NASA Astrophysics Data System (ADS)
Meneses, L.; Cupido, L.; Sirinelli, A.; Manso, M. E.; Jet-Efds Contributors
2008-10-01
We present the main design options and implementation of an X-mode reflectometer developed and successfully installed at JET using an innovative approach. It aims to prove the viability of measuring density profiles with high spatial and temporal resolution using broadband reflectometry operating in long and complex transmission lines. It probes the plasma with magnetic fields between 2.4 and 3.0 T using the V band [~(0-1.4)×1019 m-3]. The first experimental results show the high sensitivity of the diagnostic when measuring changes in the plasma density profile occurring ITER relevant regimes, such as ELMy H-modes. The successful demonstration of this concept motivated the upgrade of the JET frequency modulation of the continuous wave (FMCW) reflectometry diagnostic, to probe both the edge and core. This new system is essential to prove the viability of using the FMCW reflectometry technique to probe the plasma in next step devices, such as ITER, since they share the same waveguide complexity.
Low Density ITB Studies Using the Upgraded C-Mod Reflectometry System
NASA Astrophysics Data System (ADS)
Dominguez, A.; Edlund, E.; Fiore, C. L.; Lin, L.; Marmar, E. S.; Snipes, J. A.; Porkolab, M.; Kramer, G. J.; Rowan, W. L.
2007-11-01
The Alcator C-Mod reflectometry system was recently upgraded in two ways: The low frequency channels were changed from amplitude modulation - in which two microwave signals, slightly separated in frequency, are injected into the plasma - to baseband, where a single frequency is used, in order to improve density fluctuation measurements. The second change, a variable frequency channel operating over the range from 122GHz to 140GHz (with corresponding density cutoffs of 1.84-2.43x10^20m-3) has been installed in collaboration with PPPL. Initial results from the upgraded system are presented, including the study of low density Internal Transport Barriers. Using O-mode waves, the reflectometry system is able to radially localize density fluctuations on the low field side along the tokamak midplane. It can, therefore, be used to probe the foot of low density ITBs. The corresponding reflectometry data will be compared to those of other fluctuation diagnostics, including Phase Contrast Imaging and magnetic pick-up coils.
Chirped-pulse coherent-OTDR with predistortion
NASA Astrophysics Data System (ADS)
Xiong, Ji; Jiang, Jialin; Wu, Yue; Chen, Yongxiang; Xie, Lianlian; Fu, Yun; Wang, Zinan
2018-03-01
In this paper, a novel method for generating high-quality chirped pulses with IQ modulator is studied theoretically and experimentally, which is a crucial building block for high-performance coherent optical time-domain reflectometry (COTDR). In order to compensate the nonlinearity of the modulator transfer function, we present a predistortion technique for chirped-pulse coherent optical time-domain reflectometry (CP-COTDR), the arcsin predistortion method and the single sideband with a suppressed carrier analog modulation used to generate the high quality chirped optical pulse. The high order sidebands, due to the large amplitude of the modulation signal and the nonlinear transfer function of the IQ modulator, can be relieved by the predistortion process, which means the power and the quality of the generated chirped pulse has been improved. In the experiment, this method increases the peak power of the chirped pulse by 4.2 dB compared to the case without predistortion process, as for the CP-COTDR system, this method increases the signal-to-noise ratio of the demodulated phase variation by 6.3 dB.
Zhang, Jingdong; Zhu, Tao; Zhou, Huan; Huang, Shihong; Liu, Min; Huang, Wei
2016-11-28
We demonstrate a cost-effective distributed fiber sensing system for the multi-parameter detection of the vibration, the temperature, and the strain by integrating phase-sensitive optical time domain reflectometry (φ-OTDR) and Brillouin optical time domain reflectometry (B-OTDR). Taking advantage of the fast changing property of the vibration and the static properties of the temperature and the strain, both the width and intensity of the laser pulses are modulated and injected into the single-mode sensing fiber proportionally, so that three concerned parameters can be extracted simultaneously by only one photo-detector and one data acquisition channel. A data processing method based on Gaussian window short time Fourier transform (G-STFT) is capable of achieving high spatial resolution in B-OTDR. The experimental results show that up to 4.8kHz vibration sensing with 3m spatial resolution at 10km standard single-mode fiber can be realized, as well as the distributed temperature and stress profiles along the same fiber with 80cm spatial resolution.
Varela, P; Belo, J H; Quental, P B
2016-11-01
The design of the in-vessel antennas for the ITER plasma position reflectometry diagnostic is very challenging due to the need to cope both with the space restrictions inside the vacuum vessel and with the high mechanical and thermal loads during ITER operation. Here, we present the work carried out to assess and optimise the design of the antenna. We show that the blanket modules surrounding the antenna strongly modify its characteristics and need to be considered from the early phases of the design. We also show that it is possible to optimise the antenna performance, within the design restrictions.
da Silva, F; da Graça, S; Heuraux, S; Conway, G D
2010-10-01
Experimental reflectometry signals obtained in the absence of a cutoff layer, with the possibility of interferometric operation excluded, show a coherent and recurrent frequency spectrum signature similar to an Alfvén cascade signature. A possible explanation resides in the modulation of a resonant Bragg backscattering response by an Alfvén mode structure located at the center of the plasma whose frequency of oscillation modulates the backscattered signal in a conformable way. This situation is modeled and simulated using an O-mode full-wave Maxwell finite-difference time-domain code and the resulting signatures are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuwahara, D., E-mail: dkuwahar@cc.tuat.ac.jp; Ito, N.; Nagayama, Y.
A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.
Kuwahara, D; Ito, N; Nagayama, Y; Yoshinaga, T; Yamaguchi, S; Yoshikawa, M; Kohagura, J; Sugito, S; Kogi, Y; Mase, A
2014-11-01
A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.
Advanced density profile reflectometry; the state-of-the-art and measurement prospects for ITER
NASA Astrophysics Data System (ADS)
Doyle, E. J.
2006-10-01
Dramatic progress in millimeter-wave technology has allowed the realization of a key goal for ITER diagnostics, the routine measurement of the plasma density profile from millimeter-wave radar (reflectometry) measurements. In reflectometry, the measured round-trip group delay of a probe beam reflected from a plasma cutoff is used to infer the density distribution in the plasma. Reflectometer systems implemented by UCLA on a number of devices employ frequency-modulated continuous-wave (FM-CW), ultrawide-bandwidth, high-resolution radar systems. One such system on DIII-D has routinely demonstrated measurements of the density profile over a range of electron density of 0-6.4x10^19,m-3, with ˜25 μs time and ˜4 mm radial resolution, meeting key ITER requirements. This progress in performance was made possible by multiple advances in the areas of millimeter-wave technology, novel measurement techniques, and improved understanding, including: (i) fast sweep, solid-state, wide bandwidth sources and power amplifiers, (ii) dual polarization measurements to expand the density range, (iii) adaptive radar-based data analysis with parallel processing on a Unix cluster, (iv) high memory depth data acquisition, and (v) advances in full wave code modeling. The benefits of advanced system performance will be illustrated using measurements from a wide range of phenomena, including ELM and fast-ion driven mode dynamics, L-H transition studies and plasma-wall interaction. The measurement capabilities demonstrated by these systems provide a design basis for the development of the main ITER profile reflectometer system. This talk will explore the extent to which these reflectometer system designs, results and experience can be translated to ITER, and will identify what new studies and experimental tests are essential.
Active Time-Domain Reflectometry for Unattended Safeguards Systems: FY16 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tedeschi, Jonathan R.; Smith, Leon E.; Conrad, Ryan C.
2016-10-21
The International Atomic Energy Agency (IAEA) continues to expand its use of unattended measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. Traditional data security measures, for example tamper-indicating (TI) conduit, are impractical for the long separation distances (often 100 meters or more) between unattended monitoring system (UMS) components. Pacific Northwest National Laboratory (PNNL) is studying the viability of active time-domain reflectometry (TDR) for the detection of cable tampering in unattended radiation detection systems. The instrument concept under investigation would allow formore » unmanned cable integrity measurements, remote surveillance reporting and locating of cable faults and/or tampers. This report describes PNNL’s FY16 progress and includes: an overview of the TDR methods under investigation; description of the TDR evaluation testbed developed by PNNL; development and testing of advanced signal processing algorithms to extract weak signals from relatively high noise levels; and initial testing of a laboratory prototype intended for IAEA UMS applications and based on a commercially available TDR module. Preliminary viability findings and recommendations for the next stage of development and testing are provided.« less
2013-05-21
13. SUPPLEMENTARY NOTES 14. ABSTRACT Reflectometry , a microwave remote sensing technique to extract geophysical data from scattered satellite...transmissions, was first demonstrated using Global Navigation Satellite System (GNSS) reflections. Recently, reflectometry has been extended to digital...potential missions. a 15. SUBJECT TERMS Reflectometry , Ocean Winds, Global Navigation Satellites, Communication Satellites 16. SECURITY
NASA Astrophysics Data System (ADS)
Li, Jing Xia; Xu, Hang; Liu, Li; Su, Peng Cheng; Zhang, Jian Guo
2015-05-01
We report a chaotic optical time-domain reflectometry for fiber fault location, where a chaotic probe signal is generated by driving a distributed feedback laser diode with an improved Colpitts chaotic oscillator. The results show that the unterminated fiber end, the loose connector, and the mismatch connector can be precisely located. A measurement range of approximately 91 km and a range independent resolution of 6 cm are achieved. This implementation method is easy to integrate and is cost effective, which gives it great potential for commercial applications.
Dynamic Detection of Spinal Cord Position During Postural Changes Using Near-Infrared Reflectometry.
Wolf, Erich W
2015-08-01
Motion of the spinal cord relative to a spinal cord stimulator epidural electrode array can cause suboptimal stimulation: either noxious, inefficient, or insufficient. Adaptive stimulation attempts to mitigate these effects by modulating stimulation parameters in a position-dependent fashion. Near-infrared (NIR) reflectometry is demonstrated to provide real-time direct measurement of spinal cord position at the site of stimulation, which can facilitate closed-loop adaptive stimulation during static and dynamic motion states. A miniature sensor array consisting of an NIR light emitting diode flanked by phototransistors potted in epoxy was placed in the dorsal epidural space of a human cadaver at the T8 level via laminotomy. Turgor of the subarachnoid space was maintained by intrathecal infusion of saline. NIR reflectance was measured as the cadaver was rotated about its longitudinal axis on a gantry. NIR reflectance was correlated with gantry position and velocity. NIR reflectometry suggests gravitational force is the primary determinant of cord position in static, ordinal positions. Under dynamic motion conditions, there was statistically significant cross-correlation between reflectometry data and the tangential velocity squared, suggesting that centripetal force was the primary determinant of cord position as the gantry was rotated. Reflectometry data strongly correlated with a simple geometric model of anticipated spinal cord precession within the spinal canal. Spinal cord position during dynamic motion has been shown to differ from static predictions due to additional influences such as centripetal force. These findings underscore limitations in extrapolating spinal cord position from surrogates such as body position or body acceleration at sites remote from the stimulating electrodes. NIR reflectometry offers a real-time direct measure of spinal cord position in both static and dynamic motion states, which may facilitate closed-loop adaptive stimulation applications. © 2015 International Neuromodulation Society.
Millimeter-wave reflectometry for electron density profile and fluctuation measurements on NSTX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubota, S.; Nguyen, X. V.; Peebles, W. A.
2001-01-01
A millimeter-wave reflectometry system for electron density profile and fluctuation measurements is being developed and installed on the National Spherical Torus Experiment. The initial frequency coverage will be in the bands 12--18, 20--32, and 33--50 GHz, provided by frequency-tunable solid-state sources. These frequencies correspond to O-mode cutoff densities ranging from 1.8x10{sup 12} to 3.1x10{sup 13}cm{sup -3}, which will span both the plasma core ({rho}=r/a<0.8) and edge ({rho}>0.8) regions. Operated as a broadband swept-frequency (frequency-modulated continuous-wave) reflectometer, the diagnostic is expected to provide routine (shot-to-shot) time- ({<=}50 {mu}s) and spatially resolved ({approx}1 cm) density profiles. The previous hardware can be easilymore » reconfigured as a fixed-frequency reflectometer for density fluctuation measurements. The combination of measurements would be valuable for studying phenomena such as possible L- to H-mode transitions and edge-localized modes.« less
Field-programmable gate array-controlled sweep velocity-locked laser pulse generator
NASA Astrophysics Data System (ADS)
Chen, Zhen; Hefferman, Gerald; Wei, Tao
2017-05-01
A field-programmable gate array (FPGA)-controlled sweep velocity-locked laser pulse generator (SV-LLPG) design based on an all-digital phase-locked loop (ADPLL) is proposed. A distributed feedback laser with modulated injection current was used as a swept-frequency laser source. An open-loop predistortion modulation waveform was calibrated using a feedback iteration method to initially improve frequency sweep linearity. An ADPLL control system was then implemented using an FPGA to lock the output of a Mach-Zehnder interferometer that was directly proportional to laser sweep velocity to an on-board system clock. Using this system, linearly chirped laser pulses with a sweep bandwidth of 111.16 GHz were demonstrated. Further testing evaluating the sensing utility of the system was conducted. In this test, the SV-LLPG served as the swept laser source of an optical frequency-domain reflectometry system used to interrogate a subterahertz range fiber structure (sub-THz-FS) array. A static strain test was then conducted and linear sensor results were observed.
Inclinometer - Time Domain Reflectometry Comparative Study
DOT National Transportation Integrated Search
2004-12-01
Four pairs of inclinometers and time domain reflectometry (TDR) cables were set up to make a side-by-side : comparison of the performance of these systems in detecting slippage of soils in the shoulders of State Route 124 : and State Route 338 in Mei...
Inclinometer--time-domain reflectometry comparative study.
DOT National Transportation Integrated Search
2004-12-01
Four pairs of inclinometers and time domain reflectometry (TDR) cables were set up to make a side-by-side : comparison of the performance of these systems in detecting slippage of soils in the shoulders of State Route 124 : and State Route 338 in Mei...
Directly coupled vs conventional time domain reflectometry in soils
USDA-ARS?s Scientific Manuscript database
Time domain reflectometry (TDR), a technique for estimation of soil water, measures the travel time of an electromagnetic pulse on electrodes embedded in the soil, but has limited application in commercial agriculture due to costs, labor, and sensing depth. Conventional TDR systems have employed ana...
Mompó, Juan José; Martín-López, Sonia; González-Herráez, Miguel; Loayssa, Alayn
2018-04-01
We demonstrate a technique to reduce the sidelobes in optical pulse compression reflectometry for distributed acoustic sensing. The technique is based on using a Gaussian probe pulse with linear frequency modulation. This is shown to improve the sidelobe suppression by 13 dB compared to the use of square pulses without any significant penalty in terms of spatial resolution. In addition, a 2.25 dB enhancement in signal-to-noise ratio is calculated compared to the use of receiver-side windowing. The method is tested by measuring 700 Hz vibrations with a 140 nε amplitude at the end of a 50 km fiber sensing link with 34 cm spatial resolution, giving a record 147,058 spatially resolved points.
Pulse reflectometry as an acoustical inverse problem: Regularization of the bore reconstruction
NASA Astrophysics Data System (ADS)
Forbes, Barbara J.; Sharp, David B.; Kemp, Jonathan A.
2002-11-01
The theoretical basis of acoustic pulse reflectometry, a noninvasive method for the reconstruction of an acoustical duct from the reflections measured in response to an input pulse, is reviewed in terms of the inversion of the central Fredholm equation. It is known that this is an ill-posed problem in the context of finite-bandwidth experimental signals. Recent work by the authors has proposed the truncated singular value decomposition (TSVD) in the regularization of the transient input impulse response, a non-measurable quantity from which the spatial bore reconstruction is derived. In the present paper we further emphasize the relevance of the singular system framework to reflectometry applications, examining for the first time the transient bases of the system. In particular, by varying the truncation point for increasing condition numbers of the system matrix, it is found that the effects of out-of-bandwidth singular functions on the bore reconstruction can be systematically studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callori, S. J., E-mail: sara.callori@ansto.gov.au; Bertinshaw, J.; Bragg Institute, Australian Nuclear Science and Technology Organization, Lucas Heights, New South Wales 2234
2014-07-21
We have observed 90° magnetic coupling in a NiFe/FeMn/biased NiFe multilayer system using polarized neutron reflectometry. Magnetometry results show magnetic switching for both the biased and free NiFe layers, the latter of which reverses at low applied fields. As these measurements are only capable of providing information about the total magnetization within a sample, polarized neutron reflectometry was used to investigate the reversal behavior of the NiFe layers individually. Both the non-spin-flip and spin-flip neutron reflectometry signals were tracked around the free NiFe layer hysteresis loop and were used to detail the evolution of the magnetization during reversal. At lowmore » magnetic fields near the free NiFe coercive field, a large spin-flip signal was observed, indicating magnetization aligned perpendicular to both the applied field and pinned layer.« less
NASA Astrophysics Data System (ADS)
Kohagura, J.; Yoshikawa, M.; Wang, X.; Kuwahara, D.; Ito, N.; Nagayama, Y.; Shima, Y.; Nojiri, K.; Sakamoto, M.; Nakashima, Y.; Mase, A.
2016-11-01
In conventional multichannel/imaging microwave diagnostics of interferometry, reflectometry, and electron cyclotron emission measurements, a local oscillator (LO) signal is commonly supplied to a receiver array via irradiation using LO optics. In this work, we present a 60-GHz interferometer with a new eight-channel receiver array, called a local oscillator integrated antenna array (LIA). An outstanding feature of LIA is that it incorporates a frequency quadrupler integrated circuit for LO supply to each channel. This enables simple and uniform LO supply to the receiver array using only a 15-GHz LO source and a coaxial cable transmission line instead of using an expensive 60-GHz source, LO optics, and a waveguide transmission line. The new interferometer system is first applied to measure electron line-averaged density inside the divertor simulation experimental module (D-module) on GAMMA 10/PDX tandem mirror device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohagura, J., E-mail: kohagura@prc.tsukuba.ac.jp; Yoshikawa, M.; Shima, Y.
In conventional multichannel/imaging microwave diagnostics of interferometry, reflectometry, and electron cyclotron emission measurements, a local oscillator (LO) signal is commonly supplied to a receiver array via irradiation using LO optics. In this work, we present a 60-GHz interferometer with a new eight-channel receiver array, called a local oscillator integrated antenna array (LIA). An outstanding feature of LIA is that it incorporates a frequency quadrupler integrated circuit for LO supply to each channel. This enables simple and uniform LO supply to the receiver array using only a 15-GHz LO source and a coaxial cable transmission line instead of using an expensivemore » 60-GHz source, LO optics, and a waveguide transmission line. The new interferometer system is first applied to measure electron line-averaged density inside the divertor simulation experimental module (D-module) on GAMMA 10/PDX tandem mirror device.« less
Kohagura, J; Yoshikawa, M; Wang, X; Kuwahara, D; Ito, N; Nagayama, Y; Shima, Y; Nojiri, K; Sakamoto, M; Nakashima, Y; Mase, A
2016-11-01
In conventional multichannel/imaging microwave diagnostics of interferometry, reflectometry, and electron cyclotron emission measurements, a local oscillator (LO) signal is commonly supplied to a receiver array via irradiation using LO optics. In this work, we present a 60-GHz interferometer with a new eight-channel receiver array, called a local oscillator integrated antenna array (LIA). An outstanding feature of LIA is that it incorporates a frequency quadrupler integrated circuit for LO supply to each channel. This enables simple and uniform LO supply to the receiver array using only a 15-GHz LO source and a coaxial cable transmission line instead of using an expensive 60-GHz source, LO optics, and a waveguide transmission line. The new interferometer system is first applied to measure electron line-averaged density inside the divertor simulation experimental module (D-module) on GAMMA 10/PDX tandem mirror device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Astaf'ev, S. B., E-mail: bard@ns.crys.ras.ru; Shchedrin, B. M.; Yanusova, L. G.
2012-01-15
The main principles of developing the Basic Analysis of Reflectometry Data (BARD) software package, which is aimed at obtaining a unified (standardized) tool for analyzing the structure of thin multilayer films and nanostructures of different nature based on reflectometry data, are considered. This software package contains both traditionally used procedures for processing reflectometry data and the authors' original developments on the basis of new methods for carrying out and analyzing reflectometry experiments. The structure of the package, its functional possibilities, examples of application, and prospects of development are reviewed.
Reflectometry diagnostics on TCV
NASA Astrophysics Data System (ADS)
Molina Cabrera, Pedro; Coda, Stefano; Porte, Laurie; Offeddu, Nicola; Tcv Team
2017-10-01
Both profile reflectometer and Doppler back-scattering (DBS) diagnostics are being developed for the TCV Tokamak using a steerable quasi-optical launcher and universal polarizers. First results will be presented. A pulse reflectometer is being developed to complement Thomson Scattering measurements of electron density, greatly increasing temporal resolution and also effectively enabling fluctuation measurements. Pulse reflectometry consists of sending short pulses of varying frequency and measuring the roundtrip group-delay with precise chronometers. A fast arbitrary waveform generator is used as a pulse source feeding frequency multipliers that bring the pulses to V-band. A DBS diagnostic is currently operational in TCV. DBS may be used to infer the perpendicular velocity and wave number spectrum of electron density fluctuations in the 3-15 cm-1 wave-number range. Off-the-shelf transceiver modules, originally used for VNA measurements, are being used in a Doppler radar configuration. See author list of S. Coda et al., 2017 Nucl. Fusion 57 102011.
Studies of electrochemical interfaces by TOF neutron reflectometry at the IBR-2 reactor
NASA Astrophysics Data System (ADS)
Petrenko, V. I.; Gapon, I. V.; Rulev, A. A.; Ushakova, E. E.; Kataev, E. Yu; Yashina, L. V.; Itkis, D. M.; Avdeev, M. V.
2018-03-01
The operation performance of electrochemical energy conversion and storage systems such as supercapacitors and batteries depends on the processes occurring at the electrochemical interfaces, where charge separation and chemical reactions occur. Here, we report about the tests of the neutron reflectometry cells specially designed for operando studies of structural changes at the electrochemical interfaces between solid electrodes and liquid electrolytes. The cells are compatible with anhydrous electrolytes with organic solvents, which are employed today in all lithium ion batteries and most supercapacitors. The sensitivity of neutron reflectometry applied at the time-of-flight (TOF) reflectometer at the pulsed reactor IBR-2 is discussed regarding the effect of solid electrolyte interphase (SEI) formation on metal electrode surface.
NASA Astrophysics Data System (ADS)
Zhirnov, A. A.; Pnev, A. B.; Svelto, C.; Norgia, M.; Pesatori, A.; Galzerano, G.; Laporta, P.; Shelestov, D. A.; Karasik, V. E.
2017-11-01
A novel laser for phase-sensitive optical time-domain reflectometry (Φ-OTDR) is presented. The advantages of a compact solid-state laser are listed, current problems are shown. Experiments with a microchip single-optical-element laser, from setup construction to usage in Φ-OTDR system, are presented. New laser scheme with two-photon intracavity absorber is suggested and its advantages are described.
Pinpointing chiral structures with front-back polarized neutron reflectometry.
O'Donovan, K V; Borchers, J A; Majkrzak, C F; Hellwig, O; Fullerton, E E
2002-02-11
A new development in spin-polarized neutron reflectometry enables us to more fully characterize the nucleation and growth of buried domain walls in layered magnetic materials. We applied this technique to a thin-film exchange-spring magnet. After first measuring the reflectivity with the neutrons striking the front, we measure with the neutrons striking the back. Simultaneous fits are sensitive to the presence of spiral spin structures. The technique reveals previously unresolved features of field-dependent domain walls in exchange-spring systems and has sufficient generality to apply to a variety of magnetic systems.
Birefringence insensitive optical coherence domain reflectometry system
Everett, Matthew J.; Davis, Joseph G.
2002-01-01
A birefringence insensitive fiber optic optical coherence domain reflectometry (OCDR) system is provided containing non-polarization maintaining (non-PM) fiber in the sample arm and the reference arm without suffering from signal degradation caused by birefringence. The use of non-PM fiber significantly reduces the cost of the OCDR system and provides a disposable or multiplexed section of the sample arm. The dispersion in the reference arm and sample arm of the OCDR system are matched to achieve high resolution imaging. This system is useful in medical applications or for non-medical in situ probes. The disposable section of non-PM fiber in the sample arm can be conveniently replaced when contaminated by a sample or a patient.
Distributed gas sensing with optical fibre photothermal interferometry.
Lin, Yuechuan; Liu, Fei; He, Xiangge; Jin, Wei; Zhang, Min; Yang, Fan; Ho, Hoi Lut; Tan, Yanzhen; Gu, Lijuan
2017-12-11
We report the first distributed optical fibre trace-gas detection system based on photothermal interferometry (PTI) in a hollow-core photonic bandgap fibre (HC-PBF). Absorption of a modulated pump propagating in the gas-filled HC-PBF generates distributed phase modulation along the fibre, which is detected by a dual-pulse heterodyne phase-sensitive optical time-domain reflectometry (OTDR) system. Quasi-distributed sensing experiment with two 28-meter-long HC-PBF sensing sections connected by single-mode transmission fibres demonstrated a limit of detection (LOD) of ∼10 ppb acetylene with a pump power level of 55 mW and an effective noise bandwidth (ENBW) of 0.01 Hz, corresponding to a normalized detection limit of 5.5ppb⋅W/Hz. Distributed sensing experiment over a 200-meter-long sensing cable made of serially connected HC-PBFs demonstrated a LOD of ∼ 5 ppm with 62.5 mW peak pump power and 11.8 Hz ENBW, or a normalized detection limit of 312ppb⋅W/Hz. The spatial resolution of the current distributed detection system is limited to ∼ 30 m, but it is possible to reduce down to 1 meter or smaller by optimizing the phase detection system.
Thermal analysis of the in-vessel components of the ITER plasma-position reflectometry.
Quental, P B; Policarpo, H; Luís, R; Varela, P
2016-11-01
The ITER plasma position reflectometry system measures the edge electron density profile of the plasma, providing real-time supplementary contribution to the magnetic measurements of the plasma-wall distance. Some of the system components will be in direct sight of the plasma and therefore subject to plasma and stray radiation, which may cause excessive temperatures and stresses. In this work, thermal finite element analysis of the antenna and adjacent waveguides is conducted with ANSYS V17 (ANSYS® Academic Research, Release 17.0, 2016). Results allow the identification of critical temperature points, and solutions are proposed to improve the thermal behavior of the system.
In-service communication channel sensing based on reflectometry for TWDM-PON systems
NASA Astrophysics Data System (ADS)
Iida, Daisuke; Kuwano, Shigeru; Terada, Jun
2014-05-01
Many base stations are accommodated in TWDM-PON based mobile backhaul and fronthaul networks for future radio access, and failed connections in an optical network unit (ONU) wavelength channel severely degrade system performance. A cost effective in-service ONU wavelength channel monitor is essential to ensure proper system operation without failed connections. To address this issue we propose a reflectometry-based remote sensing method that provides wavelength channel information with the optical line terminal (OLT)-ONU distance. The method realizes real-time monitoring of ONU wavelength channels without signal quality degradation. Experimental results show it achieves wavelength channel distinction with high distance resolution.
Thermal analysis of the in-vessel components of the ITER plasma-position reflectometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quental, P. B., E-mail: pquental@ipfn.tecnico.ulisboa.pt; Policarpo, H.; Luís, R.
The ITER plasma position reflectometry system measures the edge electron density profile of the plasma, providing real-time supplementary contribution to the magnetic measurements of the plasma-wall distance. Some of the system components will be in direct sight of the plasma and therefore subject to plasma and stray radiation, which may cause excessive temperatures and stresses. In this work, thermal finite element analysis of the antenna and adjacent waveguides is conducted with ANSYS V17 (ANSYS® Academic Research, Release 17.0, 2016). Results allow the identification of critical temperature points, and solutions are proposed to improve the thermal behavior of the system.
NASA Astrophysics Data System (ADS)
Zhang, Jingdong; Zhu, Tao; Zheng, Hua; Kuang, Yang; Liu, Min; Huang, Wei
2017-04-01
The round trip time of the light pulse limits the maximum detectable frequency response range of vibration in phase-sensitive optical time domain reflectometry (φ-OTDR). We propose a method to break the frequency response range restriction of φ-OTDR system by modulating the light pulse interval randomly which enables a random sampling for every vibration point in a long sensing fiber. This sub-Nyquist randomized sampling method is suits for detecting sparse-wideband- frequency vibration signals. Up to MHz resonance vibration signal with over dozens of frequency components and 1.153MHz single frequency vibration signal are clearly identified for a sensing range of 9.6km with 10kHz maximum sampling rate.
Ribot, Miguel Angel; Botteron, Cyril; Farine, Pierre-André
2016-12-05
The use of the reflected Global Navigation Satellite Systems' (GNSS) signals in Earth observation applications, referred to as GNSS reflectometry (GNSS-R), has been already studied for more than two decades. However, the estimation precision that can be achieved by GNSS-R sensors in some particular scenarios is still not fully understood yet. In an effort to partially fill this gap, in this paper, we compute the Cramér-Rao bound (CRB) for the specific case of static ground-based GNSS-R receivers and scenarios where the coherent component of the reflected signal is dominant. We compute the CRB for GNSS signals with different modulations, GPS L1 C/A and GPS L5 I/Q, which use binary phase-shift keying, and Galileo E1 B/C and E5, using the binary offset carrier. The CRB for these signals is evaluated as a function of the receiver bandwidth and different scenario parameters, such as the height of the receiver or the properties of the reflection surface. The CRB computation presented considers observation times of up to several tens of seconds, in which the satellite elevation angle observed changes significantly. Finally, the results obtained show the theoretical benefit of using modern GNSS signals with GNSS-R techniques using long observation times, such as the interference pattern technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguiam, D. E., E-mail: daguiam@ipfn.tecnico.ulisboa.pt; Silva, A.; Carvalho, P. J.
A new multichannel frequency modulated continuous-wave reflectometry diagnostic has been successfully installed and commissioned on ASDEX Upgrade to measure the plasma edge electron density profile evolution in front of the Ion Cyclotron Range of Frequencies (ICRF) antenna. The design of the new three-strap ICRF antenna integrates ten pairs (sending and receiving) of microwave reflectometry antennas. The multichannel reflectometer can use three of these to measure the edge electron density profiles up to 2 × 10{sup 19} m{sup −3}, at different poloidal locations, allowing the direct study of the local plasma layers in front of the ICRF antenna. ICRF power coupling,more » operational effects, and poloidal variations of the plasma density profile can be consistently studied for the first time. In this work the diagnostic hardware architecture is described and the obtained density profile measurements were used to track outer radial plasma position and plasma shape.« less
Common-path conoscopic interferometry for enhanced picosecond ultrasound detection
NASA Astrophysics Data System (ADS)
Liu, Liwang; Guillet, Yannick; Audoin, Bertrand
2018-05-01
We report on a common-path implementation of conoscopic interferometry in picosecond pump-probe reflectometry for simple and efficient detection of picosecond ultrasounds. The interferometric configuration proposed here is greatly simplified, involving only the insertion of a birefringent crystal in a standard reflectometry setup. Our approach is demonstrated by the optical detection of coherent acoustic phonons propagating through thin metal films under two representative geometries, one a particular case where the crystal slab is part of a sample as substrate of a metal film, and the other a more general case where the crystal slab is independent of the sample as part of the detection system. We first illustrate the former with a 300 nm thin film of polycrystalline titanium, deposited by physical vapor deposition on top of a 1 mm-thick uniaxial (0001) sapphire crystal. A signal-to-noise ratio (SNR) enhancement of more than 15 dB is achieved compared to conventional reflectometry. Next, the general case is demonstrated with a 900 nm-tungsten film sputtered on a silicon wafer substrate. More echoes can be discriminated by using the reported approach compared to standard reflectometry, which confirms the improvement in SNR and suggests broad applications for the reported method.
Radio-frequency reflectometry on an undoped AlGaAs/GaAs single electron transistor
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacLeod, S. J.; See, A. M.; Keane, Z. K.
2014-01-06
Radio frequency reflectometry is demonstrated in a sub-micron undoped AlGaAs/GaAs device. Undoped single electron transistors (SETs) are attractive candidates to study single electron phenomena, due to their charge stability and robust electronic properties after thermal cycling. However, these devices require a large top-gate, which is unsuitable for the fast and sensitive radio frequency reflectometry technique. Here, we demonstrate that rf reflectometry is possible in an undoped SET.
Radial and poloidal correlation reflectometry on Experimental Advanced Superconducting Tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Hao; Zhang, Tao; Han, Xiang
2015-08-15
An X-mode polarized V band (50 GHz–75 GHz) radial and poloidal correlation reflectometry is designed and installed on Experimental Advanced Superconducting Tokamak (EAST). Two frequency synthesizers (12 GHz–19 GHz) are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together for launching through one single pyramidal antenna. Two poloidally separated antennae are installed to receive the reflected waves from plasma. This reflectometry system can be used for radial and poloidal correlation measurement of the electron density fluctuation. In ohmically heated plasma, the radial correlation length is about 1.5 cm measured bymore » the system. The poloidal correlation analysis provides a means to estimate the fluctuation velocity perpendicular to the main magnetic field. In the present paper, the distance between two poloidal probing points is calculated with ray-tracing code and the propagation time is deduced from cross-phase spectrum. Fluctuation velocity perpendicular to the main magnetic field in the core of ohmically heated plasma is about from −1 km/s to −3 km/s.« less
Estimation of sea level variations with GPS/GLONASS-reflectometry technique
NASA Astrophysics Data System (ADS)
Padokhin, A. M.; Kurbatov, G. A.; Andreeva, E. S.; Nesterov, I. A.; Nazarenko, M. O.; Berbeneva, N. A.; Karlysheva, A. V.
2017-11-01
In the present paper we study GNSS - reflectometry methods for estimation of sea level variations using a single GNSSreceiver, which are based on the multipath propagation effects caused by the reflection of navigational signals from the sea surface. Such multipath propagation results in the appearance of the interference pattern in the Signal-to-Noise Ratio (SNR) of GNSS signals at small satellite elevation angles, which parameters are determined by the wavelength of the navigational signal and height of the antenna phase center above the reflecting sea surface. In current work we used GPS and GLONASS signals and measurements at two working frequencies of both systems to study sea level variations which almost doubles the amount of observations compared to GPS-only tide gauge. For UNAVCO sc02 station and collocated Friday Harbor NOAA tide gauge we show good agreement between GNSS-reflectometry and traditional mareograph sea level data.
NASA Astrophysics Data System (ADS)
Bravenec, R. V.; Ross, D. W.; Austin, M. E.; Gentle, K. W.; Deboo, J. C.; DIII-D Team; McKee, G. R.; Dorland, W.; Rhodes, T. L.; Zeng, L.
2002-11-01
Experiments to elucidate the nature of electron thermal transport have been conducted in DIII-D plasmas using modulated off-axis electron-cyclotron heating (ECH). Density fluctuations were measured using beam-emission spectroscopy, microwave reflectometry, and far-infrared scattering. Simulations of the experiment are performed with the gyrokinetic and gyrofluid flux-tube codes GS2(F. Jenko, W. Dorland, M. Kotschenreuther, and B.N. Rogers, Phys. Plasmas 7), 1904 (2000) and refs. therein. and GRYFFIN,(W. Dorland and G.W. Hammett, Phys. Fluids B 5), 812 (1993); M.A. Beer and G.W. Hammett, Phys. Plasmas 3, 4046 (1996). respectively. Comparisons of experiment and simulation results for the fluctuations and transport fluxes (ion and electron) will be presented for both time-averaged and modulated quantities.
NASA Technical Reports Server (NTRS)
Ponce, Adrian (Inventor); Kossakovski, Dmitri A. (Inventor); Bearman, Gregory H. (Inventor)
2010-01-01
Optical time domain reflectometry caused by absorption of a volatile or analyte into the fiber optic cladding is used as an optical nose. The fiber optics (14) are covered with a gas permeable film (44) which is patterned to leave millimeter wide gas permeable notches (48a-48d). The notches contain a sensing polymer that responds to different gases by expanding or contracting.
Frozen O 2 layer revealed by neutron reflectometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steffen, A.; Glavic, A.; Holderer, O.
2016-05-27
We investigated a 63 thick film originating from frozen air on a solid substrate via neutron reflectometry. Furthermore, the experiment shows that neutron reflectometry allows performing chemical surface analysis by quantifying the composition of this frozen layer and identifies the film to be frozen oxygen.
Gourdain, P-A; Peebles, W A
2008-10-01
Reflectometry has successfully demonstrated measurements of many important parameters in high temperature tokamak fusion plasmas. However, implementing such capabilities in a high-field, large plasma, such as ITER, will be a significant challenge. In ITER, the ratio of plasma size (meters) to the required reflectometry source wavelength (millimeters) is significantly larger than in existing fusion experiments. This suggests that the flow of the launched reflectometer millimeter-wave power can be realistically analyzed using three-dimensional ray tracing techniques. The analytical and numerical studies presented will highlight the fact that the group velocity (or power flow) of the launched microwaves is dependent on the direction of wave propagation relative to the internal magnetic field. It is shown that this dependence strongly modifies power flow near the cutoff layer in a manner that embeds the local magnetic field direction in the "footprint" of the power returned toward the launch antenna. It will be shown that this can potentially be utilized to locally determine the magnetic field pitch angle at the cutoff location. The resultant beam drift and distortion due to magnetic field and relativistic effects also have significant consequences on the design of reflectometry systems for large, high-field fusion experiments. These effects are discussed in the context of the upcoming ITER burning plasma experiment.
da Silva, F; Heuraux, S; Ricardo, E; Quental, P; Ferreira, J
2016-11-01
We conducted a first assessment of the measurement performance of the in-vessel components at gap 6 of the ITER plasma position reflectometry with the aid of a synthetic Ordinary Mode (O-mode) broadband frequency-modulated continuous-wave reflectometer implemented with REFMUL, a 2D finite-difference time-domain full-wave Maxwell code. These simulations take into account the system location within the vacuum vessel as well as its access to the plasma. The plasma case considered is a baseline scenario from Fusion for Energy. We concluded that for the analyzed scenario, (i) the plasma curvature and non-equatorial position of the antenna have neglectable impact on the measurements; (ii) the cavity-like space surrounding the antenna can cause deflection and splitting of the probing beam; and (iii) multi-reflections on the blanket wall cause a substantial error preventing the system from operating within the required error margin.
Detection of tunnel excavation using fiber optic reflectometry: experimental validation
NASA Astrophysics Data System (ADS)
Linker, Raphael; Klar, Assaf
2013-06-01
Cross-border smuggling tunnels enable unmonitored movement of people and goods, and pose a severe threat to homeland security. In recent years, we have been working on the development of a system based on fiber- optic Brillouin time domain reflectometry (BOTDR) for detecting tunnel excavation. In two previous SPIE publications we have reported the initial development of the system as well as its validation using small-scale experiments. This paper reports, for the first time, results of full-scale experiments and discusses the system performance. The results confirm that distributed measurement of strain profiles in fiber cables buried at shallow depth enable detection of tunnel excavation, and by proper data processing, these measurements enable precise localization of the tunnel, as well as reasonable estimation of its depth.
Dental optical coherence domain reflectometry explorer
Everett, Matthew J.; Colston, Jr., Billy W.; Sathyam, Ujwal S.; Da Silva, Luiz B.
2001-01-01
A hand-held, fiber optic based dental device with optical coherence domain reflectometry (OCDR) sensing capabilities provides a profile of optical scattering as a function of depth in the tissue at the point where the tip of the dental explorer touches the tissue. This system provides information on the internal structure of the dental tissue, which is then used to detect caries and periodontal disease. A series of profiles of optical scattering or tissue microstructure are generated by moving the explorer across the tooth or other tissue. The profiles are combined to form a cross-sectional, or optical coherence tomography (OCT), image.
Distributed fiber sparse-wideband vibration sensing by sub-Nyquist additive random sampling
NASA Astrophysics Data System (ADS)
Zhang, Jingdong; Zheng, Hua; Zhu, Tao; Yin, Guolu; Liu, Min; Bai, Yongzhong; Qu, Dingrong; Qiu, Feng; Huang, Xianbing
2018-05-01
The round trip time of the light pulse limits the maximum detectable vibration frequency response range of phase-sensitive optical time domain reflectometry ({\\phi}-OTDR). Unlike the uniform laser pulse interval in conventional {\\phi}-OTDR, we randomly modulate the pulse interval, so that an equivalent sub-Nyquist additive random sampling (sNARS) is realized for every sensing point of the long interrogation fiber. For an {\\phi}-OTDR system with 10 km sensing length, the sNARS method is optimized by theoretical analysis and Monte Carlo simulation, and the experimental results verify that a wide-band spars signal can be identified and reconstructed. Such a method can broaden the vibration frequency response range of {\\phi}-OTDR, which is of great significance in sparse-wideband-frequency vibration signal detection, such as rail track monitoring and metal defect detection.
Active Time Domain Reflectometry for Tamper Indication in Unattended Safeguards Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheen, David M.; Smith, Leon E.; Tedeschi, Jonathan R.
2015-07-14
The International Atomic Energy Agency (IAEA) continues to expand its use of unattended measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. In collaboration with the IAEA, tamper-indicating measures to address data-transmission authentication challenges with unattended safeguards systems are under investigation. Pacific Northwest National Laboratory is studying the viability of active time-domain reflectometry (TDR) along two parallel but interconnected paths: (1) swept-frequency TDR as the highly flexible, laboratory gold standard to which field-deployable options can be compared, and (2) a low-cost commerciallymore » available spread-spectrum TDR technology as one option for field implementation. This paper describes the TDR methods under investigation and the associated benchtop test-bed, tampering scenarios of interest,, and viability measurement results to date (e.g., comparison of relative sensitivity to tamper scenarios).« less
Dunlop, Iain E.; Zorn, Stefan; Richter, Gunther; Srot, Vesna; Kelsch, Marion; van Aken, Peter A.; Skoda, Maximilian; Gerlach, Alexander; Spatz, Joachim P.; Schreiber, Frank
2010-01-01
We present a titanium-silicon oxide film structure that permits polarization modulated infrared reflection absorption spectroscopy on silicon oxide surfaces. The structure consists of a ~6 nm sputtered silicon oxide film on a ~200 nm sputtered titanium film. Characterization using conventional and scanning transmission electron microscopy, electron energy loss spectroscopy, X-ray photoelectron spectroscopy and X-ray reflectometry is presented. We demonstrate the use of this structure to investigate a selectively protein-resistant self-assembled monolayer (SAM) consisting of silane-anchored, biotin-terminated poly(ethylene glycol) (PEG). PEG-associated IR bands were observed. Measurements of protein-characteristic band intensities showed that this SAM adsorbed streptavidin whereas it repelled bovine serum albumin, as had been expected from its structure. PMID:20418963
NASA Astrophysics Data System (ADS)
Schmehl, Andreas; Mairoser, Thomas; Herrnberger, Alexander; Stephanos, Cyril; Meir, Stefan; Förg, Benjamin; Wiedemann, Birgit; Böni, Peter; Mannhart, Jochen; Kreuzpaintner, Wolfgang
2018-03-01
We report on the realization of a sputter deposition system for the in situ- and in operando-use in polarized neutron reflectometry experiments. Starting with the scientific requirements, which define the general design considerations, the external limitations and boundaries imposed by the available space at a neutron beamline and by the neutron and vacuum compatibility of the used materials, are assessed. The relevant aspects are then accounted for in the realization of our highly mobile deposition system, which was designed with a focus on a quick and simple installation and removability at the beamline. Apart from the general design, the in-vacuum components, the auxiliary equipment and the remote control via a computer, as well as relevant safety aspects are presented in detail.
Long-range distributed optical fiber hot-wire anemometer based on chirped-pulse ΦOTDR.
Garcia-Ruiz, Andres; Dominguez-Lopez, Alejandro; Pastor-Graells, Juan; Martins, Hugo F; Martin-Lopez, Sonia; Gonzalez-Herraez, Miguel
2018-01-08
We demonstrate a technique allowing to develop a fully distributed optical fiber hot-wire anemometer capable of reaching a wind speed uncertainty of ≈ ±0.15m/s (±0.54km/h) at only 60 mW/m of dissipated power in the sensing fiber, and within only four minutes of measurement time. This corresponds to similar uncertainty values than previous papers on distributed optical fiber anemometry but requires two orders of magnitude smaller dissipated power and covers at least one order of magnitude longer distance. This breakthrough is possible thanks to the extreme temperature sensitivity and single-shot performance of chirped-pulse phase-sensitive optical time domain reflectometry (ΦOTDR), together with the availability of metal-coated fibers. To achieve these results, a modulated current is fed through the metal coating of the fiber, causing a modulated temperature variation of the fiber core due to Joule effect. The amplitude of this temperature modulation is strongly dependent on the wind speed at which the fiber is subject. Continuous monitoring of the temperature modulation along the fiber allows to determine the wind speed with singular low power injection requirements. Moreover, this procedure makes the system immune to temperature drifts of the fiber, potentially allowing for a simple field deployment. Being a much less power-hungry scheme, this method also allows for monitoring over much longer distances, in the orders of 10s of km. We expect that this system can have application in dynamic line rating and lateral wind monitoring in railway catenary wires.
NASA Astrophysics Data System (ADS)
Doyle, E. J.; Kim, K. W.; Peebles, W. A.; Rhodes, T. L.
1997-01-01
Reflectometry is an attractive and versatile diagnostic technique that can address a wide range of measurement needs on fusion devices. However, progress in the area of profile measurement has been hampered by the lack of a well-understood basis for the optimum design and implementation of such systems. Such a design basis is provided by the realization that reflectometer systems utilized for density profile measurements are in fact specialized forms of radar systems. In this article five criteria are introduced by which reflectometer systems can be systematically designed for optimal performance: range resolution, spatial sampling, turbulence immunity, bandwidth optimization, and the need for adaptive data processing. Many of these criteria are familiar from radar systems analysis, and are applicable to reflectometry after allowance is made for differences stemming from the nature of the plasma target. These criteria are utilized to critically evaluate current reflectometer density profile techniques and indicate improvements that can impact current and next step devices, such as ITER.
Time Domain Reflectometry for Damage Detection of Laminated CFRP plate
2011-08-18
Final Report PROJECT ID: AOARD-10-4112 Title: Time Domain Reflectometry for damage detection of laminated CFRP plate Researcher: Professor Akira...From July/2010 To July/2011 Abstract Recently, high toughness Carbon Fiber Reinforced Polymer (CFRP) laminates are used to primary structures. The...large laminated CFRP structures. In the previous study, Time Domain Reflectometry (TDR) method is adopted for the detection of the fiber breakages of
Seismic damage identification for steel structures using distributed fiber optics.
Hou, Shuang; Cai, C S; Ou, Jinping
2009-08-01
A distributed fiber optic monitoring methodology based on optic time domain reflectometry technology is developed for seismic damage identification of steel structures. Epoxy with a strength closely associated to a specified structure damage state is used for bonding zigzagged configured optic fibers on the surfaces of the structure. Sensing the local deformation of the structure, the epoxy modulates the signal change within the optic fiber in response to the damage state of the structure. A monotonic loading test is conducted on a steel specimen installed with the proposed sensing system using selected epoxy that will crack at the designated strain level, which indicates the damage of the steel structure. Then, using the selected epoxy, a varying degree of cyclic loading amplitudes, which is associated with different damage states, is applied on a second specimen. The test results show that the specimen's damage can be identified by the optic sensors, and its maximum local deformation can be recorded by the sensing system; moreover, the damage evolution can also be identified.
Wang, Feng; Zhang, Xuping; Wang, Xiangchuan; Chen, Haisheng
2013-07-15
A distributed fiber strain and vibration sensor which effectively combines Brillouin optical time-domain reflectometry and polarization optical time-domain reflectometry is proposed. Two reference beams with orthogonal polarization states are, respectively, used to perform the measurement. By using the signal obtained from either reference beam, the vibration of fiber can be measured from the polarization effect. After combining the signals obtained by both reference beams, the strain can be measured from the Brillouin effect. In the experiment, 10 m spatial resolution, 0.6 kHz frequency measurement range, 2.5 Hz frequency resolution, and 0.2 MHz uncertainty of Brillouin frequency measurement are realized for a 4 km sensing distance.
The SGR-ReSI and its application for GNSS reflectometry on the NASA EV-2 CYGNSS mission
NASA Astrophysics Data System (ADS)
Unwin, M.; Jales, P.; Blunt, P.; Duncan, S.; Brummitt, M.; Ruf, C.
As part of the EV-2 Cyclone Global Navigation Satellite System (CYGNSS) mission team, Surrey will be providing the Delay Doppler Mapping Instrument (DDMI) for eight Observatories designed and built by the University of Michigan and Southwest Research Institute (SwRI). Following the success of the GPS Reflectometry Experiment on the UK-DMC 1 satellite launched in 2003, Surrey has developed the SGR-ReSI as a move towards operational reflectometry and other applications. The Space GPS Receiver Remote Sensing Instrument (SGR-ReSI) is a COTS-electronics based GNSS receiver which can support up to eight programmable front-ends. It allows collection of raw sampled data but also is capable of processing the reflections into Delay Doppler Maps in real time. The first flight of the SGR-ReSI will be on the UK TechDemoSat-1 to prove the instrument and its various applications. The SGR-ReSI on CYGNSS has a different configuration to that on TechDemoSat-1 which is needed to focus on the requirements for operational cyclone sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steyerl, A.
1993-09-01
Within the past two and one half years of the project ``Surface Physics With Cold and Thermal Neutron Reflectometry`` a new thermal neutron reflectometer was constructed at the Rhode Island Nuclear Science Center (RINSC). It was used to study various liquid and solid surfaces. Furthermore, neutron reflection experiments were be un at different laboratories in collaboration with Dr. G.P. Fetcher (at Argonne National Laboratory), Dr. T. Russell (IBM Almaden) and Drs. S.K. Satija and A. Karim (at the National Institute for Standards and Technology). The available resources allowed partial construction of an imaging system for ultracold neutrons. It is expectedmore » to provide an extremely high resolution in momentum and energy transfer in surface studies using neutron reflectometry. Much of the work reported here was motivated by the possibility of later implementation at the planned Advanced Neutron Source at Oak Ridge. In a separate project the first concrete plans for an intense source of ultracold neutrons for the Advanced Neutron Source were developed.« less
Chen, Yunzhong; Green, Robert J; Sutarto, Ronny; He, Feizhou; Linderoth, Søren; Sawatzky, George A; Pryds, Nini
2017-11-08
Polar discontinuities and redox reactions provide alternative paths to create two-dimensional electron liquids (2DELs) at oxide interfaces. Herein, we report high mobility 2DELs at interfaces involving SrTiO 3 (STO) achieved using polar La 7/8 Sr 1/8 MnO 3 (LSMO) buffer layers to manipulate both polarities and redox reactions from disordered overlayers grown at room temperature. Using resonant X-ray reflectometry experiments, we quantify redox reactions from oxide overlayers on STO as well as polarity induced electronic reconstruction at epitaxial LSMO/STO interfaces. The analysis reveals how these effects can be combined in a STO/LSMO/disordered film trilayer system to yield high mobility modulation doped 2DELs, where the buffer layer undergoes a partial transformation from perovskite to brownmillerite structure. This uncovered interplay between polar discontinuities and redox reactions via buffer layers provides a new approach for the design of functional oxide interfaces.
Analysis of time domain reflectometry data from LTPP seasonal monitoring program test sections
DOT National Transportation Integrated Search
1996-07-01
This report documents an approach for designing an Advanced Traffic Management System (ATMS) from a human factors perspective. In designing the ATMS from a human factors perspective, a user-centered top-down system analysis was conducted. Methodologi...
NASA Astrophysics Data System (ADS)
Rodriguez-Novelo, J. C.; Sanchez-Nieves, J. A.; Sierra-Calderon, A.; Sanchez-Lara, R.; Alvarez-Chavez, J. A.
2017-08-01
The development of novel Al-, Ge- doped and un-doped standard single mode fibers for future optical communication at 2μm requires the integration of, among other pieces of equipment, an optical time domain reflectometry (OTDR) technique for precise spectral attenuation characterization, including the well-known cut-back method. The integration of a state of the art OTDR at 2μm could provide valuable attenuation information from the aforementioned novel fibers. The proposed setup consists of a 1.7 mW, 1960nm pump source, a 30 dB gain Thulium doped fibre amplifier at 2μm, an 0.8mm focal length lens with a 0.5 NA, a 30 MHz acusto-optic modulator, a 3.1 focal length lens with a 0.68NA, an optical circulator at 2μm, an InGaAs photodetector for 1.2 nm-2.6 nm range, a voltage amplifier and an oscilloscope. The propagated pulse rate is 50 KHz, with 500 ns, 200 ns, 100 ns and 50 ns pulse widths. Attenuation versus novel fibers types for lengths ranging from 400- to 1000- meter samples were obtained using the proposed setup.
Montés-Micó, Robert; Carones, Francesco; Buttacchio, Antonietta; Ferrer-Blasco, Teresa; Madrid-Costa, David
2011-09-01
To compare ocular biometry parameters measured with immersion ultrasound, partial coherence interferometry, and low coherence reflectometry in cataract patients. Measurements of axial length and anterior chamber depth were analyzed and compared using immersion ultrasound, partial coherence interferometry, and low coherence reflectometry. Keratometry (K), flattest axis, and white-to-white measurements were compared between partial coherence interferometry and low coherence reflectometry. Seventy-eight cataract (LOCS II range: 1 to 3) eyes of 45 patients aged between 42 and 90 years were evaluated. A subanalysis as a function of cataract degree was done for axial length and anterior chamber depth between techniques. No statistically significant differences were noted for the study cohort or within each cataract degree among the three techniques for axial length and anterior chamber depth (P>.05, ANOVA test). Measurements between techniques were highly correlated for axial length (R=0.99) and anterior chamber depth (R=0.90 to 0.96) for all methods. Keratometry, flattest axis, and white-to-white measurements were comparable (paired t test, P>.1) and correlated well between partial coherence interferometry and low coherence reflectometry (K1 [R=0.95), K2 [R=0.97], flattest axis [R=0.95], and white-to-white [R=0.92]). Immersion ultrasound, partial coherence interferometry, and low coherence reflectometry provided comparable ocular biometry measurements in cataractous eyes. Copyright 2011, SLACK Incorporated.
Improved wavelength coded optical time domain reflectometry based on the optical switch.
Zhu, Ninghua; Tong, Youwan; Chen, Wei; Wang, Sunlong; Sun, Wenhui; Liu, Jianguo
2014-06-16
This paper presents an improved wavelength coded time-domain reflectometry based on the 2 × 1 optical switch. In this scheme, in order to improve the signal-noise-ratio (SNR) of the beat signal, the improved system used an optical switch to obtain wavelength-stable, low-noise and narrow optical pulses for probe and reference. Experiments were set up to demonstrate a spatial resolution of 2.5m within a range of 70km and obtain the beat signal with line width narrower than 15 MHz within a range of 50 km in fiber break detection. A system for wavelength-division-multiplexing passive optical network (WDM-PON) monitoring was also constructed to detect the fiber break of different channels by tuning the current applied on the gating section of the distributed Bragg reflector (DBR) laser.
Wavelet-Based Processing for Fiber Optic Sensing Systems
NASA Technical Reports Server (NTRS)
Hamory, Philip J. (Inventor); Parker, Allen R., Jr. (Inventor)
2016-01-01
The present invention is an improved method of processing conglomerate data. The method employs a Triband Wavelet Transform that decomposes and decimates the conglomerate signal to obtain a final result. The invention may be employed to improve performance of Optical Frequency Domain Reflectometry systems.
Time-Domain Reflectometry for Tamper Indication in Unattended Monitoring Systems for Safeguards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tedeschi, Jonathan R.; Smith, Leon E.; Moore, David E.
2014-12-01
The International Atomic Energy Agency (IAEA) continues to expand its use of unattended, remotely monitored measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. Pacific Northwest National Laboratory (PNNL) leads a collaboration that is exploring various tamper-indicating (TI) measures that could help to address some of the long-standing detector and data-transmission authentication challenges with IAEA’s unattended systems. PNNL is investigating the viability of active time-domain reflectometry (TDR) along two parallel but interconnected paths: (1) swept-frequency TDR as the highly flexible, laboratory goldmore » standard to which field-deployable options can be compared, and (2) a low-cost commercially available spread-spectrum TDR technology as one option for field implementation. This report describes PNNL’s progress and preliminary findings from the first year of the study, and describes the path forward.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glass, Samuel W.; Fifield, Leonard S.; Jones, Anthony M.
Cable insulation polymers are among the more susceptible materials to age-related degradation within a nuclear power plant. This is recognized by both regulators and utilities, so all plants have developed cable aging management programs to detect damage before critical component failure in compliance with regulatory guidelines. Although a wide range of tools are available to evaluate cables and cable systems, cable aging management programs vary in how condition monitoring and NDE is conducted as utilities search for the most reliable and cost-effective ways to assess cable system condition. Frequency domain reflectometry (FDR) is emerging as one valuable tool to locatemore » and assess damaged portions of a cable system with minimal cost and only requires access in most cases to one of the cable terminal ends. This work examines a physics-based model of a cable system and relates it to FDR measurements for a better understanding of specific damage influences on defect detectability.« less
Mitchell, Peter J; Klarskov, Niels; Telford, Karen J; Hosker, Gordon L; Lose, Gunnar; Kiff, Edward S
2012-02-01
Anal acoustic reflectometry is a new reproducible technique that allows a viscoelastic assessment of anal canal function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, opening and closing elastance, and hysteresis. The aim of this study was to assess whether the parameters measured in anal acoustic reflectometry are clinically valid between continent and fecally incontinent subjects. This was an age- and sex-matched study of continent and incontinent women. The study was conducted at a university teaching hospital. One hundred women (50 with fecal incontinence and 50 with normal bowel control) were included in the study. Subjects were age matched to within 5 years. Parameters measured with anal acoustic reflectometry and manometry were compared between incontinent and continent groups using a paired t test. Diagnostic accuracy was assessed by the use of receiver operator characteristic curves. Four of the 5 anal acoustic reflectometry parameters at rest were significantly different between continent and incontinent women (eg, opening pressure in fecally incontinent subjects was 31.6 vs 51.5 cm H2O in continent subjects, p = 0.0001). Both anal acoustic reflectometry parameters of squeeze opening pressure and squeeze opening elastance were significantly reduced in the incontinent women compared with continent women (50 vs 99.1 cm H2O, p = 0.0001 and 1.48 vs 1.83 cm H2O/mm, p = 0.012). In terms of diagnostic accuracy, opening pressure at rest measured by reflectometry was significantly superior in discriminating between continent and incontinent women in comparison with resting pressure measured with manometry (p = 0.009). Anal acoustic reflectometry is a new, clinically valid technique in the assessment of continent and incontinent subjects. This technique, which assesses the response of the anal canal to distension and relaxation, provides a detailed viscoelastic assessment of anal canal function. This technique may not only aid the investigation of fecally incontinent subjects, but it may also improve our understanding of anal canal physiology during both the process of defecation and maintenance of continence.
NASA Astrophysics Data System (ADS)
Hefferman, Gerald; Chen, Zhen; Wei, Tao
2017-07-01
This article details the generation of an extended-bandwidth frequency sweep using a single, communication grade distributed feedback (DFB) laser. The frequency sweep is generated using a two-step technique. In the first step, injection current modulation is employed as a means of varying the output frequency of a DFB laser over a bandwidth of 99.26 GHz. A digital optical phase lock loop is used to lock the frequency sweep speed during current modulation, resulting in a linear frequency chirp. In the second step, the temperature of the DFB laser is modulated, resulting in a shifted starting laser output frequency. A laser frequency chirp is again generated beginning at this shifted starting frequency, resulting in a frequency-shifted spectrum relative to the first recorded data. This process is then repeated across a range of starting temperatures, resulting in a series of partially overlapping, frequency-shifted spectra. These spectra are then aligned using cross-correlation and combined using averaging to form a single, broadband spectrum with a total bandwidth of 510.9 GHz. In order to investigate the utility of this technique, experimental testing was performed in which the approach was used as the swept-frequency source of a coherent optical frequency domain reflectometry system. This system was used to interrogate an optical fiber containing a 20 point, 1-mm pitch length fiber Bragg grating, corresponding to a period of 100 GHz. Using this technique, both the periodicity of the grating in the frequency domain and the individual reflector elements of the structure in the time domain were resolved, demonstrating the technique's potential as a method of extending the sweeping bandwidth of semiconductor lasers for frequency-based sensing applications.
Hefferman, Gerald; Chen, Zhen; Wei, Tao
2017-07-01
This article details the generation of an extended-bandwidth frequency sweep using a single, communication grade distributed feedback (DFB) laser. The frequency sweep is generated using a two-step technique. In the first step, injection current modulation is employed as a means of varying the output frequency of a DFB laser over a bandwidth of 99.26 GHz. A digital optical phase lock loop is used to lock the frequency sweep speed during current modulation, resulting in a linear frequency chirp. In the second step, the temperature of the DFB laser is modulated, resulting in a shifted starting laser output frequency. A laser frequency chirp is again generated beginning at this shifted starting frequency, resulting in a frequency-shifted spectrum relative to the first recorded data. This process is then repeated across a range of starting temperatures, resulting in a series of partially overlapping, frequency-shifted spectra. These spectra are then aligned using cross-correlation and combined using averaging to form a single, broadband spectrum with a total bandwidth of 510.9 GHz. In order to investigate the utility of this technique, experimental testing was performed in which the approach was used as the swept-frequency source of a coherent optical frequency domain reflectometry system. This system was used to interrogate an optical fiber containing a 20 point, 1-mm pitch length fiber Bragg grating, corresponding to a period of 100 GHz. Using this technique, both the periodicity of the grating in the frequency domain and the individual reflector elements of the structure in the time domain were resolved, demonstrating the technique's potential as a method of extending the sweeping bandwidth of semiconductor lasers for frequency-based sensing applications.
Performance and data analysis aspects of the new DIII-D monostatic profile reflectometer system
Zeng, Lei; Peebles, William A.; Doyle, Edward J.; ...
2014-08-07
A new frequency-modulated (FMCW) profile reflectometer system, featuring a monostatic antenna geometry (using one microwave antenna for both launch and receive), has been installed on the DIII-D tokamak, providing a first experimental test of this measurement approach for profile reflectometry. Significant features of the new system are briefly described in this paper, including the new monostatic arrangement, use of overmoded, broadband transmission waveguide, and dual-polarization combination/demultiplexing. Updated data processing and analysis, and in-service performance aspects of the new monostatic profile reflectometer system are also presented. By using a raytracing code (GENRAY) to determine the approximate trajectory of the probe beam,more » the electron density (n e) profile can be successfully reconstructed with L-mode plasmas vertically shifted by more than 10 cm off the vessel midplane. Specifically, it is demonstrated that the new system has a capability to measure n e profiles with plasma vertical offsets of up to ±17 cm. Furthermore, examples are also presented of accurate, high time and spatial resolution density profile measurements made over a wide range of DIII-D conditions, e.g. the measured temporal evolution of the density profile across an L-H transition.« less
NASA Astrophysics Data System (ADS)
Buldakov, M. A.; Vershkov, V. A.; Isaev, M. Yu; Shelukhin, D. A.
2017-10-01
The antenna system of reflectometry diagnostics at the T-10 tokamak allows to study long-range toroidal correlations of plasma density fluctuations along the magnetic field lines. The antenna systems are installed in two poloidal cross-sections of the vacuum chamber separated by a 90° angle in the toroidal direction. The experiments, which were conducted at the low field side, showed that the high level of toroidal correlations is observed only for quasi-coherent fluctuations. However, broadband and stochastic low frequency fluctuations are not correlated. Numerical modeling of the plasma turbulence structure in the T-10 tokamak was conducted to interpret the experimental results and take into account non-locality of reflectometry measurements. In the model used, it was assumed that the magnitudes of density fluctuations are constant along the magnetic field lines. The 2D full-wave Tamic-RTH code was used to model the reflectometry signals. High level of correlations for quasi-coherent fluctuations was obtained during the modeling, which agrees with the experimental observations. However, the performed modeling also predicts high level of correlations for broadband fluctuations, which contradicts the experimental data. The modeling showed that the effective reflection radius, from which the information on quasi-coherent plasma turbulence is obtained, is shifted outwards from the reflection radius by approximately 7 mm.
Differential reflectometry versus tactile sense detection of subgingival calculus in dentistry
NASA Astrophysics Data System (ADS)
Shakibaie, Fardad; Walsh, Laurence J.
2012-10-01
Detecting dental calculus is clinically challenging in dentistry. This study used typodonts with extracted premolar and molar teeth and simulated gingival tissue to compare the performance of differential reflectometry and periodontal probing. A total of 30 extracted teeth were set in an anatomical configuration in stone to create three typodonts. Clear polyvinyl siloxane impression material was placed to replicate the periodontal soft tissues. Pocket depths ranged from 10 to 15 mm. The three models were placed in a phantom head, and an experienced dentist assessed the presence of subgingival calculus first using the DetecTar (differential reflectometry) and then a periodontal probe. Scores from these two different methods were compared to the gold standard (direct examination of the root surface using 20× magnification) to determine the accuracy and reproducibility. Differential reflectometry was more accurate than tactile assessment (79% versus 60%), and its reproducibility was also higher (Cohen kappa 0.54 versus 0.39). Both methods performed better on single rooted premolar teeth than on multirooted teeth. These laboratory results indicate that differential reflectometry allows more accurate and reproducible detection of subgingival calculus than conventional probing, and supports its use for supplementing traditional periodontal examination methods in dental practice.
Modification of ordinary-mode reflectometry system to detect lower-hybrid waves in Alcator C-Mod
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baek, S. G.; Shiraiwa, S.; Parker, R. R.
2012-10-15
Backscattering experiments to detect lower-hybrid (LH) waves have been performed in Alcator C-Mod, using the two modified channels (60 GHz and 75 GHz) of an ordinary-mode reflectometry system with newly developed spectral recorders that can continuously monitor spectral power at a target frequency. The change in the baseline of the spectral recorder during the LH wave injection is highly correlated to the strength of the X-mode non-thermal electron cyclotron emission. In high density plasmas where an anomalous drop in the lower hybrid current drive efficiency is observed, the observed backscattered signals are expected to be generated near the last closedmore » flux surface, demonstrating the presence of LH waves within the plasma. This experimental technique can be useful in identifying spatially localized LH electric fields in the periphery of high-density plasmas.« less
Cui, Jiwen; Zhao, Shiyuan; Yang, Di; Ding, Zhenyang
2018-02-20
We use a spectrum interpolation technique to improve the distributed strain measurement accuracy in a Rayleigh-scatter-based optical frequency domain reflectometry sensing system. We demonstrate that strain accuracy is not limited by the "uncertainty principle" that exists in the time-frequency analysis. Different interpolation methods are investigated and used to improve the accuracy of peak position of the cross-correlation and, therefore, improve the accuracy of the strain. Interpolation implemented by padding zeros on one side of the windowed data in the spatial domain, before the inverse fast Fourier transform, is found to have the best accuracy. Using this method, the strain accuracy and resolution are both improved without decreasing the spatial resolution. The strain of 3 μϵ within the spatial resolution of 1 cm at the position of 21.4 m is distinguished, and the measurement uncertainty is 3.3 μϵ.
NASA Astrophysics Data System (ADS)
Wall, R. Andrew; Barton, Jennifer K.
2014-06-01
A side-viewing, 2.3-mm diameter oblique incidence reflectometry endoscope has been designed to obtain optical property measurements of turbid samples. Light from a single-mode fiber is relayed obliquely onto the tissue with a gradient index lens-based distal optics assembly and the resulting diffuse reflectance profile is imaged and collected with a 30,000 element, 0.72 mm clear aperture fiber bundle. Sampling the diffuse reflectance in two-dimensions allows for fitting of the reflected intensity profile to a well-known theoretical model, permitting the extraction of both absorption and reduced scattering coefficients of the tissue sample. Models and measurements of the endoscopic imaging system are presented in tissue phantoms and in vivo mouse colon, verifying the endoscope's capabilities to accurately measure effective attenuation coefficient and differentiate diseased from normal colon.
Synthetic diagnostics platform for fusion plasmas (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, L., E-mail: lshi@pppl.gov; Valeo, E. J.; Tobias, B. J.
A Synthetic Diagnostics Platform (SDP) for fusion plasmas has been developed which provides state of the art synthetic reflectometry, beam emission spectroscopy, and Electron Cyclotron Emission (ECE) diagnostics. Interfaces to the plasma simulation codes GTC, XGC-1, GTS, and M3D-C{sup 1} are provided, enabling detailed validation of these codes. In this paper, we give an overview of SDP’s capabilities, and introduce the synthetic diagnostic modules. A recently developed synthetic ECE Imaging module which self-consistently includes refraction, diffraction, emission, and absorption effects is discussed in detail. Its capabilities are demonstrated on two model plasmas. The importance of synthetic diagnostics in validation ismore » shown by applying the SDP to M3D-C{sup 1} output and comparing it with measurements from an edge harmonic oscillation mode on DIII-D.« less
Synthetic diagnostics platform for fusion plasmas (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, L.; Valeo, E. J.; Tobias, B. J.
A Synthetic Diagnostics Platform (SDP) for fusion plasmas has been developed which provides state of the art synthetic reflectometry, beam emission spectroscopy, and Electron Cyclotron Emission (ECE) diagnostics. Interfaces to the plasma simulation codes GTC, XGC-1, GTS, and M3D-C-1 are provided, enabling detailed validation of these codes. In this paper, we give an overview of SDP's capabilities, and introduce the synthetic diagnostic modules. A recently developed synthetic ECE Imaging module which self-consistently includes refraction, diffraction, emission, and absorption effects is discussed in detail. Its capabilities are demonstrated on two model plasmas. Finally, the importance of synthetic diagnostics in validation ismore » shown by applying the SDP to M3D-C 1 output and comparing it with measurements from an edge harmonic oscillation mode on DIII-D.« less
Synthetic diagnostics platform for fusion plasmas (invited)
Shi, L.; Valeo, E. J.; Tobias, B. J.; ...
2016-08-26
A Synthetic Diagnostics Platform (SDP) for fusion plasmas has been developed which provides state of the art synthetic reflectometry, beam emission spectroscopy, and Electron Cyclotron Emission (ECE) diagnostics. Interfaces to the plasma simulation codes GTC, XGC-1, GTS, and M3D-C-1 are provided, enabling detailed validation of these codes. In this paper, we give an overview of SDP's capabilities, and introduce the synthetic diagnostic modules. A recently developed synthetic ECE Imaging module which self-consistently includes refraction, diffraction, emission, and absorption effects is discussed in detail. Its capabilities are demonstrated on two model plasmas. Finally, the importance of synthetic diagnostics in validation ismore » shown by applying the SDP to M3D-C 1 output and comparing it with measurements from an edge harmonic oscillation mode on DIII-D.« less
Determining soil volumetric moisture content using time domain reflectometry
DOT National Transportation Integrated Search
1998-02-01
Time domain reflectometry (TDR) is a technique used to measure indirectly the in situ volumetric moisture content of soil. Current research provides a variety of prediction equations that estimate the volumetric moisture content using the dielectric ...
Inclinometer--time-domain reflectometry comparative study : research implementation plan.
DOT National Transportation Integrated Search
2005-10-01
ODOT currently uses slope indicator probing to analyze subsurface conditions at roadway landslide : locations. However, the current method is subject to several limitations, and time domain reflectometry : (TDR) has been proposed as an alternative to...
Development of 3D microwave imaging reflectometry in LHD (invited).
Nagayama, Y; Kuwahara, D; Yoshinaga, T; Hamada, Y; Kogi, Y; Mase, A; Tsuchiya, H; Tsuji-Iio, S; Yamaguchi, S
2012-10-01
Three-dimensional (3D) microwave imaging reflectometry has been developed in the large helical device to visualize fluctuating reflection surface which is caused by the density fluctuations. The plasma is illuminated by the probe wave with four frequencies, which correspond to four radial positions. The imaging optics makes the image of cut-off surface onto the 2D (7 × 7 channels) horn antenna mixer arrays. Multi-channel receivers have been also developed using micro-strip-line technology to handle many channels at reasonable cost. This system is first applied to observe the edge harmonic oscillation (EHO), which is an MHD mode with many harmonics that appears in the edge plasma. A narrow structure along field lines is observed during EHO.
Development of 3D microwave imaging reflectometry in LHD (invited)a)
NASA Astrophysics Data System (ADS)
Nagayama, Y.; Kuwahara, D.; Yoshinaga, T.; Hamada, Y.; Kogi, Y.; Mase, A.; Tsuchiya, H.; Tsuji-Iio, S.; Yamaguchi, S.
2012-10-01
Three-dimensional (3D) microwave imaging reflectometry has been developed in the large helical device to visualize fluctuating reflection surface which is caused by the density fluctuations. The plasma is illuminated by the probe wave with four frequencies, which correspond to four radial positions. The imaging optics makes the image of cut-off surface onto the 2D (7 × 7 channels) horn antenna mixer arrays. Multi-channel receivers have been also developed using micro-strip-line technology to handle many channels at reasonable cost. This system is first applied to observe the edge harmonic oscillation (EHO), which is an MHD mode with many harmonics that appears in the edge plasma. A narrow structure along field lines is observed during EHO.
Upgrade to the control system of the reflectometry diagnostic of ASDEX upgrade
NASA Astrophysics Data System (ADS)
Graça, S.; Santos, J.; Manso, M. E.
2004-10-01
The broadband frequency modulation-continuous wave microwave/millimeter wave reflectometer of ASDEX upgrade tokamak (Institut für Plasma Physik (IPP), Garching, Germany) developed by Centro de Fusão Nuclear (Lisboa, Portugal) with the collaboration of IPP, is a complex system with 13 channels (O and X modes) and two types of operation modes (swept and fixed frequency). The control system that ensures remote operation of the diagnostic incorporates VME and CAMAC bus based acquisition/timing systems. Microprocessor input/output boards are used to control and monitor the microwave circuitry and associated electronic devices. The implementation of the control system is based on an object-oriented client/server model: a centralized server manages the hardware and receives input from remote clients. Communication is handled through transmission control protocol/internet protocol sockets. Here we describe recent upgrades of the control system aiming to: (i) accommodate new channels; (ii) adapt to the heterogeneity of computing platforms and operating systems; and (iii) overcome remote access restrictions. Platform and operating system independence was achieved by redesigning the graphical user interface in JAVA. As secure shell is the standard remote access protocol adopted in major fusion laboratories, secure shell tunneling was implemented to allow remote operation of the diagnostic through the existing firewalls.
Reflectometry measurements of turbulence in Alcator C-Mod
NASA Astrophysics Data System (ADS)
Basse, N. P.; Lin, Y.; Irby, J.; Kramer, G. J.; Nazikian, R.
2003-10-01
An amplitude modulated (AM) reflectometer system operating in O-mode has been used for density profile and fluctuation measurements on Alcator C-Mod. This system consists of five channels, whose frequencies correspond to densities from 0.31 × 10^20 m-3 to 1.5 × 10^20 m-3. The 88 GHz channel has separate upper and lower sideband measurements of the AM waves, resulting in an increased sensitivity to fluctuations. Recently, two additional dedicated fluctuation channels have been brought into operation at 132 and 140 GHz, corresponding to densities of 2.2 × 10^20 m-3 and 2.4 × 10^20 m-3. The new channels allow observations to be made further into the pedestal region and in some cases reach the foot of the internal transport barrier. We will present spectral analysis results from selected channels during confinement transitions in Alcator C-Mod plasmas, e.g. at the L- to H-mode bifurcation. Further, correlation studies will be undertaken between the various channels to elucidate the possible existence of moving and/or overlapping turbulent structures.
Time-domain reflectometry of water content in portland cement concrete
DOT National Transportation Integrated Search
1997-11-01
Time-domain reflectometry is useful for measuring the moisture content of solids. However, little information exists on its use with portland cement concrete. By monitoring the response from TDR sensors embedded in concrete as the concrete dried, the...
NASA Astrophysics Data System (ADS)
Solanki, Jitendra; Choudhary, Om Prakash; Sen, P.; Andrews, J. T.
2013-07-01
A device based on polarization sensitive optical low-coherence reflectometry is developed to monitor blood glucose levels in human subjects. The device was initially tested with tissue phantom. The measurements with human subjects for various glucose concentration levels are found to be linearly dependent on the ellipticity obtainable from the home-made phase-sensitive optical low-coherence reflectometry device. The linearity obtained between glucose concentration and ellipticity are explained with theoretical calculations using Mie theory. A comparison of results with standard clinical methods establishes the utility of the present device for non-invasive glucose monitoring.
Design and field tests of a directly coupled waveguide-on-access-tube soil water sensor
USDA-ARS?s Scientific Manuscript database
Sensor systems capable of monitoring soil water content can provide a useful tool for irrigation control. Current systems are limited by installation depth, labor, accuracy, and cost. Time domain reflectometry (TDR) is an approach for monitoring soil water content that relates the travel time of an ...
A numerically-stable algorithm for calibrating single six-ports for national microwave reflectometry
NASA Astrophysics Data System (ADS)
Hodgetts, T. E.
1990-11-01
A full description and analysis of the numerically stable algorithm currently used for calibrating single six ports or multi states for national microwave reflectometry, employing as standards four one port devices having known voltage reflection coefficients, is given.
Optical Metrology for CIGS Solar Cell Manufacturing and its Cost Implications
NASA Astrophysics Data System (ADS)
Sunkoju, Sravan Kumar
Solar energy is a promising source of renewable energy which can meet the demand for clean energy in near future with advances in research in the field of photovoltaics and cost reduction by commercialization. Availability of a non-contact, in-line, real time robust process control strategies can greatly aid in reducing the gap between cell and module efficiencies, thereby leading to cost-effective large-scale manufacturing of high efficiency CIGS solar cells. In order to achieve proper process monitoring and control for the deposition of the functional layers of CuIn1-xGaxSe 2 (CIGS) based thin film solar cell, optical techniques such as spectroscopic reflectometry and polarimetry are advantageous because they can be set up in an unobtrusive manner in the manufacturing line, and collect data in-line and in-situ. The use of these techniques requires accurate optical models that correctly represent the properties of the layers being deposited. In this study, Spectroscopic ellipsometry (SE) has been applied for the characterization of each individual stage of CIGS layers deposited using the 3-stage co-evaporation process along with the other functional layers. Dielectric functions have been determined for the energy range from 0.7 eV to 5.1 eV. Critical-point line-shape analysis was used in this study to determine the critical point energies of the CIGS based layers. To control the compositional and thickness uniformity of all the functional layers during the fabrication of CIGS solar cells over large areas, multilayer photovoltaics (PV) stack optical models were developed with the help of extracted dielectric functions. In this study, mapping capability of RC2 spectroscopic ellipsometer was used to map all the functional layer thicknesses of a CIGS solar cell in order to probe the spatial non-uniformities that can affect the performance of a cell. The optical functions for each of the stages of CIGS 3-stage deposition process along with buffer layer and transparent conducting oxide (TCO) bi-layer, thus derived were used in a fiber optic-based spectroscopic reflectometry optical monitoring system installed in the pilot line at the PVMC's Halfmoon facility. Results obtained from this study show that the use of regular fiber optics, instead of polarization-maintaining fiber optics, is sufficient for the purpose of process monitoring. Also, the technique does not need to be used "in-situ", but the measurements can be taken in-line, and are applicable to a variety of deposition techniques used for different functional layers deposited on rigid or flexible substrates. In addition, effect of Cu concentration on the CIGS optical properties has been studied. Mixed CIGS/Cu2-xSe phase was observed at the surface at the end of the second stage of 3-stage deposition process, under Cu-rich conditions. A significant change in optical behavior of CIGS due to Cu2-xSe at the surface was observed under Cu-rich conditions, which can be used as end-point detection method to move from 2nd stage to 3rd stage in the deposition process. Developed optical functions were applied to in-line reflectance measurements not only to identify the Cu2-xSe phase at the surface but also to measure the thickness of the mixed CIGS/Cu2-xSe layer. This spectroscopic reflectometry based in-line process control technique can be used for end-point detection as well as to control thickness during the preparation of large area CIGS films. These results can assist in the development of optical process-control tools for the manufacturing of high quality CIGS based photovoltaic cells, increasing the uptime and yield of the production line. Finally, to understand the cost implications, low cost potential of two different deposition technologies has been studied on both rigid and flexible substrates with the help of cost analysis. Cost advantages of employing a contactless optics based process control technique have been investigated in order to achieve a low cost of < 0.5 $/W for CIGS module production. Based on cost analysis, one of the best strategies for achieving the low cost targets would be increasing manufacturing throughput, using roll-to-roll thin-film module manufacturing, with co-evaporation and chemical bath deposition processes for absorber and buffer layer respectively, while applying a low-cost process control technique such as spectroscopic reflectometry to improve module efficiencies and maintain high yield.
Wang, Zhaoyong; Pan, Zhengqing; Fang, Zujie; Ye, Qing; Lu, Bin; Cai, Haiwen; Qu, Ronghui
2015-11-15
A phase-sensitive optical time-domain reflectometry (Φ-OTDR) with a temporally sequenced multi-frequency (TSMF) source is proposed. This technique can improve the system detection bandwidth without the sensing range decreasing. Up to 0.5 MHz detection bandwidth over 9.6 km is experimentally demonstrated as an example. To the best of our knowledge, this is the first time that such a high detection bandwidth over such a long sensing range is reported in Φ-OTDR-based distributed vibration sensing. The technical issues of TSMF Φ-OTDR are discussed in this Letter. This technique will help Φ-OTDR find new important foreground in long-haul distributed broadband-detection applications, such as structural-health monitoring and partial-discharge online monitoring of high voltage power cables.
Time domain reflectometry waveform analysis with second order bounded mean oscillation
USDA-ARS?s Scientific Manuscript database
Tangent-line methods and adaptive waveform interpretation with Gaussian filtering (AWIGF) have been proposed for determining reflection positions of time domain reflectometry (TDR) waveforms. However, the accuracy of those methods is limited for short probe TDR sensors. Second order bounded mean osc...
Thermal stability of photovoltaic a-Si:H determined by neutron reflectometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qviller, A. J., E-mail: atlejq@ife.no; Haug, H.; You, C. C.
2014-12-08
Neutron and X-ray reflectometry were used to determine the layer structure and hydrogen content of thin films of amorphous silicon (a-Si:H) deposited onto crystalline silicon (Si) wafers for surface passivation in solar cells. The combination of these two reflectometry techniques is well suited for non-destructive probing of the structure of a-Si:H due to being able to probe buried interfaces and having sub-nanometer resolution. Neutron reflectometry is also unique in its ability to allow determination of density gradients of light elements such as hydrogen (H). The neutron scattering contrast between Si and H is strong, making it possible to determine themore » H concentration in the deposited a-Si:H. In order to correlate the surface passivation properties supplied by the a-Si:H thin films, as quantified by obtainable effective minority carrier lifetime, photoconductance measurements were also performed. It is shown that the minority carrier lifetime falls sharply when H has been desorbed from a-Si:H by annealing.« less
Le Brun, Anton P; Clifton, Luke A; Holt, Stephen A; Holden, Peter J; Lakey, Jeremy H
2016-01-01
Studying the outer membrane of Gram-negative bacteria is challenging due to the complex nature of its structure. Therefore, simplified models are required to undertake structure-function studies of processes that occur at the outer membrane/fluid interface. Model membranes can be created by immobilizing bilayers to solid supports such as gold or silicon surfaces, or as monolayers on a liquid support where the surface pressure and fluidity of the lipids can be controlled. Both model systems are amenable to having their structure probed by neutron reflectometry, a technique that provides a one-dimensional depth profile through a membrane detailing its thickness and composition. One of the strengths of neutron scattering is the ability to use contrast matching, allowing molecules containing hydrogen and those enriched with deuterium to be highlighted or matched out against the bulk isotopic composition of the solvent. Lipopolysaccharides, a major component of the outer membrane, can be isolated for incorporation into model membranes. Here, we describe the deuteration of lipopolysaccharides from rough strains of Escherichia coli for incorporation into model outer membranes, and how the use of deuterated materials enhances structural analysis of model membranes by neutron reflectometry. © 2016 Elsevier Inc. All rights reserved.
Working group organizational meeting
NASA Technical Reports Server (NTRS)
1982-01-01
Scene radiation and atmospheric effects, mathematical pattern recognition and image analysis, information evaluation and utilization, and electromagnetic measurements and signal handling are considered. Research issues in sensors and signals, including radar (SAR) reflectometry, SAR processing speed, registration, including overlay of SAR and optical imagery, entire system radiance calibration, and lack of requirements for both sensors and systems, etc. were discussed.
USDA-ARS?s Scientific Manuscript database
Although empirical models have been developed previously, a mechanistic model is needed for estimating electrical conductivity (EC) using time domain reflectometry (TDR) with variable lengths of coaxial cable. The goals of this study are to: (1) derive a mechanistic model based on multisection tra...
NASA Astrophysics Data System (ADS)
Bartlett, D. V.; Costley, A. E.; Porte, L.; Prentice, R.; Salmon, N. A.; Sips, G.
1990-12-01
The potential of electron cyclotron emission and microwave reflectometry as techniques for measuring the electron temperature and density in the edge region of tokamak plasmas is investigated. Experiments to realize this potential on JET are described and some illustrative results presented.
Neutron Reflectometry and Small Angle Neutron Scattering of ABC Miktoarm Terpolymer Thin-Films
NASA Astrophysics Data System (ADS)
Arras, Matthias M. L.; Wang, Weiyu; Mahalik, Jyoti P.; Hong, Kunlun; Sumpter, Bobby G.; Smith, Gregory S.; Chernyy, Sergey; Kim, Hyeyoung; Russell, Thomas P.
Due to the constraint of the junction point in miktoarm terpolymers, where three chains meet, ABC miktoarm terpolymers are promising to obtain nanostructured, long-range ordered materials. We present details of the thin-film structure of ABC miktoarm terpolymers in the poly(styrene), poly(isoprene), poly(2-vinylpyridine) (PS-PI-P2VP) system, investigated by neutron reflectometry and small angle neutron scattering. To this end, we synthesized partially deuterated versions of the PS-PI-P2VP and investigated annealed samples, spin-coated to various thicknesses of the bulk repeat period. Furthermore, we investigated the structural change upon selective blending with homopolymers or fullerenes. We find that thin-film constraints on the morphology can vanish after only twice the repetition period. In addition, it is indicated that nanoparticles improve the ordering in these systems, however, this seems to be not necessarily true for homopolymer blending. This research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory.
Catheter guided by optical coherence domain reflectometry
Everett, Matthew; Colston, Billy W.; Da Silva, Luiz B.; Matthews, Dennis
2002-01-01
A guidance and viewing system based on multiplexed optical coherence domain reflectometry is incorporated into a catheter, endoscope, or other medical device to measure the location, thickness, and structure of the arterial walls or other intra-cavity regions at discrete points on the medical device during minimally invasive medical procedures. The information will be used both to guide the device through the body and to evaluate the tissue through which the device is being passed. Multiple optical fibers are situated along the circumference of the device. Light from the distal end of each fiber is directed onto the interior cavity walls via small diameter optics (such as gradient index lenses and mirrored corner cubes). Both forward viewing and side viewing fibers can be included. The light reflected or scattered from the cavity walls is then collected by the fibers and multiplexed at the proximal end to the sample arm of an optical low coherence reflectometer. The system may also be implemented in a nonmedical inspection device.
Wetland monitoring with Global Navigation Satellite System reflectometry
Zuffada, Cinzia; Shah, Rashmi; Chew, Clara; Lowe, Stephen T.; Mannucci, Anthony J.; Cardellach, Estel; Brakenridge, G. Robert; Geller, Gary; Rosenqvist, Ake
2017-01-01
Abstract Information about wetland dynamics remains a major missing gap in characterizing, understanding, and projecting changes in atmospheric methane and terrestrial water storage. A review of current satellite methods to delineate and monitor wetland change shows some recent advances, but much improved sensing technologies are still needed for wetland mapping, not only to provide more accurate global inventories but also to examine changes spanning multiple decades. Global Navigation Satellite Systems Reflectometry (GNSS‐R) signatures from aircraft over the Ebro River Delta in Spain and satellite measurements over the Mississippi River and adjacent watersheds demonstrate that inundated wetlands can be identified under different vegetation conditions including a dense rice canopy and a thick forest with tall trees, where optical sensors and monostatic radars provide limited capabilities. Advantages as well as constraints of GNSS‐R are presented, and the synergy with various satellite observations are considered to achieve a breakthrough capability for multidecadal wetland dynamics monitoring with frequent global coverage at multiple spatial and temporal scales. PMID:28331894
NASA Astrophysics Data System (ADS)
Zhang, Xuping; Shi, Yuanlei; Shan, Yuanyuan; Sun, Zhenhong; Qiao, Weiyan; Zhang, Yixin
2016-09-01
Optical time domain reflectometry (OTDR) is one of the most successful diagnostic tools for nondestructive attenuation measurement of a fiber link. To achieve better sensitivity, spatial resolution, and avoid dead-zone in conversional OTDR, a single-photon detector has been introduced to form the photon-counting OTDR (ν-OTDR). We have proposed a ν-OTDR system using a gigahertz sinusoidally gated InGaAs/InP single-photon avalanche detector (SPAD). Benefiting from the superior performance of a sinusoidal gated SPAD on dark count probability, gating frequency, and gate duration, our ν-OTDR system has achieved a dynamic range (DR) of 33.4 dB with 1 μs probe pulse width after an equivalent measurement time of 51 s. This obtainable DR corresponds to a sensing length over 150 km. Our system has also obtained a spatial resolution of 5 cm at the end of a 5-km standard single-mode fiber. By employing a sinusoidal gating technique, we have improved the ν-OTDR spatial resolution and significantly reduced the measurement time.
Time-of-Flight Polarized Neutron Reflectometry on PLATYPUS: Status and Future Developments
NASA Astrophysics Data System (ADS)
Saerbeck, T.; Cortie, D. L.; Brück, S.; Bertinshaw, J.; Holt, S. A.; Nelson, A.; James, M.; Lee, W. T.; Klose, F.
Time-of-flight (ToF) polarized neutron reflectometry enables the detailed investigation of depth-resolved magnetic structures in thin film and multilayer magnetic systems. The general advantage of the time-of-flight mode of operation over monochromatic instruments is a decoupling of spectral shape and polarization of the neutron beam with variable resolution. Thus, a wide Q-range can be investigated using a single angle of incidence, with resolution and flux well-adjusted to the experimental requirement. Our paper reviews the current status of the polarization equipment of the ToF reflectometer PLATYPUS and presents first results obtained on stratified Ni80Fe20/α-Fe2O3 films, revealing the distribution of magnetic moments in an exchange bias system. An outlook on the future development of the PLATYPUS polarization system towards the implementation of a polarized 3He cell is presented and discussed with respect to the efficiency and high Q-coverage up to 1 Å-1 and 0.15 Å-1 in the vertical and lateral momentum transfer, respectively.
Low-Coherence Reflectometry for Refractive Index Measurements of Cells in Micro-Capillaries.
Carpignano, Francesca; Rigamonti, Giulia; Mazzini, Giuliano; Merlo, Sabina
2016-10-11
The refractive index of cells provides insights into their composition, organization and function. Moreover, a good knowledge of the cell refractive index would allow an improvement of optical cytometric and diagnostic systems. Although interferometric techniques undoubtedly represent a good solution for quantifying optical path variation, obtaining the refractive index of a population of cells non-invasively remains challenging because of the variability in the geometrical thickness of the sample. In this paper, we demonstrate the use of infrared low-coherence reflectometry for non-invasively quantifying the average refractive index of cell populations gently confined in rectangular glass micro-capillaries. A suspension of human red blood cells in plasma is tested as a reference. As a use example, we apply this technique to estimate the average refractive index of cell populations belonging to epithelial and hematological families.
Sensitivity analysis for oblique incidence reflectometry using Monte Carlo simulations.
Kamran, Faisal; Andersen, Peter E
2015-08-10
Oblique incidence reflectometry has developed into an effective, noncontact, and noninvasive measurement technology for the quantification of both the reduced scattering and absorption coefficients of a sample. The optical properties are deduced by analyzing only the shape of the reflectance profiles. This article presents a sensitivity analysis of the technique in turbid media. Monte Carlo simulations are used to investigate the technique and its potential to distinguish the small changes between different levels of scattering. We present various regions of the dynamic range of optical properties in which system demands vary to be able to detect subtle changes in the structure of the medium, translated as measured optical properties. Effects of variation in anisotropy are discussed and results presented. Finally, experimental data of milk products with different fat content are considered as examples for comparison.
Radio-frequency measurement in semiconductor quantum computation
NASA Astrophysics Data System (ADS)
Han, TianYi; Chen, MingBo; Cao, Gang; Li, HaiOu; Xiao, Ming; Guo, GuoPing
2017-05-01
Semiconductor quantum dots have attracted wide interest for the potential realization of quantum computation. To realize efficient quantum computation, fast manipulation and the corresponding readout are necessary. In the past few decades, considerable progress of quantum manipulation has been achieved experimentally. To meet the requirements of high-speed readout, radio-frequency (RF) measurement has been developed in recent years, such as RF-QPC (radio-frequency quantum point contact) and RF-DGS (radio-frequency dispersive gate sensor). Here we specifically demonstrate the principle of the radio-frequency reflectometry, then review the development and applications of RF measurement, which provides a feasible way to achieve high-bandwidth readout in quantum coherent control and also enriches the methods to study these artificial mesoscopic quantum systems. Finally, we prospect the future usage of radio-frequency reflectometry in scaling-up of the quantum computing models.
NASA Astrophysics Data System (ADS)
Clairet, F.; Bottereau, C.; Medvedeva, A.; Molina, D.; Conway, G. D.; Silva, A.; Stroth, U.; ASDEX Upgrade Team; Tore Supra Team; Eurofusion Mst1 Team
2017-11-01
Frequency swept reflectometry has reached the symbolic value of 1 μs sweeping time; this performance has been made possible, thanks to an improved control of the ramp voltage driving the frequency source. In parallel, the memory depth of the acquisition system has been upgraded and can provide up to 200 000 signals during a plasma discharge. Additional improvements regarding the trigger delay determination of the acquisition and the voltage ramp linearity required by this ultra-fast technique have been set. While this diagnostic is traditionally dedicated to the plasma electron density profile measurement, such a fast sweeping rate can provide the study of fast plasma events and turbulence with unprecedented time and radial resolution from the edge to the core. Experimental results obtained on ASDEX Upgrade plasmas are presented to demonstrate the performances of the diagnostic.
Low-Coherence Reflectometry for Refractive Index Measurements of Cells in Micro-Capillaries
Carpignano, Francesca; Rigamonti, Giulia; Mazzini, Giuliano; Merlo, Sabina
2016-01-01
The refractive index of cells provides insights into their composition, organization and function. Moreover, a good knowledge of the cell refractive index would allow an improvement of optical cytometric and diagnostic systems. Although interferometric techniques undoubtedly represent a good solution for quantifying optical path variation, obtaining the refractive index of a population of cells non-invasively remains challenging because of the variability in the geometrical thickness of the sample. In this paper, we demonstrate the use of infrared low-coherence reflectometry for non-invasively quantifying the average refractive index of cell populations gently confined in rectangular glass micro-capillaries. A suspension of human red blood cells in plasma is tested as a reference. As a use example, we apply this technique to estimate the average refractive index of cell populations belonging to epithelial and hematological families. PMID:27727172
Nondestructive Testing Information Analysis Center, 1979.
1980-09-01
transmission and reflectometry Ultrasonic imaging Spectrum analysis Acoustic emission * LIQUID PENETRANT TESTING Dye penetrants Fluorescent penetrants...OPTICAL TESTING Visual testing Optical reflectometry and transmission Holography * THERMAL TESTING Infrared radiometry The rmography 13 The present...on our surveillance effectiveness, we also scan Current Contents, NASA /SCAN, and the monthly Engineering Index and Science Abstracts. New books
The Search for Nanobubbles by Using Specular and Off-Specular Neutron Reflectometry.
Gutfreund, Philipp; Maccarini, Marco; Dennison, Andrew J C; Wolff, Max
2016-09-06
We apply specular and off-specular neutron reflection at the hydrophobic silicon/water interface to check for evidence of nanoscopic air bubbles whose presence is claimed after an ad hoc procedure of solvent exchange. Nanobubbles and/or a depletion layer at the hydrophobic/water interface have long been discussed and generated a plethora of controversial scientific results. By combining neutron reflectometry (NR), off-specular reflectometry (OSS), and grazing incidence small angle neutron scattering (GISANS), we studied the interface between hydrophobized silicon and heavy water before and after saturation with nitrogen gas. Our specular reflectometry results can be interpreted by assuming a submolecular sized depletion layer and the off-specular measurements show no change with nitrogen super saturated water. This picture is consistent with the assumption that, following the solvent exchange, no additional nanobubbles are introduced at significant concentrations (if present at all). Furthermore, we discuss the results in terms of the maximum surface coverage of nanobubbles that could be present on the hydrophobic surface compatibly with the sensitivity limit of these techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yunin, P. A., E-mail: yunin@ipmras.ru; Drozdov, Yu. N.; Drozdov, M. N.
2013-12-15
In this publication, we report the results of studying a multilayerd nonperiodic SiGe/Si structure by the methods of X-ray diffractometry, grazing-angle X-ray reflectometry, and secondary-ion mass spectrometry (SIMS). Special attention is paid to the processing of the component distribution profile using the SIMS method and to consideration of the most significant experimental distortions introduced by this method. A method for processing the measured composition distribution profile with subsequent consideration of the influence of matrix effects, variation in the etching rate, and remnants of ion sputtering is suggested. The results of such processing are compared with a structure model obtained uponmore » combined analysis of X-ray diffractometry and grazing-angle reflectometry data. Good agreement between the results is established. It is shown that the combined use of independent techniques makes it possible to improve the methods of secondary-ion mass spectrometry and grazing-incidence reflectometry as applied to an analysis of multilayered heteroepitaxial structures (to increase the accuracy and informativity of these methods)« less
NASA Hybrid Reflectometer Project
NASA Technical Reports Server (NTRS)
Lynch, Dana; Mancini, Ron (Technical Monitor)
2002-01-01
Time-domain and frequency-domain reflectometry have been used for about forty years to locate opens and shorts in cables. Interpretation of reflectometry data is as much art as science. Is there information in the data that is being missed? Can the reflectometers be improved to allow us to detect and locate defects in cables that are not outright shorts or opens? The Hybrid Reflectometer Project was begun this year at NASA Ames Research Center, initially to model wire physics, simulating time-domain reflectometry (TDR) signals in those models and validating the models against actual TDR data taken on testbed cables. Theoretical models of reflectometry in wires will give us an understanding of the merits and limits of these techniques and will guide the application of a proposed hybrid reflectometer with the aim of enhancing reflectometer sensitivity to the point that wire defects can be detected. We will point out efforts by some other researchers to apply wire physics models to the problem of defect detection in wires and we will describe our own initial efforts to create wire physics models and report on testbed validation of the TDR simulations.
Ribot, Miguel Angel; Botteron, Cyril; Farine, Pierre-André
2016-01-01
The use of the reflected Global Navigation Satellite Systems’ (GNSS) signals in Earth observation applications, referred to as GNSS reflectometry (GNSS-R), has been already studied for more than two decades. However, the estimation precision that can be achieved by GNSS-R sensors in some particular scenarios is still not fully understood yet. In an effort to partially fill this gap, in this paper, we compute the Cramér–Rao bound (CRB) for the specific case of static ground-based GNSS-R receivers and scenarios where the coherent component of the reflected signal is dominant. We compute the CRB for GNSS signals with different modulations, GPS L1 C/A and GPS L5 I/Q, which use binary phase-shift keying, and Galileo E1 B/C and E5, using the binary offset carrier. The CRB for these signals is evaluated as a function of the receiver bandwidth and different scenario parameters, such as the height of the receiver or the properties of the reflection surface. The CRB computation presented considers observation times of up to several tens of seconds, in which the satellite elevation angle observed changes significantly. Finally, the results obtained show the theoretical benefit of using modern GNSS signals with GNSS-R techniques using long observation times, such as the interference pattern technique. PMID:27929388
NASA Astrophysics Data System (ADS)
Lizana, A.; Foldyna, M.; Stchakovsky, M.; Georges, B.; Nicolas, D.; Garcia-Caurel, E.
2013-03-01
High sensitivity of spectroscopic ellipsometry and reflectometry for the characterization of thin films can strongly decrease when layers, typically metals, absorb a significant fraction of the light. In this paper, we propose a solution to overcome this drawback using total internal reflection ellipsometry (TIRE) and exciting a surface longitudinal wave: a plasmon-polariton. As in the attenuated total reflectance technique, TIRE exploits a minimum in the intensity of reflected transversal magnetic (TM) polarized light and enhances the sensitivity of standard methods to thicknesses of absorbing films. Samples under study were stacks of three films, ZnO : Al/Ag/ZnO : Al, deposited on glass substrates. The thickness of the silver layer varied from sample to sample. We performed measurements with a UV-visible phase-modulated ellipsometer, an IR Mueller ellipsometer and a UV-NIR reflectometer. We used the variance-covariance formalism to evaluate the sensitivity of the ellipsometric data to different parameters of the optical model. Results have shown that using TIRE doubled the sensitivity to the silver layer thickness when compared with the standard ellipsometry. Moreover, the thickness of the ZnO : Al layer below the silver layer can be reliably quantified, unlike for the fit of the standard ellipsometry data, which is limited by the absorption of the silver layer.
Profiling soil water content sensor
USDA-ARS?s Scientific Manuscript database
A waveguide-on-access-tube (WOAT) sensor system based on time domain reflectometry (TDR) principles was developed to sense soil water content and bulk electrical conductivity in 20-cm (8 inch) deep layers from the soil surface to depths of 3 m (10 ft) (patent No. 13/404,491 pending). A Cooperative R...
Nondestructive Testing Information Analysis Center, 1982.
1983-03-01
RF Fields Microwaves Magnetic Flux Analysis Magnetic Particles * ULTRASONIC AND ACOUSTIC TESTING Ultrasonic Transmission and Reflectometry Ultrasonic... Reflectometry and Transmission Holography THERMAL TESTING Infrared Radiometry Thermography 3 The present organization and personnel of NTIAC are...the current core and secondary serials. As an added check on our surveillance effectiveness, we also scan Current Contents, NASA /SCAN, as well as the
Water content measurement in forest soils and decayed wood using time domain reflectometry
Andrew Gray; Thomas Spies
1995-01-01
The use of time domain reflectometry to measure moisture content in forest soils and woody debris was evaluated. Calibrations were developed on undisturbed soil cores from four forest stands and on point samples from decayed logs. An algorithm for interpreting irregularly shaped traces generated by the reflectometer was also developed. Two different calibration...
Remote Strain Sensing of CFRP Using Microwave Frequency Domain Reflectometry
NASA Technical Reports Server (NTRS)
Wilson, William C.; Moore, Jason P.; Juarez, Peter D.
2016-01-01
NASA's Advanced Composites Project is investigating technologies that increase automated remote inspection of aircraft composite structures. Therefore, microwave Frequency Domain Reflectometry (FDR) is being investigated as a method of enabling rapid remote measurement of strain occurring at the first ply of a composite fiber reinforced polymer (CFRP) structure using Radio Frequency (RF) Electro-Magnetic (EM) radiation. While microwave reflectometry has been used to detect disbonds in CFRP structures, its use in detecting strain has been limited. This work will present data demonstrating the measurement of the reactance changes due to loading conditions that are indicative of strain in a CFRP structure. In addition, the basic EM signature will be presented along with an analysis of temperature and humidity effects.
NASA Astrophysics Data System (ADS)
Garrison, J. L.; Piepmeier, J. R.; Shah, R.; Lin, Y. C.; Du Toit, C. F.; Vega, M. A.; Knuble, J. J.
2016-12-01
Several recent experiments have demonstrated remote sensing by reutilizing communication satellite transmissions as sources in a bistatic radar configuration. This technique, referred to as "Signals of Opportunity Earth Reflectometry" (SoOp-ER), combines aspects of passive radiometry, active scatterometry and radar altimetry, but is essentially a new and alternative approach to microwave remote sensing. Reflectometry was first demonstrated with Global Navigation Satellite System (GNSS) signals, enabled by their use of pseudorandom noise (PRN) codes for ranging. Two decades of research in GNSS reflectometry has culminated in the upcoming launches of several satellite missions within the next few years (TechDemoSat-1, CYGNSS, and GEROS-ISS). GNSS signals, however, have low power and are confined to a few L-band frequencies allocated to radionavigation. Communication satellites, in contrast, transmit in nearly all bands penetrating the Earth's atmosphere at very high radiated powers to assure a low bit-error-rate. High transmission power and a forward scatter geometry result in a very high signal to noise ratio at the receiver. Surface resolution is determined by the signal bandwidth, not the antenna beam. In many applications, this will allow small, low gain antennas to be used to make scientifically useful measurements. These features indicate that SoOp-ER instruments would be an ideal technology for microwave remote sensing from small platforms. SoOp-ER observations are referenced at the specular point and a constellation of small satellites, evenly spaced in the same orbit, would provide global coverage through parallel specular point ground tracks. This presentation will summarize the current instrument development work by the authors on three different application of SoOp-ER: P-band (230-270 MHz) sensing of root-zone soil moisture (RZSM), S-band sensing of ocean winds and Ku/Ka-band altimetry. Potential mission scenarios using small satellite constellations using SoOp-ER at these frequencies are under study.
NASA Astrophysics Data System (ADS)
Wrobel, P. M.; Bogovac, M.; Sghaier, H.; Leani, J. J.; Migliori, A.; Padilla-Alvarez, R.; Czyzycki, M.; Osan, J.; Kaiser, R. B.; Karydas, A. G.
2016-10-01
A new synchrotron beamline end-station for multipurpose X-ray spectrometry applications has been recently commissioned and it is currently accessible by end-users at the XRF beamline of Elettra Sincrotrone Trieste. The end-station consists of an ultra-high vacuum chamber that includes as main instrument a seven-axis motorized manipulator for sample and detectors positioning, different kinds of X-ray detectors and optical cameras. The beamline end-station allows performing measurements in different X-ray spectrometry techniques such as Microscopic X-Ray Fluorescence analysis (μXRF), Total Reflection X-Ray Fluorescence analysis (TXRF), Grazing Incidence/Exit X-Ray Fluorescence analysis (GI-XRF/GE-XRF), X-Ray Reflectometry (XRR), and X-Ray Absorption Spectroscopy (XAS). A LabVIEW Graphical User Interface (GUI) bound with Tango control system consisted of many custom made software modules is utilized as a user-friendly tool for control of the entire end-station hardware components. The present work describes this advanced Tango and LabVIEW software platform that utilizes in an optimal synergistic manner the merits and functionality of these well-established programming and equipment control tools.
Active Time-Domain Reflectometry for Unattended Safeguards Systems FY15 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tedeschi, Jonathan R.; Smith, Leon E.; Moore, David E.
2015-09-01
The International Atomic Energy Agency (IAEA) continues to expand its use of unattended measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. In collaboration with the IAEA, tamper-indicating measures to address data-transmission authentication challenges with unattended safeguards systems are under investigation. Pacific Northwest National Laboratory (PNNL) is studying the viability of active time-domain reflectometry (TDR) along two parallel but interconnected paths: (1) swept-frequency TDR as the highly flexible, laboratory gold standard to which field-deployable options can be compared, and (2) a low-costmore » commercially available spread-spectrum TDR technology as one option for field implementation. This report describes PNNL’s FY15 progress in the viability study including: an overview of the TDR methods under investigation; description of the testing configurations and mock tampering scenarios; results from a preliminary sensitivity comparison of the two TDR methods; demonstration of a quantitative metric for estimating field performance that acknowledges the need for high detection probability while minimizing false alarms. FY15 progress reported here sets the stage for a rigorous comparison of the candidate TDR methods, over a range of deployment scenarios and perturbing effects typical of IAEA unattended monitoring systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandoval, Thomas D.; Schultz-Fellenz, Emily S.
2012-08-29
The Continuous Reflectometry for Radius vs Time Experiments (CORRTEX) diagnostic system was deployed for the third explosives test in the Source Physics Experiment (SPE) sequence to monitor and verify several conditions of the experiment including the detonation velocity of the explosive package and functioning of explosive initiators. Six distance-marked coaxial cables were installed on the SPE-III explosives canister, and key locations documented through along-cable length measurements and photography. CORRTEX uses electrical-pulse time-domain reflectometry to continuously record the two-way transit time (TWTT) of the cables. As the shock front of the detonation advances, the coaxial cable is shorted or destroyed, andmore » the resulting TWTT also decreases. Interpretation of these changes as a function of TWTT can be converted to positional measurements using known parameters of the cables.« less
Performance Analysis of the ITER Plasma Position Reflectometry (PPR) Ex-vessel Transmission Lines
NASA Astrophysics Data System (ADS)
Martínez-Fernández, J.; Simonetto, A.; Cappa, Á.; Rincón, M. E.; Cabrera, S.; Ramos, F. J.
2018-03-01
As the design of the ITER Plasma Position Reflectometry (PPR) diagnostic progresses, some segments of the transmission line have become fully specified and estimations of their performance can already be obtained. This work presents the calculations carried out for the longest section of the PPR, which is in final state of design and will be the main contributor to the total system performance. Considering the 88.9 mm circular corrugated waveguide (CCWG) that was previously chosen, signal degradation calculations have been performed. Different degradation sources have been studied: ohmic attenuation losses for CCWG; mode conversion losses for gaps, mitre bends, waveguide sag and different types of misalignments; reflection and absorption losses due to microwave windows and coupling losses to free space Gaussian beam. Contributions from all these sources have been integrated to give a global estimation of performance in the transmission lines segments under study.
Single-shot readout of accumulation mode Si/SiGe spin qubits using RF reflectometry
NASA Astrophysics Data System (ADS)
Volk, Christian; Martins, Frederico; Malinowski, Filip; Marcus, Charles M.; Kuemmeth, Ferdinand
Spin qubits based on gate-defined quantum dots are promising systems for realizing quantum computation. Due to their low concentration of nuclear-spin-carrying isotopes, Si/SiGe heterostructures are of particular interest. While high fidelities have been reported for single-qubit and two-qubit gate operations, qubit initialization and measurement times are relatively slow. In order to develop fast read-out techniques compatible with the operation of spin qubits, we characterize double and triple quantum dots confined in undoped Si/Si0.7Ge0.3 heterostructures using accumulation and depletion gates and a nearby RF charge sensor dot. We implement a RF reflectometry technique that allows single-shot charge read-out at integration times on the order of a few μs. We show our recent advancement towards implementing spin qubits in these structures, including spin-selective single-shot read-out.
Kawaura, Hiroyuki; Harada, Masashi; Kondo, Yasuhito; Kondo, Hiroki; Suganuma, Yoshitake; Takahashi, Naoko; Sugiyama, Jun; Seno, Yoshiki; Yamada, Norifumi L
2016-04-20
We report the first operando measurement of solid electrolyte interphase (SEI) formation at an electrode using in situ neutron reflectometry. The results revealed the growth of the SEI and intercalation of ions during the charge reaction. Furthermore, we propose a way of evaluating the charge used for the SEI formation.
Wood, Mary H; Browning, Kathryn L; Barker, Robert D; Clarke, Stuart M
2016-06-23
Neutron reflectometry has been successfully used to study adsorption on a stainless steel surface by means of depositing a thin steel film on silicon. The film was characterized using XPS (X-ray photoelectron spectroscopy), TOF-SIMS (time-of-flight secondary ion mass spectrometry), and GIXRD (grazing incidence X-ray diffraction), demonstrating the retention both of the austenitic phase and of the required composition for 316L stainless steel. The adsorption of fibrinogen from a physiologically-relevant solution onto the steel surface was studied using neutron reflectometry and QCM (quartz crystal microbalance) and compared to that on a deposited chromium oxide surface. It was found that the protein forms an irreversibly bound layer at low concentrations, with maximum protein concentration a distance of around 20 Å from the surface. Evidence for a further diffuse reversibly-bound layer forming at higher concentrations was also observed. Both the structure of the layer revealed by the neutron reflectometry data and the high water retention predicted by the QCM data suggest that there is a significant extent of protein unfolding upon adsorption. A lower extent of adsorption was seen on the chromium surfaces, although the adsorbed layer structures were similar, suggesting comparable adsorption mechanisms.
This project is part of a program to investigate the use of innovative techniques for detecting and locating leaks in waste impoundment liners. Laboratory and small scale field studies were undertaken to evaluate the potential of Acoustic Emission Monitoring (AEM) and Time Domain...
Flight Test Experiments Foreseen for USV
2005-10-01
USA W.T. - Japan W .T. - Australia: ANU ( National University) W .T. - USA: NASA , AEDC, CALTEC, CUBRC W .T. - Japan: NAL 1.0E-05 1.0E-04... reflectometry ”. • Active (TX / RX) / passive (RX only) mode experiments • Main on-board elements: • RX • TX (possibly shared with system TX) • antennas
DOT National Transportation Integrated Search
2011-02-01
A new method of cable installation using a heavy-duty Cone Penetration Test : (CPT) truck was developed and practiced successfully in this study. The coaxial and fiber : optic cables were pushed along with the cone rods by the hydraulic system integr...
Analysis of biosurfaces by neutron reflectometry: From simple to complex interfaces
Junghans, Ann; Watkins, Erik B.; Barker, Robert D.; ...
2015-03-16
Because of its high sensitivity for light elements and the scattering contrast manipulation via isotopic substitutions, neutron reflectometry (NR) is an excellent tool for studying the structure of soft-condensed material. These materials include model biophysical systems as well as in situ living tissue at the solid–liquid interface. The penetrability of neutrons makes NR suitable for probing thin films with thicknesses of 5–5000 Å at various buried, for example, solid–liquid, interfaces [J. Daillant and A. Gibaud, Lect. Notes Phys. 770, 133 (2009); G. Fragneto-Cusani, J. Phys.: Condens. Matter 13, 4973 (2001); J. Penfold, Curr. Opin. Colloid Interface Sci. 7, 139 (2002)].more » Over the past two decades, NR has evolved to become a key tool in the characterization of biological and biomimetic thin films. Highlighted In the current report are some of the authors' recent accomplishments in utilizing NR to study highly complex systems, including in-situ experiments. Such studies will result in a much better understanding of complex biological problems, have significant medical impact by suggesting innovative treatment, and advance the development of highly functionalized biomimetic materials.« less
Advancing Wetlands Mapping and Monitoring with GNSS Reflectometry
NASA Astrophysics Data System (ADS)
Zuffada, Cinzia; Chew, Clara; Nghiem, Son V.; Shah, Rashmi; Podest, Erika; Bloom, A. Anthony; Koning, Alexandra; Small, Eric; Schimel, David; Reager, J. T.; Mannucci, Anthony; Williamson, Walton; Cardellach, Estel
2016-08-01
Wetland dynamics is crucial to address changes in both atmospheric methane (CH4) and terrestrial water storage. Yet, both spatial distribution and temporal variability of wetlands remain highly unconstrained despite the existence of remote sensing products from past and present satellite sensors. An innovative approach to mapping wetlands is offered by the Global Navigation Satellite System Reflectometry (GNSS-R), which is a bistatic radar concept that takes advantage of the ever increasing number of GNSS transmitting satellites to yield many randomly distributed measurements with broad-area global coverage and rapid revisit time. Hence, this communication presents the science motivation for mapping of wetlands and monitoring of their dynamics, and shows the relevance of the GNSS-R technique in this context, relative to and in synergy with other existing measurement systems. Additionally, the communication discusses results of our data analysis on wetlands in the Amazon, specifically from the initial analysis of satellite data acquired by the TechDemoSat-1 mission launched in 2014. Finally, recommendations are provided for the design of a GNSS-R mission specifically to address wetlands science issues.
Lu, Xin; Soto, Marcelo A; Thévenaz, Luc
2017-07-10
A method based on coherent Rayleigh scattering distinctly evaluating temperature and strain is proposed and experimentally demonstrated for distributed optical fiber sensing. Combining conventional phase-sensitive optical time-domain domain reflectometry (ϕOTDR) and ϕOTDR-based birefringence measurements, independent distributed temperature and strain profiles are obtained along a polarization-maintaining fiber. A theoretical analysis, supported by experimental data, indicates that the proposed system for temperature-strain discrimination is intrinsically better conditioned than an equivalent existing approach that combines classical Brillouin sensing with Brillouin dynamic gratings. This is due to the higher sensitivity of coherent Rayleigh scatting compared to Brillouin scattering, thus offering better performance and lower temperature-strain uncertainties in the discrimination. Compared to the Brillouin-based approach, the ϕOTDR-based system here proposed requires access to only one fiber-end, and a much simpler experimental layout. Experimental results validate the full discrimination of temperature and strain along a 100 m-long elliptical-core polarization-maintaining fiber with measurement uncertainties of ~40 mK and ~0.5 με, respectively. These values agree very well with the theoretically expected measurand resolutions.
Tracking serum antibody response to viral antigens with arrayed imaging reflectometry
NASA Astrophysics Data System (ADS)
Mace, Charles R.; Rose, Robert C.; Miller, Benjamin L.
2009-02-01
Arrayed Imaging Reflectometry, or "AIR", is a new label-free technique for detecting proteins that relies on bindinginduced changes in the response of an antireflective coating on the surface of a silicon ship. Because the technique provides high sensitivity, excellent dynamic range, and readily integrates with standard silicon wafer processing technology, it is an exceptionally attractive platform on which to build systems for detecting proteins in complex solutions. In our early research, we used AIR chips bearing secreted receptor proteins from enteropathogenic E. coli to develop sensors for this pathogen. Recently, we have been exploring an alternative strategy: Rather than detecting the pathogen directly, can one immobilize antigens from a pathogen, and employ AIR to detect antibody responses to those antigens? Such a strategy would provide enhanced sensitivity for pathogen detection (as the immune system essentially amplifies the "signal" caused by the presence of an organism to which it responds), and would also potentially prove useful in the process of vaccine development. We describe herein preliminary results in the application of such a strategy to the detection of antibodies to human papillomavirus (HPV).
The effect of the protein corona on the interaction between nanoparticles and lipid bilayers.
Di Silvio, Desirè; Maccarini, Marco; Parker, Roger; Mackie, Alan; Fragneto, Giovanna; Baldelli Bombelli, Francesca
2017-10-15
It is known that nanoparticles (NPs) in a biological fluid are immediately coated by a protein corona (PC), composed of a hard (strongly bounded) and a soft (loosely associated) layers, which represents the real nano-interface interacting with the cellular membrane in vivo. In this regard, supported lipid bilayers (SLB) have extensively been used as relevant model systems for elucidating the interaction between biomembranes and NPs. Herein we show how the presence of a PC on the NP surface changes the interaction between NPs and lipid bilayers with particular care on the effects induced by the NPs on the bilayer structure. In the present work we combined Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D) and Neutron Reflectometry (NR) experimental techniques to elucidate how the NP-membrane interaction is modulated by the presence of proteins in the environment and their effect on the lipid bilayer. Our study showed that the NP-membrane interaction is significantly affected by the presence of proteins and in particular we observed an important role of the soft corona in this phenomenon. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Stastny, Jeffrey A.; Rogers, Craig A.; Liang, Chen
1993-07-01
A parametric design model has been created to optimize the sensitivity of the sensing cable in a distributed sensing system. The system consists of electrical time domain reflectometry (ETDR) signal processing equipment and specially designed sensing cables. The ETDR equipment sends a high-frequency electric pulse (in the giga hertz range) along the sensing cable. Some portion of the electric pulse will be reflected back to the ETDR equipment as a result of the variation of the cable impedance. The electric impedance variation in the sensing cable can be related to its mechanical deformation, such as cable elongation (change in the resistance), shear deformation (change in the capacitance), corrosion of the cable or the materials around the cable (change in inductance and capacitance), etc. The time delay, amplitude, and shape of the reflected pulse provides the means to locate, determine the magnitude, and indicate the nature of the change in the electrical impedance, which is then related to the distributed structural deformation. The sensing cables are an essential part of the health-monitoring system. By using the parametric design model, the optimum cable parameters can be determined for specific deformation. Proof-of-concept experiments also are presented in the paper to demonstrate the utility of an electrical TDR system in distributed sensing applications.
2014-03-06
from scattered satellite transmissions, was first demonstrated using Global Navigation Satellite System ( GNSS ) reflections. Recently, reflectometry has...Earth’s atmosphere. The 2012 GNSS +R workshop provided an opportunity for engineers and Earth scientists to assess the state of the art, demonstrate new...bi-static radar technique utilizes signals of opportunity transmitted from existing L-band Global Navigation Satellite Systems ( GNSS ), including GPS
NASA Astrophysics Data System (ADS)
Grima, C.; Blankenship, D. D.; Schroeder, D. M.; Moussessian, A.; Soderlund, K. M.; Gim, Y.; Plaut, J. J.; Greenbaum, J. S.; Lopez Garcia, E.; Campbell, B. A.; Putzig, N. E.; Patterson, G.
2015-12-01
The Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) has been selected for the scientific payload of a NASA's multiple flyby mission to explore the icy moon Europa. REASON is an active dual-frequency (9/60 MHz) instrument led by the University of Texas Institute for Geophysics (UTIG). It is designed to achieve multi-disciplinary measurements to investigate subsurface waters and the ice shell structure (Sounding), the surface elevation and tides (Altimetry), the surface physical properties (Reflectometry), and the ionospheric environment (Plasma/Particles). We will present the concepts behind the "Reflectometry" and "Plasma/Particles" measurements, demonstrate their efficiency with planetary analogs, and anticipate their capabilities for the exploration of Europa. We will also highlight the potential synergies with other instruments selected for the Europa mission payload.The "Reflectometry" compares the statistical behavior of the surface echo amplitudes with theoretical stochastic models to separate the reflected and scattered contributions to the signal. Once those two components are deduced they are used in a backscattering model to invert surface properties such as roughness, density, and/or impurity load. "Reflectometry" measurements will contribute to the statistical characterization of the surface over ~ 10-km-long areas with a ~ 10 m skin depth for geological investigation, near-surface brine detection, plume-deposited snow characterization, and landing site reconnaissance. The "Plasma/Particles" measurement relies on the dispersive signal delays induced by the ionospheric content integrated along the radio propagation path. Correction of this delay with existing techniques provides the total electron content below the spacecraft. "Plasma/Particles" measurements will constrain the ionosphere's shape and variability along the acquisition track and might detect transient plume-induced ionosphere when active.
Reversible Control of Interfacial Magnetism through Ionic-Liquid-Assisted Polarization Switching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herklotz, Andreas; Guo, Er-Jia; Wong, Anthony T.
The ability to control magnetism of materials via electric field enables a myriad of technological innovations in information storage, sensing, and computing. In this paper, we use ionic-liquid-assisted ferroelectric switching to demonstrate reversible modulation of interfacial magnetism in a multiferroic heterostructure composed of ferromagnetic (FM) La 0.8Sr 0.2MnO 3 and ferroelectric (FE) PbZr 0.2Ti 0.8O 3. It is shown that ionic liquids can be used to persistently and reversibly switch a large area of a FE film. Finally, this is a prerequisite for polarized neutron reflectometry (PNR) studies that are conducted to directly probe magnetoelectric coupling of the FE polarizationmore » to the interfacial magnetization.« less
Reversible Control of Interfacial Magnetism through Ionic-Liquid-Assisted Polarization Switching
Herklotz, Andreas; Guo, Er-Jia; Wong, Anthony T.; ...
2017-02-06
The ability to control magnetism of materials via electric field enables a myriad of technological innovations in information storage, sensing, and computing. In this paper, we use ionic-liquid-assisted ferroelectric switching to demonstrate reversible modulation of interfacial magnetism in a multiferroic heterostructure composed of ferromagnetic (FM) La 0.8Sr 0.2MnO 3 and ferroelectric (FE) PbZr 0.2Ti 0.8O 3. It is shown that ionic liquids can be used to persistently and reversibly switch a large area of a FE film. Finally, this is a prerequisite for polarized neutron reflectometry (PNR) studies that are conducted to directly probe magnetoelectric coupling of the FE polarizationmore » to the interfacial magnetization.« less
Application of time–frequency wavelet analysis in the reflectometry of thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Astaf’ev, S. B., E-mail: bard@crys.ras.ru; Shchedrin, B. M.; Yanusova, L. G.
2017-03-15
The application of time–frequency wavelet analysis for solving the reflectometry inverse problem is considered. It is shown that a simultaneous transform of specular intensity curve, depending on the grazing angle and spatial frequency, allows one to determine not only the thickness but also the alteration order of individual regions (layers) with characteristic behavior of electron density. This information makes it possible to reconstruct the electron density profile in the film cross section as a whole (i.e., to solve the inverse reflectometry problem). The application of the time–frequency transform is illustrated by examples of reconstructing (based on X-ray reflectivity data) themore » layer alternation order in models of two-layer films with inverted arrangement of layers and a four-layer film on a solid substrate.« less
Isotope-Identifying neutron reflectometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikitenko, Yu. V., E-mail: nikiten@nf.jinr.ru; Petrenko, A. V.; Gundorin, N. A.
2015-07-15
The possibilities of an isotope-indentifying study of layered structures in different regimes of a neutron wave field are considered. The detection of specularly reflected neutrons and secondary radiation (caused by neutron capture) in the form of charged particles, γ quanta, and nuclear fission fragments, as well as neutrons spin-flipped in a noncollinear magnetic field and on nuclei of elements with spin, makes it possible to implement isotope-indentifying neutron reflectometry.
Dong, Junliang; Locquet, Alexandre; Melis, Marcello; Citrin, D S
2017-11-08
The process by which art paintings are produced typically involves the successive applications of preparatory and paint layers to a canvas or other support; however, there is an absence of nondestructive modalities to provide a global mapping of the stratigraphy, information that is crucial for evaluation of its authenticity and attribution, for insights into historical or artist-specific techniques, as well as for conservation. We demonstrate sparsity-based terahertz reflectometry can be applied to extract a detailed 3D mapping of the layer structure of the 17th century easel painting Madonna in Preghiera by the workshop of Giovanni Battista Salvi da Sassoferrato, in which the structure of the canvas support, the ground, imprimatura, underpainting, pictorial, and varnish layers are identified quantitatively. In addition, a hitherto unidentified restoration of the varnish has been found. Our approach unlocks the full promise of terahertz reflectometry to provide a global and detailed account of an easel painting's stratigraphy by exploiting the sparse deconvolution, without which terahertz reflectometry in the past has only provided a meager tool for the characterization of paintings with paint-layer thicknesses smaller than 50 μm. The proposed modality can also be employed across a broad range of applications in nondestructive testing and biomedical imaging.
NASA Technical Reports Server (NTRS)
Claus, R. O.; Bennett, K. D.; Jackson, B. S.
1986-01-01
The application of fiber-optical time domain reflectometry (OTDR) to nondestructive quantitative measurements of distributed internal strain in graphite-epoxy composites, using optical fiber waveguides imbedded between plies, is discussed. The basic OTDR measurement system is described, together with the methods used to imbed optical fibers within composites. Measurement results, system limitations, and the effect of the imbedded fiber on the integrity of the host composite material are considered.
Characterization of human scalp hairs by optical low-coherence reflectometry
NASA Astrophysics Data System (ADS)
Wang, X. J.; Milner, T. E.; Dhond, R. P.; Sorin, W. V.; Newton, S. A.; Nelson, J. S.
1995-03-01
Optical low-coherence reflectometry is used to investigate the internal structure and optical properties of human scalp hair. Regardless of hair color, the refractive index of the cortical region remains within the range of 1.56-1.59. The amplitude of the backscattered infrared light coupled into different-colored hair confirms the relative melanin content. Discontinuities in the refractive index permit identification of distinct structural layers within the hair shaft.
Experimental Test of Coupled Wave Model of Large Coils
1985-06-01
46556 Abstract: Recent data from Time Domain Pulse Reflectometry experiments on a three turn coil in the form of a race track corroborate the...Domain Pulse Reflectometry experiments on a three turn coil in the form of a race track corroborate the theory of coupled wave model for large coils...Gabriel, "Coupled Wave Model for Large Magnet Coils", NASA Contractor Report 3332, National Aeronautics and Space Administration, Washington, DC
Coric, Dragan; Lai, Marco; Botsis, John; Luo, Aiping; Limberger, Hans G
2010-12-06
Optical low coherence reflectometry and fiber Bragg gratings written in small diameter (50 micrometer) optical fibers were used for measurements of non-homogenous internal strain fields inside an epoxy specimen with sub-grating length resolution. The results were compared with measurements using Fiber Bragg gratings in standard size (125 micrometer) single mode fibers and show that smaller fibers are less intrusive at stress heterogeneities.
New signal processing technique for density profile reconstruction using reflectometry.
Clairet, F; Ricaud, B; Briolle, F; Heuraux, S; Bottereau, C
2011-08-01
Reflectometry profile measurement requires an accurate determination of the plasma reflected signal. Along with a good resolution and a high signal to noise ratio of the phase measurement, adequate data analysis is required. A new data processing based on time-frequency tomographic representation is used. It provides a clearer separation between multiple components and improves isolation of the relevant signals. In this paper, this data processing technique is applied to two sets of signals coming from two different reflectometer devices used on the Tore Supra tokamak. For the standard density profile reflectometry, it improves the initialization process and its reliability, providing a more accurate profile determination in the far scrape-off layer with density measurements as low as 10(16) m(-1). For a second reflectometer, which provides measurements in front of a lower hybrid launcher, this method improves the separation of the relevant plasma signal from multi-reflection processes due to the proximity of the plasma.
Campbell, Richard A; Yanez Arteta, Marianna; Angus-Smyth, Anna; Nylander, Tommy; Varga, Imre
2011-12-29
We show for the oppositely charged system poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate that the cliff edge peak in its surface tension isotherm results from the comprehensive precipitation of bulk complexes into sediment, leaving a supernatant that is virtually transparent and a depleted adsorption layer at the air/water interface. The aggregation and settling processes take about 3 days to reach completion and occur at bulk compositions around charge neutrality of the complexes which lack long-term colloidal stability. We demonstrate excellent quantitative agreement between the measured surface tension values and a peak calculated from the surface excess of surfactant in the precipitation region measured by neutron reflectometry, using the approximation that there is no polymer left in the liquid phase. The nonequilibrium nature of the system is emphasized by the production of very different interfacial properties from equivalent aged samples that are handled differently. We go on to outline our perspective on the "true equilibrium" state of this intriguing system and conclude with a comment on its practical relevance given that the interfacial properties can be so readily influenced by the handling of kinetically trapped bulk aggregates. © 2011 American Chemical Society
A PC based time domain reflectometer for space station cable fault isolation
NASA Technical Reports Server (NTRS)
Pham, Michael; McClean, Marty; Hossain, Sabbir; Vo, Peter; Kouns, Ken
1994-01-01
Significant problems are faced by astronauts on orbit in the Space Station when trying to locate electrical faults in multi-segment avionics and communication cables. These problems necessitate the development of an automated portable device that will detect and locate cable faults using the pulse-echo technique known as Time Domain Reflectometry. A breadboard time domain reflectometer (TDR) circuit board was designed and developed at the NASA-JSC. The TDR board works in conjunction with a GRiD lap-top computer to automate the fault detection and isolation process. A software program was written to automatically display the nature and location of any possible faults. The breadboard system can isolate open circuit and short circuit faults within two feet in a typical space station cable configuration. Follow-on efforts planned for 1994 will produce a compact, portable prototype Space Station TDR capable of automated switching in multi-conductor cables for high fidelity evaluation. This device has many possible commercial applications, including commercial and military aircraft avionics, cable TV, telephone, communication, information and computer network systems. This paper describes the principle of time domain reflectometry and the methodology for on-orbit avionics utility distribution system repair, utilizing the newly developed device called the Space Station Time Domain Reflectometer (SSTDR).
Phase-detected Brillouin optical correlation-domain reflectometry
NASA Astrophysics Data System (ADS)
Mizuno, Yosuke; Hayashi, Neisei; Fukuda, Hideyuki; Nakamura, Kentaro
2018-05-01
Optical fiber sensing techniques based on Brillouin scattering have been extensively studied for structural health monitoring owing to their capability of distributed strain and temperature measurement. Although a higher signal-to-noise ratio (leading to high spatial resolution and high-speed measurement) is generally obtained for two-end-access systems, they reduce the degree of freedom in embedding the sensors into structures, and render the measurement no longer feasible when extremely high loss or breakage occurs at a point of the sensing fiber. To overcome these drawbacks, a one-end-access sensing technique called Brillouin optical correlation-domain reflectometry (BOCDR) has been developed. BOCDR has a high spatial resolution and cost efficiency, but its conventional configuration suffered from relatively low-speed operation. In this paper, we review the recently developed high-speed configurations of BOCDR, including phase-detected BOCDR, with which we demonstrate real-time distributed measurement by tracking a propagating mechanical wave. We also demonstrate breakage detection with a wide strain dynamic range.
Phase-detected Brillouin optical correlation-domain reflectometry
NASA Astrophysics Data System (ADS)
Mizuno, Yosuke; Hayashi, Neisei; Fukuda, Hideyuki; Nakamura, Kentaro
2018-06-01
Optical fiber sensing techniques based on Brillouin scattering have been extensively studied for structural health monitoring owing to their capability of distributed strain and temperature measurement. Although a higher signal-to-noise ratio (leading to high spatial resolution and high-speed measurement) is generally obtained for two-end-access systems, they reduce the degree of freedom in embedding the sensors into structures, and render the measurement no longer feasible when extremely high loss or breakage occurs at a point of the sensing fiber. To overcome these drawbacks, a one-end-access sensing technique called Brillouin optical correlation-domain reflectometry (BOCDR) has been developed. BOCDR has a high spatial resolution and cost efficiency, but its conventional configuration suffered from relatively low-speed operation. In this paper, we review the recently developed high-speed configurations of BOCDR, including phase-detected BOCDR, with which we demonstrate real-time distributed measurement by tracking a propagating mechanical wave. We also demonstrate breakage detection with a wide strain dynamic range.
The Rise of GNSS Reflectometry for Earth Remote Sensing
NASA Technical Reports Server (NTRS)
Zuffada, Cinzia; Li, Zhijin; Nghiem, Son V.; Lowe, Steve; Shah, Rashmi; Clarizia, Maria Paola; Cardellach, Estel
2015-01-01
The Global Navigation Satellite System (GNSS) reflectometry, i.e. GNSS-R, is a novel remote-sensing technique first published in that uses GNSS signals reflected from the Earth's surface to infer its surface properties such as sea surface height (SSH), ocean winds, sea-ice coverage, vegetation, wetlands and soil moisture, to name a few. This communication discusses the scientific value of GNSS-R to (a) furthering our understanding of ocean mesoscale circulation toward scales finer than those that existing nadir altimeters can resolve, and (b) mapping vegetated wetlands, an emerging application that might open up new avenues to map and monitor the planet's wetlands for methane emission assessments. Such applications are expected to be demonstrated by the availability of data from GEROS-ISS, an ESA experiment currently in phase A, and CyGNSS [3], a NASA mission currently in development. In particular, the paper details the expected error characteristics and the role of filtering played in the assimilation of these data to reduce the altimetric error (when averaging many measurements).
Simultaneous polarized neutron reflectometry and anisotropic magnetoresistance measurements.
Demeter, J; Teichert, A; Kiefer, K; Wallacher, D; Ryll, H; Menéndez, E; Paramanik, D; Steitz, R; Van Haesendonck, C; Vantomme, A; Temst, K
2011-03-01
A novel experimental facility to carry out simultaneous polarized neutron reflectometry (PNR) and anisotropic magnetoresistance (AMR) measurements is presented. Performing both techniques at the same time increases their strength considerably. The proof of concept of this method is demonstrated on a CoO/Co bilayer exchange bias system. Although information on the same phenomena, such as the coercivity or the reversal mechanism, can be separately obtained from either of these techniques, the simultaneous application optimizes the consistency between both. In this way, possible differences in experimental conditions, such as applied magnetic field amplitude and orientation, sample temperature, magnetic history, etc., can be ruled out. Consequently, only differences in the fundamental sensitivities of the techniques can cause discrepancies in the interpretation between the two. The almost instantaneous information obtained from AMR can be used to reveal time-dependent effects during the PNR acquisition. Moreover, the information inferred from the AMR measurements can be used for optimizing the experimental conditions for the PNR measurements in a more efficient way than with the PNR measurements alone.
Isotope effect in heavy/light water suspensions of optically active gold nanoparticles
NASA Astrophysics Data System (ADS)
Kutsenko, V. Y.; Artykulnyi, O. P.; Petrenko, V. I.; Avdeev, M. V.; Marchenko, O. A.; Bulavin, L. A.; Snegir, S. V.
2018-04-01
Aqueous suspensions of optically active gold nanoparticles coated with trisodium citrate were synthesized in light (H2O) water and mixture of light and heavy (H2O/D2O) water using the modified Turkevich protocol. The objective of the paper was to verify sensitivity of neutron scattering methods (in particular, neutron reflectometry) to the potential isotope H/D substitution in the stabilizing organic shell around particles in colloidal solutions. First, the isotope effect was studied with respect to the changes in the structural properties of metal particles (size, shape, crystalline morphology) in solutions by electron microscopy including high-resolution transmission electron microscopy from dried systems. The structural factors determining the variation in the adsorption spectra in addition to the change in the optical properties of surrounding medium were discussed. Then, neutron reflectometry was applied to the layered nanoparticles anchored on a silicon wafer via 3-aminopropyltriethoxysilane molecules to reveal the presence of deuterated water molecules in the shell presumably formed by citrate molecules around the metallic core.
Microwave Imaging Radar Reflectometer System Utilizing Digital Beam Forming
NASA Astrophysics Data System (ADS)
Hu, Fengqi; Li, Meijiao; Domier, Calvin W.; Liu, Xiaoguang; Luhmann, Neville C., Jr.
2016-10-01
Microwave Imaging Reflectometry is a radar-like technique developed to measure the electron density fluctuations in fusion plasmas. Phased Antenna Arrays can serve as electronically controlled ``lenses'' that can generate the required wavefronts by phase shifting and amplitude scaling, which is being realized in the digital domain with higher flexibility and faster processing speed. In the transmitter, the resolution of the phase control is 1.4 degrees and the amplitude control is 0.5 dB/ step. A V-band double-sided, printed bow tie antenna which exhibits 49% bandwidth (46 - 76 GHz) is employed. The antenna is fed by a microstrip transmission line for easy impedance matching. The simple structure and the small antenna are suitable for low cost fabrication, easy circuit integration, and phased antenna array multi-frequency applications. In the receiver part, a sub-array of 32 channels with 200 mil spacing is used to collect the scattered reflected signal from one unit spot on the plasma cutoff surface. Pre-amplification is used to control the noise level of the system and wire bondable components are used to accommodate the small spacing between each channel. After down converting, base band signals are digitized and processed in an FPGA module. U.S. Department of Energy Grant No. DE-FG02-99ER54531.
Macular pigment optical density measured by heterochromatic modulation photometry.
Huchzermeyer, Cord; Schlomberg, Juliane; Welge-Lüssen, Ulrich; Berendschot, Tos T J M; Pokorny, Joel; Kremers, Jan
2014-01-01
To psychophysically determine macular pigment optical density (MPOD) employing the heterochromatic modulation photometry (HMP) paradigm by estimating 460 nm absorption at central and peripheral retinal locations. For the HMP measurements, two lights (B: 460 nm and R: 660 nm) were presented in a test field and were modulated in counterphase at medium or high frequencies. The contrasts of the two lights were varied in tandem to determine flicker detection thresholds. Detection thresholds were measured for different R:B modulation ratios. The modulation ratio with minimal sensitivity (maximal threshold) is the point of equiluminance. Measurements were performed in 25 normal subjects (11 male, 14 female; age: 30 ± 11 years, mean ± sd) using an eight channel LED stimulator with Maxwellian view optics. The results were compared with those from two published techniques - one based on heterochromatic flicker photometry (Macular Densitometer) and the other on fundus reflectometry (MPR). We were able to estimate MPOD with HMP using a modified theoretical model that was fitted to the HMP data. The resultant MPODHMP values correlated significantly with the MPODMPR values and with the MPODHFP values obtained at 0.25° and 0.5° retinal eccentricity. HMP is a flicker-based method with measurements taken at a constant mean chromaticity and luminance. The data can be well fit by a model that allows all data points to contribute to the photometric equality estimate. Therefore, we think that HMP may be a useful method for MPOD measurements, in basic and clinical vision experiments.
Carbon Fiber TOW Angle Determination Using Microwave Reflectometry
NASA Technical Reports Server (NTRS)
Wilson, William C.; Moore, Jason P.; Juarez, Peter D.
2016-01-01
NASA's Advanced Composites Project is investigating technologies that increase automated remote inspection of aircraft composite structures. Therefore, microwave Frequency Domain Reflectometry (FDR) is being investigated as a method of enabling rapid remote inspection of angular orientation of the tow using microwave radiation. This work will present preliminary data demonstrating that frequency shifts in the reflection spectrum of a carbon fiber tow sample are indicative of the angle of the tow with respect to an interrogating antenna's linear polarized output.
GLORI: A GNSS-R Dual Polarization Airborne Instrument for Land Surface Monitoring
Motte, Erwan; Zribi, Mehrez; Fanise, Pascal; Egido, Alejandro; Darrozes, José; Al-Yaari, Amen; Baghdadi, Nicolas; Baup, Frédéric; Dayau, Sylvia; Fieuzal, Remy; Frison, Pierre-Louis; Guyon, Dominique; Wigneron, Jean-Pierre
2016-01-01
Global Navigation Satellite System-Reflectometry (GNSS-R) has emerged as a remote sensing tool, which is complementary to traditional monostatic radars, for the retrieval of geophysical parameters related to surface properties. In the present paper, we describe a new polarimetric GNSS-R system, referred to as the GLObal navigation satellite system Reflectometry Instrument (GLORI), dedicated to the study of land surfaces (soil moisture, vegetation water content, forest biomass) and inland water bodies. This system was installed as a permanent payload on a French ATR42 research aircraft, from which simultaneous measurements can be carried out using other instruments, when required. Following initial laboratory qualifications, two airborne campaigns involving nine flights were performed in 2014 and 2015 in the Southwest of France, over various types of land cover, including agricultural fields and forests. Some of these flights were made concurrently with in situ ground truth campaigns. Various preliminary applications for the characterisation of agricultural and forest areas are presented. Initial analysis of the data shows that the performance of the GLORI instrument is well within specifications, with a cross-polarization isolation better than −15 dB at all elevations above 45°, a relative polarimetric calibration accuracy better than 0.5 dB, and an apparent reflectivity sensitivity better than −30 dB, thus demonstrating its strong potential for the retrieval of land surface characteristics. PMID:27213393
GLORI: A GNSS-R Dual Polarization Airborne Instrument for Land Surface Monitoring.
Motte, Erwan; Zribi, Mehrez; Fanise, Pascal; Egido, Alejandro; Darrozes, José; Al-Yaari, Amen; Baghdadi, Nicolas; Baup, Frédéric; Dayau, Sylvia; Fieuzal, Remy; Frison, Pierre-Louis; Guyon, Dominique; Wigneron, Jean-Pierre
2016-05-20
Global Navigation Satellite System-Reflectometry (GNSS-R) has emerged as a remote sensing tool, which is complementary to traditional monostatic radars, for the retrieval of geophysical parameters related to surface properties. In the present paper, we describe a new polarimetric GNSS-R system, referred to as the GLObal navigation satellite system Reflectometry Instrument (GLORI), dedicated to the study of land surfaces (soil moisture, vegetation water content, forest biomass) and inland water bodies. This system was installed as a permanent payload on a French ATR42 research aircraft, from which simultaneous measurements can be carried out using other instruments, when required. Following initial laboratory qualifications, two airborne campaigns involving nine flights were performed in 2014 and 2015 in the Southwest of France, over various types of land cover, including agricultural fields and forests. Some of these flights were made concurrently with in situ ground truth campaigns. Various preliminary applications for the characterisation of agricultural and forest areas are presented. Initial analysis of the data shows that the performance of the GLORI instrument is well within specifications, with a cross-polarization isolation better than -15 dB at all elevations above 45°, a relative polarimetric calibration accuracy better than 0.5 dB, and an apparent reflectivity sensitivity better than -30 dB, thus demonstrating its strong potential for the retrieval of land surface characteristics.
NASA Astrophysics Data System (ADS)
Kitazawa, Y.; Ichikawa, K.; Akiyama, H.; Ebinuma, T.; Isoguchi, O.; Kimura, N.; Konda, M.; Kouguchi, N.; Tamura, H.; Tomita, H.; Yoshikawa, Y.; Waseda, T.
2016-12-01
Global Navigation Satellite Systems (GNSS), such as GPS is a system of satellites that provide autonomous geo-spatial positioning with global coverage. It allows small electronic receivers to determine their location to high precision using radio signals transmitted from satellites, GNSS reflectometry (GNSS-R) involves making measurements from the reflections from the Earth of navigation signals from GNSS satellites. Reflected signals from sea surface are considered that those are useful to observe sea state and sea surface height. We have started a research program for GNSS-R applications on oceanographic observations under the contract with MEXT (Ministry of Education Culture, Sports, Science and Technology, JAPAN) and launched a Japanese research consortium, GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height). It is aiming to evaluate the capabilities of GNSS-R observations for oceanographic phenomena with different time scales, such as ocean waves (1/10 to tens of seconds), tides (one or half days), and sea surface dynamic height (a few days to years). In situ observations of ocean wave spectrum, wind speed vertical profile, and sea surface height will be quantitatively compared with equivalent estimates from simultaneous GNSS-R measurements. The GROWTH project will utilize different types of observation platforms; marine observation towers (about 20 m height), multi-copters (about 100 to 150 m height), and much higher-altitude CYGNSS data. Cross-platform data, together with in situ oceanographic observations, will be compared after adequate temporal averaging that accounts differences of the footprint sizes and temporal and spatial scales of oceanographic phenomena. This paper will provide overview of the GROWTH project, preliminary test results, obtained by the multi-sensor platform at observation towers, suggest actual footprint sizes and identification of swell. Preparation status of a ground station which will be supplied to receive CYGNSS data at Japan, is also reported. Compatibility tests to CYGNSS data and refurbishment of the ground station were completed.
2007-02-20
ellipsome- try and reflectometry were employed to show that the silicon wafers gained about a 420-A-thick layer of a silica-like con- taminant with BRDF...under Contract No. FA8802-04-C-0001. 111°. Contents I. Introduction .1 2. Ellipsometry and Reflectometry ... NASA ) I ;d~ ~ ---- ! Y Figure 2. MISSE I PECI Tray 2 facing away from Soyuz. (Courtesy NASA ) Among the samples mounted in PEC I Tray 2 were several
NASA Astrophysics Data System (ADS)
Lawson, Christopher M.; Michael, Robert R., Jr.; Dressel, Earl M.; Harmony, David W.
1991-12-01
Optical time domain reflectometry (OTDR) measurements have been performed on polished polymethylmethacrylate (PMMA) plastic fiber splices. After the dominant splice reflection sources due to surface roughness, inexact index matching, and fiber core misalignment were eliminated, an intrinsic OTDR signature 3 - 8 dB above the Rayleigh backscatter floor remained with all tested fibers. This minimum splice reflectivity exhibits characteristics that are consistent with sub-surface polymer damage and can be used for detection of PMMA fiber splices.
NASA Astrophysics Data System (ADS)
Hudge, Pravin G.; Lokhande, Milind P.; Kumbharkhane, Ashok C.
2012-09-01
Complex permittivity spectra of aqueous solutions of monosaccharide ( d-glucose) and disaccharides ( d-sucrose) in the frequency range from 10 MHz to 30 GHz at various concentrations and temperatures have been determined using time domain reflectometry technique. The complex dielectric permittivity spectrum of d-glucose and d-sucrose in water shows Cole-Davidson type behaviour. Dielectric constant (ɛ0) and relaxation time (τ), Kirkwood correlation factor, activation enthalpy and entropy parameters have been determined.
Distributed sensor for water and pH measurements using fiber optics and swellable polymeric systems
NASA Astrophysics Data System (ADS)
Michie, W. C.; Culshaw, B.; McKenzie, I.; Konstantakis, M.; Graham, N. B.; Moran, C.; Santos, F.; Bergqvist, E.; Carlstrom, B.
1995-01-01
We report on the design, construction and test of a generic form of sensor for making distributed measurements of a range of chemical parameters. The technique combines optical time-domain reflectometry with chemically sensitive water-swellable polymers (hydrogels). Initial experiments have concentrated on demonstrating a distributed water detector; however, gels have been developed that enable this sensor to be
2007-12-14
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, a technician explains how test equipment -- the blue monitor -- will be used to validate the circuit on test wiring from the electrical harness in space shuttle Atlantis' aft main engine compartment connected with the engine cut-off system. The test wiring leads from the tail mast on the mobile launcher platform to the interior where the Time Domain Reflectometry, or TDR, test equipment will be located to test the sensor system. Photo credit: NASA/Kim Shiflett
2007-12-14
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, technicians overlook wires and monitoring equipment that will be used to validate the circuit on the test wiring from the electrical harness in space shuttle Atlantis' aft main engine compartment connected with the engine cut-off system. The test wiring leads from the tail mast on the mobile launcher platform to the interior where the Time Domain Reflectometry, or TDR, test equipment will be located to test the sensor system. Photo credit: NASA/Kim Shiflett
Fiber-Optic Sensing System: Overview, Development and Deployment in Flight at NASA
NASA Technical Reports Server (NTRS)
Chan, Hon Man; Parker, Allen R.; Piazza, Anthony; Richards, W. Lance
2015-01-01
An overview of the research and technological development of the fiber-optic sensing system (FOSS) at the National Aeronautics and Space Administration Armstrong Flight Research Center (NASA AFRC) is presented. Theory behind fiber Bragg grating (FBG) sensors, as well as interrogation technique based on optical frequency domain reflectometry (OFDR) is discussed. Assessment and validation of FOSS as an accurate measurement tool for structural health monitoring is realized in the laboratory environment as well as large-scale flight deployment.
NASA Astrophysics Data System (ADS)
Leeburg, Kelsey C.; El-Haddad, Mohamed T.; Malone, Joseph D.; Terrones, Benjamin D.; Tao, Yuankai K.
2018-02-01
Scanning laser ophthalmoscopy (SLO) provides high-speed, noninvasive en face imaging of the retinal fundus. Optical coherence tomography (OCT) is the current "gold-standard" for ophthalmic diagnostic imaging and enables depth-resolved visualization of ophthalmic structures and image-based surrogate biomarkers of disease. We present a compact optical and mechanical design for handheld spectrally encoded coherence tomography and reflectometry (SECTR) for multimodality en face spectrally encoded reflectometry (SER) and cross-sectional OCT imaging. We custom-designed a double-pass telecentric scan lens, which halves the size of 4-f optical relays and allowed us to reduce the footprint of our SECTR scan-head by a factor of >2.7x (volume) over our previous design. The double-pass scan lens was optimized for diffraction-limited performance over a +/-10° scan field. SECTR optics and optomechanics were combined in a compact rapid-prototyped enclosure with dimensions 87 x 141.8 x 137 mm (w x h x d). SECTR was implemented using a custom-built 400 kHz 1050 nm swept-source. OCT and SER were simultaneously digitized on dual input channels of a 4 GS/s digitizer at 1.4 GS/s per channel. In vivo human en face SER and cross-sectional OCT images were acquired at 350 fps. OCT volumes of 1000 B-scans were acquired in 2.86 s. We believe clinical translation of our compact handheld design will benefit point-of-care ophthalmic diagnostics in patients who are unable to be imaged on conventional slit-lamp based systems, such as infants and the bedridden. When combined with multi-volumetric registration methods, handheld SECTR will have advantages in motion-artifact free imaging over existing handheld technologies.
Macular Pigment Optical Density Measured by Heterochromatic Modulation Photometry
Huchzermeyer, Cord; Schlomberg, Juliane; Welge-Lüssen, Ulrich; Berendschot, Tos T. J. M.; Pokorny, Joel; Kremers, Jan
2014-01-01
Purpose To psychophysically determine macular pigment optical density (MPOD) employing the heterochromatic modulation photometry (HMP) paradigm by estimating 460 nm absorption at central and peripheral retinal locations. Methods For the HMP measurements, two lights (B: 460 nm and R: 660 nm) were presented in a test field and were modulated in counterphase at medium or high frequencies. The contrasts of the two lights were varied in tandem to determine flicker detection thresholds. Detection thresholds were measured for different R:B modulation ratios. The modulation ratio with minimal sensitivity (maximal threshold) is the point of equiluminance. Measurements were performed in 25 normal subjects (11 male, 14 female; age: 30±11 years, mean ± sd) using an eight channel LED stimulator with Maxwellian view optics. The results were compared with those from two published techniques – one based on heterochromatic flicker photometry (Macular Densitometer) and the other on fundus reflectometry (MPR). Results We were able to estimate MPOD with HMP using a modified theoretical model that was fitted to the HMP data. The resultant MPODHMP values correlated significantly with the MPODMPR values and with the MPODHFP values obtained at 0.25° and 0.5° retinal eccentricity. Conclusions HMP is a flicker-based method with measurements taken at a constant mean chromaticity and luminance. The data can be well fit by a model that allows all data points to contribute to the photometric equality estimate. Therefore, we think that HMP may be a useful method for MPOD measurements, in basic and clinical vision experiments. PMID:25354049
Birefringence in anisotropic optical fibres studied by polarised light Brillouin reflectometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smirnov, A S; Burdin, V V; Konstantinov, Yu A
2015-01-31
Modal birefringence (the difference between the effective refractive indices of orthogonal polarisation modes) is one of the key parameters of anisotropic single-mode fibres, characterising their ability to preserve a linearly polarised state of input light. This parameter is commonly measured using short pieces of fibre, but such procedures are destructive and allow the birefringence to be determined only at the ends of long fibres. In this study, polarised light Brillouin reflectometry is used to assess birefringence uniformity throughout the length of an anisotropic fibre. (optical fibres)
NASA Astrophysics Data System (ADS)
Li, Wenhai; Bao, Xiaoyi; Chen, Liang
2014-05-01
Optical Frequency Domain Reflectometry (OFDR) with the use of polarization maintaining fiber (PMF) is capable of distinguishing strain and temperature, which is critical for successful field applications such as structural health monitoring (SHM) and smart material. Location-dependent measurement sensitivities along PMF are compensated by cross- and auto-correlations measurements of the spectra form a distributed parameter matrix. Simultaneous temperature and strain measurement accuracy of 1μstrain and 0.1°C is achieved with 2.5mm spatial resolution in over 180m range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, John L.
1998-11-09
Leaks are detected in a multi-layered geomembrane liner by a two-dimensional time domain reflectometry (TDR) technique. The TDR geomembrane liner is constructed with an electrically conductive detection layer positioned between two electrically non-conductive dielectric layers, which are each positioned between the detection layer and an electrically conductive reference layer. The integrity of the TDR geomembrane liner is determined by generating electrical pulses within the detection layer and measuring the time delay for any reflected electrical energy caused by absorption of moisture by a dielectric layer.
Morrison, John L [Idaho Falls, ID
2001-04-24
Leaks are detected in a multi-layered geomembrane liner by a two-dimensional time domain reflectometry (TDR) technique. The TDR geomembrane liner is constructed with an electrically conductive detection layer positioned between two electrically non-conductive dielectric layers, which are each positioned between the detection layer and an electrically conductive reference layer. The integrity of the TDR geomembrane liner is determined by generating electrical pulses within the detection layer and measuring the time delay for any reflected electrical energy caused by absorption of moisture by a dielectric layer.
Fused oblique incidence reflectometry and confocal fluorescence microscopy
NASA Astrophysics Data System (ADS)
Risi, Matthew D.; Rouse, Andrew R.; Gmitro, Arthur F.
2011-03-01
Confocal microendoscopy provides real-time high resolution cellular level images via a minimally invasive procedure, but relies on exogenous fluorophores, has a relatively limited penetration depth (100 μm) and field of view (700 μm), and produces a high rate of detailed information to the user. A new catheter based multi-modal system has been designed that combines confocal imaging and oblique incidence reflectometry (OIR), which is a non-invasive method capable of rapidly extracting tissue absorption, μa, and reduced scattering, μ's, spectra from tissue. The system builds on previous developments of a custom slit-scan multi-spectral confocal microendoscope and is designed to rapidly switch between diffuse spectroscopy and confocal fluorescence imaging modes of operation. An experimental proof-of-principle catheter has been developed that consists of a fiber bundle for traditional confocal fluorescence imaging and a single OIR source fiber which is manually redirected at +/- 26 degrees. Diffusely scattered light from each orientation of the source fiber is collected via the fiber bundle, with a frame of data representing spectra collected at a range of distances from the OIR source point. Initial results with intralipid phantoms show good agreement to published data over the 550-650 nm spectral range. We successfully imaged and measured the optical properties of rodent cardiac muscle.
SNR and Standard Deviation of cGNSS-R and iGNSS-R Scatterometric Measurements.
Alonso-Arroyo, Alberto; Querol, Jorge; Lopez-Martinez, Carlos; Zavorotny, Valery U; Park, Hyuk; Pascual, Daniel; Onrubia, Raul; Camps, Adriano
2017-01-19
This work addresses the accuracy of the Global Navigation Satellite Systems (GNSS)-Reflectometry (GNSS-R) scatterometric measurements considering the presence of both coherent and incoherent scattered components, for both conventional GNSS-R (cGNSS-R) and interferometric GNSS-R (iGNSS-R) techniques. The coherent component is present for some type of surfaces, and it has been neglected until now because it vanishes for the sea surface scattering case. Taking into account the presence of both scattering components, the estimated Signal-to-Noise Ratio (SNR) for both techniques is computed based on the detectability criterion, as it is done in conventional GNSS applications. The non-coherent averaging operation is considered from a general point of view, taking into account that thermal noise contributions can be reduced by an extra factor of 0.88 dB when using partially overlapped or partially correlated samples. After the SNRs are derived, the received waveform's peak variability is computed, which determines the system's capability to measure geophysical parameters. This theoretical derivations are applied to the United Kingdom (UK) TechDemoSat-1 (UK TDS-1) and to the future GNSS REflectometry, Radio Occultation and Scatterometry on board the International Space Station (ISS) (GEROS-ISS) scenarios, in order to estimate the expected scatterometric performance of both missions.
NASA Astrophysics Data System (ADS)
Zabolotnyy, V. B.; Fürsich, K.; Green, R. J.; Lutz, P.; Treiber, K.; Min, Chul-Hee; Dukhnenko, A. V.; Shitsevalova, N. Y.; Filipov, V. B.; Kang, B. Y.; Cho, B. K.; Sutarto, R.; He, Feizhou; Reinert, F.; Inosov, D. S.; Hinkov, V.
2018-05-01
Samarium hexaboride (SmB6), a Kondo insulator with mixed valence, has recently attracted much attention as a possible host for correlated topological surface states. Here, we use a combination of x-ray absorption and reflectometry techniques, backed up with a theoretical model for the resonant M4 ,5 absorption edge of Sm and photoemission data, to establish laterally averaged chemical and valence depth profiles at the surface of SmB6. We show that upon cleaving, the highly polar (001) surface of SmB6 undergoes substantial chemical and valence reconstruction, resulting in boron termination and a Sm3 + dominated subsurface region. Whereas at room temperature, the reconstruction occurs on a timescale of less than 2 h, it takes about 24 h below 50 K. The boron termination is eventually established, irrespective of the initial termination. Our findings reconcile earlier depth resolved photoemission and scanning tunneling spectroscopy studies performed at different temperatures and are important for better control of surface states in this system.
Spaceborne GNSS reflectometry for ocean winds: First results from the UK TechDemoSat-1 mission
NASA Astrophysics Data System (ADS)
Foti, Giuseppe; Gommenginger, Christine; Jales, Philip; Unwin, Martin; Shaw, Andrew; Robertson, Colette; Roselló, Josep
2015-07-01
First results are presented for ocean surface wind speed retrieval from reflected GPS signals measured by the low Earth orbiting UK TechDemoSat-1 satellite (TDS-1). Launched in July 2014, TDS-1 provides the first new spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R) data since the pioneering UK-Disaster Monitoring Mission (UK-DMC) experiment in 2003. Examples of onboard-processed delay-Doppler maps reveal excellent data quality for winds up to 27.9 m/s. Collocated Advanced Scatterometer (ASCAT) winds are used to develop and evaluate a wind speed algorithm based on signal-to-noise ratio (SNR) and the bistatic radar equation. For SNRs greater than 3 dB, wind speed is retrieved without bias and a precision around 2.2 m/s between 3 and 18 m/s even without calibration. Exploiting lower SNR signals, however, requires good knowledge of the antenna beam, platform attitude, and instrument gain setting. This study demonstrates the capabilities of low-cost, low-mass, and low-power GNSS-R receivers ahead of their launch on the NASA Cyclone GNSS (CYGNSS) constellation in 2016.
Azimuth selection for sea level measurements using geodetic GPS receivers
NASA Astrophysics Data System (ADS)
Wang, Xiaolei; Zhang, Qin; Zhang, Shuangcheng
2018-03-01
Based on analysis of Global Positioning System (GPS) multipath signals recorded by a geodetic GPS receiver, GPS Reflectometry (GPS-R) has demonstrated unique advantages in relation to sea level monitoring. Founded on multipath reflectometry theory, sea level changes can be measured by GPS-R through spectral analysis of recorded signal-to-noise ratio data. However, prior to estimating multipath parameters, it is necessary to define azimuth and elevation angle mask to ensure the reflecting zones are on water. Here, a method is presented to address azimuth selection, a topic currently under active development in the field of GPS-R. Data from three test sites: the Kachemak Bay GPS site PBAY in Alaska (USA), Friday Harbor GPS site SC02 in the San Juan Islands (USA), and Brest Harbor GPS site BRST in Brest (France) are analyzed. These sites are located in different multipath environments, from a rural coastal area to a busy harbor, and they experience different tidal ranges. Estimates by the GPS tide gauges at azimuths selected by the presented method are compared with measurements from physical tide gauges and acceptable correspondence found for all three sites.
First Spaceborne GNSS-Reflectometry Observations of Hurricanes From the UK TechDemoSat-1 Mission
NASA Astrophysics Data System (ADS)
Foti, Giuseppe; Gommenginger, Christine; Srokosz, Meric
2017-12-01
We present the first examples of Global Navigation Satellite Systems-Reflectometry (GNSS-R) observations of hurricanes using spaceborne data from the UK TechDemoSat-1 (TDS-1) mission. We confirm that GNSS-R signals can detect ocean condition changes in very high near-surface ocean wind associated with hurricanes. TDS-1 GNSS-R reflections were collocated with International Best Track Archive for Climate Stewardship (IBTrACS) hurricane data, MetOp ASCAT A/B scatterometer winds, and two reanalysis products. Clear variations of GNSS-R reflected power (σ0) are observed as reflections travel through hurricanes, in some cases up to and through the eye wall. The GNSS-R reflected power is tentatively inverted to estimate wind speed using the TDS-1 baseline wind retrieval algorithm developed for low to moderate winds. Despite this, TDS-1 GNSS-R winds through the hurricanes show closer agreement with IBTrACS estimates than winds provided by scatterometers and reanalyses. GNSS-R wind profiles show realistic spatial patterns and sharp gradients that are consistent with expected structures around the eye of tropical cyclones.
Examining small molecule: HIV RNA interactions using arrayed imaging reflectometry
NASA Astrophysics Data System (ADS)
Chaimayo, Wanaruk; Miller, Benjamin L.
2014-03-01
Human Immunodeficiency Virus (HIV) has been the subject of intense research for more than three decades as it causes an uncurable disease: Acquired Immunodeficiency Syndrome, AIDS. In the pursuit of a medical treatment, RNAtargeted small molecules are emerging as promising targets. In order to understand the binding kinetics of small molecules and HIV RNA, association (ka) and dissociation (kd) kinetic constants must be obtained, ideally for a large number of sequences to assess selectivity. We have developed Aqueous Array Imaged Reflectometry (Aq-AIR) to address this challenge. Using a simple light interference phenomenon, Aq-AIR provides real-time high-throughput multiplex capabilities to detect binding of targets to surface-immobilized probes in a label-free microarray format. The second generation of Aq-AIR consisting of high-sensitivity CCD camera and 12-μL flow cell was fabricated. The system performance was assessed by real-time detection of MBNL1-(CUG)10 and neomycin B - HIV RNA bindings. The results establish this second-generation Aq-AIR to be able to examine small molecules binding to RNA sequences specific to HIV.
Wafer characteristics via reflectometry
Sopori, Bhushan L.
2010-10-19
Various exemplary methods (800, 900, 1000, 1100) are directed to determining wafer thickness and/or wafer surface characteristics. An exemplary method (900) includes measuring reflectance of a wafer and comparing the measured reflectance to a calculated reflectance or a reflectance stored in a database. Another exemplary method (800) includes positioning a wafer on a reflecting support to extend a reflectance range. An exemplary device (200) has an input (210), analysis modules (222-228) and optionally a database (230). Various exemplary reflectometer chambers (1300, 1400) include radiation sources positioned at a first altitudinal angle (1308, 1408) and at a second altitudinal angle (1312, 1412). An exemplary method includes selecting radiation sources positioned at various altitudinal angles. An exemplary element (1650, 1850) includes a first aperture (1654, 1854) and a second aperture (1658, 1858) that can transmit reflected radiation to a fiber and an imager, respectfully.
Varela, P; Silva, A; da Silva, F; da Graça, S; Manso, M E; Conway, G D
2010-10-01
The spectrogram is one of the best-known time-frequency distributions suitable to analyze signals whose energy varies both in time and frequency. In reflectometry, it has been used to obtain the frequency content of FM-CW signals for density profile inversion and also to study plasma density fluctuations from swept and fixed frequency data. Being implemented via the short-time Fourier transform, the spectrogram is limited in resolution, and for that reason several methods have been developed to overcome this problem. Among those, we focus on the reassigned spectrogram technique that is both easily automated and computationally efficient requiring only the calculation of two additional spectrograms. In each time-frequency window, the technique reallocates the spectrogram coordinates to the region that most contributes to the signal energy. The application to ASDEX Upgrade reflectometry data results in better energy concentration and improved localization of the spectral content of the reflected signals. When combined with the automatic (data driven) window length spectrogram, this technique provides improved profile accuracy, in particular, in regions where frequency content varies most rapidly such as the edge pedestal shoulder.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yaohua; Lucy, J. M.; Glavic, A.
2014-09-01
We have determined the depth-resolved magnetization structures of a series of highly orderedSr2CrReO6 (SCRO) ferrimagnetic epitaxial films via combined studies of x-ray reflectometry, polarized neutron reflectometry and SQUID magnetometry. The SCRO films deposited directly on (LaAlO3)0:3(Sr2AlTaO6)0:7 or SrTiO3 substrates show reduced magnetization of similar width near the interfaces with the substrates, despite having different degrees of strain. When the SCRO film is deposited on a Sr2CrNbO6 (SCNO) double perovskite buffer layer, the width the interfacial region with reduced magnetization is reduced, agreeing with an improved Cr/Re ordering. However, the relative reduction of the magnetization averaged over the interfacial regions aremore » comparable among the three samples. Interestingly, we found that the magnetization suppression region is wider than the Cr/Re antisite disorder region at the interface between SCRO and SCNO.« less
NASA Astrophysics Data System (ADS)
Tobias, B.; Domier, C. W.; Luhmann, N. C.; Luo, C.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Wang, Y.
2016-11-01
The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.
X-Ray Reflectometry of DMPS Monolayers on a Water Substrate
NASA Astrophysics Data System (ADS)
Tikhonov, A. M.; Asadchikov, V. E.; Volkov, Yu. O.; Roshchin, B. S.; Ermakov, Yu. A.
2017-12-01
The molecular structure of dimyristoyl phosphatidylserine (DMPS) monolayers on a water substrate in different phase states has been investigated by X-ray reflectometry with a photon energy of 8 keV. According to the experimental data, the transition from a two-dimensional expanded liquid state to a solid gel state (liquid crystal) accompanied by the ordering of the hydrocarbon tails C14H27 of the DMPS molecule occurs in the monolayer as the surface pressure rises. The monolayer thickness is 20 ± 3 and 28 ± 2 Å in the liquid and solid phases, respectively, with the deflection angle of the molecular tail axis from the normal to the surface in the gel phase being 26° ± 8°. At least a twofold decrease in the degree of hydration of the polar lipid groups also occurs under two-dimensional monolayer compression. The reflectometry data have been analyzed using two approaches: under the assumption about the presence of two layers with different electron densities in the monolayer and without any assumptions about the transverse surface structure. Both approaches demonstrate satisfactory agreement between themselves in describing the experimental results.
Tobias, B; Domier, C W; Luhmann, N C; Luo, C; Mamidanna, M; Phan, T; Pham, A-V; Wang, Y
2016-11-01
The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.
Singh, Surendra; Basu, Saibal
2009-02-04
Diffuse (off-specular) neutron and x-ray reflectometry has been used extensively for the determination of interface morphology in solids and liquids. For neutrons, a novel possibility is off-specular reflectometry with polarized neutrons to determine the morphology of a magnetic interface. There have been few such attempts due to the lower brilliance of neutron sources, though magnetic interaction of neutrons with atomic magnetic moments is much easier to comprehend and easily tractable theoretically. We have obtained a simple and physically meaningful expression, under the Born approximation, for analyzing polarized diffuse (off-specular) neutron reflectivity (PDNR) data. For the first time PDNR data from a Ni film have been analyzed and separate chemical and magnetic morphologies have been quantified. Also specular polarized neutron reflectivity measurements have been carried out to measure the magnetic moment density profile of the Ni film. The fit to PDNR data results in a longer correlation length for in-plane magnetic roughness than for chemical (structural) roughness. The magnetic interface is smoother than the chemical interface.
NASA Astrophysics Data System (ADS)
Pflug, T.; Wang, J.; Olbrich, M.; Frank, M.; Horn, A.
2018-02-01
To increase the comprehension of ultrafast laser ablation, the ablation process has to be portrayed with sufficient temporal resolution. For example, the temporal modification of the complex refractive index {\\tilde{n}} and the relative reflectance of a sample material after irradiation with ultrafast single-pulsed laser radiation can be measured with a pump-probe setup. This work describes the construction and validation of a pump-probe setup enabling spatially, temporally, and spectroscopically resolved Brewster angle microscopy, reflectometry, ellipsometry, and shadow photography. First pump-probe reflectometry and ellipsometry measurements are performed on gold at λ _{probe}= 440 nm and three fluences of the single-pulsed pump radiation at λ _{pump}= 800 nm generating no, gentle, and strong ablation. The relative reflectance overall increases at no and gentle ablation. At strong ablation, the relative reflectance locally decreases, presumable caused by emitted thermal electrons, ballistic electrons, and ablating material. The refractive index n is slightly decreasing after excitation, while the extinction coefficient k is increasing.
Measurement of shear-wave velocity by ultrasound critical-angle reflectometry (UCR).
Mehta, S; Antich, P
1997-01-01
There exists a growing body of research that relates the measurement of pressure-wave velocity in bone to different physiological conditions and treatment modalities. The shear-wave velocity has been less studied, although it is necessary for a more complete understanding of the mechanical properties of bone. Ultrasound critical-angle reflectometry (UCR) is a noninvasive and nondestructive technique previously used to measure pressure-wave velocities both in vitro and in vivo. This note describes its application to the measurement of shear-wave velocity in bone, whether directly accessible or covered by soft tissue.
Structure analysis of aqueous ferrofluids at interface with silicon: neutron reflectometry data
NASA Astrophysics Data System (ADS)
Gapon, I. V.; Petrenko, V. I.; Bulavin, L. A.; Balasoiu, M.; Kubovcikova, M.; Zavisova, V.; Koneracka, M.; Kopcansky, P.; Chiriac, H.; Avdeev, M. V.
2017-05-01
Adsorption of nanoparticles from aqueous ferrofluids (FFs) on solid surface (crystalline silicon) was studied by neutron reflectometry (NR). Two kinds of FFs were considered. First kind was heavy water-based ferrofluids with magnetite nanoparticles coated by double layer of sodium oleate. Second one FF was cobalt ferrite nanoparticles stabilized by lauric acid/sodium n-dodecylsulphate layer and dispersed in water. It was obtained only a single adsorption layer for two types of ferrofluids. The impact of the magnetic nanoparticles concentration and geometry was considered in frame of the adsorption characteristic of FFs.
Measurement of shear-wave velocity by ultrasound critical-angle reflectometry (UCR)
NASA Technical Reports Server (NTRS)
Mehta, S.; Antich, P.; Blomqvist, C. G. (Principal Investigator)
1997-01-01
There exists a growing body of research that relates the measurement of pressure-wave velocity in bone to different physiological conditions and treatment modalities. The shear-wave velocity has been less studied, although it is necessary for a more complete understanding of the mechanical properties of bone. Ultrasound critical-angle reflectometry (UCR) is a noninvasive and nondestructive technique previously used to measure pressure-wave velocities both in vitro and in vivo. This note describes its application to the measurement of shear-wave velocity in bone, whether directly accessible or covered by soft tissue.
Recent Progress and Future Plans for Fusion Plasma Synthetic Diagnostics Platform
NASA Astrophysics Data System (ADS)
Shi, Lei; Kramer, Gerrit; Tang, William; Tobias, Benjamin; Valeo, Ernest; Churchill, Randy; Hausammann, Loic
2015-11-01
The Fusion Plasma Synthetic Diagnostics Platform (FPSDP) is a Python package developed at the Princeton Plasma Physics Laboratory. It is dedicated to providing an integrated programmable environment for applying a modern ensemble of synthetic diagnostics to the experimental validation of fusion plasma simulation codes. The FPSDP will allow physicists to directly compare key laboratory measurements to simulation results. This enables deeper understanding of experimental data, more realistic validation of simulation codes, quantitative assessment of existing diagnostics, and new capabilities for the design and optimization of future diagnostics. The Fusion Plasma Synthetic Diagnostics Platform now has data interfaces for the GTS and XGC-1 global particle-in-cell simulation codes with synthetic diagnostic modules including: (i) 2D and 3D Reflectometry; (ii) Beam Emission Spectroscopy; and (iii) 1D Electron Cyclotron Emission. Results will be reported on the delivery of interfaces for the global electromagnetic PIC code GTC, the extended MHD M3D-C1 code, and the electromagnetic hybrid NOVAK eigenmode code. Progress toward development of a more comprehensive 2D Electron Cyclotron Emission module will also be discussed. This work is supported by DOE contract #DEAC02-09CH11466.
NASA Astrophysics Data System (ADS)
Gommenginger, C.; Foti, G.
2015-12-01
GNSS-Reflectometry (GNSS-R) is a ground breaking ocean remote sensing technique that exploits reflected signals from Global Navigation Satellite Systems (GNSS) to retrieve geophysical information about the ocean surface such as near-surface winds above the ocean. Adopting a bistatic radar configuration, signals emitted by GNSS satellites flying in Medium Earth Orbit (MEO) are received by a GNSS-R receiver on a Low Earth Orbit (LEO) observatory utilizing both a zenith antenna to receive the direct signal from the GNSS and a nadir antenna to acquire the earth-reflected signal. The reflected signal originated from a glistening zone on the ocean surface sited around the Specular Point (SP), the geometrical point on the Earth surface where GNSS signals are forward scattered in the specular direction. The two signals are correlated for different shifts in time (delay) and frequency (Doppler) relative to the specular point (SP) to produce a so-called Delay Doppler Map (DDM) of forward-scattered electromagnetic power over the surface. This paper gives an overview of recent results obtained for wind speed and ocean roughness retrieval with the Low-Earth-Orbiting UK TechDemoSat-1 satellite (TDS-1). Launched in July 2014, TDS-1 provides the first new spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R) data since the pioneering UK-Disaster Monitoring Mission experiment in 2003. We present examples of onboard-processed delay Doppler Maps, including excellent DDM data quality for winds up to 27.9 m/s. The relationship between observed GNSS-R signals, wind speed and ocean roughness is explored using global collocated matchup datasets with METOP ASCAT scatterometer winds and WaveWatch3 numerical wave model output. Several Geophysical Model Functions are proposed, that make it possible to retrieve wind speed without bias and with a precision of the order of 2 m/s even without calibration. This work demonstrates the capabilities of low-cost, low-mass, low-power GNSS-R receivers ahead of their launch on the NASA CYGNSS constellation in 2016.
Structural “ δ Doping” to Control Local Magnetization in Isovalent Oxide Heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, E. J.; He, Q.; Ghosh, S.
Modulation and δ-doping strategies, in which atomically thin layers of charged dopants are precisely deposited within a heterostructure, have played enabling roles in the discovery of new physical behavior in electronic materials. Here in this paper, we demonstrate a purely structural “δ-doping” strategy in complex oxide heterostructures, in which atomically thin manganite layers are inserted into an isovalent manganite host, thereby modifying the local rotations of corner-connected MnO 6 octahedra. Combining scanning transmission electron microscopy, polarized neutron reflectometry, and density functional theory, we reveal how local magnetic exchange interactions are enhanced within the spatially confined regions of suppressed octahedral rotations.more » Finally, the combined experimental and theoretical results illustrate the potential to utilize noncharge-based approaches to “doping” in order to enhance or suppress functional properties within spatially confined regions of oxide heterostructures.« less
Structural “ δ Doping” to Control Local Magnetization in Isovalent Oxide Heterostructures
Moon, E. J.; He, Q.; Ghosh, S.; ...
2017-11-08
Modulation and δ-doping strategies, in which atomically thin layers of charged dopants are precisely deposited within a heterostructure, have played enabling roles in the discovery of new physical behavior in electronic materials. Here in this paper, we demonstrate a purely structural “δ-doping” strategy in complex oxide heterostructures, in which atomically thin manganite layers are inserted into an isovalent manganite host, thereby modifying the local rotations of corner-connected MnO 6 octahedra. Combining scanning transmission electron microscopy, polarized neutron reflectometry, and density functional theory, we reveal how local magnetic exchange interactions are enhanced within the spatially confined regions of suppressed octahedral rotations.more » Finally, the combined experimental and theoretical results illustrate the potential to utilize noncharge-based approaches to “doping” in order to enhance or suppress functional properties within spatially confined regions of oxide heterostructures.« less
GNSS-Reflectometry aboard ISS with GEROS: Investigation of atmospheric propagation effects
NASA Astrophysics Data System (ADS)
Zus, F.; Heise, S.; Wickert, J.; Semmling, M.
2015-12-01
GEROS-ISS (GNSS rEflectometry Radio Occultation and Scatterometry) is an ESA mission aboard the International Space Station (ISS). The main mission goals are the determination of the sea surface height and surface winds. Secondary goals are monitoring of land surface parameters and atmosphere sounding using GNSS radio occultation measurements. The international scientific study GARCA (GNSS-Reflectometry Assessment of Requirements and Consolidation of Retrieval Algorithms), funded by ESA, is part of the preparations for GEROS-ISS. Major goals of GARCA are the development of an end2end Simulator for the GEROS-ISS measurements (GEROS-SIM) and the evaluation of the error budget of the GNSS reflectometry measurements. In this presentation we introduce some of the GARCA activities to quantify the influence of the ionized and neutral atmosphere on the altimetric measurements, which is a major error source for GEROS-ISS. At first, we analyse, to which extend the standard linear combination of interferometric paths at different carrier frequencies can be used to correct for the ionospheric propagation effects. Second, we make use of the tangent-linear version of our ray-trace algorithm to propagate the uncertainty of the underlying refractivity profile into the uncertainty of the interferometric path. For comparison the sensitivity of the interferometric path with respect to the sea surface height is computed. Though our calculations are based on a number of simplifying assumptions (the Earth is a sphere, the atmosphere is spherically layered and the ISS and GNSS satellite orbits are circular) some general conclusions can be drawn. In essence, for elevation angles above -5° at the ISS the higher-order ionospheric errors and the uncertaintiy of the inteferometric path due to the uncertainty of the underlying refractivity profile are small enough to distinguish a sea surface height of ± 0.5 m.
NASA Astrophysics Data System (ADS)
Simonetto, A.; Platania, P.; Garavaglia, S.; Gittini, G.; Granucci, G.; Pallotta, F.
2018-02-01
Plasma position reflectometry for ITER requires interfaces between in-vessel and ex-vessel waveguides. An ultra broadband interface (15-75 GHz) was designed between moderately oversized rectangular waveguide (20 × 12 mm), operated in TE01 (i.e., tall waveguide mode), and circular corrugated waveguide, with 88.9-mm internal diameter, propagating HE11. The interface was designed both as a sequence of waveguide components and as a quasi-optical confocal telescope. The design and the simulated performance are described for both concepts. The latter one requires more space but has better performance, and shall be prototyped.
NASA Astrophysics Data System (ADS)
Gapon, I. V.; Petrenko, V. I.; Soltwedel, O.; Khaydukov, Yu N.; Kubovcikova, M.; Kopcansky, P.; Bulavin, L. A.; Avdeev, M. V.
2018-03-01
Structural organization of nanoparticles from aqueous ferrofluids on free liquid surface was studied by X-ray reflectometry. The observed layered structure at interface is associated with the evaporation of the solvent. By orienting an external magnetic during evaporation of the aqueos ferrofluids their structural organization can be manipulated. For a magnetic field applied perpendicular to the surface a more pronounced ordering along the surface normal is observed as in the case of a parallel field. Independent on the orientation of the magantic field a ∼ 20 μm thick surface layer of depleted nanoparticle concentration is found at the interface.
Shielded-Twisted-Pair Cable Model for Chafe Fault Detection via Time-Domain Reflectometry
NASA Technical Reports Server (NTRS)
Schuet, Stefan R.; Timucin, Dogan A.; Wheeler, Kevin R.
2012-01-01
This report details the development, verification, and validation of an innovative physics-based model of electrical signal propagation through shielded-twisted-pair cable, which is commonly found on aircraft and offers an ideal proving ground for detection of small holes in a shield well before catastrophic damage occurs. The accuracy of this model is verified through numerical electromagnetic simulations using a commercially available software tool. The model is shown to be representative of more realistic (analytically intractable) cable configurations as well. A probabilistic framework is developed for validating the model accuracy with reflectometry data obtained from real aircraft-grade cables chafed in the laboratory.
Grating-assisted polarization optical time-domain reflectometry for distributed fiber-optic sensing.
Han, Ming; Wang, Yunjing; Wang, Anbo
2007-07-15
We report a novel type of polarization optical time-domain reflectometry (POTDR) for fully distributed fiber-optic sensing, in which the reflected optical signal is from a series of fiber Bragg gratings that are uniformly distributed along the fiber. Compared with a conventional POTDR that uses the Rayleigh backscattering, this grating-assisted POTDR can have a much better signal-to-noise ratio and consequently a better measurement resolution and a larger measurement range of the fiber birefringence. Experimental results have shown that the measurement resolution of the grating-assisted POTDR is almost an order of magnitude better than that of a conventional POTDR.
NASA Astrophysics Data System (ADS)
Piscitelli, F.; Mauri, G.; Messi, F.; Anastasopoulos, M.; Arnold, T.; Glavic, A.; Höglund, C.; Ilves, T.; Lopez Higuera, I.; Pazmandi, P.; Raspino, D.; Robinson, L.; Schmidt, S.; Svensson, P.; Varga, D.; Hall-Wilton, R.
2018-05-01
The Multi-Blade is a Boron-10-based gaseous thermal neutron detector developed to face the challenge arising in neutron reflectometry at neutron sources. Neutron reflectometers are challenging instruments in terms of instantaneous counting rate and spatial resolution. This detector has been designed according to the requirements given by the reflectometers at the European Spallation Source (ESS) in Sweden. The Multi-Blade has been installed and tested on the CRISP reflectometer at the ISIS neutron and muon source in U.K.. The results on the detailed detector characterization are discussed in this manuscript.
Understanding dynamic changes in live cell adhesion with neutron reflectometry
JUNGHANS, ANN; WALTMAN, MARY JO; SMITH, HILLARY L.; POCIVAVSEK, LUKA; ZEBDA, NOUREDDINE; BIRUKOV, KONSTANTIN; VIAPIANO, MARIANO; MAJEWSKI, JAROSLAW
2015-01-01
Neutron reflectometry (NR) was used to examine various live cells adhesion to quartz substrates under different environmental conditions, including flow stress. To the best of our knowledge, these measurements represent the first successful visualization and quantization of the interface between live cells and a substrate with sub-nanometer resolution. In our first experiments, we examined live mouse fibroblast cells as opposed to past experiments using supported lipids, proteins, or peptide layers with no associated cells. We continued the NR studies of cell adhesion by investigating endothelial monolayers and glioblastoma cells under dynamic flow conditions. We demonstrated that neutron reflectometry is a powerful tool to study the strength of cellular layer adhesion in living tissues, which is a key factor in understanding the physiology of cell interactions and conditions leading to abnormal or disease circumstances. Continuative measurements, such as investigating changes in tumor cell – surface contact of various glioblastomas, could impact advancements in tumor treatments. In principle, this can help us to identify changes that correlate with tumor invasiveness. Pursuit of these studies can have significant medical impact on the understanding of complex biological problems and their effective treatment, e.g. for the development of targeted anti-invasive therapies. PMID:25705067
Massive gas insufflation without effect on esophageal reflectometry profiles
NASA Astrophysics Data System (ADS)
Raphael, David T.; Arnaudov, Dimiter; Benbassat, Maxim
2003-10-01
Time-domain acoustic reflectometry generates a ``one-dimensional'' image of the interior of a cavity in the form of an area-distance profile. After patient intubation with a breathing tube, the characteristic reflectometry profile consists of a constant-area segment corresponding to the length of the tube, followed either by a rapid increase in the area beyond the carina (lung) or by a sudden decrease in the area to zero (esophagus). In the cardiac arrest setting, during mistaken placement of the breathing tube into the esophagus, followed by aggressive manual ventilation, is it possible to markedly distend the esophagus, such that the esophageal profile looks like a tracheal profile? With approval of the USC IUCAC Committee, an animal study was conducted with anesthetized, tracheally intubated, and mechanically ventilated dogs. With a separate breathing tube in the esophagus, aggressive esophageal ventilation (comparable to that seen in the cardiopulmonary resuscitation setting) was accomplished with a manual resuscitation bag. A Benson Hood Labs two-microphone reflectometer was used to obtain esophageal profiles with and without the above ventilation. In this pilot study, there was no significant esophageal distention as a result of the above ventilation. [Research supported by the Alfred E. Mann Institute.
NASA Astrophysics Data System (ADS)
van der Veen, Rob L. P.; Berendschot, Tos T. J. M.; Makridaki, Maria; Hendrikse, Fred; Carden, David; Murray, Ian J.
2009-11-01
A comparison of macular pigment optical density (MPOD) spatial profiles determined by an optical and a psychophysical technique is presented. We measured the right eyes of 19 healthy individuals, using fundus reflectometry at 0, 1, 2, 4, 6, and 8 deg eccentricity; and heterochromatic flicker photometry (HFP) at 0, 0.5, 1, 2, 3, 4, 5, 6, and 7 deg, and a reference point at 8 deg eccentricity. We found a strong correlation between the two techniques. However, the absolute estimates obtained by fundus reflectometry data were higher than by HFP. These differences could partly be explained by the fact that at 8 deg eccentricity the MPOD is not zero, as assumed in HFP. Furthermore, when performing HFP for eccentricities of <1 deg, we had to assume that subjects set flicker thresholds at 0.4 deg horizontal translation when using a 1-deg stimulus. MPOD profiles are very similar for both techniques if, on average, 0.05 DU is added to the HFP data at all eccentricities. An additional correction factor, dependent on the steepness of the MPOD spatial distribution, is required for 0 deg.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobias, B., E-mail: bjtobias@pppl.gov; Domier, C. W.; Luhmann, N. C.
2016-11-15
The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50–150 GHz) to an intermediate frequency (IF) band (e.g. 0.1–18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads tomore » 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.« less
Tobias, B.; Domier, C. W.; Luhmann, Jr., N. C.; ...
2016-07-25
The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads tomore » 10x improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). As a result, implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.« less
2007-12-14
KENNEDY SPACE CENTER, FLA. -- Space shuttle Atlantis' external tank and solid rocket boosters will be the subject of a tanking test with the Time Domain Reflectometry, or TDR, test equipment whose wiring is being calibrated Dec. 14. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the ECO system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
Distributed fiber optic system for oil pipeline leakage detection
NASA Astrophysics Data System (ADS)
Paranjape, R.; Liu, N.; Rumple, C.; Hara, Elmer H.
2003-02-01
We present a novel approach for the detection of leakage in oil pipelines using methods of fiber optic distributed sensors, a presence-of-oil based actuator, and Optical Time Domain Reflectometry (OTDR). While the basic concepts of our approach are well understood, the integration of the components into a complete system is a real world engineering design problem. Our focus has been on the development of the actuator design and testing using installed dark fiber. Initial results are promising, however environmental studies into the long term effects of exposure to the environment are still pending.
2007-12-15
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A at NASA's Kennedy Space Center, the wiring is checked and validated before the tanking test on space shuttle Atlantis' external tank set for Dec. 18. The test wiring has been spliced into an electrical harness in the aft main engine compartment connected with the engine cut-off, or ECO, sensor system. The attached wiring leads to the interior of the mobile launcher platform where the time domain reflectometry, or TDR, test equipment is located. Photo credit: NASA/Kim Shiflett
2007-12-15
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A at NASA's Kennedy Space Center, a technician sets up wiring for the tanking test on space shuttle Atlantis' external tank set for Dec. 18. The test wiring has been spliced into an electrical harness in the aft main engine compartment connected with the engine cut-off, or ECO, sensor system. The attached wiring leads to the interior of the mobile launcher platform where the time domain reflectometry, or TDR, test equipment is located. Photo credit: NASA/Kim Shiflett
2007-12-15
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A at NASA's Kennedy Space Center, the wiring is checked and validated before the tanking test on space shuttle Atlantis' external tank set for Dec. 18. The test wiring has been spliced into an electrical harness in the aft main engine compartment connected with the engine cut-off, or ECO, sensor system. The attached wiring leads to the interior of the mobile launcher platform where the time domain reflectometry, or TDR, test equipment is located. Photo credit: NASA/Kim Shiflett
2007-12-15
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A at NASA's Kennedy Space Center, the wiring is checked and validated before the tanking test on space shuttle Atlantis' external tank set for Dec. 18. The test wiring has been spliced into an electrical harness in the aft main engine compartment connected with the engine cut-off, or ECO, sensor system. The attached wiring leads to the interior of the mobile launcher platform where the time domain reflectometry, or TDR, test equipment is located. Photo credit: NASA/Kim Shiflett
2007-12-15
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A at NASA's Kennedy Space Center, the wiring is checked and validated before the tanking test on space shuttle Atlantis' external tank set for Dec. 18. The test wiring has been spliced into an electrical harness in the aft main engine compartment connected with the engine cut-off, or ECO, sensor system. The attached wiring leads to the interior of the mobile launcher platform where the time domain reflectometry, or TDR, test equipment is located. Photo credit: NASA/Kim Shiflett
2007-12-15
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A at NASA's Kennedy Space Center, the wiring is checked and validated before the tanking test on space shuttle Atlantis' external tank set for Dec. 18. The test wiring has been spliced into an electrical harness in the aft main engine compartment connected with the engine cut-off, or ECO, sensor system. The attached wiring leads to the interior of the mobile launcher platform where the time domain reflectometry, or TDR, test equipment is located. Photo credit: NASA/Kim Shiflett
2007-12-15
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A at NASA's Kennedy Space Center, a wiring board has been set up for the tanking test on space shuttle Atlantis' external tank set for Dec. 18. The test wiring has been spliced into an electrical harness in the aft main engine compartment connected with the engine cut-off, or ECO, sensor system. The attached wiring leads to the interior of the mobile launcher platform where the time domain reflectometry, or TDR, test equipment is located. Photo credit: NASA/Kim Shiflett
Time Domain Reflectometry (TDR) monitoring system for deep seated landslides
NASA Astrophysics Data System (ADS)
Singer, J.; Thuro, K.; Festl, J.
2012-04-01
In the 1980s Time Domain Reflectometry (TDR) has been introduced as a subsurface deformation monitoring system in boreholes, which allows identifying and localizing discrete deformation zones with high accuracy. While TDR offers several advantages as e.g. low costs and the possibility to continuously monitor deformation along the complete borehole,TDR was not used widespread due to the fact that the amount of deformation sometimes could not be determined accurately and in some cases no deformation was detected at all. By the definition of calibrated installation standards and the usage of advanced signal analysis methods, it is possible to overcome this and a reliable quantification of deformation using TDR is possible. In the ongoing research the attempt is made to define different TDR measuring system configurations (measuring cable and grout combinations), where each is designated for a specific geological environment. These set-ups are then calibrated in laboratory shear tests and finally tested in field, if possible by comparing them with inclinometer measurements. To date monitoring data of three different deep seated landslides in the European Alps (Gschliefgraben, Aggenalm and Triesenberg) have been collected. The field test results clearly show that the new TDR system can fulfill the expectations and the deformation can be determined with sub-centimeter accuracy if one basic prerequisite concerning the mode of deformation is fulfilled: TDR can only be used when localized shear deformation is present. Since TDR data easily can be acquired continuously as well as remotely, it is possible to use a TDR measuring system as a valuable part of a monitoring system for landslide early warning. Since 2008 such a monitoring system is in operation at the Aggenalm landslide, where the TDR subsurface deformation measurements supplement the information on surface deformation from geotechnical and geodetic measuring systems to a 3D early warning system for instable slopes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halbert, Candice E; Ankner, John Francis; Kent, Michael S
2011-01-01
Improving the efficiency of enzymatic hydrolysis of cellulose is one of the key technological hurdles to reduce the cost of producing ethanol and other transportation fuels from lignocellulosic material. A better understanding of how soluble enzymes interact with insoluble cellulose will aid in the design of more efficient enzyme systems. We report a study involving neutron reflectometry (NR) and quartz crystal microbalance with dissipation (QCM-D) of the interaction of a commercial fungal enzyme extract (T. viride), two purified endoglucanses from thermophilic bacteria (Cel9A from A. acidocaldarius and Cel5A from T. maritima), and a mesophilic fungal endoglucanase (Cel45A from H. insolens)more » with amorphous cellulose films. The use of amorphous cellulose is motivated by the promise of ionic liquid pretreatment as a second generation technology that disrupts the native crystalline structure of cellulose. NR reveals the profile of water through the film at nm resolution, while QCM-D provides changes in mass and film stiffness. At 20 oC and 0.3 mg/ml, the T. viride cocktail rapidly digested the entire film, beginning from the surface followed by activity throughout the bulk of the film. For similar conditions, Cel9A and Cel5A were active for only a short period of time and only at the surface of the film, with Cel9A releasing 40 from the ~ 700 film and Cel5A resulting in only a slight roughening/swelling effect at the surface. Subsequent elevation of the temperature to the Topt in each case resulted in a very limited increase in activity, corresponding to the loss of an additional 60 from the film for Cel9A and 20 from the film for Cel5A, and very weak penetration into and digestion within the bulk of the film, before the activity again ceased. The results for Cel9A and Cel5A contrast sharply with results for Cel45A where very rapid and extensive penetration and digestion within the bulk of the film was observed at 20 C. We speculate that the large differences are due to the use of the thermophilic enzymes far below their optimal temperatures and also the presence of a cellulose binding module (CBM) on Cel45A while the thermophilic enzymes lack a CBM.« less
NASA Astrophysics Data System (ADS)
Malone, Joseph D.; El-Haddad, Mohamed T.; Leeburg, Kelsey C.; Terrones, Benjamin D.; Tao, Yuankai K.
2018-02-01
Limited visualization of semi-transparent structures in the eye remains a critical barrier to improving clinical outcomes and developing novel surgical techniques. While increases in imaging speed has enabled intraoperative optical coherence tomography (iOCT) imaging of surgical dynamics, several critical barriers to clinical adoption remain. Specifically, these include (1) static field-of-views (FOVs) requiring manual instrument-tracking; (2) high frame-rates require sparse sampling, which limits FOV; and (3) small iOCT FOV also limits the ability to co-register data with surgical microscopy. We previously addressed these limitations in image-guided ophthalmic microsurgery by developing microscope-integrated multimodal intraoperative swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography. Complementary en face images enabled orientation and coregistration with the widefield surgical microscope view while OCT imaging enabled depth-resolved visualization of surgical instrument positions relative to anatomic structures-of-interest. In addition, we demonstrated novel integrated segmentation overlays for augmented-reality surgical guidance. Unfortunately, our previous system lacked the resolution and optical throughput for in vivo retinal imaging and necessitated removal of cornea and lens. These limitations were predominately a result of optical aberrations from imaging through a shared surgical microscope objective lens, which was modeled as a paraxial surface. Here, we present an optimized intraoperative spectrally encoded coherence tomography and reflectometry (iSECTR) system. We use a novel lens characterization method to develop an accurate model of surgical microscope objective performance and balance out inherent aberrations using iSECTR relay optics. Using this system, we demonstrate in vivo multimodal ophthalmic imaging through a surgical microscope
Detection and characterization of corrosion of bridge cables by time domain reflectometry
NASA Astrophysics Data System (ADS)
Liu, Wei; Hunsperger, Robert G.; Folliard, Kevin; Chajes, Michael J.; Barot, Jignesh; Jhaveri, Darshan; Kunz, Eric
1999-02-01
In this paper, we develop and demonstrate a nondestructive evaluation technique for corrosion detection of embedded or encased steel cables. This technique utilizes time domain reflectometry (TDR), which has been traditionally used to detect electrical discontinuities in transmission lines. By applying a sensor wire along with the bridge cable, we can model the cable as an asymmetric, twin-conductor transmission line. Physical defects of the bridge cable will change the electromagnetic properties of the line and can be detected by TDR. Furthermore, different types of defects can be modeled analytically, and identified using TDR. TDR measurement results from several fabricated bridge cable sections with built-in defects are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Surendra; Fitzsimmons, M. R.; Lookman, T.
We measured the chemical and magnetic depth profiles of a single crystalline film grown on a NdGaO 3 substrate using x-ray reflectometry, electron microscopy, electron energy-loss spectroscopy and polarized neutron reflectometry. Our data indicate that the film exhibits coexistence of different magnetic phases as a function of depth. The magnetic depth profile is correlated with a variation of chemical composition with depth. The thermal hysteresis of ferromagnetic order in the film suggests a first order ferromagnetic transition at low temperatures
Magnetic nonuniformity and thermal hysteresis of magnetism in a manganite thin film.
Singh, Surendra; Fitzsimmons, M R; Lookman, T; Thompson, J D; Jeen, H; Biswas, A; Roldan, M A; Varela, M
2012-02-17
We measured the chemical and magnetic depth profiles of a single crystalline (La(1-x)Pr(x))(1-y)Ca(y)MnO(3-δ) (x=0.52±0.05, y=0.23±0.04, δ=0.14±0.10) film grown on a NdGaO(3) substrate using x-ray reflectometry, electron microscopy, electron energy-loss spectroscopy, and polarized neutron reflectometry. Our data indicate that the film exhibits coexistence of different magnetic phases as a function of depth. The magnetic depth profile is correlated with a variation of chemical composition with depth. The thermal hysteresis of ferromagnetic order in the film suggests a first-order ferromagnetic transition at low temperatures.
NASA Astrophysics Data System (ADS)
Datta, Shubhashish; Rajagopalan, Sruti; Lemke, Shaun; Joshi, Abhay
2014-06-01
We report a balanced PIN-TIA photoreceiver integrated with a 3 dB fiber coupler for distributed fiber optic sensors. This detector demonstrates -3 dB bandwidth >15 GHz and coupled conversion gain >65 V/W per photodiode through either input port of the 3 dB coupler, and can be operated at local oscillator power of +17 dBm. The combined common mode rejection of the balanced photoreceiver and the integrated 3 dB coupler is >20 dB. We also present measurement results with various optical stimuli, namely impulses, sinusoids, and pseudo-random sequences, which are relevant for time domain reflectometry, frequency domain reflectometry, and code correlation sensors, respectively.
NASA Astrophysics Data System (ADS)
Zhang, Yu-Feng; Dai, Jing-Min; Zhang, Lei; Pan, Wei-Dong
2013-08-01
The spectral emissivity and transmissivity of zinc sulphide (ZnS) infrared windows in the spectral region from 2 to 12 μm and temperature range from 20 to 700°C is measured by a facility built at the Harbin Institute of Technology (HIT). The facility is based on the integrating-sphere reflectometry. Measurements have been performed on two samples made of ZnS. The results measured at 20°C are in good agreement with those obtained by the method of radiant energy comparison using a Fourier transform infrared spectrometer. Emissivity measurements performed with this facility present an uncertainty of 5.5% (cover factor=2).
Distributed fiber optical sensing of oxygen with optical time domain reflectometry.
Eich, Susanne; Schmälzlin, Elmar; Löhmannsröben, Hans-Gerd
2013-05-31
In many biological and environmental applications spatially resolved sensing of molecular oxygen is desirable. A powerful tool for distributed measurements is optical time domain reflectometry (OTDR) which is often used in the field of telecommunications. We combine this technique with a novel optical oxygen sensor dye, triangular-[4] phenylene (TP), immobilized in a polymer matrix. The TP luminescence decay time is 86 ns. The short decay time of the sensor dye is suitable to achieve a spatial resolution of some meters. In this paper we present the development and characterization of a reflectometer in the UV range of the electromagnetic spectrum as well as optical oxygen sensing with different fiber arrangements.
Distributed Fiber Optical Sensing of Oxygen with Optical Time Domain Reflectometry
Eich, Susanne; Schmälzlin, Elmar; Löhmannsröben, Hans-Gerd
2013-01-01
In many biological and environmental applications spatially resolved sensing of molecular oxygen is desirable. A powerful tool for distributed measurements is optical time domain reflectometry (OTDR) which is often used in the field of telecommunications. We combine this technique with a novel optical oxygen sensor dye, triangular-[4] phenylene (TP), immobilized in a polymer matrix. The TP luminescence decay time is 86 ns. The short decay time of the sensor dye is suitable to achieve a spatial resolution of some meters. In this paper we present the development and characterization of a reflectometer in the UV range of the electromagnetic spectrum as well as optical oxygen sensing with different fiber arrangements. PMID:23727953
Polarized Neutron Reflectometry of Nickel Corrosion Inhibitors.
Wood, Mary H; Welbourn, Rebecca J L; Zarbakhsh, Ali; Gutfreund, Philipp; Clarke, Stuart M
2015-06-30
Polarized neutron reflectometry has been used to investigate the detailed adsorption behavior and corrosion inhibition mechanism of two surfactants on a nickel surface under acidic conditions. Both the corrosion of the nickel surface and the structure of the adsorbed surfactant layer could be monitored in situ by the use of different solvent contrasts. Layer thicknesses and roughnesses were evaluated over a range of pH values, showing distinctly the superior corrosion inhibition of one negatively charged surfactant (sodium dodecyl sulfate) compared to a positively charged example (dodecyl trimethylammonium bromide) due to its stronger binding interaction with the surface. It was found that adequate corrosion inhibition occurs at significantly less than full surface coverage.
NASA Astrophysics Data System (ADS)
Kukushkin, S. A.; Nussupov, K. Kh.; Osipov, A. V.; Beisenkhanov, N. B.; Bakranova, D. I.
2017-05-01
The structure and composition of SiC nanolayers are comprehensively studied by X-ray reflectometry, IR-spectroscopy, and atomic-force microscopy (AFM) methods for the first time. SiC films were synthesized by the new method of topochemical substitution of substrate atoms at various temperatures and pressure of CO active gas on the surface of high-resistivity low-dislocation single-crystal n-type silicon (111). Based on an analysis and generalization of experimental data obtained using X-ray reflectometry, IR spectroscopy, and AFM methods, a structural model of SiC films on Si was proposed. According to this model, silicon carbide film consists of a number of layers parallel to the substrate, reminiscent of a layer cake. The composition and thickness of each layer entering the film structure is experimentally determined. It was found that all samples contain superstoichiometric carbon; however, its structure is significantly different for the samples synthesized at temperatures of 1250 and 1330°C, respectively. In the former case, the film surface is saturated with silicon vacancies and carbon in the structurally loose form reminiscent of HOPG carbon. In the films grown at 1330°C, carbon is in a dense structure with a close-to-diamond density.
Understanding dynamic changes in live cell adhesion with neutron reflectometry
Junghans, Ann; Waltman, Mary Jo; Smith, Hillary L.; ...
2014-12-10
In this study, neutron reflectometry (NR) was used to examine various live cells' adhesion to quartz substrates under different environmental conditions, including flow stress. To the best of our knowledge, these measurements represent the first successful visualization and quantization of the interface between live cells and a substrate with sub-nanometer resolution. In our first experiments, we examined live mouse fibroblast cells as opposed to past experiments using supported lipids, proteins, or peptide layers with no associated cells. We continued the NR studies of cell adhesion by investigating endothelial monolayers and glioblastoma cells under dynamic flow conditions. We demonstrated that neutronmore » reflectometry is a powerful tool to study the strength of cellular layer adhesion in living tissues, which is a key factor in understanding the physiology of cell interactions and conditions leading to abnormal or disease circumstances. Continuative measurements, such as investigating changes in tumor cell — surface contact of various glioblastomas, could impact advancements in tumor treatments. In principle, this can help us to identify changes that correlate with tumor invasiveness. Pursuit of these studies can have significant medical impact on the understanding of complex biological problems and their effective treatment, e.g. for the development of targeted anti-invasive therapies.« less
NASA Astrophysics Data System (ADS)
Milej, Daniel; Janusek, Dariusz; Gerega, Anna; Wojtkiewicz, Stanislaw; Sawosz, Piotr; Treszczanowicz, Joanna; Weigl, Wojciech; Liebert, Adam
2015-10-01
The aim of the study was to determine optimal measurement conditions for assessment of brain perfusion with the use of optical contrast agent and time-resolved diffuse reflectometry in the near-infrared wavelength range. The source-detector separation at which the distribution of time of flights (DTOF) of photons provided useful information on the inflow of the contrast agent to the intracerebral brain tissue compartments was determined. Series of Monte Carlo simulations was performed in which the inflow and washout of the dye in extra- and intracerebral tissue compartments was modeled and the DTOFs were obtained at different source-detector separations. Furthermore, tests on diffuse phantoms were carried out using a time-resolved setup allowing the measurement of DTOFs at 16 source-detector separations. Finally, the setup was applied in experiments carried out on the heads of adult volunteers during intravenous injection of indocyanine green. Analysis of statistical moments of the measured DTOFs showed that the source-detector separation of 6 cm is recommended for monitoring of inflow of optical contrast to the intracerebral brain tissue compartments with the use of continuous wave reflectometry, whereas the separation of 4 cm is enough when the higher-order moments of DTOFs are available.
Analysis of bacterial growth by UV/Vis spectroscopy and laser reflectometry
NASA Astrophysics Data System (ADS)
Peña-Gomar, Mary Carmen; Viramontes-Gamboa, Gonzalo; Peña-Gomar, Grethel; Ortiz Gutiérrez, Mauricio; Hernández Ramírez, Mariano
2012-10-01
This work presents a preliminary study on an experimental analysis of the lactobacillus bacterial growth in liquid medium with and without the presence of silver nanoparticles. The study aims to quantify the bactericidal effect of nanoparticles. Quantification of bacterial growth at different times was analyzed by spectroscopy UV/visible and laser reflectometry near the critical angle. From these two techniques the best results were obtained by spectroscopy, showing that as the concentration of silver nanoparticles increases, it inhibits the growth of bacteria, it only grows 63% of the population. Regarding Laser Reflectometry, the variation of reflectance near the critical angle is measured in real time. The observed results at short times are reasonable, since they indicate a gradual growth of the bacteria and the stabilization stage of the population. But at long time, the observed results show abrupt changes caused by temperature effects. The bacteria were isolated from samples taken from commercial yougurth, and cultured in MRS broth at pH 6.5, and controlled with citric acid and constant temperature of 32 °C. Separately, silver nanoparticles were synthesized at 3 °C from aqueous solutions of 1.0 mM silver nitrate and chemically reduced with sodium borohydride to 2.0 mM, with magnetic stirring.
Neutron reflectometry on highly absorbing films and its application to 10B4C-based neutron detectors
Piscitelli, F.; Khaplanov, A.; Devishvili, A.; Schmidt, S.; Höglund, C.; Birch, J.; Dennison, A. J. C.; Gutfreund, P.; Hall-Wilton, R.; Van Esch, P.
2016-01-01
Neutron reflectometry is a powerful tool used for studies of surfaces and interfaces. The absorption in the typical studied materials is neglected and this technique is limited only to the reflectivity measurement. For strongly absorbing nuclei, the absorption can be directly measured by using the neutron-induced fluorescence technique which exploits the prompt particle emission of absorbing isotopes. This technique is emerging from soft matter and biology where highly absorbing nuclei, in very small quantities, are used as a label for buried layers. Nowadays, the importance of absorbing layers is rapidly increasing, partially because of their application in neutron detection; a field that has become more active also due to the 3He-shortage. We extend the neutron-induced fluorescence technique to the study of layers of highly absorbing materials, in particular 10B4C. The theory of neutron reflectometry is a commonly studied topic; however, when a strong absorption is present the subtle relationship between the reflection and the absorption of neutrons is not widely known. The theory for a general stack of absorbing layers has been developed and compared to measurements. We also report on the requirements that a 10B4C layer must fulfil in order to be employed as a converter in neutron detection. PMID:26997902
2007-12-14
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, a technician checks test wiring spliced into an electrical harness in space shuttle Atlantis' aft main engine compartment connected with the engine cut-off, or ECO, system. The test wiring leads to the interior of the mobile launcher platform where the Time Domain Reflectometry, or TDR, test equipment will be located to test the sensor system. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the ECO system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
2007-12-14
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, a technician checks test wiring spliced into an electrical harness in space shuttle Atlantis' aft main engine compartment connected with the engine cut-off, or ECO, system. The test wiring leads to the interior of the mobile launcher platform where the Time Domain Reflectometry, or TDR, test equipment will be located to test the sensor system. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the ECO system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
2007-12-14
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, a technician checks test wiring spliced into an electrical harness in space shuttle Atlantis' aft main engine compartment connected with the engine cut-off, or ECO, system. The test wiring leads to the interior of the mobile launcher platform where the Time Domain Reflectometry, or TDR, test equipment will be located to test the sensor system. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the ECO system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
Turbulence studies with means of reflectometry at TEXTOR
NASA Astrophysics Data System (ADS)
Krämer-Flecken, A.; Dreval, V.; Soldatov, S.; Rogister, A.; Vershkov, V.; TEXTOR-team
2004-11-01
At TEXTOR, an O-mode heterodyne reflectometer system is installed and operated for the measurement of plasma density fluctuations and turbulence investigations. With two antenna arrays in the equatorial and top positions having two and three horn antennae, respectively, poloidal correlations are investigated under different plasma scenarios. From the amplitude, cross-phase and coherency spectrum, differences in the ohmic and auxiliary heated discharges are investigated. Furthermore the dynamic behaviour of the turbulence is studied in the SOC-IOC transition and in the precursor phase of a disruption. For the latter an increased integrated power spectral density was observed at the X-point of the mode compared with the O-point. Stationary m = 2 mode activity is observed for the first time at TEXTOR by reflectometry. The fluctuation level is calculated for different conditions and rises significantly increasing heating power which is consistent with the L-mode confinement degradation. Correlation measurements yield the measured phase delays which are used to calculate the poloidal phase velocity perpendicular to the magnetic field. In ohmic plasmas the turbulence rotates like a 'rigid body' with constant angular velocity inside the q = 2 surface. The rigid body rotation is broken up during tangential neutral beam injection. From the deduced poloidal wavenumber of the turbulence, most likely ion temperature gradient modes are the driving mechanism of the turbulence.
Measurement of water pressure and deformation with time domain reflectometry cables
NASA Astrophysics Data System (ADS)
Dowding, Charles H.; Pierce, Charles E.
1995-05-01
Time domain reflectometry (TDR) techniques can be deployed to measure water pressures and relative dam abutment displacement with an array of coaxial cables either drilled and grouted or retrofitted through existing passages. Application of TDR to dam monitoring requires determination of appropriate cable types and methods to install these cables in existing dams or during new construction. This paper briefly discusses currently applied and developing TDR techniques and describes initial design considerations for TDR-based dam instrumentation. Water pressure at the base of or within the dam can be determined by measuring the water level within a hollow or air-filled coaxial cable. The ability to retrofit existing porous stone-tipped piezometers is an attractive attribute of the TDR system. Measurement of relative lateral movement can be accomplished by monitoring local shearing of a solid polyethylene-filled coaxial cable at the interface of the dam base and foundation materials or along adversely oriented joints. Uplift can be recorded by measuring cable extension as the dam displaces upward off its foundation. Since each monitoring technique requires measurements with different types of coaxial cables, a variety may be installed within the array. Multiplexing of these cables will allow monitoring from a single pulser, and measurements can be recorded on site or remotely via a modem at any time.
NASA Astrophysics Data System (ADS)
Trivedi, C. M.; Rana, V. A.; Hudge, P. G.; Kumbharkhane, A. C.
2016-08-01
Complex permittivity spectra of binary mixtures of varying concentrations of β-picoline and Methanol (MeOH) have been obtained using time domain reflectometry (TDR) technique over frequency range 10 MHz to 25 GHz at 283.15, 288.15, 293.15 and 298.15 K temperatures. The dielectric relaxation parameters namely static permittivity (ɛ0), high frequency limit permittivity (ɛ∞1) and the relaxation time (τ) were determined by fitting complex permittivity data to the single Debye/Cole-Davidson model. Complex nonlinear least square (CNLS) fitting procedure was carried out using LEVMW software. The excess permittivity (ɛ0E) and the excess inverse relaxation time (1/τ)E which contain information regarding molecular structure and interaction between polar-polar liquids were also determined. From the experimental data, parameters such as effective Kirkwood correlation factor (geff), Bruggeman factor (fB) and some thermo dynamical parameters have been calculated. Excess parameters were fitted to the Redlich-Kister polynomial equation. The values of static permittivity and relaxation time increase nonlinearly with increase in the mol-fraction of MeOH at all temperatures. The values of excess static permittivity (ɛ0E) and the excess inverse relaxation time (1/τ)E are negative for the studied β-picoline — MeOH system at all temperatures.
Frequency Domain Reflectometry NDE for Aging Cables in Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glass, Samuel W.; Jones, Anthony M.; Fifield, Leonard S.
Cable insulation polymers are among the more susceptible materials to age-related degradation within a nuclear power plant. This is recognized by both regulators and utilities, so all plants have developed cable aging management programs to detect damage before critical component failure in compliance with regulatory guidelines. Although a wide range of tools are available to evaluate cables and cable systems, cable aging management programs vary in how condition monitoring and nondestructive examinations are conducted as utilities search for the most reliable and cost-effective ways to assess cable system condition. Frequency domain reflectometry (FDR) is emerging as one valuable tool tomore » locate and assess damaged portions of a cable system with minimal cost and only requires access in most cases to one of the cable terminal ends. Since laboratory studies to evaluate the use of FDR for inspection of aged cables can be expensive and data interpretation may be confounded by multiple factors which influence results, a model-based approach is desired to parametrically investigate the effect of insulation material damage in a controlled manner. This work describes development of a physics-based FDR model which uses finite element simulations of cable segments in conjunction with cascaded circuit element simulations to efficiently study a cable system. One or more segments of the cable system model have altered physical or electrical properties which represent the degree of damage and the location of the damage in the system. This circuit model is then subjected to a simulated FDR examination. The modeling approach is verified using several experimental cases and by comparing it to a commercial simulator suitable for simulation of some cable configurations. The model is used to examine a broad range of parameters including defect length, defect profile, degree of degradation, number and location of defects, FDR bandwidth, and addition of impedance-matched extensions to minimize the end-shadow effect.« less
Frequency domain reflectometry modeling for nondestructive evaluation of nuclear power plant cables
NASA Astrophysics Data System (ADS)
Glass, S. W.; Fifield, L. S.; Jones, A. M.; Hartman, T. S.
2018-04-01
Cable insulation polymers are among the more susceptible materials to age-related degradation within a nuclear power plant. This is recognized by both regulators and utilities, so all plants have developed cable aging management programs to detect damage before critical component failure in compliance with regulatory guidelines. Although a wide range of tools are available to evaluate cables and cable systems, cable aging management programs vary in how condition monitoring and nondestructive examinations are conducted as utilities search for the most reliable and cost-effective ways to assess cable system condition. Frequency domain reflectometry (FDR) is emerging as one valuable tool to locate and assess damaged portions of a cable system with minimal cost and only requires access in most cases to one of the cable terminal ends. Since laboratory studies to evaluate the use of FDR for inspection of aged cables can be expensive and data interpretation may be confounded by multiple factors which influence results, a model-based approach is desired to parametrically investigate the effect of insulation material damage in a controlled manner. This work describes development of a physics-based FDR model which uses finite element simulations of cable segments in conjunction with cascaded circuit element simulations to efficiently study a cable system. One or more segments of the cable system model have altered physical or electrical properties which represent the degree of damage and the location of the damage in the system. This circuit model is then subjected to a simulated FDR examination. The modeling approach is verified using several experimental cases and by comparing it to a commercial simulator suitable for simulation of some cable configurations. The model is used to examine a broad range of parameters including defect length, defect profile, degree of degradation, number and location of defects, FDR bandwidth, and addition of impedance-matched extensions to minimize the end-shadow effect.
Real-time reflectometry measurement validation in H-mode regimes for plasma position control.
Santos, J; Guimarais, L; Manso, M
2010-10-01
It has been shown that in H-mode regimes, reflectometry electron density profiles and an estimate for the density at the separatrix can be jointly used to track the separatrix within the precision required for plasma position control on ITER. We present a method to automatically remove, from the position estimation procedure, measurements performed during collapse and recovery phases of edge localized modes (ELMs). Based on the rejection mechanism, the method also produces an estimate confidence value to be fed to the position feedback controller. Preliminary results show that the method improves the real-time experimental separatrix tracking capabilities and has the potential to eliminate the need for an external online source of ELM event signaling during control feedback operation.
Chen, Feida; Tang, Xiaobin; Huang, Hai; Li, Xinxi; Wang, Yan; Huang, Chaoqiang; Liu, Jian; Li, Huan; Chen, Da
2016-09-21
Cr/W multilayer nanocomposites were presented in the paper as potential candidate materials for the plasma facing components in fusion reactors. We used neutron reflectometry to measure the depth profile of helium in the multienergy He ions irradiated [Cr/W (50 nm)]3 multilayers. Results showed that He-rich layers with low neutron scattering potential energy form at the Cr/W interfaces, which is in great agreement with previous modeling results of other multilayers. This phenomenon provided a strong evidence for the He trapping effects of Cr/W interfaces and implied the possibility of using the Cr/W multilayer nanocomposites as great He-tolerant plasma facing materials.
NASA Astrophysics Data System (ADS)
Lee, Heeyoung; Ochi, Yutaka; Matsui, Takahiro; Matsumoto, Yukihiro; Tanaka, Yosuke; Nakamura, Hitoshi; Mizuno, Yosuke; Nakamura, Kentaro
2018-07-01
Slope-assisted Brillouin optical correlation-domain reflectometry (SA-BOCDR) is a recently developed structural health monitoring technique for measurements of strain, temperature, and loss distributions along optical fibers. Although the basic operational principle of this method has been clarified, no measurements using optical fibers embedded in actual structures have been reported. As a first step towards such practical applications, in this study, we present an example of an SA-BOCDR-based diagnosis using a composite structure with carbon fiber-reinforced plastics. The system’s output agrees well with the actual strain distributions. We were also able to detect the breakage of the embedded fiber, thus demonstrating the promise of SA-BOCDR for practical applications.
NASA Astrophysics Data System (ADS)
Lee, Heeyoung; Mizuno, Yosuke; Nakamura, Kentaro
2018-02-01
Slope-assisted Brillouin optical correlation-domain reflectometry is a single-end-access distributed Brillouin sensing technique with high spatial resolution and high-speed operation. We have recently discovered its unique feature, that is, strained or heated sections even shorter than nominal resolution can be detected, but its detailed characterization has not been carried out. Here, after experimentally characterizing this “beyond-nominal-resolution” effect, we show its usefulness by demonstrating the detection of a 2-mm-long strained section along a silica fiber. We also demonstrate the detection of a 5-mm-long heated section along a polymer optical fiber. The lengths of these detected sections are smaller than those of the other demonstrations reported so far.
Retrieval of phase information in neutron reflectometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Haan, V.; van Well, A.A.; Adenwalla, S.
Neutron reflectometry can determine unambiguously the chemical depth profile of a thin film if both phase and amplitude of the reflectance are known. The recovery of the phase information is achieved by adding to the unknown layered structure a known ferromagnetic layer. The ferromagnetic layer is magnetized by an external magnetic field in a direction lying in the plane of the layer and subsequently perpendicular to it. The neutrons are polarized either parallel or opposite to the magnetic field. In this way three measurements can be made, with different (and known) scattering-length densities of the ferromagnetic layer. The reflectivity obtainedmore » from each measurement can be represented by a circle in the (complex) reflectance plane. The intersections of these circles provide the reflectance.« less
The detection error of thermal test low-frequency cable based on M sequence correlation algorithm
NASA Astrophysics Data System (ADS)
Wu, Dongliang; Ge, Zheyang; Tong, Xin; Du, Chunlin
2018-04-01
The problem of low accuracy and low efficiency of off-line detecting on thermal test low-frequency cable faults could be solved by designing a cable fault detection system, based on FPGA export M sequence code(Linear feedback shift register sequence) as pulse signal source. The design principle of SSTDR (Spread spectrum time-domain reflectometry) reflection method and hardware on-line monitoring setup figure is discussed in this paper. Testing data show that, this detection error increases with fault location of thermal test low-frequency cable.
2007-12-15
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A at NASA's Kennedy Space Center, a technician checks the blue monitor that will be used to validate the circuit on test wiring during the tanking test on space shuttle Atlantis' external tank. The test wiring has been spliced into an electrical harness in the aft main engine compartment connected with the engine cut-off, or ECO, sensor system. The attached wiring leads to the interior of the mobile launcher platform where the time domain reflectometry, or TDR, test equipment is located. Photo credit: NASA/Kim Shiflett
High accuracy electronic material level sensor
McEwan, T.E.
1997-03-11
The High Accuracy Electronic Material Level Sensor (electronic dipstick) is a sensor based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line or guide wire that is partially immersed in the material being measured; a launcher plate is positioned at the beginning of the guide wire. Reflected pulses are produced at the material interface due to the change in dielectric constant. The time difference of the reflections at the launcher plate and at the material interface are used to determine the material level. Improved performance is obtained by the incorporation of: (1) a high accuracy time base that is referenced to a quartz crystal, (2) an ultrawideband directional sampler to allow operation without an interconnect cable between the electronics module and the guide wire, (3) constant fraction discriminators (CFDs) that allow accurate measurements regardless of material dielectric constants, and reduce or eliminate errors induced by triple-transit or ``ghost`` reflections on the interconnect cable. These improvements make the dipstick accurate to better than 0.1%. 4 figs.
High accuracy electronic material level sensor
McEwan, Thomas E.
1997-01-01
The High Accuracy Electronic Material Level Sensor (electronic dipstick) is a sensor based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line or guide wire that is partially immersed in the material being measured; a launcher plate is positioned at the beginning of the guide wire. Reflected pulses are produced at the material interface due to the change in dielectric constant. The time difference of the reflections at the launcher plate and at the material interface are used to determine the material level. Improved performance is obtained by the incorporation of: 1) a high accuracy time base that is referenced to a quartz crystal, 2) an ultrawideband directional sampler to allow operation without an interconnect cable between the electronics module and the guide wire, 3) constant fraction discriminators (CFDs) that allow accurate measurements regardless of material dielectric constants, and reduce or eliminate errors induced by triple-transit or "ghost" reflections on the interconnect cable. These improvements make the dipstick accurate to better than 0.1%.
NASA Technical Reports Server (NTRS)
Lang, Timothy J.; Li, Xuanli; Mecikalski, John; Hoover, Kacie; Castillo, Tyler; Chronis, Themis
2017-01-01
The Cyclone Global Navigation OKLMA 1411 UTC Satellite System (CYGNSS) is a multi-satellite constellation that launched 15 December 2016. The primary objective of CYGNSS is to use bistatic Global Positioning System (GPS) reflectometry to accurately measure near-surface wind speeds within the heavily raining inner core of tropical cyclones. CYGNSS also features rapid revisit times over a given region in the tropics - ranging from several minutes to a few hours, depending on the constellation geometry at that time. Despite the focus on tropical cyclones, the ability of CYGNSS to provide rapid updates of winds, unbiased by the presence of precipitation, has many other potential applications related to general tropical convection.
NASA Astrophysics Data System (ADS)
Prisiazhniuk, D.; Krämer-Flecken, A.; Conway, G. D.; Happel, T.; Lebschy, A.; Manz, P.; Nikolaeva, V.; Stroth, U.; the ASDEX Upgrade Team
2017-02-01
In fusion machines, turbulent eddies are expected to be aligned with the direction of the magnetic field lines and to propagate in the perpendicular direction. Time delay measurements of density fluctuations can be used to calculate the magnetic field pitch angle α and perpendicular velocity {{v}\\bot} profiles. The method is applied to poloidal correlation reflectometry installed at ASDEX Upgrade and TEXTOR, which measure density fluctuations from poloidally and toroidally separated antennas. Validation of the method is achieved by comparing the perpendicular velocity (composed of the E× B drift and the phase velocity of turbulence {{v}\\bot}={{v}E× B}+{{v}\\text{ph}} ) with Doppler reflectometry measurements and with neoclassical {{v}E× B} calculations. An important condition for the application of the method is the presence of turbulence with a sufficiently long decorrelation time. It is shown that at the shear layer the decorrelation time is reduced, limiting the application of the method. The magnetic field pitch angle measured by this method shows the expected dependence on the magnetic field, plasma current and radial position. The profile of the pitch angle reproduces the expected shape and values. However, comparison with the equilibrium reconstruction code cliste suggests an additional inclination of turbulent eddies at the pedestal position (2-3°). This additional angle decreases towards the core and at the edge.
Utilizing Time Domain Reflectometry on monitoring bedload in a mountain stream
NASA Astrophysics Data System (ADS)
Miyata, S.; Fujita, M.
2015-12-01
Understanding bedload transport processes in steep mountain streams is essential for disaster mitigation as well as predicting reservoir capacity and restoration of river ecosystem. Despite various monitoring methods proposed previously, precise bedload monitoring in steep streams still remains difficulty. This study aimed to develop a bedload monitoring system by continuous measurement of thickness and porosity of sediment under water that can be applicable to retention basins and pools in steep streams. When a probe of TDR (Time Domain Reflectometry) measurement system is inserted as to penetrate two adjacent layers with different dielectric constants, analysis of TDR waveform enables us to determine position of the layer boundary and ratio of materials in the layer. Methodology of analyzing observed TDR waveforms were established based on results of a series of column experiment, in which a single TDR probe with length of 40 cm was installed in a column filled with water and, then, sand was supplied gradually. Flume experiment was performed to apply the TDR system on monitoring sediment volume under flowing water conditions. Eight probes with lengths of 27 cm were distributed equally in a model retention basin (i.e., container), into which water and bedload were flowed from a connected flume. The model retention basin was weighed by a load cell and the sediment volume was calculated. A semi-automatic waveform analysis was developed to calculate continuously thicknesses and porosities of the sediment at the eight probes. Relative errors of sediment volume and bedload (=time differential of the volume) were 13 % at maximum, suggesting that the TDR system proposed in this study with multiple probes is applicable to bedload monitoring in retention basins of steep streams. Combination of this system and other indirect bedload monitoring method (e.g., geophone) potentially make a breakthrough for understanding sediment transport processes in steep mountain streams.
2007-12-14
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, a technician prepares a cable from an electrical harness in space shuttle Atlantis' aft main engine compartment connected with the engine cut-off, or ECO, system leading into the tail mast. The test wiring leads from the tail mast to the interior of the mobile launcher platform where the Time Domain Reflectometry, or TDR, test equipment will be located to test the sensor system. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the ECO system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
2007-12-14
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, cables lead from an electrical harness in space shuttle Atlantis' aft main engine compartment connected with the engine cut-off, or ECO, system into the tail mast. The test wiring leads from the tail mast to the interior of the mobile launcher platform where the Time Domain Reflectometry, or TDR, test equipment will be located to test the sensor system. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the ECO system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
2007-12-14
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, cables lead from an electrical harness in space shuttle Atlantis' aft main engine compartment connected with the engine cut-off, or ECO, system into the tail mast. The test wiring leads from the tail mast to the interior of the mobile launcher platform where the Time Domain Reflectometry, or TDR, test equipment will be located to test the sensor system. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the ECO system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
Ion distribution in dry polyelectrolyte multilayers: a neutron reflectometry study
Ghoussoub, Yara E.; Zerball, Maximilian; Fares, Hadi M.; ...
2018-02-09
Counterions were found to be uniformly distributed in polycation-terminated films of poly(diallyldimethylammonium) and poly(styrenesulfonate) prepared on silicon wafers using layer-by-layer adsorption.
Amplified OTDR systems for multipoint corrosion monitoring.
Nascimento, Jehan F; Silva, Marcionilo J; Coêlho, Isnaldo J S; Cipriano, Eliel; Martins-Filho, Joaquim F
2012-01-01
We present two configurations of an amplified fiber-optic-based corrosion sensor using the optical time domain reflectometry (OTDR) technique as the interrogation method. The sensor system is multipoint, self-referenced, has no moving parts and can measure the corrosion rate several kilometers away from the OTDR equipment. The first OTDR monitoring system employs a remotely pumped in-line EDFA and it is used to evaluate the increase in system reach compared to a non-amplified configuration. The other amplified monitoring system uses an EDFA in booster configuration and we perform corrosion measurements and evaluations of system sensitivity to amplifier gain variations. Our experimental results obtained under controlled laboratory conditions show the advantages of the amplified system in terms of longer system reach with better spatial resolution, and also that the corrosion measurements obtained from our system are not sensitive to 3 dB gain variations.
Amplified OTDR Systems for Multipoint Corrosion Monitoring
Nascimento, Jehan F.; Silva, Marcionilo J.; Coêlho, Isnaldo J. S.; Cipriano, Eliel; Martins-Filho, Joaquim F.
2012-01-01
We present two configurations of an amplified fiber-optic-based corrosion sensor using the optical time domain reflectometry (OTDR) technique as the interrogation method. The sensor system is multipoint, self-referenced, has no moving parts and can measure the corrosion rate several kilometers away from the OTDR equipment. The first OTDR monitoring system employs a remotely pumped in-line EDFA and it is used to evaluate the increase in system reach compared to a non-amplified configuration. The other amplified monitoring system uses an EDFA in booster configuration and we perform corrosion measurements and evaluations of system sensitivity to amplifier gain variations. Our experimental results obtained under controlled laboratory conditions show the advantages of the amplified system in terms of longer system reach with better spatial resolution, and also that the corrosion measurements obtained from our system are not sensitive to 3 dB gain variations. PMID:22737017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villis, B. J.; Sanquer, M.; Jehl, X.
2014-06-09
The continuous downscaling of transistors results in nanoscale devices which require fewer and fewer charged carriers for their operation. The ultimate charge controlled device, the single-electron transistor (SET), controls the transfer of individual electrons. It is also the most sensitive electrometer, and as a result the electron transport through it can be dramatically affected by nearby charges. Standard direct-current characterization techniques, however, are often unable to unambiguously detect and resolve the origin of the observed changes in SET behavior arising from changes in the charge state of a capacitively coupled trap. Using a radio-frequency (RF) reflectometry technique, we are ablemore » to unequivocally detect this process, in very close agreement with modeling of the trap's occupation probability.« less
Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review
Wang, Chenhuan; Liu, Kun; Jiang, Junfeng; Yang, Di; Pan, Guanyi; Pu, Zelin; Liu, Tiegen
2018-01-01
Distributed optical fiber sensors (DOFS) offer unprecedented features, the most unique one of which is the ability of monitoring variations of the physical and chemical parameters with spatial continuity along the fiber. Among all these distributed sensing techniques, optical frequency domain reflectometry (OFDR) has been given tremendous attention because of its high spatial resolution and large dynamic range. In addition, DOFS based on OFDR have been used to sense many parameters. In this review, we will survey the key technologies for improving sensing range, spatial resolution and sensing performance in DOFS based on OFDR. We also introduce the sensing mechanisms and the applications of DOFS based on OFDR including strain, stress, vibration, temperature, 3D shape, flow, refractive index, magnetic field, radiation, gas and so on. PMID:29614024
Cr/B 4C multilayer mirrors: Study of interfaces and X-ray reflectance
Burcklen, C.; Soufli, R.; Gullikson, E.; ...
2016-03-24
Here, we present an experimental study of the effect of layer interfaces on the x-ray reflectance in Cr/B 4C multilayer interference coatings with layer thicknesses ranging from 0.7 nm to 5.4 nm. The multilayers were deposited by magnetron sputtering and by ion beam sputtering. Grazing incidence x-ray reflectometry, soft x-ray reflectometry, and transmission electron microscopy reveal asymmetric multilayer structures with a larger B 4C-on-Cr interface, which we modeled with a 1–1.5 nm thick interfacial layer. Reflectance measurements in the vicinity of the Cr L 2,3 absorption edge demonstrate fine structure that is not predicted by simulations using the currently tabulatedmore » refractive index (optical constants) values for Cr.« less
NASA Astrophysics Data System (ADS)
Swami, M. B.; Hudge, P. G.; Pawar, V. P.
The dielectric properties of binary mixtures of benzylamine-1,2,6-hexantriol mixtures at different volume fractions of 1,2,6-hexanetriol have been measured using Time Domain Reflectometry (TDR) technique in the frequency range of 10 MHz to 30 GHz. Complex permittivity spectra were fitted using Havriliak-Negami equation. By using least square fit method the dielectric parameters such as static dielectric constant (ɛ0), dielectric constant at high frequency (ɛ∞), relaxation time τ (ps) and relaxation distribution parameter (β) were extracted from complex permittivity spectra at 25∘C. The intramolecular interaction of different molecules has been discussed using the Kirkwood correlation factor, Bruggeman factor. The Kirkwood correlation factor (gf) and effective Kirkwood correlation factor (geff) indicate the dipole ordering of the binary mixtures.
Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review.
Ding, Zhenyang; Wang, Chenhuan; Liu, Kun; Jiang, Junfeng; Yang, Di; Pan, Guanyi; Pu, Zelin; Liu, Tiegen
2018-04-03
Distributed optical fiber sensors (DOFS) offer unprecedented features, the most unique one of which is the ability of monitoring variations of the physical and chemical parameters with spatial continuity along the fiber. Among all these distributed sensing techniques, optical frequency domain reflectometry (OFDR) has been given tremendous attention because of its high spatial resolution and large dynamic range. In addition, DOFS based on OFDR have been used to sense many parameters. In this review, we will survey the key technologies for improving sensing range, spatial resolution and sensing performance in DOFS based on OFDR. We also introduce the sensing mechanisms and the applications of DOFS based on OFDR including strain, stress, vibration, temperature, 3D shape, flow, refractive index, magnetic field, radiation, gas and so on.
Model Based Inference for Wire Chafe Diagnostics
NASA Technical Reports Server (NTRS)
Schuet, Stefan R.; Wheeler, Kevin R.; Timucin, Dogan A.; Wysocki, Philip F.; Kowalski, Marc Edward
2009-01-01
Presentation for Aging Aircraft conference covering chafing fault diagnostics using Time Domain Reflectometry. Laboratory setup and experimental methods are presented, along with initial results that summarize fault modeling and detection capabilities.
NASA Astrophysics Data System (ADS)
Willgoose, G. R.
2006-12-01
In humid catchments the spatial distribution of soil water is dominated by subsurface lateral fluxes, which leads to a persistent spatial pattern of soil moisture principally described by the topographic index. In contrast, semi-arid, and dryer, catchments are dominated by vertical fluxes (infiltration and evapotranspiration) and persistent spatial patterns, if they exist, are subtler. In the first part of this presentation the results of a reanalysis of a number of catchment-scale long-term spatially-distributed soil moisture data sets are presented. We concentrate on Tarrawarra and SASMAS, both catchments in Australia that are water-limited for at least part of the year and which have been monitored using a variety of technologies. Using the data from permanently installed instruments (neutron probe and reflectometry) both catchments show persistent patterns at the 1-3 year timescale. This persistent pattern is not evident in the field campaign data where field portable instruments (reflectometry) instruments were used. We argue, based on high-resolution soil moisture semivariograms, that high short-distance variability (100mm scale) means that field portable instrument cannot be replaced at the same location with sufficient accuracy to ensure deterministic repeatability of soil moisture measurements from campaign to campaign. The observed temporal persistence of the spatial pattern can be caused by; (1) permanent features of the landscape (e.g. vegetation, soils), or (2) long term memory in the soil moisture store. We argue that it is permanent in which case it is possible to monitor the soil moisture status of a catchment using a single location measurement (continuous in time) of soil moisture using a permanently installed reflectometry instrument. This instrument will need to be calibrated to the catchment averaged soil moisture but the temporal persistence of the spatial pattern of soil moisture will mean that this calibration will be deterministically stable with time. In the second part of this presentation we will explore aspects of the calibration using data from the SASMAS site using the multiscale spatial resolution data (100m to 10km) provided by permanently installed reflectometry instruments, and how this single site measurement technique may complement satellite data.
AMOR - the time-of-flight neutron reflectometer at SINQ/PSI
NASA Astrophysics Data System (ADS)
Gupta, Mukul; Gutberlet, T.; Stahn, J.; Keller, P.; Clemens, D.
2004-07-01
The apparatus for multioptional reflectometry (AMOR) at SINQ/PSI is a versatile reflectometer operational in the time-of-flight (TOF) mode (in a wavelength range of 0.15 nm <λ < 1.3 nm) as well as in the monochromatic (theta-2theta) mode with both polarized and unpolarized neutrons. AMOR is designed to perform reflectometry measurements in horizontal sample-plane geometry which allows studying both solid-liquid and liquid-liquid interfaces. A pulsed cold neutron beam from the end position of the neutron guide is produced by a dual-chopper system (side-by-side) having two windows at 180^{circ} and rotatable with a maximum frequency of 200 Hz. In the TOF mode, the chopper frequency, width of the gating window and the chopper-detector distance can be selected independently providing a wide range of q-resolution (Delta q/q=1-10&%slash;). Remanent FeCoV/Ti : N supermirrors are used as polarizer/analyzer with a polarization efficiency of sim97&%slash;. For the monochromatic wavelength mode, a Ni/Ti multilayer is used as a monochromator, giving sim50&%slash; reflectivity at a wavelength of 0.47 nm. In the present work, a detailed description of the instrument and setting-up of the polarization option is described. Results from some of the recent studies with polarized neutrons and measurements on liquid surfaces are presented.
USDA-ARS?s Scientific Manuscript database
The four geophysical methods predominantly used for agricultural purposes are resistivity, electromagnetic induction, ground penetrating radar (GPR), and time domain reflectometry (TDR). Resistivity and electromagnetic induction methods are typically employed to map lateral variations of apparent so...
High-accuracy fiber-optic shape sensing
NASA Astrophysics Data System (ADS)
Duncan, Roger G.; Froggatt, Mark E.; Kreger, Stephen T.; Seeley, Ryan J.; Gifford, Dawn K.; Sang, Alexander K.; Wolfe, Matthew S.
2007-04-01
We describe the results of a study of the performance characteristics of a monolithic fiber-optic shape sensor array. Distributed strain measurements in a multi-core optical fiber interrogated with the optical frequency domain reflectometry technique are used to deduce the shape of the optical fiber; referencing to a coordinate system yields position information. Two sensing techniques are discussed herein: the first employing fiber Bragg gratings and the second employing the intrinsic Rayleigh backscatter of the optical fiber. We have measured shape and position under a variety of circumstances and report the accuracy and precision of these measurements. A discussion of error sources is included.
Inclinometer--time-domain reflectometry comparative study : executive summary report.
DOT National Transportation Integrated Search
2004-10-01
Slope stability is an ongoing issue in : hilly or mountainous terrains with clay : rich soil, constructed embankments, : fluctuating temperature, and changing : soil moisture conditions. Landslides : constitute a major geologic hazard, : occurring in...
Inclinometer - Time Domain Reflectometry Comparative Study : Executive Summary Report
DOT National Transportation Integrated Search
2004-10-01
Slope stability is an ongoing issue in : hilly or mountainous terrains with clay : rich soil, constructed embankments, : fluctuating temperature, and changing : soil moisture conditions. Landslides : constitute a major geologic hazard, : occurring in...
X-ray study of the structure of phospholipid monolayers on the water surface
NASA Astrophysics Data System (ADS)
Asadchikov, V. E.; Tikhonov, A. M.; Volkov, Yu. O.; Roshchin, B. S.; Ermakov, Yu. A.; Rudakova, E. B.; D'yachkova, I. G.; Nuzhdin, A. D.
2017-10-01
The possibility of laboratory X-ray reflectometry study of the structure of dimyristoyl phosphatidylserine (DMPS) phospholipid monolayers on the water surface in various phase states has been demonstrated.
Adaptive array technique for differential-phase reflectometry in QUEST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idei, H., E-mail: idei@triam.kyushu-u.ac.jp; Hanada, K.; Zushi, H.
2014-11-15
A Phased Array Antenna (PAA) was considered as launching and receiving antennae in reflectometry to attain good directivity in its applied microwave range. A well-focused beam was obtained in a launching antenna application, and differential-phase evolution was properly measured by using a metal reflector plate in the proof-of-principle experiment at low power test facilities. Differential-phase evolution was also evaluated by using the PAA in the Q-shu University Experiment with Steady State Spherical Tokamak (QUEST). A beam-forming technique was applied in receiving phased-array antenna measurements. In the QUEST device that should be considered as a large oversized cavity, standing wave effectmore » was significantly observed with perturbed phase evolution. A new approach using derivative of measured field on propagating wavenumber was proposed to eliminate the standing wave effect.« less
NASA Astrophysics Data System (ADS)
Gorshkov, B. G.; Taranov, M. A.
2018-02-01
A new type of sensor for simultaneous measurements of strain and temperature changes in an optical fibre is proposed. Its operation builds on the use of Raman optical time-domain reflectometry and wavelength-tunable quasi-monochromatic Rayleigh reflectometry implemented using a microelectromechanical filter (MEMS). The sensor configuration includes independent Raman and Rayleigh scattering channels. Our experiments have demonstrated that, at a sensing fibre length near 8 km, spatial resolution of 1-2 m, and measurement time of 10 min, the noise level (standard deviation) is 1.1 μɛ (μm m-1) for the measured tension change (at small temperature deviations) and 0.04 °C for the measured temperature change, which allows for effective sensing of mechanical and temperature influences with improved accuracy.
LTPP Computed Parameter: Moisture Content
DOT National Transportation Integrated Search
2008-01-01
A study was conducted to compute in situ soil parameters based on time domain reflectometry (TDR) traces obtained from Long Term Pavement Performance (LTPP) test sections instrumented for the seasonal monitoring program (SMP). Ten TDR sensors were in...
2007-12-14
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, a technician checks cables and wires that will be used in the Time Domain Reflectometry, or TDR, test on engine cut-off sensors, or ECO, in space shuttle Atlantis' external tank. The test equipment -- blue monitor at left-- will be used to validate the circuit on the test wiring before hooking it up to the test box. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the ECO system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
A Model-Based Probabilistic Inversion Framework for Wire Fault Detection Using TDR
NASA Technical Reports Server (NTRS)
Schuet, Stefan R.; Timucin, Dogan A.; Wheeler, Kevin R.
2010-01-01
Time-domain reflectometry (TDR) is one of the standard methods for diagnosing faults in electrical wiring and interconnect systems, with a long-standing history focused mainly on hardware development of both high-fidelity systems for laboratory use and portable hand-held devices for field deployment. While these devices can easily assess distance to hard faults such as sustained opens or shorts, their ability to assess subtle but important degradation such as chafing remains an open question. This paper presents a unified framework for TDR-based chafing fault detection in lossy coaxial cables by combining an S-parameter based forward modeling approach with a probabilistic (Bayesian) inference algorithm. Results are presented for the estimation of nominal and faulty cable parameters from laboratory data.
Understanding dynamic changes in live cell adhesion with neutron reflectometry
NASA Astrophysics Data System (ADS)
Junghans, Ann
Understanding the structure and functionality of biological systems on a nanometer-resolution and short temporal scales is important for solving complex biological problems, developing innovative treatment, and advancing the design of highly functionalized biomimetic materials. For example, adhesion of cells to an underlying substrate plays a crucial role in physiology and disease development, and has been investigated with great interest for several decades. In the talk, we would like to highlight recent advances in utilizing neutron scattering to study bio-related structures in dynamic conditions (e . g . under the shear flow) including in-situ investigations of the interfacial properties of living cells. The strength of neutron reflectometry is its non-pertubative nature, the ability to probe buried interfaces with nanometer resolution and its sensitivity to light elements like hydrogen and carbon. That allows us to study details of cell - substrate interfaces that are not accessible with any other standard techniques. We studied the adhesion of human brain tumor cells (U251) to quartz substrates and their responses to the external mechanical forces. Such cells are isolated within the central nervous system which makes them difficult to reach with conventional therapies and therefore making them highly invasive. Our results reveal changes in the thickness and composition of the adhesion layer (a layer between the cell lipid membrane and the quartz substrate), largely composed of hyaluronic acid and associated proteoglycans, when the cells were subjected to shear stress. Further studies will allow us to determine more conditions triggering changes in the composition of the bio-material in the adhesion layer. This, in turn, can help to identify changes that correlate with tumor invasiveness, which can have significant medical impact for the development of targeted anti-invasive therapies.
Axisymmetric oscillations at L-H transitions in JET: M-mode
NASA Astrophysics Data System (ADS)
Solano, Emilia R.; Vianello, N.; Delabie, E.; Hillesheim, J. C.; Buratti, P.; Réfy, D.; Balboa, I.; Boboc, A.; Coelho, R.; Sieglin, B.; Silburn, S.; Drewelow, P.; Devaux, S.; Dodt, D.; Figueiredo, A.; Frassinetti, L.; Marsen, S.; Meneses, L.; Maggi, C. F.; Morris, J.; Gerasimov, S.; Baruzzo, M.; Stamp, M.; Grist, D.; Nunes, I.; Rimini, F.; Schmuck, S.; Lupelli, I.; Silva, C.; contributors, JET
2017-02-01
L to H transition studies at JET have revealed an n = 0, m = 1 magnetic oscillation starting immediately at the L to H transition (called M-mode for brevity). While the magnetic oscillation is present a weak ELM-less H-mode regime is obtained, with a clear increase of density and a weak electron temperature pedestal. It is an intermediate state between L and H-mode. In ICRH heated plasmas or low density NBI plasmas the magnetic mode and the pedestal can remain steady (with small oscillations) for the duration of the heating phase, of order 10 s or more. The axisymmetric magnetic oscillation has period ~0.5-2 ms, and poloidal mode number m = 1: it looks like a pedestal localised up/down oscillation, although it is clearly a natural oscillation of the plasma, not driven by the position control system. Electron cyclotron emission, interferometry, reflectometry and fast Li beam measurements locate the mode in the pedestal region. D α , fast infrared camera and Langmuir probe measurements show that the mode modulates heat and particle fluxes to the target. The mode frequency appears to scale with the poloidal Alfvén velocity, and not with sound speed (i.e. it is not a geodesic acoustic mode). A heuristic model is proposed for the frequency scaling of the mode. We discuss the relationship between the M-mode and other related observations near the L-H transition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, W.; Yun, G. S.; Nam, Y.
2010-10-15
Recently, two-dimensional microwave imaging diagnostics such as the electron cyclotron emission imaging (ECEI) system and microwave imaging reflectometry (MIR) have been developed to study magnetohydrodynamics instabilities and turbulence in magnetically confined plasmas. These imaging systems utilize large optics to collect passive emission or reflected radiation. The design of this optics can be classified into two different types: reflective or refractive optical systems. For instance, an ECEI/MIR system on the TEXTOR tokamak [Park et al., Rev. Sci. Instrum. 75, 3787 (2004)] employed the reflective optics which consisted of two large mirrors, while the TEXTOR ECEI upgrade [B. Tobias et al., Rev.more » Sci. Instrum. 80, 093502 (2009)] and systems on DIII-D, ASDEX-U, and KSTAR adopted refractive systems. Each system has advantages and disadvantages in the standing wave problem and optical aberrations. In this paper, a comparative study between the two optical systems has been performed in order to design a MIR system for KSTAR.« less
Development of Surfaces Optically Suitable for Flat Solar Panels
NASA Technical Reports Server (NTRS)
Desmet, D.; Jason, A.; Parr, A.
1977-01-01
Innovations in reflectometry techniques are described; and the development of an absorbing selective coating is discussed along with details of surface properties. Conclusions as to the parameterization desired for practical applications of selective surfaces are provided.
Remote sensing of snow using bistatic radar reflectometry
NASA Astrophysics Data System (ADS)
Komanduru, Abi
Snow and ice processes are a critical part of the Earth's hydrological and climate cycles. These processes can serve as an important source of fresh water as well as a cause of flooding. Various missions have been proposed by NASA and ESA for the purpose of remote sensing of snow. This research looks at applying bistatic radar reflectometry to the remote sensing of snow water equivalent. The resulting phase offset from changes in optical path length due to reflection through snow are the primary measurements made. The research uses data from a field campaign in Fraser, CO, involving an instrument collecting direct and reflected from S band during Jan 2015 - Apr 2015. Phase measurements from the field data are made from the two signals and compared to theoretical phase computed from a forward model using in situ data. A moderate correlation (>0.6) is found between the measured and modeled phase.
Measurement of the acoustic response of a wind instrument with application to bore reconstruction
NASA Astrophysics Data System (ADS)
van Walstijn, Maarten; Campbell, Murray
2002-11-01
Reconstruction of a bore from measured acoustic response data has been shown to be very useful in studying wind instruments. Such data may be obtained in different ways; directly measuring the frequency-domain response of an acoustic bore has some distinct advantages over directly measuring time-domain data (for example, by pulse reflectometry), but so far has been unsuitable for producing input data for deterministic bore reconstruction algorithms, due to the limited accuracy at high frequencies. In this paper a method is presented for large-bandwidth measurement of the input impedance of a wind instrument using a cylindrical measurement head with multiple wall-mounted microphones. The influence of the number of microphones and the types of calibration impedance on the accuracy will be discussed, and bore reconstructions derived using this technique will be compared with reconstructions obtained using pulse reflectometry. [Work supported by EPSRC.
Neutron reflectometry as a tool to study magnetism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felcher, G. P.
1999-09-21
Polarized-neutron specular reflectometry (PNR) was developed in the 1980's as a means of measuring magnetic depth profiles in flat films. Starting from simple profiles, and gradually solving structures of greater complexity, PNR has been used to observe or clarify a variety of magnetic phenomena. It has been used to measure the absolute magnetization of films of thickness not exceeding a few atomic planes, the penetration of magnetic fields in micron-thick superconductors, and the detailed magnetic coupling across non-magnetic spacers in multilayers and superlattices. Although PNR is considered a probe of depth dependent magnetic structure, laterally averaged in the plane ofmore » the film, the development of new scattering techniques promises to enable the characterization of lateral magnetic structures. Retaining the depth-sensitivity of specular reflectivity, off-specular reflectivity may be brought to resolve in-plane structures over nanometer to micron length scales.« less
NASA Astrophysics Data System (ADS)
Rander, D. N.; Joshi, Y. S.; Kanse, K. S.; Kumbharkhane, A. C.
2016-01-01
The measurements of complex dielectric permittivity of xylitol-water mixtures have been carried out in the frequency range of 10 MHz-30 GHz using a time domain reflectometry technique. Measurements have been done at six temperatures from 0 to 25 °C and at different weight fractions of xylitol (0 < W X ≤ 0.7) in water. There are different models to explain the dielectric relaxation behaviour of binary mixtures, such as Debye, Cole-Cole or Cole-Davidson model. We have observed that the dielectric relaxation behaviour of binary mixtures of xylitol-water can be well described by Cole-Davidson model having an asymmetric distribution of relaxation times. The dielectric parameters such as static dielectric constant and relaxation time for the mixtures have been evaluated. The molecular interaction between xylitol and water molecules is discussed using the Kirkwood correlation factor ( g eff ) and thermodynamic parameter.
Terahertz reflectometry imaging for low and high grade gliomas
NASA Astrophysics Data System (ADS)
Ji, Young Bin; Oh, Seung Jae; Kang, Seok-Gu; Heo, Jung; Kim, Sang-Hoon; Choi, Yuna; Song, Seungri; Son, Hye Young; Kim, Se Hoon; Lee, Ji Hyun; Haam, Seung Joo; Huh, Yong Min; Chang, Jong Hee; Joo, Chulmin; Suh, Jin-Suck
2016-10-01
Gross total resection (GTR) of glioma is critical for improving the survival rate of glioma patients. One of the greatest challenges for achieving GTR is the difficulty in discriminating low grade tumor or peritumor regions that have an intact blood brain barrier (BBB) from normal brain tissues and delineating glioma margins during surgery. Here we present a highly sensitive, label-free terahertz reflectometry imaging (TRI) that overcomes current key limitations for intraoperative detection of World Health Organization (WHO) grade II (low grade), and grade III and IV (high grade) gliomas. We demonstrate that TRI provides tumor discrimination and delineation of tumor margins in brain tissues with high sensitivity on the basis of Hematoxylin and eosin (H&E) stained image. TRI may help neurosurgeons to remove gliomas completely by providing visualization of tumor margins in WHO grade II, III, and IV gliomas without contrast agents, and hence, improve patient outcomes.
Simultaneous reflectometry and interferometry for measuring thin-film thickness and curvature
NASA Astrophysics Data System (ADS)
Arends, A. A.; Germain, T. M.; Owens, J. F.; Putnam, S. A.
2018-05-01
A coupled reflectometer-interferometer apparatus is described for thin-film thickness and curvature characterization in the three-phase contact line region of evaporating fluids. Validation reflectometry studies are provided for Au, Ge, and Si substrates and thin-film coatings of SiO2 and hydrogel/Ti/SiO2. For interferometry, liquid/air and solid/air interferences are studied, where the solid/air samples consisted of glass/air/glass wedges, cylindrical lenses, and molded polydimethylsiloxane lenses. The liquid/air studies are based on steady-state evaporation experiments of water and isooctane on Si and SiO2/Ti/SiO2 wafers. The liquid thin-films facilitate characterization of both (i) the nano-scale thickness of the absorbed fluid layer and (ii) the macro-scale liquid meniscus thickness, curvature, and curvature gradient profiles. For our validation studies with commercial lenses, the apparatus is shown to measure thickness profiles within 4.1%-10.8% error.
Neural network evaluation of reflectometry density profiles for control purposes
NASA Astrophysics Data System (ADS)
Santos, J.; Nunes, F.; Manso, M.; Nunes, I.
1999-01-01
Broadband reflectometry is a diagnostic that is able to measure the density profile with high spatial and temporal resolutions, therefore it can be used to improve the performance of advanced tokamak operation modes and to supplement or correct the magnetics for plasma position control. To perform these tasks real-time processing is needed. Here we present a method that uses a neural network to make a fast evaluation of radial positions for selected density layers. Typical ASDEX Upgrade density profiles were used to generate the simulated network training and test sets. It is shown that the method has the potential to meet the tight timing requirements of control applications with the required accuracy. The network is also able to provide an accurate estimation of the position of density layers below the first density layer which is probed by an O-mode reflectometer, provided that it is trained with a realistic density profile model.
NASA Astrophysics Data System (ADS)
Brieva, A. C.; Jenkins, T. E.; Jones, D. G.; Strössner, F.; Evans, D. A.; Clark, G. F.
2006-04-01
The internal structure of copper(II)-phthalocyanine (CuPc) thin films grown on SiO2/Si by organic molecular beam deposition has been studied by grazing incidence x-ray reflectometry (GIXR) and atomic force microscopy. The electronic density profile is consistent with a structure formed by successive monolayers of molecules in the α form with the b axis lying in the substrate surface plane. The authors present an electronic density profile model of CuPc films grown on SiO2/Si. The excellent agreement between the model and experimental data allows postdeposition monitoring of the internal structure of the CuPc films with the nondestructive GIXR technique, providing a tool for accurate control of CuPc growth on silicon-based substrates. In addition, since the experiments have been carried out ex situ, they show that these structures can endure ambient conditions.
Wang, Yi-Ping; Wang, Dong Ning; Jin, Wei
2006-09-01
A method for measuring the length of an optical fiber by use of an optical fiber ring laser pulse source is proposed and demonstrated. The key element of the optical fiber ring laser is a gain-switched Fabry-Perot laser diode operated in a self-injection seeding scheme. This method is especially suitable for measuring a medium or long fiber, and a resolution of 0.1 m is experimentally achieved. The measurement is implemented by accurately determining the pulse frequency that can maximize the output power of the fiber ring laser. The measurement results depend only on the refractive index of the fiber corresponding to this single wavelength, instead of the group index of the fiber, which represents a great advantage over both optical time-domain reflectometry and optical low-coherence reflectometry methods.
Kim, Suhwan; Kwon, Hyungwoo; Yang, Injae; Lee, Seungho; Kim, Jeehyun; Kang, Shinwon
2013-11-12
A simultaneous strain and temperature measurement method using a Fabry-Perot laser diode (FP-LD) and a dual-stage fiber Bragg grating (FBG) optical demultiplexer was applied to a distributed sensor system based on Brillouin optical time domain reflectometry (BOTDR). By using a Kalman filter, we improved the performance of the FP-LD based OTDR, and decreased the noise using the dual-stage FBG optical demultiplexer. Applying the two developed components to the BOTDR system and using a temperature compensating algorithm, we successfully demonstrated the simultaneous measurement of strain and temperature distributions under various experimental conditions. The observed errors in the temperature and strain measured using the developed sensing system were 0.6 °C and 50 με, and the spatial resolution was 1 m, respectively.
NASA Astrophysics Data System (ADS)
Chang, Seung Jin; Lee, Chun Ku; Shin, Yong-June; Park, Jin Bae
2016-12-01
A multiple chirp reflectometry system with a fault estimation process is proposed to obtain multiple resolution and to measure the degree of fault in a target cable. A multiple resolution algorithm has the ability to localize faults, regardless of fault location. The time delay information, which is derived from the normalized cross-correlation between the incident signal and bandpass filtered reflected signals, is converted to a fault location and cable length. The in-phase and quadrature components are obtained by lowpass filtering of the mixed signal of the incident signal and the reflected signal. Based on in-phase and quadrature components, the reflection coefficient is estimated by the proposed fault estimation process including the mixing and filtering procedure. Also, the measurement uncertainty for this experiment is analyzed according to the Guide to the Expression of Uncertainty in Measurement. To verify the performance of the proposed method, we conduct comparative experiments to detect and measure faults under different conditions. Considering the installation environment of the high voltage cable used in an actual vehicle, target cable length and fault position are designed. To simulate the degree of fault, the variety of termination impedance (10 Ω , 30 Ω , 50 Ω , and 1 \\text{k} Ω ) are used and estimated by the proposed method in this experiment. The proposed method demonstrates advantages in that it has multiple resolution to overcome the blind spot problem, and can assess the state of the fault.
NASA Astrophysics Data System (ADS)
Kurbatov, G. A.; Padokhin, A. M.
2017-12-01
In the present work we study GNSS - reflectometry methods for estimation of sea level variations using a single GNSS-receiver, which are based on the multipath propagation effects (interference pattern in SNR of GNSS signals at small elevation angles) caused by the reflection of navigational signals from the sea surface. The measurements were carried out in the coastal zone of Black Sea at the Stationary Oceanographic Platform during one-week campaign in the summer 2017. GPS/GLONASS signals at two working frequencies of both systems were used to study sea level variations which almost doubled the amount of observations compared to GPS-only tide gauge. Moreover all the measurements were conducted with 4-antenna GNSS receiver providing the opportunity for different orientations of antennas including zenith and nadir looking ones as well as two horizontally oriented ones at different azimuths. As the reference we used data from co-located wire wave gauge which showed good correspondence of both datasets. Though tidal effects are not so pronounced for the Black Sea, the described experimental setup allowed to study the effects of sea surface roughness, driven by meteorological conditions (e.g. wind waves), as well as antenna directivity pattern effects on the observed interference patterns of GPS/GLONASS L1/L2 signals (relation of the main spectral peak to the noise power) and the quality of sea level estimations.
Optical sensing: recognition elements and devices
NASA Astrophysics Data System (ADS)
Gauglitz, Guenter G.
2012-09-01
The requirements in chemical and biochemical sensing with respect to recognition elements, avoiding non-specific interactions, and high loading of the surface for detection of low concentrations as well as optimized detection systems are discussed. Among the many detection principles the optical techniques are classified. Methods using labeled compounds like Total Internal Reflection Fluorescence (TIRF) and direct optical methods like micro reflectometry or refractometry are discussed in comparison. Reflectometric Interference Spectroscopy (RIfS) is presented as a robust simple method for biosensing. As applications, trace analysis of endocrine disruptors in water, hormones in food, detection of viruses and bacteria in food and clinical diagnostics are discussed.
DOT National Transportation Integrated Search
2012-03-01
Continuous monitoring of subsurface ground movements is accomplished with in-place instruments utilizing automated data acquisition methods. These typically include TDR (Time Domain Reflectometry) or assemblies of several servo-accelerometer-based, e...
Long term pavement performance computed parameter : moisture content
DOT National Transportation Integrated Search
2008-01-01
A study was conducted to compute in situ soil parameters based on time domain reflectometry (TDR) traces obtained from Long Term Pavement Performance (LTPP) test sections instrumented for the seasonal monitoring program (SMP). Ten TDR sensors were in...
Optical detection dental disease using polarized light
Everett, Matthew J.; Colston, Jr., Billy W.; Sathyam, Ujwal S.; Da Silva, Luiz B.; Fried, Daniel
2003-01-01
A polarization sensitive optical imaging system is used to detect changes in polarization in dental tissues to aid the diagnosis of dental disease such as caries. The degree of depolarization is measured by illuminating the dental tissue with polarized light and measuring the polarization state of the backscattered light. The polarization state of this reflected light is analyzed using optical polarimetric imaging techniques. A hand-held fiber optic dental probe is used in vivo to direct the incident beam to the dental tissue and collect the reflected light. To provide depth-resolved characterization of the dental tissue, the polarization diagnostics may be incorporated into optical coherence domain reflectometry and optical coherence tomography (OCDR/OCT) systems, which enables identification of subsurface depolarization sites associated with demineralization of enamel or bone.
2007-12-14
KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, Time Domain Reflectometry, or TDR, instrumentation is being exposed to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
2007-12-14
KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, Time Domain Reflectometry, or TDR, instrumentation is being exposed to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
2007-12-14
KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, Time Domain Reflectometry, or TDR, instrumentation is being exposed to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
2007-12-14
KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, Time Domain Reflectometry, or TDR, instrumentation is being exposed to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
Symmetric and asymmetric instability of buried polymer interfaces
NASA Astrophysics Data System (ADS)
de Silva, J. P.; Cousin, F.; Wildes, A. R.; Geoghegan, M.; Sferrazza, M.
2012-09-01
We demonstrate using neutron reflectometry that the internal interfaces in a trilayer system of two identical thick polystyrene layers sandwiching a much thinner (deuterated) poly(methyl methacrylate) layer 15 nm thick (viscosity matched with the polystyrene layers) increase in roughness at the same rate. When the lower polystyrene layer is replaced with a layer of the same polymer of much greater molecular mass, two different growths of the interfaces are observed. From the growth of the interface for this asymmetric case in the solid regime using the theoretical prediction of the spinodal instability including slippage at the interface, a value of the Hamaker constant of the system has been extracted in agreement with the calculated value. For the symmetric case the rise time of the instability is much faster.
NASA Astrophysics Data System (ADS)
Motte, Erwan; Zribi, Mehrez; Fanise, Pascal
2015-04-01
GLORI (GLObal navigation satellite system Reflectometry Instrument) is a new receiver dedicated to the airborne measurement of surface parameters such as soil moisture and biomass above ground and sea state (wave height and direction) above oceans. The instrument is based on the PARIS concept [Martin-Neira, 1993] using both the direct and surface-reflected L-band signals from the GPS constellation as a multistatic radar source. The receiver is based on one up-looking and one down-looking dual polarization hemispherical active antennas feeding a low-cost 4-channel SDR direct down-conversion receiver tuned to the GPS L1 frequency. The raw measurements are sampled at 16.368MHz and stored as 2-bit, IQ binary files. In post-processing, GPS acquisition and tracking are performed on the direct up-looking signal while the down-looking signal is processed blindly using tracking parameters from the direct signal. The obtained direct and reflected code-correlation waveforms are the basic observables for geophysical parameters inversion. The instrument was designed to be installed aboard the ATR42 experimental aircraft from the French SAFIRE fleet as a permanent payload. The long term goal of the project is to provide real-time continuous surface information for every flight performed. The aircraft records attitude information through its Inertial Measurement Unit and a commercial GPS receiver records additional information such as estimated doppler and code phase, receiver location, satellites azimuth and elevation. A series of test flights were performed over both the Toulouse and Gulf of Lion (Mediterranean Sea) regions during the period 17-21 Nov 2014 together with the KuROS radar [Hauser et al., 2014]. Using processing methods from the literature [Egido et al., 2014], preliminary results demonstrate the instrument sensitivity to both ground and ocean surface parameters estimation. A dedicated scientific flight campaign is planned at the end of second quarter 2015 with collocated measurement of biomass and soil moisture ground truth in order to better characterize the instrument sensitivity to geophysical parameters. The instrument will be improved in the meanwhile including the optimization of data processing and the better integration of external data (GPS commercial receiver, Attitude) into the receiver. M.Martin-Neira. A Passive reflectometry and interferometry system (PARIS): Application to ocean altimetry. ESA J., 17:331-355, 1993 Hauser, D.; Caudal, G.; Le Gac, C.; Valentin, R.; Delaye, L.; Tison, C., "KuROS: A new airborne Ku-band Doppler radar for observation of the ocean surface," Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International , vol., no., pp.282,285, 13-18 July 2014 Egido, A.; Paloscia, S.; Motte, E.; Guerriero, L.; Pierdicca, N.; Caparrini, M.; Santi, E.; Fontanelli, G.; Floury, N., "Airborne GNSS-R Polarimetric Measurements for Soil Moisture and Above-Ground Biomass Estimation," Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of , vol.7, no.5, pp.1522,1532, May 2014
Lunar Crustal Magnetism: Correlations with Geology
NASA Technical Reports Server (NTRS)
Halekas, J. S.; Mitchell, D. L.; Lin, R. P.; Frey, S.; Acuna, M. H.; Hood, L. L.; Binder, A. B.
2001-01-01
With Lunar Prospector reflectometry data we now have sufficient surface coverage to allow detailed comparisons between crustal magnetism and geology. We find substantial evidence that lunar magnetism is dominated by the effects of impact processes. Additional information is contained in the original extended abstract.
A reevaluation of TDR propagation time determination in soils and geological media
USDA-ARS?s Scientific Manuscript database
Time domain reflectometry (TDR) is an established method for the determination of apparent dielectric permittivity and water content in soils. Using current waveform interpretation procedures, signal attenuation and variation in dielectric media properties along the transmission line can significant...
Building professional capacity in ITS : guidelines on developing the future professional
DOT National Transportation Integrated Search
1999-07-01
Time domain reflectometry (TDR) has become one of the most reliable methods for measuring in-situ soil moisture content. TDR sensors developed by the Federal Highway Administration (FHWA) are being used in the Long-Term Pavement Performance (LTPP) Se...
Early Stages of Oxidative Stress-Induced Membrane Permeabilization: A Neutron Reflectometry Study
Smith, Hillary L.; Howland, Michael C.; Szmodis, Alan W.; Li, Qijuan; Daemen, Luke L.; Parikh, Atul N.; Majewski, Jaroslaw
2009-01-01
Neutron reflectometry was used to probe in situ the structure of supported lipid bilayers at the solid–liquid interface during the early stages of UV-induced oxidative degradation. Single-component supported lipid bilayers composed of gel phase, dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and fluid phase, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), phospholipids were exposed to low-dose oxidative stress generated by UV light and their structures were examined by neutron reflectometry. An interrupted illumination mode, involving exposures in 15 min increments with 2 h intervals between subsequent exposures, and a continuous mode involving a single 60 (or 90) min exposure period were employed. In both cases, pronounced differences in the structure of the lipid bilayer after exposure were observed. Interrupted exposure led to a substantial decrease in membrane coverage but preserved its total thickness at reduced scattering length densities. These results indicate that the initial phase during UV-induced membrane degradation involves the formation of hydrophilic channels within the membrane. This is consistent with the loss of some lipid molecules we observe and attendant reorganization of residual lipids forming hemimicellar edges of the hydrophilic channels. In contrast, continuous illumination produced a graded interface of continuously varied scattering length density (and hence hydrocarbon density) extending 100–150 Å into the liquid phase. Exposure of a DPPC bilayer to UV light in the presence of a reservoir of unfused vesicles showed low net membrane disintegration during oxidative stress, presumably because of surface back-filling from the bulk reservoir. Chemical evidence for membrane degradation was obtained by mass spectrometry and Fourier transform infrared spectroscopy. Further evidence for the formation of hydrophilic channels was furnished by fluorescence microscopy and imaging ellipsometry data. PMID:19275260
NASA Astrophysics Data System (ADS)
Prisiazhniuk, D.; Conway, G. D.; Krämer-Flecken, A.; Stroth, U.; the ASDEX Upgrade Team
2018-07-01
The poloidal correlation reflectometry diagnostic operated in ordinary mode with additional radial correlation channel is applied in this paper to investigate the correlation of the turbulent density fluctuations. The perpendicular and radial correlation lengths, l ⊥ and l r , the perpendicular velocity v⊥ and the dissipation (mutation) time τ d are measured simultaneously from the outer core to edge in the L-mode plasmas of ASDEX Upgrade. It is shown that in the outer core region (0.6 < ρ pol < 0.9) the measured correlation lengths scale with the drift wave length, l ⊥ ≈ 5ρ s and l r ≈ 10ρ s , while the dissipation time is inversely correlated with the velocity τ d ≈ 40/v ⊥(τ d is in μs and v ⊥ in km s–1). In the pedestal region (0.925 < ρ pol < 0.98), where the E × B shear flows are present, a loss of measured correlation is observed which can be explained by a combination of small propagation velocity and an additional reduction of τ d . In the E r well region (ρ pol ≈ 0.99), the measured perpendicular correlation length increases {l}\\perp ≈ 13{ρ }s and the radial correlation length decreases l r ≈ 4ρ s compared to the outer core values. The correlation measurements are interpreted in the frame of the linear regime of reflectometry (applied only to ρ pol < 0.9). Using the Born approximation we show that the finite wavenumber sensitivity of the reflectometer increases the measured l ⊥and l r , but does not affect the measured τ d . By the including diagnostic correction the real correlation lengths l ⊥ ≈ l r ≈ 3ρ s are estimated.
Distributed fiber optic moisture intrusion sensing system
Weiss, Jonathan D.
2003-06-24
Method and system for monitoring and identifying moisture intrusion in soil such as is contained in landfills housing radioactive and/or hazardous waste. The invention utilizes the principle that moist or wet soil has a higher thermal conductance than dry soil. The invention employs optical time delay reflectometry in connection with a distributed temperature sensing system together with heating means in order to identify discrete areas within a volume of soil wherein temperature is lower. According to the invention an optical element and, optionally, a heating element may be included in a cable or other similar structure and arranged in a serpentine fashion within a volume of soil to achieve efficient temperature detection across a large area or three dimensional volume of soil. Remediation, moisture countermeasures, or other responsive action may then be coordinated based on the assumption that cooler regions within a soil volume may signal moisture intrusion where those regions are located.
Optimization studies of the ITER low field side reflectometer.
Diem, S J; Wilgen, J B; Bigelow, T S; Hanson, G R; Harvey, R W; Smirnov, A P
2010-10-01
Microwave reflectometry will be used on ITER to measure the electron density profile, density fluctuations due to MHD/turbulence, edge localized mode (ELM) density transients, and as an L-H transition monitor. The ITER low field side reflectometer system will measure both core and edge quantities using multiple antenna arrays spanning frequency ranges of 15-155 GHz for the O-mode system and 55-220 GHz for the X-mode system. Optimization studies using the GENRAY ray-tracing code have been done for edge and core measurements. The reflectometer launchers will utilize the HE11 mode launched from circular corrugated waveguide. The launched beams are assumed to be Gaussian with a beam waist diameter of 0.643 times the waveguide diameter. Optimum launcher size and placement are investigated by computing the antenna coupling between launchers, assuming the launched and received beams have a Gaussian beam pattern.
Microwave Imaging in Large Helical Device
NASA Astrophysics Data System (ADS)
Yoshinaga, T.; Nagayama, Y.; Tsuchiya, H.; Kuwahara, D.; Tsuji-Iio, S.; Akaki, K.; Mase, A.; Kogi, Y.; Yamaguchi, S.; Shi, Z. B.; Hojo, H.
2011-02-01
Microwave imaging reflectometry (MIR) system and electron cyclotron emission imaging (ECEI) system are under development for the simultaneous reconstruction of the electron density and temperature fluctuation structures in the Large Helical Device (LHD). The MIR observes three-dimensional structure of disturbed cutoff surfaces by using the two-dimensionally distributed horn-antenna mixer array (HMA) of 5 × 7 channels in combination with the simultaneous projection of microwaves with four different frequency components (60.410, 61.808, 63.008 and 64.610 GHz). The ECEI is designed to observe two-dimensional structure of electron temperature by detecting second-harmonic ECE at 97-107 GHz with the one-dimensional HMA (7 channels) in the common optics with MIR system. Both the MIR and the ECEI are realized by the HMA and the band-pass filter (BPF) arrays, which are fabricated by micro-strip-line technique at low-cost.
Cho, Ming-Yuan; Hoang, Thi Thom
2017-01-01
Fast and accurate fault classification is essential to power system operations. In this paper, in order to classify electrical faults in radial distribution systems, a particle swarm optimization (PSO) based support vector machine (SVM) classifier has been proposed. The proposed PSO based SVM classifier is able to select appropriate input features and optimize SVM parameters to increase classification accuracy. Further, a time-domain reflectometry (TDR) method with a pseudorandom binary sequence (PRBS) stimulus has been used to generate a dataset for purposes of classification. The proposed technique has been tested on a typical radial distribution network to identify ten different types of faults considering 12 given input features generated by using Simulink software and MATLAB Toolbox. The success rate of the SVM classifier is over 97%, which demonstrates the effectiveness and high efficiency of the developed method.
NASA Astrophysics Data System (ADS)
Liu, Tao; Wang, Feng; Zhang, Xuping; Zhang, Lin; Yuan, Quan; Liu, Yu; Yan, Zhijun
2017-08-01
A distributed vibration sensing technique using double-optical-pulse based on phase-sensitive optical time-domain reflectometry (ϕ-OTDR) and an ultraweak fiber Bragg grating (UWFBG) array is proposed for the first time. The single-mode sensing fiber is integrated with the UWFBG array that has uniform spatial interval and ultraweak reflectivity. The relatively high reflectivity of the UWFBG, compared with the Rayleigh scattering, gains a high signal-to-noise ratio for the signal, which can make the system achieve the maximum detectable frequency limited by the round-trip time of the probe pulse in fiber. A corresponding experimental ϕ-OTDR system with a 4.5 km sensing fiber integrated with the UWFBG array was setup for the evaluation of the system performance. Distributed vibration sensing is successfully realized with spatial resolution of 50 m. The sensing range of the vibration frequency can cover from 3 Hz to 9 kHz.
The flotation and adsorption of mixed collectors on oxide and silicate minerals.
Xu, Longhua; Tian, Jia; Wu, Houqin; Lu, Zhongyuan; Sun, Wei; Hu, Yuehua
2017-12-01
The analysis of flotation and adsorption of mixed collectors on oxide and silicate minerals is of great importance for both industrial applications and theoretical research. Over the past years, significant progress has been achieved in understanding the adsorption of single collectors in micelles as well as at interfaces. By contrast, the self-assembly of mixed collectors at liquid/air and solid/liquid interfaces remains a developing area as a result of the complexity of the mixed systems involved and the limited availability of suitable analytical techniques. In this work, we systematically review the processes involved in the adsorption of mixed collectors onto micelles and at interface by examining four specific points, namely, theoretical background, factors that affect adsorption, analytical techniques, and self-assembly of mixed surfactants at the mineral/liquid interface. In the first part, the theoretical background of collector mixtures is introduced, together with several core solution theories, which are classified according to their application in the analysis of physicochemical properties of mixed collector systems. In the second part, we discuss the factors that can influence adsorption, including factors related to the structure of collectors and environmental conditions. We summarize their influence on the adsorption of mixed systems, with the objective to provide guidance on the progress achieved in this field to date. Advances in measurement techniques can greatly promote our understanding of adsorption processes. In the third part, therefore, modern techniques such as optical reflectometry, neutron scattering, neutron reflectometry, thermogravimetric analysis, fluorescence spectroscopy, ultrafiltration, atomic force microscopy, analytical ultracentrifugation, X-ray photoelectron spectroscopy, Vibrational Sum Frequency Generation Spectroscopy and molecular dynamics simulations are introduced in virtue of their application. Finally, focusing on oxide and silicate minerals, we review and summarize the flotation and adsorption of three most widely used mixed surfactant systems (anionic-cationic, anionic-nonionic, and cationic-nonionic) at the liquid/mineral interface in order to fully understand the self-assembly progress. In the end, the paper gives a brief future outlook of the possible development in the mixed surfactants. Copyright © 2017 Elsevier B.V. All rights reserved.
DOT National Transportation Integrated Search
2012-07-01
Brillouin-scattering Optical Time Domain Reflectometry (BOTDR) is a viable technology for simultaneous, distributed : strain and temperature measurements for miles-long transportation structures. It is a promising tool to ensure the smooth : operatio...
Novel Use of Time Domain Reflectometry in Infiltration-based Low Impact Development Practices
Low impact development (LID) practices are structures that intercept stormwater runoff and infiltrate it through a range of media types, including aggregate, rain garden media, and underlying soils. Hydrologic performance is typically evaluated by comparing inlet and underdrain o...
Radio frequency reflectometry and charge sensing of a precision placed donor in silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hile, Samuel J., E-mail: samhile@gmail.com; House, Matthew G.; Peretz, Eldad
2015-08-31
We compare charge transitions on a deterministic single P donor in silicon using radio frequency reflectometry measurements with a tunnel coupled reservoir and DC charge sensing using a capacitively coupled single electron transistor (SET). By measuring the conductance through the SET and comparing this with the phase shift of the reflected radio frequency (RF) excitation from the reservoir, we can discriminate between charge transfer within the SET channel and tunneling between the donor and reservoir. The RF measurement allows observation of donor electron transitions at every charge degeneracy point in contrast to the SET conductance signal where charge transitions aremore » only observed at triple points. The tunnel coupled reservoir has the advantage of a large effective lever arm (∼35%), allowing us to independently extract a neutral donor charging energy ∼62 ± 17 meV. These results demonstrate that we can replace three terminal transistors by a single terminal dispersive reservoir, promising for high bandwidth scalable donor control and readout.« less
Microwave dielectric study of an oligomeric electrolyte gelator by time domain reflectometry.
Kundu, Shyamal Kumar; Yagihara, Shin; Yoshida, Masaru; Shibayama, Mitsuhiro
2009-07-30
The dynamics of water molecules in aqueous solutions of an oligomeric electrolyte gelator, poly[pyridinium-1,4-diyliminocarbonyl-1,4-phenylene-methylene chloride] (1-Cl) was characterized by microwave dielectric measurements using the time domain reflectometry method. The dielectric dispersion and absorption curves related to the orientational motion of water molecules were described by the Cole-Cole equation. Discontinuities were observed in the concentration dependence of the dielectric relaxation strength, Deltaepsilonh, as well as in the Cole-Cole parameter, betah. These discontinuities were observed between the samples with concentrations of 6 and 7 g/L 1-Cl/water, which correspond to a change in the transparency. Such a discontinuity corresponds to the observation of the critical concentration of gelation. The interaction between water and 1-Cl molecules was discussed from the tauh-betah diagram. As 1-Cl carries an amide group, it could be expected that 1-Cl may interact hydrophilically with water, but the present result suggests that 1-Cl interact hydrophobically with water.
Instrumentation techniques for monitoring shock and detonation waves
NASA Astrophysics Data System (ADS)
Dick, R. D.; Parrish, R. L.
1985-09-01
CORRTEX (Continuous Reflectometry for Radius Versus Time Experiments), SLIFER (Shorted Location Indication by Frequency of Electrical Resonance), and pin probes were used to monitor several conditions of blasting such as the detonation velocity of the explosive, the functioning of the stemming column confining the explosive, and rock mass motion. CORRTEX is a passive device that employs time-domain reflectometry to interrogate the two-way transit time of a coaxial cable. SLIFER is an active device that monitors the changing frequency resulting from a change in length of a coaxial cable forming an element of an oscillator circuit. Pin probes in this application consist of RG-174 coaxial cables, each with an open circuit, placed at several known locations within the material. Each cable is connected to a pulse-forming network and a voltage source. When the cables are shorted by the advancing wave, time-distance data are produced from which a velocity can be computed. Each technique, installation of the gauge, examples of the signals, and interpretation of the records are described.
NASA Astrophysics Data System (ADS)
Nishiyama, M.; Igawa, H.; Kasai, T.; Watanabe, N.
2013-09-01
In this paper, we reveal characteristics of static and dynamic distributed strain measurement using a long-gauge fiber Bragg grating (FBG) and a Delayed Transmission/Reflection Ratiometric Reflectometry (DTR3) scheme. The DTR3 scheme has capability of detecting distributed strain using the long-gauge FBG with 50-cm spatial resolution. Additionally, dynamic strain measurement can be achieved using this technique in 100-Hz sampling rate. We evaluated strain sensing characteristics of the long-gauge FBG attached on 2.5-m aluminum bar by a four-point bending equipment. Experimental results showed that the DTR3 using the long-gauge FBG could detect distributed strain in static tests and resonance frequency of structure in free vibration tests. As a result, it is suggested that the DTR3 scheme using the longgauge FBG is attractive to structural health monitoring (SHM) as dynamic deformation detection of a few and tensmeters structure such as the airplane wing and the helicopter blade.
Bergman, Arik; Langer, Tomi; Tur, Moshe
2017-03-06
A novel technique combining Brillouin phase-shift measurements with Brillouin dynamic gratings (BDGs) reflectometry in polarization-maintaining fibers is presented here for the first time. While a direct measurement of the optical phase in standard BDG setups is impractical due to non-local phase contributions, their detrimental effect is reduced by ~4 orders of magnitude through the coherent addition of Stokes and anti-Stokes reflections from two counter-propagating BDGs in the fiber. The technique advantageously combines the high-spatial-resolution of BDGs reflectometry with the increased tolerance to optical power fluctuations of phasorial measurements, to enhance the performance of fiber-optic strain sensors. We demonstrate a distributed measurement (20cm spatial-resolution) of both static and dynamic (5kHz of vibrations at a sampling rate of 1MHz) strain fields acting on the fiber, in good agreement with theory and (for the static case) with the results of commercial reflectometers.
NASA Astrophysics Data System (ADS)
Nelson, Andrew
2010-11-01
The efficient use of complex neutron scattering instruments is often hindered by the complex nature of their operating software. This complexity exists at each experimental step: data acquisition, reduction and analysis, with each step being as important as the previous. For example, whilst command line interfaces are powerful at automated acquisition they often reduce accessibility by novice users and sometimes reduce the efficiency for advanced users. One solution to this is the development of a graphical user interface which allows the user to operate the instrument by a simple and intuitive "push button" approach. This approach was taken by the Motofit software package for analysis of multiple contrast reflectometry data. Here we describe the extension of this package to cover the data acquisition and reduction steps for the Platypus time-of-flight neutron reflectometer. Consequently, the complete operation of an instrument is integrated into a single, easy to use, program, leading to efficient instrument usage.
Parent, Francois; Loranger, Sebastien; Mandal, Koushik Kanti; Iezzi, Victor Lambin; Lapointe, Jerome; Boisvert, Jean-Sébastien; Baiad, Mohamed Diaa; Kadoury, Samuel; Kashyap, Raman
2017-04-01
We demonstrate a novel approach to enhance the precision of surgical needle shape tracking based on distributed strain sensing using optical frequency domain reflectometry (OFDR). The precision enhancement is provided by using optical fibers with high scattering properties. Shape tracking of surgical tools using strain sensing properties of optical fibers has seen increased attention in recent years. Most of the investigations made in this field use fiber Bragg gratings (FBG), which can be used as discrete or quasi-distributed strain sensors. By using a truly distributed sensing approach (OFDR), preliminary results show that the attainable accuracy is comparable to accuracies reported in the literature using FBG sensors for tracking applications (~1mm). We propose a technique that enhanced our accuracy by 47% using UV exposed fibers, which have higher light scattering compared to un-exposed standard single mode fibers. Improving the experimental setup will enhance the accuracy provided by shape tracking using OFDR and will contribute significantly to clinical applications.
Synthetic Microwave Imaging Reflectometry diagnostic using 3D FDTD Simulations
NASA Astrophysics Data System (ADS)
Kruger, Scott; Jenkins, Thomas; Smithe, David; King, Jacob; Nimrod Team Team
2017-10-01
Microwave Imaging Reflectometry (MIR) has become a standard diagnostic for understanding tokamak edge perturbations, including the edge harmonic oscillations in QH mode operation. These long-wavelength perturbations are larger than the normal turbulent fluctuation levels and thus normal analysis of synthetic signals become more difficult. To investigate, we construct a synthetic MIR diagnostic for exploring density fluctuation amplitudes in the tokamak plasma edge by using the three-dimensional, full-wave FDTD code Vorpal. The source microwave beam for the diagnostic is generated and refelected at the cutoff surface that is distorted by 2D density fluctuations in the edge plasma. Synthetic imaging optics at the detector can be used to understand the fluctuation and background density profiles. We apply the diagnostic to understand the fluctuations in edge plasma density during QH-mode activity in the DIII-D tokamak, as modeled by the NIMROD code. This work was funded under DOE Grant Number DE-FC02-08ER54972.
FY15 Gravitational-Wave Mission Activities Project
NASA Technical Reports Server (NTRS)
Stebbins, Robin T.
2014-01-01
The Gravitational-Wave (GW) team at Goddard provides leadership to both the US and international research communities through science and conceptual design competencies. To sustain the US effort to either participate in the GW mission that ESA selected for the L3 opportunity or to initiate a NASA-led mission, the Goddard team will engage in the advancement of the science and the conceptual design of a future GW mission. We propose two tasks: (1) deliver new theoretical tools to help the external research community understand how GW observations can contribute to their science and (2) explore new implementations for laser metrology systems based on techniques from time-domain reflectometry and laser communications.
Real-time monitoring implementation in a remote-pumped WDM PON
NASA Astrophysics Data System (ADS)
Liaw, S.-K.; Hong, K.-L.; Shei, Y.-S.
2008-08-01
We report on an improved configuration to monitor a passive optical network with high quality in service. This proposed system comprises fiber-Bragg gratings, a 1 × 4 optical switch, and an optical time-domain reflectometry to diagnose the broken point in real time. It could simultaneously detect multioptical network units in a WDM PON. The remote-pump integrated residual pumping reused function is implemented. Broken points in different optical paths can be detected simultaneously even when the distances to the central office are identical. The bit-error rate testing is verified with a small power penalty, making it an ideal solution for the real-time monitoring in a WDM PON.
Fiber optic sensor technology - An opportunity for smart aerospace structures
NASA Technical Reports Server (NTRS)
Heyman, J. S.; Rogowski, R. S.; Claus, R. O.
1988-01-01
Fiber optic sensors provide the opportunity for fabricating materials with internal sensors which can serve as lifetime health monitors, analogous to a central nervous system. The embedded fiber optic sensors can be interrogated by various techniques to measure internal strain, temperature, pressure, acoustic waves and other parameters indicative of structural integrity. Experiments have been conducted with composite samples with embedded sensors to measure strain using optical time domain reflectometry, modal interference and an optical phase locked loop. Fiber optic sensors have been developed to detect acoustic emission and impact damage and have been demonstrated for cure monitoring. These sensors have the potential for lifetime monitoring of structural properties, providing real time nondestructive evaluation.
A Forward GPS Multipath Simulator Based on the Vegetation Radiative Transfer Equation Model
Wu, Xuerui; Jin, Shuanggen; Xia, Junming
2017-01-01
Global Navigation Satellite Systems (GNSS) have been widely used in navigation, positioning and timing. Nowadays, the multipath errors may be re-utilized for the remote sensing of geophysical parameters (soil moisture, vegetation and snow depth), i.e., GPS-Multipath Reflectometry (GPS-MR). However, bistatic scattering properties and the relation between GPS observables and geophysical parameters are not clear, e.g., vegetation. In this paper, a new element on bistatic scattering properties of vegetation is incorporated into the traditional GPS-MR model. This new element is the first-order radiative transfer equation model. The new forward GPS multipath simulator is able to explicitly link the vegetation parameters with GPS multipath observables (signal-to-noise-ratio (SNR), code pseudorange and carrier phase observables). The trunk layer and its corresponding scattering mechanisms are ignored since GPS-MR is not suitable for high forest monitoring due to the coherence of direct and reflected signals. Based on this new model, the developed simulator can present how the GPS signals (L1 and L2 carrier frequencies, C/A, P(Y) and L2C modulations) are transmitted (scattered and absorbed) through vegetation medium and received by GPS receivers. Simulation results show that the wheat will decrease the amplitudes of GPS multipath observables (SNR, phase and code), if we increase the vegetation moisture contents or the scatters sizes (stem or leaf). Although the Specular-Ground component dominates the total specular scattering, vegetation covered ground soil moisture has almost no effects on the final multipath signatures. Our simulated results are consistent with previous results for environmental parameter detections by GPS-MR. PMID:28587255
Utilizing GNSS Reflectometry to Assess Surface Inundation Dynamics in Tropical Wetlands
NASA Astrophysics Data System (ADS)
Jensen, K.; McDonald, K. C.; Podest, E.; Chew, C. C.
2017-12-01
Tropical wetlands play a significant role in global atmospheric methane and terrestrial water storage. Despite the growing number of remote sensing products from satellite sensors, both spatial distribution and temporal variability of wetlands remain highly uncertain. An emerging innovative approach to mapping wetlands is offered by GNSS reflectometry (GNSS-R), a bistatic radar concept that takes advantage of GNSS transmitting satellites to yield observations with global coverage and rapid revisit time. This technology offers the potential to capture dynamic inundation changes in wetlands at higher temporal fidelity and sensitivity under the canopy than presently possible. We present an integrative analysis of radiometric modeling, ground measurements, and several microwave remote sensing datasets traditionally used for wetland observations. From a theoretical standpoint, GNSS-R sensitivities for vegetation and wetlands are investigated with a bistatic radar model in order to understand the interactions of the signal with various land surface components. GNSS reflections from the TechDemoSat-1 (TDS-1), Soil Moisture Active Passive (SMAP), and Cyclone GNSS (CYGNSS) missions are tested experimentally with contemporaneous (1) field measurements collected from the Pacaya Samiria National Reserve in the Peruvian Amazon, (2) imaging radar from Sentinel-1 and PALSAR-2 observed over a variety of tropical wetland systems, and (3) pan-tropical coarse-resolution (25km) microwave datasets (Surface Water Microwave Product Series). We find that GNSS-R data provide the potential to extend capabilities of current remote sensing techniques to characterize surface inundation extent, and we explore how to maximize synergism between different satellite sensors to produce an enhanced wetland monitoring product.
In situ optical time-domain reflectometry (OTDR) for VCSEL-based communication systems
NASA Astrophysics Data System (ADS)
Keeler, Gordon A.; Serkland, Darwin K.; Geib, Kent M.; Klem, John F.; Peake, Gregory M.
2006-02-01
Optical time-domain reflectometry (OTDR) is an effective technique for locating faults in fiber communication links. The fact that most OTDR measurements are performed manually is a significant drawback, because it makes them too costly for use in many short-distance networks and too slow for use in military avionic platforms. Here we describe and demonstrate an automated, low-cost, real-time approach to fault monitoring that can be achieved by integrating OTDR functionality directly into VCSEL-based transceivers. This built-in test capability is straightforward to implement and relevant to both multimode and single mode networks. In-situ OTDR uses the transmitter VCSEL already present in data transceivers. Fault monitoring is performed by emitting a brief optical pulse into the fiber and then turning the VCSEL off. If a fault exists, a portion of the optical pulse returns to the transceiver after a time equal to the round-trip delay through the fiber. In multimode OTDR, the signal is detected by an integrated photodetector, while in single mode OTDR the VCSEL itself can be used as a detector. Modified driver electronics perform the measurement and analysis. We demonstrate that VCSEL-based OTDR has sufficient sensitivity to determine the location of most faults commonly seen in short-haul networks (i.e., the Fresnel reflections from improperly terminated fibers and scattering from raggedly-broken fibers). Results are described for single mode and multimode experiments, at both 850 nm and 1.3 μm. We discuss the resolution and sensitivity that have been achieved, as well as expected limitations for this novel approach to network monitoring.
The use of recycled concrete aggregate in a dense graded aggregate base course.
DOT National Transportation Integrated Search
2008-03-01
The research project was broken up into 2 different parts. The first part involved evaluating the potential use of the Time : Domain Reflectometry, TDR (ASTM D6780), as a non-nuclear means for determining the dry density and moisture content of : gra...
NASA Astrophysics Data System (ADS)
Cheng, Ju; Lu, Jian; Zhang, Hong-Chao; Lei, Feng; Sardar, Maryam; Bian, Xin-Tian; Zuo, Fen; Shen, Zhong-Hua; Ni, Xiao-Wu; Shi, Jin
2018-05-01
Not Available Supported by the National Natural Science Foundation of China under Grant No 11604115, the Educational Commissionof Jiangsu Province of China under Grant No 17KJA460004, and the Huaian Science and Technology Funds under Grant NoHAC201701.
Effects of Multiple Crimps and Cable Length on Reflection Signatures from Long Cables
DOT National Transportation Integrated Search
2002-03-19
The accuracy of time domain reflectometry (TDR) measurements of rock shearing with cable lengths greater than 60 m has not been adequately documented. This paper presents the results of controlled crimping and shearing of a 530 m long, 22.2mm diamete...
2007-12-14
KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, technicians monitor readings during a test exposing Time Domain Reflectometry, or TDR, instrumentation to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
Dielectric relaxation measurement and analysis of restricted water structure in rice kernels
NASA Astrophysics Data System (ADS)
Yagihara, Shin; Oyama, Mikio; Inoue, Akio; Asano, Megumi; Sudo, Seiichi; Shinyashiki, Naoki
2007-04-01
Dielectric relaxation measurements were performed for rice kernels by time domain reflectometry (TDR) with flat-end coaxial electrodes. Difficulties in good contact between the surfaces of the electrodes and the kernels are eliminated by a TDR set-up with a sample holder for a kernel, and the water content could be evaluated from relaxation curves. Dielectric measurements were performed for rice kernels, rice flour and boiled rice with various water contents, and the water amount and dynamic behaviour of water molecules were explained from restricted dynamics of water molecules and also from the τ-β (relaxation time versus the relaxation-time distribution parameter of the Cole-Cole equation) diagram. In comparison with other aqueous systems, the dynamic structure of water in moist rice is more similar to aqueous dispersion systems than to aqueous solutions.
NASA Astrophysics Data System (ADS)
Wu, Huijuan; Qian, Ya; Zhang, Wei; Tang, Chenghao
2017-12-01
High sensitivity of a distributed optical-fiber vibration sensing (DOVS) system based on the phase-sensitivity optical time domain reflectometry (Φ-OTDR) technology also brings in high nuisance alarm rates (NARs) in real applications. In this paper, feature extraction methods of wavelet decomposition (WD) and wavelet packet decomposition (WPD) are comparatively studied for three typical field testing signals, and an artificial neural network (ANN) is built for the event identification. The comparison results prove that the WPD performs a little better than the WD for the DOVS signal analysis and identification in oil pipeline safety monitoring. The identification rate can be improved up to 94.4%, and the nuisance alarm rate can be effectively controlled as low as 5.6% for the identification network with the wavelet packet energy distribution features.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, M. C., E-mail: mthompson@trialphaenergy.com; Gota, H.; Putvinski, S.
The C-2U experiment at Tri Alpha Energy studies the evolution of field-reversed configuration (FRC) plasmas sustained by neutral beam injection. Data on the FRC plasma performance are provided by a comprehensive suite of diagnostics that includes magnetic sensors, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, neutral particle analyzers, and fusion product detectors. While many of these diagnostic systems were inherited from the preceding experiment C-2, C-2U has a variety of new and upgraded diagnostic systems: multi-chord far-infrared polarimetry, multiple fast imaging cameras with selectable atomic line filters, proton detector arrays, and 100 channel bolometer units capable of observing multiple regions ofmore » the spectrum simultaneously. In addition, extensive ongoing work focuses on advanced methods of measuring separatrix shape and plasma current profile that will facilitate equilibrium reconstruction and active control of the FRC plasma.« less
A new OTDR based on probe frequency multiplexing
NASA Astrophysics Data System (ADS)
Lu, Lidong; Liang, Yun; Li, Binglin; Guo, Jinghong; Zhang, Xuping
2013-12-01
Two signal multiplexing methods are proposed and experimentally demonstrated in optical time domain reflectometry (OTDR) for fault location of optical fiber transmission line to obtain high measurement efficiency. Probe signal multiplexing is individually obtained by phase modulation for generation of multi-frequency and time sequential frequency probe pulses. The backscattered Rayleigh light of the multiplexing probe signals is transferred to corresponding heterodyne intermediate frequency (IF) through heterodyning with the single frequency local oscillator (LO). Then the IFs are simultaneously acquired by use of a data acquisition card (DAQ) with sampling rate of 100Msps, and the obtained data are processed by digital band pass filtering (BPF), digital down conversion (DDC) and digital low pass filtering (BPF) procedure. For each probe frequency of the detected signals, the extraction of the time domain reflecting signal power is performed by parallel computing method. For a comprehensive performance comparison with conventional coherent OTDR on the probe frequency multiplexing methods, the potential for enhancement of dynamic range, spatial resolution and measurement time are analyzed and discussed. Experimental results show that by use of the probe frequency multiplexing method, the measurement efficiency of coherent OTDR can be enhanced by nearly 40 times.
Ultrasound-aided high-resolution biophotonic imaging
NASA Astrophysics Data System (ADS)
Wang, Lihong V.
2003-10-01
We develop novel biophotonic imaging for early-cancer detection, a grand challenge in cancer research, using nonionizing electromagnetic and ultrasonic waves. Unlike ionizing x-ray radiation, nonionizing electromagnetic waves such as optical waves are safe for biomedical applications and reveal new contrast mechanisms and functional information. For example, our spectroscopic oblique-incidence reflectometry can detect skin cancers based on functional hemoglobin parameters and cell nuclear size with 95% accuracy. Unfortunately, electromagnetic waves in the nonionizing spectral region do not penetrate biological tissue in straight paths as do x-rays. Consequently, high-resolution tomography based on nonionizing electromagnetic waves alone, as demonstrated by our Mueller optical coherence tomography, is limited to superficial tissue imaging. Ultrasonic imaging, on the contrary, furnishes good imaging resolution but has poor contrast in early-stage tumors and has strong speckle artifacts as well. We developed ultrasound-mediated imaging modalities by combining electromagnetic and ultrasonic waves synergistically. The hybrid modalities yield speckle-free electromagnetic-contrast at ultrasonic resolution in relatively large biological tissue. In ultrasound-modulated (acousto)-optical tomography, a focused ultrasonic wave encodes diffuse laser light in scattering biological tissue. In photo-acoustic (thermo-acoustic) tomography, a low-energy laser (RF) pulse induces ultrasonic waves in biological tissue due to thermoelastic expansion.
Multiplexed neural recording along a single optical fiber via optical reflectometry
Rodriques, Samuel G.; Marblestone, Adam H.; Scholvin, Jorg; Dapello, Joel; Sarkar, Deblina; Mankin, Max; Gao, Ruixuan; Wood, Lowell; Boyden, Edward S.
2016-01-01
Abstract. We introduce the design and theoretical analysis of a fiber-optic architecture for neural recording without contrast agents, which transduces neural electrical signals into a multiplexed optical readout. Our sensor design is inspired by electro-optic modulators, which modulate the refractive index of a waveguide by applying a voltage across an electro-optic core material. We estimate that this design would allow recording of the activities of individual neurons located at points along a 10-cm length of optical fiber with 40-μm axial resolution and sensitivity down to 100 μV using commercially available optical reflectometers as readout devices. Neural recording sites detect a potential difference against a reference and apply this potential to a capacitor. The waveguide serves as one of the plates of the capacitor, so charge accumulation across the capacitor results in an optical effect. A key concept of the design is that the sensitivity can be improved by increasing the capacitance. To maximize the capacitance, we utilize a microscopic layer of material with high relative permittivity. If suitable materials can be found—possessing high capacitance per unit area as well as favorable properties with respect to toxicity, optical attenuation, ohmic junctions, and surface capacitance—then such sensing fibers could, in principle, be scaled down to few-micron cross-sections for minimally invasive neural interfacing. We study these material requirements and propose potential material choices. Custom-designed multimaterial optical fibers, probed using a reflectometric readout, may, therefore, provide a powerful platform for neural sensing. PMID:27194640
Comparison of performance of inclinometer casing and TDR technique
NASA Astrophysics Data System (ADS)
Aghda, S. M. Fatemi; Ganjalipour, K.; Nabiollahi, K.
2018-03-01
TDR (Time Domain Reflectometry) and GPR (Ground Penetrating Radar) are two of the electromagnetic methods in applied geophysics, which using them for various applications are developing. The Time Domain Reflectometry is a remote sensing method that has been used for years to determine the nature of the materials and spatial location. The use of TDR system has led to innovative applications of it and comparing it with previous measuring techniques, since it has developed. In this study, not only a summary of the basics of TDR application for monitoring of ground deformation is offered, but also a comparison of this technology with other measurement techniques (inclinometer casing) is provided. Actually, this paper presents a case study in which the opportunity arose to compare these two technologies in detecting subsurface deformation in slopes. A TDR system includes a radar wave receiver & generator, a transmission line and a waveguide. The generated electro-magnetic pulse moves toward the waveguide within the conductor cable and enters the test environment. For this study, slopes overlooking the Darian dam bottom outlet, power house and spillway were instrumented with RG59/U coaxial cables for TDR monitoring and slope inclinometer. Coaxial cables - as a TDR sensor - and inclinometer casings were installed in a same bore hole where coaxial cable was attached to the inclinometer casing. Shear and tensile deformations of the cable, which is caused by ground movements, significantly impacts on cable reflection coefficient. In Darian dam boreholes, the cable points subject to the shear and stretch were correlated with deformation points of the inclinometer casings in incremental displacement graphs. This study shows that TDR technique is more sensitive than inclinometer casing for small movement in the slide planes. Because manual processing of TDR data is hard and need experienced personnel, the authors have designed an algorithm to compare the shape of the new TDR waveforms with the base reading waveform in order to monitor the subsurface deformations.
Calibration and Use of B Dot Probes for Electromagnetic Measuring
1977-08-09
response. E. Time Domain Reflectometry Measurements Pulse impedance measurements for the 1.75-in. diameter double-gap probe design were first performed...Far Field (Radiation) Patterns of a B Dot Probe 1. Anechoic Chamber The facility utilized for the probe patterns was the NASA 120-ft chamber at
Rome Air Development Center Air Force Technical Objective Document FY88
1986-12-01
resistant fiber ontic links. flotical time domain reflectometry , refractive index nrofiling, exhaustive measurements and analysis, and optical fi her cable...application. This technology ma/ be directly applied to other mission applications as has been shown by both NASA and the US Navy. A major thrust of the Al
Spatial Distribution of Surface Soil Moisture in a Small Forested Catchment
Predicting the spatial distribution of soil moisture is an important hydrological question. We measured the spatial distribution of surface soil moisture (upper 6 cm) using an Amplitude Domain Reflectometry sensor at the plot scale (2 × 2 m) and small catchment scale (0.84 ha) in...
Design of access-tube TDR sensor for soil water content: Theory
USDA-ARS?s Scientific Manuscript database
The design of a cylindrical access-tube mounted waveguide was developed for in-situ soil water content sensing using time-domain reflectometry (TDR). To optimize the design with respect to sampling volume and losses, we derived the electromagnetic fields produced by a TDR sensor with cylindrical geo...
Short, multi-needle FDR sensor suitable for measuring soil water content
USDA-ARS?s Scientific Manuscript database
Time domain reflectometry (TDR) is a well-established electromagnetic technique used to measure soil water content. TDR sensors have been combined with heat pulse sensors to produce thermo-TDR sensors. Thermo-TDR sensors are restricted to having relatively short needles in order to accurately measur...
USDA-ARS?s Scientific Manuscript database
Accurate electromagnetic sensing of soil water contents (') under field conditions is complicated by the dependence of permittivity on specific surface area, temperature, and apparent electrical conductivity, all which may vary across space or time. We present a physically-based mixing model to pred...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tikhonov, A. M.
According to experimental data on X-ray scattering and reflectometry with synchrotron radiation, a twodimensional crystallization phase transition in a monolayer of melissic acid at the n-hexane–water interface with a decrease in the temperature occurs after a wetting transition.
Selected nursery projects at the Missoula Technology and Development Center
Brian Vachowski
2007-01-01
The USDA Forest Service Missoula Technology and Development Center (MTDC) offers technical expertise, technology transfer, and new equipment development to federal, state, and private forest nurseries. Current and recently completed projects at MTDC include a container block steam sterilizer, shielded herbicide sprayer, time-domain reflectometry (TDR) nursery soil...
The GNSS Reflectometry Response to the Ocean Surface
NASA Astrophysics Data System (ADS)
Chang, Paul; Jelenak, Zorana; Soisuvarn, Seubson; Said, Faozi
2016-04-01
Global Navigation Satellite System - Reflectometry (GNSS-R) exploits signals of opportunity from the Global Navigation Satellite System (GNSS). GNSS transmitters continuously transmit navigation signals at L-band toward the earth's surface. The scattered power reflected off the earth's surface can be sensed by specially designed GNSS-R receivers. The reflected signal can then be used to glean information about the surface of the earth, such as ocean surface roughness, snow depth, sea ice extent, and soil moisture. The use of GNSS-R for ocean wind retrievals was first demonstrated from aircraft. On July 8 2014, the TechDemoSat-1 satellite (TDS-1) was launched by Surrey Satellite Technology, Ltd as a technology risk reduction mission into sun-synchronous orbit. This paper investigates the GNSS-R measurements collected by the Space GNSS Receiver-Remote Sensing Instrument (SGR-ReSI) on board the TDS-1 satellite. The sensitivity of the SGR-ReSI measurements to the ocean surface winds and waves are characterized. The effects of sea surface temperature, wind direction, and rain are also investigated. The SGR-ReSI measurements exhibited sensitivity through the entire range of wind speeds sampled in this dataset, up to 35 m/s. A significant dependence on the larger waves was observed for winds < 6 m/s. Additionally, an interesting dependence on SST was observed where the slope of the SGR-ReSI measurements is positive for winds < 5 m/s and reverses for winds > 5 m/s. There appeared to be very little wind direction signal, and investigation of the rain impacts found no apparent sensitivity in the data. These results are shown through the analysis of global statistics and examination of a few case studies. This released SGR-ReSI dataset provided the first opportunity to comprehensively investigate the sensitivity of satellite-based GNSS-R measurements to various ocean surface parameters. The upcoming NASA's Cyclone Global Navigation Satellite System (CYGNSS) satellite constellation will utilize a similar receiver to SGI-ReSI and thus this data provides valuable pre-launch knowledge for the CYGNSS mission.
Measuring the complex admittance and tunneling rate of a germanium hut wire hole quantum dot
NASA Astrophysics Data System (ADS)
Li, Yan; Li, Shu-Xiao; Gao, Fei; Li, Hai-Ou; Xu, Gang; Wang, Ke; Liu, He; Cao, Gang; Xiao, Ming; Wang, Ting; Zhang, Jian-Jun; Guo, Guo-Ping
2018-05-01
We investigate the microwave reflectometry of an on-chip reflection line cavity coupled to a Ge hut wire hole quantum dot. The amplitude and phase responses of the cavity can be used to measure the complex admittance and evaluate the tunneling rate of the quantum dot, even in the region where transport signal through the quantum dot is too small to be measured by conventional direct transport means. The experimental observations are found to be in good agreement with a theoretical model of the hybrid system based on cavity frequency shift and linewidth shift. Our experimental results take the first step towards fast and sensitive readout of charge and spin states in Ge hut wire hole quantum dot.
NASA Astrophysics Data System (ADS)
Bhattacharya, Debarati; Basu, Saibal; Singh, Surendra; Roy, Sumalay; Dev, Bhupendra Nath
2012-12-01
Interdiffusion occurring across the interfaces in a Si/Ni/Si layered system during deposition at room temperature was probed using x-ray reflectivity (XRR) and polarized neutron reflectivity (PNR). Exploiting the complementarity of these techniques, both structural and magnetic characterization with nanometer depth resolution could be achieved. Suitable model fitting of the reflectivity profiles identified the formation of Ni-Si mixed alloy layers at the Si/Ni and Ni/Si interfaces. The physical parameters of the layered structure, including quantitative assessment of the stoichiometry of interfacial alloys, were obtained from the analyses of XRR and PNR patterns. In addition, PNR provided magnetic moment density profile as a function of depth in the stratified medium.
Influence of Lipid Membrane Rigidity on Properties of Supporting Polymer
Jablin, Michael S.; Dubey, Manish; Zhernenkov, Mikhail; Toomey, Ryan; Majewski, Jarosław
2011-01-01
Temperature-sensitive hydrogel polymers are utilized as responsive layers in various applications. Although the polymer's native characteristics have been studied extensively, details concerning its properties during interaction with biorelated structures are lacking. This work investigates the interaction between a thermoresponsive polymer cushion and different lipid membrane capping layers probed by neutron reflectometry. N-isopropylacrylamide copolymerized with methacroylbenzophenone first supported a lipid bilayer composed of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) and subsequently 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). The polymer-membrane systems were investigated above and below the polymer transition temperature (37 and 25°C). Although the same cushion supported each lipid membrane, the polymer hydration profile and thickness were markedly different for DPPE and DPPC systems. Because DPPE and DPPC have different bending rigidities, these results establish that the polymer-membrane interaction is critically mediated by the mechanics of the membrane, providing better insight into cell-hydrogel interactions. PMID:21723822
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrington, Stephen P.
Systems, methods, and software for measuring the spatially variable relative dielectric permittivity of materials along a linear or otherwise configured sensor element, and more specifically the spatial variability of soil moisture in one dimension as inferred from the dielectric profile of the soil matrix surrounding a linear sensor element. Various methods provided herein combine advances in the processing of time domain reflectometry data with innovations in physical sensing apparatuses. These advancements enable high temporal (and thus spatial) resolution of electrical reflectance continuously along an insulated waveguide that is permanently emplaced in contact with adjacent soils. The spatially resolved reflectance ismore » directly related to impedance changes along the waveguide that are dominated by electrical permittivity contrast due to variations in soil moisture. Various methods described herein are thus able to monitor soil moisture in profile with high spatial resolution.« less
He, Xiangge; Xie, Shangran; Liu, Fei; Cao, Shan; Gu, Lijuan; Zheng, Xiaoping; Zhang, Min
2017-02-01
We demonstrate a novel type of distributed optical fiber acoustic sensor, with the ability to detect and retrieve actual temporal waveforms of multiple vibration events that occur simultaneously at different positions along the fiber. The system is realized via a dual-pulse phase-sensitive optical time-domain reflectometry, and the actual waveform is retrieved by heterodyne phase demodulation. Experimental results show that the system has a background noise level as low as 8.91×10-4 rad/√Hz with a demodulation signal-to-noise ratio of 49.17 dB at 1 kHz, and can achieve a dynamic range of ∼60 dB at 1 kHz (0.1 to 104 rad) for phase demodulation, as well as a detection frequency range from 20 Hz to 25 kHz.
Noise temperature improvement for magnetic fusion plasma millimeter wave imaging systems.
Lai, J; Domier, C W; Luhmann, N C
2014-03-01
Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas [B. Tobias et al., Plasma Fusion Res. 6, 2106042 (2011)]. Of particular importance have been microwave electron cyclotron emission imaging and microwave imaging reflectometry systems for imaging T(e) and n(e) fluctuations. These instruments have employed heterodyne receiver arrays with Schottky diode mixer elements directly connected to individual antennas. Consequently, the noise temperature has been strongly determined by the conversion loss with typical noise temperatures of ~60,000 K. However, this can be significantly improved by making use of recent advances in Monolithic Microwave Integrated Circuit chip low noise amplifiers to insert a pre-amplifier in front of the Schottky diode mixer element. In a proof-of-principle design at V-Band (50-75 GHz), significant improvement of noise temperature from the current 60,000 K to measured 4000 K has been obtained.
Method and apparatus for active tamper indicating device using optical time-domain reflectometry
Smith, D. Barton; Muhs, Jeffrey D.; Pickett, Chris A.; Earl, D. Duncan
1999-01-01
An optical time-domain reflectometer (OTDR) launches pulses of light into a link or a system of multiplexed links and records the waveform of pulses reflected by the seals in the link(s). If a seal is opened, the link of cables will become a discontinuous transmitter of the light pulses and the OTDR can immediately detect that a seal has been opened. By analyzing the waveform, the OTDR can also quickly determine which seal(s) were opened. In this way the invention functions as a system of active seals. The invention is intended for applications that require long-term surveillance of a large number of closures. It provides immediate tamper detection, allows for periodic access to secured closures, and can be configured for many different distributions of closures. It can monitor closures in indoor and outdoor locations and it can monitor containers or groups of containers located many kilometers apart.
Distributed optical fibre sensing for early detection of shallow landslides triggering.
Schenato, Luca; Palmieri, Luca; Camporese, Matteo; Bersan, Silvia; Cola, Simonetta; Pasuto, Alessandro; Galtarossa, Andrea; Salandin, Paolo; Simonini, Paolo
2017-10-31
A distributed optical fibre sensing system is used to measure landslide-induced strains on an optical fibre buried in a large scale physical model of a slope. The fibre sensing cable is deployed at the predefined failure surface and interrogated by means of optical frequency domain reflectometry. The strain evolution is measured with centimetre spatial resolution until the occurrence of the slope failure. Standard legacy sensors measuring soil moisture and pore water pressure are installed at different depths and positions along the slope for comparison and validation. The evolution of the strain field is related to landslide dynamics with unprecedented resolution and insight. In fact, the results of the experiment clearly identify several phases within the evolution of the landslide and show that optical fibres can detect precursory signs of failure well before the collapse, paving the way for the development of more effective early warning systems.
Validation of a BOTDR-based system for the detection of smuggling tunnels
NASA Astrophysics Data System (ADS)
Elkayam, Itai; Klar, Assaf; Linker, Raphael; Marshall, Alec M.
2010-04-01
Cross-border smuggling tunnels enable unmonitored movement of people, drugs and weapons and pose a very serious threat to homeland security. Recently, Klar and Linker (2009) [SPIE paper No. 731603] presented an analytical study of the feasibility of a Brillouin Optical Time Domain Reflectometry (BOTDR) based system for the detection of small sized smuggling tunnels. The current study extends this work by validating the analytical models against real strain measurements in soil obtained from small scale experiments in a geotechnical centrifuge. The soil strains were obtained using an image analysis method that tracked the displacement of discrete patches of soil through a sequence of digital images of the soil around the tunnel during the centrifuge test. The results of the present study are in agreement with those of a previous study which was based on synthetic signals generated using empirical and analytical models from the literature.
Design and testing of access-tube TDR soil water sensor
USDA-ARS?s Scientific Manuscript database
We developed the design of a waveguide on the exterior of an access tube for use in time-domain reflectometry (TDR) for in-situ soil water content sensing. In order to optimize the design with respect to sampling volume and losses, we derived the electromagnetic (EM) fields produced by a TDR sensor...
Field performance of three real-time moisture sensors in sandy loam and clay loam soils
USDA-ARS?s Scientific Manuscript database
The study was conducted to evaluate HydraProbe (HyP), Campbell Time Domain Reflectometry (TDR) and Watermarks (WM) moisture sensors for their ability to estimate water content based on calibrated neutron probe measurements. The three sensors were in-situ tested under natural weather conditions over ...
Method for the measurement of forest duff moisture content
Peter R. Robichaud; Roger D. Hungerford; David S. Gasvoda
2000-01-01
An apparatus and method for the moisture content measurement of compressible materials using pressure to firmly hold surface probes against the material to be measured. The apparatus uses moisture measurement circuitry employed in frequency domain impedance or time domain reflectometry devices to obtain moisture content readings from materials. These moisture content...
Apparatus and method for the measurement of forest duff moisture content
Peter R. Robichaud; Roger D. Hungerford; David S. Gasvoda
1999-01-01
An apparatus and method for the moisture content measurement of compressible materials using pressure to firmly hold surface probes against the marerial to be measured. The apparatus uses moisture measurement circuitry employed in frequency domain impedance or time domain reflectometry devices to obtain moisture content readings from materials. These moisture content...
USDA-ARS?s Scientific Manuscript database
Adaptive waveform interpretation with Gaussian filtering (AWIGF) and second order bounded mean oscillation operator Z square 2(u,t,r) are TDR analysis methods based on second order differentiation. AWIGF was originally designed for relatively long probe (greater than 150 mm) TDR waveforms, while Z s...
Few methods exist that allow non-destructive in situ measurement of the water content of forest floor litter layers (Oa,Oe, and Oi horizons). Continuous non-destructive measurement is needed in studies of ecosystem processes because of the relationship between physical structure ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doucet, Mathieu; Browning, Jim; Baldwin, J. K.
This work details the in situ characterization of the interface between a silicon electrode and an electrolyte using a linear fluorinated solvent molecule, 0.1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in deuterated dimethyl perfluoroglutarate (d6-PF5M 2) (1.87 x 10 -2 mS/cm -1). The solid electrolyte interphase (SEI) composition and thickness determined via in situ neutron reflectometry (NR) and ex situ X-ray photoelectron spectroscopy (XPS) were compared. The data show that SEI expansion and contraction (breathing) during electrochemical cycling was observed via both techniques; however, ex situ XPS suggests that the SEI thickness increases during Si lithiation and decreases during delithiation, while inmore » situ NR suggests the opposite. The most likely cause of this discrepancy is the selective removal of SEI components (top 20 nm of the SEI) during the electrode rinse process, required to remove electrolyte residue prior to ex situ analysis, demonstrating the necessity of performing SEI characterizations in situ.« less
Rapid screening of fatty acid alkyl esters in olive oils by time domain reflectometry.
Berardinelli, Annachiara; Ragni, Luigi; Bendini, Alessandra; Valli, Enrico; Conte, Lanfranco; Guarnieri, Adriano; Toschi, Tullia Gallina
2013-11-20
The main aim of the present research is to assess the possibility of quickly screening fatty acid alkyl esters (FAAE) in olive oils using time domain reflectometry (TDR) and partial least-squares (PLS) multivariate statistical analysis. Eighteen virgin olive oil samples with fatty acid alkyl ester contents and fatty acid ethyl ester/methyl ester ratios (FAEE/FAME) ranging from 3 to 100 mg kg(-1) and from 0.3 to 2.6, respectively, were submitted to tests with time domain resolution of 1 ps. The results obtained in test set validation demonstrated that this new and fast analytical approach is able to predict FAME, FAEE, and FAME + FAEE contents with R(2) values of 0.905, 0.923, and 0.927, respectively. Further measurements on mixtures between olive oil and FAAE standards confirmed that the prediction is based on a direct influence of fatty acid alkyl esters on the TDR signal. The suggested technique appeared potentially suitable for monitoring one of the most important quality attribute of the olive oil in the extraction process.
Evidence of Formation of Superdense Nonmagnetic Cobalt.
Banu, Nasrin; Singh, Surendra; Satpati, B; Roy, A; Basu, S; Chakraborty, P; Movva, Hema C P; Lauter, V; Dev, B N
2017-02-03
Because of the presence of 3d transition metals in the Earth's core, magnetism of these materials in their dense phases has been a topic of great interest. Theory predicts a dense face-centred-cubic phase of cobalt, which would be nonmagnetic. However, this dense nonmagnetic cobalt has not yet been observed. Recent investigations in thin film polycrystalline materials have shown the formation of compressive stress, which can increase the density of materials. We have discovered the existence of ultrathin superdense nonmagnetic cobalt layers in a polycrystalline cobalt thin film. The densities of these layers are about 1.2-1.4 times the normal density of Co. This has been revealed by X-ray reflectometry experiments, and corroborated by polarized neutron reflectometry (PNR) experiments. Transmission electron microscopy provides further evidence. The magnetic depth profile, obtained by PNR, shows that the superdense Co layers near the top of the film and at the film-substrate interface are nonmagnetic. The major part of the Co film has the usual density and magnetic moment. These results indicate the possibility of existence of nonmagnetic Co in the earth's core under high pressure.
Nishiyama, Michiko; Igawa, Hirotaka; Kasai, Tokio; Watanabe, Naoyuki
2015-02-10
In this paper, we propose a delayed transmission/reflection ratiometric reflectometry (DTR(3)) scheme using a long-gauge fiber Bragg grating (FBG), which can be used for dynamic structural deformation monitoring of structures of between a few to tens of meters in length, such as airplane wings and helicopter blades. FBG sensors used for multipoint sensing generally employ wavelength division multiplexing techniques utilizing several Bragg central wavelengths; by contrast, the DTR(3) interrogator uses a continuous pulse array based on a pseudorandom number code and a long-gauge FBG utilizing a single Bragg wavelength and composed of simple hardware devices. The DTR(3) scheme can detect distributed strain at a 50 cm spatial resolution using a long-gauge FBG with a 100 Hz sampling rate. We evaluated the strain sensing characteristics of the long-gauge FBG when attached to a 2.5 m aluminum bar and a 5.5 m helicopter blade model, determining these structure natural frequencies in free vibration tests and their distributed strain characteristics in static tests.
Saoudi, M; Fritzsche, H; Nieuwenhuys, G J; Hesselberth, M B S
2008-02-08
We used polarized neutron reflectometry to determine the temperature dependence of the magnetization of thin AuFe films with 3% Fe concentration. We performed the measurements in a large magnetic field of 6 T in a temperature range from 295 to 2 K. For the films in the thickness range from 500 to 20 nm we observed a Brillouin-type behavior from 295 K down to 50 K and a constant magnetization of about 0.9 micro(B) per Fe atom below 30 K. However, for the 10 nm thick film we observed a Brillouin-type behavior down to 20 K and a constant magnetization of about 1.3 micro(B) per Fe atom below 20 K. These experiments are the first to show a finite-size effect in the magnetization of single spin-glass films in large magnetic fields. Furthermore, the ability to measure the deviation from the paramagnetic behavior enables us to prove the existence of the spin-glass state where other methods relying on a cusp-type behavior fail.
Rubio-Celorio, Marc; Garcia-Gil, Núria; Gou, Pere; Arnau, Jacint; Fulladosa, Elena
2015-02-01
Dielectric Time Domain Reflectometry (TDR) is a useful technique for the characterization and classification of dry-cured ham according to its composition. However, changes in the behavior of dielectric properties may occur depending on environmental factors and processing. The effect of temperature, high pressure (HP) and freezing/thawing of dry-cured ham slices on the obtained TDR curves and on the predictions of salt and water contents when using previously developed predictive models, was evaluated in three independent experiments. The results showed that at temperatures below 20 °C there is an increase of the predicted salt content error, being more important in samples with higher water content. HP treatment caused a decrease of the reflected signal intensity due to the major mobility of available ions promoting an increase of the predicted salt content. Freezing/thawing treatment caused an increase of the reflected signal intensity due to the microstructural damages and the loss of water and ions, promoting a decrease of the predicted salt content.
Doucet, Mathieu; Browning, Jim; Baldwin, J. K.; ...
2016-04-15
This work details the in situ characterization of the interface between a silicon electrode and an electrolyte using a linear fluorinated solvent molecule, 0.1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in deuterated dimethyl perfluoroglutarate (d6-PF5M 2) (1.87 x 10 -2 mS/cm -1). The solid electrolyte interphase (SEI) composition and thickness determined via in situ neutron reflectometry (NR) and ex situ X-ray photoelectron spectroscopy (XPS) were compared. The data show that SEI expansion and contraction (breathing) during electrochemical cycling was observed via both techniques; however, ex situ XPS suggests that the SEI thickness increases during Si lithiation and decreases during delithiation, while inmore » situ NR suggests the opposite. The most likely cause of this discrepancy is the selective removal of SEI components (top 20 nm of the SEI) during the electrode rinse process, required to remove electrolyte residue prior to ex situ analysis, demonstrating the necessity of performing SEI characterizations in situ.« less
High-pressure and high-temperature neutron reflectometry cell for solid-fluid interface studies
NASA Astrophysics Data System (ADS)
Wang, P.; Lerner, A. H.; Taylor, M.; Baldwin, J. K.; Grubbs, R. K.; Majewski, J.; Hickmott, D. D.
2012-07-01
A new high pressure-temperature ( P - T Neutron Reflectometry (NR) cell developed at Los Alamos National Laboratory (LANL) is described that significantly extends the capabilities of solid/fluid interface investigations up to 200MPa ( ensuremath ˜ 30000 psi) and 200 ° C. The cell's simple aluminum construction makes it light and easy to operate while thinned neutron windows allow up to 74% neutron transmission. The wide-open neutron window geometry provides a maximum theoretical ensuremath Qz range of 0.31Å-1. Accurate T and P controls are integrated on the cell's control panel. Built-in powder wells provide the ability to saturate fluids with reactive solids, producing aqueous species and/or decomposing into gaseous phases. The cell is designed for samples up to 50.8mm in diameter and 10.0mm in thickness. An experiment investigating the high P - T corrosion behavior of aluminum on LANL's Surface ProfilE Analysis Reflectometer (SPEAR) is presented, demonstrating the functioning and capability of the cell. Finally, outlooks on high P - T NR applications and perspectives on future research are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Gang; Liu, Zelin; Murton, Jaclyn K.
2011-06-13
Improving the efficiency of enzymatic hydrolysis of cellulose is one of the key technological hurdles to reduce the cost of producing ethanol and other transportation fuels from lignocellulosic material. A better understanding of how soluble enzymes interact with insoluble cellulose will aid in the design of more efficient enzyme systems. We report a study involving neutron reflectometry (NR) and quartz crystal microbalance with dissipation monitoring (QCM-D) of the interaction of a fungal enzyme extract (T. viride) and an endoglucanse from A. niger with amorphous cellulose films. The use of amorphous cellulose is motivated by that the fact that several biomassmore » pretreatments currently under investigation disrupt the native crystalline structure of cellulose and increase the amorphous content. NR reveals the profile of water through the film at nanometer resolution and is highly sensitive to interfacial roughness, whereas QCM-D provides changes in mass and film stiffness. NR can be performed using either H₂O- or D₂O-based aqueous reservoirs. NR measurement of swelling of a cellulose film in D₂O and in H₂O revealed that D/H exchange on the cellulose chains must be taken into account when a D₂O-based reservoir is used. The results also show that cellulose films swell slightly more in D₂O than in H₂O. Regarding enzymatic digestion, at 20 °C in H₂O buffer the T. viride cocktail rapidly digested the entire film, initially roughening the surface, followed by penetration and activity throughout the bulk of the film. In contrast, over the same time period, the endoglucanase was active mainly at the surface of the film and did not increase the surface roughness.« less
Saaby, Marie-Louise; Klarskov, Niels; Lose, Gunnar
2013-11-01
to assess the urethral closure function by urethral pressure reflectometry (UPR) during intra-abdominal pressure-increase in SUI and continent women. Twenty-five urodynamically proven SUI women and eight continent volunteer women were assessed by ICIQ-SF, pad-weighing test, incontinence diary, and UPR. UPR was conducted during resting and increased intra-abdominal pressure (P(Abd)) by straining. Related values of P(Abd) and urethral opening pressure (P(o)) were plotted into an abdomino-urethral pressuregram. Linear regression of the values was conducted, and the slope of the line ("APIR") and the intercept with the y-axis found. By the equation of the line, Po was calculated for various values of P(Abd), for example, 50 cm H2O (P(o-Abd 50)). The resting P(o) (P(o-rest)) and APIR, respectively, significantly differed in SUI and continent women but could not separate the two groups. The urethral closure equation (UCE) based on P(o-rest) and APIR provided a more detailed characterization of a woman's closure function based on the permanent closure forces (primarily generated by the urethral sphincteric unit) and the adjunctive closure forces (primarily generated by the support system). P(o-Abd 50) and UCE, respectively, which express the combined permanent and adjunctive closure forces and estimate the efficiency of the closure function, separated SUI and continent women and were highly significantly negatively correlated with ICIQ-SF, pad test, and the number of incontinence episodes. New parameters for characterization of the urethral closure function and possible dysfunctions and its efficiency were provided. P(o-Abd 50) and UCE may be used as diagnostic tests and severity measures. © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Semmling, Maximilian; Leister, Vera; Saynisch, Jan; Zus, Florian; Wickert, Jens
2016-04-01
An ocean altimetry experiment using Earth reflected GNSS signals has been proposed to the European Space Agency (ESA). It is part of the GNSS Reflectometry Radio Occultation Scatterometry (GEROS) mission that is planned aboard the International Space Station (ISS). Altimetric simulations are presented that examine the detection of ocean topography anomalies assuming GNSS phase delay observations. Such delay measurements are well established for positioning and are possible due to a sufficient synchronization of GNSS receiver and transmitter. For altimetric purpose delays of Earth reflected GNSS signals can be observed similar to radar altimeter signals. The advantage of GNSS is the synchronized separation of transmitter and receiver that allow a significantly increased number of observation per receiver due to more than 70 GNSS transmitters currently in orbit. The altimetric concept has already been applied successfully to flight data recorded over the Mediterranean Sea. The presented altimetric simulation considers anomalies in the Agulhas current region which are obtained from the Region Ocean Model System (ROMS). Suitable reflection events in an elevation range between 3° and 30° last about 10min with ground track's length >3000km. Typical along-track footprints (1s signal integration time) have a length of about 5km. The reflection's Fresnel zone limits the footprint of coherent observations to a major axis extention between 1 to 6km dependent on the elevation. The altimetric performance depends on the signal-to-noise ratio (SNR) of the reflection. Simulation results show that precision is better than 10cm for SNR of 30dB. Whereas, it is worse than 0.5m if SNR goes down to 10dB. Precision, in general, improves towards higher elevation angles. Critical biases are introduced by atmospheric and ionospheric refraction. Corresponding correction strategies are still under investigation.
A method for profiling biometric changes during disaccommodation.
Alderson, Alison; Davies, Leon N; Mallen, Edward A H; Sheppard, Amy L
2012-05-01
To demonstrate the application of low-coherence reflectometry to the study of biometric changes during disaccommodation responses in human eyes after cessation of a near task and to evaluate the effect of contact lenses on low-coherence reflectometry biometric measurements. Ocular biometric parameters of crystalline lens thickness (LT) and anterior chamber depth (ACD) were measured with the LenStar device during and immediately after a 5 D accommodative task in 10 participants. In a separate trial, accommodation responses were recorded with a Shin-Nippon WAM-5500 optometer in a subset of two participants. Biometric data were interleaved to form a profile of post-task anterior segment changes. In a further experiment, the effect of soft contact lenses on LenStar measurements was evaluated in 15 participants. In 10 adult participants, increased LT and reduced ACD was seen during the 5 D task. Post-task, during fixation of a 0 D target, a profile of the change in LT and ACD against time was observed. In the two participants with accommodation data (one a sufferer of nearwork-induced transient myopia and other a non-sufferer), the post-task changes in refraction compared favorably with the interleaved LenStar biometry data. The insertion of soft contact lenses did not have a significant effect on LenStar measures of ACD or LT (mean change: -0.007 mm, p = 0.265 and + 0.001 mm, p = 0.875, respectively). With the addition of a relatively simple stimulus modification, the LenStar instrument can be used to produce a profile of post-task changes in LT and ACD. The spatial and temporal resolution of the system is sufficient for the investigation of nearwork-induced transient myopia from a biometric viewpoint. LenStar measurements of ACD and LT remain valid after the fitting of soft contact lenses.
Barlow, Peter W; Fisahn, Joachim
2012-07-01
Correlative evidence has often suggested that the lunisolar tidal force, to which the Sun contributes 30 % and the Moon 60 % of the combined gravitational acceleration, regulates a number of features of plant growth upon Earth. The time scales of the effects studied have ranged from the lunar day, with a period of approx. 24.8 h, to longer, monthly or seasonal variations. We review evidence for a lunar involvement with plant growth. In particular, we describe experimental observations which indicate a putative lunar-based relationship with the rate of elongation of roots of Arabidopsis thaliana maintained in constant light. The evidence suggests that there may be continuous modulation of root elongation growth by the lunisolar tidal force. In order to provide further supportive evidence for a more general hypothesis of a lunisolar regulation of growth, we highlight similarly suggestive evidence from the time courses of (a) bean leaf movements obtained from kymographic observations; (b) dilatation cycles of tree stems obtained from dendrograms; and (c) the diurnal changes of wood-water relationships in a living tree obtained by reflectometry. At present, the evidence for a lunar or a lunisolar influence on root growth or, indeed, on any other plant system, is correlative, and therefore circumstantial. Although it is not possible to alter the lunisolar gravitational force experienced by living organisms on Earth, it is possible to predict how this putative lunisolar influence will vary at times in the near future. This may offer ways of testing predictions about possible Moon-plant relationships. As for a hypothesis about how the three-body system of Earth-Sun-Moon could interact with biological systems to produce a specific growth response, this remains a challenge for the future. Plant growth responses are mainly brought about by differential movement of water across protoplasmic membranes in conjunction with water movement in the super-symplasm. It may be in this realm of water movements, or even in the physical forms which water adopts within cells, that the lunisolar tidal force has an impact upon living growth systems.
Barlow, Peter W.; Fisahn, Joachim
2012-01-01
Background Correlative evidence has often suggested that the lunisolar tidal force, to which the Sun contributes 30 % and the Moon 60 % of the combined gravitational acceleration, regulates a number of features of plant growth upon Earth. The time scales of the effects studied have ranged from the lunar day, with a period of approx. 24·8 h, to longer, monthly or seasonal variations. Scope We review evidence for a lunar involvement with plant growth. In particular, we describe experimental observations which indicate a putative lunar-based relationship with the rate of elongation of roots of Arabidopsis thaliana maintained in constant light. The evidence suggests that there may be continuous modulation of root elongation growth by the lunisolar tidal force. In order to provide further supportive evidence for a more general hypothesis of a lunisolar regulation of growth, we highlight similarly suggestive evidence from the time courses of (a) bean leaf movements obtained from kymographic observations; (b) dilatation cycles of tree stems obtained from dendrograms; and (c) the diurnal changes of wood–water relationships in a living tree obtained by reflectometry. Conclusions At present, the evidence for a lunar or a lunisolar influence on root growth or, indeed, on any other plant system, is correlative, and therefore circumstantial. Although it is not possible to alter the lunisolar gravitational force experienced by living organisms on Earth, it is possible to predict how this putative lunisolar influence will vary at times in the near future. This may offer ways of testing predictions about possible Moon–plant relationships. As for a hypothesis about how the three-body system of Earth–Sun–Moon could interact with biological systems to produce a specific growth response, this remains a challenge for the future. Plant growth responses are mainly brought about by differential movement of water across protoplasmic membranes in conjunction with water movement in the super-symplasm. It may be in this realm of water movements, or even in the physical forms which water adopts within cells, that the lunisolar tidal force has an impact upon living growth systems. PMID:22437666
Measuring a Fiber-Optic Delay Line Using a Mode-Locked Laser
NASA Technical Reports Server (NTRS)
Tu, Meirong; McKee, Michael R.; Pak, Kyung S.; Yu, Nan
2010-01-01
The figure schematically depicts a laboratory setup for determining the optical length of a fiber-optic delay line at a precision greater than that obtainable by use of optical time-domain reflectometry or of mechanical measurement of length during the delay-line-winding process. In this setup, the delay line becomes part of the resonant optical cavity that governs the frequency of oscillation of a mode-locked laser. The length can then be determined from frequency-domain measurements, as described below. The laboratory setup is basically an all-fiber ring laser in which the delay line constitutes part of the ring. Another part of the ring - the laser gain medium - is an erbium-doped fiber amplifier pumped by a diode laser at a wavelength of 980 nm. The loop also includes an optical isolator, two polarization controllers, and a polarizing beam splitter. The optical isolator enforces unidirectional lasing. The polarization beam splitter allows light in only one polarization mode to pass through the ring; light in the orthogonal polarization mode is rejected from the ring and utilized as a diagnostic output, which is fed to an optical spectrum analyzer and a photodetector. The photodetector output is fed to a radio-frequency spectrum analyzer and an oscilloscope. The fiber ring laser can generate continuous-wave radiation in non-mode-locked operation or ultrashort optical pulses in mode-locked operation. The mode-locked operation exhibited by this ring is said to be passive in the sense that no electro-optical modulator or other active optical component is used to achieve it. Passive mode locking is achieved by exploiting optical nonlinearity of passive components in such a manner as to obtain ultra-short optical pulses. In this setup, the particular nonlinear optical property exploited to achieve passive mode locking is nonlinear polarization rotation. This or any ring laser can support oscillation in multiple modes as long as sufficient gain is present to overcome losses in the ring. When mode locking is achieved, oscillation occurs in all the modes having the same phase and same polarization. The frequency interval between modes, often denoted the free spectral range (FSR), is given by c/nL, where c is the speed of light in vacuum, n is the effective index of refraction of the fiber, and L is the total length of optical path around the ring. Therefore, the length of the fiber-optic delay line, as part of the length around the ring, can be calculated from the FSRs measured with and without the delay line incorporated into the ring. For this purpose, the FSR measurements are made by use of the optical and radio-frequency spectrum analyzers. In experimentation on a 10-km-long fiber-optic delay line, it was found that this setup made it possible to measure the length to within a fractional error of about 3 10(exp -6), corresponding to a length error of 3 cm. In contrast, measurements by optical time-domain reflectometry and mechanical measurement were found to be much less precise: For optical time-domain reflectometry, the fractional error was found no less than 10(exp -4) (corresponding to a length error of 1 m) and for mechanical measurement, the fractional error was found to be about 10(exp -2) (corresponding to a length error of 100 m).
Assessment of GPS Reflectometry from TechDemoSat-1 for Scatterometry and Altimetry Applications
NASA Astrophysics Data System (ADS)
Shah, R.; Hajj, G. A.
2015-12-01
The value of GPS reflectometry for scatterometry and altimetry applications has been a topic of investigation for the past two decades. TechDemoSat-1 (TDS-1), a technology demonstration satellite launched in July of 2014, with an instrument to collect GPS reflections from 4 GPS satellites simultaneously, provide the first extensive data that allows for validation and evaluation of GPS reflectometry from space against more established techniques. TDS-1 uses a high gain (~13 dBi) L1 antenna pointing 6 degrees off nadir with a 60ohalf-beam width. Reflected GPS L1 signals are processed into Delay Doppler Maps (DDMs) inside the receiver and made available (through Level-1b) along with metadata describing the bistatic geometry, antenna gain, etc., on a second-by-second basis for each of the 4 GPS tracks recorded at any given time. In this paper we examine level-1b data from TDS-1 for thousands of tracks collected over the span of Jan.-Feb., 2015. This data corresponds to reflections from various types of surfaces throughout the globe including ice, deserts, forests, oceans, lakes, wetlands, etc. Our analysis will consider how the surface type manifests itself in the DDMs (e.g., coherence vs. non-coherence reflection) and derivable physical quantities. We will consider questions regarding footprint resolution, waveform rise time and corresponding bistatic range accuracy, and level of precision for altimetry (sea surface height) and scatterometry (significant wave height and sea surface wind). Tracks from TDS-1 that coincide with Jason-1 or 2 tracks will be analyzed, where the latter can be used as truth for comparison and validation. Where coincidences are found, vertical delay introduced by the media as measured by Jason will be mapped to bistatic propagation path to correct for neutral atmospheric and ionospheric delays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yersak, Alexander S.; Lee, Yung C.; Spencer, Joseph A.
Spectral reflectometry was implemented as a method for in situ thickness monitoring in a spatial atomic layer deposition (ALD) system. Al{sub 2}O{sub 3} films were grown on a moving polymer web substrate at 100 °C using an atmospheric pressure ALD web coating system, with film growth of 0.11–0.13 nm/cycle. The modular coating head design and the in situ monitoring allowed for the characterization and optimization of the trimethylaluminum and water precursor exposures, purge flows, and web speed. A thickness uniformity of ±2% was achieved across the web. ALD cycle times as low as 76 ms were demonstrated with a web speed of 1 m/smore » and a vertical gap height of 0.5 mm. This atmospheric pressure ALD system with in situ process control demonstrates the feasibility of low-cost, high throughput roll-to-roll ALD.« less
Study of V-OTDR stability for dynamic strain measurement in piezoelectric vibration
NASA Astrophysics Data System (ADS)
Ren, Meiqi; Lu, Ping; Chen, Liang; Bao, Xiaoyi
2016-09-01
In a phase-sensitive optical-time domain reflectometry (Φ-OTDR) system, the challenge for dynamic strain measurement lies in large intensity fluctuations from trace to trace. The intensity fluctuation caused by stochastic characteristics of Rayleigh backscattering sets detection limit for the minimum strength of vibration measurement and causes the large measurement uncertainty. Thus, a trace-to-trace correlation coefficient is introduced to quantify intensity fluctuation of Φ-OTDR traces and stability of the sensor system theoretically and experimentally. A novel approach of measuring dynamic strain induced by various driving voltages of lead zirconate titanate (PZT) in Φ-OTDR is also demonstrated. Piezoelectric vibration signals are evaluated through analyzing peak values of fast Fourier transform spectra at the fundamental frequency and high-order harmonics based on Bessel functions. High trace-to-trace correlation coefficients varying from 0.824 to 0.967 among 100 measurements are obtained in experimental results, showing the good stability of our sensor system, as well as small uncertainty of measured peak values.
A real-time GNSS-R system based on software-defined radio and graphics processing units
NASA Astrophysics Data System (ADS)
Hobiger, Thomas; Amagai, Jun; Aida, Masanori; Narita, Hideki
2012-04-01
Reflected signals of the Global Navigation Satellite System (GNSS) from the sea or land surface can be utilized to deduce and monitor physical and geophysical parameters of the reflecting area. Unlike most other remote sensing techniques, GNSS-Reflectometry (GNSS-R) operates as a passive radar that takes advantage from the increasing number of navigation satellites that broadcast their L-band signals. Thereby, most of the GNSS-R receiver architectures are based on dedicated hardware solutions. Software-defined radio (SDR) technology has advanced in the recent years and enabled signal processing in real-time, which makes it an ideal candidate for the realization of a flexible GNSS-R system. Additionally, modern commodity graphic cards, which offer massive parallel computing performances, allow to handle the whole signal processing chain without interfering with the PC's CPU. Thus, this paper describes a GNSS-R system which has been developed on the principles of software-defined radio supported by General Purpose Graphics Processing Units (GPGPUs), and presents results from initial field tests which confirm the anticipated capability of the system.
An Investigation of the Distribution of Radiation Scattered by Optical Surfaces
1975-08-01
Profile Inversion Workshop, Ames Research Center, Moffett Field, California, L. Colin, ed., pp. 6-34 to 6-37 ( NASA TM X-62, 150). (Available from th...Surface EM Scattering Solutions," IEEE Trans. AP-21:393-396. Judd, D. B., 1967, "Terms, Definitions, and Symbols in Reflectometry ," J. Opt. Soc. Am. 57:445
Quantum nondemolition readout using a Josephson bifurcation amplifier
NASA Astrophysics Data System (ADS)
Boulant, N.; Ithier, G.; Meeson, P.; Nguyen, F.; Vion, D.; Esteve, D.; Siddiqi, I.; Vijay, R.; Rigetti, C.; Pierre, F.; Devoret, M.
2007-07-01
We report an experiment on the determination of the quantum nondemolition (QND) nature of a readout scheme of a quantum electrical circuit. The circuit is a superconducting quantum bit measured by microwave reflectometry using a Josephson bifurcation amplifier. We perform a series of two subsequent measurements, record their values and correlation, and quantify the QND character of this readout.
A Novel Fiber Optic Based Surveillance System for Prevention of Pipeline Integrity Threats.
Tejedor, Javier; Macias-Guarasa, Javier; Martins, Hugo F; Piote, Daniel; Pastor-Graells, Juan; Martin-Lopez, Sonia; Corredera, Pedro; Gonzalez-Herraez, Miguel
2017-02-12
This paper presents a novel surveillance system aimed at the detection and classification of threats in the vicinity of a long gas pipeline. The sensing system is based on phase-sensitive optical time domain reflectometry ( ϕ -OTDR) technology for signal acquisition and pattern recognition strategies for threat identification. The proposal incorporates contextual information at the feature level and applies a system combination strategy for pattern classification. The contextual information at the feature level is based on the tandem approach (using feature representations produced by discriminatively-trained multi-layer perceptrons) by employing feature vectors that spread different temporal contexts. The system combination strategy is based on a posterior combination of likelihoods computed from different pattern classification processes. The system operates in two different modes: (1) machine + activity identification, which recognizes the activity being carried out by a certain machine, and (2) threat detection, aimed at detecting threats no matter what the real activity being conducted is. In comparison with a previous system based on the same rigorous experimental setup, the results show that the system combination from the contextual feature information improves the results for each individual class in both operational modes, as well as the overall classification accuracy, with statistically-significant improvements.
NASA Astrophysics Data System (ADS)
Hertkorn, J.; Thapa, S. B.; Wunderer, T.; Scholz, F.; Wu, Z. H.; Wei, Q. Y.; Ponce, F. A.; Moram, M. A.; Humphreys, C. J.; Vierheilig, C.; Schwarz, U. T.
2009-07-01
In this study, we present theoretical and experimental results regarding highly conductive modulation doped composition graded p-AlGaN/(AlN)/GaN multiheterostructures. Based on simulation results, several multiheterostructures were grown by metalorganic vapor phase epitaxy. Using high resolution x-ray diffraction and x-ray reflectometry, the abruptness of the AlGaN/AlN/GaN interfaces could be determined. Using electron holography, the energetic profile of the valence band could be measured, yielding important information about the vertical carrier transport in such multiheterostructures. The electrical properties of the samples were investigated by measuring the lateral (σL) and vertical (σV) conductivity, respectively. The free hole concentration of a sample optimized in terms of lateral conductivity was measured to be 1.2×1019 cm-3 (295 K) with a mobility of 7 cm2/V s, yielding a record σL of 13.7 (Ω cm)-1. Low temperature Hall measurements (77 K) proved the existence of a two-dimensional hole gas at the AlN/GaN interface, as the lateral conductivity could be increased to 30 (Ω cm)-1 and no carrier freeze out was observable. By substituting the p-GaN layer in a light emitting diode (LED) with an AlGaN/GaN multiheterostructure, the overall voltage drop could be reduced by more than 100 mV (j =65 A/cm2). Furthermore improved current spreading on the p-side of LEDs with integrated AlGaN/AlN/GaN multiheterostructures could be proved by μ-electroluminescence, respectively.
NASA Astrophysics Data System (ADS)
Cataldo, A.; De Benedetto, E.; Cannazza, G.; Huebner, C.; Trebbels, D.
2017-01-01
In this work, the performance of three time domain reflectometry (TDR) instruments (with different hardware architectures, specifications and costs) is comparatively assessed. The goal is to evaluate the performance of low-cost TDR instrumentation, in view of the development of a completely permanent TDR-based monitoring solution, wherein the costs of the instrument is so low, that it can be left on-site, even unguarded, and controlled remotely. Without losing generality, the applications considered for the comparative experiments are the TDR-based detection of leaks in underground pipes and, more in general, of soil water content variations. For this reason, both laboratory and in-the-field experiments are carried out by comparatively using three TDR instruments, in conjunction with wire-like sensing elements (SEs).
Simultaneous parameter optimization of x-ray and neutron reflectivity data using genetic algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Surendra, E-mail: surendra@barc.gov.in; Basu, Saibal
2016-05-23
X-ray and neutron reflectivity are two non destructive techniques which provide a wealth of information on thickness, structure and interracial properties in nanometer length scale. Combination of X-ray and neutron reflectivity is well suited for obtaining physical parameters of nanostructured thin films and superlattices. Neutrons provide a different contrast between the elements than X-rays and are also sensitive to the magnetization depth profile in thin films and superlattices. The real space information is extracted by fitting a model for the structure of the thin film sample in reflectometry experiments. We have applied a Genetic Algorithms technique to extract depth dependentmore » structure and magnetic in thin film and multilayer systems by simultaneously fitting X-ray and neutron reflectivity data.« less
NASA Astrophysics Data System (ADS)
Kreger, Stephen T.; Sang, Alex K.; Garg, Naman; Michel, Julia
2013-05-01
Fiber-optic ultrasonic transducers are an important component of an active ultrasonic testing system for structural health monitoring. Fiber-optic transducers have several advantages such as small size, light weight, and immunity to electromagnetic interference that make them much more attractive than the current available piezoelectric transducers, especially as embedded and permanent transducers in active ultrasonic testing for structural health monitoring. In this paper, a distributed fiber-optic laser-ultrasound generation based on the ghost-mode of tilted fiber Bragg gratings is studied. The influences of the laser power and laser pulse duration on the laser-ultrasound generation are investigated. The results of this paper are helpful to understand the working principle of this laser-ultrasound method and improve the ultrasonic generation efficiency.
Lavery, Kristopher A; Prabhu, Vivek M; Satija, Sushil; Wu, Wen-Li
2010-12-01
Off-specular neutron reflectometry was applied to characterize the form and amplitude of lateral compositional variations at a buried reaction-diffusion front. In this work, off-specular neutron measurements were first calibrated using off-specular x-ray reflectivity and atomic force microscopy via a roughened glass surface, both as a free surface and as a buried interface that was prepared by spin coating thin polymer films upon the glass surface. All three methods provided consistent roughness values despite the difference in their detection mechanism. Our neutron results demonstrated, for the first time, that the compositional heterogeneity at a buried reaction front can be measured; the model system used in this study mimics the deprotection reaction that occurs during the photolithographic process necessary for manufacturing integrated circuits.
NASA Technical Reports Server (NTRS)
Yunck, Tom P.; Hajj, George A.
2003-01-01
The vast illuminating power of the Global Positioning System (GPS), which transformed space geodesy in the 199Os, is now serving to probe the earth's fluid envelope in unique ways. Three distinct techniques have emerged: ground-based sensing of the integrated atmospheric moisture; space-based profiling of atmospheric refractivity, pressure, temperature, moisture, and other properties by active limb sounding; and surface (ocean and ice) altimetry and scatterometry with reflected signals detected from space. Ground-based GPS moisture sensing is already in provisional use for numerical weather prediction. Limb sounding, while less mature, offers a bevy of attractions, including high accuracy, stability, and vertical resolution; all-weather operation; and exceptionally low cost. GPS bistatic radar, r 'reflectometry,' is the least advanced but shows promise for a number of niche applications.
NASA Technical Reports Server (NTRS)
Parker, Jr., Allen R (Inventor); Chan, Hon Man (Inventor); Piazza, Anthony (Nino) (Inventor); Richards, William Lance (Inventor)
2014-01-01
A method and system for multiplexing a network of parallel fiber Bragg grating (FBG) sensor-fibers to a single acquisition channel of a closed Michelson interferometer system via a fiber splitter by distinguishing each branch of fiber sensors in the spatial domain. On each branch of the splitter, the fibers have a specific pre-determined length, effectively separating each branch of fiber sensors spatially. In the spatial domain the fiber branches are seen as part of one acquisition channel on the interrogation system. However, the FBG-reference arm beat frequency information for each fiber is retained. Since the beat frequency is generated between the reference arm, the effective fiber length of each successive branch includes the entire length of the preceding branch. The multiple branches are seen as one fiber having three segments where the segments can be resolved. This greatly simplifies optical, electronic and computational complexity, and is especially suited for use in multiplexed or branched OFS networks for SHM of large and/or distributed structures which need a lot of measurement points.
151-km single-end phase-sensitive optical time-domain reflectometer assisted by optical repeater
NASA Astrophysics Data System (ADS)
Song, Muping; Zhu, Weiji; Xia, Qiaolan; Yin, Cong; Lu, Yan; Wu, Ying; Zhuang, Shouwang
2018-02-01
A phase-sensitive optical time-domain reflectometry (ϕOTDR) system that can detect intrusion over 150 km is presented. The ϕOTDR system uses nonbalanced optical repeaters to extend the sensing distance. The repeater consists of two erbium-doped optical fiber amplifiers (EDFAs) and one Raman amplifier (RA). One EDFA power amplifier amplifies the forward-transmitting pulse, and one EDFA preamplifier is used for the backscattering signal, respectively. The RA helps keeping the power along the fiber stable. The optical repeater is installed at the connection of two adjacent fibers to compensate the power decline due to fiber loss. It is easy to install the repeater midway among the fiber links in the system for longer-distance sensing since there is no need of modifying the original sensing system. The theoretical analysis of the repeater is given to describe its effect on the distributed sensing. In experiments, several ϕOTDR traces show a good agreement with theoretical results. Using the optical repeater, 35-Hz vibration at 151 km is successfully measured with signal-to-noise ratio of 8 dB without extra signal processing.
Accuracy improvement in the TDR-based localization of water leaks
NASA Astrophysics Data System (ADS)
Cataldo, Andrea; De Benedetto, Egidio; Cannazza, Giuseppe; Monti, Giuseppina; Demitri, Christian
A time domain reflectometry (TDR)-based system for the localization of water leaks has been recently developed by the authors. This system, which employs wire-like sensing elements to be installed along the underground pipes, has proven immune to the limitations that affect the traditional, acoustic leak-detection systems. Starting from the positive results obtained thus far, in this work, an improvement of this TDR-based system is proposed. More specifically, the possibility of employing a low-cost, water-absorbing sponge to be placed around the sensing element for enhancing the accuracy in the localization of the leak is addressed. To this purpose, laboratory experiments were carried out mimicking a water leakage condition, and two sensing elements (one embedded in a sponge and one without sponge) were comparatively used to identify the position of the leak through TDR measurements. Results showed that, thanks to the water retention capability of the sponge (which maintains the leaked water more localized), the sensing element embedded in the sponge leads to a higher accuracy in the evaluation of the position of the leak.
NASA Astrophysics Data System (ADS)
Klar, Assaf; Linker, Raphael
2009-05-01
Cross-borders smuggling tunnels enable unmonitored movement of people, drugs and weapons and pose a very serious threat to homeland security. Recent advances in strain measurements using optical fibers allow the development of smart underground security fences that could detect the excavation of smuggling tunnels. This paper presents the first stages in the development of such a fence using Brillouin Optical Time Domain Reflectometry (BOTDR). In the simulation study, two different ground displacement models are used in order to evaluate the robustness of the system against imperfect modeling. In both cases, soil-fiber interaction is considered. Measurement errors, and surface disturbances (obtained from a field test) are also included in the calibration and validation stages of the system. The proposed detection system is based on wavelet decomposition of the BOTDR signal, followed by a neural network that is trained to recognize the tunnel signature in the wavelet coefficients. The results indicate that the proposed system is capable of detecting even small tunnel (0.5m diameter) as deep as 20 meter.
Distributed optical fiber vibration sensor based on Sagnac interference in conjunction with OTDR.
Pan, Chao; Liu, Xiaorui; Zhu, Hui; Shan, Xuekang; Sun, Xiaohan
2017-08-21
A real-time distributed optical fiber vibration sensing prototype based on the Sagnac interference in conjunction with the optical time domain reflectometry (OTDR) was developed. The sensing mechanism for single- and multi-points vibrations along the sensing fiber was analyzed theoretically and demonstrated experimentally. The experimental results show excellent agreement with the theoretical models. It is verified that single-point vibration induces a significantly abrupt and monotonous power change in the corresponding position of OTDR trace. As to multi-points vibrations, the detection of the following vibration is influenced by all previous ones. However, if the distance between the adjacent two vibrations is larger than half of the input optical pulse width, abrupt power changes induced by them are separate and still monotonous. A time-shifting differential module was developed and carried out to convert vibration-induced power changes to pulses. Consequently, vibrations can be located accurately by measuring peak or valley positions of the vibration-induced pulses. It is demonstrated that when the width and peak power of input optical pulse are set to 1 μs and 35 mW, respectively, the position error is less than ± 0.5 m in a sensing range of more than 16 km, with the spatial resolution of ~110 m.
Impact Damage Detection of Toughened CFRP Laminates with Time Domain Reflectometry
2013-01-30
detect damage of the CFRP structures. 3. Experiments Material used for the experiments is IM600/133 highly toughened CFRP prepreg produced by Toho...Tenux Co. Ltd. The long specimen shown in Fig. 5 is made from the prepreg . The cure condition is 180°C×0.7MPa×2h. The specimen’s stacking sequence
Comparison between measured and predicted turbulence frequency spectra in ITG and TEM regimes
NASA Astrophysics Data System (ADS)
Citrin, J.; Arnichand, H.; Bernardo, J.; Bourdelle, C.; Garbet, X.; Jenko, F.; Hacquin, S.; Pueschel, M. J.; Sabot, R.
2017-06-01
The observation of distinct peaks in tokamak core reflectometry measurements—named quasi-coherent-modes (QCMs)—are identified as a signature of trapped-electron-mode (TEM) turbulence (Arnichand et al 2016 Plasma Phys. Control. Fusion 58 014037). This phenomenon is investigated with detailed linear and nonlinear gyrokinetic simulations using the Gene code. A Tore-Supra density scan is studied, which traverses through a linear (LOC) to saturated (SOC) ohmic confinement transition. The LOC and SOC phases are both simulated separately. In the LOC phase, where QCMs are observed, TEMs are robustly predicted unstable in linear studies. In the later SOC phase, where QCMs are no longer observed, ion-temperature-gradient (ITG) modes are identified. In nonlinear simulations, in the ITG (SOC) phase, a broadband spectrum is seen. In the TEM (LOC) phase, a clear emergence of a peak at the TEM frequencies is seen. This is due to reduced nonlinear frequency broadening of the underlying linear modes in the TEM regime compared with the ITG regime. A synthetic diagnostic of the nonlinearly simulated frequency spectra reproduces the features observed in the reflectometry measurements. These results support the identification of core QCMs as an experimental marker for TEM turbulence.
NASA Astrophysics Data System (ADS)
Nikolaeva, V.; Guimarais, L.; Manz, P.; Carralero, D.; Manso, M. E.; Stroth, U.; Silva, C.; Conway, G. D.; Seliunin, E.; Vicente, J.; Brida, D.; Aguiam, D.; Santos, J.; Silva, A.; ASDEX Upgrade team; MST1 team
2018-05-01
Transport in the scrape-off layer (SOL) depends on the state of divertor detachment. L-mode discharges were analyzed where the state of divertor detachment is varied through a density ramp-up. By means of reflectometry measurements at the low (LFS) and the high field side (HFS), midplane density fluctuations are studied for the first time in ASDEX Upgrade simultaneously at both sides of the tokamak. Radial density fluctuation profiles (δ {n}e/{n}e) increase with radius in both the HFS and the LFS. It is found that in the SOL density fluctuations at the LFS have about a factor of two larger amplitude than at the HFS in agreement with ballooned transport. Density fluctuations at the LFS show a modest variation with increasing background density resulting mainly from a rise of low frequency components. Experimental results are in good agreement with an enhanced convection of filaments at the LFS at the beginning of outer divertor detachment leading to a flatter SOL density profile. In this phase of the discharge, density fluctuations measured at the HFS far-SOL display a strong increase, which may be associated with the presence of faster filaments originated at the LFS.
Time domain reflectometry measured moisture content of sewage sludge compost across temperatures.
Cai, Lu; Chen, Tong-Bin; Gao, Ding; Liu, Hong-Tao; Chen, Jun; Zheng, Guo-Di
2013-01-01
Time domain reflectometry (TDR) is a prospective measurement technology for moisture content of sewage sludge composting material; however, a significant dependence upon temperature has been observed. The objective of this study was to assess the impacts of temperature upon moisture content measurement and determine if TDR could be used to monitor moisture content in sewage sludge compost across a range of temperatures. We also investigated the combined effects of temperature and conductivity on moisture content measurement. The results revealed that the moisture content of composting material could be determined by TDR using coated probes, even when the measured material had a moisture content of 0.581 cm(3)cm(-3), temperature of 70°C and conductivity of 4.32 mS cm(-1). TDR probes were calibrated as a function of dielectric properties that included temperature effects. When the bulk temperature varied from 20°C to 70°C, composting material with 0.10-0.70 cm(3)cm(-3) moisture content could be measured by TDR using coated probes, and calibrations based on different temperatures minimized the errors. Copyright © 2012. Published by Elsevier Ltd.
Ultrasonic monitoring of droplets' evaporation: Application to human whole blood.
Laux, D; Ferrandis, J Y; Brutin, D
2016-09-01
During a colloidal droplet evaporation, a sol-gel transition can be observed and is described by the desiccation time τD and the gelation time τG. These characteristic times, which can be linked to viscoelastic properties of the droplet and to its composition, are classically rated by analysis of mass droplet evolution during evaporation. Even if monitoring mass evolution versus time seems straightforward, this approach is very sensitive to environmental conditions (vibrations, air flow…) as mass has to be evaluated very accurately using ultra-sensitive weighing scales. In this study we investigated the potentialities of ultrasonic shear reflectometry to assess τD and τG in a simple and reliable manner. In order to validate this approach, our study has focused on blood droplets evaporation on which a great deal of work has recently been published. Desiccation and gelation times measured with shear ultrasonic reflectometry have been perfectly correlated to values obtained from mass versus time analysis. This ultrasonic method which is not very sensitive to environmental perturbations is therefore very interesting to monitor the drying of blood droplets in a simple manner and is more generally suitable for complex fluid droplets evaporation investigation. Copyright © 2016 Elsevier B.V. All rights reserved.
AMOR - the versatile reflectometer at SINQ
NASA Astrophysics Data System (ADS)
Clemens, D.; Gross, P.; Keller, P.; Schlumpf, N.; Könnecke, M.
2000-03-01
We report on a new facility for neutron reflectometry situated at the end position of a cold neutron guide at the Swiss Spallation Neutron Source SINQ. The instrument is a flexible apparatus, adaptable to the needs of the user's individual experiment. Principally designed to operate in the time-of-flight mode it is also capable to exploit the fact that SINQ is a continuous source because PSI's developments in the field of thin film multilayers are fruitfully applied. By means of multilayer monochromators it can be converted into a constant wavelength reflectometer. Polarized neutron reflectometry on AMOR takes advantage of remanent FeCo/Ti:N supermirrors and multilayers which can be operated in a way that no spin flippers are needed. The time and angular contributions to the resolution in momentum transfer are separately determinable in TOF mode. The total length of the instrument is adjustable in order to optimize resolution together with the illumination of the sample's surface. Large sample environments can be placed on the sample table that is actively isolated against vibrations. Single detectors and an EMBL 3He area detector can be chosen, alternatively. The instrument concept as well as parameters of its components are presented.
Application of spatial time domain reflectometry measurements in heterogeneous, rocky substrates
NASA Astrophysics Data System (ADS)
Gonzales, C.; Scheuermann, A.; Arnold, S.; Baumgartl, T.
2016-10-01
Measurement of soil moisture across depths using sensors is currently limited to point measurements or remote sensing technologies. Point measurements have limitations on spatial resolution, while the latter, although covering large areas may not represent real-time hydrologic processes, especially near the surface. The objective of the study was to determine the efficacy of elongated soil moisture probes—spatial time domain reflectometry (STDR)—and to describe transient soil moisture dynamics of unconsolidated mine waste rock materials. The probes were calibrated under controlled conditions in the glasshouse. Transient soil moisture content was measured using the gravimetric method and STDR. Volumetric soil moisture content derived from weighing was compared with values generated from a numerical model simulating the drying process. A calibration function was generated and applied to STDR field data sets. The use of elongated probes effectively assists in the real-time determination of the spatial distribution of soil moisture. It also allows hydrologic processes to be uncovered in the unsaturated zone, especially for water balance calculations that are commonly based on point measurements. The elongated soil moisture probes can potentially describe transient substrate processes and delineate heterogeneity in terms of the pore size distribution in a seasonally wet but otherwise arid environment.
NASA Astrophysics Data System (ADS)
Nagayama, Yoshio; Yamaguchi, Soichiro; Tsuchiya, Hayato; Kuwahara, Daisuke; LHD Experimental Team
2016-10-01
Visualization of local electron density fluctuations will be very useful to study the physics of confinement and instabilities in fusion plasma. In the Large Helical Device (LHD), the O-mode microwave imaging reflectometry (O-MIR) has been intensively developed in order to visualize the electron density fluctuations. The frequency is 26 - 34 GHz. This corresponds to the electron density of 0.8 - 1.5 × 1019 m-3. The plasma is illuminated by the Gaussian beam with four frequencies. The imaging optics make a plasma image onto the newly developed 2D (8 × 8) Horn-antenna Millimeter-wave Imaging Device (HMID). In HMID, the signal wave that is accumulated by the horn antenna is transduced to the micro-strip line by using the finline transducer. The signal wave is mixed by the double balanced mixer with the local wave that is delivered by cables. By using O-MIR, electron density fluctuations are measured at the H-mode edge and the ITB layer in LHD. This work is supported by NIFS/NINS under the project of Formation of International Scientific Base and Network, by the NIFS LHD project, by KAKENHI, and by IMS.
Stability of self-assembled polymer films investigated by optical laser reflectometry.
Dejeu, Jérôme; Diziain, Séverine; Dange, Catherine; Membrey, François; Charraut, Daniel; Foissy, Alain
2008-04-01
We studied the influence of post-treatment rinsing after the formation of self-assembled polyelectrolyte films made with the weak base poly(allylamine hydrochloride) (PAH) and the strong acid poly(styrene sulfonate) (PSS). The stability of the film was studied using optical fixed-angle laser reflectometry to measure the release of polymeric material and AFM experiments to reveal the change of morphology and thickness. We found that the polymer films were stable upon rinsing when the pH was the same in the solution as that used in the buildup (pH 9). The films released most of the polymeric material when rinsed at higher pH values, but a layer remained that corresponded to a PAH monolayer directly bound with the silica surface. Films containing at least four bilayers were stable upon rinsing at lower pH values, but the stability of thinner films depended on the type of the last polymer deposited. They were stable in the case of PSS as an outermost deposit, but they released a large part of their material in the case of PAH. The stability results were determined using a simple model of the step-by-step assembly of the polymer film described formerly.
Testing of Piezo-Actuated Glass Micro-Membranes by Optical Low-Coherence Reflectometry.
Merlo, Sabina; Poma, Paolo; Crisà, Eleonora; Faralli, Dino; Soldo, Marco
2017-02-25
In this work, we have applied optical low-coherence reflectometry (OLCR), implemented with infra-red light propagating in fiberoptic paths, to perform static and dynamic analyses on piezo-actuated glass micro-membranes. The actuator was fabricated by means of thin-film piezoelectric MEMS technology and was employed for modifying the micro-membrane curvature, in view of its application in micro-optic devices, such as variable focus micro-lenses. We are here showing that OLCR incorporating a near-infrared superluminescent light emitting diode as the read-out source is suitable for measuring various parameters such as the micro-membrane optical path-length, the membrane displacement as a function of the applied voltage (yielding the piezo-actuator hysteresis) as well as the resonance curve of the fundamental vibration mode. The use of an optical source with short coherence-time allows performing interferometric measurements without spurious resonance effects due to multiple parallel interfaces of highly planar slabs, furthermore selecting the plane/layer to be monitored. We demonstrate that the same compact and flexible setup can be successfully employed to perform spot optical measurements for static and dynamic characterization of piezo-MEMS in real time.
Testing of Piezo-Actuated Glass Micro-Membranes by Optical Low-Coherence Reflectometry
Merlo, Sabina; Poma, Paolo; Crisà, Eleonora; Faralli, Dino; Soldo, Marco
2017-01-01
In this work, we have applied optical low-coherence reflectometry (OLCR), implemented with infra-red light propagating in fiberoptic paths, to perform static and dynamic analyses on piezo-actuated glass micro-membranes. The actuator was fabricated by means of thin-film piezoelectric MEMS technology and was employed for modifying the micro-membrane curvature, in view of its application in micro-optic devices, such as variable focus micro-lenses. We are here showing that OLCR incorporating a near-infrared superluminescent light emitting diode as the read-out source is suitable for measuring various parameters such as the micro-membrane optical path-length, the membrane displacement as a function of the applied voltage (yielding the piezo-actuator hysteresis) as well as the resonance curve of the fundamental vibration mode. The use of an optical source with short coherence-time allows performing interferometric measurements without spurious resonance effects due to multiple parallel interfaces of highly planar slabs, furthermore selecting the plane/layer to be monitored. We demonstrate that the same compact and flexible setup can be successfully employed to perform spot optical measurements for static and dynamic characterization of piezo-MEMS in real time. PMID:28245603
Cinar, Yasin; Cingu, Abdullah Kursat; Turkcu, Fatih Mehmet; Cinar, Tuba; Sahin, Alparslan; Yuksel, Harun; Ari, Seyhmus
2015-03-01
To compare central corneal thickness (CCT) measurements with a rotating Scheimpflug camera (RSC), noncontact specular microscopy (SM), optical low-coherence reflectometry (OLCR), and ultrasonic pachymetry (UP) in keratoconus (KC) patients. In this prospective study, four CCT measurements taken with an RSC, SM, OLCR, and UP were compared in 81 eyes of 44 consecutive KC patients. The KC patients were divided into four subgroups according to Amsler-Krumeich's KC classification. The RSC and UP measurements of the CCT were not statistically significant in all the groups. Comparison of the SM vs. the OLCR measurements yielded statistically significant differences in all the KC patients and in all KC stages. In all the KC patients, RSC and OLCR showed a high correlation coefficient factor (r = 0.87, p = 0.000). CCT measurements with RSC are comparable to those achieved with UP. Compared with the other devices, according to SM measurements, the central cornea is thicker in all keratoconic eyes and in all KC grades, and it is thinner according to OLCR. RSC, UP, SM, and OLCR should not be used interchangeably in keratoconic eyes.
Yao, Yong-Sheng; Zheng, Jian-Long; Chen, Zeng-Shun; Zhang, Jun-Hui; Li, Yong
2016-06-10
This paper presents a systematic pioneering study on the use of agricultural-purpose frequency domain reflectometry (FDR) sensors to monitor temperature and moisture of a subgrade in highway extension and reconstruction engineering. The principle of agricultural-purpose FDR sensors and the process for embedding this kind of sensors for subgrade engineering purposes are introduced. Based on field measured weather data, a numerical analysis model for temperature and moisture content in the subgrade's soil is built. Comparisons of the temperature and moisture data obtained from numerical simulation and FDR-based measurements are conducted. The results show that: (1) the embedding method and process, data acquisition, and remote transmission presented are reasonable; (2) the temperature and moisture changes are coordinated with the atmospheric environment and they are also in close agreement with numerical calculations; (3) the change laws of both are consistent at positions where the subgrade is compacted uniformly. These results suggest that the data measured by the agricultural-purpose FDR sensors are reliable. The findings of this paper enable a new and effective real-time monitoring method for a subgrade's temperature and moisture changes, and thus broaden the application of agricultural-purpose FDR sensors.
Estimation of Soil-Water Characteristic Curves in Multiple-Cycles Using Membrane and TDR System
Hong, Won-Taek; Jung, Young-Seok; Kang, Seonghun; Lee, Jong-Sub
2016-01-01
The objective of this study is to estimate multiple-cycles of the soil-water characteristic curve (SWCC) using an innovative volumetric pressure plate extractor (VPPE), which is incorporated with a membrane and time domain reflectometry (TDR). The pressure cell includes the membrane to reduce the experimental time and the TDR probe to automatically estimate the volumetric water content. For the estimation of SWCC using the VPPE system, four specimens with different grain size and void ratio are prepared. The volumetric water contents of the specimens according to the matric suction are measured by the burette system and are estimated in the TDR system during five cycles of SWCC tests. The volumetric water contents estimated by the TDR system are almost identical to those determined by the burette system. The experimental time significantly decreases with the new VPPE. The hysteresis in the SWCC is largest in the first cycle and is nearly identical after 1.5 cycles. As the initial void ratio decreases, the air entry value increases. This study suggests that the new VPPE may effectively estimate multiple-cycles of the SWCC of unsaturated soils. PMID:28774139
Frequency domain reflectometry NDE for aging cables in nuclear power plants
NASA Astrophysics Data System (ADS)
Glass, S. W.; Jones, A. M.; Fifield, L. S.; Hartman, T. S.
2017-02-01
Degradation of the cable jacket, electrical insulation, and other cable components of installed cables within nuclear power plants (NPPs) is known to occur as a function of age, temperature, radiation, and other environmental factors. Although system tests verify cable function under normal loads, demonstration of some cable's ability to perform under exceptional loads associated with design-basis events is essential to assuring plant integrity. The cable's ability to perform safely over the initial 40-year planned and licensed life has generally been demonstrated and there have been very few age-related cable failures. With greater than 1000 km of power, control, instrumentation, and other cables typically found in an NPP, replacing all the cables would be a severe cost burden. Justification for life extension to 60 and 80 years requires a cable aging management program that includes condition monitoring to justify cable performance under normal operation as well as accident conditions. A variety of tests are available to assess various aspects of electrical and mechanical cable performance, but none are suitable for all cable configurations nor does any single test confirm all features of interest. One particularly promising test that is beginning to be used more and more by utilities is frequency domain reflectometry (FDR). FDR is a nondestructive electrical inspection technique used to detect and localize faults in power and communication system conductors along the length of a cable from a single connection point. FDR detects discontinuities in the electrical impedance that arise due to cable splices or similar changes along the path of the conductor pair. In addition, FDR has the potential to provide sensitivity to insulation degradation by detecting small changes in impedance between the cable conductors being examined. The technique is also sensitive to cable bends, the particular lay of the cable in tray, proximity to other cable, and other factors that bear consideration when interpreting the test results. This paper examines various influences on the FDR approach and compares results of three different instruments to assess accelerated aging damage among several NPP representative cables.
NASA Astrophysics Data System (ADS)
Ageron, M.; Aguilar, J. A.; Albert, A.; Ameli, F.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardellier-Desages, F.; Aslanides, E.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Basa, S.; Battaglieri, M.; Bazzotti, M.; Becherini, Y.; Béthoux, N.; Beltramelli, J.; Bertin, V.; Bigi, A.; Billault, M.; Blaes, R.; de Botton, N.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Burgio, G. F.; Busto, J.; Cafagna, F.; Caillat, L.; Calzas, A.; Capone, A.; Caponetto, L.; Carmona, E.; Carr, J.; Castel, D.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Ceres, A.; Charvis, P.; Chauchot, P.; Chiarusi, T.; Circella, M.; Coail, J.-Y.; Colnard, C.; Compére, C.; Coniglione, R.; Cottini, N.; Coyle, P.; Cuneo, S.; Cussatlegras, A.-S.; Damy, G.; van Dantzig, R.; Debonis, G.; de Marzo, C.; de Vita, R.; Dekeyser, I.; Delagnes, E.; Denans, D.; Deschamps, A.; Dessa, J.-X.; Destelle, J.-J.; Dinkespieler, B.; Distefano, C.; Donzaud, C.; Drogou, J.-F.; Druillole, F.; Durand, D.; Ernenwein, J.-P.; Escoffier, S.; Falchini, E.; Favard, S.; Fehr, F.; Feinstein, F.; Fiorello, C.; Flaminio, V.; Fratini, K.; Fuda, J.-L.; Galeotti, S.; Gallone, J.-M.; Giacomelli, G.; Girard, N.; Gojak, C.; Goret, Ph.; Graf, K.; Guilloux, F.; Hallewell, G.; Harakeh, M. N.; Hartmann, B.; Heijboer, A.; Heine, E.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hoffman, C.; Hogenbirk, J.; Hubbard, J. R.; Jaquet, M.; Jaspers, M.; de Jong, M.; Jouvenot, F.; Kalantar-Nayestanaki, N.; Kappes, A.; Karg, T.; Katz, U.; Keller, P.; Kneib, J. P.; Kok, E.; Kok, H.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Kruijer, A.; Kuch, S.; Lagier, P.; Lahmann, R.; Lamanna, G.; Lamare, P.; Lambard, G.; Languillat, J. C.; Laschinsky, H.; Lavalle, J.; Le Guen, Y.; Le Provost, H.; Le van Suu, A.; Lefévre, D.; Legou, T.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loaec, G.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Lyashuk, V.; Mangano, S.; Marcelin, M.; Margiotta, A.; Masullo, R.; Mazéas, F.; Mazure, A.; Megna, R.; Melissas, M.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Niess, V.; Noble, A.; Olivetto, C.; Ostasch, R.; Palanque-Delabrouille, N.; Payre, P.; Peek, H. Z.; Perez, A.; Petta, C.; Piattelli, P.; Pillet, R.; Pineau, J.-P.; Poinsignon, J.; Popa, V.; Pradier, T.; Racca, C.; Randazzo, N.; van Randwijk, J.; Real, D.; Regnier, M.; van Rens, B.; Réthoré, F.; Rewiersma, P.; Riccobene, G.; Rigaud, V.; Ripani, M.; Roca, V.; Roda, C.; Rolin, J. F.; Rostovtsev, A.; Roux, J.; Ruppi, M.; Russo, G. V.; Rusydi, G.; Salesa, F.; Salomon, K.; Sapienza, P.; Schmitt, F.; Schuller, J.-P.; Shanidze, R.; Sokalski, I.; Spona, T.; Spurio, M.; van der Steenhoven, G.; Stolarczyk, T.; Streeb, K.; Sulak, L.; Taiuti, M.; Tamburini, C.; Tao, C.; Tasca, L.; Terreni, G.; Urbano, F.; Valdy, P.; Valente, V.; Vallage, B.; Vaudaine, G.; Venekamp, G.; Verlaat, B.; Vernin, P.; van Wijk, R.; Wijnker, G.; Wobbe, G.; de Wolf, E.; Yao, A.-F.; Zaborov, D.; Zaccone, H.; Zornoza, J. D.; Zúñiga, J.
2007-11-01
A full-scale mechanical prototype line was deployed to a depth of 2500 m to test the leak tightness of the electronics containers and the pressure-resistant properties of an electromechanical cable under evaluation for use in the ANTARES deep-sea neutrino telescope. During a month-long immersion study, line parameter data were taken using miniature autonomous data loggers and shore-based optical time domain reflectometry. Details of the mechanical prototype line, the electromechanical cable and data acquisition are presented. Data taken during the immersion study revealed deficiencies in the pressure resistance of the electromechanical cable terminations at the entry points to the electronics containers. The improvements to the termination, which have been integrated into subsequent detection lines, are discussed. The line also allowed deep-sea acoustic measurements with a prototype hydrophone system. The technical setup of this system is described, and the first results of the data analysis are presented.
Comparison of Fiber Optic Strain Demodulation Implementations
NASA Technical Reports Server (NTRS)
Quach, Cuong C.; Vazquez, Sixto L.
2005-01-01
NASA Langley Research Center is developing instrumentation based upon principles of Optical Frequency-Domain Reflectometry (OFDR) for the provision of large-scale, dense distribution of strain sensors using fiber optics embedded with Bragg gratings. Fiber Optic Bragg Grating technology enables the distribution of thousands of sensors immune to moisture and electromagnetic interference with negligible weight penalty. At Langley, this technology provides a key component for research and development relevant to comprehensive aerospace vehicle structural health monitoring. A prototype system is under development that includes hardware and software necessary for the acquisition of data from an optical network and conversion of the data into strain measurements. This report documents the steps taken to verify the software that implements the algorithm for calculating the fiber strain. Brief descriptions of the strain measurement system and the test article are given. The scope of this report is the verification of software implementations as compared to a reference model. The algorithm will be detailed along with comparison results.
Noise temperature improvement for magnetic fusion plasma millimeter wave imaging systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, J.; Domier, C. W.; Luhmann, N. C.
2014-03-15
Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas [B. Tobias et al., Plasma Fusion Res. 6, 2106042 (2011)]. Of particular importance have been microwave electron cyclotron emission imaging and microwave imaging reflectometry systems for imaging T{sub e} and n{sub e} fluctuations. These instruments have employed heterodyne receiver arrays with Schottky diode mixer elements directly connected to individual antennas. Consequently, the noise temperature has been strongly determined by the conversion loss with typical noise temperatures of ∼60 000 K. However, this can be significantly improved by making use of recent advancesmore » in Monolithic Microwave Integrated Circuit chip low noise amplifiers to insert a pre-amplifier in front of the Schottky diode mixer element. In a proof-of-principle design at V-Band (50–75 GHz), significant improvement of noise temperature from the current 60 000 K to measured 4000 K has been obtained.« less
Ölçer, İbrahim; Öncü, Ahmet
2017-06-05
Distributed vibration sensing based on phase-sensitive optical time domain reflectometry ( ϕ -OTDR) is being widely used in several applications. However, one of the main challenges in coherent detection-based ϕ -OTDR systems is the fading noise, which impacts the detection performance. In addition, typical signal averaging and differentiating techniques are not suitable for detecting high frequency events. This paper presents a new approach for reducing the effect of fading noise in fiber optic distributed acoustic vibration sensing systems without any impact on the frequency response of the detection system. The method is based on temporal adaptive processing of ϕ -OTDR signals. The fundamental theory underlying the algorithm, which is based on signal-to-noise ratio (SNR) maximization, is presented, and the efficacy of our algorithm is demonstrated with laboratory experiments and field tests. With the proposed digital processing technique, the results show that more than 10 dB of SNR values can be achieved without any reduction in the system bandwidth and without using additional optical amplifier stages in the hardware. We believe that our proposed adaptive processing approach can be effectively used to develop fiber optic-based distributed acoustic vibration sensing systems.
Ölçer, İbrahim; Öncü, Ahmet
2017-01-01
Distributed vibration sensing based on phase-sensitive optical time domain reflectometry (ϕ-OTDR) is being widely used in several applications. However, one of the main challenges in coherent detection-based ϕ-OTDR systems is the fading noise, which impacts the detection performance. In addition, typical signal averaging and differentiating techniques are not suitable for detecting high frequency events. This paper presents a new approach for reducing the effect of fading noise in fiber optic distributed acoustic vibration sensing systems without any impact on the frequency response of the detection system. The method is based on temporal adaptive processing of ϕ-OTDR signals. The fundamental theory underlying the algorithm, which is based on signal-to-noise ratio (SNR) maximization, is presented, and the efficacy of our algorithm is demonstrated with laboratory experiments and field tests. With the proposed digital processing technique, the results show that more than 10 dB of SNR values can be achieved without any reduction in the system bandwidth and without using additional optical amplifier stages in the hardware. We believe that our proposed adaptive processing approach can be effectively used to develop fiber optic-based distributed acoustic vibration sensing systems. PMID:28587240
Measurement of Sub Degree Angular Carbon Fiber Tow Misalignment
NASA Technical Reports Server (NTRS)
Wilson, William C.; Moore, Jason P.; McCraw, Hunter
2017-01-01
NASA is investigating the use of carbon fiber tow steering to tune aeroelastic characteristics in advanced composite structures. In support of that effort, NASA is also investigating methods of measuring the angle of carbon fiber tows as they are placed. This work presents the results of using microwave reflectometry in the approximately 2 GHz region to measure carbon fiber tow angles at 0.1deg resolution.
23RD International Conference on Phenomena in Ionized Gases, Volume 3
1998-12-01
discharges, and high pressure glows; arcs; high frequency discharges; ionospheric magnetospheric, and astrophysical plasmas; plasma diagnostic methods ...kf) in pulse reflectometry. Second, it different frequencies , and an Abel inversion is gives a quantitative model of the behaviour of the wave... design V method in the case of narrow mutual pitch of surface electrodes for high concentration ozone generation. 2. Experimental setup 20 The electrode
Measuring the Moisture Content of Green Wood Using Time Domain Reflectometry
Laurence Schimleck; Kim Love-Myers; Joe Sanders; Heath Raybon; Richard Daniels; Jerry Mahon; Edward Andrews; Erik Schilling
2011-01-01
The responsible usage of water by facilities that rely on wet log storage in the southern United States has become an issue of great importance as restrictions on water usage have grown in recent years. In order to learn about the dynamics of moisture content in wet-stored logs over time, it is necessary to conduct continuous monitoring of log piles. Time domain...
Fusion Research in Ioffe Institute
NASA Astrophysics Data System (ADS)
Askinazi, L. G.; Afanasyev, V. I.; Altukhov, A. B.; Bakharev, N. N.; Belokurov, A. A.; Bulanin, V. V.; Bykov, A. S.; Chernyshev, F. V.; Chugunov, I.; Dyachenko, V. V.; Esipov, L. A.; Gin, D.; Goncharov, P. R.; Gurchenko, A. D.; Gusakov, E. Z.; Gusev, V. K.; Heuraux, S.; Iblyaminova, A. D.; Irzak, M. A.; Kantor, M. Yu.; Kaveeva, E. G.; Kiviniemi, T.; Khilkevitch, E. M.; Khitrov, S. A.; Khromov, N. A.; Kornev, V. A.; Kouprienko, D. V.; Kurskiev, G. S.; Lashkul, S. I.; Lebedev, S. V.; Leerink, S.; Melnik, A. D.; Minaev, V. B.; Mironov, M. I.; Miroshnikov, I. V.; Mukhin, E. E.; Nesenevich, V. G.; Niskala, P.; Novokhatsky, A. N.; Patrov, M. I.; Perevalov, A. A.; Petrov, M. P.; Petrov, A. V.; Petrov, Yu. V.; Popov, A. Yu.; Rozhansky, V. A.; Rozhdestvenskiy, V. V.; Sakharov, N. V.; Saveliev, A. N.; Senichenkov, I. Yu.; Sergeev, V. Yu.; Shchegolev, P. B.; Shatalin, S. V.; Shcherbinin, O. N.; Shevelev, A. E.; Sidorov, A. V.; da Silva, F.; Smirnov, A. I.; Stepanov, A. Yu.; Sysoeva, E. V.; Teplova, N. V.; Tolstyakov, S. Yu.; Tukachinsky, A. S.; Varfolomeev, V. I.; Vekshina, E. O.; Vildjunas, M. I.; Voronin, A. V.; Voskoboinikov, S. P.; Wagner, F.; Yashin, A. Yu.; Zhubr, N. A.
2015-10-01
In this paper we present the fusion related activities of the Plasma Physics Division at the Ioffe Institute. The first experiments on lower hybrid current drive (LHCD) in a spherical tokamak performed at the Globus-M tokamak (R = 0.36 m, a = 0.24 m, Bt = 0.4 T, Ip = 200 kA) with a novel poloidally oriented grill resulted in an RF driven current of up to 30 kA at (100 kW, 2.5 GHz), exceeding the modelling predictions. At the FT-2 tokamak (R = 0.56 m, a = 0.08 m, Bt = 3 T, Ip = 30 kA) experiments with a traditional toroidally oriented grill revealed no strong dependence of the LHCD density limit on the H/D ratio in spite of LH resonance densities differing by a factor of 3. Microwave Doppler reflectometry (DR) at the Globus-M, and DR and heavy ion beam probe measurements at the tokamak TUMAN-3M (R = 0.53 m, a = 0.24 m, Bt = 1.0 T, Ip = 190 kA) demonstrated geodesic acoustic mode (GAM) suppression at the L to H transition. Observations at FT-2 using Doppler Enhanced Scattering showed that the GAM amplitude is anti-correlated both spatially and temporally to the drift turbulence level and electron thermal diffusivity. For the first time turbulence amplitude modulation at the GAM frequency was found both experimentally and in global gyrokinetic modelling. A model of the L-H transition is proposed based on this effect. The loss mechanisms of energetic ions' (EI) were investigated in the neutral beam injection (NBI) experiments on Globus-M and TUMAN-3M. Empirical scaling of the 2.45 MeV DD neutron rate for the two devices shows a strong dependence on toroidal field Bt1.29 and plasma current Ip1.34 justifying the Bt and Ip increase by a factor of 2.5 for the proposed upgrade of Globus-M. Bursts of ˜1 MHz Alfvenic type oscillations correlating with sawtooth crashes were observed in ohmic TUMAN-3M discharges. The possibility of low threshold parametric excitation of Bernstein and upper hybrid waves trapped in drift-wave eddies resulting in anomalous absorption in electron cyclotron resonance heating (ECRH) experiments in toroidal plasmas was identified theoretically. A novel method of radial correlation Doppler reflectometry is shown to be capable of measuring the turbulence wave-number spectrum in realistic 2D geometry. On the progress in design and fabrication of three diagnostics for ITER developed in the Ioffe institute is reported: neutral particle analysis, divertor Thomson scattering and gamma spectroscopy.
Breathable NIPAAm Network with Controllable Hydration Supports Model Lipid Membrane
NASA Astrophysics Data System (ADS)
Jablin, Michael; Smith, Hillary; Zhernenkov, Mikhail; Vidyasagar, Ajay; Toomey, Ryan; Saiz, Jessica; Toperverg, Boris; Watkins, Erik; Kuhl, Tonya; Hurd, Alan; Majewski, Jaroslaw
2009-03-01
The interaction of a model lipid bilayer composed of DPPC with a surface-tethered poly(N-isopropylacrylamide) (NIPAAm) was explored with neutron reflectometry (NR). The Langmuir-Blodgett / Langmuir-Schaeffer method was used to deposit a lipid bilayer onto the polymer. NR measurements were used to probe the in- and out-of-plane structure of the system as a function of temperature. NR with fluorescence microscopy show that the polymer supports a lipid bilayer, and hydration of the support can be controlled. At low temp. the membrane develops out-of-plane undulations visible in off-specular scattering. Analysis of the off-specular reveals in-plane correlation of the bilayer fluctuations. The separation of the lipid bilayer from the solid support of a substrate constitutes a significant step towards a more realistic model of biological membranes.
NASA Astrophysics Data System (ADS)
Majkrzak, Charles F.; Carpenter, Elisabeth; Heinrich, Frank; Berk, Norman F.
2011-11-01
Specular neutron reflectometry has become an established probe of the nanometer scale structure of materials in thin film and multilayered form. It has contributed especially to our understanding of soft condensed matter of interest in polymer science, organic chemistry, and biology and of magnetic hard condensed matter systems. In this paper we examine a number of key factors which have emerged that can limit the sensitivity of neutron reflection as such a probe. Among these is loss of phase information, and we discuss how knowledge about material surrounding a film of interest can be applied to help resolve the problem. In this context we also consider what role the quantum phenomenon of interaction-free measurement might play in enhancing the statistical efficiency for obtaining reflectivity or transmission data.
Goldschmidt, Benjamin S.; Mehta, Smit; Mosley, Jeff; Walter, Chris; Whiteside, Paul J. D.; Hunt, Heather K.; Viator, John A.
2013-01-01
Current methods of determining the refractive index of chemicals and materials, such as ellipsometry and reflectometry, are limited by their inability to analyze highly absorbing or highly transparent materials, as well as the required prior knowledge of the sample thickness and estimated refractive index. Here, we present a method of determining the refractive index of solutions using the photoacoustic effect. We show that a photoacoustic refractometer can analyze highly absorbing dye samples to within 0.006 refractive index units of a handheld optical refractometer. Further, we use myoglobin, an early non-invasive biomarker for malignant hyperthermia, as a proof of concept that this technique is applicable for use as a medical diagnostic. Comparison of the speed, cost, simplicity, and accuracy of the techniques shows that this photoacoustic method is well-suited for optically complex systems. PMID:24298407
Scrape-off layer reflectometer for Alcator C-Mod.
Lau, Cornwall; Hanson, Greg; Wilgen, John; Lin, Yijun; Wukitch, Steve
2010-10-01
A swept-frequency X-mode reflectometer is being built for Alcator C-Mod to measure the scrape-off layer density profiles at the top, middle, and bottom locations in front of both the new lower hybrid launcher and the new ion cyclotron range of frequencies antenna. The system is planned to operate between 100 and 146 GHz at sweep rates from 10 μs to 1 ms, and will cover a density range of approximately 10(16)-10(20) m(-3) at B(0)=5-5.4 T. To minimize the effects of density fluctuations, both differential phase and full phase reflectometry will be employed. Design, test data, and calibration results of this electronics system will be discussed. To reduce attenuation losses, tallguide (TE(01)) will be used for most of the transmission line system. Simulations of high mode conversion in tallguide components, such as e-plane hyperbolic secant radius of curvature bends, tapers, and horn antennas will be shown. Experimental measurements of the total attenuation losses of these components in the lower hybrid waveguide run will also be presented.
NASA Astrophysics Data System (ADS)
Wada, Daichi; Igawa, Hirotaka; Tamayama, Masato; Kasai, Tokio; Arizono, Hitoshi; Murayama, Hideaki; Shiotsubo, Katsuya
2018-02-01
We have developed an optical fiber distributed sensing system based on optical frequency domain reflectometry (OFDR) that uses long-length fiber Bragg gratings (FBGs). This technique obtains strain data not as a point data from an FBG but as a distributed profile within the FBG. This system can measure the strain distribution profile with an adjustable high spatial resolution of the mm or sub-mm order in real-time. In this study, we applied this OFDR-FBG technique to a flying test bed that is a mid-sized jet passenger aircraft. We conducted flight tests and monitored the structural responses of a fuselage stringer and the bulkhead of the flying test bed during flights. The strain distribution variations were successfully monitored for various events including taxiing, takeoff, landing and several other maneuvers. The monitoring was effective not only for measuring the strain amplitude applied to the individual structural parts but also for understanding the characteristics of the structural responses in accordance with the flight maneuvers. We studied the correlations between various maneuvers and strains to explore the relationship between the operation and condition of aircraft.
NASA Astrophysics Data System (ADS)
West, J.; Truss, S. W.
2004-12-01
An investigation is reported into the hydraulic behaviour of the vadose zone of a layered sandstone aquifer using borehole-based Time Domain Reflectometry (TDR). TDR has been widely applied to shallow soils but has seen limited application at greater depth and in cemented lithologies due to the difficulty of installing conventional TDR probes in rock and from boreholes. Here, flat TDR probes that are simply in contact with, rather than inserted within the medium under investigation, have been developed and applied in a field study. Both a commercially available portable packer TDR system (TRIME-B3L Borehole Packer Probe) and specially designed TDR probes, permanently installed in boreholes on grouted-in packers were used to monitor seasonal fluctuations in moisture content in the vadose zone of a layered sandstone over one year under natural rainfall loading. The data show that the vadose zone contains seasonal perched water tables that form when downward percolating moisture reaches layers of fine grained sandstone and siltstone and causes local saturation. The formation of perched water tables is likely to lead to lateral flow bypassing the less permeable, finer layers. This contrasts with behaviour inferred from previous studies of the same aquifer that used borehole radar and resistivity, which suggested its vadose zone behaviour was characterized by uniform downwards migration of wetting fronts. To investigate the impact of measurement technique on observed response, the TDR data reported here were used to produce simulated zero offset profile (ZOP) borehole radar responses. This simulation confirmed the limited ability of ZOP borehole radar to detect key vadose zone processes, because the phenomenon of critical refraction minimizes the sensitivity of the results to high moisture content layers. The study illustrates that inappropriate technique selection results in hydrological process mis-identification, with serious consequences for the usefulness of data in hydrological modeling.
Algorithms for Determining Physical Responses of Structures Under Load
NASA Technical Reports Server (NTRS)
Richards, W. Lance; Ko, William L.
2012-01-01
Ultra-efficient real-time structural monitoring algorithms have been developed to provide extensive information about the physical response of structures under load. These algorithms are driven by actual strain data to measure accurately local strains at multiple locations on the surface of a structure. Through a single point load calibration test, these structural strains are then used to calculate key physical properties of the structure at each measurement location. Such properties include the structure s flexural rigidity (the product of the structure's modulus of elasticity, and its moment of inertia) and the section modulus (the moment of inertia divided by the structure s half-depth). The resulting structural properties at each location can be used to determine the structure s bending moment, shear, and structural loads in real time while the structure is in service. The amount of structural information can be maximized through the use of highly multiplexed fiber Bragg grating technology using optical time domain reflectometry and optical frequency domain reflectometry, which can provide a local strain measurement every 10 mm on a single hair-sized optical fiber. Since local strain is used as input to the algorithms, this system serves multiple purposes of measuring strains and displacements, as well as determining structural bending moment, shear, and loads for assessing real-time structural health. The first step is to install a series of strain sensors on the structure s surface in such a way as to measure bending strains at desired locations. The next step is to perform a simple ground test calibration. For a beam of length l (see example), discretized into n sections and subjected to a tip load of P that places the beam in bending, the flexural rigidity of the beam can be experimentally determined at each measurement location x. The bending moment at each station can then be determined for any general set of loads applied during operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lubeck, J., E-mail: janin.lubeck@ptb.de; Fliegauf, R.; Holfelder, I.
A novel type of ultra-high vacuum instrument for X-ray reflectometry and spectrometry-related techniques for nanoanalytics by means of synchrotron radiation (SR) has been constructed and commissioned at BESSY II. This versa-tile instrument was developed by the PTB, Germany’s national metrology institute, and includes a 9-axis manipulator that allows for an independent alignment of the samples with respect to all degrees of freedom. In addition, it integrates a rotational and translational movement of several photodiodes as well as a translational movement of a beam-geometry-defining aperture system. Thus, the new instrument enables various analytical techniques based on energy dispersive X-ray detectors suchmore » as reference-free X-Ray Fluorescence (XRF) analysis, total-reflection XRF, grazing-incidence XRF, in addition to optional X-Ray Reflectometry (XRR) measurements or polarization-dependent X-ray absorption fine structure analyses (XAFS). Samples having a size of up to (100 × 100) mm{sup 2}; can be analyzed with respect to their mass deposition, elemental, spatial or species composition. Surface contamination, nanolayer composition and thickness, depth pro-file of matrix elements or implants, nanoparticles or buried interfaces as well as molecular orientation of bonds can be accessed. Three technology transfer projects of adapted instruments have enhanced X-Ray Spectrometry (XRS) research activities within Europe at the synchrotron radiation facilities ELETTRA (IAEA) and SOLEIL (CEA/LNE-LNHB) as well as at the X-ray innovation laboratory BLiX (TU Berlin) where different laboratory sources are used. Here, smaller chamber requirements led PTB in cooperation with TU Berlin to develop a modified instrument equipped with a 7-axis manipulator: reduced freedom in the choice of experimental geometry modifications (absence of out-of-SR-plane and reference-free XRS options) has been compensated by encoder-enhanced angular accuracy for GIXRF and XRR.« less
OPTICAL FIBRES AND FIBREOPTIC SENSORS: Polarisation reflectometry of anisotropic optical fibres
NASA Astrophysics Data System (ADS)
Konstantinov, Yurii A.; Kryukov, Igor'I.; Pervadchuk, Vladimir P.; Toroshin, Andrei Yu
2009-11-01
Anisotropic, polarisation-maintaining fibres have been studied using a reflectometer and integrated optic polariser. Linearly polarised pulses were launched into the fibre under test at different angles between their plane of polarisation and the main optical axis of the fibre. A special procedure for the correlation analysis of these reflectograms is developed to enhance the reliability of the information about the longitudinal optical uniformity ofanisotropic fibres.
Self-Sensing TDR with Micro-Strip Line
2015-06-11
detect impact damage of a CFRP plate in the second year (Todoroki A, et al., Impact damage detection of a carbon- fibre -reinforced-polymer plate...inspection methods is self-sensing technology that uses carbon fibres as sensors [1]-[11]. The self-sensing technology applies electric current to the...Time Domain Reflectometry (TDR) for damage detection [15]-[17]. Authors have developed a self-sensing TDR for detection of fibre breakages using a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glass, Samuel W.; Fifield, Leonard S.; Bowler, Nicola
This Pacific Northwest National Laboratory milestone report describes progress to date on the investigation of non-destructive test methods focusing on local cable insulation and jacket testing using an interdigital capacitance (IDC) approach. Earlier studies have assessed a number of non-destructive examination (NDE) methods for bulk, distributed, and local cable tests. A typical test strategy is to perform bulk assessments of the cable response using dielectric spectroscopy, Tan , or partial discharge followed by distributed tests like time domain reflectometry or frequency domain reflectometry to identify the most likely defect location followed by a local test that can include visual inspection,more » indenter modulus tests, or Fourier Transform Infrared Spectroscopy (FTIR) or Near Infrared Spectroscopy FTIR (FTNIR). If a cable is covered with an overlaying jacket, the jacket’s condition is likely to be more severely degraded than the underlying insulation. None of the above local test approaches can be used to evaluate insulation beneath a cable jacket. Since the jacket’s function is neither structural nor electrical, a degraded jacket may not have any significance regarding the cable’s performance or suitability for service. IDC measurements offer a promising alternative or complement to these local test approaches including the possibility to test insulation beneath an overlaying jacket.« less
Creely, A J; Ida, K; Yoshinuma, M; Tokuzawa, T; Tsujimura, T; Akiyama, T; Sakamoto, R; Emoto, M; Tanaka, K; Michael, C A
2017-07-01
A new method for measuring density fluctuation profiles near the edge of plasmas in the Large Helical Device (LHD) has been developed utilizing reflectometry combined with pellet-induced fast density scans. Reflectometer cutoff location was calculated by proportionally scaling the cutoff location calculated with fast far infrared laser interferometer (FIR) density profiles to match the slower time resolution results of the ray-tracing code LHD-GAUSS. Plasma velocity profile peaks generated with this reflectometer mapping were checked against velocity measurements made with charge exchange spectroscopy (CXS) and were found to agree within experimental uncertainty once diagnostic differences were accounted for. Measured density fluctuation profiles were found to peak strongly near the edge of the plasma, as is the case in most tokamaks. These measurements can be used in the future to inform inversion methods of phase contrast imaging (PCI) measurements. This result was confirmed with both a fixed frequency reflectometer and calibrated data from a multi-frequency comb reflectometer, and this method was applied successfully to a series of discharges. The full width at half maximum of the turbulence layer near the edge of the plasma was found to be only 1.5-3 cm on a series of LHD discharges, less than 5% of the normalized minor radius.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmichael, Justin R; Rother, Gernot; Browning, Jim
2012-01-01
A new high-pressure cell design for use in neutron reflectometry (NR) for pressures up to 50 MPa and a temperature range of 300 473 K is described. The cell design guides the neutron beam through the working crystal without passing through additional windows or the bulk fluid, which provides for a high neutron transmission, low scattering background, and low beam distortion. The o-ring seal is suitable for a wide range of subcritical and supercritical fluids and ensures high chemical and pressure stability. Wafers with a diameter of 5.08 cm (2 in.) and 5 mm or 10 mm thickness can bemore » used with the cells, depending on the required pressure and momentum transfer range. The fluid volume in the sample cell is very small at about 0.1 ml, which minimizes scattering background and stored energy. The cell design and pressure setup for measurements with supercritical fluids are described. NR data are shown for silicon/silicon oxide and quartz wafers measured against air and subsequently within the high-pressure cell to demonstrate the neutron characteristics of the high-pressure cell. Neutron reflectivity data for supercritical CO2 in contact with quartz and Si/SiO2 wafers are also shown.« less
Yao, Yong-Sheng; Zheng, Jian-Long; Chen, Zeng-Shun; Zhang, Jun-Hui; Li, Yong
2016-01-01
This paper presents a systematic pioneering study on the use of agricultural-purpose frequency domain reflectometry (FDR) sensors to monitor temperature and moisture of a subgrade in highway extension and reconstruction engineering. The principle of agricultural-purpose FDR sensors and the process for embedding this kind of sensors for subgrade engineering purposes are introduced. Based on field measured weather data, a numerical analysis model for temperature and moisture content in the subgrade’s soil is built. Comparisons of the temperature and moisture data obtained from numerical simulation and FDR-based measurements are conducted. The results show that: (1) the embedding method and process, data acquisition, and remote transmission presented are reasonable; (2) the temperature and moisture changes are coordinated with the atmospheric environment and they are also in close agreement with numerical calculations; (3) the change laws of both are consistent at positions where the subgrade is compacted uniformly. These results suggest that the data measured by the agricultural-purpose FDR sensors are reliable. The findings of this paper enable a new and effective real-time monitoring method for a subgrade’s temperature and moisture changes, and thus broaden the application of agricultural-purpose FDR sensors. PMID:27294935
NASA Astrophysics Data System (ADS)
Creely, A. J.; Ida, K.; Yoshinuma, M.; Tokuzawa, T.; Tsujimura, T.; Akiyama, T.; Sakamoto, R.; Emoto, M.; Tanaka, K.; Michael, C. A.
2017-07-01
A new method for measuring density fluctuation profiles near the edge of plasmas in the Large Helical Device (LHD) has been developed utilizing reflectometry combined with pellet-induced fast density scans. Reflectometer cutoff location was calculated by proportionally scaling the cutoff location calculated with fast far infrared laser interferometer (FIR) density profiles to match the slower time resolution results of the ray-tracing code LHD-GAUSS. Plasma velocity profile peaks generated with this reflectometer mapping were checked against velocity measurements made with charge exchange spectroscopy (CXS) and were found to agree within experimental uncertainty once diagnostic differences were accounted for. Measured density fluctuation profiles were found to peak strongly near the edge of the plasma, as is the case in most tokamaks. These measurements can be used in the future to inform inversion methods of phase contrast imaging (PCI) measurements. This result was confirmed with both a fixed frequency reflectometer and calibrated data from a multi-frequency comb reflectometer, and this method was applied successfully to a series of discharges. The full width at half maximum of the turbulence layer near the edge of the plasma was found to be only 1.5-3 cm on a series of LHD discharges, less than 5% of the normalized minor radius.
Distributed measurement of acoustic vibration location with frequency multiplexed phase-OTDR
NASA Astrophysics Data System (ADS)
Iida, Daisuke; Toge, Kunihiro; Manabe, Tetsuya
2017-07-01
All-fiber distributed vibration sensing is attracting attention in relation to structural health monitoring because it is cost effective, offers high coverage of the monitored area and can detect various structural problems. And in particular the demand for high-speed vibration sensing operating at more than 10 kHz has increased because high frequency vibration indicates high energy and severe trouble in the monitored object. Optical fiber vibration sensing with phase-sensitive optical time domain reflectometry (phase-OTDR) has long been studied because it can be used for distributed vibration sensing in optical fiber. However, pulse reflectometry such as OTDR cannot measure high-frequency vibration whose cycle is shorter than the repetition time of the OTDR. That is, the maximum detectable frequency depends on fiber length. In this paper, we describe a vibration sensing technique with frequency-multiplexed OTDR that can detect the entire distribution of a high-frequency vibration thus allowing us to locate a high-speed vibration point. We can measure the position, frequency and dynamic change of a high-frequency vibration whose cycle is shorter than the repetition time. Both frequency and position are visualized simultaneously for a 5-km fiber with an 80-kHz frequency response and a 20-m spatial resolution.
2017-01-01
Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS) and distributed temperature sensing (DTS) systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR) for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications. PMID:29104259
Miah, Khalid; Potter, David K
2017-11-01
Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS) and distributed temperature sensing (DTS) systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR) for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications.
Carrier phase altimetry using Zeppelin based GNSS-R observations and water gauge reference data
NASA Astrophysics Data System (ADS)
Semmling, Maximilian; Schön, Steffen; Beckheinrich, Jamila; Beyerle, Georg; Ge, Maorong; Wickert, Jens
2014-05-01
The increasing number of transmitters in global navigation satellite systems (GNSS), like GPS, Galileo, Glonass or Compass, provide observations with an increasing coverage for positioning but also for remote sensing. A space based GNSS remote sensing application is radio occultation, a limb sounding method. Globally distributed vertical profiles of temperature, water vapour and electron density are provided operationally for weather forecast and ionospheric monitoring. Another application is GNSS reflectometry (GNSS-R) that is currently developed especially for ocean remote sensing. The high reflection coefficient of water is crucial for GNSS-R. This study presents a method that uses GNSS phase observations for lake altimetry with the potential for ocean application. Phase observations are deduced from a GORS (GNSS Occultaction Reflectometry Scatterometry) receiver in Master-Slave-Configuration. The Master sampling dedicated for direct signal acquisition is connected to an up-looking antenna with right hand circular polarization (RHCP). Two Slave samplings dedicated for acquisition of the reflected signals are connected to down-looking antennas with right- and left-hand circular polarization (RHCP and LHCP). Based on in-phase and quad-phase (I, Q) sample components, an altimetric phase residual is retrieved. This residual can be related to the height of the reflecting surface. An altimetric challenge arises from the unknown ambiguity of phase residuals that introduces a height bias. The presented study uses ancillary data deduced from water gauges to mitigate the ambiguity bias. Reference tracks are formed by linear surface height interpolation between the water gauge stations. At crossover points of reflection tracks with reference tracks a phase ambiguity estimate is determined for bias mitigation. For this study airborne GNSS measurements were conducted aboard a Zeppelin NT (New Technology) airship with a geodetic receiver for navigation and a GORS receiver for reflectometry. The corresponding Zeppelin campaign was conducted in Sep 2012. It comprised three days with in total 13 flight hours over lake Constance (9.0°-9.8°E; 47.5°-47.8°N). Compared to a similar Zeppelin campaign in Oct 2010, Slave tracking problems could be solved providing reflection events with continuous tracks of up to 30min. The airship's trajectory is determined from navigation data with a precision better than 10cm in Precise Point Positioning mode supported by additional GNSS ground station data. Water gauge reference data around the lake is provided by stations at Friedrichshafen, Konstanz, Lindau and Romanshorn. Situated in vicinity of the Upper Rhine Plain the lake surface is affected by gravity anomalies in this region. As a consequence geoid undulations with up to 1m amplitude occur along the lake. Predictions of surface height undulation (including GCG-05 model) agree with phase altimetric retrievals. An example event shows a standard deviation of only 2cm (4cm) for RHCP (LHCP) data. The corresponding mean difference with 53cm (51cm) for RHCP (LHCP), respectively, is related to the residual ambiguity bias persisting after mitigation with reference data.
TDR water content inverse profiling in layered soils during infiltration and evaporation
NASA Astrophysics Data System (ADS)
Greco, R.; Guida, A.
2009-04-01
During the last three decades, time domain reflectometry (TDR) has become one of the most commonly used tools for soil water content measurements either in laboratory or in the field. Indeed, TDR provides easy and cheap water content estimations with relatively small disturbance to the investigated soil. TDR measurements of soil water content are based on the strong correlation between relative dielectric permittivity of wet soil and its volumetric water content. Several expressions of the relationship between relative dielectric permittivity and volumetric water content have been proposed, empirically stated (Topp et al., 1980) as well as based on semi-analytical approach to dielectric mixing models (Roth et al., 1990; Whalley, 1993). So far, TDR field applications suffered the limitation due to the capability of the technique of estimating only the mean water content in the volume investigated by the probe. Whereas the knowledge of non homogeneous vertical water content profiles was needed, it was necessary to install either several vertical probes of different length or several horizontal probes placed in the soil at different depths, in both cases strongly increasing soil disturbance as well as the complexity of the measurements. Several studies have been recently dedicated to the development of inversion methods aimed to extract more information from TDR waveforms, in order to estimate non homogeneous moisture profiles along the axis of the metallic probe used for TDR measurements. A common feature of all these methods is that electromagnetic transient through the wet soil along the probe is mathematically modelled, assuming that the unknown soil water content distribution corresponds to the best agreement between simulated and measured waveforms. In some cases the soil is modelled as a series of small layers with different dielectric properties, and the waveform is obtained as the result of the superposition of multiple reflections arising from impedance discontinuities between the layers (Nguyen et al., 1997; Todoroff et al., 1998; Heimovaara, 2001; Moret et al., 2006). Other methods consider the dielectric properties of the soil as smoothly variable along probe axis (Greco, 1999; Oswald et al., 2003; Greco, 2006). Aim of the study is testing the applicability to layered soils of the inverse method for the estimation of water content profiles along vertical TDR waveguides, originally applied in laboratory to homogeneous soil samples with monotonic moisture distributions (Greco, 2006), and recently extended to field measurements with more general water content profiles (Greco and Guida, 2008). Influence of soil electrical conductivity, uniqueness of solution, choices of parametrization, parameters identifiabilty, sensitivity of the method to chosen parameters variations are discussed. Finally, the results of the application of the inverse method to a series of infiltration and evaporation experiments carried out in a flume filled with three soil layers of different physical characteristics are presented. ACKNOWLEDGEMENTS The research was co-financed by the Italian Ministry of University, by means of the PRIN 2006 PRIN program, within the research project entitled ‘Definition of critical rainfall thresholds for destructive landslides for civil protection purposes'. REFERENCES Greco, R., 1999. Measurement of water content profiles by single TDR experiments. In: Feyen, J., Wiyo, K. (Eds.), Modelling of Transport Processes in Soils. Wageningen Pers, Wageningen, the Netherlands, pp. 276-283. Greco, R., 2006. Soil water content inverse profiling from single TDR waveforms. J. Hydrol. 317, 325-339. Greco R., Guida A., 2008. Field measurements of topsoil moisture profiles by vertical TDR probes. J. Hydrol. 348, 442- 451. Heimovaara, T.J., 2001. Frequency domain modelling of TDR waveforms in order to obtain frequency dependent dielectric properties of soil samples: a theoretical approach. In: TDR 2001 - Second International Symposium on Time Domain Reflectometry for Innovative Geotechnical Applications. Northwestern University, Evanston, Illinois, pp. 19-21. Moret, D., Arrue, J.L., Lopez, M.V., Gracia, R., 2006. A new TDR waveform analysis approach for soil moisture profiling using a single probe. J. Hydrol. 321, 163-172. Nguyen, B.L., Bruining, J., Slob, E.C., 1997. Saturation profiles from dielectric (frequency domain reflectometry) measurements in porous media. In: Proceedings of International Workshop on characterization and Measurements of the Hydraulic Properties of Unsaturated Porous Media, Riverside, California, pp. 363-375. Oswald, B., Benedickter, H.R., Ba¨chtold, W., Flu¨hler, H., 2003. Spatially resolved water content profiles from inverted time domain reflectometry signals. Water Resour. Res. 39 (12), 1357. Todoroff, P., Lorion, R., Lan Sun Luk, J.-D., 1998. L'utilisation des génétiques pour l'identification de profils hydriques de sol a` partir de courbes réflectométriques. CR Acad. Sci. Paris, Sciences de la terre et des plane`tes 327, 607-610. Topp, G.C., Davis, J.L., Annan, A.P., 1980. Electromagnetic determination of soil water content: measurement in coaxial transmission lines. Water Resour. Res. 16, 574-582. Roth, K., Schulin, R., Fluhler, H., Attinger, W., 1990. Calibration of time domain reflectometry for water content measurement using a composite dielectric approach. Water Resour. Res. 26, 2267-2273. Whalley, W.R., 1993. Considerations on the use of time domain reflectometry (TDR) for measuring soil water content. J. Soil Sci. 44, 1-9.
Advantages and Challenges of 10-Gbps Transmission on High-Density Interconnect Boards
NASA Astrophysics Data System (ADS)
Yee, Chang Fei; Jambek, Asral Bahari; Al-Hadi, Azremi Abdullah
2016-06-01
This paper provides a brief introduction to high-density interconnect (HDI) technology and its implementation on printed circuit boards (PCBs). The advantages and challenges of implementing 10-Gbps signal transmission on high-density interconnect boards are discussed in detail. The advantages (e.g., smaller via dimension and via stub removal) and challenges (e.g., crosstalk due to smaller interpair separation) of HDI are studied by analyzing the S-parameter, time-domain reflectometry (TDR), and transmission-line eye diagrams obtained by three-dimensional electromagnetic modeling (3DEM) and two-dimensional electromagnetic modeling (2DEM) using Mentor Graphics HyperLynx and Keysight Advanced Design System (ADS) electronic computer-aided design (ECAD) software. HDI outperforms conventional PCB technology in terms of signal integrity, but proper routing topology should be applied to overcome the challenge posed by crosstalk due to the tight spacing between traces.
Development of 2-D horn-antenna millimeter-wave imaging device (HMID) for the plasma diagnostics
NASA Astrophysics Data System (ADS)
Nagayama, Y.; Ito, N.; Kuwahara, D.; Tsuchiya, H.; Yamaguchi, S.
2017-04-01
The two-dimensional (2-D) Horn-antenna Millimeter-wave Imaging Device (HMID) has been developed for the O-mode Microwave Imaging Reflectometry (O-MIR) in the Large Helical Device (LHD). The detectable frequency range of the HMID is 23-33 GHz, which corresponds to the cutoff electron density of 0.8-1.5 × 1019 m-3 in the O-MIR. The HMID is a 2-D imaging device that improves on the horn-antenna mixer array, which had been developed for the X-mode MIR in the LHD. In the HMID, the signal (RF) wave from the horn antenna is transmitted to the microstrip line by the finline transmitter, and this is mixed by the double-balanced-mixer with the local oscillation wave that is fed by a coaxial cable. By using the HMID, the MIR optical system can be significantly simplified.
Development of 2-D horn-antenna millimeter-wave imaging device (HMID) for the plasma diagnostics.
Nagayama, Y; Ito, N; Kuwahara, D; Tsuchiya, H; Yamaguchi, S
2017-04-01
The two-dimensional (2-D) Horn-antenna Millimeter-wave Imaging Device (HMID) has been developed for the O-mode Microwave Imaging Reflectometry (O-MIR) in the Large Helical Device (LHD). The detectable frequency range of the HMID is 23-33 GHz, which corresponds to the cutoff electron density of 0.8-1.5 × 10 19 m -3 in the O-MIR. The HMID is a 2-D imaging device that improves on the horn-antenna mixer array, which had been developed for the X-mode MIR in the LHD. In the HMID, the signal (RF) wave from the horn antenna is transmitted to the microstrip line by the finline transmitter, and this is mixed by the double-balanced-mixer with the local oscillation wave that is fed by a coaxial cable. By using the HMID, the MIR optical system can be significantly simplified.
Detection of Local Temperature Change on HTS Cables via Time-Frequency Domain Reflectometry
NASA Astrophysics Data System (ADS)
Bang, Su Sik; Lee, Geon Seok; Kwon, Gu-Young; Lee, Yeong Ho; Ji, Gyeong Hwan; Sohn, Songho; Park, Kijun; Shin, Yong-June
2017-07-01
High temperature superconducting (HTS) cables are drawing attention as transmission and distribution cables in future grid, and related researches on HTS cables have been conducted actively. As HTS cables have come to the demonstration stage, failures of cooling systems inducing quench phenomenon of the HTS cables have become significant. Several diagnosis of the HTS cables have been developed but there are still some limitations of the experimental setup. In this paper, a non-destructive diagnostic technique for the detection of the local temperature change point is proposed. Also, a simulation model of HTS cables with a local temperature change point is suggested to verify the proposed diagnosis. The performance of the diagnosis is checked by comparative analysis between the proposed simulation results and experiment results of a real-world HTS cable. It is expected that the suggested simulation model and diagnosis will contribute to the commercialization of HTS cables in the power grid.
Synthetic magnetoelectric coupling in a nanocomposite multiferroic
Jain, P.; Wang, Q.; Roldan, M.; ...
2015-03-13
Given the paucity of single phase multiferroic materials (with large ferromagnetic moment), composite systems seem an attractive solution to realize magnetoelectric coupling between ferromagnetic and ferroelectric order parameters. Despite having antiferromagnetic order, BiFeO₃ (BFO) has nevertheless been a key material due to excellent ferroelectric properties at room temperature. We studied a superlattice composed of 8 repetitions of 6 unit cells of La₀.₇Sr₀.₃MnO₃ (LSMO) grown on 5 unit cells of BFO. Significant net uncompensated magnetization in BFO, an insulating superlattice, is demonstrated using polarized neutron reflectometry. Remarkably, the magnetization enables magnetic field to change the dielectric properties of the superlattice, whichmore » we cite as an example of synthetic magnetoelectric coupling. Importantly, controlled creation of magnetic moment in BFO is a much needed path toward design and implementation of integrated oxide devices for next generation magnetoelectric data storage platforms.« less
Chiuchiolo, Antonella; Palmieri, Luca; Consales, Marco; Giordano, Michele; Borriello, Anna; Bajas, Hugues; Galtarossa, Andrea; Bajko, Marta; Cusano, Andrea
2015-10-01
This contribution presents distributed and multipoint fiber-optic monitoring of cryogenic temperatures along a superconducting power transmission line down to 30 K and over 20 m distance. Multipoint measurements were conducted using fiber Bragg gratings sensors coated with two different functional overlays (epoxy and poly methyl methacrylate (PMMA)) demonstrating cryogenic operation in the range 300-4.2 K. Distributed measurements exploited optical frequency-domain reflectometry to analyze the Rayleigh scattering along two concatenated fibers with different coatings (acrylate and polyimide). The integrated system has been placed along the 20 m long cryostat of a superconducting power transmission line, which is currently being tested at the European Organization for Nuclear Research (CERN). Cool-down events from 300-30 K have been successfully measured in space and time, confirming the viability of these approaches to the monitoring of cryogenic temperatures along a superconducting transmission line.
Diagnostics and control for the steady state and pulsed tokamak DEMO
NASA Astrophysics Data System (ADS)
Orsitto, F. P.; Villari, R.; Moro, F.; Todd, T. N.; Lilley, S.; Jenkins, I.; Felton, R.; Biel, W.; Silva, A.; Scholz, M.; Rzadkiewicz, J.; Duran, I.; Tardocchi, M.; Gorini, G.; Morlock, C.; Federici, G.; Litnovsky, A.
2016-02-01
The present paper is devoted to a first assessment of the DEMO diagnostics systems and controls in the context of pulsed and steady state reactor design under study in Europe. In particular, the main arguments treated are: (i) The quantities to be measured in DEMO and the requirements for the measurements; (ii) the present capability of the diagnostic and control technology, determining the most urgent gaps, and (iii) the program and strategy of the research and development (R&D) needed to fill the gaps. Burn control, magnetohydrodynamic stability, and basic machine protection require improvements to the ITER technology, and moderated efforts in R&D can be dedicated to infrared diagnostics (reflectometry, electron cyclotron emission, polarimetry) and neutron diagnostics. Metallic Hall sensors appear to be a promising candidate for magnetic measurements in the high neutron fluence and long/steady state discharges of DEMO.
Real-time Fourier transformation of lightwave spectra and application in optical reflectometry.
Malacarne, Antonio; Park, Yongwoo; Li, Ming; LaRochelle, Sophie; Azaña, José
2015-12-14
We propose and experimentally demonstrate a fiber-optics scheme for real-time analog Fourier transform (FT) of a lightwave energy spectrum, such that the output signal maps the FT of the spectrum of interest along the time axis. This scheme avoids the need for analog-to-digital conversion and subsequent digital signal post-processing of the photo-detected spectrum, thus being capable of providing the desired FT processing directly in the optical domain at megahertz update rates. The proposed concept is particularly attractive for applications requiring FT analysis of optical spectra, such as in many optical Fourier-domain reflectrometry (OFDR), interferometry, spectroscopy and sensing systems. Examples are reported to illustrate the use of the method for real-time OFDR, where the target axial-line profile is directly observed in a single-shot oscilloscope trace, similarly to a time-of-flight measurement, but with a resolution and depth of range dictated by the underlying interferometry scheme.
Realization of ground-state artificial skyrmion lattices at room temperature
Gilbert, Dustin A.; Maranville, Brian B.; Balk, Andrew L.; ...
2015-10-08
We report that the topological nature of magnetic skyrmions leads to extraordinary properties that provide new insights into fundamental problems of magnetism and exciting potentials for novel magnetic technologies. Prerequisite are systems exhibiting skyrmion lattices at ambient conditions, which have been elusive so far. We demonstrate the realization of artificial Bloch skyrmion lattices over extended areas in their ground state at room temperature by patterning asymmetric magnetic nanodots with controlled circularity on an underlayer with perpendicular magnetic anisotropy (PMA). Polarity is controlled by a tailored magnetic field sequence and demonstrated in magnetometry measurements. The vortex structure is imprinted from themore » dots into the interfacial region of the underlayer via suppression of the PMA by a critical ion-irradiation step. In conclusion, the imprinted skyrmion lattices are identified directly with polarized neutron reflectometry and confirmed by magnetoresistance measurements. Our results demonstrate an exciting platform to explore room-temperature ground-state skyrmion lattices.« less
A technique for detecting and locating polarisation nonuniformities in an anisotropic optical fibre
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burdin, V V; Konstantinov, Yurii A; Pervadchuk, Vladimir P
2013-06-30
One of the most important requirements for optical fibres as waveguiding media is uniformity. Polarisation-maintaining anisotropic fibres contain a special type of nonuniformity, which leads to polarisation cross-talk: optical power is transferred from one polarisation mode to the orthogonal mode. In this paper, we report a technique for detecting and locating such nonuniformities in a PANDA anisotropic single-mode fibre using polarised reflectometry. (fiber optics)
Recharge monitoring in an interplaya setting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scanlon, B.R.; Reedy, R.C.; Liang, J.
1999-03-01
The objective of this investigation is to monitor infiltration in response to precipitation events in an interplaya setting. The authors evaluated data gathered from the interplaya recharge monitoring installation at the Pantex Plant from March through December 1998. They monitored thermocouple psychrometer (TCP) instruments to measure water potential and time-domain reflectometry (TDR) probes to measure water content and bulk soil conductivity. Heat-dissipation sensor (HDS) instruments were monitored to supplement the TCP data.
NASA Astrophysics Data System (ADS)
Gutscher, M. A.; Royer, J. Y.; Graindorge, D.; Murphy, S.; Klingelhoefer, F.; Cattaneo, A.; Barreca, G.; Quetel, L.; Petersen, F.; Riccobene, G.; Urlaub, M.; Krastel, S.; Gross, F.; Kopp, H.
2017-12-01
Two-thirds of the earth's surface is covered by water and thus largely inaccessible to modern networks of seismological instruments. A novel use of fiber optic cables could help improve hazard assessment and increase early warning capability. Laser reflectometry using BOTDR (Brillouin Optical Time Domain Reflectometry), commonly used for structural health monitoring of large-scale engineering structures (e.g. - bridges, dams, pipelines, etc.) can measure very small strains (< 1 mm) at very large distances (10 - 200 km). This technique has never been used to monitor deformation caused by active faults on the seafloor. The objective of the FOCUS project is to demonstrate that this technique can measure small (1 - 2 cm) displacements on a primary test site offshore Sicily where the recently mapped North Alfeo Fault crosses the Catania EMSO seafloor observatory, 28 km long fiber optic cable. Two other EMSO test sites with fiber optic cables, the 100 km long Capo Passero (SE Sicily) and the 2 km long cable off Molene Island (W France) will also be studied. Initial reflectometry tests were performed on these three cables using a Febus BOTDR interrogator in June and July 2017. Unexpectedly high dynamic noise levels (corresponding to strains of 200 - 500 mm/m) were observed on the Molene cable, likely due to the high-energy, shallow water, open ocean environment. The tests on the EMSO infrastructure in Sicily indicated low experimental noise levels (20 - 30 mm/m) out to a distance of 15 km. BOTDR observations will have to be calibrated by other independent measurements. Therefore, targeted marine geophysical surveys of the seafloor along the trace of the cable and faults are planned, with the use of seafloor geodetic instruments to quantify fault displacement. Once the BOTDR fault-monitoring technique has been tested, demonstrated and calibrated offshore Eastern Sicily, the goal is to expand it to other fiber optic cable networks, either existing research networks in earthquake hazard zones (Japan, Cascadia) or to the Mediterranean region through access to retired (decommissioned) telecommunication cables or development of dual-use cables (two of the anticipated outcomes of the FOCUS project). This represents a potentially tremendous breakthrough in seismology, tectonics and natural hazard early warning capability.
NASA Astrophysics Data System (ADS)
Saynisch, Jan; Semmling, Maximilian; Wickert, Jens; Thomas, Maik
2015-11-01
The Agulhas current system transports warm and salty water masses from the Indian Ocean into the Southern Ocean and into the Atlantic. The transports impact past, present, and future climate on local and global scales. The size and variability, however, of the respective transports are still much debated. In this study, an idealized model based twin experiment is used to study whether sea surface height (SSH) anomalies estimated from reflected signals of the Global Navigation Satellite System reflectometry (GNSS-R) can be used to determine the internal water mass properties and transports of the Agulhas region. A space-borne GNSS-R detector on the International Space Station (ISS) is assumed and simulated. The detector is able to observe daily SSH fields with a spatial resolution of 1-5∘. Depending on reflection geometry, the precision of a single SSH observation is estimated to reach 3 cm (20 cm) when the carrier phase (code delay) information of the reflected GNSS signal is used. The average precision over the Agulhas region is 7 cm (42 cm). The proposed GNSS-R measurements surpass the radar-based satellite altimetry missions in temporal and spatial resolution but are less precise. Using the estimated GNSS-R characteristics, measurements of SSH are generated by sampling a regional nested general circulation model of the South African oceans. The artificial observations are subsequently assimilated with a 4DVAR adjoint data assimilation method into the same ocean model but with a different initial state and forcing. The assimilated and the original, i.e., the sampled model state, are compared to systematically identify improvements and degradations in the model variables that arise due to the assimilation of GNSS-R based SSH observations. We show that SSH and the independent, i.e., not assimilated model variables velocity, temperature, and salinity improve by the assimilation of GNSS-R based SSH observations. After the assimilation of 90 days of SSH observations, improvements in the independent variables cover the whole water column. Locally, up to 39 % of the original model state are recovered. Shorter assimilation windows result in enhanced reproduction of the observed and assimilated SSH but are accompanied by an insufficient or wrong recovery of sub-surface water properties. The assimilation of real GNSS-R observations, when available, and consequently the estimation of Agulhas water mass properties and the leakage of heat and salt into the Atlantic will benefit from this model-based study.
BOREAS HYD-1 Volumetric Soil Moisture Data
NASA Technical Reports Server (NTRS)
Cuenca, Richard H.; Kelly, Shaun F.; Stangel, David E.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)
2000-01-01
The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-1 team made measurements of volumetric soil moisture at the Southern Study Area (SSA) and Northern Study Area (NSA) tower flux sites in 1994 and at selected tower flux sites in 1995-97. Different methods were used to collect these measurements, including neutron probe and manual and automated Time Domain Reflectometry (TDR). In 1994, the measurements were made every other day at the NSA-OJP (Old Jack Pine), NSA-YJP (Young Jack Pine), NSA-OBS (Old Black Spruce), NSA-Fen, SSA-OJP, SSA-YJP, SSA-Fen, SSA-YA (Young Aspen), and SSA-OBS sites. In 1995-97, when automated equipment was deployed at NSA-OJP, NSA-YJP, NSA-OBS, SSA-OBS, and SSA-OA (Old Aspen), the measurements were made as often as every hour. The data are stored in tabular ASCII files. The volumetric soil moisture data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).
Study of transmission line attenuation in broad band millimeter wave frequency range.
Pandya, Hitesh Kumar B; Austin, M E; Ellis, R F
2013-10-01
Broad band millimeter wave transmission lines are used in fusion plasma diagnostics such as electron cyclotron emission (ECE), electron cyclotron absorption, reflectometry and interferometry systems. In particular, the ECE diagnostic for ITER will require efficient transmission over an ultra wide band, 100 to 1000 GHz. A circular corrugated waveguide transmission line is a prospective candidate to transmit such wide band with low attenuation. To evaluate this system, experiments of transmission line attenuation were performed and compared with theoretical loss calculations. A millimeter wave Michelson interferometer and a liquid nitrogen black body source are used to perform all the experiments. Atmospheric water vapor lines and continuum absorption within this band are reported. Ohmic attenuation in corrugated waveguide is very low; however, there is Bragg scattering and higher order mode conversion that can cause significant attenuation in this transmission line. The attenuation due to miter bends, gaps, joints, and curvature are estimated. The measured attenuation of 15 m length with seven miter bends and eighteen joints is 1 dB at low frequency (300 GHz) and 10 dB at high frequency (900 GHz), respectively.
Rayleigh scattering in few-mode optical fibers
Wang, Zhen; Wu, Hao; Hu, Xiaolong; Zhao, Ningbo; Mo, Qi; Li, Guifang
2016-01-01
The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant mechanism for optical loss. However, to date, the role of Rayleigh scattering in FMFs remains elusive. Here we establish and experimentally validate a general model for Rayleigh scattering in FMFs. Rayleigh backscattering not only sets the intrinsic loss limit for FMFs but also provides the theoretical foundation for few-mode optical time-domain reflectometry, which can be used to probe perturbation-induced mode-coupling dynamics in FMFs. We also show that forward inter-modal Rayleigh scattering ultimately sets a fundamental limit on inter-modal-crosstalk for FMFs. Therefore, this work not only has implications specifically for SDM systems but also broadly for few-mode fiber optics and its applications in amplifiers, lasers, and sensors in which inter-modal crosstalk imposes a fundamental performance limitation. PMID:27775003
Rayleigh scattering in few-mode optical fibers.
Wang, Zhen; Wu, Hao; Hu, Xiaolong; Zhao, Ningbo; Mo, Qi; Li, Guifang
2016-10-24
The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant mechanism for optical loss. However, to date, the role of Rayleigh scattering in FMFs remains elusive. Here we establish and experimentally validate a general model for Rayleigh scattering in FMFs. Rayleigh backscattering not only sets the intrinsic loss limit for FMFs but also provides the theoretical foundation for few-mode optical time-domain reflectometry, which can be used to probe perturbation-induced mode-coupling dynamics in FMFs. We also show that forward inter-modal Rayleigh scattering ultimately sets a fundamental limit on inter-modal-crosstalk for FMFs. Therefore, this work not only has implications specifically for SDM systems but also broadly for few-mode fiber optics and its applications in amplifiers, lasers, and sensors in which inter-modal crosstalk imposes a fundamental performance limitation.
Interfacial Symmetry Control of Emergent Ferromagnetism
NASA Astrophysics Data System (ADS)
Grutter, Alexander; Borchers, Julie; Kirby, Brian; He, Chunyong; Arenholz, Elke; Vailionis, Arturas; Flint, Charles; Suzuki, Yuri
Atomically precise complex oxide heterostructures provide model systems for the discovery of new emergent phenomena since their magnetism, structure and electronic properties are strongly coupled. Octahedral tilts and rotations have been shown to alter the magnetic properties of complex oxide heterostructures, but typically induce small, gradual magnetic changes. Here, we demonstrate sharp switching between ferromagnetic and antiferromagnetic order at the emergent ferromagnetic interfaces of CaRuO3/CaMnO3 superlattices. Through synchrotron X-ray diffraction and neutron reflectometry, we show that octahedral distortions in superlattices with an odd number of CaMnO3 unit cells in each layer are symmetry mismatched across the interface. In this case, the rotation symmetry switches across the interface, reducing orbital overlap, suppressing charge transfer from Ru to Mn, and disrupting the interfacial double exchange. This disruption switches half of the interfaces from ferromagnetic to antiferromagnetic and lowers the saturation magnetic of the superlattice from 1.0 to 0.5 μB/interfacial Mn. By targeting a purely interfacial emergent magnetic system, we achieve drastic alterations to the magnetic ground state with extremely small changes in layer thickness.
Hardware Overview of the Microwave Imaging Reflectometry (MIR) on DIII-D
NASA Astrophysics Data System (ADS)
Hu, Xing; Muscatello, Chirstopher; Domier, Calvin; Luhmann, Neville; Ren, Xiaoxin; Spear, Alexander; Tobias, Benjamin; Yu, Liubing; University of California Davis Collaboration; Princeton Plasma Physics Laboratory Collaboration
2013-10-01
UC Davis in collaboration with PPPL has developed and installed a 12 by 4 (48) channel MIR system on DIII-D to measure 2-D structure of density fluctuations. In the transmitter path, a four-frequency probing beam is generated by mixing the 65 GHz Gunn oscillator signal with two different 0.5 ~ 9 GHz signals. Carefully designed imaging optics shape the beam to ensure the probing beam wavefront matches the cutoff surfaces. In the receiver path, large aperture imaging optics collect the reflected beam and focus it onto the mini lens antenna array, which provides improved LO coupling and antenna performance over earlier imaging systems. The reflected signal is down-converted for the first time on the array and goes into the innovative electronics for a second down-conversion. Low frequency LOs for the IQ mixer are generated by mixing two reference signals from phase-locked circuits. The double down-converted signal is mixed with the low frequency LOs yielding in-phase and quadrature components of the phase and thus density fluctuation information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.; Tobias, B.; Chang, Y. -T.
Electron cyclotron emission (ECE) imaging is a passive radiometric technique that measures electron temperature fluctuations; and microwave imaging reflectometry (MIR) is an active radar imaging technique that measures electron density fluctuations. The microwave imaging diagnostic instruments employing these techniques have made important contributions to fusion science and have been adopted at major fusion facilities worldwide including DIII-D, EAST, ASDEX Upgrade, HL-2A, KSTAR, LHD, and J-TEXT. In this paper, we describe the development status of three major technological advancements: custom mm-wave integrated circuits (ICs), digital beamforming (DBF), and synthetic diagnostic modeling (SDM). These also have the potential to greatly advance microwavemore » fusion plasma imaging, enabling compact and low-noise transceiver systems with real-time, fast tracking ability to address critical fusion physics issues, including ELM suppression and disruptions in the ITER baseline scenario, naturally ELM-free states such as QH-mode, and energetic particle confinement (i.e. Alfven eigenmode stability) in high-performance regimes that include steady-state and advanced tokamak scenarios. Furthermore, these systems are fully compatible with today's most challenging non-inductive heating and current drive systems and capable of operating in harsh environments, making them the ideal approach for diagnosing long-pulse and steady-state tokamaks.« less
Pittella, Erika; Pisa, Stefano; Cavagnaro, Marta
2016-07-01
Measurements of ultrawideband (UWB) pulses reflected by the human body are conducted to evidence the differences in the received signal time behaviors due to respiration phases, and to experimentally verify previously obtained numerical results on the body's organs responsible for pulse reflection. Two experimental setups are used. The first one is based on a commercially available impulse radar system integrated on a single chip, while the second one implements an indirect time-domain reflectometry technique using a vector network analyzer controlled by a LabVIEW virtual instrument running on a laptop. When the UWB source is placed close to the human body, a small reflection due to the lung boundaries is present in the received pulse well distanced in time from the reflection due to the air-skin interface; this reflection proved to be linked to the different respiration phases. The changes in the reflected pulse could be used to detect, through wearable radar systems, lung movements associated with the breath activity. The development of a wearable radar system is of great importance because it allows the breath activity sensing without interfering with the subject daily activities.
Glavic, Artur; Summers, Brock; Dahal, Ashutosh; Kline, Joseph; Van Herck, Walter; Sukhov, Alexander; Ernst, Arthur
2018-01-01
Abstract The nature of magnetic correlation at low temperature in two‐dimensional artificial magnetic honeycomb lattice is a strongly debated issue. While theoretical researches suggest that the system will develop a novel zero entropy spin solid state as T → 0 K, a confirmation to this effect in artificial honeycomb lattice of connected elements is lacking. This study reports on the investigation of magnetic correlation in newly designed artificial permalloy honeycomb lattice of ultrasmall elements, with a typical length of ≈12 nm, using neutron scattering measurements and temperature‐dependent micromagnetic simulations. Numerical modeling of the polarized neutron reflectometry data elucidates the temperature‐dependent evolution of spin correlation in this system. As temperature reduces to ≈7 K, the system tends to develop novel spin solid state, manifested by the alternating distribution of magnetic vortex loops of opposite chiralities. Experimental results are complemented by temperature‐dependent micromagnetic simulations that confirm the dominance of spin solid state over local magnetic charge ordered state in the artificial honeycomb lattice with connected elements. These results enable a direct investigation of novel spin solid correlation in the connected honeycomb geometry of 2D artificial structure. PMID:29721429
Electromagnetic Inverse Problems Involving Distributions of Dielectric Mechanisms and Parameters
2005-08-17
0220 and in part by the National Institute of Aerospace (NIA) and NASA under grant NIA/NCSU-03-01-2536-NC. The authors would like to thank Dr. Richard...Albanese of the AFRL, Brooks AFB, and Dr. William P. Winfree, NASA Langley Research Center, for their valuable comments and suggestions during the...foods investigated by time-domain reflectometry , J. Food Science 68 (2003), 1396-1403. [46] P.G. Petropoulos, On the time-domain response of Cole-Cole
Note: 4-bounce neutron polarizer for reflectometry applications
NASA Astrophysics Data System (ADS)
Nagy, B.; Merkel, D. G.; Jakab, L.; Füzi, J.; Veres, T.; Bottyán, L.
2018-05-01
A neutron polarizer using four successive reflections on m = 2.5 supermirrors was built and installed at the GINA neutron reflectometer at the Budapest Neutron Centre. This simple setup exhibits 99.6% polarizing efficiency with 80% transmitted intensity of the selected polarization state. Due to the geometry, the higher harmonics in the incident beam are filtered out, while the optical axis of the beam remains intact for easy mounting and dismounting the device in an existing experimental setup.
1993-03-01
I1. NON COHERENT-REFLECTOMETRY The design of sources of steady-state intencive noise signals of mm wave band with sufficiently wide and homogenious...structures exhibit non -reciprocity effects, as well as magnetically controlled resonances, which are observable in reflection, absorption, and...performance of the oscillator. Accordingly, we designed a 3mm electronically tuned harmonic -420- oscillator in which it is easy to debug and control
Continuous-wave ultrasound reflectometry for surface roughness imaging applications
Kinnick, R. R.; Greenleaf, J. F.; Fatemi, M.
2009-01-01
Background Measurement of surface roughness irregularities that result from various sources such as manufacturing processes, surface damage, and corrosion, is an important indicator of product quality for many nondestructive testing (NDT) industries. Many techniques exist, however because of their qualitative, time-consuming and direct-contact modes, it is of some importance to work out new experimental methods and efficient tools for quantitative estimation of surface roughness. Objective and Method Here we present continuous-wave ultrasound reflectometry (CWUR) as a novel nondestructive modality for imaging and measuring surface roughness in a non-contact mode. In CWUR, voltage variations due to phase shifts in the reflected ultrasound waves are recorded and processed to form an image of surface roughness. Results An acrylic test block with surface irregularities ranging from 4.22 μm to 19.05 μm as measured by a coordinate measuring machine (CMM), is scanned by an ultrasound transducer having a diameter of 45 mm, a focal distance of 70 mm, and a central frequency of 3 MHz. It is shown that CWUR technique gives very good agreement with the results obtained through CMM inasmuch as the maximum average percent error is around 11.5%. Conclusion Images obtained here demonstrate that CWUR may be used as a powerful noncontact and quantitative tool for nondestructive inspection and imaging of surface irregularities at the micron-size level with an average error of less than 11.5%. PMID:18664399
NASA Astrophysics Data System (ADS)
Jeon, Sung W.; Shure, Mark A.; Baker, Kenneth B.; Chahlavi, Ali; Hatoum, Nagi; Turbay, Massud; Rollins, Andrew M.; Rezai, Ali R.; Huang, David
2005-04-01
Deep Brain Stimulation (DBS) is FDA-approved for the treatment of Parkinson's disease and essential tremor. Currently, placement of DBS leads is guided through a combination of anatomical targeting and intraoperative microelectrode recordings. The physiological mapping process requires several hours, and each pass of the microelectrode into the brain increases the risk of hemorrhage. Optical Coherence Domain Reflectometry (OCDR) in combination with current methodologies could reduce surgical time and increase accuracy and safety by providing data on structures some distance ahead of the probe. For this preliminary study, we scanned a rat brain in vitro using polarization-insensitive Optical Coherence Tomography (OCT). For accurate measurement of intensity and attenuation, polarization effects arising from tissue birefringence are removed by polarization diversity detection. A fresh rat brain was sectioned along the coronal plane and immersed in a 5 mm cuvette with saline solution. OCT images from a 1294 nm light source showed depth profiles up to 2 mm. Light intensity and attenuation rate distinguished various tissue structures such as hippocampus, cortex, external capsule, internal capsule, and optic tract. Attenuation coefficient is determined by linear fitting of the single scattering regime in averaged A-scans where Beer"s law is applicable. Histology showed very good correlation with OCT images. From the preliminary study using OCT, we conclude that OCDR is a promising approach for guiding DBS probe placement.
Nanoscale water condensation on click-functionalized self-assembled monolayers.
James, Michael; Ciampi, Simone; Darwish, Tamim A; Hanley, Tracey L; Sylvester, Sven O; Gooding, J Justin
2011-09-06
We have examined the nanoscale adsorption of molecular water under ambient conditions onto a series of well-characterized functionalized surfaces produced by Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC or "click") reactions on alkyne-terminated self-assembled monolayers on silicon. Water contact angle (CA) measurements reveal a range of macroscopic hydrophilicity that does not correlate with the tendency of these surfaces to adsorb water at the molecular level. X-ray reflectometry has been used to follow the kinetics of water adsorption on these "click"-functionalized surfaces, and also shows that dense continuous molecular water layers are formed over 30 h. For example, a highly hydrophilic surface, functionalized by an oligo(ethylene glycol) moiety (with a CA = 34°) showed 2.9 Å of adsorbed water after 30 h, while the almost hydrophobic underlying alkyne-terminated monolayer (CA = 84°) showed 5.6 Å of adsorbed water over the same period. While this study highlights the capacity of X-ray reflectometry to study the structure of adsorbed water on these surfaces, it should also serve as a warning for those intending to characterize self-assembled monolayers and functionalized surfaces to avoid contamination by even trace amounts of water vapor. Moreover, contact angle measurements alone cannot be relied upon to predict the likely degree of moisture uptake on such surfaces. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Ichikawa, Kaoru; Akiyama, Hiroaki; Ebinuma, Takuji; Isoguchi, Osamu; Kimura, Noriaki; Kitazawa, Yukihito; Konda, Masanori; Kouguchi, Nobuyuki; Tamura, Hitoshi; Tomita, Hiroyuki; Yoshikawa, Yutaka; Waseda, Takuji
2016-04-01
There has been considerable interest in GNSS Reflectometry (GNSS-R) as a new remote-sensing method. We have started a research program for GNSS-R applications on oceanographic observations under the contract with MEXT (Ministry of Education Culture, Sports, Science and Technology, JAPAN) and launched a Japanese research consortium, GROWTH. It is aiming to evaluate the capabilities of GNSS-R observations for oceanographic phenomena with different time scales, such as ocean waves (1/10 to tens of seconds), tides (one or half days), and sea surface dynamic height (a few days to years). In situ observations of ocean wave spectrum, wind speed vertical profile, and sea surface height will be quantitatively compared with equivalent estimates from simultaneous GNSS-R measurements. The GROWTH project will utilize different types of observation platforms; marine observation towers (about 20 m height), multi-copters (about 100 to 200 m height), and much higher-altitude CYGNSS data. Cross-platform data, together with in situ oceanographic observations, will be compared after adequate temporal averaging that accounts differences of the footprint sizes and temporal and spatial scales of oceanographic phenomena. This paper will provide overview of the GROWTH project, preliminary test results obtained by the multi-sensor platform at observation towers, and preparation status of a ground station that will be supplied to receive CYGNSS data at Japan.
Garza-Leon, Manuel; Plancarte-Lozano, Eduardo; Valle-Penella, Agustín Del; Guzmán-Martínez, María de Lourdes; Villarreal-González, Andrés
2018-01-01
Corneal pachymetry is widely used for refractive surgery and follow up in keratoconus, accurate measurement is essential for a safe surgery. To assess intraobserver reliability of central corneal thickness (CCT) measurements using optical low-coherence reflectometry (OLCR) technology and its agreement with ultrasonic pachymeter (US). Randomized and prospective comparative evaluation of diagnostic technology. One randomly healthy eye of subjects was scanned three times with both devices. Intraobserver within-subject standard deviation (Sw), coefficient of variation (CVw) and intraclass correlation coefficient (ICC) were obtained for reliability analysis; for study agreement, data were analyzed using the paired-sample t test and the Bland-Altman LoA method. The mean of three scans of each equipment was used to assess the LoA. The study enrolled 30 eyes of 30 subjects with average age of 28.70 ± 8.06 years. For repeatability, the Sw were 3.41 and 5.96 µ, the intraobserver CVw was 2 and 4% and ICC 0.991 and 0.988, for OLCR and US respectively. The mean CCT difference between OLCR and US was 8.90 ± 9.03 µ (95% confidence interval: 5.52-2.27 µ), and the LoA was 35.40 µ. OLCR technology provided reliable intraobserver CCT measurements. Both pachymetry measurements may be used interchangeably with minimum calibration adjustment. Copyright: © 2018 Permanyer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Islam, Syed Z.; Reed, Allen; Nagpure, Suraj
In this work, we use neutron reflectometry (NR) to investigate the roles of hydrogen in plasma treated hydrogen doped mesoporous black titania thin films in their visible light absorption and enhanced photoactivity for water oxidation. The cubic ordered mesoporous TiO 2 thin films are prepared by a surfactant-templated sol-gel method and are treated with hydrogen plasma, an approach hypothesized to capitalize on the high degree of disorder in the material and the high energy of the plasma species to achieve efficient hydrogen doping. UV-vis absorbance spectra indicate that H 2 plasma treatment makes TiO 2 films black, with broad-spectrum enhancementmore » of visible light absorption, and XPS analysis shows peak for Ti 3+ state in treated films. The presence of hydrogen in black mesoporous titania (H-TiO 2) films is confirmed by the scattering length density (SLD) profiles obtained from neutron reflectometry measurements. The H-TiO 2 shows ca. 28 times and 8 times higher photocurrent for photoelectrochemical water oxidation compared to undoped TiO 2 films under UV (365 nm) and blue (455 nm) LED irradiation, respectively. These findings provide the first direct evidence that the dramatic change in visible light absorbance of H-treated black TiO 2 is accompanied by significant hydrogen uptake and not just Ti 3+ generation or surface disordering.« less
Islam, Syed Z.; Reed, Allen; Nagpure, Suraj; ...
2017-10-26
In this work, we use neutron reflectometry (NR) to investigate the roles of hydrogen in plasma treated hydrogen doped mesoporous black titania thin films in their visible light absorption and enhanced photoactivity for water oxidation. The cubic ordered mesoporous TiO 2 thin films are prepared by a surfactant-templated sol-gel method and are treated with hydrogen plasma, an approach hypothesized to capitalize on the high degree of disorder in the material and the high energy of the plasma species to achieve efficient hydrogen doping. UV-vis absorbance spectra indicate that H 2 plasma treatment makes TiO 2 films black, with broad-spectrum enhancementmore » of visible light absorption, and XPS analysis shows peak for Ti 3+ state in treated films. The presence of hydrogen in black mesoporous titania (H-TiO 2) films is confirmed by the scattering length density (SLD) profiles obtained from neutron reflectometry measurements. The H-TiO 2 shows ca. 28 times and 8 times higher photocurrent for photoelectrochemical water oxidation compared to undoped TiO 2 films under UV (365 nm) and blue (455 nm) LED irradiation, respectively. These findings provide the first direct evidence that the dramatic change in visible light absorbance of H-treated black TiO 2 is accompanied by significant hydrogen uptake and not just Ti 3+ generation or surface disordering.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Islam, Syed Z.; Reed, Allen; Nagpure, Suraj
2018-05-01
In this work, we use neutron reflectometry (NR) to investigate the roles of hydrogen in plasma treated hydrogen doped mesoporous black titania thin films in their visible light absorption and enhanced photoactivity for water oxidation. The cubic ordered mesoporous TiO2 thin films are prepared by a surfactant-templated sol-gel method and are treated with hydrogen plasma, an approach hypothesized to capitalize on the high degree of disorder in the material and the high energy of the plasma species to achieve efficient hydrogen doping. UV-vis absorbance spectra indicate that H2 plasma treatment makes TiO2 films black, with broad-spectrum enhancement of visible lightmore » absorption, and XPS analysis shows peak for Ti3+ state in treated films. The presence of hydrogen in black mesoporous titania (H-TiO2) films is confirmed by the scattering length density (SLD) profiles obtained from neutron reflectometry measurements. The H-TiO2 shows ca. 28 times and 8 times higher photocurrent for photoelectrochemical water oxidation compared to undoped TiO2 films under UV (365 nm) and blue (455 nm) LED irradiation, respectively. These findings provide the first direct evidence that the dramatic change in visible light absorbance of H-treated black TiO2 is accompanied by significant hydrogen uptake and not just Ti3+ generation or surface disordering.« less
NASA Astrophysics Data System (ADS)
Sun, Zhenhong; Shan, Yuanyuan; Li, Yanting; Zhang, Yixin; Zhang, Xuping
2016-10-01
Phase sensitive optical time domain reflectometry (Φ-OTDR) has been widely used in many applications for its distributed sensing ability on weak disturbance all along the sensing fiber. However, traditional Φ-OTDR cannot make quantitative measurement on the external disturbance due to the randomly distributed position and reflectivity of scatters within the optical fiber. Recently, some methods have been proposed to realize quantitative measurement of dynamic strain. In these literatures, the fiber with or without FBGs in practice was easily damaged and with difficulty of maintenance. PZT is employed to generate strain event in the fiber. There is a large gap compared with the real detecting environment, which will not reveal the full performance of the sensing system. In this paper, a distributed optical fiber sensing (DOFS) system for dynamic strain measurement based on artificial reflector is proposed and demonstrated experimentally. The fiber under test (FUT) is composed by four 20-meter long single mode optical fiber patch cords (OFPCs), which are cascaded with ferrule contactor/physical contact (FC/PC) connectors via fiber flanges. The fiber facet of FC/PC connector forms an artificial reflector. When the interval between the two reflectors is changed, the phase of the interference signal will also be changed. A symmetric 3×3 coupler with table-look-up scheme is introduced to discriminate the phase change through interference intensity. In our experiment, the center 10m section of the second OFPC is attached to the bottom of an aluminum alloy plate. An ordinary loudspeaker box was located on the top of the aluminum alloy plate. The dynamic strain generated by the loudspeaker box is transmitted from the aluminum alloy plate to the OFPC. Experimental results show that the proposed method has a good frequency response characteristic up to 3.2 kHz and a linear intensity response of R2=0.9986 while the optical probe pulse width and repetition rate were 100ns and 10 kHz respectively. Meanwhile, triangle and cosine amplitude-modulated (AM) dynamic strain applied on the fiber are successfully discriminated. The artificial reflectors based on FC/PCs were easily assembled and maintained, and the method of vibration transmission closely resembled the real circumstance than PZT. Therefore, these advantages will extend the potential of this Φ-OTDR technology in structure health monitoring.
A simultaneous multimodal imaging system for tissue functional parameters
NASA Astrophysics Data System (ADS)
Ren, Wenqi; Zhang, Zhiwu; Wu, Qiang; Zhang, Shiwu; Xu, Ronald
2014-02-01
Simultaneous and quantitative assessment of skin functional characteristics in different modalities will facilitate diagnosis and therapy in many clinical applications such as wound healing. However, many existing clinical practices and multimodal imaging systems are subjective, qualitative, sequential for multimodal data collection, and need co-registration between different modalities. To overcome these limitations, we developed a multimodal imaging system for quantitative, non-invasive, and simultaneous imaging of cutaneous tissue oxygenation and blood perfusion parameters. The imaging system integrated multispectral and laser speckle imaging technologies into one experimental setup. A Labview interface was developed for equipment control, synchronization, and image acquisition. Advanced algorithms based on a wide gap second derivative reflectometry and laser speckle contrast analysis (LASCA) were developed for accurate reconstruction of tissue oxygenation and blood perfusion respectively. Quantitative calibration experiments and a new style of skinsimulating phantom were designed to verify the accuracy and reliability of the imaging system. The experimental results were compared with a Moor tissue oxygenation and perfusion monitor. For In vivo testing, a post-occlusion reactive hyperemia (PORH) procedure in human subject and an ongoing wound healing monitoring experiment using dorsal skinfold chamber models were conducted to validate the usability of our system for dynamic detection of oxygenation and perfusion parameters. In this study, we have not only setup an advanced multimodal imaging system for cutaneous tissue oxygenation and perfusion parameters but also elucidated its potential for wound healing assessment in clinical practice.
Reflective measurement of water concentration using millimeter wave illumination
NASA Astrophysics Data System (ADS)
Sung, Shijun; Bennett, David; Taylor, Zachary; Bajwa, Neha; Tewari, Priyamvada; Maccabi, Ashkan; Culjat, Martin; Singh, Rahul; Grundfest, Warren
2011-04-01
THz and millimeter wave technology have shown the potential to become a valuable medical imaging tool because of its sensitivity to water and safe, non-ionizing photon energy. Using the high dielectric constant of water in these frequency bands, reflectionmode THz sensing systems can be employed to measure water content in a target with high sensitivity. This phenomenology may lead to the development of clinical systems to measure the hydration state of biological targets. Such measurements may be useful in fast and convenient diagnosis of conditions whose symptoms can be characterized by changes in water concentration such as skin burns, dehydration, or chemical exposure. To explore millimeter wave sensitivity to hydration, a reflectometry system is constructed to make water concentration measurements at 100 GHz, and the minimum detectable water concentration difference is measured. This system employs a 100 GHz Gunn diode source and Golay cell detector to perform point reflectivity measurements of a wetted polypropylene towel as it dries on a mass balance. A noise limited, minimum detectable concentration difference of less than 0.5% by mass can be detected in water concentrations ranging from 70% to 80%. This sensitivity is sufficient to detect hydration changes caused by many diseases and pathologies and may be useful in the future as a diagnostic tool for the assessment of burns and other surface pathologies.
2011-02-01
planned shock physics experiments (SPE) 4. Design/develop a very low frequency (VLF)/ELF pulsar to serve as an underground calibration source 5...Carry out underground (in tunnels, etc.) pulsar calibration experiments A-1 APPENDIX A. ABBREVIATIONS AND ACRONYMS CORRTEX Continuous Reflectometry...Site Office P.O. Box 98521 M/S NLV 101 Las Vegas, NV 89193-8521 ATTN: Ping Lee 1 Los Alamos National Laboratory PO Box 1663 Los Alamos, NM 87545
2004-09-12
Time-Domain Reflectometry (TDR) experiment could serve as a means to determine the most appropriate frequency-domain model for the data at hand. Time...CO. Title: "A review of the perfectly matched layer ABC and some new results." August 2002: NASA Langley Research Center (ICASE), Hampton, VA. Title...ICASE, NASA Langley Research Center, Hamp- ton, VA. July-August 2002. 4. Organized a mini-symposium at the May 2004 Frontiers in Applied and Computational
1982-07-01
of Opaque Specimens by, Broad-Band Filter Reflectometry , ASTM E 97 (1977). could be produced on a specialty basis by interested 3 TEST SPECIMEN...Aeronautics and Space Adminis- tration ( NASA ) study deals with the long-term hy- drolytic stability of urethane elastomers used with CONCLUSIONS AND...necessary for high hydrolytic stability-are not better than the polyether- solids coatings. The NASA study may be correct in based X series. The highest
Topics in Optical Materials and Device Research - II. Volume I.
1982-01-01
Reflectometry Nicolet Optical Waveguide Computer Wavelength Multiplexing Silicon C it --l Pulse Generator CDSilicon Nitride 8 rystal-Growth Mechanism...expression for the power lost due to transition radiation will be given by SPTZ t) LA- L E- F, Q (18) -- 42 . c ; os )a -, - )(a+L - ~ O ~ o ~/-/3)CL - C /(d...IKe r1 ) J y 0 aJ., - C ,,-- O --) f2¢.,+-,) .T,,.,,() ,.(;,_, - LJ i (_1,,,, J _f-a.) - ao ,."T, (,) ,, ~Ca-)] (Al) / " 00,2 (fvid. = - L .z , ) (-1
NASA Technical Reports Server (NTRS)
Kowalski, Marc Edward
2009-01-01
A method for the prediction of time-domain signatures of chafed coaxial cables is presented. The method is quasi-static in nature, and is thus efficient enough to be included in inference and inversion routines. Unlike previous models proposed, no restriction on the geometry or size of the chafe is required in the present approach. The model is validated and its speed is illustrated via comparison to simulations from a commercial, three-dimensional electromagnetic simulator.
2010-03-01
of near- IR l ight as a f unction of source-detector distance. The effective attenuation coefficient (μeff) and optical penetration depth (OPD...were then calculated for near- IR wavelengths of 1064, 1307, and 1555 nm (Table 1). A total of ten canine samples were used for this study. At...Diego, CA, 2009). Chitchian S, Fried NM. Near- IR optical properties of canine prostate tissue using oblique incidence reflectometry. Proc. SPIE
Ahn, T; Moon, S; Youk, Y; Jung, Y; Oh, K; Kim, D
2005-05-30
A novel mode analysis method and differential mode delay (DMD) measurement technique for a multimode optical fiber based on optical frequency domain reflectometry has been proposed for the first time. We have used a conventional OFDR with a tunable external cavity laser and a Michelson interferometer. A few-mode optical multimode fiber was prepared to test our proposed measurement technique. We have also compared the OFDR measurement results with those obtained using a traditional time-domain measurement method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aden, Bethany; Kite, Camille M.; Hopkins, Benjamin W.
Designing thin films or surface scaffolds with an appropriate display of chemical functionality is useful for biomedical applications, sensing platforms, adhesives, and barrier coatings. Relationships between the structural characteristics of model thin films based on reactive poly(2-vinyl-4,4-dimethyl azlactone) (PVDMA) brushes and the amount and distribution of primary amines used to chemically functionalize these layers in situ are quantitatively detailed via neutron reflectometry and compared with results from ellipsometry. After functionalization, the PVDMA brush thickness increases as a result of the primary amines reacting with the azlactone rings. Both techniques show that the extent of functionalization by small-molecule amines depends onmore » the size of the amine, the grafting density of brush chains, and their molecular weight. However, constrained analysis of neutron reflectivity data predicated on that technique’s sensitivity to isotopic substitution and its ability to resolve structure at the nanoscale shows that the extent of functionalization is not accurately represented by the average extent of functionalization determined from ellipsometric thickness: reactive modification is not uniform, even in modestly dense brushes, except when the penetrant is small. In addition, there appears to be a loss of PVDMA chains during functionalization, attributed to chain scission resulting from additional stretching brought about by functionalization. In conclusion, these findings provide unprecedented insight into the alteration of surface properties by reactive modification and broadly support efforts to produce tailored surfaces in which properties such as friction, colloidal stability, adhesion, wettability, and biocompatibility can be modulated in situ by chemical modification.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aden, Bethany; Kite, Camille M.; Hopkins, Benjamin W.
Designing thin films or surface scaffolds with an appropriate display of chemical functionality is useful for biomedical applications, sensing platforms, adhesives, and barrier coatings. Relationships between the structural characteristics of model thin films based on reactive poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) brushes and the amount and distribution of primary amines used to chemically functionalize the layer in situ are quantitatively detailed via neutron reflectometry and compared with results from ellipsometry. After functionalization, the PVDMA brush thickness increases as a result of the primary amines reacting with the azlactone rings. Both techniques show that the extent of functionalization by small-molecule amines depends on themore » size of the amine, the grafting density of brush chains and their molecular weight. However, constrained analysis of neutron reflectivity data predicated on that technique’s sensitivity to isotopic substitution and its ability to resolve structure at the nanoscale, shows that the extent of functionalization is not accurately represented by the average extent of functionalization determined from ellipsometric thickness: reactive modification is not uniform, even in modestly dense brushes, except when the penetrant is small. Additionally, there appears to be a loss of PVDMA chains during functionalization, attributed to chain scission resulting from additional stretching brought about by functionalization. These findings provide unprecedented insight into the alteration of surface properties by reactive modification and broadly support efforts to produce tailored surfaces in which properties such as friction, colloidal stability, adhesion, wettability, and biocompatibility can be modulated in situ by chemical modification.« less
NASA Astrophysics Data System (ADS)
Moore, A. W.; Small, E. E.; Owen, S. E.; Hardman, S. H.; Wong, C.; Freeborn, D. J.; Larson, K. M.
2016-12-01
GNSS Interferometric Reflectometry (GNSS-IR) uses GNSS signals reflected off the land to infer changes in the near-antenna environment and monitor fluctuations in soil moisture, as well as other related hydrologic variables: snow depth/snow water equivalent (SWE), vegetation water content, and water level [Larson and Small, 2013; McCreight, et al., 2014; Larson et al., 2013]. GNSS instruments installed by geoscientists and surveyors to measure land motions can measure soil moisture fluctuations with accuracy (RMSE <0.04 cm3/cm3 [Small et al., 2016]) and latency sufficient for many applications (e.g., weather forecasting, climate studies, satellite validation). The soil moisture products have a unique and complementary footprint intermediate in scale between satellite and standard in situ sensors. Variations in vegetation conditions introduce considerable errors, but algorithms have been developed to address this issue [Small et al., 2016]. A pilot project (PBO H2O) using 100+ GPS sites in the western U.S. (Figure 1) from a single network (the Plate Boundary Observatory) has been operated by the University of Colorado (CU) at http://xenon.colorado.edu/portal since October 2012. JPL and CU are funded by NASA ESTO to refactor the PBO H2O software within an Apache OODT framework for robust operational analysis of soil moisture data and auto-configuration when new stations are added. We will report progress on the new GNSS H2O analysis portal, and plans to expand to global networks and from GPS to other GNSS signals. ReferencesLarson, K. M., & Small, E. E. (2013) Eos, 94(52), 505-512. McCreight, J. L., Small, E. E., & Larson, K. M. (2014). Water Resour. Res., 50(8), 6892-6909. Larson, K. M., Ray, R. D., Nievinski, F. G., & Freymueller, J. T. (2013). IEEE Geosci Remote S, 10(5), 1200-1204. Small, E. E., Larson, K. M., Chew, C. C., Dong, J., & Ochsner, T. E. (2016). IEEE J Sel. Top. Appl. PP(39). Figure 1: (R) Western U.S. GPS-IR soil moisture sites. (L): Products derived from GNSS reflection data for (clockwise from upper left) vegetation water content, SWE, sea level, and volumetric soil moisture.
A proposed computer diagnostic system for malignant melanoma (CDSMM).
Shao, S; Grams, R R
1994-04-01
This paper describes a computer diagnostic system for malignant melanoma. The diagnostic system is a rule base system based on image analyses and works under the PC windows environment. It consists of seven modules: I/O module, Patient/Clinic database, image processing module, classification module, rule base module and system control module. In the system, the image analyses are automatically carried out, and database management is efficient and fast. Both final clinic results and immediate results from various modules such as measured features, feature pictures and history records of the disease lesion can be presented on screen or printed out from each corresponding module or from the I/O module. The system can also work as a doctor's office-based tool to aid dermatologists with details not perceivable by the human eye. Since the system operates on a general purpose PC, it can be made portable if the I/O module is disconnected.
Apparatus and method for interaction phenomena with world modules in data-flow-based simulation
Xavier, Patrick G [Albuquerque, NM; Gottlieb, Eric J [Corrales, NM; McDonald, Michael J [Albuquerque, NM; Oppel, III, Fred J.
2006-08-01
A method and apparatus accommodate interaction phenomenon in a data-flow-based simulation of a system of elements, by establishing meta-modules to simulate system elements and by establishing world modules associated with interaction phenomena. World modules are associated with proxy modules from a group of meta-modules associated with one of the interaction phenomenon. The world modules include a communication world, a sensor world, a mobility world, and a contact world. World modules can be further associated with other world modules if necessary. Interaction phenomenon are simulated in corresponding world modules by accessing member functions in the associated group of proxy modules. Proxy modules can be dynamically allocated at a desired point in the simulation to accommodate the addition of elements in the system of elements such as a system of robots, a system of communication terminals, or a system of vehicles, being simulated.
Long, Feng-Lai; Sun, Xiao-Mei; Peng, Xiu-Juan; Liu, Peng; He, Fang-Hui
2016-08-01
Xiangsha Yangwei pill was selected as a model drug in this research, and time domain reflectometry (TDR) was used to determine the water content in the pill. The effects of five factors including the number of pill layers, pill packing density, atmospheric moisture, ambient temperature and the ratio of pill formula were investigated on water content. The results showed that the number of pill layers and ambient temperature had significant effects on water content of pills, while the pill packing density, atmospheric moisture and pill formula ratio had little effect on the determination of water content in pills. The reflection value was stable when 6 layers of pills were used. Under the condition of 25 ℃ and 45% relative humidity, the water content of pills ranged from 4.01% to 22.38%, showing good linear relationship between water content and reflection value, and the model equation was as follows: Y=0.279X-21.670 (R²=0.997 0). Verification experiment was used to explain the feasibility of this prediction model. The precision of the method complied with the methodology standard. It is concluded that TDR can be used in determination of water content in Xiangsha Yangwei pills. Additionally, TDR, as a new way to quickly and efficiently determine the water content, has a prospect application in the processing of traditional Chinese medicine pharmacy, especially for concentrated pill. Copyright© by the Chinese Pharmaceutical Association.
NASA Astrophysics Data System (ADS)
Rejiba, F.; Sagnard, F.; Schamper, C.
2011-07-01
Time domain reflectometry (TDR) is a proven, nondestructive method for the measurement of the permittivity and electrical conductivity of soils, using electromagnetic (EM) waves. Standard interpretation of TDR data leads to the estimation of the soil's equivalent electromagnetic properties since the wavelengths associated with the source signal are considerably greater than the microstructure of the soil. The aforementioned approximation tends to hide an important issue: the influence of the microstructure and phase configuration in the generation of a polarized electric field, which is complicated because of the presence of numerous length scales. In this paper, the influence of the microstructural distribution of each phase on the TDR signal has been studied. We propose a two-step EM modeling technique at a microscale range (?): first, we define an equivalent grain including a thin shell of free water, and second, we solve Maxwell's equations over the discretized, statistically distributed triphasic porous medium. Modeling of the TDR probe with the soil sample was performed using a three-dimensional finite difference time domain scheme. The effectiveness of this hybrid homogenization approach is tested on unsaturated Nemours sand with narrow granulometric fractions. The comparisons made between numerical and experimental results are promising, despite significant assumptions concerning (1) the TDR probe head and the coaxial cable and (2) the assumed effective medium theory homogenization associated with the electromagnetic processes arising locally between the liquid and solid phases at the grain scale.
Yersak, Alexander S; Lewis, Ryan J; Tran, Jenny; Lee, Yung C
2016-07-13
Reflectometry was implemented as an in situ thickness measurement technique for rapid characterization of the dissolution dynamics of thin film protective barriers in elevated water temperatures above 100 °C. Using this technique, multiple types of coatings were simultaneously evaluated in days rather than years. This technique enabled the uninterrupted characterization of dissolution rates for different coating deposition temperatures, postdeposition annealing conditions, and locations on the coating surfaces. Atomic layer deposition (ALD) SiO2 and wet thermally grown SiO2 (wtg-SiO2) thin films were demonstrated to be dissolution-predictable barriers for the protection of metals such as copper. A ∼49% reduction in dissolution rate was achieved for ALD SiO2 films by increasing the deposition temperatures from 150 to 300 °C. ALD SiO2 deposited at 300 °C and followed by annealing in an inert N2 environment at 1065 °C resulted in a further ∼51% reduction in dissolution rate compared with the nonannealed sample. ALD SiO2 dissolution rates were thus lowered to values of wtg-SiO2 in water by the combination of increasing the deposition temperature and postdeposition annealing. Thin metal films, such as copper, without a SiO2 barrier corroded at an expected ∼1-2 nm/day rate when immersed in room temperature water. This measurement technique can be applied to any optically transparent coating.
Ultra-violet and visible absorption characterization of explosives by differential reflectometry.
Dubroca, Thierry; Moyant, Kyle; Hummel, Rolf E
2013-03-15
This study presents some optical properties of TNT (2,4,6-trinitrotoluene), RDX, HMX and tetryl, specifically their absorption spectra as a function of concentration in various solvents in the ultraviolet and visible portion of the electromagnetic spectrum. We utilize a standoff explosives detection method, called differential reflectometry (DR). TNT was diluted in six different solvents (acetone, acetonitrile, ethanol, ethyl acetate, methanol, and toluene), which allowed for a direct comparison of absorption features over a wide range of concentrations. A line-shape analysis was adopted with great accuracy (R(2)>0.99) to model the absorption features of TNT in differential reflectivity spectra. We observed a blue shift in the pertinent absorption band with decreasing TNT concentration for all solvents. Moreover, using this technique, it was found that for all utilized solvents the concentration of TNT as well as of RDX, HMX, and tetryl, measured as a function of the transition wavelength of the ultra-violet absorption edge in differential reflectivity spectra shows three distinct regions. A model is presented to explain this behavior which is based on intermolecular hydrogen bonding of explosives molecules with themselves (or lack thereof) at different concentrations. Other intermolecular forces such as dipole-dipole interactions, London dispersion forces and π-stacking contribute to slight variations in the resulting spectra, which were determined to be rather insignificant in comparison to hydrogen bonding. The results are aimed towards a better understanding of the DR spectra of explosives energetic materials. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Srivastava, R. K.; Panda, R. K.; Halder, Debjani
2017-08-01
The primary objective of this study was to evaluate the performance of the time-domain reflectometry (TDR) technique for daily evapotranspiration estimation of peanut and maize crop in a sub-humid region. Four independent methods were used to estimate crop evapotranspiration (ETc), namely, soil water balance budgeting approach, energy balance approach—(Bowen ratio), empirical methods approach, and Pan evaporation method. The soil water balance budgeting approach utilized the soil moisture measurement by gravimetric and TDR method. The empirical evapotranspiration methods such as combination approach (FAO-56 Penman-Monteith and Penman), temperature-based approach (Hargreaves-Samani), and radiation-based approach (Priestley-Taylor, Turc, Abetw) were used to estimate the reference evapotranspiration (ET0). The daily ETc determined by the FAO-56 Penman-Monteith, Priestley-Taylor, Turc, Pan evaporation, and Bowen ratio were found to be at par with the ET values derived from the soil water balance budget; while the methods Abetw, Penman, and Hargreaves-Samani were not found to be ideal for the determination of ETc. The study illustrates the in situ applicability of the TDR method in order to make it possible for a user to choose the best way for the optimum water consumption for a given crop in a sub-humid region. The study suggests that the FAO-56 Penman-Monteith, Turc, and Priestley-Taylor can be used for the determination of crop ETc using TDR in comparison to soil water balance budget.
Interfacial behaviour of biopolymer multilayers: Influence of in vitro digestive conditions.
Corstens, Meinou N; Osorio Caltenco, Lilia A; de Vries, Renko; Schroën, Karin; Berton-Carabin, Claire C
2017-05-01
Although multilayered emulsions have been related to reduced lipolysis, the involved interfacial phenomena have never been studied directly. In this work, we systematically built multilayers of whey protein and pectin, which we further subjected to digestive conditions, using two different techniques: droplet volume tensiometry to investigate interfacial rheology, and reflectometry to determine the amount of adsorbed material. Interfacial tension and dilatational rheology were linked to adsorption/desorption kinetics measured under static in vitro conditions. The interfacial tension and rheology of the multilayers was rather similar to those found for single whey protein layers, as well as their resistance to duodenal conditions and lipolytic components, which is explained by the rapid destabilisation of multilayers at neutral pH. Sequential adsorption of bile extract or lipase to pre-adsorbed films rapidly lowered the interfacial tension via co-adsorption and displacement, forming a viscoelastic film with low mechanical strength, and highly dynamic adsorption/desorption. When both were present, bile salts dominated the initial adsorption, followed by lipase co-adsorption and formation of lipolysis products that further lowered the interfacial tension, forming a complex interface (including biopolymers, bile salts, lipase, and lipolysis products), independent of pre-adsorbed biopolymer layers. Our study shows that the combination of drop volume tensiometry and reflectometry can be used to study complex interfacial behaviours under digestive conditions, which can lead to smart design of interfacial structures for controlled lipolysis in food emulsions. Copyright © 2017 Elsevier B.V. All rights reserved.
Gao, Rongrong; Chen, Hao; Savini, Giacomo; Miao, Yaxin; Wang, Xiaorui; Yang, Jing; Zhao, Weiqi; Wang, Qinmei; Huang, Jinhai
2017-05-30
The purpose of the current study was to compare the measurements between a new optical biometer based on swept-source optical coherence tomography (SS-OCT), the OA-2000 (Tomey, Japan), and an optical biometer based on optical low coherence reflectometry (OLCR), the Lenstar (Haag-Streit, Switzerland). Ninety-nine eyes of 99 healthy subjects were included. The axial length (AL), central corneal thickness (CCT), anterior chamber depth (ACD), aqueous depth (AD), lens thickness (LT), keratometry (K) readings, including flat K (Kf), steep K (Ks), mean K (Km), astigmatism vectors J 0 , J 45 at diameters of 2.5 and 3.0 mm, and white-to-white diameter (WTW) were measured three times each using both biometer in normal eyes by random sequence. Bland-Altman analysis showed good agreement between the SS-OCT and OLCR devices for AL, AD, ACD, LT, with narrow 95% LoA (-0.05 to 0.07 mm, -0.09 to 0.10 mm, -0.10 to 0.09 mm, and -0.06 to 0.22 mm, respectively), and the P values of ACD were both >0.05. The CCT, Kf, Ks, Km, J 0 , J 45 and WTW values provided by the OA-2000 were in good agreement with the Lenstar, and statistically significant differences were detected for some of them but not clinical differences. The agreement was excellent especially for AL.
New X-ray insight into oxygen intercalation in epitaxial graphene grown on 4H-SiC(0001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalski, G., E-mail: kowal@fuw.edu.pl; Tokarczyk, M.; Dąbrowski, P.
Efficient control of intercalation of epitaxial graphene by specific elements is a way to change properties of the graphene. Results of several experimental techniques, such as X-ray photoelectron spectroscopy, micro-Raman mapping, reflectivity, attenuated total reflection, X-ray diffraction, and X-ray reflectometry, gave a new insight into the intercalation of oxygen in the epitaxial graphene grown on 4H-SiC(0001). These results confirmed that oxygen intercalation decouples the graphene buffer layer from the 4H-SiC surface and converts it into the graphene layer. However, in contrast to the hydrogen intercalation, oxygen does not intercalate between carbon planes (in the case of few layer graphene) andmore » the interlayer spacing stays constant at the level of 3.35–3.32 Å. Moreover, X-ray reflectometry showed the presence of an oxide layer having the thickness of about 0.8 Å underneath the graphene layers. Apart from the formation of the nonuniform thin oxide layer, generation of defects in graphene caused by oxygen was also evidenced. Last but not least, water islands underneath defected graphene regions in both intercalated and non-intercalated samples were most probably revealed. These water islands are formed in the case of all the samples stored under ambient laboratory conditions. Water islands can be removed from underneath the few layer graphene stacks by relevant thermal treatment or by UV illumination.« less
Ren, X.; Chen, M.; Chen, X.; ...
2015-10-23
Quiescent H-mode (QH) is an ELM free mode of operation in which edge-localized harmonic oscillations (EHOs) are believed to enhance particle transport, thereby stabilizing ELMs and preventing damage to the divertor and plasma facing components. Microwave Imaging Reflectometer (MIR) enabling direct comparison between the measured and simulated 2D images of density fluctuations near the edge can determine the 2D structure of density oscillation which can help to explain the physics behind EHO modes. MIR data sometimes indicates a counter-propagation between higher (n>1) and dominant (n=1) harmonics of coherent EHOs in the steep gradient regions of the pedestal. To preclude diagnosticmore » artifacts, we have performed forward modeling that includes possible optical misalignments to show that offsets between transmitting and receiving antennas do not account for this feature. We have also simulated the non-uniform rotation of the EHO structure, which induces multiple harmonics that are properly characterized in the synthetic diagnostic. Excluding these possible explanations for the data, the counter-propagation observed in MIR data, which is not corroborated by external Mirnov coil array measurements, may be due to subtleties of the eigenmode structure, such as an inversion radius consistent with a magnetic island. Similar effects are observed in analysis of internal ECE-Imaging and BES data. Furthermore, the identification of a non-ideal structure motivates further exploration of nonlinear models of this instability.« less
Structure of Protein Layers in Polyelectrolyte Matrices Studied by Neutron Reflectivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlovskaya, Veronika; Ankner, John Francis; O'Neill, Hugh Michael
2011-01-01
Polyelectrolyte multilayer films obtained by localized incorporation of Green Fluorescent Protein (GFP) within electrostatically assembled matrices of poly(styrene sulfonate)/poly(allylamine hydrochloride) (PSS/PAH) via spin-assisted layer-by-layer growth were discovered to be highly structured, with closely packed monomolecular layers of the protein within the bio-hybrid films. The structure of the films was evaluated in both vertical and lateral directions with neutron reflectometry, using deuterated GFP as a marker for neutron scattering contrast. Importantly, the GFP preserves its structural stability upon assembly as confirmed by circular dichroism (CD) and in situ attenuated total reflection Fourier Transform Infrared spectroscopy (ATR-FTIR). Atomic force microscopy was complimentedmore » with X-ray reflectometry to characterize the external roughness of the biohybrid films. Remarkably, films assembled with a single GFP layer confined at various distances from the substrate exhibit a strong localization of the GFP layer without intermixing into the LbL matrix. However, partial intermixing of the GFP layers with polymeric material is evidenced in multiple-GFP layer films with alternating protein-rich and protein-deficient regions. We hypothesize that the polymer-protein exchange observed in the multiple-GFP layer films suggests the existence of a critical protein concentration which can be accommodated by the multilayer matrix. Our results yield new insights into the mechanism of GFP interaction with a polyelectrolyte matrix and open opportunities for fabrication of bio-hybrid films with well-organized structure and controllable function, a crucial requirement for advanced sensing applications.« less
NASA Astrophysics Data System (ADS)
Ansari, Rafat R.; Rovati, Luigi; Sebag, Jerry
2001-06-01
A goggles-like head-mounted device equipped with several non-invasive techniques for quantitative medical evaluation of the eye, skin, and brain is envisioned for monitoring the health of astronauts and cosmonauts during long-term space travel and exploration. Real-time non-invasive evaluation of the different structures within these organs will provide indices of the health of these organs, as well as the entire body. The techniques such as dynamic light scattering (for the early detection of cataracts to evaluate effects of cosmic radiation), corneal autofluorescence (to assess extracellular matrix biology (e.g., diabetes), optical polarization (of aqueous fluid to evaluate serum chemistry), laser Doppler velocimetry (of retinal, optic nerve, and choroidal blood flow to assess ocular as well as central nervous system blood flow), reflectometry/oximetry (for oxygen metabolism), optical coherence tomography (for retinal microstructure), and possibility scanning laser technology for intraocular imaging and scanning will be integrated into this compact device.
Measurement of rock mass deformation with grouted coaxial antenna cables
NASA Astrophysics Data System (ADS)
Dowding, C. H.; Su, M. B.; O'Connor, K.
1989-01-01
Techniques presented herein show how reflected voltage pulses from coaxial antenna cable grouted in rock masses can be employed to quantify the type and magnitude of rock mass deformation. This measurement is similar to that obtained from a combined full profile extensometer (to measure local extension) and inclinometer (to measure local shearing). Rock mass movements deform the grouted cable, which locally changes cable capacitance and thereby the reflected wave form of the voltage pulse. Thus, by monitoring changes in these reflection signatures, it is possible to monitor rock mass deformation. This paper presents laboratory measurements necessary to quantitatively interpret the reflected voltage signatures. Cables were sheared and extended to correlate measured cable deformation with reflected voltage signals. Laboratory testing included development of grout mixtures with optimum properties for field installation and performance of a TDR (Time Domain Reflectometry) monitoring system. Finally, the interpretive techniques developed through laboratory measurements were applied to previously collected field data to extract hitherto unrealized information.
Molecular Packing of Functionalized Fluorinated Lipids in Langmuir Monolayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landsberg, Michael J.; Ruggles, Jeremy L.; Hussein, Waleed M.
2012-01-20
Fluorinated amphipaths are a fascinating class of compounds, which, despite significant challenges associated with their syntheses, have found use across a number of areas of biotechnology. Applications range from the in vitro stabilization of membrane proteins to the development of enhanced stability intravenous drug and gene delivery systems. More recently, monolayer-forming fluorinated lipids have found use in the 2D crystallization of detergent-solubilized hydrophobic or partially hydrophobic proteins at the air-water interface. In this study, we investigate the surface properties of a novel suite of monolayer forming, partially fluorinated lipids. These modular lipid structures contain a densely fluorinated insertion in themore » hydrocarbon tail and a synthetically modifiable headgroup. Analyses of surface-pressure area isotherms and X-ray reflectometry profiles reveal that the lipids spread into fluid monolayers and are more compressible than their non-fluorinated counterparts. Furthermore, the data support a model whereby the partially fluorinated chains of the lipid tails form a film which is fundamentally incompatible with detergents and other destabilizing amphipaths.« less