Sample records for modulates early pathogenesis

  1. Metabolic syndrome: pathophysiology, management, and modulation by natural compounds

    PubMed Central

    Rochlani, Yogita; Pothineni, Naga Venkata; Kovelamudi, Swathi; Mehta, Jawahar L.

    2017-01-01

    Metabolic syndrome (MetS) represents a cluster of metabolic abnormalities that include hypertension, central obesity, insulin resistance, and atherogenic dyslipidemia, and is strongly associated with an increased risk for developing diabetes and atherosclerotic and nonatherosclerotic cardiovascular disease (CVD). The pathogenesis of MetS involves both genetic and acquired factors that contribute to the final pathway of inflammation that leads to CVD. MetS has gained significant importance recently due to the exponential increase in obesity worldwide. Early diagnosis is important in order to employ lifestyle and risk factor modification. Here, we review the epidemiology and pathogenesis of MetS, the role of inflammation in MetS, and summarize existing natural therapies for MetS. PMID:28639538

  2. Acute myeloid leukaemia at an early age: Reviewing the interaction between pesticide exposure and KMT2A-rearrangement

    PubMed Central

    Pombo-de-Oliveira, Maria S; Andrade, Francianne Gomes; Brisson, Gisele Dallapicola; dos Santos Bueno, Filipe Vicente; Cezar, Ingrid Sardou; Noronha, Elda Pereira

    2017-01-01

    Acute myeloid leukaemia (AML) in early childhood is characterised by a high frequency of recurrent genomic aberrations associated with distinct myeloid subtypes, clinical outcomes and pathogenesis. Genomic instability is the first step of pathogenic mechanism in early childhood AML. A sum of adverse events is necessary to the development of infant AML (i-AML), which includes latency of biochemical-molecular and cellular effects. Inherited genetic susceptibility associated with exposures to biotransformation substances can modulate the risk of DNA damage and it is a very important piece in the pathogenic puzzle. In this review, we have aimed to explore the chain of events in the time-points of the natural history of i-AML, which includes maternal exposures during pregnancy, the speculations about the formation of somatic mutations during foetal life and the secondary genomic aberrations associated with i-AML. The modulation of risk conferred by xenobiotic metabolism´s genes variants is the bottom line of the pathogenic process. Since we have conducted observational and molecular investigations in early childhood leukaemia, the data focused here is based on Brazilian findings with summarised results of our experience with epidemiological and molecular studies in early-age leukaemia. PMID:29225689

  3. The developmental disruptions of serotonin signaling may involved in autism during early brain development.

    PubMed

    Yang, C-J; Tan, H-P; Du, Y-J

    2014-05-16

    Autism is a developmental disorder defined by the presence of a triad of communication, social and stereo typical behavioral characteristics with onset before 3years of age. In spite of the fact that there are potential environmental factors for autistic behavior, the dysfunction of serotonin during early development of the brain could be playing a role in this prevalence rise. Serotonin can modulate a number of developmental events, including cell division, neuronal migration, cell differentiation and synaptogenesis. Hyperserotonemia during fetal development results in the loss of serotonin terminals through negative feedback. The increased serotonin causes a decrease of oxytocin in the paraventricular nucleus of the hypothalamus and an increase in calcitonin gene-related peptide (CGRP) in the central nucleus of the amygdale, which are associated with social interactions and vital in autism. However, hyposerotonemia may be also relevant to the development of sensory as well as motor and cognitive faculties. And the paucity of placenta-derived serotonin should have potential importance when the pathogenesis of autism is considered. This review briefly summarized the developmental disruptions of serotonin signaling involved in the pathogenesis of autism during early development of the brain. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Posttransplant Lymphoproliferative Disorders

    PubMed Central

    Ibrahim, Hazem A. H.; Naresh, Kikkeri N.

    2012-01-01

    Posttransplant lymphoproliferative disorders (PTLDs) are a group of diseases that range from benign polyclonal to malignant monoclonal lymphoid proliferations. They arise secondary to treatment with immunosuppressive drugs given to prevent transplant rejection. Three main pathologic subsets/stages of evolution are recognised: early, polymorphic, and monomorphic lesions. The pathogenesis of PTLDs seems to be multifactorial. Among possible infective aetiologies, the role of EBV has been studied in depth, and the virus is thought to play a central role in driving the proliferation of EBV-infected B cells that leads to subsequent development of the lymphoproliferative disorder. It is apparent, however, that EBV is not solely responsible for the “neoplastic” state. Accumulated genetic alterations of oncogenes and tumour suppressor genes (deletions, mutations, rearrangements, and amplifications) and epigenetic changes (aberrant hypermethylation) that involve tumour suppressor genes are integral to the pathogenesis. Antigenic stimulation also plays an evident role in the pathogenesis of PTLDs. Plasmacytoid dendritic cells (PDCs) that are critical to fight viral infections have been thought to play a pathogenetically relevant role in PTLDs. Furthermore, regulatory T cells (Treg cells), which are modulators of immune reactions once incited, seem to have an important role in PTLDs where antigenic stimulation is key for the pathogenesis. PMID:22570658

  5. Smallpox infections during pregnancy, lessons on pathogenesis from nonpregnant animal models of infection.

    PubMed

    Hassett, Daniel E

    2003-10-01

    Both vaccinated and unvaccinated women during pregnancy who contract variola virus, the causative agent of smallpox, suffer much higher mortality rates than nonpregnants. Furthermore, acute maternal smallpox leads to spontaneous abortion, premature termination of pregnancy and early postnatal infant mortality. The mechanisms governing the abortifacient activity of smallpox, as well as the enhanced susceptibility of gestating women to lethal disease, have remained largely unexamined. Experimental poxvirus infections in nonpregnant small animal models have revealed that T helper type 1 (TH1) cytokines promote efficient resolution of these infections whereas type 2 (TH2) cytokines enhance viral pathogenesis. These data, combined with recent understanding of how the immune system is modulated by pregnancy, may offer important clues as to the increased pathogenesis of variola in pregnant women. The aim of this review is to bring together the current literature on the effects of poxvirus infections in nonpregnant hosts, as well as the effects of pregnancy on the immune system, in order to develop unifying concepts that may provide insight into the pathogenesis of variola during pregnancy and why prior vaccination with vaccinia virus the live anti-variola vaccine offers less protection to pregnant women and their unborn children.

  6. Ebola Virus Modulates Transforming Growth Factor β Signaling and Cellular Markers of Mesenchyme-Like Transition in Hepatocytes

    PubMed Central

    Wahl-Jensen, Victoria; Safronetz, David; Trost, Brett; Hoenen, Thomas; Arsenault, Ryan; Feldmann, Friederike; Traynor, Dawn; Postnikova, Elena; Kusalik, Anthony; Napper, Scott; Blaney, Joseph E.; Feldmann, Heinz; Jahrling, Peter B.

    2014-01-01

    ABSTRACT Ebola virus (EBOV) causes a severe hemorrhagic disease in humans and nonhuman primates, with a median case fatality rate of 78.4%. Although EBOV is considered a public health concern, there is a relative paucity of information regarding the modulation of the functional host response during infection. We employed temporal kinome analysis to investigate the relative early, intermediate, and late host kinome responses to EBOV infection in human hepatocytes. Pathway overrepresentation analysis and functional network analysis of kinome data revealed that transforming growth factor (TGF-β)-mediated signaling responses were temporally modulated in response to EBOV infection. Upregulation of TGF-β signaling in the kinome data sets correlated with the upregulation of TGF-β secretion from EBOV-infected cells. Kinase inhibitors targeting TGF-β signaling, or additional cell receptors and downstream signaling pathway intermediates identified from our kinome analysis, also inhibited EBOV replication. Further, the inhibition of select cell signaling intermediates identified from our kinome analysis provided partial protection in a lethal model of EBOV infection. To gain perspective on the cellular consequence of TGF-β signaling modulation during EBOV infection, we assessed cellular markers associated with upregulation of TGF-β signaling. We observed upregulation of matrix metalloproteinase 9, N-cadherin, and fibronectin expression with concomitant reductions in the expression of E-cadherin and claudin-1, responses that are standard characteristics of an epithelium-to-mesenchyme-like transition. Additionally, we identified phosphorylation events downstream of TGF-β that may contribute to this process. From these observations, we propose a model for a broader role of TGF-β-mediated signaling responses in the pathogenesis of Ebola virus disease. IMPORTANCE Ebola virus (EBOV), formerly Zaire ebolavirus, causes a severe hemorrhagic disease in humans and nonhuman primates and is the most lethal Ebola virus species, with case fatality rates of up to 90%. Although EBOV is considered a worldwide concern, many questions remain regarding EBOV molecular pathogenesis. As it is appreciated that many cellular processes are regulated through kinase-mediated phosphorylation events, we employed temporal kinome analysis to investigate the functional responses of human hepatocytes to EBOV infection. Administration of kinase inhibitors targeting signaling pathway intermediates identified in our kinome analysis inhibited viral replication in vitro and reduced EBOV pathogenesis in vivo. Further analysis of our data also demonstrated that EBOV infection modulated TGF-β-mediated signaling responses and promoted “mesenchyme-like” phenotypic changes. Taken together, these results demonstrated that EBOV infection specifically modulates TGF-β-mediated signaling responses in epithelial cells and may have broader implications in EBOV pathogenesis. PMID:24942569

  7. Ebola virus modulates transforming growth factor β signaling and cellular markers of mesenchyme-like transition in hepatocytes.

    PubMed

    Kindrachuk, Jason; Wahl-Jensen, Victoria; Safronetz, David; Trost, Brett; Hoenen, Thomas; Arsenault, Ryan; Feldmann, Friederike; Traynor, Dawn; Postnikova, Elena; Kusalik, Anthony; Napper, Scott; Blaney, Joseph E; Feldmann, Heinz; Jahrling, Peter B

    2014-09-01

    Ebola virus (EBOV) causes a severe hemorrhagic disease in humans and nonhuman primates, with a median case fatality rate of 78.4%. Although EBOV is considered a public health concern, there is a relative paucity of information regarding the modulation of the functional host response during infection. We employed temporal kinome analysis to investigate the relative early, intermediate, and late host kinome responses to EBOV infection in human hepatocytes. Pathway overrepresentation analysis and functional network analysis of kinome data revealed that transforming growth factor (TGF-β)-mediated signaling responses were temporally modulated in response to EBOV infection. Upregulation of TGF-β signaling in the kinome data sets correlated with the upregulation of TGF-β secretion from EBOV-infected cells. Kinase inhibitors targeting TGF-β signaling, or additional cell receptors and downstream signaling pathway intermediates identified from our kinome analysis, also inhibited EBOV replication. Further, the inhibition of select cell signaling intermediates identified from our kinome analysis provided partial protection in a lethal model of EBOV infection. To gain perspective on the cellular consequence of TGF-β signaling modulation during EBOV infection, we assessed cellular markers associated with upregulation of TGF-β signaling. We observed upregulation of matrix metalloproteinase 9, N-cadherin, and fibronectin expression with concomitant reductions in the expression of E-cadherin and claudin-1, responses that are standard characteristics of an epithelium-to-mesenchyme-like transition. Additionally, we identified phosphorylation events downstream of TGF-β that may contribute to this process. From these observations, we propose a model for a broader role of TGF-β-mediated signaling responses in the pathogenesis of Ebola virus disease. Ebola virus (EBOV), formerly Zaire ebolavirus, causes a severe hemorrhagic disease in humans and nonhuman primates and is the most lethal Ebola virus species, with case fatality rates of up to 90%. Although EBOV is considered a worldwide concern, many questions remain regarding EBOV molecular pathogenesis. As it is appreciated that many cellular processes are regulated through kinase-mediated phosphorylation events, we employed temporal kinome analysis to investigate the functional responses of human hepatocytes to EBOV infection. Administration of kinase inhibitors targeting signaling pathway intermediates identified in our kinome analysis inhibited viral replication in vitro and reduced EBOV pathogenesis in vivo. Further analysis of our data also demonstrated that EBOV infection modulated TGF-β-mediated signaling responses and promoted "mesenchyme-like" phenotypic changes. Taken together, these results demonstrated that EBOV infection specifically modulates TGF-β-mediated signaling responses in epithelial cells and may have broader implications in EBOV pathogenesis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Vaccination with a Porcine Reproductive and Respiratory Syndrome (PRRS) Modified Live Virus Vaccine Followed by Challenge with PRRS Virus and Porcine Circovirus Type 2 (PCV2) Protects against PRRS but Enhances PCV2 Replication and Pathogenesis Compared to Results for Nonvaccinated Cochallenged Controls.

    PubMed

    Niederwerder, Megan C; Bawa, Bhupinder; Serão, Nick V L; Trible, Benjamin R; Kerrigan, Maureen A; Lunney, Joan K; Dekkers, Jack C M; Rowland, Raymond R R

    2015-12-01

    Coinfections involving porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) contribute to a group of disease syndromes known as porcine circovirus-associated disease (PCVAD). Presumably, PRRSV infection enhances PCV2 replication as a result of modulation of host immunity. The purpose of this study was to evaluate PCV2 replication and pathogenesis in pigs vaccinated with a PRRS modified live virus (MLV) vaccine and subsequently challenged with a combination of PRRSV and PCV2. During the early postchallenge period, the number of pigs with PRRSV-associated clinical signs was decreased, and average daily gain (ADG) was increased, in the vaccinated group, demonstrating the protective effect of PRRS vaccination. However, during the later postchallenge period, more pigs in the vaccinated group showed increased PCV2 viremia, decreased ADG, increased PCVAD clinical signs, and increased mortality. In this disease model, the early benefits of PRRSV vaccination were outweighed by the later amplification of PCVAD. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Vaccination with a Porcine Reproductive and Respiratory Syndrome (PRRS) Modified Live Virus Vaccine Followed by Challenge with PRRS Virus and Porcine Circovirus Type 2 (PCV2) Protects against PRRS but Enhances PCV2 Replication and Pathogenesis Compared to Results for Nonvaccinated Cochallenged Controls

    PubMed Central

    Bawa, Bhupinder; Serão, Nick V. L.; Trible, Benjamin R.; Kerrigan, Maureen A.; Lunney, Joan K.; Dekkers, Jack C. M.; Rowland, Raymond R. R.

    2015-01-01

    Coinfections involving porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) contribute to a group of disease syndromes known as porcine circovirus-associated disease (PCVAD). Presumably, PRRSV infection enhances PCV2 replication as a result of modulation of host immunity. The purpose of this study was to evaluate PCV2 replication and pathogenesis in pigs vaccinated with a PRRS modified live virus (MLV) vaccine and subsequently challenged with a combination of PRRSV and PCV2. During the early postchallenge period, the number of pigs with PRRSV-associated clinical signs was decreased, and average daily gain (ADG) was increased, in the vaccinated group, demonstrating the protective effect of PRRS vaccination. However, during the later postchallenge period, more pigs in the vaccinated group showed increased PCV2 viremia, decreased ADG, increased PCVAD clinical signs, and increased mortality. In this disease model, the early benefits of PRRSV vaccination were outweighed by the later amplification of PCVAD. PMID:26446422

  10. Autophagy in lung disease pathogenesis and therapeutics

    PubMed Central

    Ryter, Stefan W.; Choi, Augustine M.K.

    2015-01-01

    Autophagy, a cellular pathway for the degradation of damaged organelles and proteins, has gained increasing importance in human pulmonary diseases, both as a modulator of pathogenesis and as a potential therapeutic target. In this pathway, cytosolic cargos are sequestered into autophagosomes, which are delivered to the lysosomes where they are enzymatically degraded and then recycled as metabolic precursors. Autophagy exerts an important effector function in the regulation of inflammation, and immune system functions. Selective pathways for autophagic degradation of cargoes may have variable significance in disease pathogenesis. Among these, the autophagic clearance of bacteria (xenophagy) may represent a crucial host defense mechanism in the pathogenesis of sepsis and inflammatory diseases. Our recent studies indicate that the autophagic clearance of mitochondria, a potentially protective program, may aggravate the pathogenesis of chronic obstructive pulmonary disease by activating cell death programs. We report similar findings with respect to the autophagic clearance of cilia components, which can contribute to airways dysfunction in chronic lung disease. In certain diseases such as pulmonary hypertension, autophagy may confer protection by modulating proliferation and cell death. In other disorders, such as idiopathic pulmonary fibrosis and cystic fibrosis, impaired autophagy may contribute to pathogenesis. In lung cancer, autophagy has multiple consequences by limiting carcinogenesis, modulating therapeutic effectiveness, and promoting tumor cell survival. In this review we highlight the multiple functions of autophagy and its selective autophagy subtypes that may be of significance to the pathogenesis of human disease, with an emphasis on lung disease and therapeutics. PMID:25617802

  11. Automated Pathogenesis-Based Diagnosis of Lumbar Neural Foraminal Stenosis via Deep Multiscale Multitask Learning.

    PubMed

    Han, Zhongyi; Wei, Benzheng; Leung, Stephanie; Nachum, Ilanit Ben; Laidley, David; Li, Shuo

    2018-02-15

    Pathogenesis-based diagnosis is a key step to prevent and control lumbar neural foraminal stenosis (LNFS). It conducts both early diagnosis and comprehensive assessment by drawing crucial pathological links between pathogenic factors and LNFS. Automated pathogenesis-based diagnosis would simultaneously localize and grade multiple spinal organs (neural foramina, vertebrae, intervertebral discs) to diagnose LNFS and discover pathogenic factors. The automated way facilitates planning optimal therapeutic schedules and relieving clinicians from laborious workloads. However, no successful work has been achieved yet due to its extreme challenges since 1) multiple targets: each lumbar spine has at least 17 target organs, 2) multiple scales: each type of target organ has structural complexity and various scales across subjects, and 3) multiple tasks, i.e., simultaneous localization and diagnosis of all lumbar organs, are extremely difficult than individual tasks. To address these huge challenges, we propose a deep multiscale multitask learning network (DMML-Net) integrating a multiscale multi-output learning and a multitask regression learning into a fully convolutional network. 1) DMML-Net merges semantic representations to reinforce the salience of numerous target organs. 2) DMML-Net extends multiscale convolutional layers as multiple output layers to boost the scale-invariance for various organs. 3) DMML-Net joins a multitask regression module and a multitask loss module to prompt the mutual benefit between tasks. Extensive experimental results demonstrate that DMML-Net achieves high performance (0.845 mean average precision) on T1/T2-weighted MRI scans from 200 subjects. This endows our method an efficient tool for clinical LNFS diagnosis.

  12. Phytochemicals as potent modulators of autophagy for cancer therapy.

    PubMed

    Moosavi, Mohammad Amin; Haghi, Atousa; Rahmati, Marveh; Taniguchi, Hiroaki; Mocan, Andrei; Echeverría, Javier; Gupta, Vijai K; Tzvetkov, Nikolay T; Atanasov, Atanas G

    2018-06-28

    The dysregulation of autophagy is involved in the pathogenesis of a broad range of diseases, and accordingly universal research efforts have focused on exploring novel compounds with autophagy-modulating properties. While a number of synthetic autophagy modulators have been identified as promising cancer therapy candidates, autophagy-modulating phytochemicals have also attracted attention as potential treatments with minimal side effects. In this review, we firstly highlight the importance of autophagy and its relevance in the pathogenesis and treatment of cancer. Subsequently, we present the data on common phytochemicals and their mechanism of action as autophagy modulators. Finally, we discuss the challenges associated with harnessing the autophagic potential of phytochemicals for cancer therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. The role of hypothalamus-pituitary-adrenal genes and childhood trauma in borderline personality disorder.

    PubMed

    Martín-Blanco, Ana; Ferrer, Marc; Soler, Joaquim; Arranz, Maria Jesús; Vega, Daniel; Calvo, Natalia; Elices, Matilde; Sanchez-Mora, Cristina; García-Martinez, Iris; Salazar, Juliana; Carmona, Cristina; Bauzà, Joana; Prat, Mónica; Pérez, Víctor; Pascual, Juan C

    2016-06-01

    Current knowledge suggests that borderline personality disorder (BPD) results from the interaction between genetic and environmental factors. Research has mainly focused on monoaminergic genetic variants and their modulation by traumatic events, especially those occurring during childhood. However, to the best of our knowledge, there are no studies on the genetics of hypothalamus-pituitary-adrenal (HPA) axis, despite its vulnerability to early stress and its involvement in BPD pathogenesis. The aim of this study was to investigate the contribution of genetic variants in the HPA axis and to explore the modulating effect of childhood trauma in a large sample of BPD patients and controls. DNA was obtained from a sample of 481 subjects with BPD and 442 controls. Case-control differences in allelic frequencies of 47 polymorphisms in 10 HPA axis genes were analysed. Modulation of genetic associations by the presence of childhood trauma was also investigated by dividing the sample into three groups: BPD with trauma, BPD without trauma and controls. Two FKBP5 polymorphisms (rs4713902-C and rs9470079-A) showed significant associations with BPD. There were also associations between BPD and haplotype combinations of the genes FKBP5 and CRHR1. Two FKBP5 alleles (rs3798347-T and rs10947563-A) were more frequent in BPD subjects with history of physical abuse and emotional neglect and two CRHR2 variants (rs4722999-C and rs12701020-C) in BPD subjects with sexual and physical abuse. Our findings suggest a contribution of HPA axis genetic variants to BPD pathogenesis and reinforce the hypothesis of the modulating effect of childhood trauma in the development of this disorder.

  14. Lipoxin A4, a 5-lipoxygenase pathway metabolite, modulates immune response during acute respiratory tularemia.

    PubMed

    Singh, Anju; Rahman, Tabassum; Bartiss, Rose; Arabshahi, Alireza; Prasain, Jeevan; Barnes, Stephen; Musteata, Florin Marcel; Sellati, Timothy J

    2017-02-01

    Respiratory infection with Francisella tularensis (Ft) is characterized by a muted, acute host response, followed by sepsis-like syndrome that results in death. Infection with Ft establishes a principally anti-inflammatory environment that subverts host-cell death programs to facilitate pathogen replication. Although the role of cytokines has been explored extensively, the role of eicosanoids in tularemia pathogenesis is not fully understood. Given that lipoxin A 4 (LXA 4 ) has anti-inflammatory properties, we investigated whether this lipid mediator affects host responses manifested early during infection. The addition of exogenous LXA 4 inhibits PGE 2 release by Ft-infected murine monocytes in vitro and diminishes apoptotic cell death. Tularemia pathogenesis was characterized in 5‑lipoxygenase-deficient (Alox5 -/- ) mice that are incapable of generating LXA 4 Increased release of proinflammatory cytokines and chemokines, as well as increased apoptosis, was observed in Alox5 -/- mice as compared with their wild-type counterparts. Alox5 -/- mice also exhibited elevated recruitment of neutrophils during the early phase of infection and increased resistance to lethal challenge. Conversely, administration of exogenous LXA 4 to Alox5 -/- mice made them more susceptible to infection thus mimicking wild-type animals. Taken together, our results suggest that 5-LO activity is a critical regulator of immunopathology observed during the acute phase of respiratory tularemia, regulating bacterial burden and neutrophil recruitment and production of proinflammatory modulators and increasing morbidity and mortality. These studies identify a detrimental role for the 5-LO-derived lipid mediator LXA 4 in Ft-induced immunopathology. Targeting this pathway may have therapeutic benefit as an adjunct to treatment with antibiotics and conventional antimicrobial peptides, which often have limited efficacy against intracellular bacteria. © Society for Leukocyte Biology.

  15. The Intestinal Microbiome in Early Life: Health and Disease

    PubMed Central

    Arrieta, Marie-Claire; Stiemsma, Leah T.; Amenyogbe, Nelly; Brown, Eric M.; Finlay, Brett

    2014-01-01

    Human microbial colonization begins at birth and continues to develop and modulate in species abundance for about 3 years, until the microbiota becomes adult-like. During the same time period, children experience significant developmental changes that influence their health status as well as their immune system. An ever-expanding number of articles associate several diseases with early-life imbalances of the gut microbiota, also referred to as gut microbial dysbiosis. Whether early-life dysbiosis precedes and plays a role in disease pathogenesis, or simply originates from the disease process itself is a question that is beginning to be answered in a few diseases, including IBD, obesity, and asthma. This review describes the gut microbiome structure and function during the formative first years of life, as well as the environmental factors that determine its composition. It also aims to discuss the recent advances in understanding the role of the early-life gut microbiota in the development of immune-mediated, metabolic, and neurological diseases. A greater understanding of how the early-life gut microbiota impacts our immune development could potentially lead to novel microbial-derived therapies that target disease prevention at an early age. PMID:25250028

  16. Interfering with Gal-1-mediated angiogenesis contributes to the pathogenesis of preeclampsia.

    PubMed

    Freitag, Nancy; Tirado-González, Irene; Barrientos, Gabriela; Herse, Florian; Thijssen, Victor L J L; Weedon-Fekjær, Susanne M; Schulz, Herbert; Wallukat, Gerd; Klapp, Burghard F; Nevers, Tania; Sharma, Surendra; Staff, Anne Cathrine; Dechend, Ralf; Blois, Sandra M

    2013-07-09

    Preeclampsia (PE) is a pregnancy-specific disorder characterized by sudden onset of hypertension and proteinuria in the second half of pregnancy (>20 wk). PE is strongly associated with abnormal placentation and an excessive maternal inflammatory response. Galectin-1 (Gal-1), a member of a family of carbohydrate-binding proteins, has been shown to modulate several processes associated with placentation and to promote maternal tolerance toward fetal antigens. Here, we show that Gal-1 exhibits proangiogenic functions during early stages of pregnancy, promoting decidual vascular expansion through VEGF receptor 2 signaling. Blocking Gal-1-mediated angiogenesis or lectin, galactoside-binding, soluble, 1 deficiency results in a spontaneous PE-like syndrome in mice, mainly by deregulating processes associated with good placentation and maternal spiral artery remodeling. Consistent with these findings, we observed a down-regulation of Gal-1 in patients suffering from early onset PE. Collectively, these results strengthen the notion that Gal-1 is required for healthy gestation and highlight Gal-1 as a valuable biomarker for early PE diagnosis.

  17. Consensus Paper: Pathological Mechanisms Underlying Neurodegeneration in Spinocerebellar Ataxias

    PubMed Central

    Matilla-Dueñas, A.; Ashizawa, T.; Brice, A.; Magri, S.; McFarland, K. N.; Pandolfo, M.; Pulst, S. M.; Riess, O.; Rubinsztein, D. C.; Schmidt, J.; Schmidt, T.; Scoles, D. R.; Stevanin, G.; Taroni, F.; Underwood, B. R.; Sánchez, I.

    2014-01-01

    Intensive scientific research devoted in the recent years to understand the molecular mechanisms or neurodegeneration in spinocerebellar ataxias (SCAs) are identifying new pathways and targets providing new insights and a better understanding of the molecular pathogenesis in these diseases. In this consensus manuscript, the authors discuss their current views on the identified molecular processes causing or modulating the neurodegenerative phenotype in spinocerebellar ataxias with the common opinion of translating the new knowledge acquired into candidate targets for therapy. The following topics are discussed: transcription dysregulation, protein aggregation, autophagy, ion channels, the role of mitochondria, RNA toxicity, modulators of neurodegeneration and current therapeutic approaches. Overall point of consensus includes the common vision of neurodegeneration in SCAs as a multifactorial, progressive and reversible process, at least in early stages. Specific points of consensus include the role of the dysregulation of protein folding, transcription, bioenergetics, calcium handling and eventual cell death with apoptotic features of neurons during SCA disease progression. Unresolved questions include how the dysregulation of these pathways triggers the onset of symptoms and mediates disease progression since this understanding may allow effective treatments of SCAs within the window of reversibility to prevent early neuronal damage. Common opinions also include the need for clinical detection of early neuronal dysfunction, for more basic research to decipher the early neurodegenerative process in SCAs in order to give rise to new concepts for treatment strategies and for the translation of the results to preclinical studies and, thereafter, in clinical practice. PMID:24307138

  18. The early pathogenesis of foot-and-mouth disease in cattle after aerosol inoculation

    USDA-ARS?s Scientific Manuscript database

    The goal of the efforts described in this dissertation was to characterize the early pathogenesis of foot-and-mouth disease (FMD) in cattle after simulated natural infection. More specifically, emphasis was placed upon two critical knowledge gaps: identification of the primary site(s) of infectio...

  19. Mitophagy in Parkinson's Disease: Pathogenic and Therapeutic Implications.

    PubMed

    Gao, Fei; Yang, Jia; Wang, Dongdong; Li, Chao; Fu, Yi; Wang, Huaishan; He, Wei; Zhang, Jianmin

    2017-01-01

    Neurons affected in Parkinson's disease (PD) experience mitochondrial dysfunction and bioenergetic deficits that occur early and promote the disease-related α-synucleinopathy. Emerging findings suggest that the autophagy-lysosome pathway, which removes damaged mitochondria (mitophagy), is also compromised in PD and results in the accumulation of dysfunctional mitochondria. Studies using genetic-modulated or toxin-induced animal and cellular models as well as postmortem human tissue indicate that impaired mitophagy might be a critical factor in the pathogenesis of synaptic dysfunction and the aggregation of misfolded proteins, which in turn impairs mitochondrial homeostasis. Interventions that stimulate mitophagy to maintain mitochondrial health might, therefore, be used as an approach to delay the neurodegenerative processes in PD.

  20. JMJ27, an Arabidopsis H3K9 histone demethylase, modulates defense against Pseudomonas syringae and flowering time.

    PubMed

    Dutta, Aditya; Choudhary, Pratibha; Caruana, Julie; Raina, Ramesh

    2017-09-01

    Histone methylation is known to dynamically regulate diverse developmental and physiological processes. Histone methyl marks are written by methyltransferases and erased by demethylases, and result in modification of chromatin structure to repress or activate transcription. However, little is known about how histone methylation may regulate defense mechanisms and flowering time in plants. Here we report characterization of JmjC DOMAIN-CONTAINING PROTEIN 27 (JMJ27), an Arabidopsis JHDM2 (JmjC domain-containing histone demethylase 2) family protein, which modulates defense against pathogens and flowering time. JMJ27 is a nuclear protein containing a zinc-finger motif and a catalytic JmjC domain with conserved Fe(II) and α-ketoglutarate binding sites, and displays H3K9me1/2 demethylase activity both in vitro and in vivo. JMJ27 is induced in response to virulent Pseudomonas syringae pathogens and is required for resistance against these pathogens. JMJ27 is a negative modulator of WRKY25 (a repressor of defense) and a positive modulator of several pathogenesis-related (PR) proteins. Additionally, loss of JMJ27 function leads to early flowering. JMJ27 negatively modulates the major flowering regulator CONSTANS (CO) and positively modulates FLOWERING LOCUS C (FLC). Taken together, our results indicate that JMJ27 functions as a histone demethylase to modulate both physiological (defense) and developmental (flowering time) processes in Arabidopsis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  1. Multipronged attenuation of macrophage-colony stimulating factor signaling by Epstein-Barr virus BARF1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shim, Ann Hye-Ryong; Chang, Rhoda Ahn; Chen, Xiaoyan

    The ubiquitous EBV causes infectious mononucleosis and is associated with several types of cancers. The EBV genome encodes an early gene product, BARF1, which contributes to pathogenesis, potentially through growth-altering and immune-modulating activities, but the mechanisms for such activities are poorly understood. We have determined the crystal structure of BARF1 in complex with human macrophage-colony stimulating factor (M-CSF), a hematopoietic cytokine with pleiotropic functions in development and immune response. BARF1 and M-CSF form a high-affinity, stable, ring-like complex in both solution and the crystal, with a BARF1 hexameric ring surrounded by three M-CSF dimers in triangular array. The binding ofmore » BARF1 to M-CSF dramatically reduces but does not completely abolish M-CSF binding and signaling through its cognate receptor FMS. A three-pronged down-regulation mechanism is proposed to explain the biological effect of BARF1 on M-CSF:FMS signaling. These prongs entail control of the circulating and effective local M-CSF concentration, perturbation of the receptor-binding surface of M-CSF, and imposition of an unfavorable global orientation of the M-CSF dimer. Each prong may reduce M-CSF:FMS signaling to a limited extent but in combination may alter M-CSF:FMS signaling dramatically. The downregulating mechanism of BARF1 underlines a viral modulation strategy, and provides a basis for understanding EBV pathogenesis.« less

  2. Integrating microRNA and mRNA expression profiles of acute promyelocytic leukemia cells to explore the occurrence mechanisms of differentiation syndrome

    PubMed Central

    Ge, Fei; Cao, Fenglin; Li, Haitao; Wang, Ping; Xu, Mengyuan; Song, Peng; Li, Xiaoxia; Wang, Shuye; Li, Jinmei; Han, Xueying; Zhao, Yanhong; Su, Yanhua; Li, Yinghua; Fan, Shengjin; Li, Limin; Zhou, Jin

    2016-01-01

    The pathogenesis of therapy-induced differentiation syndrome (DS) in patients with acute promyelocytic leukemia (APL) remains unclear. In this study, mRNA and microRNA (miRNA) expression profiling of peripheral blood APL cells from patients complicated with vs. without DS were integratively analyzed to explore the mechanisms underlying arsenic trioxide treatment-associated DS. By integrating the differentially expressed data with the data of differentially expressed microRNAs and their computationally predicted target genes, as well as the data of transcription factors and differentially expressed target microRNAs obtained from a literature search, a DS-related genetic regulatory network was constructed. Then using an EAGLE algorithm in clusterViz, the network was subdivided into 10 modules. Using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database the modules were annotated functionally, and three functionally active modules were recognized. The further in-depth analyses on the annotated functions of the three modules and the expression and roles of the related genes revealed that proliferation, differentiation, apoptosis and infiltration capability of APL cells might play important roles in the DS pathogenesis. The results could improve our understanding of DS pathogenesis from a more overall perspective, and could provide new clues for future research. PMID:27634874

  3. Interfering with Gal-1–mediated angiogenesis contributes to the pathogenesis of preeclampsia

    PubMed Central

    Freitag, Nancy; Tirado-González, Irene; Barrientos, Gabriela; Herse, Florian; Thijssen, Victor L. J. L.; Weedon-Fekjær, Susanne M.; Schulz, Herbert; Wallukat, Gerd; Klapp, Burghard F.; Nevers, Tania; Sharma, Surendra; Staff, Anne Cathrine; Dechend, Ralf; Blois, Sandra M.

    2013-01-01

    Preeclampsia (PE) is a pregnancy-specific disorder characterized by sudden onset of hypertension and proteinuria in the second half of pregnancy (>20 wk). PE is strongly associated with abnormal placentation and an excessive maternal inflammatory response. Galectin-1 (Gal-1), a member of a family of carbohydrate-binding proteins, has been shown to modulate several processes associated with placentation and to promote maternal tolerance toward fetal antigens. Here, we show that Gal-1 exhibits proangiogenic functions during early stages of pregnancy, promoting decidual vascular expansion through VEGF receptor 2 signaling. Blocking Gal-1–mediated angiogenesis or lectin, galactoside-binding, soluble, 1 deficiency results in a spontaneous PE-like syndrome in mice, mainly by deregulating processes associated with good placentation and maternal spiral artery remodeling. Consistent with these findings, we observed a down-regulation of Gal-1 in patients suffering from early onset PE. Collectively, these results strengthen the notion that Gal-1 is required for healthy gestation and highlight Gal-1 as a valuable biomarker for early PE diagnosis. PMID:23798433

  4. Galectins in the Pathogenesis of Rheumatoid Arthritis

    PubMed Central

    Li, Song; Yu, Yangsheng; Koehn, Christopher D; Zhang, Zhixin; Su, Kaihong

    2013-01-01

    Rheumatoid arthritis (RA) is a complex and common systemic autoimmune disease characterized by synovial inflammation and hyperplasia. Multiple proteins, cells, and pathways have been identified to contribute to the pathogenesis of RA. Galectins are a group of lectins that bind to β-galactoside carbohydrates on the cell surface and in the extracellular matrix. They are expressed in a wide variety of tissues and organs with the highest expression in the immune system. Galectins are potent immune regulators and modulate a range of pathological processes, such as inflammation, autoimmunity, and cancer. Accumulated evidence shows that several family members of galectins play positive or negative roles in the disease development of RA, through their effects on T and B lymphocytes, myeloid lineage cells, and fibroblast-like synoviocytes. In this review, we will summarize the function of different galectins in immune modulation and their distinct roles in RA pathogenesis. PMID:24416634

  5. STATs in Lung Development: Distinct Early and Late Expression, Growth Modulation and Signaling Dysregulation in Congenital Diaphragmatic Hernia.

    PubMed

    Piairo, Paulina; Moura, Rute S; Baptista, Maria João; Correia-Pinto, Jorge; Nogueira-Silva, Cristina

    2018-01-01

    Congenital diaphragmatic hernia (CDH) is a life-threatening developmental anomaly, intrinsically combining severe pulmonary hypoplasia and hypertension. During development, signal transducers and activators of transcription (STAT) are utilized to elicit cell growth, differentiation, and survival. We used the nitrofen-induced CDH rat model. At selected gestational time points, lungs were divided into two experimental groups, i.e., control or CDH. We performed immunohistochemistry and western blotting analysis to investigate the developmental expression profile of the complete family of STATs (STAT1-6), plus specific STATs activation (p-STAT3, p-STAT6) and regulation by SOCS (SOCS3) in normal lungs against those of diseased lungs. The normal fetal lung explants were treated with piceatannol (STAT3 inhibitor) in vitro followed by morphometrical analysis. Molecular profiling of STATs during the lung development revealed distinct early and late expression signatures. Experimental CDH altered the STATs expression, activation, and regulation in the fetal lungs. In particular, STAT3 and STAT6 were persistently over-expressed and early over-activated. Piceatannol treatment dose-dependently stimulated the fetal lung growth. These findings suggest that STATs play an important role during normal fetal lung development and CDH pathogenesis. Moreover, functionally targeting STAT signaling modulates fetal lung growth, which highlights that STAT3 and STAT6 signaling might be promising therapeutic targets in reducing or preventing pulmonary hypoplasia in CDH. © 2018 The Author(s). Published by S. Karger AG, Basel.

  6. A brief history of TRIM5alpha.

    PubMed

    Newman, Ruchi M; Johnson, Welkin E

    2007-01-01

    In spite of the fact that the first isolates of HIV-1 became available more than 20 years ago, there is still no robust animal model for HIV-1 replication and pathogenesis. This is largely due to the existence of multiple genetic barriers to HIV-1 replication in most nonhuman primates, including a severe block targeting the early, post-entry phase of the viral replication cycle. It is now known that a protein called TRIM5alpha mediates this early restriction in nonhuman primate cells. Tissue culture experiments, together with genetic association studies involving multiple HIV/AIDS cohorts, indicate that the human orthologue of TRIM5alpha does not have a significant impact on HIV-1 replication. However, most human alleles encode a functional protein that can restrict at least one retrovirus unrelated to HIV-1 (N-tropic murine leukemia virus), although one deleterious mutation (H43Y) is present at high frequency in human populations. Phylogenetic analyses of the TRIM5 locus reveal that prehistoric retroviral epidemics, not unlike the current HIV/AIDS pandemic, played a significant role in the evolutionary history of humans and their primate relatives. The discovery of TRIM5alpha's antiretroviral activity sparked the imaginations of many laboratories, and considerable effort has now been channeled into characterizing the protein and determining its possible mechanism(s) of action. It is hoped that research on TRIM5alpha will contribute to the establishment of new and improved models for HIV replication and AIDS pathogenesis, point the way towards novel therapeutic targets to stem the tide of the human AIDS epidemic, provide an experimental window onto the early, post-entry stages of the retroviral replication cycle, and even inspire the search for other cellular factors that modulate retroviral infection.

  7. Dermasence refining gel modulates pathogenetic factors of rosacea in vitro.

    PubMed

    Borelli, C; Becker, B; Thude, S; Fehrenbacher, B; Isermann, D

    2017-12-01

    Over the counter cosmetics sold for local treatment of slight to moderate rosacea often state the claim of actively modulating rosacea pathogenesis. Factors involved in the pathogenesis of this common yet complex skin disorder include kallikrein-related peptidase 5 (KLK5), LL-37, as well as protease-activated receptor 2 (PAR2) and vascular endothelial growth factor (VEGF). The objective was to prove the modulating effect of the cosmetic skin care agent Dermasence Refining Gel (DRG) on factors involved in rosacea pathogenesis. We analyzed the effect of DRG on the expression of KLK5, LL-37, PAR2, and VEGF in an in vitro skin model of human reconstituted epidermis. The expression of CAMP (LL-37 gene, fold change -4.19 [±0.11]), VEGFA (fold change -2.55 [±0.12]) and PAR2 (-1.33 [±0.12]) was reduced, KLK5 expression increased (fold change 2.06 (±0.08)) after 18 h of treatment with DRG in comparison to treatment with the matrix gel only. The reduction in CAMP expression was significant (P<.01). The protein expression of all four inflammatory markers was markedly reduced after 18 hours of DRG treatment in comparison to baseline (0 hour), by measure of fluorescence intensity. We show evidence explaining the anti-inflammatory effect of Dermasence Refining Gel in rosacea pathogenesis in vitro. The adjunctive use of DRG in mild to moderate rosacea as a topical cosmetic seems medically reasonable. © 2017 Wiley Periodicals, Inc.

  8. The TF-miRNA Coregulation Network in Oral Lichen Planus

    PubMed Central

    Zuo, Yu-Ling; Gong, Di-Ping; Li, Bi-Ze; Zhao, Juan; Zhou, Ling-Yue; Shao, Fang-Yang; Jin, Zhao; He, Yuan

    2015-01-01

    Oral lichen planus (OLP) is a chronic inflammatory disease that affects oral mucosa, some of which may finally develop into oral squamous cell carcinoma. Therefore, pinpointing the molecular mechanisms underlying the pathogenesis of OLP is important to develop efficient treatments for OLP. Recently, the accumulation of the large amount of omics data, especially transcriptome data, provides opportunities to investigate OLPs from a systematic perspective. In this paper, assuming that the OLP associated genes have functional relationships, we present a new approach to identify OLP related gene modules from gene regulatory networks. In particular, we find that the gene modules regulated by both transcription factors (TFs) and microRNAs (miRNAs) play important roles in the pathogenesis of OLP and many genes in the modules have been reported to be related to OLP in the literature. PMID:26064947

  9. Plant-bacterial pathogen interactions mediated by type III effectors.

    PubMed

    Feng, Feng; Zhou, Jian-Min

    2012-08-01

    Effectors secreted by the bacterial type III system play a central role in the interaction between Gram-negative bacterial pathogens and their host plants. Recent advances in the effector studies have helped cementing several key concepts concerning bacterial pathogenesis, plant immunity, and plant-pathogen co-evolution. Type III effectors use a variety of biochemical mechanisms to target specific host proteins or DNA for pathogenesis. The identifications of their host targets led to the identification of novel components of plant innate immune system. Key modules of plant immune signaling pathways such as immune receptor complexes and MAPK cascades have emerged as a major battle ground for host-pathogen adaptation. These modules are attacked by multiple type III effectors, and some components of these modules have evolved to actively sense the effectors and trigger immunity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Parkin deficiency modulates NLRP3 inflammasome activation by attenuating an A20-dependent negative feedback loop.

    PubMed

    Mouton-Liger, François; Rosazza, Thibault; Sepulveda-Diaz, Julia; Ieang, Amélie; Hassoun, Sidi-Mohamed; Claire, Emilie; Mangone, Graziella; Brice, Alexis; Michel, Patrick P; Corvol, Jean-Christophe; Corti, Olga

    2018-04-17

    Neuroinflammation and mitochondrial dysfunction, key mechanisms in the pathogenesis of Parkinson's disease (PD), are usually explored independently. Loss-of-function mutations of PARK2 and PARK6, encoding the E3 ubiquitin protein ligase Parkin and the mitochondrial serine/threonine kinase PINK1, account for a large proportion of cases of autosomal recessive early-onset PD. PINK1 and Parkin regulate mitochondrial quality control and have been linked to the modulation of innate immunity pathways. We report here an exacerbation of NLRP3 inflammasome activation by specific inducers in microglia and bone marrow-derived macrophages from Park2 -/- and Pink1 -/- mice. The caspase 1-dependent release of IL-1β and IL-18 was, therefore, enhanced in Park2 -/- and Pink1 -/- cells. This defect was confirmed in blood-derived macrophages from patients with PARK2 mutations and was reversed by MCC950, which specifically inhibits NLRP3 inflammasome complex formation. Enhanced NLRP3 signaling in Parkin-deficient cells was accompanied by a lack of induction of A20, a well-known negative regulator of the NF-κB pathway recently shown to attenuate NLRP3 inflammasome activity. We also found an inverse correlation between A20 abundance and IL-1β release, in human macrophages challenged with NLRP3 inflammasome inducers. Overall, our observations suggest that the A20/NLRP3-inflammasome axis participates in the pathogenesis of PARK2-linked PD, paving the way for the exploration of its potential as a biomarker and treatment target. © 2018 The Authors. Glia Published by Wiley Periodicals, Inc.

  11. XopN-T3SS effector of Xanthomonas axonopodis pv. punicae localizes to the plasma membrane and modulates ROS accumulation events during blight pathogenesis in pomegranate.

    PubMed

    Kumar, Rishikesh; Soni, Madhvi; Mondal, Kalyan K

    2016-12-01

    Bacterial blight caused by Xanthomonas axonopodis pv. punicae (Xap) is a major disease of pomegranate. Xap secretes effector proteins via type III secretion system (T3SS) to suppress pathogen-associated molecular pattern (PAMP)-triggered plant immunity (PTI). Previously we reported that XopN, a conserved effector of Xap, modulate in planta bacterial growth, and blight disease. In continuation to that here we report the deletion of XopN from Xap caused higher accumulation of reactive oxygen species (ROS) including H 2 O 2 and O 2 - . We quantitatively assessed the higher accumulation of H 2 O 2 in pomegranate leaves infiltrated with Xap ΔxopN compared to Xap wild-type. We analysed that 1.5 to 3.3 fold increase in transcript expression of ROS and flg22-inducible genes, namely FRK1, GST1, WRKY29, PR1, PR2 and PR5 in Arabidopsis when challenged with Xap ΔxopN; contrary, the up-regulation of all the genes were compromised when challenged with either Xap wild-type or Xap ΔxopN+xopN. Further, we demonstrated the plasma-membrane based localization of XopN protein both in its natural and experimental hosts. All together, the present study suggested that XopN-T3SS effector of Xap gets localized in the plasma membrane and suppresses ROS-mediated early defense responses during blight pathogenesis in pomegranate. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Comparison of gene co-networks reveals the molecular mechanisms of the rice (Oryza sativa L.) response to Rhizoctonia solani AG1 IA infection.

    PubMed

    Zhang, Jinfeng; Zhao, Wenjuan; Fu, Rong; Fu, Chenglin; Wang, Lingxia; Liu, Huainian; Li, Shuangcheng; Deng, Qiming; Wang, Shiquan; Zhu, Jun; Liang, Yueyang; Li, Ping; Zheng, Aiping

    2018-05-05

    Rhizoctonia solani causes rice sheath blight, an important disease affecting the growth of rice (Oryza sativa L.). Attempts to control the disease have met with little success. Based on transcriptional profiling, we previously identified more than 11,947 common differentially expressed genes (TPM > 10) between the rice genotypes TeQing and Lemont. In the current study, we extended these findings by focusing on an analysis of gene co-expression in response to R. solani AG1 IA and identified gene modules within the networks through weighted gene co-expression network analysis (WGCNA). We compared the different genes assigned to each module and the biological interpretations of gene co-expression networks at early and later modules in the two rice genotypes to reveal differential responses to AG1 IA. Our results show that different changes occurred in the two rice genotypes and that the modules in the two groups contain a number of candidate genes possibly involved in pathogenesis, such as the VQ protein. Furthermore, these gene co-expression networks provide comprehensive transcriptional information regarding gene expression in rice in response to AG1 IA. The co-expression networks derived from our data offer ideas for follow-up experimentation that will help advance our understanding of the translational regulation of rice gene expression changes in response to AG1 IA.

  13. The Role, Involvement and Function(s) of Interleukin-35 and Interleukin-37 in Disease Pathogenesis.

    PubMed

    Bello, Ramatu Omenesa; Chin, Voon Kin; Abd Rachman Isnadi, Mohammad Faruq; Abd Majid, Roslaini; Atmadini Abdullah, Maizaton; Lee, Tze Yan; Amiruddin Zakaria, Zainul; Hussain, Mohd Khairi; Basir, Rusliza

    2018-04-11

    The recently identified cytokines-interleukin (IL)-35 and interleukin (IL)-37-have been described for their anti-inflammatory and immune-modulating actions in numerous inflammatory diseases, auto-immune disorders, malignancies, infectious diseases and sepsis. Either cytokine has been reported to be reduced and in some cases elevated and consequently contributed towards disease pathogenesis. In view of the recent advances in utilizing cytokine profiles for the development of biological macromolecules, beneficial in the management of certain intractable immune-mediated disorders, these recently characterized cytokines (IL-35 and IL-37) offer potential as reasonable targets for the discovery of novel immune-modulating anti-inflammatory therapies. A detailed comprehension of their sophisticated regulatory mechanisms and patterns of expression may provide unique opportunities for clinical application as highly selective and target specific therapeutic agents. This review seeks to summarize the recent advancements in discerning the dynamics, mechanisms, immunoregulatory and anti-inflammatory actions of IL-35 and IL-37 as they relate to disease pathogenesis.

  14. The extracellular matrix in myocardial injury, repair, and remodeling

    PubMed Central

    2017-01-01

    The cardiac extracellular matrix (ECM) not only provides mechanical support, but also transduces essential molecular signals in health and disease. Following myocardial infarction, dynamic ECM changes drive inflammation and repair. Early generation of bioactive matrix fragments activates proinflammatory signaling. The formation of a highly plastic provisional matrix facilitates leukocyte infiltration and activates infarct myofibroblasts. Deposition of matricellular proteins modulates growth factor signaling and contributes to the spatial and temporal regulation of the reparative response. Mechanical stress due to pressure and volume overload and metabolic dysfunction also induce profound changes in ECM composition that contribute to the pathogenesis of heart failure. This manuscript reviews the role of the ECM in cardiac repair and remodeling and discusses matrix-based therapies that may attenuate remodeling while promoting repair and regeneration. PMID:28459429

  15. Receptor for advanced glycation end product expression in experimental diabetic retinopathy.

    PubMed

    Wang, Yumei; Vom Hagen, Franziska; Pfister, Frederick; Bierhaus, Angelika; Feng, Yuxi; Gans, Reinhold; Hammes, Hans-Peter

    2008-04-01

    The advanced glycation end product (AGE)-receptor for AGE (RAGE) pathway is involved in the pathogenesis of diabetic microvascular damage. The special distribution of RAGE and its engagement has an impact on the development of diabetic retinopathy. In the present study, we used immunofluorescence and confocal laser microscopy to study RAGE expression with special emphasis on Müller glia in Sprague Dawley rats. RAGE expression was low in nondiabetic retinae and was found in ganglion cells and Müller cell end feet. In diabetic retinae, upregulated RAGE was predominantly expressed in retinal glia. Since Müller cells are important in the regulation of important features of early retinal vascular damage, such as vascular permeability, homeostasis, and response to stress, RAGE appears to be a central modulator in diabetic retinopathy.

  16. DOSim: an R package for similarity between diseases based on Disease Ontology.

    PubMed

    Li, Jiang; Gong, Binsheng; Chen, Xi; Liu, Tao; Wu, Chao; Zhang, Fan; Li, Chunquan; Li, Xiang; Rao, Shaoqi; Li, Xia

    2011-06-29

    The construction of the Disease Ontology (DO) has helped promote the investigation of diseases and disease risk factors. DO enables researchers to analyse disease similarity by adopting semantic similarity measures, and has expanded our understanding of the relationships between different diseases and to classify them. Simultaneously, similarities between genes can also be analysed by their associations with similar diseases. As a result, disease heterogeneity is better understood and insights into the molecular pathogenesis of similar diseases have been gained. However, bioinformatics tools that provide easy and straight forward ways to use DO to study disease and gene similarity simultaneously are required. We have developed an R-based software package (DOSim) to compute the similarity between diseases and to measure the similarity between human genes in terms of diseases. DOSim incorporates a DO-based enrichment analysis function that can be used to explore the disease feature of an independent gene set. A multilayered enrichment analysis (GO and KEGG annotation) annotation function that helps users explore the biological meaning implied in a newly detected gene module is also part of the DOSim package. We used the disease similarity application to demonstrate the relationship between 128 different DO cancer terms. The hierarchical clustering of these 128 different cancers showed modular characteristics. In another case study, we used the gene similarity application on 361 obesity-related genes. The results revealed the complex pathogenesis of obesity. In addition, the gene module detection and gene module multilayered annotation functions in DOSim when applied on these 361 obesity-related genes helped extend our understanding of the complex pathogenesis of obesity risk phenotypes and the heterogeneity of obesity-related diseases. DOSim can be used to detect disease-driven gene modules, and to annotate the modules for functions and pathways. The DOSim package can also be used to visualise DO structure. DOSim can reflect the modular characteristic of disease related genes and promote our understanding of the complex pathogenesis of diseases. DOSim is available on the Comprehensive R Archive Network (CRAN) or http://bioinfo.hrbmu.edu.cn/dosim.

  17. Nociceptive transmission and modulation via P2X receptors in central pain syndrome.

    PubMed

    Kuan, Yung-Hui; Shyu, Bai-Chuang

    2016-05-26

    Painful sensations are some of the most frequent complaints of patients who are admitted to local medical clinics. Persistent pain varies according to its causes, often resulting from local tissue damage or inflammation. Central somatosensory pathway lesions that are not adequately relieved can consequently cause central pain syndrome or central neuropathic pain. Research on the molecular mechanisms that underlie this pathogenesis is important for treating such pain. To date, evidence suggests the involvement of ion channels, including adenosine triphosphate (ATP)-gated cation channel P2X receptors, in central nervous system pain transmission and persistent modulation upon and following the occurrence of neuropathic pain. Several P2X receptor subtypes, including P2X2, P2X3, P2X4, and P2X7, have been shown to play diverse roles in the pathogenesis of central pain including the mediation of fast transmission in the peripheral nervous system and modulation of neuronal activity in the central nervous system. This review article highlights the role of the P2X family of ATP receptors in the pathogenesis of central neuropathic pain and pain transmission. We discuss basic research that may be translated to clinical application, suggesting that P2X receptors may be treatment targets for central pain syndrome.

  18. Hyperactive immune cells (T cells) may be responsible for acute lung injury in influenza virus infections: a need for early immune-modulators for severe cases.

    PubMed

    Lee, Kyung-Yil; Rhim, Jung-Woo; Kang, Jin-Han

    2011-01-01

    It has been believed that acute lung injury in influenza virus infections is caused by a virus-induced cytopathy; viruses that have multiplied in the upper respiratory tract spread to lung tissues along the lower respiratory tract. However, some experimental and clinical studies have suggested that the pathogenesis of acute lung injury in influenza virus infections is associated with excessive host response including a cell-mediated immune reaction. During the pandemic H1N1 2009 influenza A virus infections in Korea, we experienced a dramatic effect of immune-modulators (corticosteroids) on the patients with severe pneumonia who had significant respiratory distress at presentation and those who showed rapidly progressive pneumonia during oseltamivir treatment. We also found that the pneumonia patients treated with corticosteroids showed the lowest lymphocyte differential and that the severity of pneumonia was associated with the lymphocyte count at presentation. From our findings and previous experimental and clinical studies, we postulated that hyperactive immune cells (T cells) may be involved in the acute lung injury of influenza virus infections, using a hypothesis of 'protein homeostasis system'; the inducers of the cell-mediated immune response are initially produced at the primary immune sites by the innate immune system. These substances reach the lung cells, the main target organ, via the systemic circulation, and possibly the cells of other organs, including myocytes or central nerve system cells, leading to extrapulmonary symptoms (e.g., myalgia and rhabdomyolysis, and encephalopathy). To control these substances that may be possibly toxic to host cells, the adaptive immune reaction may be operated by immune cells, mainly lymphocytes. Hyperimmune reaction of immune cells produces higher levels of cytokines which may be associated with acute lung injury, and may be controlled by early use of immune-modulators. Early initiation and proper dosage of immune-modulators with antiviral agents for severe pneumonia patients may reduce morbidity and prevent progressive fatal pneumonia. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Tumor necrosis factor-alpha activates signal transduction in hypothalamus and modulates the expression of pro-inflammatory proteins and orexigenic/anorexigenic neurotransmitters.

    PubMed

    Amaral, Maria E; Barbuio, Raquel; Milanski, Marciane; Romanatto, Talita; Barbosa, Helena C; Nadruz, Wilson; Bertolo, Manoel B; Boschero, Antonio C; Saad, Mario J A; Franchini, Kleber G; Velloso, Licio A

    2006-07-01

    Tumor necrosis factor-alpha (TNF-alpha) is known to participate in the wastage syndrome that accompanies cancer and severe infectious diseases. More recently, a role for TNF-alpha in the pathogenesis of type 2 diabetes mellitus and obesity has been shown. Much of the regulatory action exerted by TNF-alpha upon the control of energy stores depends on its action on the hypothalamus. In this study, we show that TNF-alpha activates canonical pro-inflammatory signal transduction pathways in the hypothalamus of rats. These signaling events lead to the transcriptional activation of an early responsive gene and to the induction of expression of cytokines and a cytokine responsive protein such as interleukin-1beta, interleukin-6, interleukin-10 and suppressor of cytokine signalling-3, respectively. In addition, TNF-alpha induces the expression of neurotransmitters involved in the control of feeding and thermogenesis. Thus, TNF-alpha may act directly in the hypothalamus inducing a pro-inflammatory response and the modulation of expression of neurotransmitters involved in energy homeostasis.

  20. Identification of polycystic ovary syndrome potential drug targets based on pathobiological similarity in the protein-protein interaction network

    PubMed Central

    Li, Wan; Wei, Wenqing; Li, Yiran; Xie, Ruiqiang; Guo, Shanshan; Wang, Yahui; Jiang, Jing; Chen, Binbin; Lv, Junjie; Zhang, Nana; Chen, Lina; He, Weiming

    2016-01-01

    Polycystic ovary syndrome (PCOS) is one of the most common endocrinological disorders in reproductive aged women. PCOS and Type 2 Diabetes (T2D) are closely linked in multiple levels and possess high pathobiological similarity. Here, we put forward a new computational approach based on the pathobiological similarity to identify PCOS potential drug target modules (PPDT-Modules) and PCOS potential drug targets in the protein-protein interaction network (PPIN). From the systems level and biological background, 1 PPDT-Module and 22 PCOS potential drug targets were identified, 21 of which were verified by literatures to be associated with the pathogenesis of PCOS. 42 drugs targeting to 13 PCOS potential drug targets were investigated experimentally or clinically for PCOS. Evaluated by independent datasets, the whole PPDT-Module and 22 PCOS potential drug targets could not only reveal the drug response, but also distinguish the statuses between normal and disease. Our identified PPDT-Module and PCOS potential drug targets would shed light on the treatment of PCOS. And our approach would provide valuable insights to research on the pathogenesis and drug response of other diseases. PMID:27191267

  1. The Disturbance of Gaze in Progressive Supranuclear Palsy: Implications for Pathogenesis

    PubMed Central

    Chen, Athena L.; Riley, David E.; King, Susan A.; Joshi, Anand C.; Serra, Alessandro; Liao, Ke; Cohen, Mark L.; Otero-Millan, Jorge; Martinez-Conde, Susana; Strupp, Michael; Leigh, R. John

    2010-01-01

    Progressive supranuclear palsy (PSP) is a disease of later life that is currently regarded as a form of neurodegenerative tauopathy. Disturbance of gaze is a cardinal clinical feature of PSP that often helps clinicians to establish the diagnosis. Since the neurobiology of gaze control is now well understood, it is possible to use eye movements as investigational tools to understand aspects of the pathogenesis of PSP. In this review, we summarize each disorder of gaze control that occurs in PSP, drawing on our studies of 50 patients, and on reports from other laboratories that have measured the disturbances of eye movements. When these gaze disorders are approached by considering each functional class of eye movements and its neurobiological basis, a distinct pattern of eye movement deficits emerges that provides insight into the pathogenesis of PSP. Although some aspects of all forms of eye movements are affected in PSP, the predominant defects concern vertical saccades (slow and hypometric, both up and down), impaired vergence, and inability to modulate the linear vestibulo-ocular reflex appropriately for viewing distance. These vertical and vergence eye movements habitually work in concert to enable visuomotor skills that are important during locomotion with the hands free. Taken with the prominent early feature of falls, these findings suggest that PSP tauopathy impairs a recently evolved neural system concerned with bipedal locomotion in an erect posture and frequent gaze shifts between the distant environment and proximate hands. This approach provides a conceptual framework that can be used to address the nosological challenge posed by overlapping clinical and neuropathological features of neurodegenerative tauopathies. PMID:21188269

  2. Acetylcholine Protects against Candida albicans Infection by Inhibiting Biofilm Formation and Promoting Hemocyte Function in a Galleria mellonella Infection Model.

    PubMed

    Rajendran, Ranjith; Borghi, Elisa; Falleni, Monica; Perdoni, Federica; Tosi, Delfina; Lappin, David F; O'Donnell, Lindsay; Greetham, Darren; Ramage, Gordon; Nile, Christopher

    2015-08-01

    Both neuronal acetylcholine and nonneuronal acetylcholine have been demonstrated to modulate inflammatory responses. Studies investigating the role of acetylcholine in the pathogenesis of bacterial infections have revealed contradictory findings with regard to disease outcome. At present, the role of acetylcholine in the pathogenesis of fungal infections is unknown. Therefore, the aim of this study was to determine whether acetylcholine plays a role in fungal biofilm formation and the pathogenesis of Candida albicans infection. The effect of acetylcholine on C. albicans biofilm formation and metabolism in vitro was assessed using a crystal violet assay and phenotypic microarray analysis. Its effect on the outcome of a C. albicans infection, fungal burden, and biofilm formation were investigated in vivo using a Galleria mellonella infection model. In addition, its effect on modulation of host immunity to C. albicans infection was also determined in vivo using hemocyte counts, cytospin analysis, larval histology, lysozyme assays, hemolytic assays, and real-time PCR. Acetylcholine was shown to have the ability to inhibit C. albicans biofilm formation in vitro and in vivo. In addition, acetylcholine protected G. mellonella larvae from C. albicans infection mortality. The in vivo protection occurred through acetylcholine enhancing the function of hemocytes while at the same time inhibiting C. albicans biofilm formation. Furthermore, acetylcholine also inhibited inflammation-induced damage to internal organs. This is the first demonstration of a role for acetylcholine in protection against fungal infections, in addition to being the first report that this molecule can inhibit C. albicans biofilm formation. Therefore, acetylcholine has the capacity to modulate complex host-fungal interactions and plays a role in dictating the pathogenesis of fungal infections. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Acetylcholine Protects against Candida albicans Infection by Inhibiting Biofilm Formation and Promoting Hemocyte Function in a Galleria mellonella Infection Model

    PubMed Central

    Rajendran, Ranjith; Borghi, Elisa; Falleni, Monica; Perdoni, Federica; Tosi, Delfina; Lappin, David F.; O'Donnell, Lindsay; Greetham, Darren; Ramage, Gordon

    2015-01-01

    Both neuronal acetylcholine and nonneuronal acetylcholine have been demonstrated to modulate inflammatory responses. Studies investigating the role of acetylcholine in the pathogenesis of bacterial infections have revealed contradictory findings with regard to disease outcome. At present, the role of acetylcholine in the pathogenesis of fungal infections is unknown. Therefore, the aim of this study was to determine whether acetylcholine plays a role in fungal biofilm formation and the pathogenesis of Candida albicans infection. The effect of acetylcholine on C. albicans biofilm formation and metabolism in vitro was assessed using a crystal violet assay and phenotypic microarray analysis. Its effect on the outcome of a C. albicans infection, fungal burden, and biofilm formation were investigated in vivo using a Galleria mellonella infection model. In addition, its effect on modulation of host immunity to C. albicans infection was also determined in vivo using hemocyte counts, cytospin analysis, larval histology, lysozyme assays, hemolytic assays, and real-time PCR. Acetylcholine was shown to have the ability to inhibit C. albicans biofilm formation in vitro and in vivo. In addition, acetylcholine protected G. mellonella larvae from C. albicans infection mortality. The in vivo protection occurred through acetylcholine enhancing the function of hemocytes while at the same time inhibiting C. albicans biofilm formation. Furthermore, acetylcholine also inhibited inflammation-induced damage to internal organs. This is the first demonstration of a role for acetylcholine in protection against fungal infections, in addition to being the first report that this molecule can inhibit C. albicans biofilm formation. Therefore, acetylcholine has the capacity to modulate complex host-fungal interactions and plays a role in dictating the pathogenesis of fungal infections. PMID:26092919

  4. A comprehensive analysis on preservation patterns of gene co-expression networks during Alzheimer's disease progression.

    PubMed

    Ray, Sumanta; Hossain, Sk Md Mosaddek; Khatun, Lutfunnesa; Mukhopadhyay, Anirban

    2017-12-20

    Alzheimer's disease (AD) is a chronic neuro-degenerative disruption of the brain which involves in large scale transcriptomic variation. The disease does not impact every regions of the brain at the same time, instead it progresses slowly involving somewhat sequential interaction with different regions. Analysis of the expression patterns of the genes in different regions of the brain influenced in AD surely contribute for a enhanced comprehension of AD pathogenesis and shed light on the early characterization of the disease. Here, we have proposed a framework to identify perturbation and preservation characteristics of gene expression patterns across six distinct regions of the brain ("EC", "HIP", "PC", "MTG", "SFG", and "VCX") affected in AD. Co-expression modules were discovered considering a couple of regions at once. These are then analyzed to know the preservation and perturbation characteristics. Different module preservation statistics and a rank aggregation mechanism have been adopted to detect the changes of expression patterns across brain regions. Gene ontology (GO) and pathway based analysis were also carried out to know the biological meaning of preserved and perturbed modules. In this article, we have extensively studied the preservation patterns of co-expressed modules in six distinct brain regions affected in AD. Some modules are emerged as the most preserved while some others are detected as perturbed between a pair of brain regions. Further investigation on the topological properties of preserved and non-preserved modules reveals a substantial association amongst "betweenness centrality" and "degree" of the involved genes. Our findings may render a deeper realization of the preservation characteristics of gene expression patterns in discrete brain regions affected by AD.

  5. Inhibiting the immunoproteasome exacerbates the pathogenesis of systemic Candida albicans infection in mice

    PubMed Central

    Mundt, Sarah; Basler, Michael; Buerger, Stefanie; Engler, Harald; Groettrup, Marcus

    2016-01-01

    Apart from its role in MHC class I antigen processing, the immunoproteasome has recently been implicated in the modulation of T helper cell differentiation under polarizing conditions in vitro and in the pathogenesis of autoimmune diseases in vivo. In this study, we investigated the influence of LMP7 on T helper cell differentiation in response to the fungus Candida albicans. We observed a strong effect of ONX 0914, an LMP7-selective inhibitor of the immunoproteasome, on IFN-γ and IL-17A production by murine splenocytes and human peripheral blood mononuclear cells (PBMCs) stimulated with C. albicans in vitro. Using a murine model of systemic candidiasis, we could confirm reduced generation of IFN-γ- and IL-17A-producing cells in ONX 0914 treated mice in vivo. Interestingly, ONX 0914 treatment resulted in increased susceptibility to systemic candidiasis, which manifested at very early stages of infection. Mice treated with ONX 0914 showed markedly increased kidney and brain fungal burden which resulted in enhanced neutrophil recruitment and immunopathology. Together, these results strongly suggest a role of the immunoproteasome in promoting proinflammatory T helper cells in response to C. albicans but also in affecting the innate antifungal immunity in a T helper cell-independent manner. PMID:26776888

  6. Role of renal urothelium in the development and progression of kidney disease.

    PubMed

    Carpenter, Ashley R; McHugh, Kirk M

    2017-04-01

    The clinical and financial impact of chronic kidney disease (CKD) is significant, while its progression and prognosis is variable and often poor. Studies using the megabladder (mgb -/- ) model of CKD show that renal urothelium plays a key role in modulating early injury responses following the development of congenital obstruction. The aim of this review is to examine the role that urothelium has in normal urinary tract development and pathogenesis. We discuss normal morphology of renal urothelium and then examine the role that uroplakins (Upks) play in its development. Histologic, biochemical, and molecular characterization of Upk1b RFP/RFP mice indicated Upk1b expression is essential for normal urinary tract development, apical plaque/asymmetric membrane unit (AUM) formation, and differentiation and functional integrity of the renal urothelium. Our studies provide the first evidence that Upk1b is directly associated with the development of congenital anomalies of the urinary tract (CAKUT), spontaneous age-dependent hydronephrosis, and dysplastic urothelia. These observations demonstrate the importance of proper urothelial differentiation in normal development and pathogenesis of the urinary tract and provide a unique working model to test the hypothesis that the complex etiology associated with CKD is dependent upon predetermined genetic susceptibilities that establish pathogenic thresholds for disease initiation and progression.

  7. Role of Renal Urothelium in the Development and Progression of Kidney Disease

    PubMed Central

    Carpenter, Ashley R.; McHugh, Kirk M.

    2016-01-01

    The clinical and financial impact of chronic kidney disease (CKD) is significant, while the progression and prognosis of CKD is variable and often poor. Studies using the megabladder (mgb−/−) model of CKD have shown that renal urothelium plays a key role in modulating the early injury responses following the development of congenital obstruction. The aim of this review is to examine the role that urothelium has in normal urinary tract development and pathogenesis. We discuss normal morphology of renal urothelium and then examine the role that uroplakins (Upks) play in its development. Histologic, biochemical and molecular characterization of Upk1bRFP/RFP mice indicated Upk1b expression is essential for normal urinary tract development, apical plaque/AUM formation and differentiation and functional integrity of the renal urothelium. Our studies provide the first evidence Upk1b is directly associated with the development of congenital anomalies of the urinary tract (CAKUT), spontaneous age-dependent hydronephrosis and dysplastic urothelia. These observations demonstrate the importance of proper urothelial differentiation in the normal development and pathogenesis of the urinary tract, and provide a unique working model to test the hypothesis that the complex etiology associated with CKD is dependent upon predetermined genetic susceptibilities that establish pathogenic thresholds for disease initiation and progression. PMID:27115886

  8. Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease.

    PubMed

    Pistollato, Francesca; Sumalla Cano, Sandra; Elio, Iñaki; Masias Vergara, Manuel; Giampieri, Francesca; Battino, Maurizio

    2016-10-01

    It has been hypothesized that alterations in the composition of the gut microbiota might be associated with the onset of certain human pathologies, such as Alzheimer disease, a neurodegenerative syndrome associated with cerebral accumulation of amyloid-β fibrils. It has been shown that bacteria populating the gut microbiota can release significant amounts of amyloids and lipopolysaccharides, which might play a role in the modulation of signaling pathways and the production of proinflammatory cytokines related to the pathogenesis of Alzheimer disease. Additionally, nutrients have been shown to affect the composition of the gut microbiota as well as the formation and aggregation of cerebral amyloid-β. This suggests that modulating the gut microbiome and amyloidogenesis through specific nutritional interventions might prove to be an effective strategy to prevent or reduce the risk of Alzheimer disease. This review examines the possible role of the gut in the dissemination of amyloids, the role of the gut microbiota in the regulation of the gut-brain axis, the potential amyloidogenic properties of gut bacteria, and the possible impact of nutrients on modulation of microbiota composition and amyloid formation in relation to the pathogenesis of Alzheimer disease. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. NITRIC OXIDE, MITOCHONDRIAL HYPERPOLARIZATION AND T-CELL ACTIVATION

    PubMed Central

    Nagy, Gyorgy; Koncz, Agnes; Fernandez, David; Perl, Andras

    2007-01-01

    T lymphocyte activation is associated with nitric oxide (NO) production that plays an essential role in multiple T cell functions. NO acts as a messenger, activating soluble guanyl cyclase and participating in the transduction signaling pathways involving cyclic GMP. NO modulates mitochondrial events that are involved in apoptosis and regulates mitochondrial membrane potential and mitochondrial biogenesis in many cell types, including lymphocytes. Mitochondrial hyperpolarization (MHP), an early and reversible event during both T lymphocyte activation and apoptosis, is regulated by NO. Here, we discuss recent evidence that NO-induced MHP represents a molecular switch in multiple T cell signaling pathways. Overproduction of NO in systemic lupus erythematosus (SLE) induces mitochondrial biogenesis and alters Ca2+ signaling. Thus, while NO plays a physiological role in lymphocyte cell signaling, its overproduction may disturb normal T cell function, contributing to the pathogenesis of autoimmunity. PMID:17462531

  10. Subinhibitory Antibiotic Therapy Alters Recurrent Urinary Tract Infection Pathogenesis through Modulation of Bacterial Virulence and Host Immunity

    PubMed Central

    Hannan, Thomas J.; MacPhee, Roderick A.; Schwartz, Drew J.; Macklaim, Jean M.; Gloor, Gregory B.; Razvi, Hassan; Reid, Gregor; Hultgren, Scott J.; Burton, Jeremy P.

    2015-01-01

    ABSTRACT The capacity of subinhibitory levels of antibiotics to modulate bacterial virulence in vitro has recently been brought to light, raising concerns over the appropriateness of low-dose therapies, including antibiotic prophylaxis for recurrent urinary tract infection management. However, the mechanisms involved and their relevance in influencing pathogenesis have not been investigated. We characterized the ability of antibiotics to modulate virulence in the uropathogens Staphylococcus saprophyticus and Escherichia coli. Several antibiotics were able to induce the expression of adhesins critical to urothelial colonization, resulting in increased biofilm formation, colonization of murine bladders and kidneys, and promotion of intracellular niche formation. Mice receiving subinhibitory ciprofloxacin treatment were also more susceptible to severe infections and frequent recurrences. A ciprofloxacin prophylaxis model revealed this strategy to be ineffective in reducing recurrences and worsened infection by creating larger intracellular reservoirs at higher frequencies. Our study indicates that certain agents used for antibiotic prophylaxis have the potential to complicate infections. PMID:25827417

  11. Natural Modulators of Amyloid-Beta Precursor Protein Processing

    PubMed Central

    Zhang, Can; Tanzi, Rudolph E.

    2013-01-01

    Alzheimer’s disease (AD) is a devastating neurodegenerative disease and the primary cause of dementia, with no cure currently available. The pathogenesis of AD is believed to be primarily driven by Aβ, the principal component of senile plaques. Aβ is an ~4 kDa peptide generated from the amyloid-β precursor protein (APP) through proteolytic secretases. Natural products, particularly those utilized in traditional Chinese medicine (TCM), have a long history alleviating common clinical disorders, including dementia. However, the cell/molecular pathways mediated by these natural products are largely unknown until recently when the underlying molecular mechanisms of the disorders begin to be elucidated. Here, the mechanisms with which natural products modulate the pathogenesis of AD are discussed, in particular, by focusing on their roles in the processing of APP. PMID:22998566

  12. Platelet activation is a key event in the pathogenesis of streptococcal infections.

    PubMed

    Jia, Ming; Xiong, Yuling; Lu, Hua; Li, Ruqing; Wang, Tiantian; Ye, Yanyao; Song, Min; Li, Bing; Jiang, Tianlun; Zhao, Shuming

    2015-06-01

    Diverse Streptococcus species including Streptococcus Pneumoniae, Sanguis, Gordonii, Mitis and Mutans cause life-threatening conditions including pneumonia, bacteremia and meningitis. These diseases bear a high morbidity and mortality and for this reason, understanding the key events in the pathogenesis of these infections have a great significance in their prevention and/or treatment. Here, we describe as how the activation of the platelets and their affinity to bind to bacterial proteins act as early key events in the pathogenesis of Streptococcal infections.

  13. [Current concepts in pathogenesis of age-related macular degeneration].

    PubMed

    Kubicka-Trząska, Agnieszka; Karska-Basta, Izabella; Romanowska-Dixon, Bożena

    2014-01-01

    Age-related macular degeneration is the leading cause of central blindness in elderly population of the western world. The pathogenesis of this disease, likely multifactorial, is not well known, although a number of theories have been put forward, including oxidative stress, genetic interactions, hemodynamic imbalance, immune and inflammatory processes. The understanding of age-related macular degeneration pathogenesis will give rise to new approaches in prevention and treatment of the early and late stages of both atrophic and neovascular age-related macular degeneration.

  14. Potential Role of Endoplasmic Reticulum Stress in Pathogenesis of Diabetic Retinopathy.

    PubMed

    Sánchez-Chávez, Gustavo; Hernández-Ramírez, Ernesto; Osorio-Paz, Ixchel; Hernández-Espinosa, Claudia; Salceda, Rocío

    2016-05-01

    Diabetes mellitus is a metabolic disease that leads to several complications which include retinopathy. Multiple biochemical abnormalities have been proposed to explain the development of retinopathy, including oxidative stress. Although the existence of oxidative stress has been established in the retina from long standing diabetic animals, pathogenesis and progression of retinopathy remain unclear. In order to gain insight into the pathogenesis of diabetic retinopathy, we analyzed the levels of different oxidative stress biomarkers in the retina at early stages during the progress of streptozotocin-induced diabetes. No significant changes in glutathione content, expression of NADPH-oxidase, levels of lipid peroxidation, nor production of free radicals were observed in the retina up to 45 days of diabetes induction. Likewise, a transient decrease in aconitase activity, parallel to an increase in the superoxide dismutase activity was observed at 20 days of hyperglycemia, suggesting a high capacity of retina to maintain its redox homeostasis, at least at early stages of diabetes. Nonetheless, we found an early and time-dependent increase in the levels of oxidized proteins, which was not affected by the administration of the antioxidant quercetin. Also, positive immunoreactivity to the reticulum stress protein CHOP was found in glial Müller cells of diabetic rat retinas. These findings suggest the occurrence of endoplasmic reticulum stress as a primary event in retina pathogenesis in diabetes.

  15. Epigenetic Modulation as a Therapeutic Prospect for Treatment of Autoimmune Rheumatic Diseases.

    PubMed

    Ciechomska, Marzena; O'Reilly, Steven

    2016-01-01

    Systemic inflammatory rheumatic diseases are considered as autoimmune diseases, meaning that the balance between recognition of pathogens and avoidance of self-attack is impaired and the immune system attacks and destroys its own healthy tissue. Treatment with conventional Disease Modifying Antirheumatic Drugs (DMARDs) and/or Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) is often associated with various adverse reactions due to unspecific and toxic properties of those drugs. Although biologic drugs have largely improved the outcome in many patients, such drugs still pose significant problems and fail to provide a solution to all patients. Therefore, development of more effective treatments and improvements in early diagnosis of rheumatic diseases are badly needed in order to increase patient's functioning and quality of life. The reversible nature of epigenetic mechanisms offers a new class of drugs that modulate the immune system and inflammation. In fact, epigenetic drugs are already in use in some types of cancer or cardiovascular diseases. Therefore, epigenetic-based therapeutics that control autoimmunity and chronic inflammatory process have broad implications for the pathogenesis, diagnosis, and management of rheumatic diseases. This review summarises the latest information about potential therapeutic application of epigenetic modification in targeting immune abnormalities and inflammation of rheumatic diseases.

  16. The Gut-Associated Lymphoid Tissues in the Small Intestine, Not the Large Intestine, Play a Major Role in Oral Prion Disease Pathogenesis

    PubMed Central

    Donaldson, David S.; Else, Kathryn J.

    2015-01-01

    ABSTRACT Prion diseases are infectious neurodegenerative disorders characterized by accumulations of abnormally folded cellular prion protein in affected tissues. Many natural prion diseases are acquired orally, and following exposure, the early replication of some prion isolates upon follicular dendritic cells (FDC) within gut-associated lymphoid tissues (GALT) is important for the efficient spread of disease to the brain (neuroinvasion). Prion detection within large intestinal GALT biopsy specimens has been used to estimate human and animal disease prevalence. However, the relative contributions of the small and large intestinal GALT to oral prion pathogenesis were unknown. To address this issue, we created mice that specifically lacked FDC-containing GALT only in the small intestine. Our data show that oral prion disease susceptibility was dramatically reduced in mice lacking small intestinal GALT. Although these mice had FDC-containing GALT throughout their large intestines, these tissues were not early sites of prion accumulation or neuroinvasion. We also determined whether pathology specifically within the large intestine might influence prion pathogenesis. Congruent infection with the nematode parasite Trichuris muris in the large intestine around the time of oral prion exposure did not affect disease pathogenesis. Together, these data demonstrate that the small intestinal GALT are the major early sites of prion accumulation and neuroinvasion after oral exposure. This has important implications for our understanding of the factors that influence the risk of infection and the preclinical diagnosis of disease. IMPORTANCE Many natural prion diseases are acquired orally. After exposure, the accumulation of some prion diseases in the gut-associated lymphoid tissues (GALT) is important for efficient spread of disease to the brain. However, the relative contributions of GALT in the small and large intestines to oral prion pathogenesis were unknown. We show that the small intestinal GALT are the essential early sites of prion accumulation. Furthermore, congruent infection with a large intestinal helminth (worm) around the time of oral prion exposure did not affect disease pathogenesis. This is important for our understanding of the factors that influence the risk of prion infection and the preclinical diagnosis of disease. The detection of prions within large intestinal GALT biopsy specimens has been used to estimate human and animal disease prevalence. However, our data suggest that using these biopsy specimens may miss individuals in the early stages of oral prion infection and significantly underestimate the disease prevalence. PMID:26157121

  17. Polymorphism of DC-SIGN (CD209) promoter in association with clinical symptoms of dengue fever.

    PubMed

    Oliveira, Layanna Freitas de; Lima, Clayton Pereira Silva de; Azevedo, Raimunda do Socorro Silva; Mendonça, Dafne Silva Furtado de; Rodrigues, Sueli Guerreiro; Carvalho, Valéria Lima; Pinto, Eliana Vieira; Maia, Andreza Lopes; Maia, Maria Helena Thomaz; Vasconcelos, Janaina Mota; Silva, Andrea Luciana Soares da; Nunes, Márcio Roberto Teixeira; Sena, Leonardo; Vasconcelos, Pedro Fernando; Santos, Eduardo José Melo dos

    2014-06-01

    C-type lectin DC-SIGN receptor, encoded by CD209, plays a key role in the infection of dendritic cells by dengue virus (DENV). Because the -336A/G SNP (rs4804803) polymorphism in the promoter of CD209 modulates DC-SIGN expression, we investigated the putative association of this polymorphism with DENV infection and its pathogenesis. A control sample of 72 individuals, rigorously selected through a clinical investigation for absence of past dengue fever (DF) was compared to a sample of 168 patients (156 classical DF; 12 dengue hemorrhagic fever), all residents from Pará, Brazil. However, the prevalence of symptoms showed a trend higher in the AA genotype (Wilcoxon test; Z=2.02; p=0.04). Hence, our findings indicate that the G allele downregulates the spectrum of symptoms during the early acute phase of DENV infection, putatively decreasing the viremia, as suggested in the literature.

  18. Host-Cell Survival and Death During Chlamydia Infection

    PubMed Central

    Ying, Songmin; Pettengill, Matthew; Ojcius, David M.; Häcker, Georg

    2008-01-01

    Different Chlamydia trachomatis strains are responsible for prevalent bacterial sexually-transmitted disease and represent the leading cause of preventable blindness worldwide. Factors that predispose individuals to disease and mechanisms by which chlamydiae cause inflammation and tissue damage remain unclear. Results from recent studies indicate that prolonged survival and subsequent death of infected cells and their effect on immune effector cells during chlamydial infection may be important in determining the outcome. Survival of infected cells is favored at early times of infection through inhibition of the mitochondrial pathway of apoptosis. Death at later times displays features of both apoptosis and necrosis, but pro-apoptotic caspases are not involved. Most studies on chlamydial modulation of host-cell death until now have been performed in cell lines. The consequences for pathogenesis and the immune response will require animal models of chlamydial infection, preferably mice with targeted deletions of genes that play a role in cell survival and death. PMID:18843378

  19. Planar cell polarity genes control the connectivity of enteric neurons

    PubMed Central

    Sasselli, Valentina; Boesmans, Werend; Vanden Berghe, Pieter; Tissir, Fadel; Goffinet, André M.; Pachnis, Vassilis

    2013-01-01

    A highly complex network of intrinsic enteric neurons is required for the digestive and homeostatic functions of the gut. Nevertheless, the genetic and molecular mechanisms that regulate their assembly into functional neuronal circuits are currently unknown. Here we report that the planar cell polarity (PCP) genes Celsr3 and Fzd3 are required during murine embryogenesis to specifically control the guidance and growth of enteric neuronal projections relative to the longitudinal and radial gut axes. Ablation of these genes disrupts the normal organization of nascent neuronal projections, leading to subtle changes of axonal tract configuration in the mature enteric nervous system (ENS), but profound abnormalities in gastrointestinal motility. Our data argue that PCP-dependent modules of connectivity established at early stages of enteric neurogenesis control gastrointestinal function in adult animals and provide the first evidence that developmental deficits in ENS wiring may contribute to the pathogenesis of idiopathic bowel disorders. PMID:23478408

  20. Protein Kinase G Induces an Immune Response in Cows Exposed to Mycobacterium avium Subsp. paratuberculosis

    PubMed Central

    Bach, Eviatar; Chaffer, Marcelo; Lai, Wanika; Keefe, Greg; Begg, Douglas J.

    2018-01-01

    To establish infection, pathogens secrete virulence factors, such as protein kinases and phosphatases, to modulate the signal transduction pathways used by host cells to initiate immune response. The protein MAP3893c is annotated in the genome sequence of Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne's disease, as the serine/threonine protein kinase G (PknG). In this work, we report that PknG is a functional kinase that is secreted within macrophages at early stages of infection. The antigen is able to induce an immune response from cattle exposed to MAP in the form of interferon gamma production after stimulation of whole blood with PknG. These findings suggest that PknG may contribute to the pathogenesis of MAP by phosphorylating macrophage signalling and/or adaptor molecules as observed with other pathogenic mycobacterial species. PMID:29581962

  1. Protein Kinase G Induces an Immune Response in Cows Exposed to Mycobacterium avium Subsp. paratuberculosis.

    PubMed

    Bach, Horacio; Richard-Greenblatt, Melissa; Bach, Eviatar; Chaffer, Marcelo; Lai, Wanika; Keefe, Greg; Begg, Douglas J

    2018-01-01

    To establish infection, pathogens secrete virulence factors, such as protein kinases and phosphatases, to modulate the signal transduction pathways used by host cells to initiate immune response. The protein MAP3893c is annotated in the genome sequence of Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne's disease, as the serine/threonine protein kinase G (PknG). In this work, we report that PknG is a functional kinase that is secreted within macrophages at early stages of infection. The antigen is able to induce an immune response from cattle exposed to MAP in the form of interferon gamma production after stimulation of whole blood with PknG. These findings suggest that PknG may contribute to the pathogenesis of MAP by phosphorylating macrophage signalling and/or adaptor molecules as observed with other pathogenic mycobacterial species.

  2. Human immune system mouse models of Ebola virus infection.

    PubMed

    Spengler, Jessica R; Prescott, Joseph; Feldmann, Heinz; Spiropoulou, Christina F

    2017-08-01

    Human immune system (HIS) mice, immunodeficient mice engrafted with human cells (with or without donor-matched tissue), offer a unique opportunity to study pathogens that cause disease predominantly or exclusively in humans. Several HIS mouse models have recently been used to study Ebola virus (EBOV) infection and disease. The results of these studies are encouraging and support further development and use of these models in Ebola research. HIS mice provide a small animal model to study EBOV isolates, investigate early viral interactions with human immune cells, screen vaccines and therapeutics that modulate the immune system, and investigate sequelae in survivors. Here we review existing models, discuss their use in pathogenesis studies and therapeutic screening, and highlight considerations for study design and analysis. Finally, we point out caveats to current models, and recommend future efforts for modeling EBOV infection in HIS mice. Published by Elsevier B.V.

  3. Novel Approaches for the Treatment of the Patient with Resistant Hypertension: Renal Nerve Ablation

    PubMed Central

    Gulati, Vinay; White, William B.

    2013-01-01

    Sympathetic innervation of the kidneys plays a major role in the pathogenesis of hypertension through modulation of renin secretion, glomerular filtration rate and renal absorption of sodium. Targeted interventions for renal nerve ablation are being developed for treatment of drug resistant hypertension in the USA and rest of the world. Early studies with the use of radiofrequency based renal denervation systems have shown encouraging results with significant reduction of blood pressure in patients inadequately controlled despite nearly maximal drug therapy regimens. Thus far, the renal denervation procedure has been associated with minimal side effects. Long term efficacy and safety beyond 3 years needs to be determined for renal nerve ablation. This review focuses on the physiology of the renal sympathetic system, the rationale for renal nerve ablation and current evidence in support of the available therapeutic renal denervation systems. PMID:24244757

  4. TNFα-Mediated Liver Destruction by Kupffer Cells and Ly6Chi Monocytes during Entamoeba histolytica Infection

    PubMed Central

    Ernst, Thomas; Ittrich, Harald; Jacobs, Thomas; Heeren, Joerg; Tacke, Frank; Tannich, Egbert; Lotter, Hannelore

    2013-01-01

    Amebic liver abscess (ALA) is a focal destruction of liver tissue due to infection by the protozoan parasite Entamoeba histolytica (E. histolytica). Host tissue damage is attributed mainly to parasite pathogenicity factors, but massive early accumulation of mononuclear cells, including neutrophils, inflammatory monocytes and macrophages, at the site of infection raises the question of whether these cells also contribute to tissue damage. Using highly selective depletion strategies and cell-specific knockout mice, the relative contribution of innate immune cell populations to liver destruction during amebic infection was investigated. Neutrophils were not required for amebic infection nor did they appear to be substantially involved in tissue damage. In contrast, Kupffer cells and inflammatory monocytes contributed substantially to liver destruction during ALA, and tissue damage was mediated primarily by TNFα. These data indicate that besides direct antiparasitic drugs, modulating innate immune responses may potentially be beneficial in limiting ALA pathogenesis. PMID:23300453

  5. A role for metabolism in Rett syndrome pathogenesis

    PubMed Central

    Justice, Monica J; Buchovecky, Christie M; Kyle, Stephanie M; Djukic, Aleksandra

    2013-01-01

    Rett syndrome (RTT), an X-linked neurological disorder caused by mutations in MECP2, may have a metabolic component. We reported a genetic suppressor screen in a Mecp2-null mouse model to identify pathways for therapeutic improvement of RTT symptoms. Of note, one suppressor mutation implied that cholesterol homeostasis was perturbed in Mecp2 null mice; indeed, cholesterol synthesis was elevated in the brain and body system. Remarkably, the genetic effect of downregulating the cholesterol pathway could be mimicked chemically by statin drugs, improving motor symptoms, and increasing longevity in the mouse. Our work linked cholesterol metabolism to RTT pathology for the first time. Both neurological and systemic effects of perturbed cholesterol homeostasis overlap with many RTT symptoms. Here we show in patients that peripheral cholesterol, triglycerides, and/or LDLs may be elevated early in RTT disease onset, providing a biomarker for patients that could be aided by therapeutic interventions that modulate lipid metabolism. PMID:25003017

  6. Consensus strategy in genes prioritization and combined bioinformatics analysis for preeclampsia pathogenesis.

    PubMed

    Tejera, Eduardo; Cruz-Monteagudo, Maykel; Burgos, Germán; Sánchez, María-Eugenia; Sánchez-Rodríguez, Aminael; Pérez-Castillo, Yunierkis; Borges, Fernanda; Cordeiro, Maria Natália Dias Soeiro; Paz-Y-Miño, César; Rebelo, Irene

    2017-08-08

    Preeclampsia is a multifactorial disease with unknown pathogenesis. Even when recent studies explored this disease using several bioinformatics tools, the main objective was not directed to pathogenesis. Additionally, consensus prioritization was proved to be highly efficient in the recognition of genes-disease association. However, not information is available about the consensus ability to early recognize genes directly involved in pathogenesis. Therefore our aim in this study is to apply several theoretical approaches to explore preeclampsia; specifically those genes directly involved in the pathogenesis. We firstly evaluated the consensus between 12 prioritization strategies to early recognize pathogenic genes related to preeclampsia. A communality analysis in the protein-protein interaction network of previously selected genes was done including further enrichment analysis. The enrichment analysis includes metabolic pathways as well as gene ontology. Microarray data was also collected and used in order to confirm our results or as a strategy to weight the previously enriched pathways. The consensus prioritized gene list was rationally filtered to 476 genes using several criteria. The communality analysis showed an enrichment of communities connected with VEGF-signaling pathway. This pathway is also enriched considering the microarray data. Our result point to VEGF, FLT1 and KDR as relevant pathogenic genes, as well as those connected with NO metabolism. Our results revealed that consensus strategy improve the detection and initial enrichment of pathogenic genes, at least in preeclampsia condition. Moreover the combination of the first percent of the prioritized genes with protein-protein interaction network followed by communality analysis reduces the gene space. This approach actually identifies well known genes related with pathogenesis. However, genes like HSP90, PAK2, CD247 and others included in the first 1% of the prioritized list need to be further explored in preeclampsia pathogenesis through experimental approaches.

  7. Ethanol-induced oxidant stress modulates hepatic autophagy and proteasome activity

    PubMed Central

    Donohue, Jr., Terrence M.; Thomes, Paul G.

    2014-01-01

    In this review, we describe research findings on the effects of alcohol exposure on two major catabolic systems in liver cells: the ubiquitin–proteasome system (UPS) and autophagy. These hydrolytic systems are not unique to liver cells; they exist in all eukaryotic tissues and cells. However, because the liver is the principal site of ethanol metabolism, it sustains the greatest damage from heavy drinking. Thus, the focus of this review is to specifically describe how ethanol oxidation modulates the activities of the UPS and autophagy and the mechanisms by which these changes contribute to the pathogenesis of alcohol-induced liver injury. Here, we describe the history and the importance of cellular hydrolytic systems, followed by a description of each catabolic pathway and the differential modulation of each by ethanol exposure. Overall, the evidence for an involvement of these catabolic systems in the pathogenesis of alcoholic liver disease is quite strong. It underscores their importance, not only as effective means of cellular recycling and eventual energy generation, but also as essential components of cellular defense. PMID:25462063

  8. Modulation of Caenorhabditis elegans immune response and modification of Shigella endotoxin upon interaction.

    PubMed

    Kesika, Periyanaina; Prasanth, Mani Iyer; Balamurugan, Krishnaswamy

    2015-04-01

    To analyze the pathogenesis at both physiological and molecular level using the model organism, Caenorhabditis elegans at different developmental stages in response to Shigella spp. and its pathogen associated molecular patterns such as lipopolysaccharide. The solid plate and liquid culture-based infection assays revealed that Shigella spp. infects C. elegans and had an impact on the brood size and pharyngeal pumping rate. LPS of Shigella spp. was toxic to C. elegans. qPCR analysis revealed that host innate immune genes have been modulated upon Shigella spp. infections and its LPS challenges. Non-destructive analysis was performed to kinetically assess the alterations in LPS during interaction of Shigella spp. with C. elegans. The modulation of innate immune genes attributed the surrendering of host immune system to Shigella spp. by favoring the infection. LPS appeared to have a major role in Shigella-mediated pathogenesis and Shigella employs a tactic behavior of modifying its LPS content to escape from the recognition of host immune system. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Breakdown of Immune Tolerance in Systemic Lupus Erythematosus by Dendritic Cells

    PubMed Central

    Reihl, Alec M.

    2016-01-01

    Dendritic cells (DC) play an important role in the pathogenesis of systemic lupus erythematosus (SLE), an autoimmune disease with multiple tissue manifestations. In this review, we summarize recent studies on the roles of conventional DC and plasmacytoid DC in the development of both murine lupus and human SLE. In the past decade, studies using selective DC depletions have demonstrated critical roles of DC in lupus progression. Comprehensive in vitro and in vivo studies suggest activation of DC by self-antigens in lupus pathogenesis, followed by breakdown of immune tolerance to self. Potential treatment strategies targeting DC have been developed. However, many questions remain regarding the mechanisms by which DC modulate lupus pathogenesis that require further investigations. PMID:27034965

  10. [New knowledge of the pathogenesis of Crohn's disease].

    PubMed

    Ambrůzová, B; Rédová, M; Michálek, J; Sachlová, M; Slabý, O

    2012-04-01

    Crohns disease is a complex chronic inflammatory disease of the gastrointestinal tract with multifactorial pathogenesis. Over the recent years, there has been rather a sharp increase in the incidence of Crohn's disease and, even though this disease had been known for some time, the cause remains unknown. Studies exploring genetic basis of Crohn's disease have provided new knowledge of the pathogenesis of this disease, suggesting that this may be associated with a failure of mechanisms behind symbiosis of gut microflora and intestinal mucosal immune system. Crohn's disease seems to be caused by inadequate immune response to intestinal flora in genetically predisposed individuals. Crohn's disease has been linked to a number of genes. Many of them are related to the modulation of non-specific immune response, defects of which are considered to be key in Crohn's disease pathogenesis. The aim of this review paper is to summarize the new knowledge on the pathogenesis of Crohn's disease at the level of polymorphisms of the NOD2, ATG16L1 genes and the IL23-Th17-lymfocytes signalling pathway genes and to consider further research directions in this disease.

  11. Epigenetic modification of DRG neuronal gene expression subsequent to nerve injury: etiological contribution to complex regional pain syndromes (Part I).

    PubMed

    Wang, Fuzhou; Stefano, George B; Kream, Richard M

    2014-06-25

    DRG is of importance in relaying painful stimulation to the higher pain centers and therefore could be a crucial target for early intervention aimed at suppressing primary afferent stimulation. Complex regional pain syndrome (CRPS) is a common pain condition with an unknown etiology. Recently added new information enriches our understanding of CRPS pathophysiology. Researches on genetics, biogenic amines, neurotransmitters, and mechanisms of pain modulation, central sensitization, and autonomic functions in CRPS revealed various abnormalities indicating that multiple factors and mechanisms are involved in the pathogenesis of CRPS. Epigenetics refers to mitotically and meiotically heritable changes in gene expression that do not affect the DNA sequence. As epigenetic modifications potentially play an important role in inflammatory cytokine metabolism, neurotransmitter responsiveness, and analgesic sensitivity, they are likely key factors in the development of chronic pain. In this dyad review series, we systematically examine the nerve injury-related changes in the neurological system and their contribution to CRPS. In this part, we first reviewed and summarized the role of neural sensitization in DRG neurons in performing function in the context of pain processing. Particular emphasis is placed on the cellular and molecular changes after nerve injury as well as different models of inflammatory and neuropathic pain. These were considered as the potential molecular bases that underlie nerve injury-associated pathogenesis of CRPS.

  12. Nuclear receptors and pathogenesis of pancreatic cancer

    PubMed Central

    Polvani, Simone; Tarocchi, Mirko; Tempesti, Sara; Galli, Andrea

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a median overall survival time of 5 mo and the five years survival less than 5%, a rate essentially unchanged over the course of the years. A well defined progression model of accumulation of genetic alterations ranging from single point mutations to gross chromosomal abnormalities has been introduced to describe the origin of this disease. However, due to the its subtle nature and concurring events PDAC cure remains elusive. Nuclear receptors (NR) are members of a large superfamily of evolutionarily conserved ligand-regulated DNA-binding transcription factors functionally involved in important cellular functions ranging from regulation of metabolism, to growth and development. Given the nature of their ligands, NR are very tempting drug targets and their pharmacological modulation has been widely exploited for the treatment of metabolic and inflammatory diseases. There are now clear evidences that both classical ligand-activated and orphan NR are involved in the pathogenesis of PDAC from its very early stages; nonetheless many aspects of their role are not fully understood. The purpose of this review is to highlight the striking connections that link peroxisome proliferator activated receptors, retinoic acid receptors, retinoid X receptor, androgen receptor, estrogen receptors and the orphan NR Nur, chicken ovalbumin upstream promoter transcription factor II and the liver receptor homologue-1 receptor to PDAC development, connections that could lead to the identification of novel therapies for this disease. PMID:25232244

  13. Potential role of orexin and sleep modulation in the pathogenesis of Alzheimer's disease.

    PubMed

    Roh, Jee Hoon; Jiang, Hong; Finn, Mary Beth; Stewart, Floy R; Mahan, Thomas E; Cirrito, John R; Heda, Ashish; Snider, B Joy; Li, Mingjie; Yanagisawa, Masashi; de Lecea, Luis; Holtzman, David M

    2014-12-15

    Age-related aggregation of amyloid-β (Aβ) is an upstream pathological event in Alzheimer's disease (AD) pathogenesis, and it disrupts the sleep-wake cycle. The amount of sleep declines with aging and to a greater extent in AD. Poor sleep quality and insufficient amounts of sleep have been noted in humans with preclinical evidence of AD. However, how the amount and quality of sleep affects Aβ aggregation is not yet well understood. Orexins (hypocretins) initiate and maintain wakefulness, and loss of orexin-producing neurons causes narcolepsy. We tried to determine whether orexin release or secondary changes in sleep via orexin modulation affect Aβ pathology. Amyloid precursor protein (APP)/Presenilin 1 (PS1) transgenic mice, in which the orexin gene is knocked out, showed a marked decrease in the amount of Aβ pathology in the brain with an increase in sleep time. Focal overexpression of orexin in the hippocampus in APP/PS1 mice did not alter the total amount of sleep/wakefulness and the amount of Aβ pathology. In contrast, sleep deprivation or increasing wakefulness by rescue of orexinergic neurons in APP/PS1 mice lacking orexin increased the amount of Aβ pathology in the brain. Collectively, modulation of orexin and its effects on sleep appear to modulate Aβ pathology in the brain. © 2014 Roh et al.

  14. Huangqin-Tang and Ingredients in Modulating the Pathogenesis of Ulcerative Colitis.

    PubMed

    Wang, Chunyan; Tang, Xudong; Zhang, Li

    2017-01-01

    Ulcerative colitis (UC) is the most common inflammatory bowel disease worldwide. Current therapies in UC cause limitations, and herb medicine provides an important choice for UC treatment. Huangqin-Tang (HQT) is a well-known classical traditional Chinese herbal formula and has been used in China for thousands of years. A large number of pharmacological studies demonstrated HQT and its ingredients to be effective in treating UC. Though the therapeutic effect has been evaluated, comprehensive up-to-date reviews in this field are not yet available. Here we aim to review our current understanding of HQT and its ingredients in treating UC and how the agents modulate the main pathogenesis of the disease, including the intestinal environment, immune imbalance, inflammatory pathways, and oxidative stress. The summary on this issue may provide better understanding of HQT and its ingredients in treating UC and possibly help in promoting its clinical application.

  15. Rutin-Mediated Priming of Plant Resistance to Three Bacterial Pathogens Initiating the Early SA Signal Pathway

    PubMed Central

    Li, Yang; Wang, Yingzi; Li, Ming; Wang, Yong; Ding, Xinhua; Chu, Zhaohui

    2016-01-01

    Flavonoids are ubiquitous in the plant kingdom and have many diverse functions, including UV protection, auxin transport inhibition, allelopathy, flower coloring and insect resistance. Here we show that rutin, a proud member of the flavonoid family, could be functional as an activator to improve plant disease resistances. Three plant species pretreated with 2 mM rutin were found to enhance resistance to Xanthomonas oryzae pv. oryzae, Ralstonia solanacearum, and Pseudomonas syringae pv. tomato strain DC3000 in rice, tobacco and Arabidopsis thaliana respectively. While they were normally propagated on the cultural medium supplemented with 2 mM rutin for those pathogenic bacteria. The enhanced resistance was associated with primed expression of several pathogenesis-related genes. We also demonstrated that the rutin-mediated priming resistance was attenuated in npr1, eds1, eds5, pad4-1, ndr1 mutants, and NahG transgenic Arabidopsis plant, while not in either snc1-11, ein2-5 or jar1 mutants. We concluded that the rutin-priming defense signal was modulated by the salicylic acid (SA)-dependent pathway from an early stage upstream of NDR1 and EDS1. PMID:26751786

  16. MicroRNAs as biomarkers for graft-versus-host disease following allogeneic stem cell transplantation.

    PubMed

    Tomuleasa, Ciprian; Fuji, Shigeo; Cucuianu, Andrei; Kapp, Markus; Pileczki, Valentina; Petrushev, Bobe; Selicean, Sonia; Tanase, Alina; Dima, Delia; Berindan-Neagoe, Ioana; Irimie, Alexandru; Einsele, Hermann

    2015-07-01

    Allogeneic hematopoietic stem cell transplantation (HCT) is a well-established treatment for many malignant and non-malignant hematological disorders. As frequent complication in up to 50 % of all patients, graft-versus-host disease (GVHD) is still the main cause for morbidity and non-relapse mortality. Diagnosis of GVHD is usually done clinically, even though confirmation by pathology is often used to support the clinical findings. Effective treatment requires intensified immunosuppression as early as possible. Although several promising biomarkers have been proposed for an early diagnosis, no internationally recognized consensus has yet been established. Here, microRNAs (miRs) represent an interesting tool since miRs have been recently reported to be an important regulator of various cells, including immune cells such as T cells. Therefore, we could assume that miRs play a key role in the pathogenesis of acute GVHD, and their detection might be an interesting possibility in the early diagnosis and monitoring of acute GVHD. Recent studies additionally demonstrated the implication of miRs in the pathogenesis of acute GVHD. In this review, we aim to summarize the previous reports of miRs, focusing on the pathogenesis of acute GVHD and possible implications in diagnostic approaches.

  17. Redistribution of DAT/α-Synuclein Complexes Visualized by “In Situ” Proximity Ligation Assay in Transgenic Mice Modelling Early Parkinson's Disease

    PubMed Central

    Bellucci, Arianna; Navarria, Laura; Falarti, Elisa; Zaltieri, Michela; Bono, Federica; Collo, Ginetta; Grazia, Maria; Missale, Cristina; Spano, PierFranco

    2011-01-01

    Alpha-synuclein, the major component of Lewy bodies, is thought to play a central role in the onset of synaptic dysfunctions in Parkinson's disease (PD). In particular, α-synuclein may affect dopaminergic neuron function as it interacts with a key protein modulating dopamine (DA) content at the synapse: the DA transporter (DAT). Indeed, recent evidence from our “in vitro” studies showed that α-synuclein aggregation decreases the expression and membrane trafficking of the DAT as the DAT is retained into α-synuclein-immunopositive inclusions. This notwithstanding, “in vivo” studies on PD animal models investigating whether DAT distribution is altered by the pathological overexpression and aggregation of α-synuclein are missing. By using the proximity ligation assay, a technique which allows the “in situ” visualization of protein-protein interactions, we studied the occurrence of alterations in the distribution of DAT/α-synuclein complexes in the SYN120 transgenic mouse model, showing insoluble α-synuclein aggregates into dopaminergic neurons of the nigrostriatal system, reduced striatal DA levels and an altered distribution of synaptic proteins in the striatum. We found that DAT/α-synuclein complexes were markedly redistributed in the striatum and substantia nigra of SYN120 mice. These alterations were accompanied by a significant increase of DAT striatal levels in transgenic animals when compared to wild type littermates. Our data indicate that, in the early pathogenesis of PD, α-synuclein acts as a fine modulator of the dopaminergic synapse by regulating the subcellular distribution of key proteins such as the DAT. PMID:22163275

  18. Screening of Critical Genes and MicroRNAs in Blood Samples of Patients with Ruptured Intracranial Aneurysms by Bioinformatic Analysis of Gene Expression Data.

    PubMed

    Bo, Lijuan; Wei, Bo; Wang, Zhanfeng; Kong, Daliang; Gao, Zheng; Miao, Zhuang

    2017-09-20

    BACKGROUND This study aimed to identify more potential genes and miRNAs associated with the pathogenesis of intracranial aneurysms (IAs). MATERIAL AND METHODS The dataset of GSE36791 (accession number) was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened for in the blood samples from patients with ruptured IAs and controls, followed by functional and pathway enrichment analyses. In addition, gene co-expression network was constructed and significant modules were extracted from the network by WGCNA R package. Screening for miRNAs that could regulate DEGs in the modules was performed and an analysis of regulatory relationships was conducted. RESULTS A total of 304 DEGs (167 up-regulated and 137 down-regulated genes) were screened for in blood samples from patients with ruptured IAs compared with those from controls. Functional enrichment analysis showed that the up-regulated genes were mainly associated with immune response and the down-regulated DEGs were mainly concerned with the structure of ribosome and translation. Besides, six functional modules were significantly identified, including four modules enriched by up-regulated genes and two modules enriched by down-regulated genes. Thereinto, the blue, yellow, and turquoise modules of up-regulated genes were all linked with immune response. Additionally, 16 miRNAs were predicted to regulate DEGs in the three modules associated with immune response, such as hsa-miR-1304, hsa-miR-33b, hsa-miR-125b, and hsa-miR-125a-5p. CONCLUSIONS Several genes and miRNAs (such as miR-1304, miR-33b, IRS2 and KCNJ2) may take part in the pathogenesis of IAs.

  19. Porcine circovirus type 2 (PCV2): pathogenesis and interaction with the immune system.

    PubMed

    Meng, Xiang-Jin

    2013-01-01

    Porcine circovirus type 2 (PCV2) is the primary causative agent of porcine circovirus-associated disease (PCVAD). The virus preferentially targets the lymphoid tissues, which leads to lymphoid depletion and immunosuppression in pigs. The disease is exacerbated by immunostimulation or concurrent infections with other pathogens. PCV2 resides in certain immune cells, such as macrophage and dendritic cells, and modulates their functions. Upregulation of IL-10 and proinflammatory cytokines in infected pigs may contribute to pathogenesis. Pig genetics influence host susceptibility to PCV2, but the viral genetic determinants for virulence remain unknown. PCV2 DNA and proteins interact with various cellular genes that control immune responses to regulate virus replication and pathogenesis. Both neutralizing antibodies and cell-mediated immunity are important immunological correlates of protection. Despite the availability of effective vaccines, variant strains of PCV2 continue to emerge. Although tremendous progress has been made toward understanding PCV2 pathogenesis and immune interactions, many important questions remain.

  20. MERS-CoV Accessory ORFs Play Key Role for Infection and Pathogenesis

    PubMed Central

    Menachery, Vineet D.; Mitchell, Hugh D.; Cockrell, Adam S.; Gralinski, Lisa E.; Yount, Boyd L.; Graham, Rachel L.; McAnarney, Eileen T.; Douglas, Madeline G.; Scobey, Trevor; Beall, Anne; Dinnon, Kenneth; Kocher, Jacob F.; Hale, Andrew E.; Stratton, Kelly G.; Waters, Katrina M.

    2017-01-01

    ABSTRACT While dispensable for viral replication, coronavirus (CoV) accessory open reading frame (ORF) proteins often play critical roles during infection and pathogenesis. Utilizing a previously generated mutant, we demonstrate that the absence of all four Middle East respiratory syndrome CoV (MERS-CoV) accessory ORFs (deletion of ORF3, -4a, -4b, and -5 [dORF3-5]) has major implications for viral replication and pathogenesis. Importantly, attenuation of the dORF3-5 mutant is primarily driven by dysregulated host responses, including disrupted cell processes, augmented interferon (IFN) pathway activation, and robust inflammation. In vitro replication attenuation also extends to in vivo models, allowing use of dORF3-5 as a live attenuated vaccine platform. Finally, examination of ORF5 implicates a partial role in modulation of NF-κB-mediated inflammation. Together, the results demonstrate the importance of MERS-CoV accessory ORFs for pathogenesis and highlight them as potential targets for surveillance and therapeutic treatments moving forward. PMID:28830941

  1. Delayed polymorphonuclear leukocyte infiltration is an important component of Thalassophryne maculosa venom pathogenesis.

    PubMed

    Pareja-Santos, Alessandra; Oliveira Souza, Valdênia Maria; Bruni, Fernanda M; Sosa-Rosales, Josefina Ines; Lopes-Ferreira, Mônica; Lima, Carla

    2008-07-01

    Thalassophryne maculosa fish envenomation is characterized by severe pain, dizziness, fever, edema and necrosis. Here, the dynamic of cellular influx, activation status of phagocytic cells, and inflammatory modulator production in the acute inflammatory response to T. maculosa venom was studied using an experimental model. Leukocyte counting was performed (2 h to 21 days) after venom injection in BALB/c mice footpads. Our results showed an uncommon leukocyte migration kinetic after venom injection, with early mononuclear cell recruitment followed by elevated and delayed neutrophil influx. The pattern of chemokine expression is consistent with the delay in neutrophil recruitment to the footpad: T. maculosa venom stimulated an early production of IL-1beta, IL-6, and MCP-1, but was unable to induce an effective early TNF-alpha and KC release. Complementary to these observations, we detected a marked increase in soluble KC and TNF-alpha in footpad at 7 days post-venom injection when a prominent influx of neutrophils was also detected. In addition, we demonstrated that bone marrow-derived macrophages and dendritic cells were strongly stimulated by the venom, showing up-regulated ability to capture FITC-dextran. Thus, the reduced levels of KC and TNF-alpha in footpad of mice concomitant with a defective accumulation of neutrophils at earlier times provide an important clue to uncovering the mechanism by which T. maculosa venom regulates neutrophil movement.

  2. Inflammation and neuronal plasticity: a link between childhood trauma and depression pathogenesis.

    PubMed

    Cattaneo, Annamaria; Macchi, Flavia; Plazzotta, Giona; Veronica, Begni; Bocchio-Chiavetto, Luisella; Riva, Marco Andrea; Pariante, Carmine Maria

    2015-01-01

    During the past two decades, there has been increasing interest in understanding and characterizing the role of inflammation in major depressive disorder (MDD). Indeed, several are the evidences linking alterations in the inflammatory system to Major Depression, including the presence of elevated levels of pro-inflammatory cytokines, together with other mediators of inflammation. However, it is still not clear whether inflammation represents a cause or whether other factors related to depression result in these immunological effects. Regardless, exposure to early life stressful events, which represent a vulnerability factor for the development of psychiatric disorders, act through the modulation of inflammatory responses, but also of neuroplastic mechanisms over the entire life span. Indeed, early life stressful events can cause, possibly through epigenetic changes that persist over time, up to adulthood. Such alterations may concur to increase the vulnerability to develop psychopathologies. In this review we will discuss the role of inflammation and neuronal plasticity as relevant processes underlying depression development. Moreover, we will discuss the role of epigenetics in inducing alterations in inflammation-immune systems as well as dysfunction in neuronal plasticity, thus contributing to the long-lasting negative effects of stressful life events early in life and the consequent enhanced risk for depression. Finally we will provide an overview on the potential role of inflammatory system to aid diagnosis, predict treatment response, enhance treatment matching, and prevent the onset or relapse of Major Depression.

  3. Epigenetic regulation of development and pathogenesis in fungal plant pathogens.

    PubMed

    Dubey, Akanksha; Jeon, Junhyun

    2017-08-01

    Evidently, epigenetics is at forefront in explaining the mechanisms underlying the success of human pathogens and in the identification of pathogen-induced modifications within host plants. However, there is a lack of studies highlighting the role of epigenetics in the modulation of the growth and pathogenicity of fungal plant pathogens. In this review, we attempt to highlight and discuss the role of epigenetics in the regulation of the growth and pathogenicity of fungal phytopathogens using Magnaporthe oryzae, a devastating fungal plant pathogen, as a model system. With the perspective of wide application in the understanding of the development, pathogenesis and control of other fungal pathogens, we attempt to provide a synthesized view of the epigenetic studies conducted on M. oryzae to date. First, we discuss the mechanisms of epigenetic modifications in M. oryzae and their impact on fungal development and pathogenicity. Second, we highlight the unexplored epigenetic mechanisms and areas of research that should be considered in the near future to construct a holistic view of epigenetic functioning in M. oryzae and other fungal plant pathogens. Importantly, the development of a complete understanding of the modulation of epigenetic regulation in fungal pathogens can help in the identification of target points to combat fungal pathogenesis. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  4. Modular Architecture and Unique Teichoic Acid Recognition Features of Choline-Binding Protein L (CbpL) Contributing to Pneumococcal Pathogenesis

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Fernández, Javier; Saleh, Malek; Alcorlo, Martín; Gómez-Mejía, Alejandro; Pantoja-Uceda, David; Treviño, Miguel A.; Voß, Franziska; Abdullah, Mohammed R.; Galán-Bartual, Sergio; Seinen, Jolien; Sánchez-Murcia, Pedro A.; Gago, Federico; Bruix, Marta; Hammerschmidt, Sven; Hermoso, Juan A.

    2016-12-01

    The human pathogen Streptococcus pneumoniae is decorated with a special class of surface-proteins known as choline-binding proteins (CBPs) attached to phosphorylcholine (PCho) moieties from cell-wall teichoic acids. By a combination of X-ray crystallography, NMR, molecular dynamics techniques and in vivo virulence and phagocytosis studies, we provide structural information of choline-binding protein L (CbpL) and demonstrate its impact on pneumococcal pathogenesis and immune evasion. CbpL is a very elongated three-module protein composed of (i) an Excalibur Ca2+-binding domain -reported in this work for the very first time-, (ii) an unprecedented anchorage module showing alternate disposition of canonical and non-canonical choline-binding sites that allows vine-like binding of fully-PCho-substituted teichoic acids (with two choline moieties per unit), and (iii) a Ltp_Lipoprotein domain. Our structural and infection assays indicate an important role of the whole multimodular protein allowing both to locate CbpL at specific places on the cell wall and to interact with host components in order to facilitate pneumococcal lung infection and transmigration from nasopharynx to the lungs and blood. CbpL implication in both resistance against killing by phagocytes and pneumococcal pathogenesis further postulate this surface-protein as relevant among the pathogenic arsenal of the pneumococcus.

  5. Host heme oxygenase-1: Friend or foe in tackling pathogens?

    PubMed

    Singh, Nisha; Ahmad, Zeeshan; Baid, Navin; Kumar, Ashwani

    2018-05-14

    Infectious diseases are a major challenge in management of human health worldwide. Recent literature suggests that host immune system could be modulated to ameliorate the pathogenesis of infectious disease. Heme oxygenase (HMOX1) is a key regulator of cellular signaling and it could be modulated using pharmacological reagents. HMOX1 is a cytoprotective enzyme that degrades heme to generate carbon monoxide (CO), biliverdin, and molecular iron. CO and biliverdin (or bilirubin derived from it) can restrict the growth of a few pathogens. Both of these also induce antioxidant pathways and anti-inflammatory pathways. On the other hand, molecular iron can induce proinflammatory pathway besides making the cellular environment oxidative in nature. Since microbial infections often induce oxidative stress in host cells/tissues, role of HMOX1 has been analyzed in the pathogenesis of number of infections. In this review, we have described the role of HMOX1 in pathogenesis of bacterial infections caused by Mycobacterium species, Salmonella and in microbial sepsis. We have also provided a succinct overview of the role of HMOX1 in parasitic infections such as malaria and leishmaniasis. In the end, we have also elaborated the role of HMOX1 in viral infections such as AIDS, hepatitis, dengue, and influenza. © 2018 IUBMB Life, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  6. Streptococcus mitis: walking the line between commensalism and pathogenesis.

    PubMed

    Mitchell, J

    2011-04-01

    Streptococcus mitis is a viridans streptococcus and a normal commensal of the human oropharynx. However, S. mitis can escape from this niche and cause a variety of infectious complications including infective endocarditis, bacteraemia and septicaemia. It uses a variety of strategies to effectively colonize the human oropharynx. These include expression of adhesins, immunoglobulin A proteases and toxins, and modulation of the host immune system. These various colonization factors allow S. mitis to compete for space and nutrients in the face of its more pathogenic oropharyngeal microbial neighbours. However, it is likely that in vulnerable immune-compromised patients S. mitis will use the same colonization and immune modulation factors as virulence factors promoting its opportunistic pathogenesis. The recent publication of a complete genome sequence for S. mitis strain B6 will allow researchers to thoroughly investigate which genes are involved in S. mitis host colonization and pathogenesis. Moreover, it will help to give insight into where S. mitis fits in the complicated oral microbiome. This review will discuss the current knowledge of S. mitis factors involved in host colonization, their potential role in virulence and what needs to be done to fully understand how a an oral commensal successfully transitions to a virulent pathogen. © 2011 John Wiley & Sons A/S.

  7. Role of phosphoinositide 3-kinase in the pathogenesis of acute pancreatitis.

    PubMed

    Lupia, Enrico; Pigozzi, Luca; Goffi, Alberto; Hirsch, Emilio; Montrucchio, Giuseppe

    2014-11-07

    A large body of experimental and clinical data supports the notion that inflammation in acute pancreatitis has a crucial role in the pathogenesis of local and systemic damage and is a major determinant of clinical severity. Thus, research has recently focused on molecules that can regulate the inflammatory processes, such as phosphoinositide 3-kinases (PI3Ks), a family of lipid and protein kinases involved in intracellular signal transduction. Studies using genetic ablation or pharmacologic inhibitors of different PI3K isoforms, in particular the class I PI3Kδ and PI3Kγ, have contributed to a greater understanding of the roles of these kinases in the modulation of inflammatory and immune responses. Recent data suggest that PI3Ks are also involved in the pathogenesis of acute pancreatitis. Activation of the PI3K signaling pathway, and in particular of the class IB PI3Kγ isoform, has a significant role in those events which are necessary for the initiation of acute pancreatic injury, namely calcium signaling alteration, trypsinogen activation, and nuclear factor-κB transcription. Moreover, PI3Kγ is instrumental in modulating acinar cell apoptosis, and regulating local neutrophil infiltration and systemic inflammatory responses during the course of experimental acute pancreatitis. The availability of PI3K inhibitors selective for specific isoforms may provide new valuable therapeutic strategies to improve the clinical course of this disease. This article presents a brief summary of PI3K structure and function, and highlights recent advances that implicate PI3Ks in the pathogenesis of acute pancreatitis.

  8. Role of phosphoinositide 3-kinase in the pathogenesis of acute pancreatitis

    PubMed Central

    Lupia, Enrico; Pigozzi, Luca; Goffi, Alberto; Hirsch, Emilio; Montrucchio, Giuseppe

    2014-01-01

    A large body of experimental and clinical data supports the notion that inflammation in acute pancreatitis has a crucial role in the pathogenesis of local and systemic damage and is a major determinant of clinical severity. Thus, research has recently focused on molecules that can regulate the inflammatory processes, such as phosphoinositide 3-kinases (PI3Ks), a family of lipid and protein kinases involved in intracellular signal transduction. Studies using genetic ablation or pharmacologic inhibitors of different PI3K isoforms, in particular the class I PI3Kδ and PI3Kγ, have contributed to a greater understanding of the roles of these kinases in the modulation of inflammatory and immune responses. Recent data suggest that PI3Ks are also involved in the pathogenesis of acute pancreatitis. Activation of the PI3K signaling pathway, and in particular of the class IB PI3Kγ isoform, has a significant role in those events which are necessary for the initiation of acute pancreatic injury, namely calcium signaling alteration, trypsinogen activation, and nuclear factor-κB transcription. Moreover, PI3Kγ is instrumental in modulating acinar cell apoptosis, and regulating local neutrophil infiltration and systemic inflammatory responses during the course of experimental acute pancreatitis. The availability of PI3K inhibitors selective for specific isoforms may provide new valuable therapeutic strategies to improve the clinical course of this disease. This article presents a brief summary of PI3K structure and function, and highlights recent advances that implicate PI3Ks in the pathogenesis of acute pancreatitis. PMID:25386068

  9. Integrating gene expression data with demographic, clinical, and environmental exposure information to reveal endotypes of childhood asthma

    EPA Science Inventory

    RATIONALE. Childhood asthma is a multifactorial disease whose pathogenesis involves complex interplay between genetic susceptibility and modulating external factors. Therefore, effectively characterizing these multiple etiological pathways, or “endotypes”, requires an integrative...

  10. Modulation of Endothelial Glycocalyx Structure under Inflammatory Conditions

    PubMed Central

    Kolářová, Hana; Ambrůzová, Barbora; Švihálková Šindlerová, Lenka; Klinke, Anna; Kubala, Lukáš

    2014-01-01

    The glycocalyx of the endothelium is an intravascular compartment that creates a barrier between circulating blood and the vessel wall. The glycocalyx is suggested to play an important role in numerous physiological processes including the regulation of vascular permeability, the prevention of the margination of blood cells to the vessel wall, and the transmission of shear stress. Various theoretical models and experimental approaches provide data about changes to the structure and functions of the glycocalyx under various types of inflammatory conditions. These alterations are suggested to promote inflammatory processes in vessels and contribute to the pathogenesis of number of diseases. In this review we summarize current knowledge about the modulation of the glycocalyx under inflammatory conditions and the consequences for the course of inflammation in vessels. The structure and functions of endothelial glycocalyx are briefly discussed in the context of methodological approaches regarding the determination of endothelial glycocalyx and the uncertainty and challenges involved in glycocalyx structure determination. In addition, the modulation of glycocalyx structure under inflammatory conditions and the possible consequences for pathogenesis of selected diseases and medical conditions (in particular, diabetes, atherosclerosis, ischemia/reperfusion, and sepsis) are summarized. Finally, therapeutic strategies to ameliorate glycocalyx dysfunction suggested by various authors are discussed. PMID:24803742

  11. What is new about diet in hepatic encephalopathy.

    PubMed

    Merli, Manuela; Iebba, Valerio; Giusto, Michela

    2016-12-01

    There is a relationship between hepatic encephalopathy (HE) protein malnutrition and muscle wasting. Muscle may play an alternative role in ammonia detoxification. Molecular mechanisms responsible for muscle depletion are under investigation. Specific nutrients may interact to reverse the molecular pathways involved in muscle wasting at an early stage. Training exercises have also been proposed to improve skeletal muscle mass. However, these data refer to small groups of patients. The amelioration of muscle mass may potentially help to prevent HE. The pathogenesis of HE is associated with modifications of the gut microbiota and diet is emerging to play a relevant role in the modulation of the gut milieu. Vegetarian and fibre-rich diets have been shown to induce beneficial changes on gut microbiota in healthy people, with reduction of Bacteroides spp., Enterobacteriaceae, and Clostridium cluster XIVa bacteria. By way of contrast, it has been suggested that a high-fat or protein diet may increase Firmicutes and reduce Bacteroidetes phylum. Milk-lysozyme and milk-oligosaccharides have also been proposed to induce a "healthy" microbiota. At present, no studies have been published describing the modification of the gut microbiota in cirrhotic patients with HE as a response to specific diets. New research is needed to evaluate the potentiality of foods in the modulation of gut microbiota in liver disease and HE.

  12. Suppression of α-synuclein toxicity and vesicle trafficking defects by phosphorylation at S129 in yeast depends on genetic context

    PubMed Central

    Sancenon, Vicente; Lee, Sue-Ann; Patrick, Christina; Griffith, Janice; Paulino, Amy; Outeiro, Tiago F.; Reggiori, Fulvio; Masliah, Eliezer; Muchowski, Paul J.

    2012-01-01

    The aggregation of α-synuclein (αSyn) is a neuropathologic hallmark of Parkinson's disease and other synucleinopathies. In Lewy bodies, αSyn is extensively phosphorylated, predominantly at serine 129 (S129). Recent studies in yeast have shown that, at toxic levels, αSyn disrupts Rab homeostasis, causing an initial endoplasmic reticulum-to-Golgi block that precedes a generalized trafficking collapse. However, whether αSyn phosphorylation modulates trafficking defects has not been evaluated. Here, we show that constitutive expression of αSyn in yeast impairs late-exocytic, early-endocytic and/or recycling trafficking. Although members of the casein kinase I (CKI) family phosphorylate αSyn at S129, they attenuate αSyn toxicity and trafficking defects by an S129 phosphorylation-independent mechanism. Surprisingly, phosphorylation of S129 modulates αSyn toxicity and trafficking defects in a manner strictly determined by genetic background. Abnormal endosome morphology, increased levels of the endosome marker Rab5 and co-localization of mammalian CKI with αSyn aggregates are observed in brain sections from αSyn-overexpressing mice and human synucleinopathies. Our results contribute to evidence that suggests αSyn-induced defects in endocytosis, exocytosis and/or recycling of vesicles involved in these cellular processes might contribute to the pathogenesis of synucleinopathies. PMID:22357655

  13. The dysregulation of intracellular calcium in Alzheimer disease.

    PubMed

    Supnet, Charlene; Bezprozvanny, Ilya

    2010-02-01

    Alzheimer disease (AD) is the most common neurodegenerative disorder worldwide and is at present, incurable. The accumulation of toxic amyloid-beta (Abeta) peptide aggregates in AD brain are thought to trigger the extensive synaptic loss and neurodegeneration linked to cognitive decline, an idea that underlies the 'amyloid hypothesis' of AD etiology in both the familal (FAD) and sporadic forms of the disease. Mutations causing FAD also result in the dysregulation of neuronal calcium (Ca2+) handling and may contribute to AD pathogenesis, an idea termed the 'calcium hypothesis' of AD. In particular, Ca2+ dysregulation by the endoplasmic reticulum (ER) in AD mouse models results in augmented cytosolic Ca2+ levels which can trigger signalling cascades that are detrimental to neuronal function and health. However, there is growing evidence to suggest that not all forms of Ca2+ dysregulation in AD neurons are harmful and some of them instead may be compensatory. These changes may help modulate neuronal excitability and slow AD pathology, especially in the early stages of the disease. Clearly, a better understanding of how dysregulation of neuronal Ca2+ handling contributes to neurodegeneration and neuroprotection in AD is needed as Ca2+ signalling modulators are targets of great interest as potential AD therapeutics. 2010 Elsevier Ltd. All rights reserved.

  14. The dysregulation of intracellular calcium in Alzheimer disease

    PubMed Central

    Supnet, Charlene; Bezprozvanny, Ilya

    2010-01-01

    Alzheimer disease (AD) is the most common neurodegenerative disorder worldwide and is at present, incurable. The accumulation of toxic amyloid-beta (Aβ) peptide aggregates in AD brain are thought to trigger the extensive synaptic loss and neurodegeneration linked to cognitive decline, an idea that underlies the ‘amyloid hypothesis’ of AD etiology in both the familal (FAD) and sporadic forms of the disease. Mutations causing FAD also result in the dysregulation of neuronal calcium (Ca2+) handling and may contribute to AD pathogenesis, an idea termed the ‘calcium hypothesis’ of AD. In particular, Ca2+ dysregulation by the endoplasmic reticulum (ER) in AD mouse models results in augmented cytosolic Ca2+ levels which can trigger signaling cascades that are detrimental to neuronal function and health. However, there is growing evidence to suggest that not all forms of Ca2+ dysregulation in AD neurons are harmful and some of them instead may be compensatory. These changes may help modulate neuronal excitability and slow AD pathology, especially in the early stages of the disease. Clearly, a better understanding of how dysregulation of neuronal Ca2+ handling contributes to neurodegeneration and neuroprotection in AD is needed as Ca2+ signaling modulators are targets of great interest as potential AD therapeutics. PMID:20080301

  15. Concepts on the pathogenesis of adolescent idiopathic scoliosis. Bone growth and mass, vertebral column, spinal cord, brain, skull, extra-spinal left-right skeletal length asymmetries, disproportions and molecular pathogenesis.

    PubMed

    Burwell, R Geoffrey; Dangerfield, Peter H; Freeman, Brian J C

    2008-01-01

    There is no generally accepted scientific theory for the causes of adolescent idiopathic scoliosis (AIS). Encouraging advances thought to be related to AIS pathogenesis have recently been made in several fields including anthropometry of bone growth, bone mass, spinal growth modulation, extra-spinal left-right skeletal length asymmetries and disproportions, magnetic resonance imaging of vertebral column, spinal cord, brain, skull, and molecular pathogenesis. These advances are leading to the evaluation of new treatments including attempts at minimally invasive surgery on the spine and peri-apical ribs. Several concepts of AIS are outlined indicating their clinical applications but not their research potential. The concepts, by derivation morphological, molecular and mathematical, are addressed in 15 sections: 1) initiating and progressive factors; 2) relative anterior spinal overgrowth; 3) dorsal shear forces that create axial rotational instability; 4) rotational preconstraint; 5) uncoupled, or asynchronous, spinal neuro-osseous growth; 6) brain, nervous system and skull; 7) a novel neuro-osseous escalator concept based on a putative abnormality of two normal polarized processes namely, a) increasing skeletal dimensions, and b) the CNS body schema - both contained within a neuro-osseous timing of maturation (NOTOM) concept; 8) transverse plane pelvic rotation, skeletal asymmetries and developmental theory; 9) thoraco-spinal concept; 10) origin in contracture at the hips; 11) osteopenia; 12) melatonin deficiency; 13) systemic melatonin-signaling pathway dysfunction; 14) platelet calmodulin dysfunction; and 15) biomechanical spinal growth modulation. From these concepts, a collective model for AIS pathogenesis is formulated. The central concept of this model includes the body schema of the neural systems, widely-studied in adults, that control normal posture and coordinated movements with frames of reference in the posterior parietal cortex. The escalator concept has implications for the normal development of upright posture, and the evolution in humans of neural control, the trunk and unique bipedal gait.

  16. Pathogenesis of Ebola Hemorrhagic Fever in Cynomolgus Macaques

    DTIC Science & Technology

    2003-12-01

    Pathogenesis of Ebola Hemorrhagic Fever in Cynomolgus Macaques Evidence that Dendritic Cells Are Early and Sustained Targets of Infection Thomas W...is known about the development of EBOV hemorrhagic fever . In the present study, 21 cynomol- gus monkeys were experimentally infected with EBOV and...Am J Pathol 2003, 163:2347–2370) Among viruses causing hemorrhagic fever (HF), and among emerging infectious diseases with global impact in general

  17. Rationale for Developing a Specimen Bank to Study the Pathogenesis of High-Grade Serous Carcinoma: A Review of the Evidence.

    PubMed

    Sherman, Mark E; Drapkin, Ronny I; Horowitz, Neil S; Crum, Christopher P; Friedman, Sue; Kwon, Janice S; Levine, Douglas A; Shih, Ie-Ming; Shoupe, Donna; Swisher, Elizabeth M; Walker, Joan; Trabert, Britton; Greene, Mark H; Samimi, Goli; Temkin, Sarah M; Minasian, Lori M

    2016-09-01

    Women with clinically detected high-grade serous carcinomas (HGSC) generally present with advanced-stage disease, which portends a poor prognosis, despite extensive surgery and intensive chemotherapy. Historically, HGSCs were presumed to arise from the ovarian surface epithelium (OSE), but the inability to identify early-stage HGSCs and their putative precursors in the ovary dimmed prospects for advancing our knowledge of the pathogenesis of these tumors and translating these findings into effective prevention strategies. Over the last decade, increased BRCA1/2 mutation testing coupled with performance of risk-reducing surgeries has enabled studies that have provided strong evidence that many, but probably not all, HGSCs among BRCA1/2 mutation carriers appear to arise from the fallopian tubes, rather than from the ovaries. This shift in our understanding of the pathogenesis of HGSCs provides an important opportunity to achieve practice changing advances; however, the scarcity of clinically annotated tissues containing early lesions, particularly among women at average risk, poses challenges to progress. Accordingly, we review studies that have kindled our evolving understanding of the pathogenesis of HGSC and present the rationale for developing an epidemiologically annotated national specimen resource to support this research. Cancer Prev Res; 9(9); 713-20. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. Complement activation and choriocapillaris loss in early AMD: Implications for pathophysiology and therapy

    PubMed Central

    Whitmore, S.Scott; Sohn, Elliott H.; Chirco, Kathleen R.; Drack, Arlene V.; Stone, Edwin M.; Tucker, Budd A.; Mullins, Robert F.

    2015-01-01

    Age-related macular degeneration (AMD) is a common and devastating disease that can result in severe visual dysfunction. Over the last decade, great progress has been made in identifying genetic variants that contribute to AMD, many of which lie in genes involved in the complement cascade. In this review we discuss the significance of complement activation in AMD, particularly with respect to the formation of the membrane attack complex in the aging choriocapillaris. We review the clinical, histological and biochemical data that indicate that vascular loss in the choroid occurs very early in the pathogenesis of AMD, and discuss the potential impact of vascular dropout on the retinal pigment epithelium, Bruch's membrane and the photoreceptor cells. Finally, we present a hypothesis for the pathogenesis of early AMD and consider the implications of this model on the development of new therapies. PMID:25486088

  19. Complement activation and choriocapillaris loss in early AMD: implications for pathophysiology and therapy.

    PubMed

    Whitmore, S Scott; Sohn, Elliott H; Chirco, Kathleen R; Drack, Arlene V; Stone, Edwin M; Tucker, Budd A; Mullins, Robert F

    2015-03-01

    Age-related macular degeneration (AMD) is a common and devastating disease that can result in severe visual dysfunction. Over the last decade, great progress has been made in identifying genetic variants that contribute to AMD, many of which lie in genes involved in the complement cascade. In this review we discuss the significance of complement activation in AMD, particularly with respect to the formation of the membrane attack complex in the aging choriocapillaris. We review the clinical, histological and biochemical data that indicate that vascular loss in the choroid occurs very early in the pathogenesis of AMD, and discuss the potential impact of vascular dropout on the retinal pigment epithelium, Bruch's membrane and the photoreceptor cells. Finally, we present a hypothesis for the pathogenesis of early AMD and consider the implications of this model on the development of new therapies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Measles virus infection of human keratinocytes: Possible link between measles and atopic dermatitis.

    PubMed

    Gourru-Lesimple, Geraldine; Mathieu, Cyrille; Thevenet, Thomas; Guillaume-Vasselin, Vanessa; Jégou, Jean-François; Boer, Cindy G; Tomczak, Katarzyna; Bloyet, Louis-Marie; Giraud, Celine; Grande, Sophie; Goujon, Catherine; Cornu, Catherine; Horvat, Branka

    2017-05-01

    Measles virus (MV) infection is marked with a skin rash in the acute phase of the disease, which pathogenesis remains poorly understood. Moreover, the association between measles and progression of skin diseases, such as atopic dermatitis (AD), is still elusive. We have thus analysed the susceptibility of human keratinocytes to MV infection and explore the potential relationship between MV vaccination and the pathogenesis the AD. We performed immunovirological characterisation of MV infection in human keratinocytes and then tested the effect of live attenuated measles vaccine on the progression of AD in adult patients, in a prospective, double-blind study. We showed that both human primary keratinocytes and the keratinocyte cell line HaCaT express MV receptors and could be infected by MV. The infection significantly modulated the expression of several keratinocyte-produced cytokines, known to be implicated in the pathogenesis of inflammatory allergic diseases, including AD. We then analysed the relationship between exposure to MV by vaccination and the progression of AD in 20 adults during six weeks. We found a significant decrease in CCL26 and thymic stromal lymphopoietin (TSLP) mRNA in biopsies from acute lesions of vaccinated patients, suggesting MV-induced modulation of skin cytokine expression. Clinical analysis revealed a transient improvement of SCORAD index in vaccinated compared to placebo-treated patients, two weeks after vaccination. Altogether, these results clearly demonstrate that keratinocytes are susceptible to MV infection, which could consequently modulate their cytokine production, resulting with a beneficial effect in the progression of AD. This study provides thus a proof of concept for the vaccination therapy in AD and may open new avenues for the development of novel strategies in the treatment of this allergic disease. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  1. Peripheral Tumor Necrosis Factor-Alpha (TNF-α) Modulates Amyloid Pathology by Regulating Blood-Derived Immune Cells and Glial Response in the Brain of AD/TNF Transgenic Mice.

    PubMed

    Paouri, Evi; Tzara, Ourania; Kartalou, Georgia-Ioanna; Zenelak, Sofia; Georgopoulos, Spiros

    2017-05-17

    Increasing evidence has suggested that systemic inflammation along with local brain inflammation can play a significant role in Alzheimer's disease (AD) pathogenesis. Identifying key molecules that regulate the crosstalk between the immune and the CNS can provide potential therapeutic targets. TNF-α is a proinflammatory cytokine implicated in the pathogenesis of systemic inflammatory and neurodegenerative diseases, such as rheumatoid arthritis (RA) and AD. Recent studies have reported that anti-TNF-α therapy or RA itself can modulate AD pathology, although the underlying mechanism is unclear. To investigate the role of peripheral TNF-α as a mediator of RA in the pathogenesis of AD, we generated double-transgenic 5XFAD/Tg197 AD/TNF mice that develop amyloid deposits and inflammatory arthritis induced by human TNF-α (huTNF-α) expression. We found that 5XFAD/Tg197 mice display decreased amyloid deposition, compromised neuronal integrity, and robust brain inflammation characterized by extensive gliosis and elevated blood-derived immune cell populations, including phagocytic macrophages and microglia. To evaluate the contribution of peripheral huTNF-α in the observed brain phenotype, we treated 5XFAD/Tg197 mice systemically with infliximab, an anti-huTNF-α antibody that does not penetrate the blood-brain barrier and prevents arthritis. Peripheral inhibition of huTNF-α increases amyloid deposition, rescues neuronal impairment, and suppresses gliosis and recruitment of blood-derived immune cells, without affecting brain huTNF-α levels. Our data report, for the first time, a distinctive role for peripheral TNF-α in the modulation of the amyloid phenotype in mice by regulating blood-derived and local brain inflammatory cell populations involved in β-amyloid clearance. SIGNIFICANCE STATEMENT Mounting evidence supports the active involvement of systemic inflammation, in addition to local brain inflammation, in Alzheimer's disease (AD) progression. TNF-α is a pluripotent cytokine that has been independently involved in the pathogenesis of systemic inflammatory rheumatoid arthritis (RA) and AD. Here we first demonstrate that manipulation of peripheral TNF-α in the context of arthritis modulates the amyloid phenotype by regulating immune cell trafficking in the mouse brain. Our study suggests that additionally to its local actions in the AD brain, TNF-α can also indirectly modulate amyloid pathology as a regulator of peripheral inflammation. Our findings may have significant implications in the treatment of RA patients with anti-TNF-α drugs and in the potential use of TNF-targeted therapies for AD. Copyright © 2017 the authors 0270-6474/17/375155-17$15.00/0.

  2. The HAP Complex Governs Fumonisin Biosynthesis and Maize Kernel Pathogenesis in Fusarium verticillioides.

    PubMed

    Ridenour, John B; Smith, Jonathon E; Bluhm, Burton H

    2016-09-01

    Contamination of maize ( Zea mays ) with fumonisins produced by the fungus Fusarium verticillioides is a global concern for food safety. Fumonisins are a group of polyketide-derived secondary metabolites linked to esophageal cancer and neural tube birth defects in humans and numerous toxicoses in livestock. Despite the importance of fumonisins in global maize production, the regulation of fumonisin biosynthesis during kernel pathogenesis is poorly understood. The HAP complex is a conserved, heterotrimeric transcriptional regulator that binds the consensus sequence CCAAT to modulate gene expression. Recently, functional characterization of the Hap3 subunit linked the HAP complex to the regulation of secondary metabolism and stalk rot pathogenesis in F. verticillioides . Here, we determine the involvement of HAP3 in fumonisin biosynthesis and kernel pathogenesis. Deletion of HAP3 suppressed fumonisin biosynthesis on both nonviable and live maize kernels and impaired pathogenesis in living kernels. Transcriptional profiling via RNA sequencing indicated that the HAP complex regulates at least 1,223 genes in F. verticillioides , representing nearly 10% of all predicted genes. Disruption of the HAP complex caused the misregulation of biosynthetic gene clusters underlying the production of secondary metabolites, including fusarins. Taken together, these results reveal that the HAP complex is a central regulator of fumonisin biosynthesis and kernel pathogenesis and works as both a positive and negative regulator of secondary metabolism in F. verticillioides .

  3. Early-life estrogen exposure and uterine pathogenesis: ?A model for gene-environment interactions

    EPA Science Inventory

    Aberrant cellular differentiation early in life can contribute to increased cancer risk later in life. In a classic model of this effect, female mice exposed on postnatal day (PND) 1-5 to the synthetic estrogen diethylstilbestrol (DES) have a high incidence of uterine carcinoma. ...

  4. Heme Oxygenase-2 Modulates Early Pathogenesis after Traumatic Injury to the Immature Brain

    PubMed Central

    Yoneyama-Sarnecky, Tomoko; Olivas, Andrea D.; Azari, Soraya; Ferriero, Donna M.; Manvelyan, Hovhannes M.; Noble-Haeusslein, Linda J.

    2010-01-01

    We determined if heme oxygenase-2 (HO-2), an enzyme that degrades the pro-oxidant heme, confers neuroprotection in the developing brain after traumatic brain injury (TBI). Male HO-2 wild-type (WT) and homozygous knockout (KO) mice at postnatal day 21 were subjected to TBI and euthanized 1, 7, and 14 days later. Relative cerebral blood flow, measured by laser Doppler, cortical and hippocampal pathogenesis, and motor recovery were evaluated at all time points. Cerebral blood flow was found to be similar between experimental groups. Blood flow significantly decreased immediately after injury, returned to baseline by 1 day, and was significantly elevated by 7 days, post-injury. Nonheme iron preferentially accumulated in the ipsilateral cortex, hippocampus, and external capsule in both WT and KO brain-injured genotypes. There were, however, a significantly greater number of TUNEL-positive cells in the hippocampal dentate gyrus and a significantly greater cortical lesion volume in KOs relative to WTs within the first week post-injury. By 14 days post-injury, however, cortical lesion volume and cell density in the hippocampal CA3 region and dorsal thalamus were similar between the two groups. Assays of fine motor function (grip strength) over the first 2 weeks post-injury revealed a general pattern of decreased strength in the contralateral forelimbs of KOs as compared to WTs. Together, these findings demonstrate that deficiency in HO-2 alters both the kinetics of secondary damage and fine motor recovery after TBI. PMID:20389079

  5. Local and Systemic Inflammatory Biomarkers of Diabetic Retinopathy: An Integrative Approach.

    PubMed

    Vujosevic, Stela; Simó, Rafael

    2017-05-01

    To review the usefulness of local and systemic inflammatory biomarkers of diabetic retinopathy (DR) to implement a more personalized treatment. An integrated research (from ophthalmologist and diabetologist point of view) of most significant literature on serum, vitreous, and aqueous humor (AH) biochemical biomarkers related to inflammation at early and advanced stages of DR (including diabetic macular edema [DME] and proliferative DR) was performed. Moreover, novel imaging retinal biomarkers of local "inflammatory condition" were described. Multiple inflammatory cytokines and chemokines are increased in DR in both serum as well as in the eye (vitreous and AH). Nevertheless, local rather than systemic production of proinflammatory cytokines seems more relevant in the pathogenesis of both DR and DME. In the eye, retinal glia cells (macroglia and microglia) together with RPE are major sources of proinflammatory and angiogenic modulators. Retinal imaging allows for noninvasive clinical evaluation of retinal inflammatory response induced by diabetes mellitus. Proinflammatory cytokines/chemokines play an essential role in the pathogenesis of DR. Therefore, circulating biomarkers and retinal imaging aimed at assessing inflammation have emerged as useful tools for monitoring the onset and progression of DR. In addition, "liquid biopsy" of AH seems a good option in patients with advanced stages of DR requiring intravitreous injections. This strategy may permit us to implement a more personalized treatment with better visual function outcome. Further evaluation and validation of circulating and local biomarkers, as well as multimodal imaging is needed to gain new insights into this issue.

  6. Antioxidant proteins TSA and PAG interact synergistically with Presenilin to modulate Notch signaling in Drosophila.

    PubMed

    Wangler, Michael F; Reiter, Lawrence T; Zimm, Georgianna; Trimble-Morgan, Jennifer; Wu, Jane; Bier, Ethan

    2011-07-01

    Alzheimer's disease (AD) pathogenesis is characterized by senile plaques in the brain and evidence of oxidative damage. Oxidative stress may precede plaque formation in AD; however, the link between oxidative damage and plaque formation remains unknown. Presenilins are transmembrane proteins in which mutations lead to accelerated plaque formation and early-onset familial Alzheimer's disease. Presenilins physically interact with two antioxidant enzymes thiol-specific antioxidant (TSA) and proliferation-associated gene (PAG) of the peroxiredoxin family. The functional consequences of these interactions are unclear. In the current study we expressed a presenilin transgene in Drosophila wing and sensory organ precursors of the fly. This caused phenotypes typical of Notch signaling loss-of-function mutations. We found that while expression of TSA or PAG alone produced no phenotype, co-expression of TSA and PAG with presenilin led to an enhanced Notch loss-of-function phenotype. This phenotype was more severe and more penetrant than that caused by the expression of Psn alone. In order to determine whether these phenotypes were indeed affecting Notch signaling, this experiment was performed in a genetic background carrying an activated Notch (Abruptex) allele. The phenotypes were almost completely rescued by this activated Notch allele. These results link peroxiredoxins with the in vivo function of Presenilin, which ultimately connects two key pathogenetic mechanisms in AD, namely, antioxidant activity and plaque formation, and raises the possibility of a role for peroxiredoxin family members in Alzheimer's pathogenesis.

  7. Brain gut microbiome interactions and functional bowel disorders

    USDA-ARS?s Scientific Manuscript database

    Alterations in the bidirectional interactions between the intestine and the nervous system have important roles in the pathogenesis of irritable bowel syndrome (IBS). A body of largely preclinical evidence suggests that the gut microbiota can modulate these interactions. A small and poorly defined r...

  8. Intestinal microbiota and type 2 diabetes: from mechanism insights to therapeutic perspective.

    PubMed

    Han, Jun-Ling; Lin, Hui-Ling

    2014-12-21

    The incidence of type 2 diabetes (T2DM) is rapidly increasing worldwide. However, the pathogenesis of T2DM has not yet been well explained. Recent evidence suggests that the intestinal microbiota composition is associated with obesity and T2DM. In this review, we provide an overview about the mechanisms underlying the role of intestinal microbiota in the pathogenesis of T2DM. There is clear evidence that the intestinal microbiota influences the host through its effect on body weight, bile acid metabolism, proinflammatory activity and insulin resistance, and modulation of gut hormones. Modulating gut microbiota with the use of probiotics, prebiotics, antibiotics, and fecal microbiota transplantation may have benefits for improvement in glucose metabolism and insulin resistance in the host. Further studies are required to increase our understanding of the complex interplay between intestinal microbiota and the host with T2DM. Further studies may be able to boost the development of new effective therapeutic approaches for T2DM.

  9. Decorin-Mediated Inhibition of Human Trophoblast Cells Proliferation, Migration, and Invasion and Promotion of Apoptosis In Vitro

    PubMed Central

    Zou, Yanfen; Yu, Xiang; Lu, Jing; Jiang, Ziyan; Zuo, Qing; Fan, Mingsong; Huang, Shiyun

    2015-01-01

    Preeclampsia (PE) is a unique complication of pregnancy, the pathogenesis of which has been generally accepted to be associated with the dysfunctions of extravillous trophoblast (EVT) including proliferation, apoptosis, and migration and invasion. Decorin (DCN) has been proved to be a decidua-derived TGF-binding proteoglycan, which negatively regulates proliferation, migration, and invasiveness of human extravillous trophoblast cells. In this study, we identified a higher expression level of decorin in severe PE placentas by both real-time reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). And an inhibitory effect of decorin on proliferation, migration, and invasion and an enhanced effect on apoptosis in trophoblast cells HTR-8/SVneo and JEG-3 were validated in vitro. Also the modulations of decorin on trophoblast cells' metastasis and invasion functions were detected through regulating the matrix metalloproteinases (MMP2 and MMP9). Thus, we suggested that the contribution of decorin to the modulation of trophoblast cells might have implications for the pathogenesis of preeclampsia. PMID:26357650

  10. Macrolides: a promising pharmacologic therapy for chronic obstructive pulmonary disease

    PubMed Central

    Qiu, Shilin; Zhong, Xiaoning

    2016-01-01

    Chronic inflammation plays a central role in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, there are no effective anti-inflammatory pharmacologic therapies available for COPD so far. Recent evidence suggests that an immunologic mechanism has a role in the pathogenesis of COPD. Macrolides possess anti-inflammatory and immune-modulating effects may be helpful in the treatment of COPD. Several clinical studies have shown that long-term use of macrolides reduces the frequency of COPD exacerbations. However, the subgroups that most effectively respond to long-term treatment of macrolides still need to be determined. The potential adverse events to individuals and the microbial resistance in community populations raises great concern on the long-term use of macrolides. Thus, novel macrolides have anti-inflammatory and immuno-modulating effects, but without antibiotic effects, and are promising as an anti-inflammatory agent for the treatment of COPD. In addition, the combination of macrolides and other anti-inflammatory pharmacologic agents may be a new strategy for the treatment of COPD. PMID:28030992

  11. Early-phase prandial insulin secretion: its role in the pathogenesis of type 2 diabetes mellitus and its modulation by repaglinide.

    PubMed

    Owens, D R; Cozma, L S; Luzio, S D

    2002-12-01

    The major contributory factor to increasing hyperglycaemia in established Type 2 diabetes mellitus (T2DM) appears to be the progressive delay and attenuation of the prandial insulin response. An important consequence of this derangement is that hepatic glucose production is no longer suppressed during times of prandial glucose intake. Together with a relative impairment in the rate of peripheral glucose disposal, this leads to supra-physiological plasma glucose excursions, which may damage the vasculature. An obvious therapeutic strategy, therefore, would be to increase insulin availability when most needed--in the early prandial phase. In experiments with exogenous insulin interventions, peak post-prandial blood glucose increments were curtailed without undue increases in total insulin exposure. However, available evidence suggests that the sulphonylurea glibenclamide does not effectively alter early-phase prandial insulin release but predominately increases late-phase and basal insulin output, thus incurring the risk of hypoglycaemia. The novel insulin secretagogue repaglinide, by contrast, augments early-phase prandial insulin secretion when taken before meals, as shown by studies in non-diabetic people and patients with newly diagnosed, previously untreated T2DM. Repaglinide exerts its greatest effect on the insulin secretion rate during the first 30 min after a meal is started, thereby going some way to restoring the early insulin secretion curve seen after a meal in non-diabetic people. No residual secretagogue activity is seen 4 hr after taking a single dose of up to 2 mg. Prandial glucose regulation with repaglinide could be associated with lower post-prandial glucose excursions and less risk of post-prandial hypoglycaemia than glibenclamide.

  12. RAS mutations in early age leukaemia modulated by NQO1 rs1800566 (C609T) are associated with second-hand smoking exposures

    PubMed Central

    2014-01-01

    Background Deregulation of the MAPK genes signalling caused by somatic mutations have been implied in leukaemia pathogenesis, including RAS mutation (RASmut) in acute myeloid leukaemia (AML), which has been associated with intra-uterine chemical exposures. A case-case study was conducted in order to explore maternal and child exposures to tobacco smoking associations with early age leukaemia (EAL). Methods Covariables of reference were MLL rearrangements (MLL-r), RASmut and NQO1 rs1800566 (C609T). Samples from 150 acute lymphoblastic leukaemia (ALL) and 85 AML were included. Maternal exposures were assessed using a structured questionnaire with demographic, personal habits and residence history information. Restriction fragment length polymorphism and denaturing high performance liquid chromatography were used to screen FLT3, KRAS, and NRAS mutations; direct sequencing was performed to validate the results. NQO1 polymorphism was detected by real-time allelic discrimination technique. Results Overall, RASmut were detected in 28.7% of EAL cases; BRAFmut was found only in one AML patient. Higher rate of KRASmut was found in ALL (30.3%) compared to AML (20.8%) with MLL-r; RASmut showed an association with second-hand tobacco smoking exposures (OR, 3.06, 95% CI, 1.03-9.07). A considerable increased risk for EAL with the combination of RASmut and NQO1 609CT (OR, 4.24, 95% CI, 1.24-14.50) was observed. Conclusions Our data demonstrated the increased risk association between maternal smoking and EAL with MLL-r. Additionally, suggests that children second-hand tobacco exposures are associated with increased risk of EAL with RASmut modulated by NQO1 rs1800566 (C609T). PMID:24571676

  13. RAS mutations in early age leukaemia modulated by NQO1 rs1800566 (C609T) are associated with second-hand smoking exposures.

    PubMed

    Andrade, Francianne Gomes; Furtado-Silva, Juliana Montibeller; Gonçalves, Bruno Alves de Aguiar; Thuler, Luiz Claudio Santos; Barbosa, Thayana Conceição; Emerenciano, Mariana; Siqueira, André; Pombo-de-Oliveira, Maria S

    2014-02-26

    Deregulation of the MAPK genes signalling caused by somatic mutations have been implied in leukaemia pathogenesis, including RAS mutation (RASmut) in acute myeloid leukaemia (AML), which has been associated with intra-uterine chemical exposures. A case-case study was conducted in order to explore maternal and child exposures to tobacco smoking associations with early age leukaemia (EAL). Covariables of reference were MLL rearrangements (MLL-r), RASmut and NQO1 rs1800566 (C609T). Samples from 150 acute lymphoblastic leukaemia (ALL) and 85 AML were included. Maternal exposures were assessed using a structured questionnaire with demographic, personal habits and residence history information. Restriction fragment length polymorphism and denaturing high performance liquid chromatography were used to screen FLT3, KRAS, and NRAS mutations; direct sequencing was performed to validate the results. NQO1 polymorphism was detected by real-time allelic discrimination technique. Overall, RASmut were detected in 28.7% of EAL cases; BRAFmut was found only in one AML patient. Higher rate of KRASmut was found in ALL (30.3%) compared to AML (20.8%) with MLL-r; RASmut showed an association with second-hand tobacco smoking exposures (OR, 3.06, 95% CI, 1.03-9.07). A considerable increased risk for EAL with the combination of RASmut and NQO1 609CT (OR, 4.24, 95% CI, 1.24-14.50) was observed. Our data demonstrated the increased risk association between maternal smoking and EAL with MLL-r. Additionally, suggests that children second-hand tobacco exposures are associated with increased risk of EAL with RASmut modulated by NQO1 rs1800566 (C609T).

  14. Combining comparative proteomics and molecular genetics uncovers regulators of synaptic and axonal stability and degeneration in vivo.

    PubMed

    Wishart, Thomas M; Rooney, Timothy M; Lamont, Douglas J; Wright, Ann K; Morton, A Jennifer; Jackson, Mandy; Freeman, Marc R; Gillingwater, Thomas H

    2012-01-01

    Degeneration of synaptic and axonal compartments of neurons is an early event contributing to the pathogenesis of many neurodegenerative diseases, but the underlying molecular mechanisms remain unclear. Here, we demonstrate the effectiveness of a novel "top-down" approach for identifying proteins and functional pathways regulating neurodegeneration in distal compartments of neurons. A series of comparative quantitative proteomic screens on synapse-enriched fractions isolated from the mouse brain following injury identified dynamic perturbations occurring within the proteome during both initiation and onset phases of degeneration. In silico analyses highlighted significant clustering of proteins contributing to functional pathways regulating synaptic transmission and neurite development. Molecular markers of degeneration were conserved in injury and disease, with comparable responses observed in synapse-enriched fractions isolated from mouse models of Huntington's disease (HD) and spinocerebellar ataxia type 5. An initial screen targeting thirteen degeneration-associated proteins using mutant Drosophila lines revealed six potential regulators of synaptic and axonal degeneration in vivo. Mutations in CALB2, ROCK2, DNAJC5/CSP, and HIBCH partially delayed injury-induced neurodegeneration. Conversely, mutations in DNAJC6 and ALDHA1 led to spontaneous degeneration of distal axons and synapses. A more detailed genetic analysis of DNAJC5/CSP mutants confirmed that loss of DNAJC5/CSP was neuroprotective, robustly delaying degeneration in axonal and synaptic compartments. Our study has identified conserved molecular responses occurring within synapse-enriched fractions of the mouse brain during the early stages of neurodegeneration, focused on functional networks modulating synaptic transmission and incorporating molecular chaperones, cytoskeletal modifiers, and calcium-binding proteins. We propose that the proteins and functional pathways identified in the current study represent attractive targets for developing therapeutics aimed at modulating synaptic and axonal stability and neurodegeneration in vivo.

  15. Lipocalin 2 is a novel immune mediator of experimental autoimmune encephalomyelitis pathogenesis and is modulated in multiple sclerosis.

    PubMed

    Berard, Jennifer L; Zarruk, Juan G; Arbour, Nathalie; Prat, Alexandre; Yong, V Wee; Jacques, Francois H; Akira, Shizuo; David, Samuel

    2012-07-01

    Experimental autoimmune encephalomyelitis (EAE) is a widely used animal model of multiple sclerosis (MS), an inflammatory, demyelinating disease of the central nervous system (CNS). EAE pathogenesis involves various cell types, cytokines, chemokines, and adhesion molecules. Given the complexity of the inflammatory response in EAE, it is likely that many immune mediators still remain to be discovered. To identify novel immune mediators of EAE pathogenesis, we performed an Affymetrix gene array screen on the spinal cords of mice at the onset stage of disease. This screening identified the gene encoding lipocalin 2 (Lcn2) as being significantly upregulated. Lcn2 is a multi-functional protein that plays a role in glial activation, matrix metalloproteinase (MMP) stabilization, and cellular iron flux. As many of these processes have been implicated in EAE, we characterized the expression and role of Lcn2 in this disease in C57BL/6 mice. We show that Lcn2 is significantly upregulated in the spinal cord throughout EAE and is expressed predominantly by monocytes and reactive astrocytes. The Lcn2 receptor, 24p3R, is also expressed on monocytes, macrophages/microglia, and astrocytes in EAE. In addition, we show that EAE severity is increased in Lcn2(-/-) mice as compared with wild-type controls. Finally, we demonstrate that elevated levels of Lcn2 are detected in the plasma and cerebrospinal fluid (CSF) in MS and in immune cells in CNS lesions in MS tissue sections. These data indicate that Lcn2 is a modulator of EAE pathogenesis and suggest that it may also play a role in MS. Copyright © 2012 Wiley Periodicals, Inc.

  16. The cells of cajal-retzius: still a mystery one century after.

    PubMed

    Soriano, Eduardo; Del Río, José Antonio

    2005-05-05

    Cajal-Retzius (CR) cells are an enigmatic class of neurons located at the surface of the cerebral cortex, playing a major role in cortical development. In this review, we discuss several distinct features of these neurons and the mechanisms by which they regulate cortical development. Many CR cells likely have extracortical origin and undergo cell death during development. Recent genetic studies report unique patterns of gene expression in CR cells, which may help to explain the developmental processes in which they participate. Moreover, a number of studies indicate that CR cells, and their secreted gene product, reelin, are involved in neuronal migration by acting on two key partners, migrating neurons and radial glial cells. Emerging data show that these neurons are a critical part of an early and complex network of neural activity in layer I, supporting the notion that CR cells modulate cortical maturation. Given these key and complex developmental properties, it is therefore conceivable for CR cells to be implicated in the pathogenesis of a variety of neurological disorders.

  17. The Timing of the Excitatory-to-Inhibitory GABA Switch Is Regulated by the Oxytocin Receptor via KCC2

    PubMed Central

    Leonzino, Marianna; Busnelli, Marta; Antonucci, Flavia; Verderio, Claudia; Mazzanti, Michele; Chini, Bice

    2016-01-01

    Summary Oxytocin and its receptor (Oxtr) play a crucial role in the postnatal transition of neuronal GABA neurotransmission from excitatory to inhibitory, a developmental process known as the GABA switch. Using hippocampal neurons from Oxtr-null mice, we show that (1) Oxtr is necessary for the correct timing of the GABA switch by upregulating activity of the chloride cotransporter KCC2, (2) Oxtr, in a very early and narrow time window, directly modulates the functional activity of KCC2 by promoting its phosphorylation and insertion/stabilization at the neuronal surface, and (3) in the absence of Oxtr, electrophysiological alterations are recorded in mature neurons, a finding consistent with a reduced level of KCC2 and increased susceptibility to seizures observed in adult Oxtr-null mice. These data identify KCC2 as a key target of oxytocin in postnatal events that may be linked to pathogenesis of neurodevelopmental disorders. PMID:27052180

  18. Inflammatory Bowel Disease: Genetics, Epigenetics, and Pathogenesis

    PubMed Central

    Loddo, Italia; Romano, Claudio

    2015-01-01

    Inflammatory bowel diseases (IBDs) are complex, multifactorial disorders characterized by chronic relapsing intestinal inflammation. Although etiology remains largely unknown, recent research has suggested that genetic factors, environment, microbiota, and immune response are involved in the pathogenesis. Epidemiological evidence for a genetic contribution is defined: 15% of patients with Crohn’s Disease (CD) have an affected family member with IBD, and twin studies for CD have shown 50% concordance in monozygotic twins compared to <10% in dizygotics. The most recent and largest genetic association studies, which employed genome-wide association data for over 75,000 patients and controls, identified 163 susceptibility loci for IBD. More recently, a trans-ethnic analysis, including over 20,000 individuals, identified an additional 38 new IBD loci. Although most cases are correlated with polygenic contribution toward genetic susceptibility, there is a spectrum of rare genetic disorders that can contribute to early-onset IBD (before 5 years) or very early onset IBD (before 2 years). Genetic variants that cause these disorders have a wide effect on gene function. These variants are so rare in allele frequency that the genetic signals are not detected in genome-wide association studies of patients with IBD. With recent advances in sequencing techniques, ~50 genetic disorders have been identified and associated with IBD-like immunopathology. Monogenic defects have been found to alter intestinal immune homeostasis through many mechanisms. Candidate gene resequencing should be carried out in early-onset patients in clinical practice. The evidence that genetic factors contribute in small part to disease pathogenesis confirms the important role of microbial and environmental factors. Epigenetic factors can mediate interactions between environment and genome. Epigenetic mechanisms could affect development and progression of IBD. Epigenomics is an emerging field, and future studies could provide new insight into the pathogenesis of IBD. PMID:26579126

  19. Streptococcus pyogenes Arginine and Citrulline Catabolism Promotes Infection and Modulates Innate Immunity

    PubMed Central

    Cusumano, Zachary T.; Watson, Michael E.

    2014-01-01

    A bacterium's ability to acquire nutrients from its host during infection is an essential component of pathogenesis. For the Gram-positive pathogen Streptococcus pyogenes, catabolism of the amino acid arginine via the arginine deiminase (ADI) pathway supplements energy production and provides protection against acid stress in vitro. Its expression is enhanced in murine models of infection, suggesting an important role in vivo. To gain insight into the function of the ADI pathway in pathogenesis, the virulence of mutants defective in each of its enzymes was examined. Mutants unable to use arginine (ΔArcA) or citrulline (ΔArcB) were attenuated for carriage in a murine model of asymptomatic mucosal colonization. However, in a murine model of inflammatory infection of cutaneous tissue, the ΔArcA mutant was attenuated but the ΔArcB mutant was hyperattenuated, revealing an unexpected tissue-specific role for citrulline metabolism in pathogenesis. When mice defective for the arginine-dependent production of nitric oxide (iNOS−/−) were infected with the ΔArcA mutant, cutaneous virulence was rescued, demonstrating that the ability of S. pyogenes to utilize arginine was dispensable in the absence of nitric oxide-mediated innate immunity. This work demonstrates the importance of arginine and citrulline catabolism and suggests a novel mechanism of virulence by which S. pyogenes uses its metabolism to modulate innate immunity through depletion of an essential host nutrient. PMID:24144727

  20. Modular Architecture and Unique Teichoic Acid Recognition Features of Choline-Binding Protein L (CbpL) Contributing to Pneumococcal Pathogenesis

    PubMed Central

    Gutiérrez-Fernández, Javier; Saleh, Malek; Alcorlo, Martín; Gómez-Mejía, Alejandro; Pantoja-Uceda, David; Treviño, Miguel A.; Voß, Franziska; Abdullah, Mohammed R.; Galán-Bartual, Sergio; Seinen, Jolien; Sánchez-Murcia, Pedro A.; Gago, Federico; Bruix, Marta; Hammerschmidt, Sven; Hermoso, Juan A.

    2016-01-01

    The human pathogen Streptococcus pneumoniae is decorated with a special class of surface-proteins known as choline-binding proteins (CBPs) attached to phosphorylcholine (PCho) moieties from cell-wall teichoic acids. By a combination of X-ray crystallography, NMR, molecular dynamics techniques and in vivo virulence and phagocytosis studies, we provide structural information of choline-binding protein L (CbpL) and demonstrate its impact on pneumococcal pathogenesis and immune evasion. CbpL is a very elongated three-module protein composed of (i) an Excalibur Ca2+-binding domain -reported in this work for the very first time-, (ii) an unprecedented anchorage module showing alternate disposition of canonical and non-canonical choline-binding sites that allows vine-like binding of fully-PCho-substituted teichoic acids (with two choline moieties per unit), and (iii) a Ltp_Lipoprotein domain. Our structural and infection assays indicate an important role of the whole multimodular protein allowing both to locate CbpL at specific places on the cell wall and to interact with host components in order to facilitate pneumococcal lung infection and transmigration from nasopharynx to the lungs and blood. CbpL implication in both resistance against killing by phagocytes and pneumococcal pathogenesis further postulate this surface-protein as relevant among the pathogenic arsenal of the pneumococcus. PMID:27917891

  1. Integrating Demographic, Clinical,and Environmental Exposure Information to Identify Genomic Biomarkers Associated With Subtypes of Childhood Asthma

    EPA Science Inventory

    Childhood asthma is a multifactorial disease with a disturbingly high incidence in urbanized areas. The pathogenesis of asthma is poorly understood due to the complex relationship between genetic susceptibility and modulating environmental factors. The Mechanistic Indicators of C...

  2. Advancements in the Underlying Pathogenesis of Schizophrenia: Implications of DNA Methylation in Glial Cells.

    PubMed

    Chen, Xing-Shu; Huang, Nanxin; Michael, Namaka; Xiao, Lan

    2015-01-01

    Schizophrenia (SZ) is a chronic and severe mental illness for which currently there is no cure. At present, the exact molecular mechanism involved in the underlying pathogenesis of SZ is unknown. The disease is thought to be caused by a combination of genetic, biological, psychological, and environmental factors. Recent studies have shown that epigenetic regulation is involved in SZ pathology. Specifically, DNA methylation, one of the earliest found epigenetic modifications, has been extensively linked to modulation of neuronal function, leading to psychiatric disorders such as SZ. However, increasing evidence indicates that glial cells, especially dysfunctional oligodendrocytes undergo DNA methylation changes that contribute to the pathogenesis of SZ. This review primarily focuses on DNA methylation involved in glial dysfunctions in SZ. Clarifying this mechanism may lead to the development of new therapeutic interventional strategies for the treatment of SZ and other illnesses by correcting abnormal methylation in glial cells.

  3. Recent Advances in the Pathogenesis of Autoimmune Hair Loss Disease Alopecia Areata

    PubMed Central

    2013-01-01

    Alopecia areata is considered to be a cell-mediated autoimmune disease, in which autoreactive cytotoxic T cells recognize melanocyte-associated proteins such as tyrosinase. This review discusses recent advances in the understanding of the pathogenesis of alopecia areata, focusing on immunobiology and hormonal aspects of hair follicles (HFs). The HF is a unique “miniorgan” with its own immune and hormonal microenvironment. The immunosuppressive milieu of the anagen hair bulb modulated by immunosuppressive factors is known as “hair follicle immune privilege.” The collapse of the hair follicle immune privilege leads to autoimmune reactions against hair follicle autoantigens. Alopecia areata is sometimes triggered by viral infections such as influenza that causes excess production of interferons (IFN). IFN-γ is one of the key factors that lead to the collapse of immune privilege. This paper reviews the interactions between the endocrine and immune systems and hair follicles in the pathogenesis of alopecia areata. PMID:24151515

  4. Immunity profile in breast cancer patients.

    PubMed

    Hrubisko, M; Sanislo, L; Zuzulova, M; Michalickova, J; Zeleznikova, T; Sedlak, J; Bella, V

    2010-01-01

    Despite the multifactorial pathogenesis of malignant transformation, it is assumed that deficiency in some immune mechanisms plays a considerable role in its development. Chronically activated immune cells exert tumour-promoting effects directly by influencing the proliferation and survival of neoplastic cells, as well as by indirect modulation of neoplastic microenvironments in favour of tumour progression. We refer to results of two separate investigations that aim to monitor the immune functions in patients with breast cancer. In the first investigation, we compare the picture of basic cellular immunity profile of patients in early stage of breast cancer with those suffering from advanced disease; in the second one, we compare the production of Th1-cytokines in patients in different stages of breast cancer and atopic healthy controls. We recognized that the totals of T-lymphocytes and T-helpers were lower and the expression of HLADR on T-lymphocytes were higher in patients with advanced disease; the expression of IL-2 and LFN-gamma by T-lymphocytes was decreased in metastatic breast cancer patients, however IL-2 production was increased in patients in early stage of disease. We conclude that the role of immune system in cancer development is ambivalent as it may be not only protective, but also harmful (Tab. 1, Fig. 3, Ref. 22). Full Text (Free, PDF) www.bmj.sk.

  5. Diverse mechanisms evolved by DNA viruses to inhibit early host defenses

    PubMed Central

    Sheng, Xinlei; Song, Bokai; Cristea, Ileana M.

    2016-01-01

    In mammalian cells, early defenses against infection by pathogens are mounted through a complex network of signaling pathways shepherded by immune-modulatory pattern-recognition receptors. As obligate parasites, the survival of viruses is dependent upon the evolutionary acquisition of mechanisms that tactfully dismantle and subvert the cellular intrinsic and innate immune responses. Here, we review the diverse mechanisms by which viruses that accommodate DNA genomes are able to circumvent activation of cellular immunity. We start by discussing viral manipulation of host defense protein levels by either transcriptional regulation or protein degradation. We next review viral strategies used to repurpose or inhibit these cellular immune factors by molecular hijacking or by regulating their post-translational modification status. Additionally, we explore the infection-induced temporal modulation of apoptosis to facilitate viral replication and spread. Lastly, the co-evolution of viruses with their hosts is highlighted by the acquisition of elegant mechanisms for suppressing host defenses via viral mimicry of host factors. In closing, we present a perspective on how characterizing these viral evasion tactics both broadens the understanding of virus-host interactions and reveals essential functions of the immune system at the molecular level. This knowledge is critical in understanding the sources of viral pathogenesis, as well as for the design of antiviral therapeutics and autoimmunity treatments. PMID:27650455

  6. Pathogenesis of cerebral malaria: new diagnostic tools, biomarkers, and therapeutic approaches

    PubMed Central

    Sahu, Praveen K.; Satpathi, Sanghamitra; Behera, Prativa K.; Mishra, Saroj K.; Mohanty, Sanjib; Wassmer, Samuel Crocodile

    2015-01-01

    Cerebral malaria is a severe neuropathological complication of Plasmodium falciparum infection. It results in high mortality and post-recovery neuro-cognitive disorders in children, even after appropriate treatment with effective anti-parasitic drugs. While the complete landscape of the pathogenesis of cerebral malaria still remains to be elucidated, numerous innovative approaches have been developed in recent years in order to improve the early detection of this neurological syndrome and, subsequently, the clinical care of affected patients. In this review, we briefly summarize the current understanding of cerebral malaria pathogenesis, compile the array of new biomarkers and tools available for diagnosis and research, and describe the emerging therapeutic approaches to tackle this pathology effectively. PMID:26579500

  7. Concept of the pathogenesis and treatment of cholelithiasis

    PubMed Central

    Reshetnyak, Vasiliy Ivanovich

    2012-01-01

    Gallstone disease (GD) is a chronic recurrent hepatobiliary disease, the basis for which is the impaired metabolism of cholesterol, bilirubin and bile acids, which is characterized by the formation of gallstones in the hepatic bile duct, common bile duct, or gallbladder. GD is one of the most prevalent gastrointestinal diseases with a substantial burden to health care systems. GD can result in serious outcomes, such as acute gallstone pancreatitis and gallbladder cancer. The epidemiology, pathogenesis and treatment of GD are discussed in this review. The prevalence of GD varies widely by region. The prevalence of gallstone disease has increased in recent years. This is connected with a change in lifestyle: reduction of motor activity, reduction of the physical load and changes to diets. One of the important benefits of early screening for gallstone disease is that ultrasonography can detect asymptomatic cases, which results in early treatment and the prevention of serious outcomes. The pathogenesis of GD is suggested to be multifactorial and probably develops from complex interactions between many genetic and environmental factors. It suggests that corticosteroids and oral contraceptives, which contain hormones related to steroid hormones, may be regarded as a model system of cholelithiasis development in man. The achievement in the study of the physiology of bile formation and the pathogenesis of GD has allowed expanding indications for therapeutic treatment of GD. PMID:22400083

  8. The Plasticity of Th17 Cells in the Pathogenesis of Rheumatoid Arthritis.

    PubMed

    Kotake, Shigeru; Yago, Toru; Kobashigawa, Tsuyoshi; Nanke, Yuki

    2017-07-10

    Helper T (Th) cells play an important role in the pathogenesis of autoimmune diseases, including rheumatoid arthritis (RA). It has been revealed that Th17 cells can shift to Th1 cells (i.e., "nonclassic Th1 cells"), which are reported to be more pathogenic than Th17 cells per se . Thus, the association of Th cells in the pathogenesis of autoimmune disease has become more complicated. We recently reported using peripheral blood from untreated and early-onset RA patients that the ratio of CD161+Th1 cells (i.e., Th17-derived Th1 cells to CD161+Th17 cells) is elevated and that levels of interferon-γ (IFNγ)+Th17 cells are inversely correlated with levels of anti-CCP antibodies. Here, we review the plasticity of Th17 cells in the pathogenesis of RA, suggesting possible implications for novel therapies.

  9. The Plasticity of Th17 Cells in the Pathogenesis of Rheumatoid Arthritis

    PubMed Central

    Kotake, Shigeru; Kobashigawa, Tsuyoshi; Nanke, Yuki

    2017-01-01

    Helper T (Th) cells play an important role in the pathogenesis of autoimmune diseases, including rheumatoid arthritis (RA). It has been revealed that Th17 cells can shift to Th1 cells (i.e., “nonclassic Th1 cells”), which are reported to be more pathogenic than Th17 cells per se. Thus, the association of Th cells in the pathogenesis of autoimmune disease has become more complicated. We recently reported using peripheral blood from untreated and early-onset RA patients that the ratio of CD161+Th1 cells (i.e., Th17-derived Th1 cells to CD161+Th17 cells) is elevated and that levels of interferon-γ (IFNγ)+Th17 cells are inversely correlated with levels of anti-CCP antibodies. Here, we review the plasticity of Th17 cells in the pathogenesis of RA, suggesting possible implications for novel therapies. PMID:28698517

  10. Psoriasis and Microbiota: A Systematic Review.

    PubMed

    Benhadou, Farida; Mintoff, Dillon; Schnebert, Benjamin; Thio, Hok Bing

    2018-06-02

    Recent advances have highlighted the crucial role of microbiota in the pathophysiology of chronic inflammatory diseases as well as its impact on the efficacy of therapeutic agents. Psoriasis is a chronic, multifactorial inflammatory skin disorder, which has a microbiota distinct from healthy, unaffected skin. Through an extensive review of the literature, we aim to discuss the skin and gut microbiota and redefine their role in the pathogenesis of psoriasis. Unfortunately, the direct link between the skin microbiota and the pathogenesis of psoriasis remains to be clearly established. Apart from improving the course of psoriasis, selective modulation of the microbiota may increase the efficacy of medical treatments as well as attenuate their side effects.

  11. Infection in systemic lupus erythematosus: friend or foe?

    PubMed Central

    Francis, Lisa; Perl, Andras

    2010-01-01

    Infectious agents have long been implicated in the pathogenesis of systemic lupus erythematosus. Common viruses, such as the Epstein-Barr virus, transfusion transmitted virus, parvovirus and cytomegalovirus, have an increased prevalence in patients with systemic lupus erythematosus. They may contribute to disease pathogenesis through triggering autoimmunity via structural or functional molecular mimicry, encoding proteins that induce cross-reactive immune responses to self antigens or modulate antigen processing, activation, or apoptosis of B and T cells, macrophages or dendritic cells. Alternatively, some infectious agents, such as malaria, Toxoplasma gondii and Helicobacter pylori, may have a protective effect. Vaccinations may play dual roles by protecting against friend and foe alike. PMID:20209114

  12. Update in Pathogenesis and Prospective in Treatment of Necrotizing Enterocolitis

    PubMed Central

    Terrin, Gianluca; Scipione, Antonella; De Curtis, Mario

    2014-01-01

    Necrotizing enterocolitis (NEC) is among the most common and devastating diseases in neonates and, despite the significant advances in neonatal clinical and basic science investigations, its etiology is largely understood, specific treatment strategies are lacking, and morbidity and mortality remain high. Improvements in the understanding of pathogenesis of NEC may have therapeutic consequences. Pharmacologic inhibition of toll-like receptor signaling, the use of novel nutritional strategies, and microflora modulation may represent novel promising approaches to the prevention and treatment of NEC. This review, starting from the recent acquisitions in the pathogenic mechanisms of NEC, focuses on current and possible therapeutic perspectives. PMID:25147804

  13. The Role of IL-17 in Vitiligo: A Review

    PubMed Central

    Singh, Rasnik K.; Lee, Kristina M.; Vujkovic-Cvijin, Ivan; Ucmak, Derya; Farahnik, Benjamin; Abrouk, Michael; Nakamura, Mio; Zhu, Tian Hao; Bhutani, Tina; Wei, Maria; Liao, Wilson

    2016-01-01

    IL-17 is involved in the pathogenesis of several autoimmune diseases, however its role in vitiligo has not been well defined. Emerging human and mouse studies have demonstrated that systemic, tissue, and cellular levels of IL-17 are elevated in vitiligo. Many studies have also shown significant positive correlations between these levels and disease activity, extent, and severity. Treatments that improve vitiligo, such as ultraviolet B phototherapy, also modulate IL-17 levels. This review synthesizes our current understanding of how IL-17 may influence the pathogenesis of autoimmune vitiligo at the molecular level. This has implications for defining new vitiligo biomarkers and treatments. PMID:26804758

  14. Early effects of 16O radiation on neuronal morphology and cognition in a murine model

    NASA Astrophysics Data System (ADS)

    Carr, Hannah; Alexander, Tyler C.; Groves, Thomas; Kiffer, Frederico; Wang, Jing; Price, Elvin; Boerma, Marjan; Allen, Antiño R.

    2018-05-01

    Astronauts exposed to high linear energy transfer radiation may experience cognitive injury. The pathogenesis of this injury is unknown but may involve glutamate receptors or modifications to dendritic structure and/or dendritic spine density and morphology. Glutamate is the major excitatory neurotransmitter in the central nervous system, where it acts on ionotropic and metabotropic glutamate receptors located at the presynaptic terminal and in the postsynaptic membrane at synapses in the hippocampus. Dendritic spines are sites of excitatory synaptic transmission, and changes in spine structure and dendrite morphology are thought to be morphological correlates of altered brain function associated with hippocampal-dependent learning and memory. The aim of the current study is to assess whether behavior, glutamate receptor gene expression, and dendritic structure in the hippocampus are altered in mice after early exposure to 16O radiation in mice. Two weeks post-irradiation, animals were tested for hippocampus-dependent cognitive performance in the Y-maze. During Y-maze testing, mice exposed to 0.1 Gy and 0.25 Gy radiation failed to distinguish the novel arm, spending approximately the same amount of time in all 3 arms during the retention trial. Exposure to 16O significantly reduced the expression of Nr1 and GluR1 in the hippocampus and modulated spine morphology in the dentate gyrus and cornu Ammon 1 within the hippocampus. The present data provide evidence that 16O radiation has early deleterious effects on mature neurons that are associated with hippocampal learning and memory.

  15. Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum.

    PubMed

    Zhou, Jun; Zeng, Lizhang; Liu, Jian; Xing, Da

    2015-05-01

    The xanthophyll cycle is involved in dissipating excess light energy to protect the photosynthetic apparatus in a process commonly assessed from non-photochemical quenching (NPQ) of chlorophyll fluorescence. Here, it is shown that the xanthophyll cycle is modulated by the necrotrophic pathogen Sclerotinia sclerotiorum at the early stage of infection. Incubation of Sclerotinia led to a localized increase in NPQ even at low light intensity. Further studies showed that this abnormal change in NPQ was closely correlated with a decreased pH caused by Sclerotinia-secreted oxalate, which might decrease the ATP synthase activity and lead to a deepening of thylakoid lumen acidification under continuous illumination. Furthermore, suppression (with dithiothreitol) or a defect (in the npq1-2 mutant) of violaxanthin de-epoxidase (VDE) abolished the Sclerotinia-induced NPQ increase. HPLC analysis showed that the Sclerotinia-inoculated tissue accumulated substantial quantities of zeaxanthin at the expense of violaxanthin, with a corresponding decrease in neoxanthin content. Immunoassays revealed that the decrease in these xanthophyll precursors reduced de novo abscisic acid (ABA) biosynthesis and apparently weakened tissue defense responses, including ROS induction and callose deposition, resulting in enhanced plant susceptibility to Sclerotinia. We thus propose that Sclerotinia antagonizes ABA biosynthesis to suppress host defense by manipulating the xanthophyll cycle in early pathogenesis. These findings provide a model of how photoprotective metabolites integrate into the defense responses, and expand the current knowledge of early plant-Sclerotinia interactions at infection sites.

  16. Learning from the Messengers: Innate Sensing of Viruses and Cytokine Regulation of Immunity—Clues for Treatments and Vaccines

    PubMed Central

    Melchjorsen, Jesper

    2013-01-01

    Virus infections are a major global public health concern, and only via substantial knowledge of virus pathogenesis and antiviral immune responses can we develop and improve medical treatments, and preventive and therapeutic vaccines. Innate immunity and the shaping of efficient early immune responses are essential for control of viral infections. In order to trigger an efficient antiviral defense, the host senses the invading microbe via pattern recognition receptors (PRRs), recognizing distinct conserved pathogen-associated molecular patterns (PAMPs). The innate sensing of the invading virus results in intracellular signal transduction and subsequent production of interferons (IFNs) and proinflammatory cytokines. Cytokines, including IFNs and chemokines, are vital molecules of antiviral defense regulating cell activation, differentiation of cells, and, not least, exerting direct antiviral effects. Cytokines shape and modulate the immune response and IFNs are principle antiviral mediators initiating antiviral response through induction of antiviral proteins. In the present review, I describe and discuss the current knowledge on early virus–host interactions, focusing on early recognition of virus infection and the resulting expression of type I and type III IFNs, proinflammatory cytokines, and intracellular antiviral mediators. In addition, the review elucidates how targeted stimulation of innate sensors, such as toll-like receptors (TLRs) and intracellular RNA and DNA sensors, may be used therapeutically. Moreover, I present and discuss data showing how current antimicrobial therapies, including antibiotics and antiviral medication, may interfere with, or improve, immune response. PMID:23435233

  17. Library Screen Identifies Enterococcus faecalis CcpA, the Catabolite Control Protein A, as an Effector of Ace, a Collagen Adhesion Protein Linked to Virulence

    PubMed Central

    Gao, Peng; Pinkston, Kenneth L.; Bourgogne, Agathe; Cruz, Melissa R.; Garsin, Danielle A.; Murray, Barbara E.

    2013-01-01

    The Enterococcus faecalis cell wall-anchored protein Ace is an important virulence factor involved in cell adhesion and infection. Expression of Ace on the cell surface is affected by many factors, including stage of growth, culture temperature, and environmental components, such as serum, urine, and collagen. However, the mechanisms that regulate or modulate Ace display are not well understood. With interest in identifying genes associated with Ace expression, we utilized a whole-cell enzyme-linked immunosorbent assay (ELISA)-based screening method to identify mutants from a transposon insertion mutant library which exhibited distinct Ace surface expression profiles. We identified a ccpA insertion mutant which showed significantly decreased levels of Ace surface expression at early growth phase versus those of wild-type OG1RF. Confirmation of the observation was achieved through flow cytometry and complementation analysis. Compared to the wild type, the E. faecalis ccpA mutant had an impaired ability to adhere to collagen when grown to early exponential phase, consistent with the lack of Ace expression in the early growth phase. As a key component of carbon catabolite regulation, CcpA has been previously reported to play a critical role in regulating expression of proteins involved in E. faecalis carbohydrate uptake and utilization. Our discovery is the first to associate CcpA with the production of a major E. faecalis virulence factor, providing new insights into the regulation of E. faecalis pathogenesis. PMID:23974022

  18. Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum

    PubMed Central

    Zhou, Jun; Zeng, Lizhang; Liu, Jian; Xing, Da

    2015-01-01

    The xanthophyll cycle is involved in dissipating excess light energy to protect the photosynthetic apparatus in a process commonly assessed from non-photochemical quenching (NPQ) of chlorophyll fluorescence. Here, it is shown that the xanthophyll cycle is modulated by the necrotrophic pathogen Sclerotinia sclerotiorum at the early stage of infection. Incubation of Sclerotinia led to a localized increase in NPQ even at low light intensity. Further studies showed that this abnormal change in NPQ was closely correlated with a decreased pH caused by Sclerotinia-secreted oxalate, which might decrease the ATP synthase activity and lead to a deepening of thylakoid lumen acidification under continuous illumination. Furthermore, suppression (with dithiothreitol) or a defect (in the npq1-2 mutant) of violaxanthin de-epoxidase (VDE) abolished the Sclerotinia-induced NPQ increase. HPLC analysis showed that the Sclerotinia-inoculated tissue accumulated substantial quantities of zeaxanthin at the expense of violaxanthin, with a corresponding decrease in neoxanthin content. Immunoassays revealed that the decrease in these xanthophyll precursors reduced de novo abscisic acid (ABA) biosynthesis and apparently weakened tissue defense responses, including ROS induction and callose deposition, resulting in enhanced plant susceptibility to Sclerotinia. We thus propose that Sclerotinia antagonizes ABA biosynthesis to suppress host defense by manipulating the xanthophyll cycle in early pathogenesis. These findings provide a model of how photoprotective metabolites integrate into the defense responses, and expand the current knowledge of early plant-Sclerotinia interactions at infection sites. PMID:25993128

  19. Rheumatoid arthritis: what do MRI and ultrasound show

    PubMed Central

    Jans, Lennart; Teh, James

    2017-01-01

    Rheumatoid arthritis is the most common inflammatory arthritis, affecting approximately 1% of the world’s population. Its pathogenesis has not been completely understood. However, there is evidence that the disease may involve synovial joints, subchondral bone marrow as well as intra- and extraarticular fat tissue, and may lead to progressive joint destruction and disability. Over the last two decades, significant improvement in its prognosis has been achieved owing to new strategies for disease management, the emergence of new biologic therapies and better utilization of conventional disease-modifying antirheumatic drugs. Prompt diagnosis and appropriate therapy have been recognized as essential for improving clinical outcomes in patients with early rheumatoid arthritis. Despite the potential of ultrasonography and magnetic resonance imaging to visualize all tissues typically involved in the pathogenesis of rheumatoid arthritis, the diagnosis of early disease remains difficult due to limited specificity of findings. This paper summarizes the pathogenesis phenomena of rheumatoid arthritis and describes rheumatoid arthritis-related features of the disease within the synovium, subchondral bone marrow and articular fat tissue on MRI and ultrasound. Moreover, the paper aims to illustrate the significance of MRI and ultrasound findings in rheumatoid arthritis in the diagnosis of subclinical and early inflammation, and the importance of MRI and US in the follow-up and establishing remission. Finally, we also discuss MRI of the spine in rheumatoid arthritis, which may help assess the presence of active inflammation and complications. PMID:28439423

  20. Extracellular matrix disruption is an early event in the pathogenesis of skeletal disease in mucopolysaccharidosis I.

    PubMed

    Heppner, Jonathan M; Zaucke, Frank; Clarke, Lorne A

    2015-02-01

    Progressive skeletal and connective tissue disease represents a significant clinical burden in all of the mucopolysaccharidoses. Despite the introduction of enzyme replacement strategies for many of the mucopolysaccharidoses, symptomatology related to bone and joint disease appears to be recalcitrant to current therapies. In order to address these unmet medical needs a clearer understanding of skeletal and connective tissue disease pathogenesis is required. Historically the pathogenesis of the mucopolysaccharidoses has been assumed to directly relate to progressive storage of glycosaminoglycans. It is now apparent for many lysosomal storage disorders that more complex pathogenic mechanisms underlie patients' clinical symptoms. We have used proteomic and genome wide expression studies in the murine mucopolysaccharidosis I model to identify early pathogenic events occurring in micro-dissected growth plate tissue. Studies were conducted using 3 and 5-week-old mice thus representing a time at which no obvious morphological changes of bone or joints have taken place. An unbiased iTRAQ differential proteomic approach was used to identify candidates followed by validation with multiple reaction monitoring mass spectrometry and immunohistochemistry. These studies reveal significant decreases in six key structural and signaling extracellular matrix proteins; biglycan, fibromodulin, PRELP, type I collagen, lactotransferrin, and SERPINF1. Genome-wide expression studies in embryonic day 13.5 limb cartilage and 5 week growth plate cartilage followed by specific gene candidate qPCR studies in the 5week growth plate identified fourteen significantly deregulated mRNAs (Adamts12, Aspn, Chad, Col2a1, Col9a1, Hapln4, Lum, Matn1, Mmp3, Ogn, Omd, P4ha2, Prelp, and Rab32). The involvement of biglycan, PRELP and fibromodulin; all members of the small leucine repeat proteoglycan family is intriguing, as this protein family is implicated in the pathogenesis of late onset osteoarthritis. Taken as a whole, our data indicates that alteration of the extracellular matrix represents a very early event in the pathogenesis of the mucopolysaccharidoses and implies that biomechanical failure of chondro-osseous tissue may underlie progressive bone and joint disease symptoms. These findings have important therapeutic implications. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Dominant inheritance of cerebral gigantism.

    PubMed

    Zonana, J; Sotos, J F; Romshe, C A; Fisher, D A; Elders, M J; Rimoin, D L

    1977-08-01

    Cerebral gigantism is a syndrome consisting of characteristic dysmorphic features, accelerated growth in early childhood, and variable degrees of mental retardation. Its etiology and pathogenesis have not been defined. Three families are presented with multiple affected members. The vertical transmission of the trait and equal expression in both sexes in these families indicates a genetic etiology with a dominant pattern of inheritance, probably autosomal. As in previously reported cases, extensive endocrine evaluation failed to define the pathogenesis of the accelerated growth present in this disorder.

  2. Mycobacterium leprae phenolglycolipid-1 expressed by engineered M. bovis BCG modulates early interaction with human phagocytes.

    PubMed

    Tabouret, Guillaume; Astarie-Dequeker, Catherine; Demangel, Caroline; Malaga, Wladimir; Constant, Patricia; Ray, Aurélie; Honoré, Nadine; Bello, Nana Fatimath; Perez, Esther; Daffé, Mamadou; Guilhot, Christophe

    2010-10-21

    The species-specific phenolic glycolipid 1 (PGL-1) is suspected to play a critical role in the pathogenesis of leprosy, a chronic disease of the skin and peripheral nerves caused by Mycobacterium leprae. Based on studies using the purified compound, PGL-1 was proposed to mediate the tropism of M. leprae for the nervous system and to modulate host immune responses. However, deciphering the biological function of this glycolipid has been hampered by the inability to grow M. leprae in vitro and to genetically engineer this bacterium. Here, we identified the M. leprae genes required for the biosynthesis of the species-specific saccharidic domain of PGL-1 and reprogrammed seven enzymatic steps in M. bovis BCG to make it synthesize and display PGL-1 in the context of an M. leprae-like cell envelope. This recombinant strain provides us with a unique tool to address the key questions of the contribution of PGL-1 in the infection process and to study the underlying molecular mechanisms. We found that PGL-1 production endowed recombinant BCG with an increased capacity to exploit complement receptor 3 (CR3) for efficient invasion of human macrophages and evasion of inflammatory responses. PGL-1 production also promoted bacterial uptake by human dendritic cells and dampened their infection-induced maturation. Our results therefore suggest that M. leprae produces PGL-1 for immune-silent invasion of host phagocytic cells.

  3. Association Between Increased Vascular Density and Loss of Protective RAS in Early-stage NPDR

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Raghunandan, Sneha; Vyas, Ruchi J.; Vu, Amanda C.; Bryant, Douglas; Yaqian, Duan; Knecht, Brenda E.; Grant, Maria B.; Chalam, K. V.; Parsons-Wingerter, Patricia

    2016-01-01

    Our hypothesis predicts that retinal blood vessels increase in density during early-stage progression to moderate nonproliferative diabetic retinopathy (NPDR). The renin-angiotensin system (RAS) is implicated in the pathogenesis of DR and in the function of circulating angiogenic cells (CACs), a critical bone marrow-derived population that is instrumental in vascular repair.

  4. Innate immune interactions within the central nervous system modulate pathogenesis of viral infections

    PubMed Central

    Nair, Sharmila; Diamond, Michael S.

    2015-01-01

    The innate immune system mediates protection against neurotropic viruses that replicate in the central nervous system (CNS). Virus infection within specific cells of the CNS triggers activation of several families of pattern recognition receptors including Toll-like receptors, retinoic acid-inducible gene 1 like receptors, nucleotide-binding oligomerization domain-like receptors, and cytosolic DNA sensors. In this review, we highlight recent advances in our understanding of how cell-intrinsic host defenses within the CNS modulate infection of different DNA and RNA viruses. PMID:26163762

  5. Excavation of attractor modules for nasopharyngeal carcinoma via integrating systemic module inference with attract method.

    PubMed

    Jiang, T; Jiang, C-Y; Shu, J-H; Xu, Y-J

    2017-07-10

    The molecular mechanism of nasopharyngeal carcinoma (NPC) is poorly understood and effective therapeutic approaches are needed. This research aimed to excavate the attractor modules involved in the progression of NPC and provide further understanding of the underlying mechanism of NPC. Based on the gene expression data of NPC, two specific protein-protein interaction networks for NPC and control conditions were re-weighted using Pearson correlation coefficient. Then, a systematic tracking of candidate modules was conducted on the re-weighted networks via cliques algorithm, and a total of 19 and 38 modules were separately identified from NPC and control networks, respectively. Among them, 8 pairs of modules with similar gene composition were selected, and 2 attractor modules were identified via the attract method. Functional analysis indicated that these two attractor modules participate in one common bioprocess of cell division. Based on the strategy of integrating systemic module inference with the attract method, we successfully identified 2 attractor modules. These attractor modules might play important roles in the molecular pathogenesis of NPC via affecting the bioprocess of cell division in a conjunct way. Further research is needed to explore the correlations between cell division and NPC.

  6. Evaluating the autonomic nervous system in patients with laryngopharyngeal reflux.

    PubMed

    Huang, Wan-Ju; Shu, Chih-Hung; Chou, Kun-Ta; Wang, Yi-Fen; Hsu, Yen-Bin; Ho, Ching-Yin; Lan, Ming-Ying

    2013-06-01

    The pathogenesis of laryngopharyngeal reflux (LPR) remains unclear. It is linked to but distinct from gastroesophageal reflux disease (GERD), which has been shown to be related to disturbed autonomic regulation. The aim of this study is to investigate whether autonomic dysfunction also plays a role in the pathogenesis of LPR. Case-control study. Tertiary care center. Seventeen patients with LPR and 19 healthy controls, aged between 19 and 50 years, were enrolled in the study. The patients were diagnosed with LPR if they had a reflux symptom index (RSI) ≥ 13 and a reflux finding score (RFS) ≥ 7. Spectral analysis of heart rate variability (HRV) analysis was used to assess autonomic function. Anxiety and depression levels measured by the Beck Anxiety Inventory (BAI) and Beck Depression Inventory II (BDI-II) were also conducted. In HRV analysis, high frequency (HF) represents the parasympathetic activity of the autonomic nervous system, whereas low frequency (LF) represents the total autonomic activity. There were no significant differences in the LF power and HF power between the 2 groups. However, significantly lower HF% (P = .003) and a higher LF/HF ratio (P = .012) were found in patients with LPR, who demonstrated poor autonomic modulation and higher sympathetic activity. Anxiety was also frequently observed in the patient group. The study suggests that autonomic dysfunction seems to be involved in the pathogenesis of LPR. The potential beneficial effect of autonomic nervous system modulation as a therapeutic modality for LPR merits further investigation.

  7. Co-regulation analysis of co-expressed modules under cold and pathogen stress conditions in tomato.

    PubMed

    Abedini, Davar; Rashidi Monfared, Sajad

    2018-06-01

    A primary mechanism for controlling the development of multicellular organisms is transcriptional regulation, which carried out by transcription factors (TFs) that recognize and bind to their binding sites on promoter region. The distance from translation start site, order, orientation, and spacing between cis elements are key factors in the concentration of active nuclear TFs and transcriptional regulation of target genes. In this study, overrepresented motifs in cold and pathogenesis responsive genes were scanned via Gibbs sampling method, this method is based on detection of overrepresented motifs by means of a stochastic optimization strategy that searches for all possible sets of short DNA segments. Then, identified motifs were checked by TRANSFAC, PLACE and Soft Berry databases in order to identify putative TFs which, interact to the motifs. Several cis/trans regulatory elements were found using these databases. Moreover, cross-talk between cold and pathogenesis responsive genes were confirmed. Statistical analysis was used to determine distribution of identified motifs on promoter region. In addition, co-regulation analysis results, illustrated genes in pathogenesis responsive module are divided into two main groups. Also, promoter region was crunched to six subareas in order to draw the pattern of distribution of motifs in promoter subareas. The result showed the majority of motifs are concentrated on 700 nucleotides upstream of the translational start site (ATG). In contrast, this result isn't true in another group. In other words, there was no difference between total and compartmentalized regions in cold responsive genes.

  8. Pharmacological Modulation of GABA Function in Autism Spectrum Disorders: A Systematic Review of Human Studies

    ERIC Educational Resources Information Center

    Brondino, Natascia; Fusar-Poli, Laura; Panisi, Cristina; Damiani, Stefano; Barale, Francesco; Politi, Pierluigi

    2016-01-01

    Autism spectrum disorders are an emerging health problem worldwide, but little is known about their pathogenesis. It has been hypothesized that autism may result from an imbalance between excitatory glutamatergic and inhibitory GABAergic pathways. Commonly used medications such as valproate, acamprosate, and arbaclofen may act on the GABAergic…

  9. Loss of function of ATXN1 increases amyloid beta-protein levels by potentiating beta-secretase processing of beta-amyloid precursor protein.

    PubMed

    Zhang, Can; Browne, Andrew; Child, Daniel; Divito, Jason R; Stevenson, Jesse A; Tanzi, Rudolph E

    2010-03-19

    Alzheimer disease (AD) is a devastating neurodegenerative disease with complex and strong genetic inheritance. Four genes have been established to either cause familial early onset AD (APP, PSEN1, and PSEN2) or to increase susceptibility for late onset AD (APOE). To date approximately 80% of the late onset AD genetic variance remains elusive. Recently our genome-wide association screen identified four novel late onset AD candidate genes. Ataxin 1 (ATXN1) is one of these four AD candidate genes and has been indicated to be the disease gene for spinocerebellar ataxia type 1, which is also a neurodegenerative disease. Mounting evidence suggests that the excessive accumulation of Abeta, the proteolytic product of beta-amyloid precursor protein (APP), is the primary AD pathological event. In this study, we ask whether ATXN1 may lead to AD pathogenesis by affecting Abeta and APP processing utilizing RNA interference in a human neuronal cell model and mouse primary cortical neurons. We show that knock-down of ATXN1 significantly increases the levels of both Abeta40 and Abeta42. This effect could be rescued with concurrent overexpression of ATXN1. Moreover, overexpression of ATXN1 decreased Abeta levels. Regarding the underlying molecular mechanism, we show that the effect of ATXN1 expression on Abeta levels is modulated via beta-secretase cleavage of APP. Taken together, ATXN1 functions as a genetic risk modifier that contributes to AD pathogenesis through a loss-of-function mechanism by regulating beta-secretase cleavage of APP and Abeta levels.

  10. Loss of Function of ATXN1 Increases Amyloid β-Protein Levels by Potentiating β-Secretase Processing of β-Amyloid Precursor Protein*

    PubMed Central

    Zhang, Can; Browne, Andrew; Child, Daniel; DiVito, Jason R.; Stevenson, Jesse A.; Tanzi, Rudolph E.

    2010-01-01

    Alzheimer disease (AD) is a devastating neurodegenerative disease with complex and strong genetic inheritance. Four genes have been established to either cause familial early onset AD (APP, PSEN1, and PSEN2) or to increase susceptibility for late onset AD (APOE). To date ∼80% of the late onset AD genetic variance remains elusive. Recently our genome-wide association screen identified four novel late onset AD candidate genes. Ataxin 1 (ATXN1) is one of these four AD candidate genes and has been indicated to be the disease gene for spinocerebellar ataxia type 1, which is also a neurodegenerative disease. Mounting evidence suggests that the excessive accumulation of Aβ, the proteolytic product of β-amyloid precursor protein (APP), is the primary AD pathological event. In this study, we ask whether ATXN1 may lead to AD pathogenesis by affecting Aβ and APP processing utilizing RNA interference in a human neuronal cell model and mouse primary cortical neurons. We show that knock-down of ATXN1 significantly increases the levels of both Aβ40 and Aβ42. This effect could be rescued with concurrent overexpression of ATXN1. Moreover, overexpression of ATXN1 decreased Aβ levels. Regarding the underlying molecular mechanism, we show that the effect of ATXN1 expression on Aβ levels is modulated via β-secretase cleavage of APP. Taken together, ATXN1 functions as a genetic risk modifier that contributes to AD pathogenesis through a loss-of-function mechanism by regulating β-secretase cleavage of APP and Aβ levels. PMID:20097758

  11. 149 HCV AND lymphoma: Genetic and epigenetic factors

    PubMed Central

    Zignego, AL; Gragnani, L; Fognani, E; Piluso, A

    2014-01-01

    Over 180 million people worldwide are chronically infected with the hepatitis C virus (HCV). HCV infection is a major cause for hepatocellular carcinoma (HCC), moreover the association with B-cell lymphoproliferative disorders (LPDs) like mixed cryoglobulinemia (MC) or B-cell non-Hodgkin lymphoma (B-NHL) is undisputed. The mechanisms by which HCV contributes to LPD development are still poorly understood. Available data suggest that the viral infection may induce LPDs through a multifactorial and multistep process that involves the sustained activation of B cells, the abnormal and prolonged B cell survival, and genetic and/or epigenetic factors. Concerning genetic factors, different authors reported an association between specific HLA clusters or B-cell activating factor promoter genotype and a higher risk of developing MC and lymphoma. In addition, the results of a large, ongoing genome wide association study (GWAS) will probably allow the identification of specific genetic profile of HCV patients with LPDs. Furthermore, microRNAs (miRNAs) can give a major contribution to the pathogenesis of several neoplastic, lymphoproliferative diseases and it is conceivable their involvement in the pathogenesis of HCV-related LPDs. We recently showed that specific miRNAs were differently modulated in PBMCs from HCV patients who developed MC and/or NHL. In addition, HCV patients who developed HCC, showed a differential miRNAs regulation. In conclusion, available data suggest that the genetic/epigenetic analysis of HCV-related cancerogenesis is of great usefulness in both the pathogenetic and clinical/translational areas possibly allowing the definition of diagnostic/prognostic markers for early detection of lymphatic or hepatic cancer.

  12. Neutralizing inhibitors in the airways of naïve ferrets do not play a major role in modulating the virulence of H3 subtype influenza A viruses.

    PubMed

    Job, Emma R; Pizzolla, Angela; Nebl, Thomas; Short, Kirsty R; Deng, Yi-Mo; Carolan, Louise; Laurie, Karen L; Brooks, Andrew G; Reading, Patrick C

    2016-07-01

    Many insights regarding the pathogenesis of human influenza A virus (IAV) infections have come from studies in mice and ferrets. Surfactant protein (SP)-D is the major neutralizing inhibitor of IAV in mouse airway fluids and SP-D-resistant IAV mutants show enhanced virus replication and virulence in mice. Herein, we demonstrate that sialylated glycoproteins, rather than SP-D, represent the major neutralizing inhibitors against H3 subtype viruses in airway fluids from naïve ferrets. Moreover, while resistance to neutralizing inhibitors is a critical factor in modulating virus replication and disease in the mouse model, it does not appear to be so in the ferret model, as H3 mutants resistant to either SP-D or sialylated glycoproteins in ferret airway fluids did not show enhanced virulence in ferrets. These data have important implications for our understanding of pathogenesis and immunity to human IAV infections in these two widely used animal models of infection. Copyright © 2016. Published by Elsevier Inc.

  13. The role of IL-17 in vitiligo: A review.

    PubMed

    Singh, Rasnik K; Lee, Kristina M; Vujkovic-Cvijin, Ivan; Ucmak, Derya; Farahnik, Benjamin; Abrouk, Michael; Nakamura, Mio; Zhu, Tian Hao; Bhutani, Tina; Wei, Maria; Liao, Wilson

    2016-04-01

    IL-17 is involved in the pathogenesis of several autoimmune diseases; however its role in vitiligo has not been well defined. Emerging human and mouse studies have demonstrated that systemic, tissue, and cellular levels of IL-17 are elevated in vitiligo. Many studies have also shown significant positive correlations between these levels and disease activity, extent, and severity. Treatments that improve vitiligo, such as ultraviolet B phototherapy, also modulate IL-17 levels. This review synthesizes our current understanding of how IL-17 may influence the pathogenesis of autoimmune vitiligo at the molecular level. This has implications for defining new vitiligo biomarkers and treatments. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Effect of complement and its regulation on myasthenia gravis pathogenesis

    PubMed Central

    Kusner, Linda L; Kaminski, Henry J; Soltys, Jindrich

    2015-01-01

    Myasthenia gravis (MG) is primarily caused by antibodies directed towards the skeletal muscle acetylcholine receptor, leading to muscle weakness. Although these antibodies may induce compromise of neuromuscular transmission by blocking acetylcholine receptor function or antigenic modulation, the predominant mechanism of injury to the neuromuscular junction is complement-mediated lysis of the postsynaptic membrane. The vast majority of data to support the role of complement derives from experimentally acquired MG (EAMG). In this article, we review studies that demonstrate the central role of complement in EAMG and MG pathogenesis along with the emerging role of complement in T- and B-cell function, as well as the potential for complement inhibitor-based therapy to treat human MG. PMID:20477586

  15. Early embryonic demise: no evidence of abnormal spiral artery transformation or trophoblast invasion.

    PubMed

    Ball, E; Robson, S C; Ayis, S; Lyall, F; Bulmer, J N

    2006-03-01

    Invasion by extravillous trophoblast of uterine decidua and myometrium and the associated spiral artery 'transformation' are essential for the development of normal pregnancy. Small pilot studies of placental bed and basal plate tissues from miscarriages have suggested that impaired interstitial and endovascular trophoblast invasion may play a role in the pathogenesis of miscarriage. The hypothesis that early miscarriage is associated with reduced extravillous trophoblast invasion and spiral artery transformation was tested in a large series of placental bed biopsies containing decidua and myometrium and at least one spiral artery from early, karyotyped embryonic miscarriages (

  16. Pulmonary adenocarcinoma: A renewed entity in 2011

    PubMed Central

    Kadara, Humam; Kabbout, Mohamed; Wistuba, Ignacio I.

    2014-01-01

    Lung cancer, of which non-small-cell lung cancer comprises the majority, is the leading cause of cancer-related deaths in the United States and worldwide. Lung adenocarcinomas are a major subtype of non-small-cell lung cancers, are increasing in incidence globally in both males and females and in smokers and non-smokers, and are the cause for almost 50% of deaths attributable to lung cancer. Lung adenocarcinoma is a tumour with complex biology that we have recently started to understand with the advent of various histological, transcriptomic, genomic and proteomic technologies. However, the histological and molecular pathogenesis of this malignancy is still largely unknown. This review will describe advances in the molecular pathology of lung adenocarcinoma with emphasis on genomics and DNA alterations of this disease. Moreover, the review will discuss recognized lung adenocarcinoma preneoplastic lesions and current concepts of the early pathogenesis and progression of the disease. We will also portray the field cancerization phenomenon and lineage-specific oncogene expression pattern in lung cancer and how both remerging concepts can be exploited to increase our understanding of lung adenocarcinoma pathogenesis for subsequent development of biomarkers for early detection of adenocarcinomas and possibly personalized prevention. PMID:22040022

  17. Advances in the microbial etiology and pathogenesis of early childhood caries

    PubMed Central

    Hajishengallis, Evlambia; Parsaei, Yassmin; Klein, Marlise I.; Koo, Hyun

    2016-01-01

    Early childhood caries (ECC) is one of the most prevalent infectious diseases affecting children worldwide. ECC is an aggressive form of dental caries, which left untreated, can result in rapid and extensive cavitation in teeth (rampant caries) that is painful and costly to treat. Furthermore, it affects mostly children from impoverished background, and thus constitutes a major challenge in public health. The disease is a prime example of the consequences arising from complex, dynamic interactions between microorganisms, host and diet, leading to the establishment of highly pathogenic (cariogenic) biofilms. To date, there are no effective methods to identify those at risk of developing ECC or control the disease in affected children. Recent advances in deep-sequencing technologies, novel imaging methods and (meta)proteomics-metabolomics approaches provide an unparalleled potential to reveal new insights to illuminate our current understanding about the etiology and pathogenesis of the disease. In this concise review, we provide a broader perspective about the etiology and pathogenesis of ECC based on previous and current knowledge on biofilm matrix, microbial diversity and host-microbe interactions which could have direct implications for developing new approaches for improved risk assessment and prevention of this devastating and costly childhood health condition. PMID:26714612

  18. Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis.

    PubMed

    Ferrari, Raffaele; Forabosco, Paola; Vandrovcova, Jana; Botía, Juan A; Guelfi, Sebastian; Warren, Jason D; Momeni, Parastoo; Weale, Michael E; Ryten, Mina; Hardy, John

    2016-02-24

    In frontotemporal dementia (FTD) there is a critical lack in the understanding of biological and molecular mechanisms involved in disease pathogenesis. The heterogeneous genetic features associated with FTD suggest that multiple disease-mechanisms are likely to contribute to the development of this neurodegenerative condition. We here present a systems biology approach with the scope of i) shedding light on the biological processes potentially implicated in the pathogenesis of FTD and ii) identifying novel potential risk factors for FTD. We performed a gene co-expression network analysis of microarray expression data from 101 individuals without neurodegenerative diseases to explore regional-specific co-expression patterns in the frontal and temporal cortices for 12 genes (MAPT, GRN, CHMP2B, CTSC, HLA-DRA, TMEM106B, C9orf72, VCP, UBQLN2, OPTN, TARDBP and FUS) associated with FTD and we then carried out gene set enrichment and pathway analyses, and investigated known protein-protein interactors (PPIs) of FTD-genes products. Gene co-expression networks revealed that several FTD-genes (such as MAPT and GRN, CTSC and HLA-DRA, TMEM106B, and C9orf72, VCP, UBQLN2 and OPTN) were clustering in modules of relevance in the frontal and temporal cortices. Functional annotation and pathway analyses of such modules indicated enrichment for: i) DNA metabolism, i.e. transcription regulation, DNA protection and chromatin remodelling (MAPT and GRN modules); ii) immune and lysosomal processes (CTSC and HLA-DRA modules), and; iii) protein meta/catabolism (C9orf72, VCP, UBQLN2 and OPTN, and TMEM106B modules). PPI analysis supported the results of the functional annotation and pathway analyses. This work further characterizes known FTD-genes and elaborates on their biological relevance to disease: not only do we indicate likely impacted regional-specific biological processes driven by FTD-genes containing modules, but also do we suggest novel potential risk factors among the FTD-genes interactors as targets for further mechanistic characterization in hypothesis driven cell biology work.

  19. Development of an in vitro model of the early-stage bovine tuberculous granuloma using Mycobacterium bovis-BCG.

    PubMed

    Garza-Cuartero, Laura; McCarthy, Elaine; Brady, Joseph; Cassidy, Joseph; Hamilton, Clare; Sekiya, Mary; NcNair, Jim; Mulcahy, Grace

    2015-12-15

    Mycobacterium bovis causes 3.1% of human tuberculosis cases, as described by the World Health Organisation. In cattle, this organism causes bovine tuberculosis (BTB) which can have a prevalence of up to 39.5% in some developing countries. In developed countries, although the prevalence of BTB has been reduced through eradication programmes, complete eradication has in some cases proved elusive, with prevalences in cattle of 0.5% in the Republic of Ireland and of 4.3% in the UK. As the tuberculous granuloma is the fundamental lesion that reflects the pathogenesis, immune control and progression of BTB, we aimed to develop an in vitro model of the early-stage bovine tuberculous granuloma, in order to model the early stages of BTB, while also reducing the use of experimentally infected animals. In vitro models of human and ovine mycobacterial granulomas have previously been developed; however, so far, there is no model for the BTB granuloma. As the disease in cattle differs in a number of ways from that in other species, we consider this to be a significant gap in the tools available to study the pathogenesis of BTB. By combining bovine monocyte-derived macrophages infected with M. bovis-BCG and autologous lymphocytes we have developed an early-stage tuberculous bovine granuloma model. In the model, 3D cell aggregations formed a spherical-shape that grew for up to 11 days post-infection. This bovine tuberculous granuloma model can aid in the study of such lesion development, and in comparative studies of pathogenesis, such as, for example, the question of mycobacterial latency in bovine tuberculosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Probing the lithium-response pathway in hiPSCs implicates the phosphoregulatory set-point for a cytoskeletal modulator in bipolar pathogenesis

    PubMed Central

    Tobe, Brian T. D.; Crain, Andrew M.; Winquist, Alicia M.; Calabrese, Barbara; Makihara, Hiroko; Zhao, Wen-ning; Lalonde, Jasmin; Nakamura, Haruko; Konopaske, Glenn; Sidor, Michelle; Pernia, Cameron D.; Yamashita, Naoya; Wada, Moyuka; Inoue, Yuuka; Nakamura, Fumio; Sheridan, Steven D.; Logan, Ryan W.; Brandel, Michael; Wu, Dongmei; Hunsberger, Joshua; Dorsett, Laurel; Duerr, Cordulla; Basa, Ranor C. B.; McCarthy, Michael J.; Udeshi, Namrata D.; Mertins, Philipp; Carr, Steven A.; Rouleau, Guy A.; Mastrangelo, Lina; Li, Jianxue; Gutierrez, Gustavo J.; Brill, Laurence M.; Venizelos, Nikolaos; Chen, Guang; Nye, Jeffrey S.; Manji, Husseini; Price, Jeffrey H.; McClung, Colleen A.; Akiskal, Hagop S.; Chuang, De-Maw M.; Coyle, Joseph T.; Liu, Yang; Teng, Yang D.; Ohshima, Toshio; Mikoshiba, Katsuhiko; Sidman, Richard L.; Halpain, Shelley; Haggarty, Stephen J.; Goshima, Yoshio; Snyder, Evan Y.

    2017-01-01

    The molecular pathogenesis of bipolar disorder (BPD) is poorly understood. Using human-induced pluripotent stem cells (hiPSCs) to unravel such mechanisms in polygenic diseases is generally challenging. However, hiPSCs from BPD patients responsive to lithium offered unique opportunities to discern lithium's target and hence gain molecular insight into BPD. By profiling the proteomics of BDP–hiPSC-derived neurons, we found that lithium alters the phosphorylation state of collapsin response mediator protein-2 (CRMP2). Active nonphosphorylated CRMP2, which binds cytoskeleton, is present throughout the neuron; inactive phosphorylated CRMP2, which dissociates from cytoskeleton, exits dendritic spines. CRMP2 elimination yields aberrant dendritogenesis with diminished spine density and lost lithium responsiveness (LiR). The “set-point” for the ratio of pCRMP2:CRMP2 is elevated uniquely in hiPSC-derived neurons from LiR BPD patients, but not with other psychiatric (including lithium-nonresponsive BPD) and neurological disorders. Lithium (and other pathway modulators) lowers pCRMP2, increasing spine area and density. Human BPD brains show similarly elevated ratios and diminished spine densities; lithium therapy normalizes the ratios and spines. Consistent with such “spine-opathies,” human LiR BPD neurons with abnormal ratios evince abnormally steep slopes for calcium flux; lithium normalizes both. Behaviorally, transgenic mice that reproduce lithium's postulated site-of-action in dephosphorylating CRMP2 emulate LiR in BPD. These data suggest that the “lithium response pathway” in BPD governs CRMP2's phosphorylation, which regulates cytoskeletal organization, particularly in spines, modulating neural networks. Aberrations in the posttranslational regulation of this developmentally critical molecule may underlie LiR BPD pathogenesis. Instructively, examining the proteomic profile in hiPSCs of a functional agent—even one whose mechanism-of-action is unknown—might reveal otherwise inscrutable intracellular pathogenic pathways. PMID:28500272

  1. Probing the lithium-response pathway in hiPSCs implicates the phosphoregulatory set-point for a cytoskeletal modulator in bipolar pathogenesis.

    PubMed

    Tobe, Brian T D; Crain, Andrew M; Winquist, Alicia M; Calabrese, Barbara; Makihara, Hiroko; Zhao, Wen-Ning; Lalonde, Jasmin; Nakamura, Haruko; Konopaske, Glenn; Sidor, Michelle; Pernia, Cameron D; Yamashita, Naoya; Wada, Moyuka; Inoue, Yuuka; Nakamura, Fumio; Sheridan, Steven D; Logan, Ryan W; Brandel, Michael; Wu, Dongmei; Hunsberger, Joshua; Dorsett, Laurel; Duerr, Cordulla; Basa, Ranor C B; McCarthy, Michael J; Udeshi, Namrata D; Mertins, Philipp; Carr, Steven A; Rouleau, Guy A; Mastrangelo, Lina; Li, Jianxue; Gutierrez, Gustavo J; Brill, Laurence M; Venizelos, Nikolaos; Chen, Guang; Nye, Jeffrey S; Manji, Husseini; Price, Jeffrey H; McClung, Colleen A; Akiskal, Hagop S; Alda, Martin; Chuang, De-Maw M; Coyle, Joseph T; Liu, Yang; Teng, Yang D; Ohshima, Toshio; Mikoshiba, Katsuhiko; Sidman, Richard L; Halpain, Shelley; Haggarty, Stephen J; Goshima, Yoshio; Snyder, Evan Y

    2017-05-30

    The molecular pathogenesis of bipolar disorder (BPD) is poorly understood. Using human-induced pluripotent stem cells (hiPSCs) to unravel such mechanisms in polygenic diseases is generally challenging. However, hiPSCs from BPD patients responsive to lithium offered unique opportunities to discern lithium's target and hence gain molecular insight into BPD. By profiling the proteomics of BDP-hiPSC-derived neurons, we found that lithium alters the phosphorylation state of collapsin response mediator protein-2 (CRMP2). Active nonphosphorylated CRMP2, which binds cytoskeleton, is present throughout the neuron; inactive phosphorylated CRMP2, which dissociates from cytoskeleton, exits dendritic spines. CRMP2 elimination yields aberrant dendritogenesis with diminished spine density and lost lithium responsiveness (LiR). The "set-point" for the ratio of pCRMP2:CRMP2 is elevated uniquely in hiPSC-derived neurons from LiR BPD patients, but not with other psychiatric (including lithium-nonresponsive BPD) and neurological disorders. Lithium (and other pathway modulators) lowers pCRMP2, increasing spine area and density. Human BPD brains show similarly elevated ratios and diminished spine densities; lithium therapy normalizes the ratios and spines. Consistent with such "spine-opathies," human LiR BPD neurons with abnormal ratios evince abnormally steep slopes for calcium flux; lithium normalizes both. Behaviorally, transgenic mice that reproduce lithium's postulated site-of-action in dephosphorylating CRMP2 emulate LiR in BPD. These data suggest that the "lithium response pathway" in BPD governs CRMP2's phosphorylation, which regulates cytoskeletal organization, particularly in spines, modulating neural networks. Aberrations in the posttranslational regulation of this developmentally critical molecule may underlie LiR BPD pathogenesis. Instructively, examining the proteomic profile in hiPSCs of a functional agent-even one whose mechanism-of-action is unknown-might reveal otherwise inscrutable intracellular pathogenic pathways.

  2. Subinhibitory antibiotic therapy alters recurrent urinary tract infection pathogenesis through modulation of bacterial virulence and host immunity.

    PubMed

    Goneau, Lee W; Hannan, Thomas J; MacPhee, Roderick A; Schwartz, Drew J; Macklaim, Jean M; Gloor, Gregory B; Razvi, Hassan; Reid, Gregor; Hultgren, Scott J; Burton, Jeremy P

    2015-03-31

    The capacity of subinhibitory levels of antibiotics to modulate bacterial virulence in vitro has recently been brought to light, raising concerns over the appropriateness of low-dose therapies, including antibiotic prophylaxis for recurrent urinary tract infection management. However, the mechanisms involved and their relevance in influencing pathogenesis have not been investigated. We characterized the ability of antibiotics to modulate virulence in the uropathogens Staphylococcus saprophyticus and Escherichia coli. Several antibiotics were able to induce the expression of adhesins critical to urothelial colonization, resulting in increased biofilm formation, colonization of murine bladders and kidneys, and promotion of intracellular niche formation. Mice receiving subinhibitory ciprofloxacin treatment were also more susceptible to severe infections and frequent recurrences. A ciprofloxacin prophylaxis model revealed this strategy to be ineffective in reducing recurrences and worsened infection by creating larger intracellular reservoirs at higher frequencies. Our study indicates that certain agents used for antibiotic prophylaxis have the potential to complicate infections. Antibiotics are the mainstay treatment for bacterial infections; however, evidence is emerging that argues these agents may have off-target effects if sublethal concentrations are present. Most studies have focused on changes occurring in vitro, leaving questions regarding the clinical relevance in vivo. We utilized a murine urinary tract infection model to explore the potential impact of low-dose antibiotics on pathogenesis. Using this model, we showed that subinhibitory antibiotics prime uropathogens for adherence and invasion of murine urothelial tissues. These changes in initial colonization promoted the establishment of chronic infection. Furthermore, treatment of chronically infected mice with subtherapeutic ciprofloxacin served to exacerbate infection. A part of these changes was thought to be due to suppression of mucosal immunity, as demonstrated through reductions in cytokine secretion and migration of leukocytes into the urinary tract. This work identifies novel risk factors associated with antibiotic therapy when dosing strategies fall below subtherapeutic levels. Copyright © 2015 Goneau et al.

  3. Diet and microbiota in inflammatory bowel disease: The gut in disharmony.

    PubMed

    Rapozo, Davy C M; Bernardazzi, Claudio; de Souza, Heitor Siffert Pereira

    2017-03-28

    Bacterial colonization of the gut shapes both the local and the systemic immune response and is implicated in the modulation of immunity in both healthy and disease states. Recently, quantitative and qualitative changes in the composition of the gut microbiota have been detected in Crohn's disease and ulcerative colitis, reinforcing the hypothesis of dysbiosis as a relevant mechanism underlying inflammatory bowel disease (IBD) pathogenesis. Humans and microbes have co-existed and co-evolved for a long time in a mutually beneficial symbiotic association essential for maintaining homeostasis. However, the microbiome is dynamic, changing with age and in response to environmental modifications. Among such environmental factors, food and alimentary habits, progressively altered in modern societies, appear to be critical modulators of the microbiota, contributing to or co-participating in dysbiosis. In addition, food constituents such as micronutrients are important regulators of mucosal immunity, with direct or indirect effects on the gut microbiota. Moreover, food constituents have recently been shown to modulate epigenetic mechanisms, which can result in increased risk for the development and progression of IBD. Therefore, it is likely that a better understanding of the role of different food components in intestinal homeostasis and the resident microbiota will be essential for unravelling the complex molecular basis of the epigenetic, genetic and environment interactions underlying IBD pathogenesis as well as for offering dietary interventions with minimal side effects.

  4. Diet and microbiota in inflammatory bowel disease: The gut in disharmony

    PubMed Central

    Rapozo, Davy C M; Bernardazzi, Claudio; de Souza, Heitor Siffert Pereira

    2017-01-01

    Bacterial colonization of the gut shapes both the local and the systemic immune response and is implicated in the modulation of immunity in both healthy and disease states. Recently, quantitative and qualitative changes in the composition of the gut microbiota have been detected in Crohn’s disease and ulcerative colitis, reinforcing the hypothesis of dysbiosis as a relevant mechanism underlying inflammatory bowel disease (IBD) pathogenesis. Humans and microbes have co-existed and co-evolved for a long time in a mutually beneficial symbiotic association essential for maintaining homeostasis. However, the microbiome is dynamic, changing with age and in response to environmental modifications. Among such environmental factors, food and alimentary habits, progressively altered in modern societies, appear to be critical modulators of the microbiota, contributing to or co-participating in dysbiosis. In addition, food constituents such as micronutrients are important regulators of mucosal immunity, with direct or indirect effects on the gut microbiota. Moreover, food constituents have recently been shown to modulate epigenetic mechanisms, which can result in increased risk for the development and progression of IBD. Therefore, it is likely that a better understanding of the role of different food components in intestinal homeostasis and the resident microbiota will be essential for unravelling the complex molecular basis of the epigenetic, genetic and environment interactions underlying IBD pathogenesis as well as for offering dietary interventions with minimal side effects. PMID:28405140

  5. A cell wall-degrading esterase of Xanthomonas oryzae requires a unique substrate recognition module for pathogenesis on rice.

    PubMed

    Aparna, Gudlur; Chatterjee, Avradip; Sonti, Ramesh V; Sankaranarayanan, Rajan

    2009-06-01

    Xanthomonas oryzae pv oryzae (Xoo) causes bacterial blight, a serious disease of rice (Oryza sativa). LipA is a secretory virulence factor of Xoo, implicated in degradation of rice cell walls and the concomitant elicitation of innate immune responses, such as callose deposition and programmed cell death. Here, we present the high-resolution structural characterization of LipA that reveals an all-helical ligand binding module as a distinct functional attachment to the canonical hydrolase catalytic domain. We demonstrate that the enzyme binds to a glycoside ligand through a rigid pocket comprising distinct carbohydrate-specific and acyl chain recognition sites where the catalytic triad is situated 15 A from the anchored carbohydrate. Point mutations disrupting the carbohydrate anchor site or blocking the pocket, even at a considerable distance from the enzyme active site, can abrogate in planta LipA function, exemplified by loss of both virulence and the ability to elicit host defense responses. A high conservation of the module across genus Xanthomonas emphasizes the significance of this unique plant cell wall-degrading function for this important group of plant pathogenic bacteria. A comparison with the related structural families illustrates how a typical lipase is recruited to act on plant cell walls to promote virulence, thus providing a remarkable example of the emergence of novel functions around existing scaffolds for increased proficiency of pathogenesis during pathogen-plant coevolution.

  6. Urine metabolic profiling for the pathogenesis research of erosive oral lichen planus.

    PubMed

    Li, Xu-Zhao; Yang, Xu-Yan; Wang, Yu; Zhang, Shuai-Nan; Zou, Wei; Wang, Yan; Li, Xiao-Nan; Wang, Ling-Shu; Zhang, Zhi-Gang; Xie, Liang-Zhen

    2017-01-01

    Oral lichen planus (OLP) is a relatively common chronic immune-pathological and inflammatory disease and potentially oral precancerous lesion. Erosive OLP patients show the higher rate of malignant transformation than patients with non-erosive OLP. Identifying the potential biomarkers related to erosive OLP may help to understand the pathogenesis of the diseases. Metabolic profiles were compared in control and patient subjects with erosive OLP by using ultra-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UPLC-QTOF-MS) coupled with pattern recognition methods An integrative analysis was used to identify the perturbed metabolic pathways and pathological processes that may be associated with the disease. In total, 12 modulated metabolites were identified and considered as the potential biomarkers of erosive OLP. Multiple metabolic pathways and pathological processes were involved in erosive OLP. The dysregulations of these metabolites could be used to explain the pathogenesis of the disease, which could also be the potential therapeutic targets for the disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Advances in understanding the pathogenesis of CNS acute lymphoblastic leukaemia and potential for therapy.

    PubMed

    Frishman-Levy, Liron; Izraeli, Shai

    2017-01-01

    Central nervous system acute lymphoblastic leukaemia (CNS-ALL) is a major clinical problem. CNS-directed 'prophylactic' chemo- or radio - therapy is associated with significant early and long-term toxicity. Moreover, greater than a third of the relapses occur in the CNS. To design specific, more effective and less toxic therapy and for personalized precise adjustment of prophylactic therapy there is a need for better understanding of the biology of this disease. Specifically, the precise neurotropic mechanisms of ALL are currently unclear, as is the pathogenesis of CNS relapse. Here we review and contrast the recent findings with earlier studies of pathogenesis of CNS leukaemia. We also describe the challenges in research of this devastating complication of ALL. © 2016 John Wiley & Sons Ltd.

  8. Adjustment of Dysregulated Ceramide Metabolism in a Murine Model of Sepsis-Induced Cardiac Dysfunction

    PubMed Central

    Chung, Ha-Yeun; Kollmey, Anna S.; Schrepper, Andrea; Kohl, Matthias; Bläss, Markus F.; Stehr, Sebastian N.; Lupp, Amelie; Gräler, Markus H.; Claus, Ralf A.

    2017-01-01

    Cardiac dysfunction, in particular of the left ventricle, is a common and early event in sepsis, and is strongly associated with an increase in patients’ mortality. Acid sphingomyelinase (SMPD1)—the principal regulator for rapid and transient generation of the lipid mediator ceramide—is involved in both the regulation of host response in sepsis as well as in the pathogenesis of chronic heart failure. This study determined the degree and the potential role to which SMPD1 and its modulation affect sepsis-induced cardiomyopathy using both genetically deficient and pharmacologically-treated animals in a polymicrobial sepsis model. As surrogate parameters of sepsis-induced cardiomyopathy, cardiac function, markers of oxidative stress as well as troponin I levels were found to be improved in desipramine-treated animals, desipramine being an inhibitor of ceramide formation. Additionally, ceramide formation in cardiac tissue was dysregulated in SMPD1+/+ as well as SMPD1−/− animals, whereas desipramine pretreatment resulted in stable, but increased ceramide content during host response. This was a result of elevated de novo synthesis. Strikingly, desipramine treatment led to significantly improved levels of surrogate markers. Furthermore, similar results in desipramine-pretreated SMPD1−/− littermates suggest an SMPD1-independent pathway. Finally, a pattern of differentially expressed transcripts important for regulation of apoptosis as well as antioxidative and cytokine response supports the concept that desipramine modulates ceramide formation, resulting in beneficial myocardial effects. We describe a novel, protective role of desipramine during sepsis-induced cardiac dysfunction that controls ceramide content. In addition, it may be possible to modulate cardiac function during host response by pre-conditioning with the Food and Drug Administration (FDA)-approved drug desipramine. PMID:28420138

  9. Adjustment of Dysregulated Ceramide Metabolism in a Murine Model of Sepsis-Induced Cardiac Dysfunction.

    PubMed

    Chung, Ha-Yeun; Kollmey, Anna S; Schrepper, Andrea; Kohl, Matthias; Bläss, Markus F; Stehr, Sebastian N; Lupp, Amelie; Gräler, Markus H; Claus, Ralf A

    2017-04-15

    Cardiac dysfunction, in particular of the left ventricle, is a common and early event in sepsis, and is strongly associated with an increase in patients' mortality. Acid sphingomyelinase (SMPD1)-the principal regulator for rapid and transient generation of the lipid mediator ceramide-is involved in both the regulation of host response in sepsis as well as in the pathogenesis of chronic heart failure. This study determined the degree and the potential role to which SMPD1 and its modulation affect sepsis-induced cardiomyopathy using both genetically deficient and pharmacologically-treated animals in a polymicrobial sepsis model. As surrogate parameters of sepsis-induced cardiomyopathy, cardiac function, markers of oxidative stress as well as troponin I levels were found to be improved in desipramine-treated animals, desipramine being an inhibitor of ceramide formation. Additionally, ceramide formation in cardiac tissue was dysregulated in SMPD1 +/+ as well as SMPD1 -/- animals, whereas desipramine pretreatment resulted in stable, but increased ceramide content during host response. This was a result of elevated de novo synthesis. Strikingly, desipramine treatment led to significantly improved levels of surrogate markers. Furthermore, similar results in desipramine-pretreated SMPD1 -/- littermates suggest an SMPD1-independent pathway. Finally, a pattern of differentially expressed transcripts important for regulation of apoptosis as well as antioxidative and cytokine response supports the concept that desipramine modulates ceramide formation, resulting in beneficial myocardial effects. We describe a novel, protective role of desipramine during sepsis-induced cardiac dysfunction that controls ceramide content. In addition, it may be possible to modulate cardiac function during host response by pre-conditioning with the Food and Drug Administration (FDA)-approved drug desipramine.

  10. The Rat With Oxygen-Induced Retinopathy Is Myopic With Low Retinal Dopamine

    PubMed Central

    Zhang, Nan; Favazza, Tara L.; Baglieri, Anna Maria; Benador, Ilan Y.; Noonan, Emily R.; Fulton, Anne B.; Hansen, Ronald M.; Iuvone, P. Michael; Akula, James D.

    2013-01-01

    Purpose. Dopamine (DA) is a neurotransmitter implicated both in modulating neural retinal signals and in eye growth. Therefore, it may participate in the pathogenesis of the most common clinical sequelae of retinopathy of prematurity (ROP), visual dysfunction and myopia. Paradoxically, in ROP myopia the eye is usually small. The eye of the rat with oxygen-induced retinopathy (OIR) is characterized by retinal dysfunction and short axial length. There have been several investigations of the early maturation of DA in rat retina, but little at older ages, and not in the OIR rat. Therefore, DA, retinal function, and refractive state were investigated in the OIR rat. Methods. In one set of rats, the development of dopaminergic (DAergic) networks was evaluated in retinal cross-sections from rats aged 14 to 120 days using antibodies against tyrosine hydroxylase (TH, the rate-limiting enzyme in the biosynthesis of DA). In another set of rats, retinoscopy was used to evaluate spherical equivalent (SE), electoretinography (ERG) was used to evaluate retinal function, and high-pressure liquid chromatography (HPLC) was used to evaluate retinal contents of DA, its precursor levodopamine (DOPA), and its primary metabolite 3,4-dihydroxyphenylacetic acid (DOPAC). Results. The normally rapid postnatal ramification of DAergic neurons was disrupted in OIR rats. Retinoscopy revealed that OIR rats were relatively myopic. In the same eyes, ERG confirmed retinal dysfunction in OIR. HPLC of those eyes' retinae confirmed low DA. Regression analysis indicated that DA metabolism (evaluated by the ratio of DOPAC to DA) was an important additional predictor of myopia beyond OIR. Conclusions. The OIR rat is the first known animal model of myopia in which the eye is smaller than normal. Dopamine may modulate, or fail to modulate, neural activity in the OIR eye, and thus contribute to this peculiar myopia. PMID:24168993

  11. The rat with oxygen-induced retinopathy is myopic with low retinal dopamine.

    PubMed

    Zhang, Nan; Favazza, Tara L; Baglieri, Anna Maria; Benador, Ilan Y; Noonan, Emily R; Fulton, Anne B; Hansen, Ronald M; Iuvone, P Michael; Akula, James D

    2013-12-19

    Dopamine (DA) is a neurotransmitter implicated both in modulating neural retinal signals and in eye growth. Therefore, it may participate in the pathogenesis of the most common clinical sequelae of retinopathy of prematurity (ROP), visual dysfunction and myopia. Paradoxically, in ROP myopia the eye is usually small. The eye of the rat with oxygen-induced retinopathy (OIR) is characterized by retinal dysfunction and short axial length. There have been several investigations of the early maturation of DA in rat retina, but little at older ages, and not in the OIR rat. Therefore, DA, retinal function, and refractive state were investigated in the OIR rat. In one set of rats, the development of dopaminergic (DAergic) networks was evaluated in retinal cross-sections from rats aged 14 to 120 days using antibodies against tyrosine hydroxylase (TH, the rate-limiting enzyme in the biosynthesis of DA). In another set of rats, retinoscopy was used to evaluate spherical equivalent (SE), electoretinography (ERG) was used to evaluate retinal function, and high-pressure liquid chromatography (HPLC) was used to evaluate retinal contents of DA, its precursor levodopamine (DOPA), and its primary metabolite 3,4-dihydroxyphenylacetic acid (DOPAC). The normally rapid postnatal ramification of DAergic neurons was disrupted in OIR rats. Retinoscopy revealed that OIR rats were relatively myopic. In the same eyes, ERG confirmed retinal dysfunction in OIR. HPLC of those eyes' retinae confirmed low DA. Regression analysis indicated that DA metabolism (evaluated by the ratio of DOPAC to DA) was an important additional predictor of myopia beyond OIR. The OIR rat is the first known animal model of myopia in which the eye is smaller than normal. Dopamine may modulate, or fail to modulate, neural activity in the OIR eye, and thus contribute to this peculiar myopia.

  12. Modulating the Levels of Plant Hormone Cytokinins at the Host-Pathogen Interface.

    PubMed

    Naseem, Muhammad; Shams, Shabana; Roitsch, Thomas

    2017-01-01

    Cytokinins are adenine and non-adenine derived heterogeneous class of regulatory molecules that participate in almost every aspect of plant biology. They also affect plant defense responses as well as help microbial pathogens to establish pathogenesis. The functional approaches that ensure desired and subtle modulations in the levels of plant cytokinins are highly instrumental in assessing their functions in plant immunity. Here, we describe a detailed working protocol regarding the enhanced production of cytokinins from plants that harbor isopentenyltransferase (IPT) enzyme gene under the control of 4xJERE (jasmonic acid and elicitor-responsive element) pathogen-inducible promoter. Our devised expression system is a context-dependent solution when it comes to investigating host-pathogen interactions under the modulated conditions of plant cytokinins.

  13. The neuropharmacology of upper airway motor control in the awake and asleep states: implications for obstructive sleep apnoea

    PubMed Central

    Horner, Richard L

    2001-01-01

    Obstructive sleep apnoea is a common and serious breathing problem that is caused by effects of sleep on pharyngeal muscle tone in individuals with narrow upper airways. There has been increasing focus on delineating the brain mechanisms that modulate pharyngeal muscle activity in the awake and asleep states in order to understand the pathogenesis of obstructive apnoeas and to develop novel neurochemical treatments. Although initial clinical studies have met with only limited success, it is proposed that more rational and realistic approaches may be devised for neurochemical modulation of pharyngeal muscle tone as the relevant neurotransmitters and receptors that are involved in sleep-dependent modulation are identified following basic experiments. PMID:11686898

  14. HLA-B27-Homodimer-Specific Antibody Modulates the Expansion of Pro-Inflammatory T-Cells in HLA-B27 Transgenic Rats.

    PubMed

    Marroquin Belaunzaran, Osiris; Kleber, Sascha; Schauer, Stefan; Hausmann, Martin; Nicholls, Flora; Van den Broek, Maries; Payeli, Sravan; Ciurea, Adrian; Milling, Simon; Stenner, Frank; Shaw, Jackie; Kollnberger, Simon; Bowness, Paul; Petrausch, Ulf; Renner, Christoph

    2015-01-01

    HLA-B27 is a common genetic risk factor for the development of Spondyloarthritides (SpA). HLA-B27 can misfold to form cell-surface heavy chain homodimers (B272) and induce pro-inflammatory responses that may lead to SpA pathogenesis. The presence of B272 can be detected on leukocytes of HLA-B27+ Ankylosing spondylitis (AS) patients and HLA-B27 transgenic rats. We characterized a novel B272-specific monoclonal antibody to study its therapeutic use in HLA-B27 associated disorders. The monoclonal HD5 antibody was selected from a phage library to target cell-surface B272 homodimers and characterized for affinity, specificity and ligand binding. The immune modulating effect of HD5 was tested in HLA-B27 transgenic rats. Onset and progression of disease profiles were monitored during therapy. Cell-surface B272 and expansion of pro-inflammatory cells from blood, spleen and draining lymph nodes were assessed by flow cytometry. HD5 bound B272 with high specificity and affinity (Kd = 0.32 nM). HD5 blocked cell-surface interaction of B272 with immune regulatory receptors KIR3DL2, LILRB2 and Pirb. In addition, HD5 modulated the production of TNF from CD4+ T-cells by limiting B272 interactions in vitro. In an HLA-B27 transgenic rat model repetitive dosing of HD5 reduced the expansion of pro-inflammatory CD4+ T-cells, and decreased the levels of soluble TNF and number of cell-surface B272 molecules. HD5 predominantly inhibits early TNF production and expansion of pro-inflammatory CD4+ T-cells in HLA-B27 transgenic rats. Monoclonal antibodies targeting cell-surface B272 propose a new concept for the modulation of inflammatory responses in HLA-B27 related disorders.

  15. HLA-B27-Homodimer-Specific Antibody Modulates the Expansion of Pro-Inflammatory T-Cells in HLA-B27 Transgenic Rats

    PubMed Central

    Marroquin Belaunzaran, Osiris; Kleber, Sascha; Schauer, Stefan; Hausmann, Martin; Nicholls, Flora; Van den Broek, Maries; Payeli, Sravan; Ciurea, Adrian; Milling, Simon; Stenner, Frank; Shaw, Jackie; Kollnberger, Simon; Bowness, Paul; Petrausch, Ulf; Renner, Christoph

    2015-01-01

    Objectives HLA-B27 is a common genetic risk factor for the development of Spondyloarthritides (SpA). HLA-B27 can misfold to form cell-surface heavy chain homodimers (B272) and induce pro-inflammatory responses that may lead to SpA pathogenesis. The presence of B272 can be detected on leukocytes of HLA-B27+ Ankylosing spondylitis (AS) patients and HLA-B27 transgenic rats. We characterized a novel B272–specific monoclonal antibody to study its therapeutic use in HLA-B27 associated disorders. Methods The monoclonal HD5 antibody was selected from a phage library to target cell-surface B272 homodimers and characterized for affinity, specificity and ligand binding. The immune modulating effect of HD5 was tested in HLA-B27 transgenic rats. Onset and progression of disease profiles were monitored during therapy. Cell-surface B272 and expansion of pro-inflammatory cells from blood, spleen and draining lymph nodes were assessed by flow cytometry. Results HD5 bound B272 with high specificity and affinity (Kd = 0.32 nM). HD5 blocked cell-surface interaction of B272 with immune regulatory receptors KIR3DL2, LILRB2 and Pirb. In addition, HD5 modulated the production of TNF from CD4+ T-cells by limiting B272 interactions in vitro. In an HLA-B27 transgenic rat model repetitive dosing of HD5 reduced the expansion of pro-inflammatory CD4+ T-cells, and decreased the levels of soluble TNF and number of cell-surface B272 molecules. Conclusion HD5 predominantly inhibits early TNF production and expansion of pro-inflammatory CD4+ T-cells in HLA-B27 transgenic rats. Monoclonal antibodies targeting cell-surface B272 propose a new concept for the modulation of inflammatory responses in HLA-B27 related disorders. PMID:26125554

  16. Genetic and expression analyses reveal elevated expression of syntaxin 1A ( STX1A) in high functioning autism.

    PubMed

    Nakamura, Kazuhiko; Anitha, Ayyappan; Yamada, Kazuo; Tsujii, Masatsugu; Iwayama, Yoshimi; Hattori, Eiji; Toyota, Tomoko; Suda, Shiro; Takei, Noriyoshi; Iwata, Yasuhide; Suzuki, Katsuaki; Matsuzaki, Hideo; Kawai, Masayoshi; Sekine, Yoshimoto; Tsuchiya, Kenji J; Sugihara, Gen-Ichi; Ouchi, Yasuomi; Sugiyama, Toshiro; Yoshikawa, Takeo; Mori, Norio

    2008-12-01

    Autism is a pervasive developmental disorder diagnosed in early childhood. Abnormalities of serotonergic neurotransmission have been reported in autism. Serotonin transporter (5-HTT), which modulates serotonin levels, is a major therapeutic target in autism. Therefore, factors that regulate 5-HTT expression might be implicated in autism. One candidate 5-HTT-regulatory protein is the presynaptic protein, syntaxin 1A (STX1A). We examined the association of STX1A with autism in a trio association study using DNA samples from 249 AGRE trios with autistic probands. Only male probands were selected, since autism is more prevalent among males. The probands of 102 trios had IQ>70, and were considered as high functioning autism (HFA). In transmission disequilibrium test (TDT) analysis, rs2293485 (p=0.034) and rs4717806 (p=0.033) showed nominal associations with HFA; modest haplotype association was also observed. The SNPs that showed associations were related to early developmental abnormalities (ADI-R_D). We further compared STX1A mRNA expression in the lymphocytes of drug-naive HFA patients (n=12) and age- and sex-matched controls (n=13). STX1A expression in the HFA group was significantly higher (p=0.001) than that of controls. Thus, we suggest a possible role of STX1A in the pathogenesis of HFA. During early childhood, there is a period of high brain serotonin synthesis that is disrupted in autistic children; STX1A might influence the serotonergic system during this stage of neurodevelopment, as implied by the association with ADI-R_D.

  17. Conserved Oligopeptide Permeases Modulate Sporulation Initiation in Clostridium difficile

    PubMed Central

    Edwards, Adrianne N.; Nawrocki, Kathryn L.

    2014-01-01

    The anaerobic gastrointestinal pathogen Clostridium difficile must form a metabolically dormant spore to survive in oxygenic environments and be transmitted from host to host. The regulatory factors by which C. difficile initiates and controls the early stages of sporulation in C. difficile are not highly conserved in other Clostridium or Bacillus species. Here, we investigated the role of two conserved oligopeptide permeases, Opp and App, in the regulation of sporulation in C. difficile. These permeases are known to positively affect sporulation in Bacillus species through the import of sporulation-specific quorum-sensing peptides. In contrast to other spore-forming bacteria, we discovered that inactivating these permeases in C. difficile resulted in the earlier expression of early sporulation genes and increased sporulation in vitro. Furthermore, disruption of opp and app resulted in greater virulence and increased the amounts of spores recovered from feces in the hamster model of C. difficile infection. Our data suggest that Opp and App indirectly inhibit sporulation, likely through the activities of the transcriptional regulator SinR and its inhibitor, SinI. Taken together, these results indicate that the Opp and App transporters serve a different function in controlling sporulation and virulence in C. difficile than in Bacillus subtilis and suggest that nutrient availability plays a significant role in pathogenesis and sporulation in vivo. This study suggests a link between the nutritional status of the environment and sporulation initiation in C. difficile. PMID:25069979

  18. NADPH Oxidase-Driven Phagocyte Recruitment Controls Candida albicans Filamentous Growth and Prevents Mortality

    PubMed Central

    Brothers, Kimberly M.; Gratacap, Remi L.; Barker, Sarah E.; Newman, Zachary R.; Norum, Ashley; Wheeler, Robert T.

    2013-01-01

    Candida albicans is a human commensal and clinically important fungal pathogen that grows as both yeast and hyphal forms during human, mouse and zebrafish infection. Reactive oxygen species (ROS) produced by NADPH oxidases play diverse roles in immunity, including their long-appreciated function as microbicidal oxidants. Here we demonstrate a non-traditional mechanistic role of NADPH oxidase in promoting phagocyte chemotaxis and intracellular containment of fungi to limit filamentous growth. We exploit the transparent zebrafish model to show that failed NADPH oxidase-dependent phagocyte recruitment to C. albicans in the first four hours post-infection permits fungi to germinate extracellularly and kill the host. We combine chemical and genetic tools with high-resolution time-lapse microscopy to implicate both phagocyte oxidase and dual-specific oxidase in recruitment, suggesting that both myeloid and non-myeloid cells promote chemotaxis. We show that early non-invasive imaging provides a robust tool for prognosis, strongly connecting effective early immune response with survival. Finally, we demonstrate a new role of a key regulator of the yeast-to-hyphal switching program in phagocyte-mediated containment, suggesting that there are species-specific methods for modulation of NADPH oxidase-independent immune responses. These novel links between ROS-driven chemotaxis and fungal dimorphism expand our view of a key host defense mechanism and have important implications for pathogenesis. PMID:24098114

  19. Lutein and zeaxanthin supplementation reduces photo-oxidative damage and modulates the expression of inflammation related genes in retinal pigment epithelial cells

    USDA-ARS?s Scientific Manuscript database

    Oxidative damage and inflammation are related to the pathogenesis of age-related macular degeneration (AMD). Epidemiologic studies suggest that insufficient dietary lutein and zeaxanthin intake or lower serum zeaxanthin levels are associated with increased risk for AMD. The objective of this work w...

  20. Potential Use of γ-Secretase Modulators in the Treatment of Alzheimer Disease

    PubMed Central

    Wagner, Steven L.; Tanzi, Rudolph E.; Mobley, William C.; Galasko, Douglas

    2013-01-01

    Although significant progress has occurred in the past 20 years regarding our understanding of Alzheimer disease pathogenesis, we have yet to identify disease-modifying therapeutics capable of substantially altering the clinical course of this prevalent neurodegenerative disease. In this short review, we discuss 2 approaches that are currently being tested clinically (γ-secretase inhibition and γ-secretase modulation) and emphasize the significant differences between these 2 therapeutic approaches. We also discuss certain genetic- and biomarker-based translational and clinical trial paradigms that may assist in developing a useful therapeutic agent. PMID:22801784

  1. Murine Coronavirus Ubiquitin-Like Domain Is Important for Papain-Like Protease Stability and Viral Pathogenesis

    PubMed Central

    Mielech, Anna M.; Deng, Xufang; Chen, Yafang; Kindler, Eveline; Wheeler, Dorthea L.; Mesecar, Andrew D.; Thiel, Volker; Perlman, Stanley

    2015-01-01

    ABSTRACT Ubiquitin-like domains (Ubls) now are recognized as common elements adjacent to viral and cellular proteases; however, their function is unclear. Structural studies of the papain-like protease (PLP) domains of coronaviruses (CoVs) revealed an adjacent Ubl domain in severe acute respiratory syndrome CoV, Middle East respiratory syndrome CoV, and the murine CoV, mouse hepatitis virus (MHV). Here, we tested the effect of altering the Ubl adjacent to PLP2 of MHV on enzyme activity, viral replication, and pathogenesis. Using deletion and substitution approaches, we identified sites within the Ubl domain, residues 785 to 787 of nonstructural protein 3, which negatively affect protease activity, and valine residues 785 and 787, which negatively affect deubiquitinating activity. Using reverse genetics, we engineered Ubl mutant viruses and found that AM2 (V787S) and AM3 (V785S) viruses replicate efficiently at 37°C but generate smaller plaques than wild-type (WT) virus, and AM2 is defective for replication at higher temperatures. To evaluate the effect of the mutation on protease activity, we purified WT and Ubl mutant PLP2 and found that the proteases exhibit similar specific activities at 25°C. However, the thermal stability of the Ubl mutant PLP2 was significantly reduced at 30°C, thereby reducing the total enzymatic activity. To determine if the destabilizing mutation affects viral pathogenesis, we infected C57BL/6 mice with WT or AM2 virus and found that the mutant virus is highly attenuated, yet it replicates sufficiently to elicit protective immunity. These studies revealed that modulating the Ubl domain adjacent to the PLP reduces protease stability and viral pathogenesis, revealing a novel approach to coronavirus attenuation. IMPORTANCE Introducing mutations into a protein or virus can have either direct or indirect effects on function. We asked if changes in the Ubl domain, a conserved domain adjacent to the coronavirus papain-like protease, altered the viral protease activity or affected viral replication or pathogenesis. Our studies using purified wild-type and Ubl mutant proteases revealed that mutations in the viral Ubl domain destabilize and inactivate the adjacent viral protease. Furthermore, we show that a CoV encoding the mutant Ubl domain is unable to replicate at high temperature or cause lethal disease in mice. Our results identify the coronavirus Ubl domain as a novel modulator of viral protease stability and reveal manipulating the Ubl domain as a new approach for attenuating coronavirus replication and pathogenesis. PMID:25694594

  2. Modulation of beta-amyloid precursor protein trafficking and processing by the low density lipoprotein receptor family.

    PubMed

    Cam, Judy A; Bu, Guojun

    2006-08-18

    Amyloid-beta peptide (Abeta) accumulation in the brain is an early, toxic event in the pathogenesis of Alzheimer's disease (AD). Abeta is produced by proteolytic processing of a transmembrane protein, beta-amyloid precursor protein (APP), by beta- and gamma-secretases. Mounting evidence has demonstrated that alterations in APP cellular trafficking and localization directly impact its processing to Abeta. Recent studies have shown that members of the low-density lipoprotein receptor family, including LRP, LRP1B, SorLA/LR11, and apolipoprotein E (apoE) receptor 2, interact with APP and regulate its endocytic trafficking. Another common feature of these receptors is their ability to bind apoE, which exists in three isoforms in humans and the presence of the epsilon4 allele represents a genetic risk factor for AD. In this review, we summarize the current understanding of the function of these apoE receptors with a focus on their role in APP trafficking and processing. Knowledge of the interactions between these distinct low-density lipoprotein receptor family members and APP may ultimately influence future therapies for AD.

  3. Intraspinal Stem Cell Transplantation for Amyotrophic Lateral Sclerosis

    PubMed Central

    Chen, Kevin S.; Sakowski, Stacey A.; Feldman, Eva L.

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder in which the loss of upper and lower motor neurons produces progressive weakness and eventually death. In the decades since the approval of riluzole, the only FDA approved medication to moderately slow progression of ALS, no new therapeutics have arisen to alter the course of the disease. This is partly due to our incomplete understanding of the complex pathogenesis of motor neuron degeneration. Stem cells have emerged as an attractive option in treating ALS since they come armed with equally complex cellular machinery and may modulate the local microenvironment in many ways to rescue diseased motor neurons. While various stem cell types are being evaluated in preclinical and early clinical applications, here we review the preclinical strategies and advances supporting the recent clinical translation of neural progenitor cell therapy for ALS. Specifically, we focus on the use of spinal cord neural progenitor cells and the pipeline starting from preclinical studies to the designs of the Phase I and IIa clinical trials involving direct intraspinal transplantation in humans. PMID:26696091

  4. No evidence of association between NOD2/CARD15 gene polymorphism and atherosclerotic events after renal transplantation

    PubMed Central

    Courivaud, Cécile; Ferrand, Christophe; Deschamps, Marina; Tiberghien, Pierre; Chalopin, Jean-Marc; Duperrier, Anne; Saas, Philippe; Ducloux, Didier

    2006-01-01

    Stable renal transplant recipients (RTR) display high rates of atherosclerotic events (AE). Innate immunity and especially vascular inflammation play a role in the pathogenesis of atherosclerosis. It is illustrated both by an increased occurrence of post-renal transplant cardiovascular events in patients with elevated levels of C-reactive protein and by a correlation between post-transplant AE and Toll-like receptor-4 Asp299Gly polymorphism. Here, we analyze the influence NOD2/CARD15 gene polymorphism since NOD2 can modulate macrophage pro-inflammatory activity and macrophage is present in early atherosclerotic lesions. The incidence of single nucleotide polymorphism (SNP) in the three major polymorphic region of NOD2 gene (SNP8, SNP12 and SNP13) was assessed in 182 RTR and the correlation between such polymorphism and the development of AE was analyzed. No correlation was observed between NOD2 gene polymorphism and the occurrence of AE after renal transplantation. NOD2 gene polymorphism thus does not appear to influence cardiovascular complications in RTR. PMID:16641610

  5. Childhood separation anxiety and the pathogenesis and treatment of adult anxiety.

    PubMed

    Milrod, Barbara; Markowitz, John C; Gerber, Andrew J; Cyranowski, Jill; Altemus, Margaret; Shapiro, Theodore; Hofer, Myron; Glatt, Charles

    2014-01-01

    Clinically significant separation anxiety disorder in childhood leads to adult panic disorder and other anxiety disorders. The prevailing pathophysiological model of anxiety disorders, which emphasizes extinction deficits of fear-conditioned responses, does not fully consider the role of separation anxiety. Pathological early childhood attachments have far-reaching consequences for the later adult ability to experience and internalize positive relationships in order to develop mental capacities for self-soothing, anxiety tolerance, affect modulation, and individuation. Initially identified in attachment research, the phenomenon of separation anxiety is supported by animal model, neuroimaging, and genetic studies. A role of oxytocin is postulated. Adults, inured to their anxiety, often do not identify separation anxiety as problematic, but those who develop anxiety and mood disorders respond more poorly to both pharmacological and psychotherapeutic interventions. This poorer response may reflect patients' difficulty in forming and maintaining attachments, including therapeutic relationships. Psychotherapies that focus on relationships and separation anxiety may benefit patients with separation anxiety by using the dyadic therapist-patient relationship to recapture and better understand important elements of earlier pathological parent-child relationships.

  6. Replication study of Japanese cohorts supports the role of STX1A in autism susceptibility.

    PubMed

    Nakamura, Kazuhiko; Iwata, Yasuhide; Anitha, Ayyappan; Miyachi, Taishi; Toyota, Tomoko; Yamada, Satoru; Tsujii, Masatsugu; Tsuchiya, Kenji J; Iwayama, Yoshimi; Yamada, Kazuo; Hattori, Eiji; Matsuzaki, Hideo; Matsumoto, Kaori; Suzuki, Katsuaki; Suda, Shiro; Takebayashi, Kiyokazu; Takei, Nori; Ichikawa, Hironobu; Sugiyama, Toshiro; Yoshikawa, Takeo; Mori, Norio

    2011-03-30

    Autism is a pervasive developmental disorder diagnosed in early childhood. Abnormalities of serotonergic neurotransmission have been reported in autism. Serotonin transporter (5-HTT), which modulates serotonin levels, is a major therapeutic target in autism. Therefore, factors that regulate 5-HTT expression might be implicated in autism. One candidate 5-HTT-regulatory protein is the presynaptic protein, syntaxin 1A (STX1A). We examined the association of STX1A with autism in a trio association study using DNA samples from Japanese trios with autistic probands. In TDT analysis, rs69510130 (p=0.027) showed nominal associations with autism; modest haplotype association was also observed. We further compared STX1A mRNA expression between the autistic and control groups in the postmortem brain. In the anterior cingulate gyrus region, STX1A expression in the autism group was found to be significantly lower than that of the control group. Thus, we suggest a possible role of STX1A in the pathogenesis of autism. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. HIV-1 Nef in Macrophage-Mediated Disease Pathogenesis

    PubMed Central

    Lamers, Susanna L.; Fogel, Gary B.; Singer, Elyse J.; Salemi, Marco; Nolan, David J.; Huysentruyt, Leanne C.; McGrath, Michael S.

    2013-01-01

    Combined anti-retroviral therapy (cART) has significantly reduced the number of AIDS-associated illnesses and changed the course of HIV-1 disease in developed countries. Despite the ability of cART to maintain high CD4+ T-cell counts, a number of macrophage-mediated diseases can still occur in HIV-infected subjects. These diseases include lymphoma, metabolic diseases, and HIV-associated neurological disorders. Within macrophages, the HIV-1 regulatory protein “Nef” can modulate surface receptors, interact with signaling pathways, and promote specific environments that contribute to each of these pathologies. Moreover, genetic variation in Nef may also guide the macrophage response. Herein, we review findings relating to the Nef–macrophage interaction and how this relationship contributes to disease pathogenesis. PMID:23215766

  8. Deficiency of eNOS exacerbates early-stage NAFLD pathogenesis by changing the fat distribution.

    PubMed

    Nozaki, Yuichi; Fujita, Koji; Wada, Koichiro; Yoneda, Masato; Shinohara, Yoshiyasu; Imajo, Kento; Ogawa, Yuji; Kessoku, Takaomi; Nakamuta, Makoto; Saito, Satoru; Masaki, Naohiko; Nagashima, Yoji; Terauchi, Yasuo; Nakajima, Atsushi

    2015-12-17

    Although many factors and molecules that are closely associated with non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) have been reported, the role of endothelial nitric oxide synthase (eNOS)-derived nitric oxide (NO) in the pathogenesis of NAFLD/NASH remains unclear. We therefore investigated the role of eNOS-derived NO in NAFLD pathogenesis using systemic eNOS-knockout mice fed a high-fat diet. eNOS-knockout and wild-type mice were fed a basal diet or a high-fat diet for 12 weeks. Lipid accumulation and inflammation were evaluated in the liver, and various factors that are closely associated with NAFLD/NASH and hepatic tissue blood flow were analyzed. Lipid accumulation and inflammation were more extensive in the liver and lipid accumulation was less extensive in the visceral fat tissue in eNOS-knockout mice, compared with wild-type mice, after 12 weeks of being fed a high-fat diet. While systemic insulin resistance was comparable between the eNOS-knockout and wild-type mice fed a high-fat diet, hepatic tissue blood flow was significantly suppressed in the eNOS-knockout mice, compared with the wild-type mice, in mice fed a high-fat diet. The microsomal triglyceride transfer protein activity was down-regulated in eNOS-knockout mice, compared with wild-type mice, in mice fed a high-fat diet. A deficiency of eNOS-derived NO may exacerbate the early-stage of NASH pathogenesis by changing the fat distribution in a mouse model via the regulation of hepatic tissue blood flow.

  9. Insights into cerebrovascular complications and Alzheimer disease through the selective loss of GRK2 regulation

    PubMed Central

    Obrenovich, Mark E; Morales, Ludis A; Cobb, Celia J; Shenk, Justin C; Méndez, Gina M; Fischbach, Kathryn; Smith, Mark A; Qasimov, Eldar K; Perry, George; Aliev, Gjumrakch

    2009-01-01

    Abstract Alzheimer disease (AD) and stroke are two leading causes of age-associated dementia. Increasing evidence points to vascular damage as an early contributor to the development of AD and AD-like pathology. In this review, we discuss the role of G protein-coupled receptor kinase 2 (GRK2) as it relates to individuals affected by AD and how the cardiovasculature plays a role in AD pathogenesis. The possible involvement of GRKs in AD pathogenesis is an interesting notion, which may help bridge the gap in our understanding of the heart–brain connection in relation to neurovisceral damage and vascular complications in AD, since kinases of this family are known to regulate numerous receptor functions both in the brain, myocardium, and elsewhere. The aim of this review is to discuss our findings of overexpression of GRK2 in the context of the early pathogenesis of AD, because increased levels of GRK2 immunoreactivity were found in vulnerable neurons of AD patients as well as in a two-vessel occlusion (2-VO) mammalian model of ischaemia. Also, we consider the consequences for this overexpression as a loss of G-protein coupled receptor (GPCR) regulation, as well as suggest a potential role for GPCRs and GRKs in a unifying theory of AD pathogenesis, particularly in the context of cerebrovascular disease. We synthesize this newer information and attempt to put it into context with GRKs as regulators of diverse physiological cellular functions that could be appropriate targets for future pharmacological intervention. PMID:19292735

  10. Host modulation therapy: An indispensable part of perioceutics

    PubMed Central

    Gulati, Minkle; Anand, Vishal; Govila, Vivek; Jain, Nikil

    2014-01-01

    Traditionally, only antimicrobials have been used as the chemotherapeutic modality for the treatment of periodontitis. Though bacteria are the primary etiologic factors of periodontal diseases, yet the extent and severity of tissue destruction seen in periodontitis is determined by the host immuno-inflammatory response to these bacteria. This increasing awareness and knowledge of the host-microbial interaction in periodontal pathogenesis has presented the opportunity for exploring new therapeutic strategies for periodontitis by means of targeting host response via host-modulating agents. This has lead to the emergence of the field of “Perioceutics” i.e. the use of parmacotherapeutic agents including antimicrobial therapy as well as host modulatory therapy for the management of periodontitis. These host-modulating agents used as an adjunct tip the balance between periodontal health and disease progression in the direction of a healing response. In this article the host-modulating role of various systemically and locally delivered perioceutic agents will be reviewed. PMID:25024538

  11. Reduced Expression of CD45 Protein-tyrosine Phosphatase Provides Protection against Anthrax Pathogenesis*S⃞

    PubMed Central

    Panchal, Rekha G.; Ulrich, Ricky L.; Bradfute, Steven B.; Lane, Douglas; Ruthel, Gordon; Kenny, Tara A.; Iversen, Patrick L.; Anderson, Arthur O.; Gussio, Rick; Raschke, William C.; Bavari, Sina

    2009-01-01

    The modulation of cellular processes by small molecule inhibitors, gene inactivation, or targeted knockdown strategies combined with phenotypic screens are powerful approaches to delineate complex cellular pathways and to identify key players involved in disease pathogenesis. Using chemical genetic screening, we tested a library of known phosphatase inhibitors and identified several compounds that protected Bacillus anthracis infected macrophages from cell death. The most potent compound was assayed against a panel of sixteen different phosphatases of which CD45 was found to be most sensitive to inhibition. Testing of a known CD45 inhibitor and antisense phosphorodiamidate morpholino oligomers targeting CD45 also protected B. anthracis-infected macrophages from cell death. However, reduced CD45 expression did not protect anthrax lethal toxin (LT) treated macrophages, suggesting that the pathogen and independently added LT may signal through distinct pathways. Subsequent, in vivo studies with both gene-targeted knockdown of CD45 and genetically engineered mice expressing reduced levels of CD45 resulted in protection of mice after infection with the virulent Ames B. anthracis. Intermediate levels of CD45 expression were critical for the protection, as mice expressing normal levels of CD45 or disrupted CD45 phosphatase activity or no CD45 all succumbed to this pathogen. Mechanism-based studies suggest that the protection provided by reduced CD45 levels results from regulated immune cell homeostasis that may diminish the impact of apoptosis during the infection. To date, this is the first report demonstrating that reduced levels of host phosphatase CD45 modulate anthrax pathogenesis. PMID:19269962

  12. Neurobiology of autism gene products: towards pathogenesis and drug targets.

    PubMed

    Kleijer, Kristel T E; Schmeisser, Michael J; Krueger, Dilja D; Boeckers, Tobias M; Scheiffele, Peter; Bourgeron, Thomas; Brose, Nils; Burbach, J Peter H

    2014-03-01

    The genetic heterogeneity of autism spectrum disorders (ASDs) is enormous, and the neurobiology of proteins encoded by genes associated with ASD is very diverse. Revealing the mechanisms on which different neurobiological pathways in ASD pathogenesis converge may lead to the identification of drug targets. The main objective is firstly to outline the main molecular networks and neuronal mechanisms in which ASD gene products participate and secondly to answer the question how these converge. Finally, we aim to pinpoint drug targets within these mechanisms. Literature review of the neurobiological properties of ASD gene products with a special focus on the developmental consequences of genetic defects and the possibility to reverse these by genetic or pharmacological interventions. The regulation of activity-dependent protein synthesis appears central in the pathogenesis of ASD. Through sequential consequences for axodendritic function, neuronal disabilities arise expressed as behavioral abnormalities and autistic symptoms in ASD patients. Several known ASD gene products have their effect on this central process by affecting protein synthesis intrinsically, e.g., through enhancing the mammalian target of rapamycin (mTOR) signal transduction pathway or through impairing synaptic function in general. These are interrelated processes and can be targeted by compounds from various directions: inhibition of protein synthesis through Lovastatin, mTOR inhibition using rapamycin, or mGluR-related modulation of synaptic activity. ASD gene products may all feed into a central process of translational control that is important for adequate glutamatergic regulation of dendritic properties. This process can be modulated by available compounds but may also be targeted by yet unexplored routes.

  13. G protein signaling in the parasite Entamoeba histolytica

    PubMed Central

    Bosch, Dustin E; Siderovski, David P

    2013-01-01

    The parasite Entamoeba histolytica causes amebic colitis and systemic amebiasis. Among the known amebic factors contributing to pathogenesis are signaling pathways involving heterotrimeric and Ras superfamily G proteins. Here, we review the current knowledge of the roles of heterotrimeric G protein subunits, Ras, Rho and Rab GTPase families in E. histolytica pathogenesis, as well as of their downstream signaling effectors and nucleotide cycle regulators. Heterotrimeric G protein signaling likely modulates amebic motility and attachment to and killing of host cells, in part through activation of an RGS-RhoGEF (regulator of G protein signaling–Rho guanine nucleotide exchange factor) effector. Rho family GTPases, as well as RhoGEFs and Rho effectors (formins and p21-activated kinases) regulate the dynamic actin cytoskeleton of E. histolytica and associated pathogenesis-related cellular processes, such as migration, invasion, phagocytosis and evasion of the host immune response by surface receptor capping. A remarkably large family of 91 Rab GTPases has multiple roles in a complex amebic vesicular trafficking system required for phagocytosis and pinocytosis and secretion of known virulence factors, such as amebapores and cysteine proteases. Although much remains to be discovered, recent studies of G protein signaling in E. histolytica have enhanced our understanding of parasitic pathogenesis and have also highlighted possible targets for pharmacological manipulation. PMID:23519208

  14. High-dose dexamethasone or all-trans-retinoic acid restores the balance of macrophages towards M2 in immune thrombocytopenia.

    PubMed

    Feng, Q; Xu, M; Yu, Y Y; Hou, Y; Mi, X; Sun, Y X; Ma, S; Zuo, X Y; Shao, L L; Hou, M; Zhang, X H; Peng, J

    2017-09-01

    Essentials M1/M2 imbalance is involved in many autoimmune diseases, and could be restored. The expressions and functions of M1 and M2 were investigated in an in vitro culture system. A preferred M1 polarization is involved in the pathogenesis of immune thrombocytopenia (ITP). High-dose dexamethasone or all-trans-retinoic acid restores M1/M2 balance in ITP patients. Background Immune thrombocytopenia (ITP) is an autoimmune disorder. Deficiency of immune tolerance in antigen-presenting cells and cross-communication between antigen-presenting cells and T cells are involved in the pathogenesis of ITP. Macrophages can polarize into proinflammatory M1 or anti-inflammatory M2 phenotypes in response to different environmental stimuli, and have diverse immunologic functions. Objectives To investigate the M1/M2 imbalance in ITP and whether high-dose dexamethasone (HD-DXM) or all-trans-retinoic acid (ATRA) could restore this imbalance. Methods The numbers of M1 and M2 macrophages in the spleens of ITP patients and patients with traumatic spleen rupture were analyzed by immunofluorescence. Monocyte-derived macrophages were cultured and induced with cytokines and drugs. The expression of M1 and M2 markers and functions of M1 and M2 macrophages before and after modulation by HD-DXM or ATRA were evaluated with flow cytometry and ELISA. Results There was preferred M1 polarization in ITP spleens as compared with healthy controls. Monocyte-derived macrophages from ITP patients had increased expression of M1 markers and impaired immunosuppressive functions. Either HD-DXM or ATRA corrected this imbalance by decreasing the expression of M1 markers and increasing the expression of M2 markers. Moreover, HD-DXM-modulated or ATRA-modulated macrophages suppressed both CD4 + and CD8 + T-cell proliferation and expanded CD4 + CD49 + LAG3 + type 1 T-regulatory cells. HD-DXM or ATRA modulated macrophages to shift the T-cell cytokine profile towards Th2. Treating patients with HD-DXM or ATRA revealed that macrophages induced from responders showed a predominant M2-like phenotype and immunosuppressive function. Conclusions Aberrant macrophage polarization is involved in the pathogenesis of ITP. Either HD-DXM or ATRA is able to correct this imbalance. © 2017 International Society on Thrombosis and Haemostasis.

  15. Collaboration: Putting the Puzzle Pieces Together.

    ERIC Educational Resources Information Center

    Bruder, Mary Beth

    These training materials derive from a personnel preparation special project that developed, implemented, and evaluated a teaching model on collaborations necessary for effective delivery of early intervention. Module 1 provides an overview of the history of early intervention and the legal statutes that define early intervention. Module 2…

  16. Microarray analysis reveals key genes and pathways in Tetralogy of Fallot

    PubMed Central

    He, Yue-E; Qiu, Hui-Xian; Jiang, Jian-Bing; Wu, Rong-Zhou; Xiang, Ru-Lian; Zhang, Yuan-Hai

    2017-01-01

    The aim of the present study was to identify key genes that may be involved in the pathogenesis of Tetralogy of Fallot (TOF) using bioinformatics methods. The GSE26125 microarray dataset, which includes cardiovascular tissue samples derived from 16 children with TOF and five healthy age-matched control infants, was downloaded from the Gene Expression Omnibus database. Differential expression analysis was performed between TOF and control samples to identify differentially expressed genes (DEGs) using Student's t-test, and the R/limma package, with a log2 fold-change of >2 and a false discovery rate of <0.01 set as thresholds. The biological functions of DEGs were analyzed using the ToppGene database. The ReactomeFIViz application was used to construct functional interaction (FI) networks, and the genes in each module were subjected to pathway enrichment analysis. The iRegulon plugin was used to identify transcription factors predicted to regulate the DEGs in the FI network, and the gene-transcription factor pairs were then visualized using Cytoscape software. A total of 878 DEGs were identified, including 848 upregulated genes and 30 downregulated genes. The gene FI network contained seven function modules, which were all comprised of upregulated genes. Genes enriched in Module 1 were enriched in the following three neurological disorder-associated signaling pathways: Parkinson's disease, Alzheimer's disease and Huntington's disease. Genes in Modules 0, 3 and 5 were dominantly enriched in pathways associated with ribosomes and protein translation. The Xbox binding protein 1 transcription factor was demonstrated to be involved in the regulation of genes encoding the subunits of cytoplasmic and mitochondrial ribosomes, as well as genes involved in neurodegenerative disorders. Therefore, dysfunction of genes involved in signaling pathways associated with neurodegenerative disorders, ribosome function and protein translation may contribute to the pathogenesis of TOF. PMID:28713939

  17. The Effects of Adenosinergic Modulation on Cytokine Levels in a Pentylenetetrazole-Induced Generalized Tonic-Clonic Seizure Model.

    PubMed

    Dede, Fazilet; Karadenizli, Sabriye; Özsoy, Özgür Doğa; Eraldemir, Fatma Ceyla; Şahin, Deniz; Ateş, Nurbay

    2017-01-01

    It has been suggested that the adenosinergic system and cytokines play a role in the pathogenesis of epilepsy. Although the role of the adenosinergic system in the modulation of seizure activity is well known, the mechanism of this modulation needs to be described in detail. We performed this study to determine the contribution of the proinflammatory cytokines to the generalized seizure activity during adenosine and caffeine treatment. We induced generalized tonic-clonic seizures with the administration of 60 mg/kg pentylenetetrazole (PTZ) in male Wistar Albino rats. Adenosine (500 mg/kg) or caffeine (5 mg/kg) was administered before PTZ injection. We monitored seizure activity and then determined the TNF-α, IL-1β, and IL-6 levels in the cortical and thalamic brain regions of rats by ELISA. Adenosine pretreatment significantly extended seizure latency (p < 0.05), but did not affect seizure duration and entry time to stage 4 seizure. Caffeine pretreatment did not change seizure latency and seizure duration. PTZ treatment did not change brain cytokine levels significantly (p > 0.05) compared to the control group. Whereas adenosine pretreatment decreased brain TNF-α, IL-1β, and IL-6 levels significantly (p < 0.05), caffeine pretreatment reduced brain cytokine levels slightly but nonsignificantly (p > 0.05). Our results show that there is a clear relation between adenosinergic system and brain tissue cytokine levels. Our findings indicated that TNF-α, IL-1β, and IL-6 participate in the pathogenesis of generalized seizures, and the inhibition of TNF-α, IL-1β, and IL-6 with adenosinergic modulation may decrease seizure severity. © 2017 S. Karger AG, Basel.

  18. The Promise of Mesenchymal Stem Cell Therapy for Diabetic Kidney Disease.

    PubMed

    Griffin, Tomás P; Martin, William Patrick; Islam, Nahidul; O'Brien, Timothy; Griffin, Matthew D

    2016-05-01

    Diabetes mellitus (DM) commonly leads to progressive chronic kidney disease despite current best medical practice. The pathogenesis of diabetic kidney disease (DKD) involves a complex network of primary and secondary mechanisms with both intra-renal and systemic components. Apart from inhibition of the renin angiotensin aldosterone system, targeting individual pathogenic mediators with drug therapy has not, thus far, been proven to have high clinical value. Stem or progenitor cell therapies offer an alternative strategy for modulating complex disease processes through suppressing multiple pathogenic pathways and promoting pro-regenerative mechanisms. Mesenchymal stem cells (MSCs) have shown particular promise based on their accessibility from adult tissues and their diverse mechanisms of action including secretion of paracrine anti-inflammatory and cyto-protective factors. In this review, the progress toward clinical translation of MSC therapy for DKD is critically evaluated. Results from animal models suggest distinct potential for systemic MSC infusion to favourably modulate DKD progression. However, only a few early phase clinical trials have been initiated and efficacy in humans remains to be proven. Key knowledge gaps and research opportunities exist in this field. These include the need to gain greater understanding of in vivo mechanism of action, to identify quantifiable biomarkers of response to therapy and to define the optimal source, dose and timing of MSC administration. Given the rising prevalence of DM and DKD worldwide, continued progress toward harnessing the inherent regenerative functions of MSCs and other progenitor cells for even a subset of those affected has potential for profound societal benefits.

  19. Abnormal aldosterone physiology and cardiometabolic risk factors.

    PubMed

    Vaidya, Anand; Underwood, Patricia C; Hopkins, Paul N; Jeunemaitre, Xavier; Ferri, Claudio; Williams, Gordon H; Adler, Gail K

    2013-04-01

    Abnormal aldosterone physiology has been implicated in the pathogenesis of cardiometabolic diseases. Single aldosterone measurements capture only a limited range of aldosterone physiology. New methods of characterizing aldosterone physiology may provide a more comprehensive understanding of its relationship with cardiometabolic disease. We evaluated whether novel indices of aldosterone responses to dietary sodium modulation, the sodium-modulated aldosterone suppression-stimulation index (SASSI for serum and SAUSSI for urine), could predict cardiometabolic risk factors. We performed cross-sectional analyses on 539 subjects studied on liberal and restricted sodium diets with serum and urinary aldosterone measurements. SASSI and SAUSSI were calculated as the ratio of aldosterone on liberal (maximally suppressed aldosterone) to the aldosterone on restricted (stimulated aldosterone) diets and associated with risk factors using adjusted regression models. Cardiometabolic risk factors associated with either impaired suppression of aldosterone on liberal diet, or impaired stimulation on restricted diet, or both; in all of these individual cases, these risk factors associated with higher SASSI or SAUSSI. In the context of abnormalities that constitute the metabolic syndrome, there was a strong positive association between the number of metabolic syndrome components (0-4) and both SASSI and SAUSSI (P<0.0001) that was independent of known aldosterone secretagogues (angiotensin II, corticotropin, potassium). SASSI and SAUSSI exhibited a high sensitivity in detecting normal individuals with zero metabolic syndrome components (86% for SASSI and 83% for SAUSSI). Assessing the physiological range of aldosterone responses may provide greater insights into adrenal pathophysiology. Dysregulated aldosterone physiology may contribute to, or result from, early cardiometabolic abnormalities.

  20. Cocaine modulates HIV-1 integration in primary CD4+ T cells: implications in HIV-1 pathogenesis in drug-abusing patients

    PubMed Central

    Addai, Amma B.; Pandhare, Jui; Paromov, Victor; Mantri, Chinmay K.; Pratap, Siddharth; Dash, Chandravanu

    2015-01-01

    Epidemiologic studies suggest that cocaine abuse worsens HIV-1 disease progression. Increased viral load has been suggested to play a key role for the accelerated HIV disease among cocaine-abusing patients. The goal of this study was to investigate whether cocaine enhances proviral DNA integration as a mechanism to increase viral load. We infected CD4+ T cells that are the primary targets of HIV-1 in vivo and treated the cells with physiologically relevant concentrations of cocaine (1 µM–100 µM). Proviral DNA integration in the host genome was measured by nested qPCR. Our results illustrated that cocaine from 1 µM through 50 µM increased HIV-1 integration in CD4+ T cells in a dose-dependent manner. As integration can be modulated by several early postentry steps of HIV-1 infection, we examined the direct effects of cocaine on viral integration by in vitro integration assays by use of HIV-1 PICs. Our data illustrated that cocaine directly increases viral DNA integration. Furthermore, our MS analysis showed that cocaine is able to enter CD4+ T cells and localize to the nucleus-. In summary, our data provide strong evidence that cocaine can increase HIV-1 integration in CD4+ T cells. Therefore, we hypothesize that increased HIV-1 integration is a novel mechanism by which cocaine enhances viral load and worsens disease progression in drug-abusing HIV-1 patients. PMID:25691383

  1. Diaper-Embedded Urinary Tract Infection Monitoring Sensor Module Powered by Urine-Activated Batteries.

    PubMed

    Seo, Weeseong; Yu, Wuyang; Tan, Tianlin; Ziaie, Babak; Jung, Byunghoo

    2017-06-01

    Urinary tract infection (UTI) is one of the most common infections in humans. UTI is easily treatable using antibiotics if identified in early stage. However, without early identification and treatment, UTI can be a major source of serious complications in geriatric patients, in particular, those suffering from neurodegenerative diseases. Also, for infants who have difficulty in describing their symptoms, UTI may lead to serious development of the disease making early identification of UTI crucial. In this paper, we present a diaper-embedded, wireless, self-powered, and autonomous UTI monitoring sensor module that allows an early detection of UTI with minimal effort. The sensor module consists of a paper-based colorimetric nitrite sensor, urine-activated batteries, a boost dc-dc converter, a low-power sensor interface utilizing pulse width modulation, and a Bluetooth low energy module for wireless transmission. Experimental results show a better detection of nitrite, a surrogate of UTI, than that of conventional dipstick testing. The proposed sensor module achieves a sensitivity of 1.35 ms/(mg/L) and a detection limit of 4 mg/L for nitrite.

  2. The Hedgehog Signal Induced Modulation of Bone Morphogenetic Protein Signaling: An Essential Signaling Relay for Urinary Tract Morphogenesis

    PubMed Central

    Nakagata, Naomi; Miyagawa, Shinichi; Suzuki, Kentaro; Kitazawa, Sohei; Yamada, Gen

    2012-01-01

    Background Congenital diseases of the urinary tract are frequently observed in infants. Such diseases present a number of developmental anomalies such as hydroureter and hydronephrosis. Although some genetically-modified mouse models of growth factor signaling genes reproduce urinary phenotypes, the pathogenic mechanisms remain obscure. Previous studies suggest that a portion of the cells in the external genitalia and bladder are derived from peri-cloacal mesenchymal cells that receive Hedgehog (Hh) signaling in the early developmental stages. We hypothesized that defects in such progenitor cells, which give rise to urinary tract tissues, may be a cause of such diseases. Methodology/Principal Findings To elucidate the pathogenic mechanisms of upper urinary tract malformations, we analyzed a series of Sonic hedgehog (Shh) deficient mice. Shh−/− displayed hydroureter and hydronephrosis phenotypes and reduced expression of several developmental markers. In addition, we suggested that Shh modulation at an early embryonic stage is responsible for such phenotypes by analyzing the Shh conditional mutants. Tissue contribution assays of Hh-responsive cells revealed that peri-cloacal mesenchymal cells, which received Hh signal secreted from cloacal epithelium, could contribute to the ureteral mesenchyme. Gain- and loss-of-functional mutants for Hh signaling revealed a correlation between Hh signaling and Bone morphogenetic protein (Bmp) signaling. Finally, a conditional ablation of Bmp receptor type IA (BmprIA) gene was examined in Hh-responsive cell lineages. This system thus made it possible to analyze the primary functions of the growth factor signaling relay. The defective Hh-to-Bmp signaling relay resulted in severe urinary tract phenotypes with a decrease in the number of Hh-responsive cells. Conclusions/Significance This study identified the essential embryonic stages for the pathogenesis of urinary tract phenotypes. These results suggested that Hh-responsive mesenchymal Bmp signaling maintains the population of peri-cloacal mesenchyme cells, which is essential for the development of the ureter and the upper urinary tract. PMID:22860096

  3. Pathways of Prion Spread during Early Chronic Wasting Disease in Deer

    PubMed Central

    Hoover, Clare E.; Davenport, Kristen A.; Henderson, Davin M.; Denkers, Nathaniel D.; Mathiason, Candace K.; Soto, Claudio; Zabel, Mark D.

    2017-01-01

    ABSTRACT Among prion infections, two scenarios of prion spread are generally observed: (i) early lymphoid tissue replication or (ii) direct neuroinvasion without substantial antecedent lymphoid amplification. In nature, cervids are infected with chronic wasting disease (CWD) prions by oral and nasal mucosal exposure, and studies of early CWD pathogenesis have implicated pharyngeal lymphoid tissue as the earliest sites of prion accumulation. However, knowledge of chronological events in prion spread during early infection remains incomplete. To investigate this knowledge gap in early CWD pathogenesis, we exposed white-tailed deer to CWD prions by mucosal routes and performed serial necropsies to assess PrPCWD tissue distribution by real-time quaking-induced conversion (RT-QuIC) and tyramide signal amplification immunohistochemistry (TSA-IHC). Although PrPCWD was not detected by either method in the initial days (1 and 3) postexposure, we observed PrPCWD seeding activity and follicular immunoreactivity in oropharyngeal lymphoid tissues at 1 and 2 months postexposure (MPE). At 3 MPE, PrPCWD replication had expanded to all systemic lymphoid tissues. By 4 MPE, the PrPCWD burden in all lymphoid tissues had increased and approached levels observed in terminal disease, yet there was no evidence of nervous system invasion. These results indicate the first site of CWD prion entry is in the oropharynx, and the initial phase of prion amplification occurs in the oropharyngeal lymphoid tissues followed by rapid dissemination to systemic lymphoid tissues. This lymphoid replication phase appears to precede neuroinvasion. IMPORTANCE Chronic wasting disease (CWD) is a universally fatal transmissible spongiform encephalopathy affecting cervids, and natural infection occurs through oral and nasal mucosal exposure to infectious prions. Terminal disease is characterized by PrPCWD accumulation in the brain and lymphoid tissues of affected animals. However, the initial sites of prion accumulation and pathways of prion spread during early CWD infection remain unknown. To investigate the chronological events of early prion pathogenesis, we exposed deer to CWD prions and monitored the tissue distribution of PrPCWD over the first 4 months of infection. We show CWD uptake occurs in the oropharynx with initial prion replication in the draining oropharyngeal lymphoid tissues, rapidly followed by dissemination to systemic lymphoid tissues without evidence of neuroinvasion. These data highlight the two phases of CWD infection: a robust prion amplification in systemic lymphoid tissues prior to neuroinvasion and establishment of a carrier state. PMID:28250130

  4. Abscisic acid has a key role in modulating diverse plant-pathogen interactions

    Treesearch

    Jun Fan; Lionel Hill; Casey Crooks; Peter Doerner; Chris Lamb

    2009-01-01

    We isolated an activation-tagged Arabidopsis (Arabidopsis thaliana) line, constitutive disease susceptibility2-1D (cds2-1D), that showed enhanced bacterial growth when challenged with various Pseudomonas syringae strains. Systemic acquired resistance and systemic PATHOGENESIS-RELATED GENE1 induction were also compromised in cds2-1D. The T-DNA insertion adjacent to NINE...

  5. Metabolism as a Target for Modulation in Autoimmune Diseases.

    PubMed

    Huang, Nick; Perl, Andras

    2018-05-05

    Metabolic pathways are now well recognized as important regulators of immune differentiation and activation, and thus influence the development of autoimmune diseases such as systemic lupus erythematosus (SLE). The mechanistic target of rapamycin (mTOR) has emerged as a key sensor of metabolic stress and an important mediator of proinflammatory lineage specification. Metabolic pathways control the production of mitochondrial reactive oxygen species (ROS), which promote mTOR activation and also modulate the antigenicity of proteins, lipids, and DNA, thus placing ROS at the heart of metabolic disturbances during pathogenesis of SLE. Therefore, we review here the pathways that control ROS production and mTOR activation and identify targets for safe therapeutic modulation of the signaling network that underlies autoimmune diseases, focusing on SLE. Copyright © 2018. Published by Elsevier Ltd.

  6. CELFish ways to modulate mRNA decay

    PubMed Central

    St. Louis, Irina Vlasova; Dickson, Alexa M.; Bohjanen, Paul R.; Wilusz, Carol J.

    2013-01-01

    The CELF family of RNA-binding proteins regulates many steps of mRNA metabolism. Although their best characterized function is in pre-mRNA splice site choice, CELF family members are also powerful modulators of mRNA decay. In this review we focus on the different modes of regulation that CELF proteins employ to mediate mRNA decay by binding to GU-rich elements. After starting with an overview of the importance of CELF proteins during development and disease pathogenesis, we then review the mRNA networks and cellular pathways these proteins regulate and the mechanisms by which they influence mRNA decay. Finally, we discuss how CELF protein activity is modulated during development and in response to cellular signals. We conclude by highlighting the priorities for new experiments in this field. PMID:23328451

  7. Intruders below the Radar: Molecular Pathogenesis of Bartonella spp.

    PubMed Central

    Harms, Alexander

    2012-01-01

    Summary: Bartonella spp. are facultative intracellular pathogens that employ a unique stealth infection strategy comprising immune evasion and modulation, intimate interaction with nucleated cells, and intraerythrocytic persistence. Infections with Bartonella are ubiquitous among mammals, and many species can infect humans either as their natural host or incidentally as zoonotic pathogens. Upon inoculation into a naive host, the bartonellae first colonize a primary niche that is widely accepted to involve the manipulation of nucleated host cells, e.g., in the microvasculature. Consistently, in vitro research showed that Bartonella harbors an ample arsenal of virulence factors to modulate the response of such cells, gain entrance, and establish an intracellular niche. Subsequently, the bacteria are seeded into the bloodstream where they invade erythrocytes and give rise to a typically asymptomatic intraerythrocytic bacteremia. While this course of infection is characteristic for natural hosts, zoonotic infections or the infection of immunocompromised patients may alter the path of Bartonella and result in considerable morbidity. In this review we compile current knowledge on the molecular processes underlying both the infection strategy and pathogenesis of Bartonella and discuss their connection to the clinical presentation of human patients, which ranges from minor complaints to life-threatening disease. PMID:22232371

  8. Coming back: autophagy in cachexia.

    PubMed

    Penna, Fabio; Baccino, Francesco M; Costelli, Paola

    2014-05-01

    Cachexia is a complex syndrome characterized by body weight loss, tissue wasting, systemic inflammation, metabolic abnormalities, and altered nutritional status. One of the most prominent features of cachexia is the loss of muscle mass, mainly because of increased protein degradation rates. This review is aimed at discussing the involvement of autophagy in the pathogenesis of muscle wasting in cachexia. Modulations of muscle mass in the adult reflect an imbalance between protein synthesis and degradation rates. Muscle depletion in cachexia is associated with increased protein breakdown, mainly involving the pathways dependent on ubiquitin-proteasome and autophagy-lysosomes. This latter, in particular, was considered not relevant for a long time. Just in the last years, autophagy was shown to contribute to the pathogenesis of muscle wasting not only in myopathies because of intrinsic muscle defects, but also in muscle depletion associated with conditions such as sepsis, chronic obstructive pulmonary disease, glucocorticoid treatment, cancer cachexia, and aging. The present review highlights that both excess and defective autophagy are relevant to the onset of muscle depletion, and draws some considerations about possible therapeutic intervention aimed at modulating autophagy in order to improve muscle trophism. http://links.lww.com/COCN/A5.

  9. Rifaximin for the treatment of diarrhoea-predominant irritable bowel syndrome.

    PubMed

    Laterza, Lucrezia; Ianiro, Gianluca; Scoleri, Iolanda; Landi, Rosario; Bruno, Giovanni; Scaldaferri, Franco; Gaetani, Eleonora; Campanale, Mariachiara; Gasbarrini, Antonio

    2015-03-01

    Rifaximin is a non-absorbable, semisynthetic antibiotic that acts as an inhibitor of bacterial RNA synthesis, with a broad spectrum of antibacterial activity. Due to its poor absorption, rifaximin has an increased exposure to the intestine, thus it is suitable for the treatment of many gastrointestinal (GI) diseases. In irritable bowel syndrome (IBS) pathogenesis, gut microbiota impairment may play a major role. The possibility of modulating intestinal bacteria using antibiotics, in particular, rifaximin, has been demonstrated to improve IBS symptoms in non-constipation subtypes of IBS. We reviewed the use of rifaximin in diarrhoea-predominant IBS, focusing on its pharmacokinetic characteristics, its absorption in GI disease, its lack of interaction with other drugs and its new extended release formulation. Rifaximin, with its low systemic absorption and no clinically significant interactions with other drugs, may represent a treatment of choice for IBS, mainly due to its ability to act on IBS pathogenesis, through the modulation of gut microbiota. Further studies to analyse the effect of rifaximin treatment on the composition of faecal microbiota are warranted. In particular, they need to evaluate whether resistant bacterial strains are selected and whether they are still present in the faecal sample even a long time after therapy.

  10. A Quantitative Systems Pharmacology Approach to Infer Pathways Involved in Complex Disease Phenotypes.

    PubMed

    Schurdak, Mark E; Pei, Fen; Lezon, Timothy R; Carlisle, Diane; Friedlander, Robert; Taylor, D Lansing; Stern, Andrew M

    2018-01-01

    Designing effective therapeutic strategies for complex diseases such as cancer and neurodegeneration that involve tissue context-specific interactions among multiple gene products presents a major challenge for precision medicine. Safe and selective pharmacological modulation of individual molecular entities associated with a disease often fails to provide efficacy in the clinic. Thus, development of optimized therapeutic strategies for individual patients with complex diseases requires a more comprehensive, systems-level understanding of disease progression. Quantitative systems pharmacology (QSP) is an approach to drug discovery that integrates computational and experimental methods to understand the molecular pathogenesis of a disease at the systems level more completely. Described here is the chemogenomic component of QSP for the inference of biological pathways involved in the modulation of the disease phenotype. The approach involves testing sets of compounds of diverse mechanisms of action in a disease-relevant phenotypic assay, and using the mechanistic information known for the active compounds, to infer pathways and networks associated with the phenotype. The example used here is for monogenic Huntington's disease (HD), which due to the pleiotropic nature of the mutant phenotype has a complex pathogenesis. The overall approach, however, is applicable to any complex disease.

  11. Isothiocyanates Are Promising Compounds against Oxidative Stress, Neuroinflammation and Cell Death that May Benefit Neurodegeneration in Parkinson’s Disease

    PubMed Central

    Sita, Giulia; Hrelia, Patrizia; Tarozzi, Andrea; Morroni, Fabiana

    2016-01-01

    Parkinson’s disease (PD) is recognized as the second most common neurodegenerative disorder and is characterized by a slow and progressive degeneration of dopaminergic neurons in the substantia nigra. Despite intensive research, the mechanisms involved in neuronal loss are not completely understood yet; however, misfolded proteins, oxidative stress, excitotoxicity and inflammation play a pivotal role in the progression of the pathology. Neuroinflammation may have a greater function in PD pathogenesis than initially believed, taking part in the cascade of events that leads to neuronal death. To date, no efficient therapy, able to arrest or slow down PD, is available. In this context, the need to find novel strategies to counteract neurodegenerative progression by influencing diseases’ pathogenesis is becoming increasingly clear. Isothiocyanates (ITCs) have already shown interesting properties in detoxification, inflammation, apoptosis and cell cycle regulation through the induction of phase I and phase II enzyme systems. Moreover, ITCs may be able to modulate several key points in oxidative and inflammatory evolution. In view of these considerations, the aim of the present review is to describe ITCs as pleiotropic compounds capable of preventing and modulating the evolution of PD. PMID:27598127

  12. [Toxic shock syndrome].

    PubMed

    Tyll, T; Bílková, M; Revinová, A; Müller, M; Čurdová, M; Zlámal, M; Holub, M

    2015-10-01

    The authors present an up-to-date review of toxic shock syndrome (TSS) - a life-threatening condition where toxins of the Gram-positive bacteria Staphyloccocus aureus and Streptococcus pyogenes play a key role in the pathogenesis. The authors provide insight into the epidemiology and pathogenesis of the disease and point out the relevant patient history data and clinical signs and symptoms that may indicate progression of TSS. Last but not least, the state of the art diagnostic and therapeutic approaches to early and full blown TSS are summarized. Case reports are presented to illustrate two different etiological forms of this relatively rare nosological entity.

  13. TSLP: A Key Regulator of Asthma Pathogenesis.

    PubMed

    West, Erin E; Kashyap, Mohit; Leonard, Warren J

    2012-12-01

    Asthma is a complex disorder of the airways that is characterized by T helper type 2 (Th2) inflammation. The pleiotrophic cytokine TSLP has emerged as an important player involved in orchestrating the inflammation seen in asthma and other atopic diseases. Early research elucidated the role of TSLP on CD4 + T cells, and recent work has revealed the impact of TSLP on multiple cell types. Furthermore, TSLP plays an important role in the sequential progression of atopic dermatitis to asthma, clarifying the key role of TSLP in the pathogenesis of asthma, a finding with therapeutic implications.

  14. The Roles of Cigarette Smoking and the Lung in the Transitions between Phases of Preclinical Rheumatoid Arthritis

    PubMed Central

    Sparks, Jeffrey A.; Karlson, Elizabeth W.

    2016-01-01

    While the etiology of rheumatoid arthritis (RA) remains to be fully elucidated, recent research has advanced the understanding of RA pathogenesis to the point where clinical trials for RA prevention are underway. The current paradigm for RA pathogenesis is that individuals progress through distinct preclinical stages prior to the onset of clinically apparent RA. These preclinical RA phases consist of genetic risk, local inflammation, presence of RA-related autoantibodies, asymptomatic systemic inflammation, and early non-specific symptoms prior to clinical seropositive RA. Epidemiologic studies have been important in forming hypotheses related to the biology occurring in preclinical RA. Specifically, studies associating cigarette smoking with overall RA risk as well as transitions between phases of preclinical RA were vital in helping to establish the lung as a potential important initiating site in the pathogenesis of seropositive RA. Herein, we review the epidemiology associating smoking with transitions in preclinical phases of RA as well as the recent literature supporting the lung as a critical site in RA pathogenesis. PMID:26951253

  15. Assessing and Modulating Kynurenine Pathway Dynamics in Huntington's Disease: Focus on Kynurenine 3-Monooxygenase.

    PubMed

    Sathyasaikumar, Korrapati V; Breda, Carlo; Schwarcz, Robert; Giorgini, Flaviano

    2018-01-01

    The link between disturbances in kynurenine pathway (KP) metabolism and Huntington's disease (HD) pathogenesis has been explored for a number of years. Several novel genetic and pharmacological tools have recently been developed to modulate key regulatory steps in the KP such as the reaction catalyzed by the enzyme kynurenine 3-monooxygenase (KMO). This insight has offered new options for exploring the mechanistic link between this metabolic pathway and HD, and provided novel opportunities for the development of candidate drug-like compounds. Here, we present an overview of the field, focusing on some novel approaches for interrogating the pathway experimentally.

  16. Role of Wnt/β-catenin signaling regulatory microRNAs in the pathogenesis of colorectal cancer.

    PubMed

    Rahmani, Farzad; Avan, Amir; Hashemy, Seyed Isaac; Hassanian, Seyed Mahdi

    2018-02-01

    Colorectal cancer (CRC) is one of the leading causes of cancer death worldwide. In more than 90% of all CRC patients, the master oncogenic Ras-Wnt signaling axis is over-activated. MicroRNAs (miRNAs) are potential novel diagnostic and prognostic biomarkers as well as therapeutic targets for several cancers including lung, breast, gastric, and colorectal cancers. Oncogenic or tumor suppressor miRNAs modulate tumor cells proliferation, cell cycle progression, angiogenesis, invasion, and metastasis through regulating oncogenic pathways including Wnt/β-catenin signaling. This review summarizes the current knowledge about the role of Wnt/β-catenin signaling regulatory miRNAs in the pathogenesis of colorectal cancer for a better understanding and hence a better management of this disease. © 2017 Wiley Periodicals, Inc.

  17. Innate immune escape by Dengue and West Nile viruses.

    PubMed

    Gack, Michaela U; Diamond, Michael S

    2016-10-01

    Dengue (DENV) and West Nile (WNV) viruses are mosquito-transmitted flaviviruses that cause significant morbidity and mortality worldwide. Disease severity and pathogenesis of DENV and WNV infections in humans depend on many factors, including pre-existing immunity, strain virulence, host genetics and virus-host interactions. Among the flavivirus-host interactions, viral evasion of type I interferon (IFN)-mediated innate immunity has a critical role in modulating pathogenesis. DENV and WNV have evolved effective strategies to evade immune surveillance pathways that lead to IFN induction and to block signaling downstream of the IFN-α/β receptor. Here, we discuss recent advances in our understanding of the molecular mechanisms by which DENV and WNV antagonize the type I IFN response in human cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Multi-platform ’Omics Analysis of Human Ebola Virus Disease Pathogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisfeld, Amie J.; Halfmann, Peter J.; Wendler, Jason P.

    The pathogenesis of human Ebola virus disease (EVD) is complex. EVD is characterized by high levels of virus replication and dissemination, dysregulated immune responses, extensive virus- and host-mediated tissue damage, and disordered coagulation. To clarify how host responses contribute to EVD pathophysiology, we performed multi-platform ’omics analysis of peripheral blood mononuclear cells and plasma from EVD patients. Our results indicate that EVD molecular signatures overlap with those of sepsis, imply that pancreatic enzymes contribute to tissue damage in fatal EVD, and suggest that Ebola virus infection may induce aberrant neutrophils whose activity could explain hallmarks of fatal EVD. Moreover, integratedmore » biomarker prediction identified putative biomarkers from different data platforms that differentiated survivors and fatalities early after infection. This work reveals insight into EVD pathogenesis, suggests an effective approach for biomarker identification, and provides an important community resource for further analysis of human EVD severity.« less

  19. Multi-platform 'Omics Analysis of Human Ebola Virus Disease Pathogenesis.

    PubMed

    Eisfeld, Amie J; Halfmann, Peter J; Wendler, Jason P; Kyle, Jennifer E; Burnum-Johnson, Kristin E; Peralta, Zuleyma; Maemura, Tadashi; Walters, Kevin B; Watanabe, Tokiko; Fukuyama, Satoshi; Yamashita, Makoto; Jacobs, Jon M; Kim, Young-Mo; Casey, Cameron P; Stratton, Kelly G; Webb-Robertson, Bobbie-Jo M; Gritsenko, Marina A; Monroe, Matthew E; Weitz, Karl K; Shukla, Anil K; Tian, Mingyuan; Neumann, Gabriele; Reed, Jennifer L; van Bakel, Harm; Metz, Thomas O; Smith, Richard D; Waters, Katrina M; N'jai, Alhaji; Sahr, Foday; Kawaoka, Yoshihiro

    2017-12-13

    The pathogenesis of human Ebola virus disease (EVD) is complex. EVD is characterized by high levels of virus replication and dissemination, dysregulated immune responses, extensive virus- and host-mediated tissue damage, and disordered coagulation. To clarify how host responses contribute to EVD pathophysiology, we performed multi-platform 'omics analysis of peripheral blood mononuclear cells and plasma from EVD patients. Our results indicate that EVD molecular signatures overlap with those of sepsis, imply that pancreatic enzymes contribute to tissue damage in fatal EVD, and suggest that Ebola virus infection may induce aberrant neutrophils whose activity could explain hallmarks of fatal EVD. Moreover, integrated biomarker prediction identified putative biomarkers from different data platforms that differentiated survivors and fatalities early after infection. This work reveals insight into EVD pathogenesis, suggests an effective approach for biomarker identification, and provides an important community resource for further analysis of human EVD severity. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Microvascular Physiologic and Anatomic Responses of the Guinea Pig to Experimental Arenavirus Infection

    DTIC Science & Technology

    1989-03-25

    tumor necrosis factor results in dextran leaks and blot heorrhages. This may be important in the splanchnic pathogenesis of hemorrhagic fever. 20...Characterization of GP13 mesenteric microcirculatory module with measurement of microvascular blood flow, granulocyte adherence, and mesenteric local ...are measurable, and 4) topical tumor necrosis factor results in dextran leaks and blot hemorrhages. This may be important in the splanchnic

  1. Selective progesterone receptor modulators 1: use during pregnancy.

    PubMed

    Benagiano, Giuseppe; Bastianelli, Carlo; Farris, Manuela

    2008-10-01

    A large number of synthetic compounds known as selective progesterone receptor modulators can bind to progesterone receptors: the ligands exhibit a spectrum of activities ranging from pure antagonism to a mixture of agonism and antagonism. Only a dozen or so selective progesterone receptor modulators have been tested to any significant extent: among them are mifepristone (RU 486), asoprisnil (J867), onapristone (ZK 98 299), ulipristal (CDB 2914), Proellex() (CDB 4124), ORG 33628 and ORG 31710. Their clinical applications during pregnancy are discussed. A careful evaluation of existing major review papers and recently published articles was carried out focusing on mifepristone, the most widely studied selective progesterone receptor modulator, which was first used for the voluntary interruption of an early gestation. Other selective progesterone receptor modulators, especially those with partial agonist action, have shown little activity during pregnancy in animal models. Besides early and late voluntary interruption of gestation, selective progesterone receptor modulators have been tested in a variety of obstetrical situations: to obtain a ripening of the cervix, for the medical management of early embryonic loss and foetal death, for the induction of labour at term and for the medical treatment of extra-uterine pregnancies. The only applications that seem worthy of large-scale utilisation during pregnancy are voluntary interruption of early and late gestation, medical management of early delayed miscarriage and late foetal demise.

  2. Smoking and Lung Cancer: A Geo-Regional Perspective.

    PubMed

    Rahal, Zahraa; El Nemr, Shaza; Sinjab, Ansam; Chami, Hassan; Tfayli, Arafat; Kadara, Humam

    2017-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) represents the most frequently diagnosed subtype of this morbid malignancy. NSCLC is causally linked to tobacco consumption with more than 500 million smokers worldwide at high risk for this fatal malignancy. We are currently lagging in our knowledge of the early molecular (e.g., genomic) effects of smoking in NSCLC pathogenesis that would constitute ideal markers for early detection. This limitation is further amplified when considering the variable etiologic factors in NSCLC pathogenesis among different regions around the globe. In this review, we present our current knowledge of genomic alterations arising during early stages of smoking-induced lung cancer initiation and progression, including discussing the premalignant airway field of injury induced by smoking. The review also underscores the wider spectra and higher age-adjusted rates of tobacco (e.g., water-pipe smoke) consumption, along with elevated environmental carcinogenic exposures and relatively poorer socioeconomic status, in low-middle income countries (LMICs), with Lebanon as an exemplar. This "cocktail" of carcinogenic exposures warrants the pressing need to understand the complex etiology of lung malignancies developing in LMICs such as Lebanon.

  3. Viral FGARAT ORF75A promotes early events in lytic infection and gammaherpesvirus pathogenesis in mice

    PubMed Central

    Hogan, Chad H.; Oldenburg, Darby G.; Kara, Mehmet

    2018-01-01

    Gammaherpesviruses encode proteins with homology to the cellular purine metabolic enzyme formyl-glycinamide-phosphoribosyl-amidotransferase (FGARAT), but the role of these viral FGARATs (vFGARATs) in the pathogenesis of a natural host has not been investigated. We report a novel role for the ORF75A vFGARAT of murine gammaherpesvirus 68 (MHV68) in infectious virion production and colonization of mice. MHV68 mutants with premature stop codons in orf75A exhibited a log reduction in acute replication in the lungs after intranasal infection, which preceded a defect in colonization of multiple host reservoirs including the mediastinal lymph nodes, peripheral blood mononuclear cells, and the spleen. Intraperitoneal infection rescued splenic latency, but not reactivation. The 75A.stop virus also exhibited defective replication in primary fibroblast and macrophage cells. Viruses produced in the absence of ORF75A were characterized by an increase in the ratio of particles to PFU. In the next round of infection this led to the alteration of early events in lytic replication including the deposition of the ORF75C tegument protein, the accelerated kinetics of viral gene expression, and induction of TNFα release and cell death. Infecting cells to deliver equivalent genomes revealed that ORF75A was required for initiating early events in infection. In contrast with the numerous phenotypes observed in the absence of ORF75A, ORF75B was dispensable for replication and pathogenesis. These studies reveal that murine rhadinovirus vFGARAT family members ORF75A and ORF75C have evolved to perform divergent functions that promote replication and colonization of the host. PMID:29390024

  4. Viral FGARAT ORF75A promotes early events in lytic infection and gammaherpesvirus pathogenesis in mice.

    PubMed

    Van Skike, Nick D; Minkah, Nana K; Hogan, Chad H; Wu, Gary; Benziger, Peter T; Oldenburg, Darby G; Kara, Mehmet; Kim-Holzapfel, Deborah M; White, Douglas W; Tibbetts, Scott A; French, Jarrod B; Krug, Laurie T

    2018-02-01

    Gammaherpesviruses encode proteins with homology to the cellular purine metabolic enzyme formyl-glycinamide-phosphoribosyl-amidotransferase (FGARAT), but the role of these viral FGARATs (vFGARATs) in the pathogenesis of a natural host has not been investigated. We report a novel role for the ORF75A vFGARAT of murine gammaherpesvirus 68 (MHV68) in infectious virion production and colonization of mice. MHV68 mutants with premature stop codons in orf75A exhibited a log reduction in acute replication in the lungs after intranasal infection, which preceded a defect in colonization of multiple host reservoirs including the mediastinal lymph nodes, peripheral blood mononuclear cells, and the spleen. Intraperitoneal infection rescued splenic latency, but not reactivation. The 75A.stop virus also exhibited defective replication in primary fibroblast and macrophage cells. Viruses produced in the absence of ORF75A were characterized by an increase in the ratio of particles to PFU. In the next round of infection this led to the alteration of early events in lytic replication including the deposition of the ORF75C tegument protein, the accelerated kinetics of viral gene expression, and induction of TNFα release and cell death. Infecting cells to deliver equivalent genomes revealed that ORF75A was required for initiating early events in infection. In contrast with the numerous phenotypes observed in the absence of ORF75A, ORF75B was dispensable for replication and pathogenesis. These studies reveal that murine rhadinovirus vFGARAT family members ORF75A and ORF75C have evolved to perform divergent functions that promote replication and colonization of the host.

  5. Identifying core gene modules in glioblastoma based on multilayer factor-mediated dysfunctional regulatory networks through integrating multi-dimensional genomic data

    PubMed Central

    Ping, Yanyan; Deng, Yulan; Wang, Li; Zhang, Hongyi; Zhang, Yong; Xu, Chaohan; Zhao, Hongying; Fan, Huihui; Yu, Fulong; Xiao, Yun; Li, Xia

    2015-01-01

    The driver genetic aberrations collectively regulate core cellular processes underlying cancer development. However, identifying the modules of driver genetic alterations and characterizing their functional mechanisms are still major challenges for cancer studies. Here, we developed an integrative multi-omics method CMDD to identify the driver modules and their affecting dysregulated genes through characterizing genetic alteration-induced dysregulated networks. Applied to glioblastoma (GBM), the CMDD identified a core gene module of 17 genes, including seven known GBM drivers, and their dysregulated genes. The module showed significant association with shorter survival of GBM. When classifying driver genes in the module into two gene sets according to their genetic alteration patterns, we found that one gene set directly participated in the glioma pathway, while the other indirectly regulated the glioma pathway, mostly, via their dysregulated genes. Both of the two gene sets were significant contributors to survival and helpful for classifying GBM subtypes, suggesting their critical roles in GBM pathogenesis. Also, by applying the CMDD to other six cancers, we identified some novel core modules associated with overall survival of patients. Together, these results demonstrate integrative multi-omics data can identify driver modules and uncover their dysregulated genes, which is useful for interpreting cancer genome. PMID:25653168

  6. Depletion of Alveolar Macrophages Does Not Prevent Hantavirus Disease Pathogenesis in Golden Syrian Hamsters.

    PubMed

    Hammerbeck, Christopher D; Brocato, Rebecca L; Bell, Todd M; Schellhase, Christopher W; Mraz, Steven R; Queen, Laurie A; Hooper, Jay W

    2016-07-15

    Andes virus (ANDV) is associated with a lethal vascular leak syndrome in humans termed hantavirus pulmonary syndrome (HPS). The mechanism for the massive vascular leakage associated with HPS is poorly understood; however, dysregulation of components of the immune response is often suggested as a possible cause. Alveolar macrophages are found in the alveoli of the lung and represent the first line of defense to many airborne pathogens. To determine whether alveolar macrophages play a role in HPS pathogenesis, alveolar macrophages were depleted in an adult rodent model of HPS that closely resembles human HPS. Syrian hamsters were treated, intratracheally, with clodronate-encapsulated liposomes or control liposomes and were then challenged with ANDV. Treatment with clodronate-encapsulated liposomes resulted in significant reduction in alveolar macrophages, but depletion did not prevent pathogenesis or prolong disease. Depletion also did not significantly reduce the amount of virus in the lung of ANDV-infected hamsters but altered neutrophil recruitment, MIP-1α and MIP-2 chemokine expression, and vascular endothelial growth factor (VEGF) levels in hamster bronchoalveolar lavage (BAL) fluid early after intranasal challenge. These data demonstrate that alveolar macrophages may play a limited protective role early after exposure to aerosolized ANDV but do not directly contribute to hantavirus disease pathogenesis in the hamster model of HPS. Hantaviruses continue to cause disease worldwide for which there are no FDA-licensed vaccines, effective postexposure prophylactics, or therapeutics. Much of this can be attributed to a poor understanding of the mechanism of hantavirus disease pathogenesis. Hantavirus disease has long been considered an immune-mediated disease; however, by directly manipulating the Syrian hamster model, we continue to eliminate individual immune cell types. As the most numerous immune cells present in the respiratory tract, alveolar macrophages are poised to defend against hantavirus infection, but those antiviral responses may also contribute to hantavirus disease. Here, we demonstrate that, like in our prior T and B cell studies, alveolar macrophages neither prevent hantavirus infection nor cause hantavirus disease. While these studies reflect pathogenesis in the hamster model, they should help us rule out specific cell types and prompt us to consider other potential mechanisms of disease in an effort to improve the outcome of human HPS. Copyright © 2016 Hammerbeck et al.

  7. Depletion of Alveolar Macrophages Does Not Prevent Hantavirus Disease Pathogenesis in Golden Syrian Hamsters

    PubMed Central

    Hammerbeck, Christopher D.; Brocato, Rebecca L.; Bell, Todd M.; Schellhase, Christopher W.; Mraz, Steven R.; Queen, Laurie A.

    2016-01-01

    ABSTRACT Andes virus (ANDV) is associated with a lethal vascular leak syndrome in humans termed hantavirus pulmonary syndrome (HPS). The mechanism for the massive vascular leakage associated with HPS is poorly understood; however, dysregulation of components of the immune response is often suggested as a possible cause. Alveolar macrophages are found in the alveoli of the lung and represent the first line of defense to many airborne pathogens. To determine whether alveolar macrophages play a role in HPS pathogenesis, alveolar macrophages were depleted in an adult rodent model of HPS that closely resembles human HPS. Syrian hamsters were treated, intratracheally, with clodronate-encapsulated liposomes or control liposomes and were then challenged with ANDV. Treatment with clodronate-encapsulated liposomes resulted in significant reduction in alveolar macrophages, but depletion did not prevent pathogenesis or prolong disease. Depletion also did not significantly reduce the amount of virus in the lung of ANDV-infected hamsters but altered neutrophil recruitment, MIP-1α and MIP-2 chemokine expression, and vascular endothelial growth factor (VEGF) levels in hamster bronchoalveolar lavage (BAL) fluid early after intranasal challenge. These data demonstrate that alveolar macrophages may play a limited protective role early after exposure to aerosolized ANDV but do not directly contribute to hantavirus disease pathogenesis in the hamster model of HPS. IMPORTANCE Hantaviruses continue to cause disease worldwide for which there are no FDA-licensed vaccines, effective postexposure prophylactics, or therapeutics. Much of this can be attributed to a poor understanding of the mechanism of hantavirus disease pathogenesis. Hantavirus disease has long been considered an immune-mediated disease; however, by directly manipulating the Syrian hamster model, we continue to eliminate individual immune cell types. As the most numerous immune cells present in the respiratory tract, alveolar macrophages are poised to defend against hantavirus infection, but those antiviral responses may also contribute to hantavirus disease. Here, we demonstrate that, like in our prior T and B cell studies, alveolar macrophages neither prevent hantavirus infection nor cause hantavirus disease. While these studies reflect pathogenesis in the hamster model, they should help us rule out specific cell types and prompt us to consider other potential mechanisms of disease in an effort to improve the outcome of human HPS. PMID:27099308

  8. Antagonism between salicylic and abscisic acid reflects early host-pathogen conflict and moulds plant defence responses.

    PubMed

    de Torres Zabala, Marta; Bennett, Mark H; Truman, William H; Grant, Murray R

    2009-08-01

    The importance of phytohormone balance is increasingly recognized as central to the outcome of plant-pathogen interactions. Recently it has been demonstrated that abscisic acid signalling pathways are utilized by the bacterial phytopathogen Pseudomonas syringae to promote pathogenesis. In this study, we examined the dynamics, inter-relationship and impact of three key acidic phytohormones, salicylic acid, abscisic acid and jasmonic acid, and the bacterial virulence factor, coronatine, during progression of P. syringae infection of Arabidopsis thaliana. We show that levels of SA and ABA, but not JA, appear to play important early roles in determining the outcome of the infection process. SA is required in order to mount a full innate immune responses, while bacterial effectors act rapidly to activate ABA biosynthesis. ABA suppresses inducible innate immune responses by down-regulating SA biosynthesis and SA-mediated defences. Mutant analyses indicated that endogenous ABA levels represent an important reservoir that is necessary for effector suppression of plant-inducible innate defence responses and SA synthesis prior to subsequent pathogen-induced increases in ABA. Enhanced susceptibility due to loss of SA-mediated basal resistance is epistatically dominant over acquired resistance due to ABA deficiency, although ABA also contributes to symptom development. We conclude that pathogen-modulated ABA signalling rapidly antagonizes SA-mediated defences. We predict that hormonal perturbations, either induced or as a result of environmental stress, have a marked impact on pathological outcomes, and we provide a mechanistic basis for understanding priming events in plant defence.

  9. Conserved oligopeptide permeases modulate sporulation initiation in Clostridium difficile.

    PubMed

    Edwards, Adrianne N; Nawrocki, Kathryn L; McBride, Shonna M

    2014-10-01

    The anaerobic gastrointestinal pathogen Clostridium difficile must form a metabolically dormant spore to survive in oxygenic environments and be transmitted from host to host. The regulatory factors by which C. difficile initiates and controls the early stages of sporulation in C. difficile are not highly conserved in other Clostridium or Bacillus species. Here, we investigated the role of two conserved oligopeptide permeases, Opp and App, in the regulation of sporulation in C. difficile. These permeases are known to positively affect sporulation in Bacillus species through the import of sporulation-specific quorum-sensing peptides. In contrast to other spore-forming bacteria, we discovered that inactivating these permeases in C. difficile resulted in the earlier expression of early sporulation genes and increased sporulation in vitro. Furthermore, disruption of opp and app resulted in greater virulence and increased the amounts of spores recovered from feces in the hamster model of C. difficile infection. Our data suggest that Opp and App indirectly inhibit sporulation, likely through the activities of the transcriptional regulator SinR and its inhibitor, SinI. Taken together, these results indicate that the Opp and App transporters serve a different function in controlling sporulation and virulence in C. difficile than in Bacillus subtilis and suggest that nutrient availability plays a significant role in pathogenesis and sporulation in vivo. This study suggests a link between the nutritional status of the environment and sporulation initiation in C. difficile. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. Hepatocyte-specific ablation of spermine/spermidine-N1-acetyltransferase gene reduces the severity of CCl4-induced acute liver injury

    PubMed Central

    Barone, Sharon L.; Xu, Jie; Steinbergs, Nora; Schuster, Rebecca; Lentsch, Alex B.; Amlal, Hassane; Wang, Jiang; Casero, Robert A.; Soleimani, Manoocher

    2012-01-01

    Activation of spermine/spermidine-N1-acetyltransferase (SSAT) leads to DNA damage and growth arrest in mammalian cells, and its ablation reduces the severity of ischemic and endotoxic injuries. Here we have examined the role of SSAT in the pathogenesis of toxic liver injury caused by carbon tetrachloride (CCl4). The expression and activity of SSAT increase in the liver subsequent to CCl4 administration. Furthermore, the early liver injury after CCl4 treatment was significantly attenuated in hepatocyte-specific SSAT knockout mice (Hep-SSAT-Cko) compared with wild-type (WT) mice as determined by the reduced serum alanine aminotransferase levels, decreased hepatic lipid peroxidation, and less severe liver damage. Cytochrome P450 2e1 levels remained comparable in both genotypes, suggesting that SSAT deficiency does not affect the metabolism of CCl4. Hepatocyte-specific deficiency of SSAT also modulated the induction of cytokines involved in inflammation and repair as well as leukocyte infiltration. In addition, Noxa and activated caspase 3 levels were elevated in the livers of WT compared with Hep-SSAT-Cko mice. Interestingly, the onset of cell proliferation was significantly more robust in the WT compared with Hep-SSAT Cko mice. The inhibition of polyamine oxidases protected the animals against CCl4-induced liver injury. Our studies suggest that while the abrogation of polyamine back conversion or inhibition of polyamine oxidation attenuate the early injury, they may delay the onset of hepatic regeneration. PMID:22723264

  11. Hepatocyte-specific ablation of spermine/spermidine-N1-acetyltransferase gene reduces the severity of CCl4-induced acute liver injury.

    PubMed

    Zahedi, Kamyar; Barone, Sharon L; Xu, Jie; Steinbergs, Nora; Schuster, Rebecca; Lentsch, Alex B; Amlal, Hassane; Wang, Jiang; Casero, Robert A; Soleimani, Manoocher

    2012-09-01

    Activation of spermine/spermidine-N(1)-acetyltransferase (SSAT) leads to DNA damage and growth arrest in mammalian cells, and its ablation reduces the severity of ischemic and endotoxic injuries. Here we have examined the role of SSAT in the pathogenesis of toxic liver injury caused by carbon tetrachloride (CCl(4)). The expression and activity of SSAT increase in the liver subsequent to CCl(4) administration. Furthermore, the early liver injury after CCl(4) treatment was significantly attenuated in hepatocyte-specific SSAT knockout mice (Hep-SSAT-Cko) compared with wild-type (WT) mice as determined by the reduced serum alanine aminotransferase levels, decreased hepatic lipid peroxidation, and less severe liver damage. Cytochrome P450 2e1 levels remained comparable in both genotypes, suggesting that SSAT deficiency does not affect the metabolism of CCl(4). Hepatocyte-specific deficiency of SSAT also modulated the induction of cytokines involved in inflammation and repair as well as leukocyte infiltration. In addition, Noxa and activated caspase 3 levels were elevated in the livers of WT compared with Hep-SSAT-Cko mice. Interestingly, the onset of cell proliferation was significantly more robust in the WT compared with Hep-SSAT Cko mice. The inhibition of polyamine oxidases protected the animals against CCl(4)-induced liver injury. Our studies suggest that while the abrogation of polyamine back conversion or inhibition of polyamine oxidation attenuate the early injury, they may delay the onset of hepatic regeneration.

  12. In vivo imaging of hepatocellular carcinoma using a glypican-3-binding peptide based probe

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Han, Zhihao; Zhang, Wancun; Qian, Zhiyu; Gu, Yueqing

    2017-02-01

    Hepatocellular carcinoma (HCC) has been the third most common cause of cancer-related death worldwide. Glypican-3 (GPC3) is a heparin sulfate proteoglycan linked to the cell membrane by a glycosyl-phosphatidylinositol anchor (GPI) and is expressed by 75% of all hepatocellular carcinomas but undetectable in healthy liver tissue or liver with focal lesions. What's more, GPC3 has been gradually applied in clinical applications as a specific indicator for the early detection and prognosis of HCC. As GPC3 can also regulate many pathways in HCC pathogenesis including Wnt, Hh and Yap signaling, it has been shown that GPC3 knockdown can inhibit HCC growth, reinforcing the important roles of GPC3 in HCC development. For HCC early detection, we designed a peptide targeting GPC3 that allows to establish a fluorescent dyes-labeled probe. Firstly, according to the structure of the GPC3 antibody GC33 and the positive peptide reported in the literature, we generated a peptide consisting of twelve amino acids named 12P that may bind to GPC3 with tight binding ability and specificity. In vitro testing, we utilized FCM and laser confocal microscopy to verify its specificity of targeting to the high expression cells of GPC3. What's more, we linked 12P with a near infrared dye to verify its in vivo targeting ability. All results indicated that 12P possessed potent binding capacity which could be used as a targeting module in GPC3 detection probe.

  13. Iron deposition and inflammation in multiple sclerosis. Which one comes first?

    PubMed Central

    2011-01-01

    Whether iron deposition is an epiphenomenon of the multiple sclerosis (MS) disease process or may play a primary role in triggering inflammation and disease development remains unclear at this time, and should be studied at the early stages of disease pathogenesis. However, it is difficult to study the relationship between iron deposition and inflammation in early MS due to the delay between the onset of symptoms and diagnosis, and the poor availability of tissue specimens. In a recent article published in BMC Neuroscience, Williams et al. investigated the relationship between inflammation and iron deposition using an original animal model labeled as "cerebral experimental autoimmune encephalomyelitis", which develops CNS perivascular iron deposits. However, the relative contribution of iron deposition vs. inflammation in the pathogenesis and progression of MS remains unknown. Further studies should establish the association between inflammation, reduced blood flow, iron deposition, microglia activation and neurodegeneration. Creating a representative animal model that can study independently such relationship will be the key factor in this endeavor. PMID:21699686

  14. Instruction via Web-Based Modules in Early Childhood Personnel Preparation: A Mixed-Methods Study of Effectiveness and Learner Perspectives

    ERIC Educational Resources Information Center

    Hollingsworth, Heidi L.; Lim, Chih-Ing

    2015-01-01

    Effective personnel preparation is critical to the development of a high quality early childhood workforce that provides optimal care and education for young children. This mixed-methods study examined the effectiveness of, and learner perspectives on, instruction via web-based modules within face-to-face early childhood personnel preparation…

  15. Cultural sensitivity or professional acculturation in early clinical experience?

    PubMed

    Whitford, David L; Hubail, Amal Redha

    2014-11-01

    This study aimed to explore the early clinical experience of medical students following the adaptation of an Early Patient Contact curriculum from a European culture in Ireland to an Arab culture in Bahrain. Medical students in Bahrain took part in an Early Patient Contact module modelled on a similar module from a partner medical school in Ireland. We used a qualitative approach employing thematic analysis of 54 student reflective logbooks. Particular attention was placed on reflections of cultural influences of experience in the course. Medical students undergoing this module received reported documented benefits of early clinical experience. However, students in Bahrain were exposed to cultural norms of the local Arab society including gender values, visiting the homes of strangers, language barriers and generous hospitality that led to additional challenges and learning for the medical students in acculturating to norms of the medical profession. Modules intended for curriculum adaptation between two cultures would be best served by a group of "core" learning outcomes with "secondary" outcomes culturally appropriate to each site. Within the context of the Arab culture, early clinical experience has the added benefit of allowing students to learn about both local and professional cultural norms, thereby facilitating integration of these two cultures.

  16. Role of reduced insulin-stimulated bone blood flow in the pathogenesis of metabolic insulin resistance and diabetic bone fragility.

    PubMed

    Hinton, Pamela S

    2016-08-01

    Worldwide, 387 million adults live with type 2 diabetes (T2D) and an additional 205 million cases are projected by 2035. Because T2D has numerous complications, there is significant morbidity and mortality associated with the disease. Identification of early events in the pathogenesis of insulin resistance and T2D might lead to more effective treatments that would mitigate health and monetary costs. Here, we present our hypothesis that impaired bone blood flow is an early event in the pathogenesis of whole-body metabolic insulin resistance that ultimately leads to T2D. Two recent developments in different fields form the basis for this hypothesis. First, reduced vascular function has been identified as an early event in the development of T2D. In particular, before the onset of tissue or whole body metabolic insulin resistance, insulin-stimulated, endothelium-mediated skeletal muscle blood flow is impaired. Insulin resistance of the vascular endothelium reduces delivery of insulin and glucose to skeletal muscle, which leads to tissue and whole-body metabolic insulin resistance. Second is the paradigm-shifting discovery that the skeleton has an endocrine function that is essential for maintenance of whole-body glucose homeostasis. Specifically, in response to insulin signaling, osteoblasts secret osteocalcin, which stimulates pancreatic insulin production and enhances insulin sensitivity in skeletal muscle, adipose, and liver. Furthermore, the skeleton is not metabolically inert, but contributes to whole-body glucose utilization, consuming 20% that of skeletal muscle and 50% that of white adipose tissue. Without insulin signaling or without osteocalcin activity, experimental animals become hyperglycemic and insulin resistant. Currently, it is not known if insulin-stimulated, endothelium-mediated blood flow to bone plays a role in the development of whole body metabolic insulin resistance. We hypothesize that it is a key, early event. Microvascular dysfunction is a primary cause of diabetic nephropathy, retinopathy and neuropathy and poor bone blood flow is associated with bone loss. Therefore, we also hypothesize that dysfunction of the bone vascular endothelium contributes to the bone fragility observed in T2D. The most important consequence of our-dual hypothesis is the public health significance. Namely, identification of the proximal cause of T2D and associated bone complications allows pursuit of the appropriate therapeutic target to treat and prevent T2D. If our hypothesis that reduced bone blood flow is an early event in the pathogenesis of T2D and diabetic bone fragility is correct, then the endothelium of the bone vasculature should be a therapeutic target. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Metabolomics as a promising tool for early osteoarthritis diagnosis.

    PubMed

    de Sousa, E B; Dos Santos, G C; Duarte, M E L; Moura, V; Aguiar, D P

    2017-09-21

    Osteoarthritis (OA) is the main cause of disability worldwide, due to progressive articular cartilage loss and degeneration. According to recent research, OA is more than just a degenerative disease due to some metabolic components associated to its pathogenesis. However, no biomarker has been identified to detect this disease at early stages or to track its development. Metabolomics is an emerging field and has the potential to detect many metabolites in a single spectrum using high resolution nuclear magnetic resonance (NMR) techniques or mass spectrometry (MS). NMR is a reproducible and reliable non-destructive analytical method. On the other hand, MS has a lower detection limit and is more destructive, but it is more sensitive. NMR and MS are useful for biological fluids, such as urine, blood plasma, serum, or synovial fluid, and have been used for metabolic profiling in dogs, mice, sheep, and humans. Thus, many metabolites have been listed as possibly associated to OA pathogenesis. The goal of this review is to provide an overview of the studies in animal models and humans, regarding the use of metabolomics as a tool for early osteoarthritis diagnosis. The concept of osteoarthritis as a metabolic disease and the importance of detecting a biomarker for its early diagnosis are highlighted. Then, some studies in plasma and synovial tissues are shown, and finally the application of metabolomics in the evaluation of synovial fluid is described.

  18. Coexpression network analysis identifies transcriptional modules associated with genomic alterations in neuroblastoma.

    PubMed

    Yang, Liulin; Li, Yun; Wei, Zhi; Chang, Xiao

    2018-06-01

    Neuroblastoma is a highly complex and heterogeneous cancer in children. Acquired genomic alterations including MYCN amplification, 1p deletion and 11q deletion are important risk factors and biomarkers in neuroblastoma. Here, we performed a co-expression-based gene network analysis to study the intrinsic association between specific genomic changes and transcriptome organization. We identified multiple gene coexpression modules which are recurrent in two independent datasets and associated with functional pathways including nervous system development, cell cycle, immune system process and extracellular matrix/space. Our results also indicated that modules involved in nervous system development and cell cycle are highly associated with MYCN amplification and 1p deletion, while modules responding to immune system process are associated with MYCN amplification only. In summary, this integrated analysis provides novel insights into molecular heterogeneity and pathogenesis of neuroblastoma. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang. Copyright © 2017. Published by Elsevier B.V.

  19. Bioinformatics Identification of Modules of Transcription Factor Binding Sites in Alzheimer's Disease-Related Genes by In Silico Promoter Analysis and Microarrays

    PubMed Central

    Augustin, Regina; Lichtenthaler, Stefan F.; Greeff, Michael; Hansen, Jens; Wurst, Wolfgang; Trümbach, Dietrich

    2011-01-01

    The molecular mechanisms and genetic risk factors underlying Alzheimer's disease (AD) pathogenesis are only partly understood. To identify new factors, which may contribute to AD, different approaches are taken including proteomics, genetics, and functional genomics. Here, we used a bioinformatics approach and found that distinct AD-related genes share modules of transcription factor binding sites, suggesting a transcriptional coregulation. To detect additional coregulated genes, which may potentially contribute to AD, we established a new bioinformatics workflow with known multivariate methods like support vector machines, biclustering, and predicted transcription factor binding site modules by using in silico analysis and over 400 expression arrays from human and mouse. Two significant modules are composed of three transcription factor families: CTCF, SP1F, and EGRF/ZBPF, which are conserved between human and mouse APP promoter sequences. The specific combination of in silico promoter and multivariate analysis can identify regulation mechanisms of genes involved in multifactorial diseases. PMID:21559189

  20. Colour expectations during object perception are associated with early and late modulations of electrophysiological activity.

    PubMed

    Stojanoski, Bobby Boge; Niemeier, Matthias

    2015-10-01

    It is well known that visual expectation and attention modulate object perception. Yet, the mechanisms underlying these top-down influences are not completely understood. Event-related potentials (ERPs) indicate late contributions of expectations to object processing around the P2 or N2. This is true independent of whether people expect objects (vs. no objects) or specific shapes, hence when expectations pertain to complex visual features. However, object perception can also benefit from expecting colour information, which can facilitate figure/ground segregation. Studies on attention to colour show attention-sensitive modulations of the P1, but are limited to simple transient detection paradigms. The aim of the current study was to examine whether expecting simple features (colour information) during challenging object perception tasks produce early or late ERP modulations. We told participants to expect an object defined by predominantly black or white lines that were embedded in random arrays of distractor lines and then asked them to report the object's shape. Performance was better when colour expectations were met. ERPs revealed early and late phases of modulation. An early modulation at the P1/N1 transition arguably reflected earlier stages of object processing. Later modulations, at the P3, could be consistent with decisional processes. These results provide novel insights into feature-specific contributions of visual expectations to object perception.

  1. Loss of MyD88 alters neuroinflammatory response and attenuates early Purkinje cell loss in a spinocerebellar ataxia type 6 mouse model

    PubMed Central

    Aikawa, Tomonori; Mogushi, Kaoru; Iijima-Tsutsui, Kumiko; Ishikawa, Kinya; Sakurai, Miyano; Tanaka, Hiroshi; Mizusawa, Hidehiro; Watase, Kei

    2015-01-01

    Spinocerebellar ataxia type 6 (SCA6) is dominantly inherited neurodegenerative disease, caused by an expansion of CAG repeat encoding a polyglutamine (PolyQ) tract in the Cav2.1 voltage-gated calcium channel. Its key pathological features include selective degeneration of the cerebellar Purkinje cells (PCs), a common target for PolyQ-induced toxicity in various SCAs. Mutant Cav2.1 confers toxicity primarily through a toxic gain-of-function mechanism; however, its molecular basis remains elusive. Here, we studied the cerebellar gene expression patterns of young Sca6-MPI118Q/118Q knockin (KI) mice, which expressed mutant Cav2.1 from an endogenous locus and recapitulated many phenotypic features of human SCA6. Transcriptional signatures in the MPI118Q/118Q mice were distinct from those in the Sca1154Q/2Q mice, a faithful SCA1 KI mouse model. Temporal expression profiles of the candidate genes revealed that the up-regulation of genes associated with microglial activation was initiated before PC degeneration and was augmented as the disease progressed. Histological analysis of the MPI118Q/118Q cerebellum showed the predominance of M1-like pro-inflammatory microglia and it was concomitant with elevated expression levels of tumor necrosis factor, interleukin-6, Toll-like receptor (TLR) 2 and 7. Genetic ablation of MyD88, a major adaptor protein conveying TLR signaling, altered expression patterns of M1/M2 microglial phenotypic markers in the MPI118Q/118Q cerebellum. More importantly, it ameliorated PC loss and partially rescued motor impairments in the early disease phase. These results suggest that early neuroinflammatory response may play an important role in the pathogenesis of SCA6 and its modulation could pave the way for slowing the disease progression during the early stage of the disease. PMID:26034136

  2. Role of von Willebrand Factor and ADAMTS13 in early brain injury after experimental subarachnoid hemorrhage.

    PubMed

    Wan, H; Wang, Y; Ai, J; Brathwaite, S; Ni, H; Macdonald, R L; Hol, E M; Meijers, J C M; Vergouwen, M D I

    2018-05-05

    Early brain injury is an important determinant of poor functional outcome and case-fatality after aneurysmal subarachnoid hemorrhage (SAH) and associated with early platelet aggregation. No treatment exists for early brain injury after SAH. We investigated if von Willebrand Factor (VWF) is involved in the pathogenesis of early brain injury, and if ultra-early treatment with recombinant ADAMTS13 (rADAMTS13) reduces early brain injury after experimental SAH. Experimental SAH in mice was induced by prechiasmatic injection of non-anticoagulated blood from a littermate. The following experimental SAH groups were investigated: C57BL/6J control (n=21), VWF -/- (n=25), ADAMTS13 -/- (n=23), and C57BL/6J treated with rADAMTS13 (n=26). Mice were sacrificed at 2 hours post-SAH. Primary outcome measures were microglial activation (Iba-1 surface area) and neuronal injury (number of cleaved caspase-3 positive neurons). Compared with controls, microglial activation was decreased in VWF -/- mice (mean difference -20.0%; 95% CI: -4.0% to -38.6%), increased in ADAMTS13 -/- mice (mean difference +34.0%; 95% CI: 16.2% to 51.7%), and decreased in rADAMTS13 treated mice (mean difference -22.1%; 95% CI: -3.4% to -39.1%). Compared with controls (185 neurons [IQR 133-353]), neuronal injury in the cerebral cortex was decreased in VWF -/- mice (63 neurons [IQR 25-78]), not changed in ADAMTS13 -/- mice (53 neurons [IQR 26-221]), and reduced in rADAMTS13 treated mice (45 neurons [IQR 9-115]). Our findings suggest that VWF is involved in the pathogenesis of early brain injury and support the further study of rADAMTS13 as a treatment option for early brain injury after SAH. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Peptidase modulation of airway effects of neuropeptides.

    PubMed

    Lilly, C M; Drazen, J M; Shore, S A

    1993-09-01

    SP and NKA are potent endogenous bronchoconstrictors, whereas VIP is a potent endogenous bronchodilator. There is abundant evidence that these neuropeptides are released in the lung in a variety of conditions and that they have the capacity to modulate the bronchoactivity of the same stimuli that release them. On many occasions, their bronchoactive effects are masked by their degradation at or near the site of their release. However, when the microenvironment is modified to decrease their cleavage, they can express enhanced physiologic effects. Although it appears that the human asthmatic lung may be an environment in which the effects of neuropeptides can be amplified, the role of neuropeptides in the pathogenesis of airway obstruction remains speculative.

  4. Dietary Factors Modulate Helicobacter-Associated Gastric Cancer in Rodent Models

    PubMed Central

    Fox, James G.; Wang, Timothy C.

    2014-01-01

    Since its discovery in 1982, the global importance of H. pylori-induced disease, particularly in developing countries, remains high. The use of rodent models particularly mice, and the unanticipated usefulness of the gerbil to study H. pylori pathogenesis have been used extensively to study the interactions of the host, the pathogen and the environmental conditions influencing the outcome of persistent H. pylori infection. Dietary factors in humans are increasingly recognized as being important factors in modulating progression and severity of H. pylori-induced gastric cancer. Studies using rodent models to verify and help explain mechanisms whereby various dietary ingredients impact disease outcome should continue to be extremely productive. PMID:24301796

  5. Molecular Profiles for Lung Cancer Pathogenesis and Detection in U.S. Veterans

    DTIC Science & Technology

    2014-12-01

    smokers [7]. In addition, modulation of global gene expression in the normal epithelium in health smokers is similar in the large and small airways...previously shown that gene-expression profiles in cytologically normal mainstem bronchus epithelium can distinguish smokers with and without lung cancer...spatially mapping the molecular field of injury associated with smoking-related lung cancer. In smokers undergoing resection of lung lesions, high

  6. The Endoplasmic Reticulum Chaperone GRP78/BiP Modulates Prion Propagation in vitro and in vivo.

    PubMed

    Park, Kyung-Won; Eun Kim, Gyoung; Morales, Rodrigo; Moda, Fabio; Moreno-Gonzalez, Ines; Concha-Marambio, Luis; Lee, Amy S; Hetz, Claudio; Soto, Claudio

    2017-03-23

    Prion diseases are fatal neurodegenerative disorders affecting several mammalian species, characterized by the accumulation of the misfolded form of the prion protein, which is followed by the induction of endoplasmic reticulum (ER) stress and the activation of the unfolded protein response (UPR). GRP78, also called BiP, is a master regulator of the UPR, reducing ER stress levels and apoptosis due to an enhancement of the cellular folding capacity. Here, we studied the role of GRP78 in prion diseases using several in vivo and in vitro approaches. Our results show that a reduction in the expression of this molecular chaperone accelerates prion pathogenesis in vivo. In addition, we observed that prion replication in cell culture was inversely related to the levels of expression of GRP78 and that both proteins interact in the cellular context. Finally, incubation of PrP Sc with recombinant GRP78 led to the dose-dependent reduction of protease-resistant PrP Sc in vitro. Our results uncover a novel role of GRP78 in reducing prion pathogenesis, suggesting that modulating its levels/activity may offer a novel opportunity for designing therapeutic approaches for these diseases. These findings may also have implications for other diseases involving the accumulation of misfolded proteins.

  7. Modulation of rotavirus severe gastroenteritis by the combination of probiotics and prebiotics.

    PubMed

    Gonzalez-Ochoa, Guadalupe; Flores-Mendoza, Lilian K; Icedo-Garcia, Ramona; Gomez-Flores, Ricardo; Tamez-Guerra, Patricia

    2017-09-01

    Annual mortality rates due to infectious diarrhea are about 2.2 million; children are the most vulnerable age group to severe gastroenteritis, representing group A rotaviruses as the main cause of disease. One of the main factors of rotavirus pathogenesis is the NSP4 protein, which has been characterized as a viral toxin involved in triggering several cellular responses leading to diarrhea. Furthermore, the rotavirus protein NSP1 has been associated with interferon production inhibition by inducing the degradation of interferon regulatory factors IRF3, IRF5, and IRF7. On the other hand, probiotics such as Bifidobacterium and Lactobacillus species in combination with prebiotics such as inulin, HMO, scGOS, lcFOS have been associated with improved generalized antiviral response and anti-rotavirus effect by the reduction of rotavirus infectivity and viral shedding, decreased expression of NSP4 and increased levels of specific anti-rotavirus IgAs. Moreover, these probiotics and prebiotics have been related to shorter duration and severity of rotavirus diarrhea, to the prevention of infection and reduced incidence of reinfections. In this review we will discuss in detail about the rotavirus pathogenesis and immunity, and how probiotics such as Lactobacillus and Bifidobacterium species in combination with prebiotics have been associated with the prevention or modulation of rotavirus severe gastroenteritis.

  8. Pathways of Prion Spread during Early Chronic Wasting Disease in Deer.

    PubMed

    Hoover, Clare E; Davenport, Kristen A; Henderson, Davin M; Denkers, Nathaniel D; Mathiason, Candace K; Soto, Claudio; Zabel, Mark D; Hoover, Edward A

    2017-05-15

    Among prion infections, two scenarios of prion spread are generally observed: (i) early lymphoid tissue replication or (ii) direct neuroinvasion without substantial antecedent lymphoid amplification. In nature, cervids are infected with chronic wasting disease (CWD) prions by oral and nasal mucosal exposure, and studies of early CWD pathogenesis have implicated pharyngeal lymphoid tissue as the earliest sites of prion accumulation. However, knowledge of chronological events in prion spread during early infection remains incomplete. To investigate this knowledge gap in early CWD pathogenesis, we exposed white-tailed deer to CWD prions by mucosal routes and performed serial necropsies to assess PrP CWD tissue distribution by real-time quaking-induced conversion (RT-QuIC) and tyramide signal amplification immunohistochemistry (TSA-IHC). Although PrP CWD was not detected by either method in the initial days (1 and 3) postexposure, we observed PrP CWD seeding activity and follicular immunoreactivity in oropharyngeal lymphoid tissues at 1 and 2 months postexposure (MPE). At 3 MPE, PrP CWD replication had expanded to all systemic lymphoid tissues. By 4 MPE, the PrP CWD burden in all lymphoid tissues had increased and approached levels observed in terminal disease, yet there was no evidence of nervous system invasion. These results indicate the first site of CWD prion entry is in the oropharynx, and the initial phase of prion amplification occurs in the oropharyngeal lymphoid tissues followed by rapid dissemination to systemic lymphoid tissues. This lymphoid replication phase appears to precede neuroinvasion. IMPORTANCE Chronic wasting disease (CWD) is a universally fatal transmissible spongiform encephalopathy affecting cervids, and natural infection occurs through oral and nasal mucosal exposure to infectious prions. Terminal disease is characterized by PrP CWD accumulation in the brain and lymphoid tissues of affected animals. However, the initial sites of prion accumulation and pathways of prion spread during early CWD infection remain unknown. To investigate the chronological events of early prion pathogenesis, we exposed deer to CWD prions and monitored the tissue distribution of PrP CWD over the first 4 months of infection. We show CWD uptake occurs in the oropharynx with initial prion replication in the draining oropharyngeal lymphoid tissues, rapidly followed by dissemination to systemic lymphoid tissues without evidence of neuroinvasion. These data highlight the two phases of CWD infection: a robust prion amplification in systemic lymphoid tissues prior to neuroinvasion and establishment of a carrier state. Copyright © 2017 American Society for Microbiology.

  9. Innate Immunity to H5N1 Influenza Viruses in Humans

    PubMed Central

    Ramos, Irene; Fernandez-Sesma, Ana

    2012-01-01

    Avian influenza virus infections in the human population are rare due to their inefficient direct human-to-human transmission. However, when humans are infected, a strong inflammatory response is usually induced, characterized by elevated levels of cytokines and chemokines in serum, believed to be important in the severe pathogenesis that develops in a high proportion of these patients. Extensive research has been performed to understand the molecular viral mechanisms involved in the H5N1 pathogenesis in humans, providing interesting insights about the virus-host interaction and the regulation of the innate immune response by these highly pathogenic viruses. In this review we summarize and discuss the most important findings in this field, focusing mainly on H5N1 virulence factors and their impact on the modulation of the innate immunity in humans. PMID:23342363

  10. The role of KIR2DS1 in multiple sclerosis--KIR in Portuguese MS patients.

    PubMed

    Bettencourt, Andreia; Silva, Ana Martins; Carvalho, Cláudia; Leal, Bárbara; Santos, Ernestina; Costa, Paulo P; Silva, Berta M

    2014-04-15

    Killer Immunoglobulin-like Receptor (KIR) genes may influence both resistance and susceptibility to different autoimmune diseases, but their role in the pathogenesis of Multiple Sclerosis (MS) is still unclear. We investigated the influence of KIR genes on MS susceptibility in 447 MS Portuguese patients, and also whether genetic interactions between specific KIR genes and their HLA class I ligands could contribute to the pathogenesis of MS. We observed a negative association between the activating KIR2DS1 gene and MS (adjusted OR=0.450, p=0.030) independently from the presence of HLA-DRB1*15 allele. The activating KIR2DS1 receptor seems to confer protection against MS most probably through modulation of autoreactive T cells by Natural Killer cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Plaque hemorrhage in carotid artery disease: pathogenesis, clinical and biomechanical considerations.

    PubMed

    Teng, Zhongzhao; Sadat, Umar; Brown, Adam J; Gillard, Jonathan H

    2014-03-03

    Stroke remains the most prevalent disabling illness today, with internal carotid artery luminal stenosis due to atheroma formation responsible for the majority of ischemic cerebrovascular events. Severity of luminal stenosis continues to dictate both patient risk stratification and the likelihood of surgical intervention. But there is growing evidence to suggest that plaque morphology may help improve pre-existing risk stratification criteria. Plaque components such a fibrous tissue, lipid rich necrotic core and calcium have been well investigated but plaque hemorrhage (PH) has been somewhat overlooked. In this review we discuss the pathogenesis of PH, its role in dictating plaque vulnerability, PH imaging techniques, marterial properties of atherosclerotic tissues, in particular, those obtained based on in vivo measurements and effect of PH in modulating local biomechanics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Familial Alzheimer's disease mutations in presenilin 1 do not alter levels of the secreted amyloid-beta protein precursor generated by beta-secretase cleavage.

    PubMed

    Zhang, Can; Browne, Andrew; Kim, Doo Yeon; Tanzi, Rudolph E

    2010-02-01

    Alzheimer's disease (AD) is an insidious and progressive disease with a genetically complex and heterogenous etiology. More than 200 fully penetrant mutations in the amyloid beta-protein precursor (APP), presenilin 1 (or PSEN1), and presenilin 2 (PSEN2) have been linked to early-onset familial AD (FAD). 177 PSEN1 FAD mutations have been identified so far and account for more than approximately 80% of all FAD mutations. All PSEN1 FAD mutations can increase the Abeta42:Abeta40 ratio with seemingly different and incompletely understood mechanisms. A recent study has shown that the 286 amino acid N-terminal fragment of APP (N-APP), a proteolytic product of beta-secretase-derived secreted form of APP (sAPPbeta), could bind the death receptor, DR6, and lead to neurodegeneration. Here we asked whether PSEN1 FAD mutations lead to neurodegeneration by modulating sAPPbeta levels. All four different PSEN1 FAD mutations tested (in three mammalian cell lines) did not alter sAPPbeta levels. Therefore PS1 mutations do not appear to contribute to AD pathogenesis via altered production of sAPPbeta.

  13. Airway inflammation in chronic obstructive pulmonary disease (COPD): a true paradox.

    PubMed

    Eapen, Mathew Suji; Myers, Stephen; Walters, Eugene Haydn; Sohal, Sukhwinder Singh

    2017-10-01

    Chronic obstructive pulmonary disease (COPD) is primarily an airway condition, which mainly affects cigarette smokers and presents with shortness of breath that is progressive and poorly reversible. In COPD research, there has been a long held belief that airway disease progression is due to inflammation. Although this may be true in the airway lumen with innate immunity activated by the effect of smoke or secondary to infection, the accurate picture of inflammatory cells in the airway wall, where the pathophysiological COPD remodeling occurs, is uncertain and debatable. Areas covered: The current review provides a comprehensive literature survey of the changes in the main inflammatory cells in human COPD patients and focuses on contrarian views that affect the prevailing dogma on inflammation. The review also delves into the role of oxidative stress and inflammasomes in modulating the immune response in COPD. Further, the effects of inflammation in affecting the epithelium, fibroblasts, and airway remodeling are discussed. Expert commentary: Inflammation as a driving force for airway wall damage and remodelling in early COPD is at the very least 'oversimplified' and is likely to be misleading. This has serious implications for rational thinking about the illness, including pathogenesis and designing therapy.

  14. The Role of the Gut Microbiota in Childhood Obesity.

    PubMed

    Pihl, Andreas Friis; Fonvig, Cilius Esmann; Stjernholm, Theresa; Hansen, Torben; Pedersen, Oluf; Holm, Jens-Christian

    2016-08-01

    Childhood and adolescent obesity has reached epidemic proportions worldwide. The pathogenesis of obesity is complex and multifactorial, in which genetic and environmental contributions seem important. The gut microbiota is increasingly documented to be involved in the dysmetabolism associated with obesity. We conducted a systematic search for literature available before October 2015 in the PubMed and Scopus databases, focusing on the interplay between the gut microbiota, childhood obesity, and metabolism. The review discusses the potential role of the bacterial component of the human gut microbiota in childhood and adolescent-onset obesity, with a special focus on the factors involved in the early development of the gut bacterial ecosystem, and how modulation of this microbial community might serve as a basis for new therapeutic strategies in combating childhood obesity. A vast number of variables are influencing the gut microbial ecology (e.g., the host genetics, delivery method, diet, age, environment, and the use of pre-, pro-, and antibiotics); but the exact physiological processes behind these relationships need to be clarified. Exploring the role of the gut microbiota in the development of childhood obesity may potentially reveal new strategies for obesity prevention and treatment.

  15. Experimental and early investigational drugs for androgenetic alopecia.

    PubMed

    Guo, Hongwei; Gao, Wendi Victor; Endo, Hiromi; McElwee, Kevin John

    2017-08-01

    Treatments for androgenetic alopecia constitute a multi-billion-dollar industry, however, currently available therapeutic options have variable efficacy. Consequently, in recent years small biotechnology companies and academic research laboratories have begun to investigate new or improved treatment methods. Research and development approaches include improved formulations and modes of application for current drugs, new drug development, development of cell-based treatments, and medical devices for modulation of hair growth. Areas covered: Here we review the essential pathways of androgenetic alopecia pathogenesis and collate the current and emerging therapeutic strategies using journal publications databases and clinical trials databases to gather information about active research on new treatments. Expert opinion: We propose that topically applied medications, or intra-dermal injected or implanted materials, are preferable treatment modalities, minimizing side effect risks as compared to systemically applied treatments. Evidence in support of new treatments is limited. However, we suggest therapeutics which reverse the androgen-driven inhibition of hair follicle signaling pathways, such as prostaglandin analogs and antagonists, platelet-rich plasma (PRP), promotion of skin angiogenesis and perfusion, introduction of progenitor cells for hair regeneration, and more effective ways of transplanting hair, are the likely near future direction of androgenetic alopecia treatment development.

  16. Influence of native catfish mucus on Flavobacterium columnare growth and proteolytic activity

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare causes columnaris disease of farmed and wild freshwater fish. Skin mucus is an important factor in early stages of columnaris pathogenesis, albeit little studied. Our objectives were to 1) characterize the terminal glycosylation pattern (TGP) of catfish mucus, 2) determine t...

  17. Pathogenic Events in a Nonhuman Primate Model of Oral Poliovirus Infection Leading to Paralytic Poliomyelitis

    PubMed Central

    Chen, Crystal Y.; Huang, Dan; Wang, Richard; Zhang, Meihong; Qian, Lixia; Zhu, Yanfen; Zhang, Alvin Zhuoran; Yang, Enzhuo; Qaqish, Arwa; Kouiavskaia, Diana; Nathanson, Neal; Macadam, Andrew J.; Andino, Raul; Kew, Olen; Xu, Junfa

    2017-01-01

    ABSTRACT Despite a great deal of prior research, the early pathogenic events in natural oral poliovirus infection remain poorly defined. To establish a model for study, we infected 39 macaques by feeding them single high doses of the virulent Mahoney strain of wild type 1 poliovirus. Doses ranging from 107 to 109 50% tissue culture infective doses (TCID50) consistently infected all the animals, and many monkeys receiving 108 or 109 TCID50 developed paralysis. There was no apparent difference in the susceptibilities of the three macaque species (rhesus, cynomolgus, and bonnet) used. Virus excretion in stool and nasopharynges was consistently observed, with occasional viremia, and virus was isolated from tonsils, gut mucosa, and draining lymph nodes. Viral replication proteins were detected in both epithelial and lymphoid cell populations expressing CD155 in the tonsil and intestine, as well as in spinal cord neurons. Necrosis was observed in these three cell types, and viral replication in the tonsil/gut was associated with histopathologic destruction and inflammation. The sustained response of neutralizing antibody correlated temporally with resolution of viremia and termination of virus shedding in oropharynges and feces. For the first time, this model demonstrates that early in the infectious process, poliovirus replication occurs in both epithelial cells (explaining virus shedding in the gastrointestinal tract) and lymphoid/monocytic cells in tonsils and Peyer's patches (explaining viremia), extending previous studies of poliovirus pathogenesis in humans. Because the model recapitulates human poliovirus infection and poliomyelitis, it can be used to study polio pathogenesis and to assess the efficacy of candidate antiviral drugs and new vaccines. IMPORTANCE Early pathogenic events of poliovirus infection remain largely undefined, and there is a lack of animal models mimicking natural oral human infection leading to paralytic poliomyelitis. All 39 macaques fed with single high doses ranging from 107 to 109 TCID50 Mahoney type 1 virus were infected, and many of the monkeys developed paralysis. Virus excretion in stool and nasopharynges was consistently observed, with occasional viremia; tonsil, mesentery lymph nodes, and intestinal mucosa served as major target sites of viral replication. For the first time, this model demonstrates that early in the infectious process, poliovirus replication occurs in both epithelial cells (explaining virus shedding in the gastrointestinal tract) and lymphoid/monocytic cells in tonsils and Peyer's patches (explaining viremia), thereby supplementing historical reconstructions of poliovirus pathogenesis. Because the model recapitulates human poliovirus infection and poliomyelitis, it can be used to study polio pathogenesis, candidate antiviral drugs, and the efficacy of new vaccines. PMID:28356537

  18. ABNORMAL ALDOSTERONE PHYSIOLOGY AND CARDIO-METABOLIC RISK FACTORS

    PubMed Central

    Vaidya, Anand; Underwood, Patricia C.; Hopkins, Paul N.; Jeunemaitre, Xavier; Ferri, Claudio; Williams, Gordon H.; Adler, Gail K.

    2013-01-01

    Abnormal aldosterone physiology has been implicated in the pathogenesis of cardio-metabolic diseases. Single aldosterone measurements capture only a limited range of aldosterone physiology. New methods of characterizing aldosterone physiology may provide a more comprehensive understanding of its relationship with cardio-metabolic disease. We evaluated whether novel indices of aldosterone responses to dietary sodium modulation, the Sodium-modulated Aldosterone Suppression-Stimulation Index (SASSI for serum and SAUSSI for urine), could predict cardio-metabolic risk factors. We performed cross-sectional analyses on 539 subjects studied on liberal (LIB) and restricted (RES) sodium diets with serum and urinary aldosterone measurements. SASSI and SAUSSI were calculated as the ratio of aldosterone on LIB (maximally suppressed aldosterone) to aldosterone on RES (stimulated aldosterone) diets, and associated with risk factors using adjusted regression models. Cardio-metabolic risk factors associated with either impaired suppression of aldosterone on LIB diet, or impaired stimulation on RES diet, or both; in all of these individual cases, these risk factors associated with higher SASSI or SAUSSI. In the context of abnormalities that comprise the metabolic syndrome (MetS), there was a strong positive association between the number of MetS components (0–4) and both SASSI and SAUSSI (P<0.0001) that was independent of known aldosterone secretagogues (angiotensin II, corticotropin, potassium). SASSI and SAUSSI exhibited a high sensitivity in detecting normal individuals with zero MetS components (86% for SASSI and 83% for SAUSSI). Assessing the physiologic range of aldosterone responses may provide greater insights into adrenal pathophysiology. Dysregulated aldosterone physiology may contribute to, and/or result from, early cardio-metabolic abnormalities. PMID:23399714

  19. IL-10 and NOS2 Modulate Antigen-Specific Reactivity and Nerve Infiltration by T Cells in Experimental Leprosy

    PubMed Central

    Hagge, Deanna A.; Scollard, David M.; Ray, Nashone A.; Marks, Vilma T.; Deming, Angelina T.; Spencer, John S.; Adams, Linda B.

    2014-01-01

    Background Although immunopathology dictates clinical outcome in leprosy, the dynamics of early and chronic infection are poorly defined. In the tuberculoid region of the spectrum, Mycobacterium leprae growth is restricted yet a severe granulomatous lesion can occur. The evolution and maintenance of chronic inflammatory processes like those observed in the leprosy granuloma involve an ongoing network of communications via cytokines. IL-10 has immunosuppressive properties and IL-10 genetic variants have been associated with leprosy development and reactions. Methodology/Principal Findings The role of IL-10 in resistance and inflammation in leprosy was investigated using Mycobacterium leprae infection of mice deficient in IL-10 (IL-10−/−), as well as mice deficient in both inducible nitric oxide synthase (NOS2−/−) and IL-10 (10NOS2−/−). Although a lack of IL-10 did not affect M. leprae multiplication in the footpads (FP), inflammation increased from C57Bl/6 (B6)

  20. Altered cytokine profiles of human retinal pigment epithelium: Oxidant injury and replicative senescence

    PubMed Central

    Cao, Sijia; Walker, Gregory B.; Wang, Xuefeng; Cui, Jing Z.

    2013-01-01

    Purpose Age-related macular degeneration (AMD) is a local, chronic inflammatory disease of the eye that is influenced by oxidative stress and dysregulation of the retinal pigment epithelium (RPE) associated with aging. The purpose of this study is to characterize the effects of oxidative stress and replicative senescence on the secreted cytokine profiles of RPE in vitro. Methods We used multiple, serial passages of human RPE cells from primary culture as an in vitro model of aging. Responses of early passage 5 (P5) and late passage 21 (P21) RPE cells were compared. Oxidative stress was induced in RPE cells (P5) by exposure to 75 μM hydroquinone (HQ) for 24 h. The secretome profiles of the RPE cells were measured with a multiplex suspension assay that assayed human cytokine, chemokine, and growth factors. Immunohistochemistry on younger (≤55 years old) and older (≥70 years old) human post-mortem donor eyes was used to verify selected cytokines. Results Supernatant of HQ-treated RPE cultures exhibited increased secreted levels of vascular endothelial growth factor (VEGF), interleukin (IL)-12, and IL-10 that reached statistical significance (p<0.05). Supernatant of late passage P21 RPE cultures exhibited decreased secreted levels of stromal cell-derived factor (SDF)-1α, granulocyte macrophage colony-stimulating factor (GM-CSF), IL-8, IL-15, IL-6, and an increased level of IL-1ra compared to early passage P5 RPE cultures that reached statistical significance (p<0.05). Immunohistochemical analysis demonstrated increased expression of IL-1ra in RPE cells from older post-mortem donor eyes (≥70 years old) versus younger eyes (≤55 years old). Conclusions Our data demonstrate a unique cytokine secretion profile of primary culture RPE cells at early and late passage. Our in vitro data suggest an age-specific modulation of cytokine secretion in RPE and is consistent with immunohistochemical analysis on post-mortem eyes. The secretion profile associated with RPE under conditions that mimic oxidative stress, another factor associated with the pathogenesis of AMD, emphasizes upregulation of the angiogenic growth factor, vascular endothelial growth factor. Together, these data support the role of advanced age and oxidative stress in inflammatory cytokine modulation in RPE cells. PMID:23559866

  1. Etiologic theories of idiopathic scoliosis. Somatic nervous system and the NOTOM escalator concept as one component in the pathogenesis of adolescent idiopathic scoliosis.

    PubMed

    Burwell, R G; Dangerfield, P H; Freeman, B J C

    2008-01-01

    There is no generally accepted scientific theory for the causes of adolescent idiopathic scoliosis (AIS). In recent years encouraging advances thought to be related to the pathogenesis of AIS have been made in several fields. After reviewing concepts of AIS pathogenesis we formulated a collective model of pathogenesis. The central concept of this collective model is a normal neuro-osseous timing of maturation (NOTOM) system operating in a child's internal world during growth and maturation; this provides a dynamic physiological balance of postural equilibrium continuously renewed between two synchronous, polarized processes (NOTOM escalator) linked through sensory input and motor output, namely: 1) osseous escalator-increasing skeletal size and relative segmental mass, and 2) neural escalator - including the CNS body schema. The latter is recalibrated continuously as the body adjusts to biomechanical and kinematic changes resulting from skeletal enlargement, enabling it to coordinate motor actions. We suggest that AIS progression results from abnormality of the neural and/or osseous components of these normal escalator in time and/or space - as asynchrony and/or asymmetries - which cause a failure of neural systems to control asymmetric growth of a rapidly enlarging and moving adolescent spine. This putative initiating asymmetric growth in the spine is explained in separate papers as resulting from dysfunction of the hypothalamus expressed through the sympathetic nervous system (leptin-sympathetic nervous system concept for AIS pathogenesis). In girls, the expression of AIS may result from disharmony between the somatic and autonomic nervous systems - relative postural maturational delay in the somatic nervous system and hypothalamic dysfunction in the autonomic nervous system, with the conflict being fought out in the spine and trunk of the girl and compounded by biomechanical spinal growth modulation.

  2. MERS-CoV Accessory ORFs Play Key Role for Infection and Pathogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menachery, Vineet D.; Mitchell, Hugh D.; Cockrell, Adam S.

    ABSTRACT While dispensable for viral replication, coronavirus (CoV) accessory open reading frame (ORF) proteins often play critical roles during infection and pathogenesis. Utilizing a previously generated mutant, we demonstrate that the absence of all four Middle East respiratory syndrome CoV (MERS-CoV) accessory ORFs (deletion of ORF3, -4a, -4b, and -5 [dORF3-5]) has major implications for viral replication and pathogenesis. Importantly, attenuation of the dORF3-5 mutant is primarily driven by dysregulated host responses, including disrupted cell processes, augmented interferon (IFN) pathway activation, and robust inflammation.In vitroreplication attenuation also extends toin vivomodels, allowing use of dORF3-5 as a live attenuated vaccine platform.more » Finally, examination of ORF5 implicates a partial role in modulation of NF-κB-mediated inflammation. Together, the results demonstrate the importance of MERS-CoV accessory ORFs for pathogenesis and highlight them as potential targets for surveillance and therapeutic treatments moving forward. IMPORTANCEThe initial emergence and periodic outbreaks of MERS-CoV highlight a continuing threat posed by zoonotic pathogens to global public health. In these studies, mutant virus generation demonstrates the necessity of accessory ORFs in regard to MERS-CoV infection and pathogenesis. With this in mind, accessory ORF functions can be targeted for both therapeutic and vaccine treatments in response to MERS-CoV and related group 2C coronaviruses. In addition, disruption of accessory ORFs in parallel may offer a rapid response platform to attenuation of future emergent strains based on both SARS- and MERS-CoV accessory ORF mutants.« less

  3. A Novel Mechanism for the Pathogenesis of Nonmelanoma Skin Cancer Resulting from Early Exposure to Ultraviolet Light

    DTIC Science & Technology

    2015-11-01

    follow through next year, as the poor breeding of transgenic mice thwarted our efforts for a timely conclusion of this project. KEY RESEARCH...the epidermis during the early stages of skin tumor promotion. 7) We demonstrated using our K14mTmG transgenic mice that a low but significant...together with the use of two transgenic mice that are already available including two UV experiments, and a skin grafting experiment. The rationale

  4. [Role of hemodynamic factors and heart volume in the prognosis of acute cardiac insufficiency during the early postoperative period in patients with mitral valve stenosis].

    PubMed

    Guliamov, D S; Amanov, A A; Andres, Iu P; Bazhenova, T F

    1983-07-01

    Investigations performed in 172 patients have shown that the state of the myocardium (such parameters as the heart volume, degree of lung hypertension, end-diastolic pressure in the right and left ventricles) is of great importance in pathogenesis of the development of acute heart failure in the early postoperative period in patients with mitral stenosis of the IIIrd and IVth stage of the blood circulation insufficiency.

  5. Sphingosine-1-Phosphate Signaling in Inflammatory Bowel Disease.

    PubMed

    Nielsen, Ole Haagen; Li, Yuan; Johansson-Lindbom, Bengt; Coskun, Mehmet

    2017-04-01

    An unmet medical need exists for the development of targeted therapies for the treatment of inflammatory bowel disease (IBD) with easily administered and stable oral drugs, particularly as most patients on biologics [i.e., tumor necrosis factor (TNF) inhibitors and anti-integrins] are either primary non-responders or lose responsiveness during maintenance treatment. A new class of small molecules, sphingosine-1-phosphate (S1P) receptor modulators, has recently shown efficacy in IBD. Here we provide an overview of the mechanism of action of this novel treatment principle in the context of intestinal inflammation. The remarkable impact of therapeutic modulation of the S1P/S1P receptor axis reflects the complexity of the pathogenesis of IBD and the fact that S1P receptor modulation may be a logical therapeutic approach for the future management of IBD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. ssrA (tmRNA) Plays a Role in Salmonella enterica Serovar Typhimurium Pathogenesis

    PubMed Central

    Julio, Steven M.; Heithoff, Douglas M.; Mahan, Michael J.

    2000-01-01

    Escherichia coli ssrA encodes a small stable RNA molecule, tmRNA, that has many diverse functions, including tagging abnormal proteins for degradation, supporting phage growth, and modulating the activity of DNA binding proteins. Here we show that ssrA plays a role in Salmonella enterica serovar Typhimurium pathogenesis and in the expression of several genes known to be induced during infection. Moreover, the phage-like attachment site, attL, encoded within ssrA, serves as the site of integration of a region of Salmonella-specific sequence; adjacent to the 5′ end of ssrA is another region of Salmonella-specific sequence with extensive homology to predicted proteins encoded within the unlinked Salmonella pathogenicity island SPI4. S. enterica serovar Typhimurium ssrA mutants fail to support the growth of phage P22 and are delayed in their ability to form viable phage particles following induction of a phage P22 lysogen. These data indicate that ssrA plays a role in the pathogenesis of Salmonella, serves as an attachment site for Salmonella-specific sequences, and is required for the growth of phage P22. PMID:10692360

  7. Biomarker metabolite signatures pave the way for electronic-nose applications in early clinical disease diagnoses

    Treesearch

    Alphus Dan Wilson

    2017-01-01

    Background: Analysis of volatile metabolites derived from the human breath or biofluids provides noninvasive means of detecting and monitoring diseases that occur throughout the body. Diseases arise from different mechanisms that cause alterations in normal physiological processes. Mechanisms of disease (pathogenesis) result in the...

  8. Osteoarthritis: priorities for osteoarthritis research: much to be done.

    PubMed

    Felson, David T

    2014-08-01

    With a frustrating lack of progress in the development of treatments for osteoarthritis, EULAR has released recommendations to reorient research into this disease. These recommendations include focused attention on noncartilagenous tissues, the interaction of structures within the joint, the pathogenesis of osteoarthritic pain, new treatment strategies and early disease.

  9. Plasma Amyloid Is Associated with White Matter and Subcortical Alterations and Is Modulated by Age and Seasonal Rhythms in Mouse Lemur Primates.

    PubMed

    Gary, Charlotte; Hérard, Anne-Sophie; Hanss, Zoé; Dhenain, Marc

    2018-01-01

    Accumulation of amyloid-β (Aβ) peptides in the brain is a critical early event in the pathogenesis of Alzheimer's disease (AD), the most common age-related neurodegenerative disorder. There is increasing interest in measuring levels of plasma Aβ since this could help in diagnosis of brain pathology. However, the value of plasma Aβ in such a diagnosis is still controversial and factors modulating its levels are still poorly understood. The mouse lemur ( Microcebus murinus ) is a primate model of cerebral aging which can also present with amyloid plaques and whose Aβ is highly homologous to humans'. In an attempt to characterize this primate model and to evaluate the potential of plasma Aβ as a biomarker for brain alterations, we measured plasma Aβ 40 concentration in 21 animals aged from 5 to 9.5 years. We observed an age-related increase in plasma Aβ 40 levels. We then evaluated the relationships between plasma Aβ 40 levels and cerebral atrophy in these mouse lemurs. Voxel-based analysis of cerebral MR images (adjusted for the age/sex/brain size of the animals), showed that low Aβ 40 levels are associated with atrophy of several white matter and subcortical brain regions. These results suggest that low Aβ 40 levels in middle-aged/old animals are associated with brain deterioration. One special feature of mouse lemurs is that their metabolic and physiological parameters follow seasonal changes strictly controlled by illumination. We evaluated seasonal-related variations of plasma Aβ 40 levels and found a strong effect, with higher plasma Aβ 40 concentrations in winter conditions compared to summer. This question of seasonal modulation of Aβ plasma levels should be addressed in clinical studies. We also focused on the amplitude of the difference between plasma Aβ 40 levels during the two seasons and found that this amplitude increases with age. Possible mechanisms leading to these seasonal changes are discussed.

  10. Zinc Replenishment Reverses Overexpression of the Proinflammatory Mediator S100A8 and Esophageal Preneoplasia in the Rat

    PubMed Central

    Taccioli, Cristian; Wan, Shao-Gui; Liu, Chang-Gong; Alder, Hansjuerg; Volinia, Stefano; Farber, John L.; Croce, Carlo M.

    2009-01-01

    Background & Aims Zinc-deficiency is implicated in the pathogenesis of human esophageal cancer. In the rat esophagus, it induces cell proliferation, modulates genetic expression, and enhances carcinogenesis. Zinc-replenishment reverses proliferation and inhibits carcinogenesis. The zinc-deficient rat model allows the identification of biological differences affected by zinc during early esophageal carcinogenesis. Methods We evaluated gene expression profiles of esophageal epithelia from zinc-deficient and replenished rats versus sufficient rats using Affymetrix Rat Genome GeneChip. We characterized the role of the top-upregulated gene S100A8 in esophageal hyperplasia/reversal and in chemically-induced esophageal carcinogenesis in zinc-modulated animals by immunohistochemistry and real-time quantitative polymerase chain reaction. Results The hyperplastic deficient esophagus has a distinct expression signature with the proinflammation-gene S100A8 and S100A9 upregulated 57- and 5-fold. “Response to external stimulus” comprising S100A8 was the only significantly overrepresented biological pathway among the upregulated genes. Zinc-replenishment rapidly restored to control levels the expression of S100A8/A9 and 27 other genes and reversed the hyperplastic phenotype. With its receptor RAGE, co-localization and overexpression of S100A8 protein occurred in the deficient esophagus that overexpressed NF-κB p65 and COX-2 protein. Zinc-replenishment but not by a COX-2 inhibitor reduced the overexpression of these 4 proteins. Additionally, esophageal S100A8/A9 mRNA levels were directly associated with the diverse tumorigenic outcome in zinc-deficient and zinc-replenished rats. Conclusions In vivo zinc regulates S100A8 expression and modulates the link between S100A8-RAGE interaction and downstream NF-κB/COX-2 signaling. The finding that zinc regulates an inflammatory pathway in esophageal carcinogenesis may lead to prevention and therapy for this cancer. PMID:19111725

  11. Cardiac autonomic modulation impairments in advanced breast cancer patients.

    PubMed

    Arab, Claudia; Vanderlei, Luiz Carlos Marques; da Silva Paiva, Laércio; Fulghum, Kyle Levi; Fristachi, Carlos Elias; Nazario, Afonso Celso Pinto; Elias, Simone; Gebrim, Luiz Henrique; Ferreira Filho, Celso; Gidron, Yori; Ferreira, Celso

    2018-05-02

    To compare cardiac autonomic modulation in early- versus advanced-stage breast cancer patients before any type of cancer treatment and investigate associated factors. This cross-sectional study included women (30-69 years old) with primary diagnosis of breast cancer and women with benign breast tumors. We evaluated cardiac modulation by heart rate variability and assessed factors of anxiety, depression, physical activity, and other relevant medical variables. Patients were divided into three groups based on TNM staging of cancer severity: early-stage cancer (n = 42), advanced-stage cancer (n = 37), or benign breast tumors to serve as a control (n = 37). We analyzed heart rate variability in time and frequency domains. The advanced-stage cancer group had lower vagal modulation than early-stage and benign groups; also, the advance-stage group had lower overall heart rate variability when compared to benign conditions. Heart rate variability was influenced by age, menopausal status, and BMI. Heart rate variability seems to be a promising, non-invasive tool for early diagnosis of autonomic dysfunction in breast cancer and detection of cardiovascular impairments at cancer diagnosis. Cardiac autonomic modulation is inversely associated with breast cancer staging.

  12. Feeling Touched: Emotional Modulation of Somatosensory Potentials to Interpersonal Touch.

    PubMed

    Ravaja, N; Harjunen, V; Ahmed, I; Jacucci, G; Spapé, M M

    2017-01-12

    Although the previous studies have shown that an emotional context may alter touch processing, it is not clear how visual contextual information modulates the sensory signals, and at what levels does this modulation take place. Therefore, we investigated how a toucher's emotional expressions (anger, happiness, fear, and sadness) modulate touchee's somatosensory-evoked potentials (SEPs) in different temporal ranges. Participants were presented with tactile stimulation appearing to originate from expressive characters in virtual reality. Touch processing was indexed using SEPs, and self-reports of touch experience were collected. Early potentials were found to be amplified after angry, happy and sad facial expressions, while late potentials were amplified after anger but attenuated after happiness. These effects were related to two stages of emotional modulation of tactile perception: anticipation and interpretation. The findings show that not only does touch affect emotion, but also emotional expressions affect touch perception. The affective modulation of touch was initially obtained as early as 25 ms after the touch onset suggesting that emotional context is integrated to the tactile sensation at a very early stage.

  13. Feeling Touched: Emotional Modulation of Somatosensory Potentials to Interpersonal Touch

    PubMed Central

    Ravaja, N.; Harjunen, V.; Ahmed, I.; Jacucci, G.; Spapé, M. M.

    2017-01-01

    Although the previous studies have shown that an emotional context may alter touch processing, it is not clear how visual contextual information modulates the sensory signals, and at what levels does this modulation take place. Therefore, we investigated how a toucher’s emotional expressions (anger, happiness, fear, and sadness) modulate touchee’s somatosensory-evoked potentials (SEPs) in different temporal ranges. Participants were presented with tactile stimulation appearing to originate from expressive characters in virtual reality. Touch processing was indexed using SEPs, and self-reports of touch experience were collected. Early potentials were found to be amplified after angry, happy and sad facial expressions, while late potentials were amplified after anger but attenuated after happiness. These effects were related to two stages of emotional modulation of tactile perception: anticipation and interpretation. The findings show that not only does touch affect emotion, but also emotional expressions affect touch perception. The affective modulation of touch was initially obtained as early as 25 ms after the touch onset suggesting that emotional context is integrated to the tactile sensation at a very early stage. PMID:28079157

  14. Phenotypic Modulation of the Virulent Bvg Phase Is Not Required for Pathogenesis and Transmission of Bordetella bronchiseptica in Swine

    PubMed Central

    Brockmeier, Susan L.; Loving, Crystal L.; Register, Karen B.; Kehrli, Marcus E.; Stibitz, Scott E.; Shore, Sarah M.

    2012-01-01

    The majority of virulence gene expression in Bordetella is regulated by a two-component sensory transduction system encoded by the bvg locus. In response to environmental cues, the BvgAS regulatory system controls expression of a spectrum of phenotypic phases, transitioning between a virulent (Bvg+) phase and a nonvirulent (Bvg−) phase, a process referred to as phenotypic modulation. We hypothesized that the ability of Bordetella bronchiseptica to undergo phenotypic modulation is required at one or more points during the infectious cycle in swine. To investigate the Bvg phase-dependent contribution to pathogenesis of B. bronchiseptica in swine, we constructed a series of isogenic mutants in a virulent B. bronchiseptica swine isolate and compared each mutant to the wild-type isolate for its ability to colonize and cause disease. We additionally tested whether a BvgAS system capable of modulation is required for direct or indirect transmission. The Bvg− phase-locked mutant was never recovered from any respiratory tract site at any time point examined. An intermediate phase-locked mutant (Bvgi) was found in numbers lower than the wild type at all respiratory tract sites and time points examined and caused limited to no disease. In contrast, colonization of the respiratory tract and disease caused by the Bvg+ phase-locked mutant and the wild-type strain were indistinguishable. The Bvg+ phase-locked mutant transmitted to naïve pigs by both direct and indirect contact with efficiency equal to that of the wild-type isolate. These results indicate that while full activation of the BvgAS regulatory system is required for colonization and severe disease, it is not deleterious to direct and indirect transmission. Overall, our results demonstrate that the Bvg+ phase is sufficient for respiratory infection and host-to-host transmission of B. bronchiseptica in swine. PMID:22158743

  15. Hydrostatic pressure as epigenetic modulator in chondrocyte cultures: A study on miRNA-155, miRNA-181a and miRNA-223 expression levels.

    PubMed

    De Palma, Anna; Cheleschi, Sara; Pascarelli, Nicola Antonio; Giannotti, Stefano; Galeazzi, Mauro; Fioravanti, Antonella

    2018-01-03

    Mechanical stimuli and hydrostatic pressure (HP) play an important role in the regulation of chondrocytes metabolism. Growing evidence demonstrated the ability of mechanical loading to modulate the expression of microRNA (miRNA) involved in chondrocytes homeostasis and in the pathogenesis of osteoarthritis (OA). The expression of miR-155, miR-181a and miR-223 in normal and OA chondrocyte cultures, and their potential modifications following exposure to three hours of a cyclic HP (1-5 MPa, frequency 0.25 Hz) were investigated. Also evaluated the expression of Chuk, regulator of the NF-kB pathway activation, which is a target gene of miR-223, was evaluated. Chondrocytes were collected immediately after pressurization (T0), and following 12, 24, and 48 h. Total RNA was extracted, reverse transcribed and used for real-time PCR. At basal condition, a significant increase of miR-155 and miR-181a was observed in OA in comparison to normal cells; on the contrary, no differences in miR-223 and Chuk expression levels were detected between normal and OA chondrocytes. miR-155 and miR-181a resulted significantly downregulated immediately after pressurization (T0) in OA cells. The pressure effect on miR-155 and miR-181a levels was maintained over time. No modifications of miR-223 were observed in response to HP, while Chuk levels resulted significantly reduced at T0 and after 12 h. Pressurization did not cause any modifications in normal cells. In conclusion, HP was able to modulate the expression of miRNA associated to OA pathogenesis. The preliminary results about Chuk response to pressure raised interest in its involvement in the possible HP induced NF-kB pathway modulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Pathogenesis of Arrhythmogenic Cardiomyopathy

    PubMed Central

    Asimaki, Angeliki; Kleber, Andre G.; Saffitz, Jeffrey E.

    2015-01-01

    Arrhythmogenic cardiomyopathy (ACM) is a primary myocardial disease. It is characterized by frequent ventricular arrhythmias and increased risk of sudden cardiac death typically arising as an early manifestation before the onset of significant myocardial remodeling. Myocardial degeneration, often confined to the right ventricular free wall, with replacement by fibrofatty scar tissue, develops in many patients. ACM is a familial disease but genetic penetrance can be low and disease expression is highly variable. Inflammation may promote disease progression. It also appears that exercise increases disease penetrance and accelerates its development. More than 60% of probands harbor mutations in genes encoding desmosomal proteins, which has raised the possibility that defective cell-cell adhesion may play a role in disease pathogenesis. Recent advances have implicated changes in the canonical Wnt/β-catenin and Hippo signaling pathways and defects in forwarding trafficking of ion channels and other proteins to the intercalated disk in cardiac myocytes. This review summarizes current understanding of the pathogenesis of ACM and highlights future research directions. PMID:26199027

  17. Elucidating the Pathogenesis of Pre-eclampsia Using In Vitro Models of Spiral Uterine Artery Remodelling.

    PubMed

    McNally, Ross; Alqudah, Abdelrahim; Obradovic, Danilo; McClements, Lana

    2017-10-23

    The aim of the study is to perform a critical assessment of in vitro models of pre-eclampsia using complementary human and cell line-based studies. Molecular mechanisms involved in spiral uterine artery (SUA) remodelling and trophoblast functionality will also be discussed. A number of proteins and microRNAs have been implicated as key in SUA remodelling, which could be explored as early biomarkers or therapeutic targets for prevention of pre-eclampsia. Various 2D and 3D in vitro models involving trophoblast cells, endothelial cells, immune cells and placental tissue were discussed to elucidate the pathogenesis of pre-eclampsia. Nevertheless, pre-eclampsia is a multifactorial disease, and the mechanisms involved in its pathogenesis are complex and still largely unknown. Further studies are required to provide better understanding of the key processes leading to inappropriate placental development which is the root cause of pre-eclampsia. This new knowledge could identify novel biomarkers and treatment strategies.

  18. Apoptosis as a Mechanism for Keratinocyte Death in Canine Toxic Epidermal Necrolysis.

    PubMed

    Banovic, F; Dunston, S; Linder, K E; Rakich, P; Olivry, T

    2017-03-01

    In humans and dogs, toxic epidermal necrolysis (TEN) is a life-threatening dermatosis characterized by sudden epidermal death resulting in extensive skin detachment. There is little information on the pathogenesis of keratinocyte cell death in canine TEN. We studied the occurrence of apoptosis in skin lesions of dogs with TEN to determine if apoptosis contributes to the pathogenesis of this disease. Immunostaining with antibodies to activated caspase-3 and the terminal deoxynucleotidyl-transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick-end labeling technique revealed positive apoptotic keratinocytes in basal and suprabasal epidermal compartments in 17 biopsy specimens collected from 3 dogs with TEN and 16 from 3 dogs with erythema multiforme (EM). There was no significant difference in the number of positively stained epidermal cells between TEN and EM. These results suggest that apoptosis of epidermal keratinocytes and lymphocytic satellitosis represent one of the early steps in the pathogenesis of canine TEN, as in the human disease counterpart.

  19. Updates of the role of oxidative stress in the pathogenesis of ovarian cancer.

    PubMed

    Saed, Ghassan M; Diamond, Michael P; Fletcher, Nicole M

    2017-06-01

    Clinical and epidemiological investigations have provided evidence supporting the role of reactive oxygen species (ROS) and reactive nitrogen species (RNS), collectively known as oxidative stress, in the etiology of cancer. Exogenous factors such as chronic inflammation, infection and hypoxia are major sources of cellular oxidative stress. Specifically, oxidative stress plays an important role in the pathogenesis, neoangiogenesis, and dissemination of local or distant ovarian cancer, as it is known to induce phenotypic modifications of tumor cells by cross talk between tumor cells and the surrounding stroma. Subsequently, the biological significance of the relationship between oxidative stress markers and various stages of epithelial ovarian cancer highlights potential therapeutic interventions as well as provides urgently needed early detection biomarkers. In the light of our scientific research and the most recent experimental and clinical observations, this review provides the reader with up to date most relevant findings on the role of oxidative stress in the pathogenesis of ovarian cancer and the possible therapeutic implications. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Pathogenesis, diagnosis and treatment of cerebral fat embolism.

    PubMed

    Zhou, Yihua; Yuan, Ying; Huang, Chahua; Hu, Lihua; Cheng, Xiaoshu

    2015-01-01

    In this study, we analyzed two cases of pure cerebral fat embolism and reviewed related literatures to explore the pathogenesis, clinical manifestations, diagnosis and treatment of cerebral fat embolism, improve the treatment efficiency and reduce the misdiagnosis rate. In our cases, patients fully returned to consciousness at the different times with good prognosis, normal vital signs and without obvious sequelae. For patients with the limb fractures, who developed coma without chest distress, dyspnea or other pulmonary symptoms 12 or 24 h post injury, cerebral fat embolism should be highly suspected, except for those with intracranial lesions, such as delayed traumatic intracerebral hemorrhage, etc. The early diagnosis and comprehensive treatment can improve prognosis.

  1. Osteoarthritis of the distal interphalangeal joint.

    PubMed

    Kaufmann, Robert A; Lögters, Tim T; Verbruggen, Gust; Windolf, Joachim; Goitz, Robert J

    2010-12-01

    Osteoarthritis occurs with the highest prevalence in the distal interphalangeal joint of the hand and has been divided into an erosive and a nonerosive form. The pathogenesis of the early stages of osteoarthritis is poorly understood, but considerable emphasis has been placed on the role of cartilage and subchondral bone as well as soft tissue structures such as collateral ligaments and tendons. Radiographic evaluation represents the most standardized method to quantify disease progression, with different systems having been developed for defining and grading radiographic features. This current concepts article examines the recent knowledge base regarding the etiology, pathogenesis, and evaluation of osteoarthritis of the distal interphalangeal joint. Copyright © 2010. Published by Elsevier Inc.

  2. Genomics, transcriptomics and proteomics to elucidate the pathogenesis of rheumatoid arthritis.

    PubMed

    Song, Xinqiang; Lin, Qingsong

    2017-08-01

    Rheumatoid arthritis is an autoimmune disease that affects several organs and tissues, predominantly the synovial joints. The pathogenesis of this disease is not completely understood, which maybe involved in the genomic variations, gene expression, protein translation and post-translational modifications. These system variations in genomics, transcriptomics and proteomics are dynamic in nature and their crosstalk is overwhelmingly complex, thus analyzing them separately may not be very informative. However, various '-omics' techniques developed in recent years have opened up new possibilities for clarifying disease pathways and thereby facilitating early diagnosis and specific therapies. This review examines how recent advances in the fields of genomics, transcriptomics and proteomics have contributed to our understanding of rheumatoid arthritis.

  3. Social visual engagement in infants and toddlers with autism: Early developmental transitions and a model of pathogenesis

    PubMed Central

    Klin, Ami; Shultz, Sarah; Jones, Warren

    2014-01-01

    Efforts to determine and understand the causes of autism are currently hampered by a large disconnect between recent molecular genetics findings that are associated with the condition and the core behavioral symptoms that define the condition. In this perspective piece, we propose a systems biology framework to bridge that gap between genes and symptoms. The framework focuses on basic mechanisms of socialization that are highly-conserved in evolution and are early-emerging in development. By conceiving of these basic mechanisms of socialization as quantitative endophenotypes, we hope to connect genes and behavior in autism through integrative studies of neurodevelopmental, behavioral, and epigenetic changes. These changes both lead to and are led by the accomplishment of specific social adaptive tasks in a typical infant's life. However, based on recent research that indicates that infants later diagnosed with autism fail to accomplish at least some of these tasks, we suggest that a narrow developmental period, spanning critical transitions from reflexive, subcortically-controlled visual behavior to interactional, cortically-controlled and social visual behavior be prioritized for future study. Mapping epigenetic, neural, and behavioral changes that both drive and are driven by these early transitions may shed a bright light on the pathogenesis of autism. PMID:25445180

  4. PGC-1α, A Potential Therapeutic Target for Early Intervention in Parkinson’s Disease

    PubMed Central

    Zheng, Bin; Liao, Zhixiang; Locascio, Joseph J.; Lesniak, Kristen A.; Roderick, Sarah S.; Watt, Marla L.; Eklund, Aron C.; Zhang-James, Yanli; Kim, Peter D.; Hauser, Michael A.; Grünblatt, Edna; Moran, Linda B.; Mandel, Silvia A.; Riederer, Peter; Miller, Renee M.; Federoff, Howard J.; Wüllner, Ullrich; Papapetropoulos, Spyridon; Youdim, Moussa B.; Cantuti-Castelvetri, Ippolita; Young, Anne B.; Vance, Jeffery M.; Davis, Richard L.; Hedreen, John C.; Adler, Charles H.; Beach, Thomas G.; Graeber, Manuel B.; Middleton, Frank A.; Rochet, Jean-Christophe; Scherzer, Clemens R.

    2011-01-01

    Parkinson’s disease affects 5 million people worldwide, but the molecular mechanisms underlying its pathogenesis are still unclear. Here, we report a genome-wide meta-analysis of gene sets (groups of genes that encode the same biological pathway or process) in 410 samples from patients with symptomatic Parkinson’s and subclinical disease and healthy controls. We analyzed 6.8 million raw data points from nine genome-wide expression studies, and 185 laser-captured human dopaminergic neuron and substantia nigra transcriptomes, followed by two-stage replication on three platforms. We found 10 gene sets with previously unknown associations with Parkinson’s disease. These gene sets pinpoint defects in mitochondrial electron transport, glucose utilization, and glucose sensing and reveal that they occur early in disease pathogenesis. Genes controlling cellular bioenergetics that are expressed in response to peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α) are underexpressed in Parkinson’s disease patients. Activation of PGC-1α results in increased expression of nuclear-encoded subunits of the mitochondrial respiratory chain and blocks the dopaminergic neuron loss induced by mutant α-synuclein or the pesticide rotenone in cellular disease models. Our systems biology analysis of Parkinson’s disease identifies PGC-1α as a potential therapeutic target for early intervention. PMID:20926834

  5. The Syk kinase as a therapeutic target in leukemia and lymphoma.

    PubMed

    Efremov, Dimitar G; Laurenti, Luca

    2011-05-01

    The B-cell receptor (BCR) delivers antigen-dependent and -independent signals that have been implicated in the pathogenesis of several common B-cell malignancies. Agents that can efficiently block BCR signaling have recently been developed and are currently being evaluated as novel targeted therapies. Among these, agents that inhibit the Syk kinase appear particularly promising in preclinical and early clinical studies. The manuscript provides an overview of recent findings that implicate Syk and the BCR signaling pathway in the pathogenesis of several common lymphoid malignancies. It outlines preclinical and early clinical experiences with the Syk inhibitor fostamatinib disodium (R788) and discusses various options for further clinical development of this compound. Inhibitors of Syk or other components of the BCR signaling pathway are emerging as an exciting novel class of agents for the treatment of common B-cell malignancies. Future efforts should focus on defining the disease entities that are most likely to benefit from these agents, although considerable evidence is already available to pursue such studies in patients with chronic lymphocytic leukemia. Combinations with chemo-immunotherapy, treatment of early-stage disease and consolidation therapy should all be explored and could lead to the development of novel therapeutic approaches with improved efficacy, tolerability and toxicity profiles.

  6. Social visual engagement in infants and toddlers with autism: early developmental transitions and a model of pathogenesis.

    PubMed

    Klin, Ami; Shultz, Sarah; Jones, Warren

    2015-03-01

    Efforts to determine and understand the causes of autism are currently hampered by a large disconnect between recent molecular genetics findings that are associated with the condition and the core behavioral symptoms that define the condition. In this perspective piece, we propose a systems biology framework to bridge that gap between genes and symptoms. The framework focuses on basic mechanisms of socialization that are highly-conserved in evolution and are early-emerging in development. By conceiving of these basic mechanisms of socialization as quantitative endophenotypes, we hope to connect genes and behavior in autism through integrative studies of neurodevelopmental, behavioral, and epigenetic changes. These changes both lead to and are led by the accomplishment of specific social adaptive tasks in a typical infant's life. However, based on recent research that indicates that infants later diagnosed with autism fail to accomplish at least some of these tasks, we suggest that a narrow developmental period, spanning critical transitions from reflexive, subcortically-controlled visual behavior to interactional, cortically-controlled and social visual behavior be prioritized for future study. Mapping epigenetic, neural, and behavioral changes that both drive and are driven by these early transitions may shed a bright light on the pathogenesis of autism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The Agr-Like Quorum Sensing System Is Required for Pathogenesis of Necrotic Enteritis Caused by Clostridium perfringens in Poultry.

    PubMed

    Yu, Qiang; Lepp, Dion; Mehdizadeh Gohari, Iman; Wu, Tao; Zhou, Hongzhuan; Yin, Xianhua; Yu, Hai; Prescott, John F; Nie, Shao-Ping; Xie, Ming-Yong; Gong, Joshua

    2017-06-01

    Clostridium perfringens encodes at least two different quorum sensing (QS) systems, the Agr-like and LuxS, and recent studies have highlighted their importance in the regulation of toxin production and virulence. The role of QS in the pathogenesis of necrotic enteritis (NE) in poultry and the regulation of NetB, the key toxin involved, has not yet been investigated. We have generated isogenic agrB -null and complemented strains from parent strain CP1 and demonstrated that the virulence of the agrB -null mutant was strongly attenuated in a chicken NE model system and restored by complementation. The production of NetB, a key NE-associated toxin, was dramatically reduced in the agrB mutant at both the transcriptional and protein levels, though not in a luxS mutant. Transwell assays confirmed that the Agr-like QS system controls NetB production through a diffusible signal. Global gene expression analysis of the agrB mutant identified additional genes modulated by Agr-like QS, including operons related to phospholipid metabolism and adherence, which may also play a role in NE pathogenesis. This study provides the first evidence that the Agr-like QS system is critical for NE pathogenesis and identifies a number of Agr-regulated genes, most notably netB , that are potentially involved in mediating its effects. The Agr-like QS system thus may serve as a target for developing novel interventions to prevent NE in chickens. © Crown copyright 2017.

  8. Dissociation of face-selective cortical responses by attention.

    PubMed

    Furey, Maura L; Tanskanen, Topi; Beauchamp, Michael S; Avikainen, Sari; Uutela, Kimmo; Hari, Riitta; Haxby, James V

    2006-01-24

    We studied attentional modulation of cortical processing of faces and houses with functional MRI and magnetoencephalography (MEG). MEG detected an early, transient face-selective response. Directing attention to houses in "double-exposure" pictures of superimposed faces and houses strongly suppressed the characteristic, face-selective functional MRI response in the fusiform gyrus. By contrast, attention had no effect on the M170, the early, face-selective response detected with MEG. Late (>190 ms) category-related MEG responses elicited by faces and houses, however, were strongly modulated by attention. These results indicate that hemodynamic and electrophysiological measures of face-selective cortical processing complement each other. The hemodynamic signals reflect primarily late responses that can be modulated by feedback connections. By contrast, the early, face-specific M170 that was not modulated by attention likely reflects a rapid, feed-forward phase of face-selective processing.

  9. H7N9 and other pathogenic avian influenza viruses elicit a three-pronged transcriptomic signature that is reminiscent of 1918 influenza virus and is associated with lethal outcome in mice

    USDA-ARS?s Scientific Manuscript database

    Modulating the host response is a promising approach to treating influenza, a virus whose pathogenesis is determined in part by the host response it elicits. Though the pathogenicity of emerging H7N9 influenza virus has been reported in several animal models, these studies have not included a detai...

  10. Molecular Profiles for Lung Cancer Pathogenesis and Detection in U.S. Veterans

    DTIC Science & Technology

    2014-12-18

    that the adjacent field cancerization extends to relatively less invasive large airways and harbors markers that can detect lung cancer in smokers ; 5...profiles have been described in the normal-appearing bronchial epithelium of healthy smokers (9) including those that were diagnostic of lung cancer...10). In addition, modulation of global gene expression in the normal epithelium in health smokers is similar in the large and small airways and the

  11. Materials and Equipment: ECI-4. Early Childhood Intervention Catalog Module.

    ERIC Educational Resources Information Center

    Evans, Joyce; Bricker, Donna

    The fourth of seven modules for professionals working with young (birth to age 3) handicapped children provides information on equipment, materials, and activities in early intervention. Background information discusses ways to catalog materials and equipment and describes teaching approaches using toys and manipulatives. A variety of teaching…

  12. Profiling of Candida albicans Gene Expression During Intra-abdominal Candidiasis Identifies Biologic Processes Involved in Pathogenesis

    PubMed Central

    Cheng, Shaoji; Clancy, Cornelius J.; Xu, Wenjie; Schneider, Frank; Hao, Binghua; Mitchell, Aaron P.; Nguyen, M. Hong

    2013-01-01

    Background. The pathogenesis of intra-abdominal candidiasis is poorly understood. Methods. Mice were intraperitoneally infected with Candida albicans (1 × 106 colony-forming units) and sterile stool. nanoString assays were used to quantitate messenger RNA for 145 C. albicans genes within the peritoneal cavity at 48 hours. Results. Within 6 hours after infection, mice developed peritonitis, characterized by high yeast burdens, neutrophil influx, and a pH of 7.9 within peritoneal fluid. Organ invasion by hyphae and early abscess formation were evident 6 and 24 hours after infection, respectively; abscesses resolved by day 14. nanoString assays revealed adhesion and responses to alkaline pH, osmolarity, and stress as biologic processes activated in the peritoneal cavity. Disruption of the highly-expressed gene RIM101, which encodes an alkaline-regulated transcription factor, did not impact cellular morphology but reduced both C. albicans burden during early peritonitis and C. albicans persistence within abscesses. RIM101 influenced expression of 49 genes during intra-abdominal candidiasis, including previously unidentified Rim101 targets. Overexpression of the RIM101-dependent gene SAP5, which encodes a secreted protease, restored the ability of a rim101 mutant to persist within abscesses. Conclusions. A mouse model of intra-abdominal candidiasis is valuable for studying pathogenesis and C. albicans gene expression. RIM101 contributes to persistence within intra-abdominal abscesses, at least in part through activation of SAP5. PMID:24006479

  13. Cross-fostering immediately after birth induces a permanent microbiota shift that is shaped by the nursing mother.

    PubMed

    Daft, Joseph G; Ptacek, Travis; Kumar, Ranjit; Morrow, Casey; Lorenz, Robin G

    2015-01-01

    Current research has led to the appreciation that there are differences in the commensal microbiota between healthy individuals and individuals that are predisposed to disease. Treatments to reverse disease pathogenesis through the manipulation of the gastrointestinal (GI) microbiota are now being explored. Normalizing microbiota between different strains of mice in the same study is also needed to better understand disease pathogenesis. Current approaches require repeated delivery of bacteria and large numbers of animals and vary in treatment start time. A method is needed that can shift the microbiota of predisposed individuals to a healthy microbiota at an early age and sustain this shift through the lifetime of the individual. We tested cross-fostering of pups within 48 h of birth as a means to permanently shift the microbiota from birth. Taxonomical analysis revealed that the nursing mother was the critical factor in determining bacterial colonization, instead of the birth mother. Data was evaluated using bacterial 16S rDNA sequences from fecal pellets and sequencing was performed on an Illumina Miseq using a 251 bp paired-end library. The results show that cross-fostering is an effective means to induce an early and maintained shift in the commensal microbiota. This will allow for the evaluation of a prolonged microbial shift and its effects on disease pathogenesis. Cross-fostering will also eliminate variation within control models by normalizing the commensal microbiota between different strains of mice.

  14. Hepatitis E: Molecular Virology and Pathogenesis

    PubMed Central

    Panda, Subrat K.; Varma, Satya P.K.

    2013-01-01

    Hepatitis E virus is a single, positive-sense, capped and poly A tailed RNA virus classified under the family Hepeviridae. Enteric transmission, acute self-limiting hepatitis, frequent epidemic and sporadic occurrence, high mortality in affected pregnants are hallmarks of hepatitis E infection. Lack of an efficient culture system and resulting reductionist approaches for the study of replication and pathogenesis of HEV made it to be a less understood agent. Early studies on animal models, sub-genomic expression of open reading frames (ORF) and infectious cDNA clones have helped in elucidating the genome organization, important stages in HEV replication and pathogenesis. The genome contains three ORF's and three untranslated regions (UTR). The 5′ distal ORF, ORF1 is translated by host ribosomes in a cap dependent manner to form the non-structural polyprotein including the viral replicase. HEV replicates via a negative-sense RNA intermediate which helps in the formation of the positive-sense genomic RNA and a single bi-cistronic sub-genomic RNA. The 3′ distal ORF's including the major structural protein pORF2 and the multifunctional host interacting protein pORF3 are translated from the sub-genomic RNA. Pathogenesis in HEV infections is not well articulated, and remains a concern due to the many aspects like host dependent and genotype specific variations. Animal HEV, zoonosis, chronicity in immunosuppressed patients, and rapid decompensation in affected chronic liver diseased patients warrants detailed investigation of the underlying pathogenesis. Recent advances about structure, entry, egress and functional characterization of ORF1 domains has furthered our understanding about HEV. This article is an effort to review our present understanding about molecular biology and pathogenesis of HEV. PMID:25755485

  15. Porcine Reproductive and Respiratory Syndrome Virus (PRRSV): Pathogenesis and Interaction with the Immune System.

    PubMed

    Lunney, Joan K; Fang, Ying; Ladinig, Andrea; Chen, Nanhua; Li, Yanhua; Rowland, Bob; Renukaradhya, Gourapura J

    2016-01-01

    This review addresses important issues of porcine reproductive and respiratory syndrome virus (PRRSV) infection, immunity, pathogenesis, and control. Worldwide, PRRS is the most economically important infectious disease of pigs. We highlight the latest information on viral genome structure, pathogenic mechanisms, and host immunity, with a special focus on immune factors that modulate PRRSV infections during the acute and chronic/persistent disease phases. We address genetic control of host resistance and probe effects of PRRSV infection on reproductive traits. A major goal is to identify cellular/viral targets and pathways for designing more effective vaccines and therapeutics. Based on progress in viral reverse genetics, host transcriptomics and genomics, and vaccinology and adjuvant technologies, we have identified new areas for PRRS control and prevention. Finally, we highlight the gaps in our knowledge base and the need for advanced molecular and immune tools to stimulate PRRS research and field applications.

  16. Interferon Independent Non-Canonical STAT Activation and Virus Induced Inflammation

    PubMed Central

    Wu, Chunyan

    2018-01-01

    Interferons (IFNs) are a group of secreted proteins that play critical roles in antiviral immunity, antitumor activity, activation of cytotoxic T cells, and modulation of host immune responses. IFNs are cytokines, and bind receptors on cell surfaces to trigger signal transduction. The major signaling pathway activated by IFNs is the JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway, a complex pathway involved in both viral and host survival strategies. On the one hand, viruses have evolved strategies to escape from antiviral host defenses evoked by IFN-activated JAK/STAT signaling. On the other hand, viruses have also evolved to exploit the JAK/STAT pathway to evoke activation of certain STATs that somehow promote viral pathogenesis. In this review, recent progress in our understanding of the virus-induced IFN-independent STAT signaling and its potential roles in viral induced inflammation and pathogenesis are summarized in detail, and perspectives are provided. PMID:29662014

  17. The alternative sigma factor sigma B of Staphylococcus aureus modulates virulence in experimental central venous catheter-related infections.

    PubMed

    Lorenz, Udo; Hüttinger, Christian; Schäfer, Tina; Ziebuhr, Wilma; Thiede, Arnulf; Hacker, Jörg; Engelmann, Susanne; Hecker, Michael; Ohlsen, Knut

    2008-03-01

    The impact of the alternative sigma factor sigma B (SigB) on pathogenesis of Staphylococcus aureus is not conclusively clarified. In this study, a central venous catheter (CVC) related model of multiorgan infection was used to investigate the role of SigB for the pathogenesis of S. aureus infections and biofilm formation in vivo. Analysis of two SigB-positive wild-type strains and their isogenic mutants revealed uniformly that the wild-type was significantly more virulent than the SigB-deficient mutant. The observed difference in virulence was apparently not linked to the capability of the strains to form biofilms in vivo since wild-type and mutant strains were able to produce biofilm layers inside of the catheter. The data strongly indicate that the alternative sigma factor SigB plays a role in CVC-associated infections caused by S. aureus.

  18. Structure-mechanism-based engineering of chemical regulators targeting distinct pathological factors in Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Beck, Michael W.; Derrick, Jeffrey S.; Kerr, Richard A.; Oh, Shin Bi; Cho, Woo Jong; Lee, Shin Jung C.; Ji, Yonghwan; Han, Jiyeon; Tehrani, Zahra Aliakbar; Suh, Nayoung; Kim, Sujeong; Larsen, Scott D.; Kim, Kwang S.; Lee, Joo-Yong; Ruotolo, Brandon T.; Lim, Mi Hee

    2016-10-01

    The absence of effective therapeutics against Alzheimer's disease (AD) is a result of the limited understanding of its multifaceted aetiology. Because of the lack of chemical tools to identify pathological factors, investigations into AD pathogenesis have also been insubstantial. Here we report chemical regulators that demonstrate distinct specificity towards targets linked to AD pathology, including metals, amyloid-β (Aβ), metal-Aβ, reactive oxygen species, and free organic radicals. We obtained these chemical regulators through a rational structure-mechanism-based design strategy. We performed structural variations of small molecules for fine-tuning their electronic properties, such as ionization potentials and mechanistic pathways for reactivity towards different targets. We established in vitro and/or in vivo efficacies of the regulators for modulating their targets' reactivities, ameliorating toxicity, reducing amyloid pathology, and improving cognitive deficits. Our chemical tools show promise for deciphering AD pathogenesis and discovering effective drugs.

  19. [New therapies for rheumatoid arthritis].

    PubMed

    Salgado, Eva; Maneiro, José Ramón

    2014-11-18

    Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease characterized by inflammation of the synovial membrane and progressive destruction of the articular cartilage and bone. Advances in the knowledge of disease pathogenesis allowed the identification of novel therapeutic targets such as tumor necrosis factor (TNF), interleukin (IL)-1, IL-6 or the system JAK/STAT phosphorylation. At present there are 5 TNF antagonists approved for RA. Tocilizumab blocks the pathway of IL-6 and is the only biological with proven efficacy in monotherapy. Rituximab modulates B cell response in RA. Abatacept provided new data on T cell involvement in the pathogenesis of RA. Tofacitinib is the first kinase inhibitor approved for this disease. Biologic drugs have proven efficacy, almost always in combination with methotrexate, and even halt radiographic progression. Monitoring infection is the main precaution in handling these patients. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  20. Structure-mechanism-based engineering of chemical regulators targeting distinct pathological factors in Alzheimer's disease.

    PubMed

    Beck, Michael W; Derrick, Jeffrey S; Kerr, Richard A; Oh, Shin Bi; Cho, Woo Jong; Lee, Shin Jung C; Ji, Yonghwan; Han, Jiyeon; Tehrani, Zahra Aliakbar; Suh, Nayoung; Kim, Sujeong; Larsen, Scott D; Kim, Kwang S; Lee, Joo-Yong; Ruotolo, Brandon T; Lim, Mi Hee

    2016-10-13

    The absence of effective therapeutics against Alzheimer's disease (AD) is a result of the limited understanding of its multifaceted aetiology. Because of the lack of chemical tools to identify pathological factors, investigations into AD pathogenesis have also been insubstantial. Here we report chemical regulators that demonstrate distinct specificity towards targets linked to AD pathology, including metals, amyloid-β (Aβ), metal-Aβ, reactive oxygen species, and free organic radicals. We obtained these chemical regulators through a rational structure-mechanism-based design strategy. We performed structural variations of small molecules for fine-tuning their electronic properties, such as ionization potentials and mechanistic pathways for reactivity towards different targets. We established in vitro and/or in vivo efficacies of the regulators for modulating their targets' reactivities, ameliorating toxicity, reducing amyloid pathology, and improving cognitive deficits. Our chemical tools show promise for deciphering AD pathogenesis and discovering effective drugs.

  1. The immunomodulating V and W proteins of Nipah virus determine disease course.

    PubMed

    Satterfield, Benjamin A; Cross, Robert W; Fenton, Karla A; Agans, Krystle N; Basler, Christopher F; Geisbert, Thomas W; Mire, Chad E

    2015-06-24

    The viral determinants that contribute to Nipah virus (NiV)-mediated disease are poorly understood compared with other paramyxoviruses. Here we use recombinant NiVs (rNiVs) to examine the contributions of the NiV V and W proteins to NiV pathogenesis in a ferret model. We show that a V-deficient rNiV is susceptible to the innate immune response in vitro and behaves as a replicating non-lethal virus in vivo. Remarkably, rNiV lacking W expression results in a delayed and altered disease course with decreased respiratory disease and increased terminal neurological disease associated with altered in vitro inflammatory cytokine production. This study confirms the V protein as the major determinant of pathogenesis, also being the first in vivo study to show that the W protein modulates the inflammatory host immune response in a manner that determines the disease course.

  2. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis.

    PubMed

    Goldring, Mary B; Goldring, Steven R

    2010-03-01

    The articular surface plays an essential role in load transfer across the joint, and conditions that produce increased load transfer or altered patterns of load distribution accelerate the development of osteoarthritis (OA). Current knowledge segregates the risk factors into two fundamental mechanisms related to the adverse effects of "abnormal" loading on normal cartilage or "normal" loading on abnormal cartilage. Although chondrocytes can modulate their functional state in response to loading, their capacity to repair and modify the surrounding extracellular matrix is limited in comparison to skeletal cells in bone. This differential adaptive capacity underlies the more rapid appearance of detectable skeletal changes, especially after acute injuries that alter joint mechanics. The imbalance in the adaptation of the cartilage and bone disrupts the physiological relationship between these tissues and further contributes to OA pathology. This review focuses on the specific articular cartilage and skeletal features of OA and the putative mechanisms involved in their pathogenesis.

  3. Novel players in coeliac disease pathogenesis: role of the gut microbiota

    PubMed Central

    Verdu, Elena F.; Galipeau, Heather J.; Jabri, Bana

    2016-01-01

    Several studies point towards alteration in gut microbiota composition and function in coeliac disease, some of which can precede the onset of disease and/or persist when patients are on a gluten-free diet. Evidence also exists that the gut microbiota might promote or reduce coeliac-disease-associated immunopathology. However, additional studies are required in humans and in mice (using gnotobiotic technology) to determine cause–effect relationships and to identify agents for modulating the gut microbiota as a therapeutic or preventative approach for coeliac disease. In this Review, we summarize the current evidence for altered gut microbiota composition in coeliac disease and discuss how the interplay between host genetics, environmental factors and the intestinal microbiota might contribute to its pathogenesis. Moreover, we highlight the importance of utilizing animal models and long-term clinical studies to gain insight into the mechanisms through which host–microbial interactions can influence host responses to gluten. PMID:26055247

  4. Mycobacterium tuberculosis Metabolism

    PubMed Central

    Warner, Digby F.

    2015-01-01

    Metabolism underpins the physiology and pathogenesis of Mycobacterium tuberculosis. However, although experimental mycobacteriology has provided key insights into the metabolic pathways that are essential for survival and pathogenesis, determining the metabolic status of bacilli during different stages of infection and in different cellular compartments remains challenging. Recent advances—in particular, the development of systems biology tools such as metabolomics—have enabled key insights into the biochemical state of M. tuberculosis in experimental models of infection. In addition, their use to elucidate mechanisms of action of new and existing antituberculosis drugs is critical for the development of improved interventions to counter tuberculosis. This review provides a broad summary of mycobacterial metabolism, highlighting the adaptation of M. tuberculosis as specialist human pathogen, and discusses recent insights into the strategies used by the host and infecting bacillus to influence the outcomes of the host–pathogen interaction through modulation of metabolic functions. PMID:25502746

  5. The role of the gastrointestinal microbiome in Helicobacter pylori pathogenesis

    PubMed Central

    Sheh, Alexander; Fox, James G

    2013-01-01

    The discovery of Helicobacter pylori overturned the conventional dogma that the stomach was a sterile organ and that pH values < 4 were capable of sterilizing the stomach. H. pylori are an etiological agent associated with gastritis, hypochlorhydria, duodenal ulcers, and gastric cancer. It is now appreciated that the human stomach supports a bacterial community with possibly 100s of bacterial species that influence stomach homeostasis. Other bacteria colonizing the stomach may also influence H. pylori-associated gastric pathogenesis by creating reactive oxygen and nitrogen species and modulating inflammatory responses. In this review, we summarize the available literature concerning the gastric microbiota in humans, mice, and Mongolian gerbils. We also discuss the gastric perturbations, many involving H. pylori, that facilitate the colonization by bacteria from other compartments of the gastrointestinal tract, and identify risk factors known to affect gastric homeostasis that contribute to changes in the microbiota. PMID:23962822

  6. Mitochondrial Dysfunction in Parkinson's Disease: Pathogenesis and Neuroprotection

    PubMed Central

    Mounsey, Ross B.; Teismann, Peter

    2011-01-01

    Mitochondria are vitally important organelles involved in an array of functions. The most notable is their prominent role in energy metabolism, where they generate over 90% of our cellular energy in the form of ATP through oxidative phosphorylation. Mitochondria are involved in various other processes including the regulation of calcium homeostasis and stress response. Mitochondrial complex I impairment and subsequent oxidative stress have been identified as modulators of cell death in experimental models of Parkinson's disease (PD). Identification of specific genes which are involved in the rare familial forms of PD has further augmented the understanding and elevated the role mitochondrial dysfunction is thought to have in disease pathogenesis. This paper provides a review of the role mitochondria may play in idiopathic PD through the study of experimental models and how genetic mutations influence mitochondrial activity. Recent attempts at providing neuroprotection by targeting mitochondria are described and their progress assessed. PMID:21234411

  7. Early life factors in the pathogenesis of osteoporosis.

    PubMed

    Winsloe, Chivon; Earl, Susie; Dennison, Elaine M; Cooper, Cyrus; Harvey, Nicholas C

    2009-12-01

    Osteoporosis is a major public health burden through associated fragility fractures. Bone mass, a composite of bone size and volumetric density, increases through early life and childhood to a peak in early adulthood. The peak bone mass attained is a strong predictor of future risk of osteoporosis. Evidence is accruing that environmental factors in utero and in early infancy may permanently modify the postnatal pattern of skeletal growth to peak and thus influence risk of osteoporosis in later life. This article describes the latest data in this exciting area of research, including novel epigenetic and translation work, which should help to elucidate the underlying mechanisms and give rise to potential public health interventions to reduce the burden of osteoporotic fracture in future generations.

  8. Mind-altering with the gut: Modulation of the gut-brain axis with probiotics.

    PubMed

    Kim, Namhee; Yun, Misun; Oh, Young Joon; Choi, Hak-Jong

    2018-03-01

    It is increasingly evident that bidirectional interactions exist among the gastrointestinal tract, the enteric nervous system, and the central nervous system. Recent preclinical and clinical trials have shown that gut microbiota plays an important role in these gut-brain interactions. Furthermore, alterations in gut microbiota composition may be associated with pathogenesis of various neurological disorders, including stress, autism, depression, Parkinson's disease, and Alzheimer's disease. Therefore, the concepts of the microbiota-gut-brain axis is emerging. Here, we review the role of gut microbiota in bidirectional interactions between the gut and the brain, including neural, immune-mediated, and metabolic mechanisms. We highlight recent advances in the understanding of probiotic modulation of neurological and neuropsychiatric disorders via the gut-brain axis.

  9. Bile Acids in the Treatment of Cardiometabolic Diseases.

    PubMed

    Vítek, Libor

    2017-11-01

    Bile acids (BA), for decades considered only to have fat-emulsifying functions in the gut lumen, have recently emerged as novel cardio-metabolic modulators. They have real endocrine effects, acting via multiple intracellular receptors in various organs and tissues. BA affect energy homeostasis through the modulation of glucose and lipid metabolism, predominantly by activating the nuclear farnesoid X receptor (FXR), as well as the cytoplasmic membrane G protein-coupled BA receptor TGR5 in a variety of tissues; although numerous other intracellular targets of BA are also in play.The roles of BA in the pathogenesis of diabetes, obesity, metabolic syndrome, and cardiovascular diseases are seriously being considered, and BA and their derivatives seem to represent novel potential therapeutics to treat these diseases of civilization.

  10. Use and Appreciation of a Tailored Self-Management eHealth Intervention for Early Cancer Survivors: Process Evaluation of a Randomized Controlled Trial.

    PubMed

    Kanera, Iris Maria; Willems, Roy A; Bolman, Catherine A W; Mesters, Ilse; Zambon, Victor; Gijsen, Brigitte Cm; Lechner, Lilian

    2016-08-23

    A fully automated computer-tailored Web-based self-management intervention, Kanker Nazorg Wijzer (KNW [Cancer Aftercare Guide]), was developed to support early cancer survivors to adequately cope with psychosocial complaints and to promote a healthy lifestyle. The KNW self-management training modules target the following topics: return to work, fatigue, anxiety and depression, relationships, physical activity, diet, and smoking cessation. Participants were guided to relevant modules by personalized module referral advice that was based on participants’ current complaints and identified needs. The aim of this study was to evaluate the adherence to the module referral advice, examine the KNW module use and its predictors, and describe the appreciation of the KNW and its predictors. Additionally, we explored predictors of personal relevance. This process evaluation was conducted as part of a randomized controlled trial. Early cancer survivors with various types of cancer were recruited from 21 Dutch hospitals. Data from online self-report questionnaires and logging data were analyzed from participants allocated to the intervention condition. Chi-square tests were applied to assess the adherence to the module referral advice, negative binominal regression analysis was used to identify predictors of module use, multiple linear regression analysis was applied to identify predictors of the appreciation, and ordered logistic regression analysis was conducted to explore possible predictors of perceived personal relevance. From the respondents (N=231; mean age 55.6, SD 11.5; 79.2% female [183/231]), 98.3% (227/231) were referred to one or more KNW modules (mean 2.9, SD 1.5), and 85.7% (198/231) of participants visited at least one module (mean 2.1, SD 1.6). Significant positive associations were found between the referral to specific modules (range 1-7) and the use of corresponding modules. The likelihoods of visiting modules were higher when respondents were referred to those modules by the module referral advice. Predictors of visiting a higher number of modules were a higher number of referrals by the module referral advice (β=.136, P=.009), and having a partner was significantly related with a lower number of modules used (β=-.256, P=.044). Overall appreciation was high (mean 7.5, SD 1.2; scale 1-10) and was significantly predicted by a higher perceived personal relevance (β=.623, P=.000). None of the demographic and cancer-related characteristics significantly predicted the perceived personal relevance. The KNW in general and more specifically the KNW modules were well used and highly appreciated by early cancer survivors. Indications were found that the module referral advice might be a meaningful intervention component to guide the users in following a preferred selection of modules. These results indicate that the fully automated Web-based KNW provides personal relevant and valuable information and support for early cancer survivors. Therefore, this intervention can complement usual cancer aftercare and may serve as a first step in a stepped-care approach. Nederlands Trial Register: NTR3375; http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=3375 (Archived by WebCite at http://www.webcitation.org/6jo4jO7kb).

  11. Systematic review of modulators of benzodiazepine receptors in irritable bowel syndrome: Is there hope?

    PubMed Central

    Salari, Pooneh; Abdollahi, Mohammad

    2011-01-01

    Several drugs are used in the treatment of irritable bowel syndrome (IBS) but all have side effects and variable efficacy. Considering the role of the gut-brain axis, immune, neural, and endocrine pathways in the pathogenesis of IBS and possible beneficial effects of benzodiazepines (BZD) in this axis, the present systematic review focuses on the efficacy of BZD receptor modulators in human IBS. For the years 1966 to February 2011, all literature was searched for any articles on the use of BZD receptor modulators and IBS. After thorough evaluation and omission of duplicate data, 10 out of 69 articles were included. BZD receptor modulators can be helpful, especially in the diarrhea-dominant form of IBS, by affecting the inflammatory, neural, and psychologic pathways, however, controversies still exist. Recently, a new BZD receptor modulator, dextofisopam was synthesized and studied in human subjects, but the studies are limited to phase IIb clinical trials. None of the existing trials considered the neuroimmunomodulatory effect of BZDs in IBS, but bearing in mind the concentration-dependent effect of BZDs on cytokines and cell proliferation, future studies using pharmacodynamic and pharmacokinetic approaches are highly recommended. PMID:22090780

  12. Identification of Transcriptional Modules and Key Genes in Chickens Infected with Salmonella enterica Serovar Pullorum Using Integrated Coexpression Analyses.

    PubMed

    Liu, Bao-Hong; Cai, Jian-Ping

    2017-01-01

    Salmonella enterica Pullorum is one of the leading causes of mortality in poultry. Understanding the molecular response in chickens in response to the infection by S. enterica is important in revealing the mechanisms of pathogenesis and disease progress. There have been studies on identifying genes associated with Salmonella infection by differential expression analysis, but the relationships among regulated genes have not been investigated. In this study, we employed weighted gene coexpression network analysis (WGCNA) and differential coexpression analysis (DCEA) to identify coexpression modules by exploring microarray data derived from chicken splenic tissues in response to the S. enterica infection. A total of 19 modules from 13,538 genes were associated with the Jak-STAT signaling pathway, the extracellular matrix, cytoskeleton organization, the regulation of the actin cytoskeleton, G-protein coupled receptor activity, Toll-like receptor signaling pathways, and immune system processes; among them, 14 differentially coexpressed modules (DCMs) and 2,856 differentially coexpressed genes (DCGs) were identified. The global expression of module genes between infected and uninfected chickens showed slight differences but considerable changes for global coexpression. Furthermore, DCGs were consistently linked to the hubs of the modules. These results will help prioritize candidate genes for future studies of Salmonella infection.

  13. Identification of Transcriptional Modules and Key Genes in Chickens Infected with Salmonella enterica Serovar Pullorum Using Integrated Coexpression Analyses

    PubMed Central

    2017-01-01

    Salmonella enterica Pullorum is one of the leading causes of mortality in poultry. Understanding the molecular response in chickens in response to the infection by S. enterica is important in revealing the mechanisms of pathogenesis and disease progress. There have been studies on identifying genes associated with Salmonella infection by differential expression analysis, but the relationships among regulated genes have not been investigated. In this study, we employed weighted gene coexpression network analysis (WGCNA) and differential coexpression analysis (DCEA) to identify coexpression modules by exploring microarray data derived from chicken splenic tissues in response to the S. enterica infection. A total of 19 modules from 13,538 genes were associated with the Jak-STAT signaling pathway, the extracellular matrix, cytoskeleton organization, the regulation of the actin cytoskeleton, G-protein coupled receptor activity, Toll-like receptor signaling pathways, and immune system processes; among them, 14 differentially coexpressed modules (DCMs) and 2,856 differentially coexpressed genes (DCGs) were identified. The global expression of module genes between infected and uninfected chickens showed slight differences but considerable changes for global coexpression. Furthermore, DCGs were consistently linked to the hubs of the modules. These results will help prioritize candidate genes for future studies of Salmonella infection. PMID:28529955

  14. Frequent falls and confusion: recurrent hypoglycemia in a patient with tuberous sclerosis complex.

    PubMed

    Comninos, Alexander N; Yang, Lisa; Abbara, Ali; Dhillo, Waljit S; Bassett, J H Duncan; Todd, Jeannie F

    2018-05-01

    Recurrent hypoglycemia is common, but its presentation is often insidious resulting in delays in diagnosis and significant morbidity. We describe a case of an insulinoma presenting with falls and confusion in a patient with tuberous sclerosis, demonstrating the importance of early hypoglycemia identification and a potential shared molecular pathogenesis.

  15. [Rhinobasale mucormycosis (author's transl)].

    PubMed

    Behbehani, A A; Theopold, H M

    1981-05-01

    A case of mucormycosis in a 82-year old woman is reported. In spite of an early diagnosis, a surgical intervention and the antimycotic treatment with Miconazol-Sodium (Daktar [R]) and Amphothericin B "Squibb" (R) could only prolonge the bad prognosis of this infection. The pathogenesis, the typical, in most cases letal fungal infection and its therapy is discussed.

  16. Lymphatic involvement in the histopathogenesis of mucous retention cyst.

    PubMed

    Kundu, Sukalyan; Cheng, Jun; Maruyama, Satoshi; Suzuki, Makoto; Kawashima, Hiroyuki; Saku, Takashi

    2007-01-01

    Mucous retention cyst results from extravasation of saliva. Our intent was to study the role of lymphatics in its pathogenesis. Twenty-three surgical specimens of mucous retention cyst of the lip were examined for involvement of lymphatic vessels by a comparative immunohistochemical demonstration of lymphatic and blood vascular endothelial cells, as well as lymphatic and salivary contents. Mucous retention cysts were histopathologically classified into three stages: early, intermediate, and advanced. In the early stage, there was diffuse extravasation of mucous material in the interstitium of the lamina propria or the submucosal layer of the oral mucosa. In the intermediate stage, lymphatics, which were clearly revealed and immunohistochemically distinguished from blood vessels by monoclonal antibody D2-40, were dilated and finally ruptured, leaving fragments of lymphatic walls in the periphery of mucous pools. In the advanced stage, thick cyst walls of granulation tissue were formed around mucous retention. Lymphatics were no longer involved in the granulation tissue wall, which was actively driven by blood vessel formation. The results suggest that the lymphatic rupture seems to contribute to the enlargement in the pathogenesis of mucous retention cyst.

  17. The airway microbiota in early cystic fibrosis lung disease.

    PubMed

    Frayman, Katherine B; Armstrong, David S; Grimwood, Keith; Ranganathan, Sarath C

    2017-11-01

    Infection plays a critical role in the pathogenesis of cystic fibrosis (CF) lung disease. Over the past two decades, the application of molecular and extended culture-based techniques to microbial analysis has changed our understanding of the lungs in both health and disease. CF lung disease is a polymicrobial disorder, with obligate and facultative anaerobes recovered alongside traditional pathogens in varying proportions, with some differences observed to correlate with disease stage. While healthy lungs are not sterile, differences between the lower airway microbiota of individuals with CF and disease-controls are already apparent in childhood. Understanding the evolution of the CF airway microbiota, and its relationship with clinical treatments and outcome at each disease stage, will improve our understanding of the pathogenesis of CF lung disease and potentially inform clinical management. This review summarizes current knowledge of the early development of the respiratory microbiota in healthy children and then discusses what is known about the airway microbiota in individuals with CF, including how it evolves over time and where future research priorities lie. © 2017 Wiley Periodicals, Inc.

  18. Social Development: Individuation. A Performance-Based Early Childhood-Special Education Teacher Preparation Program. Monograph 14.

    ERIC Educational Resources Information Center

    Castle, Kathryn

    This monograph describes the individuation module (concerning the perceptions, cognitions, feelings, attitudes and beliefs a person develops towards himself), which is part of the Early Childhood-Special Education Teacher Preparation Program. This module deals with six aspects of the emerging self: body image, self-image, self-concept,…

  19. COMETS Science. Career Oriented Modules to Explore Topics in Science.

    ERIC Educational Resources Information Center

    Smith, Walter S.; And Others

    COMETS Science (Career Oriented Modules to Explore Topics in Science) was developed to demonstrate to early adolescents that learning mathematics and science concepts can have payoff in a wide variety of careers and to encourage early adolescent students (grades 5-9), especially girls, to consider science-related careers. The program provides 24…

  20. Early Childhood Development Cultural Considerations--Commonalities, Variables, and Local Community Determinants for Program Modules.

    ERIC Educational Resources Information Center

    Taylor, Anne P.; Warren, Dave

    The paper discusses cultural commonality and variability considerations of the Native American populations served by the Federation of Rocky Mountain States Educational Technical Development (ETD) Project. Section I explores important factors to consider when setting up an Early Childhood Development program module for Indian people, such as…

  1. Promoting Evidence-Based Practices: New Teaching Module for Early Childhood Teacher Educators

    ERIC Educational Resources Information Center

    Young Children, 2009

    2009-01-01

    Linda Halgunseth, head of NAEYC's Office of Applied Research (OAR), tells readers about Child Care and Early Education Research Connections, a Web site (www.researchconnections.org/teaching_modules) to help teacher educators integrate knowledge about evidence-based practices into teacher education programs. In addition, the article touts the…

  2. Serum levels of cytokines in water buffaloes experimentally infected with Fasciola gigantica.

    PubMed

    Zhang, Fu-Kai; Guo, Ai-Jiang; Hou, Jun-Ling; Sun, Miao-Miao; Sheng, Zhao-An; Zhang, Xiao-Xuan; Huang, Wei-Yi; Elsheikha, Hany M; Zhu, Xing-Quan

    2017-09-15

    Fasciola gigantica infection in water buffaloes causes significant economic losses especially in developing countries. Although modulation of the host immune response by cytokine neutralization or vaccination is a promising approach to control infection with this parasite, our understanding of cytokine's dynamic during F. gigantica infection is limited. To address this, we quantified the levels of serum cytokines produced in water buffaloes following experimental infection with F. gigantica. Five buffaloes were infected via oral gavage with 500 viable F. gigantica metacercariae and blood samples were collected from buffaloes one week before infection and for 13 consecutive weeks thereafter. The levels of 10 cytokines in serum samples were simultaneously determined using ELISA. F. gigantica failed to elicit the production of various pro-inflammatory cytokines, including interleukin-1β (IL-1β), IL-2, IL-6, IL-12, and IFN-γ. On the other hand, evidence of a Th2 type response was detected, but only early in the course of parasite colonization and included modest increase in the levels of IL-10 and IL-13. The results also revealed suppression of the immune responses as a feature of chronic F. gigantica infection in buffaloes. Taken together, F. gigantica seems to elicit a modest Th2 response at early stage of infection in order to downregulate harmful Th1- and Th17-type inflammatory responses in experimentally infected buffaloes. The full extent of anti-F. gigantica immune response and its relation to pathogenesis requires further study. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Cognitive load effects on early visual perceptual processing.

    PubMed

    Liu, Ping; Forte, Jason; Sewell, David; Carter, Olivia

    2018-05-01

    Contrast-based early visual processing has largely been considered to involve autonomous processes that do not need the support of cognitive resources. However, as spatial attention is known to modulate early visual perceptual processing, we explored whether cognitive load could similarly impact contrast-based perception. We used a dual-task paradigm to assess the impact of a concurrent working memory task on the performance of three different early visual tasks. The results from Experiment 1 suggest that cognitive load can modulate early visual processing. No effects of cognitive load were seen in Experiments 2 or 3. Together, the findings provide evidence that under some circumstances cognitive load effects can penetrate the early stages of visual processing and that higher cognitive function and early perceptual processing may not be as independent as was once thought.

  4. Weighted gene co-expression network analysis of gene modules for the prognosis of esophageal cancer.

    PubMed

    Zhang, Cong; Sun, Qian

    2017-06-01

    Esophageal cancer is a common malignant tumor, whose pathogenesis and prognosis factors are not fully understood. This study aimed to discover the gene clusters that have similar functions and can be used to predict the prognosis of esophageal cancer. The matched microarray and RNA sequencing data of 185 patients with esophageal cancer were downloaded from The Cancer Genome Atlas (TCGA), and gene co-expression networks were built without distinguishing between squamous carcinoma and adenocarcinoma. The result showed that 12 modules were associated with one or more survival data such as recurrence status, recurrence time, vital status or vital time. Furthermore, survival analysis showed that 5 out of the 12 modules were related to progression-free survival (PFS) or overall survival (OS). As the most important module, the midnight blue module with 82 genes was related to PFS, apart from the patient age, tumor grade, primary treatment success, and duration of smoking and tumor histological type. Gene ontology enrichment analysis revealed that "glycoprotein binding" was the top enriched function of midnight blue module genes. Additionally, the blue module was the exclusive gene clusters related to OS. Platelet activating factor receptor (PTAFR) and feline Gardner-Rasheed (FGR) were the top hub genes in both modeling datasets and the STRING protein interaction database. In conclusion, our study provides novel insights into the prognosis-associated genes and screens out candidate biomarkers for esophageal cancer.

  5. First and second generation γ-secretase modulators (GSMs) modulate amyloid-β (Aβ) peptide production through different mechanisms.

    PubMed

    Borgegard, Tomas; Juréus, Anders; Olsson, Fredrik; Rosqvist, Susanne; Sabirsh, Alan; Rotticci, Didier; Paulsen, Kim; Klintenberg, Rebecka; Yan, Hongmei; Waldman, Magnus; Stromberg, Kia; Nord, Johan; Johansson, Jonas; Regner, Anna; Parpal, Santiago; Malinowsky, David; Radesater, Ann-Cathrin; Li, Tingsheng; Singh, Rajeshwar; Eriksson, Hakan; Lundkvist, Johan

    2012-04-06

    γ-Secretase-mediated cleavage of amyloid precursor protein (APP) results in the production of Alzheimer disease-related amyloid-β (Aβ) peptides. The Aβ42 peptide in particular plays a pivotal role in Alzheimer disease pathogenesis and represents a major drug target. Several γ-secretase modulators (GSMs), such as the nonsteroidal anti-inflammatory drugs (R)-flurbiprofen and sulindac sulfide, have been suggested to modulate the Alzheimer-related Aβ production by targeting the APP. Here, we describe novel GSMs that are selective for Aβ modulation and do not impair processing of Notch, EphB2, or EphA4. The GSMs modulate Aβ both in cell and cell-free systems as well as lower amyloidogenic Aβ42 levels in the mouse brain. Both radioligand binding and cellular cross-competition experiments reveal a competitive relationship between the AstraZeneca (AZ) GSMs and the established second generation GSM, E2012, but a noncompetitive interaction between AZ GSMs and the first generation GSMs (R)-flurbiprofen and sulindac sulfide. The binding of a (3)H-labeled AZ GSM analog does not co-localize with APP but overlaps anatomically with a γ-secretase targeting inhibitor in rodent brains. Combined, these data provide compelling evidence of a growing class of in vivo active GSMs, which are selective for Aβ modulation and have a different mechanism of action compared with the original class of GSMs described.

  6. Complement Inhibition in the Immunotherapy of Breast Cancer

    DTIC Science & Technology

    2014-03-01

    found to promote tumor growth by modulating anti-tumor immunity in a syngeneic model of cervical cancer 15. However, its role in metastatic spread of...previous study in a model of HPV -induced cancer , we demonstrated that C5a acts as a potent chemoattractant of MDSCs to the primary tumors 15. Thus, we...Gupta, G. P., Massague J. Cancer metastasis: building a framework. Cell 2006, 127(4): 679-695. 3. Fidler, I. J. The pathogenesis of cancer metastasis

  7. Fever: Its History, Cause, and Function

    PubMed Central

    Atkins, Elisha

    1982-01-01

    Concepts of fever from Hippocrates to the present are briefly outlined and compared with current ideas of the pathogenesis of fever. Evidence is presented that endogenous pyrogen, the hormone that elevates body temperature, is identical with lymphocyte-activating factor, a monokine that stimulates lymphocyte proliferation and function. It now appears that inflammation and fever are closely interrelated phenomena that are modulated by a single hormone and that have been selected by evolution to protect the host against infection. PMID:6758374

  8. Pyrimidinone-Peptoid Hybrid Molecules with Distinct Effects on Molecular Chaperone Function and Cell Proliferation

    PubMed Central

    Wright, Christine M.; Chovatiya, Raj J.; Jameson, Nora E.; Turner, David M.; Zhu, Guangyu; Werner, Stefan; Huryn, Donna M.; Pipas, James M.; Day, Billy W.; Wipf, Peter; Brodsky, Jeffrey L.

    2008-01-01

    The Hsp70 molecular chaperones are ATPases that play critical roles in the pathogenesis of many human diseases, including breast cancer. Hsp70 ATP hydrolysis is relatively weak, but is stimulated by J domain-containing proteins. We identified pyrimidinone-peptoid hybrid molecules that inhibit cell proliferation with greater potency than previously described Hsp70 modulators. In many cases, anti-proliferative activity correlated with inhibition of J domain stimulation of Hsp70. PMID:18164205

  9. A Novel EphA4 Based Small Molecule Based Therapeutic Strategy for Prevention and Treatment of Post Traumatic Osteoarthritis

    DTIC Science & Technology

    2016-09-01

    surface of the joint. During joint inflammation, e.g., rheumatoid arthritis , synovial fibroblasts take on an aggressive, invasive phenotype...binding proteins) is expressed at site of invasion in rheumatoid arthritis synovium and modulates production MMPs, and because increased S100A4 protein...fibroblast behavior contributing to the pathogenesis of chronic autoinflammatory diseases such as rheumatoid arthritis . Col2α1 mRNA level was measured

  10. Exercise training in hypertension: Role of microRNAs

    PubMed Central

    Neves, Vander José das; Fernandes, Tiago; Roque, Fernanda Roberta; Soci, Ursula Paula Renó; Melo, Stéphano Freitas Soares; de Oliveira, Edilamar Menezes

    2014-01-01

    Hypertension is a complex disease that constitutes an important public health problem and demands many studies in order to understand the molecular mechanisms involving his pathophysiology. Therefore, an increasing number of studies have been conducted and new therapies are continually being discovered. In this context, exercise training has emerged as an important non-pharmacological therapy to treat hypertensive patients, minimizing the side effects of pharmacological therapies and frequently contributing to allow pharmacotherapy to be suspended. Several mechanisms have been associated with the pathogenesis of hypertension, such as hyperactivity of the sympathetic nervous system and renin-angiotensin aldosterone system, impaired endothelial nitric oxide production, increased oxygen-reactive species, vascular thickening and stiffening, cardiac hypertrophy, impaired angiogenesis, and sometimes genetic predisposition. With the advent of microRNAs (miRNAs), new insights have been added to the perspectives for the treatment of this disease, and exercise training has been shown to be able to modulate the miRNAs associated with it. Elucidation of the relationship between exercise training and miRNAs in the pathogenesis of hypertension is fundamental in order to understand how exercise modulates the cardiovascular system at genetic level. This can be promising even for the development of new drugs. This article is a review of how exercise training acts on hypertension by means of specific miRNAs in the heart, vascular system, and skeletal muscle. PMID:25228951

  11. Expectations Do Not Alter Early Sensory Processing during Perceptual Decision-Making.

    PubMed

    Rungratsameetaweemana, Nuttida; Itthipuripat, Sirawaj; Salazar, Annalisa; Serences, John T

    2018-06-13

    Two factors play important roles in shaping perception: the allocation of selective attention to behaviorally relevant sensory features, and prior expectations about regularities in the environment. Signal detection theory proposes distinct roles of attention and expectation on decision-making such that attention modulates early sensory processing, whereas expectation influences the selection and execution of motor responses. Challenging this classic framework, recent studies suggest that expectations about sensory regularities enhance the encoding and accumulation of sensory evidence during decision-making. However, it is possible, that these findings reflect well documented attentional modulations in visual cortex. Here, we tested this framework in a group of male and female human participants by examining how expectations about stimulus features (orientation and color) and expectations about motor responses impacted electroencephalography (EEG) markers of early sensory processing and the accumulation of sensory evidence during decision-making (the early visual negative potential and the centro-parietal positive potential, respectively). We first demonstrate that these markers are sensitive to changes in the amount of sensory evidence in the display. Then we show, counter to recent findings, that neither marker is modulated by either feature or motor expectations, despite a robust effect of expectations on behavior. Instead, violating expectations about likely sensory features and motor responses impacts posterior alpha and frontal theta oscillations, signals thought to index overall processing time and cognitive conflict. These findings are inconsistent with recent theoretical accounts and suggest instead that expectations primarily influence decisions by modulating post-perceptual stages of information processing. SIGNIFICANCE STATEMENT Expectations about likely features or motor responses play an important role in shaping behavior. Classic theoretical frameworks posit that expectations modulate decision-making by biasing late stages of decision-making including the selection and execution of motor responses. In contrast, recent accounts suggest that expectations also modulate decisions by improving the quality of early sensory processing. However, these effects could instead reflect the influence of selective attention. Here we examine the effect of expectations about sensory features and motor responses on a set of electroencephalography (EEG) markers that index early sensory processing and later post-perceptual processing. Counter to recent empirical results, expectations have little effect on early sensory processing but instead modulate EEG markers of time-on-task and cognitive conflict. Copyright © 2018 the authors 0270-6474/18/385632-17$15.00/0.

  12. Effect of age on the pathogenesis of duck tembusu virus in Cherry Valley ducks

    PubMed Central

    Li, Ning; Lv, Chuanwei; Yue, Ruichao; Shi, Ying; Wei, Liangmeng; Chai, Tongjie; Liu, Sidang

    2015-01-01

    The effect of host age on the outcome of duck tembusu virus (DTMUV) infection was studied in ducks. Three groups of Cherry Valley ducks at 1, 3, and 7 weeks of age were intramuscularly infected with DTMUV to systematically observe the clinical symptoms, pathological changes, tissue viral loads, and immune responses. Severe clinical symptoms and neurological dysfunction were observed in 1-week-old ducks as early as 2 days post infection (dpi) and some died at 5–7 dpi. Three weeks-old ducks showed similar but milder symptoms and no deaths. However, 7-weeks-old ducks showed only transient loss of appetite. Gross lesions gradually reduced in severity as ducks matured. One-week-old ducks showed endocardial hemorrhage, splenomegaly, swelling in the lymph follicles of the ileum, liver, and kidney swelling with degeneration, and meningeal hyperemia. Three-weeks-old ducks showed only mild pathological lesions. No visible lesions were observed in 7-weeks-old ducks. However, pathological histology analysis demonstrated all infected ducks displayed viral encephalitis. DTMUV could be detected in the brains of 1-week-old ducks as early as 1 dpi and virus titers of most organs in 1-week-old ducks were significantly higher than that of 3- and 7-weeks-old ducks at 3–5 dpi. The patterns of IFN-γ, IL-2, and serum neutralizing antibodies were similar, and there were significant difference between the youngest ducks and the older ducks at early infection stage (P < 0.05). More important is that although the antibody titers of all infected ducks were similar from 9 to 17 dpi, reduced clearance of virus was observed in the youngest groups comparing with the other two groups, indicating that immune system maturity was more important than the presence of neutralizing antibody. In summary, this study demonstrates that viral pathogenesis is strongest in 1-week-old ducks and the age-related immune response plays an important role in the pathogenesis of DTMUV in ducks. PMID:26106382

  13. Effect of age on the pathogenesis of duck tembusu virus in Cherry Valley ducks.

    PubMed

    Li, Ning; Lv, Chuanwei; Yue, Ruichao; Shi, Ying; Wei, Liangmeng; Chai, Tongjie; Liu, Sidang

    2015-01-01

    The effect of host age on the outcome of duck tembusu virus (DTMUV) infection was studied in ducks. Three groups of Cherry Valley ducks at 1, 3, and 7 weeks of age were intramuscularly infected with DTMUV to systematically observe the clinical symptoms, pathological changes, tissue viral loads, and immune responses. Severe clinical symptoms and neurological dysfunction were observed in 1-week-old ducks as early as 2 days post infection (dpi) and some died at 5-7 dpi. Three weeks-old ducks showed similar but milder symptoms and no deaths. However, 7-weeks-old ducks showed only transient loss of appetite. Gross lesions gradually reduced in severity as ducks matured. One-week-old ducks showed endocardial hemorrhage, splenomegaly, swelling in the lymph follicles of the ileum, liver, and kidney swelling with degeneration, and meningeal hyperemia. Three-weeks-old ducks showed only mild pathological lesions. No visible lesions were observed in 7-weeks-old ducks. However, pathological histology analysis demonstrated all infected ducks displayed viral encephalitis. DTMUV could be detected in the brains of 1-week-old ducks as early as 1 dpi and virus titers of most organs in 1-week-old ducks were significantly higher than that of 3- and 7-weeks-old ducks at 3-5 dpi. The patterns of IFN-γ, IL-2, and serum neutralizing antibodies were similar, and there were significant difference between the youngest ducks and the older ducks at early infection stage (P < 0.05). More important is that although the antibody titers of all infected ducks were similar from 9 to 17 dpi, reduced clearance of virus was observed in the youngest groups comparing with the other two groups, indicating that immune system maturity was more important than the presence of neutralizing antibody. In summary, this study demonstrates that viral pathogenesis is strongest in 1-week-old ducks and the age-related immune response plays an important role in the pathogenesis of DTMUV in ducks.

  14. Etiology and early pathogenesis of malignant testicular germ cell tumors: towards possibilities for preinvasive diagnosis

    PubMed Central

    Elzinga-Tinke, Jenny E; Dohle, Gert R; Looijenga, Leendert HJ

    2015-01-01

    Malignant testicular germ cell tumors (TGCT) are the most frequent cancers in Caucasian males (20–40 years) with an 70% increasing incidence the last 20 years, probably due to combined action of (epi)genetic and (micro)environmental factors. It is expected that TGCT have carcinoma in situ (CIS) as their common precursor, originating from an embryonic germ cell blocked in its maturation process. The overall cure rate of TGCT is more than 90%, however, men surviving TGCT can present long-term side effects of systemic cancer treatment. In contrast, men diagnosed and treated for CIS only continue to live without these long-term side effects. Therefore, early detection of CIS has great health benefits, which will require an informative screening method. This review described the etiology and early pathogenesis of TGCT, as well as the possibilities of early detection and future potential of screening men at risk for TGCT. For screening, a well-defined risk profile based on both genetic and environmental risk factors is needed. Since 2009, several genome wide association studies (GWAS) have been published, reporting on single-nucleotide polymorphisms (SNPs) with significant associations in or near the genes KITLG, SPRY4, BAK1, DMRT1, TERT, ATF7IP, HPGDS, MAD1L1, RFWD3, TEX14, and PPM1E, likely to be related to TGCT development. Prenatal, perinatal, and postnatal environmental factors also influence the onset of CIS. A noninvasive early detection method for CIS would be highly beneficial in a clinical setting, for which specific miRNA detection in semen seems to be very promising. Further research is needed to develop a well-defined TGCT risk profile, based on gene-environment interactions, combined with noninvasive detection method for CIS. PMID:25791729

  15. DiME: A Scalable Disease Module Identification Algorithm with Application to Glioma Progression

    PubMed Central

    Liu, Yunpeng; Tennant, Daniel A.; Zhu, Zexuan; Heath, John K.; Yao, Xin; He, Shan

    2014-01-01

    Disease module is a group of molecular components that interact intensively in the disease specific biological network. Since the connectivity and activity of disease modules may shed light on the molecular mechanisms of pathogenesis and disease progression, their identification becomes one of the most important challenges in network medicine, an emerging paradigm to study complex human disease. This paper proposes a novel algorithm, DiME (Disease Module Extraction), to identify putative disease modules from biological networks. We have developed novel heuristics to optimise Community Extraction, a module criterion originally proposed for social network analysis, to extract topological core modules from biological networks as putative disease modules. In addition, we have incorporated a statistical significance measure, B-score, to evaluate the quality of extracted modules. As an application to complex diseases, we have employed DiME to investigate the molecular mechanisms that underpin the progression of glioma, the most common type of brain tumour. We have built low (grade II) - and high (GBM) - grade glioma co-expression networks from three independent datasets and then applied DiME to extract potential disease modules from both networks for comparison. Examination of the interconnectivity of the identified modules have revealed changes in topology and module activity (expression) between low- and high- grade tumours, which are characteristic of the major shifts in the constitution and physiology of tumour cells during glioma progression. Our results suggest that transcription factors E2F4, AR and ETS1 are potential key regulators in tumour progression. Our DiME compiled software, R/C++ source code, sample data and a tutorial are available at http://www.cs.bham.ac.uk/~szh/DiME. PMID:24523864

  16. Identification of potential transcriptomic markers in developing pediatric sepsis: a weighted gene co-expression network analysis and a case-control validation study.

    PubMed

    Li, Yiping; Li, Yanhong; Bai, Zhenjiang; Pan, Jian; Wang, Jian; Fang, Fang

    2017-12-13

    Sepsis represents a complex disease with the dysregulated inflammatory response and high mortality rate. The goal of this study was to identify potential transcriptomic markers in developing pediatric sepsis by a co-expression module analysis of the transcriptomic dataset. Using the R software and Bioconductor packages, we performed a weighted gene co-expression network analysis to identify co-expression modules significantly associated with pediatric sepsis. Functional interpretation (gene ontology and pathway analysis) and enrichment analysis with known transcription factors and microRNAs of the identified candidate modules were then performed. In modules significantly associated with sepsis, the intramodular analysis was further performed and "hub genes" were identified and validated by quantitative real-time PCR (qPCR) in this study. 15 co-expression modules in total were detected, and four modules ("midnight blue", "cyan", "brown", and "tan") were most significantly associated with pediatric sepsis and suggested as potential sepsis-associated modules. Gene ontology analysis and pathway analysis revealed that these four modules strongly associated with immune response. Three of the four sepsis-associated modules were also enriched with known transcription factors (false discovery rate-adjusted P < 0.05). Hub genes were identified in each of the four modules. Four of the identified hub genes (MYB proto-oncogene like 1, killer cell lectin like receptor G1, stomatin, and membrane spanning 4-domains A4A) were further validated to be differentially expressed between septic children and controls by qPCR. Four pediatric sepsis-associated co-expression modules were identified in this study. qPCR results suggest that hub genes in these modules are potential transcriptomic markers for pediatric sepsis diagnosis. These results provide novel insights into the pathogenesis of pediatric sepsis and promote the generation of diagnostic gene sets.

  17. Thymoquinone-rich fraction nanoemulsion (TQRFNE) decreases Aβ40 and Aβ42 levels by modulating APP processing, up-regulating IDE and LRP1, and down-regulating BACE1 and RAGE in response to high fat/cholesterol diet-induced rats.

    PubMed

    Ismail, Norsharina; Ismail, Maznah; Azmi, Nur Hanisah; Bakar, Muhammad Firdaus Abu; Yida, Zhang; Abdullah, Maizaton Atmadini; Basri, Hamidon

    2017-11-01

    Though the causes of Alzheimer's disease (AD) are yet to be understood, much evidence has suggested that excessive amyloid-β (Aβ) accumulation due to abnormal amyloid-β precursor protein (APP) processing and Aβ metabolism are crucial processes towards AD pathogenesis. Hence, approaches aiming at APP processing and Aβ metabolism are currently being actively pursued for the management of AD. Studies suggest that high cholesterol and a high fat diet have harmful effects on cognitive function and may instigate the commencement of AD pathogenesis. Despite the neuropharmacological attributes of black cumin seed (Nigella sativa) extracts and its main active compound, thymoquinone (TQ), limited records are available in relation to AD research. Nanoemulsion (NE) is exploited as drug delivery systems due to their capacity of solubilising non-polar active compounds and is widely examined for brain targeting. Herewith, the effects of thymoquinone-rich fraction nanoemulsion (TQRFNE), thymoquinone nanoemulsion (TQNE) and their counterparts' conventional emulsion in response to high fat/cholesterol diet (HFCD)-induced rats were investigated. Particularly, the Aβ generation; APP processing, β-secretase 1 (BACE1), γ-secretases of presenilin 1 (PSEN1) and presenilin 2 (PSEN2), Aβ degradation; insulin degrading enzyme (IDE), Aβ transportation; low density lipoprotein receptor-related protein 1 (LRP1) and receptor for advanced glycation end products (RAGE) were measured in brain tissues. TQRFNE reduced the brain Aβ fragment length 1-40 and 1-42 (Aβ40 and Aβ42) levels, which would attenuate the AD pathogenesis. This reduction could be due to the modulation of β- and γ-secretase enzyme activity, and the Aβ degradation and transportation in/out of the brain. The findings show the mechanistic actions of TQRFNE in response to high fat and high cholesterol diet associated to Aβ generation, degradation and transportation in the rat's brain tissue. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Deregulated TNF-Alpha Levels Along with HPV Genotype 16 Infection Are Associated with Pathogenesis of Cervical Neoplasia in Northeast Indian Patients.

    PubMed

    Das, Chandana Ray; Tiwari, Diptika; Dongre, Anita; Khan, Mohammad Aasif; Husain, Syed Akhtar; Sarma, Anirudha; Bose, Sujoy; Bose, Purabi Deka

    2018-05-01

    Multiple factors are associated with human papillomavirus (HPV) infection related cervical anomalies and its progression to cervical carcinoma (CaCx), but data vary with respect to the underlying HPV genotype and with population being studied. No data are available regarding the role of immunological imbalance in HPV infected CaCx pathogenesis from Northeast India, which has an ethnically distinct population, and was aimed to be addressed through this study. The study included 76 CaCx cases, 25 cervical intraepithelial neoplasia (CIN) cases, and 50 healthy female controls. HPV screening and genotyping were performed by PCR. Differential expression of tumor necrosis factor alpha (TNF-α) was studied at serum level by enzyme-linked immunosorbent assay and tissue level by immunohistochemistry and messenger RNA (mRNA) level by real-time PCR. The data were correlated with interferon gamma (IFN-γ) and NF-κβp65 levels at protein level, as well as HPV16 E6 and E7 expression at transcript level statistically. HPV infection and HPV16 genotype were predominant in the studied cohort. TNF-α was found to be downregulated at both mRNA and protein levels in CaCx cases compared to controls; and the gradient downregulation correlated with progression of the disease from normal→CIN→CaCx. TNF-α expression correlated with insufficient modulation of both IFN-γ and NF-κβp65. The HPV16 E6 and E7 transcripts were found to be sharply upregulated in CaCx cases strongly inversely correlated with the TNF-α expression. Significant role of TNF-α downregulation associated with insufficient IFN-γ and total NF-κβp65 modulation and the resulting significant upregulation of viral transcripts E6 and E7 are key to the HPV16 infection mediated CaCx pathogenesis in northeast Indian patients.

  19. Transcriptome Analysis of CD4+ T Cells in Coeliac Disease Reveals Imprint of BACH2 and IFNγ Regulation

    PubMed Central

    Molloy, Ben; Dominguez Castro, Patricia; Cormican, Paul; Trimble, Valerie; Mahmud, Nasir; McManus, Ross

    2015-01-01

    Genetic studies have to date identified 43 genome wide significant coeliac disease susceptibility (CD) loci comprising over 70 candidate genes. However, how altered regulation of such disease associated genes contributes to CD pathogenesis remains to be elucidated. Recently there has been considerable emphasis on characterising cell type specific and stimulus dependent genetic variants. Therefore in this study we used RNA sequencing to profile over 70 transcriptomes of CD4+ T cells, a cell type crucial for CD pathogenesis, in both stimulated and resting samples from individuals with CD and unaffected controls. We identified extensive transcriptional changes across all conditions, with the previously established CD gene IFNy the most strongly up-regulated gene (log2 fold change 4.6; Padjusted = 2.40x10-11) in CD4+ T cells from CD patients compared to controls. We show a significant correlation of differentially expressed genes with genetic studies of the disease to date (Padjusted = 0.002), and 21 CD candidate susceptibility genes are differentially expressed under one or more of the conditions used in this study. Pathway analysis revealed significant enrichment of immune related processes. Co-expression network analysis identified several modules of coordinately expressed CD genes. Two modules were particularly highly enriched for differentially expressed genes (P<2.2x10-16) and highlighted IFNy and the genetically associated transcription factor BACH2 which showed significantly reduced expression in coeliac samples (log2FC -1.75; Padjusted = 3.6x10-3) as key regulatory genes in CD. Genes regulated by BACH2 were very significantly over-represented among our differentially expressed genes (P<2.2x10-16) indicating that reduced expression of this master regulator of T cell differentiation promotes a pro-inflammatory response and strongly corroborates genetic evidence that BACH2 plays an important role in CD pathogenesis. PMID:26444573

  20. Mutations in the Cytoplasmic Domain of the Newcastle Disease Virus Fusion Protein Confer Hyperfusogenic Phenotypes Modulating Viral Replication and Pathogenicity

    PubMed Central

    Samal, Sweety; Khattar, Sunil K.; Paldurai, Anandan; Palaniyandi, Senthilkumar; Zhu, Xiaoping; Collins, Peter L.

    2013-01-01

    The Newcastle disease virus (NDV) fusion protein (F) mediates fusion of viral and host cell membranes and is a major determinant of NDV pathogenicity. In the present study, we demonstrate the effects of functional properties of F cytoplasmic tail (CT) amino acids on virus replication and pathogenesis. Out of a series of C-terminal deletions in the CT, we were able to rescue mutant viruses lacking two or four residues (rΔ2 and rΔ4). We further rescued viral mutants with individual amino acid substitutions at each of these four terminal residues (rM553A, rK552A, rT551A, and rT550A). In addition, the NDV F CT has two conserved tyrosine residues (Y524 and Y527) and a dileucine motif (LL536-537). In other paramyxoviruses, these residues were shown to affect fusion activity and are central elements in basolateral targeting. The deletion of 2 and 4 CT amino acids and single tyrosine substitution resulted in hyperfusogenic phenotypes and increased viral replication and pathogenesis. We further found that in rY524A and rY527A viruses, disruption of the targeting signals did not reduce the expression on the apical or basolateral surface in polarized Madin-Darby canine kidney cells, whereas in double tyrosine mutant, it was reduced on both the apical and basolateral surfaces. Interestingly, in rL536A and rL537A mutants, the F protein expression was more on the apical than on the basolateral surface, and this effect was more pronounced in the rL537A mutant. We conclude that these wild-type residues in the NDV F CT have an effect on regulating F protein biological functions and thus modulating viral replication and pathogenesis. PMID:23843643

  1. Mutations in the cytoplasmic domain of the Newcastle disease virus fusion protein confer hyperfusogenic phenotypes modulating viral replication and pathogenicity.

    PubMed

    Samal, Sweety; Khattar, Sunil K; Paldurai, Anandan; Palaniyandi, Senthilkumar; Zhu, Xiaoping; Collins, Peter L; Samal, Siba K

    2013-09-01

    The Newcastle disease virus (NDV) fusion protein (F) mediates fusion of viral and host cell membranes and is a major determinant of NDV pathogenicity. In the present study, we demonstrate the effects of functional properties of F cytoplasmic tail (CT) amino acids on virus replication and pathogenesis. Out of a series of C-terminal deletions in the CT, we were able to rescue mutant viruses lacking two or four residues (rΔ2 and rΔ4). We further rescued viral mutants with individual amino acid substitutions at each of these four terminal residues (rM553A, rK552A, rT551A, and rT550A). In addition, the NDV F CT has two conserved tyrosine residues (Y524 and Y527) and a dileucine motif (LL536-537). In other paramyxoviruses, these residues were shown to affect fusion activity and are central elements in basolateral targeting. The deletion of 2 and 4 CT amino acids and single tyrosine substitution resulted in hyperfusogenic phenotypes and increased viral replication and pathogenesis. We further found that in rY524A and rY527A viruses, disruption of the targeting signals did not reduce the expression on the apical or basolateral surface in polarized Madin-Darby canine kidney cells, whereas in double tyrosine mutant, it was reduced on both the apical and basolateral surfaces. Interestingly, in rL536A and rL537A mutants, the F protein expression was more on the apical than on the basolateral surface, and this effect was more pronounced in the rL537A mutant. We conclude that these wild-type residues in the NDV F CT have an effect on regulating F protein biological functions and thus modulating viral replication and pathogenesis.

  2. Pathogenic Events in a Nonhuman Primate Model of Oral Poliovirus Infection Leading to Paralytic Poliomyelitis.

    PubMed

    Shen, Ling; Chen, Crystal Y; Huang, Dan; Wang, Richard; Zhang, Meihong; Qian, Lixia; Zhu, Yanfen; Zhang, Alvin Zhuoran; Yang, Enzhuo; Qaqish, Arwa; Chumakov, Konstantin; Kouiavskaia, Diana; Vignuzzi, Marco; Nathanson, Neal; Macadam, Andrew J; Andino, Raul; Kew, Olen; Xu, Junfa; Chen, Zheng W

    2017-07-15

    Despite a great deal of prior research, the early pathogenic events in natural oral poliovirus infection remain poorly defined. To establish a model for study, we infected 39 macaques by feeding them single high doses of the virulent Mahoney strain of wild type 1 poliovirus. Doses ranging from 10 7 to 10 9 50% tissue culture infective doses (TCID 50 ) consistently infected all the animals, and many monkeys receiving 10 8 or 10 9 TCID 50 developed paralysis. There was no apparent difference in the susceptibilities of the three macaque species (rhesus, cynomolgus, and bonnet) used. Virus excretion in stool and nasopharynges was consistently observed, with occasional viremia, and virus was isolated from tonsils, gut mucosa, and draining lymph nodes. Viral replication proteins were detected in both epithelial and lymphoid cell populations expressing CD155 in the tonsil and intestine, as well as in spinal cord neurons. Necrosis was observed in these three cell types, and viral replication in the tonsil/gut was associated with histopathologic destruction and inflammation. The sustained response of neutralizing antibody correlated temporally with resolution of viremia and termination of virus shedding in oropharynges and feces. For the first time, this model demonstrates that early in the infectious process, poliovirus replication occurs in both epithelial cells (explaining virus shedding in the gastrointestinal tract) and lymphoid/monocytic cells in tonsils and Peyer's patches (explaining viremia), extending previous studies of poliovirus pathogenesis in humans. Because the model recapitulates human poliovirus infection and poliomyelitis, it can be used to study polio pathogenesis and to assess the efficacy of candidate antiviral drugs and new vaccines. IMPORTANCE Early pathogenic events of poliovirus infection remain largely undefined, and there is a lack of animal models mimicking natural oral human infection leading to paralytic poliomyelitis. All 39 macaques fed with single high doses ranging from 10 7 to 10 9 TCID 50 Mahoney type 1 virus were infected, and many of the monkeys developed paralysis. Virus excretion in stool and nasopharynges was consistently observed, with occasional viremia; tonsil, mesentery lymph nodes, and intestinal mucosa served as major target sites of viral replication. For the first time, this model demonstrates that early in the infectious process, poliovirus replication occurs in both epithelial cells (explaining virus shedding in the gastrointestinal tract) and lymphoid/monocytic cells in tonsils and Peyer's patches (explaining viremia), thereby supplementing historical reconstructions of poliovirus pathogenesis. Because the model recapitulates human poliovirus infection and poliomyelitis, it can be used to study polio pathogenesis, candidate antiviral drugs, and the efficacy of new vaccines. Copyright © 2017 American Society for Microbiology.

  3. Nucleoprotein of influenza A virus negatively impacts antiapoptotic protein API5 to enhance E2F1-dependent apoptosis and virus replication.

    PubMed

    Mayank, A K; Sharma, S; Nailwal, H; Lal, S K

    2015-12-17

    Apoptosis of host cells profoundly influences virus propagation and dissemination, events that are integral to influenza A virus (IAV) pathogenesis. The trigger for activation of apoptosis is regulated by an intricate interplay between cellular and viral proteins, with a strong bearing on IAV replication. Though the knowledge of viral proteins and mechanisms employed by IAV to induce apoptosis has advanced considerably of late, we know relatively little about the repertoire of host factors targeted by viral proteins. Thus, identification of cellular proteins that are hijacked by the virus will help us not only to understand the molecular underpinnings of IAV-induced apoptosis, but also to design future antiviral therapies. Here we show that the nucleoprotein (NP) of IAV directly interacts with and suppresses the expression of API5, a host antiapoptotic protein that antagonizes E2F1-dependent apoptosis. siRNA-mediated depletion of API5, in NP-overexpressed as well as IAV-infected cells, leads to upregulation of apoptotic protease activating factor 1 (APAF1), a downstream modulator of E2F1-mediated apoptosis, and cleavage of caspases 9 and 3, although a reciprocal pattern of these events was observed on ectopic overexpression of API5. In concordance with these observations, annexin V and 7AAD staining assays exhibit downregulation of early and late apoptosis in IAV-infected or NP-transfected cells on overexpression of API5. Most significantly, while overexpression of API5 decreases viral titers, cellular NP protein as well as mRNA levels in IAV-infected A549 cells, silencing of API5 expression causes a steep rise in the same parameters. From the data reported in this manuscript, we propose a proapoptotic role for NP in IAV pathogenesis, whereby it suppresses expression of antiapoptotic factor API5, thus potentiating the E2F1-dependent apoptotic pathway and ensuring viral replication.

  4. Inhibition of GSK-3 Ameliorates Aβ Pathology in an Adult-Onset Drosophila Model of Alzheimer's Disease

    PubMed Central

    Killick, Richard; Augustin, Hrvoje; Gandy, Carina; Allen, Marcus J.; Hardy, John; Lovestone, Simon; Partridge, Linda

    2010-01-01

    Aβ peptide accumulation is thought to be the primary event in the pathogenesis of Alzheimer's disease (AD), with downstream neurotoxic effects including the hyperphosphorylation of tau protein. Glycogen synthase kinase-3 (GSK-3) is increasingly implicated as playing a pivotal role in this amyloid cascade. We have developed an adult-onset Drosophila model of AD, using an inducible gene expression system to express Arctic mutant Aβ42 specifically in adult neurons, to avoid developmental effects. Aβ42 accumulated with age in these flies and they displayed increased mortality together with progressive neuronal dysfunction, but in the apparent absence of neuronal loss. This fly model can thus be used to examine the role of events during adulthood and early AD aetiology. Expression of Aβ42 in adult neurons increased GSK-3 activity, and inhibition of GSK-3 (either genetically or pharmacologically by lithium treatment) rescued Aβ42 toxicity. Aβ42 pathogenesis was also reduced by removal of endogenous fly tau; but, within the limits of detection of available methods, tau phosphorylation did not appear to be altered in flies expressing Aβ42. The GSK-3–mediated effects on Aβ42 toxicity appear to be at least in part mediated by tau-independent mechanisms, because the protective effect of lithium alone was greater than that of the removal of tau alone. Finally, Aβ42 levels were reduced upon GSK-3 inhibition, pointing to a direct role of GSK-3 in the regulation of Aβ42 peptide level, in the absence of APP processing. Our study points to the need both to identify the mechanisms by which GSK-3 modulates Aβ42 levels in the fly and to determine if similar mechanisms are present in mammals, and it supports the potential therapeutic use of GSK-3 inhibitors in AD. PMID:20824130

  5. Epithelial NEMO/IKKγ limits fibrosis and promotes regeneration during pancreatitis.

    PubMed

    Chan, Lap Kwan; Gerstenlauer, Melanie; Konukiewitz, Björn; Steiger, Katja; Weichert, Wilko; Wirth, Thomas; Maier, Harald Jakob

    2017-11-01

    Inhibitory κB kinase (IKK)/nuclear factor κB (NF-κB) signalling has been implicated in the pathogenesis of pancreatitis, but its precise function has remained controversial. Here, we analyse the contribution of IKK/NF-κB signalling in epithelial cells to the pathogenesis of pancreatitis by targeting the IKK subunit NF-κB essential modulator (NEMO) (IKKγ), which is essential for canonical NF-κB activation. Mice with a targeted deletion of NEMO in the pancreas were subjected to caerulein pancreatitis. Pancreata were examined at several time points and analysed for inflammation, fibrosis, cell death, cell proliferation, as well as cellular differentiation. Human samples were used to corroborate findings established in mice. In acute pancreatitis, NEMO deletion in the pancreatic parenchyma resulted in minor changes during the early phase but led to the persistence of inflammatory and fibrotic foci in the recovery phase. In chronic pancreatitis, NEMO deletion aggravated inflammation and fibrosis, inhibited compensatory acinar cell proliferation, and enhanced acinar atrophy and acinar-ductal metaplasia. Gene expression analysis revealed sustained activation of profibrogenic genes and the CXCL12/CXCR4 axis in the absence of epithelial NEMO. In human chronic pancreatitis samples, the CXCL12/CXCR4 axis was activated as well, with CXCR4 expression correlating with the degree of fibrosis. The aggravating effects of NEMO deletion were attenuated by the administration of the CXCR4 antagonist AMD3100. Our results suggest that NEMO in epithelial cells exerts a protective effect during pancreatitis by limiting inflammation and fibrosis and improving acinar cell regeneration. The CXCL12/CXCR4 axis is an important mediator of that effect and may also be of importance in human chronic pancreatitis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  6. Vascular and parenchymal amyloid pathology in an Alzheimer disease knock-in mouse model: interplay with cerebral blood flow.

    PubMed

    Li, Hongmei; Guo, Qinxi; Inoue, Taeko; Polito, Vinicia A; Tabuchi, Katsuhiko; Hammer, Robert E; Pautler, Robia G; Taffet, George E; Zheng, Hui

    2014-08-09

    Accumulation and deposition of β-amyloid peptides (Aβ) in the brain is a central event in the pathogenesis of Alzheimer's disease (AD). Besides the parenchymal pathology, Aβ is known to undergo active transport across the blood-brain barrier and cerebral amyloid angiopathy (CAA) is a prominent feature in the majority of AD. Although impaired cerebral blood flow (CBF) has been implicated in faulty Aβ transport and clearance, and cerebral hypoperfusion can exist in the pre-clinical phase of Alzheimer's disease (AD), it is still unclear whether it is one of the causal factors for AD pathogenesis, or an early consequence of a multi-factor condition that would lead to AD at late stage. To study the potential interaction between faulty CBF and amyloid accumulation in clinical-relevant situation, we generated a new amyloid precursor protein (APP) knock-in allele that expresses humanized Aβ and a Dutch mutation in addition to Swedish/London mutations and compared this line with an equivalent knock-in line but in the absence of the Dutch mutation, both crossed onto the PS1M146V knock-in background. Introduction of the Dutch mutation results in robust CAA and parenchymal Aβ pathology, age-dependent reduction of spatial learning and memory deficits, and CBF reduction as detected by fMRI. Direct manipulation of CBF by transverse aortic constriction surgery on the left common carotid artery caused differential changes in CBF in the anterior and middle region of the cortex, where it is reduced on the left side and increased on the right side. However these perturbations in CBF resulted in the same effect: both significantly exacerbate CAA and amyloid pathology. Our study reveals a direct and positive link between vascular and parenchymal Aβ; both can be modulated by CBF. The new APP knock-in mouse model recapitulates many symptoms of AD including progressive vascular and parenchymal Aβ pathology and behavioral deficits in the absence of APP overexpression.

  7. Parenting Skills: A Trainer's Manual. A Performance Based Early Childhood-Special Education Teacher Preparation Program. Monograph 3.

    ERIC Educational Resources Information Center

    Abidin, Richard R.

    This manual, developed as part of the performance-based Early Childhood-Special Education Teacher Preparation Program, is a trainer's manual for teaching parenting skills. Each module or set of modules presents effective skills for managing and changing behaviors of adults and children. Several profession strategies and theoretical orientations…

  8. Correction to: Stem Cells from Human Exfoliated Deciduous Teeth Modulate Early Astrocyte Response after Spinal Cord Contusion.

    PubMed

    Nicola, Fabrício; Marques, Marília Rossato; Odorcyk, Felipe; Petenuzzo, Letícia; Aristimunha, Dirceu; Vizuete, Adriana; Sanches, Eduardo Farias; Pereira, Daniela Pavulack; Maurmann, Natasha; Gonçalves, Carlos-Alberto; Pranke, Patricia; Netto, Carlos Alexandre

    2018-06-16

    The authors hereby declare that the Figure 4 in page eight of the paper "Stem cells from human exfoliated deciduous teeth modulate early astrocyte response after spinal cord contusion" authored by Fabrício Nicola and colleagues (DOI: 10.1007/s12035-018-1127-4) was mistakenly included.

  9. Imposed glutathione-mediated redox switch modulates the tobacco wound-induced protein kinase and salicylic acid-induced protein kinase activation state and impacts on defence against Pseudomonas syringae

    PubMed Central

    Matern, Sanja; Peskan-Berghoefer, Tatjana; Gromes, Roland; Kiesel, Rebecca Vazquez; Rausch, Thomas

    2015-01-01

    The role of the redox-active tripeptide glutathione in plant defence against pathogens has been studied extensively; however, the impact of changes in cellular glutathione redox potential on signalling processes during defence reactions has remained elusive. This study explored the impact of elevated glutathione content on the cytosolic redox potential and on early defence signalling at the level of mitogen-activated protein kinases (MAPKs), as well as on subsequent defence reactions, including changes in salicylic acid (SA) content, pathogenesis-related gene expression, callose depositions, and the hypersensitive response. Wild-type (WT) Nicotiana tabacum L. and transgenic high-glutathione lines (HGL) were transformed with the cytosol-targeted sensor GRX1-roGFP2 to monitor the cytosolic redox state. Surprisingly, HGLs displayed an oxidative shift in their cytosolic redox potential and an activation of the tobacco MAPKs wound-induced protein kinase (WIPK) and SA-induced protein kinase (SIPK). This activation occurred in the absence of any change in free SA content, but was accompanied by constitutively increased expression of several defence genes. Similarly, rapid activation of MAPKs could be induced in WT tobacco by exposure to either reduced or oxidized glutathione. When HGL plants were challenged with adapted or non-adapted Pseudomonas syringae pathovars, the cytosolic redox shift was further amplified and the defence response was markedly increased, showing a priming effect for SA and callose; however, the initial and transient hyperactivation of MAPK signalling was attenuated in HGLs. The results suggest that, in tobacco, MAPK and SA signalling may operate independently, both possibly being modulated by the glutathione redox potential. Possible mechanisms for redox-mediated MAPK activation are discussed. PMID:25628332

  10. Fimbria-Encoding Gene yadC Has a Pleiotropic Effect on Several Biological Characteristics and Plays a Role in Avian Pathogenic Escherichia coli Pathogenicity.

    PubMed

    Verma, Renu; Rojas, Thaís Cabrera Galvão; Maluta, Renato Pariz; Leite, Janaína Luisa; da Silva, Livia Pilatti Mendes; Nakazato, Gerson; Dias da Silveira, Wanderley

    2016-01-01

    The extraintestinal pathogen termed avian pathogenic Escherichia coli (APEC) is known to cause colibacillosis in chickens. The molecular basis of APEC pathogenesis is not fully elucidated yet. In this work, we deleted a component of the Yad gene cluster (yadC) in order to understand the role of Yad in the pathogenicity of the APEC strain SCI-07. In vitro, the transcription level of yadC was upregulated at 41°C and downregulated at 22°C. The yadC expression in vivo was more pronounced in lungs than in spleen, suggesting a role in the early steps of the infection. Chicks infected with the wild-type and mutant strains presented, respectively, 80% and 50% mortality rates. The ΔyadC strain presented a slightly decreased ability to adhere to HeLa cells with or without the d-mannose analog compared with the wild type. Real-time PCR (RT-PCR) assays showed that fimH was downregulated (P < 0.05) and csgA and ecpA were slightly upregulated in the mutant strain, showing that yadC modulates expression of other fimbriae. Bacterial internalization studies showed that the ΔyadC strain had a lower number of intracellular bacteria recovered from Hep-2 cells and HD11 cells than the wild-type strain (P < 0.05). Motility assays in soft agar demonstrated that the ΔyadC strain was less motile than the wild type (P < 0.01). Curiously, flagellum-associated genes were not dramatically downregulated in the ΔyadC strain. Taken together, the results show that the fimbrial adhesin Yad contributes to the pathogenicity and modulates different biological characteristics of the APEC strain SCI-07. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus

    PubMed Central

    Alejo, Alí; Ruiz-Argüello, M. Begoña; Ho, Yin; Smith, Vincent P.; Saraiva, Margarida; Alcami, Antonio

    2006-01-01

    Variola virus (VaV) is the causative agent of smallpox, one of the most devastating diseases encountered by man, that was eradicated in 1980. The deliberate release of VaV would have catastrophic consequences on global public health. However, the mechanisms that contribute to smallpox pathogenesis are poorly understood at the molecular level. The ability of viruses to evade the host defense mechanisms is an important determinant of viral pathogenesis. Here we show that the tumor necrosis factor receptor (TNFR) homologue CrmB encoded by VaV functions not only as a soluble decoy TNFR but also as a highly specific binding protein for several chemokines that mediate recruitment of immune cells to mucosal surfaces and the skin, sites of virus entry and viral replication at late stages of smallpox. CrmB binds chemokines through its C-terminal domain, which is unrelated to TNFRs, was named smallpox virus-encoded chemokine receptor (SECRET) domain and uncovers a family of poxvirus chemokine inhibitors. An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses. These findings identify a previously undescribed chemokine-binding and inhibitory domain unrelated to host chemokine receptors and a mechanism of immune modulation in VaV that may influence smallpox pathogenesis. PMID:16581912

  12. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus.

    PubMed

    Alejo, Alí; Ruiz-Argüello, M Begoña; Ho, Yin; Smith, Vincent P; Saraiva, Margarida; Alcami, Antonio

    2006-04-11

    Variola virus (VaV) is the causative agent of smallpox, one of the most devastating diseases encountered by man, that was eradicated in 1980. The deliberate release of VaV would have catastrophic consequences on global public health. However, the mechanisms that contribute to smallpox pathogenesis are poorly understood at the molecular level. The ability of viruses to evade the host defense mechanisms is an important determinant of viral pathogenesis. Here we show that the tumor necrosis factor receptor (TNFR) homologue CrmB encoded by VaV functions not only as a soluble decoy TNFR but also as a highly specific binding protein for several chemokines that mediate recruitment of immune cells to mucosal surfaces and the skin, sites of virus entry and viral replication at late stages of smallpox. CrmB binds chemokines through its C-terminal domain, which is unrelated to TNFRs, was named smallpox virus-encoded chemokine receptor (SECRET) domain and uncovers a family of poxvirus chemokine inhibitors. An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses. These findings identify a previously undescribed chemokine-binding and inhibitory domain unrelated to host chemokine receptors and a mechanism of immune modulation in VaV that may influence smallpox pathogenesis.

  13. Pathogenesis of chronic active Epstein-Barr virus infection: is this an infectious disease, lymphoproliferative disorder, or immunodeficiency?

    PubMed

    Kimura, Hiroshi

    2006-01-01

    Chronic active Epstein-Barr virus infection (CAEBV) is characterised by chronic or recurrent infectious mononucleosis-like symptoms, such as fever, hepatosplenomegaly, persistent hepatitis and extensive lymphadenopathy. Patients with CAEBV have high viral loads in their peripheral blood and/or an unusual pattern of EBV-related antibodies. This disease is rare but severe with high morbidity and mortality. Nearly three decades have passed since this disease was first identified, and recent advances in technology have increased our understanding of CAEBV pathophysiology. There is accumulating evidence that the clonal expansion of EBV-infected T or natural killer (NK) cells plays a central role in the pathogenesis of CAEBV. However, it remains unclear whether CAEBV is truly a monoclonal lymphoproliferative disorder. EBV-infected T or NK cells are able to evade the host cellular immune system due to the limited expression of viral proteins of reduced antigenicity. Recent studies suggest that infection of T or NK cells is a common event during primary EBV infection. A defect or single nucleotide polymorphism in host immune-modulating genes may allow for the expansion of virus infected cells giving rise to CAEBV. In this review, I summarise our current understanding of the pathogenesis of CAEBV and propose a model of CAEBV pathogenicity.

  14. Structural studies of human glioma pathogenesis-related protein 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asojo, Oluwatoyin A., E-mail: oasojo@unmc.edu; Koski, Raymond A.; Bonafé, Nathalie

    2011-10-01

    Structural analysis of a truncated soluble domain of human glioma pathogenesis-related protein 1, a membrane protein implicated in the proliferation of aggressive brain cancer, is presented. Human glioma pathogenesis-related protein 1 (GLIPR1) is a membrane protein that is highly upregulated in brain cancers but is barely detectable in normal brain tissue. GLIPR1 is composed of a signal peptide that directs its secretion, a conserved cysteine-rich CAP (cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 proteins) domain and a transmembrane domain. GLIPR1 is currently being investigated as a candidate for prostate cancer gene therapy and for glioblastoma targeted therapy. Crystal structuresmore » of a truncated soluble domain of the human GLIPR1 protein (sGLIPR1) solved by molecular replacement using a truncated polyalanine search model of the CAP domain of stecrisp, a snake-venom cysteine-rich secretory protein (CRISP), are presented. The correct molecular-replacement solution could only be obtained by removing all loops from the search model. The native structure was refined to 1.85 Å resolution and that of a Zn{sup 2+} complex was refined to 2.2 Å resolution. The latter structure revealed that the putative binding cavity coordinates Zn{sup 2+} similarly to snake-venom CRISPs, which are involved in Zn{sup 2+}-dependent mechanisms of inflammatory modulation. Both sGLIPR1 structures have extensive flexible loop/turn regions and unique charge distributions that were not observed in any of the previously reported CAP protein structures. A model is also proposed for the structure of full-length membrane-bound GLIPR1.« less

  15. Early Program Development

    NASA Image and Video Library

    1969-01-01

    This 1969 artist's concept illustrates the use of three major elements of NASA's Integrated program, as proposed by President Nixon's Space Task Group. In Phases I and II, a Space Tug with a manipulator-equipped crew module removes a cargo module from an early Space Shuttle Orbiter and docks with it. In Phases III and IV, the Space Tug with attached cargo module flys toward a Nuclear Shuttle. As a result of the Space Task Group's recommendations for more commonality and integration in the American space program, Marshall Space Flight Center engineers studied many of the spacecraft depicted here.

  16. Cardiac surgery-associated acute kidney injury

    PubMed Central

    Ortega-Loubon, Christian; Fernández-Molina, Manuel; Carrascal-Hinojal, Yolanda; Fulquet-Carreras, Enrique

    2016-01-01

    Cardiac surgery-associated acute kidney injury (CSA-AKI) is a well-recognized complication resulting with the higher morbid-mortality after cardiac surgery. In its most severe form, it increases the odds ratio of operative mortality 3–8-fold, length of stay in the Intensive Care Unit and hospital, and costs of care. Early diagnosis is critical for an optimal treatment of this complication. Just as the identification and correction of preoperative risk factors, the use of prophylactic measures during and after surgery to optimize renal function is essential to improve postoperative morbidity and mortality of these patients. Cardiopulmonary bypass produces an increased in tubular damage markers. Their measurement may be the most sensitive means of early detection of AKI because serum creatinine changes occur 48 h to 7 days after the original insult. Tissue inhibitor of metalloproteinase-2 and insulin-like growth factor-binding protein 7 are most promising as an early diagnostic tool. However, the ideal noninvasive, specific, sensitive, reproducible biomarker for the detection of AKI within 24 h is still not found. This article provides a review of the different perspectives of the CSA-AKI, including pathogenesis, risk factors, diagnosis, biomarkers, classification, postoperative management, and treatment. We searched the electronic databases, MEDLINE, PubMed, EMBASE using search terms relevant including pathogenesis, risk factors, diagnosis, biomarkers, classification, postoperative management, and treatment, in order to provide an exhaustive review of the different perspectives of the CSA-AKI. PMID:27716701

  17. Gut dysfunction in Parkinson's disease

    PubMed Central

    Mukherjee, Adreesh; Biswas, Atanu; Das, Shyamal Kumar

    2016-01-01

    Early involvement of gut is observed in Parkinson’s disease (PD) and symptoms such as constipation may precede motor symptoms. α-Synuclein pathology is extensively evident in the gut and appears to follow a rostrocaudal gradient. The gut may act as the starting point of PD pathology with spread toward the central nervous system. This spread of the synuclein pathology raises the possibility of prion-like propagation in PD pathogenesis. Recently, the role of gut microbiota in PD pathogenesis has received attention and some phenotypic correlation has also been shown. The extensive involvement of the gut in PD even in its early stages has led to the evaluation of enteric α-synuclein as a possible biomarker of early PD. The clinical manifestations of gastrointestinal dysfunction in PD include malnutrition, oral and dental disorders, sialorrhea, dysphagia, gastroparesis, constipation, and defecatory dysfunction. These conditions are quite distressing for the patients and require relevant investigations and adequate management. Treatment usually involves both pharmacological and non-pharmacological measures. One important aspect of gut dysfunction is its contribution to the clinical fluctuations in PD. Dysphagia and gastroparesis lead to inadequate absorption of oral anti-PD medications. These lead to response fluctuations, particularly delayed-on and no-on, and there is significant relationship between levodopa pharmacokinetics and gastric emptying in patients with PD. Therefore, in such cases, alternative routes of administration or drug delivery systems may be required. PMID:27433087

  18. MicroRNA, Proteins, and Metabolites as Novel Biomarkers for Prediabetes, Diabetes, and Related Complications

    PubMed Central

    Vaishya, Suniti; Sarwade, Rucha D.; Seshadri, Vasudevan

    2018-01-01

    Type 2 diabetes mellitus (T2DM) is no more a lifestyle disease of developed countries. It has emerged as a major health problem worldwide including developing countries. However, how diabetes could be detected at an early stage (prediabetes) to prevent the progression of disease is still unclear. Currently used biomarkers like glycated hemoglobin and assessment of blood glucose level have their own limitations. These classical markers can be detected when the disease is already established. Prognosis of disease at early stages and prediction of population at a higher risk require identification of specific markers that are sensitive enough to be detected at early stages of disease. Biomarkers which could predict the risk of disease in people will be useful for developing preventive/proactive therapies to those individuals who are at a higher risk of developing the disease. Recent studies suggested that the expression of biomolecules including microRNAs, proteins, and metabolites specifically change during the progression of T2DM and related complications, suggestive of disease pathology. Owing to their omnipresence in body fluids and their association with onset, progression, and pathogenesis of T2DM, these biomolecules can be potential biomarker for prognosis, diagnosis, and management of disease. In this article, we summarize biomolecules that could be potential biomarkers and their signature changes associated with T2DM and related complications during disease pathogenesis. PMID:29740397

  19. Reactive Oxygen Species-Mediated Loss of Synaptic Akt1 Signaling Leads to Deficient Activity-Dependent Protein Translation Early in Alzheimer's Disease.

    PubMed

    Ahmad, Faraz; Singh, Kunal; Das, Debajyoti; Gowaikar, Ruturaj; Shaw, Eisha; Ramachandran, Arathy; Rupanagudi, Khader Valli; Kommaddi, Reddy Peera; Bennett, David A; Ravindranath, Vijayalakshmi

    2017-12-01

    Synaptic deficits are known to underlie the cognitive dysfunction seen in Alzheimer's disease (AD). Generation of reactive oxygen species (ROS) by β-amyloid has also been implicated in AD pathogenesis. However, it is unclear whether ROS contributes to synaptic dysfunction seen in AD pathogenesis and, therefore, we examined whether altered redox signaling could contribute to synaptic deficits in AD. Activity dependent but not basal translation was impaired in synaptoneurosomes from 1-month old presymptomatic APP Swe /PS1ΔE9 (APP/PS1) mice, and this deficit was sustained till middle age (MA, 9-10 months). ROS generation leads to oxidative modification of Akt1 in the synapse and consequent reduction in Akt1-mechanistic target of rapamycin (mTOR) signaling, leading to deficiency in activity-dependent protein translation. Moreover, we found a similar loss of activity-dependent protein translation in synaptoneurosomes from postmortem AD brains. Loss of activity-dependent protein translation occurs presymptomatically early in the pathogenesis of AD. This is caused by ROS-mediated loss of pAkt1, leading to reduced synaptic Akt1-mTOR signaling and is rescued by overexpression of Akt1. ROS-mediated damage is restricted to the synaptosomes, indicating selectivity. We demonstrate that ROS-mediated oxidative modification of Akt1 contributes to synaptic dysfunction in AD, seen as loss of activity-dependent protein translation that is essential for synaptic plasticity and maintenance. Therapeutic strategies promoting Akt1-mTOR signaling at synapses may provide novel target(s) for disease-modifying therapy in AD. Antioxid. Redox Signal. 27, 1269-1280.

  20. Huntington disease iPSCs show early molecular changes in intracellular signaling, the expression of oxidative stress proteins and the p53 pathway

    PubMed Central

    Szlachcic, Wojciech J.; Switonski, Pawel M.; Krzyzosiak, Wlodzimierz J.; Figlerowicz, Marek; Figiel, Maciej

    2015-01-01

    ABSTRACT Huntington disease (HD) is a brain disorder characterized by the late onset of motor and cognitive symptoms, even though the neurons in the brain begin to suffer dysfunction and degeneration long before symptoms appear. There is currently no cure. Several molecular and developmental effects of HD have been identified using neural stem cells (NSCs) and differentiated cells, such as neurons and astrocytes. Still, little is known regarding the molecular pathogenesis of HD in pluripotent cells, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Therefore, we examined putative signaling pathways and processes involved in HD pathogenesis in pluripotent cells. We tested naïve mouse HD YAC128 iPSCs and two types of human HD iPSC that were generated from HD and juvenile-HD patients. Surprisingly, we found that a number of changes affecting cellular processes in HD were also present in undifferentiated pluripotent HD iPSCs, including the dysregulation of the MAPK and Wnt signaling pathways and the dysregulation of the expression of genes related to oxidative stress, such as Sod1. Interestingly, a common protein interactor of the huntingtin protein and the proteins in the above pathways is p53, and the expression of p53 was dysregulated in HD YAC128 iPSCs and human HD iPSCs. In summary, our findings demonstrate that multiple molecular pathways that are characteristically dysregulated in HD are already altered in undifferentiated pluripotent cells and that the pathogenesis of HD might begin during the early stages of life. PMID:26092128

  1. Nonconventional MRI biomarkers for in vivo monitoring of pathogenesis in multiple sclerosis.

    PubMed

    Londoño, Ana C; Mora, Carlos A

    2014-12-01

    To date, biomarkers based on nonconventional MRI have not been standardized for diagnosis and follow-up of patients with multiple sclerosis (MS). The sequential monitoring of pathogenesis in MS by imaging of the normal appearing brain tissue is an important research tool in understanding the early stages of MS. In this review, we focus on the importance of deciphering the physiopathogenesis of the disease cascade in vivo based on imaging biomarkers that allow a correlation with immunohistochemistry and molecular biology findings in order to provide earlier clinical diagnosis and better individualization of treatment and follow-up in patients with MS. Among the nonconventional imaging techniques available, we remark on the importance of proton magnetic resonance spectroscopy imaging because of its ability to assist in the simultaneous evaluation of different events in the pathogenesis of MS that cannot be determined by conventional MRI. Nonconventional MRI and the use of novel contrast agents are expected to elucidate the process of neuroinflammation and excitotoxicity in vivo that characterizes MS, thus leading to more specific neuroprotective and immunomodulatory therapies and reducing progression toward disability.

  2. Pathogenesis pathways of idiopathic pulmonary fibrosis in bleomycin-induced lung injury model in mice.

    PubMed

    Shi, Keyun; Jiang, Jianzhong; Ma, Tieliang; Xie, Jing; Duan, Lirong; Chen, Ruhua; Song, Ping; Yu, Zhixin; Liu, Chao; Zhu, Qin; Zheng, Jinxu

    2014-01-01

    Our objective was to investigate the pathogenesis pathways of idiopathic pulmonary fibrosis (IPF). Bleomycin (BLM) induced animal models of experimental lung fibrosis were used. CHIP assay was executed to find the link between Smad3 and IL-31, and the expressions of TGF-β1, Smad3, IL-31 and STAT1 were detected to find whether they were similar with each other. We found that in the early injury or inflammation of the animal model, BLM promoted the development of inflammation, leading to severe pulmonary fibrosis. Then the expression of TGF-β1 and Smad3 increased. Activated Smad3 bound to the IL-31 promoter region, followed by the activation of JAK-STAT pathways. The inhibitor of TGF-β1 receptor decreased the IL-31 expression and knocking-down of IL-31 also decreased the STAT1 expression. We conclude that there is a pathway of pathogenesis in BLM-induced mouse model that involves the TGF-β, IL-31 and JAKs/STATs pathway. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Rheumatoid Arthritis-Associated Interstitial Lung Disease: Current Concepts.

    PubMed

    Brito, Yoel; Glassberg, Marilyn K; Ascherman, Dana P

    2017-11-09

    Among the many extra-articular complications of rheumatoid arthritis (RA), interstitial lung disease (ILD) contributes significantly to morbidity and mortality. Prevalence estimates for RA-ILD vary widely depending on the specific clinical, radiographic, and functional criteria used to establish the diagnosis. A key unresolved issue is whether early, subclinical forms of RA-ILD represent a precursor to end stage, fibrotic lung disease. Based on uncertainties surrounding the natural history of RA-ILD, incomplete understanding of underlying disease pathogenesis, and lack of controlled clinical trials, evidence-based therapeutic strategies remain largely undefined. Correlative clinico-epidemiological studies have identified key risk factors for disease progression. Complementing these findings, the identification of specific molecular and serological markers of RA-ILD has improved our understanding of disease pathogenesis and established the foundation for predictive biomarker profiling. Experience from case series and cohort studies suggests that newer biological agents such as rituximab may be viable treatment options. RA-ILD continues to have a major impact on "disease intrinsic" morbidity and mortality. Increased understanding of disease pathogenesis and the natural history of subclinical RA-ILD will promote the development of more refined therapeutic strategies.

  4. The Role of Host and Microbial Factors in the Pathogenesis of Pneumococcal Bacteraemia Arising from a Single Bacterial Cell Bottleneck

    PubMed Central

    Furi, Leonardo; Braccini, Tiziana; Manso, Ana Sousa; Pammolli, Andrea; Wang, Bo; Vivi, Antonio; Tassini, Maria; van Rooijen, Nico; Pozzi, Gianni; Ricci, Susanna; Andrew, Peter W.; Koedel, Uwe; Moxon, E. Richard; Oggioni, Marco R.

    2014-01-01

    The pathogenesis of bacteraemia after challenge with one million pneumococci of three isogenic variants was investigated. Sequential analyses of blood samples indicated that most episodes of bacteraemia were monoclonal events providing compelling evidence for a single bacterial cell bottleneck at the origin of invasive disease. With respect to host determinants, results identified novel properties of splenic macrophages and a role for neutrophils in early clearance of pneumococci. Concerning microbial factors, whole genome sequencing provided genetic evidence for the clonal origin of the bacteraemia and identified SNPs in distinct sub-units of F0/F1 ATPase in the majority of the ex vivo isolates. When compared to parental organisms of the inoculum, ex-vivo pneumococci with mutant alleles of the F0/F1 ATPase had acquired the capacity to grow at low pH at the cost of the capacity to grow at high pH. Although founded by a single cell, the genotypes of pneumococci in septicaemic mice indicate strong selective pressure for fitness, emphasising the within-host complexity of the pathogenesis of invasive disease. PMID:24651834

  5. Genetic and environmental pathways to complex diseases.

    PubMed

    Gohlke, Julia M; Thomas, Reuben; Zhang, Yonqing; Rosenstein, Michael C; Davis, Allan P; Murphy, Cynthia; Becker, Kevin G; Mattingly, Carolyn J; Portier, Christopher J

    2009-05-05

    Pathogenesis of complex diseases involves the integration of genetic and environmental factors over time, making it particularly difficult to tease apart relationships between phenotype, genotype, and environmental factors using traditional experimental approaches. Using gene-centered databases, we have developed a network of complex diseases and environmental factors through the identification of key molecular pathways associated with both genetic and environmental contributions. Comparison with known chemical disease relationships and analysis of transcriptional regulation from gene expression datasets for several environmental factors and phenotypes clustered in a metabolic syndrome and neuropsychiatric subnetwork supports our network hypotheses. This analysis identifies natural and synthetic retinoids, antipsychotic medications, Omega 3 fatty acids, and pyrethroid pesticides as potential environmental modulators of metabolic syndrome phenotypes through PPAR and adipocytokine signaling and organophosphate pesticides as potential environmental modulators of neuropsychiatric phenotypes. Identification of key regulatory pathways that integrate genetic and environmental modulators define disease associated targets that will allow for efficient screening of large numbers of environmental factors, screening that could set priorities for further research and guide public health decisions.

  6. A Structural Perspective on the Regulation of the EGF Receptor

    PubMed Central

    Kovacs, Erika; Zorn, Julie Anne; Huang, Yongjian; Barros, Tiago; Kuriyan, John

    2015-01-01

    The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that plays a critical role in the pathogenesis of many cancers. EGFR is unique in that its ligand-induced dimerization is established solely by contacts between regions of the receptor that are occluded within the monomeric, unliganded state. Activation of EGFR depends on the formation of an asymmetric dimer of the intracellular module of two receptor molecules, a configuration observed in crystal structures of the EGFR kinase domain in the active state. Coupling between the extracellular and intracellular modules is achieved by a switch between alternative geometries of the transmembrane and juxtamembrane segments within the receptor dimer. As the structure of the full-length receptor is yet to be determined, here we review recent structural studies on isolated modules of EGFR and molecular dynamics simulations that have provided much of our current understanding of its signaling mechanism, including how its regulation is compromised by oncogenic mutations. PMID:25621509

  7. Cardiovascular Mitochondrial Dysfunction Induced by Cocaine: Biomarkers and Possible Beneficial Effects of Modulators of Oxidative Stress.

    PubMed

    Graziani, Manuela; Sarti, Paolo; Arese, Marzia; Magnifico, Maria Chiara; Badiani, Aldo; Saso, Luciano

    2017-01-01

    Cocaine abuse has long been known to cause morbidity and mortality due to its cardiovascular toxic effects. The pathogenesis of the cardiovascular toxicity of cocaine use has been largely reviewed, and the most recent data indicate a fundamental role of oxidative stress in cocaine-induced cardiovascular toxicity, indicating that mitochondrial dysfunction is involved in the mechanisms of oxidative stress. The comprehension of the mechanisms involving mitochondrial dysfunction could help in selecting the most appropriate mitochondria injury biological marker, such as superoxide dismutase-2 activity and glutathionylated hemoglobin. The potential use of modulators of oxidative stress (mitoubiquinone, the short-chain quinone idebenone, and allopurinol) in the treatment of cocaine cardiotoxic effects is also suggested to promote further investigations on these potential mitochondria-targeted antioxidant strategies.

  8. Immune Modulation in the Treatment of Amyotrophic Lateral Sclerosis: A Review of Clinical Trials

    PubMed Central

    Khalid, Syed I.; Ampie, Leonel; Kelly, Ryan; Ladha, Shafeeq S.; Dardis, Christopher

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the degeneration of motor neurons. Though many molecular and genetic causes are thought to serve as predisposing or disease propagating factors, the underlying pathogenesis of the disease is not known. Recent discoveries have demonstrated the presence of inflammation propagating substrates in the central nervous system of patients afflicted with ALS. Over the past decade, this hypothesis has incited an effort to better understand the role of the immune system in ALS and has led to the trial of several potential immune-modulating therapies. Here, we briefly review advances in the role of such therapies. The clinical trials discussed here are currently ongoing or have been concluded at the time of writing. PMID:28993751

  9. Staphylococcus aureus pathogenesis in diverse host environments

    PubMed Central

    Balasubramanian, Divya; Harper, Lamia; Shopsin, Bo; Torres, Victor J.

    2017-01-01

    Abstract Staphylococcus aureus is an eminent human pathogen that can colonize the human host and cause severe life-threatening illnesses. This bacterium can reside in and infect a wide range of host tissues, ranging from superficial surfaces like the skin to deeper tissues such as in the gastrointestinal tract, heart and bones. Due to its multifaceted lifestyle, S. aureus uses complex regulatory networks to sense diverse signals that enable it to adapt to different environments and modulate virulence. In this minireview, we explore well-characterized environmental and host cues that S. aureus responds to and describe how this pathogen modulates virulence in response to these signals. Lastly, we highlight therapeutic approaches undertaken by several groups to inhibit both signaling and the cognate regulators that sense and transmit these signals downstream. PMID:28104617

  10. [Anti-basal ganglia antibody].

    PubMed

    Hayashi, Masaharu

    2013-04-01

    Sydenham's chorea (SC) is a major manifestation of rheumatic fever, and the production of anti-basal ganglia antibodies (ABGA) has been proposed in SC. The pathogenesis is hypothesized as autoimmune targeting of the basal ganglia via molecular mimicry, triggered by streptococcal infection. The spectrum of diseases in which ABGA may be involved has been broadened to include other extrapyramidal movement disorders, such as tics, dystonia, and Parkinsonism, as well as other psychiatric disorders. The autoimmune hypothesis in the presence and absence of ABGA has been suggested in Tourette's syndrome (TS), early onset obsessive-compulsive disorders (OCD), and pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS). Recently, the relationship between ABGA and dopamine neurons in the basal ganglia has been examined, and autoantibodies against dopamine receptors were detected in the sera from patients with basal ganglia encephalitis. In Japan, the occurrence of subacute encephalitis, where patients suffer from episodes of altered behavior and involuntary movements, has increased. Immune-modulating treatments are effective, indicating the involvement of an autoimmune mechanism. We aimed to detect the anti-neuronal autoantibodies in such encephalitis, using immunohistochemical assessment of patient sera. The sera from patients showing involuntary movements had immunoreactivity for basal ganglia neurons. Further epitopes for ABGA will be investigated in basal ganglia disorders other than SC, TS, OCD, and PANDAS.

  11. Profile of epratuzumab and its potential in the treatment of systemic lupus erythematosus

    PubMed Central

    Al Rayes, Hanan; Touma, Zahi

    2014-01-01

    Management of systemic lupus erythematosus (SLE) represents a fascinating, emerging field. Research has recently provided us with a better understanding of the immunologic alterations of SLE, leading to the creation of immunomodulatory agents designed to disrupt specific cell targets and pro-inflammatory pathways. Despite the improvement in the prognosis of SLE in the last 50 years with the use of immunosuppressive therapy such as cyclophosphamide and mycophenolate mofetil, cytotoxicity remains a major complication of these medications and the need for more specific targeted immunotherapy is increasing. Early recognition and treatment of SLE with targeted immunotherapy has the potential to improve quality of life and reduce the risk of disease flare-ups and complications. In this review, we will explore the role of B-cells in the pathogenesis of SLE highlighting current insights into SLE development and management. In addition, we will discuss epratuzumab’s role in the treatment of SLE. Epratuzumab is a humanized anti-CD22 monoclonal antibody that targets CD22 on B-cell and its role in B-cell modulation, migration, function, and inhibition of B-cell receptor signaling. Epratuzumab is currently in a Phase III study evaluating its efficacy in the management of moderate to severe SLE. All published trials on epratuzumab have shown great promise with safe profiles. PMID:25429203

  12. Biologic treatment in Sjögren's syndrome.

    PubMed

    Sada, Pablo Ruiz; Isenberg, David; Ciurtin, Coziana

    2015-02-01

    SS is a chronic systemic autoimmune disease characterized by decreased exocrine gland function. A variety of other disease manifestations may also be present, including general constitutional symptoms and extraglandular features. A multidisciplinary approach focused on both local and systemic medical therapies is needed as the disease has a wide clinical spectrum. The current treatment for SS is mainly symptomatic. However, there is evidence that systemic drugs are effective in controlling extraglandular manifestations of the disease. Overall evidence for the role of conventional immunosuppressive therapy is limited. A number of attempts to use biologic therapies have led to variable results. Biologic agents targeting B cells, such as rituximab, epratuzumab and belimumab, have shown promising results, but further studies are needed to validate the findings. Early-phase studies with abatacept and alefacept proved that T cell stimulation inhibition is another potentially effective target for SS treatment. Modulation or inhibition of other targets such as IFN, IL-6 and Toll-like receptor are also currently being investigated. We have summarized the available evidence regarding the efficacy of biologic treatments and discuss other potential therapies targeting pathways or molecules recognized as being involved in the pathogenesis of SS. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Convergence of placenta biology and genetic risk for schizophrenia.

    PubMed

    Ursini, Gianluca; Punzi, Giovanna; Chen, Qiang; Marenco, Stefano; Robinson, Joshua F; Porcelli, Annamaria; Hamilton, Emily G; Mitjans, Marina; Maddalena, Giancarlo; Begemann, Martin; Seidel, Jan; Yanamori, Hidenaga; Jaffe, Andrew E; Berman, Karen F; Egan, Michael F; Straub, Richard E; Colantuoni, Carlo; Blasi, Giuseppe; Hashimoto, Ryota; Rujescu, Dan; Ehrenreich, Hannelore; Bertolino, Alessandro; Weinberger, Daniel R

    2018-06-01

    Defining the environmental context in which genes enhance disease susceptibility can provide insight into the pathogenesis of complex disorders. We report that the intra-uterine environment modulates the association of schizophrenia with genomic risk (in this study, genome-wide association study-derived polygenic risk scores (PRSs)). In independent samples from the United States, Italy, and Germany, the liability of schizophrenia explained by PRS is more than five times greater in the presence of early-life complications (ELCs) compared with their absence. Patients with ELC histories have significantly higher PRS than patients without ELC histories, which is confirmed in additional samples from Germany and Japan. The gene set composed of schizophrenia loci that interact with ELCs is highly expressed in placenta, is differentially expressed in placentae from complicated in comparison with normal pregnancies, and is differentially upregulated in placentae from male compared with female offspring. Pathway analyses reveal that genes driving the PRS-ELC interaction are involved in cellular stress response; genes that do not drive such interaction implicate orthogonal biological processes (for example, synaptic function). We conclude that a subset of the most significant genetic variants associated with schizophrenia converge on a developmental trajectory sensitive to events that affect the placental response to stress, which may offer insights into sex biases and primary prevention.

  14. Altered fetal skeletal muscle nutrient metabolism following an adverse in utero environment and the modulation of later life insulin sensitivity.

    PubMed

    Dunlop, Kristyn; Cedrone, Megan; Staples, James F; Regnault, Timothy R H

    2015-02-12

    The importance of the in utero environment as a contributor to later life metabolic disease has been demonstrated in both human and animal studies. In this review, we consider how disruption of normal fetal growth may impact skeletal muscle metabolic development, ultimately leading to insulin resistance and decreased insulin sensitivity, a key precursor to later life metabolic disease. In cases of intrauterine growth restriction (IUGR) associated with hypoxia, where the fetus fails to reach its full growth potential, low birth weight (LBW) is often the outcome, and early in postnatal life, LBW individuals display modifications in the insulin-signaling pathway, a critical precursor to insulin resistance. In this review, we will present literature detailing the classical development of insulin resistance in IUGR, but also discuss how this impaired development, when challenged with a postnatal Western diet, may potentially contribute to the development of later life insulin resistance. Considering the important role of the skeletal muscle in insulin resistance pathogenesis, understanding the in utero programmed origins of skeletal muscle deficiencies in insulin sensitivity and how they may interact with an adverse postnatal environment, is an important step in highlighting potential therapeutic options for LBW offspring born of pregnancies characterized by placental insufficiency.

  15. HTLV-1 Tax-mediated inhibition of FOXO3a activity is critical for the persistence of terminally differentiated CD4+ T cells.

    PubMed

    Olagnier, David; Sze, Alexandre; Bel Hadj, Samar; Chiang, Cindy; Steel, Courtney; Han, Xiaoying; Routy, Jean-Pierre; Lin, Rongtuan; Hiscott, John; van Grevenynghe, Julien

    2014-12-01

    The mechanisms involved in the persistence of activated CD4+ T lymphocytes following primary human T leukemia/lymphoma virus type 1 (HTLV-1) infection remain unclear. Here, we demonstrate that the HTLV-1 Tax oncoprotein modulates phosphorylation and transcriptional activity of the FOXO3a transcription factor, via upstream activation of the AKT pathway. De novo HTLV-1 infection of CD4+ T cells or direct lentiviral-mediated introduction of Tax led to AKT activation and AKT-dependent inactivation of FOXO3a, via phosphorylation of residues Ser253 and Thr32. Inhibition of FOXO3a signalling led to the long-term survival of a population of highly activated, terminally differentiated CD4+Tax+CD27negCCR7neg T cells that maintained the capacity to disseminate infectious HTLV-1. CD4+ T cell persistence was reversed by chemical inhibition of AKT activity, lentiviral-mediated expression of a dominant-negative form of FOXO3a or by specific small interfering RNA (siRNA)-mediated silencing of FOXO3a. Overall this study provides new mechanistic insight into the strategies used by HTLV-1 to increase long-term maintenance of Tax+CD4+ T lymphocytes during the early stages of HTLV-1 pathogenesis.

  16. Functional Neurosurgery in the Treatment of Severe Obsessive Compulsive Disorder and Major Depression: Overview of Disease Circuits and Therapeutic Targeting for the Clinician

    PubMed Central

    Shah, Dhwani B.; Pesiridou, Angeliki; Baltuch, Gordon H.; Malone, Donald A.; O’Reardon, John P.

    2008-01-01

    Over the past 20 years, there has been a concerted effort to expand our understanding of the neural circuitry involved in the pathogenesis of psychiatric disorders. Distinct neuronal circuits and networks have been implicated in obsessive compulsive disorder (OCD) and major depressive disorder (MDD) involving feedback loops between the cortex, striatum, and thalamus. When neurosurgery is used as a therapeutic tool in severe OCD and MDD, the goal is to modulate specific targets or nodes within these networks in an effort to produce symptom relief. Currently, four lesioning neurosurgical procedures are utilized for treatment refractory OCD and MDD: cingulotomy, capsulotomy, subcaudate tractotomy, and limbic leucotomy. Deep brain stimulation (DBS) is a novel neurosurgical approach that has some distinct advantages over lesioning procedures. With DBS, the desired clinical effect can be achieved by reversible, high frequency stimulation in a nucleus or at a node in the circuit without the need to produce an irreversible lesion. Recent trials of deep brain stimulation in both OCD and MDD at several neuroanatomical targets have reported promising early results in highly refractory patients and with a good safety profile. Future definitive trials in MDD and OCD are envisaged. PMID:19727257

  17. Thyroid hormones: Possible roles in epilepsy pathology.

    PubMed

    Tamijani, Seyedeh Masoumeh Seyedhoseini; Karimi, Benyamin; Amini, Elham; Golpich, Mojtaba; Dargahi, Leila; Ali, Raymond Azman; Ibrahim, Norlinah Mohamed; Mohamed, Zahurin; Ghasemi, Rasoul; Ahmadiani, Abolhassan

    2015-09-01

    Thyroid hormones (THs) L-thyroxine and L-triiodothyronine, primarily known as metabolism regulators, are tyrosine-derived hormones produced by the thyroid gland. They play an essential role in normal central nervous system development and physiological function. By binding to nuclear receptors and modulating gene expression, THs influence neuronal migration, differentiation, myelination, synaptogenesis and neurogenesis in developing and adult brains. Any uncorrected THs supply deficiency in early life may result in irreversible neurological and motor deficits. The development and function of GABAergic neurons as well as glutamatergic transmission are also affected by THs. Though the underlying molecular mechanisms still remain unknown, the effects of THs on inhibitory and excitatory neurons may affect brain seizure activity. The enduring predisposition of the brain to generate epileptic seizures leads to a complex chronic brain disorder known as epilepsy. Pathologically, epilepsy may be accompanied by mitochondrial dysfunction, oxidative stress and eventually dysregulation of excitatory glutamatergic and inhibitory GABAergic neurotransmission. Based on the latest evidence on the association between THs and epilepsy, we hypothesize that THs abnormalities may contribute to the pathogenesis of epilepsy. We also review gender differences and the presumed underlying mechanisms through which TH abnormalities may affect epilepsy here. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  18. Contribution of stress and sex hormones to memory encoding.

    PubMed

    Merz, Christian J

    2017-08-01

    Distinct stages of the menstrual cycle and the intake of oral contraceptives (OC) affect sex hormone levels, stress responses, and memory processes critically involved in the pathogenesis of mental disorders. To characterize the interaction of sex and stress hormones on memory encoding, 30 men, 30 women in the early follicular phase of the menstrual cycle (FO), 30 women in the luteal phase (LU), and 30 OC women were exposed to either a stress (socially evaluated cold-pressor test) or a control condition prior to memory encoding and immediate recall of neutral, positive, and negative words. On the next day, delayed free and cued recall was tested. Sex hormone levels verified distinct estradiol, progesterone, and testosterone levels between groups. Stress increased blood pressure, cortisol concentrations, and ratings of stress appraisal in all four groups as well as cued recall performance of negative words in men. Stress exposure in OC women led to a blunted cortisol response and rather enhanced cued recall of neutral words. Thus, pre-encoding stress facilitated emotional cued recall performance in men only, but not women with different sex hormone statuses pointing to the pivotal role of circulating sex hormones in modulation of learning and memory processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Arsenic induces apoptosis in mouse liver is mitochondria dependent and is abrogated by N-acetylcysteine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santra, Amal; Chowdhury, Abhijit; Ghatak, Subhadip

    2007-04-15

    Arsenicosis, caused by arsenic contamination of drinking water supplies, is a major public health problem in India and Bangladesh. Chronic liver disease, often with portal hypertension occurs in chronic arsenicosis, contributes to the morbidity and mortality. The early cellular events that initiate liver cell injury due to arsenicosis have not been studied. Our aim was to identify the possible mechanisms related to arsenic-induced liver injury in mice. Liver injury was induced in mice by arsenic treatment. The liver was used for mitochondrial oxidative stress, mitochondrial permeability transition (MPT). Evidence of apoptosis was sought by TUNEL test, caspase assay and histology.more » Pretreatment with N-acetyl-L-cysteine (NAC) was done to modulate hepatic GSH level. Arsenic treatment in mice caused liver injury associated with increased oxidative stress in liver mitochondria and alteration of MPT. Altered MPT facilitated cytochrome c release in the cytosol, activation of caspase 9 and caspase 3 activities and apoptotic cell death. Pretreatment of NAC to arsenic-treated mice abrogated all these alteration suggesting a glutathione (GSH)-dependent mechanism. Oxidative stress in mitochondria and inappropriate MPT are important in the pathogenesis of arsenic induced apoptotic liver cell injury. The phenomenon is GSH dependent and supplementation of NAC might have beneficial effects.« less

  20. HTLV-1 Tax-Mediated Inhibition of FOXO3a Activity Is Critical for the Persistence of Terminally Differentiated CD4+ T Cells

    PubMed Central

    Bel Hadj, Samar; Chiang, Cindy; Steel, Courtney; Han, Xiaoying; Routy, Jean-Pierre; Lin, Rongtuan; Hiscott, John; van Grevenynghe, Julien

    2014-01-01

    The mechanisms involved in the persistence of activated CD4+ T lymphocytes following primary human T leukemia/lymphoma virus type 1 (HTLV-1) infection remain unclear. Here, we demonstrate that the HTLV-1 Tax oncoprotein modulates phosphorylation and transcriptional activity of the FOXO3a transcription factor, via upstream activation of the AKT pathway. De novo HTLV-1 infection of CD4+ T cells or direct lentiviral-mediated introduction of Tax led to AKT activation and AKT-dependent inactivation of FOXO3a, via phosphorylation of residues Ser253 and Thr32. Inhibition of FOXO3a signalling led to the long-term survival of a population of highly activated, terminally differentiated CD4+Tax+CD27negCCR7neg T cells that maintained the capacity to disseminate infectious HTLV-1. CD4+ T cell persistence was reversed by chemical inhibition of AKT activity, lentiviral-mediated expression of a dominant-negative form of FOXO3a or by specific small interfering RNA (siRNA)-mediated silencing of FOXO3a. Overall this study provides new mechanistic insight into the strategies used by HTLV-1 to increase long-term maintenance of Tax+CD4+ T lymphocytes during the early stages of HTLV-1 pathogenesis. PMID:25521510

  1. Effects of Olive Oil Phenolic Compounds on Inflammation in the Prevention and Treatment of Coronary Artery Disease

    PubMed Central

    de Souza, Priscilla Azambuja Lopes; Marcadenti, Aline; Portal, Vera Lúcia

    2017-01-01

    Coronary artery disease (CAD) is responsible for more than 7 million deaths worldwide. In the early stages of the development of atherosclerotic plaques, cardiovascular risk factors stimulate vascular endothelial cells, initiating an inflammatory process, fundamental in the pathogenesis of CAD. The inclusion of potentially cardioprotective foods, such as olive oil, to the diet, may aid in the control of these risk factors, and in the reduction of cytokines and inflammatory markers. The present review aims to address the interaction between phenolic compounds present in olive oil, and inflammation, in the prevention and treatment of CAD. In vitro and in vivo studies suggest that phenolic compounds, such as hydroxytyrosol, tyrosol, and their secoiridoid derivatives, may reduce the expression of adhesion molecules and consequent migration of immune cells, modify the signaling cascade and the transcription network (blocking the signal and expression of the nuclear factor kappa B), inhibit the action of enzymes responsible for the production of eicosanoids, and consequently, decrease circulating levels of inflammatory markers. Daily consumption of olive oil seems to modulate cytokines and inflammatory markers related to CAD in individuals at risk for cardiovascular diseases. However, clinical studies that have evaluated the effects of olive oil and its phenolic compounds on individuals with CAD are still scarce. PMID:28973999

  2. Nitric oxide-mediated oxidative damage and the progressive demise of motor neurons in ALS.

    PubMed

    Drechsel, Derek A; Estévez, Alvaro G; Barbeito, Luis; Beckman, Joseph S

    2012-11-01

    Oxidative damage is a common and early feature of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS), and other neurodegenerative disorders. Dr. Mark Smith and his colleagues have built the case for oxidative stress being a primary progenitor rather than a secondary end-stage epiphenomenon of neurodegeneration. They proposed that reactive oxygen species contribute to the "age-related cascade of neurodegeneration," whereby accumulative oxidative damage with age promotes other characteristic pathological changes in afflicted brain regions, including protein aggregation, metabolic deficiencies, and inflammation. Nitric oxide (NO) likely plays a critical role in this age-related cascade. NO is a major signaling molecule produced in the central nervous system to modulate neurological activity through stimulating cyclic GMP synthesis. However, the same physiological concentrations of NO, relevant in cellular signaling, may also initiate and amplify oxidative damage by diffusion-limited reactions with superoxide (O(2)(•-)) to produce peroxynitrite (ONOO(-)). This is perhaps best illustrated in ALS where physiological levels of NO promote survival of motor neurons, but the same concentrations can stimulate motor neuron apoptosis and glial cell activation under pathological conditions. While these changes represent a complex mechanism involving multiple cell types in the pathogenesis of ALS, they also reveal general processes underlying neurodegeneration.

  3. Marketing EPSDT to Clients: A Self-Instructional Module for Early Periodic Screening Diagnosis Treatment.

    ERIC Educational Resources Information Center

    Simon, John L.; McArdle, Patricia

    Early and Periodic Screening, Diagnosis and Treatment (EPSDT) is a program of preventive health services available to individuals under 21 years of age who are eligible for Medicaid benefits. As of July 1, 1973, all states operating a Medicaid program were required to provide EPSDT services to all those eligible. The purpose of this module is to…

  4. Kaposi's sarcoma: etiology and pathogenesis, inducing factors, causal associations, and treatments: facts and controversies.

    PubMed

    Ruocco, Eleonora; Ruocco, Vincenzo; Tornesello, Maria Lina; Gambardella, Alessio; Wolf, Ronni; Buonaguro, Franco M

    2013-01-01

    Kaposi's sarcoma (KS), an angioproliferative disorder, has a viral etiology and a multifactorial pathogenesis hinged on an immune dysfunction. The disease is multifocal, with a course ranging from indolent, with only skin manifestations to fulminant, with extensive visceral involvement. In the current view, all forms of KS have a common etiology in human herpesvirus (HHV)-8 infection, and the differences among them are due to the involvement of various cofactors. In fact, HHV-8 infection can be considered a necessary but not sufficient condition for the development of KS, because further factors (genetic, immunologic, and environmental) are required. The role of cofactors can be attributed to their ability to interact with HHV-8, to affect the immune system, or to act as vasoactive agents. In this contribution, a survey of the current state of knowledge on many and various factors involved in KS pathogenesis is carried out, in particular by highlighting the facts and controversies about the role of some drugs (quinine analogues and angiotensin-converting enzyme inhibitors) in the onset of the disease. Based on these assessments, it is possible to hypothesize that the role of cofactors in KS pathogenesis can move toward an effect either favoring or inhibiting the onset of the disease, depending on the presence of other agents modulating the pathogenesis itself, such as genetic predisposition, environmental factors, drug intake, or lymph flow disorders. It is possible that the same agents may act as either stimulating or inhibiting cofactors according to the patient's genetic background and variable interactions. Treatment guidelines for each form of KS are outlined, because a unique standard therapy for all of them cannot be considered due to KS heterogeneity. In most cases, therapeutic options, both local and systemic, should be tailored to the patient's peculiar clinical conditions. Copyright © 2013. Published by Elsevier Inc.

  5. A Dynamic Circuit Hypothesis for the Pathogenesis of Blepharospasm.

    PubMed

    Peterson, David A; Sejnowski, Terrence J

    2017-01-01

    Blepharospasm (sometimes called "benign essential blepharospasm," BEB) is one of the most common focal dystonias. It involves involuntary eyelid spasms, eye closure, and increased blinking. Despite the success of botulinum toxin injections and, in some cases, pharmacologic or surgical interventions, BEB treatments are not completely efficacious and only symptomatic. We could develop principled strategies for preventing and reversing the disease if we knew the pathogenesis of primary BEB. The objective of this study was to develop a conceptual framework and dynamic circuit hypothesis for the pathogenesis of BEB. The framework extends our overarching theory for the multifactorial pathogenesis of focal dystonias (Peterson et al., 2010) to incorporate a two-hit rodent model specifically of BEB (Schicatano et al., 1997). We incorporate in the framework three features critical to cranial motor control: (1) the joint influence of motor cortical regions and direct descending projections from one of the basal ganglia output nuclei, the substantia nigra pars reticulata, on brainstem motor nuclei, (2) nested loops composed of the trigeminal blink reflex arc and the long sensorimotor loop from trigeminal nucleus through thalamus to somatosensory cortex back through basal ganglia to the same brainstem nuclei modulating the reflex arc, and (3) abnormalities in the basal ganglia dopamine system that provide a sensorimotor learning substrate which, when combined with patterns of increased blinking, leads to abnormal sensorimotor mappings manifest as BEB. The framework explains experimental data on the trigeminal reflex blink excitability (TRBE) from Schicatano et al. and makes predictions that can be tested in new experimental animal models based on emerging genetics in dystonia, including the recently characterized striatal-specific D1R dopamine transduction alterations caused by the GNAL mutation. More broadly, the model will provide a guide for future efforts to mechanistically link multiple factors in the pathogenesis of BEB and facilitate simulations of how exogenous manipulations of the pathogenic factors could ultimately be used to prevent and reverse the disorder.

  6. A Dynamic Circuit Hypothesis for the Pathogenesis of Blepharospasm

    PubMed Central

    Peterson, David A.; Sejnowski, Terrence J.

    2017-01-01

    Blepharospasm (sometimes called “benign essential blepharospasm,” BEB) is one of the most common focal dystonias. It involves involuntary eyelid spasms, eye closure, and increased blinking. Despite the success of botulinum toxin injections and, in some cases, pharmacologic or surgical interventions, BEB treatments are not completely efficacious and only symptomatic. We could develop principled strategies for preventing and reversing the disease if we knew the pathogenesis of primary BEB. The objective of this study was to develop a conceptual framework and dynamic circuit hypothesis for the pathogenesis of BEB. The framework extends our overarching theory for the multifactorial pathogenesis of focal dystonias (Peterson et al., 2010) to incorporate a two-hit rodent model specifically of BEB (Schicatano et al., 1997). We incorporate in the framework three features critical to cranial motor control: (1) the joint influence of motor cortical regions and direct descending projections from one of the basal ganglia output nuclei, the substantia nigra pars reticulata, on brainstem motor nuclei, (2) nested loops composed of the trigeminal blink reflex arc and the long sensorimotor loop from trigeminal nucleus through thalamus to somatosensory cortex back through basal ganglia to the same brainstem nuclei modulating the reflex arc, and (3) abnormalities in the basal ganglia dopamine system that provide a sensorimotor learning substrate which, when combined with patterns of increased blinking, leads to abnormal sensorimotor mappings manifest as BEB. The framework explains experimental data on the trigeminal reflex blink excitability (TRBE) from Schicatano et al. and makes predictions that can be tested in new experimental animal models based on emerging genetics in dystonia, including the recently characterized striatal-specific D1R dopamine transduction alterations caused by the GNAL mutation. More broadly, the model will provide a guide for future efforts to mechanistically link multiple factors in the pathogenesis of BEB and facilitate simulations of how exogenous manipulations of the pathogenic factors could ultimately be used to prevent and reverse the disorder. PMID:28326032

  7. Early top-down control of visual processing predicts working memory performance

    PubMed Central

    Rutman, Aaron M.; Clapp, Wesley C.; Chadick, James Z.; Gazzaley, Adam

    2009-01-01

    Selective attention confers a behavioral benefit for both perceptual and working memory (WM) performance, often attributed to top-down modulation of sensory neural processing. However, the direct relationship between early activity modulation in sensory cortices during selective encoding and subsequent WM performance has not been established. To explore the influence of selective attention on WM recognition, we used electroencephalography (EEG) to study the temporal dynamics of top-down modulation in a selective, delayed-recognition paradigm. Participants were presented with overlapped, “double-exposed” images of faces and natural scenes, and were instructed to either remember the face or the scene while simultaneously ignoring the other stimulus. Here, we present evidence that the degree to which participants modulate the early P100 (97–129 ms) event-related potential (ERP) during selective stimulus encoding significantly correlates with their subsequent WM recognition. These results contribute to our evolving understanding of the mechanistic overlap between attention and memory. PMID:19413473

  8. Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour.

    PubMed

    Desbonnet, Lieve; Clarke, Gerard; Traplin, Alexander; O'Sullivan, Orla; Crispie, Fiona; Moloney, Rachel D; Cotter, Paul D; Dinan, Timothy G; Cryan, John F

    2015-08-01

    There is growing appreciation for the importance of bacteria in shaping brain development and behaviour. Adolescence and early adulthood are crucial developmental periods during which exposure to harmful environmental factors can have a permanent impact on brain function. Such environmental factors include perturbations of the gut bacteria that may affect gut-brain communication, altering the trajectory of brain development, and increasing vulnerability to psychiatric disorders. Here we assess the effects of gut bacterial depletion from weaning onwards on adult cognitive, social and emotional behaviours and markers of gut-brain axis dysfunction in mice. Mice were treated with a combination of antibiotics from weaning onwards and effects on behaviours and potential gut-brain axis neuromodulators (tryptophan, monoamines, and neuropeptides) and BDNF expression were assessed in adulthood. Antibiotic-treatment depleted and restructured gut microbiota composition of caecal contents and decreased spleen weights in adulthood. Depletion of the gut microbiota from weaning onwards reduced anxiety, induced cognitive deficits, altered dynamics of the tryptophan metabolic pathway, and significantly reduced BDNF, oxytocin and vasopressin expression in the adult brain. Microbiota depletion from weaning onwards by means of chronic treatment with antibiotics in mice impacts on anxiety and cognitive behaviours as well as key neuromodulators of gut-brain communication in a manner that is similar to that reported in germ-free mice. This model may represent a more amenable alternative for germ-free mice in the assessment of microbiota modulation of behaviour. Finally, these data suggest that despite the presence of a normal gut microbiome in early postnatal life, reduced abundance and diversity of the gut microbiota from weaning influences adult behaviours and key neuromodulators of the microbiota-gut-brain axis suggesting that dysregulation of this axis in the post-weaning period may contribute to the pathogenesis of disorders associated with altered anxiety and cognition. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Transforming growth factor- 1 C-509T polymorphism, oxidant stress, and early-onset childhood asthma.

    PubMed

    Salam, Muhammad T; Gauderman, W James; McConnell, Rob; Lin, Pi-Chu; Gilliland, Frank D

    2007-12-15

    Transforming growth factor (TGF)-beta1 is involved in airway inflammation and remodeling, two key processes in asthma pathogenesis. Tobacco smoke and traffic emissions induce airway inflammation and modulate TGF-beta1 gene expression. We hypothesized that the effects of functional TGF-beta1 variants on asthma occurrence vary by these exposures. We tested these hypotheses among 3,023 children who participated in the Children's Health Study. Tagging single-nucleotide polymorphisms rs4803457 C>T and C-509T (a functional promoter polymorphism) accounted for 94% of the haplotype diversity of the upstream region. Exposure to maternal smoking in utero was based on smoking by biological mother during pregnancy. Residential distance from nearest freeway was calculated based on residential address at study entry. Children with the -509TT genotype had a 1.8-fold increased risk of early persistent asthma (95% confidence interval [CI], 1.11-2.95). This association varied marginally significantly by in utero exposure to maternal smoking. Compared with children with the -509CC/CT genotype with no in utero exposure to maternal smoking, those with the -509TT genotype with such exposure had a 3.4-fold increased risk of early persistent asthma (95% CI, 1.46-7.80; interaction, P = 0.11). The association between TGF-beta1 C-509T and lifetime asthma varied by residential proximity to freeways (interaction P = 0.02). Children with the -509TT genotype living within 500 m of a freeway had over three-fold increased lifetime asthma risk (95% CI, 1.29-7.44) compared with children with CC/CT genotype living > 1500 m from a freeway. Children with the TGF-beta1 -509TT genotype are at increased risk of asthma when they are exposed to maternal smoking in utero or to traffic-related emissions.

  10. Cytokine expression during early and late phase of acute Puumala hantavirus infection

    PubMed Central

    2011-01-01

    Background Hantaviruses of the family Bunyaviridae are emerging zoonotic pathogens which cause hemorrhagic fever with renal syndrome (HFRS) in the Old World and hantavirus pulmonary syndrome (HPS) in the New World. An immune-mediated pathogenesis is discussed for both syndromes. The aim of our study was to investigate cytokine expression during the course of acute Puumala hantavirus infection. Results We retrospectively studied 64 patients hospitalised with acute Puumala hantavirus infection in 2010 during a hantavirus epidemic in Germany. Hantavirus infection was confirmed by positive anti-hantavirus IgG/IgM. Cytokine expression of IL-2, IL-5, IL-6, IL-8, IL-10, IFN-γ, TNF-α and TGF-β1 was analysed by ELISA during the early and late phase of acute hantavirus infection (average 6 and 12 days after onset of symptoms, respectively). A detailed description of the demographic and clinical presentation of severe hantavirus infection requiring hospitalization during the 2010 hantavirus epidemic in Germany is given. Acute hantavirus infection was characterized by significantly elevated levels of IL-2, IL-6, IL-8, TGF-β1 and TNF-α in both early and late phase compared to healthy controls. From early to late phase of disease, IL-6, IL-10 and TNF-α significantly decreased whereas TGF-β1 levels increased. Disease severity characterized by elevated creatinine and low platelet counts was correlated with high pro-inflammatory IL-6 and TNF-α but low immunosuppressive TGF-β1 levels and vice versa . Conclusion High expression of cytokines activating T-lymphocytes, monocytes and macrophages in the early phase of disease supports the hypothesis of an immune-mediated pathogenesis. In the late phase of disease, immunosuppressive TGF-β1 level increase significantly. We suggest that delayed induction of a protective immune mechanism to downregulate a massive early pro-inflammatory immune response might contribute to the pathologies characteristic of human hantavirus infection. PMID:22085404

  11. Infection with spinal instrumentation: Review of pathogenesis, diagnosis, prevention, and management

    PubMed Central

    Kasliwal, Manish K.; Tan, Lee A.; Traynelis, Vincent C.

    2013-01-01

    Background: Instrumentation has become an integral component in the management of various spinal pathologies. The rate of infection varies from 2% to 20% of all instrumented spinal procedures. Every occurrence produces patient morbidity, which may adversely affect long-term outcome and increases health care costs. Methods: A comprehensive review of the literature from 1990 to 2012 was performed utilizing PubMed and several key words: Infection, spine, instrumentation, implant, management, and biofilms. Articles that provided a current review of the pathogenesis, diagnosis, prevention, and management of instrumented spinal infections over the years were reviewed. Results: There are multiple risk factors for postoperative spinal infections. Infections in the setting of instrumentation are more difficult to diagnose and treat due to biofilm. Infections may be early or delayed. C Reactive Protein (CRP) and Magnetic Resonance Imaging (MRI) are important diagnostic tools. Optimal results are obtained with surgical debridement followed by parenteral antibiotics. Removal or replacement of hardware should be considered in delayed infections. Conclusions: An improved understanding of the role of biofilm and the development of newer spinal implants has provided insight in the pathogenesis and management of infected spinal implants. This literature review highlights the mechanism, pathogenesis, prevention, and management of infection after spinal instrumentation. It is important to accurately identify and treat postoperative spinal infections. The treatment is often multimodal and prolonged. PMID:24340238

  12. Pathogenesis of myelodysplastic syndromes: an overview of molecular and non-molecular aspects of the disease

    PubMed Central

    Visconte, Valeria; Tiu, Ramon V.

    2014-01-01

    Myelodysplastic syndromes (MDS) are a group of clonal disorders arising from hematopoietic stem cells generally characterized by inefficient hematopoiesis, dysplasia in one or more myeloid cell lineages, and variable degrees of cytopenias. Most MDS patients are diagnosed in their late 60s to early 70s. The estimated incidence of MDS in the United States and in Europe are 4.3 and 1.8 per 100,000 individuals per year, respectively with lower rates reported in some Asian countries and less well estimated in other parts of the world. Evolution to acute myeloid leukemia can occur in 10-15% of MDS patients. Three drugs are currently approved for the treatment of patients with MDS: immunomodulatory agents (lenalidomide), and hypomethylating therapy [HMT (decitabine and 5-azacytidine)]. All patients will eventually lose their response to therapy, and the survival outcome of MDS patients is poor (median survival of 4.5 months) especially for patients who fail (refractory/relapsed) HMT. The only potential curative treatment for MDS is hematopoietic cell transplantation. Genomic/chromosomal instability and various mechanisms contribute to the pathogenesis and prognosis of the disease. High throughput genetic technologies like single nucleotide polymorphism array analysis and next generation sequencing technologies have uncovered novel genetic alterations and increased our knowledge of MDS pathogenesis. We will review various genetic and non-genetic causes that are involved in the pathogenesis of MDS. PMID:25548754

  13. Apollo 14 Mission image - Astronaut Edgar D. Mitchell, lunar module pilot for the Apollo 14 lunar landing mission, stands by the deployed U.S. flag on the lunar surface during the early moments of the first extravehicular activity (EVA-1) of the mission.

    NASA Image and Video Library

    1971-02-05

    AS14-66-9233 (5 Feb. 1971) --- Astronaut Edgar D. Mitchell, lunar module pilot for the Apollo 14 lunar landing mission, stands by the deployed U.S. flag on the lunar surface during the early moments of the first extravehicular activity (EVA) of the mission. He was photographed by astronaut Alan B. Shepard Jr., mission commander, using a 70mm modified lunar surface Hasselblad camera. While astronauts Shepard and Mitchell descended in the Lunar Module (LM) "Antares" to explore the Fra Mauro region of the moon, astronaut Stuart A. Roosa, command module pilot, remained with the Command and Service Modules (CSM) "Kitty Hawk" in lunar orbit.

  14. Structural Insights into SraP-Mediated Staphylococcus aureus Adhesion to Host Cells

    PubMed Central

    Zhang, Juan; Wang, Lei; Bai, Xiao-Hui; Zhang, Shi-Jie; Ren, Yan-Min; Li, Na; Zhang, Yong-Hui; Zhang, Zhiyong; Gong, Qingguo; Mei, Yide; Xue, Ting; Zhang, Jing-Ren; Chen, Yuxing; Zhou, Cong-Zhao

    2014-01-01

    Staphylococcus aureus, a Gram-positive bacterium causes a number of devastating human diseases, such as infective endocarditis, osteomyelitis, septic arthritis and sepsis. S. aureus SraP, a surface-exposed serine-rich repeat glycoprotein (SRRP), is required for the pathogenesis of human infective endocarditis via its ligand-binding region (BR) adhering to human platelets. It remains unclear how SraP interacts with human host. Here we report the 2.05 Å crystal structure of the BR of SraP, revealing an extended rod-like architecture of four discrete modules. The N-terminal legume lectin-like module specifically binds to N-acetylneuraminic acid. The second module adopts a β-grasp fold similar to Ig-binding proteins, whereas the last two tandem repetitive modules resemble eukaryotic cadherins but differ in calcium coordination pattern. Under the conditions tested, small-angle X-ray scattering and molecular dynamic simulation indicated that the three C-terminal modules function as a relatively rigid stem to extend the N-terminal lectin module outwards. Structure-guided mutagenesis analyses, in addition to a recently identified trisaccharide ligand of SraP, enabled us to elucidate that SraP binding to sialylated receptors promotes S. aureus adhesion to and invasion into host epithelial cells. Our findings have thus provided novel structural and functional insights into the SraP-mediated host-pathogen interaction of S. aureus. PMID:24901708

  15. FTY720 ameliorates murine sclerodermatous chronic graft-versus-host disease by promoting expansion of splenic regulatory cells and inhibiting immune cell infiltration into skin.

    PubMed

    Huu, Doanh Le; Matsushita, Takashi; Jin, Guihua; Hamaguchi, Yasuhito; Hasegawa, Minoru; Takehara, Kazuhiko; Fujimoto, Manabu

    2013-06-01

    Sphingosine 1-phosphate (S1P) exerts a variety of activities in immune, inflammatory, and vascular systems. S1P plays an important role in systemic sclerosis (SSc) pathogenesis. Regulation of S1P in fibrotic diseases as well as in SSc was recently reported. FTY720, an oral S1P receptor modulator, has been shown to be a useful agent for the prevention of transplant rejection and autoimmune diseases. Murine sclerodermatous chronic graft-versus-host disease (GVHD) is a model for human sclerodermatous chronic GVHD and SSc. We undertook this study to investigate the effects of FTY720 in murine sclerodermatous chronic GVHD. FTY720 was orally administered to allogeneic recipient mice from day 0 to day 20 (short-term, early-treatment group), from day 0 to day 42 (full-term, early-treatment group), or from day 22 to day 42 (delayed-treatment group) after bone marrow transplantation. Delayed administration of FTY720 attenuated, and early administration of FTY720 inhibited, the severity and fibrosis in murine sclerodermatous chronic GVHD. With early treatment, FTY720 induced expansion of splenic myeloid-derived suppressor cells, Treg cells, and Breg cells. Vascular damage in chronic GVHD was inhibited by FTY720 through down-regulating serum levels of S1P and soluble E-selectin. FTY720 inhibited infiltration of immune cells into skin. Moreover, FTY720 diminished the expression of messenger RNA for monocyte chemotactic protein 1, macrophage inflammatory protein 1α, RANTES, tumor necrosis factor α, interferon-γ, interleukin-6 (IL-6), IL-10, IL-17A, and transforming growth factor β1 in the skin. FTY720 suppressed the immune response by promoting the expansion of regulatory cells and reducing vascular damage and infiltration of immune cells into the skin. Taken together, these results have important implications for the potential use of FTY720 in the treatment of sclerodermatous chronic GVHD and SSc in humans. Copyright © 2013 by the American College of Rheumatology.

  16. Insights into Metabolic Mechanisms Underlying Folate-Responsive Neural Tube Defects: A Minireview

    PubMed Central

    Beaudin, Anna E.; Stover, Patrick J.

    2015-01-01

    Neural tube defects (NTDs), including anencephaly and spina bifida, arise from the failure of neurulation during early embryonic development. Neural tube defects are common birth defects with a heterogenous and multifactorial etiology with interacting genetic and environmental risk factors. Although the mechanisms resulting in failure of neural tube closure are unknown, up to 70% of NTDs can be prevented by maternal folic acid supplementation. However, the metabolic mechanisms underlying the association between folic acid and NTD pathogenesis have not been identified. This review summarizes our current understanding of the mechanisms by which impairments in folate metabolism might ultimately lead to failure of neural tube closure, with an emphasis on untangling the relative contributions of nutritional deficiency and genetic risk factors to NTD pathogenesis. PMID:19180567

  17. The neonatal methylome as a gatekeeper in the trajectory to childhood asthma.

    PubMed

    DeVries, Avery; Vercelli, Donata

    2017-04-01

    Asthma is a heterogeneous group of conditions that typically begin in early life and result in recurrent, reversible bronchial obstruction. The role played by epigenetic mechanisms in the pathogenesis of childhood asthma is understood only in part. Here we discuss asthma epigenetics within a developmental perspective based on our recent demonstration that the epigenetic trajectory to childhood asthma begins at birth. We next discuss how this trajectory may be affected by prenatal environmental exposures. Finally, we examine in vitro studies that model the impact of asthma-associated exposures on the epigenome. All of these studies specifically surveyed human DNA methylation and involved a genome-wide component. In combination, their results broaden our understanding of asthma pathogenesis and the role the methylome plays in this process.

  18. Alpha-Synuclein: From Early Synaptic Dysfunction to Neurodegeneration.

    PubMed

    Ghiglieri, Veronica; Calabrese, Valeria; Calabresi, Paolo

    2018-01-01

    Over the last two decades, many experimental and clinical studies have provided solid evidence that alpha-synuclein (α-syn), a small, natively unfolded protein, is closely related to Parkinson's disease (PD) pathology. To provide an overview on the different roles of this protein, here we propose a synopsis of seminal and recent studies that explored the many aspects of α-syn. Ranging from the physiological functions to its neurodegenerative potential, the relationship with the possible pathogenesis of PD will be discussed. Close attention will be paid on early cellular and molecular alterations associated with the presence of α-syn aggregates.

  19. Clinical and dosimetric implications of intensity-modulated radiotherapy for early-stage glottic carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Matthew Christopher, E-mail: wardm3@ccf.org; Pham, Yvonne D.; Kotecha, Rupesh

    2016-04-01

    Conventional parallel-opposed radiotherapy (PORT) is the established standard technique for early-stage glottic carcinoma. However, case reports have reported the utility of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) with or without image guidance (image-guided radiotherapy, IGRT) in select patients. The proposed advantages of IMRT/VMAT include sparing of the carotid artery, thyroid gland, and the remaining functional larynx, although these benefits remain unclear. The following case study presents a patient with multiple vascular comorbidities treated with VMAT for early-stage glottic carcinoma. A detailed explanation of the corresponding treatment details, dose-volume histogram (DVH) analysis, and a review of the relevant literaturemore » are provided. Conventional PORT remains the standard of care for early-stage glottic carcinoma. IMRT or VMAT may be beneficial for select patients, although great care is necessary to avoid a geographical miss. Clinical data supporting the benefit of CRT are lacking. Therefore, these techniques should be used with caution and only in selected patients.« less

  20. Multiscale Molecular Dynamics Simulations of Beta-Amyloid Interactions with Neurons

    NASA Astrophysics Data System (ADS)

    Qiu, Liming; Vaughn, Mark; Cheng, Kelvin

    2012-10-01

    Early events of human beta-amyloid protein interactions with cholesterol-containing membranes are critical to understanding the pathogenesis of Alzheimer's disease (AD) and to exploring new therapeutic interventions of AD. Atomistic molecular dynamics (AMD) simulations have been extensively used to study the protein-lipid interaction at high atomic resolutions. However, traditional MD simulations are not efficient in sampling the phase space of complex lipid/protein systems with rugged free energy landscapes. Meanwhile, coarse-grained MD (CGD) simulations are efficient in the phase space sampling but suffered from low spatial resolutions and from the fact that the energy landscapes are not identical to those of the AMD. Here, a multiscale approach was employed to simulate the protein-lipid interactions of beta-amyloid upon its release from proteolysis residing in the neuronal membranes. We utilized a forward (AMD to CGD) and reverse (CGD-AMD) strategy to explore new transmembrane and surface protein configuration and evaluate the stabilization mechanisms by measuring the residue-specific protein-lipid or protein conformations. The detailed molecular interactions revealed in this multiscale MD approach will provide new insights into understanding the early molecular events leading to the pathogenesis of AD.

  1. Perinatal biomarkers in prematurity: Early identification of neurologic injury

    PubMed Central

    Andrikopoulou, Maria; Almalki, Ahmad; Farzin, Azadeh; Cordeiro, Christina N.; Johnston, Michael V.; Burd, Irina

    2014-01-01

    Over the past few decades, biomarkers have become increasingly utilized as non-invasive tools in the early diagnosis and management of various clinical conditions. In perinatal medicine, the improved survival of extremely premature infants who are at high risk for adverse neurologic outcomes has increased the demand for the discovery of biomarkers in detecting and predicting the prognosis of infants with neonatal brain injury. By enabling the clinician to recognize potential brain damage early, biomarkers could allow clinicians to intervene at the early stages of disease, and to monitor the efficacy of those interventions. This review will first examine the potential perinatal biomarkers for neurologic complications of prematurity, specifically, intraventricular hemorrhage (IVH), periventricular leukomalacia (PVL) and posthemorrhagic hydrocephalus (PHH). It will also evaluate knowledge gained from animal models regarding the pathogenesis of perinatal brain injury in prematurity. PMID:24768951

  2. Iron accumulation in multiple sclerosis: an early pathogenic event.

    PubMed

    LeVine, Steven M; Bilgen, Mehmet; Lynch, Sharon G

    2013-03-01

    Iron has been shown to accumulate in deep gray matter structures in many forms of multiple sclerosis (MS), but detecting its presence early in the disease course (e.g., clinically isolated syndrome [CIS]) has been less clear. Here, we review a recent study where MRI scanning at 7 T together with susceptibility mapping was performed to assess iron deposition in CIS and control subjects. Susceptibility indicative of iron deposition was found to be increased in the globus pallidus, caudate, putamen and pulvinar of CIS patients compared with controls. The findings suggest that iron deposition is a pathological change that occurs early in the development of MS. Identifying the mechanisms of iron accumulation and determining whether iron promotes pathogenesis in MS are important areas of future research.

  3. Genetic Determinism of Primary Early-Onset Osteoarthritis.

    PubMed

    Aury-Landas, Juliette; Marcelli, Christian; Leclercq, Sylvain; Boumédiene, Karim; Baugé, Catherine

    2016-01-01

    Osteoarthritis (OA) is the most common joint disease worldwide. A minority of cases correspond to familial presentation characterized by early-onset forms which are genetically heterogeneous. This review brings a new point of view on the molecular basis of OA by focusing on gene mutations causing early-onset OA (EO-OA). Recently, thanks to whole-exome sequencing, a gain-of-function mutation in the TNFRSF11B gene was identified in two distant family members with EO-OA, opening new therapeutic perspectives for OA. Indeed, unraveling the molecular basis of rare Mendelian OA forms will improve our understanding of molecular processes involved in OA pathogenesis and will contribute to better patient diagnosis, management, and therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Pathway and network-based analysis of genome-wide association studies and RT-PCR validation in polycystic ovary syndrome

    PubMed Central

    Shen, Haoran; Liang, Zhou; Zheng, Saihua; Li, Xuelian

    2017-01-01

    The purpose of this study was to identify promising candidate genes and pathways in polycystic ovary syndrome (PCOS). Microarray dataset GSE345269 obtained from the Gene Expression Omnibus database includes 7 granulosa cell samples from PCOS patients, and 3 normal granulosa cell samples. Differentially expressed genes (DEGs) were screened between PCOS and normal samples. Pathway enrichment analysis was conducted for DEGs using ClueGO and CluePedia plugin of Cytoscape. A Reactome functional interaction (FI) network of the DEGs was built using ReactomeFIViz, and then network modules were extracted, followed by pathway enrichment analysis for the modules. Expression of DEGs in granulosa cell samples was measured using quantitative RT-PCR. A total of 674 DEGs were retained, which were significantly enriched with inflammation and immune-related pathways. Eight modules were extracted from the Reactome FI network. Pathway enrichment analysis revealed significant pathways of each module: module 0, Regulation of RhoA activity and Signaling by Rho GTPases pathways shared ARHGAP4 and ARHGAP9; module 2, GlycoProtein VI-mediated activation cascade pathway was enriched with RHOG; module 3, Thromboxane A2 receptor signaling, Chemokine signaling pathway, CXCR4-mediated signaling events pathways were enriched with LYN, the hub gene of module 3. Results of RT-PCR confirmed the finding of the bioinformatic analysis that ARHGAP4, ARHGAP9, RHOG and LYN were significantly upregulated in PCOS. RhoA-related pathways, GlycoProtein VI-mediated activation cascade pathway, ARHGAP4, ARHGAP9, RHOG and LYN may be involved in the pathogenesis of PCOS. PMID:28949383

  5. Selective modulation of the androgen receptor AF2 domain rescues degeneration in spinal bulbar muscular atrophy.

    PubMed

    Badders, Nisha M; Korff, Ane; Miranda, Helen C; Vuppala, Pradeep K; Smith, Rebecca B; Winborn, Brett J; Quemin, Emmanuelle R; Sopher, Bryce L; Dearman, Jennifer; Messing, James; Kim, Nam Chul; Moore, Jennifer; Freibaum, Brian D; Kanagaraj, Anderson P; Fan, Baochang; Tillman, Heather; Chen, Ping-Chung; Wang, Yingzhe; Freeman, Burgess B; Li, Yimei; Kim, Hong Joo; La Spada, Albert R; Taylor, J Paul

    2018-05-01

    Spinal bulbar muscular atrophy (SBMA) is a motor neuron disease caused by toxic gain of function of the androgen receptor (AR). Previously, we found that co-regulator binding through the activation function-2 (AF2) domain of AR is essential for pathogenesis, suggesting that AF2 may be a potential drug target for selective modulation of toxic AR activity. We screened previously identified AF2 modulators for their ability to rescue toxicity in a Drosophila model of SBMA. We identified two compounds, tolfenamic acid (TA) and 1-[2-(4-methylphenoxy)ethyl]-2-[(2-phenoxyethyl)sulfanyl]-1H-benzimidazole (MEPB), as top candidates for rescuing lethality, locomotor function and neuromuscular junction defects in SBMA flies. Pharmacokinetic analyses in mice revealed a more favorable bioavailability and tissue retention of MEPB compared with TA in muscle, brain and spinal cord. In a preclinical trial in a new mouse model of SBMA, MEPB treatment yielded a dose-dependent rescue from loss of body weight, rotarod activity and grip strength. In addition, MEPB ameliorated neuronal loss, neurogenic atrophy and testicular atrophy, validating AF2 modulation as a potent androgen-sparing strategy for SBMA therapy.

  6. Deconvoluting the complexity of autophagy and Parkinson's disease for potential therapeutic purpose

    PubMed Central

    Ouyang, Liang; Liu, Bo

    2015-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the preferential death of dopaminergic neurons. In the past two decades, great progress has been made toward understanding the pathogenesis of PD; however, its precise pathogenesis still remains unclear. Recently, accumulating evidence has suggested that macroautophagy (herein referred to as autophagy) is tightly linked to PD. Dysregulation of autophagic pathways has been observed in the brains of PD patients and in animal models of PD. More importantly, a number of PD-associated proteins, such as α-synuclein, LRRK2, Parkin and PINK1 have been further revealed to be involved in autophagy. Thus, it is now acknowledged that constitutive autophagy is essential for neuronal survival and that dysregulation of autophagy leads to PD. In this review, we focus on summarizing the relationships amongst PD-associated proteins, autophagy and PD. Moreover, we also demonstrate some autophagy-modulating compounds and autophagic microRNAs in PD models, which may provide better promising strategies for potential PD therapy. PMID:26415234

  7. Cytokine Immunopathogenesis of Enterovirus 71 Brain Stem Encephalitis

    PubMed Central

    Wang, Shih-Min; Lei, Huan-Yao; Liu, Ching-Chuan

    2012-01-01

    Enterovirus 71 (EV71) is one of the most important causes of herpangina and hand, foot, and mouth disease. It can also cause severe complications of the central nervous system (CNS). Brain stem encephalitis with pulmonary edema is the severe complication that can lead to death. EV71 replicates in leukocytes, endothelial cells, and dendritic cells resulting in the production of immune and inflammatory mediators that shape innate and acquired immune responses and the complications of disease. Cytokines, as a part of innate immunity, favor the development of antiviral and Th1 immune responses. Cytokines and chemokines play an important role in the pathogenesis EV71 brain stem encephalitis. Both the CNS and the systemic inflammatory responses to infection play important, but distinctly different, roles in the pathogenesis of EV71 pulmonary edema. Administration of intravenous immunoglobulin and milrinone, a phosphodiesterase inhibitor, has been shown to modulate inflammation, to reduce sympathetic overactivity, and to improve survival in patients with EV71 autonomic nervous system dysregulation and pulmonary edema. PMID:22956971

  8. PRDM1 expression on the epithelial component but not on ectopic lymphoid tissues of Warthin tumour.

    PubMed

    Wang, Y; Zhou, J; Zhang, Y; Wang, L; Liu, Y; Fan, L; Zhu, J; Xu, X; Huang, G; Li, X; Xun, W

    2015-05-01

    To determine the role of PRDM1, a key molecule for modulating the immune cells, in Warthin tumour (WT) pathogenesis. Forty paraffin-embedded parotid tissues of patients (mean age: 62.08 ± 11.90) with WT were retrieved from the pathology archives of Qindu Hospital from January 2012 to December 2012. The PRDM1 expression was investigated in a cohort of WT by immunohistochemistry. PRDM1 was expressed only on the epithelial component but not on ectopic lymphoid tissue of the tumour. Statistically, PRDM1 expression rates between WT glandular epithelial cells (40/40 cases) and the tumour-adjacent tissues (0/9 cases), and WT germinal centres (0/34 cases) and tonsil tissues (10/10 cases) were significantly different (P < 0.001), respectively. The PRDM1 expression appeared to play an essential role in WT pathogenesis. A better understanding of it might give options for revealing possible novel management strategies. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. A secreted bacterial protease tailors the Staphylococcus aureus virulence repertoire to modulate bone remodeling during osteomyelitis

    PubMed Central

    Cassat, James E.; Hammer, Neal D.; Campbell, J. Preston; Benson, Meredith A.; Perrien, Daniel S.; Mrak, Lara N.; Smeltzer, Mark S.; Torres, Victor J.; Skaar, Eric P.

    2013-01-01

    Summary Osteomyelitis is a common manifestation of invasive Staphylococcus aureus infection. Pathogen-induced bone destruction limits antimicrobial penetration to the infectious focus and compromises treatment of osteomyelitis. To investigate mechanisms of S. aureus-induced bone destruction, we developed a murine model of osteomyelitis. Micro-computed tomography of infected femurs revealed that S. aureus triggers profound alterations in bone turnover. The bacterial regulatory locus sae was found to be critical for osteomyelitis pathogenesis, as Sae-regulated factors promote pathologic bone remodeling and intraosseous bacterial survival. Exoproteome analyses revealed the Sae-regulated protease aureolysin as a major determinant of the S. aureus secretome and identified the phenol soluble modulins as aureolysin-degraded, osteolytic peptides that trigger osteoblast cell death and bone destruction. These studies establish a murine model for pathogen-induced bone remodeling, define Sae as critical for osteomyelitis pathogenesis, and identify protease-dependent exoproteome remodeling as a major determinant of the staphylococcal virulence repertoire. PMID:23768499

  10. Endothelin type B (ETB) receptors: friend or foe in the pathogenesis of pre-eclampsia and future cardiovascular disease (CVD) risk?

    PubMed

    Mirabito Colafella, Katrina M

    2018-01-16

    In a recent issue of Clinical Science, Stanhewicz et al. investigated persistent microvascular dysfunction in women up to 16 months postpartum. The authors found sensitivity to the pressor effects of endothelin-1 (ET-1) was enhanced when compared with women who had a normotensive pregnancy. Importantly, the authors demonstrated that this effect was mediated via the endothelin type B (ET B ) receptors. Therefore, the present study highlights the possibility that alterations in the localization of the ET B receptor contributes to the pathogenesis of pre-eclampsia and future cardiovascular disease (CVD) risk. Currently, there is great interest in the role of the endothelin system in pre-eclampsia. Targetting the endothelin system, potentially by modulating upstream pathways to prevent ET B receptor dysfunction, may improve health outcomes for women and their offspring during pre-eclampsia and later life. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  11. Sarcoplasmic reticulum-mitochondria communication in cardiovascular pathophysiology.

    PubMed

    Lopez-Crisosto, Camila; Pennanen, Christian; Vasquez-Trincado, Cesar; Morales, Pablo E; Bravo-Sagua, Roberto; Quest, Andrew F G; Chiong, Mario; Lavandero, Sergio

    2017-06-01

    Repetitive, calcium-mediated contractile activity renders cardiomyocytes critically dependent on a sustained energy supply and adequate calcium buffering, both of which are provided by mitochondria. Moreover, in vascular smooth muscle cells, mitochondrial metabolism modulates cell growth and proliferation, whereas cytosolic calcium levels regulate the arterial vascular tone. Physical and functional communication between mitochondria and sarco/endoplasmic reticulum and balanced mitochondrial dynamics seem to have a critical role for optimal calcium transfer to mitochondria, which is crucial in calcium homeostasis and mitochondrial metabolism in both types of muscle cells. Moreover, mitochondrial dysfunction has been associated with myocardial damage and dysregulation of vascular smooth muscle proliferation. Therefore, sarco/endoplasmic reticulum-mitochondria coupling and mitochondrial dynamics are now viewed as relevant factors in the pathogenesis of cardiac and vascular diseases, including coronary artery disease, heart failure, and pulmonary arterial hypertension. In this Review, we summarize the evidence related to the role of sarco/endoplasmic reticulum-mitochondria communication in cardiac and vascular muscle physiology, with a focus on how perturbations contribute to the pathogenesis of cardiovascular disorders.

  12. The role of astrocytes in multiple sclerosis pathogenesis.

    PubMed

    Guerrero-García, J J

    2017-09-25

    Multiple sclerosis (MS) is a demyelinating autoimmune disease of the central nervous system (CNS), in which astrocytes play an important role as CNS immune cells. However, the activity of astrocytes as antigen-presenting cells (APC) continues to be subject to debate. This review analyses the existing evidence on the participation of astrocytes in CNS inflammation in MS and on several mechanisms that modify astrocyte activity in the disease. Astrocytes play a crucial role in the pathogenesis of MS because they express toll-like receptors (TLR) and major histocompatibility complex (MHC) classI andII. In addition, astrocytes participate in regulating the blood-brain barrier (BBB) and in modulating T cell activity through the production of cytokines. Future studies should focus on the role of astrocytes in order to find new therapeutic targets for the treatment of MS. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeung, Y.-S.; Yip, C.-W.; Hon, C.-C.

    We have previously demonstrated that over-expression of spike protein (S) of severe acute respiratory syndrome coronavirus (SARS-CoV) or its C-terminal subunit (S2) is sufficient to induce apoptosis in vitro. To further investigate the possible roles of S2 in SARS-CoV-induced apoptosis and pathogenesis of SARS, we characterized the host expression profiles induced upon S2 over-expression in Vero E6 cells by oligonucleotide microarray analysis. Possible activation of mitochondrial apoptotic pathway in S2 expressing cells was suggested, as evidenced by the up-regulation of cytochrome c and down-regulation of the Bcl-2 family anti-apoptotic members. Inhibition of Bcl-2-related anti-apoptotic pathway was further supported by themore » diminution of S2-induced apoptosis in Vero E6 cells over-expressing Bcl-xL. In addition, modulation of CCN E2 and CDKN 1A implied the possible control of cell cycle arrest at G1/S phase. This study is expected to extend our understanding on the pathogenesis of SARS at a molecular level.« less

  14. Role of Neuroinflammation in Amyotrophic Lateral Sclerosis: Cellular Mechanisms and Therapeutic Implications

    PubMed Central

    Liu, Jia; Wang, Fei

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects upper motor neurons (MNs) comprising the corticospinal tract and lower MNs arising from the brain stem nuclei and ventral roots of the spinal cord, leading to fatal paralysis. Currently, there are no effective therapies for ALS. Increasing evidence indicates that neuroinflammation plays an important role in ALS pathogenesis. The neuroinflammation in ALS is characterized by infiltration of lymphocytes and macrophages, activation of microglia and reactive astrocytes, as well as the involvement of complement. In this review, we focus on the key cellular players of neuroinflammation during the pathogenesis of ALS by discussing not only their detrimental roles but also their immunomodulatory actions. We will summarize the pharmacological therapies for ALS that target neuroinflammation, as well as recent advances in the field of stem cell therapy aimed at modulating the inflammatory environment to preserve the remaining MNs in ALS patients and animal models of the disease. PMID:28871262

  15. MicroRNA and Pathogenesis of Enterovirus Infection.

    PubMed

    Ho, Bing-Ching; Yang, Pan-Chyr; Yu, Sung-Liang

    2016-01-06

    There are no currently available specific antiviral therapies for non-polio Enterovirus infections. Although several vaccines have entered clinical trials, the efficacy requires further evaluation, particularly for cross-strain protective activity. Curing patients with viral infections is a public health problem due to antigen alterations and drug resistance caused by the high genomic mutation rate. To conquer these limits in the development of anti-Enterovirus treatments, a comprehensive understanding of the interactions between Enterovirus and host cells is urgently needed. MicroRNA (miRNA) constitutes the biggest family of gene regulators in mammalian cells and regulates almost a half of all human genes. The roles of miRNAs in Enterovirus pathogenesis have recently begun to be noted. In this review, we shed light on recent advances in the understanding of Enterovirus infection-modulated miRNAs. The impacts of altered host miRNAs on cellular processes, including immune escape, apoptosis, signal transduction, shutdown of host protein synthesis and viral replication, are discussed. Finally, miRNA-based medication provides a promising strategy for the development of antiviral therapy.

  16. Hippocampal FXR plays a role in the pathogenesis of depression: A preliminary study based on lentiviral gene modulation.

    PubMed

    Chen, Wei-Guan; Zheng, Jia-Xuan; Xu, Xi; Hu, Yu-Ming; Ma, Yu-Min

    2018-06-01

    As a well-known bile acid receptor, the role of Farnesoid X receptor (FXR) in the digestive system and cardiovascular system has been widely explored. However, there are very few studies involving FXR in the central nervous system. In this study, we explored the role of FXR in the pathogenesis of depression, a serious and worldwide neuropsychiatric disease. It was found that chronic unpredictable mild stress (CUMS) fully enhanced the protein and mRNA expressions of FXR in hippocampus, but not medial prefrontal cortex (mPFC). Overexpression of hippocampal FXR induced notable depressive-like behaviors and decreased expression of brain-derived neurotrophic factor (BDNF) in naïve rats, while knockdown of hippocampal FXR fully prevented the effects of CUMS on rat behaviors and hippocampal BDNF expression. Taken together, our research extends the knowledge of FXR's role in the central nervous system, and may provide a potential and novel therapeutic target for treating depression. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Tofacitinib ameliorates murine lupus and its associated vascular dysfunction

    PubMed Central

    Furumoto, Yasuko; Smith, Carolyne K.; Blanco, Luz; Zhao, Wenpu; Brooks, Stephen R.; Thacker, Seth G; Abdalrahman, Zarzour; Sciumè, Giuseppe; Tsai, Wanxia L.; Trier, Anna M.; Nunez, Leti; Mast, Laurel; Hoffmann, Victoria; Remaley, Alan T.; O'Shea, John J.

    2016-01-01

    Objectives Dysregulation of innate and adaptive immune responses contributes to the pathogenesis of systemic lupus erythematosus (SLE) and its associated premature vascular damage. To date, no drug targets both systemic inflammatory disease and the cardiovascular complications of SLE. Tofacitinib is a Janus kinase (JAK) inhibitor that blocks signaling downstream of multiple cytokines implicated in lupus pathogenesis. While clinical trials have shown that tofacitinib exhibits significant clinical efficacy in various autoimmune diseases, its role in SLE and on its associated vascular pathology remains to be characterized. Methods MRL/lpr lupus-prone mice received tofacitinib or vehicle by gavage for 6 weeks (therapeutic arm) or 8 weeks (preventive arm). Nephritis, skin inflammation, serum autoantibody levels and cytokines, mononuclear cell phenotype and gene expression, neutrophil extracellular trap (NET) release, endothelium-dependent vasorelaxation and endothelial differentiation were compared in treated and untreated mice. Results Treatment with tofacitinib led to significant improvement in measures of disease activity including nephritis, skin inflammation, and autoantibody production. In addition, tofacitinib treatment reduced serum levels of pro-inflammatory cytokines and interferon responses in splenocytes and kidney tissue. Tofacitinib also modulated NET formation and significantly increased endothelium-dependent vasorelaxation and endothelial differentiation. The drug was effective as both preventive and therapeutic strategies. Conclusions Tofacitinib modulates the innate and adaptive immune responses, ameliorates murine lupus and improves vascular function. These results indicate that JAK inhibitors have the potential to be beneficial in SLE and its associated vascular damage. PMID:27429362

  18. Tofacitinib Ameliorates Murine Lupus and Its Associated Vascular Dysfunction.

    PubMed

    Furumoto, Yasuko; Smith, Carolyne K; Blanco, Luz; Zhao, Wenpu; Brooks, Stephen R; Thacker, Seth G; Abdalrahman, Zarzour; Sciumè, Giuseppe; Tsai, Wanxia L; Trier, Anna M; Nunez, Leti; Mast, Laurel; Hoffmann, Victoria; Remaley, Alan T; O'Shea, John J; Kaplan, Mariana J; Gadina, Massimo

    2017-01-01

    Dysregulation of innate and adaptive immune responses contributes to the pathogenesis of systemic lupus erythematosus (SLE) and its associated premature vascular damage. No drug to date targets both systemic inflammatory disease and the cardiovascular complications of SLE. Tofacitinib is a JAK inhibitor that blocks signaling downstream of multiple cytokines implicated in lupus pathogenesis. While clinical trials have shown that tofacitinib exhibits significant clinical efficacy in various autoimmune diseases, its role in SLE and the associated vascular pathology remains to be characterized. MRL/lpr lupus-prone mice were administered tofacitinib or vehicle by gavage for 6 weeks (therapeutic arm) or 8 weeks (preventive arm). Nephritis, skin inflammation, serum levels of autoantibodies and cytokines, mononuclear cell phenotype and gene expression, neutrophil extracellular traps (NETs) release, endothelium-dependent vasorelaxation, and endothelial differentiation were compared in treated and untreated mice. Treatment with tofacitinib led to significant improvement in measures of disease activity, including nephritis, skin inflammation, and autoantibody production. In addition, tofacitinib treatment reduced serum levels of proinflammatory cytokines and interferon responses in splenocytes and kidney tissue. Tofacitinib also modulated the formation of NETs and significantly increased endothelium-dependent vasorelaxation and endothelial differentiation. The drug was effective in both preventive and therapeutic strategies. Tofacitinib modulates the innate and adaptive immune responses, ameliorates murine lupus, and improves vascular function. These results indicate that JAK inhibitors have the potential to be beneficial in SLE and its associated vascular damage. © 2016, American College of Rheumatology.

  19. Vinpocetine Inhibits NF-κB-Dependent Inflammation in Acute Ischemic Stroke Patients.

    PubMed

    Zhang, Fang; Yan, Chen; Wei, Changjuan; Yao, Yang; Ma, Xiaofeng; Gong, Zhongying; Liu, Shoufeng; Zang, Dawei; Chen, Jieli; Shi, Fu-Dong; Hao, Junwei

    2018-04-01

    Immunity and inflammation play critical roles in the pathogenesis of acute ischemic stroke. Therefore, immune intervention, as a new therapeutic strategy, is worthy of exploration. Here, we tested the inflammation modulator, vinpocetine, for its effect on the outcomes of stroke. For this multi-center study, we recruited 60 patients with anterior cerebral circulation occlusion and onset of stroke that had exceeded 4.5 h but lasted less than 48 h. These patients, after random division into two groups, received either standard management alone (controls) or standard management plus vinpocetine (30 mg per day intravenously for 14 consecutive days, Gedeon Richter Plc., Hungary). Vinpocetine treatment did not change the lymphocyte count; however, nuclear factor kappa-light-chain-enhancer of activated B cell activation was inhibited as seen not only by the increased transcription of IκBα mRNA but also by the impeded phosphorylation and degradation of IκBα and subsequent induction of pro-inflammatory mediators. These effects led to significantly reduced secondary lesion enlargement and an attenuated inflammation reaction. Compared to controls, patients treated with vinpocetine had a better recovery of neurological function and improved clinical outcomes during the acute phase and at 3-month follow-up. These findings identify vinpocetine as an inflammation modulator that could improve clinical outcomes after acute ischemic stroke. This study also indicated the important role of immunity and inflammation in the pathogenesis of acute ischemic stroke and the significance of immunomodulatory treatment. www.clinicaltrials.gov . Identifier: NCT02878772.

  20. Kaposi's-sarcoma-associated-herpesvirus-activated dendritic cells promote HIV-1 trans-infection and suppress CD4{sup +} T cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wan; Qin, Yan; Bai, Lei

    2013-06-05

    Infection of Kaposi's sarcoma-associated herpesvirus (KSHV) is commonly occurred in AIDS patients. KSHV and HIV-1 act cooperatively in regulating infection with each other and in human carcinogenesis. Dendritic cells (DCs), as the pivotal cells in host immunity, may be modulated by both viruses, for immunoevasion and dissemination, therefore, the interaction between DCs and each virus has been a prior focus for pathogenesis elucidation. Here, we assessed the potential effect of KSHV on DC–HIV-1 interaction. We found that KSHV stimulation could promote maturation of monocyte-derived DCs (MDDCs) and impaired the ability of MDDCs to drive proliferation of resting CD4{sup +} Tmore » cells, demonstrating the immunosuppression induced by KSHV. More importantly, KSHV-stimulated MDDCs could capture more HIV-1 and efficiently transferred these infectious viruses to Hut/CCR5 T cell line. Our results reveal the novel modulation of DC-mediated HIV-1 dissemination by KSHV, and highlight the importance of studying DC–HIV-1 interaction to elucidate HIV/AIDS pathogenesis. - Highlights: ► KSHV impaired the ability of MDDCs to drive proliferation of resting CD4{sup +} T cells. ► KSHV stimulation matured MDDCs and enhanced HIV-1 endocytosis. ► KSHV stimulated MDDCs increased ICAM-1 expression and tighten contact with T cells. ► KSHV-stimulated MDDCs promoted HIV-1 trans-infection of CD4{sup +} T cells.« less

  1. Mutation of SIMPLE in Charcot–Marie–Tooth 1C alters production of exosomes

    PubMed Central

    Zhu, Hong; Guariglia, Sara; Yu, Raymond Y. L.; Li, Wenjing; Brancho, Deborah; Peinado, Hector; Lyden, David; Salzer, James; Bennett, Craig; Chow, Chi-Wing

    2013-01-01

    Charcot–Marie–Tooth (CMT) disease is an inherited neurological disorder. Mutations in the small integral membrane protein of the lysosome/late endosome (SIMPLE) account for the rare autosomal-dominant demyelination in CMT1C patients. Understanding the molecular basis of CMT1C pathogenesis is impeded, in part, by perplexity about the role of SIMPLE, which is expressed in multiple cell types. Here we show that SIMPLE resides within the intraluminal vesicles of multivesicular bodies (MVBs) and inside exosomes, which are nanovesicles secreted extracellularly. Targeting of SIMPLE to exosomes is modulated by positive and negative regulatory motifs. We also find that expression of SIMPLE increases the number of exosomes and secretion of exosome proteins. We engineer a point mutation on the SIMPLE allele and generate a physiological mouse model that expresses CMT1C-mutated SIMPLE at the endogenous level. We find that CMT1C mouse primary embryonic fibroblasts show decreased number of exosomes and reduced secretion of exosome proteins, in part due to improper formation of MVBs. CMT1C patient B cells and CMT1C mouse primary Schwann cells show similar defects. Together the data indicate that SIMPLE regulates the production of exosomes by modulating the formation of MVBs. Dysregulated endosomal trafficking and changes in the landscape of exosome-mediated intercellular communications may place an overwhelming burden on the nervous system and account for CMT1C molecular pathogenesis. PMID:23576546

  2. Recruitment and Retention of Volunteers in a Citizen Science Network to Detect Invasive Species on Private Lands

    NASA Astrophysics Data System (ADS)

    Andow, David A.; Borgida, Eugene; Hurley, Terrance M.; Williams, Allison L.

    2016-10-01

    Volunteer citizen monitoring is an increasingly important source of scientific data. We developed a volunteer program for early detection of new invasive species by private landowners on their own land. Early detection of an invasive species, however, subjects the landowner to the potentially costly risk of government intervention to control the invasive species. We hypothesized that an adult experiential learning module could increase recruitment and retention because private landowners could learn more about and understand the social benefits of early detection and more accurately gauge the level of personal risk. The experiential learning module emphasized group discussion and individual reflection of risks and benefits of volunteering and included interactions with experts and regulatory personnel. A population of woodland owners with >2 ha of managed oak woodland in central Minnesota were randomly assigned to recruitment treatments: (a) the experiential learning module or (b) a letter inviting their participation. The recruitment and retention rates and data quality were similar for the two methods. However, volunteers who experienced the learning module were more likely to recruit new volunteers than those who merely received an invitation letter. Thus the module may indirectly affect recruitment of new volunteers. The data collection was complex and required the volunteers to complete timely activities, yet the volunteers provided sufficiently high quality data that was useful to the organizers. Volunteers can collect complex data and are willing to assume personal risk to contribute to early detection of invasive species.

  3. Recruitment and Retention of Volunteers in a Citizen Science Network to Detect Invasive Species on Private Lands.

    PubMed

    Andow, David A; Borgida, Eugene; Hurley, Terrance M; Williams, Allison L

    2016-10-01

    Volunteer citizen monitoring is an increasingly important source of scientific data. We developed a volunteer program for early detection of new invasive species by private landowners on their own land. Early detection of an invasive species, however, subjects the landowner to the potentially costly risk of government intervention to control the invasive species. We hypothesized that an adult experiential learning module could increase recruitment and retention because private landowners could learn more about and understand the social benefits of early detection and more accurately gauge the level of personal risk. The experiential learning module emphasized group discussion and individual reflection of risks and benefits of volunteering and included interactions with experts and regulatory personnel. A population of woodland owners with >2 ha of managed oak woodland in central Minnesota were randomly assigned to recruitment treatments: (a) the experiential learning module or (b) a letter inviting their participation. The recruitment and retention rates and data quality were similar for the two methods. However, volunteers who experienced the learning module were more likely to recruit new volunteers than those who merely received an invitation letter. Thus the module may indirectly affect recruitment of new volunteers. The data collection was complex and required the volunteers to complete timely activities, yet the volunteers provided sufficiently high quality data that was useful to the organizers. Volunteers can collect complex data and are willing to assume personal risk to contribute to early detection of invasive species.

  4. Circadian dysfunction may be a key component of the non-motor symptoms of Parkinson’s disease: insights from a transgenic mouse model

    PubMed Central

    Willison, L. David; Kudo, Takashi; Loh, Dawn H.; Kuljis, Dika; Colwell, Christopher S.

    2014-01-01

    Sleep disorders are nearly ubiquitous among patients with Parkinson’s disease (PD), and they manifest early in the disease process. While there are a number of possible mechanisms underlying these sleep disturbances, a primary dysfunction of the circadian system should be considered as a contributing factor. Our laboratory’s behavioral phenotyping of a well-validated transgenic mouse model of PD reveals that the electrical activity of neurons within the master pacemaker of the circadian system, the suprachiasmatic nuclei (SCN), is already disrupted at the onset of motor symptoms, although the core features of the intrinsic molecular oscillations in the SCN remain functional. Our observations suggest that the fundamental circadian deficit in these mice lies in the signaling output from the SCN, which may be caused by known mechanisms in PD etiology: oxidative stress and mitochondrial disruption. Disruption of the circadian system is expected to have pervasive effects throughout the body and may itself lead to neurological and cardiovascular disorders. In fact, there is much overlap in the non-motor symptoms experienced by PD patients and in the consequences of circadian disruption. This raises the possibility that the sleep and circadian dysfunction experienced by PD patients may not merely be a subsidiary of the motor symptoms, but an integral part of the disease. Furthermore, we speculate that circadian dysfunction can even accelerate the pathology underlying PD. If these hypotheses are correct, more aggressive treatment of the circadian misalignment and sleep disruptions in PD patients early in the pathogenesis of the disease may be powerful positive modulators of disease progression and patient quality of life. PMID:23353924

  5. Epigenetic memory in response to environmental stressors.

    PubMed

    Vineis, Paolo; Chatziioannou, Aristotelis; Cunliffe, Vincent T; Flanagan, James M; Hanson, Mark; Kirsch-Volders, Micheline; Kyrtopoulos, Soterios

    2017-06-01

    Exposure to environmental stressors, toxicants, and nutrient deficiencies can affect DNA in several ways. Some exposures cause damage and alter the structure of DNA, but there is increasing evidence that the same or other environmental exposures, including those that occur during fetal development in utero , can cause epigenetic effects that modulate DNA function and gene expression. Some epigenetic changes to DNA that affect gene transcription are at least partially reversible ( i.e., they can be enzymatically reversed after cessation of exposure to environmental agents), but some epigenetic modifications seem to persist, even for decades. To explain the effects of early life experiences (such as famine and exposures to other stressors) on the long-term persistence of specific patterns of epigenetic modifications, such as DNA methylation, we propose an analogy with immune memory. We propose that an epigenetic memory can be established and maintained in self-renewing stem cell compartments. We suggest that the observations on early life effects on adult diseases and the persistence of methylation changes in smokers support our hypothesis, for which a mechanistic basis, however, needs to be further clarified. We outline a new model based on methylation changes. Although these changes seem to be mainly adaptive, they are also implicated in the pathogenesis and onset of diseases, depending on individual genotypic background and types of subsequent exposures. Elucidating the relationships between the adaptive and maladaptive consequences of the epigenetic modifications that result from complex environmental exposures is a major challenge for current and future research in epigenetics.-Vineis, P., Chatziioannou, A., Cunliffe, V. T., Flanagan, J. M., Hanson, M., Kirsch-Volders, M., Kyrtopoulos, S. Epigenetic memory in response to environmental stressors. © FASEB.

  6. Age-Specific Association of CCL5 Gene Polymorphism with Pulmonary Tuberculosis: A Case-Control Study.

    PubMed

    Varzari, Alexander; Tudor, Elena; Bodrug, Nina; Corloteanu, Andrei; Axentii, Ecaterina; Deyneko, Igor V

    2018-05-01

    Chemokines play a key role in immune regulation and response, and have been implicated in the pathogenesis of tuberculosis (TB). In this study, we investigated whether functional polymorphisms of the chemokines CCL5, CCL2, and CXCL8 are associated with pulmonary TB in a Moldavian population. A total of 250 patients with TB and 184 healthy controls were screened for CCL5 -403G/A (rs2107538), CCL5 In1.1T/C (rs2280789), CCL2 -2518A/G (rs1024611), and CXCL8 -251A/T (rs4073) polymorphisms using standard polymerase chain reaction techniques. None of the analyzed variants were found to be significantly associated with overall pulmonary TB susceptibility. However, the CCL5 In1.1T/C polymorphism was significantly associated with early-onset TB in patients younger than 30 (dominant model, odds ratio [OR] = 3.01, p = 0.0046) or younger than 40 years (dominant model, OR = 2.17, p = 0.0099), and the conducted case-only analysis demonstrated that CCL5 In1.1T/C C-allele carriers exhibited an earlier TB onset than TT homozygotes (36.14 years vs. 40.13 years, p = 0.0065). In addition, nominal significance was observed for an association between TB incidence and both the eight paired genotypes in the overall patient cohort (0.017 < p < 0.05) and the CCL2 -2518A/G polymorphism among males (dominant model, OR = 0.55, p = 0.041; log-additive model, OR = 0.57, p = 0.018). The CCL5 In1.1T/C polymorphism may modulate pulmonary early-onset TB risk.

  7. Expression of early growth response factor-1 in rats with cerulein-induced acute pancreatitis and its significance

    PubMed Central

    Gong, Lan-Bo; He, Li; Liu, Yang; Chen, Xue-Qing; Jiang, Bo

    2005-01-01

    AIM: To observe the expressions of early growth response factor-1 (Egr-1) and tissue factor (TF) in rats with cerulein-induced acute pancreatitis and to explore its significance. METHODS: A large dose of cerulein was used to create the experimental acute pancreatitis model in rats. The changes of Egr-1 mRNA and protein in rats were observed during 30 min to 4 h after the treatment and immunohistochemical method was used to observe the localized expression of Egr-1 in tissues. In addition to the mRNA expression of Egr-1 target gene, TF was also observed. A blank control group, and a bombesin-administered group were used for comparison. RESULTS: After the stimulation of a large dose of cerulein, the rats showed typical inflammatory changes of acute pancreatitis. Thirty minutes after the stimulation, the mRNA expression of Egr-1 in the pancreatic tissue reached its peak and then declined, while the expression of Egr-1 protein reached its peak 2 h after the stimulation. Histologically, 2 h after the stimulation, almost all pancreatic acinar cells had the expression of Egr-1 protein, which was focused in the nuclei. The mRNA expression of TF occurred 1 h after the stimulation and gradually increased within 4 h. However, a large dose of bombesin only stimulated the pancreatic tissue to produce a little mRNA expression of Egr-1 and no mRNA expression of Egr-1 protein and TF. CONCLUSION: Egr-1 as a pro-inflammatory transcription factor may play an important role in the pathogenesis of acute pancreatitis by modulating the expression of TF. PMID:16124058

  8. Methamphetamine inhibits HIV-1 replication in CD4+ T cells by modulating anti-HIV-1 miRNA expression.

    PubMed

    Mantri, Chinmay K; Mantri, Jyoti V; Pandhare, Jui; Dash, Chandravanu

    2014-01-01

    Methamphetamine is the second most frequently used illicit drug in the United States. Methamphetamine abuse is associated with increased risk of HIV-1 acquisition, higher viral loads, and enhanced HIV-1 pathogenesis. Although a direct link between methamphetamine abuse and HIV-1 pathogenesis remains to be established in patients, methamphetamine has been shown to increase HIV-1 replication in macrophages, dendritic cells, and cells of HIV transgenic mice. Intriguingly, the effects of methamphetamine on HIV-1 replication in human CD4(+) T cells that serve as the primary targets of infection in vivo are not clearly understood. Therefore, we examined HIV-1 replication in primary CD4(+) T cells in the presence of methamphetamine in a dose-dependent manner. Our results demonstrate that methamphetamine had a minimal effect on HIV-1 replication at concentrations of 1 to 50 μmol/L. However, at concentrations >100 μmol/L, it inhibited HIV-1 replication in a dose-dependent manner. We also discovered that methamphetamine up-regulated the cellular anti-HIV-1 microRNAs (miR-125b, miR-150, and miR-28-5p) in CD4(+) T cells. Knockdown experiments illustrated that up-regulation of the anti-HIV miRNAs inhibited HIV-1 replication. These results are contrary to the paradigm that methamphetamine accentuates HIV-1 pathogenesis by increasing HIV-1 replication. Therefore, our findings underline the complex interaction between drug use and HIV-1 and necessitate comprehensive understanding of the effects of methamphetamine on HIV-1 pathogenesis. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. Immunotherapy of murine retrovirus-induced acquired immunodeficiency by CD4 T regulatory cell depletion and PD-1 blockade.

    PubMed

    Li, Wen; Green, William R

    2011-12-01

    LP-BM5 retrovirus induces a complex disease featuring an acquired immunodeficiency syndrome termed murine AIDS (MAIDS) in susceptible strains of mice, such as C57BL/6 (B6). CD4 T helper effector cells are required for MAIDS induction and progression of viral pathogenesis. CD8 T cells are not needed for viral pathogenesis, but rather, are essential for protection from disease in resistant strains, such as BALB/c. We have discovered an immunodominant cytolytic T lymphocyte (CTL) epitope encoded in a previously unrecognized LP-BM5 retroviral alternative (+1 nucleotide [nt]) gag translational open reading frame. CTLs specific for this cryptic gag epitope are the basis of protection from LP-BM5-induced immunodeficiency in BALB/c mice, and the inability of B6 mice to mount an anti-gag CTL response appears critical to the initiation and progression of LP-BM5-induced MAIDS. However, uninfected B6 mice primed by LP-BM5-induced tumors can generate CTL responses to an LP-BM5 retrovirus infection-associated epitope(s) that is especially prevalent on such MAIDS tumor cells, indicating the potential to mount a protective CD8 T-cell response. Here, we utilized this LP-BM5 retrovirus-induced disease system to test whether modulation of normal immune down-regulatory mechanisms can alter retroviral pathogenesis. Thus, following in vivo depletion of CD4 T regulatory (Treg) cells and/or selective interruption of PD-1 negative signaling in the CD8 T-cell compartment, retroviral pathogenesis was significantly decreased, with the combined treatment of CD4 Treg cell depletion and PD-1 blockade working in a synergistic fashion to substantially reduce the induction of MAIDS.

  10. Positive and negative early life experiences differentially modulate long term survival and amyloid protein levels in a mouse model of Alzheimer's disease.

    PubMed

    Lesuis, Sylvie L; Maurin, Herve; Borghgraef, Peter; Lucassen, Paul J; Van Leuven, Fred; Krugers, Harm J

    2016-06-28

    Stress has been implicated as a risk factor for the severity and progression of sporadic Alzheimer's disease (AD). Early life experiences determine stress responsivity in later life, and modulate age-dependent cognitive decline. Therefore, we examined whether early life experiences influence AD outcome in a bigenic mouse model which progressively develops combined tau and amyloid pathology (biAT mice).Mice were subjected to either early life stress (ELS) or to 'positive' early handling (EH) postnatally (from day 2 to 9). In biAT mice, ELS significantly compromised long term survival, in contrast to EH which increased life expectancy. In 4 month old mice, ELS-reared biAT mice displayed increased hippocampal Aβ levels, while these levels were reduced in EH-reared biAT mice. No effects of ELS or EH were observed on the brain levels of APP, protein tau, or PSD-95. Dendritic morphology was moderately affected after ELS and EH in the amygdala and medial prefrontal cortex, while object recognition memory and open field performance were not affected. We conclude that despite the strong transgenic background, early life experiences significantly modulate the life expectancy of biAT mice. Parallel changes in hippocampal Aβ levels were evident, without affecting cognition of young adult biAT mice.

  11. Reactive Oxygen Species-Mediated Loss of Synaptic Akt1 Signaling Leads to Deficient Activity-Dependent Protein Translation Early in Alzheimer's Disease

    PubMed Central

    Ahmad, Faraz; Singh, Kunal; Das, Debajyoti; Gowaikar, Ruturaj; Shaw, Eisha; Ramachandran, Arathy; Rupanagudi, Khader Valli; Kommaddi, Reddy Peera; Bennett, David A.

    2017-01-01

    Abstract Aims: Synaptic deficits are known to underlie the cognitive dysfunction seen in Alzheimer's disease (AD). Generation of reactive oxygen species (ROS) by β-amyloid has also been implicated in AD pathogenesis. However, it is unclear whether ROS contributes to synaptic dysfunction seen in AD pathogenesis and, therefore, we examined whether altered redox signaling could contribute to synaptic deficits in AD. Results: Activity dependent but not basal translation was impaired in synaptoneurosomes from 1-month old presymptomatic APPSwe/PS1ΔE9 (APP/PS1) mice, and this deficit was sustained till middle age (MA, 9–10 months). ROS generation leads to oxidative modification of Akt1 in the synapse and consequent reduction in Akt1-mechanistic target of rapamycin (mTOR) signaling, leading to deficiency in activity-dependent protein translation. Moreover, we found a similar loss of activity-dependent protein translation in synaptoneurosomes from postmortem AD brains. Innovation: Loss of activity-dependent protein translation occurs presymptomatically early in the pathogenesis of AD. This is caused by ROS-mediated loss of pAkt1, leading to reduced synaptic Akt1-mTOR signaling and is rescued by overexpression of Akt1. ROS-mediated damage is restricted to the synaptosomes, indicating selectivity. Conclusions: We demonstrate that ROS-mediated oxidative modification of Akt1 contributes to synaptic dysfunction in AD, seen as loss of activity-dependent protein translation that is essential for synaptic plasticity and maintenance. Therapeutic strategies promoting Akt1-mTOR signaling at synapses may provide novel target(s) for disease-modifying therapy in AD. Antioxid. Redox Signal. 27, 1269–1280. PMID:28264587

  12. Salmonella modulation of host cell gene expression promotes its intracellular growth.

    PubMed

    Hannemann, Sebastian; Gao, Beile; Galán, Jorge E

    2013-01-01

    Salmonella Typhimurium has evolved a complex functional interface with its host cell largely determined by two type III secretion systems (T3SS), which through the delivery of bacterial effector proteins modulate a variety of cellular processes. We show here that Salmonella Typhimurium infection of epithelial cells results in a profound transcriptional reprogramming that changes over time. This response is triggered by Salmonella T3SS effector proteins, which stimulate unique signal transduction pathways leading to STAT3 activation. We found that the Salmonella-stimulated changes in host cell gene expression are required for the formation of its specialized vesicular compartment that is permissive for its intracellular replication. This study uncovers a cell-autonomous process required for Salmonella pathogenesis potentially opening up new avenues for the development of anti-infective strategies that target relevant host pathways.

  13. Altered gene expression in dry age-related macular degeneration suggests early loss of choroidal endothelial cells.

    PubMed

    Whitmore, S Scott; Braun, Terry A; Skeie, Jessica M; Haas, Christine M; Sohn, Elliott H; Stone, Edwin M; Scheetz, Todd E; Mullins, Robert F

    2013-01-01

    Age-related macular degeneration (AMD) is a major cause of blindness in developed countries. The molecular pathogenesis of early events in AMD is poorly understood. We investigated differential gene expression in samples of human retinal pigment epithelium (RPE) and choroid from early AMD and control maculas with exon-based arrays. Gene expression levels in nine human donor eyes with early AMD and nine control human donor eyes were assessed using Affymetrix Human Exon ST 1.0 arrays. Two controls did not pass quality control and were removed. Differentially expressed genes were annotated using the Database for Annotation, Visualization and Integrated Discovery (DAVID), and gene set enrichment analysis (GSEA) was performed on RPE-specific and endothelium-associated gene sets. The complement factor H (CFH) genotype was also assessed, and differential expression was analyzed regarding high AMD risk (YH/HH) and low AMD risk (YY) genotypes. Seventy-five genes were identified as differentially expressed (raw p value <0.01; ≥50% fold change, mean log2 expression level in AMD or control ≥ median of all average gene expression values); however, no genes were significant (adj. p value <0.01) after correction for multiple hypothesis testing. Of 52 genes with decreased expression in AMD (fold change <0.5; raw p value <0.01), 18 genes were identified by DAVID analysis as associated with vision or neurologic processes. The GSEA of the RPE-associated and endothelium-associated genes revealed a significant decrease in genes typically expressed by endothelial cells in the early AMD group compared to controls, consistent with previous histologic and proteomic studies. Analysis of the CFH genotype indicated decreased expression of ADAMTS9 in eyes with high-risk genotypes (fold change = -2.61; raw p value=0.0008). GSEA results suggest that RPE transcripts are preserved or elevated in early AMD, concomitant with loss of endothelial cell marker expression. These results are consistent with the notion that choroidal endothelial cell dropout or dedifferentiation occurs early in the pathogenesis of AMD.

  14. The stereotypical molecular cascade in neovascular age-related macular degeneration: the role of dynamic reciprocity.

    PubMed

    Kent, D

    2015-11-01

    This review summarises our current understanding of the molecular basis of subretinal neovascularisation (SRNV) in age-related macular degeneration (AMD). The term neovascular AMD (NVAMD) is derived from the dominant early clinical features of haemorrhage, fluid, and lipid in the subretinal space (SRS) and the historical role of fluorescein angiography in detecting the presence of NV tissue. However, at the cellular level, SRNV resembles an aberrant but stereotypical tissue repair response that incorporates both an early inflammatory phase and a late fibrotic phase in addition to the neovascular (NV) component that dominates the early clinical presentation. This review will seek not only to highlight the important molecules involved in each of these components but to demonstrate that the development of SRNV has its origins in the earliest events in non-NV AMD pathogenesis. Current evidence suggests that this early-stage pathogenesis is characterised by complement-mediated immune dysregulation, leading to a state of chronic inflammation in the retinal pigment epithelium/Bruch's membrane/choriocapillaris complex. These initial events can be seamlessly and inextricably linked to late-stage development of SRNV in AMD by the process of dynamic reciprocity (DyR), the ongoing bidirectional communication between cells, and their surrounding matrix. Moreover, this correlation between disease onset and eventual outcome is reflected in the temporal and spatial correlation between chronic inflammation, NV, and fibrosis within the reparative microenvironment of the SRS. In summary, the downstream consequences of the earliest dysfunctional molecular events in AMD can result in the late-stage entity we recognize clinically as SRNV and is characterized by a spectrum of predictable, related, and stereotypical processes referred to as DyR.

  15. The effects of upaB deletion and the double/triple deletion of upaB, aatA, and aatB genes on pathogenicity of avian pathogenic Escherichia coli.

    PubMed

    Zhu-Ge, Xiang-Kai; Pan, Zi-Hao; Tang, Fang; Mao, Xiang; Hu, Lin; Wang, Shao-Hui; Xu, Bin; Lu, Cheng-Ping; Fan, Hong-Jie; Dai, Jian-Jun

    2015-12-01

    Autotransporters (ATs) are associated with pathogenesis of Avian Pathogenic Escherichia coli (APEC). The molecular characterization of APEC ATs can provide insights about their relevance to APEC pathogenesis. Here, we characterized a conventional autotransporter UpaB in APEC DE205B genome. The upaB existed in 41.9 % of 236 APEC isolates and was predominantly associated with ECOR B2 and D. Our studies showed that UpaB mediates the DE205B adhesion in DF-1 cells, and enhances autoaggregation and biofilm formation of fimbria-negative E. coli AAEC189 (MG1655Δfim) in vitro. Deletion of upaB of DE205B attenuates the virulence in duck model and early colonization in the duck lungs during APEC systemic infection. Furthermore, double and triple deletion of upaB, aatA, and aatB genes cumulatively attenuated DE205B adhesion in DF-1 cells, accompanying with decreased 50 % lethal dose (LD50) in duck model and the early colonization in the duck lungs. However, DE205BΔupaB/ΔaatA/ΔaatB might "compensate" the influence of gene deletion by upregulating the expression of fimbrial adhesin genes yqiL, yadN, and vacuolating autotransporter vat during early colonization of APEC. Finally, we demonstrated that vaccination with recombinant UpaB, AatA, and AatB proteins conferred protection against colisepticemia caused by DE205B infection in duck model.

  16. Porcine reproductive and respiratory syndrome virus infection triggers HMGB1 release to promote inflammatory cytokine production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Erzhen; Wang, Dang; Luo, Rui

    The high mobility group box 1 (HMGB1) protein is an endogenous damage-associated molecular pattern (DAMP) molecule involved in the pathogenesis of various infectious agents. Based on meta-analysis of all publicly available microarray datasets, HMGB1 has recently been proposed as the most significant immune modulator during the porcine response to porcine reproductive and respiratory syndrome virus (PRRSV) infection. However, the function of HMGB1 in PRRSV pathogenesis is unclear. In this study, we found that PRRSV infection triggers the translocation of HMGB1 from the nucleus to the extracellular milieu in MARC-145 cells and porcine alveolar macrophages. Although HMGB1 has no effect onmore » PRRSV replication, HMGB1 promotes PRRSV-induced NF-κB activation and subsequent expression of inflammatory cytokines through receptors RAGE, TLR2 and TLR4. Our findings show that HMGB1 release, triggered by PRRSV infection, enhances the efficiency of virus-induced inflammatory responses, thereby providing new insights into the pathogenesis of PRRSV infection. - Highlights: • PRRSV infection triggers HMGB1 release from MARC-145 cells and PAMs. • HMGB1 does not significantly affect PRRSV proliferation. • HMGB1 is involved in PRRSV-induced NF-κB activation and inflammatory responses. • HMGB1 promotes PRRSV-induced inflammatory responses through TLR2/4 and RAGE.« less

  17. Role of the Renin–Angiotensin System in the Pathogenesis of Intimal Hyperplasia: Therapeutic Potential for Prevention of Vein Graft Failure?

    PubMed Central

    Osgood, Michael J.; Harrison, David G.; Sexton, Kevin W.; Hocking, Kyle M.; Voskresensky, Igor V.; Komalavilas, Padmini; Cheung-Flynn, Joyce; Guzman, Raul J.; Brophy, Colleen M.

    2014-01-01

    The saphenous vein remains the most widely used conduit for peripheral and coronary revascularization despite a high rate of vein graft failure. The most common cause of vein graft failure is intimal hyperplasia. No agents have been proven to be successful for the prevention of intimal hyperplasia in human subjects. The rennin–angiotensin system is essential in the regulation of vascular tone and blood pressure in physiologic conditions. However, this system mediates cardiovascular remodeling in pathophysiologic states. Angiotensin II is becoming increasingly recognized as a potential mediator of intimal hyperplasia. Drugs modulating the renin–angiotensin system include angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. These drugs are powerful inhibitors of atherosclerosis and cardiovascular remodeling, and they are first-line agents for management of several medical conditions based on class I evidence that they delay progression of cardiovascular disease and improve survival. Several experimental models have demonstrated that these agents are capable of inhibiting intimal hyperplasia. However, there are no data supporting their role in prevention of intimal hyperplasia in patients with vein grafts. This review summarizes the physiology of the rennin–angiotensin system, the role of angiotensin II in the pathogenesis of cardiovascular remodeling, the medical indications for these agents, and the experimental data supporting an important role of the rennin–angiotensin system in the pathogenesis of intimal hyperplasia. PMID:22445245

  18. Visceral Congestion in Heart Failure: Right Ventricular Dysfunction, Splanchnic Hemodynamics, and the Intestinal Microenvironment.

    PubMed

    Polsinelli, Vincenzo B; Sinha, Arjun; Shah, Sanjiv J

    2017-12-01

    Visceral venous congestion of the gut may play a key role in the pathogenesis of right-sided heart failure (HF) and cardiorenal syndromes. Here, we review the role of right ventricular (RV) dysfunction, visceral congestion, splanchnic hemodynamics, and the intestinal microenvironment in the setting of right-sided HF. We review recent literature on this topic, outline possible mechanisms of disease pathogenesis, and discuss potential therapeutics. There are several mechanisms linking RV-gut interactions via visceral venous congestion which could result in (1) hypoxia and acidosis in enterocytes, which may lead to enhanced sodium-hydrogen exchanger 3 (NHE3) expression with increased sodium and fluid retention; (2) decreased luminal pH in the intestines, which could lead to alteration of the gut microbiome which could increase gut permeability and inflammation; (3) alteration of renal hemodynamics with triggering of the cardiorenal syndrome; and (4) altered phosphate metabolism resulting in increased pulmonary artery stiffening, thereby increasing RV afterload. A wide variety of therapeutic interventions that act on the RV, pulmonary vasculature, intestinal microenvironment, and the kidney could alter these pathways and should be tested in patients with right-sided HF. The RV-gut axis is an important aspect of HF pathogenesis that deserves more attention. Modulation of the pathways interconnecting the right heart, visceral congestion, and the intestinal microenvironment could be a novel avenue of intervention for right-sided HF.

  19. The Involvement of MicroRNAs in Modulation of Innate and Adaptive Immunity in Systemic Lupus Erythematosus and Lupus Nephritis.

    PubMed

    Honarpisheh, Mohsen; Köhler, Paulina; von Rauchhaupt, Ekaterina; Lech, Maciej

    2018-01-01

    Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), represent a family of RNA molecules that do not translate into protein. Nevertheless, they have the ability to regulate gene expression and play an essential role in immune cell differentiation and function. MicroRNAs were found to be differentially expressed in various tissues, and changes in their expression have been associated with several pathological processes. Yet, their roles in systemic lupus erythematosus (SLE) and lupus nephritis (LN) remain to be elucidated. Both SLE and LN are characterized by a complex dysfunction of the innate and adaptive immunity. Recently, significant findings have been made in understanding SLE through the use of genetic variant identification and expression pattern analysis and mouse models, as well as epigenetic analyses. Abnormalities in immune cell responses, cytokine and chemokine production, cell activation, and apoptosis have been linked to a unique expression pattern of a number of miRNAs that have been implicated in the immune pathogenesis of this autoimmune disease. The recent evidence that significantly increased the understanding of the pathogenesis of SLE drives a renewed interest in efficient therapy targets. This review aims at providing an overview of the current state of research on the expression and role of miRNAs in the immune pathogenesis of SLE and LN.

  20. The Involvement of MicroRNAs in Modulation of Innate and Adaptive Immunity in Systemic Lupus Erythematosus and Lupus Nephritis

    PubMed Central

    Köhler, Paulina; von Rauchhaupt, Ekaterina

    2018-01-01

    Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), represent a family of RNA molecules that do not translate into protein. Nevertheless, they have the ability to regulate gene expression and play an essential role in immune cell differentiation and function. MicroRNAs were found to be differentially expressed in various tissues, and changes in their expression have been associated with several pathological processes. Yet, their roles in systemic lupus erythematosus (SLE) and lupus nephritis (LN) remain to be elucidated. Both SLE and LN are characterized by a complex dysfunction of the innate and adaptive immunity. Recently, significant findings have been made in understanding SLE through the use of genetic variant identification and expression pattern analysis and mouse models, as well as epigenetic analyses. Abnormalities in immune cell responses, cytokine and chemokine production, cell activation, and apoptosis have been linked to a unique expression pattern of a number of miRNAs that have been implicated in the immune pathogenesis of this autoimmune disease. The recent evidence that significantly increased the understanding of the pathogenesis of SLE drives a renewed interest in efficient therapy targets. This review aims at providing an overview of the current state of research on the expression and role of miRNAs in the immune pathogenesis of SLE and LN. PMID:29854836

  1. Environmental isolation task

    NASA Technical Reports Server (NTRS)

    Coulbert, C. D.

    1982-01-01

    The failure-analysis process was organized into a more specific set of long-term degradation steps so that material property change can be differentiated from module damage and module failure. Increasing module performance and life are discussed. A polymeric aging computer model is discussed. Early detection of polymer surface reactions due to aging is reported.

  2. The Roles of Primary Cilia in Cardiovascular System

    DTIC Science & Technology

    2015-10-01

    defect, oral facial syndrome, obesity , hypertension and others [60]. Primary cilia can be activated by bending through perfusing cells with fluid...synthase, was found to be elevated in PKD patients [125]. The correlation between hypertension and kidney volume occurs in the early childhood stages...involvement of centrosome and basal body dysfunction in the pathogenesis of obesity , insulin resistance, and type 2 diabetes. Diabetes 2005; 54(5

  3. Impact of route of exposure and challenge dose on the pathogenesis of H7N9 low pathogenicity avian influenza virus in chickens

    USDA-ARS?s Scientific Manuscript database

    H7N9 influenza A first caused human infections, often with severe disease, in early 2013 in China. Virus genetics, histories of patient exposures to poultry, and previous experimental studies all point to the source of the virus being a domestic avian species, such as chickens. In order to better ...

  4. Clinical implications of miRNAs in the pathogenesis, diagnosis and therapy of pancreatic cancer

    PubMed Central

    Rachagani, Satyanarayana; Macha, Muzafar A.; Heimann, Nicholas; Seshacharyulu, Parthasarathy; Haridas, Dhanya; Chugh, Seema; Batra, Surinder K.

    2014-01-01

    Despite considerable progress being made in understanding pancreatic cancer (PC) pathogenesis, it still remains the 10th most often diagnosed malignancy in the world and 4th leading cause of cancer related deaths in the United States with a five year survival rate of only 6%. The aggressive nature, lack of early diagnostic and prognostic markers, late clinical presentation, and limited efficacy of existing treatment regimens makes PC a lethal cancer with high mortality and poor prognosis. Therefore, novel reliable biomarkers and molecular targets are urgently needed to combat this deadly disease. MicroRNAs (miRNAs) are short (19–24 nucleotides) non-coding RNA molecules implicated in the regulation of gene expression at post-transcriptional level and play significant roles in various physiological and pathological conditions. Aberrant expression of miRNAs has been reported in several cancers including PC and is implicated in PC pathogenesis and progression, suggesting their utility in diagnosis, prognosis and therapy. In this review, we summarize the role of several miRNAs that regulate various oncogenes (KRAS) and tumor suppressor genes (p53, p16, SMAD4 etc) involved in PC development, their prospective roles as diagnostic and prognostic markers and their therapeutic targets. PMID:25453266

  5. Alcoholic Liver Disease: Pathogenesis and New Therapeutic Targets

    PubMed Central

    GAO, BIN; BATALLER, RAMON

    2011-01-01

    Alcoholic liver disease (ALD) is a major cause of chronic liver disease worldwide and can lead to fibrosis and cirrhosis. The latest surveillance report published by the National Institute on Alcohol Abuse and Alcoholism showed that liver cirrhosis was the 12th leading cause of death in the United States, with a total of 29,925 deaths in 2007, 48% of which were alcohol related. The spectrum of ALD includes simple steatosis, alcoholic hepatitis, fibrosis, cirrhosis, and superimposed hepatocellular carcinoma. Early work on the pathogenesis of the disease focused on ethanol metabolism–associated oxidative stress and glutathione depletion, abnormal methionine metabolism, malnutrition, and production of endotoxins that activate Kupffer cells. We review findings from recent studies that have characterized specific intracellular signaling pathways, transcriptional factors, aspects of innate immunity, chemokines, epigenetic features, microRNAs, and stem cells that are associated with ALD, improving our understanding of its pathogenesis. Despite this progress, no targeted therapies are available. The cornerstone of treatment for alcoholic hepatitis remains as it was 40 years ago: abstinence, nutritional support, and corticosteroids. There is an urgent need to develop new pathophysiology-oriented therapies. Recent translational studies of human samples and animal models have identified promising therapeutic targets. PMID:21920463

  6. Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants.

    PubMed

    Xin, Xiu-Fang; He, Sheng Yang

    2013-01-01

    Since the early 1980s, various strains of the gram-negative bacterial pathogen Pseudomonas syringae have been used as models for understanding plant-bacterial interactions. In 1991, a P. syringae pathovar tomato (Pst) strain, DC3000, was reported to infect not only its natural host tomato but also Arabidopsis in the laboratory, a finding that spurred intensive efforts in the subsequent two decades to characterize the molecular mechanisms by which this strain causes disease in plants. Genomic analysis shows that Pst DC3000 carries a large repertoire of potential virulence factors, including proteinaceous effectors that are secreted through the type III secretion system and a polyketide phytotoxin called coronatine, which structurally mimics the plant hormone jasmonate (JA). Study of Pst DC3000 pathogenesis has not only provided several conceptual advances in understanding how a bacterial pathogen employs type III effectors to suppress plant immune responses and promote disease susceptibility but has also facilitated the discovery of the immune function of stomata and key components of JA signaling in plants. The concepts derived from the study of Pst DC3000 pathogenesis may prove useful in understanding pathogenesis mechanisms of other plant pathogens.

  7. Early Childhood Educator and Administrator Surveys on the Use of Assessments and Standards in Early Childhood Settings. REL 2014-019

    ERIC Educational Resources Information Center

    Irwin, Clare W.; O'Dwyer, Laura; Cook, Kyle DeMeo

    2014-01-01

    The Early Childhood Educator Survey and the Early Childhood Administrator Survey allow users to collect consistent data on the use of child assessments and learning standards in early childhood learning settings. Each survey includes modules on educator/administrator background information, assessment use, and learning standards implementation.…

  8. O-Linked β-N-acetylglucosamine (O-GlcNAc) modification: a new pathway to decode pathogenesis of diabetic retinopathy.

    PubMed

    Gurel, Zafer; Sheibani, Nader

    2018-01-31

    The incidence of diabetes continues to rise among all ages and ethnic groups worldwide. Diabetic retinopathy (DR) is a complication of diabetes that affects the retinal neurovasculature causing serious vision problems, including blindness. Its pathogenesis and severity is directly linked to the chronic exposure to high glucose conditions. No treatments are currently available to stop the development and progression of DR. To develop new and effective therapeutic approaches, it is critical to better understand how hyperglycemia contributes to the pathogenesis of DR at the cellular and molecular levels. We propose alterations in O-GlcNAc modification of target proteins during diabetes contribute to the development and progression of DR. The O-GlcNAc modification is regulated through hexosamine biosynthetic pathway. We showed this pathway is differentially activated in various retinal vascular cells under high glucose conditions perhaps due to their selective metabolic activity. O-GlcNAc modification can alter protein stability, activity, interactions, and localization. By targeting the same amino acid residues (serine and threonine) as phosphorylation, O-GlcNAc modification can either compete or cooperate with phosphorylation. Here we will summarize the effects of hyperglycemia-induced O-GlcNAc modification on the retinal neurovasculature in a cell-specific manner, providing new insight into the role of O-GlcNAc modification in early loss of retinal pericytes and the pathogenesis of DR. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  9. Epidemiology of Endometrial Carcinoma: Etiologic Importance of Hormonal and Metabolic Influences.

    PubMed

    Felix, Ashley S; Yang, Hannah P; Bell, Daphne W; Sherman, Mark E

    2017-01-01

    Endometrial carcinoma is the most common gynecologic cancer in developed nations, and the annual incidence is projected to increase, secondary to the high prevalence of obesity, a strong endometrial carcinoma risk factor. Although endometrial carcinomas are etiologically, biologically, and clinically diverse, hormonal and metabolic mechanisms are particularly strongly implicated in the pathogenesis of endometrioid carcinoma, the numerically predominant subtype. The centrality of hormonal and metabolic disturbances in the pathogenesis of endometrial carcinoma, combined with its slow development from well-characterized precursors in most cases, offers a substantial opportunity to reduce endometrial carcinoma mortality through early detection, lifestyle modification, and chemoprevention. In this chapter, we review the epidemiology of endometrial carcinoma, emphasizing theories that link risk factors for these tumors to hormonal and metabolic mechanisms. Future translational research opportunities related to prevention are discussed.

  10. Temporally selective attention modulates early perceptual processing: event-related potential evidence.

    PubMed

    Sanders, Lisa D; Astheimer, Lori B

    2008-05-01

    Some of the most important information we encounter changes so rapidly that our perceptual systems cannot process all of it in detail. Spatially selective attention is critical for perception when more information than can be processed in detail is presented simultaneously at distinct locations. When presented with complex, rapidly changing information, listeners may need to selectively attend to specific times rather than to locations. We present evidence that listeners can direct selective attention to time points that differ by as little as 500 msec, and that doing so improves target detection, affects baseline neural activity preceding stimulus presentation, and modulates auditory evoked potentials at a perceptually early stage. These data demonstrate that attentional modulation of early perceptual processing is temporally precise and that listeners can flexibly allocate temporally selective attention over short intervals, making it a viable mechanism for preferentially processing the most relevant segments in rapidly changing streams.

  11. [Autism and Autism-associated Metabolites].

    PubMed

    Watanabe, Kunitomo

    2016-06-01

    Gene-microbiota interactions are now proposed to be a special case of gene-environmental interaction. Preclinical and clinical data summarized in this article reveal that a specific serum metabolite, associated with alterations in gut microbiome composition, might have an emerging role in the onset and pathogenesis of autism. Altered level of this specified metabolite may induce perturbations in the epigenome and modulate the expression of key disease susceptible genes in neurons and their associated cells during critical periods of neurodevelopment. The gut microbiota itself is now regarded as a reservoir for environmental epigenetic factors.

  12. Pathogenesis and Treatment of Skin Lesions Caused by Sulfur Mustard: Inflammatory Mediators and Modulators Released from Organ-Cultured Inflammatory Lesions Produced in Vivo in Rabbit Skin by Sulfur Mustard

    DTIC Science & Technology

    1987-02-20

    fibroblast growth factors . Soon, we shall be able to use such products to stimulate specific cell types. Knowledge of the mediators produced by each cell type...source of some of these enzymes. 7. Finally, we have begun an extensive investigation on chemotactic fac- tors present in SM lesions. Factors ...gamma-interferon, Interleukin 1, and epi- dermal and fibroblast growth factors . Soon we shall be able to use such products to stimulate specific

  13. [Immunologic aspects of pathologic pain].

    PubMed

    Evseev, V A; Igon'kina, S I; Vetrilé, L A

    2003-01-01

    The scientific review is devoted to an analysis of neuro-immune aspects of the pathological pain and to the role of disregulation between the central nervous system (CNS) and the immune system in triggering the mechanisms of such pain. The importance of anti-inflammatory cytokines (interleukins, and tumor necrosis factor) as well as of autoantibodies to neuro-mediators in the pathogenesis of different forms of hyperalgetic conditions is evaluated. New data are discussed, which are related with the possibility of modulating the antibodies to neuro-transmitters (serotonin and catecholamines) of experimental neuropathic pain syndromes.

  14. Rrp5p, Noc1p and Noc2p form a protein module which is part of early large ribosomal subunit precursors in S. cerevisiae

    PubMed Central

    Hierlmeier, Thomas; Merl, Juliane; Sauert, Martina; Perez-Fernandez, Jorge; Schultz, Patrick; Bruckmann, Astrid; Hamperl, Stephan; Ohmayer, Uli; Rachel, Reinhard; Jacob, Anja; Hergert, Kristin; Deutzmann, Rainer; Griesenbeck, Joachim; Hurt, Ed; Milkereit, Philipp; Baßler, Jochen; Tschochner, Herbert

    2013-01-01

    Eukaryotic ribosome biogenesis requires more than 150 auxiliary proteins, which transiently interact with pre-ribosomal particles. Previous studies suggest that several of these biogenesis factors function together as modules. Using a heterologous expression system, we show that the large ribosomal subunit (LSU) biogenesis factor Noc1p of Saccharomyces cerevisiae can simultaneously interact with the LSU biogenesis factor Noc2p and Rrp5p, a factor required for biogenesis of the large and the small ribosomal subunit. Proteome analysis of RNA polymerase-I-associated chromatin and chromatin immunopurification experiments indicated that all members of this protein module and a specific set of LSU biogenesis factors are co-transcriptionally recruited to nascent ribosomal RNA (rRNA) precursors in yeast cells. Further ex vivo analyses showed that all module members predominantly interact with early pre-LSU particles after the initial pre-rRNA processing events have occurred. In yeast strains depleted of Noc1p, Noc2p or Rrp5p, levels of the major LSU pre-rRNAs decreased and the respective other module members were associated with accumulating aberrant rRNA fragments. Therefore, we conclude that the module exhibits several binding interfaces with pre-ribosomes. Taken together, our results suggest a co- and post-transcriptional role of the yeast Rrp5p–Noc1p–Noc2p module in the structural organization of early LSU precursors protecting them from non-productive RNase activity. PMID:23209026

  15. Cognitive reappraisal of snake and spider pictures: An event-related potentials study.

    PubMed

    Langeslag, Sandra J E; van Strien, Jan W

    2018-05-30

    Fear of snakes and spiders are common animal phobias. Emotion regulation can change the response to emotional stimuli, including snakes and spiders. It is well known that emotion regulation modulates the late positive potential (LPP), which reflects sustained motivated attention. However, research concerning the effect of emotion regulation on the early posterior negativity (EPN), which reflects early selective attention, is scarce. The present research question was whether the EPN and LPP amplitudes are modulated by regulation of emotional responses to snake and spider stimuli. Emotion up- and down-regulation were expected to enhance and reduce the LPP amplitude, respectively, but emotion regulation was not expected to modulate the EPN amplitude. Female participants passively viewed snake, spider, and bird pictures, and up- and down-regulated their emotional responses to the snake and spider pictures using self-focused reappraisal, while their electroencephalogram was recorded. There were EPNs for snakes and spiders vs. birds, as well as for snakes vs. spiders. The LPP amplitude tended to be enhanced for snakes and spiders compared to birds. Most importantly, the LPP amplitude was larger in the up-regulate than in the down-regulate condition for both snakes and spiders, but there was no evidence that the EPN amplitude was modulated by emotion regulation. This suggests that emotion regulation modulated sustained motivated attention, but not early selective attention, to snakes and spiders. The findings are in line with the notion that the emotional modulation of the EPN is more automatic than the emotional modulation of the LPP. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Endotoxin Inhalation Alters Lung Development in Neonatal Mice

    PubMed Central

    Kulhankova, Katarina; George, Caroline L.S.; Kline, Joel N.; Darling, Melissa; Thorne, Peter S.

    2012-01-01

    Background Childhood asthma is a significant public health problem. Epidemiologic evidence suggests an association between childhood asthma exacerbations and early life exposure to environmental endotoxin. Although the pathogenesis of endotoxin-induced adult asthma is well studied, questions remain about the impact of environmental endotoxin on pulmonary responsiveness in early life. Methods We developed a murine model of neonatal/juvenile endotoxin exposures approximating those in young children and evaluated the lungs inflammatory and remodeling responses. Results Persistent lung inflammation induced by the inhalation of endotoxin in early life was demonstrated by the influx of inflammatory cells and pro-inflammatory mediators to the airways and resulted in abnormal alveolarization. Conclusions Results of this study advance the understanding of the impact early life endotoxin inhalation has on the lower airways, and demonstrates the importance of an experimental design that approximates environmental exposures as they occur in young children. PMID:22576659

  17. Early and innovative interventions for severe sepsis and septic shock: taking advantage of a window of opportunity

    PubMed Central

    Rivers, Emanuel P.; McIntyre, Lauralyn; Morro, David C.; Rivers, Kandis K.

    2005-01-01

    The pathogenic, diagnostic and therapeutic landscape of sepsis is no longer confined to the intensive care unit: many patients from other portals of entry to care, both outside and within the hospital, progress to severe disease. Approaches that have led to improved outcomes with other diseases (e.g., acute myocardial infarction, stroke and trauma) can now be similarly applied to sepsis. Improved understanding of the pathogenesis of severe sepsis and septic shock has led to the development of new therapies that place importance on early identification and aggressive management. This review emphasizes approaches to the early recognition, diagnosis and therapeutic management of sepsis, giving the clinician the most contemporary and practical approaches with which to treat these patients. PMID:16247103

  18. An Unbiased Systems Genetics Approach to Mapping Genetic Loci Modulating Susceptibility to Severe Streptococcal Sepsis

    PubMed Central

    Abdeltawab, Nourtan F.; Aziz, Ramy K.; Kansal, Rita; Rowe, Sarah L.; Su, Yin; Gardner, Lidia; Brannen, Charity; Nooh, Mohammed M.; Attia, Ramy R.; Abdelsamed, Hossam A.; Taylor, William L.; Lu, Lu; Williams, Robert W.; Kotb, Malak

    2008-01-01

    Striking individual differences in severity of group A streptococcal (GAS) sepsis have been noted, even among patients infected with the same bacterial strain. We had provided evidence that HLA class II allelic variation contributes significantly to differences in systemic disease severity by modulating host responses to streptococcal superantigens. Inasmuch as the bacteria produce additional virulence factors that participate in the pathogenesis of this complex disease, we sought to identify additional gene networks modulating GAS sepsis. Accordingly, we applied a systems genetics approach using a panel of advanced recombinant inbred mice. By analyzing disease phenotypes in the context of mice genotypes we identified a highly significant quantitative trait locus (QTL) on Chromosome 2 between 22 and 34 Mb that strongly predicts disease severity, accounting for 25%–30% of variance. This QTL harbors several polymorphic genes known to regulate immune responses to bacterial infections. We evaluated candidate genes within this QTL using multiple parameters that included linkage, gene ontology, variation in gene expression, cocitation networks, and biological relevance, and identified interleukin1 alpha and prostaglandin E synthases pathways as key networks involved in modulating GAS sepsis severity. The association of GAS sepsis with multiple pathways underscores the complexity of traits modulating GAS sepsis and provides a powerful approach for analyzing interactive traits affecting outcomes of other infectious diseases. PMID:18421376

  19. Cyclooxygenase activity is important for efficient replication of mouse hepatitis virus at an early stage of infection

    PubMed Central

    Raaben, Matthijs; Einerhand, Alexandra WC; Taminiau, Lucas JA; van Houdt, Michel; Bouma, Janneke; Raatgeep, Rolien H; Büller, Hans A; de Haan, Cornelis AM; Rossen, John WA

    2007-01-01

    Cyclooxygenases (COXs) play a significant role in many different viral infections with respect to replication and pathogenesis. Here we investigated the role of COXs in the mouse hepatitis coronavirus (MHV) infection cycle. Blocking COX activity by different inhibitors or by RNA interference affected MHV infection in different cells. The COX inhibitors reduced MHV infection at a post-binding step, but early in the replication cycle. Both viral RNA and viral protein synthesis were affected with subsequent loss of progeny virus production. Thus, COX activity appears to be required for efficient MHV replication, providing a potential target for anti-coronaviral therapy. PMID:17555580

  20. The intriguing history of vertebral fusion anomalies: the Klippel-Feil syndrome.

    PubMed

    Saker, Erfanul; Loukas, Marios; Oskouian, Rod J; Tubbs, R Shane

    2016-09-01

    Our knowledge and understanding of vertebral fusion, defined and eponymously known as Klippel-Feil syndrome in the early 1900s, have a long history. This uncommon finding has been identified as early as 500 B.C. in an Egyptian mummy. Many more examples of spinal vertebra fusion have been described by Greek historians and recovered by archeologists demonstrating this entity's rich history. Klippel-Feil syndrome is a rare skeletal anomaly characterized by abnormal fusion of two or more vertebrae. With the advent of newer molecular technology and genetic discoveries, we now have a better understanding of the etiology and possible pathogenesis of this disease.

  1. Hereditary pancreatic adenocarcinoma. A clinical perspective.

    PubMed

    Brand, R E; Lynch, H T

    2000-05-01

    Although the total number of patients in these various high-risk groups is relatively small, they nevertheless provide excellent models for studying the cause, natural history, pathogenesis, and treatment of pancreatic cancer. These patients would also benefit greatly from procedures capable of detecting cancer at an early stage. This knowledge would be useful for the much commoner sporadic form of pancreatic cancer, in which diagnosis is almost always late and prognosis fatal. With early diagnosis, surgical resection before the cancer's extension beyond the organ's anatomic confines could be curative. The establishment of a National Familial Pancreatic Cancer Registry is essential and would increase the availability of these invaluable families for medical research.

  2. Increased frequency of Epstein-Barr virus excretion in patients with new daily persistent headaches.

    PubMed

    Diaz-Mitoma, F; Vanast, W J; Tyrrell, D L

    1987-02-21

    In a case-control study 27 (84%) of 32 patients with new daily persistent headaches (NDPH) and 8 (25%) of 32 controls had evidence of Epstein-Barr virus (EBV) "active" infection, as demonstrated by EBV excretion and/or early antigen titre above 1:32. 20 (62%) patients and 4 (12%) controls were excreting EBV in the oropharynx, as determined by a dot hybridisation assay. The mean titre of IgG antibodies to early antigen was significantly higher in patients than controls. EBV reactivation may be important in the pathogenesis of NDPH. Alternatively, patients with NDPH may be unusually prone to EBV reactivation.

  3. Unconventional ligands and modulators of nicotinic receptors.

    PubMed

    Pereira, Edna F R; Hilmas, Corey; Santos, Mariton D; Alkondon, Manickavasagom; Maelicke, Alfred; Albuquerque, Edson X

    2002-12-01

    Evidence gathered from epidemiologic and behavioral studies have indicated that neuronal nicotinic receptors (nAChRs) are intimately involved in the pathogenesis of a number of neurologic disorders, including Alzheimer's disease, Parkinson's disease, and schizophrenia. In the mammalian brain, neuronal nAChRs, in addition to mediating fast synaptic transmission, modulate fast synaptic transmission mediated by the major excitatory and inhibitory neurotransmitters glutamate and GABA, respectively. Of major interest, however, is the fact that the activity of the different subtypes of neuronal nAChR is also subject to modulation by substances of endogenous origin such as choline, the tryptophan metabolite kynurenic acid, neurosteroids, and beta-amyloid peptides and by exogenous substances, including the so-called nicotinic allosteric potentiating ligands, of which galantamine is the prototype, and psychotomimetic drugs such as phencyclidine and ketamine. The present article reviews and discusses the effects of unconventional ligands on nAChR activity and briefly describes the potential benefits of using some of these compounds in the treatment of neuropathologic conditions in which nAChR function/expression is known to be altered. Copyright 2002 Wiley Periodicals, Inc.

  4. Rapamycin modulation of p70 S6 kinase signaling inhibits Rift Valley fever virus pathogenesis.

    PubMed

    Bell, Todd M; Espina, Virginia; Senina, Svetlana; Woodson, Caitlin; Brahms, Ashwini; Carey, Brian; Lin, Shih-Chao; Lundberg, Lindsay; Pinkham, Chelsea; Baer, Alan; Mueller, Claudius; Chlipala, Elizabeth A; Sharman, Faye; de la Fuente, Cynthia; Liotta, Lance; Kehn-Hall, Kylene

    2017-07-01

    Despite over 60 years of research on antiviral drugs, very few are FDA approved to treat acute viral infections. Rift Valley fever virus (RVFV), an arthropod borne virus that causes hemorrhagic fever in severe cases, currently lacks effective treatments. Existing as obligate intracellular parasites, viruses have evolved to manipulate host cell signaling pathways to meet their replication needs. Specifically, translation modulation is often necessary for viruses to establish infection in their host. Here we demonstrated phosphorylation of p70 S6 kinase, S6 ribosomal protein, and eIF4G following RVFV infection in vitro through western blot analysis and in a mouse model of infection through reverse phase protein microarrays (RPPA). Inhibition of p70 S6 kinase through rapamycin treatment reduced viral titers in vitro and increased survival and mitigated clinical disease in RVFV challenged mice. Additionally, the phosphorylation of p70 S6 kinase was decreased following rapamycin treatment in vivo. Collectively these data demonstrate modulating p70 S6 kinase can be an effective antiviral strategy. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Effect of curcumin analogs onα-synuclein aggregation and cytotoxicity

    PubMed Central

    Jha, Narendra Nath; Ghosh, Dhiman; Das, Subhadeep; Anoop, Arunagiri; Jacob, Reeba S.; Singh, Pradeep K.; Ayyagari, Narasimham; Namboothiri, Irishi N. N.; Maji, Samir K.

    2016-01-01

    Alpha-synuclein (α-Syn) aggregation into oligomers and fibrils is associated with dopaminergic neuron loss occurring in Parkinson’s disease (PD) pathogenesis. Compounds that modulate α-Syn aggregation and interact with preformed fibrils/oligomers and convert them to less toxic species could have promising applications in the drug development efforts against PD. Curcumin is one of the Asian food ingredient which showed promising role as therapeutic agent against many neurological disorders including PD. However, the instability and low solubility makes it less attractive for the drug development. In this work, we selected various curcumin analogs and studied their toxicity, stability and efficacy to interact with different α-Syn species and modulation of their toxicity. We found a subset of curcumin analogs with higher stability and showed that curcumin and its various analogs interact with preformed fibrils and oligomers and accelerate α-Syn aggregation to produce morphologically different amyloid fibrils in vitro. Furthermore, these curcumin analogs showed differential binding with the preformed α-Syn aggregates. The present data suggest the potential role of curcumin analogs in modulating α-Syn aggregation. PMID:27338805

  6. Pathway and network-based analysis of genome-wide association studies and RT-PCR validation in polycystic ovary syndrome.

    PubMed

    Shen, Haoran; Liang, Zhou; Zheng, Saihua; Li, Xuelian

    2017-11-01

    The purpose of this study was to identify promising candidate genes and pathways in polycystic ovary syndrome (PCOS). Microarray dataset GSE345269 obtained from the Gene Expression Omnibus database includes 7 granulosa cell samples from PCOS patients, and 3 normal granulosa cell samples. Differentially expressed genes (DEGs) were screened between PCOS and normal samples. Pathway enrichment analysis was conducted for DEGs using ClueGO and CluePedia plugin of Cytoscape. A Reactome functional interaction (FI) network of the DEGs was built using ReactomeFIViz, and then network modules were extracted, followed by pathway enrichment analysis for the modules. Expression of DEGs in granulosa cell samples was measured using quantitative RT-PCR. A total of 674 DEGs were retained, which were significantly enriched with inflammation and immune-related pathways. Eight modules were extracted from the Reactome FI network. Pathway enrichment analysis revealed significant pathways of each module: module 0, Regulation of RhoA activity and Signaling by Rho GTPases pathways shared ARHGAP4 and ARHGAP9; module 2, GlycoProtein VI-mediated activation cascade pathway was enriched with RHOG; module 3, Thromboxane A2 receptor signaling, Chemokine signaling pathway, CXCR4-mediated signaling events pathways were enriched with LYN, the hub gene of module 3. Results of RT-PCR confirmed the finding of the bioinformatic analysis that ARHGAP4, ARHGAP9, RHOG and LYN were significantly upregulated in PCOS. RhoA-related pathways, GlycoProtein VI-mediated activation cascade pathway, ARHGAP4, ARHGAP9, RHOG and LYN may be involved in the pathogenesis of PCOS.

  7. Early-onset obsessive-compulsive disorder and personality disorders in adulthood.

    PubMed

    Maina, Giuseppe; Albert, Umberto; Salvi, Virginio; Pessina, Enrico; Bogetto, Filippo

    2008-03-15

    Obsessive-compulsive disorder (OCD) often emerges in childhood or adolescence. The aim of the present study was to evaluate whether adult patients with prepuberal onset differ from subjects with later onset in terms of personality disorder comorbidity. The Structured Clinical Interview for DSM-IV Axis II Disorders was used to assess 148 patients with a principal diagnosis of OCD according to the Structured Clinical Interview for DSM-IV Axis I Disorders. The following two subgroups of subjects were selected according to the age at onset of symptomatology: patients with an early-onset (< or =10 years), and patients with a later onset (> or =17 years). Of the 148 patients screened for the present study, 33 (22.3%) had an early onset and 1369 (46.6%) had a later onset. With regard to personality disorders, early-onset patients showed more OC personality disorders (OCPD) than later onset patients. Our finding suggests that OCD in childhood increases the risk for developing OCPD in adulthood, or that early-onset OCD and OCPD share a common pathogenesis.

  8. The road to treating smoldering multiple myeloma.

    PubMed

    Korde, Neha; Mailankody, Sham; Landgren, Ola

    2014-09-01

    The management of smoldering multiple myeloma (SMM) has been a challenge to clinicians, ever since the condition was first characterized in 1980. While the risk of progression to symptomatic myeloma is greater for SMM (10% per year) compared to MGUS (1% per year), several SMM patients remain asymptomatic for years without evidence of disease progression. Early clinical trials focusing on early treatment of SMM have been equivocal with no clear benefit. However, the last decade has seen a greater understanding of the pathogenesis of plasma cell disorders, including SMM, and development of better therapeutics. A recent randomized trial has provided evidence of clinical benefit with early treatment of high-risk SMM. In this review, we summarize issues related to the early treatment of SMM including risk stratification and possible outcomes with therapy initiation. In the context of reviewing recent clinical trial data supporting early treatment, we define challenges faced by clinicians and provide future directions to the road to treating SMM. Published by Elsevier Inc.

  9. [Expansion of secretory cells in the fallopian tubal epithelium in the early stages of the pathogenesis of ovarian serous carcinomas].

    PubMed

    Asaturova, A V; Ezhova, L S; Faizullina, N M; Adamyan, L V; Khabas, G N; Sannikova, M V

    to investigate the frequency of the types of fallopian tubal secretory cell expansion (SCE) in diseases of the reproductive organs and to determine the immunophenotype and biological role of the cells in the early stages of the pathogenesis of high-grade ovarian serous carcinomas (HGOSC). The investigation enrolled 287 patients with extraovarian diseases and ovarian serous tumors varying in grade, whose fallopian tubes were morphologically and immunohistochemically examined using p53, Ki-67, PAX2, Bcl-2, beta-catenin, and ALDH1 markers. The material was statistically processed applying the Mann-Whitney test and χ2 test. The rate of secretory cell proliferation (SCP) (more than 10 consecutive secretory cells) and that of secretory cell overgrowth (SCO) (more than 30 consecutive secretory cells) increase with age in all investigated reproductive system diseases. The rate of SCP in the corpus fimbriatum of the patients with HGOSC was 5.9 times higher than that in those with extraovarian disease (p<0.01); when comparing the same patient groups, that of SCO was 3.4 times higher (p<0.05). The immunohistochemical characteristics of the investigated lesions (in scores) were as follows: PAX2 was expressed in the intact epithelium (2.8), in SCP (1.3), in SCO (1.2), in serous tubal intraepithelial carcinoma (STIC) (1.0), and in HGOSC (0.9); Bcl-2 was in the intact epithelium (2.2), in SCP (2.1), STIC (0.9), and in HGOSC (0.6), β-catenin was in the intact epithelium (0.5), in SCP (2.85), in SCO (2.95), in STIC (0.6), and in HGOSC (0.5); ALDH1 was in the intact epithelium (0.5), in SCP (2.91), in SCO (2.92), in STIC (1.2), and in HGOSC (0.6). There were statistically significant differences with a 95% confidence interval (p<0.05) for: 1) PAX2 between the intact epithelium and pathology (fallopian tube lesions and HGOSC); 2) Bcl-2 between the intact epithelium and SCE (SCP and SCO) and between SCE and HGOSC; 3) beta-catenin between the intact epithelium and SCE (SCP and SCO) and between SCE and HGOSC; 4) ALDH1 between the intact epithelium and SCE, between and SCE and STIC, and between STIC and HGOSC. SCE was shown to be an independent intraepithelial lesion. The incidence of this abnormality increased with age and significantly differed in the patients with fallopian tubal lesions in extraovarian diseases from that in those with malignant ovarian serous tumors (by 5.3 times), while these groups showed a three-fold difference in SCO. Thus, SCP may serve as a more sensitive marker for the early stages of the pathogenesis of ovarian serous carcinoma. The studied types of SCE demonstrated multiple molecular events (loss of PAX2 expression and increased Bcl-2, beta-catenin, and ALDH1 expressions), some of which underwent considerable changes, by increasing the severity of a pathological process (loss of ALDH1, and beta-catenin, and bcl-2 expressions). Thus, therapeutic exposure in the early stages of pathogenesis may have a few points of application and just several molecules can serve as independent markers for early pathological changes in the fallopian tubal epithelium.

  10. Building professionalism and employability skills: embedding employer engagement within first-year computing modules

    NASA Astrophysics Data System (ADS)

    Hanna, Philip; Allen, Angela; Kane, Russell; Anderson, Neil; McGowan, Aidan; Collins, Matthew; Hutchison, Malcolm

    2015-07-01

    This paper outlines a means of improving the employability skills of first-year university students through a closely integrated model of employer engagement within computer science modules. The outlined approach illustrates how employability skills, including communication, teamwork and time management skills, can be contextualised in a manner that directly relates to student learning but can still be linked forward into employment. The paper tests the premise that developing employability skills early within the curriculum will result in improved student engagement and learning within later modules. The paper concludes that embedding employer participation within first-year models can help relate a distant notion of employability into something of more immediate relevance in terms of how students can best approach learning. Further, by enhancing employability skills early within the curriculum, it becomes possible to improve academic attainment within later modules.

  11. Feasibility of an Online Professional Development Program for Early Intervention Practitioners

    ERIC Educational Resources Information Center

    Kyzar, Kathleen B.; Chiu, Caya; Kemp, Peggy; Aldersey, Heather Michelle; Turnbull, Ann P.; Lindeman, David P.

    2014-01-01

    This article reports findings from 2 studies situated within a larger scope of design research on a professional development program, "Early Years," for Part C early intervention practitioners, working with families in home and community settings. Early Years includes online modules and onsite mentor coaching, and its development has…

  12. Early Left Parietal Activity Elicited by Direct Gaze: A High-Density EEG Study

    PubMed Central

    Burra, Nicolas; Kerzel, Dirk; George, Nathalie

    2016-01-01

    Gaze is one of the most important cues for human communication and social interaction. In particular, gaze contact is the most primary form of social contact and it is thought to capture attention. A very early-differentiated brain response to direct versus averted gaze has been hypothesized. Here, we used high-density electroencephalography to test this hypothesis. Topographical analysis allowed us to uncover a very early topographic modulation (40–80 ms) of event-related responses to faces with direct as compared to averted gaze. This modulation was obtained only in the condition where intact broadband faces–as opposed to high-pass or low-pas filtered faces–were presented. Source estimation indicated that this early modulation involved the posterior parietal region, encompassing the left precuneus and inferior parietal lobule. This supports the idea that it reflected an early orienting response to direct versus averted gaze. Accordingly, in a follow-up behavioural experiment, we found faster response times to the direct gaze than to the averted gaze broadband faces. In addition, classical evoked potential analysis showed that the N170 peak amplitude was larger for averted gaze than for direct gaze. Taken together, these results suggest that direct gaze may be detected at a very early processing stage, involving a parallel route to the ventral occipito-temporal route of face perceptual analysis. PMID:27880776

  13. Early Neural Markers of Implicit Attitudes: N170 Modulated by Intergroup and Evaluative Contexts in IAT.

    PubMed

    Ibáñez, Agustín; Gleichgerrcht, Ezequiel; Hurtado, Esteban; González, Ramiro; Haye, Andrés; Manes, Facundo F

    2010-01-01

    The Implicit Association Test (IAT) is the most popular measure to evaluate implicit attitudes. Nevertheless, its neural correlates are not yet fully understood. We examined event related potentials (ERPs) in response to face- and word processing while indigenous and non-indigenous participants performed an IAT displaying faces (ingroup and outgroup members) and words (positive and negative valence) as targets of category judgments. The N170 component was modulated by valence of words and by ingroup/outgroup face categorization. Contextual effects (face-words implicitly associated in the task) had an influence on the N170 amplitude modulation. On the one hand, in face categorization, right N170 showed differences according to the association between social categories of faces and affective valence of words. On the other, in word categorization, left N170 presented a similar modulation when the task implied a negative-valence associated with ingroup faces. Only indigenous participants showed a significant IAT effect and N170 differences. Our results demonstrate an early ERP blending of stimuli processing with both intergroup and evaluative contexts, suggesting an integration of contextual information related to intergroup attitudes during the early stages of word and face processing. To our knowledge, this is the first report of early ERPs during an ethnicity IAT, opening a new branch of exchange between social neuroscience and social psychology of attitudes.

  14. Predictors of adherence among community users of a cognitive behavior therapy website

    PubMed Central

    Batterham, Philip J; Neil, Alison L; Bennett, Kylie; Griffiths, Kathleen M; Christensen, Helen

    2008-01-01

    Objective To investigate the predictors of early and late dropout among community users of the MoodGYM website, a five module online intervention for reducing the symptoms of depression. Method Approximately 82,000 users accessed the site in 2006, of which 27% completed one module and 10% completed two or more modules. Adherence was modeled as a trichotomous variable representing non-starters (0 modules), early dropouts (1 module) and late dropouts (2–5 modules). Predictor variables included age, gender, education, location, referral source, depression severity, anxiety severity, dysfunctional thinking, and change in symptom count. Results Better adherence was predicted by higher depression severity, higher anxiety severity, a greater level of dysfunctional thinking, younger age, higher education, being female, and being referred to the site by a mental health professional. In addition, users whose depression severity had improved or remained stable after the first intervention module had higher odds of completing subsequent modules. Conclusions While the effect of age and the null effect of location were in accordance with prior adherence research, the significant effects of gender, education and depression severity were not, and may reflect user characteristics, the content of the intervention and unique aspects of online interventions. Further research directions are suggested to investigate the elements of open access online interventions that facilitate adherence. PMID:19920949

  15. Within-Hemifield Competition in Early Visual Areas Limits the Ability to Track Multiple Objects with Attention

    PubMed Central

    Alvarez, George A.; Cavanagh, Patrick

    2014-01-01

    It is much easier to divide attention across the left and right visual hemifields than within the same visual hemifield. Here we investigate whether this benefit of dividing attention across separate visual fields is evident at early cortical processing stages. We measured the steady-state visual evoked potential, an oscillatory response of the visual cortex elicited by flickering stimuli, of moving targets and distractors while human observers performed a tracking task. The amplitude of responses at the target frequencies was larger than that of the distractor frequencies when participants tracked two targets in separate hemifields, indicating that attention can modulate early visual processing when it is divided across hemifields. However, these attentional modulations disappeared when both targets were tracked within the same hemifield. These effects were not due to differences in task performance, because accuracy was matched across the tracking conditions by adjusting target speed (with control conditions ruling out effects due to speed alone). To investigate later processing stages, we examined the P3 component over central-parietal scalp sites that was elicited by the test probe at the end of the trial. The P3 amplitude was larger for probes on targets than on distractors, regardless of whether attention was divided across or within a hemifield, indicating that these higher-level processes were not constrained by visual hemifield. These results suggest that modulating early processing stages enables more efficient target tracking, and that within-hemifield competition limits the ability to modulate multiple target representations within the hemifield maps of the early visual cortex. PMID:25164651

  16. Hepatic encephalopathy in acute-on-chronic liver failure.

    PubMed

    Lee, Guan-Huei

    2015-10-01

    The presence of hepatic encephalopathy (HE) within 4 weeks is part of the criteria for defining acute-on-chronic liver failure (ACLF). The pathophysiology of HE is complex, and hyperammonemia and cerebral hemodynamic dysfunction appear to be central in the pathogenesis of encephalopathy. Recent data also suggest that inflammatory mediators may have a significant role in modulating the cerebral effect of ammonia. Multiple prospective and retrospective studies have shown that hepatic encephalopathy in ACLF patients is associated with higher mortality, especially in those with grade III-IV encephalopathy, similar to that of acute liver failure (ALF). Although significant cerebral edema detected by CT in ACLF patients appeared to be less common, specialized MRI imaging was able to detect cerebral edema even in low grade HE. Ammonia-focused therapy constitutes the basis of current therapy, as in the treatment of ALF. Emerging treatment strategies focusing on modulating the gut-liver-circulation-brain axis are discussed.

  17. Heparin Oligosaccharides as Potential Therapeutic Agents in Senile Dementia

    PubMed Central

    Ma, Qing; Cornelli, Umberto; Hanin, Israel; Jeske, Walter P.; Linhardt, Robert J.; Walenga, Jeanine M.; Fareed, Jawed; Lee, John M.

    2014-01-01

    Heparin is a glycosaminoglycan mixture currently used in prophylaxis and treatment of thrombosis. Heparin possesses non-anticoagulant properties, including modulation of various proteases, interactions with fibroblast growth factors, and anti-inflammatory actions. Senile dementia of Alzheimer’s type is accompanied by inflammatory responses contributing to irreversible changes in neuronal viability and brain function. Vascular factors are also involved in the pathogenesis of senile dementia. Inflammation, endogenous proteoglycans, and assembly of senile plagues and neurofibrillary tangles contribute directly and indirectly to further neuronal damage. Neuron salvage can be achieved by anti-inflammation and the competitive inhibition of proteoglycans accumulation. The complexity of the pathology of senile dementia provides numerous potential targets for therapeutic interventions designed to modulate inflammation and proteoglycan assembly. Heparin and related oligosaccharides are known to exhibit anti-inflammatory effects as well as inhibitory effects on proteoglycan assembly and may prove useful as neuroprotective agents. PMID:17504153

  18. IGF2BP3 modulates the interaction of invasion-associated transcripts with RISC

    PubMed Central

    Ennajdaoui, Hanane; Howard, Jonathan M.; Sterne-Weiler, Timothy; Jahanbani, Fereshteh; Coyne, Doyle J.; Uren, Philip J.; Dargyte, Marija; Katzman, Sol; Draper, Jolene M.; Wallace, Andrew; Cazarez, Oscar; Burns, Suzanne C.; Qiao, Mei; Hinck, Lindsay; Smith, Andrew D.; Toloue, Masoud M.; Blencowe, Benjamin J.; Penalva, Luiz O.F.; Sanford, Jeremy R.

    2016-01-01

    Summary Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) expression correlates with malignancy. But its role(s) in pathogenesis remain enigmatic. Here, we interrogated the IGF2BP3-RNA interaction network in pancreatic ductal adenocarcinoma (PDAC) cells. Using a combination of genome-wide approaches we identify 164 direct mRNA targets of IGF2BP3. These transcripts encode proteins enriched for functions such as cell migration, proliferation and adhesion. Loss of IGF2BP3 reduced PDAC cell invasiveness and remodeled focal adhesion junctions. Individual-nucleotide resolution crosslinking immunoprecipitation (iCLIP) revealed significant overlap of IGF2BP3 and miRNA binding sites. IGF2BP3 promotes association of the RNA induced silencing complex (RISC) with specific transcripts. Our results show that IGF2BP3 influences a malignancy-associated RNA regulon by modulating miRNA-mRNA interactions. PMID:27210763

  19. Coriander (Coriandrum sativum): A promising functional food toward the well-being.

    PubMed

    Prachayasittikul, Veda; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong

    2018-03-01

    Coriandrum sativum (C. sativum) or coriander is one of the most popularly used spices in culinary worldwide, and its medicinal values has been recognized since ancient time. C. sativum contains bioactive phytochemicals that are accounted for a wide range of biological activities including antioxidant, anticancer, neuroprotective, anxiolytic, anticonvulsant, analgesic, migraine-relieving, hypolipidemic, hypoglycemic, hypotensive, antimicrobial, and antiinflammatory activities. The major compound, linalool, abundantly found in seeds is remarked for its abilities to modulate many key pathogenesis pathways of diseases. Apart from the modulating effects, the potent antioxidant property of the C. sativum provides a key mechanism behind its protective effects against neurodegenerative diseases, cancer, and metabolic syndrome. This review shed light on comprehensive aspects regarding the therapeutic values of the C. sativum, which indicate its significance of being a promising functional food for promoting the well-being in the era of aging and lifestyle-related diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Therapeutic targeting of the MEK/MAPK signal transduction module in acute myeloid leukemia

    PubMed Central

    Milella, Michele; Kornblau, Steven M.; Estrov, Zeev; Carter, Bing Z.; Lapillonne, Hélène; Harris, David; Konopleva, Marina; Zhao, Shourong; Estey, Elihu; Andreeff, Michael

    2001-01-01

    The mitogen-activated protein kinase (MAPK) pathway regulates growth and survival of many cell types, and its constitutive activation has been implicated in the pathogenesis of a variety of malignancies. In this study we demonstrate that small-molecule MEK inhibitors (PD98059 and PD184352) profoundly impair cell growth and survival of acute myeloid leukemia (AML) cell lines and primary samples with constitutive MAPK activation. These agents abrogate the clonogenicity of leukemic cells but have minimal effects on normal hematopoietic progenitors. MEK blockade also results in sensitization to spontaneous and drug-induced apoptosis. At a molecular level, these effects correlate with modulation of the expression of cyclin-dependent kinase inhibitors (p27Kip1 and p21Waf1/CIP1) and antiapoptotic proteins of the inhibitor of apoptosis proteins (IAP) and Bcl-2 families. Interruption of constitutive MEK/MAPK signaling therefore represents a promising therapeutic strategy in AML. PMID:11560954

  1. Transcriptional Profiling of the Immune Response to Marburg Virus Infection.

    PubMed

    Connor, John H; Yen, Judy; Caballero, Ignacio S; Garamszegi, Sara; Malhotra, Shikha; Lin, Kenny; Hensley, Lisa; Goff, Arthur J

    2015-10-01

    Marburg virus is a genetically simple RNA virus that causes a severe hemorrhagic fever in humans and nonhuman primates. The mechanism of pathogenesis of the infection is not well understood, but it is well accepted that pathogenesis is appreciably driven by a hyperactive immune response. To better understand the overall response to Marburg virus challenge, we undertook a transcriptomic analysis of immune cells circulating in the blood following aerosol exposure of rhesus macaques to a lethal dose of Marburg virus. Using two-color microarrays, we analyzed the transcriptomes of peripheral blood mononuclear cells that were collected throughout the course of infection from 1 to 9 days postexposure, representing the full course of the infection. The response followed a 3-stage induction (early infection, 1 to 3 days postexposure; midinfection, 5 days postexposure; late infection, 7 to 9 days postexposure) that was led by a robust innate immune response. The host response to aerosolized Marburg virus was evident at 1 day postexposure. Analysis of cytokine transcripts that were overexpressed during infection indicated that previously unanalyzed cytokines are likely induced in response to exposure to Marburg virus and further suggested that the early immune response is skewed toward a Th2 response that would hamper the development of an effective antiviral immune response early in disease. Late infection events included the upregulation of coagulation-associated factors. These findings demonstrate very early host responses to Marburg virus infection and provide a rich data set for identification of factors expressed throughout the course of infection that can be investigated as markers of infection and targets for therapy. Marburg virus causes a severe infection that is associated with high mortality and hemorrhage. The disease is associated with an immune response that contributes to the lethality of the disease. In this study, we investigated how the immune cells circulating in the blood of infected primates respond following exposure to Marburg virus. Our results show that there are three discernible stages of response to infection that correlate with presymptomatic, early, and late symptomatic stages of infection, a response format similar to that seen following challenge with other hemorrhagic fever viruses. In contrast to the ability of the virus to block innate immune signaling in vitro, the earliest and most sustained response is an interferon-like response. Our analysis also identifies a number of cytokines that are transcriptionally upregulated during late stages of infection and suggest that there is a Th2-skewed response to infection. When correlated with companion data describing the animal model from which our samples were collected, our results suggest that the innate immune response may contribute to overall pathogenesis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Pathogenesis of Ebola Hemorrhagic Fever in Primate Models In Vivo and In Vitro

    DTIC Science & Technology

    2003-01-01

    from the Philippine Islands (Jahrling et al., 1990). Hundreds of monkeys were infected (with high mortality) in this episode, but no human cases...reported that EBOV sGP binds to human neutrophils and inhibits early neutrophil activation . This study concluded that sGP diminished innate immunity...necrosis or apoptosis. However, viral infections can also exert changes in vascular endothelia indirectly, for example, by infecting and activating

  3. Molecular Profiles for Lung Cancer Pathogenesis and Detection in U.S. Veterans

    DTIC Science & Technology

    2014-12-01

    airway epithelium [1, 6, 7], and 2) these changes can be detected and serve as biomarker for early detection of lung cancer [8, 9], in the current...biospecimens from seven locations: nasal epithelium , proximal and distal bronchial airway epithelium obtained at bronchoscopy (ipsilateral and...contralateral to the tumor) as well as the tumor/benign lesion, adjacent normal parenchyma, and sub- segmental bronchial epithelium at time of lobectomy

  4. Human airway epithelial cell cultures for modeling respiratory syncytial virus infection.

    PubMed

    Pickles, Raymond J

    2013-01-01

    Respiratory syncytial virus (RSV) is an important human respiratory pathogen with narrow species tropism. Limited availability of human pathologic specimens during early RSV-induced lung disease and ethical restrictions for RSV challenge studies in the lower airways of human volunteers has slowed our understanding of how RSV causes airway disease and greatly limited the development of therapeutic strategies for reducing RSV disease burden. Our current knowledge of RSV infection and pathology is largely based on in vitro studies using nonpolarized epithelial cell-lines grown on plastic or in vivo studies using animal models semipermissive for RSV infection. Although these models have revealed important aspects of RSV infection, replication, and associated inflammatory responses, these models do not broadly recapitulate the early interactions and potential consequences of RSV infection of the human columnar airway epithelium in vivo. In this chapter, the pro et contra of in vitro models of human columnar airway epithelium and their usefulness in respiratory virus pathogenesis and vaccine development studies will be discussed. The use of such culture models to predict characteristics of RSV infection and the correlation of these findings to the human in vivo situation will likely accelerate our understanding of RSV pathogenesis potentially identifying novel strategies for limiting the severity of RSV-associated airway disease.

  5. New Insights into the Pathogenesis of Pancreatitis

    PubMed Central

    Sah, Raghuwansh P.; Dawra, Rajinder K.; Saluja, Ashok K.

    2014-01-01

    Purpose of review In this article, we review important advances in our understanding of the mechanisms of pancreatitis. Recent Findings The relative contribution of intra-pancreatic trypsinogen activation and NFκB activation, the two major early independent cellular events in the etiology of pancreatitis, have been investigated using novel genetic models. Trypsinogen activation has traditionally held the spotlight for many decades as it is believed to be the central pathogenic event of pancreatitis However, recent experimental evidence points to the role of trypsin activation in early acinar cell damage but not in the inflammatory response of acute pancreatitis through NFκB activation. Further, chronic pancreatitis in the caerulein model develops independently of typsinogen activation. Sustained activation of the NFκB pathway, but not persistent intra-acinar expression of active trypsin, was shown to result in chronic pancreatitis. Calcineurin-NFAT signaling was shown to mediate downstream effects of pathologic rise in intracellular calcium. IL-6 was identified as a key cytokine mediating pancreatitis-associated lung injury. Summary Recent advances challenge the long-believed trypsin-centered understanding of pancreatitis. It is becoming increasingly clear that activation of intense inflammatory signaling mechanisms in acinar cells is crucial to the pathogenesis of pancreatitis, which may explain the strong systemic inflammatory response in pancreatitis. PMID:23892538

  6. Proteomic determination of widespread detergent-insolubility including Abeta but not tau early in the pathogenesis of Alzheimer's disease.

    PubMed

    Woltjer, Randall L; Cimino, P J; Boutté, Angela M; Schantz, Aimee M; Montine, Kathleen S; Larson, Eric B; Bird, Thomas; Quinn, Joseph F; Zhang, Jing; Montine, Thomas J

    2005-11-01

    Biochemical characterization of the major detergent-insoluble proteins that comprise hallmark histopathologic lesions initiated the molecular era of Alzheimer's disease (AD) research. Here, we reinvestigated detergent-insoluble proteins in AD using modern proteomic techniques. Using liquid chromatography (LC)-mass spectrometry (MS)-MS-based proteomics, we robustly identified 125 proteins in the detergent-insoluble fraction of late-onset AD (LOAD) temporal cortex that included several proteins critical to Abeta production, components of synaptic scaffolding, and products of genes linked to an increased risk of LOAD; we verified 15 of 15 of these proteins by Western blot. Following multiple analyses, we estimated that these represent ~80% of detergent-insoluble proteins in LOAD detectable by our method. Abeta, tau, and 7 of 8 other newly identified detergent-insoluble proteins were disproportionately increased in temporal cortex from patients with LOAD and AD derived from mutations in PSEN1 and PSEN2; all of these except tau were elevated in individuals with prodromal dementia, while none except Abeta were elevated in aged APPswe mice. These results are consistent with the amyloid hypothesis of AD and extend it to include widespread protein insolubility, not exclusively Abeta insolubility, early in AD pathogenesis even before the onset of clinical dementia.

  7. Dementia Pugilistica Revisited

    PubMed Central

    Castellani, Rudy J.; Perry, George

    2017-01-01

     Extensive exposure of boxers to neurotrauma in the early 20th century led to the so-called punch drunk syndrome, which was formally recognized in the medical literature in 1928. “Punch drunk” terminology was replaced by the less derisive ‘dementia pugilistica’ in 1937. In the early case material, the diagnosis of dementia pugilistica required neurological deficits, including slurring dysarthria, ataxia, pyramidal signs, extrapyramidal signs, memory impairment, and personality changes, although the specific clinical substrate has assumed lesser importance in recent years with a shift in focus on molecular pathogenesis. The postmortem neuropathology of dementia pugilistica has also evolved substantially over the past 90 years, from suspected concussion-related hemorrhages to diverse structural and neurofibrillary changes to geographic tauopathy. Progressive neurodegenerative tauopathy is among the prevailing theories for disease pathogenesis currently, although this may be overly simplistic. Careful examination of historical cases reveals both misdiagnoses and a likelihood that dementia pugilistica at that time was caused by cumulative structural brain injury. More recent neuropathological studies indicate subclinical and possibly static tauopathy in some athletes and non-athletes. Indeed, it is unclear from the literature whether retired boxers reach the inflection point that tends toward progressive neurodegeneration in the manner of Alzheimer’s disease due to boxing. Even among historical cases with extreme levels of exposure, progressive disease was exceptional. PMID:29036831

  8. Proteomics Analysis Reveals Abnormal Electron Transport and Excessive Oxidative Stress Cause Mitochondrial Dysfunction in Placental Tissues of Early-Onset Preeclampsia.

    PubMed

    Xu, Zhongwei; Jin, Xiaohan; Cai, Wei; Zhou, Maobin; Shao, Ping; Yang, Zhen; Fu, Rong; Cao, Jin; Liu, Yan; Yu, Fang; Fan, Rong; Zhang, Yan; Zou, Shuang; Zhou, Xin; Yang, Ning; Chen, Xu; Li, Yuming

    2018-04-20

    Early-onset preeclampsia (EOS-PE) refers to preeclampsia that occurred before 34 gestation weeks. This study is conducted to explore the relationship between mitochondrial dysfunction and the pathogenesis of EOS-PE using proteomic strategy. To identify altering expressed mitochondrial proteins between severe EOS-PE and healthy pregnancies, enrichment of mitochondria coupled with iTRAQ-based quantitative proteomic method is performed. Immunohistochemistry (IHC) and western blot are performed to detect the alteration of changing expression proteins, and confirmed the accuracy of proteomic results. A total of 1372 proteins were quantified and 132 altering expressed proteins were screened, including 86 downregulated expression proteins and 46 upregulated expression proteins (p < 0.05). Bioinformatics analysis showed that differentially expressed proteins participated in numerous biological processes, including oxidation-reduction process, respiratory electron transport chain, and oxidative phosphorylation. Especially, mitochondria-related molecules, PRDX2, PARK7, BNIP3, BCL2, PDHA1, SUCLG1, ACADM, and NDUFV1, are involved in energy-production process in the matrix and membrane of mitochondria. Results of the experiment show that abnormal electron transport, excessive oxidative stress, and mitochondrion disassembly might be the main cause of mitochondrial dysfunction, and is related to the pathogenesis of EOS-PE. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Bmp6 Regulates Retinal Iron Homeostasis and Has Altered Expression in Age-Related Macular Degeneration

    PubMed Central

    Hadziahmetovic, Majda; Song, Ying; Wolkow, Natalie; Iacovelli, Jared; Kautz, Leon; Roth, Marie-Paule; Dunaief, Joshua L.

    2011-01-01

    Iron-induced oxidative stress causes hereditary macular degeneration in patients with aceruloplasminemia. Similarly, retinal iron accumulation in age-related macular degeneration (AMD) may exacerbate the disease. The cause of retinal iron accumulation in AMD is poorly understood. Given that bone morphogenetic protein 6 (Bmp6) is a major regulator of systemic iron, we examined the role of Bmp6 in retinal iron regulation and in AMD pathogenesis. Bmp6 was detected in the retinal pigment epithelium (RPE), a major site of pathology in AMD. In cultured RPE cells, Bmp6 was down-regulated by oxidative stress and up-regulated by iron. Intraocular Bmp6 protein injection in mice up-regulated retinal hepcidin, an iron regulatory hormone, and altered retinal labile iron levels. Bmp6−/− mice had age-dependent retinal iron accumulation and degeneration. Postmortem RPE from patients with early AMD exhibited decreased Bmp6 levels. Because oxidative stress is associated with AMD pathogenesis and down-regulates Bmp6 in cultured RPE cells, the diminished Bmp6 levels observed in RPE cells in early AMD may contribute to iron build-up in AMD. This may in turn propagate a vicious cycle of oxidative stress and iron accumulation, exacerbating AMD and other diseases with hereditary or acquired iron excess. PMID:21703414

  10. Processing of the Synaptic Cell Adhesion Molecule Neurexin-3β by Alzheimer Disease α- and γ-Secretases*

    PubMed Central

    Bot, Nathalie; Schweizer, Claude; Ben Halima, Saoussen; Fraering, Patrick C.

    2011-01-01

    Neurexins (NRXNs) are synaptic cell adhesion molecules having essential roles in the assembly and maturation of synapses into fully functional units. Immunocytochemical and electrophysiological studies have shown that specific binding across the synaptic cleft of the ectodomains of presynaptic NRXNs and postsynaptic neuroligins have the potential to bidirectionally coordinate and trigger synapse formation. Moreover, in vivo studies as well as genome-wide association studies pointed out implication of NRXNs in the pathogenesis of cognitive disorders including autism spectrum disorders and different types of addictions including opioid and alcohol dependences, suggesting an important role in synaptic function. Despite extensive investigations, the mechanisms by which NRXNs modulate the properties of synapses remain largely unknown. We report here that α- and γ-secretases can sequentially process NRXN3β, leading to the formation of two final products, an ∼80-kDa N-terminal extracellular domain of Neurexin-3β (sNRXN3β) and an ∼12-kDa C-terminal intracellular NRXN3β domain (NRXN3β-ICD), both of them being potentially implicated in the regulation of NRXNs and neuroligins functions at the synapses or in yet unidentified signal transduction pathways. We further report that this processing is altered by several PS1 mutations in the catalytic subunit of the γ-secretase that cause early-onset familial Alzheimer disease. PMID:21084300

  11. Landscape of somatic mutations and clonal evolution in mantle cell lymphoma.

    PubMed

    Beà, Sílvia; Valdés-Mas, Rafael; Navarro, Alba; Salaverria, Itziar; Martín-Garcia, David; Jares, Pedro; Giné, Eva; Pinyol, Magda; Royo, Cristina; Nadeu, Ferran; Conde, Laura; Juan, Manel; Clot, Guillem; Vizán, Pedro; Di Croce, Luciano; Puente, Diana A; López-Guerra, Mónica; Moros, Alexandra; Roue, Gael; Aymerich, Marta; Villamor, Neus; Colomo, Lluís; Martínez, Antonio; Valera, Alexandra; Martín-Subero, José I; Amador, Virginia; Hernández, Luis; Rozman, Maria; Enjuanes, Anna; Forcada, Pilar; Muntañola, Ana; Hartmann, Elena M; Calasanz, María J; Rosenwald, Andreas; Ott, German; Hernández-Rivas, Jesús M; Klapper, Wolfram; Siebert, Reiner; Wiestner, Adrian; Wilson, Wyndham H; Colomer, Dolors; López-Guillermo, Armando; López-Otín, Carlos; Puente, Xose S; Campo, Elías

    2013-11-05

    Mantle cell lymphoma (MCL) is an aggressive tumor, but a subset of patients may follow an indolent clinical course. To understand the mechanisms underlying this biological heterogeneity, we performed whole-genome and/or whole-exome sequencing on 29 MCL cases and their respective matched normal DNA, as well as 6 MCL cell lines. Recurrently mutated genes were investigated by targeted sequencing in an independent cohort of 172 MCL patients. We identified 25 significantly mutated genes, including known drivers such as ataxia-telangectasia mutated (ATM), cyclin D1 (CCND1), and the tumor suppressor TP53; mutated genes encoding the anti-apoptotic protein BIRC3 and Toll-like receptor 2 (TLR2); and the chromatin modifiers WHSC1, MLL2, and MEF2B. We also found NOTCH2 mutations as an alternative phenomenon to NOTCH1 mutations in aggressive tumors with a dismal prognosis. Analysis of two simultaneous or subsequent MCL samples by whole-genome/whole-exome (n = 8) or targeted (n = 19) sequencing revealed subclonal heterogeneity at diagnosis in samples from different topographic sites and modulation of the initial mutational profile at the progression of the disease. Some mutations were predominantly clonal or subclonal, indicating an early or late event in tumor evolution, respectively. Our study identifies molecular mechanisms contributing to MCL pathogenesis and offers potential targets for therapeutic intervention.

  12. Selective distribution and dynamic modulation of miRNAs in the synapse and its possible role in Alzheimer's Disease.

    PubMed

    Garza-Manero, Sylvia; Pichardo-Casas, Israel; Arias, Clorinda; Vaca, Luis; Zepeda, Angélica

    2014-10-10

    MicroRNAs (miRNAs) are small non-coding RNAs that control a wide range of functions in the cell. They act as post-transcriptional gene regulators throughout in development and in adulthood, although recent evidence suggests their potential role in the onset and development of various diseases and neuropathologies. In neurons miRNAs seem to play a key role as regulators of synaptic function. Synapses are vulnerable structures in neurodegenerative diseases. In particular, synaptic loss has been described as an early event in the pathogenesis of Alzheimer's Disease (AD). MicroRNA-mediated gene silencing represents a candidate event for the repression of specific mRNAs and protein synthesis that could account for synaptic dysfunction. In this work, we review the participation of miRNAs in synaptic function and consider their possible role in synaptic alterations in AD. First we review the biogenesis of miRNAs and their role as post-transcriptional regulators. Then we discuss recently published data on the distribution of miRNAs in the brain as well as their role in dynamic regulation at the synapse. In the second part, we briefly introduce the reader to AD, focusing on synaptic alterations in the progression of the pathology. Then we discuss possible implications of miRNAs in the associated synaptic dysfunction. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. The endocannabinoid system in normal and pathological brain ageing

    PubMed Central

    Bilkei-Gorzo, Andras

    2012-01-01

    The role of endocannabinoids as inhibitory retrograde transmitters is now widely known and intensively studied. However, endocannabinoids also influence neuronal activity by exerting neuroprotective effects and regulating glial responses. This review centres around this less-studied area, focusing on the cellular and molecular mechanisms underlying the protective effect of the cannabinoid system in brain ageing. The progression of ageing is largely determined by the balance between detrimental, pro-ageing, largely stochastic processes, and the activity of the homeostatic defence system. Experimental evidence suggests that the cannabinoid system is part of the latter system. Cannabinoids as regulators of mitochondrial activity, as anti-oxidants and as modulators of clearance processes protect neurons on the molecular level. On the cellular level, the cannabinoid system regulates the expression of brain-derived neurotrophic factor and neurogenesis. Neuroinflammatory processes contributing to the progression of normal brain ageing and to the pathogenesis of neurodegenerative diseases are suppressed by cannabinoids, suggesting that they may also influence the ageing process on the system level. In good agreement with the hypothesized beneficial role of cannabinoid system activity against brain ageing, it was shown that animals lacking CB1 receptors show early onset of learning deficits associated with age-related histological and molecular changes. In preclinical models of neurodegenerative disorders, cannabinoids show beneficial effects, but the clinical evidence regarding their efficacy as therapeutic tools is either inconclusive or still missing. PMID:23108550

  14. A dietary restriction influences the progression but not the initiation of MSG-Induced nonalcoholic steatohepatitis.

    PubMed

    Fujimoto, Makoto; Tsuneyama, Koichi; Nakanishi, Yuko; Salunga, Thucydides L; Nomoto, Kazuhiro; Sasaki, Yoshiyuki; Iizuka, Seiichi; Nagata, Mitsunobu; Suzuki, Wataru; Shimada, Tsutomu; Aburada, Masaki; Shimada, Yutaka; Gershwin, M Eric; Selmi, Carlo

    2014-03-01

    The metabolic syndrome is a major worldwide health care issue and a dominant risk factor for cardiovascular disease. The liver manifestations of this syndrome include nonalcoholic fatty liver disease (NAFLD) and its progressive variant nonalcoholic steatohepatitis (NASH). Although significant research has been performed, the basic pathogenesis of NAFLD/NASH remains controversial and effective treatments are still unavailable. We have previously reported on a murine model of NASH induced by the neonatal injection of monosodium glutamate (MSG), which includes the clinical manifestations of central obesity, diabetes, hyperlipidemia, and ultimately liver inflammation, fibrosis, and cancer. Although MSG is considered a safe food additive, its administration to pregnant rats increases the voracity and growth hormone levels in the offspring. To further understand the biology of this model, we have investigated the influence of the calorie intake on these clinical manifestations by feeding animals a restrictive diet. MSG-treated animals fed a restrictive diet continue to manifest obesity and early stage NASH but have improvements in serum lipid profiles. At 12 months of age, mice had manifestations of obesity, whether animals were fed a restricted or control diet, but animals fed a restrictive diet had a reduction in the progression of NASH. In conclusion, MSG appears to be a critical factor in the initiation of obesity, whereas calorie intake may modulate the progression of disease.

  15. Mast Cells and Innate Lymphoid Cells: Underappreciated Players in CNS Autoimmune Demyelinating Disease.

    PubMed

    Brown, Melissa A; Weinberg, Rebecca B

    2018-01-01

    Multiple sclerosis (MS) and its mouse model, experimental autoimmune encephalomyelitis, are autoimmune CNS inflammatory diseases. As a result of a breakdown in the relatively impermeable blood-brain barrier (BBB) in affected individuals, myelin-specific CD4 + and CD8 + T cells gain entry into the immune privileged CNS and initiate myelin, oligodendrocyte, and nerve axon destruction. However, despite the absolute requirement for T cells, there is increasing evidence that innate immune cells also play critical amplifying roles in disease pathogenesis. By modulating the character and magnitude of the myelin-reactive T cell response and regulating BBB integrity, innate cells affect both disease initiation and progression. Two classes of innate cells, mast cells and innate lymphoid cells (ILCs), have been best studied in models of allergic and gastrointestinal inflammatory diseases. Yet, there is emerging evidence that these cell types also exert a profound influence in CNS inflammatory disease. Both cell types are residents within the meninges and can be activated early in disease to express a wide variety of disease-modifying cytokines and chemokines. In this review, we discuss how mast cells and ILCs can have either disease-promoting or -protecting effects on MS and other CNS inflammatory diseases and how sex hormones may influence this outcome. These observations suggest that targeting these cells and their unique mediators can be exploited therapeutically.

  16. High-throughput molecular analysis in lung cancer: insights into biology and potential clinical applications.

    PubMed

    Ocak, S; Sos, M L; Thomas, R K; Massion, P P

    2009-08-01

    During the last decade, high-throughput technologies including genomic, epigenomic, transcriptomic and proteomic have been applied to further our understanding of the molecular pathogenesis of this heterogeneous disease, and to develop strategies that aim to improve the management of patients with lung cancer. Ultimately, these approaches should lead to sensitive, specific and noninvasive methods for early diagnosis, and facilitate the prediction of response to therapy and outcome, as well as the identification of potential novel therapeutic targets. Genomic studies were the first to move this field forward by providing novel insights into the molecular biology of lung cancer and by generating candidate biomarkers of disease progression. Lung carcinogenesis is driven by genetic and epigenetic alterations that cause aberrant gene function; however, the challenge remains to pinpoint the key regulatory control mechanisms and to distinguish driver from passenger alterations that may have a small but additive effect on cancer development. Epigenetic regulation by DNA methylation and histone modifications modulate chromatin structure and, in turn, either activate or silence gene expression. Proteomic approaches critically complement these molecular studies, as the phenotype of a cancer cell is determined by proteins and cannot be predicted by genomics or transcriptomics alone. The present article focuses on the technological platforms available and some proposed clinical applications. We illustrate herein how the "-omics" have revolutionised our approach to lung cancer biology and hold promise for personalised management of lung cancer.

  17. Reduced Smoothened level rescues Aβ-induced memory deficits and neuronal inflammation in animal models of Alzheimer's disease.

    PubMed

    Ma, Weiwei; Wu, Mengnan; Zhou, Siyan; Tao, Ye; Xie, Zuolei; Zhong, Yi

    2018-05-20

    Emerging evidence suggests that neuro-inflammation begins early and drives the pathogenesis of Alzheimer's disease (AD), and anti-inflammatory therapies are under clinical development. However, several anti-inflammatory compounds failed to improve memory in clinical trials, indicating that reducing inflammation alone might not be enough. On the other hand, neuro-inflammation is implicated in a number of mental disorders which share the same therapeutic targets. Based on these observations, we screened a batch of genes related with mental disorder and neuro-inflammation in a classical olfactory conditioning in an amyloid beta (Aβ) overexpression fly model. A Smoothened (SMO) mutant was identified as a genetic modifier of Aβ toxicity in 3-min memory and downregulation of SMO rescued Aβ-induced 3-min and 1-h memory deficiency. Also, Aβ activated innate inflammatory response in fly by increasing the expression of antimicrobial peptides, which were alleviated by downregulating SMO. Furthermore, pharmaceutical administration of a SMO antagonist LDE rescued Aβ-induced upregulation of SMO in astrocytes of mouse hippocampus, improved memory in Morris water maze (MWM), and reduced expression of astrocyte secreting pro-inflammatory factors IL-1β, TNFα and the microglia marker IBA-1 in an APP/PS1 transgenic mouse model. Our study suggests that SMO is an important conserved modulator of Aβ toxicity in both fly and mouse models of AD. Copyright © 2018. Published by Elsevier Ltd.

  18. ApoA-II directs morphogenetic movements of zebrafish embryo by preventing chromosome fusion during nuclear division in yolk syncytial layer.

    PubMed

    Zhang, Ting; Yao, Shaohua; Wang, Ping; Yin, Chaoran; Xiao, Chun; Qian, Meilin; Liu, Donghui; Zheng, Lemin; Meng, Wentong; Zhu, Hongyan; Liu, Jin; Xu, Hong; Mo, Xianming

    2011-03-18

    The high density lipoprotein (HDL) represents a class of lipid- and protein-containing particles and consists of two major apolipoproteins apoA-I and apoA-II. ApoA-II has been shown to be involved in the pathogenesis of insulin resistance, adiposity, diabetes, and metabolic syndrome. In embryo, apoa2 mRNAs are abundant in the liver, brain, lung, placenta, and in fish yolk syncytial layer (YSL), suggesting that apoa2 may perform a function during embryonic development. Here we find out that apoa2 modulates zebrafish embryonic development by regulating the organization of YSL. Disruption of apoa2 function in zebrafish caused chromosome fusing, which strongly blocked YSL nuclear division, inducing disorders in YSL organization and finally disturbing the embryonic epiboly. Purified native human apoA-II was able specifically to rescue the defects and induced nuclear division in zebrafish embryos and in human HeLa cells. The C terminus of apoA-II was required for the proper chromosome separation during nuclear division of YSL in zebrafish embryos and in human HeLa cells. Our data indicate that organization of YSL is required for blastoderm patterning and morphogenesis and suggest that apolipoprotein apoA-II is a novel factor of nuclear division in YSL involved in the regulation of early zebrafish embryonic morphogenesis and in mammalian cells for proliferation.

  19. ApoA-II Directs Morphogenetic Movements of Zebrafish Embryo by Preventing Chromosome Fusion during Nuclear Division in Yolk Syncytial Layer*

    PubMed Central

    Zhang, Ting; Yao, Shaohua; Wang, Ping; Yin, Chaoran; Xiao, Chun; Qian, Meilin; Liu, Donghui; Zheng, Lemin; Meng, Wentong; Zhu, Hongyan; Liu, Jin; Xu, Hong; Mo, Xianming

    2011-01-01

    The high density lipoprotein (HDL) represents a class of lipid- and protein-containing particles and consists of two major apolipoproteins apoA-I and apoA-II. ApoA-II has been shown to be involved in the pathogenesis of insulin resistance, adiposity, diabetes, and metabolic syndrome. In embryo, apoa2 mRNAs are abundant in the liver, brain, lung, placenta, and in fish yolk syncytial layer (YSL), suggesting that apoa2 may perform a function during embryonic development. Here we find out that apoa2 modulates zebrafish embryonic development by regulating the organization of YSL. Disruption of apoa2 function in zebrafish caused chromosome fusing, which strongly blocked YSL nuclear division, inducing disorders in YSL organization and finally disturbing the embryonic epiboly. Purified native human apoA-II was able specifically to rescue the defects and induced nuclear division in zebrafish embryos and in human HeLa cells. The C terminus of apoA-II was required for the proper chromosome separation during nuclear division of YSL in zebrafish embryos and in human HeLa cells. Our data indicate that organization of YSL is required for blastoderm patterning and morphogenesis and suggest that apolipoprotein apoA-II is a novel factor of nuclear division in YSL involved in the regulation of early zebrafish embryonic morphogenesis and in mammalian cells for proliferation. PMID:21212265

  20. The Endosome Localized Arf-GAP AGAP1 Modulates Dendritic Spine Morphology Downstream of the Neurodevelopmental Disorder Factor Dysbindin

    PubMed Central

    Arnold, Miranda; Cross, Rebecca; Singleton, Kaela S.; Zlatic, Stephanie; Chapleau, Christopher; Mullin, Ariana P.; Rolle, Isaiah; Moore, Carlene C.; Theibert, Anne; Pozzo-Miller, Lucas; Faundez, Victor; Larimore, Jennifer

    2016-01-01

    AGAP1 is an Arf1 GTPase activating protein that interacts with the vesicle-associated protein complexes adaptor protein 3 (AP-3) and Biogenesis of Lysosome Related Organelles Complex-1 (BLOC-1). Overexpression of AGAP1 in non-neuronal cells results in an accumulation of endosomal cargoes, which suggests a role in endosome-dependent traffic. In addition, AGAP1 is a candidate susceptibility gene for two neurodevelopmental disorders, autism spectrum disorder (ASD) and schizophrenia (SZ); yet its localization and function in neurons have not been described. Here, we describe that AGAP1 localizes to axons, dendrites, dendritic spines and synapses, colocalizing preferentially with markers of early and recycling endosomes. Functional studies reveal overexpression and down-regulation of AGAP1 affects both neuronal endosomal trafficking and dendritic spine morphology, supporting a role for AGAP1 in the recycling endosomal trafficking involved in their morphogenesis. Finally, we determined the sensitivity of AGAP1 expression to mutations in the DTNBP1 gene, which is associated with neurodevelopmental disorder, and found that AGAP1 mRNA and protein levels are selectively reduced in the null allele of the mouse ortholog of DTNBP1. We postulate that endosomal trafficking contributes to the pathogenesis of neurodevelopmental disorders affecting dendritic spine morphology, and thus excitatory synapse structure and function. PMID:27713690

Top