tomography scans during FB and using an active breathing control device at DIBH. For the FB geometry, standard WBRT and three-dimensional conformal radiotherapymore » (3D-CRT) APBI plans were created. For the DIBH geometry with active breathing control, WBRT, 3D-CRT, and IMRT APBI plans were created. Results: All APBI techniques had excellent planning target volume coverage. The maximal planning target volume dose was reduced from 116% of the prescription dose to 108% with the IMRT(DIBH) APBI plan. The maximal heart dose was >30 Gy for the WBRT techniques, 8.2 Gy for 3D-CRT(FB), and <5.0 Gy for 3D-CRT(DIBH) and IMRT(DIBH) techniques. The mean left anterior descending artery dose was significantly reduced from 11.4 Gy with WBRT(FB) to 4.2 with WBRT(DIBH) and <2.0 Gy with all APBI techniques. Conclusion: Although planning target volume coverage was acceptable with all techniques, the plans using the DIBH geometry resulted in a marked reduction in the normal tissue dose compared with WBRT planned in the absence of cardiac blocking. Additional study is needed to determine whether these techniques result in clinical benefits.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Mitsuhiro; Shibuya, Keiko, E-mail: kei@kuhp.kyoto-u.ac.jp; Nakamura, Akira
2012-04-01
Purpose: To investigate the interfractional dose variations for intensity-modulated radiotherapy (RT) combined with breath-hold (BH) at end-exhalation (EE) for pancreatic cancer. Methods and Materials: A total of 10 consecutive patients with pancreatic cancer were enrolled. Each patient was fixed in the supine position on an individualized vacuum pillow with both arms raised. Computed tomography (CT) scans were performed before RT, and three additional scans were performed during the course of chemoradiotherapy using a conventional RT technique. The CT data were acquired under EE-BH conditions (BH-CT) using a visual feedback technique. The intensity-modulated RT plan, which used five 15-MV coplanar ports,more » was designed on the initial BH-CT set with a prescription dose of 39 Gy at 2.6 Gy/fraction. After rigid image registration between the initial and subsequent BH-CT scans, the dose distributions were recalculated on the subsequent BH-CT images under the same conditions as in planning. Changes in the dose-volume metrics of the gross tumor volume (GTV), clinical target volume (CTV = GTV + 5 mm), stomach, and duodenum were evaluated. Results: For the GTV and clinical target volume (CTV), the 95th percentile of the interfractional variations in the maximal dose, mean dose, dose covering 95% volume of the region of structure, and percentage of the volume covered by the 90% isodose line were within {+-}3%. Although the volume covered by the 39 Gy isodose line for the stomach and duodenum did not exceed 0.1 mL at planning, the volume covered by the 39 Gy isodose line for these structures was up to 11.4 cm{sup 3} and 1.8 cm{sup 3}, respectively. Conclusions: Despite variations in the gastrointestinal state and abdominal wall position at EE, the GTV and CTV were mostly ensured at the planned dose, with the exception of 1 patient. Compared with the duodenum, large variations in the stomach volume receiving high-dose radiation were observed, which might be beyond the negligible range in achieving dose escalation with intensity-modulated RT combined with BH at EE.« less
Kole, Thomas P; Aghayere, Osarhieme; Kwah, Jason; Yorke, Ellen D; Goodman, Karyn A
2012-08-01
To compare heart and coronary artery radiation exposure using intensity-modulated radiotherapy (IMRT) vs. four-field three-dimensional conformal radiotherapy (3D-CRT) treatment plans for patients with distal esophageal cancer undergoing chemoradiation. Nineteen patients with distal esophageal cancers treated with IMRT from March 2007 to May 2008 were identified. All patients were treated to 50.4 Gy with five-field IMRT plans. Theoretical 3D-CRT plans with four-field beam arrangements were generated. Dose-volume histograms of the planning target volume, heart, right coronary artery, left coronary artery, and other critical normal tissues were compared between the IMRT and 3D-CRT plans, and selected parameters were statistically evaluated using the Wilcoxon rank-sum test. Intensity-modulated radiotherapy treatment planning showed significant reduction (p < 0.05) in heart dose over 3D-CRT as assessed by average mean dose (22.9 vs. 28.2 Gy) and V30 (24.8% vs. 61.0%). There was also significant sparing of the right coronary artery (average mean dose, 23.8 Gy vs. 35.5 Gy), whereas the left coronary artery showed no significant improvement (mean dose, 11.2 Gy vs. 9.2 Gy), p = 0.11. There was no significant difference in percentage of total lung volume receiving at least 10, 15, or 20 Gy or in the mean lung dose between the planning methods. There were also no significant differences observed for the kidneys, liver, stomach, or spinal cord. Intensity-modulated radiotherapy achieved a significant improvement in target conformity as measured by the conformality index (ratio of total volume receiving 95% of prescription dose to planning target volume receiving 95% of prescription dose), with the mean conformality index reduced from 1.56 to 1.30 using IMRT. Treatment of patients with distal esophageal cancer using IMRT significantly decreases the exposure of the heart and right coronary artery when compared with 3D-CRT. Long-term studies are necessary to determine how this will impact on development of coronary artery disease and other cardiac complications. Copyright © 2012 Elsevier Inc. All rights reserved.
Characterisation and novel applications of glass beads as dosimeters in radiotherapy
NASA Astrophysics Data System (ADS)
Jafari, Shakardokht
The intent of external beam radiotherapy is to deliver as high a radiation dose as possible to tumour volume whilst minimizing the dose to surrounding normal tissues. Recent development of techniques such as intensity modulated radiation therapy (IMRT) and stereotactic ablative body radiotherapy (SABR) aim to extend this capability. The main feature of these techniques is to use beams which often contain small fields and very steep dose gradients. These present several dosimetric challenges including loss of charge particle equilibrium (CPE), partial occlusion of the direct-beam source and steep fall-off in dose in the penumbra. Dosimeters which are small in size relative to the radiation field dimensions are recommended for such conditions. The particular glass beads studied herein have several potentially favourable physical characteristics; they are small in size (1 to 3 mm diameter), chemically inert, inexpensive, readily available and reusable. The dosimetric characterisation of glass beads has been obtained by irradiating them in various radiotherapy beams of kilo-voltage and mega-voltage photons, megavoltage electrons, protons and carbon ions. They exhibit minimal fading compared with commercial LiF thermo-luminescent (TL) dosimeters, have high TL light transparency, high sensitivity and a large dynamic dose range that remains linear from 1 cGy to 100 Gy They have also been shown to be independent of dose rate and beam incidence angle, as well as having a low variation in response with energy over a range of megavoltage photon and electron beams. The latter characteristic is of importance, where spectral changes may occur as a function of field size and off axis location and for the use of dosimeters in postal audit situations where each institution may have slightly different quality index (QI) for their respective photon energies thus ensuring that the calibration is still valid. These properties suggest their practical use as TL dosimeters for radiotherapy dosimetry. Investigations have been performed to evaluate the feasibility of using glass beads in treatment plan verification, small field radiation dosimetry and postal dosimetry audit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Allen M., E-mail: allen.chen@ucdmc.ucdavis.ed; Li Baoqing; Farwell, D. Gregory
2011-03-01
Purpose: To compare differences in dosimetric, clinical, and quality-of-life endpoints among a cohort of patients treated by intensity-modulated radiotherapy (IMRT) and conventional radiotherapy (CRT) for head-and-neck cancer of unknown primary origin. Methods and Materials: The medical records of 51 patients treated by radiation therapy for squamous cell carcinoma of the head and neck presenting as cervical lymph node metastasis of occult primary origin were reviewed. Twenty-four patients (47%) were treated using CRT, and 27 (53%) were treated using IMRT. The proportions of patients receiving concurrent chemotherapy were 54% and 63%, respectively. Results: The 2-year estimates of overall survival, local-regional control,more » and disease-specific survival for the entire patient population were 86%, 89%, and84%, respectively. There were no significant differences in any of these endpoints with respect to radiation therapy technique (p > 0.05 for all). Dosimetric analysis revealed that the use of IMRT resulted in significant improvements with respect to mean dose and V30 to the contralateral (spared) parotid gland. In addition, mean doses to the ipsilateral inner and middle ear structures were significantly reduced with IMRT (p < 0.05 for all). The incidence of severe xerostomia in the late setting was 58% and 11% among patients treated by CRT and IMRT, respectively (p < 0.001). The percentages of patients who were G-tube dependent at 6 months after treatment were 42% and 11%, respectively (p < 0.001). Conclusions: IMRT results in significant improvements in the therapeutic ratio among patients treated by radiation therapy for head-and-neck cancer of unknown primary origin.« less
Image-Guided Intensity-Modulated Radiotherapy for Pancreatic Carcinoma
Fuss, Martin; Wong, Adrian; Fuller, Clifton D.; Salter, Bill J.; Fuss, Cristina; Thomas, Charles R.
2007-01-01
Purpose To present the techniques and preliminary outcomes of ultrasound-based image-guided intensity-modulated radiotherapy (IG-IMRT) for pancreatic cancer. Materials and Methods Retrospective analysis of 41 patients treated between November 2000 and March 2005 with IG-IMRT to mean total doses of 55 Gy (range, 45–64 Gy). We analyzed the clinical feasibility of IG-IMRT, dosimetric parameters, and outcomes, including acute gastrointestinal toxicity (RTOG grading). Survival was assessed for adenocarcinoma (n = 35) and other histologies. Results Mean daily image-guidance corrective shifts were 4.8 ± 4.3 mm, 7.5 ± 7.2 mm, and 4.6 ± 5.9 mm along the x-, y-, and z-axes, respectively (mean 3D correction vector, 11.7 ± 8.4 mm). Acute upper gastrointestinal toxicity was grade 0–1 in 22 patients (53.7%), grade 2 in 16 patients (39%), and grade 3 in 3 patients (7.3%). Lower gastrointestinal toxicity was grade 0–1 in 32 patients (78%), grade 2 in 7 patients (17.1%), and grade 4 in 2 patients (4.9%). Treatment was stopped early in 4 patients following administration of 30 to 54 Gy. Median survival for adenocarcinoma histology was 10.3 months (18.6 months in patients alive at analysis; n = 8) with actuarial 1- and 2-year survivals of 38% and 25%, respectively. Conclusion Daily image-guidance during delivery of IMRT for pancreatic carcinoma is clinically feasible. The data presented support the conclusion that safety margin reduction and moderate dose escalation afforded by implementation of these new radiotherapy technologies yields preliminary outcomes at least comparable with published survival data. PMID:19262697
Simson, David K; Mitra, Swarupa; Ahlawat, Parveen; Saxena, Upasna; Sharma, Manoj Kumar; Rawat, Sheh; Singh, Harpreet; Bansal, Babita; Sripathi, Lalitha Kameshwari; Tanwar, Aditi
2018-01-01
Aims and objectives The past 2 decades witnessed the strengthening of evidence favoring the role of neoadjuvant chemoradiation (CHRT) in the treatment of locally advanced rectal cancer. The study aims to evaluate the response and acute toxicities to neoadjuvant CHRT using intensity-modulated radiotherapy (IMRT) in the treatment of rectal cancer. Predictive factors to achieve pathological complete response (pCR) were analyzed, as a secondary endpoint. Materials and methods All consecutive patients who underwent IMRT as part of neoadjuvant CHRT in the treatment of rectal cancer between August 2014 and December 2016 at a tertiary cancer care center were accrued for the study. The cohort underwent CHRT with IMRT technique at a dose of 50.4 Gy in 28 fractions concurrent with continuous infusion of 5 fluorouracil during the first and the last 4 days of CHRT. Surgery was performed 6 weeks later and the pathological response to CHRT was noted. Results Forty-three subjects were accrued for the study. Radiation dermatitis and diarrhea were the only observed grade ≥3 acute toxicities. Sphincter preservation rate (SPR) was 43.3%. pCR was observed in 32.6%. Univariate and multivariate logistic regression showed that carcinoembryonic antigen was the only independent predictive factor to achieve pCR. Conclusion IMRT as part of neoadjuvant CHRT in the treatment of locally advanced rectal cancer is well tolerated and gives comparable results with respect to earlier studies in terms of pathological response and SPR. Further randomized controlled studies are needed to firmly state that IMRT is superior to 3-dimensional conformal radiotherapy. PMID:29593430
Richards, T M; Bhide, S A; Miah, A B; Del Rosario, L; Bodla, S; Thway, K; Gujral, D M; Rooney, K P; Schick, U; McGovern, T; Grove, L; Newbold, K L; Harrington, K J; Nutting, C M
2016-09-01
To determine the clinical outcomes of an intensity-modulated radiotherapy technique for total mucosal irradiation (TM-IMRT) in patients with head and neck carcinoma of unknown primary (HNCUP). A single-centre prospective phase II trial design was used in two sequential studies to evaluate TM-IMRT for HNCUP. Patients were investigated for primary tumour site using examination under anaesthetic and biopsies, computed tomography ± magnetic resonance imaging (MRI) or 18-fluorodeoxyglucose positron emission tomography-computed tomography (PET-CT). Patients received IMRT to the potential primary tumour sites and elective cervical nodes. Concomitant chemotherapy was used in patients who received primary radiotherapy or those with nodal extracapsular extension. Thirty-six patients with HNCUP were recruited; 72% male. Twenty-five patients (69.4%) had p16-positive disease. Two year mucosal and local nodal control rates were 97.1% (95% confidence interval 91.4-100) and 89.8% (78.4-100), respectively. One mucosal primary was detected 7.3 months after TM-IMRT and three patients died from recurrent/metastatic squamous cell carcinoma of the head and neck. Twelve patients (33%) developed grade 3 (Late Effects in Normal Tissue-Subjective, Objective, Management and Analytical; LENT-SOMA) dysphagia with a 1 year enteric tube feeding rate of 2.7%. The high-grade subjective xerostomia rate (LENT-SOMA) at 24 months after IMRT was 15%. At a median follow-up of 36.1 months, the use of TM-IMRT was associated with good local control. Toxicity was comparable with previously reported TM-IMRT regimens encompassing similar mucosal volumes. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Wu, Mingyao; Ou, Dan; He, Xiayun; Hu, Chaosu
2017-11-01
To evaluate long-term results of a phase II study of induction and adjuvant gemcitabine and cisplatin (GP) chemotherapy with intensity-modulated radiotherapy (IMRT) in locoregionally advanced nasopharyngeal carcinoma (NPC). One hundred and twelve patients (Stage III: 65, IVA-B: 47) with locoregionally advanced NPC were enrolled in this study. All patients received induction chemotherapy consisting of 1000 mg/m 2 gemcitabine on day 1 and 8, and cisplatin 25 mg/m 2 on day 1-3, every 3 weeks for 2 cycles. Adjuvant chemotherapy for 2 cycles of the same regime was given 28 days after the end of IMRT. The IMRT technique was utilized for all patients. In total, 97.3% patients completed 2 cycles of induction chemotherapy. The overall response rate (RR) of cervical lymph nodes was 89.0%. Acute toxicities were mainly grade 1-2 myleosuppression and vomiting. And 83.9% patients completed 2 cycles of adjuvant chemotherapy. All patients finished IMRT with RR at the end of IMRT for nasopharynx, lymph nodes of neck and retropharyngeal area being 99.1%, 97.9% and 97.7%, respectively. The 5-year local control, regional control, distant metastasis-free and overall survival rates were 93.2%, 92.3%, 89.0% and 82.1%, respectively. The 5-year overall survival of stage III and IVA-B were 87.0%, and 75.5%, respectively. The incidence of grade 3-4 acute radiotherapy-related mucositis was 28.6%. Severe late toxicities were uncommon. IMRT combined with GP for locoregionally advanced NPC is well tolerated, effective, and convenient, and warrants further studies. Copyright © 2017 Elsevier Ltd. All rights reserved.
A national dosimetry audit for stereotactic ablative radiotherapy in lung.
Distefano, Gail; Lee, Jonny; Jafari, Shakardokht; Gouldstone, Clare; Baker, Colin; Mayles, Helen; Clark, Catharine H
2017-03-01
A UK national dosimetry audit was carried out to assess the accuracy of Stereotactic Ablative Body Radiotherapy (SABR) lung treatment delivery. This mail-based audit used an anthropomorphic thorax phantom containing nine alanine pellets positioned in the lung region for dosimetry, as well as EBT3 film in the axial plane for isodose comparison. Centres used their local planning protocol/technique, creating 27 SABR plans. A range of delivery techniques including conformal, volumetric modulated arc therapy (VMAT) and Cyberknife (CK) were used with six different calculation algorithms (collapsed cone, superposition, pencil-beam (PB), AAA, Acuros and Monte Carlo). The mean difference between measured and calculated dose (excluding PB results) was 0.4±1.4% for alanine and 1.4±3.4% for film. PB differences were -6.1% and -12.9% respectively. The median of the absolute maximum isodose-to-isodose distances was 3mm (-6mm to 7mm) and 5mm (-10mm to +19mm) for the 100% and 50% isodose lines respectively. Alanine and film is an effective combination for verifying dosimetric and geometric accuracy. There were some differences across dose algorithms, and geometric accuracy was better for VMAT and CK compared with conformal techniques. The alanine dosimetry results showed that planned and delivered doses were within ±3.0% for 25/27 SABR plans. Copyright © 2017 Elsevier B.V. All rights reserved.
Smith, Jessica A.; Wild, Aaron T.; Singhi, Aatur; Raman, Siva P.; Qiu, Haoming; Kumar, Rachit; Hacker-Prietz, Amy; Hruban, Ralph H.; Kamel, Ihab R.; Efron, Jonathan; Wick, Elizabeth C.; Azad, Nilofer S.; Diaz, Luis A.; Le, Yi; Armour, Elwood P.; Gearhart, Susan L.; Herman, Joseph M.
2012-01-01
Purpose. To assess for differences in clinical, radiologic, and pathologic outcomes between patients with stage II-III rectal adenocarcinoma treated neoadjuvantly with conventional external beam radiotherapy (3D conformal radiotherapy (3DRT) or intensity-modulated radiotherapy (IMRT)) versus high-dose-rate endorectal brachytherapy (EBT). Methods. Patients undergoing neoadjuvant EBT received 4 consecutive daily 6.5 Gy fractions without chemotherapy, while those undergoing 3DRT or IMRT received 28 daily 1.8 Gy fractions with concurrent 5-fluorouracil. Data was collected prospectively for 7 EBT patients and retrospectively for 25 historical 3DRT/IMRT controls. Results. Time to surgery was less for EBT compared to 3DRT and IMRT (P < 0.001). There was a trend towards higher rate of pathologic CR for EBT (P = 0.06). Rates of margin and lymph node positivity at resection were similar for all groups. Acute toxicity was less for EBT compared to 3DRT and IMRT (P = 0.025). Overall and progression-free survival were noninferior for EBT. On MRI, EBT achieved similar complete response rate and reduction in tumor volume as 3DRT and IMRT. Histopathologic comparison showed that EBT resulted in more localized treatment effects and fewer serosal adhesions. Conclusions. EBT offers several practical benefits over conventional radiotherapy techniques and appears to be at least as effective against low rectal cancer as measured by short-term outcomes. PMID:22830003
Gauer, Tobias; Sothmann, Thilo; Blanck, Oliver; Petersen, Cordula; Werner, René
2018-06-01
Radiotherapy of extracranial metastases changed from normofractioned 3D CRT to extreme hypofractionated stereotactic treatment using VMAT beam techniques. Random interaction between tumour motion and dynamically changing beam parameters might result in underdosage of the CTV even for an appropriately dimensioned ITV (interplay effect). This study presents a clinical scenario of extreme hypofractionated stereotactic treatment and analyses the impact of interplay effects on CTV dose coverage. For a thoracic/abdominal phantom with an integrated high-resolution detector array placed on a 4D motion platform, dual-arc treatment plans with homogenous target coverage were created using a common VMAT technique and delivered in a single fraction. CTV underdosage through interplay effects was investigated by comparing dose measurements with and without tumour motion during plan delivery. Our study agrees with previous works that pointed out insignificant interplay effects on target coverage for very regular tumour motion patterns like simple sinusoidal motion. However, we identified and illustrated scenarios that are likely to result in a clinically relevant CTV underdosage. For tumour motion with abnormal variability, target coverage quantified by the CTV area receiving more than 98% of the prescribed dose decreased to 78% compared to 100% at static dose measurement. This study is further proof of considerable influence of interplay effects on VMAT dose delivery in stereotactic radiotherapy. For selected conditions of an exemplary scenario, interplay effects and related motion-induced target underdosage primarily occurred in tumour motion pattern with increased motion variability and VMAT plan delivery using complex MLC dose modulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibbott, Geoffrey S.; Followill, David S.; Molineu, H. Andrea
The Radiological Physics Center (RPC) has functioned continuously for 38 years to assure the National Cancer Institute and the cooperative groups that institutions participating in multi-institutional trials can be expected to deliver radiation treatments that are clinically comparable to those delivered by other institutions in the cooperative groups. To accomplish this, the RPC monitors the machine output, the dosimetry data used by the institutions, the calculation algorithms used for treatment planning, and the institutions' quality control procedures. The methods of monitoring include on-site dosimetry review by an RPC physicist and a variety of remote audit tools. The introduction of advancedmore » technology clinical trials has prompted several study groups to require participating institutions and personnel to become credentialed, to ensure their familiarity and capability with techniques such as three-dimensional conformal radiotherapy, intensity-modulated radiotherapy, stereotactic body radiotherapy, and brachytherapy. The RPC conducts a variety of credentialing activities, beginning with questionnaires to evaluate an institution's understanding of the protocol and their capabilities. Treatment-planning benchmarks are used to allow the institution to demonstrate their planning ability and to facilitate a review of the accuracy of treatment-planning systems under relevant conditions. The RPC also provides mailable anthropomorphic phantoms to verify tumor dose delivery for special treatment techniques. While conducting these reviews, the RPC has amassed a large amount of data describing the dosimetry at participating institutions. Representative data from the monitoring programs are discussed, and examples are presented of specific instances in which the RPC contributed to the discovery and resolution of dosimetry errors.« less
Kaufmann, Anne; Schmidt, Heike; Ostheimer, Christian; Ullrich, Janine; Landenberger, Margarete; Vordermark, Dirk
2015-07-01
In very elderly cancer patients, health-related quality of life (HRQOL) is a particularly important issue but has rarely been studied due to a lack of specific instruments and of reference data. We performed a prospective analysis of HRQOL in patients ≥80 years undergoing radiotherapy with the newly validated elderly-specific HRQOL module EORTC QLQ-ELD14. We prospectively assessed HRQOL in n = 50 radiotherapy patients ≥80 years (32% lung, 20% gastrointestinal, 8% each of breast, head and neck, gynecologic cancer) at the start (t1), end (t2), and 6 months after (t3) radiotherapy, using EORTC QLQ-C30 and EORTC QLQ-ELD14. Overall survival was determined in the whole cohort and subgroups. Median overall survival from the start of radiotherapy was 15 months; 1-year and 2-year overall survival rates were 57.1 and 31.0%, respectively. Eastern Cooperative Oncology Group (ECOG) performance status <2, Charlson comorbidity index ≤6, curative treatment intention, local tumor stage Union Internationale Contre le Cancer (UICC I, II), and total dose >45 Gy were associated with prolonged survival. No significant changes in any HRQOL domain were observed during the course of treatment (t1 to t2). Six months after radiotherapy (t3), a significant and clinically relevant deterioration of HRQOL was seen in EORTC QLQ-C30 for physical function and role function and in EORTC QLQ-ELD14 for future worries, burden of illness, and family support. In radiotherapy patients ≥80 years, HRQOL was maintained until the end of radiotherapy but deteriorated in general and elderly-specific areas thereafter, suggesting a need to develop specific supportive interventions for this age group.
László, Zoltán; Boronkai, Árpád; Lõcsei, Zoltán; Kalincsák, Judit; Szappanos, Szabolcs; Farkas, Róbert; Al Farhat, Yousuf; Sebestyén, Zsolt; Sebestyén, Klára; Kovács, Péter; Csapó, László; Mangel, László
2015-06-01
With the development of radiation therapy technology, the utilization of more accurate patient fixation, inclusion of PET/CT image fusion into treatment planning, 3D image-guided radiotherapy, and intensity-modulated dynamic arc irradiation, the application of hypofractionated stereotactic radiotherapy can be extended to specified extracranial target volumes, and so even to the treatment of various metastases. Between October 2012 and August 2014 in our institute we performed extracranial, hypofractionated, image-többguided radiotherapy with RapidArc system for six cases, and 3D conformal multifield technique for one patient with Novalis TX system in case of different few-numbered and slow-growing metastases. For the precise definition of the target volumes we employed PET/CT during the treatment planning procedure. Octreotid scan was applied in one carcinoid tumour patient. Considering the localisation of the metastases and the predictable motion of the organs, we applied 5 to 20 mm safety margin during the contouring procedure. The average treatment volume was 312 cm3. With 2.5-3 Gy fraction doses we delivered 39-45 Gy total dose, and the treatment duration was 2.5 to 3 weeks. The image guidance was carried out via ExacTrac, and kV-Cone Beam CT equipment based on an online protocol, therefore localisation differences were corrected before every single treatment. The patients tolerated the treatments well without major (Gr>2) side effects. Total or near total regression of the metastases was observed at subsequent control examinations in all cases (the median follow-up time was 5 months). According to our first experience, extracranial, imageguided hypofractionated radiotherapy is well-tolerated by patients and can be effectively applied in the treatment of slow-growing and few-numbered metastases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Vincent W.C.; Yang Zhining; Zhang Wuzhe
This study compared the oral cavity dose between the routine 7-beam intensity-modulated radiotherapy (IMRT) beam arrangement and 2 other 7-beam IMRT with the conventional radiotherapy beam arrangements in the treatment of nasopharyngeal carcinoma (NPC). Ten NPC patients treated by the 7-beam routine IMRT technique (IMRT-7R) between April 2009 and June 2009 were recruited. Using the same computed tomography data, target information, and dose constraints for all the contoured structures, 2 IMRT plans with alternative beam arrangements (IMRT-7M and IMRT-7P) by avoiding the anterior facial beam and 1 conventional radiotherapy plan (CONRT) were computed using the Pinnacle treatment planning system. Dose-volumemore » histograms were generated for the planning target volumes (PTVs) and oral cavity from which the dose parameters and the conformity index of the PTV were recorded for dosimetric comparisons among the plans with different beam arrangements. The dose distributions to the PTVs were similar among the 3 IMRT beam arrangements, whereas the differences were significant between IMRT-7R and CONRT plans. For the oral cavity dose, the 3 IMRT beam arrangements did not show significant difference. Compared with IMRT-7R, CONRT plan showed a significantly lower mean dose, V30 and V-40, whereas the V-60 was significantly higher. The 2 suggested alternative beam arrangements did not significantly reduce the oral cavity dose. The impact of varying the beam angles in IMRT of NPC did not give noticeable effect on the target and oral cavity. Compared with IMRT, the 2-D conventional radiotherapy irradiated a greater high-dose volume in the oral cavity.« less
Wenyong, Tu; Lu, Liu; Jun, Zeng; Weidong, Yin; Yun, Li
2010-01-01
This study presents a dosimetric optimization effort aiming to compare noncoplanar field (NCF) on 3 dimensions conformal radiotherapy (3D-CRT) and coplanar field (CF) on intensity-modulated radiotherapy (IMRT) planning for postocular invasion tumor. We performed a planning study on the computed tomography data of 8 consecutive patients with localized postocular invasion tumor. Four fields NCF 3D-CRT in the transverse plane with gantry angles of 0-10 degrees , 30-45 degrees , 240-270 degrees , and 310-335 degrees degrees were isocentered at the center of gravity of the target volume. The geometry of the beams was determined by beam's eye view. The same constraints were prepared with between CF IMRT optimization and NCF 3D-CRT treatment. The maximum point doses (D max) for the different optic pathway structures (OPS) with NCF 3D-CRT treatment should differ in no more than 3% from those with the NCF IMRT plan. Dose-volume histograms (DVHs) were obtained for all targets and organ at risk (OAR) with both treatment techniques. Plans with NCF 3D-CRT and CF IMRT constraints on target dose in homogeneity were computed, as well as the conformity index (CI) and homogeneity index (HI) in the target volume. The PTV coverage was optimal with both NCF 3D-CRT and CF IMRT plans in the 8 tumor sites. No difference was noted between the two techniques for the average D(max) and D(min) dose. NCF 3D-CRT and CF IMRT will yield similar results on CI. However, HI was a significant difference between NCF 3D-CRT and CF IMRT plan (p < 0.001). Physical endpoints for target showed the mean target dose to be low in the CF IMRT plan, caused by a large target dose in homogeneity (p < 0.001). The impact of NCF 3D-CRT versus CF IMRT set-up is very slight. NCF3D-CRT is one of the treatment options for postocular invasion tumor. However, constraints for OARs are needed. 2010 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Duma, Marciana Nona; Berndt, Johannes; Rondak, Ina-Christine; Devecka, Michal; Wilkens, Jan J; Geinitz, Hans; Combs, Stephanie Elisabeth; Oechsner, Markus
2015-01-01
The aim of this study was to assess the effect of breathing motion on the delivered dose in esophageal cancer 3-dimensional (3D)-conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), and volumetric modulated arc therapy (VMAT). We assessed 16 patients with esophageal cancer. All patients underwent 4D-computed tomography (4D-CT) for treatment planning. For each of the analyzed patients, 1 3D-CRT, 1 IMRT, and 1 VMAT (RapidArc-RA) plan were calculated. Each of the 3 initial plans was recalculated on the 4D-CT (for the maximum free inspiration and maximum free expiration) to assess the effect of breathing motion. We assessed the minimum dose (Dmin) and mean dose (Dmean) to the esophagus within the planning target volume, the volume changes of the lungs, the Dmean and the total lung volume receiving at least 40Gy (V40), and the V30, V20, V10, and V5. For the heart we assessed the Dmean and the V25. Over all techniques and all patients the change in Dmean as compared with the planned Dmean (planning CT [PCT]) to the esophagus was 0.48% in maximum free inspiration (CT_insp) and 0.55% in maximum free expiration (CT_exp). The Dmin CT_insp change was 0.86% and CT_exp change was 0.89%. The Dmean change of the lungs (heart) was in CT_insp 1.95% (2.89%) and 3.88% (2.38%) in CT_exp. In all, 4 patients had a clinically relevant change of the dose (≥ 5% Dmean to the heart and the lungs) between inspiration and expiration. These patients had a very cranially or caudally situated tumor. There are no relevant differences in the delivered dose to the regions of interest among the 3 techniques. Breathing motion management could be considered to achieve a better sparing of the lungs or heart in patients with cranially or caudally situated tumors. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duma, Marciana Nona, E-mail: Marciana.Duma@mri.tum.de; Berndt, Johannes; Rondak, Ina-Christine
2015-01-01
The aim of this study was to assess the effect of breathing motion on the delivered dose in esophageal cancer 3-dimensional (3D)-conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), and volumetric modulated arc therapy (VMAT). We assessed 16 patients with esophageal cancer. All patients underwent 4D-computed tomography (4D-CT) for treatment planning. For each of the analyzed patients, 1 3D-CRT, 1 IMRT, and 1 VMAT (RapidArc—RA) plan were calculated. Each of the 3 initial plans was recalculated on the 4D-CT (for the maximum free inspiration and maximum free expiration) to assess the effect of breathing motion. We assessed the minimum dose (D{sub min})more » and mean dose (D{sub mean}) to the esophagus within the planning target volume, the volume changes of the lungs, the D{sub mean} and the total lung volume receiving at least 40 Gy (V{sub 40}), and the V{sub 30}, V{sub 20}, V{sub 10}, and V{sub 5}. For the heart we assessed the D{sub mean} and the V{sub 25}. Over all techniques and all patients the change in D{sub mean} as compared with the planned D{sub mean} (planning CT [PCT]) to the esophagus was 0.48% in maximum free inspiration (CT-insp) and 0.55% in maximum free expiration (CT-exp). The D{sub min} CT-insp change was 0.86% and CT-exp change was 0.89%. The D{sub mean} change of the lungs (heart) was in CT-insp 1.95% (2.89%) and 3.88% (2.38%) in CT-exp. In all, 4 patients had a clinically relevant change of the dose (≥ 5% D{sub mean} to the heart and the lungs) between inspiration and expiration. These patients had a very cranially or caudally situated tumor. There are no relevant differences in the delivered dose to the regions of interest among the 3 techniques. Breathing motion management could be considered to achieve a better sparing of the lungs or heart in patients with cranially or caudally situated tumors.« less
Vandendorpe, B; Guilbert, P; Champagne, C; Antoni, T; Nguyen, T D; Gaillot-Petit, N; Servagi Vernat, S
2017-12-01
To evaluate the dosimetric contribution of helical tomotherapy for breast cancers compared with conformal radiotherapy in mono-isocentric technique. For 23 patients, the dosimetric results in mono-isocentric 3D conformational radiotherapy did not satisfy the constraints either of target volumes nor organs at risk. A prospective dosimetric comparison between mono-isocentric 3D conformational radiotherapy and helical tomotherapy was therefore carried out. The use of helical tomotherapy showed a benefit in these 23 patients, with either an improvement in the conformity index or homogeneity, but with an increase in low doses. Of the 23 patients, two had pectus excavatum, five had past thoracic irradiation and two required bilateral irradiation. The other 14 patients had a combination of morphology and/or indication of lymph node irradiation. For these patients, helical tomotherapy was therefore preferred to mono-isocentric 3D conformational radiotherapy. Tomotherapy appears to provide better homogeneity and tumour coverage. This technique of irradiation may be justified in the case of morphological situations such as pectus exavatum and in complex clinical situations. In other cases, conformal radiotherapy in mono-isocentric technique remains to be favoured. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
Zhang, Rui; Heins, David; Sanders, Mary; Guo, Beibei; Hogstrom, Kenneth
2018-05-10
The purpose of this study was to assess the potential benefits and limitations of a mixed beam therapy, which combined bolus electron conformal therapy (BECT) with intensity modulated photon radiotherapy (IMRT) and volumetric modulated photon arc therapy (VMAT), for left-sided post-mastectomy breast cancer patients. Mixed beam treatment plans were produced for nine post-mastectomy radiotherapy (PMRT) patients previously treated at our clinic with VMAT alone. The mixed beam plans consisted of 40 Gy to the chest wall area using BECT, 40 Gy to the supraclavicular area using parallel opposed IMRT, and 10 Gy to the total planning target volume (PTV) by optimizing VMAT on top of the BECT+IMRT dose distribution. The treatment plans were created in a commercial treatment planning system (TPS), and all plans were evaluated based on PTV coverage, dose homogeneity index (DHI), conformity index (CI), dose to organs at risk (OARs), normal tissue complication probability (NTCP), and secondary cancer complication probability (SCCP). The standard VMAT alone planning technique was used as the reference for comparison. Both techniques produced clinically acceptable PMRT plans but with a few significant differences: VMAT showed significantly better CI (0.70 vs. 0.53, p < 0.001) and DHI (0.12 vs. 0.20, p < 0.001) over mixed beam therapy. For normal tissues, mixed beam therapy showed better OAR sparing and significantly reduced NTCP for cardiac mortality (0.23% vs. 0.80%, p = 0.01) and SCCP for contralateral breast (1.7% vs. 3.1% based on linear model, and 1.2% vs. 1.9% based on linear-exponential model, p < 0.001 in both cases), but showed significantly higher mean (50.8 Gy vs. 49.3 Gy, p < 0.001) and maximum skin doses (59.7 Gy vs. 53.3 Gy, p < 0.001) compared with VMAT. Patients with more tissue (minimum distance between the distal PTV surface and lung approximately > 0.5 cm and volume of tissue between the distal PTV surface and heart or lung approximately > 250 cm 3 ) between distal PTV surface and lung may benefit the most from mixed beam therapy. This work has demonstrated that mixed beam therapy (BECT+IMRT : VMAT = 4 : 1) produces clinically acceptable plans having reduced OAR doses and risks of side effects compared with VMAT. Even though VMAT alone produces more homogenous and conformal dose distributions, mixed beam therapy remains as a viable option for treating post-mastectomy patients, possibly leading to reduced normal tissue complications. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Michael Jenwei, E-mail: michaelchen@einstein.b; Silva Santos, Adriana da; Sakuraba, Roberto Kenji
Purpose: To compare the sparing potential of cerebral hemispheres with intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3D-CRT) for whole-ventricular irradiation (WVI) and conventional whole-brain irradiation (WBI) in the management of localized central nervous system germ cell tumors (CNSGCTs). Methods and Materials: Ten cases of patients with localized CNSGCTs and submitted to WVI by use of IMRT with or without a 'boost' to the primary lesion were selected. For comparison purposes, similar treatment plans were produced by use of 3D-CRT (WVI with or without boost) and WBI (opposed lateral fields with or without boost), and cerebral hemisphere sparing was evaluatedmore » at dose levels ranging from 2 Gy to 40 Gy. Results: The median prescription dose for WVI was 30.6 Gy (range, 25.2-37.5 Gy), and that for the boost was 16.5 Gy (range, 0-23.4 Gy). Mean irradiated cerebral hemisphere volumes were lower for WVI with IMRT than for 3D-CRT and were lower for WVI with 3D-CRT than for WBI. Intensity-modulated radiotherapy was associated with the lowest irradiated volumes, with reductions of 7.5%, 12.2%, and 9.0% at dose levels of 20, 30, and 40 Gy, respectively, compared with 3D-CRT. Intensity-modulated radiotherapy provided statistically significant reductions of median irradiated volumes at all dose levels (p = 0.002 or less). However, estimated radiation doses to peripheral areas of the body were 1.9 times higher with IMRT than with 3D-CRT. Conclusions: Although IMRT is associated with increased radiation doses to peripheral areas of the body, its use can spare a significant amount of normal central nervous system tissue compared with 3D-CRT or WBI in the setting of CNSGCT treatment.« less
Min, Myo; Chua, Benjamin; Guttner, Yvonne; Abraham, Ned; Aherne, Noel J; Hoffmann, Matthew; McKay, Michael J; Shakespeare, Thomas P
2014-02-01
Pelvic radiation disease (PRD) also widely known as "radiation proctopathy" is a well recognised late side-effect following conventional prostate radiotherapy. However, endoscopic evaluation and/or specialist referral for new or persistent post-prostate radiotherapy bowel symptoms is not routine and serious diagnoses may potentially be missed. Here we report a policy of endoscopic evaluation of bowel symptoms persisting >90 days post radiotherapy for prostate cancer. A consecutive series of 102 patients who had radical prostate intensity-modulated radiotherapy (IMRT)/image-guided radiotherapy (IGRT) and who had new or ongoing bowel symptoms or positive faecal occult blood tests (FOBT) on follow up visits more than three months after treatment, were referred for endoscopic examination. All but one (99%) had full colonoscopic investigation. Endoscopic findings included gastric/colonic/rectal polyps (56%), diverticular disease (49%), haemorrhoids (38%), radiation proctopathy (29%), gastritis/oesophagitis (8%) and rarer diagnoses, including bowel cancer which was found in 3%. Only four patients (4%) had radiation proctopathy without associated pathology and 65 patients (63%) had more than one diagnosis. If flexible sigmoidoscopy alone were used, 36.6% of patients and 46.6% patients with polyp(s) would have had their diagnoses missed. Our study has shown that bowel symptoms following prostate IMRT/IGRT are due to numerous diagnoses other than PRD, including malignancy. Routine referral pathways should be developed for endoscopic evaluation/specialist review for patients with new or persistent bowel symptoms (or positive FOBT) following prostate radiotherapy. This recommendation should be considered for incorporation into national guidelines. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Hansen, Christian Rønn; Nielsen, Morten; Bertelsen, Anders Smedegaard; Hazell, Irene; Holtved, Eva; Zukauskaite, Ruta; Bjerregaard, Jon Kroll; Brink, Carsten; Bernchou, Uffe
2017-11-01
The quality of radiotherapy planning has improved substantially in the last decade with the introduction of intensity modulated radiotherapy. The purpose of this study was to analyze the plan quality and efficacy of automatically (AU) generated VMAT plans for inoperable esophageal cancer patients. Thirty-two consecutive inoperable patients with esophageal cancer originally treated with manually (MA) generated volumetric modulated arc therapy (VMAT) plans were retrospectively replanned using an auto-planning engine. All plans were optimized with one full 6MV VMAT arc giving 60 Gy to the primary target and 50 Gy to the elective target. The planning techniques were blinded before clinical evaluation by three specialized oncologists. To supplement the clinical evaluation, the optimization time for the AU plan was recorded along with DVH parameters for all plans. Upon clinical evaluation, the AU plan was preferred for 31/32 patients, and for one patient, there was no difference in the plans. In terms of DVH parameters, similar target coverage was obtained between the two planning methods. The mean dose for the spinal cord increased by 1.8 Gy using AU (p = .002), whereas the mean lung dose decreased by 1.9 Gy (p < .001). The AU plans were more modulated as seen by the increase of 12% in mean MUs (p = .001). The median optimization time for AU plans was 117 min. The AU plans were in general preferred and showed a lower mean dose to the lungs. The automation of the planning process generated esophageal cancer treatment plans quickly and with high quality.
Image Guidance in Radiation Therapy: Techniques and Applications
Kataria, Tejinder
2014-01-01
In modern day radiotherapy, the emphasis on reduction on volume exposed to high radiotherapy doses, improving treatment precision as well as reducing radiation-related normal tissue toxicity has increased, and thus there is greater importance given to accurate position verification and correction before delivering radiotherapy. At present, several techniques that accomplish these goals impeccably have been developed, though all of them have their limitations. There is no single method available that eliminates treatment-related uncertainties without considerably adding to the cost. However, delivering “high precision radiotherapy” without periodic image guidance would do more harm than treating large volumes to compensate for setup errors. In the present review, we discuss the concept of image guidance in radiotherapy, the current techniques available, and their expected benefits and pitfalls. PMID:25587445
Wong, Kee H; Panek, Rafal; Bhide, Shreerang A; Nutting, Christopher M; Harrington, Kevin J; Newbold, Katie L
2017-03-01
Head and neck cancer (HNC) is a challenging tumour site for radiotherapy delivery owing to its complex anatomy and proximity to organs at risk (OARs) such as the spinal cord and optic apparatus. Despite significant advances in radiotherapy planning techniques, radiation-induced morbidities remain substantial. Further improvement would require high-quality imaging and tailored radiotherapy based on intratreatment response. For these reasons, the use of MRI in radiotherapy planning for HNC is rapidly gaining popularity. MRI provides superior soft-tissue contrast in comparison with CT, allowing better definition of the tumour and OARs. The lack of additional radiation exposure is another attractive feature for intratreatment monitoring. In addition, advanced MRI techniques such as diffusion-weighted, dynamic contrast-enhanced and intrinsic susceptibility-weighted MRI techniques are capable of characterizing tumour biology further by providing quantitative functional parameters such as tissue cellularity, vascular permeability/perfusion and hypoxia. These functional parameters are known to have radiobiological relevance, which potentially could guide treatment adaptation based on their changes prior to or during radiotherapy. In this article, we first present an overview of the applications of anatomical MRI sequences in head and neck radiotherapy, followed by the potentials and limitations of functional MRI sequences in personalizing therapy.
Panek, Rafal; Bhide, Shreerang A; Nutting, Christopher M; Harrington, Kevin J; Newbold, Katie L
2017-01-01
Head and neck cancer (HNC) is a challenging tumour site for radiotherapy delivery owing to its complex anatomy and proximity to organs at risk (OARs) such as the spinal cord and optic apparatus. Despite significant advances in radiotherapy planning techniques, radiation-induced morbidities remain substantial. Further improvement would require high-quality imaging and tailored radiotherapy based on intratreatment response. For these reasons, the use of MRI in radiotherapy planning for HNC is rapidly gaining popularity. MRI provides superior soft-tissue contrast in comparison with CT, allowing better definition of the tumour and OARs. The lack of additional radiation exposure is another attractive feature for intratreatment monitoring. In addition, advanced MRI techniques such as diffusion-weighted, dynamic contrast-enhanced and intrinsic susceptibility-weighted MRI techniques are capable of characterizing tumour biology further by providing quantitative functional parameters such as tissue cellularity, vascular permeability/perfusion and hypoxia. These functional parameters are known to have radiobiological relevance, which potentially could guide treatment adaptation based on their changes prior to or during radiotherapy. In this article, we first present an overview of the applications of anatomical MRI sequences in head and neck radiotherapy, followed by the potentials and limitations of functional MRI sequences in personalizing therapy. PMID:28256151
Stereotactic body radiotherapy in lung cancer: an update *
Abreu, Carlos Eduardo Cintra Vita; Ferreira, Paula Pratti Rodrigues; de Moraes, Fabio Ynoe; Neves, Wellington Furtado Pimenta; Gadia, Rafael; Carvalho, Heloisa de Andrade
2015-01-01
Abstract For early-stage lung cancer, the treatment of choice is surgery. In patients who are not surgical candidates or are unwilling to undergo surgery, radiotherapy is the principal treatment option. Here, we review stereotactic body radiotherapy, a technique that has produced quite promising results in such patients and should be the treatment of choice, if available. We also present the major indications, technical aspects, results, and special situations related to the technique. PMID:26398758
NASA Astrophysics Data System (ADS)
Luna, J. A.; Rojas, J. I.
2016-07-01
All prostate cancer patients from Centro Médico Radioterapia Siglo XXI receive Volumetric Modulated Arc Therapy (VMAT). This therapy uses image-guided radiotherapy (IGRT) with the Cone Beam Computed Tomography (CBCT). This study compares the planned dose in the reference CT image against the delivered dose recalculate in the CBCT image. The purpose of this study is to evaluate the anatomic changes and related dosimetric effect based on weekly CBCT directly for patients with prostate cancer undergoing volumetric modulated arc therapy (VMAT) treatment. The collected data were analyzed using one-way ANOVA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pow, Edmond; Kwong, Dora; McMillan, Anne S.
2006-11-15
Purpose: To compare directly the effect of intensity-modulated radiotherapy (IMRT) vs. conventional radiotherapy (CRT) on salivary flow and quality of life (QoL) in patients with early-stage nasopharyngeal carcinoma (NPC). Methods and Materials: Fifty-one patients with T2, N0/N1, M0 NPC took part in a randomized controlled clinical study and received IMRT or CRT. Stimulated whole (SWS) and parotid (SPS) saliva flow were measured and Medical Outcomes Short Form 36 (SF-36), European Organization for Research and Treatment of Cancer (EORTC) core quetionnaire, and EORTC head-and-neck module (QLQ-H and N35) were completed at baseline and 2, 6, and 12 months after radiotherapy. Results:more » Forty-six patients (88%) were in disease remission 12 months after radiotherapy. At 12 months postradiotherapy, 12 (50.0%) and 20 patients (83.3%) in the IMRT group had recovered at least 25% of preradiotherapy SWS and SPS flow respectively, compared with 1 (4.8%) and 2 patients (9.5%), respectively, in the CRT group. Global health scores showed continuous improvement in QoL after both treatments (p < 0.001). However, after 12 months subscale scores for role-physical, bodily pain, and physical function were significantly higher in the IMRT group, indicating a better condition (p < 0.05). Dry mouth and sticky saliva were problems in both groups 2 months after treatment. In the IMRT group, there was consistent improvement over time with xerostomia-related symptoms significantly less common than in the CRT group at 12 months postradiotherapy. Conclusions: IMRT was significantly better than CRT in terms of parotid sparing and improved QoL for early-stage disease. The findings support the case for assessment of health-related QoL in relation to head-and-neck cancer using a site-specific approach.« less
Murray, L; Sethugavalar, B; Robertshaw, H; Bayman, E; Thomas, E; Gilson, D; Prestwich, R J D
2015-07-01
Recent radiotherapy guidelines for lymphoma have included involved site radiotherapy (ISRT), involved node radiotherapy (INRT) and irradiation of residual volume after full-course chemotherapy. In the absence of late toxicity data, we aim to compare organ at risk (OAR) dose-metrics and calculated second malignancy risks. Fifteen consecutive patients who had received mediastinal radiotherapy were included. Four radiotherapy plans were generated for each patient using a parallel pair photon technique: (i) involved field radiotherapy (IFRT), (ii) ISRT, (iii) INRT, (iv) residual post-chemotherapy volume. The radiotherapy dose was 30 Gy in 15 fractions. The OARs evaluated were: breasts, lungs, thyroid, heart, oesophagus. Relative and absolute second malignancy rates were estimated using the concept of organ equivalent dose. Significance was defined as P < 0.005. Compared with ISRT, IFRT significantly increased doses to lung, thyroid, heart and oesophagus, whereas INRT and residual volume techniques significantly reduced doses to all OARs. The relative risks of second cancers were significantly higher with IFRT compared with ISRT for lung, breast and thyroid; INRT and residual volume resulted in significantly lower relative risks compared with ISRT for lung, breast and thyroid. The median excess absolute risks of second cancers were consistently lowest for the residual technique and highest for IFRT in terms of thyroid, lung and breast cancers. The risk of oesophageal cancer was similar for all four techniques. Overall, the absolute risk of second cancers was very similar for ISRT and INRT. Decreasing treatment volumes from IFRT to ISRT, INRT or residual volume reduces radiation exposure to OARs. Second malignancy modelling suggests that this reduction in treatment volumes will lead to a reduction in absolute excess second malignancy. Little difference was observed in second malignancy risks between ISRT and INRT, supporting the use of ISRT in the absence of a pre-chemotherapy positron emission tomography scan in the radiotherapy treatment position. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Sim, Cpc; Soong, Y L; Pang, Epp; Lim, C; Walker, G D; Manton, D J; Reynolds, E C; Wee, Jts
2018-06-01
To evaluate changes in xerostomia status, salivary characteristics and gland volumes 2 years following radiotherapy in nasopharyngeal carcinoma patients. Xerostomia scores, salivary flow rates, pH and buffering capacity were measured at pre-radiotherapy, mid-radiotherapy, 2 weeks, 3 months and 2 years post-radiotherapy. Salivary gland volumes and their correlation with radiation dose were also assessed. Mean radiation dose to oral cavity, parotid and submandibular glands (SMG) was 44.5, 65.0 and 38.6 Gy respectively. Parotid and SMG volumes decreased 33% at 3 months post-radiotherapy; volumes at 2 years post-radiotherapy were 84% and 51% of pre-radiotherapy levels, respectively. Correlations were observed between parotid gland volume per cent reduction and its radiation dose and between resting salivary flow rate reduction and post-radiotherapy/pre-radiotherapy SMG volume ratio. Salivary flow rates and resting saliva pH remained significantly low at 2 years post-radiotherapy (both flow rates, P = 0.001; resting saliva pH, P = 0.005). Similarly, xerostomia scores remained significantly higher compared with pre-radiotherapy levels. Submandibular gland volumetric shrinkage persisted 2 years after radiotherapy. Xerostomia scores remained significantly higher, and salivary flow rates and resting saliva pH remained significantly lower, suggesting that study participants were still at risk for hyposalivation-related oral diseases. © 2018 Australian Dental Association.
Cashmore, Jason; Ramtohul, Mark; Ford, Dan
2011-07-15
Intensity modulated radiotherapy (IMRT) has been linked with an increased risk of secondary cancer induction due to the extra leakage radiation associated with delivery of these techniques. Removal of the flattening filter offers a simple way of reducing head leakage, and it may be possible to generate equivalent IMRT plans and to deliver these on a standard linear accelerator operating in unflattened mode. An Elekta Precise linear accelerator has been commissioned to operate in both conventional and unflattened modes (energy matched at 6 MV) and a direct comparison made between the treatment planning and delivery of pediatric intracranial treatments using both approaches. These plans have been evaluated and delivered to an anthropomorphic phantom. Plans generated in unflattened mode are clinically identical to those for conventional IMRT but can be delivered with greatly reduced leakage radiation. Measurements in an anthropomorphic phantom at clinically relevant positions including the thyroid, lung, ovaries, and testes show an average reduction in peripheral doses of 23.7%, 29.9%, 64.9%, and 70.0%, respectively, for identical plan delivery compared to conventional IMRT. IMRT delivery in unflattened mode removes an unwanted and unnecessary source of scatter from the treatment head and lowers leakage doses by up to 70%, thereby reducing the risk of radiation-induced second cancers. Removal of the flattening filter is recommended for IMRT treatments. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cassidy, R.J., E-mail: richardjcassidy@emory.edu; Yang, X.; Liu, T.
Purpose: Sexual dysfunction after radiotherapy for prostate cancer remains an important late adverse toxicity. The neurovascular bundles (NVB) that lie posterolaterally to the prostate are typically spared during prostatectomy, but in traditional radiotherapy planning they are not contoured as an organ-at-risk with dose constraints. Our goal was to determine the dosimetric feasibility of “NVB-sparing” prostate radiotherapy while still delivering adequate dose to the prostate. Methods: Twenty-five consecutive patients with prostate cancer (with no extraprostatic disease on pelvic magnetic resonance imaging [MRI]) who that were treated with external beam radiotherapy, with the same primary planning target volume margins, to a dosemore » of 79.2 Gy were evaluated. Pelvic MRI and simulation computed tomography scans were registered using dedicated software to allow for bilateral NVB target delineation on T2-weighted MRI. A volumetric modulated arc therapy plan was generated using the NVB bilaterally with 2 mm margin as an organ to spare and compared to the patient’s previously delivered plan. Dose-volume histogram endpoints for NVB, rectum, bladder, and planning target volume 79.2 were compared between the 2 plans using a 2-tailed paired t-test. Results: The V70 for the NVB was significantly lower on the NVB-sparing plan (p <0.01), while rectum and bladder endpoints were similar. Target V100% was similar but V{sub 105%} was higher for the NVB-sparing plans (p <0.01). Conclusions: “NVB-sparing” radiotherapy is dosimetrically feasible using CT-MRI registration, and for volumetric modulated arc therapy technology — target coverage is acceptable without increased dose to other normal structures, but with higher target dose inhomogeneity. The clinical impact of “NVB-sparing” radiotherapy is currently under study at our institution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogelius, Ivan S.; Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI; Department of Radiation Oncology, Rigshospitalet
2011-07-01
Purpose: To model the possible interaction between cytotoxic chemotherapy and the radiation dose distribution with respect to the risk of radiation pneumonitis. Methods and Materials: A total of 18 non-small-cell lung cancer patients previously treated with helical tomotherapy at the University of Wisconsin were selected for the present modeling study. Three treatment plans were considered: the delivered tomotherapy plans; a three-dimensional conformal radiotherapy (3D-CRT) plan; and a fixed-field intensity-modulated radiotherapy (IMRT) plan. The IMRT and 3D-CRT plans were generated specifically for the present study. The plans were optimized without adjusting for the chemotherapy effect. The effect of chemotherapy was modeledmore » as an independent cell killing process by considering a uniform chemotherapy equivalent radiation dose added to all voxels of the organ at risk. The risk of radiation pneumonitis was estimated for all plans using the Lyman and the critical volume models. Results: For radiotherapy alone, the critical volume model predicts that the two IMRT plans are associated with a lower risk of radiation pneumonitis than the 3D-CRT plan. However, when the chemotherapy equivalent radiation dose exceeds a certain threshold, the radiation pneumonitis risk after IMRT is greater than after 3D-CRT. This threshold dose is in the range estimated from clinical chemoradiotherapy data sets. Conclusions: Cytotoxic chemotherapy might affect the relative merit of competing radiotherapy plans. More work is needed to improve our understanding of the interaction between chemotherapy and the radiation dose distribution in clinical settings.« less
Liu, Shuai; Lu, Taixiang; Zhao, Chong; Shen, Jingxian; Tian, Yunming; Guan, Ying; Zeng, Lei; Xiao, Weiwei; Huang, Shaomin; Han, Fei
2014-09-01
Temporal lobe injury (TLI) is a debilitating complication after radiotherapy for nasopharyngeal carcinoma (NPC), especially in patients who suffer treatment relapses and receive re-irradiation. We explored the clinical characteristics and prognostic factors of TLI in locally recurrent NPC (rNPC) patients after re-irradiation using intensity modulated radiotherapy (IMRT). A total of 454 temporal lobes (TLs) from 227 locally rNPC patients were reviewed. The clinical characteristics of TLI were analyzed. In the two radiotherapy courses, the equivalent dose in 2 Gy per fraction (EQD2) for the TLs was recalculated to facilitate comparison of the individual data. The median follow-up time was 31 (range, 3-127) months. After re-irradiation using IMRT, 31.3 % (71/227) of patients developed TLI. The median latency of TLI was 15 (range, 4-100) months. Univariate and multivariate analysis showed that the interval time (IT) between the two courses of radiotherapy and the summation of the maximum doses of the two radiotherapy courses (EQD2 - ∑max) were independent factors influencing TLI. The 5-year incidence of TLI for an IT ≤26 or >26 months was 35.9 and 53.7 % respectively (p = 0.024). The median maximum doses delivered to the injured TLs were significantly higher than was the case for the uninjured TLs after two courses of radiotherapy (135.3 and 129.8 Gy, respectively: p < 0.001). The incidence of TLI with an EQD2 - ∑max < 125 Gy was <5 %, and with an EQD2 - ∑max <145 Gy it was <50 %. A treatment mode limiting EQD2 - ∑max <125 Gy with a >2-year interval was found to be relatively safe.
Wen, Yixue; Zhao, Zhenhuan; Miao, Jidong; Yang, Qilin; Gui, Yan; Sun, Mingqiang; Tian, Honggang; Jia, Qiang; Liao, Dongbiao; Yang, Chen; Du, Xiaobo
2017-12-01
Chemotherapy regimens are often a 2-drug regimen in concurrent chemotherapy and radiotherapy for esophageal cancer (EC). However, some retrospective studies have suggested that for patients with EC receiving radiotherapy combined with 2-drug chemotherapy have the severe toxicity. And S-1 alone with the combination of radiotherapy treatment effect is good, and achieved good clinical remission rate. The purpose of this trial is compare the efficacy and toxicity of combining S-1 or S-1 plus cisplatin with radiotherapy for esophageal squamous cell carcinoma. The study is a randomized, controlled, multicenter trial, comparing S-1 versus S-1 plus cisplatin concurrent radiotherapy for patients with esophageal squamous cell carcinoma. Eighty-eight patients with unresectable or medically unfit for surgery esophageal squamous cell carcinoma (clinical stage I to III), will randomly assigned to receive four cycles (2 concomitant and 2 postradiotherapy) S-1 or S-1 plus cisplatin along with radiotherapy 60-66 Gy/30 to 33 fractions. The primary outcome is complete response rate of primary tumor which will be measured by endoscopy and computer screen at 3 months after the completion of treatment. Secondary outcomes include survival and toxicity. To our knowledge, this study protocol is the first to test the effect between S-1 versus S-1 plus cisplatin concurrent intensity modulated radiation therapy in the treatment of esophageal squamous cell carcinoma. If the result will be the same effect and fewer side effects and less costly in S-1 plus radiotherapy. It will supply more treatment selection for esophageal squamous cell carcinoma.
Baek, J G; Kim, E C; Kim, S K
2015-01-01
Objective: Radiation-induced anal toxicity can be induced by low radiation doses in patients with haemorrhoids. The object of this study was to determine the dosimetric benefits of different whole pelvic radiotherapy (WPRT) techniques in terms of dose delivered to the anal canal in post-operative patients with cervical cancer. Methods: The planning CT images of 10 patients with cervical cancer undergoing postoperative radiotherapy were used for comparison of three different plans. All patients had been treated using the conventional box technique WPRT (CV-WPRT), and we tried low-margin-modified WPRT (LM-WPRT), three-dimensional conformal techniques WPRT (CF-WPRT) and intensity-modulated WPRT (IM-WPRT) planning for dosimetric comparison of the anal canal, retrospectively. Results: Mean anal canal doses of the IM-WPRT were significantly lower (p < 0.05) than those of CV-WPRT, LM-WPRT and CF-WPRT, and V10, V20, V30 and V40 to the anal canal were also significantly lower for IM-WPRT (p < 0.05). The proportion of planning target volumes (PTVs) that received ≥98% of the prescribed dose for all plans was >99%, and the proportion that received ≥108% of the prescribed dose for IM-WPRT was <2%. Volumes of bladders and rectums that received ≥30 or ≥40 Gy were significantly lower for IM-WPRT than for three of the four-field WPRT plans (p = 0.000). Conclusion: IM-WPRT can significantly reduce radiation dose delivered to the anal canal and does not compromise PTV coverage. In patients with haemorrhoids, IM-WPRT may be of value for the prevention of anal complications. Advances in knowledge: Although tolerance of the anal canal tends to be ignored in patients undergoing post-operative WPRT, patients with haemorrhoids may suffer complications at low radiation doses. The present study shows IM-WPRT can be meaningful in these patients. PMID:26395671
Baek, J G; Kim, E C; Kim, S K; Jang, H
2015-01-01
Radiation-induced anal toxicity can be induced by low radiation doses in patients with haemorrhoids. The object of this study was to determine the dosimetric benefits of different whole pelvic radiotherapy (WPRT) techniques in terms of dose delivered to the anal canal in post-operative patients with cervical cancer. The planning CT images of 10 patients with cervical cancer undergoing postoperative radiotherapy were used for comparison of three different plans. All patients had been treated using the conventional box technique WPRT (CV-WPRT), and we tried low-margin-modified WPRT (LM-WPRT), three-dimensional conformal techniques WPRT (CF-WPRT) and intensity-modulated WPRT (IM-WPRT) planning for dosimetric comparison of the anal canal, retrospectively. Mean anal canal doses of the IM-WPRT were significantly lower (p < 0.05) than those of CV-WPRT, LM-WPRT and CF-WPRT, and V10, V20, V30 and V40 to the anal canal were also significantly lower for IM-WPRT (p < 0.05). The proportion of planning target volumes (PTVs) that received ≥98% of the prescribed dose for all plans was >99%, and the proportion that received ≥108% of the prescribed dose for IM-WPRT was <2%. Volumes of bladders and rectums that received ≥30 or ≥40 Gy were significantly lower for IM-WPRT than for three of the four-field WPRT plans (p = 0.000). IM-WPRT can significantly reduce radiation dose delivered to the anal canal and does not compromise PTV coverage. In patients with haemorrhoids, IM-WPRT may be of value for the prevention of anal complications. Although tolerance of the anal canal tends to be ignored in patients undergoing post-operative WPRT, patients with haemorrhoids may suffer complications at low radiation doses. The present study shows IM-WPRT can be meaningful in these patients.
Huq, M. Saiful; Fraass, Benedick A.; Dunscombe, Peter B.; Gibbons, John P.; Mundt, Arno J.; Mutic, Sasa; Palta, Jatinder R.; Rath, Frank; Thomadsen, Bruce R.; Williamson, Jeffrey F.; Yorke, Ellen D.
2016-01-01
The increasing complexity of modern radiation therapy planning and delivery challenges traditional prescriptive quality management (QM) methods, such as many of those included in guidelines published by organizations such as the AAPM, ASTRO, ACR, ESTRO, and IAEA. These prescriptive guidelines have traditionally focused on monitoring all aspects of the functional performance of radiotherapy (RT) equipment by comparing parameters against tolerances set at strict but achievable values. Many errors that occur in radiation oncology are not due to failures in devices and software; rather they are failures in workflow and process. A systematic understanding of the likelihood and clinical impact of possible failures throughout a course of radiotherapy is needed to direct limit QM resources efficiently to produce maximum safety and quality of patient care. Task Group 100 of the AAPM has taken a broad view of these issues and has developed a framework for designing QM activities, based on estimates of the probability of identified failures and their clinical outcome through the RT planning and delivery process. The Task Group has chosen a specific radiotherapy process required for “intensity modulated radiation therapy (IMRT)” as a case study. The goal of this work is to apply modern risk-based analysis techniques to this complex RT process in order to demonstrate to the RT community that such techniques may help identify more effective and efficient ways to enhance the safety and quality of our treatment processes. The task group generated by consensus an example quality management program strategy for the IMRT process performed at the institution of one of the authors. This report describes the methodology and nomenclature developed, presents the process maps, FMEAs, fault trees, and QM programs developed, and makes suggestions on how this information could be used in the clinic. The development and implementation of risk-assessment techniques will make radiation therapy safer and more efficient. PMID:27370140
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huq, M. Saiful, E-mail: HUQS@UPMC.EDU
The increasing complexity of modern radiation therapy planning and delivery challenges traditional prescriptive quality management (QM) methods, such as many of those included in guidelines published by organizations such as the AAPM, ASTRO, ACR, ESTRO, and IAEA. These prescriptive guidelines have traditionally focused on monitoring all aspects of the functional performance of radiotherapy (RT) equipment by comparing parameters against tolerances set at strict but achievable values. Many errors that occur in radiation oncology are not due to failures in devices and software; rather they are failures in workflow and process. A systematic understanding of the likelihood and clinical impact ofmore » possible failures throughout a course of radiotherapy is needed to direct limit QM resources efficiently to produce maximum safety and quality of patient care. Task Group 100 of the AAPM has taken a broad view of these issues and has developed a framework for designing QM activities, based on estimates of the probability of identified failures and their clinical outcome through the RT planning and delivery process. The Task Group has chosen a specific radiotherapy process required for “intensity modulated radiation therapy (IMRT)” as a case study. The goal of this work is to apply modern risk-based analysis techniques to this complex RT process in order to demonstrate to the RT community that such techniques may help identify more effective and efficient ways to enhance the safety and quality of our treatment processes. The task group generated by consensus an example quality management program strategy for the IMRT process performed at the institution of one of the authors. This report describes the methodology and nomenclature developed, presents the process maps, FMEAs, fault trees, and QM programs developed, and makes suggestions on how this information could be used in the clinic. The development and implementation of risk-assessment techniques will make radiation therapy safer and more efficient.« less
Huq, M Saiful; Fraass, Benedick A; Dunscombe, Peter B; Gibbons, John P; Ibbott, Geoffrey S; Mundt, Arno J; Mutic, Sasa; Palta, Jatinder R; Rath, Frank; Thomadsen, Bruce R; Williamson, Jeffrey F; Yorke, Ellen D
2016-07-01
The increasing complexity of modern radiation therapy planning and delivery challenges traditional prescriptive quality management (QM) methods, such as many of those included in guidelines published by organizations such as the AAPM, ASTRO, ACR, ESTRO, and IAEA. These prescriptive guidelines have traditionally focused on monitoring all aspects of the functional performance of radiotherapy (RT) equipment by comparing parameters against tolerances set at strict but achievable values. Many errors that occur in radiation oncology are not due to failures in devices and software; rather they are failures in workflow and process. A systematic understanding of the likelihood and clinical impact of possible failures throughout a course of radiotherapy is needed to direct limit QM resources efficiently to produce maximum safety and quality of patient care. Task Group 100 of the AAPM has taken a broad view of these issues and has developed a framework for designing QM activities, based on estimates of the probability of identified failures and their clinical outcome through the RT planning and delivery process. The Task Group has chosen a specific radiotherapy process required for "intensity modulated radiation therapy (IMRT)" as a case study. The goal of this work is to apply modern risk-based analysis techniques to this complex RT process in order to demonstrate to the RT community that such techniques may help identify more effective and efficient ways to enhance the safety and quality of our treatment processes. The task group generated by consensus an example quality management program strategy for the IMRT process performed at the institution of one of the authors. This report describes the methodology and nomenclature developed, presents the process maps, FMEAs, fault trees, and QM programs developed, and makes suggestions on how this information could be used in the clinic. The development and implementation of risk-assessment techniques will make radiation therapy safer and more efficient.
Diwanji, Tejan P.; Mohindra, Pranshu; Vyfhuis, Melissa; Snider, James W.; Kalavagunta, Chaitanya; Mossahebi, Sina; Yu, Jen; Feigenberg, Steven
2017-01-01
The 21st century has seen several paradigm shifts in the treatment of non-small cell lung cancer (NSCLC) in early-stage inoperable disease, definitive locally advanced disease, and the postoperative setting. A key driver in improvement of local disease control has been the significant evolution of radiation therapy techniques in the last three decades, allowing for delivery of definitive radiation doses while limiting exposure of normal tissues. For patients with locally-advanced NSCLC, the advent of volumetric imaging techniques has allowed a shift from 2-dimensional approaches to 3-dimensional conformal radiation therapy (3DCRT). The next generation of 3DCRT, intensity-modulated radiation therapy and volumetric-modulated arc therapy (VMAT), have enabled even more conformal radiation delivery. Clinical evidence has shown that this can improve the quality of life for patients undergoing definitive management of lung cancer. In the early-stage setting, conventional fractionation led to poor outcomes. Evaluation of altered dose fractionation with the previously noted technology advances led to advent of stereotactic body radiation therapy (SBRT). This technique has dramatically improved local control and expanded treatment options for inoperable, early-stage patients. The recent development of proton therapy has opened new avenues for improving conformity and the therapeutic ratio. Evolution of newer proton therapy techniques, such as pencil-beam scanning (PBS), could improve tolerability and possibly allow reexamination of dose escalation. These new progresses, along with significant advances in systemic therapies, have improved survival for lung cancer patients across the spectrum of non-metastatic disease. They have also brought to light new challenges and avenues for further research and improvement. PMID:28529896
Radiation Therapy for Locally Advanced Esophageal Cancer.
Chun, Stephen G; Skinner, Heath D; Minsky, Bruce D
2017-04-01
The treatment of locally advanced esophageal cancer is controversial. For patients who are candidates for surgical resection, multiple prospective clinical trials have demonstrated the advantages of neoadjuvant chemoradiation. For patients who are medically inoperable, definitive chemoradiation is an alternative approach with survival rates comparable to trimodality therapy. Although trials of dose escalation are ongoing, the standard radiation dose remains 50.4 Gy. Modern radiotherapy techniques such as image-guided radiation therapy with motion management and intensity-modulated radiation therapy are strongly encouraged with a planning objective to maximize conformity to the intended target volume while reducing dose delivered to uninvolved normal tissues. Copyright © 2016 Elsevier Inc. All rights reserved.
Second cancer risk after 3D-CRT, IMRT and VMAT for breast cancer.
Abo-Madyan, Yasser; Aziz, Muhammad Hammad; Aly, Moamen M O M; Schneider, Frank; Sperk, Elena; Clausen, Sven; Giordano, Frank A; Herskind, Carsten; Steil, Volker; Wenz, Frederik; Glatting, Gerhard
2014-03-01
Second cancer risk after breast conserving therapy is becoming more important due to improved long term survival rates. In this study, we estimate the risks for developing a solid second cancer after radiotherapy of breast cancer using the concept of organ equivalent dose (OED). Computer-tomography scans of 10 representative breast cancer patients were selected for this study. Three-dimensional conformal radiotherapy (3D-CRT), tangential intensity modulated radiotherapy (t-IMRT), multibeam intensity modulated radiotherapy (m-IMRT), and volumetric modulated arc therapy (VMAT) were planned to deliver a total dose of 50 Gy in 2 Gy fractions. Differential dose volume histograms (dDVHs) were created and the OEDs calculated. Second cancer risks of ipsilateral, contralateral lung and contralateral breast cancer were estimated using linear, linear-exponential and plateau models for second cancer risk. Compared to 3D-CRT, cumulative excess absolute risks (EAR) for t-IMRT, m-IMRT and VMAT were increased by 2 ± 15%, 131 ± 85%, 123 ± 66% for the linear-exponential risk model, 9 ± 22%, 82 ± 96%, 71 ± 82% for the linear and 3 ± 14%, 123 ± 78%, 113 ± 61% for the plateau model, respectively. Second cancer risk after 3D-CRT or t-IMRT is lower than for m-IMRT or VMAT by about 34% for the linear model and 50% for the linear-exponential and plateau models, respectively. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Small, William; Mell, Loren K.; Anderson, Penny
2008-06-01
Purpose: To develop an atlas of the clinical target volume (CTV) definitions for postoperative radiotherapy of endometrial and cervical cancer to be used for planning pelvic intensity-modulated radiotherapy. Methods and Materials: The Radiation Therapy Oncology Group led an international collaberation of cooperative groups in the development of the atlas. The groups included the Radiation Therapy Oncology Group, Gynecologic Oncology Group, National Cancer Institute of Canada, European Society of Therapeutic Radiology and Oncology, and American College of Radiology Imaging Network. The members of the group were asked by questionnaire to define the areas that were to be included in the CTVmore » and to outline theses areas on individual computed tomography images. The initial formulation of the group began in late 2004 and culminated with a formal consensus conference in June 2005. Results: The committee achieved a consensus CTV definition for postoperative therapy for endometrial and cervical cancer. The CTV should include the common, external, and internal iliac lymph node regions. The upper 3.0 cm of the vagina and paravaginal soft tissue lateral to the vagina should also be included. For patients with cervical cancer, or endometrial cancer with cervical stromal invasion, it is also recommended that the CTV include the presacral lymph node region. Conclusion: This report serves as an international template for the definition of the CTV for postoperative intensity-modulated radiotherapy for endometrial and cervical cancer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Poonam; Service of Radiation Therapy, University of Wisconsin Aspirus Cancer Center, Wisconsin Rapids, WI; Yan, Yue, E-mail: yyan5@mdanderson.org
In this work, we investigated the dosimetric differences between the intensity-modulated radiotherapy (IMRT) plans and the three-dimensional (3D) helical plans based on the TomoTherapy system. A total of 15 patients with supine setup were randomly selected from the data base. For patients with lumpectomy planning target volume (PTV), regional lymph nodes were also included as part of the target. For dose sparing, the significant differences between the helical IMRT and helical 3D were only found in the heart and contralateral breast. For the dose to the heart, helical IMRT reduced the maximum point dose by 6.98 Gy compared to themore » helical 3D plan (p = 0.01). For contralateral breast, the helical IMRT plans significantly reduced the maximum point dose by 5.6 Gy compared to the helical 3D plan. However, compared to the helical 3D plan, the helical IMRT plan increased the volume for lower dose (13.08% increase in V{sub 5} {sub Gy}, p = 0.01). In general, there are no significant differences in dose sparing between helical IMRT and helical 3D plans.« less
Dosimetry for audit and clinical trials: challenges and requirements
NASA Astrophysics Data System (ADS)
Kron, T.; Haworth, A.; Williams, I.
2013-06-01
Many important dosimetry audit networks for radiotherapy have their roots in clinical trial quality assurance (QA). In both scenarios it is essential to test two issues: does the treatment plan conform with the clinical requirements and is the plan a reasonable representation of what is actually delivered to a patient throughout their course of treatment. Part of a sound quality program would be an external audit of these issues with verification of the equivalence of plan and treatment typically referred to as a dosimetry audit. The increasing complexity of radiotherapy planning and delivery makes audits challenging. While verification of absolute dose delivered at a reference point was the standard of external dosimetry audits two decades ago this is often deemed inadequate for verification of treatment approaches such as Intensity Modulated Radiation Therapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT). As such, most dosimetry audit networks have successfully introduced more complex tests of dose delivery using anthropomorphic phantoms that can be imaged, planned and treated as a patient would. The new challenge is to adapt this approach to ever more diversified radiotherapy procedures with image guided/adaptive radiotherapy, motion management and brachytherapy being the focus of current research.
NASA Astrophysics Data System (ADS)
Lim, Karen Siah Huey
Hypothesis: In intensity modulated radiotherapy (IMRT) for cervix cancer, the dose received by the tumour target and surrounding normal tissues is significantly different to that indicated by a single static plan. Rationale: The optimal use of IMRT in cervix cancer requires a greater attention to clinical target volume (CTV) definition and tumour & normal organ motion to assure maximum tumour control with the fewest side effects. Research Aims: 1) Generate consensus CTV contouring guidelines for cervix cancer; 2) Evaluate intra-pelvic tumour and organ dynamics during radiotherapy; 3) Analyze the dose consequences of intra-pelvic organ dynamics on different radiotherapy strategies. Results: Consensus CTV definitions were generated using experts-in-the-field. Substantial changes in tumour volume and organ motion, resulted in significant reductions in accumulated dose to tumour targets and variability in accumulated dose to surrounding normal tissues. Significance: Formalized CTV definitions for cervix cancer is important in ensuring consistent standards of practice. Complex and unpredictable tumour and organ dynamics mandates daily soft-tissue image guidance if IMRT is used. To maximize the benefits of IMRT for cervix cancer, a strategy of adaptation is necessary.
Sedo, J; Bláha, M; Pavlík, T; Klika, P; Dušek, L; Büchler, T; Abrahámová, J; Srámek, V; Slampa, P; Komínek, L; Pospíšil, P; Sláma, O; Vyzula, R
2014-01-01
As a part of the development of a new prospective payment model for radiotherapy we analyzed data on costs of care provided by three comprehensive cancer centers in the Czech Republic. Our aim was to find a combination of variables (predictors) which could be used to sort hospitalization cases into groups according to their costs, with each group having the same reimbursement rate. We tested four variables as possible predictors - number of fractions, stage of disease, radiotherapy technique and diagnostic group. We analyzed 7,440 hospitalization cases treated in three comprehensive cancer centers from 2007 to 2011. We acquired data from the I COP database developed by Institute of Biostatistics and Analyses of Masaryk University in cooperation with oncology centers that contains records from the National Oncological Registry along with data supplied by healthcare providers to insurance companies for the purpose of retrospective reimbursement. When comparing the four variables mentioned above we found that number of fractions and radiotherapy technique were much stronger predictors than the other two variables. Stage of disease did not prove to be a relevant indicator of cost distinction. There were significant differences in costs among diagnostic groups but these were mostly driven by the technique of radiotherapy and the number of fractions. Within the diagnostic groups, the distribution of costs was too heterogeneous for the purpose of the new payment model. The combination of number of fractions and radiotherapy technique appears to be the most appropriate cost predictors to be involved in the prospective payment model proposal. Further analysis is planned to test the predictive value of intention of radiotherapy in order to determine differences in costs between palliative and curative treatment.
Chen, Jianzhou; Guo, Hong; Zhai, Tiantian; Chang, Daniel; Chen, Zhijian; Huang, Ruihong; Zhang, Wuzhe; Lin, Kun; Guo, Longjia; Zhou, Mingzhen; Li, Dongsheng; Li, Derui; Chen, Chuangzhen
2016-04-19
The outcomes for patients with esophageal cancer (EC) underwent standard-dose radical radiotherapy were still disappointing. This phase II study investigated the feasibility, safety and efficacy of radiation dose escalation using simultaneous modulated accelerated radiotherapy (SMART) combined with chemotherapy in 60 EC patients. Radiotherapy consisted of 66Gy at 2.2 Gy/fraction to the gross tumor and 54Gy at 1.8 Gy/fraction to subclinical diseases simultaneously. Chemotherapy including cisplatin and 5fluorouracil were administered to all patients during and after radiotherapy. The data showed that the majority of patients (98.3%) completed the whole course of radiotherapy and concurrent chemotherapy. The most common ≥ grade 3 acute toxicities were neutropenia (16.7%), followed by esophagitis (6.7%) and thrombopenia (5.0%). With a median follow-up of 24 months (5-38) for all patients and 30 months (18-38) for those still alive, 11 patients (18.3%) developed ≥ Grade 3 late toxicities and 2 (3.3%) of them died subsequently due to esophageal hemorrhage. The 1- and 2-year local-regional control, distant metastasis-free survival, disease-free survival and overall survival rates were 87.6% and 78.6%, 86.0% and 80.5%, 75.6% and 64.4%, 86.7% and 72.7%, respectively. SMART combined with concurrent chemotherapy is feasible in EC patients with tolerable acute toxicities. They showed a trend of significant improvements in local-regional control and overall survival. Further follow-up is needed to evaluate the late toxicities.
Clark, Catharine H; Aird, Edwin G A; Bolton, Steve; Miles, Elizabeth A; Nisbet, Andrew; Snaith, Julia A D; Thomas, Russell A S; Venables, Karen; Thwaites, David I
2015-01-01
Dosimetry audit plays an important role in the development and safety of radiotherapy. National and large scale audits are able to set, maintain and improve standards, as well as having the potential to identify issues which may cause harm to patients. They can support implementation of complex techniques and can facilitate awareness and understanding of any issues which may exist by benchmarking centres with similar equipment. This review examines the development of dosimetry audit in the UK over the past 30 years, including the involvement of the UK in international audits. A summary of audit results is given, with an overview of methodologies employed and lessons learnt. Recent and forthcoming more complex audits are considered, with a focus on future needs including the arrival of proton therapy in the UK and other advanced techniques such as four-dimensional radiotherapy delivery and verification, stereotactic radiotherapy and MR linear accelerators. The work of the main quality assurance and auditing bodies is discussed, including how they are working together to streamline audit and to ensure that all radiotherapy centres are involved. Undertaking regular external audit motivates centres to modernize and develop techniques and provides assurance, not only that radiotherapy is planned and delivered accurately but also that the patient dose delivered is as prescribed.
Aird, Edwin GA; Bolton, Steve; Miles, Elizabeth A; Nisbet, Andrew; Snaith, Julia AD; Thomas, Russell AS; Venables, Karen; Thwaites, David I
2015-01-01
Dosimetry audit plays an important role in the development and safety of radiotherapy. National and large scale audits are able to set, maintain and improve standards, as well as having the potential to identify issues which may cause harm to patients. They can support implementation of complex techniques and can facilitate awareness and understanding of any issues which may exist by benchmarking centres with similar equipment. This review examines the development of dosimetry audit in the UK over the past 30 years, including the involvement of the UK in international audits. A summary of audit results is given, with an overview of methodologies employed and lessons learnt. Recent and forthcoming more complex audits are considered, with a focus on future needs including the arrival of proton therapy in the UK and other advanced techniques such as four-dimensional radiotherapy delivery and verification, stereotactic radiotherapy and MR linear accelerators. The work of the main quality assurance and auditing bodies is discussed, including how they are working together to streamline audit and to ensure that all radiotherapy centres are involved. Undertaking regular external audit motivates centres to modernize and develop techniques and provides assurance, not only that radiotherapy is planned and delivered accurately but also that the patient dose delivered is as prescribed. PMID:26329469
van der Laan, Hans Paul; van de Water, Tara A; van Herpt, Heleen E; Christianen, Miranda E M C; Bijl, Hendrik P; Korevaar, Erik W; Rasch, Coen R; van 't Veld, Aart A; van der Schaaf, Arjen; Schilstra, Cornelis; Langendijk, Johannes A
2013-04-01
Predictive models for swallowing dysfunction were developed previously and showed the potential of improved intensity-modulated radiotherapy to reduce the risk of swallowing dysfunction. Still the risk is high. The aim of this study was to determine the potential of swallowing-sparing (SW) intensity-modulated proton therapy (IMPT) in head and neck cancer (HNC) for reducing the risk of swallowing dysfunction relative to currently used photon therapy. Twenty-five patients with oropharyngeal (n = 21) and hypopharyngeal (n = 4) cancer received primary radiotherapy, including bilateral neck irradiation, using standard (ST) intensity-modulated photon therapy (IMRT). Prophylactic (54 Gy) and therapeutic (70 Gy) target volumes were defined. The dose to the parotid and submandibular glands was reduced as much as possible. Four additional radiotherapy plans were created for each patient: SW-IMRT, ST-IMPT, 3-beam SW-IMPT (3B-SW-IMPT) and 7-beam SW-IMPT (7B-SW-IMPT). All plans were optimized similarly, with additional attempts to spare the swallowing organs at risk (SWOARs) in the SW plans. Probabilities of swallowing dysfunction were calculated with recently developed predictive models. All plans complied with standard HNC radiotherapy objectives. The mean parotid gland doses were similar for the ST and SW photon plans, but clearly lower in all IMPT plans (ipsilateral parotid gland ST-IMRT: 46 Gy, 7B-SW-IMPT: 29 Gy). The mean dose in the SWOARs was lowest with SW-IMPT, in particular with 7B-SW-IMPT (supraglottic larynx ST-IMRT: 60 Gy, 7B-SW-IMPT: 40 Gy). The observed dose reductions to the SWOARs translated into substantial overall reductions in normal tissue complication risks for different swallowing dysfunction endpoints. Compared with ST-IMRT, the risk of physician-rated grade 2-4 swallowing dysfunction was reduced on average by 8.8% (95% CI 6.5-11.1%) with SW-IMRT, and by 17.2% (95% CI: 12.7-21.7%) with 7B-SW-IMPT. SWOAR-sparing with proton therapy has the potential to substantially reduce the risk of swallowing dysfunction compared to similar treatment with photons.
Feasibility study of an intensity-modulated radiation model for the study of erectile dysfunction.
Koontz, Bridget F; Yan, Hui; Kimura, Masaki; Vujaskovic, Zeljko; Donatucci, Craig; Yin, Fang-Fang
2011-02-01
Preclinical studies of radiotherapy (RT) induced erectile dysfunction (ED) have been limited by radiation toxicity when using large fields. To develop a protocol of rat prostate irradiation using techniques mimicking the current clinical standard of intensity modulated radiotherapy (IMRT). Quality assurance (QA) testing of plan accuracy, animal health 9 weeks after RT, and intracavernosal pressure (ICP) measurement on cavernosal nerve stimulation. Computed tomography-based planning was used to develop a stereotactic radiosurgery (SRS) treatment plan for five young adult male Sprague-Dawley rats. Two treatment planning strategies were utilized to deliver 20 Gy in a single fraction: three-dimensional dynamic conformal arc and intensity-modulated arc (RapidArc). QA testing was performed for each plan type. Treatment was delivered using a NovalisTX (Varian Medical Systems) with high-definition multi-leaf collimators using on-board imaging prior to treatment. Each animal was evaluated for ED 2 months after treatment by nerve stimulation and ICP measurement. The mean prostate volume and target volume (5 mm expansion of prostate) for the five animals was 0.36 and 0.66 cm3, respectively. Both conformal and RapidArc plans provided at least 95% coverage of the target volume, with rapid dose fall-off. QA plans demonstrated strong agreement between doses of calculated and delivered plans, although the conformal arc plan was more homogenous in treatment delivery. Treatment was well tolerated by the animals with no toxicity out to 9 weeks. Compared with control animals, significant reduction in ICP/mean arterial pressure, maximum ICP, and ICP area under the curve were noted. Tightly conformal dynamic arc prostate irradiation is feasible and results in minimal toxicity and measurable changes in erectile function. © 2010 International Society for Sexual Medicine.
NASA Astrophysics Data System (ADS)
Wang, Lilie; Ding, George X.
2014-07-01
The out-of-field dose can be clinically important as it relates to the dose of the organ-at-risk, although the accuracy of its calculation in commercial radiotherapy treatment planning systems (TPSs) receives less attention. This study evaluates the uncertainties of out-of-field dose calculated with a model based dose calculation algorithm, anisotropic analytical algorithm (AAA), implemented in a commercial radiotherapy TPS, Varian Eclipse V10, by using Monte Carlo (MC) simulations, in which the entire accelerator head is modeled including the multi-leaf collimators. The MC calculated out-of-field doses were validated by experimental measurements. The dose calculations were performed in a water phantom as well as CT based patient geometries and both static and highly modulated intensity-modulated radiation therapy (IMRT) fields were evaluated. We compared the calculated out-of-field doses, defined as lower than 5% of the prescription dose, in four H&N cancer patients and two lung cancer patients treated with volumetric modulated arc therapy (VMAT) and IMRT techniques. The results show that the discrepancy of calculated out-of-field dose profiles between AAA and the MC depends on the depth and is generally less than 1% for in water phantom comparisons and in CT based patient dose calculations for static field and IMRT. In cases of VMAT plans, the difference between AAA and MC is <0.5%. The clinical impact resulting from the error on the calculated organ doses were analyzed by using dose-volume histograms. Although the AAA algorithm significantly underestimated the out-of-field doses, the clinical impact on the calculated organ doses in out-of-field regions may not be significant in practice due to very low out-of-field doses relative to the target dose.
Standard and Nonstandard Craniospinal Radiotherapy Using Helical TomoTherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, William, E-mail: william@medphys.mcgill.c; Brodeur, Marylene; Roberge, David
2010-07-01
Purpose: To show the advantages of planning and delivering craniospinal radiotherapy with helical TomoTherapy (TomoTherapy Inc., Madison, WI) by presenting 4 cases treated at our institution. Methods and Materials: We first present a standard case of craniospinal irradiation in a patient with recurrent myxopapillary ependymoma (MPE) and follow this with 2 cases requiring differential dosing to multiple target volumes. One of these, a patient with recurrent medulloblastoma, required a lower dose to be delivered to the posterior fossa because the patient had been previously irradiated to the full dose, and the other required concurrent boosts to leptomeningeal metastases as partmore » of his treatment for newly diagnosed MPE. The final case presented is a patient with pronounced scoliosis who required spinal irradiation for recurrent MPE. Results: The four cases presented were planned and treated successfully with Helical Tomotherapy. Conclusions: Helical TomoTherapy delivers continuous arc-based intensity-modulated radiotherapy that gives high conformality and excellent dose homogeneity for the target volumes. Increased healthy tissue sparing is achieved at higher doses albeit at the expense of larger volumes of tissue receiving lower doses. Helical TomoTherapy allows for differential dosing of multiple targets, resulting in very elegant dose distributions. Daily megavoltage computed tomography imaging allows for precision of patient positioning, permitting a reduction in planning margins and increased healthy tissue sparing in comparison with standard techniques.« less
[Description of latest generation equipment in external radiotherapy].
Pellejero, S; Lozares, S; Mañeru, F
2009-01-01
Both the planning systems and the form of administering radiotherapy have changed radically since the introduction of 3D planning. At present treatment planning based on computerised axial tomography (CAT) images is standard practice in radiotherapy services. In recent years lineal accelerators for medical use have incorporated technology capable of administering intensity modulated radiation beams (IMRT). With this mode distributions of conformed doses are generated that adjust to the three dimensional form of the white volume, providing appropriate coverage and a lower dose to nearby risk organs. The use of IMRT is rapidly spreading amongst radiotherapy centres throughout the world. This growing use of IMRT has focused attention on the need for greater control of the geometric uncertainties in positioning the patient and control of internal movements. To this end, both flat and volumetric image systems have been incorporated into the treatment equipment, making image-guided radiotherapy (IGRT) possible. This article offers a brief description of the latest advances included in the planning and administration of radiotherapy treatment.
Vigo, Federica; Ciammella, Patrizia; Valli, Riccardo; Cagni, Elisabetta; Iotti, Cinzia
2012-08-10
Extraskeletal presentation at diagnosis or during the course of multiple myeloma is a rare event. The prognosis is usually very poor. At the moment there is no agreed gold standard for the treatment of this presentation. A 79-year-old Caucasian woman was treated at our hospital for right atrial myeloma localization. Our patient showed the following signs and symptoms of congestive heart failure: dyspnea, hypotension, cyanosis and facial edema. Surgery was not considered feasible due to the extent of the disease. Our patient underwent external-beam radiation therapy using an intensity modulated technique, thus obtaining a persistent complete remission. Our patient has been in continuous complete local remission for 25 months since the end of radiotherapy. The role of radiotherapy is not defined in multiple myeloma with extraskeletal presentation. Our regimen seems to be effective in controlling the disease in this patient.This case report adds to the existing literature as it describes an unusual presentation of the disease and a new therapeutic approach to this rare presentation of multiple myeloma.
The use of positron emission tomography in pion radiotherapy.
Goodman, G B; Lam, G K; Harrison, R W; Bergstrom, M; Martin, W R; Pate, B D
1986-10-01
The radioactive debris produced by pion radiotherapy can be imaged by the technique of Positron Emission Tomography (PET) as a method of non-invasive in situ verification of the pion treatment. This paper presents the first visualization of the pion stopping distribution within a tumor in a human brain using PET. Together with the tissue functional information provided by the standard PET scans using radiopharmaceuticals, the combination of pion with PET technique can provide a much better form of radiotherapy than the use of conventional radiation in both treatment planning and verification.
Wu, Chen-Ta; Motegi, Atsushi; Motegi, Kana; Hotta, Kenji; Kohno, Ryosuke; Tachibana, Hidenobu; Kumagai, Motoki; Nakamura, Naoki; Hojo, Hidehiro; Niho, Seiji; Goto, Koichi; Akimoto, Tetsuo
2016-08-10
To assess the feasibility of proton beam therapy for the patients with locally advanced non-small lung cancer. The dosimetry was analyzed retrospectively to calculate the doses to organs at risk, such as the lung, heart, esophagus and spinal cord. A dosimetric comparison between proton beam therapy and dummy photon radiotherapy (three-dimensional conformal radiotherapy) plans was performed. Dummy intensity-modulated radiotherapy plans were also generated for the patients for whom curative three-dimensional conformal radiotherapy plans could not be generated. Overall, 33 patients with stage III non-small cell lung cancer were treated with proton beam therapy between December 2011 and August 2014. The median age of the eligible patients was 67 years (range: 44-87 years). All the patients were treated with chemotherapy consisting of cisplatin/vinorelbine or carboplatin. The median prescribed dose was 60 GyE (range: 60-66 GyE). The mean normal lung V20 GyE was 23.6% (range: 14.9-32%), and the mean normal lung dose was 11.9 GyE (range: 6.0-19 GyE). The mean esophageal V50 GyE was 25.5% (range: 0.01-63.6%), the mean heart V40 GyE was 13.4% (range: 1.4-29.3%) and the mean maximum spinal cord dose was 40.7 GyE (range: 22.9-48 GyE). Based on dummy three-dimensional conformal radiotherapy planning, 12 patients were regarded as not being suitable for radical thoracic three-dimensional conformal radiotherapy. All the dose parameters of proton beam therapy, except for the esophageal dose, were lower than those for the dummy three-dimensional conformal radiotherapy plans. In comparison to the intensity-modulated radiotherapy plan, proton beam therapy also achieved dose reduction in the normal lung. None of the patients experienced grade 4 or worse non-hematological toxicities. Proton beam therapy for patients with stage III non-small cell lung cancer was feasible and was superior to three-dimensional conformal radiotherapy for several dosimetric parameters. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Healy, B J; van der Merwe, D; Christaki, K E; Meghzifene, A
2017-02-01
Medical linear accelerators (linacs) and cobalt-60 machines are both mature technologies for external beam radiotherapy. A comparison is made between these two technologies in terms of infrastructure and maintenance, dosimetry, shielding requirements, staffing, costs, security, patient throughput and clinical use. Infrastructure and maintenance are more demanding for linacs due to the complex electric componentry. In dosimetry, a higher beam energy, modulated dose rate and smaller focal spot size mean that it is easier to create an optimised treatment with a linac for conformal dose coverage of the tumour while sparing healthy organs at risk. In shielding, the requirements for a concrete bunker are similar for cobalt-60 machines and linacs but extra shielding and protection from neutrons are required for linacs. Staffing levels can be higher for linacs and more staff training is required for linacs. Life cycle costs are higher for linacs, especially multi-energy linacs. Security is more complex for cobalt-60 machines because of the high activity radioactive source. Patient throughput can be affected by source decay for cobalt-60 machines but poor maintenance and breakdowns can severely affect patient throughput for linacs. In clinical use, more complex treatment techniques are easier to achieve with linacs, and the availability of electron beams on high-energy linacs can be useful for certain treatments. In summary, there is no simple answer to the question of the choice of either cobalt-60 machines or linacs for radiotherapy in low- and middle-income countries. In fact a radiotherapy department with a combination of technologies, including orthovoltage X-ray units, may be an option. Local needs, conditions and resources will have to be factored into any decision on technology taking into account the characteristics of both forms of teletherapy, with the primary goal being the sustainability of the radiotherapy service over the useful lifetime of the equipment. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Cvek, J; Kubes, J; Skacelikova, E; Otahal, B; Kominek, P; Halamka, M; Feltl, D
2012-08-01
The present study was performed to evaluate the feasibility of a new, 5-week regimen of 70-75 Gy hyperfractionated accelerated radiotherapy with concomitant integrated boost (HARTCIB) for locally advanced, inoperable head and neck cancer. A total of 39 patients with very advanced, stage IV nonmetastatic head and neck squamous cell carcinoma (median gross tumor volume 72 ml) were included in this phase I dose escalation study. A total of 50 fractions intensity-modulated radiotherapy (IMRT) were administered twice daily over 5 weeks. Prescribed total dose/dose per fraction for planning target volume (PTV(tumor)) were 70 Gy in 1.4 Gy fractions, 72.5 Gy in 1.45 Gy fractions, and 75 Gy in 1.5 Gy fractions for 10, 13, and 16 patients, respectively. Uninvolved lymphatic nodes (PTV(uninvolved)) were irradiated with 55 Gy in 1.1 Gy fractions using the concomitant integrated boost. Acute toxicity was evaluated according to the RTOG/EORTC scale; the incidence of grade 3 mucositis was 51% in the oral cavity/pharynx and 0% in skin and the recovery time was ≤ 9 weeks for all patients. Late toxicity was evaluated in patients in complete remission according to the RTOG/EORTC scale. No grade 3/4 late toxicity was observed. The 1-year locoregional progression-free survival was 50% and overall survival was 55%. HARTCIB (75 Gy in 5 weeks) is feasible for patients deemed unsuitable for chemoradiation. Acute toxicity was lower than predicted from radiobiological models; duration of dysphagia and confluent mucositis were particularly short. Better conformity of radiotherapy allows the use of more intensive altered fractionation schedules compared with older studies. These results suggest that further dose escalation might be possible when highly conformal techniques (e.g., stereotactic radiotherapy) are used.
Marangoni-Lopes, L; Rodrigues, L P; Mendonça, R H; Nobre-Dos Santos, M
2016-12-01
We aimed to perform a longitudinal investigation of the effects of radiotherapy on salivary flow rate, pH, buffering capacity, and protein composition of saliva and on the quality of life of children with Hodgkin disease. Ten children (6-16-year-old) with Hodgkin disease and 10 matched healthy children were investigated. Stimulated and non-stimulated saliva samples were collected at baseline, after 1080 and 2160cGy of radiation, and 1, 2, and 3 months post-radiotherapy. The salivary flow rate was expressed as mL/min. Buffer capacity was determined by titration. Amylase activity, immunoglobulin A, mucin, and lactoferrin concentrations were determined by ELISA. Quality of life was assessed by Quality of Life - Head and Neck module 35 questionnaire. We found that radiotherapy caused hyposalivation at 1080cGy and 1 month after radiotherapy and reduced buffering capacity at 2160cGy. Mucin concentration and amylase activity in non-stimulated saliva increased 1 month after radiotherapy. Lactoferrin concentration increased during and after radiotherapy. Immunoglobulin A concentration increased at 1080cGy, 1 and 2 months, for non-stimulated saliva and at 2160cGy and 1 month for stimulated saliva. Children reported more pain after radiotherapy and more xerostomia during radiotherapy. We concluded that the radiotherapy protocol affected the children's salivary properties and children's quality of life. Copyright © 2016 Elsevier Ltd. All rights reserved.
Koontz, Bridget F; Das, Shiva; Temple, Kathy; Bynum, Sigrun; Catalano, Suzanne; Koontz, Jason I; Montana, Gustavo S; Oleson, James R
2009-01-01
Adjuvant radiotherapy for locally advanced prostate cancer improves biochemical and clinical disease-free survival. While comparisons in intact prostate cancer show a benefit for intensity modulated radiation therapy (IMRT) over 3D conformal planning, this has not been studied for post-prostatectomy radiotherapy (RT). This study compares normal tissue and target dosimetry and radiobiological modeling of IMRT vs. 3D conformal planning in the postoperative setting. 3D conformal plans were designed for 15 patients who had been treated with IMRT planning for salvage post-prostatectomy RT. The same computed tomography (CT) and target/normal structure contours, as well as prescription dose, was used for both IMRT and 3D plans. Normal tissue complication probabilities (NTCPs) were calculated based on the dose given to the bladder and rectum by both plans. Dose-volume histogram and NTCP data were compared by paired t-test. Bladder and rectal sparing were improved with IMRT planning compared to 3D conformal planning. The volume of the bladder receiving at least 75% (V75) and 50% (V50) of the dose was significantly reduced by 28% and 17%, respectively (p = 0.002 and 0.037). Rectal dose was similarly reduced, V75 by 33% and V50 by 17% (p = 0.001 and 0.004). While there was no difference in the volume of rectum receiving at least 65 Gy (V65), IMRT planning significant reduced the volume receiving 40 Gy or more (V40, p = 0.009). Bladder V40 and V65 were not significantly different between planning modalities. Despite these dosimetric differences, there was no significant difference in the NTCP for either bladder or rectal injury. IMRT planning reduces the volume of bladder and rectum receiving high doses during post-prostatectomy RT. Because of relatively low doses given to the bladder and rectum, there was no statistically significant improvement in NTCP between the 3D conformal and IMRT plans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rekha Reddy, B.; Ravikumar, M.; Tanvir Pasha, C.R
2014-06-01
Purpose: To evaluate the radiobiological outcome of Intensity Modulated Radiotherapy Treatment (IMRT) for locally advanced head and neck squamous cell carcinomas using HART (Histogram Analysis in Radiation Therapy; J Appl Clin Med Phys 11(1): 137–157, 2010) program and compare with the clinical outcomes. Methods: We have treated 20 patients of stage III and IV HNSCC Oropharynx and hypopharynx with accelerated IMRT technique and concurrent chemotherapy. Delineation of tumor and normal tissues were done using Danish Head and Neck Cancer Group (DAHANCA) contouring guidelines and radiotherapy was delivered to a dose of 70Gy in 35 fractions to the primary and involvedmore » lymph nodes, 63Gy to intermediate risk areas and 56 Gy to lower risk areas, Monday to Saturday, 6 Days/week using 6 MV Photons with an expected overall treatment time of 6 weeks. The TCP and NTCP's were calculated from the dose-volume histogram (DVH) statistics using the Poisson Statistics (PS) and JT Lyman models respectively and the Resultwas correlated with clinical outcomes of the patients with mean follow up of 24 months. Results: Using HART program, the TCP (0.89± 0.01) of primary tumor and the NTCP for parotids (0.20±0.12), spinal cord (0.05±0.01), esophagus (0.30±0.2), mandible (0.35±0.21), Oral cavity (0.37±0.18), Larynx (0.30±0.15) were estimated and correlated with clinical outcome of the patients. Conclusion: Accelerated IMRT with Chemotherapy is a clinical feasible option in the treatment of locally advanced HNSCC with encouraging initial tumour response and acceptable acute toxicities. The correlation between the clinical outcomes and radiobiological model estimated parameters using HART programs are found to be satisfactory.« less
Ciurlionis, Laura; Kirby, Anna M; Locke, Imogen; Venables, Karen; Yarnold, John R; Titley, Jenny; Bliss, Judith; Coles, Charlotte E
2015-01-01
Objective: IMPORT HIGH is a multicentre randomized UK trial testing dose-escalated intensity-modulated radiotherapy (IMRT) after tumour excision in females with early breast cancer and higher than average local recurrence risk. A survey was carried out to investigate the impact of this trial on the adoption of advanced breast radiotherapy (RT) techniques in the UK. Methods: A questionnaire was sent to all 26 IMPORT HIGH recruiting RT centres to determine whether the trial has influenced non-trial breast RT techniques in terms of volume delineation, dosimetry, treatment delivery and verification. In order to compare the clinical practice of breast RT between IMPORT HIGH and non–IMPORT HIGH centres, parts of the Royal College of Radiologists (RCR) breast RT audit result were used in this study. Results: 26/26 participating centres completed the questionnaire. After joining the trial, the number of centres routinely using tumour bed clips to guide whole-breast RT rose from 5 (19%) to 21 (81%). 20/26 (77%) centres now contour target volumes and organs at risk (OARs) in some or all patients compared with 14 (54%) before the trial. 14/26 (54%) centres offer inverse-planned IMRT for selected non-trial patients with breast cancer, and 10/14 (71%) have adopted the IMPORT HIGH trial protocol for target volume and OARs dose constraints. Only 2/26 (8%) centres used clip information routinely for breast treatment verification prior to IMPORT HIGH, a minority that has since risen to 7/26 (27%). Data on 1386 patients was included from the RCR audit. This suggested that more cases from IMPORT HIGH centres had surgical clips implanted (83 vs 67%), were treated using CT guided planning with full three-dimensional dose compensation (100 vs 75%), and were treated with photon boost RT (30 vs 8%). Conclusion: The study suggests that participation in the IMPORT HIGH trial has played an important part in providing the guidance and support networks needed for the safe integration of advanced RT techniques, where appropriate, as a standard of care for breast cancer patients treated at participating cancer centres. Advances in knowledge: We investigated the impact of the IMPORT HIGH trial on the adoption of advanced breast RT techniques in the UK and the trial has influenced non-trial breast RT techniques in terms of volume delineation, dosimetry, treatment delivery and verification. PMID:26492402
Tsang, Yat; Ciurlionis, Laura; Kirby, Anna M; Locke, Imogen; Venables, Karen; Yarnold, John R; Titley, Jenny; Bliss, Judith; Coles, Charlotte E
2015-01-01
IMPORT HIGH is a multicentre randomized UK trial testing dose-escalated intensity-modulated radiotherapy (IMRT) after tumour excision in females with early breast cancer and higher than average local recurrence risk. A survey was carried out to investigate the impact of this trial on the adoption of advanced breast radiotherapy (RT) techniques in the UK. A questionnaire was sent to all 26 IMPORT HIGH recruiting RT centres to determine whether the trial has influenced non-trial breast RT techniques in terms of volume delineation, dosimetry, treatment delivery and verification. In order to compare the clinical practice of breast RT between IMPORT HIGH and non-IMPORT HIGH centres, parts of the Royal College of Radiologists (RCR) breast RT audit result were used in this study. 26/26 participating centres completed the questionnaire. After joining the trial, the number of centres routinely using tumour bed clips to guide whole-breast RT rose from 5 (19%) to 21 (81%). 20/26 (77%) centres now contour target volumes and organs at risk (OARs) in some or all patients compared with 14 (54%) before the trial. 14/26 (54%) centres offer inverse-planned IMRT for selected non-trial patients with breast cancer, and 10/14 (71%) have adopted the IMPORT HIGH trial protocol for target volume and OARs dose constraints. Only 2/26 (8%) centres used clip information routinely for breast treatment verification prior to IMPORT HIGH, a minority that has since risen to 7/26 (27%). Data on 1386 patients was included from the RCR audit. This suggested that more cases from IMPORT HIGH centres had surgical clips implanted (83 vs 67%), were treated using CT guided planning with full three-dimensional dose compensation (100 vs 75%), and were treated with photon boost RT (30 vs 8%). The study suggests that participation in the IMPORT HIGH trial has played an important part in providing the guidance and support networks needed for the safe integration of advanced RT techniques, where appropriate, as a standard of care for breast cancer patients treated at participating cancer centres. We investigated the impact of the IMPORT HIGH trial on the adoption of advanced breast RT techniques in the UK and the trial has influenced non-trial breast RT techniques in terms of volume delineation, dosimetry, treatment delivery and verification.
Towards real-time VMAT verification using a prototype, high-speed CMOS active pixel sensor.
Zin, Hafiz M; Harris, Emma J; Osmond, John P F; Allinson, Nigel M; Evans, Philip M
2013-05-21
This work investigates the feasibility of using a prototype complementary metal oxide semiconductor active pixel sensor (CMOS APS) for real-time verification of volumetric modulated arc therapy (VMAT) treatment. The prototype CMOS APS used region of interest read out on the chip to allow fast imaging of up to 403.6 frames per second (f/s). The sensor was made larger (5.4 cm × 5.4 cm) using recent advances in photolithographic technique but retains fast imaging speed with the sensor's regional read out. There is a paradigm shift in radiotherapy treatment verification with the advent of advanced treatment techniques such as VMAT. This work has demonstrated that the APS can track multi leaf collimator (MLC) leaves moving at 18 mm s(-1) with an automatic edge tracking algorithm at accuracy better than 1.0 mm even at the fastest imaging speed. Evaluation of the measured fluence distribution for an example VMAT delivery sampled at 50.4 f/s was shown to agree well with the planned fluence distribution, with an average gamma pass rate of 96% at 3%/3 mm. The MLC leaves motion and linac pulse rate variation delivered throughout the VMAT treatment can also be measured. The results demonstrate the potential of CMOS APS technology as a real-time radiotherapy dosimeter for delivery of complex treatments such as VMAT.
Recent Advances in Image-Guided Radiotherapy for Head and Neck Carcinoma
Nath, Sameer K.; Simpson, Daniel R.; Rose, Brent S.; Sandhu, Ajay P.
2009-01-01
Radiotherapy has a well-established role in the management of head and neck cancers. Over the past decade, a variety of new imaging modalities have been incorporated into the radiotherapy planning and delivery process. These technologies are collectively referred to as image-guided radiotherapy and may lead to significant gains in tumor control and radiation side effect profiles. In the following review, these techniques as they are applied to head and neck cancer patients are described, and clinical studies analyzing their use in target delineation, patient positioning, and adaptive radiotherapy are highlighted. Finally, we conclude with a brief discussion of potential areas of further radiotherapy advancement. PMID:19644564
Poster - 52: Smoothing constraints in Modulated Photon Radiotherapy (XMRT) fluence map optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGeachy, Philip; Villarreal-Barajas, Jose Eduardo
Purpose: Modulated Photon Radiotherapy (XMRT), which simultaneously optimizes photon beamlet energy (6 and 18 MV) and fluence, has recently shown dosimetric improvement in comparison to conventional IMRT. That said, the degree of smoothness of resulting fluence maps (FMs) has yet to be investigated and could impact the deliverability of XMRT. This study looks at investigating FM smoothness and imposing smoothing constraint in the fluence map optimization. Methods: Smoothing constraints were modeled in the XMRT algorithm with the sum of positive gradient (SPG) technique. XMRT solutions, with and without SPG constraints, were generated for a clinical prostate scan using standard dosimetricmore » prescriptions, constraints, and a seven coplanar beam arrangement. The smoothness, with and without SPG constraints, was assessed by looking at the absolute and relative maximum SPG scores for each fluence map. Dose volume histograms were utilized when evaluating impact on the dose distribution. Results: Imposing SPG constraints reduced the absolute and relative maximum SPG values by factors of up to 5 and 2, respectively, when compared with their non-SPG constrained counterparts. This leads to a more seamless conversion of FMS to their respective MLC sequences. This improved smoothness resulted in an increase to organ at risk (OAR) dose, however the increase is not clinically significant. Conclusions: For a clinical prostate case, there was a noticeable improvement in the smoothness of the XMRT FMs when SPG constraints were applied with a minor increase in dose to OARs. This increase in OAR dose is not clinically meaningful.« less
NASA Astrophysics Data System (ADS)
Kim, Yusung
Currently, there is great interest in integrating biological information into intensity-modulated radiotherapy (IMRT) treatment planning with the aim of boosting high-risk tumor subvolumes. Selective boosting of tumor subvolumes can be accomplished without violating normal tissue complication constraints using information from functional imaging. In this work we have developed a risk-adaptive optimization-framework that utilizes a nonlinear biological objective function. Employing risk-adaptive radiotherapy for prostate cancer, it is possible to increase the equivalent uniform dose (EUD) by up to 35.4 Gy in tumor subvolumes having the highest risk classification without increasing normal tissue complications. Subsequently, we have studied the impact of functional imaging accuracy, and found on the one hand that loss in sensitivity had a large impact on expected local tumor control, which was maximal when a low-risk classification for the remaining low risk PTV was chosen. While on the other hand loss in specificity appeared to have a minimal impact on normal tissue sparing. Therefore, it appears that in order to improve the therapeutic ratio a functional imaging technique with a high sensitivity, rather than specificity, is needed. Last but not least a comparison study between selective boosting IMRT strategies and uniform-boosting IMRT strategies yielding the same EUD to the overall PTV was carried out, and found that selective boosting IMRT considerably improves expected TCP compared to uniform-boosting IMRT, especially when lack of control of the high-risk tumor subvolumes is the cause of expected therapy failure. Furthermore, while selective boosting IMRT, using physical dose-volume objectives, did yield similar rectal and bladder sparing when compared its equivalent uniform-boosting IMRT plan, risk-adaptive radiotherapy, utilizing biological objective functions, did yield a 5.3% reduction in NTCP for the rectum. Hence, in risk-adaptive radiotherapy the therapeutic ratio can be increased over that which can be achieved with conventional selective boosting IMRT using physical dose-volume objectives. In conclusion, a novel risk-adaptive radiotherapy strategy is proposed and promises increased expected local control for locoregionally advanced tumors with equivalent or better normal tissue sparing.
Murthy, Kk; Shukeili, Ka; Kumar, Ss; Davis, Ca; Chandran, Rr; Namrata, S
2010-01-01
To assess the potential advantage of intensity-modulated radiotherapy (IMRT) over 3D-conformal radiotherapy (3D-CRT) planning in postoperative adjuvant radiotherapy for patients with gastric carcinoma. In a retrospective study, for plan comparison, dose distribution was recalculated in 15 patients treated with 3D-CRT on the contoured structures of same CT images using an IMRT technique. 3D-conformal plans with three fields and four-fields were compared with seven-field dynamic IMRT plans. The different plans were compared by analyzing the dose coverage of planning target volume using TV(95), D(mean), uniformity index, conformity index and homogeneity index parameters. To assess critical organ sparing, D(mean), D(max), dose to one-third and two-third volumes of the OARs and percentage of volumes receiving more than their tolerance doses were compared. The average dose coverage values of PTV with 3F-CRT and 4F-CRT plans were comparable, where as IMRT plans achieved better target coverage(p<0.001) with higher conformity index value of 0.81±0.07 compared to both the 3D-CRT plans. The doses to the liver and bowel reduced significantly (p<0.001) with IMRT plans compared to other 3D-CRT plans. For all OARs the percentage of volumes receiving more than their tolerance doses were reduced with the IMRT plans. This study showed that a better target coverage and significant dose reduction to OARs could be achieved with the IMRT plans. The IMRT can be preferred with caution for organ motion. The authors are currently studying organ motion in the upper abdomen to use IMRT for patient treatment.
Yoon, Jihyung; Xie, Yibo; Zhang, Rui
2018-03-01
The purpose of this study was to evaluate a methodology to reduce scatter and leakage radiations to patients' surface and shallow depths during conventional and advanced external beam radiotherapy. Superflab boluses of different thicknesses were placed on top of a stack of solid water phantoms, and the bolus effect on surface and shallow depth doses for both open and intensity-modulated radiotherapy (IMRT) beams was evaluated using thermoluminescent dosimeters and ion chamber measurements. Contralateral breast dose reduction caused by the bolus was evaluated by delivering clinical postmastectomy radiotherapy (PMRT) plans to an anthropomorphic phantom. For the solid water phantom measurements, surface dose reduction caused by the Superflab bolus was achieved only in out-of-field area and on the incident side of the beam, and the dose reduction increased with bolus thickness. The dose reduction caused by the bolus was more significant at closer distances from the beam. Most of the dose reductions occurred in the first 2-cm depth and stopped at 4-cm depth. For clinical PMRT treatment plans, surface dose reductions using a 1-cm Superflab bolus were up to 31% and 62% for volumetric-modulated arc therapy and 4-field IMRT, respectively, but there was no dose reduction for Tomotherapy. A Superflab bolus can be used to reduce surface and shallow depth doses during external beam radiotherapy when it is placed out of the beam and on the incident side of the beam. Although we only validated this dose reduction strategy for PMRT treatments, it is applicable to any external beam radiotherapy and can potentially reduce patients' risk of developing radiation-induced side effects. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Patni, Nidhi; Burela, Nagarjuna; Pasricha, Rajesh; Goyal, Jaishree; Soni, Tej Prakash; Kumar, T Senthil; Natarajan, T
2017-01-01
To achieve the best possible therapeutic ratio using high-precision techniques (image-guided radiation therapy/volumetric modulated arc therapy [IGRT/VMAT]) of external beam radiation therapy in cases of carcinoma cervix using kilovoltage cone-beam computed tomography (kV-CBCT). One hundred and five patients of gynecological malignancies who were treated with IGRT (IGRT/VMAT) were included in the study. CBCT was done once a week for intensity-modulated radiation therapy and daily in IGRT/VMAT. These images were registered with the planning CT scan images and translational errors were applied and recorded. In all, 2078 CBCT images were studied. The margins of planning target volume were calculated from the variations in the setup. The setup variation was 5.8, 10.3, and 5.6 mm in anteroposterior, superoinferior, and mediolateral direction. This allowed adequate dose delivery to the clinical target volume and the sparing of organ at risks. Daily kV-CBCT is a satisfactory method of accurate patient positioning in treating gynecological cancers with high-precision techniques. This resulted in avoiding geographic miss.
miR-25 modulates NSCLC cell radio-sensitivity through directly inhibiting BTG2 expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Zhiwei, E-mail: carlhe@126.com; Liu, Yi, E-mail: cassieliu@126.com; Xiao, Bing, E-mail: rockg714@aliyun.com
2015-02-13
A large proportion of the NSCLC patients were insensitive to radiotherapy, but the exact mechanism is still unclear. This study explored the role of miR-25 in regulating sensitivity of NSCLC cells to ionizing radiation (IR) and its downstream targets. Based on measurement in tumor samples from NSCLC patients, this study found that miR-25 expression is upregulated in both NSCLC and radio-resistant NSCLC patients compared the healthy and radio-sensitive controls. In addition, BTG expression was found negatively correlated with miR-25a expression in the both tissues and cells. By applying luciferase reporter assay, we verified two putative binding sites between miR-25 andmore » BTG2. Therefore, BTG2 is a directly target of miR-25 in NSCLC cancer. By applying loss-and-gain function analysis in NSCLC cell lines, we demonstrated that miR-25-BTG2 axis could directly regulated BTG2 expression and affect radiotherapy sensitivity of NSCLC cells. - Highlights: • miR-25 is upregulated, while BTG2 is downregulated in radioresistant NSCLC patients. • miR-25 modulates sensitivity to radiation induced apoptosis. • miR-25 directly targets BTG2 and suppresses its expression. • miR-25 modulates sensitivity to radiotherapy through inhibiting BTG2 expression.« less
Trimodality therapy in bladder cancer: Who, what and when?
Premo, Christopher; Apolo, Andrea B.; Agarwal, Piyush K.
2015-01-01
Summary Radical cystectomy is a standard treatment for non-metastatic, muscle-invasive bladder cancer. Treatment with trimodality therapy consisting of maximal transurethral resection of the bladder tumor (TURBT) followed by concurrent chemotherapy and radiation has emerged as a method to preserve the native bladder in highly motivated patients. A number of factors can impact the likelihood of long term bladder preservation after trimodality therapy, and therefore should be taken into account when selecting patients. New radiation techniques such as intensity modulated radiation therapy and image guided radiation therapy may decrease the toxicity of radiotherapy in this setting, but remain an area of active study. Novel chemotherapy regimens may improve response rates and minimize toxicity. PMID:25882559
Advances in Radiotherapy Management of Esophageal Cancer.
Verma, Vivek; Moreno, Amy C; Lin, Steven H
2016-10-21
Radiation therapy (RT) as part of multidisciplinary oncologic care has been marked by profound advancements over the past decades. As part of multimodality therapy for esophageal cancer (EC), a prime goal of RT is to minimize not only treatment toxicities, but also postoperative complications and hospitalizations. Herein, discussion commences with the historical approaches to treating EC, including seminal trials supporting multimodality therapy. Subsequently, the impact of RT techniques, including three-dimensional conformal RT, intensity-modulated RT, and proton beam therapy, is examined through available data. We further discuss existing data and the potential for further development in the future, with an appraisal of the future outlook of technological advancements of RT for EC.
Advances in Radiotherapy Management of Esophageal Cancer
Verma, Vivek; Moreno, Amy C.; Lin, Steven H.
2016-01-01
Radiation therapy (RT) as part of multidisciplinary oncologic care has been marked by profound advancements over the past decades. As part of multimodality therapy for esophageal cancer (EC), a prime goal of RT is to minimize not only treatment toxicities, but also postoperative complications and hospitalizations. Herein, discussion commences with the historical approaches to treating EC, including seminal trials supporting multimodality therapy. Subsequently, the impact of RT techniques, including three-dimensional conformal RT, intensity-modulated RT, and proton beam therapy, is examined through available data. We further discuss existing data and the potential for further development in the future, with an appraisal of the future outlook of technological advancements of RT for EC. PMID:27775643
Chitra, Subramaniam; Shyamaladevi, Chennam Srinivasulu
2011-03-01
To investigate the possible effects of α-tocopherol on erythrocyte membrane adenosine triphosphatases against radiation damage in oral cancer patients. Adenosine triphosphatase activities were analysed in oral cancer patients before and after radiotherapy (at a dosage of 6000 cGY in five fractions per week for a period of six weeks) and after supplemented with α-tocopherol (400 IU per day for entire period of radiotherapy). The membrane bound enzymes such as Na(+)/K(+)-ATPase, Ca(2+)-ATPase, Mg(2+)-ATPase and some trace elements were altered in oral cancer patients before and after radiotherapy. Supplemented with α-tocopherol modulates the erythrocyte membrane which is damaged by radiotherapy which suggests that α-tocopherol protects the erythrocyte membrane from radiation damage in oral cancer patients.
4D imaging for target definition in stereotactic radiotherapy for lung cancer.
Slotman, Ben J; Lagerwaard, Frank J; Senan, Suresh
2006-01-01
Stereotactic radiotherapy of Stage I lung tumors has been reported to result in high local control rates that are far superior to those obtained with conventional radiotherapy techniques, and which approach those achieved with primary surgery. Breathing-induced motion of tumor and target tissues is an important issue in this technique and careful attention should be paid to the contouring and the generation of individualized margins. We describe our experience with the use of 4DCT scanning for this group of patients, the use of post-processing tools and the potential benefits of respiratory gating.
He, Yan; Guo, Tao; Guan, Hui; Wang, Jingjing; Sun, Yu; Peng, Xingchen
2018-01-01
In this study, we attempted to compare the efficacy and toxicity of concurrent chemoradiotherapy (CCRT) with radiotherapy alone (RT) for locoregionally advanced nasopharyngeal carcinoma (LANPC) in the era of intensity-modulated radiotherapy (IMRT) by meta-analysis. We searched databases, and all randomized controlled trials meeting the inclusion criteria were utilized for a meta-analysis with RevMan 5.3 based on the Cochrane methodology. Fifteen studies were found suitable based on the inclusion criteria. CCRT not only significantly improved the overall response rate (risk ratio [RR]=0.53, 95% CI 0.43-0.66) and the complete response rate (RR=0.60, 95% CI 0.51-0.71) but also contributed to longer overall survival. The incidence of grade 3-4 adverse events from CCRT group increased in hematologic toxicity (RR 2.25, 95% CI 1.54-3.29), radiation-induced oral mucositis (RR 1.64, 95% CI 1.14-2.35), and radiodermatitis (RR 1.80, 95% CI 1.13-2.88). Compared with IMRT alone, CCRT provided survival benefit with acceptable toxicity in patients with LANPC. However, we need multicenter randomized controlled trials and long-term follow-up to evaluate the eventual efficacy and toxicity of concurrent chemotherapy plus IMRT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guy, Jean-Baptiste; Trone, Jane-Chloé; Chargari, Cyrus
2014-10-01
Radiotherapy for epithelioid hemangioendothelioma (EHE) using volumetric intensity-modulated arc radiotherapy (VMAT). A 48-year-old woman was referred for curative irradiation of a vertebral EHE after failure of surgery. A comparison between VMAT and conventional conformal tridimensional (3D) dosimetry was performed and potential advantage of VMAT for sparing critical organs from irradiation's side effects was discussed. The total delivered dose on the planning target volume was 54 Gy in 27 fractions. The patient was finally treated with VMAT. The tolerance was excellent. There was no acute toxicity, including no increase in pain. With a follow-up of 18 months, no delayed toxicity wasmore » reported. The clinical response consisted of a decrease in the dorsal pain. The D{sub max} for the spinal cord was reduced from 55 Gy (3D-radiotherapy [RT]) (which would be an unacceptable dose to the spine because of the risk of myelopathy) to 42.8 Gy (VMAT), which remains below the recommended dose threshold (45 Gy). The dose delivered to 20% of organ volume (D{sub 20}) was reduced from 47 Gy (3D-RT) to 3 Gy (VMAT) for the spinal cord. The study shows that VMAT allows the delivery of curative treatment for vertebral EHEs because of critical organ sparing.« less
Pajic, Marina; Froio, Danielle; Daly, Sheridan; Doculara, Louise; Millar, Ewan; Graham, Peter H; Drury, Alison; Steinmann, Angela; de Bock, Charles E; Boulghourjian, Alice; Zaratzian, Anaiis; Carroll, Susan; Toohey, Joanne; O'Toole, Sandra A; Harris, Adrian L; Buffa, Francesca M; Gee, Harriet E; Hollway, Georgina E; Molloy, Timothy J
2018-01-15
Radiotherapy is essential to the treatment of most solid tumors and acquired or innate resistance to this therapeutic modality is a major clinical problem. Here we show that miR-139-5p is a potent modulator of radiotherapy response in breast cancer via its regulation of genes involved in multiple DNA repair and reactive oxygen species defense pathways. Treatment of breast cancer cells with a miR-139-5p mimic strongly synergized with radiation both in vitro and in vivo , resulting in significantly increased oxidative stress, accumulation of unrepaired DNA damage, and induction of apoptosis. Several miR-139-5p target genes were also strongly predictive of outcome in radiotherapy-treated patients across multiple independent breast cancer cohorts. These prognostically relevant miR-139-5p target genes were used as companion biomarkers to identify radioresistant breast cancer xenografts highly amenable to sensitization by cotreatment with a miR-139-5p mimetic. Significance: The microRNA described in this study offers a potentially useful predictive biomarker of radiosensitivity in solid tumors and a generally applicable druggable target for tumor radiosensitization. Cancer Res; 78(2); 501-15. ©2017 AACR . ©2017 American Association for Cancer Research.
Haslett, Kate; Franks, Kevin; Hanna, Gerard G; Harden, Susan; Hatton, Matthew; Harrow, Stephen; McDonald, Fiona; Ashcroft, Linda; Falk, Sally; Groom, Nicki; Harris, Catherine; McCloskey, Paula; Whitehurst, Philip; Bayman, Neil; Faivre-Finn, Corinne
2016-04-15
The majority of stage III patients with non-small cell lung cancer (NSCLC) are unsuitable for concurrent chemoradiotherapy, the non-surgical gold standard of care. As the alternative treatment options of sequential chemoradiotherapy and radiotherapy alone are associated with high local failure rates, various intensification strategies have been employed. There is evidence to suggest that altered fractionation using hyperfractionation, acceleration, dose escalation, and individualisation may be of benefit. The MAASTRO group have pioneered the concept of 'isotoxic' radiotherapy allowing for individualised dose escalation using hyperfractionated accelerated radiotherapy based on predefined normal tissue constraints. This study aims to evaluate whether delivering isotoxic radiotherapy using intensity modulated radiotherapy (IMRT) is achievable. Isotoxic IMRT is a multicentre feasibility study. From June 2014, a total of 35 patients from 7 UK centres, with a proven histological or cytological diagnosis of inoperable NSCLC, unsuitable for concurrent chemoradiotherapy will be recruited. A minimum of 2 cycles of induction chemotherapy is mandated before starting isotoxic radiotherapy. The dose of radiation will be increased until one or more of the organs at risk tolerance or the maximum dose of 79.2 Gy is reached. The primary end point is feasibility, with accrual rates, local control and overall survival our secondary end points. Patients will be followed up for 5 years. The study has received ethical approval (REC reference: 13/NW/0480) from the National Research Ethics Service (NRES) Committee North West-Greater Manchester South. The trial is conducted in accordance with the Declaration of Helsinki and Good Clinical Practice (GCP). The trial results will be published in a peer-reviewed journal and presented internationally. NCT01836692; Pre-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Dose to Larynx Predicts for Swallowing Complications After Intensity-Modulated Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caglar, Hale B.; Tishler, Roy B.; Othus, Megan
2008-11-15
Purpose: To evaluate early swallowing after intensity-modulated radiotherapy for head and neck squamous cell carcinoma and determine factors correlating with aspiration and/or stricture. Methods and Materials: Consecutive patients treated with intensity-modulated radiotherapy with or without chemotherapy between September 2004 and August 2006 at the Dana Farber Cancer Institute/Brigham and Women's Hospital were evaluated with institutional review board approval. Patients underwent swallowing evaluation after completion of therapy; including video swallow studies. The clinical- and treatment-related variables were examined for correlation with aspiration or strictures, as well as doses to the larynx, pharyngeal constrictor muscles, and cervical esophagus. The correlation was assessedmore » with logistic regression analysis. Results: A total of 96 patients were evaluated. Their median age was 55 years, and 79 (82%) were men. The primary site of cancer was the oropharynx in 43, hypopharynx/larynx in 17, oral cavity in 13, nasopharynx in 11, maxillary sinus in 2, and unknown primary in 10. Of the 96 patients, 85% underwent definitive RT and 15% postoperative RT. Also, 28 patients underwent induction chemotherapy followed by concurrent chemotherapy, 59 received concurrent chemotherapy, and 9 patients underwent RT alone. The median follow-up was 10 months. Of the 96 patients, 31 (32%) had clinically significant aspiration and 36 (37%) developed a stricture. The radiation dose-volume metrics, including the volume of the larynx receiving {>=}50 Gy (p = 0.04 and p = 0.03, respectively) and volume of the inferior constrictor receiving {>=}50 Gy (p = 0.05 and p = 0.02, respectively) were significantly associated with both aspiration and stricture. The mean larynx dose correlated with aspiration (p = 0.003). Smoking history was the only clinical factor to correlate with stricture (p = 0.05) but not aspiration. Conclusion: Aspiration and stricture are common side effects after intensity-modulated radiotherapy for head-and-neck squamous cell carcinoma. The dose given to the larynx and inferior constrictors correlated with these side effects.« less
Redmond, Kristin J.; Achanta, Pragathi; Grossman, Stuart A.; Armour, Michael; Reyes, Juvenal; Kleinberg, Lawrence; Tryggestad, Erik; Quinones-Hinojosa, Alfredo
2015-01-01
Radiation therapy (RT) for brain tumors is associated with neurocognitive toxicity which may be a result of damage to neural progenitor cells (NPCs). We present a novel technique to limit the radiation dose to NPC without compromising tumor coverage. A study was performed in mice to examine the rationale and another was conducted in humans to determine its feasibility. C57BL/6 mice received localized radiation using a dedicated animal irradiation system with on-board CT imaging with either: (1) Radiation which spared NPC containing regions; (2) Radiation which did not spare these niches; or (3) Sham irradiation. Mice were sacrificed 24 h later and the brains were processed for immunohistochemical Ki-67 staining. For the human component of the study, 33 patients with primary brain tumors were evaluated. Two intensity modulated radiotherapy (IMRT) plans were retrospectively compared: a standard clinical plan and a plan which spares NPC regions while maintaining the same dose coverage of the tumor. The change in radiation dose to the contralateral NPC-containing regions was recorded. In the mouse model, non-NPC-sparing radiation treatment resulted in a significant decrease in the number of Ki67+ cells in dentate gyrus (DG) (P = 0.008) and subventricular zone (SVZ) (P = 0.005) compared to NPC-sparing radiation treatment. In NPC-sparing clinical plans, NPC regions received significantly lower radiation dose with no clinically relevant changes in tumor coverage. This novel radiation technique should significantly reduce radiation doses to NPC containing regions of the brain which may reduce neurocognitive deficits following RT for brain tumors. PMID:21327710
Song, Yanbo; Zhang, Miao; Gan, Lu; Chen, Xiaopin; Zhang, Tao; Yue, Ning J; Goyal, Sharad; Haffty, Bruce; Ren, Guosheng
2016-05-31
Electronic tissue compensation (eComp) is an external beam planning technique allowing user to manually generate dynamic beam fluence to produce more uniform or modulated dose distribution. In this study, we compared the effectiveness between conventional three-dimensional conformal radiotherapy (3DCRT) and eComp for whole breast irradiation. 3DCRT and eComp planning techniques were used to generate treatment plans for 60 whole breast patients, respectively. The planning goal was to cover 95% of the planning target volume (PTV) with 95% of the prescription dose while minimizing doses to lung, heart, and skin. Comparing to 3DCRT plans, on the average, eComp treatment planning process was about 7 minutes longer, but resulted in lower lung V20Gy, lower mean skin dose, with similar heart dose. The benefits were more pronounced for larger breast patients. Statistical analyses were performed between critical organ doses and patient anatomic features, i.e., central lung distance (CLD), maximal heart distance (MHD), maximal heart length (MHL) and breast separation (BS) to explore any correlations and planning method selection. It was found that to keep the lung V20Gy lower than 20% and mean skin dose lower than 85% of the prescription dose, eComp was the preferred method for patients with more than 2.3 cm CLD or larger than 22.5 cm BS. The study results may be useful in providing a handy criterion in clinical practice allowing us to easily choose between different planning techniques to satisfy the planning goal with minimal increase in complexity and cost.
Comparison of 3D CRT and IMRT Tratment Plans
Bakiu, Erjona; Telhaj, Ervis; Kozma, Elvisa; Ruçi, Ferdinand; Malkaj, Partizan
2013-01-01
Plans of patients with prostate tumor have been studied. These patients have been scanned in the CT simulator and the images have been sent to the Focal, the system where the doctor delineates the tumor and the organs at risk. After that in the treatment planning system XiO there are created for the same patients three dimensional conformal and intensity modulated radiotherapy treatment plans. The planes are compared according to the dose volume histograms. It is observed that the plans with IMRT technique conform better the isodoses to the planning target volume and protect more the organs at risk, but the time needed to create such plans and to control it is higher than 3D CRT. So it necessary to decide in which patients to do one or the other technique depending on the full dose given to PTV and time consuming in genereral. PMID:24167395
Langrand-Escure, J; de Crevoisier, R; Llagostera, C; Créhange, G; Delaroche, G; Lafond, C; Bonin, C; Bideault, F; Sargos, P; Belhomme, S; Pasquier, D; Latorzeff, I; Supiot, S; Hennequin, C
2018-04-01
Considering recent phase III trials results, moderate hypofractionated radiotherapy can be considered as a standard treatment for low and intermediate risk prostate cancer management. This assessment call for a framework allowing homogeneous and reproducible practices in the different centers using this radiotherapy schedule. The French Genito-Urinary Group (GETUG) provides here recommendations for daily practice of moderate hypofractionated radiotherapy for prostate cancer, with indications, dose, fractionation, pre-treatment planning, volume of interest delineation (target volume and organs at risk) and margins, dose constraints and radiotherapy techniques. Copyright © 2018. Published by Elsevier SAS.
Yen, Yu-Chun; Chang, Jer-Hwa; Lin, Wei-Cheng; Chiou, Jeng-Fong; Chang, Yin-Chun; Chang, Chia-Lun; Hsu, Han-Lin; Chow, Jyh-Ming; Yuan, Kevin Sheng-Po; Wu, Alexander T H; Wu, Szu-Yuan
2017-06-01
Few large, prospective, randomized studies have investigated the effectiveness of esophagectomy in patients with thoracic esophageal squamous cell carcinoma (TESCC) who receive definitive radiotherapy (RT) or concurrent chemoradiotherapy (CCRT) through modern, intensity modulated-RT (IMRT) techniques. The therapeutic effects of esophagectomy in patients with TESCC were evaluated using modern clinical staging and RT techniques and suitable RT doses. The authors analyzed data from patients with TESCC from the Taiwan Cancer Registry database. Patients were categorized into the following groups on the basis of treatment modality to compare their outcomes: group 1 received definitive CCRT, group 2 received neoadjuvant RT followed by esophagectomy (total IMRT dose, ≥50 grays [Gy]), and group 3 receiving neoadjuvant CCRT followed by esophagectomy (total IMRT dose, ≥ 50 Gy). The median total RT dose and fraction size were 50.4 Gy and 1.8 Gy per fraction, respectively. Group 1 was used as the control arm for investigating the risk of mortality after treatment. In total, 3123 patients who had TESCC without distant metastasis were enrolled. Patient ages 65 years and older, Charlson comorbidity index scores ≥3, advanced clinical stages (IIA-IIIC), alcohol consumption, and cigarette smoking were identified as significant, independent poor prognostic risk factors for overall survival in multivariate Cox regression analyses. In group 3, after adjustment for confounders, the adjusted hazard ratios (95% confidence intervals [CIs]) for overall mortality were 0.62 (95% CI, 0.41-0.93) for patients with clinical stage IIA disease, 0.61 (95% CI, 0.41-0.91) for those with clinical stage IIB disease, 0.47 (95% CI, 0.38-0.55) for those with clinical stage IIIA disease, 0.47 (95% CI, 0.39-0.56) for those with clinical stage IIIB disease, and 0.46 (95% CI, 0.37-0.57) for those with clinical stage IIIC disease. Esophagectomy can be beneficial in patients with TESCC after definitive CCRT, especially in those who have advanced-stage disease. Cancer 2017;123:2043-2053. © 2017 American Cancer Society. © 2017 American Cancer Society.
The influence of plan modulation on the interplay effect in VMAT liver SBRT treatments.
Hubley, Emily; Pierce, Greg
2017-08-01
Volumetric modulated arc therapy (VMAT) uses multileaf collimator (MLC) leaves, gantry speed, and dose rate to modulate beam fluence, producing the highly conformal doses required for liver radiotherapy. When targets that move with respiration are treated with a dynamic fluence, there exists the possibility for interplay between the target and leaf motions. This study employs a novel motion simulation technique to determine if VMAT liver SBRT plans with an increase in MLC leaf modulation are more susceptible to dosimetric differences in the GTV due to interplay effects. For ten liver SBRT patients, two VMAT plans with different amounts of MLC leaf modulation were created. Motion was simulated using a random starting point in the respiratory cycle for each fraction. To isolate the interplay effect, motion was also simulated using four specific starting points in the respiratory cycle. The dosimetric differences caused by different starting points were examined by subtracting resultant dose distributions from each other. When motion was simulated using random starting points for each fraction, or with specific starting points, there were significantly more dose differences in the GTV (maximum 100cGy) for more highly modulated plans, but the overall plan quality was not adversely affected. Plans with more MLC leaf modulation are more susceptible to interplay effects, but dose differences in the GTV are clinically negligible in magnitude. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
The importance of prostate bed tilt during postprostatectomy intensity-modulated radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, Linda J., E-mail: Linda.Bell1@health.nsw.gov.au; Faculty of Health Sciences, University of Sydney, Lidcombe, New South Wales; Cox, Jennifer
2014-10-01
Variations in rectal and bladder filling can create a tilt of the prostate bed, which generates the potential for a geographic miss during postprostatectomy radiotherapy. The aim of this study is to assess the effect that bladder and rectum filling has on planning target volume angle, to determine a method to assess prostate bed tilt leading to potential geographic miss, and to discuss possible implementation issues. The cone-beam computed tomography images (n = 377) of 40 patients who received postprostatectomy radiotherapy with intensity-modulated radiotherapy were reviewed. The amount of tilt in the prostate bed was defined as the angle changemore » between 2 surgical clips, one in the upper prostate bed and another in the lower. A potential geographic miss was defined as movement of any clip of more than 1 cm in any direction or 0.5 cm posteriorly when aligned to bone anatomy. Variations in bladder and rectum size were correlated with the degree of prostate bed tilt, and the rate of potential geographic miss was determined. A possible clinical use of prostate bed tilt was then assessed for different imaging techniques. A tilt of more than 10° was seen in 20.2% of images, which resulted in a 57.9% geographic miss rate of the superior clip. When tilt remained within 10°, there was only a 9% rate of geographic miss. Potential geographic miss of the inferior surgical clip was rare, occurring in only 1.9% of all images reviewed. The most common occurrence when the prostate bed tilt increased by more than 10° was a smaller bladder and larger rectum (6.4% of all images). The most common occurrence when the prostate bed tilt decreased by more than 10° was a larger bladder and smaller rectum (1.3% of all images). Significant prostate bed tilt (>± 10°) occurred in more than 20% of images, creating a 58% rate of geographic miss. Greatest prostate bed tilt occurred when the bladder size increased or reduced by more than 2 cm or the superior rectum size increased by more than 1.5 cm or reduced by more than 1 cm from the planned size. Using prostate bed tilt could be an effective measurement for assessing potential geographic miss on orthogonal images if volumetric imaging is unavailable.« less
Quan, Kimmen; Xu, Karen M.; Lalonde, Ron; Horne, Zachary D.; Bernard, Mark E.; McCoy, Chuck; Clump, David A.; Burton, Steven A.; Heron, Dwight E.
2015-01-01
The aim of this study is to provide a practical approach to the planning technique and evaluation of plan quality for the multi-lesion, single-isocenter stereotactic ablative radiotherapy (SABR) of the lung. Eleven patients with two or more lung lesions underwent single-isocenter volumetric-modulated arc therapy (VMAT) radiosurgery or IMRS. All plans were normalized to the target maximum dose. For each plan, all targets were treated to the same dose. Plan conformity and dose gradient were maximized with dose-control tuning structures surrounding targets. For comparison, multi-isocenter plans were retrospectively created for four patients. Conformity index (CI), homogeneity index (HI), gradient index (GI), and gradient distance (GD) were calculated for each plan. V5, V10, and V20 of the lung and organs at risk (OARs) were collected. Treatment time and total monitor units (MUs) were also recorded. One patient had four lesions and the remainder had two lesions. Six patients received VMAT and five patients received intensity-modulated radiosurgery (IMRS). For those treated with VMAT, two patients received 3-arc VMAT and four received 2-arc VMAT. For those treated with IMRS, two patients were treated with 10 and 11 beams, respectively, and the rest received 12 beams. Prescription doses ranged from 30 to 54 Gy in three to five fractions. The median prescribed isodose line was 84% (range: 80–86%). The median maximum dose was 57.1 Gy (range: 35.7–65.1 Gy). The mean combined PTV was 49.57 cm3 (range: 14.90–87.38 cm3). For single-isocenter plans, the median CI was 1.15 (range: 0.97–1.53). The median HI was 1.19 (range: 1.16–1.28). The median GI was 4.60 (range: 4.16–7.37). The median maximum radiation dose (Dmax) to total lung was 55.6 Gy (range: 35.7–62.0 Gy). The median mean radiation dose to the lung (Dmean) was 4.2 Gy (range: 1.1–9.3 Gy). The median lung V5 was 18.7% (range: 3.8–41.3%). There was no significant difference in CI, HI, GI, GD, V5, V10, and V20 (lung, heart, trachea, esophagus, and spinal cord) between single-isocenter and multi-isocenter plans. This multi-lesion, single-isocenter lung SABR planning technique demonstrated excellent plan quality and clinical efficiency and is recommended for radiosurgical treatment of two or more lung targets for well-suited patients. PMID:26500888
Kong, Lin; Hu, Jiyi; Guan, Xiyin; Gao, Jing; Lu, Rong; Lu, Jiade J
2016-01-01
Radiation therapy is the mainstay strategy for the treatment of nasopharyngeal cancer (NPC). Intensity-modulated X-ray therapy (IMXT) alone is the current standard for stage I and II NPC. For stage III and IV A/B diseases, concurrent chemotherapy should be provided in addition to IMXT. However, optimal treatment for locally recurrent NPC after previous definitive dose of radiotherapy is lacking. Various techniques including brachytherapy, IMXT, stereotactic radiosurgery or radiotherapy (SRS or SBRT) have been used in the management of locally recurrent NPC. Due to the inherent limitation of these techniques, i.e., limited range of irradiation or over-irradiation to surrounding normal tissues, moderate efficacy has been observed at the cost of severe toxicities. Carbon ion radiotherapy (CIRT) offers potential physical and biological advantages over photon and proton radiotherapy. Due to the inverted dose profile of particle beams and their greater energy deposition within the Bragg peak, precise dose delivery to the target volume(s) without exposing the surrounding organs at risk to extra doses is possible. In addition, CIRT provides an increased relative biological effectiveness (RBE) as compared to photon and proton radiotherapy. Such advantages may translate to improved outcomes after irradiation in terms of disease control in radio-resistant and previously treated, recurrent malignancies. It is therefore reasonable to postulate that recurrent NPC after high-dose radiotherapy could be more resistant to re-irradiation using photons. Reports on the treatment of radio-resistant malignancies in the head and neck region such as melanoma, sarcoma, and adenoid cystic carcinoma (ACC) have demonstrated superior local control rates from CIRT as compared to photon irradiation. Thus patients with recurrent NPC are likely to benefit from the enhanced biological effectiveness of carbon ions. As effective retreatment strategy is lacking for locally recurrent NPC, carbon ion radiation therapy offers an ideal alternate to conventional X-ray irradiation. The recommended dose of re-irradiation using CIRT for locally recurrent NPC will be determined in the dose-escalating phase (Phase I) of the study. Efficacy in terms of local progression-free survival (LPFS) and overall survival (OS) will be studied in the second phase of the study. Increasing doses of CIRT using raster scanning technology from 55GyE (22×2.5 GyE) to 65 GyE (26× 2.5 GyE) will be delivered in the Phase I part of the study. The primary endpoint of the Phase I part of the study is acute and sub-acute toxicities; the primary endpoint in the Phase II part is local progression-free survival and overall survival. Using the historical 2-year OS rate of 50% in locally recurrent NPC patients treated with photon or proton, we hypothesize that CIRT can improve the 2-year OS rate to 70%. The utilization of conventional radiation techniques including IMXT, brachytherapy, or stereotactic radiation therapy provides moderate efficacy in the treatment of locally recurrent NPC due to the limitations in dose distribution and biological effectiveness. Improved outcome in terms of treatment-induced toxicity, LC, LPFS, and OS are expected using CIRT due to the physical and biological characteristics of carbon ion beam. However, the recommended dose of CIRT used in re-irradiation for the local NPC focus remain to be determined. The recommended dose as well as the efficacy of CIRT in the treatment of locally recurrent NPC will be evaluated in the present trial.
Nicolini, Giorgia; Ghosh-Laskar, Sarbani; Shrivastava, Shyam Kishore; Banerjee, Sushovan; Chaudhary, Suresh; Agarwal, Jai Prakash; Munshi, Anusheel; Clivio, Alessandro; Fogliata, Antonella; Mancosu, Pietro; Vanetti, Eugenio; Cozzi, Luca
2012-10-01
A feasibility study was performed to evaluate RapidArc (RA), and the potential benefit of flattening filter-free beams, on advanced esophageal cancer against intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3D-CRT). The plans for 3D-CRT and IMRT with three to seven and five to seven fixed beams were compared against double-modulated arcs with avoidance sectors to spare the lungs for 10 patients. All plans were optimized for 6-MV photon beams. The RA plans were studied for conventional and flattening filter-free (FFF) beams. The objectives for the planning target volume were the volume receiving ≥ 95% or at most 107% of the prescribed dose of <1% with a dose prescription of 59.4 Gy. For the organs at risk, the lung volume (minus the planning target volume) receiving ≥ 5 Gy was <60%, that receiving 20 Gy was <20%-30%, and the mean lung dose was <15.0 Gy. The heart volume receiving 45 Gy was <20%, volume receiving 30 Gy was <50%. The spinal dose received by 1% was <45 Gy. The technical delivery parameters for RA were assessed to compare the normal and FFF beam characteristics. RA and IMRT provided equivalent coverage and homogeneity, slightly superior to 3D-CRT. The conformity index was 1.2 ± 0.1 for RA and IMRT and 1.5 ± 0.2 for 3D-CRT. The mean lung dose was 12.2 ± 4.5 for IMRT, 11.3 ± 4.6 for RA, and 10.8 ± 4.4 for RA with FFF beams, 18.2 ± 8.5 for 3D-CRT. The percentage of volume receiving ≥ 20 Gy ranged from 23.6% ± 9.1% to 21.1% ± 9.7% for IMRT and RA (FFF beams) and 39.2% ± 17.0% for 3D-CRT. The heart and spine objectives were met by all techniques. The monitor units for IMRT and RA were 457 ± 139, 322 ± 20, and 387 ± 40, respectively. RA with FFF beams showed, compared with RA with normal beams, a ∼20% increase in monitor units per Gray, a 90% increase in the average dose rate, and 20% reduction in beam on time (owing to different gantry speeds). RA demonstrated, compared with conventional IMRT, a similar target coverage and some better dose sparing to the organs at risk; the advantage against conventional 3D-CRT was more evident. RA with FFF beams resulted in minor improvements in plan quality but with the potential for additional useful reduction in the treatment time. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subramanian, Sai; Srinivas, Chilukuri; Ramalingam, K.
2012-03-01
Purpose: To evaluate, with a dosimetric and clinical feasibility study, RapidArc (a volumetric modulated arc technique) for hypofractionated stereotactic radiotherapy treatment of large arteriovenous malformations (AVMs). Methods and Materials: Nine patients were subject to multimodality imaging (magnetic resonance, computed tomography, and digital subtraction angiography) to determine nidus and target volumes, as well as involved organs at risk (optical structures, inner ear, brain stem). Plans for multiple intensity-modulated arcs with a single isocenter were optimized for a fractionation of 25 Gy in 5 fractions. All plans were optimized for 6-MV photon beams. Dose-volume histograms were analyzed to assess plan quality. Deliverymore » parameters were reported to appraise technical features of RapidArc, and pretreatment quality assurance measurements were carried out to report on quality of delivery. Results: Average size of AVM nidus was 26.2 cm{sup 3}, and RapidArc plans provided complete target coverage with minimal overdosage (V{sub 100%} = 100% and V{sub 110%} < 1%) and excellent homogeneity (<6%). Organs at risk were highly spared. The D{sub 1%} to chiasm, eyes, lenses, optic nerves, and brainstem (mean {+-} SD) was 6.4 {+-} 8.3, 1.9 {+-} 3.8, 2.3 {+-} 2.2, 0.7 {+-} 0.9, 4.4 {+-} 7.2, 12.2 {+-} 9.6 Gy, respectively. Conformity index (CI{sub 95%}) was 2.2 {+-} 0.1. The number of monitor units per gray was 277 {+-} 45, total beam-on time was 2.5 {+-} 0.3 min. Planning vs. delivery {gamma} pass rate was 98.3% {+-} 0.9%. None of the patients developed acute toxicity. With a median follow-up of 9 months, 3 patients presented with deterioration of symptoms and were found to have postradiation changes but responded symptomatically to steroids. These patients continue to do well on follow-up. One patient developed headache and seizures, which was attributed to intracranial bleed, confirmed on imaging. Conclusion: Hypofractionated stereotactic radiotherapy can be successfully delivered using the RapidArc form of volumetric arc technology for intracranial AVMs. The quality of delivery and calculated parameters are in agreement with each other and are in line with published reports for other sites.« less
Berlin, Alejandro; Di Tomasso, Anne; Ballantyne, Heather; Patterson, Susan; Lam, Tony; Sundaramurthy, Aravind; Helou, Joelle; Bayley, Andrew; Chung, Peter
2017-01-01
We describe the initial experience using a hydrogel spacer (SpaceOAR) to separate the prostate-rectum interspace in patients planned to undergo radical hypofractionated, image-guided, intensity-modulated radiotherapy (IG-IMRT). We depict and discuss the impact of SpaceOAR in the context of hypofractionated IG-IMRT, and the particular considerations for its applications in the Canadian setting. PMID:29257741
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barten, Danique L. J., E-mail: d.barten@vumc.nl; Tol, Jim P.; Dahele, Max
Purpose: Proton radiotherapy for head-and-neck cancer (HNC) aims to improve organ-at-risk (OAR) sparing over photon radiotherapy. However, it may be less robust for setup and range uncertainties. The authors investigated OAR sparing and plan robustness for spot-scanning proton planning techniques and compared these with volumetric modulated arc therapy (VMAT) photon plans. Methods: Ten HNC patients were replanned using two arc VMAT (RapidArc) and spot-scanning proton techniques. OARs to be spared included the contra- and ipsilateral parotid and submandibular glands and individual swallowing muscles. Proton plans were made using Multifield Optimization (MFO, using three, five, and seven fields) and Single-field Optimizationmore » (SFO, using three fields). OAR sparing was evaluated using mean dose to composite salivary glands (Comp{sub Sal}) and composite swallowing muscles (Comp{sub Swal}). Plan robustness was determined for setup and range uncertainties (±3 mm for setup, ±3% HU) evaluating V95% and V107% for clinical target volumes. Results: Averaged over all patients Comp{sub Sal}/Comp{sub Swal} mean doses were lower for the three-field MFO plans (14.6/16.4 Gy) compared to the three-field SFO plans (20.0/23.7 Gy) and VMAT plans (23.0/25.3 Gy). Using more than three fields resulted in differences in OAR sparing of less than 1.5 Gy between plans. SFO plans were significantly more robust than MFO plans. VMAT plans were the most robust. Conclusions: MFO plans had improved OAR sparing but were less robust than SFO and VMAT plans, while SFO plans were more robust than MFO plans but resulted in less OAR sparing. Robustness of the MFO plans did not increase with more fields.« less
Miyazaki, Masayoshi; Nishiyama, Kinji; Ueda, Yoshihiro; Ohira, Shingo; Tsujii, Katsutomo; Isono, Masaru; Masaoka, Akira; Teshima, Teruki
2016-07-01
The aim of this study was to compare three strategies for intensity-modulated radiotherapy (IMRT) for 20 head-and-neck cancer patients. For simultaneous integrated boost (SIB), doses were 66 and 54 Gy in 30 fractions for PTVboost and PTVelective, respectively. Two-phase IMRT delivered 50 Gy in 25 fractions to PTVelective in the First Plan, and 20 Gy in 10 fractions to PTVboost in the Second Plan. Sequential SIB (SEQ-SIB) delivered 55 Gy and 50 Gy in 25 fractions, respectively, to PTVboost and PTVelective using SIB in the First Plan and 11 Gy in 5 fractions to PTVboost in the Second Plan. Conformity indexes (CIs) (mean ± SD) for PTVboost and PTVelective were 1.09 ± 0.05 and 1.34 ± 0.12 for SIB, 1.39 ± 0.14 and 1.80 ± 0.28 for two-phase IMRT, and 1.14 ± 0.07 and 1.60 ± 0.18 for SEQ-SIB, respectively. CI was significantly highest for two-phase IMRT. Maximum doses (Dmax) to the spinal cord were 42.1 ± 1.5 Gy for SIB, 43.9 ± 1.0 Gy for two-phase IMRT and 40.3 ± 1.8 Gy for SEQ-SIB. Brainstem Dmax were 50.1 ± 2.2 Gy for SIB, 50.5 ± 4.6 Gy for two-phase IMRT and 47.4 ± 3.6 Gy for SEQ-SIB. Spinal cord Dmax for the three techniques was significantly different, and brainstem Dmax was significantly lower for SEQ-SIB. The compromised conformity of two-phase IMRT can result in higher doses to organs at risk (OARs). Lower OAR doses in SEQ-SIB made SEQ-SIB an alternative to SIB, which applies unconventional doses per fraction. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Reirradiation for recurrent head and neck cancers using charged particle or photon radiotherapy.
Yamazaki, Hideya; Demizu, Yusuke; Okimoto, Tomoaki; Ogita, Mikio; Himei, Kengo; Nakamura, Satoaki; Suzuki, Gen; Yoshida, Ken; Kotsuma, Tadayuki; Yoshioka, Yasuo; Oh, Ryoongjin
2017-07-01
To examine the outcomes of reirradiation for recurrent head and neck cancers using different modalities. This retrospective study included 26 patients who received charged particle radiotherapy (CP) and 150 who received photon radiotherapy (117 CyberKnife radiotherapy [CK] and 36 intensity-modulated radiotherapy [IMRT]). Inverse probability of treatment weighting (IPTW) involving propensity scores was used to reduce background selection bias. Higher prescribed doses were used in CP than photon radiotherapy. The 1‑year overall survival (OS) rates were 67.9% for CP and 54.1% for photon radiotherapy (p = 0.15; 55% for CK and 51% for IMRT). In multivariate Cox regression, the significant prognostic factors for better survival were nasopharyngeal cancer, higher prescribed dose, and lower tumor volume. IPTW showed a statistically significant difference between CP and photon radiotherapy (p = 0.04). The local control rates for patients treated with CP and photon radiotherapy at 1 year were 66.9% (range 46.3-87.5%) and 67.1% (range 58.3-75.9%), respectively. A total of 48 patients (27%) experienced toxicity grade ≥3 (24% in the photon radiotherapy group and 46% in the CP group), including 17 patients with grade 5 toxicity. Multivariate analysis revealed that younger age and a larger planning target volume (PTV) were significant risk factors for grade 3 or worse toxicity. CP provided superior survival outcome compared to photon radiotherapy. Tumor volume, primary site (nasopharyngeal), and prescribed dose were identified as survival factors. Younger patients with a larger PTV experienced toxicity grade ≥3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp; Nishibuchi, Ikuno; Murakami, Yuji
2012-03-15
Purpose: To investigate the incorporation of functional lung image-derived low attenuation area (LAA) based on four-dimensional computed tomography (4D-CT) into respiratory-gated intensity-modulated radiotherapy (IMRT) or volumetric modulated arc therapy (VMAT) in treatment planning for lung cancer patients with chronic obstructive pulmonary disease (COPD). Methods and Materials: Eight lung cancer patients with COPD were the subjects of this study. LAA was generated from 4D-CT data sets according to CT values of less than than -860 Hounsfield units (HU) as a threshold. The functional lung image was defined as the area where LAA was excluded from the image of the total lung.more » Two respiratory-gated radiotherapy plans (70 Gy/35 fractions) were designed and compared in each patient as follows: Plan A was an anatomical IMRT or VMAT plan based on the total lung; Plan F was a functional IMRT or VMAT plan based on the functional lung. Dosimetric parameters (percentage of total lung volume irradiated with {>=}20 Gy [V20], and mean dose of total lung [MLD]) of the two plans were compared. Results: V20 was lower in Plan F than in Plan A (mean 1.5%, p = 0.025 in IMRT, mean 1.6%, p = 0.044 in VMAT) achieved by a reduction in MLD (mean 0.23 Gy, p = 0.083 in IMRT, mean 0.5 Gy, p = 0.042 in VMAT). No differences were noted in target volume coverage and organ-at-risk doses. Conclusions: Functional IGRT planning based on LAA in respiratory-guided IMRT or VMAT appears to be effective in preserving a functional lung in lung cancer patients with COPD.« less
Automated delineation of radiotherapy volumes: are we going in the right direction?
Whitfield, G A; Price, P; Price, G J; Moore, C J
2013-01-01
ABSTRACT. Rapid and accurate delineation of target volumes and multiple organs at risk, within the enduring International Commission on Radiation Units and Measurement framework, is now hugely important in radiotherapy, owing to the rapid proliferation of intensity-modulated radiotherapy and the advent of four-dimensional image-guided adaption. Nevertheless, delineation is still generally clinically performed with little if any machine assistance, even though it is both time-consuming and prone to interobserver variation. Currently available segmentation tools include those based on image greyscale interrogation, statistical shape modelling and body atlas-based methods. However, all too often these are not able to match the accuracy of the expert clinician, which remains the universally acknowledged gold standard. In this article we suggest that current methods are fundamentally limited by their lack of ability to incorporate essential human clinical decision-making into the underlying models. Hybrid techniques that utilise prior knowledge, make sophisticated use of greyscale information and allow clinical expertise to be integrated are needed. This may require a change in focus from automated segmentation to machine-assisted delineation. Similarly, new metrics of image quality reflecting fitness for purpose would be extremely valuable. We conclude that methods need to be developed to take account of the clinician's expertise and honed visual processing capabilities as much as the underlying, clinically meaningful information content of the image data being interrogated. We illustrate our observations and suggestions through our own experiences with two software tools developed as part of research council-funded projects. PMID:23239689
[Porting Radiotherapy Software of Varian to Cloud Platform].
Zou, Lian; Zhang, Weisha; Liu, Xiangxiang; Xie, Zhao; Xie, Yaoqin
2017-09-30
To develop a low-cost private cloud platform of radiotherapy software. First, a private cloud platform which was based on OpenStack and the virtual GPU hardware was builded. Then on the private cloud platform, all the Varian radiotherapy software modules were installed to the virtual machine, and the corresponding function configuration was completed. Finally the software on the cloud was able to be accessed by virtual desktop client. The function test results of the cloud workstation show that a cloud workstation is equivalent to an isolated physical workstation, and any clients on the LAN can use the cloud workstation smoothly. The cloud platform transplantation in this study is economical and practical. The project not only improves the utilization rates of radiotherapy software, but also makes it possible that the cloud computing technology can expand its applications to the field of radiation oncology.
Carl, Jesper; Sander, Lotte
2015-06-01
To report results from the five-year follow-up on a previously reported study using image-guided radiotherapy (IGRT) of localized or locally advanced prostate cancer (PC) and a removable prostate stent as fiducial. Patients with local or locally advanced PC were treated using five-field 3D conformal radiotherapy (3DRT). The clinical target volumes (CTV) were treated to 78 Gy in 39 fractions using daily on-line image guidance (IG). Late genito-urinary (GU) and gastro-intestinal (GI) toxicities were scored using the radiotherapy oncology group (RTOG) score and the common toxicity score of adverse events (CTC) score. Urinary symptoms were also scored using the international prostate symptom score (IPSS). Median observation time was 5.4 year. Sixty-two of the 90 patients from the original study cohort were eligible for toxicity assessment. Overall survival, cancer-specific survival and biochemical freedom from failure were 85%, 96% and 80%, respectively at five years after radiotherapy. Late toxicity GU and GI RTOG scores≥2 were 5% and 0%. Comparing pre- and post-radiotherapy IPSS scores indicate that development in urinary symptoms after radiotherapy may be complex. Prostate image-guided radiotherapy using a prostate stent demonstrated survival data comparable with recently published data. GU and GI toxicities at five-year follow-up were low and comparable to the lowest toxicity rates reported. These findings support that the precision of the prostate stent technique is at least as good as other techniques. IPSS revealed a complex development in urinary symptoms after radiotherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caudell, Jimmy J.; Schaner, Philip E.; Desmond, Renee A.
2010-02-01
Purpose: Intensification of radiotherapy and chemotherapy for head-and-neck cancer may lead to increased rates of dysphagia. Dosimetric predictors of objective findings of long-term dysphagia were sought. Methods and Materials: From an institutional database, 83 patients were identified who underwent definitive intensity-modulated radiotherapy for squamous cell carcinoma of the head and neck, after exclusion of those who were treated for a second or recurrent head-and-neck primary lesion, had locoregional recurrence at any time, had less than 12 months of follow-up, or had postoperative radiotherapy. Dosimetric parameters were analyzed relative to three objective endpoints as a surrogate for severe long-term dysphagia: percutaneousmore » endoscopic gastrostomy (PEG) tube dependence at 12 months, aspiration on modified barium swallow, or pharyngoesophageal stricture requiring dilation. Results: Mean dose greater than 41 Gy and volume receiving 60 Gy (V{sub 60}) greater than 24% to the larynx were significantly associated with PEG tube dependence and aspiration. V{sub 60} greater than 12% to the inferior pharyngeal constrictor was also significantly associated with increased PEG tube dependence and aspiration. V{sub 65} greater than 33% to the superior pharyngeal constrictor or greater than 75% to the middle pharyngeal constrictor was associated with pharyngoesophageal stricture requiring dilation. Conclusions: Doses to the larynx and pharyngeal constrictors predicted long-term swallowing complications, even when controlled for other clinical factors. The addition of these structures to intensity-modulated radiotherapy optimization may reduce the incidence of dysphagia, although cautious clinical validation is necessary.« less
Treatment of earlobe keloids using the cobalt 60 teletherapy unit.
Malaker, Kamal; Zaidi, Mustafa; Franka, Mohamad Rida
2004-06-01
The purpose of this study was to develop an easily accessible technique for the delivery of postoperative radiotherapy for the treatment of earlobe keloids. Forty-seven earlobe keloids were given postoperative radiation using the smallest achievable half field Telecobalt technique. Results showed 41 (87.2%) of treated patients' postoperative scars remained free from recurrent keloid formation. Acute reactions were minimal and patient compliance was excellent. In conclusion, the technique described in this study for the delivery of postoperative radiation to earlobe keloids should be readily available in areas of high prevalence. Results are comparable to previously used radiotherapy techniques.
Pancreatic cancer planning: Complex conformal vs modulated therapies.
Chapman, Katherine L; Witek, Matthew E; Chen, Hongyu; Showalter, Timothy N; Bar-Ad, Voichita; Harrison, Amy S
2016-01-01
To compare the roles of intensity-modulated radiation therapy (IMRT) and volumetric- modulated arc therapy (VMAT) therapy as compared to simple and complex 3-dimensional chemoradiotherpy (3DCRT) planning for resectable and borderline resectable pancreatic cancer. In all, 12 patients who received postoperative radiotherapy (8) or neoadjuvant concurrent chemoradiotherapy (4) were evaluated retrospectively. Radiotherapy planning was performed for 4 treatment techniques: simple 4-field box, complex 5-field 3DCRT, 5 to 6-field IMRT, and single-arc VMAT. All volumes were approved by a single observer in accordance with Radiation Therapy Oncology Group (RTOG) Pancreas Contouring Atlas. Plans included tumor/tumor bed and regional lymph nodes to 45Gy; with tumor/tumor bed boosted to 50.4Gy, at least 95% of planning target volume (PTV) received the prescription dose. Dose-volume histograms (DVH) for multiple end points, treatment planning, and delivery time were assessed. Complex 3DCRT, IMRT, and VMAT plans significantly (p < 0.05) decreased mean kidney dose, mean liver dose, liver (V30, V35), stomach (D10%), stomach (V45), mean right kidney dose, and right kidney (V15) as compared with the simple 4-field plans that are most commonly reported in the literature. IMRT plans resulted in decreased mean liver dose, liver (V35), and left kidney (V15, V18, V20). VMAT plans decreased small bowel (D10%, D15%), small bowel (V35, V45), stomach (D10%, D15%), stomach (V35, V45), mean liver dose, liver (V35), left kidney (V15, V18, V20), and right kidney (V18, V20). VMAT plans significantly decreased small bowel (D10%, D15%), left kidney (V20), and stomach (V45) as compared with IMRT plans. Treatment planning and delivery times were most efficient for simple 4-field box and VMAT. Excluding patient setup and imaging, average treatment delivery was within 10minutes for simple and complex 3DCRT, IMRT, and VMAT treatments. This article shows significant improvements in 3D plan performance with complex planning over the more frequently compared 3- or 4-field simple 3D planning techniques. VMAT plans continue to demonstrate potential for the most organ sparing. However, further studies are required to identify if dosimetric benefits associated with inverse optimized planning can be translated into clinical benefits and if these treatment techniques are value-added therapies for this group of patients with cancer. Published by Elsevier Inc.
He, Jian; Huang, Yan; Chen, Yixing; Shi, Shiming; Ye, Luxi; Hu, Yong; Zhang, Jianying; Zeng, Zhaochong
2016-05-01
The standard treatment for stage III non-small-cell lung cancer (NSCLC) is still 60 Gy in conventional fractions combined with concurrent chemotherapy; however, the resulting local controls are disappointing. The aim of this study was to compare and assess the feasibility and efficacy of hypofractionated chemoradiotherapy using helical tomotherapy (HT) with conventional fractionation as opposed to using three-dimensional conformal radiotherapy (3D-CRT) for stage III NSCLC. Sixty-nine patients with stage III (AJCC 7th edition) NSCLC who underwent definitive radiation treatment at our institution between July 2011 and November 2013 were reviewed and analyzed retrospectively. A dose of 60 Gy in 20 fractions was delivered in the HT group (n=34), whereas 60 Gy in 30 fractions in the 3D-CRT group (n=35). Primary endpoints were toxicity, overall response rate, overall survival (OS) and progression-free survival (PFS). The median follow-up period was 26.4 months. V20 (P=0.005), V30 (P=0.001), V40 (P=0.004), mean lung dose (P=0.000) and max dose of spinal cord (P=0.005) were significantly lower in the HT group than in the 3D-CRT group. There was no significant difference in the incidences of acute radiation pneumonitis (RP) ≥ grade 2 between the two groups, whereas the incidences of acute radiation esophagitis ≥ grade 2 were significantly lower in the HT group than in the 3D-CRT group (P=0.027). Two-year overall response rate was significantly higher in the HT group than in the 3D-CRT group (P=0.015). One- and 2-year OS rates were significantly higher in the HT group (95.0% and 68.7%, respectively) than in the 3D-CRT group (85.5% and 47.6%, respectively; P=0.0236). One- and 2-year PFS rates were significantly higher in the HT group (57.8% and 26.3%, respectively) than in the 3D-CRT group (32.7% and 11.4%, respectively; P=0.0351). Univariate analysis indicated that performance status (PS), T stage and radiotherapy technique were significant prognostic factors for both OS and PFS. Multivariate analysis indicated that PS and radiotherapy technique were independent prognostic factors of OS and PS was independent prognostic factor of PFS. Hypofractionated chemoradiotherapy via HT can shorten the radiotherapy time without increasing treatment-related toxicity. The preliminary findings are that OS and PFS can be improved by hypofractionated chemoradiotherapy via HT for patients with stage III NSCLC.
Santa Cruz, Olalla; Tsoutsou, Pelagia; Castella, Cyril; Khanfir, Kaouthar; Anchisi, Sandro; Bouayed, Salim; Matzinger, Oscar; Ozsahin, Mahmut
2018-06-12
To assess the feasibility and efficacy of intensity-modulated radiation implemented with helical tomotherapy image-guided with daily megavoltage computed tomography for head and neck cancer. Between May 2010 and May 2013, 72 patients were treated with curative intent. The median age was 64 years, with 57% undergoing definitive and 43% postoperative radiotherapy. Primary tumour sites were oral cavity (21%), oropharynx (26%), hypopharynx (20%), larynx (22%), and others (11%). Staging included 4% stage I, 15% II, 26% III, 48% IVa, and 7% IVb. Radiotherapy was combined with chemotherapy in 64%. Primary endpoint was locoregional control, and secondary endpoints survival and toxicity. Median follow-up was 20 months, with 11 locoregional recurrences. Three-year disease-free survival was 58% and overall survival 57%. In the multivariate analysis, age under 64 years, no extracapsular extension, postoperative radiotherapy, induction chemotherapy, and non-oral cavity tumour were significant favourable prognostic factors for disease-free-survival. The overall incidence of acute grade ≥3 toxicities were mucositis 32%, pain 11%, xerostomia 7%, dysphagia 53%, radiodermatitis 44%, and osteonecrosis 1%. Late grade ≥3 toxicities were fibrosis 6%, dysphagia 21%, fistula 1%, and skin necrosis 1%. Intensity-modulated radiation with helical tomotherapy achieved respectable locoregional control and overall survival, with acceptable toxicity, in head and neck cancer patients. © 2018 S. Karger AG, Basel.
Comparing conformal, arc radiotherapy and helical tomotherapy in craniospinal irradiation planning.
Myers, Pamela A; Mavroidis, Panayiotis; Papanikolaou, Nikos; Stathakis, Sotirios
2014-09-08
Currently, radiotherapy treatment plan acceptance is based primarily on dosimetric performance measures. However, use of radiobiological analysis to assess benefit in terms of tumor control and harm in terms of injury to normal tissues can be advantageous. For pediatric craniospinal axis irradiation (CSI) patients, in particular, knowing the technique that will optimize the probabilities of benefit versus injury can lead to better long-term outcomes. Twenty-four CSI pediatric patients (median age 10) were retrospectively planned with three techniques: three-dimensional conformal radiation therapy (3D CRT), volumetric-modulated arc therapy (VMAT), and helical tomotherapy (HT). VMAT plans consisted of one superior and one inferior full arc, and tomotherapy plans were created using a 5.02cm field width and helical pitch of 0.287. Each plan was normalized to 95% of target volume (whole brain and spinal cord) receiving prescription dose 23.4Gy in 13 fractions. Using an in-house MATLAB code and DVH data from each plan, the three techniques were evaluated based on biologically effective uniform dose (D=), the complication-free tumor control probability (P+), and the width of the therapeutically beneficial range. Overall, 3D CRT and VMAT plans had similar values of D= (24.1 and 24.2 Gy), while HT had a D= slightly lower (23.6 Gy). The average values of the P+ index were 64.6, 67.4, and 56.6% for 3D CRT, VMAT, and HT plans, respectively, with the VMAT plans having a statistically significant increase in P+. Optimal values of D= were 28.4, 33.0, and 31.9 Gy for 3D CRT, VMAT, and HT plans, respectively. Although P+ values that correspond to the initial dose prescription were lower for HT, after optimizing the D= prescription level, the optimal P+ became 94.1, 99.5, and 99.6% for 3D CRT, VMAT, and HT, respectively, with the VMAT and HT plans having statistically significant increases in P+. If the optimal dose level is prescribed using a radiobiological evaluation method, as opposed to a purely dosimetric one, the two IMRT techniques, VMAT and HT, will yield largest overall benefit to CSI patients by maximizing tumor control and limiting normal tissue injury. Using VMAT or HT may provide these pediatric patients with better long-term outcomes after radiotherapy.
TOPICAL REVIEW: Anatomical imaging for radiotherapy
NASA Astrophysics Data System (ADS)
Evans, Philip M.
2008-06-01
The goal of radiation therapy is to achieve maximal therapeutic benefit expressed in terms of a high probability of local control of disease with minimal side effects. Physically this often equates to the delivery of a high dose of radiation to the tumour or target region whilst maintaining an acceptably low dose to other tissues, particularly those adjacent to the target. Techniques such as intensity modulated radiotherapy (IMRT), stereotactic radiosurgery and computer planned brachytherapy provide the means to calculate the radiation dose delivery to achieve the desired dose distribution. Imaging is an essential tool in all state of the art planning and delivery techniques: (i) to enable planning of the desired treatment, (ii) to verify the treatment is delivered as planned and (iii) to follow-up treatment outcome to monitor that the treatment has had the desired effect. Clinical imaging techniques can be loosely classified into anatomic methods which measure the basic physical characteristics of tissue such as their density and biological imaging techniques which measure functional characteristics such as metabolism. In this review we consider anatomical imaging techniques. Biological imaging is considered in another article. Anatomical imaging is generally used for goals (i) and (ii) above. Computed tomography (CT) has been the mainstay of anatomical treatment planning for many years, enabling some delineation of soft tissue as well as radiation attenuation estimation for dose prediction. Magnetic resonance imaging is fast becoming widespread alongside CT, enabling superior soft-tissue visualization. Traditionally scanning for treatment planning has relied on the use of a single snapshot scan. Recent years have seen the development of techniques such as 4D CT and adaptive radiotherapy (ART). In 4D CT raw data are encoded with phase information and reconstructed to yield a set of scans detailing motion through the breathing, or cardiac, cycle. In ART a set of scans is taken on different days. Both allow planning to account for variability intrinsic to the patient. Treatment verification has been carried out using a variety of technologies including: MV portal imaging, kV portal/fluoroscopy, MVCT, conebeam kVCT, ultrasound and optical surface imaging. The various methods have their pros and cons. The four x-ray methods involve an extra radiation dose to normal tissue. The portal methods may not generally be used to visualize soft tissue, consequently they are often used in conjunction with implanted fiducial markers. The two CT-based methods allow measurement of inter-fraction variation only. Ultrasound allows soft-tissue measurement with zero dose but requires skilled interpretation, and there is evidence of systematic differences between ultrasound and other data sources, perhaps due to the effects of the probe pressure. Optical imaging also involves zero dose but requires good correlation between the target and the external measurement and thus is often used in conjunction with an x-ray method. The use of anatomical imaging in radiotherapy allows treatment uncertainties to be determined. These include errors between the mean position at treatment and that at planning (the systematic error) and the day-to-day variation in treatment set-up (the random error). Positional variations may also be categorized in terms of inter- and intra-fraction errors. Various empirical treatment margin formulae and intervention approaches exist to determine the optimum strategies for treatment in the presence of these known errors. Other methods exist to try to minimize error margins drastically including the currently available breath-hold techniques and the tracking methods which are largely in development. This paper will review anatomical imaging techniques in radiotherapy and how they are used to boost the therapeutic benefit of the treatment.
A technique for generating phase-space-based Monte Carlo beamlets in radiotherapy applications.
Bush, K; Popescu, I A; Zavgorodni, S
2008-09-21
As radiotherapy treatment planning moves toward Monte Carlo (MC) based dose calculation methods, the MC beamlet is becoming an increasingly common optimization entity. At present, methods used to produce MC beamlets have utilized a particle source model (PSM) approach. In this work we outline the implementation of a phase-space-based approach to MC beamlet generation that is expected to provide greater accuracy in beamlet dose distributions. In this approach a standard BEAMnrc phase space is sorted and divided into beamlets with particles labeled using the inheritable particle history variable. This is achieved with the use of an efficient sorting algorithm, capable of sorting a phase space of any size into the required number of beamlets in only two passes. Sorting a phase space of five million particles can be achieved in less than 8 s on a single-core 2.2 GHz CPU. The beamlets can then be transported separately into a patient CT dataset, producing separate dose distributions (doselets). Methods for doselet normalization and conversion of dose to absolute units of Gy for use in intensity modulated radiation therapy (IMRT) plan optimization are also described.
[Doses to organs at risk in conformational radiotherapy and stereotaxic irradiation: The heart].
Vandendorpe, B; Servagi Vernat, S; Ramiandrisoa, F; Bazire, L; Kirova, Y M
2017-10-01
Radiation therapy of breast cancer, Hodgkin lymphoma, lung cancer and others thoracic irradiations induce an ionizing radiation dose to the heart. Irradiation of the heart, associated with patient cardiovascular risk and cancer treatment-induced cardiotoxicity, increase cardiovascular mortality. The long survival after breast or Hodgkin lymphoma irradiation requires watching carefully late treatment toxicity. The over-risk of cardiac events is related to the dose received by the heart and the irradiated cardiac volume. The limitation of cardiac irradiation should be a priority in the planning of thoracic irradiations. Practices have to be modified, using modern techniques to approach of the primary objective of radiotherapy which is to optimize the dose to the target volume, sparing healthy tissues, in this case the heart. We have reviewed the literature on cardiac toxicity induced by conformational tridimensional radiation therapy, intensity-modulated radiation therapy or stereotactic body radiation therapy, in order to evaluate the possibilities to limit cardiotoxicity. Finally, we summarise the recommendations on dose constraints to the heart and coronary arteries. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Teles de Andrade, Cintia; Nogueira, Marcelo S.; Kanick, Stephen C.; Marra, Kayla; Gunn, Jason; Andreozzi, Jacqueline; Samkoe, Kimberley S.; Kurachi, Cristina; Pogue, Brian W.
2016-03-01
Photodynamic therapy (PDT) and radiotherapy are non-systemic cancer treatment options with different mechanisms of damage. So combining these techniques has been shown to have some synergy, and can mitigate their limitations such as low PDT light penetration or radiotherapy side effects. The present study monitored the induced tissue changes after PDT, radiotherapy, and a combination protocol in normal rat skin, using an optical spectroscopy system to track the observed biophysical changes. The Wistar rats were treated with one of the protocols: PDT followed by radiotherapy, PDT, radiotherapy and radiotherapy followed by PDT. Reflectance spectra were collected in order to observe the effects of these combined therapies, especially targeting vascular response. From the reflectance, information about oxygen saturation, met-hemoglobin and bilirubin concentration, blood volume fraction (BVF) and vessel radius were extracted from model fitting of the spectra. The rats were monitored for 24 hours after treatment. Results showed that there was no significant variation in the vessel size or BVF after the treatments. However, the PDT caused a significant increase in the met-hemoglobin and bilirubin concentrations, indicating an important blood breakdown. These results may provide an important clue on how the damage establishment takes place, helping to understand the effect of the combination of those techniques in order to verify the existence of a known synergistic effect.
Smeenk, Robert Jan; van Lin, Emile N J Th; van Kollenburg, Peter; Kunze-Busch, Martina; Kaanders, Johannes H A M
2009-10-01
To investigate the anal wall (Awall) sparing effect of an endorectal balloon (ERB) in 3D conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) for prostate cancer. In 24 patients with localized prostate carcinoma, two planning CT-scans were performed: with and without ERB. A prostate planning target volume (PTV) was defined, and the Awall was delineated, using two different methods. Three-field and 4-field 3D-CRT plans, and IMRT plans were generated with a prescription dose of 78Gy. In 144 treatment plans, the minimum dose (D(min)), maximum dose (D(max)), and mean dose (D(mean)) to the Awall were calculated, as well as the Awall volumes exposed to doses ranging from >or=20Gy to >or=70Gy (V(20)-V(70), respectively). In the 3D-CRT plans, an ERB significantly reduced D(mean), D(max), and V(30)-V(70). For IMRT all investigated dose parameters were significantly reduced by the ERB. The absolute reduction of D(mean) was 12Gy in 3D-CRT and was 7.5Gy in IMRT for both methods of Awall delineation. Application of an ERB showed a significant Awall sparing effect in both 3D-CRT and IMRT. This may lead to reduced late anal toxicity in prostate radiotherapy.
Chatterjee, S; Mott, J H; Smyth, G; Dickson, S; Dobrowsky, W; Kelly, C G
2011-04-01
Intensity-modulated radiotherapy (IMRT) is increasingly being used to treat head and neck cancer cases. We discuss the clinical challenges associated with the setting up of an image guided intensity modulated radiotherapy service for a subset of head and neck cancer patients, using a recently commissioned helical tomotherapy (HT) Hi Art (Tomotherapy Inc, WI) machine in this article. We also discuss the clinical aspects of the tomotherapy planning process, treatment and image guidance experiences for the first 10 head and neck cancer cases. The concepts of geographical miss along with tomotherapy-specific effects, including that of field width and megavoltage CT (MVCT) imaging strategy, have been highlighted using the first 10 head and neck cases treated. There is a need for effective streamlining of all aspects of the service to ensure compliance with cancer waiting time targets. We discuss how patient toxicity audits are crucial to guide refinement of the newly set-up planning dose constraints. This article highlights the important clinical issues one must consider when setting up a head and neck IMRT, image-guided radiotherapy service. It shares some of the clinical challenges we have faced during the setting up of a tomotherapy service. Implementation of a clinical tomotherapy service requires a multidisciplinary team approach and relies heavily on good team working and effective communication between different staff groups.
Chalissery, J R; Sudheeran, P C; Varghese, K M; Venkatesan, K
2016-01-01
To assess the feasibility, tolerance and response of radical chemo irradiation using Intensity modulated Radiotherapy [IMRT] in elderly patients [age >65] with locally advanced head and neck cancer. Patients aged 65 and above [range 65 to 84years] registered in oncology outpatient unit in our institution between December 2011 to 2014, with stage III and IV head and neck cancer were treated with radical dose of radiotherapy using IMRT and concurrent chemotherapy with cisplatin 40mg/sq.m weekly. Response evaluation and toxicity profile assessment was done 6 to 8 weeks after completion of treatment and 3 monthly thereafter with median follow up of 3 years. Total number of patients analysed were 47. 43(91.5%) patients tolerated 66-.70Gy of radiotherapy and 4 or more cycles of weekly chemotherapy with cisplatin. First follow up evaluation at 6 to 8 weeks showed 81% patients having complete loco regional response. Grade III skin reaction and mucositis was noticed in 24% and 47% respectively. No grade III neutropenia observed. Median follow up of 3 years showed a complete local control in 53% and overall survival of 60%. Radical chemo irradiation with IMRT in elderly patients is a feasible option. Long term local control and overall survival benefits needs to be followed up.
Theory, simulation and experiments for precise deflection control of radiotherapy electron beams.
Figueroa, R; Leiva, J; Moncada, R; Rojas, L; Santibáñez, M; Valente, M; Velásquez, J; Young, H; Zelada, G; Yáñez, R; Guillen, Y
2018-03-08
Conventional radiotherapy is mainly applied by linear accelerators. Although linear accelerators provide dual (electron/photon) radiation beam modalities, both of them are intrinsically produced by a megavoltage electron current. Modern radiotherapy treatment techniques are based on suitable devices inserted or attached to conventional linear accelerators. Thus, precise control of delivered beam becomes a main key issue. This work presents an integral description of electron beam deflection control as required for novel radiotherapy technique based on convergent photon beam production. Theoretical and Monte Carlo approaches were initially used for designing and optimizing device´s components. Then, dedicated instrumentation was developed for experimental verification of electron beam deflection due to the designed magnets. Both Monte Carlo simulations and experimental results support the reliability of electrodynamics models used to predict megavoltage electron beam control. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cattari, Gabriella; Delmastro, Elena; Bresciani, Sara; Gribaudo, Sergio; Melano, Antonella; Giannelli, Flavio; Tessa, Maria; Chiarlone, Renato; Scolaro, Tindaro; Krengli, Marco; Urgesi, Alessandro; Gabriele, Pietro
2016-04-01
We focused the attention on radiation therapy practices about the gynecological malignancies in Piedmont, Liguria, and Valle d'Aosta to know the current treatment practice and to improve the quality of care. We proposed a cognitive survey to evaluate the standard practice patterns for gynecological cancer management, adopted from 2012 to 2014 by radiotherapy (RT) centers with a large amount of gynecological cancer cases. There were three topics: 1. Taking care and multidisciplinary approach, 2. Radiotherapy treatment and brachytherapy, 3. Follow-up. Nineteen centers treated gynecological malignancies and 12 of these had a multidisciplinary dedicated team. Radiotherapy option has been used in all clinical setting: definitive, adjuvant, and palliative. In general, 1978 patients were treated. There were 834 brachytherapy (BRT) treatments. The fusion between diagnostic imaging (magnetic resonance imaging - MRI, positron emission tomography - PET) and computed tomography (CT) simulation was used for contouring in all centers. Conformal RT and intensity modulated radiation therapy (IMRT) were the most frequent techniques. The image guided radiation therapy (IGRT) was used in 10/19 centers. There were 8 active BRT centers. Brachytherapy was performed both with radical intent and as boost, mostly by HDR (6/8 centers). The doses for exclusive BRT were between 20 to 30 Gy. The doses for BRT boost were between 10 and 20 Gy. Four centers used CT-MRI compatible applicators but only one used MRI for planning. The BRT plans on vaginal cuff were still performed on traditional radiographies in 2 centers. The plan sum was evaluated in only 1 center. Only 1 center performed in vivo dosimetry. In the last three years, multidisciplinary approach, contouring, treatment techniques, doses, and control systems were similar in Liguria-Piedmont and Valle d'Aosta. However, the technology implementation didn't translate in a real treatment innovation so far.
Cattari, Gabriella; Delmastro, Elena; Bresciani, Sara; Gribaudo, Sergio; Melano, Antonella; Giannelli, Flavio; Tessa, Maria; Chiarlone, Renato; Scolaro, Tindaro; Krengli, Marco; Urgesi, Alessandro
2016-01-01
Purpose We focused the attention on radiation therapy practices about the gynecological malignancies in Piedmont, Liguria, and Valle d'Aosta to know the current treatment practice and to improve the quality of care. Material and methods We proposed a cognitive survey to evaluate the standard practice patterns for gynecological cancer management, adopted from 2012 to 2014 by radiotherapy (RT) centers with a large amount of gynecological cancer cases. There were three topics: 1. Taking care and multidisciplinary approach, 2. Radiotherapy treatment and brachytherapy, 3. Follow-up. Results Nineteen centers treated gynecological malignancies and 12 of these had a multidisciplinary dedicated team. Radiotherapy option has been used in all clinical setting: definitive, adjuvant, and palliative. In general, 1978 patients were treated. There were 834 brachytherapy (BRT) treatments. The fusion between diagnostic imaging (magnetic resonance imaging – MRI, positron emission tomography – PET) and computed tomography (CT) simulation was used for contouring in all centers. Conformal RT and intensity modulated radiation therapy (IMRT) were the most frequent techniques. The image guided radiation therapy (IGRT) was used in 10/19 centers. There were 8 active BRT centers. Brachytherapy was performed both with radical intent and as boost, mostly by HDR (6/8 centers). The doses for exclusive BRT were between 20 to 30 Gy. The doses for BRT boost were between 10 and 20 Gy. Four centers used CT-MRI compatible applicators but only one used MRI for planning. The BRT plans on vaginal cuff were still performed on traditional radiographies in 2 centers. The plan sum was evaluated in only 1 center. Only 1 center performed in vivo dosimetry. Conclusions In the last three years, multidisciplinary approach, contouring, treatment techniques, doses, and control systems were similar in Liguria-Piedmont and Valle d'Aosta. However, the technology implementation didn't translate in a real treatment innovation so far. PMID:27257417
Volumetric Modulated Arc Radiotherapy for Vestibular Schwannomas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagerwaard, Frank J.; Meijer, Otto W.M.; Hoorn, Elles A.P. van der
2009-06-01
Purpose: To evaluate volumetric modulated arc radiotherapy (RapidArc [RA]), a novel approach allowing for rapid treatment delivery, for the treatment of vestibular schwannoma (VS). Methods and Materials: The RA plans were generated for a small (0.5 cm{sup 3}), intermediate (2.8 cm{sup 3}), and large (14.8 cm{sup 3}) VS. The prescription dose was 12.5 Gy to the encompassing 80% isodose. The RA plans were compared with conventional radiosurgery plans using both a single dynamic conformal arc (1DCA) and five noncoplanar dynamic conformal arcs (5DCA). Conformity indices (CI) and dose-volume histograms of critical organs were compared. The RA plan for the medium-sizedmore » VS was measured in a phantom using Gafchromic EBT films and compared with calculated dose distributions. Results: The RA planning was completed within 30 min in all cases, and calculated treatment delivery time (after patient setup) was 5 min vs. 20 min for 5DCA. A superior CI was achieved with RA, with a substantial decrease in low-dose irradiation of the normal brain achieved relative to 5DCA plans. Maximum doses to critical organs were similar for RA and 5DCA but were higher for 1DCA. Film measurements showed the differences between calculated and measured doses to be smaller than 1.5% in the high-dose area and smaller than 3% in the low-dose area. Conclusion: The RA plans consistently achieved a higher CI and decrease in areas of low-dose irradiation. This, together with shorter treatment delivery times, has led to RA replacing our conventional five-arc radiosurgery technique for VS.« less
SU-E-T-113: Dose Distribution Using Respiratory Signals and Machine Parameters During Treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imae, T; Haga, A; Saotome, N
Purpose: Volumetric modulated arc therapy (VMAT) is a rotational intensity-modulated radiotherapy (IMRT) technique capable of acquiring projection images during treatment. Treatment plans for lung tumors using stereotactic body radiotherapy (SBRT) are calculated with planning computed tomography (CT) images only exhale phase. Purpose of this study is to evaluate dose distribution by reconstructing from only the data such as respiratory signals and machine parameters acquired during treatment. Methods: Phantom and three patients with lung tumor underwent CT scans for treatment planning. They were treated by VMAT while acquiring projection images to derive their respiratory signals and machine parameters including positions ofmore » multi leaf collimators, dose rates and integrated monitor units. The respiratory signals were divided into 4 and 10 phases and machine parameters were correlated with the divided respiratory signals based on the gantry angle. Dose distributions of each respiratory phase were calculated from plans which were reconstructed from the respiratory signals and the machine parameters during treatment. The doses at isocenter, maximum point and the centroid of target were evaluated. Results and Discussion: Dose distributions during treatment were calculated using the machine parameters and the respiratory signals detected from projection images. Maximum dose difference between plan and in treatment distribution was −1.8±0.4% at centroid of target and dose differences of evaluated points between 4 and 10 phases were no significant. Conclusion: The present method successfully evaluated dose distribution using respiratory signals and machine parameters during treatment. This method is feasible to verify the actual dose for moving target.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, J; Wang, J; Zhang, Z
2014-06-01
Purpose: The purpose of this study is to compare the dosimetric differences among volumetric modulated arc therapy (VMAT), fixed-field intensity modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3D-CRT) for the preoperative locally advanced rectal cancer (LARC). Methods: Ten LARC patients treated in our department using the simultaneous escalate strategy were retrospectively analyzed in this study. All patients had T3 with N+/− and were treated with IMRT. Two additional VMAT and 3DCRT plans were created for each patient. Both IMRT and VMAT had similar optimization objectives. The prescription was 50Gy to the PTV and 55Gy to the GTV. The target coveragemore » and organs at risk were compared for all the techniques.The paired, two-tailed Wilcoxcon signed-rank test was applied for statistical analysis. Results: IMRT and VMAT plans achieved comparable tumor response except for the conformality index (1.07 vs 1.19 and 1.08 vs 1.03 of IMRT vs VMAT for PTV-G and PTV-C respectively). Compared to VMAT, IMRT showed superior or similar dose sparing in the small bowel, bladder, femoral head. Both IMRT and VMAT had better organs at risk sparing and homogeneity index of PTV-G. Conclusion: All 3DCRT, IMRT and VMAT meet the prescript. The IMRT and VMAT provided comparable dosemitric parameters for target volume. IMRT shows better sparing for small bowel, bladder, femoral heads and normal tissue to 3DCRT and VMAT.« less
Yang, Zhaozhi; Zhang, Li; Chen, Xingxing; Ma, Jinli; Mei, Xin; Chen, Jiayi; Yu, Xiaoli; Guo, Xiaomao
2015-10-27
To present the clinical experience in our cancer center with multibeam inverse intensity-modulated radiotherapy (IMRT) for early stage breast cancer (BC) patients with whole breast irradiation (WBI). We retrospectively analyzed 622 patients with Stage 0 to III BC treated from 2008 to 2011 with wide local excision and WBI, using an inverse IMRT technique. All of the patients were prescribed a total dose of 50 Gy to the whole breast in 2-Gy fractions, followed by a tumor bed boost of 10 Gy in 5 fractions using an electron beam. Of all of the patients, 132 (21.2%) received whole breast plus regional lymph node (RLN) irradiation. 438 of 622 patients had records of acute skin toxicity based on common terminology criteria (CTC) for adverse events. Two hundred eighty (64%) patients had Grade 0/1 toxicity, 153 (35%) had Grade 2 and only 4 patients experienced grade 3 toxicity. Seventy patients (16%) had moist desquamation. Univariate analysis revealed that breast planning target volume was the only predictive factor for Grade ≥2 acute dermatitis (P = 0.002). After 4 years, 170 patients reported cosmetic results by self-assessment, of whom 151 (89%) patients reported good/excellent cosmetic results, and 17 (11%) patients reported fair assessments. For invasive cancer, the four-year rate of freedom from locoregional recurrence survival was 98.3%. Regarding carcinoma in situ, no patients experienced recurrence. BC patients who underwent conservative surgery followed by inverse IMRT plan exhibited acceptable acute toxicities and clinical outcomes. Longer follow-up is needed.
Sterzing, Florian; Kratochwil, Clemens; Fiedler, Hannah; Katayama, Sonja; Habl, Gregor; Kopka, Klaus; Afshar-Oromieh, Ali; Debus, Jürgen; Haberkorn, Uwe; Giesel, Frederik L
2016-01-01
Radiotherapy is the main therapeutic approach besides surgery of localized prostate cancer. It relies on risk stratification and exact staging. This report analyses the potential of [(68)Ga]Glu-urea-Lys(Ahx)-HBED-CC ((68)Ga-PSMA-11), a new positron emission tomography (PET) tracer targeting prostate-specific membrane antigen (PSMA) for prostate cancer staging and individualized radiotherapy planning. A cohort of 57 patients with prostate cancer scanned with (68)Ga-PSMA-11 PET/CT for radiotherapy planning was retrospectively reviewed; 15 patients were at initial diagnosis and 42 patients at time of biochemical recurrence. Staging results of conventional imaging, including bone scintigraphy, CT or MRI, were compared with (68)Ga-PSMA ligand PET/CT results and the influence on radiotherapeutic management was quantified. (68)Ga-PSMA ligand PET/CT had a dramatic impact on radiotherapy application in the presented cohort. In 50.8 % of the cases therapy was changed. The presented imaging technique of (68)Ga-PSMA PET/CT could be a key technology for individualized radiotherapy management in prostate cancer.
NASA Astrophysics Data System (ADS)
Beavis, Andrew W.; Ward, James W.
2014-03-01
Purpose: In recent years there has been interest in using Computer Simulation within Medical training. The VERT (Virtual Environment for Radiotherapy Training) system is a Flight Simulator for Radiation Oncology professionals, wherein fundamental concepts, techniques and problematic scenarios can be safely investigated. Methods: The system provides detailed simulations of several Linacs and the ability to display DICOM treatment plans. Patients can be mis-positioned with 'set-up errors' which can be explored visually, dosimetrically and using IGRT. Similarly, a variety of Linac calibration and configuration parameters can be altered manually or randomly via controlled errors in the simulated 3D Linac and its component parts. The implication of these can be investigated by following through a treatment scenario or using QC devices available within a Physics software module. Results: One resultant exercise is a systematic mis-calibration of 'lateral laser height' by 2mm. The offset in patient alignment is easily identified using IGRT and once corrected by reference to the 'in-room monitor'. The dosimetric implication is demonstrated to be 0.4% by setting a dosimetry phantom by the lasers (and ignoring TSD information). Finally, the need for recalibration can be shown by the Laser Alignment Phantom or by reference to the front pointer. Conclusions: The VERT system provides a realistic environment for training and enhancing understanding of radiotherapy concepts and techniques. Linac error conditions can be explored in this context and valuable experience gained in a controlled manner in a compressed period of time.
NASA Astrophysics Data System (ADS)
Lo, Ching-Jung; Yang, Pei-Ying; Chao, Tsi-Chian; Tu, Shu-Ju
2015-06-01
In the treatment planning of radiation therapy, patients may be administrated with contrast media in CT scanning to assist physicians for accurate delineation of the target or organs. However, contrast media are not used in patients during the treatment delivery. In particular, contrast media contain materials with high atomic numbers and dosimetric variations may occur between scenarios where contrast media are present in treatment planning and absent in treatment delivery. In this study we evaluate the effect of contrast media on the dosimetry and biological consequence. An analytical phantom based on AAPM TG 119 and five sets of CT images from clinical patients are included. Different techniques of treatment planning are considered, including 1-field AP, 2-field AP+PA, 4-field box, 7-field IMRT, and RapidArc. RapidArc is a recent technique of volumetric modulated arc therapy and is used in our study of contrast media in clinical scenarios. The effect of RapidArc on dosimetry and biological consequence for administration of contrast media in radiotherapy is not discussed previously in literature. It is shown that dose difference is reduced as the number of external beams is increased, suggesting RapidArc may be favored to be used in the treatment planning enhanced by contrast media. Linear trend lines are fitted for assessment of percent dose differences in the planning target volume versus concentrations of contrast media between plans where contrast media are present and absent, respectively.
Could Radiotherapy Effectiveness Be Enhanced by Electromagnetic Field Treatment?
Francisco, Artacho-Cordón; del Mar, Salinas-Asensio María; Irene, Calvente; Sandra, Ríos-Arrabal; Josefa, León; Elisa, Román-Marinetto; Nicolás, Olea; Isabel, Núñez María
2013-01-01
One of the main goals in radiobiology research is to enhance radiotherapy effectiveness without provoking any increase in toxicity. In this context, it has been proposed that electromagnetic fields (EMFs), known to be modulators of proliferation rate, enhancers of apoptosis and inductors of genotoxicity, might control tumor recruitment and, thus, provide therapeutic benefits. Scientific evidence shows that the effects of ionizing radiation on cellular compartments and functions are strengthened by EMF. Although little is known about the potential role of EMFs in radiotherapy (RT), the radiosensitizing effect of EMFs described in the literature could support their use to improve radiation effectiveness. Thus, we hypothesized that EMF exposure might enhance the ionizing radiation effect on tumor cells, improving the effects of RT. The aim of this paper is to review reports of the effects of EMFs in biological systems and their potential therapeutic benefits in radiotherapy. PMID:23867611
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morikawa, Lisa K.; Memorial Sloan-Kettering Cancer Center; Roach, Mack, E-mail: mroach@radonc.ucsf.ed
2011-05-01
Over the past 15 years, there have been three major advances in the use of external beam radiotherapy in the management of men with clinically localized prostate made. They include: (1) image guided (IG) three-dimensional conformal/intensity modulated radiotherapy; (2) radiation dose escalation; and (3) androgen deprivation therapy. To date only the last of these three advances have been shown to improve overall survival. The presence of occult pelvic nodal involvement could explain the failure of increased conformality and dose escalation to prolong survival, because the men who appear to be at the greatest risk of death from clinically localized prostatemore » cancer are those who are likely to have lymph node metastases. This review discusses the evidence for prophylactic pelvic nodal radiotherapy, including the key trials and controversies surrounding this issue.« less
NASA Astrophysics Data System (ADS)
Fu, Weihua; Dai, Jianrong; Hu, Yimin; Han, Dongsheng; Song, Yixin
2004-04-01
The treatment delivery time of intensity-modulated radiation therapy (IMRT) with a multileaf collimator (MLC) is generally longer than that of conventional radiotherapy. In theory, removing the flattening filter from the treatment head may reduce the beam-on time by enhancing the output dose rate, and then reduce the treatment delivery time. And in practice, there is a possibility of delivering the required fluence distribution by modulating the unflattened non-uniform fluence distribution. However, the reduction of beam-on time may be discounted by the increase of leaf-travel time and (or) verification-and-recording (V&R) time. Here we investigate the overall effect of flattening filter on the treatment delivery time of IMRT with MLCs implemented in the step and shoot method, as well as with compensators on six hybrid machines. We compared the treatment delivery time with/without flattening filter for ten nasopharynx cases and ten prostate cases by observing the variations of the ratio of the beam-on time, segment number, leaf-travel time and the treatment delivery time with dose rate, leaf speed and V&R time. The results show that, without the flattening filter, the beam-on time reduces for both static MLC and compensator-based techniques; the number of segments and the leaf-travel time increase slightly for the static MLC technique; the relative IMRT treatment delivery time decreases more with lower dose rate, higher leaf speed and shorter V&R overhead time. The absolute treatment delivery time reduction depends on the fraction dose. It is not clinically significant at a fraction dose of 2 Gy for the technique of removing the flattening filter, but becomes significant when the fraction dose is as high as that for radiosurgery.
Secondary Intracranial Tumors Following Radiotherapy for Pituitary Adenomas: A Systematic Review
Yamanaka, Ryuya; Sato, Toshiteru; Hayano, Azusa; Takashima, Yasuo
2017-01-01
Pituitary adenomas are often treated with radiotherapy for the management of tumor progression or recurrence. Despite the improvement in cure rates, patients treated by radiotherapy are at risk of development of secondary malignancies. We conducted a comprehensive literature review of the secondary intracranial tumors that occurred following radiotherapy to pituitary adenomas to obtain clinicopathological characteristics. The analysis included 48 neuroepithelial tumors, 37 meningiomas, and 52 sarcomas which were published between 1959–2017, although data is missing regarding overall survival and type of irradiation in a significant proportion of the reports. The average onset age for the pituitary adenoma was 37.2 ± 14.4 years and the average latency period before the diagnosis of the secondary tumor was 15.2 ± 8.7 years. Radiotherapy was administered in pituitary adenomas at an average dose of 52.0 ± 19.5 Gy. The distribution of pituitary adenomas according to their function was prolactinoma in 10 (7.2%) cases, acromegaly in 37 (27.0%) cases, Cushing disease in 4 (2.9%) cases, PRL+GH in 1 (0.7%) case, non-functioning adenoma in 57 (41.6%) cases. Irradiation technique delivered was lateral opposing field in 23 (16.7%) cases, 3 or 4 field technique in 27 (19.6%) cases, rotation technique in 10 (7.2%) cases, radio surgery in 6 (4.3%) cases. Most of the glioma or sarcoma had been generated after lateral opposing field or 3/4 field technique. Fibrosarcomas were predominant before 1979 (p < 0.0001). The median overall survival time for all neuroepithelial tumors was 11 months (95% confidence intervals (CI), 3–14). Patients with gliomas treated with radiotherapy exhibited a non-significant positive trend with longer overall survival. The median overall survival time for sarcoma cases was 6 months (95% CI, 1.5–9). The median survival time in patients with radiation and/or chemotherapy for sarcomas exhibited a non-significant positive trend with longer overall survival. In patients treated with radiotherapy for pituitary adenomas, the risk of secondary tumor incidence warrants a longer follow up period. Moreover, radiation and/or chemotherapy should be considered in cases of secondary glioma or sarcoma following radiotherapy to the pituitary adenomas. PMID:28786923
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palazzi, Mauro; Orlandi, Ester; Bossi, Paolo
2009-07-01
Purpose: To report the outcome of a consecutive series of patients with nonmetastatic nasopharyngeal carcinoma (NPC), focusing on the impact of treatment-related factors. Methods and Materials: Between 2000 and 2006, 87 patients with NPC were treated with either conventional (two- or three-dimensional) radiotherapy (RT) or with intensity-modulated RT (IMRT). Of these patients, 81 (93%) received either concomitant CHT (24%) or both induction and concomitant chemotherapy (CHT) (69%). Stage was III in 36% and IV in 39% of patients. Outcomes in this study population were compared with those in the previous series of 171 patients treated during 1990 to 1999. Results:more » With a median follow-up of 46 months, actuarial rates at 3 years were the following: local control, 96%; local-regional control, 93%; distant control (DC), 90%; disease-free survival (DFS), 82%; overall survival, 90%. In Stage III to IV patients, distant control at 3 years was 56% in patients treated with concomitant CHT only and 92% in patients treated with both induction and concomitant CHT (p = 0.014). At multivariate analysis, histology, N-stage, RT technique, and total RT dose had the strongest independent impact on DFS (p < 0.05). Induction CHT had a borderline effect on DC (p = 0.07). Most dosimetric statistics were improved in the group of patients treated with IMRT compared with conventional 3D technique. All outcome endpoints were substantially better in the study population compared with those in the previous series. Conclusions: Outcome of NPC has further improved in the study period compared with the previous decade, with a significant effect of RT technique optimization. The impact of induction CHT remains to be demonstrated in controlled trials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bridge, Pete; Carmichael, Mary-Ann; Brady, Carole
Undergraduate students studying the Bachelor of Radiation Therapy at Queensland University of Technology (QUT) attend clinical placements in a number of department sites across Queensland. To ensure that the curriculum prepares students for the most common treatments and current techniques in use in these departments, a curriculum matching exercise was performed. A cross-sectional census was performed on a pre-determined “Snapshot” date in 2012. This was undertaken by the clinical education staff in each department who used a standardized proforma to count the number of patients as well as prescription, equipment, and technique data for a list of tumour site categories.more » This information was combined into aggregate anonymized data. All 12 Queensland radiation therapy clinical sites participated in the Snapshot data collection exercise to produce a comprehensive overview of clinical practice on the chosen day. A total of 59 different tumour sites were treated on the chosen day and as expected the most common treatment sites were prostate and breast, comprising 46% of patients treated. Data analysis also indicated that intensity-modulated radiotherapy (IMRT) use is relatively high with 19.6% of patients receiving IMRT treatment on the chosen day. Both IMRT and image-guided radiotherapy (IGRT) indications matched recommendations from the evidence. The Snapshot method proved to be a feasible and efficient method of gathering useful data to inform curriculum matching. Frequency of IMRT use in Queensland matches or possibly exceeds that indicated in the literature. It is recommended that future repetition of the study be undertaken in order to monitor trends in referral patterns and new technology implementation.« less
Deng, J-Y; Wang, C; Shi, X-H; Jiang, G-L; Wang, Y; Liu, Y; Zhao, K-L
2016-11-01
We conducted a retrospective analysis to assess the toxicity and long-term survival of esophageal squamous cell carcinoma patients treated with three-dimensional conformal radiotherapy (3DCRT) or intensity-modulated radiotherapy (IMRT) versus conventional two-dimensional radiotherapy (2DRT). All data in the present study were based on four prospective clinical trials conducted at our institution from 1996 to 2004 and included 308 esophageal squamous cell carcinoma patients treated with 2DRT or 3DCRT/IMRT. Based on the inclusion and exclusion criteria, 254 patients were included in the analysis. Of these patients, 158 were treated with 2DRT, whereas 96 were treated with 3DCRT/IMRT. The rates of ≥Grade3 acute toxicity of the esophagus and lung were 11.5% versus 28.5% (P = 0.002) and 5.2% versus 10.8% (P = 0.127) in the 3DCRT/IMRT and 2DRT groups, respectively. The incidences of ≥Grade 3 late toxicity of the esophagus and lungs were 3.1% versus 10.7% (P = 0.028) and 3.1% versus 5.7% (P = 0.127) in the 3DCRT/IMRT and 2DRT groups, respectively. The 1-year, 3-year and 5-year estimated overall survival rates were 81%, 38% and 34% in the 3DCRT/IMRT group and 79%, 44% and 31% in the 2DRT group, respectively (P = 0.628). The 1-year, 3-year and 5-year local control rates were 88%, 71% and 66% in the 3DCRT/IMRT group and 84%, 66% and 60% in the 2DRT group, respectively (P = 0.412). Fewer incidences of acute and late toxicities were observed in esophageal squamous cell carcinoma patients treated with 3DCRT/IMRT compared with those treated with 2DRT. No significant survival benefit was observed with the use of 3DCRT/IMRT. © 2015 International Society for Diseases of the Esophagus.
Siker, Malika L; Tomé, Wolfgang A; Mehta, Minesh P
2006-09-01
Adaptive radiotherapy allows treatment plan modification based on data obtained during treatment. Assessing volume changes during treatment is now possible with intratreatment imaging capabilities on radiotherapy devices. This study assesses non-small-cell lung cancer (NSCLC) volume changes during treatment with conformal intensity-modulated radiotherapy by evaluating serial megavoltage computed tomography (MVCT) scans, with a specific emphasis on the frequency, reliability, and meaningfulness of these changes. Megavoltage CTs were retrospectively reviewed for 25 patients treated with the TomoTherapy Hi-Art system at the University of Wisconsin. Twenty-one patients received definitive radiotherapy, 4 with extracranial stereotactic radioablation (60 Gy in five fractions) and 17 on a dose-per-fraction escalation protocol (57-80.5 Gy in 25 fractions). Four patients were treated palliatively (22-30 Gy in 8 to 10 fractions). Gross tumor volumes were contoured on serial MVCTs at weekly intervals. Each patient had 4 to 25 scans, including at least one at the beginning, midway, and one at the end of treatment. At completion of treatment, no patient demonstrated a complete response. Partial response occurred in 3 (12%) and marginal response was noted in 5 (20%). The remaining 17 patients (68%) showed stable disease. The minimum "scorable threshold" for volume discrepancy between scans to account for interscan assessment variability was set at >25% volume change; 10 patients (40%) had >25% tumor regression. None of the patients treated ablatively or palliatively showed tumor regression during treatment. Although gross tumor regression during treatment may be objectively measured using MVCTs, substantial volumetric decrease occurs only in a minority. The clinical significance of this regression is questionable, because there is no way to document histologic tumor clearance, and therefore field reductions during radiotherapy cannot be recommended.
Kim, Kyung Su; Wee, Chan Woo; Seok, Jin-Yong; Hong, Joo Wan; Chung, Jin-Beom; Eom, Keun-Yong; Kim, Jae-Sung; Kim, Chae-Yong; Park, Young Ho; Kim, Yu Jung; Kim, In Ah
2018-02-20
We hypothesized that hippocampal-sparing radiotherapy via volumetric modulated arc therapy (VMAT) could preserve the neurocognitive function (NCF) of patients with primary brain tumors treated with radiotherapy. We reviewed data from patients with primary brain tumors who underwent hippocampal-sparing brain radiotherapy via VMAT between February 2014 and December 2015. The optimization criteria for the contralateral hippocampus was a maximum dose (D max ) of less than 17 Gy. For NCF evaluations, the Seoul Verbal Learning Test for total recall, delayed recall, and recognition (SVLT-TR, DR, and Recognition) was performed at baseline and at seven months after radiotherapy. A total of 26 patients underwent NCF testing seven months after radiotherapy. Their median age was 49.5 years (range 26-77 years), and 14 (53.8%) had grade III/IV tumors. The median D max to the contralateral hippocampus was 16.4 Gy (range 3.5-63.4). The median mean dose to the contralateral hippocampus, expressed as equivalent to a 2-Gy dose (EQD 2/2 ), was 7.4 Gy 2 (0.7-13.1). The mean relative changes in SVLT-TR, SVLT-DR, and SVLT-Recognition at seven months compared to the baseline were - 7.7% (95% confidence interval [CI], - 19.6% to 4.2%), - 9.2% (95% CI, - 25.4% to 7.0%), and - 3.4% (- 12.7% to 5.8%), respectively. Two patients (7.7%) showed deteriorated NCF in the SVLT-TR and SVLT-DR, and three (11.5%) in the SVLT-Recognition. The mean dose of the left hippocampus and bilateral hippocampi were significantly higher in patients showing deterioration of the SVLT-TR and SVLT-Recognition than in those without deterioration. The contralateral hippocampus could be effectively spared in patients with primary brain tumor via VMAT to preserve the verbal memory function. Further investigation is needed to identify those patients who will most benefit from hippocampal-sparing radiotherapy of the primary brain tumor.
Long-term decision regret after post-prostatectomy image-guided intensity-modulated radiotherapy.
Shakespeare, Thomas P; Chin, Stephen; Manuel, Lucy; Wen, Shelly; Hoffman, Matthew; Wilcox, Shea W; Aherne, Noel J
2017-02-01
Decision regret (DR) may occur when a patient believes their outcome would have been better if they had decided differently about their management. Although some studies investigate DR after treatment for localised prostate cancer, none report DR in patients undergoing surgery and post-prostatectomy radiotherapy. We evaluated DR in this group of patients overall, and for specific components of therapy. We surveyed 83 patients, with minimum 5 years follow-up, treated with radical prostatectomy (RP) and post-prostatectomy image-guided intensity-modulated radiotherapy (IG-IMRT) to 64-66 Gy following www.EviQ.org.au protocols. A validated questionnaire identified DR if men either indicated that they would have been better off had they chosen another treatment, or they wished they could change their mind about treatment. There was an 85.5% response rate, with median follow-up post-IMRT 78 months. Adjuvant IG-IMRT was used in 28% of patients, salvage in 72% and ADT in 48%. A total of 70% of patients remained disease-free. Overall, 16.9% of patients expressed DR for treatment, with fourfold more regret for the RP component of treatment compared to radiotherapy (16.9% vs 4.2%, P = 0.01). DR for androgen deprivation was 14.3%. Patients were regretful of surgery due to toxicity, not being adequately informed about radiotherapy as an alternative, positive margins and surgery costs (83%, 33%, 25% and 8% of regretful patients respectively). Toxicity caused DR in the three radiotherapy-regretful and four ADT-regretful patients. Patients were twice as regretful overall, and of surgery, for salvage vs adjuvant approaches (both 19.6% vs 10.0%). Decision regret after RP and post-prostatectomy IG-IMRT is uncommon, although patients regret RP more than post-operative IG-IMRT. This should reassure urologists referring patients for post-prostatectomy IG-IMRT, particularly in the immediate adjuvant setting. Other implications include appropriate patient selection for RP (and obtaining clear margins), and ensuring adequately discussing definitive radiotherapy as an alternative to surgery. © 2016 The Royal Australian and New Zealand College of Radiologists.
Prostate Cancer Radiation Therapy: What Do Clinicians Have to Know?
Van Limbergen, Evert J.; van Lin, Emile N.; van Roermund, Joep G. H.; Lambin, Philippe
2016-01-01
Radiotherapy (RT) for prostate cancer (PC) has steadily evolved over the last decades, with improving biochemical disease-free survival. Recently population based research also revealed an association between overall survival and doses ≥ 75.6 Gray (Gy) in men with intermediate- and high-risk PC. Examples of improved RT techniques are image-guided RT, intensity-modulated RT, volumetric modulated arc therapy, and stereotactic ablative body RT, which could facilitate further dose escalation. Brachytherapy is an internal form of RT that also developed substantially. New devices such as rectum spacers and balloons have been developed to spare rectal structures. Newer techniques like protons and carbon ions have the intrinsic characteristics maximising the dose on the tumour while minimising the effect on the surrounding healthy tissue, but clinical data are needed for confirmation in randomised phase III trials. Furthermore, it provides an overview of an important discussion issue in PC treatment between urologists and radiation oncologists: the comparison between radical prostatectomy and RT. Current literature reveals that all possible treatment modalities have the same cure rate, but a different toxicity pattern. We recommend proposing the possible different treatment modalities with their own advantages and side-effects to the individual patient. Clinicians and patients should make treatment decisions together (shared decision-making) while using patient decision aids. PMID:28116302
Mallick, Supriya; Kunhiparambath, Haresh; Gupta, Subhash; Benson, Rony; Sharma, Seema; Laviraj, M A; Upadhyay, Ashish Datt; Julka, Pramod Kumar; Sharma, Dayanand; Rath, Goura Kishor
2018-06-23
Maximal safe surgical resection followed by adjuvant chemoradiation has been standard for newly diagnosed glioblastoma multiforme (GBM). Hypofractionated accelerated radiotherapy (HART) has the potential to improve outcome as it reduces the overall treatment time and increases the biological effective dose. Between October 2011 and July 2017, a total of 89 newly diagnosed GBM patients were randomized to conventional fractionated radiotherapy (CRT) or HART. Radiotherapy was delivered in all patients with a three-dimensional conformal radiotherapy technique in CRT arm (60 Gy in 30 fractions over 6 weeks @ 2 Gy/per fraction) or simultaneous integrated boost intensity modulated radiotherapy in HART arm (60 Gy in 20 fractions over 4 weeks @ 3 Gy/per fraction to high-risk planning target volume (PTV) and 50 Gy in 20 fractions over 4 weeks @ 2.5 Gy/per fraction to low-risk PTV). The primary endpoint of the trial was overall survival (OS). After a median follow-up of 11.4 months (Range: 2.9-42.5 months), 26 patients died and 39 patients had progression of the disease. Median OS for the entire cohort was 23.4 months. Median OS in the CRT and HART arms were 18.07 months (95% CI 14.52-NR) and 25.18 months (95% CI 12.89-NR) respectively, p = 0.3. Median progression free survival (PFS) for the entire cohort was 13.5 months (Range: 11.7-15.7 months). In multivariate analysis patients younger than 40 years of age, patients with a gross total resection of tumor and a mutated IDH-1 had significantly better OS. PFS was significantly better for patients with a gross total resection of tumor and a mutated IDH-1. All patients included in the trial completed the planned course of radiation. Only two patients required hospital admission for features of raised intracranial tension. One patient in the HART arm required treatment interruption. HART is comparable to CRT in terms of survival outcome. HART arm had no excess treatment interruption and minimal toxicity. Dose escalation, reduction in overall treatment time, is the advantages with use of HART.
Krempien, R; Muenter, M W; Huber, P E; Nill, S; Friess, H; Timke, C; Didinger, B; Buechler, P; Heeger, S; Herfarth, K K; Abdollahi, A; Buchler, M W; Debus, J
2005-10-11
Pancreatic cancer is the fourth commonest cause of death from cancer in men and women. Advantages in surgical techniques, radiation therapy techniques, chemotherapeutic regimes, and different combined-modality approaches have yielded only a modest impact on the prognosis of patients with pancreatic cancer. Thus there is clearly a need for additional strategies. One approach involves using the identification of a number of molecular targets that may be responsible for the resistance of cancer cells to radiation or to other cytotoxic agents. As such, these molecular determinants may serve as targets for augmentation of the radiotherapy or chemotherapy response. Of these, the epidermal growth factor receptor (EGFR) has been a molecular target of considerable interest and investigation, and there has been a tremendous surge of interest in pursuing targeted therapy of cancers via inhibition of the EGFR. The PARC study is designed as an open, controlled, prospective, randomized phase II trial. Patients in study arm A will be treated with chemoradiation using intensity modulated radiation therapy (IMRT) combined with gemcitabine and simultaneous cetuximab infusions. After chemoradiation the patients receive gemcitabine infusions weekly over 4 weeks. Patients in study arm B will be treated with chemoradiation using intensity modulated radiation therapy (IMRT) combined with gemcitabine and simultaneous cetuximab infusions. After chemoradiation the patients receive gemcitabine weekly over 4 weeks and cetuximab infusions over 12 weeks. A total of 66 patients with locally advanced adenocarcinoma of the pancreas will be enrolled. An interim analysis for patient safety reasons will be done one year after start of recruitment. Evaluation of the primary endpoint will be performed two years after the last patient's enrollment. The primary objective of this study is to evaluate the feasibility and the toxicity profile of trimodal therapy in pancreatic adenocarcinoma with chemoradiation therapy with gemcitabine and intensity modulated radiation therapy (IMRT) and EGFR-targeted therapy using cetuximab and to compare between two different methods of cetuximab treatment schedules (concomitant versus concomitant and sequential cetuximab treatment). Secondary objectives are to determine the role and the mechanism of cetuximab in patient's chemoradiation regimen, the response rate, the potential of this combined modality treatment to concert locally advanced lesions to potentially resectable lesions, the time to progression interval and the quality of life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagerwaard, Frank J.; Hoorn, Elles A.P. van der; Verbakel, Wilko
2009-09-01
Purpose: Volumetric modulated arc therapy (RapidArc [RA]; Varian Medical Systems, Palo Alto, CA) allows for the generation of intensity-modulated dose distributions by use of a single gantry rotation. We used RA to plan and deliver whole-brain radiotherapy (WBRT) with a simultaneous integrated boost in patients with multiple brain metastases. Methods and Materials: Composite RA plans were generated for 8 patients, consisting of WBRT (20 Gy in 5 fractions) with an integrated boost, also 20 Gy in 5 fractions, to Brain metastases, and clinically delivered in 3 patients. Summated gross tumor volumes were 1.0 to 37.5 cm{sup 3}. RA plans weremore » measured in a solid water phantom by use of Gafchromic films (International Specialty Products, Wayne, NJ). Results: Composite RA plans could be generated within 1 hour. Two arcs were needed to deliver the mean of 1,600 monitor units with a mean 'beam-on' time of 180 seconds. RA plans showed excellent coverage of planning target volume for WBRT and planning target volume for the boost, with mean volumes receiving at least 95% of the prescribed dose of 100% and 99.8%, respectively. The mean conformity index was 1.36. Composite plans showed much steeper dose gradients outside Brain metastases than plans with a conventional summation of WBRT and radiosurgery. Comparison of calculated and measured doses showed a mean gamma for double-arc plans of 0.30, and the area with a gamma larger than 1 was 2%. In-room times for clinical RA sessions were approximately 20 minutes for each patient. Conclusions: RA treatment planning and delivery of integrated plans of WBRT and boosts to multiple brain metastases is a rapid and accurate technique that has a higher conformity index than conventional summation of WBRT and radiosurgery boost.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomson, David J.; The University of Manchester, Manchester Academic Health Science Centre, Institute of Cancer Sciences, Manchester; Beasley, William J.
Introduction: Interfractional anatomical alterations may have a differential effect on the dose delivered by step-and-shoot intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT). The increased degrees of freedom afforded by rotational delivery may increase plan robustness (measured by change in target volume coverage and doses to organs at risk [OARs]). However, this has not been evaluated for head and neck cancer. Materials and methods: A total of 10 patients who required repeat computed tomography (CT) simulation and replanning during head and neck IMRT were included. Step-and-shoot IMRT and VMAT plans were generated from the original planning scan. The initial andmore » second CT simulation scans were fused and targets/OAR contours transferred, reviewed, and modified. The plans were applied to the second CT scan and doses recalculated without repeat optimization. Differences between step-and-shoot IMRT and VMAT for change in target volume coverage and doses to OARs between first and second CT scans were compared by Wilcoxon signed rank test. Results: There were clinically relevant dosimetric changes between the first and the second CT scans for both the techniques (reduction in mean D{sub 95%} for PTV2 and PTV3, D{sub min} for CTV2 and CTV3, and increased mean doses to the parotid glands). However, there were no significant differences between step-and-shoot IMRT and VMAT for change in any target coverage parameter (including D{sub 95%} for PTV2 and PTV3 and D{sub min} for CTV2 and CTV3) or dose to any OARs (including parotid glands) between the first and the second CT scans. Conclusions: For patients with head and neck cancer who required replanning mainly due to weight loss, there were no significant differences in plan robustness between step-and-shoot IMRT and VMAT. This information is useful with increased clinical adoption of VMAT.« less
Utilizing knowledge from prior plans in the evaluation of quality assurance
NASA Astrophysics Data System (ADS)
Stanhope, Carl; Wu, Q. Jackie; Yuan, Lulin; Liu, Jianfei; Hood, Rodney; Yin, Fang-Fang; Adamson, Justus
2015-06-01
Increased interest regarding sensitivity of pre-treatment intensity modulated radiotherapy and volumetric modulated arc radiotherapy (VMAT) quality assurance (QA) to delivery errors has led to the development of dose-volume histogram (DVH) based analysis. This paradigm shift necessitates a change in the acceptance criteria and action tolerance for QA. Here we present a knowledge based technique to objectively quantify degradations in DVH for prostate radiotherapy. Using machine learning, organ-at-risk (OAR) DVHs from a population of 198 prior patients’ plans were adapted to a test patient’s anatomy to establish patient-specific DVH ranges. This technique was applied to single arc prostate VMAT plans to evaluate various simulated delivery errors: systematic single leaf offsets, systematic leaf bank offsets, random normally distributed leaf fluctuations, systematic lag in gantry angle of the mutli-leaf collimators (MLCs), fluctuations in dose rate, and delivery of each VMAT arc with a constant rather than variable dose rate. Quantitative Analyses of Normal Tissue Effects in the Clinic suggests V75Gy dose limits of 15% for the rectum and 25% for the bladder, however the knowledge based constraints were more stringent: 8.48 ± 2.65% for the rectum and 4.90 ± 1.98% for the bladder. 19 ± 10 mm single leaf and 1.9 ± 0.7 mm single bank offsets resulted in rectum DVHs worse than 97.7% (2σ) of clinically accepted plans. PTV degradations fell outside of the acceptable range for 0.6 ± 0.3 mm leaf offsets, 0.11 ± 0.06 mm bank offsets, 0.6 ± 1.3 mm of random noise, and 1.0 ± 0.7° of gantry-MLC lag. Utilizing a training set comprised of prior treatment plans, machine learning is used to predict a range of achievable DVHs for the test patient’s anatomy. Consequently, degradations leading to statistical outliers may be identified. A knowledge based QA evaluation enables customized QA criteria per treatment site, institution and/or physician and can often be more sensitive to errors than criteria based on organ complication rates.
Yamada, Yoshiya; Lovelock, D Michael; Yenice, Kamil M; Bilsky, Mark H; Hunt, Margaret A; Zatcky, Joan; Leibel, Steven A
2005-05-01
The use of image-guided and stereotactic intensity-modulated radiotherapy (IMRT) techniques have made the delivery of high-dose radiation to lesions within close proximity to the spinal cord feasible. This report presents clinical and physical data regarding the use of IMRT coupled with noninvasive body frames (stereotactic and image-guided) for multifractionated radiotherapy. The Memorial Sloan-Kettering Cancer Center (Memorial) stereotactic body frame (MSBF) and Memorial body cradle (MBC) have been developed as noninvasive immobilizing devices for paraspinal IMRT using stereotactic (MSBF) and image-guided (MBC) techniques. Patients were either previously irradiated or prescribed doses beyond spinal cord tolerance (54 Gy in standard fractionation) and had unresectable gross disease involving the spinal canal. The planning target volume (PTV) was the gross tumor volume with a 1 cm margin. The PTV was not allowed to include the spinal cord contour. All treatment planning was performed using software developed within the institution. Isocenter verification was performed with an in-room computed tomography scan (MSBF) or electronic portal imaging devices, or both. Patients were followed up with serial magnetic resonance imaging every 3-4 months, and no patients were lost to follow-up. Kaplan-Meier statistics were used for analysis of clinical data. Both the MSBF and MBC were able to provide setup accuracy within 2 mm. With a median follow-up of 11 months, 35 patients (14 primary and 21 secondary malignancies) underwent treatment. The median dose previously received was 3000 cGy in 10 fractions. The median dose prescribed for these patients was 2000 cGy/5 fractions (2000-3000 cGy), which provided a median PTV V100 of 88%. In previously unirradiated patients, the median prescribed dose was 7000 cGy (5940-7000 cGy) with a median PTV V100 of 90%. The median Dmax to the cord was 34% and 68% for previously irradiated and never irradiated patients, respectively. More than 90% of patients experienced palliation from pain, weakness, or paresthesia; 75% and 81% of secondary and primary lesions, respectively, exhibited local control at the time of last follow-up. No cases of radiation-induced myelopathy or radiculopathy have thus far been encountered. Precision stereotactic and image-guided paraspinal IMRT allows the delivery of high doses of radiation in multiple fractions to tumors within close proximity to the spinal cord while respecting cord tolerance. Although preliminary, the clinical results are encouraging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusters, Johannes M.A.M.; Louwe, Rob J.W.; Kollenburg, Peter G.M. van
2011-12-01
Purpose: To develop a treatment technique for craniospinal irradiation using intensity-modulated radiotherapy (IMRT) with improved dose homogeneity at the field junction(s), increased target volume conformity, and minimized dose to the organs at risk (OARs). Methods and Materials: Five patients with high-risk medulloblastoma underwent CT simulation in supine position. For each patient, an IMRT plan with daily intrafractionally modulated junction(s) was generated, as well as a treatment plan based on conventional three-dimensional planning (3DCRT). A dose of 39.6 Gy in 22 daily fractions of 1.8 Gy was prescribed. Dose-volume parameters for target volumes and OARs were compared for the two techniques.more » Results: The maximum dose with IMRT was <107% in all patients. V{sub <95} and V{sub >107} were <1 cm{sup 3} for IMRT compared with 3-9 cm{sup 3} for the craniospinal and 26-43 cm{sup 3} for the spinal-spinal junction with 3DCRT. These observations corresponded with a lower homogeneity index and a higher conformity index for the spinal planning target volume with IMRT. IMRT provided considerable sparing of acute and late reacting tissues. V{sub 75} for the esophagus, gastroesophageal junction, and intestine was 81%, 81%, and 22% with 3DCRT versus 5%, 0%, and 1% with IMRT, respectively. V{sub 75} for the heart and thyroid was 42% and 32% vs. 0% with IMRT. Conclusion: IMRT with daily intrafractionally modulated junction results in a superior target coverage and junction homogeneity compared with 3DCRT. A significant dose reduction can be obtained for acute as well as late-reacting tissues.« less
Scarfone, Christopher; Lavely, William C; Cmelak, Anthony J; Delbeke, Dominique; Martin, William H; Billheimer, Dean; Hallahan, Dennis E
2004-04-01
The aim of this investigation was to evaluate the influence and accuracy of (18)F-FDG PET in target volume definition as a complementary modality to CT for patients with head and neck cancer (HNC) using dedicated PET and CT scanners. Six HNC patients were custom fitted with head and neck and upper body immobilization devices, and conventional radiotherapy CT simulation was performed together with (18)F-FDG PET imaging. Gross target volume (GTV) and pathologic nodal volumes were first defined in the conventional manner based on CT. A segmentation and surface-rendering registration technique was then used to coregister the (18)F-FDG PET and CT planning image datasets. (18)F-FDG PET GTVs were determined and displayed simultaneously with the CT contours. CT GTVs were then modified based on the PET data to form final PET/CT treatment volumes. Five-field intensity-modulated radiation therapy (IMRT) was then used to demonstrate dose targeting to the CT GTV or the PET/CT GTV. One patient was PET-negative after induction chemotherapy. The CT GTV was modified in all remaining patients based on (18)F-FDG PET data. The resulting PET/CT GTV was larger than the original CT volume by an average of 15%. In 5 cases, (18)F-FDG PET identified active lymph nodes that corresponded to lymph nodes contoured on CT. The pathologically enlarged CT lymph nodes were modified to create final lymph node volumes in 3 of 5 cases. In 1 of 6 patients, (18)F-FDG-avid lymph nodes were not identified as pathologic on CT. In 2 of 6 patients, registration of the independently acquired PET and CT data using segmentation and surface rendering resulted in a suboptimal alignment and, therefore, had to be repeated. Radiotherapy planning using IMRT demonstrated the capability of this technique to target anatomic or anatomic/physiologic target volumes. In this manner, metabolically active sites can be intensified to greater daily doses. Inclusion of (18)F-FDG PET data resulted in modified target volumes in radiotherapy planning for HNC. PET and CT data acquired on separate, dedicated scanners may be coregistered for therapy planning; however, dual-acquisition PET/CT systems may be considered to reduce the need for reregistrations. It is possible to use IMRT to target dose to metabolically active sites based on coregistered PET/CT data.
Applicability of Topaz Composites to Electron Dosimetry
NASA Astrophysics Data System (ADS)
Bomfim, K. S.; Souza, D. N.
2010-11-01
Thermoluminescent dosimetric topaz properties have been investigated and the results have shown that this mineral presents characteristics of a good dosimeter mainly in doses evaluation in radiotherapy with photons beams in radiotherapy. Typical applications of thermoluminescent dosimeters in radiotherapy are: in vivo dosimetry on patients (either as a routine quality assurance procedure or for dose monitoring in special cases); verification of treatment techniques; dosimetry audits; and comparisons among hospitals. The mean aim of this work was to evaluate the efficiency of topaz-Teflon pellets as thermoluminescent dosimeters in high-energy electron beams used to radiotherapy. Topaz-Teflon pellets were used as TLD.
Simultaneous infield boost with helical tomotherapy for patients with 1 to 3 brain metastases.
Bauman, Glenn; Yartsev, Slav; Fisher, Barb; Kron, Tomas; Laperriere, Normand; Heydarian, Mostafa; VanDyk, Jake
2007-02-01
We sought to model the feasibility of a simultaneous in field boost (SIB) to individual brain metastases during a course of whole brain radiotherapy (WBXRT) using helical tomotherapy (HT) intensity-modulated radiation therapy. Planning computed tomography data from 14 patients with 1 to 3 brain metastases were used to model an intralesional SIB delivery that yielded a total intralesional dose of 60 Gy with a surrounding whole brain dose of 30 Gy (designed to be isoeffective to WBXRT of 30 Gy with an 18 Gy in 1 fraction radiosurgery boost). Accuracy of treatment of a phantom on the HT unit was measured. Comparisons of HT delivery versus a conventional stereotactic radiotherapy technique for a particularly challenging simulated anatomy were made. In all cases, SIB to 60 Gy with WBXRT to 30 Gy was possible while maintaining critical structures below assigned dose limits. Estimated radiation delivery time for the SIB treatment was approximately 10 minutes per fraction. Planning and treatment of the head phantom was associated with an overall accuracy of 2 mm. Comparison to conventional noncoplanar arc fractionated stereotactic radiotherapy plan demonstrated similar target coverage and improved critical tissue sparing even for a challenging anatomy with multiple lesions in the same plane as the optic apparatus. Based on this study, use of an image guided SIB using HT seemed feasible and a phase I trial initiated at our institution is described. Potential advantages of this approach include frameless stereotaxis through daily megavoltage computed tomography localization, more efficient use of resources and exploitation of radiobiologic advantages of fractionation.
Volumetric response of intracranial meningioma after photon or particle irradiation.
Mozes, Petra; Dittmar, Jan Oliver; Habermehl, Daniel; Tonndorf-Martini, Eric; Hideghety, Katalin; Dittmar, Anne; Debus, Jürgen; Combs, Stephanie E
2017-03-01
Meningiomas are usually slow growing, well circumscribed intracranial tumors. In symptom-free cases observation with close follow-up imaging could be performed. Symptomatic meningiomas could be surgically removed and/or treated with radiotherapy. The study aimed to evaluate the volumetric response of intracranial meningiomas at different time points after photon, proton, and a mixed photon and carbon ion boost irradiation. In Group A 38 patients received proton therapy (median dose: 56 GyE in 1.8-2 GyE daily fractions) or a mixed photon/carbon ion therapy (50 Gy in 2 Gy daily fractions with intensity modulated radiotherapy (IMRT) and 18 GyE in 3 GyE daily dose carbon ion boost). Thirty-nine patients (Group B) were treated by photon therapy with IMRT or fractionated stereotactic radiotherapy technique (median dose: 56 Gy in 1.8-2 Gy daily fractions). The delineation of the tumor volume was based on the initial, one- and two-year follow-up magnetic resonance imaging and these volumes were compared to evaluate the volumetric tumor response. Significant tumor volume shrinkage was detected at one- and at two-year follow-up both after irradiation by particles and by photons. No significant difference in tumor volume change was observed between photon, proton or combined photon plus carbon ion boost treated patients. WHO grade and gender appear to be determining factors for tumor volume shrinkage. Significant volumetric shrinkage of meningiomas could be observed independently of the applied radiation modality. Long-term follow-up is recommended to evaluate further dynamic of size reduction and its correlation with outcome data.
Haque, Waqar; Verma, Vivek; Butler, E. Brian
2018-01-01
Background Randomized esophageal cancer (EC) trials have utilized two- or three-dimensional conformal radiotherapy (3DCRT). Advanced radiotherapy (RT) techniques [(ARTs): intensity-modulated radiotherapy (IMRT) and proton beam therapy (PBT)] may have benefits, but are relatively unproven. This is the first study to date evaluating utilization of ARTs versus 3DCRT in the trimodality setting in the United States. Methods The National Cancer Data Base (NCDB) was queried (2004–2013) for newly-diagnosed cT1b-T4bN0/N+M0 EC receiving neoadjuvant CRT followed by esophagectomy. The primary objective was to assess temporal trends, with multivariable logistic regression analysis assessing factors predictive of receiving ARTs. Secondarily, Kaplan-Meier analysis evaluated overall survival (OS), Cox proportional hazards modeling determined variables associated with OS, and postoperative complications were compared between cohorts. Results Altogether, 3,138 patients met criteria; 1,398 (45%) received 3DCRT, and 1,740 (55%) received ARTs (99% IMRT, 1% PBT). Temporally, utilization of ARTs is steadily rising in the United States, from 20% in 2004 to 69% in 2013, corresponding with a progressive decrease in utilization of 3DCRT. ARTs were more often delivered with advancing age, squamous cell histology, N2+ disease, and at academic centers (P<0.05 for all). Centers in the Southwest were more likely to use ARTs, and those in the Midwest least likely (P<0.05 for both). As expected, there were no OS differences (P=0.8477); there were also no differences in postoperative events (P>0.05 for all). Treatment at an academic center independently correlated with improved OS (P<0.001). Conclusions Utilization of ARTs (IMRT in the vast majority) is steadily rising in the United States; 3DCRT is now used in a minority of patients. This has implications for payers and insurance coverage. ART use is impacted by not only age and disease factors, but also regional and facility differences. Treatment at an academic facility independently correlated with higher survival, which has implications for patient counseling. PMID:29755767
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Y; OBrien, R; Shieh, C
2014-06-15
Purpose: Intrafraction tumor deformation limits targeting accuracy in radiotherapy and cannot be adapted to by current motion management techniques. This study simulated intrafractional treatment adaptation to tumor deformations using a dynamic Multi-Leaf Collimator (DMLC) tracking system during Intensity-modulated radiation therapy (IMRT) treatment for the first time. Methods: The DMLC tracking system was developed to adapt to the intrafraction tumor deformation by warping the planned beam aperture guided by the calculated deformation vector field (DVF) obtained from deformable image registration (DIR) at the time of treatment delivery. Seven single phantom deformation images up to 10.4 mm deformation and eight tumor systemmore » phantom deformation images up to 21.5 mm deformation were acquired and used in tracking simulation. The intrafraction adaptation was simulated at the DMLC tracking software platform, which was able to communicate with the image registration software, reshape the instantaneous IMRT field aperture and log the delivered MLC fields.The deformation adaptation accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the reference aperture. The incremental deformations were arbitrarily determined to take place equally over the delivery interval. The geometric target coverage of delivery with deformation adaptation was compared against the delivery without adaptation. Results: Intrafraction deformation adaptation during dynamic IMRT plan delivery was simulated for single and system deformable phantoms. For the two particular delivery situations, over the treatment course, deformation adaptation improved the target coverage by 89% for single target deformation and 79% for tumor system deformation compared with no-tracking delivery. Conclusion: This work demonstrated the principle of real-time tumor deformation tracking using a DMLC. This is the first step towards the development of an image-guided radiotherapy system to treat deforming tumors in real-time. The authors acknowledge funding support from the Australian NHMRC Australia Fellowship, Cure Cancer Australia Foundation, NHMRC Project Grant APP1042375 and US NIH/NCI R01CA93626.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Na, Y; Black, P; Wuu, C
2016-06-15
Purpose: With an increasing use of small field size and high dose rate irradiation in the advances of radiotherapy techniques, such as stereotactic body radiotherapy (SBRT) and stereotactic radiosurgery (SRS), an in-depth quality assurance (QA) system is required. The purpose of this study is to investigate a high resolution optical CT-based 3D radiochromic dosimetry system for SBRT with intensity modulated radiotherapy (IMRT) and flattening filter free (FFF) volumetric modulated arc therapy (VMAT). Methods: Cylindrical PRESAGE radiochromic dosimeters of 10cm height and 11cm diameter were used to validate SBRT. Four external landmarks were placed on the surface of each dosimeter tomore » define the isocenter of target. SBRT plans were delivered using a Varian TrueBeam™ linear accelerator (LINAC). Three validation plans, SBRT with IMRT (6MV 600MU/min), FFF-VMAT (10MV 2400MU/min), and mixed FFF-VMAT (6MV 1400MU/min, 10MV 2400MU/min), were delivered to the PRESAGE dosimeters. Each irradiated PRESAGE dosimeter was scanned using a single laser beam optical CT scanner and reconstructed with a 1mm × 1mm high spatial resolution. The comparison of measured dose distributions of irradiated PRESAGE dosimeters to those calculated by Pinnacle{sup 3} treatment planning system (TPS) were performed with a 10% dose threshold, 3% dose difference (DD), and 3mm distance-to-agreement (DTA) Gamma criteria. Results: The average pass rates for the gamma comparisons between PRESAGE and Pinnacle{sup 3} in the transverse, sagittal, coronal planes were 94.6%, 95.9%, and 96.4% for SBRT with IMRT, FFF-VMAT, and mixed FFF-VMAT plans, respectively. A good agreement of the isodose distributions of those comparisons were shown at the isodose lines 50%, 70%, 80%, 90% and 98%. Conclusion: This study demonstrates the feasibility of the high resolution optical CT-based 3D radiochromic dosimetry system for validation of SBRT with IMRT and FFF-VMAT. This dosimetry system offers higher precision QA with 3D dose information for small beams compared to what is currently available.« less
2013-01-01
Background To investigate the feasibility and dosimetric improvements of a novel technique to temporarily displace critical structures in the pelvis and abdomen from tumor during high-dose radiotherapy. Methods Between 2010 and 2012, 11 patients received high-dose image-guided intensity-modulated radiotherapy with temporary organ displacement (TOD) at our institution. In all cases, imaging revealed tumor abutting critical structures. An all-purpose drainage catheter was introduced between the gross tumor volume (GTV) and critical organs at risk (OAR) and infused with normal saline (NS) containing 5-10% iohexol. Radiation planning was performed with the displaced OARs and positional reproducibility was confirmed with cone-beam CT (CBCT). Patients were treated within 36 hours of catheter placement. Radiation plans were re-optimized using pre-TOD OARs to the same prescription and dosimetrically compared with post-TOD plans. A two-tailed permutation test was performed on each dosimetric measure. Results The bowel/rectum was displaced in six patients and kidney in four patients. One patient was excluded due to poor visualization of the OAR; thus 10 patients were analyzed. A mean of 229 ml (range, 80–1000) of NS 5-10% iohexol infusion resulted in OAR mean displacement of 17.5 mm (range, 7–32). The median dose prescribed was 2400 cGy in one fraction (range, 2100–3000 in 3 fractions). The mean GTV Dmin and PTV Dmin pre- and post-bowel TOD IG-IMRT dosimetry significantly increased from 1473 cGy to 2086 cGy (p=0.015) and 714 cGy to 1214 cGy (p=0.021), respectively. TOD increased mean PTV D95 by 27.14% of prescription (p=0.014) while the PTV D05 decreased by 9.2% (p=0.011). TOD of the bowel resulted in a 39% decrease in mean bowel Dmax (p=0.008) confirmed by CBCT. TOD of the kidney significantly decreased mean kidney dose and Dmax by 25% (0.022). Conclusions TOD was well tolerated, reproducible, and facilitated dose escalation to previously radioresistant tumors abutting critical structures while minimizing dose to OARs. PMID:23800073
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fortin, D; Sharpe, M; Laperriere, N
Purpose: The increased sparing of normal tissues in intensity modulated proton therapy (IMPT) compared to photon intensity modulated radiotherapy (IMRT) in brain tumor treatments should translate into improved neurocognitive outcomes. Models were used to estimate the intelligence quotient (IQ) and the risk of hearing loss 5 years post radiotherapy and to compare outcomes of proton against photon in pediatric brain tumors. Methods: Patients who had received radical IMRT were randomly selected from our retrospective database: 10 cases each of craniopharyngioma, ependymoma and medulloblastoma, and 20 cases of glioma. The existing planning CT and contours were used to generate IMPT plans.more » The RBE-corrected dose to brain structures and cochleas were calculated for both IMPT and IMRT. A model was applied to estimate IQ using a Markov chain Monte Carlo technique. The reported incidence of hearing loss as a function of cochlear dose was used to estimate the rate of occurrence. Results: The average brain dose was less in all IMPT plans compared to IMRT: ranging from a 6.7% reduction (P=0.003) in the case of medulloblastoma to 38% (P=0.007) for craniopharyngioma. This dose reduction translated into a gain in IQ of 1.9 points on average for protons vs photons for the whole cohort at 5 years post-treatment (P=0.011). In terms of specific diseases, the gains in IQ ranged from 0.8 points for medulloblastoma, to 2.7 points for craniopharyngioma. Hearing loss probability was evaluated on a per-ear-basis and was found to be systematically less for proton versus photon: overall 2.9% versus 7.2% (P < 0.001). Conclusion: A novel method was developed to predict neurocognitive outcomes in pediatric brain tumor patients on a case-by-case basis. A modest gain in IQ was systematically observed for proton in all patients. Given the uncertainties within the model used and our reinterpretation, these gains may be underestimated.« less
Haque, Waqar; Verma, Vivek; Butler, E Brian; Teh, Bin S
2018-04-01
Randomized esophageal cancer (EC) trials have utilized two- or three-dimensional conformal radiotherapy (3DCRT). Advanced radiotherapy (RT) techniques [(ARTs): intensity-modulated radiotherapy (IMRT) and proton beam therapy (PBT)] may have benefits, but are relatively unproven. This is the first study to date evaluating utilization of ARTs versus 3DCRT in the trimodality setting in the United States. The National Cancer Data Base (NCDB) was queried (2004-2013) for newly-diagnosed cT1b-T4bN0/N+M0 EC receiving neoadjuvant CRT followed by esophagectomy. The primary objective was to assess temporal trends, with multivariable logistic regression analysis assessing factors predictive of receiving ARTs. Secondarily, Kaplan-Meier analysis evaluated overall survival (OS), Cox proportional hazards modeling determined variables associated with OS, and postoperative complications were compared between cohorts. Altogether, 3,138 patients met criteria; 1,398 (45%) received 3DCRT, and 1,740 (55%) received ARTs (99% IMRT, 1% PBT). Temporally, utilization of ARTs is steadily rising in the United States, from 20% in 2004 to 69% in 2013, corresponding with a progressive decrease in utilization of 3DCRT. ARTs were more often delivered with advancing age, squamous cell histology, N2+ disease, and at academic centers (P<0.05 for all). Centers in the Southwest were more likely to use ARTs, and those in the Midwest least likely (P<0.05 for both). As expected, there were no OS differences (P=0.8477); there were also no differences in postoperative events (P>0.05 for all). Treatment at an academic center independently correlated with improved OS (P<0.001). Utilization of ARTs (IMRT in the vast majority) is steadily rising in the United States; 3DCRT is now used in a minority of patients. This has implications for payers and insurance coverage. ART use is impacted by not only age and disease factors, but also regional and facility differences. Treatment at an academic facility independently correlated with higher survival, which has implications for patient counseling.
Elith, Craig A; Dempsey, Shane E; Warren-Forward, Helen M
2014-01-01
Introduction This study compared four different volumetric modulated arc therapy (VMAT) beam arrangements for the treatment of early-stage prostate cancer examining plan quality and the impact on a radiotherapy department's resources. Methods Twenty prostate cases were retrospectively planned using four VMAT beam arrangements (1) a partial arc (PA), (2) one arc (1A), (3) one arc plus a partial arc (1A + PA) and (4) two arcs (2A). The quality of the dose distributions generated were compared by examining the overall plan quality, the homogeneity and conformity to the planning target volume (PTV), the number of monitor units and the dose delivered to the organs at risk. Departmental resources were considered by recording the planning time and beam delivery time. Results Each technique produced a plan of similar quality that was considered adequate for treatment; though some differences were noted. The 1A, 1A + PA and 2A plans demonstrated a better conformity to the PTV which correlated to improved sparing of the rectum in the 60–70 Gy range for the 1A + PA and 2A techniques. The time needed to generate the plans was different for each technique ranging from 13.1 min for 1A + PA to 17.8 min for 1A. The PA beam delivery time was fastest with a mean time of 0.9 min. Beam-on times then increased with an increase in the number of arcs up to an average of 2.2 min for the 2A technique. Conclusion Which VMAT technique is best suited for clinical implementation for the treatment of prostate cancer may be dictated by the individual patient and the availability of departmental resources. PMID:26229643
Radiotherapy Monte Carlo simulation using cloud computing technology.
Poole, C M; Cornelius, I; Trapp, J V; Langton, C M
2012-12-01
Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1/n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal.
Underestimation of Low-Dose Radiation in Treatment Planning of Intensity-Modulated Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Si Young; Liu, H. Helen; Mohan, Radhe
2008-08-01
Purpose: To investigate potential dose calculation errors in the low-dose regions and identify causes of such errors for intensity-modulated radiotherapy (IMRT). Methods and Materials: The IMRT treatment plans of 23 patients with lung cancer and mesothelioma were reviewed. Of these patients, 15 had severe pulmonary complications after radiotherapy. Two commercial treatment-planning systems (TPSs) and a Monte Carlo system were used to calculate and compare dose distributions and dose-volume parameters of the target volumes and critical structures. The effect of tissue heterogeneity, multileaf collimator (MLC) modeling, beam modeling, and other factors that could contribute to the differences in IMRT dose calculationsmore » were analyzed. Results: In the commercial TPS-generated IMRT plans, dose calculation errors primarily occurred in the low-dose regions of IMRT plans (<50% of the radiation dose prescribed for the tumor). Although errors in the dose-volume histograms of the normal lung were small (<5%) above 10 Gy, underestimation of dose <10 Gy was found to be up to 25% in patients with mesothelioma or large target volumes. These errors were found to be caused by inadequate modeling of MLC transmission and leaf scatter in commercial TPSs. The degree of low-dose errors depends on the target volumes and the degree of intensity modulation. Conclusions: Secondary radiation from MLCs contributes a significant portion of low dose in IMRT plans. Dose underestimation could occur in conventional IMRT dose calculations if such low-dose radiation is not properly accounted for.« less
Measurement of dose given by Co-60 in radiotherapy with TLD-500
NASA Astrophysics Data System (ADS)
Tanır, Güneş; Cengiz, Ferhat; Hicabi Bölükdemir, M.
2012-04-01
The uses of dosimeters based on optically stimulated luminescence technique have become widespread in clinical applications. In the present study, the dose values given by Cobalt-60 radiotherapy machine were measured with optically stimulated luminescence (OSL) technique using TLD-500 and compared with those of commonly used ionization chamber dosimeter system. The percentage depth dose (DD%) values and graphs were formed. OSL system with TLD-500 can be reliably used as medical and personal dosimeter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobler, Matt; Watson, Gordon; Leavitt, Dennis
Radiotherapy plays a key role in the definitive or adjuvant management of patients with mesothelioma of the pleural surface. Many patients are referred for radiation with intact lung following biopsy or subtotal pleurectomy. Delivery of efficacious doses of radiation to the pleural lining while avoiding lung parenchyma toxicity has been a difficult technical challenge. Using opposed photon fields produce doses in lung that result in moderate-to-severe pulmonary toxicity in 100% of patients treated. Combined photon-electron beam treatment, at total doses of 4250 cGy to the pleural surface, results in two-thirds of the lung volume receiving over 2100 cGy. We havemore » developed a technique using intensity-modulated photon arc therapy (IMRT) that significantly improves the dose distribution to the pleural surface with concomitant decrease in dose to lung parenchyma compared to traditional techniques. IMRT treatment of the pleural lining consists of segments of photon arcs that can be intensity modulated with varying beam weights and multileaf positions to produce a more uniform distribution to the pleural surface, while at the same time reducing the overall dose to the lung itself. Computed tomography (CT) simulation is critical for precise identification of target volumes as well as critical normal structures (lung and heart). Rotational arc trajectories and individual leaf positions and weightings are then defined for each CT plane within the patient. This paper will describe the proposed rotational IMRT technique and, using simulated isodose distributions, show the improved potential for sparing of dose to the critical structures of the lung, heart, and spinal cord.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Young K., E-mail: Young.Lee@rmh.nhs.uk; McVey, Gerard P.; South, Chris P.
2013-07-01
Dose distributions for prostate radiotherapy are difficult to predict in patients with bilateral hip prostheses in situ, due to image distortions and difficulty in dose calculation. The feasibility of delivering curative doses to prostate using intensity-modulated radiotherapy (IMRT) in patients with bilateral hip prostheses was evaluated. Planning target volumes for prostate only (PTV1) and pelvic nodes (PTV2) were generated from data on 5 patients. PTV1 and PTV2 dose prescriptions were 70 Gy and 60 Gy, respectively, in 35 fractions, and an additional nodal boost of 65 Gy was added for 1 plan. Rectum, bladder, and bowel were also delineated. Beammore » angles and segments were chosen to best avoid entering through the prostheses. Dose-volume data were assessed with respect to clinical objectives. The plans achieved the required prescription doses to the PTVs. Five-field IMRT plans were adequate for patients with relatively small prostheses (head volumes<60 cm{sup 3}) but 7-field plans were required for patients with larger prostheses. Bowel and bladder doses were clinically acceptable for all patients. Rectal doses were deemed clinically acceptable, although the V{sub 50} {sub Gy} objective was not met for 4/5 patients. We describe an IMRT solution for patients with bilateral hip prostheses of varying size and shape, requiring either localized or whole pelvic radiotherapy for prostate cancer.« less
Prostate-specific antigen bounce after intensity-modulated radiotherapy for prostate cancer.
Sheinbein, Courtney; Teh, Bin S; Mai, Wei Y; Grant, Walter; Paulino, Arnold; Butler, E Brian
2010-09-01
To report prostate-specific antigen (PSA) bounce in patients treated with intensity-modulated radiotherapy (IMRT) alone. Previous studies have reported PSA bounce in prostate cancer patients treated with conventional radiotherapy, 3D conformal radiotherapy, and permanent seed brachytherapy. From January 1997 to July 2002, 102 patients with clinically localized prostate cancer were treated with IMRT alone. No patients received androgen ablation. PSA bounce was defined as a PSA increase of at least 0.4 ng/mL, followed by any PSA decrease. Biochemical failure was defined by both the American Society for Therapeutic Radiology and Oncology 1996 and 2006 consensus definitions. The median follow-up was 76 months. The median length of time until the first PSA bounce was 13.6 months. Thirty-three patients (32.4%) had at least 1 PSA bounce, with 25 (24.5%) having 1 bounce; 6 (5.9%), 2 bounces; and 2 (2.0%), 4 bounces. PSA bounce was not significantly associated with biochemical no evidence of disease survival, clinical stage, pretreatment PSA, Gleason combined score, prostate planning target volume, PSA nadir, or mean dose to the prostate. The rate of PSA bounce in patients aged ≤ 70 and > 70 years was 44.4% and 22.8%, respectively (P = .032). Our patient series is the first report on PSA bounce in patients treated with IMRT. Our study confirms that the majority of patients with a bouncing PSA remain biochemically and clinically free of disease with extended follow-up. Copyright © 2010 Elsevier Inc. All rights reserved.
Two-stage implant placement technique for the management of irradiated jaws: An animal study.
Aboushelib, Moustafa N; Arnaout, Mohamed A; Elsafi, Mohamed H; Kassem, Youssef M
2017-10-01
Radiotherapy results in diminished bone remodeling capacity and an elevated risk of osteoradionecrosis, which can negatively influence the survival rate of dental implants. Patients receiving radiotherapy are advised not to receive dental implants during or soon after completing their radiotherapy. The purpose of this animal study was to investigate a 2-stage implant placement technique designed to diminish applied trauma on irradiated bone. Two groups of white New Zealand rabbits received radiotherapy in ascending doses (2, 4, 8 Gy), while a nonirradiated group served as control. Three weeks after completion of the last radiotherapy session, one of the irradiated groups and the control group received titanium dental implants bilaterally in the femur head. For the second irradiated group, an osteotomy was performed, and the surgical wound was left to heal for 2 weeks before implant placement. All animals were sacrificed 4 weeks after implant placement, and histomorphometric analysis was used to study bone-implant contact (n=14, α=.05). Statistical analysis revealed significantly higher (F=159, P<.001) bone-implant contact in the 2-stage (40.2 ±1.9) implant placement technique than in the immediately placed implants (21.2 ±2.3) in irradiated bone. Both of the groups had a significantly lower bone-to-implant contact ratio than the non-irradiated control (64.2 ±3.8). Within the limitations of this animal study, the 2-stage implant placement technique could be used to reduce trauma in irradiated bone and to improve wound healing around dental implants. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
García, J R; Cozar, M; Soler, M; Bassa, P; Riera, E; Ferrer, J
2016-01-01
To assess the prognostic value of the therapeutic response by (11)C-choline PET/CT in prostate cancer patients with biochemical recurrence in which (11)C-choline PET/CT indicated radio-guided radiotherapy. The study included 37 patients initially treated with prostatectomy, who were treated due to biochemical recurrence. (11)C-choline PE/CT detected infra-diaphragmatic lymph-node involvement. All were selected for intensity modulated radiation therapy, escalating the dose according to the PET findings. One year after treatment patients underwent PSA and (11)C-choline PET/CT categorizing response (complete/partial/progression). Clinical/biochemical/image monitoring was performed until appearance of second relapse or 36 months in disease-free patients. (11)C-choline PET/CT could detect lymph nodes in all 37 patients. They were 18 (48.6%) of more than a centimetre in size and 19 (51.3%) with no pathological CT morphology: 9 (24.3%) with positive lymph nodes of around one centimetre and 10 (27.0%) only less than a centimetre in size. The response by (11)C-choline PET/CT was categorised one year after radiotherapy: 16 patients (43.2%) complete response; 15 (40.5%) partial response, and 6 (16.2%) progression. The response was concordant between the PSA result and (11)C-choline PET/CT in 32 patients (86.5%), and discordant in five (13.5%). New recurrence was detected in 12 patients (80%) with partial response, and 5 (31.2%) with complete response. The mean time to recurrence was 9 months after partial response, and 18 months after complete response (significant difference, p<.0001). (11)C-choline PET/CT allows the selection of patients with recurrent prostate cancer candidates for radiotherapy and to plan the technique. The evaluation of therapeutic response by (11)C-choline PET/CT has prognostic significance. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.
Stromal-epithelial dynamics in response to fractionated radiotherapy
NASA Astrophysics Data System (ADS)
Qayyum, Muqeem Abdul
Radiotherapy is central to the management of a number of human cancers, either as an adjuvant or primary treatment modality. The principal objective in irradiating tumors is to permanently inhibit their proliferative ability. More than half of all malignancies are primarily treated with radiation, but the heterotypic nature of tumor cells greatly complicates their response to radiotherapy. The need for reliable parameters to predict tumor and normal tissue response to radiation is therefore a prime concern of clinical oncology. Post-operative radiotherapy has commonly been used for early stage breast cancer to treat residual disease. There is continued debate as to what might be the proper dose per fraction as well as the total dose of radiation that needs to be prescribed to prevent disease recurrence. Countries outside the US have adopted increased dose fractionation (i.e., hypofractionation) schemes for early stage breast cancer as a standard of practice; however there is a lack of confidence in these approaches in the United States. The tumor microenvironment plays a significant role in regulating the progression of carcinomas, although the mechanisms are not entirely clear. The primary objective of this work was to characterize, through mechanobiological and radiobiological modeling, a test bed for radiotherapy fractionation techniques assessment. Our goal is to understand how the tumor microenvironment responds to dose fractionation schemes for Breast Conserving Therapy (BCT). Although carcinomas are the major concern for oncology, in this project, the goal is to understand how the stromal microenvironment influences behavior of the cancer cell populations. By classifying 3-D cellular co-cultures as having a reactive or quiescent stroma using the mechanobiology profile (culture stiffness,cellular activation, differentiation, and proliferation) we aim to differentiate the effectiveness of various fractionation schemes. The benefits of understanding heterotypic signaling in post-surgical breast cancer recurrence would be to assist radiation oncologists in designing an improved therapeutic strategy. To relate the parameters of cellular function to therapeutic prescriptions which offer an enhanced clinical outcome would address the lack of knowledge regarding recurrence of disease, tumor control and whether the tumor microenvironment requires more aggressive treatments. In our work to date, we have developed a three-dimensional co-culture model to determine how alternative dose fractionations affect the post-surgical microenvironment. This work suggests that 3-D co-cultures provide the microenvironmental cues needed to reexamine the radiobiological basis underlying radiation therapy. The findings suggest dose escalation to the tumor region may deactivate the reactive stroma, thus minimizing the cancer promoting environment. Large-fraction irradiation may be used to sterilize residual tumor cells and inhibit activation of intracellular transduction pathways that are promoted during the post-surgical wound-healing period. Wound-healing mechanisms are characterized by angiogenesis, fibroplasia, collagen production and granulation tissue formation all of which impact patient prognosis. In fact, tumor dose escalation trials have been proven to reduce local recurrence rates and thus new approaches to partial breast irradiation and tumor bed boosting using external-beam electrons and intensity-modulated radiotherapy (IMRT) techniques are currently under use. These techniques minimize absorbed dose to healthy breast tissues. Treating the residual cancer cells and the reactive stroma that has been stimulated by wound healing requires that we look at the interplay between cell types as well as the mechanical and biochemical factors driving disease. We have discovered that the reason hypofractionation schemes (larger irradiation fractions per day with less total dose) offer therapeutic advantages to some patients could be that it is more effective at treating the reactive stroma. We can kill the cancer cells at the standard rate (180 cGy/fraction), but we have found the larger fractions specifically inhibit wound healing mechanisms by inactivating stromal fibroblasts. The long term goal would be to reduce recurrence rates for early stage breast cancer by treating postsurgical regions most likely to harbor residual tumor cells. Ionizing radiation stress and its effect on ECM mediated cellular functions continues to be an evolving area of research. This study is an initial step in my career plans to study stromal modulation of epithelial tumors. It is also my career goal to integrate basic science experiments and engineering tools into clinical practice.
Biochemical Imaging of Gliomas Using MR Spectroscopic Imaging for Radiotherapy Treatment Planning
NASA Astrophysics Data System (ADS)
Heikal, Amr Ahmed
This thesis discusses the main obstacles facing wide clinical implementation of magnetic resonance spectroscopic imaging (MRSI) as a tumor delineation tool for radiotherapy treatment planning, particularly for gliomas. These main obstacles are identified as 1. observer bias and poor interpretational reproducibility of the results of MRSI scans, and 2. the long scan times required to conduct MRSI scans. An examination of an existing user-independent MRSI tumor delineation technique known as the choline-to-NAA index (CNI) is conducted to assess its utility in providing a tool for reproducible interpretation of MRSI results. While working with spatial resolutions typically twice those on which the CNI model was originally designed, a region of statistical uncertainty was discovered between the tumor and normal tissue populations and as such a modification to the CNI model was introduced to clearly identify that region. To address the issue of long scan times, a series of studies were conducted to adapt a scan acceleration technique, compressed sensing (CS), to work with MRSI and to quantify the effects of such a novel technique on the modulation transfer function (MTF), an important quantitative imaging metric. The studies included the development of the first phantom based method of measuring the MTF for MRSI data, a study of the correlation between the k-space sampling patterns used for compressed sensing and the resulting MTFs, and the introduction of a technique circumventing some of side-effects of compressed sensing by exploiting the conjugate symmetry property of k-space. The work in this thesis provides two essential steps towards wide clinical implementation of MRSI-based tumor delineation. The proposed modifications to the CNI method coupled with the application of CS to MRSI address the two main obstacles outlined. However, there continues to be room for improvement and questions that need to be answered by future research.
NASA Astrophysics Data System (ADS)
Mani, Karthick Raj; Bhuiyan, Md. Anisuzzaman; Alam, Md. Mahbub; Ahmed, Sharif; Sumon, Mostafa Aziz; Sengupta, Ashim Kumar; Rahman, Md. Shakilur; Azharul Islam, Md. S. M.
2018-03-01
Aim: To compare the dosimetric advantage of stereotactic body radiotherapy (SBRT) for localized lung tumor between deep inspiration breath hold technique and free breathing technique. Materials and methods: We retrospectively included ten previously treated lung tumor patients in this dosimetric study. All the ten patients underwent CT simulation using 4D-CT free breathing (FB) and deep inspiration breath hold (DIBH) techniques. Plans were created using three coplanar full modulated arc using 6 MV flattening filter free (FFF) bream with a dose rate of 1400 MU/min. Same dose constraints for the target and the critical structures for a particular patient were used during the plan optimization process in DIBH and FB datasets. We intend to deliver 50 Gy in 5 fractions for all the patients. For standardization, all the plans were normalized at target mean of the planning target volume (PTV). Doses to the critical structures and targets were recorded from the dose volume histogram for evaluation. Results: The mean right and left lung volumes were inflated by 1.55 and 1.60 times in DIBH scans compared to the FB scans. The mean internal target volume (ITV) increased in the FB datasets by 1.45 times compared to the DIBH data sets. The mean dose followed by standard deviation (x¯ ± σx¯) of ipsilateral lung for DIBH-SBRT and FB-SBRT plans were 7.48 ± 3.57 (Gy) and 10.23 ± 4.58 (Gy) respectively, with a mean reduction of 36.84% in DIBH-SBRT plans. Ipsilateral lung were reduced to 36.84% in DIBH plans compared to FB plans. Conclusion: Significant dose reduction in ipsilateral lung due to the lung inflation and target motion restriction in DIBH-SBRT plans were observed compare to FB-SBRT. DIBH-SBRT plans demonstrate superior dose reduction to the normal tissues and other critical structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koeck, Julia, E-mail: Julia_Koeck@gmx.net; Abo-Madyan, Yasser; Department of Radiation Oncology, Faculty of Medicine, Cairo University, Cairo
2012-05-01
Purpose: Cure rates of early Hodgkin lymphoma (HL) are high, and avoidance of late complications and second malignancies have become increasingly important. This comparative treatment planning study analyzes to what extent target volume reduction to involved-node (IN) and intensity-modulated (IM) radiotherapy (RT), compared with involved-field (IF) and three-dimensional (3D) RT, can reduce doses to organs at risk (OAR). Methods and Materials: Based on 20 computed tomography (CT) datasets of patients with early unfavorable mediastinal HL, we created treatment plans for 3D-RT and IMRT for both the IF and IN according to the guidelines of the German Hodgkin Study Group (GHSG).more » As OAR, we defined heart, lung, breasts, and spinal cord. Dose-volume histograms (DVHs) were evaluated for planning target volumes (PTVs) and OAR. Results: Average IF-PTV and IN-PTV were 1705 cm{sup 3} and 1015 cm{sup 3}, respectively. Mean doses to the PTVs were almost identical for all plans. For IF-PTV/IN-PTV, conformity was better with IMRT and homogeneity was better with 3D-RT. Mean doses to the heart (17.94/9.19 Gy for 3D-RT and 13.76/7.42 Gy for IMRT) and spinal cord (23.93/13.78 Gy for 3D-RT and 19.16/11.55 Gy for IMRT) were reduced by IMRT, whereas mean doses to lung (10.62/8.57 Gy for 3D-RT and 12.77/9.64 Gy for IMRT) and breasts (left 4.37/3.42 Gy for 3D-RT and 6.04/4.59 Gy for IMRT, and right 2.30/1.63 Gy for 3D-RT and 5.37/3.53 Gy for IMRT) were increased. Volume exposed to high doses was smaller for IMRT, whereas volume exposed to low doses was smaller for 3D-RT. Pronounced benefits of IMRT were observed for patients with lymph nodes anterior to the heart. IN-RT achieved substantially better values than IF-RT for almost all OAR parameters, i.e., dose reduction of 20% to 50%, regardless of radiation technique. Conclusions: Reduction of target volume to IN most effectively improves OAR sparing, but is still considered investigational. For the time being, IMRT should be considered for large PTVs especially when the anterior mediastinum is involved.« less
[The medical management of carcinoma of the stomach (author's transl)].
Auden, R R; Barrowman, J A
1976-01-01
Only a small proportion of patients with carcinoma of the stomach are suitable for radical surgery. For the remainder symptomatic treatment and radiotherapy alone or in combination with chemotherapy can be used to relieve distressing symptoms of pain, nausea and vomiting, and severe anemia. In the case of radiotherapy or chemotherapy, a degree of tumor regression can be expected. There have been encouraging results recently in palliating this disease with new radiotherapy techniques, notably fast neutron irradiation.
Yu, Decai; Mao, Qixing; Xia, Wenjie; Shi, Run; Wang, Jie; Xu, Lin
2016-01-01
Radiotherapy is generally applied in the treatment of esophageal squamous cell carcinoma (ESCC). However, the radioresistance of ESCC still remains an obstacle for the curative effect of this treatment. We hypothesized that diisopropylamine dichloroacetate (DADA), an inhibitor of pyruvate dehydrogenase kinase (PDK), might enhance radiosensitizationin resistant ESCC. The clonogenic survival assay revealed that DADA sensitized ESCC cells to radiotherapy in vitro; furthermore, the combination of DADA and radiotherapy increased the expression of γ-H2AX, which is a hallmark of DNA double-strand breaks. Arrest at G2/M phase as well as the induction of apoptosis of ESCC cells were also observed in the cells treated with the combination of DADA and radiotherapy. Notably, xenograft tumor growth was significantly suppressed in vivo by combined radiotherapy and DADA administration. It has been proven that glycolysis is highly correlated with radioresistance, which could be reversed by the shift from glycolysis to mitochondrial oxidation. In our present study, we found that DADA could modulate oxidative phosphorylation as well as increase the intracellular levels of reactive oxygen species (ROS). Collectively, we concluded that DADA-induced intracellular ROS accumulation was identified as the key factor of radiotherapy sensitization of ESCC. PMID:27626688
Calvo, F A; Santos, M; Azinovic, I
1998-01-01
Intraoperative radiotherapy is a technique that can be integrated into multidisciplinary treatment strategies in oncology. A radiation boost delivered with high energy electron beams can intensify locoregional antitumor therapy in patients undergoing cancer surgery. Intraoperative radiotherapy can increase the therapeutic index of the conventional combination of surgery and radiotherapy by improving the precision of radiation dose location, while decreasing the normal tissue damage in mobile structures and enhancing the biological effect of radiation when combined with surgical debulking. Intraoperative radiotherapy has been extensively investigated in clinical oncology in the last 15 years. Commercially available linear accelerators require minimal changes to be suitable for intraoperative radiotherapy. Its successful implementation in clinical protocols depends on the support given by the single institutions and on a clinical research-oriented mentality. Tumors where intraoperative radiotherapy as a treatment component has shown promising rates of local control include locally advanced rectal, gastric and gynecologic cancer, bone and soft tissue sarcoma. Intraoperative radiotherapy can be applied to brain tumors, head and neck cancer, NSCLC and pancreatic carcinoma.
[Radiotherapy of squamous cell carcinomas of the tongue--a statistical review].
Kubo, K; Furukawa, S; Fuchihata, H; Nakamura, M; Shimizutani, K; Nishiyama, K; Ikeda, H; Masaki, N
1989-01-01
The cases of 36 patients referred for radiotherapy of the tongue after an excisional biopsy or after an inadequate excision of the tongue cancer have been reviewed. In 32 patients treated by radiotherapy, the actuarial survival rate at five years was 86%, and the local rate control, was 82%. The local control rate for those treated by interstitial radiotherapy (Int. RT) was successful in 12 out of 13 cases, and the rates for those treated by external radiotherapy (Ext. RT) followed by Int. RT, or by the intraoral cone technique with electron beams (Elec.), or by Ext. RT, or by Elec. followed by Int. RT, or by no additional therapy were 7 out of 9, 4 out of 5, 2 out of 4, 1 out of 1, and 2 out of 4, respectively. For such cases of cancer, subsequent interstitial radiotherapy is advisable to maintain local control.
NASA Astrophysics Data System (ADS)
Tu, Shu-Ju; Yang, Pei-Ying; Hong, Ji-Hong; Lo, Ching-Jung
2013-07-01
In CT planning for radiation therapy, patients may be asked to have a medical procedure of contrast agent (CA) administration as required by their physicians. CA media improve quality of CT images and assist radiation oncologists in delineation of the target or organs with accuracy. However, dosimetric discrepancy may occur between scenarios in which CA media are present in CT planning and absent in treatment delivery. In recent preclinical experiments of small animals, gold nanoparticles (AuNPs) have been identified as an excellent contrast material of x-ray imaging. In this work, we quantitatively evaluate the effect of AuNPs to be used as a potential material of contrast enhancement in radiotherapy planning with an analytical phantom and clinical case. Conray 60, an iodine-based product for contrast enhancement in clinical uses, is included as a comparison. Other additional variables such as different concentrations of CA media, radiation delivery techniques and dose calculation algorithms are included. We consider 1-field AP, 4-field box, 7-field intensity modulated radiation therapy (IMRT) and a recent technique of volumetric modulated arc therapy (VMAT). CA media of AuNPs (Conray 60) with concentrations of 10%, 20%, 30%, 40% and 50% containing 28.2, 56.4, 84.6, 112.8 and 141.0 mg of gold (iodine) per mL were prepared prior to CT scanning. A virtual phantom with a target where nanoparticle media are loaded and clinical case of gastric lymphoma in which the Conray 60 media were given to the patient prior to the CT planning are included for the study. Compared to Conray 60 media with concentration of 10%/50%, Hounsfield units for AuNP media of 10%/50% are 322/1608 higher due to the fact that atomic number of Au (Z=79) is larger than I (Z=53). In consequence, dosimetric discrepancy of AuNPs is magnified between presence and absence of contrast media. It was found in the phantom study that percent dose differences between presence and absence of CA media may be reduced by delivery techniques of 7-field IMRT or VMAT. To manage less than 3% of percent dose difference, it was suggested an upper limit of 15% (or 42.3 mg Au/mL) of AuNP media in the phantom study; 8% (or 22.5 mg Au/mL) in the specific clinical case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, Michael, E-mail: mng@radoncvic.com.au; Leong, Trevor; University of Melbourne
2012-08-01
Purpose: To develop a high-resolution target volume atlas with intensity-modulated radiotherapy (IMRT) planning guidelines for the conformal treatment of anal cancer. Methods and Materials: A draft contouring atlas and planning guidelines for anal cancer IMRT were prepared at the Australasian Gastrointestinal Trials Group (AGITG) annual meeting in September 2010. An expert panel of radiation oncologists contoured an anal cancer case to generate discussion on recommendations regarding target definition for gross disease, elective nodal volumes, and organs at risk (OARs). Clinical target volume (CTV) and planning target volume (PTV) margins, dose fractionation, and other IMRT-specific issues were also addressed. A steeringmore » committee produced the final consensus guidelines. Results: Detailed contouring and planning guidelines and a high-resolution atlas are provided. Gross tumor and elective target volumes are described and pictorially depicted. All elective regions should be routinely contoured for all disease stages, with the possible exception of the inguinal and high pelvic nodes for select, early-stage T1N0. A 20-mm CTV margin for the primary, 10- to 20-mm CTV margin for involved nodes and a 7-mm CTV margin for the elective pelvic nodal groups are recommended, while respecting anatomical boundaries. A 5- to 10-mm PTV margin is suggested. When using a simultaneous integrated boost technique, a dose of 54 Gy in 30 fractions to gross disease and 45 Gy to elective nodes with chemotherapy is appropriate. Guidelines are provided for OAR delineation. Conclusion: These consensus planning guidelines and high-resolution atlas complement the existing Radiation Therapy Oncology Group (RTOG) elective nodal ano-rectal atlas and provide additional anatomic, clinical, and technical instructions to guide radiation oncologists in the planning and delivery of IMRT for anal cancer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romesser, Paul B.; Qureshi, Muhammad M.; Kovalchuk, Nataliya
2014-07-01
To determine the effect of gross tumor volume of the primary (GTV-P) and nodal (GTV-N) disease on planned radiation dose to the brachial plexus (BP) in head and neck intensity-modulated radiotherapy (IMRT). Overall, 75 patients underwent definitive IMRT to a median total dose of 69.96 Gy in 33 fractions. The right BP and left BP were prospectively contoured as separate organs at risk. The GTV was related to BP dose using the unpaired t-test. Receiver operating characteristics curves were constructed to determine optimized volumetric thresholds of GTV-P and GTV-N corresponding to a maximum BP dose cutoff of > 66 Gy.more » Multivariate analyses were performed to account for factors associated with a higher maximal BP dose. A higher maximum BP dose (> 66 vs ≤ 66 Gy) correlated with a greater mean GTV-P (79.5 vs 30.8 cc; p = 0.001) and ipsilateral GTV-N (60.6 vs 19.8 cc; p = 0.014). When dichotomized by the optimized nodal volume, patients with an ipsilateral GTV-N ≥ 4.9 vs < 4.9 cc had a significant difference in maximum BP dose (64.2 vs 59.4 Gy; p = 0.001). Multivariate analysis confirmed that an ipsilateral GTV-N ≥ 4.9 cc was an independent predictor for the BP to receive a maximal dose of > 66 Gy when adjusted individually for BP volume, GTV-P, the use of a low anterior neck field technique, total planned radiation dose, and tumor category. Although both the primary and the nodal tumor volumes affected the BP maximal dose, the ipsilateral nodal tumor volume (GTV-N ≥ 4.9 cc) was an independent predictor for high maximal BP dose constraints in head and neck IMRT.« less
Impacts of lung and tumor volumes on lung dosimetry for nonsmall cell lung cancer.
Lei, Weijie; Jia, Jing; Cao, Ruifen; Song, Jing; Hu, Liqin
2017-09-01
The purpose of this study was to determine the impacts of lung and tumor volumes on normal lung dosimetry in three-dimensional conformal radiotherapy (3DCRT), step-and-shoot intensity-modulated radiotherapy (ssIMRT), and single full-arc volumetric-modulated arc therapy (VMAT) in treatment of nonsmall cell lung cancers (NSCLC). All plans were designed to deliver a total dose of 66 Gy in 33 fractions to PTV for the 32 NSCLC patients with various total (bilateral) lung volumes, planning target volumes (PTVs), and PTV locations. The ratio of the lung volume (total lung volume excluding the PTV volume) to the PTV volume (LTR) was evaluated to represent the impacts in three steps. (a) The least squares method was used to fit mean lung doses (MLDs) to PTVs or LTRs with power-law function in the population cohort (N = 32). (b) The population cohort was divided into three groups by LTRs based on first step and then by PTVs, respectively. The MLDs were compared among the three techniques in each LTR group (LG) and each PTV group (PG). (c) The power-law correlation was tested by using the adaptive radiation therapy (ART) planning data of individual patients in the individual cohort (N = 4). Different curves of power-law function with high R 2 values were observed between averaged LTRs and averaged MLDs for 3DCRT, ssIMRT, and VMAT, respectively. In the individual cohort, high R 2 values of fitting curves were also observed in individual patients in ART, although the trend was highly patient-specific. There was a more obvious correlation between LTR and MLD than that between PTV and MLD. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, David L., E-mail: docdls@mdanderson.or; Department of Experimental Diagnostic Imaging, University of Texas M. D. Anderson Cancer Center, Houston, TX; Hutcheson, Katherine
2010-12-01
Purpose: To investigate long-term swallowing function in oropharyngeal cancer patients treated with intensity-modulated radiotherapy (IMRT), and to identify novel dose-limiting criteria predictive for dysphagia. Methods and Materials: Thirty-one patients with Stage IV oropharyngeal squamous carcinoma enrolled on a Phase II trial were prospectively evaluated by modified barium swallow studies at baseline, and 6, 12, and 24 months post-IMRT treatment. Candidate dysphagia-associated organs at risk were retrospectively contoured into original treatment plans. Twenty-one (68%) cases were base of tongue and 10 (32%) were tonsil. Stage distribution was T1 (12 patients), T2 (10), T3 (4), T4 (2), and TX (3), and N2more » (24), N3 (5), and NX (2). Median age was 52.8 years (range, 42-78 years). Thirteen patients (42%) received concurrent chemotherapy during IMRT. Thirteen (42%) were former smokers. Mean dose to glottic larynx for the cohort was limited to 18 Gy (range, 6-39 Gy) by matching IMRT to conventional low-neck fields. Results: Dose-volume constraints (V30 < 65% and V35 < 35% for anterior oral cavity and V55 < 80% and V65 < 30% for high superior pharyngeal constrictors) predictive for objective swallowing dysfunction were identified by univariate and multivariate analyses. Aspiration and feeding tube dependence were observed in only 1 patient at 24 months. Conclusions: In the context of glottic laryngeal shielding, we describe candidate oral cavity and superior pharyngeal constrictor organs at risk and dose-volume constraints associated with preserved long-term swallowing function; these constraints are currently undergoing prospective validation. Strict protection of the glottic larynx via beam-split IMRT techniques promises to make chronic aspiration an uncommon outcome.« less
de Sousa Fontes, Aderito; Sandrea Jiménez, Minaret; Urdaneta Lafée, Nelson; Abreu Durán, Perfecto A; Quintana Páez, Liwven E; de Sousa de Abreu, Andreina Carmina
To evaluate the clinical presentation, treatment outcome and follow-up of all patients managed with sinonasal papillomas (SP), at a tertiary private otorhinolaryngology centre in Caracas (Venezuela). We reviewed 94 patients with SP that were treated at our otolaryngology center, from July 1st 1993 to June 31st 2015. The demographic data, clinical features, radiological findings, anatomical origin, disease extension into the adjacent structures, surgical approaches performed, histopathology outcomes, recurrent risk, malignant transformation rate and coadjuvant therapies were assessed. Sixty-five patients (69.1%) were male and 29 (30.9%) female with an average age of 44.5 years (range 9-80 years). All patients underwent endoscopic sinus surgery. The most commont histologic subtypes of SP were inverted papilloma (58 patients; 61.7%), fungiform papilloma (35 patients; 37.2%) and oncocytic papilloma (one patient; 1.1%). SP was associated in 2 patients with undifferentiated squamous cell carcinoma. Twelve patients (12.8%) had disease with extension beyond the sinus without associated malignancy. All these patients received adjuvant treatment with advanced techniques of radiotherapy. The mean duration of the follow-up period was 9 years and 2 months. Eighteen patients (19.1%) had recurrent disease during the entire course of follow-up. Complete endoscopic surgical removal of SP is the treatment of choice. In less endoscopically accessible tumours, with peripheral extension or incompletely resected, Intensity Modulated Radiotherapy and Volumetric Modulated Arc Therapy may be indicated. Timely post-operative endoscopic follow-up with biopsy of suspected lesions is important for early detection of recurrences and associated malignancy. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.
Hegazy, Mohamed W; Mahmood, Rana I; Al Otaibi, Mohammed F; Khalil, Ehab M
2016-06-01
To assess feasibility, toxicity and biochemical relapse-free survival (b-RFS) for a group of organ confined (OC) Saudi prostate cancer patients treated by hypo-fractionated Volumetric Modulated Arc Radiation Therapy (VMAT) Simultaneous Integrated Boost (SIB) Elective Nodal Irradiation (ENI) whole pelvic radiotherapy (WPRT). Between March 2009 and January 2014, 29 OC prostate cancer patients; median age 64years, PS 0-1 were treated in King Faisal Specialist Hospital - Riyadh, Kingdom of Saudi Arabia using VMAT-SIB-ENI-WPRT, to a total dose of 70Gy in 28 fractions. Twenty Four patients (83%) were treated with neo-adjuvant; concurrent androgen deprivation therapy (ADT). Median follow-up (FU) was 42months (range: 18-72months). The 3-year actuarial b-RFS for low/intermediate and high risk groups were 100%, and 48%, respectively (p=0.09) with a median FU period of 34months (range: 14-53months). Gleason Score (p=0.02), and pretreatment PSA (p=0.01) were predictive for biochemical failure on univariate analysis; with no observed prostate cancer-related deaths. Grade 2 acute/late GI and GU toxicities were 28%/0% and 17%/10% respectively with no reported grade 3/4 toxicities. Four (50%) out of the 8 patients with baseline partial potency, retained sexual function on long term follow-up. Hypo-fractionation dose escalation VMAT-SIB-ENI-WPRT using 2 arcs is a feasible technique for intermediate/high risk OC prostate cancer patients, with acceptable rates of acute/late toxicities, much favorable planning target volume (PTV) coverage, and shorter overall treatment time. Prospective randomized controlled trials are encouraged to confirm its equivalence to other fractionation schemes. Copyright © 2016 National Cancer Institute, Cairo University. Production and hosting by Elsevier B.V. All rights reserved.
Kamaleldin, Maha; Elsherbini, Nader A; Elshemey, Wael M
2017-09-27
The aim of this study is to evaluate the impact of anisotropic analytical algorithm (AAA) and 2 reporting systems (AXB-D m and AXB-D w ) of Acuros XB algorithm (AXB) on clinical plans of nasopharyngeal patients using intensity-modulated radiotherapy (IMRT) and RapidArc (RA) techniques. Six plans of different algorithm-technique combinations are performed for 10 patients to calculate dose-volume histogram (DVH) physical parameters for planning target volumes (PTVs) and organs at risk (OARs). The number of monitor units (MUs) and calculation time are also determined. Good coverage is reported for all algorithm-technique combination plans without exceeding the tolerance for OARs. Regardless of the algorithm, RA plans persistently reported higher D 2% values for PTV-70. All IMRT plans reported higher number of MUs (especially with AXB) than did RA plans. AAA-IMRT produced the minimum calculation time of all plans. Major differences between the investigated algorithm-technique combinations are reported only for the number of MUs and calculation time parameters. In terms of these 2 parameters, it is recommended to employ AXB in calculating RA plans and AAA in calculating IMRT plans to achieve minimum calculation times at reduced number of MUs. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Jereczek-Fossa, Barbara Alicja; Colangione, Sarah Pia; Fodor, Cristiana; Russo, Stefania; Cambria, Raffaella; Zerini, Dario; Bonora, Maria; Cecconi, Agnese; Vischioni, Barbara; Vavassori, Andrea; Matei, Deliu Victor; Bottero, Danilo; Brescia, Antonio; Musi, Gennaro; Mazzoleni, Federica; Orsi, Franco; Bonomo, Guido; De Cobelli, Ottavio; Orecchia, Roberto
2015-08-01
The purpose of the study was to evaluate the feasibility of irradiation after prostatectomy in the presence of asymptomatic pelvic lymphocele. The inclusion criteria for this study were: (1) patients referred for postoperative (adjuvant or salvage) intensity modulated radiotherapy (IMRT; 66-69 Gy in 30 fractions); (2) detection of postoperative pelvic lymphocele at the simulation computed tomography [CT] scan; (3) no clinical symptoms; and (4) written informed consent. Radiotherapy toxicity and occurrence of symptoms or complications of lymphocele were analyzed. Dosimetric data (IMRT plans) and the modification of lymphocele volume during radiotherapy (cone beam CT [CBCT] scan) were evaluated. Between January 2011 and July 2013, in 30 of 308 patients (10%) treated with radiotherapy after prostatectomy, pelvic lymphocele was detected on the simulation CT. The median lymphocele volume was 47 cm(3) (range, 6-467.3 cm(3)). Lymphocele was not included in planning target volume (PTV) in 8 cases (27%). Maximum dose to lymphocele was 57 Gy (range, 5.7-73.3 Gy). Radiotherapy was well tolerated. In all but 2 patients, lymphoceles remained asymptomatic. Lymphocele drainage-because of symptom occurrence-had to be performed in 2 patients during IMRT and in one patient, 7 weeks after IMRT. CBCT at the end of IMRT showed reduction in lymphocele volume and position compared with the initial data (median reduction of 37%), more pronounced in lymphoceles included in PTV. Radiotherapy after prostatectomy in the presence of pelvic asymptomatic lymphocele is feasible with acceptable acute and late toxicity. The volume of lymphoceles decreased during radiotherapy and this phenomenon might require intermediate radiotherapy plan evaluation. Copyright © 2015 Elsevier Inc. All rights reserved.
Anal Cancer: An Examination of Radiotherapy Strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glynne-Jones, Rob; Lim, Faye
2011-04-01
The Radiation Therapy Oncology Group 9811, ACCORD-03, and ACT II Phase III trials in anal cancer showed no benefit for cisplatin-based induction and maintenance chemotherapy, or radiation dose-escalation >59 Gy. This review examines the efficacy and toxicity of chemoradiation (CRT) in anal cancer, and discusses potential alternative radiotherapy strategies. The evidence for the review was compiled from randomized and nonrandomized trials of radiation therapy and CRT. A total of 103 retrospective/observational studies, 4 Phase I/II studies, 16 Phase II prospective studies, 2 randomized Phase II studies, and 6 Phase III trials of radiotherapy or chemoradiation were identified. There are nomore » meta-analyses based on individual patient data. A 'one-size-fits-all' approach for all stages of anal cancer is inappropriate. Early T1 tumors are probably currently overtreated, whereas T3/T4 lesions might merit escalation of treatment. Intensity-modulated radiotherapy or the integration of biological therapy may play a role in future.« less
NASA Astrophysics Data System (ADS)
Dréan, G.; Acosta, O.; Ospina, J. D.; Voisin, C.; Rigaud, B.; Simon, A.; Haigron, P.; de Crevoisier, R.
2013-11-01
Nowadays, the de nition of patient-speci c constraints in prostate cancer radiotherapy planning are solely based on dose-volume histogram (DVH) parameters. Nevertheless those DVH models lack of spatial accuracy since they do not use the complete 3D information of the dose distribution. The goal of the study was to propose an automatic work ow to de ne patient-speci c rectal sub-regions (RSR) involved in rectal bleeding (RB) in case of prostate cancer radiotherapy. A multi-atlas database spanning the large rectal shape variability was built from a population of 116 individuals. Non-rigid registration followed by voxel-wise statistical analysis on those templates allowed nding RSR likely correlated with RB (from a learning cohort of 63 patients). To de ne patient-speci c RSR, weighted atlas-based segmentation with a vote was then applied to 30 test patients. Results show the potentiality of the method to be used for patient-speci c planning of intensity modulated radiotherapy (IMRT).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sponseller, Patricia, E-mail: sponselp@uw.edu; Department of Radiation Oncology, University of Washington Medical Center, Seattle, WA; Paravathaneni, Upendra
2013-07-01
The purpose of this report is to communicate a technique to match an electron field to the dose distribution of an Intensity-Modulated Radiation Therapy (IMRT) plan. A patient with multiple areas of squamous cell carcinoma over the scalp was treated using 60 Gy in 2.0-Gy fractions to the entire scalp and first echelon nodes with multiple 6-MV photon fields. To deliver an adequate dose to the scalp, a custom 1.0-cm bolus helmet was fashioned using a solid piece of aquaplast. Along with the IMRT scalp treatment, a left zygoma area was treated with electrons matching the anterior border of themore » IMRT dose distribution. The border was matched by creating a left lateral field with the multileaf collimator shaped to the IMRT dose distribution. The result indicated an adequate dose to the skin match between the IMRT plan and the electron field. Results were confirmed using optically stimulated luminescence placed at the skin match area, so that the dose matched the prescription within 10%.« less
Boyle, John; Craciunescu, Oana; Steffey, Beverly; Cai, Jing; Chino, Junzo
2014-11-01
To evaluate the safety of dose escalated radiotherapy using a simultaneous integrated boost technique in patients with locally advanced gynecological malignancies. Thirty-nine women with locally advanced gynecological malignancies were treated with intensity modulated radiation therapy utilizing a simultaneous integrated boost (SIB) technique for gross disease in the para-aortic and/or pelvic nodal basins, sidewall extension, or residual primary disease. Women were treated to 45Gy in 1.8Gy fractions to elective nodal regions. Gross disease was simultaneously treated to 55Gy in 2.2Gy fractions (n=44 sites). An additional sequential boost of 10Gy in 2Gy fractions was delivered if deemed appropriate (n=29 sites). Acute and late toxicity, local control in the treated volumes (LC), overall survival (OS), and distant metastases (DM) were assessed. All were treated with a SIB to a dose of 55Gy. Twenty-four patients were subsequently treated with a sequential boost to a median dose of 65Gy. Median follow-up was 18months. Rates of acute>grade 2 gastrointestinal (GI), genitourinary (GU), and hematologic (heme) toxicities were 2.5%, 0%, and 30%, respectively. There were no grade 4 acute toxicities. At one year, grade 1-2 late GI toxicities were 24.5%. There were no grade 3 or 4 late GI toxicities. Rates of grade 1-2 late GU toxicities were 12.7%. There were no grade 3 or 4 late GU toxicities. Dose escalated radiotherapy using a SIB results in acceptable rates of acute toxicity. Copyright © 2014 Elsevier Inc. All rights reserved.
Palta, Jatinder R; Liu, Chihray; Li, Jonathan G
2008-01-01
The traditional prescriptive quality assurance (QA) programs that attempt to ensure the safety and reliability of traditional external beam radiation therapy are limited in their applicability to such advanced radiation therapy techniques as three-dimensional conformal radiation therapy, intensity-modulated radiation therapy, inverse treatment planning, stereotactic radiosurgery/radiotherapy, and image-guided radiation therapy. The conventional QA paradigm, illustrated by the American Association of Physicists in Medicine Radiation Therapy Committee Task Group 40 (TG-40) report, consists of developing a consensus menu of tests and device performance specifications from a generic process model that is assumed to apply to all clinical applications of the device. The complexity, variation in practice patterns, and level of automation of high-technology radiotherapy renders this "one-size-fits-all" prescriptive QA paradigm ineffective or cost prohibitive if the high-probability error pathways of all possible clinical applications of the device are to be covered. The current approaches to developing comprehensive prescriptive QA protocols can be prohibitively time consuming and cost ineffective and may sometimes fail to adequately safeguard patients. It therefore is important to evaluate more formal error mitigation and process analysis methods of industrial engineering to more optimally focus available QA resources on process components that have a significant likelihood of compromising patient safety or treatment outcomes.
NASA Astrophysics Data System (ADS)
Talamonti, C.; Bucciolini, M.; Marrazzo, L.; Menichelli, D.; Bruzzi, M.; Cirrone, G. A. P.; Cuttone, G.; LoJacono, P.
2008-10-01
Due to the features of the modern radiotherapy techniques, namely intensity modulated radiation therapy and proton therapy, where high spatial dose gradients are often present, detectors to be employed for 2D dose verifications have to satisfy very narrow requirements. In particular they have to show high spatial resolution. In the framework of the European Integrated Project—Methods and Advanced Equipment for Simulation and Treatment in Radio-Oncology (MAESTRO, no. LSHC-CT-2004-503564), a dosimetric detector adequate for 2D pre-treatment dose verifications was developed. It is a modular detector, based on a monolithic silicon-segmented sensor, with an n-type implantation on an epitaxial p-type layer. Each pixel element is 2×2 mm 2 and the distance center-to-center is 3 mm. The sensor is composed of 21×21 pixels. In this paper, we report the dosimetric characterization of the system with a proton beam. The sensor was irradiated with 62 MeV protons for clinical treatments at INFN-Laboratori Nazionali del Sud (LNS) Catania. The studied parameters were repeatability of a same pixel, response linearity versus absorbed dose, and dose rate and dependence on field size. The obtained results are promising since the performances are within the project specifications.
Spatiotemporal radiotherapy planning using a global optimization approach
NASA Astrophysics Data System (ADS)
Adibi, Ali; Salari, Ehsan
2018-02-01
This paper aims at quantifying the extent of potential therapeutic gain, measured using biologically effective dose (BED), that can be achieved by altering the radiation dose distribution over treatment sessions in fractionated radiotherapy. To that end, a spatiotemporally integrated planning approach is developed, where the spatial and temporal dose modulations are optimized simultaneously. The concept of equivalent uniform BED (EUBED) is used to quantify and compare the clinical quality of spatiotemporally heterogeneous dose distributions in target and critical structures. This gives rise to a large-scale non-convex treatment-plan optimization problem, which is solved using global optimization techniques. The proposed spatiotemporal planning approach is tested on two stylized cancer cases resembling two different tumor sites and sensitivity analysis is performed for radio-biological and EUBED parameters. Numerical results validate that spatiotemporal plans are capable of delivering a larger BED to the target volume without increasing the BED in critical structures compared to conventional time-invariant plans. In particular, this additional gain is attributed to the irradiation of different regions of the target volume at different treatment sessions. Additionally, the trade-off between the potential therapeutic gain and the number of distinct dose distributions is quantified, which suggests a diminishing marginal gain as the number of dose distributions increases.
MR-guided breast radiotherapy: feasibility and magnetic-field impact on skin dose
NASA Astrophysics Data System (ADS)
van Heijst, Tristan C. F.; den Hartogh, Mariska D.; Lagendijk, Jan J. W.; Desirée van den Bongard, H. J. G.; van Asselen, Bram
2013-09-01
The UMC Utrecht MRI/linac (MRL) design provides image guidance with high soft-tissue contrast, directly during radiotherapy (RT). Breast cancer patients are a potential group to benefit from better guidance in the MRL. However, due to the electron return effect, the skin dose can be increased in presence of a magnetic field. Since large skin areas are generally involved in breast RT, the purpose of this study is to investigate the effects on the skin dose, for whole-breast irradiation (WBI) and accelerated partial-breast irradiation (APBI). In ten patients with early-stage breast cancer, targets and organs at risk (OARs) were delineated on postoperative CT scans co-registered with MRI. The OARs included the skin, comprising the first 5 mm of ipsilateral-breast tissue, plus extensions. Three intensity-modulated RT techniques were considered (2× WBI, 1× APBI). Individual beam geometries were used for all patients. Specially developed MRL treatment-planning software was used. Acceptable plans were generated for 0 T, 0.35 T and 1.5 T, using a class solution. The skin dose was augmented in WBI in the presence of a magnetic field, which is a potential drawback, whereas in APBI the induced effects were negligible. This opens possibilities for developing MR-guided partial-breast treatments in the MRL.
BOOK REVIEW: Image-Guided IMRT
NASA Astrophysics Data System (ADS)
Mayles, P.
2006-12-01
This book provides comprehensive coverage of the subject of intensity modulated radiotherapy and the associated imaging. Most of the names associated with advanced radiotherapy can be found among the 80 authors and the book is therefore an authoritative reference text. The early chapters deal with the basic principles and include an interesting comparison between views of quality assurance for IMRT from Europe and North America. It is refreshing to see that the advice given has moved on from the concept of individual patient based quality control to more generic testing of the delivery system. However, the point is made that the whole process including the data transfer needs to be quality assured and the need for thorough commissioning of the process is emphasised. The `tricks' needed to achieve a dose based IMRT plan are well covered by the group at Ghent and there is an interesting summary of biological aspects of treatment planning for IMRT by Andrzej Niemierko. The middle section of the book deals with advanced imaging aspects of both treatment planning and delivery. The contributions of PET and MR imaging are well covered and there is a rather rambling section on molecular imaging. Image guidance in radiotherapy treatment is addressed including the concept of adaptive radiotherapy. The treatment aspects could perhaps have merited some more coverage, but there is a very thorough discussion of 4D techniques. The final section of the book considers each site of the body in turn. This will be found useful by those wishing to embark on IMRT in a new area, although some of the sections are more comprehensive than others. The book contains a wealth of interesting and thought provoking articles giving details as well as broad principles, and would be a useful addition to every departmental library. The editors have done a good job of ensuring that the different chapters are complementary, and of encouraging a systematic approach to the descriptions of IMRT in different anatomical sites, each of which ends with a look ahead to the future. It is something of a challenge to keep a book devoted to a rapidly developing technique up to date. Inspection of the references suggests that most of the text was completed in 2004, but the choice of world renowned authors means that the text very much represents the state of the art. The book is well presented with many colour images and justifies its £110 price tag. However, there are some signs of it having been produced within a short time scale, such as an inadequate index which cannot be relied on to lead the reader to all, or even the most relevant, discussion on a particular topic. This book should make a significant contribution to widening the use of this important advance in radiation therapy techniques.
Medical physics practice in the next decade
Paliwal, Bhudatt
2006-01-01
Impressive advances in computers and materials science have fueled a broad-based confluence of basic science breakthroughs. These advances are making us reformulate our learning, teaching and credentialing methodologies and research and development frontiers. We are now in the age of molecular medicine. In the entire field of health care, a paradigm shift from population-based solutions to individual specific care is taking place. These trends are reshaping the practice of medical physics. In this short presentation, examples are given to illustrate developments in image-guided intensity-modulated and adaptive helical tomotherapy, enhanced application of intensity modulation radiotherapy (IMRT) using adaptive radiotherapy and conformal avoidance. These advances include improved normal tissue sparing and permit dose reconstruction and verification, thereby allowing significant biologically effective dose escalation and reduced radiation toxicity. The intrinsic capability of helical TomoTherapy for megavoltage CT imaging for IMRT image-guidance is also discussed. Finally developments in motion management are described. PMID:22275799
Dynamic 3D measurement of modulated radiotherapy: a scintillator-based approach
NASA Astrophysics Data System (ADS)
Archambault, Louis; Rilling, Madison; Roy-Pomerleau, Xavier; Thibault, Simon
2017-05-01
With the rise of high-conformity dynamic radiotherapy, such as volumetric modulated arc therapy and robotic radiosurgery, the temporal dimension of dose measurement is becoming increasingly important. It must be possible to tell both ‘where’ and ‘when’ a discrepancy occurs between the plan and its delivery. A 3D scintillation-based dosimetry system could be ideal for such a thorough, end-to-end verification; however, the challenge lies in retrieving the volumetric information of the light-emitting volume. This paper discusses the motivation, from an optics point of view, of using the images acquired with a plenoptic camera, or light field imager, of an irradiated plastic scintillator volume to reconstruct the delivered 3D dose distribution. Current work focuses on the optimization of the optical design as well as the data processing that is involved in the ongoing development of a clinically viable, second generation dosimetry system.
Use of stereotactic intensity-modulated radiotherapy in thyroid-related ophthalmopathy. Case report.
Espinoza, Salvador; Saboori, Mehran; Forman, Scott; Moorthy, Chitti R; Benzil, Deborah L
2004-11-01
Thyroid-related ophthalmopathy (TRO), a debilitating condition involving a range of visual and orbital symptoms, occurs in up to 40% of patients with Graves disease. The goals of treatment include correcting thyroid dysfunction, relieving ocular pain, preserving vision, and improving cosmetic appearance. Options for therapy include symptomatic treatment, glucocorticoid medication, radiation therapy, and surgery. Traditional radiation treatment uses small opposed bilateral fields consisting of retrobulbar volumes and customized blocks to shield periorbital structures. The combination of intensity-modulated radiotherapy (IMRT) and stereotactic technology facilitates the administration of radiation to patients suffering from TRO and provides greater safety and efficacy than traditional treatment. The authors present the case of a patient with severe TRO whose symptoms resolved rapidly after treatment with stereotactic IMRT. The outcome in this case supports stereotactic IMRT as an effective treatment option for patients with TRO who also undergo radiation therapy.
Pancreatic cancer planning: Complex conformal vs modulated therapies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, Katherine L.; Witek, Matthew E.; Chen, Hongyu
To compare the roles of intensity-modulated radiation therapy (IMRT) and volumetric- modulated arc therapy (VMAT) therapy as compared to simple and complex 3-dimensional chemoradiotherpy (3DCRT) planning for resectable and borderline resectable pancreatic cancer. In all, 12 patients who received postoperative radiotherapy (8) or neoadjuvant concurrent chemoradiotherapy (4) were evaluated retrospectively. Radiotherapy planning was performed for 4 treatment techniques: simple 4-field box, complex 5-field 3DCRT, 5 to 6-field IMRT, and single-arc VMAT. All volumes were approved by a single observer in accordance with Radiation Therapy Oncology Group (RTOG) Pancreas Contouring Atlas. Plans included tumor/tumor bed and regional lymph nodes to 45more » Gy; with tumor/tumor bed boosted to 50.4 Gy, at least 95% of planning target volume (PTV) received the prescription dose. Dose-volume histograms (DVH) for multiple end points, treatment planning, and delivery time were assessed. Complex 3DCRT, IMRT, and VMAT plans significantly (p < 0.05) decreased mean kidney dose, mean liver dose, liver (V{sub 30}, V{sub 35}), stomach (D{sub 10}%), stomach (V{sub 45}), mean right kidney dose, and right kidney (V{sub 15}) as compared with the simple 4-field plans that are most commonly reported in the literature. IMRT plans resulted in decreased mean liver dose, liver (V{sub 35}), and left kidney (V{sub 15}, V{sub 18}, V{sub 20}). VMAT plans decreased small bowel (D{sub 10}%, D{sub 15}%), small bowel (V{sub 35}, V{sub 45}), stomach (D{sub 10}%, D{sub 15}%), stomach (V{sub 35}, V{sub 45}), mean liver dose, liver (V{sub 35}), left kidney (V{sub 15}, V{sub 18}, V{sub 20}), and right kidney (V{sub 18}, V{sub 20}). VMAT plans significantly decreased small bowel (D{sub 10}%, D{sub 15}%), left kidney (V{sub 20}), and stomach (V{sub 45}) as compared with IMRT plans. Treatment planning and delivery times were most efficient for simple 4-field box and VMAT. Excluding patient setup and imaging, average treatment delivery was within 10 minutes for simple and complex 3DCRT, IMRT, and VMAT treatments. This article shows significant improvements in 3D plan performance with complex planning over the more frequently compared 3- or 4-field simple 3D planning techniques. VMAT plans continue to demonstrate potential for the most organ sparing. However, further studies are required to identify if dosimetric benefits associated with inverse optimized planning can be translated into clinical benefits and if these treatment techniques are value-added therapies for this group of patients with cancer.« less
Big Data Analytics for Prostate Radiotherapy.
Coates, James; Souhami, Luis; El Naqa, Issam
2016-01-01
Radiation therapy is a first-line treatment option for localized prostate cancer and radiation-induced normal tissue damage are often the main limiting factor for modern radiotherapy regimens. Conversely, under-dosing of target volumes in an attempt to spare adjacent healthy tissues limits the likelihood of achieving local, long-term control. Thus, the ability to generate personalized data-driven risk profiles for radiotherapy outcomes would provide valuable prognostic information to help guide both clinicians and patients alike. Big data applied to radiation oncology promises to deliver better understanding of outcomes by harvesting and integrating heterogeneous data types, including patient-specific clinical parameters, treatment-related dose-volume metrics, and biological risk factors. When taken together, such variables make up the basis for a multi-dimensional space (the "RadoncSpace") in which the presented modeling techniques search in order to identify significant predictors. Herein, we review outcome modeling and big data-mining techniques for both tumor control and radiotherapy-induced normal tissue effects. We apply many of the presented modeling approaches onto a cohort of hypofractionated prostate cancer patients taking into account different data types and a large heterogeneous mix of physical and biological parameters. Cross-validation techniques are also reviewed for the refinement of the proposed framework architecture and checking individual model performance. We conclude by considering advanced modeling techniques that borrow concepts from big data analytics, such as machine learning and artificial intelligence, before discussing the potential future impact of systems radiobiology approaches.
Big Data Analytics for Prostate Radiotherapy
Coates, James; Souhami, Luis; El Naqa, Issam
2016-01-01
Radiation therapy is a first-line treatment option for localized prostate cancer and radiation-induced normal tissue damage are often the main limiting factor for modern radiotherapy regimens. Conversely, under-dosing of target volumes in an attempt to spare adjacent healthy tissues limits the likelihood of achieving local, long-term control. Thus, the ability to generate personalized data-driven risk profiles for radiotherapy outcomes would provide valuable prognostic information to help guide both clinicians and patients alike. Big data applied to radiation oncology promises to deliver better understanding of outcomes by harvesting and integrating heterogeneous data types, including patient-specific clinical parameters, treatment-related dose–volume metrics, and biological risk factors. When taken together, such variables make up the basis for a multi-dimensional space (the “RadoncSpace”) in which the presented modeling techniques search in order to identify significant predictors. Herein, we review outcome modeling and big data-mining techniques for both tumor control and radiotherapy-induced normal tissue effects. We apply many of the presented modeling approaches onto a cohort of hypofractionated prostate cancer patients taking into account different data types and a large heterogeneous mix of physical and biological parameters. Cross-validation techniques are also reviewed for the refinement of the proposed framework architecture and checking individual model performance. We conclude by considering advanced modeling techniques that borrow concepts from big data analytics, such as machine learning and artificial intelligence, before discussing the potential future impact of systems radiobiology approaches. PMID:27379211
Lin, Zhixiong; Wang, Xiaoyan; Xie, Wenjia; Yang, Zhining; Che, Kaijun; Wu, Vincent W C
2013-12-01
Radiation-induced thyroid dysfunction after radiotherapy for nasopharyngeal cancer (NPC) has been reported. This study investigated the radiation effects of the thyroid and pituitary glands on thyroid function after radiotherapy for NPC. Sixty-five NPC patients treated with radiotherapy were recruited. Baseline thyroid hormone levels comprising free triiodothyronine (fT3), free thyroxine (fT4) and thyroid-stimulating hormone (TSH) were taken before treatment and at 3, 6, 12 and 18 months. A seven-beam intensity-modulated radiotherapy plan was generated for each patient. Thyroid and pituitary gland dose volume histograms were generated, dividing the patients into four groups: high (>50 Gy) thyroid and pituitary doses (HTHP group); high thyroid and low pituitary doses (HTLP group); low thyroid and high pituitary doses; and low thyroid and pituitary doses. Incidence of hypothyroidism was analysed. Twenty-two (34%) and 17 patients (26%) received high mean thyroid and pituitary doses, respectively. At 18 months, 23.1% of patients manifested various types of hypothyroidism. The HTHP group showed the highest incidence (83.3%) of hypothyroidism, followed by the HTLP group (50%). NPC patients with high thyroid and pituitary gland doses carried the highest risk of abnormal thyroid physiology. The dose to the thyroid was more influential than the pituitary dose at 18 months after radiotherapy, and therefore more attention should be given to the thyroid gland in radiotherapy planning. © 2013 The Royal Australian and New Zealand College of Radiologists.
Wang, J B; Jiang, W; Ji, Z; Cao, J Z; Liu, L P; Men, Y; Xu, C; Wang, X Z; Hui, Z G; Liang, J; Lyu, J M; Zhou, Z M; Xiao, Z F; Feng, Q F; Chen, D F; Zhang, H X; Yin, W B; Wang, L H
2016-08-01
This study aimed to evaluate the impact of technical advancement of radiation therapy in patients with LA-NSCLC receiving definitive radiotherapy (RT). Patients treated with definitive RT (≥50 Gy) between 2000 and 2010 were retrospectively reviewed. Overall survival (OS), cancer specific survival (CSS), locoregional progression-free survival (LRPFS), distant metastasis-free survival (DMFS) and progression-free survival (PFS) were calculated and compared among patients irradiated with different techniques. Radiation-induced lung injury (RILI) and esophageal injury (RIEI) were assessed according to the National Cancer Institute Common Terminology Criteria for Adverse Events 3.0 (NCI-CTCAE 3.0). A total of 946 patients were eligible for analysis, including 288 treated with two-dimensional radiotherapy (2D-RT), 209 with three-dimensional conformal radiation therapy (3D-CRT) and 449 with intensity-modulated radiation therapy (IMRT) respectively. The median follow-up time for the whole population was 84.1 months. The median OS of 2D-RT, 3D-CRT and IMRT groups were 15.8, 19.7 and 23.3 months, respectively, with the corresponding 5-year survival rate of 8.7%, 13.0% and 18.8%, respectively (P<0.001). The univariate analysis demonstrated significantly inferior OS, LRPFS, DMFS and PFS of 2D-RT than those provided by 3D-CRT or IMRT. The univariate analysis also revealed that the IMRT group had significantly loger LRPFS and a trend toward better OS and DMFS compared with 3D-CRT. Multivariate analysis showed that TNM stage, RT technique and KPS were independent factors correlated with all survival indexes. Compared with 2D-RT, the utilization of IMRT was associated with significantly improved OS, LRPFS, DMFS as well as PFS. Compared with 3D-CRT, IMRT provided superior DMFS (P=0.035), a trend approaching significance with regard to LRPFS (P=0.073) but no statistically significant improvement on OS, CSS and PFS in multivariate analysis. The incidence rates of RILI were significantly decreased in the IMRT group (29.3% vs. 26.6% vs.14.0%, P<0.001) whereas that of RIET rates were similar (34.7% vs. 29.7% vs. 35.3%, P=0.342) among the three groups. Radiation therapy technique is a factor affecting prognosis of LA-NSCLC patients. Advanced radiation therapy technique is associated with improved tumor control and survival, and decreased radiation-induced lung toxicity.
NASA Astrophysics Data System (ADS)
Sengbusch, Evan R.
Physical properties of proton interactions in matter give them a theoretical advantage over photons in radiation therapy for cancer treatment, but they are seldom used relative to photons. The primary barriers to wider acceptance of proton therapy are the technical feasibility, size, and price of proton therapy systems. Several aspects of the proton therapy landscape are investigated, and new techniques for treatment planning, optimization, and beam delivery are presented. The results of these investigations suggest a means by which proton therapy can be delivered more efficiently, effectively, and to a much larger proportion of eligible patients. An analysis of the existing proton therapy market was performed. Personal interviews with over 30 radiation oncology leaders were conducted with regard to the current and future use of proton therapy. In addition, global proton therapy market projections are presented. The results of these investigations serve as motivation and guidance for the subsequent development of treatment system designs and treatment planning, optimization, and beam delivery methods. A major factor impacting the size and cost of proton treatment systems is the maximum energy of the accelerator. Historically, 250 MeV has been the accepted value, but there is minimal quantitative evidence in the literature that supports this standard. A retrospective study of 100 patients is presented that quantifies the maximum proton kinetic energy requirements for cancer treatment, and the impact of those results with regard to treatment system size, cost, and neutron production is discussed. This study is subsequently expanded to include 100 cranial stereotactic radiosurgery (SRS) patients, and the results are discussed in the context of a proposed dedicated proton SRS treatment system. Finally, novel proton therapy optimization and delivery techniques are presented. Algorithms are developed that optimize treatment plans over beam angle, spot size, spot spacing, beamlet weight, the number of delivered beamlets, and the number of delivery angles. These methods are evaluated via treatment planning studies including left-sided whole breast irradiation, lung stereotactic body radiotherapy, nasopharyngeal carcinoma, and whole brain radiotherapy with hippocampal avoidance. Improvements in efficiency and efficacy relative to traditional proton therapy and intensity modulated photon radiation therapy are discussed.
Chi, F; Wu, S; Zhou, J; Li, F; Sun, J; Lin, Q; Lin, H; Guan, X; He, Z
2015-05-01
This study determined the dosimetric comparison of moderate deep inspiration breath-hold using active breathing control and free-breathing intensity-modulated radiotherapy (IMRT) after breast-conserving surgery for left-sided breast cancer. Thirty-one patients were enrolled. One free breathe and two moderate deep inspiration breath-hold images were obtained. A field-in-field-IMRT free-breathing plan and two field-in-field-IMRT moderate deep inspiration breath-holding plans were compared in the dosimetry to target volume coverage of the glandular breast tissue and organs at risks for each patient. The breath-holding time under moderate deep inspiration extended significantly after breathing training (P<0.05). There was no significant difference between the free-breathing and moderate deep inspiration breath-holding in the target volume coverage. The volume of the ipsilateral lung in the free-breathing technique were significantly smaller than the moderate deep inspiration breath-holding techniques (P<0.05); however, there was no significant difference between the two moderate deep inspiration breath-holding plans. There were no significant differences in target volume coverage between the three plans for the field-in-field-IMRT (all P>0.05). The dose to ipsilateral lung, coronary artery and heart in the field-in-field-IMRT were significantly lower for the free-breathing plan than for the two moderate deep inspiration breath-holding plans (all P<0.05); however, there was no significant difference between the two moderate deep inspiration breath-holding plans. The whole-breast field-in-field-IMRT under moderate deep inspiration breath-hold with active breathing control after breast-conserving surgery in left-sided breast cancer can reduce the irradiation volume and dose to organs at risks. There are no significant differences between various moderate deep inspiration breath-holding states in the dosimetry of irradiation to the field-in-field-IMRT target volume coverage and organs at risks. Copyright © 2015 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
SU-F-T-447: The Impact of Treatment Planning Methods On RapidPlan Modeling for Rectum Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, S; Peng, J; Li, K
2016-06-15
Purpose: To investigate the dose volume histogram (DVH) prediction varieties based on intensity modulate radiotherapy (IMRT) plan or volume arc modulate radiotherapy (VMAT) plan models on the RapidPlan. Methods: Two DVH prediction models were generated in this study, including an IMRT model trained from 83 IMRT rectum plans and a VMAT model trained from 60 VMAT rectum plans. In the internal validation, 20 plans from each training database were selected to verify the clinical feasibility of the model. Then, 10 IMRT plans (PIMRT-by-IMRT-model) generated from IMRT model and 10 IMRT plans generated from VMAT model (PIMRT-by-VMAT-model) were compared on themore » dose to organs at risk (OAR), which included bladder, left and right femoral heads. The similar comparison was also performed on the VMAT plans generated from IMRT model (PVMAT-by-IMRT-model) and VMAT plans generated from VMAT (PVMAT-by-VMAT-model) model. Results: For the internal validation, all plans from IMRT or VMAT model shows significantly improvement on OAR sparing compared with the corresponded clinical ones. Compared to the PIMRT-by-VMAT-model, the PIMRT-by-IMRT-model has a reduction of 6.90±3.87%(p<0.001) on V40 6.63±3.62%(p<0.001) on V45 and 4.74±2.26%(p<0.001) on V50 in bladder; and a mean dose reduction of 2.12±1.75Gy(p=0.004) and 2.84±1.53Gy(p<0.001) in right and left femoral head, respectively. There was no significant difference on OAR sparing between PVMAT-by-IMRT-model and PVMAT-by-VMAT-model. Conclusion: The IMRT model for the rectal cancer in the RapidPlan can be applied to for VMAT planning. However, the VMAT model is not suggested to use in the IMRT planning. Cautions should be taken that the planning model based on some technique may not feasible to other planning techniques.« less
Fuangrod, Todsaporn; Greer, Peter B; Simpson, John; Zwan, Benjamin J; Middleton, Richard H
2017-03-13
Purpose Due to increasing complexity, modern radiotherapy techniques require comprehensive quality assurance (QA) programmes, that to date generally focus on the pre-treatment stage. The purpose of this paper is to provide a method for an individual patient treatment QA evaluation and identification of a "quality gap" for continuous quality improvement. Design/methodology/approach A statistical process control (SPC) was applied to evaluate treatment delivery using in vivo electronic portal imaging device (EPID) dosimetry. A moving range control chart was constructed to monitor the individual patient treatment performance based on a control limit generated from initial data of 90 intensity-modulated radiotherapy (IMRT) and ten volumetric-modulated arc therapy (VMAT) patient deliveries. A process capability index was used to evaluate the continuing treatment quality based on three quality classes: treatment type-specific, treatment linac-specific, and body site-specific. Findings The determined control limits were 62.5 and 70.0 per cent of the χ pass-rate for IMRT and VMAT deliveries, respectively. In total, 14 patients were selected for a pilot study the results of which showed that about 1 per cent of all treatments contained errors relating to unexpected anatomical changes between treatment fractions. Both rectum and pelvis cancer treatments demonstrated process capability indices were less than 1, indicating the potential for quality improvement and hence may benefit from further assessment. Research limitations/implications The study relied on the application of in vivo EPID dosimetry for patients treated at the specific centre. Sampling patients for generating the control limits were limited to 100 patients. Whilst the quantitative results are specific to the clinical techniques and equipment used, the described method is generally applicable to IMRT and VMAT treatment QA. Whilst more work is required to determine the level of clinical significance, the authors have demonstrated the capability of the method for both treatment specific QA and continuing quality improvement. Practical implications The proposed method is a valuable tool for assessing the accuracy of treatment delivery whilst also improving treatment quality and patient safety. Originality/value Assessing in vivo EPID dosimetry with SPC can be used to improve the quality of radiation treatment for cancer patients.
Feasibility of intensity-modulated radiotherapy for esophageal cancer in definite chemoradiotherapy.
Hsieh, He-Yuan; Yeh, Hui-Ling; Hsu, Chung-Ping; Lin, Jin-Ching; Chuang, Cheng-Yen; Lin, Jai-Fu; Chang, Chen-Fa
2016-07-01
Esophageal cancer is a highly lethal malignancy, and its treatment has undergone a major evolution over the past 15 years. The objective of this study was to report our experience on the efficacy of definite chemoradiotherapy with the intensity-modulated radiotherapy (IMRT) technique in treating locally advanced esophageal cancer. From September 2004 to November 2011, 39 patients with biopsy-proven esophageal cancer, clinical stage T1-4N0-3M0 according to the American Joint Committee on Cancer 7(th) edition were enrolled. In these enrolled cases, either the tumor was unresectable or the patients refused surgery. All patients received a total radiation dose of 40-56 Gy in 20-28 fractions using IMRT planning. Five to seven radiation beam angles were designed according to the specific shape of the clinical target volume (CTV) and were delivered by a linear accelerator with photons of 6-10 MV energy. The gross tumor volume, CTV, planning target volume, and the organs at risk were outlined, and the homogeneity index (HI) and the conformity index (CI) were calculated. The treatment-related toxicities were also reviewed. The mean follow-up time was 22.4 months (range, 2.0-91.0 months). The 2- and 3-year overall survival rates were 30% and 28%, respectively. The most common Grade 3/4 toxicity was hematologic toxicity (43.6%). The IMRT plans showed high-dose homogeneity to the target, with a calculated HI of 0.9. The calculated CI of 0.8 also showed high conformity treatment dose to target within an acceptable dose range. For the total lungs, the average mean dose was 1313.7 cGy. The V5 and V20 of the total lungs were 67.8% and 23.4%, respectively. For the heart, the average mean dose was 2319.2 cGy. The V30 and V35 of the heart were 30.2% and 21.5%, respectively. Concurrent chemoradiotherapy using the IMRT technique for treating locally advanced unresectable esophageal cancer is feasible, with better conformity of target volume as well as improved sparing of organs at risk. Copyright © 2016. Published by Elsevier Taiwan LLC.
Volumetric modulated arc radiotherapy for esophageal cancer.
Vivekanandan, Nagarajan; Sriram, Padmanaban; Kumar, S A Syam; Bhuvaneswari, Narayanan; Saranya, Kamalakannan
2012-01-01
A treatment planning study was performed to evaluate the performance of volumetric arc modulation with RapidArc (RA) against 3D conformal radiation therapy (3D-CRT) and conventional intensity-modulated radiation therapy (IMRT) techniques for esophageal cancer. Computed tomgraphy scans of 10 patients were included in the study. 3D-CRT, 4-field IMRT, and single-arc and double-arc RA plans were generated with the aim to spare organs at risk (OAR) and healthy tissue while enforcing highly conformal target coverage. The planning objective was to deliver 54 Gy to the planning target volume (PTV) in 30 fractions. Plans were evaluated based on target conformity and dose-volume histograms of organs at risk (lung, spinal cord, and heart). The monitor unit (MU) and treatment delivery time were also evaluated to measure the treatment efficiency. The IMRT plan improves target conformity and spares OAR when compared with 3D-CRT. Target conformity improved with RA plans compared with IMRT. The mean lung dose was similar in all techniques. However, RA plans showed a reduction in the volume of the lung irradiated at V(₂₀Gy) and V(₃₀Gy) dose levels (range, 4.62-17.98%) compared with IMRT plans. The mean dose and D(₃₅%) of heart for the RA plans were better than the IMRT by 0.5-5.8%. Mean V(₁₀Gy) and integral dose to healthy tissue were almost similar in all techniques. But RA plans resulted in a reduced low-level dose bath (15-20 Gy) in the range of 14-16% compared with IMRT plans. The average MU needed to deliver the prescribed dose by RA technique was reduced by 20-25% compared with IMRT technique. The preliminary study on RA for esophageal cancers showed improvements in sparing OAR and healthy tissue with reduced beam-on time, whereas only double-arc RA offered improved target coverage compared with IMRT and 3D-CRT plans. Copyright © 2012 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Raef S.; Ove, Roger; Duan, Jun
2006-10-01
The treatment of maxillary sinus carcinoma with forward planning can be technically difficult when the neck also requires radiotherapy. This difficulty arises because of the need to spare the contralateral face while treating the bilateral neck. There is considerable potential for error in clinical setup and treatment delivery. We evaluated intensity-modulated radiotherapy (IMRT) as an improvement on forward planning, and compared several inverse planning IMRT platforms. A composite dose-volume histogram (DVH) was generated from a complex forward planned case. We compared the results with those generated by sliding window fixed field dynamic multileaf collimator (MLC) IMRT, using sets of coplanarmore » beams. All setups included an anterior posterior (AP) beam, and 3-, 5-, 7-, and 9-field configurations were evaluated. The dose prescription and objective function priorities were invariant. We also evaluated 2 commercial tomotherapy IMRT delivery platforms. DVH results from all of the IMRT approaches compared favorably with the forward plan. Results for the various inverse planning approaches varied considerably across platforms, despite an attempt to prescribe the therapy similarly. The improvement seen with the addition of beams in the fixed beam sliding window case was modest. IMRT is an effective means of delivering radiotherapy reliably in the complex setting of maxillary sinus carcinoma with neck irradiation. Differences in objective function definition and optimization algorithms can lead to unexpected differences in the final dose distribution, and our evaluation suggests that these factors are more significant than the beam arrangement or number of beams.« less
Amols, Howard I
2008-11-01
New technologies such as intensity modulated and image guided radiation therapy, computer controlled linear accelerators, record and verify systems, electronic charts, and digital imaging have revolutionized radiation therapy over the past 10-15 y. Quality assurance (QA) as historically practiced and as recommended in reports such as American Association of Physicists in Medicine Task Groups 40 and 53 needs to be updated to address the increasing complexity and computerization of radiotherapy equipment, and the increased quantity of data defining a treatment plan and treatment delivery. While new technology has reduced the probability of many types of medical events, seeing new types of errors caused by improper use of new technology, communication failures between computers, corrupted or erroneous computer data files, and "software bugs" are now being seen. The increased use of computed tomography, magnetic resonance, and positron emission tomography imaging has become routine for many types of radiotherapy treatment planning, and QA for imaging modalities is beyond the expertise of most radiotherapy physicists. Errors in radiotherapy rarely result solely from hardware failures. More commonly they are a combination of computer and human errors. The increased use of radiosurgery, hypofractionation, more complex intensity modulated treatment plans, image guided radiation therapy, and increasing financial pressures to treat more patients in less time will continue to fuel this reliance on high technology and complex computer software. Clinical practitioners and regulatory agencies are beginning to realize that QA for new technologies is a major challenge and poses dangers different in nature than what are historically familiar.
Fiducial marker guided prostate radiotherapy: a review
Jain, Suneil; Hounsell, Alan R; O'Sullivan, Joe M
2016-01-01
Image-guided radiotherapy (IGRT) is an essential tool in the accurate delivery of modern radiotherapy techniques. Prostate radiotherapy positioned using skin marks or bony anatomy may be adequate for delivering a relatively homogeneous whole-pelvic radiotherapy dose, but these surrogates are not reliable when using reduced margins, dose escalation or hypofractionated stereotactic radiotherapy. Fiducial markers (FMs) for prostate IGRT have been in use since the 1990s. They require surgical implantation and provide a surrogate for the position of the prostate gland. A variety of FMs are available and they can be used in a number of ways. This review aimed to establish the evidence for using prostate FMs in terms of feasibility, implantation procedures, types of FMs used, FM migration, imaging modalities used and the clinical impact of FMs. A search strategy was defined and a literature search was carried out in Medline. Inclusion and exclusion criteria were applied, which resulted in 50 articles being included in this review. The evidence demonstrates that FMs provide a more accurate surrogate for the position of the prostate than either external skin marks or bony anatomy. A combination of FM alignment and soft-tissue analysis is currently the most effective and widely available approach to ensuring accuracy in prostate IGRT. FM implantation is safe and well tolerated. FM migration is possible but minimal. Standardization of all techniques and procedures in relation to the use of prostate FMs is required. Finally, a clinical trial investigating a non-surgical alternative to prostate FMs is introduced. PMID:27585736
Fogliata, Antonella; Scorsetti, Marta; Navarria, Piera; Catalano, Maddalena; Clivio, Alessandro; Cozzi, Luca; Lobefalo, Francesca; Nicolini, Giorgia; Palumbo, Valentina; Pellegrini, Chiara; Reggiori, Giacomo; Roggio, Antonella; Vanetti, Eugenio; Alongi, Filippo; Pentimalli, Sara; Mancosu, Pietro
2013-04-01
To appraise the potential of volumetric modulated arc therapy (VMAT, RapidArc) and proton beams to simultaneously achieve target coverage and enhanced sparing of bone tissue in the treatment of soft-tissue sarcoma with adequate target coverage. Ten patients presenting with soft-tissue sarcoma of the leg were collected for the study. Dose was prescribed to 66.5 Gy in 25 fractions to the planning target volume (PTV) while significant maximum dose to the bone was constrained to 50 Gy. Plans were optimised according to the RapidArc technique with 6 MV photon beams or for intensity modulated protons. RapidArc photon plans were computed with: 1) AAA; 2) Acuros XB as dose to medium; and 3) Acuros XB as dose to water. All plans acceptably met the criteria of target coverage (V95% >90-95%) and bone sparing (D(1 cm3) <50 Gy). Significantly higher PTV dose homogeneity was found for proton plans. Near-to-maximum dose to bone was similar for RapidArc and protons, while volume receiving medium/low dose levels was minimised with protons. Similar results were obtained for the remaining normal tissue. Dose distributions calculated with the dose to water option resulted ~5% higher than corresponding ones computed as dose to medium. High plan quality was demonstrated for both VMAT and proton techniques when applied to soft-tissue sarcoma.
Cai, Gang; Zhu, Ji; Hu, Weigang; Zhang, Zhen
2014-12-11
This study was conducted to investigate the local effects and toxicity of accelerated hyperfractionated intensity-modulated radiotherapy for recurrent/unresectable rectal cancer in patients with previous pelvic irradiation. Twenty-two patients with recurrent/unresectable rectal cancer who previously received pelvic irradiation were enrolled in our single-center trial between January 2007 and August 2012. Reirradiation was scheduled for up to 39 Gy in 30 fractions using intensity-modulated radiotherapy plans. The dose was delivered via a hyperfractionation schedule of 1.3 Gy twice daily. Patient follow-up was performed by clinical examination, CT/MRI, or PET/CT every 3 months for the first 2 years and every 6 months thereafter. Tumor response was evaluated 1 month after reirradiation by CT/MRI based on the RECIST criteria. Adverse events were assessed using the National Cancer Institute (NCI) common toxicity criteria (version 3.0). The median time from the end of the initial radiation therapy to reirradiation was 30 months (range, 18-93 months). Overall local responses were observed in 9 patients (40.9%). None of the patients achieved a complete response (CR), and 9 patients (40.9%) had a partial response (PR). Thirteen patients failed to achieve a clinical response: 12 (54.5%) presented with stable disease (SD) and 1 (4.5%) with progressive disease (PD). Among all the patients who underwent reirradiation, partial or complete symptomatic relief was achieved in 6 patients (27.3%) and 13 patients (59.1%), respectively. Grade 4 acute toxicity and treatment-related deaths were not observed. The following grade 3 acute toxicities were observed: diarrhea (2 patients, 9.1%), cystitis (1 patient, 4.5%), dermatitis (1 patient, 4.5%), and intestinal obstruction (1 patient, 4.5%). Late toxicity was infrequent. Chronic severe diarrhea, small bowel obstruction, and dysuria were observed in 2 (9.1%), 1 (4.5%) and 2 (9.1%) of the patients, respectively. This study showed that accelerated hyperfractionated intensity-modulated radiotherapy significantly relieved local symptoms and led to a promising local response with an acceptable toxicity profile in patients with recurrent/unresectable rectal cancer and previous pelvic irradiation. Innovative treatment regimens should be evaluated in future studies to improve the clinical outcome while avoiding excessive toxicity in patients with recurrent rectal cancer and previous pelvic irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirix, Piet, E-mail: piet.dirix@uzleuven.b; Vanstraelen, Bianca; Jorissen, Mark
Purpose: To evaluate clinical outcome and toxicity of postoperative intensity-modulated radiotherapy (IMRT) for malignancies of the nasal cavity and paranasal sinuses. Methods and Materials: Between 2003 and 2008, 40 patients with cancer of the paranasal sinuses (n = 34) or nasal cavity (n = 6) received postoperative IMRT to a dose of 60 Gy (n = 21) or 66 Gy (n = 19). Treatment outcome and toxicity were retrospectively compared with that of a previous patient group (n = 41) who were also postoperatively treated to the same doses but with three-dimensional conformal radiotherapy without intensity modulation, from 1992 tomore » 2002. Results: Median follow-up was 30 months (range, 4-74 months). Two-year local control, overall survival, and disease-free survival were 76%, 89%, and 72%, respectively. Compared to the three-dimensional conformal radiotherapy treatment, IMRT resulted in significantly improved disease-free survival (60% vs. 72%; p = 0.02). No grade 3 or 4 toxicity was reported in the IMRT group, either acute or chronic. The use of IMRT significantly reduced the incidence of acute as well as late side effects, especially regarding skin toxicity, mucositis, xerostomia, and dry-eye syndrome. Conclusions: Postoperative IMRT for sinonasal cancer significantly improves disease-free survival and reduces acute as well as late toxicity. Consequently, IMRT should be considered the standard treatment modality for malignancies of the nasal cavity and paranasal sinuses.« less
Clark, C H; Miles, E A; Urbano, M T Guerrero; Bhide, S A; Bidmead, A M; Harrington, K J; Nutting, C M
2009-07-01
The purpose of this study was to compare conventional radiotherapy with parotid gland-sparing intensity-modulated radiation therapy (IMRT) using the PARSPORT trial. The validity of such a trial depends on the radiotherapy planning and delivery meeting a defined standard across all centres. At the outset, many of the centres had little or no experience of delivering IMRT; therefore, quality assurance processes were devised to ensure consistency and standardisation of all processes for comparison within the trial. The pre-trial quality assurance (QA) programme and results are described. Each centre undertook exercises in target volume definition and treatment planning, completed a resource questionnaire and produced a process document. Additionally, the QA team visited each participating centre. Each exercise had to be accepted before patients could be recruited into the trial. 10 centres successfully completed the quality assurance exercises. A range of treatment planning systems, linear accelerators and delivery methods were used for the planning exercises, and all the plans created reached the standard required for participation in this multicentre trial. All 10 participating centres achieved implementation of a comprehensive and robust IMRT programme for treatment of head and neck cancer.
Jacobs, Bruce L.; Zhang, Yun; Skolarus, Ted A.; Hollenbeck, Brent K.
2012-01-01
To study the impact of new, expensive, and unproven therapies to treat prostate cancer, we investigated the dissemination of intensity-modulated radiotherapy (IMRT). IMRT is an innovative treatment for prostate cancer that delivers higher doses of radiation with improved precision compared to alternative radiotherapies. We observed rapid adoption of this new treatment among men diagnosed with prostate cancer from 2001 through 2007, despite uncertainty about its relative effectiveness. We compared patient and disease characteristics of those receiving IMRT and the previous radiation standard of care, three-dimensional conformal therapy; assessed intermediate-term outcomes; and examined potential factors associated with the increased use of IMRT. We found that in the early period of IMRT adoption (2001–03) men with high-risk disease were more likely to receive IMRT, whereas after IMRT’s initial dissemination (2004–07) men with low-risk disease had fairly similar likelihoods of receiving IMRT as men with high-risk disease. This raises concerns about overtreatment, as well as considerable health care costs, because treatment with IMRT costs $15,000–$20,000 more than other standard therapies. As health care delivery reforms gain traction, policy makers must balance the promotion of new, yet unproven, technology with the risk of overuse. PMID:22492892
NASA Astrophysics Data System (ADS)
De Saint-Hubert, Marijke; Verellen, Dirk; Poels, Kenneth; Crijns, Wouter; Magliona, Federica; Depuydt, Tom; Vanhavere, Filip; Struelens, Lara
2017-07-01
Medulloblastoma treatment involves irradiation of the entire central nervous system, i.e. craniospinal irradiation (CSI). This is associated with the significant exposure of large volumes of healthy tissue and there is growing concern regarding treatment-associated side effects. The current study compares out-of-field organ doses in children receiving CSI through 3D-conformal radiotherapy (3D-CRT), intensity modulated radiotherapy (IMRT), helical tomotherapy (HT) and an electron-based technique, and includes radiation doses resulting from imaging performed during treatment. An extensive phantom study is performed, using an anthropomorphic phantom corresponding to a five year old child, in which organ absorbed doses are measured using thermoluminescent detectors. Additionally, the study evaluates and explores tools for calculating out-of-field patient doses using the treatment planning system (TPS) and analytical models. In our study, 3D-CRT resulted in very high doses to a limited number of organs, while it was able to spare organs such as the lungs and breast when compared to IMRT and HT. Both IMRT and HT spread the dose over more organs and were able to spare the heart, thyroid, bladder, uterus and testes when compared to 3D-CRT. The electron-based technique considerably decreased the out-of-field doses in deep-seated organs but could not avoid nearby out-of-field organs such as the lungs, ribs, adrenals, kidneys and uterus. The daily imaging dose is small compared to the treatment dose burden. The TPS error for out-of-field doses was most pronounced for organs further away from the target; nevertheless, no systematic underestimation was observed for any of the studied TPS systems. Finally, analytical modeling was most optimal for 3D-CRT although the number of organs that could be modeled was limited. To conclude, none of the techniques studied was capable of sparing all organs from out-of-field doses. Nevertheless, the electron-based technique showed the most promise for out-of-field organ dose reduction during CSI when compared to photon techniques.
Radiation-induced antrochoanal fibrosarcoma.
Liddington, M I; Harrison, R F; Booth, A P; Das Gupta, A R
1992-06-01
Therapeutic radiation for malignant conditions is known to cause sarcomatous change in an irradiated field after a latent period; equally this change may occur following radiotherapy to benign conditions which may result in a more difficult management problem later. Radiotherapy to benign conditions should be reserved for use after failure of conventional surgery or other interventional techniques.
A review of recent advances in optical fibre sensors for in vivo dosimetry during radiotherapy
O'Keeffe, S; McCarthy, D; Woulfe, P; Grattan, M W D; Hounsell, A R; Sporea, D; Mihai, L; Vata, I; Leen, G
2015-01-01
This article presents an overview of the recent developments and requirements in radiotherapy dosimetry, with particular emphasis on the development of optical fibre dosemeters for radiotherapy applications, focusing particularly on in vivo applications. Optical fibres offer considerable advantages over conventional techniques for radiotherapy dosimetry, owing to their small size, immunity to electromagnetic interferences, and suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based dosemeters, together with being lightweight and flexible, mean that they are minimally invasive and thus particularly suited to in vivo dosimetry. This means that the sensor can be placed directly inside a patient, for example, for brachytherapy treatments, the optical fibres could be placed in the tumour itself or into nearby critical tissues requiring monitoring, via the same applicators or needles used for the treatment delivery thereby providing real-time dosimetric information. The article outlines the principal sensor design systems along with some of the main strengths and weaknesses associated with the development of these techniques. The successful demonstration of these sensors in a range of different clinical environments is also presented. PMID:25761212
Ceresoli, Giovanni Luca; Cattaneo, Giovanni Mauro; Castellone, Pietro; Rizzos, Giovanna; Landoni, Claudio; Gregorc, Vanesa; Calandrino, Riccardo; Villa, Eugenio; Messa, Cristina; Santoro, Armando; Fazio, Ferruccio
2007-01-01
Mediastinal elective node irradiation (ENI) in patients with non-small cell lung cancer candidate to radical radiotherapy is controversial. In this study, the impact of co-registered [18F]fluorodeoxyglucose-positron emission tomography (PET) and standard computed tomography (CT) on definition of target volumes and toxicity parameters was evaluated, by comparison with standard CT-based simulation with and without ENI. CT-based gross tumor volume (GTVCT) was first contoured by a single observer without knowledge of PET results. Subsequently, the integrated GTV based on PET/CT coregistered images (GTVPET/CT) was defined. Each patient was planned according to three different treatment techniques: 1) radiotherapy with ENI using the CT data set alone (ENI plan); 2) radiotherapy without ENI using the CT data set alone (no ENI plan); 3) radiotherapy without ENI using PET/CT fusion data set (PET plan). Rival plans were compared for each patient with respect to dose to the normal tissues (spinal cord, healthy lungs, heart and esophagus). The addition of PET-modified TNM staging in 10/21 enrolled patients (48%); 3/21 were shifted to palliative treatment due to detection of metastatic disease or large tumor not amenable to high-dose radiotherapy. In 7/18 (39%) patients treated with radical radiotherapy, a significant (> or =25%) change in volume between GTVCT and GTVPET/CT was observed. For all the organs at risk, ENI plans had dose values significantly greater than no-ENI and PET plans. Comparing no ENI and PET plans, no statistically significant difference was observed, except for maximum point dose to the spinal cord Dmax, which was significantly lower in PET plans. Notably, even in patients in whom PET/CT planning resulted in an increased GTV, toxicity parameters were fairly acceptable, and always more favorable than with ENI plans. Our study suggests that [18F]-fluorodeoxyglucose-PET should be integrated in no-ENI techniques, as it improves target volume delineation without a major increase in predicted toxicity.
Jafari, Shakardokht M; Jordan, Tom J; Distefano, Gail; Bradley, David A; Spyrou, Nicholas M; Nisbet, Andrew; Clark, Catharine H
2015-01-01
To investigate the feasibility of using glass beads as novel thermoluminescent dosemeters (TLDs) for radiotherapy treatment plan verification. Commercially available glass beads with a size of 1-mm thickness and 2-mm diameter were characterized as TLDs. Five clinical treatment plans including a conventional larynx, a conformal prostate, an intensity-modulated radiotherapy (IMRT) prostate and two stereotactic body radiation therapy (SBRT) lung plans were transferred onto a CT scan of a water-equivalent phantom (Solid Water(®), Gammex, Middleton, WI) and the dose distribution recalculated. The number of monitor units was maintained from the clinical plan and delivered accordingly. The doses determined by the glass beads were compared with those measured by a graphite-walled ionization chamber, and the respective expected doses were determined by the treatment-planning system (TPS) calculation. The mean percentage difference between measured dose with the glass beads and TPS was found to be 0.3%, -0.1%, 0.4%, 1.8% and 1.7% for the conventional larynx, conformal prostate, IMRT prostate and each of the SBRT delivery techniques, respectively. The percentage difference between measured dose with the ionization chamber and glass bead was found to be -1.2%, -1.4%, -0.1%, -0.9% and 2.4% for the above-mentioned plans, respectively. The results of measured doses with the glass beads and ionization chamber in comparison with expected doses from the TPS were analysed using a two-sided paired t-test, and there was no significant difference at p < 0.05. It is feasible to use glass-bead TLDs as dosemeters in a range of clinical plan verifications. Commercial glass beads are utilized as low-cost novel TLDs for treatment-plan verification.
Li, Guang-Hui; Liu, Yong; Tang, Jin-Liang; Zhang, Dong; Zhou, Pu; Yang, Ding-Qiang; Ma, Chuan-Kun
2012-09-01
The recurrence and progression of brain metastases after brain irradiation are a major cause of mortality and morbidity in patients with cancer. The risk of radiation-induced neurotoxicity and efficacy probably leads oncologists to not consider re-irradiation. We report the case of a 48-year-old Asian male diagnosed with squamous cell lung cancer and multiple brain metastases initially treated with 40 Gy whole-brain radiotherapy and 20 Gy partial brain boost. Fourteen gray stereotactic radiosurgery as salvage for brain metastases in the left occipital lobe was performed after initial irradiation. The recurrence of brain metastases in the left occipital lobe was demonstrated on magnetic resonance imaging at 9 months after initial radiotherapy. He received the second course of 28 Gy stereotactic radiosurgery for the recurrent brain metastases in the left occipital lobe. The third relapse of brain metastases was demonstrated by a magnetic resonance imaging scan at 7 months after the second radiotherapy. The third course of irradiation was performed because he refused to undergo surgical resection of the recurrent brain metastases. The third course of irradiation used a pulsed reduced dose-rate radiotherapy technique. It was delivered in a series of 0.2 Gy pulses separated by 3-min intervals. The recurrent brain metastases were treated with a dose of 60 Gy using 30 daily fractions of 2 Gy. Despite the brain metastases receiving 162 Gy irradiation, this patient had no apparent acute or late neurologic toxicities and showed clinical improvement. This is the first report of the pulsed reduced dose-rate radiotherapy technique being used as the third course of radiotherapy for recurrent brain metastases.
Feasibility of Adaptive MR-guided Stereotactic Body Radiotherapy (SBRT) of Lung Tumors
Simpson, Garrett N; Llorente, Ricardo; Samuels, Michael A; Dogan, Nesrin
2018-01-01
Online adaptive radiotherapy (ART) with frequent imaging has the potential to improve dosimetric accuracy by accounting for anatomical and functional changes during the course of radiotherapy. Presented are three interesting cases that provide an assessment of online adaptive magnetic resonance-guided radiotherapy (MRgRT) for lung stereotactic body radiotherapy (SBRT). The study includes three lung SBRT cases, treated on an MRgRT system where MR images were acquired for planning and prior to each treatment fraction. Prescription dose ranged from 48 to 50 Gy in four to five fractions, normalized to where 95% of the planning target volume (PTV) was covered by 100% of the prescription dose. The process begins with the gross tumor volume (GTV), PTV, spinal cord, lungs, heart, and esophagus being delineated on the planning MRI. The treatment plan was then generated using a step-and-shoot intensity modulated radiotherapy (IMRT) technique, which utilized a Monte Carlo dose calculation. Next, the target and organs at risk (OAR) contours from the planning MRI were deformably propagated to the daily setup MRIs. These deformed contours were reviewed and modified by the physician. To determine the efficacy of ART, two different strategies were explored: 1) Calculating the plan created for the planning MR on each fraction setup MR dataset (Non-Adapt) and 2) creating a new optimized IMRT plan on the fraction setup MR dataset (FxAdapt). The treatment plans from both strategies were compared using the clinical dose-volume constraints. PTV coverage constraints were not met for 33% Non-Adapt fractions; all FxAdapt fractions met this constraint. Eighty-eight percent of all OAR constraints studied were better on FxAdapt plans, while 12% of OAR constraints were superior on Non-Adapt fractions. The OAR that garnered the largest benefit would be the uninvolved lung, with superior sparing in 92% of the FxAdapt studied. Similar, but less pronounced, benefits from adaptive planning were experienced for the spinal cord, chest wall, and esophagus. Online adaptive MR-guided lung SBRT can provide better target conformality and homogeneity and OAR sparing compared with non-adaptive SBRT in selected cases. Conversely, if the PTV isn’t adjacent to multiple OARs, then the benefit from ART may be limited. Further studies, which incorporate a larger cohort of patients with uniform prescriptions, are needed to thoroughly evaluate the benefits of daily online ART during MRgRT. PMID:29872603
Wu, Xinhong; Luo, Bo; Wei, Shaozhong; Luo, Yan; Feng, Yaojun; Xu, Juan; Wei, Wei
2013-11-01
To investigate the treatment efficiency of whole brain irradiation combined with precise radiotherapy on triple-negative (TN) phenotype breast cancer patients with brain metastases and their survival times. A total of 112 metastatic breast cancer patients treated with whole brain irradiation and intensity modulated radiotherapy (IMRT) or 3D conformal radiotherapy (3DCRT) were analyzed. Thirty-seven patients were of TN phenotype. Objective response rates were compared. Survival times were estimated by using the Kaplan-Meier method. Log-rank test was used to compare the survival time difference between the TN and non-TN groups. Potential prognostic factors were determined by using a Cox proportional hazard regression model. The efficiency of radiotherapy treatment on TN and non-TN phenotypes was 96.2% and 97%, respectively. TN phenotype was associated with worse survival times than non-TN phenotype after radiotherapy (6.9 months vs. 17 months) (P < 0.01). On multivariate analysis, good prognosis was associated with non-TN status, lower graded prognosis assessment class, and nonexistence of active extracranial metastases. After whole brain irradiation followed by IMRT or 3DCRT treatment, TN phenotype breast cancer patients with intracranial metastasis had high objective response rates but shorter survival time. With respect to survival in breast cancer patients with intracranial metastasis, the TN phenotype represents a significant adverse prognostic factor.
Zhang, Ji-Bin; Zhao, Li-Rong; Cui, Tian-Xiang; Chen, Xie-Wan; Yang, Qiao; Zhou, Yi-Bing; Chen, Zheng-Tang; Zhang, Shao-Xiang; Sun, Jian-Guo
2018-01-01
The aim of the present study was to investigate the optimal strategy and dosimetric measurement of thoracic radiotherapy based on three-dimensional (3D) modeling of mediastinal lymph nodes (MLNs). A 3D model of MLNs was constructed from a Chinese Visible Human female dataset. Image registration and fusion between reconstructed MLNs and original chest computed tomography (CT) images was conducted in the Eclipse™ treatment planning system (TPS). There were three plans, including 3D conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT), which were designed based on 10 cases of simulated lung lesions (SLLs) and MLNs. The quality of these plans was evaluated via examining indexes, including conformity index (CI), homogeneity index and clinical target volume (CTV) coverage. Dose-volume histogram analysis was performed on SLL, MLNs and organs at risk (OARs). A Chengdu Dosimetric Phantom (CDP) was then drilled at specific MLNs according to 20 patients with thoracic tumors and of a medium-build. These plans were repeated on fused MLNs and CDP CT images in the Eclipse™ TPS. Radiation doses at the SLLs and MLNs of the CDP were measured and compared with calculated doses. The established 3D MLN model demonstrated the spatial location of MLNs and adjacent structures. Precise image registration and fusion were conducted between reconstructed MLNs and the original chest CT or CDP CT images. IMRT demonstrated greater values in CI, CTV coverage and OAR (lungs and spinal cord) protection, compared with 3D-CRT and VMAT (P<0.05). The deviation between the measured and calculated doses was within ± 10% at SLL, and at the 2R and 7th MLN stations. In conclusion, the 3D MLN model can benefit plan optimization and dosimetric measurement of thoracic radiotherapy, and when combined with CDP, it may provide a tool for clinical dosimetric monitoring. PMID:29556300
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quon, Harvey; Department of Radiation Oncology, University of Toronto, Toronto, ON; Cheung, Patrick C.F., E-mail: patrick.cheung@sunnybrook.ca
Purpose: To evaluate the change in health-related quality of life (QOL) of patients with high-risk prostate cancer treated using hypofractionated radiotherapy combined with long-term androgen deprivation therapy. Methods and Materials: A prospective Phase I-II study enrolled patients with any of the following: clinical Stage T3 disease, prostate-specific antigen level {>=}20 ng/mL, or Gleason score 8-10. Radiotherapy consisted of 45 Gy (1.8 Gy per fraction) to the pelvic lymph nodes with a concomitant 22.5 Gy intensity-modulated radiotherapy boost to the prostate, for a total of 67.5 Gy (2.7 Gy per fraction) in 25 fractions over 5 weeks. Daily image guidance wasmore » performed using three gold seed fiducials. Quality of life was measured using the Expanded Prostate Cancer Index Composite (EPIC), a validated tool that assesses four primary domains (urinary, bowel, sexual, and hormonal). Results: From 2004 to 2007, 97 patients were treated. Median follow-up was 39 months. Compared with baseline, at 24 months there was no statistically significant change in the mean urinary domain score (p = 0.99), whereas there were decreases in the bowel (p < 0.01), sexual (p < 0.01), and hormonal (p < 0.01) domains. The proportion of patients reporting a clinically significant difference in EPIC urinary, bowel, sexual, and hormonal scores at 24 months was 27%, 31%, 55%, and 60%, respectively. However, moderate and severe distress related to these symptoms was minimal, with increases of only 3% and 5% in the urinary and bowel domains, respectively. Conclusions: Hypofractionated radiotherapy combined with long-term androgen deprivation therapy was well tolerated. Although there were modest rates of clinically significant patient-reported urinary and bowel toxicity, most of this caused only mild distress, and moderate and severe effects on QOL were limited. Additional follow-up is ongoing to characterize long-term QOL.« less
Tanaka, Osamu; Komeda, Hisao; Hirose, Shigeki; Taniguchi, Takuya; Ono, Kousei; Matsuo, Masayuki
2017-11-29
Visualization of fiducial gold markers is critical for registration on computed tomography (CT) and magnetic resonance imaging (MRI) for imaging-guided radiotherapy. Although larger markers provide better visualization on MRI, they tend to generate artifacts on CT. MRI is strongly influenced by the presence of metals, such as iron, in the body. Here we compared efficacies of a 0.5% iron-containing gold marker (GM) and a traditional non-iron-containing marker. Twenty-seven patients underwent CT/MRI fusion-based intensity-modulated radiotherapy. Markers were placed by urologists under local anesthesia. Gold Anchor (GA; diameter: 0.28 mm; length: 10 mm), an iron-containing marker, was placed on the right side of the prostate using a 22-G needle and VISICOIL (VIS; diameter: 0.35 mm; length: 10 mm), a non-iron-containing marker, was placed on the left side using a 19-G needle. T2*-weighted images MRI sequences were obtained. Two radiation oncologists and a radiation technologist evaluated and assigned scores for visual quality on a five-point scale (1, poor; 5, best visibility). Artifact generation on CT was slightly greater with GA than with VIS. The mean marker visualization scores on MRI of all three observers were significantly superior for GA than for VIS (3.5 vs 3.2, 3.9 vs 3.2, and 4.0 vs 2.9). The actual size of the spherical GA was about 2 mm in diameter, but the signal void on MRI was approximately 5 mm. Although both markers were well visualized and can be recommended clinically, the results suggest that GA has some subtle advantages for quantitative visualization that could prove useful in certain situations of stereotactic body radiotherapy and intensity-modulated radiotherapy. © 2017 John Wiley & Sons Australia, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, X; Penagaricano, J; Narayanasamy, G
Purpose: Hippocampus avoidance whole brain radiotherapy (HA-WBRT) has been shown to reduce the risk of neurocognitive dysfunction. This type of treatment has the potential of insurance company payment denial due to increased cost of intensity modulated radiotherapy (IMRT), while the accepted modality for WBRT is three-dimensional conformal radiotherapy (3DCRT). The purpose of this study is to assess HA-WBRT treatment plans using 3DCRT and multi-criteria optimization (MCO) that meets the RTOG 0933 criteria. Methods: Ten patients with brain metastases at least 0.5cm away from the hippocampal avoidance region as defined in RTOG 0933 were selected in this study. HA-WBRT treatment plansmore » with MCO 3DCRT technique (MCO-3D) was generated with beam arrangements and dose constraints following the RTOG 0933 guidelines. MCO-3D plans were compared with plans using MCO IMRT techniques (MCO-IMRT) with same beam arrangements and dose constraints. Evaluation parameters included D98% D2% and dose homogeneity index of PTV, and Dmax and D100% of the hippocampi. The OAR doses were also evaluated. Results: For MCO-IMRT plans, PTV D2% and hippocampi Dmax and D100% met RTOG 0933 objectives in all ten patients (PTV D2%<37.5Gy; Hippocampi Dmax<16Gy and D100%<9Gy). One patient met the RTOG 0933 PTV D98% objective (PTV D98%>25Gy) and 9/10 patients met acceptable variation (PTV D98%<25Gy). For MCO-3D plans, PTV D2% met RTOG 0933 objective for all patients; 1/10 patient for PTV D98% and 6/10 patients for Hippocampi Dmax and 7/10 patients for hippocampi D100% met RTOG 0933 objective. All the other patients met the RTOG 0933 acceptable variation requirement. (PTV D98%<25Gy; Hippocampi Dmax<17Gy and D100%<10Gy). Conclusion: All dosimetric parameters of MCO-3D plans met the criteria of at least acceptable variation per RTOG 0933. This may be helpful in cases where there is denial of patient’s medical insurance coverage due to the use of IMRT for HA-WBRT.« less
Weber, Damien C; Bogner, Joachim; Verwey, Jorn; Georg, Dietmar; Dieckmann, Karin; Escudé, Lluis; Caro, Monica; Pötter, Richard; Goitein, Gudrun; Lomax, Antony J; Miralbell, Raymond
2005-10-01
A comparative treatment planning study was undertaken between proton and photon therapy in uveal melanoma to assess the potential benefits and limitations of these treatment modalities. A fixed proton horizontal beam (OPTIS) and intensity-modulated spot-scanning proton therapy (IMPT), with multiple noncoplanar beam arrangements, was compared with linear accelerator-based stereotactic radiotherapy (SRT), using a static and a dynamic micromultileaf collimator and intensity-modulated RT (IMRS). A planning CT scan was performed on a brain metastasis patient, with a 3-mm acquisition slice spacing and the patient looking at a luminous spot with the eyes in three different positions (neutral and 25 degrees right and left). Four different gross tumor volumes were defined for each treatment technique. These target scenarios represented different locations (involving vs. not involving the macula and temporal vs. nasal) and volumes (10 x 6 mm vs. 16 x 10 mm) to challenge the proton and photon treatment techniques. The planning target volume was defined as the gross tumor volume plus 2 mm laterally and 3 mm craniocaudally for both modalities. A dose homogeneity of 95-99% of the planning target volume was used as the "goal" for all techniques. The dose constraint (maximum) for the organs at risk (OARs) for both the proton and the SRT photon plans was 27.5, 22.5, 20, and 9 CGE-Gy for the optic apparatus, retina, lacrimal gland, and lens, respectively. The dose to the planning target volume was 50 CGE-Gy in 10 CGE-Gy daily fractions. The plans for proton and photon therapy were computed using the Paul Scherrer Institute and BrainSCAN, version 5.2 (BrainLAB, Heimstetten, Germany) treatment planning systems, respectively. Tumor and OARs dose-volume histograms were calculated. The results were analyzed using the dose-volume histogram parameters, conformity index (CI(95%)), and inhomogeneity coefficient. Target coverage of all simulated uveal melanomas was equally conformal with the photon and proton modalities. The median CI(95%) value was 1.74, 1.86, and 1.83 for the static, dynamic, and IMSRT plans, respectively. With proton planning, the median CI(95%) was 1.88 for OPTIS and substantially improved with IMPT in some tumor cases (median CI(95%), 1.29). The tumor dose homogeneity in the proton plans was, however, always better than with SRT photon planning (median inhomogeneity coefficient 0.1 and 0.15 vs. 0.46, 0.41, and 0.23 for the OPTIS and IMPT vs. the static, dynamic, and IMSRT plans, respectively). Compared with the photon plans, the use of protons did not lead to a substantial reduction in the homolateral OAR total integral dose in the low- to high-dose level, except for the lacrimal gland. The median maximal dose and dose at the 10% volume with the static, dynamic, and IMSRT plans was 33-30.8, 31.8-28, and 35.8-49 Gy, respectively, for the lacrimal gland, a critical organ. For protons, only the OPTIS plans were better, with a median maximal dose and dose at the 10% volume using OPTIS and IMPT of 19.2 and 8.8 and 25.6 and 23.6 CGE, respectively. The contralateral OARs were completely spared with the proton plans, but the median dose delivered to these structures was 1.2 Gy (range, 0-6.3 Gy) with the SRT photon plans. These results suggest that the use of SRT photon techniques, compared with protons, can result in similar levels of dose conformation. IMPT did not increase the degree of conformality for this small tumor. Tumor dose inhomogeneity was, however, always increased with photon planning. Except for the lacrimal gland, the use of protons, with or without intensity modulation, did not increase homolateral OAR dose sparing. The dose to all the contralateral OARs was, however, completely eliminated with proton planning.
Recent advances in radiation oncology.
Garibaldi, Cristina; Jereczek-Fossa, Barbara Alicja; Marvaso, Giulia; Dicuonzo, Samantha; Rojas, Damaris Patricia; Cattani, Federica; Starzyńska, Anna; Ciardo, Delia; Surgo, Alessia; Leonardi, Maria Cristina; Ricotti, Rosalinda
2017-01-01
Radiotherapy (RT) is very much a technology-driven treatment modality in the management of cancer. RT techniques have changed significantly over the past few decades, thanks to improvements in engineering and computing. We aim to highlight the recent developments in radiation oncology, focusing on the technological and biological advances. We will present state-of-the-art treatment techniques, employing photon beams, such as intensity-modulated RT, volumetric-modulated arc therapy, stereotactic body RT and adaptive RT, which make possible a highly tailored dose distribution with maximum normal tissue sparing. We will analyse all the steps involved in the treatment: imaging, delineation of the tumour and organs at risk, treatment planning and finally image-guidance for accurate tumour localisation before and during treatment delivery. Particular attention will be given to the crucial role that imaging plays throughout the entire process. In the case of adaptive RT, the precise identification of target volumes as well as the monitoring of tumour response/modification during the course of treatment is mainly based on multimodality imaging that integrates morphological, functional and metabolic information. Moreover, real-time imaging of the tumour is essential in breathing adaptive techniques to compensate for tumour motion due to respiration. Brief reference will be made to the recent spread of particle beam therapy, in particular to the use of protons, but also to the yet limited experience of using heavy particles such as carbon ions. Finally, we will analyse the latest biological advances in tumour targeting. Indeed, the effectiveness of RT has been improved not only by technological developments but also through the integration of radiobiological knowledge to produce more efficient and personalised treatment strategies.
Bijl, Hendrik P.; Schilstra, Cornelis; Pijls-Johannesma, Madelon; Langendijk, Johannes A.
2011-01-01
Purpose. Clinical studies concerning head and neck cancer patients treated with protons reporting on radiation-induced side effects are scarce. Therefore, we reviewed the literature regarding the potential benefits of protons compared with the currently used photons in terms of lower doses to normal tissue and the potential for fewer subsequent radiation-induced side effects, with the main focus on in silico planning comparative (ISPC) studies. Materials and Methods. A literature search was performed by two independent researchers on ISPC studies that included proton-based and photon-based irradiation techniques. Results. Initially, 877 papers were retrieved and 14 relevant and eligible ISPC studies were identified and included in this review. Four studies included paranasal sinus cancer cases, three included nasopharyngeal cancer cases, and seven included oropharyngeal, hypopharyngeal, and/or laryngeal cancer cases. Seven studies compared the most sophisticated photon and proton techniques: intensity-modulated photon therapy versus intensity-modulated proton therapy (IMPT). Four studies compared different proton techniques. All studies showed that protons had a lower normal tissue dose, while keeping similar or better target coverage. Two studies found that these lower doses theoretically translated into a significantly lower incidence of salivary dysfunction. Conclusion. The results of ISPC studies indicate that protons have the potential for a significantly lower normal tissue dose, while keeping similar or better target coverage. Scanned IMPT probably offers the most advantage and will allow for a substantially lower probability of radiation-induced side effects. The results of these ISPC studies should be confirmed in properly designed clinical trials. PMID:21349950
Precision radiotherapy for cancer of the pancreas: technique and results. [Photons and electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobelbower, R.R. Jr.; Borgelt, B.B.; Strubler, K.A.
1980-09-01
Forty patients with locally extensive, unresectable adenocarcinoma of the pancreas received precision high dose (PHD) radiation therapy with a 45 MeV betatron. PHD radiotherapy was generally well tolerated. During treatment, only 7 patients experienced significant nausea, vomiting, diarrhea or anorexia. Late gastrointestinal radiation reactions were observed in 7 patients. Twelve patients received adjuvant chemotherapy. The projected survival of patients with unresectable pancreatic cancer treated with PHD radiotherapy is comparable to that of patients with resectable disease operated on for cure. The projected one year survival rate is 49%.
The role of technology in clinical trials using stereotactic body radiotherapy
Romero, Alejandra Méndez; Heijmen, Ben J M
2017-01-01
Stereotactic body radiotherapy is a highly technology-driven treatment modality. The wider availability of in-room imaging and advanced radiotherapy delivery techniques has led to more institutions offering stereotactic ablative therapy (SABR). While some technological challenges remain, the crucial point for the next generation of SABR clinical trials is that today's technology is used correctly and close to its optimal potential for accuracy. The credentialing procedure of SABR needs to be extensive, but this investment will benefit the trial itself, the patients and the professionals involved. PMID:28055252
NASA Astrophysics Data System (ADS)
Verma, Sneha K.; Liu, Brent J.; Chun, Sophia; Gridley, Daila S.
2014-03-01
Many US combat personnel have sustained nervous tissue trauma during service, which often causes Neuropathic pain as a side effect and is difficult to manage. However in select patients, synapse lesioning can provide significant pain control. Our goal is to determine the effectiveness of using Proton Beam radiotherapy for treating spinal cord injury (SCI) related neuropathic pain as an alternative to invasive surgical lesioning. The project is a joint collaboration of USC, Spinal Cord Institute VA Healthcare System, Long Beach, and Loma Linda University. This is first system of its kind that supports integration and standardization of imaging informatics data in DICOM format; clinical evaluation forms outcomes data and treatment planning data from the Treatment planning station (TPS) utilized to administer the proton therapy in DICOM-RT format. It also supports evaluation of SCI subjects for recruitment into the clinical study, which includes the development, and integration of digital forms and tools for automatic evaluation and classification of SCI pain. Last year, we presented the concept for the patient recruitment module based on the principle of Bayesian decision theory. This year we are presenting the fully developed patient recruitment module and its integration to other modules. In addition, the DICOM module for integrating DICOM and DICOM-RT-ION data is also developed and integrated. This allows researchers to upload animal/patient study data into the system. The patient recruitment module has been tested using 25 retrospective patient data and DICOM data module is tested using 5 sets of animal data.
van der Laan, Hans Paul; Dolsma, Wil V; Maduro, John H; Korevaar, Erik W; Hollander, Miranda; Langendijk, Johannes A
2007-07-15
To compare the target coverage and normal tissue dose with the simultaneously integrated boost (SIB) and the sequential boost technique in breast cancer, and to evaluate the incidence of acute skin toxicity in patients treated with the SIB technique. Thirty patients with early-stage left-sided breast cancer underwent breast-conserving radiotherapy using the SIB technique. The breast and boost planning target volumes (PTVs) were treated simultaneously (i.e., for each fraction, the breast and boost PTVs received 1.81 Gy and 2.3 Gy, respectively). Three-dimensional conformal beams with wedges were shaped and weighted using forward planning. Dose-volume histograms of the PTVs and organs at risk with the SIB technique, 28 x (1.81 + 0.49 Gy), were compared with those for the sequential boost technique, 25 x 2 Gy + 8 x 2 Gy. Acute skin toxicity was evaluated for 90 patients treated with the SIB technique according to Common Terminology Criteria for Adverse Events, version 3.0. PTV coverage was adequate with both techniques. With SIB, more efficiently shaped boost beams resulted in smaller irradiated volumes. The mean volume receiving > or =107% of the breast dose was reduced by 20%, the mean volume outside the boost PTV receiving > or =95% of the boost dose was reduced by 54%, and the mean heart and lung dose were reduced by 10%. Of the evaluated patients, 32.2% had Grade 2 or worse toxicity. The SIB technique is proposed for standard use in breast-conserving radiotherapy because of its dose-limiting capabilities, easy implementation, reduced number of treatment fractions, and relatively low incidence of acute skin toxicity.
Lee, Jayoung; Kim, Shin-Wook; Son, Seok Hyun
2016-06-01
The purpose of this study was to compare the dosimetric parameters for incidental irradiation to the axilla during whole breast radiotherapy (WBRT) with 3-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT). Twenty left breast cancer patients treated with WBRT after breast-conserving surgery (BCS) were enrolled in this study. Remnant breast tissue, 3 levels of the axilla, heart, and lung were delineated. We used 2 different radiotherapy methods: 3D-CRT with field-in-field technique and 7-field fixed-beam IMRT. The target coverage of IMRT was significantly better than that of 3D-CRT (Dmean: 49.72 ± 0.64 Gy vs 50.24 ± 0.66 Gy, P < 0.001; V45: 93.19 ± 1.40% vs 98.59 ± 0.30%, P < 0.001; V47.5: 86.43 ± 2.72% vs 95.00 ± 0.02%, P < 0.001, for 3D-CRT and IMRT, respectively). In the IMRT plan, a lower dose was delivered to a wider region of the heart and lung. Significantly lower axillary irradiation was shown throughout each level of axilla by IMRT compared to 3D-CRT (Dmean for level I: 42.58 ± 5.31 Gy vs 14.49 ± 6.91 Gy, P < 0.001; Dmean for level II: 26.25 ± 10.43 Gy vs 3.41 ± 3.11 Gy, P < 0.001; Dmean for level III: 6.26 ± 4.69 Gy vs 1.16 ± 0.51 Gy, P < 0.001; Dmean for total axilla: 33.9 ± 6.89 Gy vs 9.96 ± 5.21 Gy, P < 0.001, for 3D-CRT and IMRT, respectively). In conclusion, the incidental dose delivered to the axilla was significantly lower for IMRT compared to 3D-CRT. Therefore, IMRT, which only includes the breast parenchyma, should be cautiously used in patients with limited positive sentinel lymph nodes and who do not undergo complete axillary lymph node dissection.
Wang, W; Meng, Y T; Song, Y F; Sun, T; Xu, M; Shao, Q; Zhang, Y J; Li, J B
2018-05-23
Objective: To evaluated the unplanned coverage dose to the internal mammary chain (IMC) in patient treated with postmastectomy radiotherapy (PMRT). Methods: One hundred and thirty eight patients with breast cancer receiving radiotherapy (RT) in our hospital were retrospectively analyzed. Patients were divided into three groups: three-dimensional conformal radiotherapy (3D-CRT) group, forward intensity-modulated radiotherapy (F-IMRT) group and inverse IMRT (I-IMRT) group. The IMC were contoured according to Radiation Therapy Oncology Group (RTOG) consensus, and were not include into the planning target volume (PTV). The incidental irradiation dose to IMC among the three groups and the first three intercostal spaces IMC (ICS-IMC 1-3) were all compared, and explored the relationship between the mean doses (Dmean) of IMC and the OARs (ipsilateral lung and heart). Results: The dose delivered to IMC showed no difference in CRT, F-IMRT and I-IMRT(33.80 Gy, 29.65 Gy and 32.95 Gy). And 10.42%, 2.04%, and 9.76% patients achieved ≥45 Gy when treated with CRT, F-IMRT and I-IMRT. For the IMC dose in the first three intercostal spaces (ICS1-3), there was no difference to the three treatment plannings. The Dmean, V(20), V(30), V(40) and V(50) of the ICS-IMC2 and ICS-IMC3 were all obviously superior than ICS-IMC1 for all these three plannings. Moderate positive correlation was founded between Dmean for IMC and Dmean for heart for left breast cancer patients underwent CRT ( r =0.338, P =0.01). Whereas for F-IMRT and I-IMRT groups, positive correlation were founded between Dmean for IMC and Dmean and V(20) for ipsilateral lung for all patients (F-IMRT: r =0.366, P =0.010; r =0.318, P =0.026; I-IMRT: r =0.427, P =0.005; r =0.411, P =0.008). Conclusions: In 3D-CRT, F-IMRT and I-IMRT planning methods, partial patients get IMC irradiated doses that could achieve therapeutic doses. Compared with 3D-CRT, F-IMRT and I-IMRT further reduced the dose of irradiated organs. However, there is no difference in the dose coverage of IMC for the three planned approaches when the IMC made an unplanned target.
Process-based quality management for clinical implementation of adaptive radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noel, Camille E.; Santanam, Lakshmi; Parikh, Parag J.
Purpose: Intensity-modulated adaptive radiotherapy (ART) has been the focus of considerable research and developmental work due to its potential therapeutic benefits. However, in light of its unique quality assurance (QA) challenges, no one has described a robust framework for its clinical implementation. In fact, recent position papers by ASTRO and AAPM have firmly endorsed pretreatment patient-specific IMRT QA, which limits the feasibility of online ART. The authors aim to address these obstacles by applying failure mode and effects analysis (FMEA) to identify high-priority errors and appropriate risk-mitigation strategies for clinical implementation of intensity-modulated ART. Methods: An experienced team of twomore » clinical medical physicists, one clinical engineer, and one radiation oncologist was assembled to perform a standard FMEA for intensity-modulated ART. A set of 216 potential radiotherapy failures composed by the forthcoming AAPM task group 100 (TG-100) was used as the basis. Of the 216 failures, 127 were identified as most relevant to an ART scheme. Using the associated TG-100 FMEA values as a baseline, the team considered how the likeliness of occurrence (O), outcome severity (S), and likeliness of failure being undetected (D) would change for ART. New risk priority numbers (RPN) were calculated. Failures characterized by RPN ≥ 200 were identified as potentially critical. Results: FMEA revealed that ART RPN increased for 38% (n = 48/127) of potential failures, with 75% (n = 36/48) attributed to failures in the segmentation and treatment planning processes. Forty-three of 127 failures were identified as potentially critical. Risk-mitigation strategies include implementing a suite of quality control and decision support software, specialty QA software/hardware tools, and an increase in specially trained personnel. Conclusions: Results of the FMEA-based risk assessment demonstrate that intensity-modulated ART introduces different (but not necessarily more) risks than standard IMRT and may be safely implemented with the proper mitigations.« less
Process-based quality management for clinical implementation of adaptive radiotherapy
Noel, Camille E.; Santanam, Lakshmi; Parikh, Parag J.; Mutic, Sasa
2014-01-01
Purpose: Intensity-modulated adaptive radiotherapy (ART) has been the focus of considerable research and developmental work due to its potential therapeutic benefits. However, in light of its unique quality assurance (QA) challenges, no one has described a robust framework for its clinical implementation. In fact, recent position papers by ASTRO and AAPM have firmly endorsed pretreatment patient-specific IMRT QA, which limits the feasibility of online ART. The authors aim to address these obstacles by applying failure mode and effects analysis (FMEA) to identify high-priority errors and appropriate risk-mitigation strategies for clinical implementation of intensity-modulated ART. Methods: An experienced team of two clinical medical physicists, one clinical engineer, and one radiation oncologist was assembled to perform a standard FMEA for intensity-modulated ART. A set of 216 potential radiotherapy failures composed by the forthcoming AAPM task group 100 (TG-100) was used as the basis. Of the 216 failures, 127 were identified as most relevant to an ART scheme. Using the associated TG-100 FMEA values as a baseline, the team considered how the likeliness of occurrence (O), outcome severity (S), and likeliness of failure being undetected (D) would change for ART. New risk priority numbers (RPN) were calculated. Failures characterized by RPN ≥ 200 were identified as potentially critical. Results: FMEA revealed that ART RPN increased for 38% (n = 48/127) of potential failures, with 75% (n = 36/48) attributed to failures in the segmentation and treatment planning processes. Forty-three of 127 failures were identified as potentially critical. Risk-mitigation strategies include implementing a suite of quality control and decision support software, specialty QA software/hardware tools, and an increase in specially trained personnel. Conclusions: Results of the FMEA-based risk assessment demonstrate that intensity-modulated ART introduces different (but not necessarily more) risks than standard IMRT and may be safely implemented with the proper mitigations. PMID:25086527
Chen, Hua; Wang, Hao; Gu, Hengle; Shao, Yan; Cai, Xuwei; Fu, Xiaolong; Xu, Zhiyong
2017-10-27
This study aimed to investigate the dosimetric differences and lung sparing between volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) in the treatment of upper thoracic esophageal cancer with T3N0M0 for preoperative radiotherapy by auto-planning (AP). Sixteen patient cases diagnosed with upper thoracic esophageal cancer T3N0M0 for preoperative radiotherapy were retrospectively studied, and 3 plans were generated for each patient: full arc VMAT AP plan with double arcs, partial arc VMAT AP plan with 6 partial arcs, and conventional IMRT AP plan. A simultaneous integrated boost with 2 levels was planned in all patients. Target coverage, organ at risk sparing, treatment parameters including monitor units and treatment time (TT) were evaluated. Wilcoxon signed-rank test was used to check for significant differences (p < 0.05) between datasets. VMAT plans (pVMAT and fVMAT) significantly reduced total lung volume treated above 20 Gy (V 20 ), 25 Gy (V 25 ), 30 Gy (V 30 ), 35 Gy (V 35 ), 40 Gy (V 40 ), and without increasing the value of V 10 , V 13 , and V 15 . For V 5 of total lung value, pVMAT was similar to aIMRT, and it was better than fVMAT. Both pVMAT and fVMAT improved the target dose coverage and significantly decreased maximum dose for the spinal cord, monitor unit, and TT. No significant difference was observed with respect to V 10 and V 15 of body. VMAT AP plan was a good option for treating upper thoracic esophageal cancer with T3N0M0, especially partial arc VMAT AP plan. It had the potential to effectively reduce lung dose in a shorter TT and with superior target coverage and dose homogeneity. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Process-based quality management for clinical implementation of adaptive radiotherapy.
Noel, Camille E; Santanam, Lakshmi; Parikh, Parag J; Mutic, Sasa
2014-08-01
Intensity-modulated adaptive radiotherapy (ART) has been the focus of considerable research and developmental work due to its potential therapeutic benefits. However, in light of its unique quality assurance (QA) challenges, no one has described a robust framework for its clinical implementation. In fact, recent position papers by ASTRO and AAPM have firmly endorsed pretreatment patient-specific IMRT QA, which limits the feasibility of online ART. The authors aim to address these obstacles by applying failure mode and effects analysis (FMEA) to identify high-priority errors and appropriate risk-mitigation strategies for clinical implementation of intensity-modulated ART. An experienced team of two clinical medical physicists, one clinical engineer, and one radiation oncologist was assembled to perform a standard FMEA for intensity-modulated ART. A set of 216 potential radiotherapy failures composed by the forthcoming AAPM task group 100 (TG-100) was used as the basis. Of the 216 failures, 127 were identified as most relevant to an ART scheme. Using the associated TG-100 FMEA values as a baseline, the team considered how the likeliness of occurrence (O), outcome severity (S), and likeliness of failure being undetected (D) would change for ART. New risk priority numbers (RPN) were calculated. Failures characterized by RPN ≥ 200 were identified as potentially critical. FMEA revealed that ART RPN increased for 38% (n = 48/127) of potential failures, with 75% (n = 36/48) attributed to failures in the segmentation and treatment planning processes. Forty-three of 127 failures were identified as potentially critical. Risk-mitigation strategies include implementing a suite of quality control and decision support software, specialty QA software/hardware tools, and an increase in specially trained personnel. Results of the FMEA-based risk assessment demonstrate that intensity-modulated ART introduces different (but not necessarily more) risks than standard IMRT and may be safely implemented with the proper mitigations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, S; Kyung Hee University Hospital at Gangdong, Gangdong-gu; Kim, D
2015-06-15
Purpose: The hippocampus sparing during the cranial irradiation has become interesting because it may mitigate radiation-induced neurocognitive toxicity. Herein we report our preliminary study for sparing the hippocampus with and without tilling condition for patient with brain metastases. Methods: Ten patients previously treated with whole brain were reviewed. Five patients tilted the head to around 30 degrees and others were treated without tilting. Treatment plans of linear accelerator (Linac)-based volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) were generated for prescription dose of 30 Gy in 15 fractions. Hippocampal avoidance regions were created with 5-mm volumetric expansion aroundmore » the hippocampus. Whole brain, hippocampus and hippocampal avoidance volume were 1372cm3, 6cm3 and 30cm3 and hippocampal avoidance volume was 2.2% of the whole brain planned target volume in average. Organs at risk (OARs) are hippocampus, eyes, lens, and cochleae. Coverage index (CVI), conformity index (CI), homogeneity index (HI) and mean dose to OARs were used to compare dose characteristic of tilted and non-tilted cases. Results: In IMRT, when CI, CVI and HI of whole brain were 0.88, 0.09 and 0.98 in both tilted and non-tilted cases, absorbed dose of hippocampal avoidance volume in tilted cases were 10% lower than non-tilted cases. Doses in other OARs such as eyes, lens, and cochleae were also decreased about 20% when tilting the head. When CI, HI and CVI in VMAT were 0.9, 0.08 and 0.99, the dose-decreased ratio of OARs in both with and without tilting cases were almost the same with IMRT. But absolute dose of hippocampal avoidance volume in VMAT was 30% lower than IMRT. Conclusion: This study confirms that dose to hippocampus decreases if patients tilt the head. When treating the whole brain with head tilted, patients can acquire the same successful treatment Result and also preserve their valuable memory.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carosi, Alessandra, E-mail: alessandra.carosi@katamail.com; Ingrosso, Gianluca; Ponti, Elisabetta
2014-07-01
The purpose of this study is to analyze the dosimetric effect of Elekta Beam Modulator in 3-dimensional conformal radiation therapy (3DCRT) and in intensity-modulated radiation therapy (IMRT) for localized prostate cancer. We compared treatment plans developed with 2 different Elekta multileaf collimators (MLC): Beam Modulator micro-MLC (mMLC) (4-mm leaf width at the isocenter) and standard MLC (10-mm leaf width at the isocenter). The comparison was performed for 15 patients with localized prostate cancer in 3DCRT and IMRT delivery; a total of 60 treatment plans were processed. The dose-volume histograms were used to provide the quantitative comparison between plans. In particular,more » we analyzed differences between rectum and bladder sparing in terms of a set of appropriate Vx (percentage of organ at risk [OAR] volume receiving the x dose) and differences between target conformity and coverage in terms of coverage factor and conformation number. Our analysis demonstrates that in 3DCRT there is an advantage in the use of Elekta Beam Modulator mMLC in terms of organ sparing; in particular, a significant decrease in rectal V{sub 60} and V{sub 50} (p = 0.001) and in bladder V{sub 70} and V{sub 65} (p = 0.007 and 0.002, respectively) was found. Moreover, a better target dose conformity was obtained (p = 0.002). IMRT plans comparison demonstrated no significant differences between the use of the 4 or 10-mm MLCs. Our analysis shows that in 3DCRT the use of the Elekta Beam Modulator mMLC gives a gain in target conformity and in OARs dose sparing whereas in IMRT plans there is no advantage.« less
Wilkins, Anna; Dearnaley, David; Somaiah, Navita
2015-01-01
Localised prostate cancer, in particular, intermediate risk disease, has varied survival outcomes that cannot be predicted accurately using current clinical risk factors. External beam radiotherapy (EBRT) is one of the standard curative treatment options for localised disease and its efficacy is related to wide ranging aspects of tumour biology. Histopathological techniques including immunohistochemistry and a variety of genomic assays have been used to identify biomarkers of tumour proliferation, cell cycle checkpoints, hypoxia, DNA repair, apoptosis, and androgen synthesis, which predict response to radiotherapy. Global measures of genomic instability also show exciting capacity to predict survival outcomes following EBRT. There is also an urgent clinical need for biomarkers to predict the radiotherapy fraction sensitivity of different prostate tumours and preclinical studies point to possible candidates. Finally, the increased resolution of next generation sequencing (NGS) is likely to enable yet more precise molecular predictions of radiotherapy response and fraction sensitivity. PMID:26504789
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pow, Edmond H.N., E-mail: ehnpow@hku.hk; Kwong, Dora L.W.; Sham, Jonathan S.T.
Purpose: To investigate the changes in salivary function and oral health-related quality of life for patients with nasopharyngeal carcinoma treated by intensity-modulated radiotherapy (IMRT). Methods and Materials: A total of 57 patients with early-stage nasopharyngeal carcinoma received IMRT. The parotid and whole saliva flow was measured, and the Medical Outcomes Study 36-item short form, European Organization for Research and Treatment of Cancer Quality of Life questionnaire-C30, European Organization for Research and Treatment of Cancer Quality of Life questionnaire 35-item head-and-neck module, and Oral Health Impact Profile questionnaires were completed at baseline and 2, 6, 12, 18, and 24 months aftermore » IMRT. Results: Parotid saliva flow recovered fully after 1 year and maintained. Whole saliva flow recovered partially to 40% of baseline. A general trend of deterioration in most quality of life scales was observed after IMRT, followed by gradual recovery. Persistent oral-related symptoms were found 2 years after treatment. Conclusion: IMRT for early-stage nasopharyngeal carcinoma could only partially preserve the whole salivary function and oral health-related quality of life.« less
Ko, Young Eun; Cho, Byungchul; Kim, Su Ssan; Song, Si Yeol; Choi, Eun Kyung; Ahn, Seung Do; Yi, Byongyong
2016-01-01
Purpose To develop a simplified volumetric modulated arc therapy (VMAT) technique for more accurate dose delivery in thoracic stereotactic body radiation therapy (SBRT). Methods and Materials For each of the 22 lung SBRT cases treated with respiratory-gated VMAT, a dose rate modulated arc therapy (DrMAT) plan was retrospectively generated. A dynamic conformal arc therapy plan with 33 adjoining coplanar arcs was designed and their beam weights were optimized by an inverse planning process. All sub-arc beams were converted into a series of control points with varying MLC segment and dose rates and merged into an arc beam for a DrMAT plan. The plan quality of original VMAT and DrMAT was compared in terms of target coverage, compactness of dose distribution, and dose sparing of organs at risk. To assess the delivery accuracy, the VMAT and DrMAT plans were delivered to a motion phantom programmed with the corresponding patients’ respiratory signal; results were compared using film dosimetry with gamma analysis. Results The plan quality of DrMAT was equivalent to that of VMAT in terms of target coverage, dose compactness, and dose sparing for the normal lung. In dose sparing for other critical organs, DrMAT was less effective than VMAT for the spinal cord, heart, and esophagus while being well within the limits specified by the Radiation Therapy Oncology Group. Delivery accuracy of DrMAT to a moving target was similar to that of VMAT using a gamma criterion of 2%/2mm but was significantly better using a 2%/1mm criterion, implying the superiority of DrMAT over VMAT in SBRT for thoracic/abdominal tumors with respiratory movement. Conclusion We developed a DrMAT technique for SBRT that produces plans of a quality similar to that achieved with VMAT but with better delivery accuracy. This technique is well-suited for small tumors with motion uncertainty. PMID:27333199
Fujarewicz, Krzysztof; Lakomiec, Krzysztof
2016-12-01
We investigate a spatial model of growth of a tumor and its sensitivity to radiotherapy. It is assumed that the radiation dose may vary in time and space, like in intensity modulated radiotherapy (IMRT). The change of the final state of the tumor depends on local differences in the radiation dose and varies with the time and the place of these local changes. This leads to the concept of a tumor's spatiotemporal sensitivity to radiation, which is a function of time and space. We show how adjoint sensitivity analysis may be applied to calculate the spatiotemporal sensitivity of the finite difference scheme resulting from the partial differential equation describing the tumor growth. We demonstrate results of this approach to the tumor proliferation, invasion and response to radiotherapy (PIRT) model and we compare the accuracy and the computational effort of the method to the simple forward finite difference sensitivity analysis. Furthermore, we use the spatiotemporal sensitivity during the gradient-based optimization of the spatiotemporal radiation protocol and present results for different parameters of the model.
Role of particle radiotherapy in the management of head and neck cancer.
Laramore, George E
2009-05-01
Modern imaging techniques and powerful computers allow a radiation oncologist to design treatments delivering higher doses of radiation than previously possible. Dose distributions imposed by the physics of 'standard' photon and electron beams limit further dose escalation. Hadron radiotherapy offers advantages in either dose distribution and/or improved radiobiology that may significantly improve the treatment of certain head and neck malignancies. Clinical studies support the effectiveness of fast-neutron radiotherapy in the treatment of major and minor salivary gland tumors. Data show highly favorable outcomes with proton radiotherapy for skull-base malignancies and tumors near highly critical normal tissues compared with that expected with standard radiotherapy. Heavy-ion radiotherapy clinical studies are mainly being conducted with fully stripped carbon ions, and limited data seem to indicate a possible improvement over proton radiotherapy for the same subset of radioresistant tumors where neutrons show a benefit over photons. Fast-neutron radiotherapy has different radiobiological properties compared with standard radiotherapy but similar depth dose distributions. Its role in the treatment of head and neck cancer is currently limited to salivary gland malignancies and certain radioresistant tumors such as sarcomas. Protons have the same radiobiological properties as standard radiotherapy beams but more optimal depth dose distributions, making it particularly advantageous when treating tumors adjacent to highly critical structures. Heavy ions combine the radiobiological properties of fast neutrons with the physical dose distributions of protons, and preliminary data indicate their utility for radioresistant tumors adjacent to highly critical structures.
Intensity modulated neutron radiotherapy optimization by photon proxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, Michael; Hammoud, Ahmad; Bossenberger, Todd
2012-08-15
Purpose: Introducing intensity modulation into neutron radiotherapy (IMNRT) planning has the potential to mitigate some normal tissue complications seen in past neutron trials. While the hardware to deliver IMNRT plans has been in use for several years, until recently the IMNRT planning process has been cumbersome and of lower fidelity than conventional photon plans. Our in-house planning system used to calculate neutron therapy plans allows beam weight optimization of forward planned segments, but does not provide inverse optimization capabilities. Commercial treatment planning systems provide inverse optimization capabilities, but currently cannot model our neutron beam. Methods: We have developed a methodologymore » and software suite to make use of the robust optimization in our commercial planning system while still using our in-house planning system to calculate final neutron dose distributions. Optimized multileaf collimator (MLC) leaf positions for segments designed in the commercial system using a 4 MV photon proxy beam are translated into static neutron ports that can be represented within our in-house treatment planning system. The true neutron dose distribution is calculated in the in-house system and then exported back through the MATLAB software into the commercial treatment planning system for evaluation. Results: The planning process produces optimized IMNRT plans that reduce dose to normal tissue structures as compared to 3D conformal plans using static MLC apertures. The process involves standard planning techniques using a commercially available treatment planning system, and is not significantly more complex than conventional IMRT planning. Using a photon proxy in a commercial optimization algorithm produces IMNRT plans that are more conformal than those previously designed at our center and take much less time to create. Conclusions: The planning process presented here allows for the optimization of IMNRT plans by a commercial treatment planning optimization algorithm, potentially allowing IMNRT to achieve similar conformality in treatment as photon IMRT. The only remaining requirements for the delivery of very highly modulated neutron treatments are incremental improvements upon already implemented hardware systems that should be readily achievable.« less
Rieken, Stefan; Habermehl, Daniel; Giesel, Frederik L; Hoffmann, Christoph; Burger, Ute; Rief, Harald; Welzel, Thomas; Haberkorn, Uwe; Debus, Jürgen; Combs, Stephanie E
2013-12-01
Modern radiotherapy (RT) techniques such as stereotactic RT, intensity-modulated RT, or particle irradiation allow local dose escalation with simultaneous sparing of critical organs. Several trials are currently investigating their benefit in glioma reirradiation and boost irradiation. Target volume definition is of critical importance especially when steep dose gradient techniques are employed. In this manuscript we investigate the impact of O-(2-(F-18)fluoroethyl)-l-tyrosine-positron emission tomography/computer tomography (FET-PET/CT) on target volume definition in low and high grade glioma patients undergoing either first or re-irradiation with particles. We investigated volumetric size and uniformity of magnetic resonance imaging (MRI)- vs. FET-PET/CT-derived gross tumor volumes (GTVs) and planning target volumes (PTVs) of 41 glioma patients. Clinical cases are presented to demonstrate potential benefits of integrating FET-PET/CT-planning into daily routine. Integrating FET-uptake into the delineation of GTVs yields larger volumes. Combined modality-derived PTVs are significantly enlarged in high grade glioma patients and in case of primary RT. The congruence of MRI and FET signals for the identification of glioma GTVs is poor with mean uniformity indices of 0.39. MRI-based PTVs miss 17% of FET-PET/CT-based GTVs. Non significant alterations were detected in low grade glioma patients and in those undergoing reirradiation. Target volume definition for malignant gliomas during initial RT may yield significantly differing results depending upon the imaging modality, which the contouring process is based upon. The integration of both MRI and FET-PET/CT may help to improve GTV coverage by avoiding larger incongruences between physical and biological imaging techniques. In low grade gliomas and in cases of reirradiation, more studies are needed in order to investigate a potential benefit of FET-PET/CT for planning of RT. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Stereotactic radiotherapy for malignancies involving the trigeminal and facial nerves.
Cuneo, K C; Zagar, T M; Brizel, D M; Yoo, D S; Hoang, J K; Chang, Z; Wang, Z; Yin, F F; Das, S K; Green, S; Ready, N; Bhatti, M T; Kaylie, D M; Becker, A; Sampson, J H; Kirkpatrick, J P
2012-06-01
Involvement of a cranial nerve caries a poor prognosis for many malignancies. Recurrent or residual disease in the trigeminal or facial nerve after primary therapy poses a challenge due to the location of the nerve in the skull base, the proximity to the brain, brainstem, cavernous sinus, and optic apparatus and the resulting complex geometry. Surgical resection caries a high risk of morbidity and is often not an option for these patients. Stereotactic radiosurgery and radiotherapy are potential treatment options for patients with cancer involving the trigeminal or facial nerve. These techniques can deliver high doses of radiation to complex volumes while sparing adjacent critical structures. In the current study, seven cases of cancer involving the trigeminal or facial nerve are presented. These patients had unresectable recurrent or residual disease after definitive local therapy. Each patient was treated with stereotactic radiation therapy using a linear accelerator based system. A multidisciplinary approach including neuroradiology and surgical oncology was used to delineate target volumes. Treatment was well tolerated with no acute grade 3 or higher toxicity. One patient who was reirradiated experienced cerebral radionecrosis with mild symptoms. Four of the seven patients treated had no evidence of disease after a median follow up of 12 months (range 2-24 months). A dosimetric analysis was performed to compare intensity modulated fractionated stereotactic radiation therapy (IM-FSRT) to a 3D conformal technique. The dose to 90% (D90) of the brainstem was lower with the IM-FSRT plan by a mean of 13.5 Gy. The D95 to the ipsilateral optic nerve was also reduced with IM-FSRT by 12.2 Gy and the D95 for the optic chiasm was lower with FSRT by 16.3 Gy. Treatment of malignancies involving a cranial nerve requires a multidisciplinary approach. Use of an IM-FSRT technique with a micro-multileaf collimator resulted in a lower dose to the brainstem, optic nerves and chiasm for each case examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, X; Driewer, J; Lei, Y
2015-06-15
Purpose: Grid therapy has promising applications in the radiation treatment of bulky and large tumors. However, research and applications of grid therapy is limited by the accessibility of the specialized blocks that produce the grid of pencil-like radiation beams. In this study, a Cerrobend grid block was fabricated using a 3D printing technique. Methods: A grid block mold was designed with divergent tubes following beam central rays. The mold was printed using a resin with the working temperature below 230 °C. The melted Cerrobend liquid at 120°oC was cast into the resin mold to yield a block with a thicknessmore » of 7.4 cm. The grid had a hexagonal pattern, with each pencil beam diameter of 1.4 cm at the iso-center plane; the distance between the beam centers was 2 cm. The dosimetric properties of the grid block were studied using radiographic film and small field dosimeters. Results: the grid block was fabricated to be mounted at the third accessory mount of a Siemens Oncor linear accelerator. Fabricating a grid block using 3D printing is similar to making cutouts for traditional radiotherapy photon blocks, with the difference being that the mold was created by a 3D printer rather than foam. In this study, the valley-to-peak ratio for a 6MV photon grid beam was 20% at dmax, and 30% at 10 cm depth, respectively. Conclusion: We have demonstrated a novel process for implementing grid radiotherapy using 3D printing techniques. Compared to existing approaches, our technique combines reduced cost, accessibility, and flexibility in customization with efficient delivery. This lays the groundwork for future studies to improve our understanding of the efficacy of grid therapy and apply it to improve cancer treatment.« less
The effect on esophagus after different radiotherapy techniques for early stage Hodgkin's lymphoma.
Jørgensen, Anni Y S; Maraldo, Maja V; Brodin, Nils Patrik; Aznar, Marianne C; Vogelius, Ivan R; Rosenschöld, Per Munck Af; Petersen, Peter M; Specht, Lena
2013-10-01
The cure rate of early stage Hodgkin's lymphoma (HL) is excellent; investigating the late effects of treatment is thus important. Esophageal toxicity is a known side effect in patients receiving radiotherapy (RT) to the mediastinum, although little is known of this in HL survivors. This study investigates the dose to the esophagus in the treatment of early stage HL using different RT techniques. Estimated risks of early esophagitis, esophageal stricture and cancer are compared between treatments. We included 46 patients ≥ 15 years with supradiaphragmatic, clinical stage I-II HL, who received chemotherapy followed by involved node RT (INRT) to 30.6 Gy at our institution. INRT was planned with three-dimensional conformal RT (3DCRT). For each patient a volumetric modulated arc therapy (VMAT), proton therapy (PT) and mantle field (MF) treatment plan was simulated. Mean, maximum and minimum dose to the esophagus were extracted from the treatment plans. Risk estimates were based on dose-response models from clinical series with long-term follow-up. Statistical analyses were performed with repeated measures ANOVA using Bonferroni corrections. Mean dose to the esophagus was 16.4, 16.4, 14.7 and 34.2 Gy (p < 0.001) with 3DCRT, VMAT, PT and MF treatment, respectively. No differences were seen in the estimated risk of developing esophagitis, stricture or cancer with 3DCRT compared to VMAT (p = 1.000, p = 1.000, p = 0.356). PT performed significantly better with the lowest risk estimates on all parameters compared to the photon treatments, except compared to 3DCRT for stricture (p = 0.066). On all parameters the modern techniques were superior to MF treatment (p < 0.001). The estimated dose to the esophagus and the corresponding estimated risks of esophageal complications are decreased significantly with highly conformal RT compared to MF treatment. The number of patients presenting with late esophageal side effects will, thus, likely be minimal in the future.
NASA Astrophysics Data System (ADS)
Salguero, Francisco Javier; Arráns, Rafael; Atriana Palma, Bianey; Leal, Antonio
2010-03-01
The purpose of this paper is to assess the feasibility of delivering intensity- and energy-modulated electron radiation treatment (MERT) by a photon multileaf collimator (xMLC) and to evaluate the improvements obtained in shallow head and neck (HN) tumors. Four HN patient cases covering different clinical situations were planned by MERT, which used an in-house treatment planning system that utilized Monte Carlo dose calculation. The cases included one oronasal, two parotid and one middle ear tumors. The resulting dose-volume histograms were compared with those obtained from conventional photon and electron treatment techniques in our clinic, which included IMRT, electron beam and mixed beams, most of them using fixed-thickness bolus. Experimental verification was performed with plane-parallel ionization chambers for absolute dose verification, and a PTW ionization chamber array and radiochromic film for relative dosimetry. A MC-based treatment planning system for target with compromised volumes in depth and laterally has been validated. A quality assurance protocol for individual MERT plans was launched. Relative MC dose distributions showed a high agreement with film measurements and absolute ion chamber dose measurements performed at a reference point agreed with MC calculations within 2% in all cases. Clinically acceptable PTV coverage and organ-at-risk sparing were achieved by using the proposed MERT approach. MERT treatment plans, based on delivery of intensity-modulated electron beam using the xMLC, for superficial head and neck tumors, demonstrated comparable or improved PTV dose homogeneity with significantly lower dose to normal tissues. The clinical implementation of this technique will be able to offer a viable alternative for the treatment of shallow head and neck tumors.
Kaliyaperumal, Venkatesan; Raphael, C. Jomon; Varghese, K. Mathew; Gopu, Paul; Sivakumar, S.; Boban, Minu; Raj, N. Arunai Nambi; Senthilnathan, K.; Babu, P. Ramesh
2017-01-01
Cone-beam computed tomography (CBCT) images are presently used for geometric verification for daily patient positioning. In this work, we have compared the images of CBCT with the images of conventional fan beam CT (FBCT) in terms of image quality and Hounsfield units (HUs). We also compared the dose calculated using CBCT with that of FBCT. Homogenous RW3 plates and Catphan phantom were scanned by FBCT and CBCT. In RW3 and Catphan phantom, percentage depth dose (PDD), profiles, isodose distributions (for intensity modulated radiotherapy plans), and calculated dose volume histograms were compared. The HU difference was within ± 20 HU (central region) and ± 30 HU (peripheral region) for homogeneous RW3 plates. In the Catphan phantom, the difference in HU was ± 20 HU in the central area and peripheral areas. The HU differences were within ± 30 HU for all HU ranges starting from −1000 to 990 in phantom and patient images. In treatment plans done with simple symmetric and asymmetric fields, dose difference (DD) between CBCT plan and FBCT plan was within 1.2% for both phantoms. In intensity modulated radiotherapy (IMRT) treatment plans, for different target volumes, the difference was <2%. This feasibility study investigated HU variation and dose calculation accuracy between FBCT and CBCT based planning and has validated inverse planning algorithms with CBCT. In our study, we observed a larger deviation of HU values in the peripheral region compared to the central region. This is due to the ring artifact and scatter contribution which may prevent the use of CBCT as the primary imaging modality for radiotherapy treatment planning. The reconstruction algorithm needs to be modified further for improving the image quality and accuracy in HU values. However, our study with TG-119 and intensity modulated radiotherapy test targets shows that CBCT can be used for adaptive replanning as the recalculation of dose with the anisotropic analytical algorithm is in full accord with conventional planning CT except in the build-up regions. Patient images with CBCT have to be carefully analyzed for any artifacts before using them for such dose calculations. PMID:28974864
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kole, Thomas P.; Aghayere, Osarhieme; Kwah, Jason
Purpose: To compare heart and coronary artery radiation exposure using intensity-modulated radiotherapy (IMRT) vs. four-field three-dimensional conformal radiotherapy (3D-CRT) treatment plans for patients with distal esophageal cancer undergoing chemoradiation. Methods and Materials: Nineteen patients with distal esophageal cancers treated with IMRT from March 2007 to May 2008 were identified. All patients were treated to 50.4 Gy with five-field IMRT plans. Theoretical 3D-CRT plans with four-field beam arrangements were generated. Dose-volume histograms of the planning target volume, heart, right coronary artery, left coronary artery, and other critical normal tissues were compared between the IMRT and 3D-CRT plans, and selected parameters weremore » statistically evaluated using the Wilcoxon rank-sum test. Results: Intensity-modulated radiotherapy treatment planning showed significant reduction (p < 0.05) in heart dose over 3D-CRT as assessed by average mean dose (22.9 vs. 28.2 Gy) and V30 (24.8% vs. 61.0%). There was also significant sparing of the right coronary artery (average mean dose, 23.8 Gy vs. 35.5 Gy), whereas the left coronary artery showed no significant improvement (mean dose, 11.2 Gy vs. 9.2 Gy), p = 0.11. There was no significant difference in percentage of total lung volume receiving at least 10, 15, or 20 Gy or in the mean lung dose between the planning methods. There were also no significant differences observed for the kidneys, liver, stomach, or spinal cord. Intensity-modulated radiotherapy achieved a significant improvement in target conformity as measured by the conformality index (ratio of total volume receiving 95% of prescription dose to planning target volume receiving 95% of prescription dose), with the mean conformality index reduced from 1.56 to 1.30 using IMRT. Conclusions: Treatment of patients with distal esophageal cancer using IMRT significantly decreases the exposure of the heart and right coronary artery when compared with 3D-CRT. Long-term studies are necessary to determine how this will impact on development of coronary artery disease and other cardiac complications.« less
Oechsner, Markus; Odersky, Leonhard; Berndt, Johannes; Combs, Stephanie Elisabeth; Wilkens, Jan Jakob; Duma, Marciana Nona
2015-12-01
The purpose of this study was to assess the impact on dose to the planning target volume (PTV) and organs at risk (OAR) by using four differently generated CT datasets for dose calculation in stereotactic body radiotherapy (SBRT) of lung and liver tumors. Additionally, dose differences between 3D conformal radiotherapy and volumetric modulated arc therapy (VMAT) plans calculated on these CT datasets were determined. Twenty SBRT patients, ten lung cases and ten liver cases, were retrospectively selected for this study. Treatment plans were optimized on average intensity projection (AIP) CTs using 3D conformal radiotherapy (3D-CRT) and volumetric modulated arc therapy (VMAT). Afterwards, the plans were copied to the planning CTs (PCT), maximum intensity projection (MIP) and mid-ventilation (MidV) CT datasets and dose was recalculated keeping all beam parameters and monitor units unchanged. Ipsilateral lung and liver volumes and dosimetric parameters for PTV (Dmean, D2, D98, D95), ipsilateral lung and liver (Dmean, V30, V20, V10) were determined and statistically analysed using Wilcoxon test. Significant but small mean differences were found for PTV dose between the CTs (lung SBRT: ≤2.5 %; liver SBRT: ≤1.6 %). MIPs achieved the smallest lung and the largest liver volumes. OAR mean doses in MIP plans were distinctly smaller than in the other CT datasets. Furthermore, overlapping of tumors with the diaphragm results in underestimated ipsilateral lung dose in MIP plans. Best agreement was found between AIP and MidV (lung SBRT). Overall, differences in liver SBRT were smaller than in lung SBRT and VMAT plans achieved slightly smaller differences than 3D-CRT plans. Only small differences were found for PTV parameters between the four CT datasets. Larger differences occurred for the doses to organs at risk (ipsilateral lung, liver) especially for MIP plans. No relevant differences were observed between 3D-CRT or VMAT plans. MIP CTs are not appropriate for OAR dose assessment. PCT, AIP and MidV resulted in similar doses. If a 4DCT is acquired PCT can be omitted using AIP or MidV for treatment planning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muenter, Marc W.; Hoffner, Simone; Department of Nuclear Medicine, University of Heidelberg, Heidelberg
2007-03-01
Purpose: The aim of this study was to compare changes in salivary gland function after intensity-modulated radiotherapy (IMRT) and conventional radiotherapy (RT), with or without Amifostine, for tumors of the head-and-neck region using quantitative salivary gland scintigraphy (QSGS). Methods and Materials: A total of 75 patients received pre- and post-therapeutic QSGS to quantify the salivary gland function. In all, 251 salivary glands were independently evaluated. Changes in the maximum uptake ({delta}U) and relative excretion rate ({delta}F) both pre- and post-RT were determined to characterize radiation-induced changes in the salivary gland function. In addition, dose-response curves were calculated. Results: In allmore » groups, maximum uptake and relative excretion rate were reduced after RT ({delta}U {<=}0 and {delta}F {<=}0). The reduction was significantly lower for IMRT than for conventional RT. For the parotid glands, the reduction was smaller for the IMRT-low than for the IMRT-high group. For the Amifostine-high and the conventional group the difference was significant only for one parameter ({delta}U, parotid and submandibular glands, p < 0.05). In contrast to this, the difference between the Amifostine-low and the conventional group was always significant or at least showed a clear trend for both changes in U and F. In regard to the endpoint 'reduction of the salivary gland excretion rate of more than 50%,' the dose-response curves yielded D{sub 50}-values of 34.2 {+-} 12.2 Gy for the conventionally treated group and 36.8 {+-} 2.9 Gy for the IMRT group. For the Amifostine group, an increased D{sub 50}-values of 46.3 {+-} 2.3 Gy was obtained. Conclusion: Intensity-modulated RT can significantly reduce the loss of parotid gland function when respecting a certain dose threshold. Conventional RT plus Amifostine prevents reduced salivary gland function only in the patient group treated with <40.6 Gy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berman Milby, Abigail; Both, Stefan, E-mail: both@uphs.upenn.edu; Ingram, Mark
2012-03-01
Purpose: To perform a dosimetric comparison of intensity-modulated radiotherapy (IMRT), passive scattering proton therapy (PSPT), and intensity-modulated proton therapy (IMPT) to the para-aortic (PA) nodal region in women with locally advanced gynecologic malignancies. Methods and Materials: The CT treatment planning scans of 10 consecutive patients treated with IMRT to the pelvis and PA nodes were identified. The clinical target volume was defined by the primary tumor for patients with cervical cancer and by the vagina and paravaginal tissues for patients with endometrial cancer, in addition to the regional lymph nodes. The IMRT, PSPT, and IMPT plans were generated using themore » Eclipse Treatment Planning System and were analyzed for various dosimetric endpoints. Two groups of treatment plans including proton radiotherapy were created: IMRT to pelvic nodes with PSPT to PA nodes (PSPT/IMRT), and IMRT to pelvic nodes with IMPT to PA nodes (IMPT/IMRT). The IMRT and proton RT plans were optimized to deliver 50.4 Gy or Gy (relative biologic effectiveness [RBE)), respectively. Dose-volume histograms were analyzed for all of the organs at risk. The paired t test was used for all statistical comparison. Results: The small-bowel V{sub 20}, V{sub 30}, V{sub 35}, andV{sub 40} were reduced in PSPT/IMRT by 11%, 18%, 27%, and 43%, respectively (p < 0.01). Treatment with IMPT/IMRT demonstrated a 32% decrease in the small-bowel V{sub 20}. Treatment with PSPT/IMRT showed statistically significant reductions in the body V{sub 5-20}; IMPT/IMRT showed reductions in the body V{sub 5-15}. The dose received by half of both kidneys was reduced by PSPT/IMRT and by IMPT/IMRT. All plans maintained excellent coverage of the planning target volume. Conclusions: Compared with IMRT alone, PSPT/IMRT and IMPT/IMRT had a statistically significant decrease in dose to the small and large bowel and kidneys, while maintaining excellent planning target volume coverage. Further studies should be done to correlate the clinical significance of these findings.« less
Coles, Charlotte E; Griffin, Clare L; Kirby, Anna M; Titley, Jenny; Agrawal, Rajiv K; Alhasso, Abdulla; Bhattacharya, Indrani S; Brunt, Adrian M; Ciurlionis, Laura; Chan, Charlie; Donovan, Ellen M; Emson, Marie A; Harnett, Adrian N; Haviland, Joanne S; Hopwood, Penelope; Jefford, Monica L; Kaggwa, Ronald; Sawyer, Elinor J; Syndikus, Isabel; Tsang, Yat M; Wheatley, Duncan A; Wilcox, Maggie; Yarnold, John R; Bliss, Judith M
2017-09-09
Local cancer relapse risk after breast conservation surgery followed by radiotherapy has fallen sharply in many countries, and is influenced by patient age and clinicopathological factors. We hypothesise that partial-breast radiotherapy restricted to the vicinity of the original tumour in women at lower than average risk of local relapse will improve the balance of beneficial versus adverse effects compared with whole-breast radiotherapy. IMPORT LOW is a multicentre, randomised, controlled, phase 3, non-inferiority trial done in 30 radiotherapy centres in the UK. Women aged 50 years or older who had undergone breast-conserving surgery for unifocal invasive ductal adenocarcinoma of grade 1-3, with a tumour size of 3 cm or less (pT1-2), none to three positive axillary nodes (pN0-1), and minimum microscopic margins of non-cancerous tissue of 2 mm or more, were recruited. Patients were randomly assigned (1:1:1) to receive 40 Gy whole-breast radiotherapy (control), 36 Gy whole-breast radiotherapy and 40 Gy to the partial breast (reduced-dose group), or 40 Gy to the partial breast only (partial-breast group) in 15 daily treatment fractions. Computer-generated random permuted blocks (mixed sizes of six and nine) were used to assign patients to groups, stratifying patients by radiotherapy treatment centre. Patients and clinicians were not masked to treatment allocation. Field-in-field intensity-modulated radiotherapy was delivered using standard tangential beams that were simply reduced in length for the partial-breast group. The primary endpoint was ipsilateral local relapse (80% power to exclude a 2·5% increase [non-inferiority margin] at 5 years for each experimental group; non-inferiority was shown if the upper limit of the two-sided 95% CI for the local relapse hazard ratio [HR] was less than 2·03), analysed by intention to treat. Safety analyses were done in all patients for whom data was available (ie, a modified intention-to-treat population). This study is registered in the ISRCTN registry, number ISRCTN12852634. Between May 3, 2007, and Oct 5, 2010, 2018 women were recruited. Two women withdrew consent for use of their data in the analysis. 674 patients were analysed in the whole-breast radiotherapy (control) group, 673 in the reduced-dose group, and 669 in the partial-breast group. Median follow-up was 72·2 months (IQR 61·7-83·2), and 5-year estimates of local relapse cumulative incidence were 1·1% (95% CI 0·5-2·3) of patients in the control group, 0·2% (0·02-1·2) in the reduced-dose group, and 0·5% (0·2-1·4) in the partial-breast group. Estimated 5-year absolute differences in local relapse compared with the control group were -0·73% (-0·99 to 0·22) for the reduced-dose and -0·38% (-0·84 to 0·90) for the partial-breast groups. Non-inferiority can be claimed for both reduced-dose and partial-breast radiotherapy, and was confirmed by the test against the critical HR being more than 2·03 (p=0·003 for the reduced-dose group and p=0·016 for the partial-breast group, compared with the whole-breast radiotherapy group). Photographic, patient, and clinical assessments recorded similar adverse effects after reduced-dose or partial-breast radiotherapy, including two patient domains achieving statistically significantly lower adverse effects (change in breast appearance [p=0·007 for partial-breast] and breast harder or firmer [p=0·002 for reduced-dose and p<0·0001 for partial-breast]) compared with whole-breast radiotherapy. We showed non-inferiority of partial-breast and reduced-dose radiotherapy compared with the standard whole-breast radiotherapy in terms of local relapse in a cohort of patients with early breast cancer, and equivalent or fewer late normal-tissue adverse effects were seen. This simple radiotherapy technique is implementable in radiotherapy centres worldwide. Cancer Research UK. Copyright © 2017 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.
Xiao, Ying; Kry, Stephen F; Popple, Richard; Yorke, Ellen; Papanikolaou, Niko; Stathakis, Sotirios; Xia, Ping; Huq, Saiful; Bayouth, John; Galvin, James; Yin, Fang-Fang
2015-05-08
This report describes the current state of flattening filter-free (FFF) radiotherapy beams implemented on conventional linear accelerators, and is aimed primarily at practicing medical physicists. The Therapy Emerging Technology Assessment Work Group of the American Association of Physicists in Medicine (AAPM) formed a writing group to assess FFF technology. The published literature on FFF technology was reviewed, along with technical specifications provided by vendors. Based on this information, supplemented by the clinical experience of the group members, consensus guidelines and recommendations for implementation of FFF technology were developed. Areas in need of further investigation were identified. Removing the flattening filter increases beam intensity, especially near the central axis. Increased intensity reduces treatment time, especially for high-dose stereotactic radiotherapy/radiosurgery (SRT/SRS). Furthermore, removing the flattening filter reduces out-of-field dose and improves beam modeling accuracy. FFF beams are advantageous for small field (e.g., SRS) treatments and are appropriate for intensity-modulated radiotherapy (IMRT). For conventional 3D radiotherapy of large targets, FFF beams may be disadvantageous compared to flattened beams because of the heterogeneity of FFF beam across the target (unless modulation is employed). For any application, the nonflat beam characteristics and substantially higher dose rates require consideration during the commissioning and quality assurance processes relative to flattened beams, and the appropriate clinical use of the technology needs to be identified. Consideration also needs to be given to these unique characteristics when undertaking facility planning. Several areas still warrant further research and development. Recommendations pertinent to FFF technology, including acceptance testing, commissioning, quality assurance, radiation safety, and facility planning, are presented. Examples of clinical applications are provided. Several of the areas in which future research and development are needed are also indicated.
Granton, Patrick V; Palma, David A; Louie, Alexander V
2017-01-26
Palliative thoracic radiotherapy is an effective technique to alleviate symptoms of disease burden in advanced-stage lung cancer patients. Previous randomized controlled studies demonstrated a survival benefit in patients with good performance status at radiation doses of 35Gy 10 or greater but with an increased incidence of esophagitis. The objective of this planning study was to assess the potential impact of esophageal-sparing IMRT (ES-IMRT) compared to the current standard of care using parallel-opposed pair beams (POP). In this study, 15 patients with lung cancer treated to a dose of 30Gy in 10 fractions between August 2015 and January 2016 were identified. Radiation treatment plans were optimized using ES-IMRT by limiting the max esophagus point dose to 24Gy. Using published Lyman-Kutcher-Burman normal tissue complication probabilities (LKB-NTCP) models, both plans were evaluated for the likelihood of esophagitis (≥ grade 2) and pneumonitis (≥ grade 2). Using ES-IMRT, the median esophageal and lung mean doses reduced from 16 and 8Gy to 7 and 7Gy, respectively. Using the LKB models, the theoretical probability of symptomatic esophagitis and pneumonitis reduced from 13 to 2%, and from 5 to 3%, respectively. The median normalize total dose (NTD mean) accounting for fraction size for the GTV and PTV of the clinically approved POP plans compared to the ES-IMRT plans were similar. Advanced radiotherapy techniques such as ES-IMRT may have clinical utility in reducing treatment-related toxicity in advanced lung cancer patients. Our data suggests that the rate of esophagitis can be reduced without compromising local control.
Exciting New Advances in Neuro-Oncology
Van Meir, Erwin G.; Hadjipanayis, Costas G.; Norden, Andrew D.; Shu, Hui-Kuo; Wen, Patrick Y.; Olson, Jeffrey J.
2010-01-01
Malignant gliomas are the most common and deadly brain tumors. Nevertheless, survival for patients with glioblastoma, the most aggressive glioma, although individually variable, has improved from an average of 10 months to 14 months after diagnosis in the last 5 years due to improvements in the standard of care. Radiotherapy has been of key importance to the treatment of these lesions for decades, and the ability to focus the beam and tailor it to the irregular contours of brain tumors and minimize the dose to nearby critical structures with intensity-modulated or image-guided techniques has improved greatly. Temozolomide, an alkylating agent with simple oral administration and a favorable toxicity profile, is used in conjunction with and after radiotherapy. Newer surgical techniques, such as fluorescence-guided resection and neuroendoscopic approaches, have become important in the management of malignant gliomas. Furthermore, new discoveries are being made in basic and translational research, which are likely to improve this situation further in the next 10 years. These include agents that block 1 or more of the disordered tumor proliferation signaling pathways, and that overcome resistance to already existing treatments. Targeted therapies such as antiangiogenic therapy with antivascular endothelial growth factor antibodies (bevacizumab) are finding their way into clinical practice. Large-scale research efforts are ongoing to provide a comprehensive understanding of all the genetic alterations and gene expression changes underlying glioma formation. These have already refined the classification of glioblastoma into 4 distinct molecular entities that may lead to different treatment regimens. The role of cancer stem-like cells is another area of active investigation. There is definite hope that by 2020, new cocktails of drugs will be available to target the key molecular pathways involved in gliomas and reduce their mortality and morbidity, a positive development for patients, their families, and medical professionals alike. PMID:20445000
Wu, S; He, Z; Guo, J; Li, F; Lin, Q; Guan, X
2014-01-01
To assess the heart and lung dosimetry results associated with accelerated partial breast irradiation intensity-modulated radiotherapy (APBI-IMRT) and whole breast field-in-field intensity-modulated radiotherapy (WBI-FIF-IMRT). A total of 29 patients with early-stage breast cancer after lumpectomy were included in this study. APBI-IMRT and WBI-FIF-IMRT plans were generated for each patient. The dosimetric parameters of ipsilateral lung and heart in both plans were then compared with and without radiobiological correction. With and without radiobiological correction, the volume of ipsilateral lung showed a substantially lower radiation exposure in APBI-IMRT with moderate to high doses (P < 0.05) but non-significant increases in volume of ipsilateral lung in 2.5 Gy than WBI-FIF-IMRT (P > 0.905).There was no significant difference in volume of ipsilateral lung receiving 1, 2.5, and 5 Gy between APBI-IMRT and WBI (P > 0.05) in patients with medial tumor location, although APBI-IMRT exposed more lung to 2.5 and 5 Gy. APBI-IMRT significantly decreases the volume of heart receiving low to high doses in left-sided breast cancer (P < 0.05). APBI-IMRT can significantly spare the volume of heart and ipsilateral lung receiving moderate and high dose. Non-significant increases in volume of the ipsilateral lung exposed to low doses of radiation were observed for APBI-IMRT in comparison to WBI-FIF-IMRT, particularly in patients with medial tumor location. With the increasing interest in APBI-IMRT, our data may help clinicians individualize patient treatment decisions.
PREFACE: 8th International Conference on 3D Radiation Dosimetry (IC3DDose)
NASA Astrophysics Data System (ADS)
Olsson, Lars E.; Bäck, S.; Ceberg, Sofie
2015-01-01
IC3DDose 2014, the 8th International Conference on 3D Radiation Dosimetry was held in Ystad, Sweden, from 4-7 September 2014. This grew out of the DosGel series, which began as DosGel99, the 1st International Workshop on Radiation Therapy Gel Dosimetry in Lexington, Kentucky. Since 1999 subsequent DoSGel conferences were held in Brisbane, Australia (2001), Ghent, Belgium (2004), Sherbrooke, Canada (2006) and Crete, Greece (2008). In 2010 the conference was held on Hilton Head Island, South Carolina and underwent a name-change to IC3DDose. The 7th and last meeting was held in Sydney, Australia from 4-8 November 2012. It is worth remembering that the conference series started at the very beginning of the intensity modulated radiotherapy era and that the dosimeters being developed then were, to some extent, ahead of the clinical need of radiotherapy. However, since then the technical developments in radiation therapy have been dramatic, with dynamic treatments, including tracking, gating and volumetric modulated arc therapy, widely introduced in the clinic with the need for 3D dosimetry thus endless. This was also reflected by the contributions at the meeting in Ystad. Accordingly the scope of the meeting has also broadened to IC3DDOSE - I See Three-Dimensional Dose. A multitude of dosimetry techniques and radiation detectors are now represented, all with the common denominator: three-dimensional or 3D. Additionally, quality assurance (QA) procedures and other aspects of clinical dosimetry are represented. The implementation of new dosimetric techniques in radiotherapy is a process that needs every kind of caution, carefulness and thorough validation. Therefore, the clinical needs, reformulated as the aims for IC3DDOSE - I See Three-Dimensional Dose, are: • Enhance the quality and accuracy of radiation therapy treatments through improved clinical dosimetry. • Investigate and understand the dosimetric challenges of modern radiation treatment techniques. • Provide a forum to discuss the latest research and developments in 3D and advanced radiation dosimetry. • Energize and diversify dosimetry research and clinical practice by encouraging interaction and synergy between advanced, 3D, and semi-3D dosimetry techniques. We commend these IC3Dose 2014 conference proceedings to you and strongly believe they include significant contributions to scientific progress in this field. We would like to express our sincere gratitude to everybody involved in making the conference possible, the Scientific committee for their work on the general planning, paper review and program formulation, the distinguished invited speakers for their contributions and the local organizing committee members for all their hard work on the practical preparation for the meeting. Lars E. Olsson, Sven Bäck and Sofie Ceberg Lund University and Skåne University Hospital, Sweden International Scientific Committee Sven Bäck, Sweden (chair) Clive Baldock, Australia Sam Beddar, USA Crister Ceberg, Sweden Yves de Deene, Belgium/Australia Simon Doran, UK Geoffrey Ibbott, USA Andrew Jirasek, Canada Kevin Jordan, Canada Martin Lepage, Canada Daniel Low, USA Mark Oldham, USA Tony Popescu, Canada John Schreiner, Canada Cheng-Shie Wuu, USA David Thwaites, Australia Local Organizing Committee Sofie Ceberg (chair) Lars E. Olsson (conference chair) Fredrik Nordstrom Anneli Edvardsson Anna Karlsson Hauer Anna Bäck
Radiation-induced heart disease in lung cancer radiotherapy
Ming, Xin; Feng, Yuanming; Yang, Chengwen; Wang, Wei; Wang, Ping; Deng, Jun
2016-01-01
Abstract Background: Radiation-induced heart disease (RIHD), which affects the patients’ prognosis with both acute and late side effects, has been published extensively in the radiotherapy of breast cancer, lymphoma and other benign diseases. Studies on RIHD in lung cancer radiotherapy, however, are less extensive and clear even though the patients with lung cancer are delivered with higher doses to the heart during radiation treatment. Methods: In this article, after extensive literature search and analysis, we reviewed the current evidence on RIHD in lung cancer patients after their radiation treatments and investigated the potential risk factors for RIHD as compared to other types of cancers. Result: Cardiac toxicity has been found highly relevant in lung cancer radiotherapy. So far, the crude incidence of cardiac complications in the lung cancer patients after radiotherapy has been up to 33%. Conclusion: The dose to the heart, the lobar location of tumor, the treatment modality, the history of heart and pulmonary disease and smoking were considered as potential risk factors for RIHD in lung cancer radiotherapy. As treatment techniques improve over the time with better prognosis for lung cancer survivors, an improved prediction model can be established to further reduce the cardiac toxicity in lung cancer radiotherapy. PMID:27741117
Radiation-induced heart disease in lung cancer radiotherapy: A dosimetric update.
Ming, Xin; Feng, Yuanming; Yang, Chengwen; Wang, Wei; Wang, Ping; Deng, Jun
2016-10-01
Radiation-induced heart disease (RIHD), which affects the patients' prognosis with both acute and late side effects, has been published extensively in the radiotherapy of breast cancer, lymphoma and other benign diseases. Studies on RIHD in lung cancer radiotherapy, however, are less extensive and clear even though the patients with lung cancer are delivered with higher doses to the heart during radiation treatment. In this article, after extensive literature search and analysis, we reviewed the current evidence on RIHD in lung cancer patients after their radiation treatments and investigated the potential risk factors for RIHD as compared to other types of cancers. Cardiac toxicity has been found highly relevant in lung cancer radiotherapy. So far, the crude incidence of cardiac complications in the lung cancer patients after radiotherapy has been up to 33%. The dose to the heart, the lobar location of tumor, the treatment modality, the history of heart and pulmonary disease and smoking were considered as potential risk factors for RIHD in lung cancer radiotherapy. As treatment techniques improve over the time with better prognosis for lung cancer survivors, an improved prediction model can be established to further reduce the cardiac toxicity in lung cancer radiotherapy.
From IB2 to IIIB locally advanced cervical cancers: report of a ten-year experience.
Espenel, Sophie; Garcia, Max-Adrien; Trone, Jane-Chloé; Guillaume, Elodie; Harris, Annabelle; Rehailia-Blanchard, Amel; He, Ming Yuan; Ouni, Sarra; Vallard, Alexis; Rancoule, Chloé; Ben Mrad, Majed; Chauleur, Céline; De Laroche, Guy; Guy, Jean-Baptiste; Moreno-Acosta, Pablo; Magné, Nicolas
2018-02-02
Despite screening campaigns, cervical cancers remain among the most prevalent malignancies and carry significant mortality, especially in developing countries. Most studies report outcomes of patients receiving the usual standard of care. It is possible that these selected patients may not correctly represent patients in a real-world setting, which may be a limitation in interpreting outcomes. This study was undertaken to identify prognostic factors, management strategies and outcomes of locally advanced cervical cancers (LACC) treated in daily clinical practice. Medical files of all consecutive patients treated with curative intent for LACC in a French Cancer Care Center between 2004 and 2014 were reviewed retrospectively. Ninety-four patients were identified. Performance status was ≥ 2 in 10.6%. Median age at diagnosis was 63.0. Based on the International Federation of Gynecology and Obstetrics classification, tumours were classified as follows: 10.6% IB2, 22.3% IIA, 51.0% IIB, 4.3% IIIA and 11.7% IIIB. Pelvic lymph nodes were involved in 34.0% of cases. Radiotherapy was delivered for all patients. Radiotherapy technique was intensity modulated radiation therapy or volumetric modulated arc therapy in 39.4% of cases. A concurrent cisplatin chemotherapy was delivered in 68.1% of patients. Brachytherapy was performed in 77.7% of cases. The recommended standard care (concurrent chemoradiotherapy with at least five chemotherapy cycles during radiotherapy, followed by brachytherapy) was delivered in 43.6%. The median overall treatment time was 56 days. Complete tumour sterilisation was achieved in 55.2% of cases. Mean follow-up was 54.3 months. Local recurrence rate was 18.1%. Five-year overall survival was 61.9% (95% Confident Interval (CI) = 52.3-73.2) and five-year disease-specific survival was 68.5% (95% CI = 59.2-79.2). Poor performance status, lymph nodes metastasis and absence of concurrent chemotherapy were identified as poor prognostic factors in multivariate analysis. Less than 50% of patients received the standard care. Because LACC patients and disease are heterogeneous, treatment tailoring appears to be common in current clinical practice. However, guidelines for tailoring management are not currently available. More data about real-world settings are required in order to to optimise clinical trials' aims and designs, and make them translatable in daily clinical practice. retrospectively registered.
Radiotherapy Dose-Volume Effects on Salivary Gland Function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deasy, Joseph O., E-mail: jdeasy@radonc.wustl.ed; Moiseenko, Vitali; Marks, Lawrence
2010-03-01
Publications relating parotid dose-volume characteristics to radiotherapy-induced salivary toxicity were reviewed. Late salivary dysfunction has been correlated to the mean parotid gland dose, with recovery occurring with time. Severe xerostomia (defined as long-term salivary function of <25% of baseline) is usually avoided if at least one parotid gland is spared to a mean dose of less than {approx}20 Gy or if both glands are spared to less than {approx}25 Gy (mean dose). For complex, partial-volume RT patterns (e.g., intensity-modulated radiotherapy), each parotid mean dose should be kept as low as possible, consistent with the desired clinical target volume coverage. Amore » lower parotid mean dose usually results in better function. Submandibular gland sparing also significantly decreases the risk of xerostomia. The currently available predictive models are imprecise, and additional study is required to identify more accurate models of xerostomia risk.« less
Expanding the use of real-time electromagnetic tracking in radiation oncology.
Shah, Amish P; Kupelian, Patrick A; Willoughby, Twyla R; Meeks, Sanford L
2011-11-15
In the past 10 years, techniques to improve radiotherapy delivery, such as intensity-modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT) for both inter- and intrafraction tumor localization, and hypofractionated delivery techniques such as stereotactic body radiation therapy (SBRT), have evolved tremendously. This review article focuses on only one part of that evolution, electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a growing technology in radiation oncology and, as such, the clinical applications are limited, the expense is high, and the reimbursement is insufficient to cover these costs. At the same time, current experience with electromagnetic tracking applied to various clinical tumor sites indicates that the potential benefits of electromagnetic tracking could be significant for patients receiving radiation therapy. Daily use of these tracking systems is minimally invasive and delivers no additional ionizing radiation to the patient, and these systems can provide explicit tumor motion data. Although there are a number of technical and fiscal issues that need to be addressed, electromagnetic tracking systems are expected to play a continued role in improving the precision of radiation delivery.
Fast regional readout CMOS Image Sensor for dynamic MLC tracking
NASA Astrophysics Data System (ADS)
Zin, H.; Harris, E.; Osmond, J.; Evans, P.
2014-03-01
Advanced radiotherapy techniques such as volumetric modulated arc therapy (VMAT) require verification of the complex beam delivery including tracking of multileaf collimators (MLC) and monitoring the dose rate. This work explores the feasibility of a prototype Complementary metal-oxide semiconductor Image Sensor (CIS) for tracking these complex treatments by utilising fast, region of interest (ROI) read out functionality. An automatic edge tracking algorithm was used to locate the MLC leaves edges moving at various speeds (from a moving triangle field shape) and imaged with various sensor frame rates. The CIS demonstrates successful edge detection of the dynamic MLC motion within accuracy of 1.0 mm. This demonstrates the feasibility of the sensor to verify treatment delivery involving dynamic MLC up to ~400 frames per second (equivalent to the linac pulse rate), which is superior to any current techniques such as using electronic portal imaging devices (EPID). CIS provides the basis to an essential real-time verification tool, useful in accessing accurate delivery of complex high energy radiation to the tumour and ultimately to achieve better cure rates for cancer patients.
Expanding the use of real‐time electromagnetic tracking in radiation oncology
Kupelian, Patrick A.; Willoughby, Twyla R.; Meeks, Sanford L.
2011-01-01
In the past 10 years, techniques to improve radiotherapy delivery, such as intensity‐modulated radiation therapy (IMRT), image‐guided radiation therapy (IGRT) for both inter‐ and intrafraction tumor localization, and hypofractionated delivery techniques such as stereotactic body radiation therapy (SBRT), have evolved tremendously. This review article focuses on only one part of that evolution, electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a growing technology in radiation oncology and, as such, the clinical applications are limited, the expense is high, and the reimbursement is insufficient to cover these costs. At the same time, current experience with electromagnetic tracking applied to various clinical tumor sites indicates that the potential benefits of electromagnetic tracking could be significant for patients receiving radiation therapy. Daily use of these tracking systems is minimally invasive and delivers no additional ionizing radiation to the patient, and these systems can provide explicit tumor motion data. Although there are a number of technical and fiscal issues that need to be addressed, electromagnetic tracking systems are expected to play a continued role in improving the precision of radiation delivery. PACS number: 87.63.‐d PMID:22089017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lips, Irene M., E-mail: i.m.lips@umcutrecht.nl; Gils, Carla H. van; Kotte, Alexis N.T.J.
2012-06-01
Purpose: To investigate whether magnesium oxide during external-beam radiotherapy for prostate cancer reduces intrafraction prostate motion in a double-blind, placebo-controlled randomized trial. Methods and Materials: At the Department of Radiotherapy, prostate cancer patients scheduled for intensity-modulated radiotherapy (77 Gy in 35 fractions) using fiducial marker-based position verification were randomly assigned to receive magnesium oxide (500 mg twice a day) or placebo during radiotherapy. The primary outcome was the proportion of patients with clinically relevant intrafraction prostate motion, defined as the proportion of patients who demonstrated in {>=}50% of the fractions an intrafraction motion outside a range of 2 mm. Secondarymore » outcome measures included quality of life and acute toxicity. Results: In total, 46 patients per treatment arm were enrolled. The primary endpoint did not show a statistically significant difference between the treatment arms with a percentage of patients with clinically relevant intrafraction motion of 83% in the magnesium oxide arm as compared with 80% in the placebo arm (p = 1.00). Concerning the secondary endpoints, exploratory analyses demonstrated a trend towards worsened quality of life and slightly more toxicity in the magnesium oxide arm than in the placebo arm; however, these differences were not statistically significant. Conclusions: Magnesium oxide is not effective in reducing the intrafraction prostate motion during external-beam radiotherapy, and therefore there is no indication to use it in clinical practice for this purpose.« less
Nakamura, R; Sasaki, M; Oikawa, H; Harada, S; Tamakawa, Y
2000-03-01
To use an intranet technique to develop an information system that simultaneously supports both diagnostic reports and radiotherapy planning images. Using a file server as the gateway a radiation oncology LAN was connected to an already operative RIS LAN. Dose-distribution images were saved in tagged-image-file format by way of a screen dump to the file server. X-ray simulator images and portal images were saved in encapsulated postscript format in the file server and automatically converted to portable document format. The files on the file server were automatically registered to the Web server by the search engine and were available for searching and browsing using the Web browser. It took less than a minute to register planning images. For clients, searching and browsing the file took less than 3 seconds. Over 150,000 reports and 4,000 images from a six-month period were accessible. Because the intranet technique was used, construction and maintenance was completed without specialty. Prompt access to essential information about radiotherapy has been made possible by this system. It promotes public access to radiotherapy planning that may improve the quality of treatment.
Tracking Organs Composed of One or Multiple Regions Using Geodesic Active Region Models
NASA Astrophysics Data System (ADS)
Martínez, A.; Jiménez, J. J.
In radiotherapy treatment it is very important to find out the target organs on the medical image sequence in order to determine and apply the proper dose. The techniques to achieve this goal can be classified into extrinsic and intrinsic. Intrinsic techniques only use image processing with medical images associated to the radiotherapy
Beetz, Ivo; Schilstra, Cornelis; Visink, Arjan; van der Schaaf, Arjen; Bijl, Henk P; van der Laan, Bernard F A M; Steenbakkers, Roel J H M; Langendijk, Johannes A
2013-11-01
The purpose of this prospective study was to investigate the relationship between xerostomia during the day (XERday) and night (XERnight) and sticky saliva during the day (STICday) and night (STICnight) and dose distributions in different major and minor salivary glands among head and neck cancer (HNC) patients treated with primary radiotherapy (RT) or chemoradiation (CHRT). The study population was composed of 201 consecutive HNC patients treated with intensity modulated radiotherapy (IMRT) or 3-dimensional conformal radiotherapy (3D-CRT). All patients were included in a standard follow up programme in which acute and late side effects and quality of life (QoL) were prospectively assessed, prior to, during and after treatment. The primary endpoints were XERday, XERnight, STICday, STICnight as assessed by the Groningen Radiotherapy Induced Xerostomia questionnaire (GRIX) six months after completion of treatment. Organs at risk (OARs) potentially involved in salivary function were delineated on planning-CT, including the parotid, submandibular and sublingual glands and the minor glands in the soft palate, buccal mucosa and lips. Patients with moderate-to-severe xerostomia or moderate-to-severe sticky saliva, respectively, at baseline were excluded. In order to determine which salivary glands were most important, a multivariate logistic regression analysis with an extended bootstrapping technique was used. In total, 29% and 19% of the cases suffered from XERday and XERnight, respectively. The multivariate analysis showed that baseline xerostomia and the mean parotid gland dose were the most important predictors for XERday and XERnight. At 6months after (CH)RT, 10% and 12% of the cases reported STICday and STICnight respectively. We were not able to identify prognostic factors related to dose distributions with regard to STICday. The mean submandibular gland dose was associated with STICnight. Baseline xerostomia and sticky saliva scores on the GRIX were associated with XERday, XERnight, STICday. Increasing age was correlated with both XERnight and STICnight. Organs at risk for XERday and STICday are similar to organs at risk for XERnight and STICnight. Copyright © 2013. Published by Elsevier Ireland Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao Junsheng; Roeske, John C.; Chmura, Steve J.
2009-07-01
The standard treatment technique used for whole-breast irradiation can result in undesirable dose distributions in the treatment site, leading to skin reaction/fibrosis and pulmonary and cardiac toxicities. Hence, the technique has evolved from conventional wedged technique (CWT) to segment intensity-modulated radiation therapy (SIMRT) and beamlet IMRT (IMRT). However, these newer techniques feature more highly modulated dose distributions that may be affected by respiration. The purpose of this work was to conduct a simple study of the clinical impact of respiratory motion on breast radiotherapy dose distributions for the three treatment planning techniques. The ultimate goal was to determine which patientsmore » would benefit most from the use of motion management. Eight patients with early-stage breast cancer underwent a free-breathing (FB) computed tomography (CT) simulation, with medial and lateral markers placed on the skin. Two additional CT scans were obtained at the end of inspiration (EI) and the end of expiration (EE). The FB-CT scan was used to develop treatment plans using each technique. Each plan was then applied to EI and EE-CT scans. Compared with the FB CT scan, the medial markers moved up to 1.8 cm in the anterior-superior direction at the end of inspiration (EI-scan), and on average 8 mm. The CWT and SIMRT techniques were not 'sensitive' to respiratory motion, because the % clinical target volume (CTV) receiving 95% of the prescription dose (V{sub 95%}) remained constant for both techniques. For patients that had large respiratory motion indicated by marker movement >0.6 cm, differences in coverage of the CTV at the V100% between FB and EI for beamlet IMRT plans were on the order of >10% and up to 18%. A linear model was developed to relate the dosimetric coverage difference introduced by respiration with the motion information. With this model, the dosimetric coverage difference introduced by respiratory motion could be evaluated during patient CT simulation. An appropriate treatment method can be chosen after the simulation.« less
Shirai, Katsuyuki; Kawashima, Motohiro; Saitoh, Jun-Ichi; Abe, Takanori; Fukata, Kyohei; Shigeta, Yuka; Irie, Daisuke; Shiba, Shintaro; Okano, Naoko; Ohno, Tatsuya; Nakano, Takashi
2017-01-01
The safety and efficacy of carbon-ion radiotherapy for advanced non-small cell lung cancer have not been established. We evaluated the clinical outcomes and dose-volume histogram parameters of carbon-ion radiotherapy compared with photon therapy in T2b-4N0M0 non-small cell lung cancer. Twenty-three patients were treated with carbon-ion radiotherapy between May 2011 and December 2015. Seven, 14, and 2 patients had T2b, T3, and T4, respectively. The median age was 78 (range, 53-91) years, with 22 male patients. There were 12 adenocarcinomas, 8 squamous cell carcinomas, 1 non-small cell lung carcinoma, and 2 clinically diagnosed lung cancers. Eleven patients were operable, and 12 patients were inoperable. Most patients (91%) were treated with carbon-ion radiotherapy of 60.0 Gy relative biological effectiveness (RBE) in 4 fractions or 64.0 Gy (RBE) in 16 fractions. Local control and overall survival rates were calculated. Dose-volume histogram parameters of normal lung and tumor coverages were compared between carbon-ion radiotherapy and photon therapies, including three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiotherapy (IMRT). The median follow-up of surviving patients was 25 months. Three patients experienced local recurrence, and the 2-year local control rate was 81%. During follow-up, 5 patients died of lung cancer, and 1 died of intercurrent disease. The 2-year overall survival rate was 70%. Operable patients had a better overall survival rate compared with inoperable patients (100% vs. 43%; P = 0.04). There was no grade ≥2 radiation pneumonitis. In dose-volume histogram analysis, carbon-ion radiotherapy had a significantly lower dose to normal lung and greater tumor coverage compared with photon therapies. Carbon-ion radiotherapy was effectively and safely performed for T2b-4N0M0 non-small cell lung cancer, and the dose distribution was superior compared with those for photon therapies. A Japanese multi-institutional study is ongoing to prospectively evaluate these patients and establish the use of carbon-ion radiotherapy.
Potential advantages of using synchrotron X-ray based techniques in pediatric research.
Pascolo, L; Esteve, F; Rizzardi, C; James, S; Menk, R H
2013-01-01
Synchrotron radiation (SR), which combines extremely high intensity, high collimation, tunability, and continuous energy spectrum, allows the development of advanced X-ray based techniques that are becoming a uniquely useful tool in life science research, along providing exciting opportunities in biomedical imaging and radiotherapy. This review summarize emerging techniques and their potential to greatly enhance the exploration of dynamical biological process occurring across various spatial and temporal regimes, from whole body physiology, down to the location of individual chemical species within single cells. In recent years pediatric research and clinic practice have started to profit from these new opportunities, particularly by extending the diagnostic and therapeutic capabilities of these X-ray based techniques. In diagnosis, technical advances in DEI and KES imaging modalities have been demonstrated as particularly valuable for children and women since SR allows dose minimization, with significant reductions compared to conventional approaches. However, the greatest expectations are in the field of SR based radiotherapy, increasingly studies are demonstrating SR radiotherapy provides improved chances of recovery; this is especially the case for pediatric patients. In addition, we report on the applicability of advanced X-ray microscopy techniques that offer exceptional spatial and quantitative resolution in elemental detection. These techniques, which are useful for in vitro studies, will be particularly advantageous where investigators seek deeper understanding of diseases where mismetabolism of metals, either physiological important (i.e. Cu, Zn) or outright toxic (i.e. Pb), underlies pathogenesis.
Wei, Qing; Li, Ling; Zhu, Xiao-Dong; Qin, Ling; Mo, Yan-Lin; Liang, Zheng-You; Deng, Jia-Li; Tao, Su-Ping
2017-01-01
This study evaluated the short-term effects of intensity-modulated radiotherapy (IMRT) and cisplatin concurrent chemo-radiotherapy (CCRT) on attention in patients with nasopharyngeal cancer (NPC). Timely detection and early prevention of cognitive decline are important in cancer patients, because long-term cognitive effects may be permanent and irreversible. Thirty-eight NPC patients treated with IMRT (17/38) or CCRT (21/38) and 38 healthy controls were recruited for the study. Neuropsychological tests were administered to each patient before treatment initiation and within a week after treatment completion. Changes in attention performance over time were evaluated using difference values (D-values). Decreased attention was already observable in patients with NPC prior to treatment. Baseline quotient scores for auditory attention, auditory and visual vigilance, and auditory speed were lower in patients treated with CCRT than in healthy controls (P=0.037, P=0.001, P=0.007, P=0.032, respectively). Auditory stamina D-values were higher in patients treated with IMRT alone (P=0.042), while full-scale response control quotient D-values were lower in patients treated with CCRT (P=0.030) than in healthy controls. Gender, depression, education, and sleep quality were each related to decreased attention and response control. Our results showed that IMRT had no negative acute effects on attention in NPC patients, while CCRT decreased response control. PMID:28947979
Lin, Xiao-dan; Shi, Xing-yuan; Zhou, Tong-chong; Zhang, Wei-jun
2011-06-01
To evaluate the therapeutic effect and toxicity of intensity-modulated radiation therapy (IMRT) or three-dimensional conformal radiotherapy combined with chemotherapy (3-DCRT) with docetaxel and cisplatin in the treatment of locally advanced esophageal carcinoma. Sixty patients with locally advanced esophageal carcinoma were randomly assigned in two equal groups to receive IMRT or 3-DCRT, both combined with the chemotherapy with docetaxel and cisplatin. The total dose of radiotherapy was 64 Gy, administered in 30 fractions in 6 weeks. The complete response rate (complete and partial remissions) of IMRT group was 90.0%, significantly higher than the rate of 80.0% in 3-DCRT group (P>0.05). The 1-, 2-, and 3-year survival rates of IMRT group were 86.7%, 70.0%, and 66.7%, as compared to 70.0%, 63.3%, and 63.3% in 3-DCRT group, respectively, showing no significant differences between the two groups (P>0.05). IMRT showed advantages over 3-DCRT in terms of the V20 and V30 parameters of the lung (P<0.05), and the incidences of radiation-induced esophagitis were comparable between the two groups (P>0.05). When combined with the chemotherapy with docetaxel and cisplatin, IMRT appears to be a more effective treatment than 3-DCRT for locally advanced esophageal cancer.
Brown, Paul D; Kline, Robert W; Petersen, Ivy A; Haddock, Michael G
2004-01-01
The treatment of the inguinal lymph nodes with radiotherapy is strongly influenced by the body habitus of the patient. The effect of 7 radiotherapy techniques on femoral head doses was studied. Three female patients of differing body habitus (ectomorph, mesomorph, endomorph) were selected. Radiation fields included the pelvis and contiguous inguinal regions and were representative of fields used in the treatment of cancers of the lower pelvis. Seven treatment techniques were compared. In the ectomorph and mesomorph, normal tissue complication probability (NTCP) for the femoral heads was lowest with use of anteroposterior (AP) and modified posteroanterior (PA) field with inguinal electron field supplements (technique 1). In the endomorph, NTCP was lowest with use of AP and modified PA field without electron field supplements (technique 2) or a 4-field approach (technique 6). Technique 1 for ectomorphs and mesomorphs and techniques 2 and 6 for endomorphs were optimal techniques for providing relatively homogeneous dose distributions within the target area while minimizing the dose to the femoral heads.
2012-01-01
The increasing interest in combined positron emission tomography (PET) and computed tomography (CT) to guide lung cancer radiation therapy planning has been well documented. Motion management strategies during treatment simulation PET/CT imaging and treatment delivery have been proposed to improve the precision and accuracy of radiotherapy. In light of these research advances, why has translation of motion-managed PET/CT to clinical radiotherapy been slow and infrequent? Solutions to this problem are as complex as they are numerous, driven by large inter-patient variability in tumor motion trajectories across a highly heterogeneous population. Such variation dictates a comprehensive and patient-specific incorporation of motion management strategies into PET/CT-guided radiotherapy rather than a one-size-fits-all tactic. This review summarizes challenges and opportunities for clinical translation of advances in PET/CT-guided radiotherapy, as well as in respiratory motion-managed radiotherapy of lung cancer. These two concepts are then integrated into proposed patient-specific workflows that span classification schemes, PET/CT image formation, treatment planning, and adaptive image-guided radiotherapy delivery techniques. PMID:23369522
Automated radiotherapy treatment plan integrity verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Deshan; Moore, Kevin L.
2012-03-15
Purpose: In our clinic, physicists spend from 15 to 60 min to verify the physical and dosimetric integrity of radiotherapy plans before presentation to radiation oncology physicians for approval. The purpose of this study was to design and implement a framework to automate as many elements of this quality control (QC) step as possible. Methods: A comprehensive computer application was developed to carry out a majority of these verification tasks in the Philips PINNACLE treatment planning system (TPS). This QC tool functions based on both PINNACLE scripting elements and PERL sub-routines. The core of this technique is the method ofmore » dynamic scripting, which involves a PERL programming module that is flexible and powerful for treatment plan data handling. Run-time plan data are collected, saved into temporary files, and analyzed against standard values and predefined logical rules. The results were summarized in a hypertext markup language (HTML) report that is displayed to the user. Results: This tool has been in clinical use for over a year. The occurrence frequency of technical problems, which would cause delays and suboptimal plans, has been reduced since clinical implementation. Conclusions: In addition to drastically reducing the set of human-driven logical comparisons, this QC tool also accomplished some tasks that are otherwise either quite laborious or impractical for humans to verify, e.g., identifying conflicts amongst IMRT optimization objectives.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, M; Lee, S; Suh, T
Purpose: This study investigates the effects of different kinds and designs of commercialized breast implants on the dose distributions in breast cancer radiotherapy under a variety of conditions. Methods: The dose for the clinical conventional tangential irradiation, Intensity Modulated Radiation Therapy (IMRT), volumetric modulated arc therapy (VMAT) breast plans was measured using radiochromic films and stimulated luminescence dosimeter (OSLD). The radiochromic film was used as an integrating dosimeter, while the OSLDs were used for real-time dosimetry to isolate the contribution of dose from individual segment. The films were placed at various slices in the Rando phantom and between the bodymore » and breast surface OSLDs were used to measure skin dose at 18 positions spaced on the two (right/left) breast. The implant breast was placed on the left side and the phantom breast was remained on the right side. Each treatment technique was performed on different size of the breasts and different shape of the breast implant. The PTV dose was prescribed 50.4 Gy and V47.88≥95%. Results: In different shapes of the breast implant, because of the shadow formed extensive around the breast implant, dose variation was relatively higher that of prescribed dose. As the PTV was delineated on the whole breast, maximum 5% dose error and average 3% difference was observed averagely. VMAT techniques largely decrease the contiguous hot spot in the skin by an average of 25% compared with IMRT. The both IMRT and VMAT techniques resulted in lower doses to normal critical structures than tangential plans for nearly all dose analyzation. Conclusion: Compared to the other technique, IMRT reduced radiation dose exposure to normal tissues and maintained reasonable target homogeneity and for the same target coverage, VMAT can reduce the skin dose in all the regions of the body.« less
Mucosal secretion changes during radiotherapy in the oral cavity.
Aziz, Luaay; Ebenfelt, Anders
2007-09-01
Mucositis in the oral cavity is a serious complication during radiation therapy for head and neck cancer, causing local discomfort and pain. In severe cases, hospitalization and interruption of radiotherapy may be necessary. The pathogenesis of this mucositis is not clear. With the purpose of getting more understanding of the pathogenesis of the mucositis, we examined the mucosal secretion from ten patients during radiotherapy with an imprint technique. In the secretion we studied the cellular composition and cellular function. In eight of ten treated patients the numbers of granulocytes increased in the secretion after 2 weeks of radiation therapy. The granulocytes, however, did not show any signs of phagocytosis. The patients all developed mucositis. We propose that the granulocytes in the secretion might play an important role in the development of mucositis during radiotherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chiou-Shiung, E-mail: et000417@gmail.com; Department of Radiation Oncology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan; Hwang, Jing-Min
Stereotactic radiosurgery (SRS) is a well-established technique that is replacing whole-brain irradiation in the treatment of intracranial lesions, which leads to better preservation of brain functions, and therefore a better quality of life for the patient. There are several available forms of linear accelerator (LINAC)–based SRS, and the goal of the present study is to identify which of these techniques is best (as evaluated by dosimetric outcomes statistically) when the target is located adjacent to brainstem. We collected the records of 17 patients with lesions close to the brainstem who had previously been treated with single-fraction radiosurgery. In all, 5more » different lesion catalogs were collected, and the patients were divided into 2 distance groups—1 consisting of 7 patients with a target-to-brainstem distance of less than 0.5 cm, and the other of 10 patients with a target-to-brainstem distance of ≥ 0.5 and < 1 cm. Comparison was then made among the following 3 types of LINAC-based radiosurgery: dynamic conformal arcs (DCA), intensity-modulated radiosurgery (IMRS), and volumetric modulated arc radiotherapy (VMAT). All techniques included multiple noncoplanar beams or arcs with or without intensity-modulated delivery. The volume of gross tumor volume (GTV) ranged from 0.2 cm{sup 3} to 21.9 cm{sup 3}. Regarding the dose homogeneity index (HI{sub ICRU}) and conformity index (CI{sub ICRU}) were without significant difference between techniques statistically. However, the average CI{sub ICRU} = 1.09 ± 0.56 achieved by VMAT was the best of the 3 techniques. Moreover, notable improvement in gradient index (GI) was observed when VMAT was used (0.74 ± 0.13), and this result was significantly better than those achieved by the 2 other techniques (p < 0.05). For V{sub 4} {sub Gy} of brainstem, both VMAT (2.5%) and IMRS (2.7%) were significantly lower than DCA (4.9%), both at the p < 0.05 level. Regarding V{sub 2} {sub Gy} of normal brain, VMAT plans had attained 6.4 ± 5%; this was significantly better (p < 0.05) than either DCA or IMRS plans, at 9.2 ± 7% and 8.2 ± 6%, respectively. Owing to the multiple arc or beam planning designs of IMRS and VMAT, both of these techniques required higher MU delivery than DCA, with the averages being twice as high (p < 0.05). If linear accelerator is only 1 modality can to establish for SRS treatment. Based on statistical evidence retrospectively, we recommend VMAT as the optimal technique for delivering treatment to tumors adjacent to brainstem.« less
Volumetric Modulated Arc (Radio) Therapy in Pets Treatment: The “La Cittadina Fondazione” Experience
Dolera, Mario; Malfassi, Luca; Carrara, Nancy; Finesso, Sara; Marcarini, Silvia; Mazza, Giovanni; Pavesi, Simone; Sala, Massimo; Urso, Gaetano
2018-01-01
Volumetric Modulated Arc Therapy (VMAT) is a modern technique, widely used in human radiotherapy, which allows a high dose to be delivered to tumor volumes and low doses to the surrounding organs at risk (OAR). Veterinary clinics takes advantage of this feature due to the small target volumes and distances between the target and the OAR. Sparing the OAR permits dose escalation, and hypofractionation regimens reduce the number of treatment sessions with a simpler manageability in the veterinary field. Multimodal volumes definition is mandatory for the small volumes involved and a positioning device precisely reproducible with a setup confirmation is needed before each session for avoiding missing the target. Additionally, the elaborate treatment plan must pursue hard constraints and objectives, and its feasibility must be evaluated with a per patient quality control. The aim of this work is to report results with regard to brain meningiomas and gliomas, trigeminal nerve tumors, brachial plexus tumors, adrenal tumors with vascular invasion and rabbit thymomas, in comparison with literature to determine if VMAT is a safe and viable alternative to surgery or chemotherapy alone, or as an adjuvant therapy in pets. PMID:29364837
Liang, Shaoqiang; Zhang, Ning; Chen, Lusi; Zhang, Yang; Zheng, Zhenhe; Luo, Weijun; Xu, Tao; Lü, Zhiqian; Li, Shao'en
2018-05-28
To study the potential effects of intensity modulated radiation therapy (IMRT) on clinical efficacy, oral mucosa reaction and immunological foundation; and to explore the effect of immunological changes on clinical efficacy and oral mucosa reaction in patients with nasopharyngeal carcinoma. Methods: A total of 200 patients with nasopharyngeal carcinoma, who came from First Department of Nasopharyngeal Radiotherapy, the First People's Hospital of Foshan from October 2008 to November 2011, were selected. The patients were treated with nasopharyngeal radiotherapy, and divided into an observation group and a control group (n=100 in each group). The control group underwent common conventional two-dimensional radiotherapy treatment, while the observation group underwent IMRT. The 5-year survival rates and recurrence rates were recorded at follow-up. After the radiotherapy, the oral mucosa in the patients were evaluated by the classification standard of acute radioactive mucositis by American Radiotherapy Oncology Group (RTOG), and the number of T lymphocyte subsets before and after treatment was detected. Results: There were significant difference in non-regional-recurrence survival rate, disease-free survival rate, local recurrence rate between the above 2 groups (all P<0.05), but no significant difference in the distant metastasis-free survival rate (P>0.05). The acute oral mucosa reactions of grade 1, 2, 3, 4 in the control group were 8.00%, 20.00%, 12.00%, 7.00%, respectively, and those were 7.00%, 22.00%, 15.00%, 1.00% respectively. There was no significant difference in the acute response of oral mucosa in grade 1, 2 and 3 in the 2 groups (all P>0.05), but there was significant difference in the grade 4 (P<0.05). There were significantly difference in CD8+, CD4+/ CD8+ and CD4+ T lymphocyte subsets before and after treatment in the above 2 groups (all P<0.01); there were also significantly difference after treatment between the observation group and the control group (all P<0.01). Conclusion: In the process of treatment in patients with nasopharyngeal carcinoma, the use of IMRT on the basis of chemotherapy is more effective than the conventional two-dimensional radiotherapy, which can reduce the proportion of grade 4 (severe) acute oral mucosa reaction. It may be related to the protective effect of IMRT on immune function in the patients.
NASA Astrophysics Data System (ADS)
Maggio, Angelo; Carillo, Viviana; Cozzarini, Cesare; Perna, Lucia; Rancati, Tiziana; Valdagni, Riccardo; Gabriele, Pietro; Fiorino, Claudio
2013-04-01
The aim of this study was to evaluate the correlation between the ‘true’ absolute and relative dose-volume histograms (DVHs) of the bladder wall, dose-wall histogram (DWH) defined on MRI imaging and other surrogates of bladder dosimetry in prostate cancer patients, planned both with 3D-conformal and intensity-modulated radiation therapy (IMRT) techniques. For 17 prostate cancer patients, previously treated with radical intent, CT and MRI scans were acquired and matched. The contours of bladder walls were drawn by using MRI images. External bladder surfaces were then used to generate artificial bladder walls by performing automatic contractions of 5, 7 and 10 mm. For each patient a 3D conformal radiotherapy (3DCRT) and an IMRT treatment plan was generated with a prescription dose of 77.4 Gy (1.8 Gy/fr) and DVH of the whole bladder of the artificial walls (DVH-5/10) and dose-surface histograms (DSHs) were calculated and compared against the DWH in absolute and relative value, for both treatment planning techniques. A specific software (VODCA v. 4.4.0, MSS Inc.) was used for calculating the dose-volume/surface histogram. Correlation was quantified for selected dose-volume/surface parameters by the Spearman correlation coefficient. The agreement between %DWH and DVH5, DVH7 and DVH10 was found to be very good (maximum average deviations below 2%, SD < 5%): DVH5 showed the best agreement. The correlation was slightly better for absolute (R = 0.80-0.94) compared to relative (R = 0.66-0.92) histograms. The DSH was also found to be highly correlated with the DWH, although slightly higher deviations were generally found. The DVH was not a good surrogate of the DWH (R < 0.7 for most of parameters). When comparing the two treatment techniques, more pronounced differences between relative histograms were seen for IMRT with respect to 3DCRT (p < 0.0001).
Dosimetric impact of a change in breathing period on VMAT stereotactic ablative body radiotherapy
NASA Astrophysics Data System (ADS)
Olding, T.; Alexander, KM
2017-05-01
The dosimetric impact of a change in breathing period during treatment was assessed for a volumetric modulated arc therapy (VMAT) stereotactic ablative radiotherapy (SABR) lung plan optimized according to our centre’s planning protocol. Plan delivery was evaluated at three breathing rates ranging from 7 to 23 breaths-per-minute (BPM) against the planning anatomy (15 BPM) calculated dose. Dynamic ion chamber, EBT3 film and Fricke-xylenol orange-gelatin (FXG) gel measurements were acquired using a motion phantom with appropriate inserts for each dosimeter. The results show good agreement between measured and calculated plan dose within the internal gross tumour volume (IGTV) target.
Livi, Lorenzo; Meattini, Icro; Marrazzo, Livia; Simontacchi, Gabriele; Pallotta, Stefania; Saieva, Calogero; Paiar, Fabiola; Scotti, Vieri; De Luca Cardillo, Carla; Bastiani, Paolo; Orzalesi, Lorenzo; Casella, Donato; Sanchez, Luis; Nori, Jacopo; Fambrini, Massimiliano; Bianchi, Simonetta
2015-03-01
Accelerated partial breast irradiation (APBI) has been introduced as an alternative treatment method for selected patients with early stage breast cancer (BC). Intensity-modulated radiotherapy (IMRT) has the theoretical advantage of a further increase in dose conformity compared with three-dimensional techniques, with more normal tissue sparing. The aim of this randomised trial is to compare the local recurrence and survival of APBI using the IMRT technique after breast-conserving surgery to conventional whole-breast irradiation (WBI) in early stage BC. This study was performed at the University of Florence (Florence, Italy). Women aged more than 40years affected by early BC, with a maximum pathological tumour size of 25mm, were randomly assigned in a 1:1 ratio to receive either WBI or APBI using IMRT. Patients in the APBI arm received a total dose of 30 Gy to the tumour bed in five daily fractions. The WBI arm received 50Gy in 25 fractions, followed by a boost on the tumour bed of 10Gy in five fractions. The primary end-point was occurrence of ipsilateral breast tumour recurrences (IBTRs); the main analysis was by intention-to-treat. This trial is registered with ClinicalTrials.gov, number NCT02104895. A total of 520 patients were randomised (260 to external WBI and 260 to APBI with IMRT) between March 2005 and June 2013. At a median follow-up of 5.0 years (Interquartile Range (IQR) 3.4-7.0), the IBTR rate was 1.5% (three cases) in the APBI group (95% confidence interval (CI) 0.1-3.0) and in the WBI group (three cases; 95% CI 0.0-2.8). No significant difference emerged between the two groups (log rank test p=0.86). We identified seven deaths in the WBI group and only one in the APBI group (p=0.057). The 5-year overall survival was 96.6% for the WBI group and 99.4% for the APBI group. The APBI group presented significantly better results considering acute (p=0.0001), late (p=0.004), and cosmetic outcome (p=0.045). To our knowledge, this is the first randomised study using the IMRT technique for APBI delivery. No significant difference in terms of IBTR and overall survival was observed between the two arms. APBI displayed a significantly better toxicity profile. Copyright © 2015 Elsevier Ltd. All rights reserved.
Madalinska, J B; Essink-Bot, M L; de Koning, H J; Kirkels, W J; van der Maas, P J; Schröder, F H
2001-03-15
The current study was undertaken within the framework of a screening trial to compare the health-related quality-of-life (HRQOL) outcomes of two primary treatment modalities for localized prostate cancer: radical prostatectomy and external-beam radiotherapy. We conducted a prospective longitudinal cohort study among 278 patients with early screen-detected (59%) or clinically diagnosed (41%) prostate cancer using both generic and disease-specific HRQOL measures (SF-36, UCLA Prostate Cancer Index [urinary and bowel modules] and items relating to sexual functioning) at three points in time: t1 (baseline), t2 (6 months later), and t3 (12 months after t1). Questionnaires were completed by 88% to 93% of all initially enrolled patients. Patients referred for primary radiotherapy were significantly older than prostatectomy patients (63 v 68 years, P <.01). Analyses (adjusted for age and pretreatment level of functioning) revealed poorer levels of generic HRQOL after radiotherapy. Prostatectomy patients reported significantly higher (P <.01) posttreatment incidences of urinary incontinence (39% to 49%) and erectile dysfunction (80% to 91%) than radiotherapy patients (respectively, 6% to 7% and 41% to 55%). Bowel problems (urgency) affected 30% to 35% of the radiotherapy group versus 6% to 7% of the prostatectomy group (P <.01). Patients with screen-detected and clinically diagnosed cancer reported similar posttreatment HRQOL. Prostatectomy and radiotherapy differed in the type of HRQOL impairment. Because the HRQOL effects may be valued differently at the individual level, patients should be made fully aware of the potential benefits and adverse consequences of therapies for early prostate cancer. Differences in posttreatment HRQOL were not related to the method of cancer detection.
Tian, Guangwei; Li, Nan; Li, Guang
2013-05-01
The clinical evidences are not sufficient on the proton beam therapy of lung cancer for lacking of the RCTs on the comparing the proton with the photon beam in lung cancer radiotherapy. The aim of this study is to evaluate the dosimetry superiority of the proton beam and provide more valuable evidences to the clinical researches. Clinical trails of dosimetric comparing between protons beam and photons beam for lung cancer radiotherapy were obtained from the Cochrane library, Pubmed, EMbase, CBM, CNKI, VIP, and Wan Fang databases. The data included in the study were evaluated and analyzed using the Cochrane Collaboration's RevMan 5.2 software. Six trails were included. Compared to photon therapy (three-dimensional conformal photon radiotherapy, 3D-CRT), the proton therapy had a significantly lower total lung Dmean (MD=-4.15, 95%CI: -5.56--2.74, P<0.001) and V20, V10, V5 (MD=-10.92, 95%CI: -13.23--8.62, P<0.001); The V20, V10, V5 significantly decreased in proton therapy group. Compared to photon therapy (intensity-modulated photon radiotherapy, IMRT), V20, V10, V5 were also significantly lowered in proton therapy group (MD=-3.70, 95%CI: -5.31--2.10, P<0.001; MD=-8.86, 95%CI: -10.74--6.98, P<0.001; MD=-20.13, 95%CI: -27.11--13.14, P<0.001); The esophagus Dmean was not lowered, while the heart Dmean decreased in proton therapy group. Comparing to photon beam radiotherapy (3D-CRT and IMRT), proton beam therapy is advantageous in dosimetry of the lung cancer radiotherapy and recommended for clinical applying.
Megias, Daniel; Phillips, Mark; Clifton-Hadley, Laura; Harron, Elizabeth; Eaton, David J; Sanghera, Paul; Whitfield, Gillian
2017-03-01
The HIPPO trial is a UK randomized Phase II trial of hippocampal sparing (HS) vs conventional whole-brain radiotherapy after surgical resection or radiosurgery in patients with favourable prognosis with 1-4 brain metastases. Each participating centre completed a planning benchmark case as part of the dedicated radiotherapy trials quality assurance programme (RTQA), promoting the safe and effective delivery of HS intensity-modulated radiotherapy (IMRT) in a multicentre trial setting. Submitted planning benchmark cases were reviewed using visualization for radiotherapy software (VODCA) evaluating plan quality and compliance in relation to the HIPPO radiotherapy planning and delivery guidelines. Comparison of the planning benchmark data highlighted a plan specified using dose to medium as an outlier by comparison with those specified using dose to water. Further evaluation identified that the reported plan statistics for dose to medium were lower as a result of the dose calculated at regions of PTV inclusive of bony cranium being lower relative to brain. Specification of dose to water or medium remains a source of potential ambiguity and it is essential that as part of a multicentre trial, consideration is given to reported differences, particularly in the presence of bone. Evaluation of planning benchmark data as part of an RTQA programme has highlighted an important feature of HS IMRT dosimetry dependent on dose being specified to water or medium, informing the development and undertaking of HS IMRT as part of the HIPPO trial. Advances in knowledge: The potential clinical impact of differences between dose to medium and dose to water are demonstrated for the first time, in the setting of HS whole-brain radiotherapy.
Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham
2013-12-01
Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147-53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose-volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.
Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham
2013-01-01
Introduction Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. Methods A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. Results The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. Conclusion The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques. PMID:26229623
NASA Astrophysics Data System (ADS)
Rosso, V.; Battistoni, G.; Belcari, N.; Camarlinghi, N.; Ciocca, M.; Collini, F.; Ferretti, S.; Kraan, A. C.; Lucenò, S.; Molinelli, S.; Pullia, M.; Sportelli, G.; Zaccaro, E.; Del Guerra, A.
2016-07-01
One of the most promising new radiotherapy techniques makes use of charged particles like protons and carbon ions, rather than photons. At present, there are more than 50 particle therapy centers operating worldwide, and many new centers are being constructed. Positron Emission Tomography (PET) is considered a well-established non-invasive technique to monitor range and delivered dose in patients treated with particle therapy. Nuclear interactions of the charged hadrons with the patient tissue lead to the production of β+ emitting isotopes (mainly 15O and 11C), that decay with a short lifetime producing a positron. The two 511 keV annihilation photons can be detected with a PET detector. In-beam PET is particularly interesting because it could allow monitoring the ions range also during dose delivery. A large area dual head PET prototype was built and tested. The system is based on an upgraded version of the previously developed DoPET prototype. Each head covers now 15×15 cm2 and is composed by 9 (3×3) independent modules. Each module consists of a 23×23 LYSO crystal matrix (2 mm pitch) coupled to H8500 PMT and is readout by custom front-end and a FPGA based data acquisition electronics. Data taken at the CNAO treatment facility in Pavia with proton and carbon beams impinging on heterogeneous phantoms demonstrate the DoPET capability to detect the presence of a small air cavity in the phantom.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham
Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRTmore » plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.« less
Unilateral Radiotherapy for the Treatment of Tonsil Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chronowski, Gregory M., E-mail: gchronowski@mdanderson.org; Garden, Adam S.; Morrison, William H.
2012-05-01
Purpose: To assess, through a retrospective review, clinical outcomes of patients with squamous cell carcinoma of the tonsil treated at the M. D. Anderson Cancer Center with unilateral radiotherapy techniques that irradiate the involved tonsil region and ipsilateral neck only. Methods and Materials: Of 901 patients with newly diagnosed squamous cell carcinoma of the tonsil treated with radiotherapy at our institution, we identified 102 that were treated using unilateral radiotherapy techniques. All patients had their primary site of disease restricted to the tonsillar fossa or anterior pillar, with <1 cm involvement of the soft palate. Patients had TX (n =more » 17 patients), T1 (n = 52), or T2 (n = 33) disease, with Nx (n = 3), N0 (n = 33), N1 (n = 23), N2a (n = 21), or N2b (n = 22) neck disease. Results: Sixty-one patients (60%) underwent diagnostic tonsillectomy before radiotherapy. Twenty-seven patients (26%) underwent excision of a cervical lymph node or neck dissection before radiotherapy. Median follow-up for surviving patients was 38 months. Locoregional control at the primary site and ipsilateral neck was 100%. Two patients experienced contralateral nodal recurrence (2%). The 5-year overall survival and disease-free survival rates were 95% and 96%, respectively. The 5-year freedom from contralateral nodal recurrence rate was 96%. Nine patients required feeding tubes during therapy. Of the 2 patients with contralateral recurrence, 1 experienced an isolated neck recurrence and was salvaged with contralateral neck dissection only and remains alive and free of disease. The other patient presented with a contralateral base of tongue tumor and involved cervical lymph node, which may have represented a second primary tumor, and died of disease. Conclusions: Unilateral radiotherapy for patients with TX-T2, N0-N2b primary tonsil carcinoma results in high rates of disease control, with low rates of contralateral nodal failure and a low incidence of acute toxicity requiring gastrostomy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leong, Trevor, E-mail: trevor.leong@petermac.or; Joon, Daryl Lim; Willis, David
Purpose: The INT0116 study has established postoperative chemoradiotherapy as the standard of care for completely resected gastric adenocarcinoma. However, the optimal chemoradiation regimen remains to be defined. We conducted a prospective, multicenter study to evaluate an alternative chemoradiation regimen that combines more current systemic treatment with modern techniques of radiotherapy delivery. Methods and Materials: Patients with adenocarcinoma of the stomach who had undergone an R0 resection were eligible. Adjuvant therapy consisted of one cycle of epirubicin, cisplatin, and 5-FU (ECF), followed by radiotherapy with concurrent infusional 5-FU, and then two additional cycles of ECF. Radiotherapy was delivered using precisely defined,more » multiple-field, three-dimensional conformal techniques. Results: A total of 54 assessable patients were enrolled from 19 institutions. The proportion of patients commencing Cycles 1, 2, and 3 of ECF chemotherapy were 100%, 81%, and 67% respectively. In all, 94% of patients who received radiotherapy completed treatment as planned. Grade 3/4 neutropenia occurred in 66% of patients with 7.4% developing febrile neutropenia. Most neutropenic episodes (83%) occurred in the post-radiotherapy period during cycles 2 and 3 of ECF. Grade 3/4 gastrointestinal toxicity occurred in 28% of patients. In all, 35% of radiotherapy treatment plans contained protocol deviations that were satisfactorily amended before commencement of treatment. At median follow-up of 36 months, the 3-year overall survival rate was estimated at 61.6%. Conclusions: This adjuvant regimen using ECF before and after three-dimensional conformal chemoradiation is feasible and can be safely delivered in a cooperative group setting. A regimen similar to this is currently being compared with the INT0116 regimen in a National Cancer Institute-sponsored, randomized Phase III trial.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han Chunhui; Chen Yijen; Liu An
2007-04-01
This study evaluated the efficacy of using helical tomotherapy for conformal avoidance treatment of anal adenocarcinoma. We retrospectively generated step-and-shoot intensity-modulated radiotherapy (sIMRT) plans and helical tomotherapy plans for two anal cancer patients, one male and one female, who were treated by the sIMRT technique. Dose parameters for the planning target volume (PTV) and the organs-at-risk (OARs) were compared between the sIMRT and the helical tomotherapy plans. The helical tomotherapy plans showed better dose homogeneity in the PTV, better dose conformity around the PTV, and, therefore, better sparing of nearby OARs compared with the sIMRT plans. In-vivo skin dose measurementsmore » were performed during conformal avoidance helical tomotherapy treatment of an anal cancer patient to verify adequate delivery of skin dose and sparing of OARs.« less
Changes in biophysical properties of the skin following radiotherapy for breast cancer.
Hu, Stephen Chu-Sung; Hou, Ming-Feng; Luo, Kuei-Hau; Chuang, Hung-Yi; Wei, Shu-Yi; Chen, Gwo-Shing; Chiang, Wenchang; Huang, Chih-Jen
2014-12-01
Acute radiation dermatitis is a common adverse effect in patients undergoing radiotherapy for breast cancer. However, the effects of radiotherapy on biophysical properties of the skin have rarely been investigated. In this prospective cohort study, we seek to determine the effects of radiotherapy for breast cancer on skin biophysical parameters. We measured various skin biophysical parameters (skin hydration, pH, sebum level, pigmentation, and blood flow) in 144 breast cancer patients by non-invasive techniques before and after radiotherapy. The measurements were simultaneously performed on the irradiated breast and the corresponding contralateral unirradiated breast for comparison. Following radiotherapy, the irradiated breast showed a significant decrease in skin hydration, increase in skin pH, increase in pigmentation, and increase in cutaneous blood flow. The contralateral unirradiated breast showed a slight increase in pigmentation but no significant changes in any of the other biophysical parameters after radiotherapy. No significant associations were found between patient characteristics (diabetes mellitus, hypertension, type of surgery, chemotherapy, hormone therapy) and changes in skin biophysical parameters following radiotherapy. In conclusion, radiation therapy for breast cancer induces measurable and significant changes in biophysical properties of the skin including hydration, pH, pigmentation, and blood flow. These findings give us a greater understanding of the effects of ionizing radiation on skin physiology, and provide non-invasive and objective methods to assess radiation dermatitis. © 2014 Japanese Dermatological Association.
Male breast cancer: 20-year survival data for post-mastectomy radiotherapy.
Eggemann, Holm; Ignatov, Atanas; Stabenow, Roland; von Minckwitz, Gunter; Röhl, Friedrich Wilhelm; Hass, Peter; Costa, Serban-Dan
2013-08-01
The goal of this population-based study was to determine the impact of post-mastectomy radiation therapy on long-term overall survival (OS) of male patients with breast cancer. We investigated 20-year OS rates of 664 patients diagnosed with primary stage I-III breast cancer in former East Germany between 1970 and 1989. Patients had a radical mastectomy with axillary lymph node dissection without systemic adjuvant therapy. Median follow-up time was 26.2 years (range 19-38 years). 52.4% of the patients had post-mastectomy radiotherapy. Radiotherapy showed different effects in each stage group after 20 years. Whereas there was an OS trend for radiotherapy to harm patients with stage I disease (hazard ratio (HR) 1.45; 95% confidence interval (CI) 0.98-2.15; p = 0.065), radiotherapy showed no benefit in patients with stage II disease (HR 0.82; 95% CI 0.62-1.1; p = 0.15). There was a significant survival benefit for patients with stage III disease receiving radiotherapy (HR 0.60; 95% CI 0.41-0.88; p = 0.008). Post-mastectomy radiotherapy is associated with longer OS in male patients with stage III breast cancer. Male breast cancer patients at stages I and II do not seem to benefit from radiotherapy, but obsolete irradiation techniques might explain adverse long-term effects in earlier stages.
Clinical Application of a Hybrid RapidArc Radiotherapy Technique for Locally Advanced Lung Cancer.
Silva, Scott R; Surucu, Murat; Steber, Jennifer; Harkenrider, Matthew M; Choi, Mehee
2017-04-01
Radiation treatment planning for locally advanced lung cancer can be technically challenging, as delivery of ≥60 Gy to large volumes with concurrent chemotherapy is often associated with significant risk of normal tissue toxicity. We clinically implemented a novel hybrid RapidArc technique in patients with lung cancer and compared these plans with 3-dimensional conformal radiotherapy and RapidArc-only plans. Hybrid RapidArc was used to treat 11 patients with locally advanced lung cancer having bulky mediastinal adenopathy. All 11 patients received concurrent chemotherapy. All underwent a 4-dimensional computed tomography planning scan. Hybrid RapidArc plans concurrently combined static (60%) and RapidArc (40%) beams. All cases were replanned using 3- to 5-field 3-dimensional conformal radiotherapy and RapidArc technique as controls. Significant reductions in dose were observed in hybrid RapidArc plans compared to 3-dimensional conformal radiotherapy plans for total lung V20 and mean (-2% and -0.6 Gy); contralateral lung mean (-2.92 Gy); and esophagus V60 and mean (-16.0% and -2.2 Gy; all P < .05). Contralateral lung doses were significantly lower for hybrid RapidArc plans compared to RapidArc-only plans (all P < .05). Compared to 3-dimensional conformal radiotherapy, heart V60 and mean dose were significantly improved with hybrid RapidArc (3% vs 5%, P = .04 and 16.32 Gy vs 16.65 Gy, P = .03). However, heart V40 and V45 and maximum spinal cord dose were significantly lower with RapidArc plans compared to hybrid RapidArc plans. Conformity and homogeneity were significantly better with hybrid RapidArc plans compared to 3-dimensional conformal radiotherapy plans ( P < .05). Treatment was well tolerated, with no grade 3+ toxicities. To our knowledge, this is the first report on the clinical application of hybrid RapidArc in patients with locally advanced lung cancer. Hybrid RapidArc permitted safe delivery of 60 to 66 Gy to large lung tumors with concurrent chemotherapy and demonstrated advantages for reduction in low-dose lung volumes, esophageal dose, and mean heart dose.
The Selective Use of Radiation Therapy in Rectal Cancer Patients.
Martella, Andrew; Willett, Christopher; Palta, Manisha; Czito, Brian
2018-04-11
Colorectal cancer has a high global incidence, and standard treatment employs a multimodality approach. In addition to cure, minimizing treatment-related toxicity and improving the therapeutic ratio is a common goal. The following article addresses the potential of omitting radiotherapy in select rectal cancer patients. Omission of radiotherapy in rectal cancer is analyzed in the context of historical findings, as well as more recent data describing risk stratification of stage II-III disease, surgical optimization, imaging limitations, improvement in systemic chemotherapeutic agents, and contemporary studies evaluating selective omission of radiotherapy. A subset of rectal cancer patients exists that may be considered low to intermediate risk for locoregional recurrence. With appropriate staging, surgical technique, and possibly improved systemic therapy, it may be feasible to selectively omit radiotherapy in these patients. Current imaging limitations as well as evidence of increased locoregional recurrence following radiotherapy omission lend us to continue supporting the standard treatment of approach of neoadjuvant chemoradiation therapy followed by surgical resection until additional improvements and prospective evidence can support otherwise.
Soukup, A; Meier, V; Pot, S; Voelter, K; Rohrer Bley, C
2018-05-14
In order to overcome the common local treatment failure of canine sinonasal tumours, integrated boost techniques were tried in the cobalt/orthovoltage era, but dismissed because of unacceptable early (acute) toxicity. Intriguingly, a recent calculation study of a simultaneously integrated boost (SIB) technique for sinonasal irradiation using intensity-modulated radiation therapy (IMRT) predicted theoretical feasibility. In this prospective pilot study we applied a commonly used protocol of 10 × 4.2 Gy to the planning target volume (PTV) with a 20%-SIB dose to the gross tumour volume (GTV). Our hypothesis expected this dose escalation to be clinically tolerable if applied with image-guided IMRT. We included 9 dogs diagnosed with sinonasal tumours without local/distant metastases. For treatment planning, organs at risk were contoured according to strict anatomical guidelines. Planning volume extensions (GTV/CTV/PTV) were standardized to minimize interplanner variability. Treatments were applied with rigid patient positioning and verified daily with image guidance. After radiation therapy, we set focus on early ophthalmologic complications as well as mucosal and cutaneous toxicity. Early toxicity was evaluated at week 1, 2, 3, 8 and 12 after radiotherapy. Only mild ophthalmologic complications were found. Three patients (33%) had self-limiting moderate to severe early toxicity (grade 3 mucositis) which was managed medically. No patient developed ulcerations/haemorrhage/necrosis of skin/mucosa. The SIB protocol applied with image-guided IMRT to treat canine sinonasal tumours led to clinically acceptable side effects. The suspected increased tumour control probability and the risk of late toxicity with the used dose escalation of 20% has to be further investigated. © 2018 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGlade, J; Kassaee, A
2015-06-15
Purpose: To evaluate planning methods for anal canal cancer and compare the results of 9-field Intensity Modulated Radiotherapy (IMRT), Volumetric Modulated Arc Therapy (Varian, RapidArc), and Proton Pencil Beam Scanning (PBS). Methods: We generated plans with IMRT, RapidArc (RA) and PBS for twenty patients for both initial phase including nodes and cone down phase of treatment using Eclipe (Varian). We evaluated the advantage of each technique for each phase. RA plans used 2 to 4 arcs and various collimator orientations. PBS used two posterior oblique fields. We evaluated the plans comparing dose volume histogram (DVH), locations of hot spots, andmore » PTV dose conformity. Results: Due to complex shape of target, for RA plans, multiple arcs (>2) are required to achieve optimal PTV conformity. When the PTV exceeds 15 cm in the superior-inferior direction, limitations of deliverability start to dominate. The PTV should be divided into a superior and an inferior structure. The optimization is performed with fixed jaws for each structure and collimator set to 90 degrees for the inferior PTV. Proton PBS plans show little advantage in small bowel sparing when treating the nodes. However, PBS plan reduces volumetric dose to the bladder at the cost of higher doses to the perineal skin. IMRT plans provide good target conformity, but they generate hot spots outside of the target volume. Conclusion: When using one planning technique for entire course of treatment, Multiple arc (>2) RA plans are better as compared to IMRT and PBS plans. When combining techniques, RA for the initial phase in combination with PBS for the cone down phase results in the most optimal plans.« less
Recent advances in radiation oncology
Garibaldi, Cristina; Jereczek-Fossa, Barbara Alicja; Marvaso, Giulia; Dicuonzo, Samantha; Rojas, Damaris Patricia; Cattani, Federica; Starzyńska, Anna; Ciardo, Delia; Surgo, Alessia; Leonardi, Maria Cristina; Ricotti, Rosalinda
2017-01-01
Radiotherapy (RT) is very much a technology-driven treatment modality in the management of cancer. RT techniques have changed significantly over the past few decades, thanks to improvements in engineering and computing. We aim to highlight the recent developments in radiation oncology, focusing on the technological and biological advances. We will present state-of-the-art treatment techniques, employing photon beams, such as intensity-modulated RT, volumetric-modulated arc therapy, stereotactic body RT and adaptive RT, which make possible a highly tailored dose distribution with maximum normal tissue sparing. We will analyse all the steps involved in the treatment: imaging, delineation of the tumour and organs at risk, treatment planning and finally image-guidance for accurate tumour localisation before and during treatment delivery. Particular attention will be given to the crucial role that imaging plays throughout the entire process. In the case of adaptive RT, the precise identification of target volumes as well as the monitoring of tumour response/modification during the course of treatment is mainly based on multimodality imaging that integrates morphological, functional and metabolic information. Moreover, real-time imaging of the tumour is essential in breathing adaptive techniques to compensate for tumour motion due to respiration. Brief reference will be made to the recent spread of particle beam therapy, in particular to the use of protons, but also to the yet limited experience of using heavy particles such as carbon ions. Finally, we will analyse the latest biological advances in tumour targeting. Indeed, the effectiveness of RT has been improved not only by technological developments but also through the integration of radiobiological knowledge to produce more efficient and personalised treatment strategies. PMID:29225692
NASA Astrophysics Data System (ADS)
Hälg, R. A.; Besserer, J.; Boschung, M.; Mayer, S.; Lomax, A. J.; Schneider, U.
2014-05-01
In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small.
Comparing Treatment Plan in All Locations of Esophageal Cancer
Lin, Jang-Chun; Tsai, Jo-Ting; Chang, Chih-Chieh; Jen, Yee-Min; Li, Ming-Hsien; Liu, Wei-Hsiu
2015-01-01
Abstract The aim of this study was to compare treatment plans of volumetric modulated arc therapy (VMAT) with intensity-modulated radiotherapy (IMRT) for all esophageal cancer (EC) tumor locations. This retrospective study from July 2009 to June 2014 included 20 patients with EC who received definitive concurrent chemoradiotherapy with radiation doses >50.4 Gy. Version 9.2 of Pinnacle3 with SmartArc was used for treatment planning. Dosimetric quality was evaluated based on doses to several organs at risk, including the spinal cord, heart, and lung, over the same coverage of gross tumor volume. In upper thoracic EC, the IMRT treatment plan had a lower lung mean dose (P = 0.0126) and lung V5 (P = 0.0037) compared with VMAT; both techniques had similar coverage of the planning target volumes (PTVs) (P = 0.3575). In middle thoracic EC, a lower lung mean dose (P = 0.0010) and V5 (P = 0.0145), but higher lung V20 (P = 0.0034), spinal cord Dmax (P = 0.0262), and heart mean dose (P = 0.0054), were observed for IMRT compared with VMAT; IMRT provided better PTV coverage. Patients with lower thoracic ECs had a lower lung mean dose (P = 0.0469) and V5 (P = 0.0039), but higher spinal cord Dmax (P = 0.0301) and heart mean dose (P = 0.0020), with IMRT compared with VMAT. PTV coverage was similar (P = 0.0858) for the 2 techniques. IMRT provided a lower mean dose and lung V5 in upper thoracic EC compared with VMAT, but exhibited different advantages and disadvantages in patients with middle or lower thoracic ECs. Thus, choosing different techniques for different EC locations is warranted. PMID:25929910
Hälg, R A; Besserer, J; Boschung, M; Mayer, S; Lomax, A J; Schneider, U
2014-05-21
In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small.
Sahai, Puja; Kumar, Senthil
2017-08-01
This review aims to summarize the currently available evidence for the role of external radiotherapy and brachytherapy in the management of cholangiocarcinoma. High locoregional disease recurrence rates after surgical resection alone for both the extrahepatic cholangiocarcinoma (EHCC) and intrahepatic cholangiocarcinoma (IHCC) provide a rationale for using adjuvant radiotherapy with chemotherapy. We performed a literature search related to radiotherapy in cholangiocarcinoma published between 2000 and 2016. The role of radiation is discussed in the adjuvant, neoadjuvant, definitive and the palliative setting. Evidence from Phase II trials have demonstrated efficacy of adjuvant chemoradiation in combination with chemotherapy in EHCC. Locally advanced cholangiocarcinoma may be treated with neoadjuvant chemoradiotherapy. In the case of downsizing, assessment for resection may be considered. Brachytherapy offers dose escalation after external radiotherapy. Selected unresectable cases of cholangiocarcinoma may be considered for stereotactic body radiation therapy with neoadjuvant and/or concurrent chemotherapy. Liver transplantation is a treatment option in selected patients with EHCC and IHCC after neoadjuvant chemoradiation. Stenting in combination with palliative external radiotherapy and/or brachytherapy provides improved stent patency and survival. Newer advanced radiation techniques provide a scope for achieving better disease control with reduced morbidity. Effective multimodality treatment incorporating radiotherapy is the way forward for improving survival in patients with cholangiocarcinoma.
Technique charts for Kodak EC-L film screen system for portal localization in a 6MV X-ray beam.
Sandilos, P; Antypas, C; Paraskevopoulou, C; Kouvaris, J; Vlachos, L
2006-01-01
Port films are used in radiotherapy for visual evaluation of the radiation fields and subsequent quantitative analysis. Common port films suffer from poor image quality compared to the simulator-diagnostic films and is desirable to determine the appropriate exposure required for the best image contrast. The aim of this work is to generate technique charts for the Kodak EC-L film screen system for use in a 6MV x-ray beam. Three homogeneous water phantoms were used to simulate head-neck, thorax and abdomen dimensions of adult human, correspondingly. The film screen system was calibrated in a 6MV x-ray beam and under various irradiation conditions. The film screen system behavior was studied as a function of phantom thickness, field size and air gap between the phantom and the film screen system. In each case the optimum film exposure which produces the maximum image contrast was determined. The generated technique charts for the EC-L film screen system and for a 6 MV x-ray beam are used in our radiotherapy department for daily quality assurance of the radiotherapy procedure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cotter, Shane E.; Herrup, David A.; Friedmann, Alison
Purpose: In this study, we report the clinical outcomes of 7 children with bladder/prostate rhabdomyosarcoma (RMS) treated with proton radiation and compare proton treatment plans with matched intensity-modulated radiation therapy (IMRT) plans, with an emphasis on dose savings to reproductive and skeletal structures. Methods and Materials: Follow-up consisted of scheduled clinic appointments at our institution or direct communication with the treating physicians for referred patients. Each proton radiotherapy plan used for treatment was directly compared to an IMRT plan generated for the study. Clinical target volumes and normal tissue volumes were held constant to facilitate dosimetric comparisons. Each plan wasmore » optimized for target coverage and normal tissue sparing. Results: Seven male patients were treated with proton radiotherapy for bladder/prostate RMS at the Massachusetts General Hospital between 2002 and 2008. Median age at treatment was 30 months (11-70 months). Median follow-up was 27 months (10-90 months). Four patients underwent a gross total resection prior to radiation, and all patients received concurrent chemotherapy. Radiation doses ranged from 36 cobalt Gray equivalent (CGE) to 50.4 CGE. Five of 7 patients were without evidence of disease and with intact bladders at study completion. Target volume dosimetry was equivalent between the two modalities for all 7 patients. Proton radiotherapy led to a significant decrease in mean organ dose to the bladder (25.1 CGE vs. 33.2 Gy; p = 0.03), testes (0.0 CGE vs. 0.6 Gy; p = 0.016), femoral heads (1.6 CGE vs. 10.6 Gy; p = 0.016), growth plates (21.7 CGE vs. 32.4 Gy; p = 0.016), and pelvic bones (8.8 CGE vs. 13.5 Gy; p = 0.016) compared to IMRT. Conclusions: This study provides evidence of significant dose savings to normal structures with proton radiotherapy compared to IMRT and is well tolerated in this patient population. The long-term impact of these reduced doses can be tested in future studies incorporating extended follow-up, objective outcome measures, and quality-of-life analyses.« less