Li, Min; Chang, Shan; Yang, Longjin; Shi, Jingyi; McFarland, Kelli; Yang, Xiao; Moller, Alyssa; Wang, Chunguang; Zou, Xiaoqin; Chi, Chengwu; Cui, Jianmin
2014-02-21
BK channel β subunits (β1-β4) modulate the function of channels formed by slo1 subunits to produce tissue-specific phenotypes. The molecular mechanism of how the homologous β subunits differentially alter BK channel functions and the role of different BK channel functions in various physiologic processes remain unclear. By studying channels expressed in Xenopus laevis oocytes, we show a novel disulfide-cross-linked dimer conopeptide, Vt3.1 that preferentially inhibits BK channels containing the β4 subunit, which is most abundantly expressed in brain and important for neuronal functions. Vt3.1 inhibits the currents by a maximum of 71%, shifts the G-V relation by 45 mV approximately half-saturation concentrations, and alters both open and closed time of single channel activities, indicating that the toxin alters voltage dependence of the channel. Vt3.1 contains basic residues and inhibits voltage-dependent activation by electrostatic interactions with acidic residues in the extracellular loops of the slo1 and β4 subunits. These results suggest a large interaction surface between the slo1 subunit of BK channels and the β4 subunit, providing structural insight into the molecular interactions between slo1 and β4 subunits. The results also suggest that Vt3.1 is an excellent tool for studying β subunit modulation of BK channels and for understanding the physiological roles of BK channels in neurophysiology.
The SloR Metalloregulator is Involved in the Streptococcus mutans Oxidative Stress Response
Crepps, Sarah C.; Fields, Emily E.; Galan, Diego; Corbett, John P.; Von Hasseln, Elizabeth R.; Spatafora, Grace A.
2015-01-01
SUMMARY A 25kDa SloR metalloregulatory protein in Streptococcus mutans modulates the expression of multiple genes, including the sloABC operon that encodes essential Mn2+ transport and genes that promote cariogenesis. In this study, we report on SloC- and SloR-deficient strains of S. mutans (GMS284 and GMS584, respectively) that demonstrate compromised survivorship compared to their UA159 wildtype progenitor and their complemented strains (GMS285 and GMS585, respectively), when challenged with streptonigrin and/or in growth competition experiments. The results of streptonigrin assays revealed significantly larger zones of inhibition for GMS584 than for either UA159 or GMS585, indicating weakened S. mutans survivorship in the absence of SloR. Competition assays revealed a compromised ability for GMS284 and GMS584 to survive peroxide challenge compared with their SloC- and SloR-proficient counterparts. These findings are consistent with a role for SloC and SloR in S. mutans aerotolerance. We also predicted differential expression of oxidative stress tolerance genes in GMS584 versus UA159 and GMS585 when grown aerobically. The results of qRT-PCR experiments revealed S. mutans sod, tpx, and sloC expression that was up-regulated in GMS584 compared to UA159 and GMS585, indicating that the impact of oxidative stress on S. mutans is more severe in the absence of SloR than in its presence. The results of electrophoretic mobility shift assays indicate that SloR does not bind to the sod or tpx promoter regions directly, implicating intermediaries that may arbitrate the SloR response to oxidative stress. PMID:26577188
The SloR metalloregulator is involved in the Streptococcus mutans oxidative stress response.
Crepps, S C; Fields, E E; Galan, D; Corbett, J P; Von Hasseln, E R; Spatafora, G A
2016-12-01
SloR, a 25-kDa metalloregulatory protein in Streptococcus mutans modulates the expression of multiple genes, including the sloABC operon that encodes essential Mn 2+ transport and genes that promote cariogenesis. In this study, we report on SloC- and SloR-deficient strains of S. mutans (GMS284 and GMS584, respectively) that demonstrate compromised survivorship compared with their UA159 wild-type progenitor and their complemented strains (GMS285 and GMS585, respectively), when challenged with streptonigrin and/or in growth competition experiments. The results of streptonigrin assays revealed significantly larger zones of inhibition for GMS584 than for either UA159 or GMS585, indicating weakened S. mutans survivorship in the absence of SloR. Competition assays revealed a compromised ability for GMS284 and GMS584 to survive peroxide challenge compared with their SloC- and SloR-proficient counterparts. These findings are consistent with a role for SloC and SloR in S. mutans aerotolerance. We also predicted differential expression of oxidative stress tolerance genes in GMS584 versus UA159 and GMS585 when grown aerobically. The results of quantitative RT-PCR experiments revealed S. mutans sod, tpx, and sloC expression that was upregulated in GMS584 compared with UA159 and GMS585, indicating that the impact of oxidative stress on S. mutans is more severe in the absence of SloR than in its presence. The results of electrophoretic mobility shift assays indicate that SloR does not bind to the sod or tpx promoter regions directly, implicating intermediaries that may arbitrate the SloR response to oxidative stress. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Hoshi, Toshinori; Tian, Yutao; Xu, Rong; Heinemann, Stefan H; Hou, Shangwei
2013-03-19
Large-conductance Ca(2+)- and voltage-activated K(+) (BK) channels are well known for their functional versatility, which is bestowed in part by their rich modulatory repertoire. We recently showed that long-chain omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA) found in oily fish lower blood pressure by activating vascular BK channels made of Slo1+β1 subunits. Here we examined the action of DHA on BK channels with different auxiliary subunit compositions. Neuronal Slo1+β4 channels were just as well activated by DHA as vascular Slo1+β1 channels. In contrast, the stimulatory effect of DHA was much smaller in Slo1+β2, Slo1+LRRC26 (γ1), and Slo1 channels without auxiliary subunits. Mutagenesis of β1, β2, and β4 showed that the large effect of DHA in Slo1+β1 and Slo1+β4 is conferred by the presence of two residues, one in the N terminus and the other in the first transmembrane segment of the β1 and β4 subunits. Transfer of this amino acid pair from β1 or β4 to β2 introduces a large response to DHA in Slo1+β2. The presence of a pair of oppositely charged residues at the aforementioned positions in β subunits is associated with a large response to DHA. The Slo1 auxiliary subunits are expressed in a highly tissue-dependent fashion. Thus, the subunit composition-dependent stimulation by DHA demonstrates that BK channels are effectors of omega-3 fatty acids with marked tissue specificity.
Deletion of the Slo3 gene abolishes alkalization-activated K+ current in mouse spermatozoa
Zeng, Xu-Hui; Yang, Chengtao; Kim, Sung Tae; Lingle, Christopher J.; Xia, Xiao-Ming
2011-01-01
Mouse spermatozoa express a pH-dependent K+ current (KSper) thought to be composed of subunits encoded by the Slo3 gene. However, the equivalence of KSper and Slo3-dependent current remains uncertain, because heterologous expression of Slo3 results in currents that are less effectively activated by alkalization than are native KSper currents. Here, we show that genetic deletion of Slo3 abolishes all pH-dependent K+ current at physiological membrane potentials in corpus epididymal sperm. A residual pH-dependent outward current (IKres) is observed in Slo3−/− sperm at potentials of >0 mV. Differential inhibition of KSper/Slo3 and IKres by clofilium reveals that the amplitude of IKres is similar in both wild-type (wt) and Slo3−/− sperm. The properties of IKres suggest that it likely represents outward monovalent cation flux through CatSper channels. Thus, KSper/Slo3 may account for essentially all mouse sperm K+ current and is the sole pH-dependent K+ conductance in these sperm. With physiological ionic gradients, alkalization depolarizes Slo3−/− spermatozoa, presumably from CatSper activation, in contrast to Slo3/KSper-mediated hyperpolarization in wt sperm. Slo3−/− male mice are infertile, but Slo3−/− sperm exhibit some fertility within in vitro fertilization assays. Slo3−/− sperm exhibit a higher incidence of morphological abnormalities accentuated by hypotonic challenge and also exhibit deficits in motility in the absence of bicarbonate, revealing a role of KSper under unstimulated conditions. Together, these results show that KSper/Slo3 is the primary spermatozoan K+ current, that KSper may play a critical role in acquisition of normal morphology and sperm motility when faced with hyperosmotic challenges, and that Slo3 is critical for fertility. PMID:21427226
Chiu, Yu-Hsin; Alvarez-Baron, Claudia; Kim, Eun Young
2010-01-01
Large-conductance Ca2+-activated K+ (BKCa) channels regulate the physiology of many cell types. A single vertebrate gene variously known as Slo1, KCa1.1, or KCNMA1 encodes the pore-forming subunits of BKCa channel but is expressed in a potentially very large number of alternative splice variants. Two splice variants of Slo1, Slo1VEDEC and Slo1QEERL, which differ at the extreme COOH terminus, show markedly different steady-state expression levels on the cell surface. Here we show that Slo1VEDEC and Slo1QEERL can reciprocally coimmunoprecipitate, indicating that they form heteromeric complexes. Moreover, coexpression of even small amounts of Slo1VEDEC markedly reduces surface expression of Slo1QEERL and total Slo1 as indicated by cell-surface biotinylation assays. The effects of Slo1VEDEC on steady-state surface expression can be attributed primarily to the last five residues of the protein based on surface expression of motif-swapped constructs of Slo1 in human embryonic kidney (HEK) 293T cells. In addition, the presence of the VEDEC motif at the COOH terminus of Slo1 channels is sufficient to confer a dominant-negative effect on cell surface expression of itself or other types of Slo1 subunits. Treating cells with short peptides containing the VEDEC motif increased surface expression of Slo1VEDEC channels transiently expressed in HEK293T cells and increased current through endogenous BKCa channels in mouse podocytes. Slo1VEDEC and Slo1QEERL channels are removed from the HEK293T cell surface with similar kinetics and to a similar extent, which suggests that the inhibitory effect of the VEDEC motif is exerted primarily on forward trafficking into the plasma membrane. PMID:20051533
Schniederjans, Monika; Miltsch, Sandra M.; Krücken, Jürgen; Guest, Marcus; Holden-Dye, Lindy; Harder, Achim; von Samson-Himmelstjerna, Georg
2011-01-01
The calcium-gated potassium channel SLO-1 in Caenorhabditis elegans was recently identified as key component for action of emodepside, a new anthelmintic drug with broad spectrum activity. In this study we identified orthologues of slo-1 in Ancylostoma caninum, Cooperia oncophora, and Haemonchus contortus, all important parasitic nematodes in veterinary medicine. Furthermore, functional analyses of these slo-1 orthologues were performed using heterologous expression in C. elegans. We expressed A. caninum and C. oncophora slo-1 in the emodepside-resistant genetic background of the slo-1 loss-of-function mutant NM1968 slo-1(js379). Transformants expressing A. caninum slo-1 from C. elegans slo-1 promoter were highly susceptible (compared to the fully emodepside-resistant slo-1(js379)) and showed no significant difference in their emodepside susceptibility compared to wild-type C. elegans (p = 0.831). Therefore, the SLO-1 channels of A. caninum and C. elegans appear to be completely functionally interchangeable in terms of emodepside sensitivity. Furthermore, we tested the ability of the 5′ flanking regions of A. caninum and C. oncophora slo-1 to drive expression of SLO-1 in C. elegans and confirmed functionality of the putative promoters in this heterologous system. For all transgenic lines tested, expression of either native C. elegans slo-1 or the parasite-derived orthologue rescued emodepside sensitivity in slo-1(js379) and the locomotor phenotype of increased reversal frequency confirming the reconstitution of SLO-1 function in the locomotor circuits. A potent mammalian SLO-1 channel inhibitor, penitrem A, showed emodepside antagonising effects in A. caninum and C. elegans. The study combined the investigation of new anthelmintic targets from parasitic nematodes and experimental use of the respective target genes in C. elegans, therefore closing the gap between research approaches using model nematodes and those using target organisms. Considering the still scarcely advanced techniques for genetic engineering of parasitic nematodes, the presented method provides an excellent opportunity for examining the pharmacofunction of anthelmintic targets derived from parasitic nematodes. PMID:21490955
Mechanism of inhibition of mouse Slo3 (KCa 5.1) potassium channels by quinine, quinidine and barium.
Wrighton, David C; Muench, Stephen P; Lippiat, Jonathan D
2015-09-01
The Slo3 (KCa 5.1) channel is a major component of mammalian KSper (sperm potassium conductance) channels and inhibition of these channels by quinine and barium alters sperm motility. The aim of this investigation was to determine the mechanism by which these drugs inhibit Slo3 channels. Mouse (m) Slo3 (KCa 5.1) channels or mutant forms were expressed in Xenopus oocytes and currents recorded with 2-electrode voltage-clamp. Gain-of-function mSlo3 mutations were used to explore the state-dependence of the inhibition. The interaction between quinidine and mSlo3 channels was modelled by in silico docking. Several drugs known to block KSper also affected mSlo3 channels with similar levels of inhibition. The inhibition induced by extracellular barium was prevented by increasing the extracellular potassium concentration. R196Q and F304Y mutations in the mSlo3 voltage sensor and pore, respectively, both increased channel activity. The F304Y mutation did not alter the effects of barium, but increased the potency of inhibition by both quinine and quinidine approximately 10-fold; this effect was not observed with the R196Q mutation. Block of mSlo3 channels by quinine, quinidine and barium is not state-dependent. Barium inhibits mSlo3 outside the cell by interacting with the selectivity filter, whereas quinine and quinidine act from the inside, by binding in a hydrophobic pocket formed by the S6 segment of each subunit. Furthermore, we propose that the Slo3 channel activation gate lies deep within the pore between F304 in the S6 segment and the selectivity filter. © 2015 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.
Xu, Rong; Hou, Shangwei; Heinemann, Stefan H.; Tian, Yutao
2013-01-01
Long-chain polyunsaturated omega-3 fatty acids such as docosahexaenoic acid (DHA) at nanomolar concentrations reversibly activate human large-conductance Ca2+- and voltage-gated K+ (Slo1 BK) channels containing auxiliary β1 or β4 subunits in cell-free patches. Here we examined the action of DHA on the Slo1 channel without any auxiliary subunit and sought to elucidate the biophysical mechanism and the molecular determinants of the DHA sensitivity. Measurements of ionic currents through human Slo1 (hSlo1) channels reveal that the stimulatory effect of DHA does not require activation of the voltage or Ca2+ sensors. Unlike gating of the hSlo1 channel, that of the Drosophila melanogaster Slo1 (dSlo1) channel is unaltered by DHA. Our mutagenesis study based on the differential responses of human and dSlo1 channels to DHA pinpoints that Y318 near the cytoplasmic end of S6 in the hSlo1 channel is a critical determinant of the stimulatory action of DHA. The mutation Y318S in hSlo1, which replaces Y with S as found in dSlo1, greatly diminishes the channel’s response to DHA with a 22-carbon chain whether β1 or β4 is absent or present. However, the responses to α-linolenic acid, an omegea-3 fatty acid with an 18-carbon chain, and to arachidonic acid, an omega-6 fatty acid with a 20-carbon chain, remain unaffected by the mutation. Y318 in the S6 segment of hSlo1 is thus an important determinant of the electrophysiological response of the channel to DHA. Furthermore, the mutation Y318S may prove to be useful in dissecting out the complex lipid-mediated modulation of Slo1 BK channels. PMID:24127525
Zawadzki, Robert J; Zhang, Pengfei; Zam, Azhar; Miller, Eric B; Goswami, Mayank; Wang, Xinlei; Jonnal, Ravi S; Lee, Sang-Hyuck; Kim, Dae Yu; Flannery, John G; Werner, John S; Burns, Marie E; Pugh, Edward N
2015-06-01
Adaptive optics scanning laser ophthalmoscopy (AO-SLO) has recently been used to achieve exquisite subcellular resolution imaging of the mouse retina. Wavefront sensing-based AO typically restricts the field of view to a few degrees of visual angle. As a consequence the relationship between AO-SLO data and larger scale retinal structures and cellular patterns can be difficult to assess. The retinal vasculature affords a large-scale 3D map on which cells and structures can be located during in vivo imaging. Phase-variance OCT (pv-OCT) can efficiently image the vasculature with near-infrared light in a label-free manner, allowing 3D vascular reconstruction with high precision. We combined widefield pv-OCT and SLO imaging with AO-SLO reflection and fluorescence imaging to localize two types of fluorescent cells within the retinal layers: GFP-expressing microglia, the resident macrophages of the retina, and GFP-expressing cone photoreceptor cells. We describe in detail a reflective afocal AO-SLO retinal imaging system designed for high resolution retinal imaging in mice. The optical performance of this instrument is compared to other state-of-the-art AO-based mouse retinal imaging systems. The spatial and temporal resolution of the new AO instrumentation was characterized with angiography of retinal capillaries, including blood-flow velocity analysis. Depth-resolved AO-SLO fluorescent images of microglia and cone photoreceptors are visualized in parallel with 469 nm and 663 nm reflectance images of the microvasculature and other structures. Additional applications of the new instrumentation are discussed.
Calcium-activated potassium (BK) channels are encoded by duplicate slo1 genes in teleost fishes.
Rohmann, Kevin N; Deitcher, David L; Bass, Andrew H
2009-07-01
Calcium-activated, large conductance potassium (BK) channels in tetrapods are encoded by a single slo1 gene, which undergoes extensive alternative splicing. Alternative splicing generates a high level of functional diversity in BK channels that contributes to the wide range of frequencies electrically tuned by the inner ear hair cells of many tetrapods. To date, the role of BK channels in hearing among teleost fishes has not been investigated at the molecular level, although teleosts account for approximately half of all extant vertebrate species. We identified slo1 genes in teleost and nonteleost fishes using polymerase chain reaction and genetic sequence databases. In contrast to tetrapods, all teleosts examined were found to express duplicate slo1 genes in the central nervous system, whereas nonteleosts that diverged prior to the teleost whole-genome duplication event express a single slo1 gene. Phylogenetic analyses further revealed that whereas other slo1 duplicates were the result of a single duplication event, an independent duplication occurred in a basal teleost (Anguilla rostrata) following the slo1 duplication in teleosts. A third, independent slo1 duplication (autotetraploidization) occurred in salmonids. Comparison of teleost slo1 genomic sequences to their tetrapod orthologue revealed a reduced number of alternative splice sites in both slo1 co-orthologues. For the teleost Porichthys notatus, a focal study species that vocalizes with maximal spectral energy in the range electrically tuned by BK channels in the inner ear, peripheral tissues show the expression of either one (e.g., vocal muscle) or both (e.g., inner ear) slo1 paralogues with important implications for both auditory and vocal physiology. Additional loss of expression of one slo1 paralogue in nonneural tissues in P. notatus suggests that slo1 duplicates were retained via subfunctionalization. Together, the results predict that teleost fish achieve a diversity of BK channel subfunction via gene duplication, rather than increased alternative splicing as witnessed for the tetrapod and invertebrate orthologue.
Calcium-Activated Potassium (BK) Channels Are Encoded by Duplicate slo1 Genes in Teleost Fishes
Deitcher, David L.; Bass, Andrew H.
2009-01-01
Calcium-activated, large conductance potassium (BK) channels in tetrapods are encoded by a single slo1 gene, which undergoes extensive alternative splicing. Alternative splicing generates a high level of functional diversity in BK channels that contributes to the wide range of frequencies electrically tuned by the inner ear hair cells of many tetrapods. To date, the role of BK channels in hearing among teleost fishes has not been investigated at the molecular level, although teleosts account for approximately half of all extant vertebrate species. We identified slo1 genes in teleost and nonteleost fishes using polymerase chain reaction and genetic sequence databases. In contrast to tetrapods, all teleosts examined were found to express duplicate slo1 genes in the central nervous system, whereas nonteleosts that diverged prior to the teleost whole-genome duplication event express a single slo1 gene. Phylogenetic analyses further revealed that whereas other slo1 duplicates were the result of a single duplication event, an independent duplication occurred in a basal teleost (Anguilla rostrata) following the slo1 duplication in teleosts. A third, independent slo1 duplication (autotetraploidization) occurred in salmonids. Comparison of teleost slo1 genomic sequences to their tetrapod orthologue revealed a reduced number of alternative splice sites in both slo1 co-orthologues. For the teleost Porichthys notatus, a focal study species that vocalizes with maximal spectral energy in the range electrically tuned by BK channels in the inner ear, peripheral tissues show the expression of either one (e.g., vocal muscle) or both (e.g., inner ear) slo1 paralogues with important implications for both auditory and vocal physiology. Additional loss of expression of one slo1 paralogue in nonneural tissues in P. notatus suggests that slo1 duplicates were retained via subfunctionalization. Together, the results predict that teleost fish achieve a diversity of BK channel subfunction via gene duplication, rather than increased alternative splicing as witnessed for the tetrapod and invertebrate orthologue. PMID:19321796
The sodium-activated potassium channel Slack is modulated by hypercapnia and acidosis.
Ruffin, V A; Gu, X Q; Zhou, D; Douglas, R M; Sun, X; Trouth, C O; Haddad, G G
2008-01-24
Slack (Slo 2.2), a member of the Slo potassium channel family, is activated by both voltage and cytosolic factors, such as Na(+) ([Na(+)](i)) and Cl(-) ([Cl(-)](i)). Since the Slo family is known to play a role in hypoxia, and since hypoxia/ischemia is associated with an increase in H(+) and CO(2) intracellularly, we hypothesized that the Slack channel may be affected by changes in intracellular concentrations of CO(2) and H(+). To examine this, we expressed the Slack channel in Xenopus oocytes and the Slo 2.2 protein was allowed to be inserted into the plasma membrane. Inside-out patch recordings were performed to examine the response of Slack to different CO(2) concentrations (0.038%, 5%, 12%) and to different pH levels (6.3, 6.8, 7.3, 7.8, 8.3). In the presence of low [Na(+)](i) (5 mM), the Slack channel open probability decreased when exposed to decreased pH or increased CO(2) in a dose-dependent fashion (from 0.28+/-0.03, n=3, at pH 7.3 to 0.006+/-0.005, n=3, P=0.0004, at pH 6.8; and from 0.65+/-0.17, n=3, at 0.038% CO(2) to 0.22+/-0.07, n=3, P=0.04 at 12% CO(2)). In the presence of high [Na(+)](i) (45 mM), Slack open probability increased (from 0.03+/-0.01 at 5 mM [Na(+)](i), n=3, to 0.11+/-0.01, n=3, P=0.01) even in the presence of decreased pH (6.3). Since Slack activity increases significantly when exposed to increased [Na(+)](i), even in presence of increased H(+), we propose that Slack may play an important role in pathological conditions during which there is an increase in the intracellular concentrations of both acid and Na(+), such as in ischemia/hypoxia.
Diabetes-induced changes in the alternative splicing of the slo gene in corporal tissue.
Davies, Kelvin P; Zhao, Weixin; Tar, Moses; Figueroa, Johanna C; Desai, Pratik; Verselis, Vytas K; Kronengold, Jack; Wang, Hong-Zhan; Melman, Arnold; Christ, George J
2007-10-01
Erectile dysfunction is a common diabetic complication. Preclinical studies have documented that the Slo gene (encoding the BK or Maxi-K channel alpha-subunit) plays a critical role in erectile function. Therefore, we determined whether diabetes induces changes in the splicing of the Slo gene relevant to erectile function. Reverse transcriptase-polymerase chain reaction was used to compare Slo splice variant expression in corporal tissue excised from control and streptozotocin (STZ)-induced diabetic Fischer F-344 rats. Splice variants were sequenced, characterized by patch clamping, and fused to green fluorescent protein to determine cellular localization. The impact of altered Slo expression on erectile function was further evaluated in vivo. A novel Slo splice variant (SVcyt, with a cytoplasmic location) was predominantly expressed in corporal tissue from control rats. STZ-diabetes caused upregulation of a channel-forming transcript SV0. Preliminary results suggest that SV0 was also more prevalent in the corporal tissue of human diabetic compared with nondiabetic patients. The change in isoform expression in STZ-treated rats was partially reversed by insulin treatment. Intracorporal injection of a plasmid expressing the SV0 transcript, but not SVcyt, restored erectile function in STZ-diabetic rats. Alternative splicing of the Slo transcript may represent an important compensatory mechanism to increase the ease with which relaxation of corporal tissue may be triggered as a result of a diabetes-related decline in erectile capacity.
Alqadah, Amel; Hsieh, Yi-Wen; Schumacher, Jennifer A; Wang, Xiaohong; Merrill, Sean A; Millington, Grethel; Bayne, Brittany; Jorgensen, Erik M; Chuang, Chiou-Fen
2016-01-01
The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons.
Membrane hyperpolarization during human sperm capacitation
López-González, I.; Torres-Rodríguez, P.; Sánchez-Carranza, O.; Solís-López, A.; Santi, C.M.; Darszon, A.; Treviño, C.L.
2014-01-01
Sperm capacitation is a complex and indispensable physiological process that spermatozoa must undergo in order to acquire fertilization capability. Spermatozoa from several mammalian species, including mice, exhibit a capacitation-associated plasma membrane hyperpolarization, which is necessary for the acrosome reaction to occur. Despite its importance, this hyperpolarization event has not been adequately examined in human sperm. In this report we used flow cytometry to show that a subpopulation of human sperm indeed undergo a plasma membrane hyperpolarization upon in vitro capacitation. This hyperpolarization correlated with two other well-characterized capacitation parameters, namely an increase in intracellular pH and Ca2+ concentration, measured also by flow cytometry. We found that sperm membrane hyperpolarization was completely abolished in the presence of a high external K+ concentration (60 mM), indicating the participation of K+ channels. In order to identify, which of the potential K+ channels were involved in this hyperpolarization, we used different K+ channel inhibitors including charybdotoxin, slotoxin and iberiotoxin (which target Slo1) and clofilium (a more specific blocker for Slo3). All these K+ channel antagonists inhibited membrane hyperpolarization to a similar extent, suggesting that both members of the Slo family may potentially participate. Two very recent papers recorded K+ currents in human sperm electrophysiologically, with some contradictory results. In the present work, we show through immunoblotting that Slo3 channels are present in the human sperm membrane. In addition, we found that human Slo3 channels expressed in CHO cells were sensitive to clofilium (50 μM). Considered altogether, our data indicate that Slo1 and Slo3 could share the preponderant role in the capacitation-associated hyperpolarization of human sperm in contrast to what has been previously reported for mouse sperm, where Slo3 channels are the main contributors to the hyperpolarization event. PMID:24737063
Davis, S. J.; Scott, L. L.; Ordemann, G.; Philpo, A.; Cohn, J.; Pierce-Shimomura, J. T.
2016-01-01
Alcohol modulates the highly conserved, voltage- and calcium-activated potassium (BK) channel, which contributes to alcohol-mediated behaviors in species from worms to humans. Previous studies have shown that the calcium-sensitive domains, RCK1 and the Ca2+ bowl, are required for ethanol activation of the mammalian BK channel in vitro. In the nematode Caenorhabditis elegans, ethanol activates the BK channel in vivo, and deletion of the worm BK channel, SLO-1, confers strong resistance to intoxication. To determine if the conserved RCK1 and calcium bowl domains were also critical for intoxication and basal BK channel-dependent behaviors in C. elegans, we generated transgenic worms that express mutated SLO-1 channels predicted to have the RCK1, Ca2+ bowl or both domains rendered insensitive to calcium. As expected, mutating these domains inhibited basal function of SLO-1 in vivo as neck and body curvature of these mutants mimicked that of the BK null mutant. Unexpectedly, however, mutating these domains singly or together in SLO-1 had no effect on intoxication in C. elegans. Consistent with these behavioral results, we found that ethanol activated the SLO-1 channel in vitro with or without these domains. By contrast, in agreement with previous in vitro findings, C. elegans harboring a human BK channel with mutated calcium-sensing domains displayed resistance to intoxication. Thus, for the worm SLO-1 channel, the putative calcium-sensitive domains are critical for basal in vivo function but unnecessary for in vivo ethanol action. PMID:26113050
Corbett, John; Cornacchione, Louis; Daly, William; Galan, Diego; Wysota, Michael; Tivnan, Patrick; Collins, Justin; Nye, Dillon; Levitz, Talya; Breyer, Wendy A.; Glasfeld, Arthur
2015-01-01
ABSTRACT Streptococcus mutans is the causative agent of dental caries, a significant concern for human health, and therefore an attractive target for therapeutics development. Previous work in our laboratory has identified a homodimeric, manganese-dependent repressor protein, SloR, as an important regulator of cariogenesis and has used site-directed mutagenesis to map functions to specific regions of the protein. Here we extend those studies to better understand the structural interaction between SloR and its operator and its effector metal ions. The results of DNase I assays indicate that SloR protects a 42-bp region of DNA that overlaps the sloABC promoter on the S. mutans UA159 chromosome, while electrophoretic mobility shift and solution binding assays indicate that each of two SloR dimers binds to this region. Real-time semiquantitative reverse transcriptase PCR (real-time semi-qRT-PCR) experiments were used to determine the individual base pairs that contribute to SloR-DNA binding specificity. Solution studies indicate that Mn2+ is better than Zn2+ at specifically activating SloR to bind DNA, and yet the 2.8-Å resolved crystal structure of SloR bound to Zn2+ provides insight into the means by which selective activation by Mn2+ may be achieved and into how SloR may form specific interactions with its operator. Taken together, these experimental observations are significant because they can inform rational drug design aimed at alleviating and/or preventing S. mutans-induced caries formation. IMPORTANCE This report focuses on investigating the SloR protein as a regulator of essential metal ion transport and virulence gene expression in the oral pathogen Streptococcus mutans and on revealing the details of SloR binding to its metal ion effectors and binding to DNA that together facilitate this expression. We used molecular and biochemical approaches to characterize the interaction of SloR with Mn2+ and with its SloR recognition element to gain a clearer picture of the regulatory networks that optimize SloR-mediated metal ion homeostasis and virulence gene expression in S. mutans. These experiments can have a significant impact on caries treatment and/or prevention by revealing the S. mutans SloR-DNA binding interface as an appropriate target for the development of novel therapeutic interventions. PMID:26350131
The opiorphin gene (ProL1) and its homologues function in erectile physiology.
Tong, Yuehong; Tar, Moses; Melman, Arnold; Davies, Kelvin
2008-09-01
To determine if ProL1, a member of the opiorphin family of genes, can modulate erectile physiology, as it encodes a peptide which acts as a neutral endopeptidase inhibitor, other examples of which (Vcsa1, hSMR3A) modulate erectile physiology. We cloned members of the opiorphin family of genes into the same mammalian expression backbone (pVAX); 100 microg of these plasmids (pVAX-Vcsa1, -hSMR3A, -hSMR3B and -ProL1) were injected intracorporally into retired breeder rats and the affect on erectile physiology assessed visually, by histology and by measuring the intracavernous pressure (ICP) and blood pressure (BP). As a positive control, rats were treated with pVAX-hSlo (expressing the MaxiK potassium channel) and as a negative control the empty backbone plasmid was injected (pVAX). We also compared the level of expression of ProL1 in corporal tissue of patients not reporting erectile dysfunction (ED), ED associated with diabetes and ED not caused by diabetes. Gene transfer of plasmids expressing all members of the opiorphin family had a similar and significant effect on erectile physiology. At the concentration used in these experiments (100 microg) they resulted in higher resting ICP, and histological and visual analysis showed evidence of a priapic-like condition. After electrostimulation of the cavernous nerve, rats had significantly better ICP/BP than the negative control (pVAX). Gene transfer of pVAX-hSlo increased the ICP/BP ratio to a similar extent to the opiorphin homologues, but with no evidence for a priapic-like condition. Corpora cavernosa tissue samples obtained from men with ED, regardless of underlying causes, had significant down-regulation of both hSMR3A and ProL1. All members of the human opiorphin family of genes can potentially modulate erectile physiology. Both hSMR3 and ProL1 are down-regulated in the corpora of men with ED, and therefore both genes can potentially act as markers of ED.
The opiorphin gene (ProL1) and its homologues function in erectile physiology
Tong, Yuehong; Tar, Moses; Melman, Arnold; Davies, Kelvin
2010-01-01
OBJECTIVE To determine if ProL1, a member of the opiorphin family of genes, can modulate erectile physiology, as it encodes a peptide which acts as a neutral endopeptidase inhibitor, other examples of which (Vcsa1, hSMR3A) modulate erectile physiology. MATERIALS AND METHODS We cloned members of the opiorphin family of genes into the same mammalian expression backbone (pVAX); 100 μg of these plasmids (pVAX-Vcsa1, -hSMR3A, -hSMR3B and -ProL1) were injected intracorporally into retired breeder rats and the affect on erectile physiology assessed visually, by histology and by measuring the intracavernous pressure (ICP) and blood pressure (BP). As a positive control, rats were treated with pVAX-hSlo (expressing the MaxiK potassium channel) and as a negative control the empty backbone plasmid was injected (pVAX). We also compared the level of expression of ProL1 in corporal tissue of patients not reporting erectile dysfunction (ED), ED associated with diabetes and ED not caused by diabetes. RESULTS Gene transfer of plasmids expressing all members of the opiorphin family had a similar and significant effect on erectile physiology. At the concentration used in these experiments (100 μg) they resulted in higher resting ICP, and histological and visual analysis showed evidence of a priapiclike condition. After electrostimulation of the cavernous nerve, rats had significantly better ICP/BP than the negative control (pVAX). Gene transfer of pVAX-hSlo increased the ICP/BP ratio to a similar extent to the opiorphin homologues, but with no evidence for a priapic-like condition. Corpora cavernosa tissue samples obtained from men with ED, regardless of underlying causes, had significant down-regulation of both hSMR3A and ProL1. CONCLUSION All members of the human opiorphin family of genes can potentially modulate erectile physiology. Both hSMR3 and ProL1 are down-regulated in the corpora of men with ED, and therefore both genes can potentially act as markers of ED. PMID:18410445
Diabetes-Induced Changes in the Alternative Splicing of the Slo Gene in Corporal Tissue
Davies, Kelvin P.; Zhao, Weixin; Tar, Moses; Figueroa, Johanna C.; Desai, Pratik; Verselis, Vytas K.; Kronengold, Jack; Wang, Hong-Zhan; Melman, Arnold; Christ, George J.
2007-01-01
Objectives Erectile dysfunction is a common diabetic complication. Preclinical studies have documented that the Slo gene (encoding the BK or Maxi-K channel α-subunit) plays a critical role in erectile function. Therefore, we determined whether diabetes induces changes in the splicing of the Slo gene relevant to erectile function. Methods Reverse transcriptase-polymerase chain reaction was used to compare Slo splice variant expression in corporal tissue excised from control and streptozotocin (STZ)-induced diabetic Fischer F-344 rats. Splice variants were sequenced, characterized by patch clamping, and fused to green fluorescent protein to determine cellular localization. The impact of altered Slo expression on erectile function was further evaluated in vivo. Results A novel Slo splice variant (SVcyt, with a cytoplasmic location) was predominantly expressed in corporal tissue from control rats. STZ-diabetes caused upregulation of a channel-forming transcript SV0. Preliminary results suggest that SV0 was also more prevalent in the corporal tissue of human diabetic compared with nondiabetic patients. The change in isoform expression in STZ-treated rats was partially reversed by insulin treatment. Intracorporal injection of a plasmid expressing the SV0 transcript, but not SVcyt, restored erectile function in STZ-diabetic rats. Conclusions Alternative splicing of the Slo transcript may represent an important compensatory mechanism to increase the ease with which relaxation of corporal tissue may be triggered as a result of a diabetes-related decline in erectile capacity. PMID:17150299
Calenda, Giulia; Tong, Yuehong; Tar, Moses; Lowe, Daniel; Siragusa, Joseph; Melman, Arnold; Davies, Kelvin P.
2010-01-01
Purpose We identified molecular markers of erectile function, particularly those responding to erectile dysfunction treatment. Materials and Methods Sprague-Dawley retired breeder rats were intracorporeally injected with pVAX-hSlo, pSMAA-hSlo or the control plasmid pVAX. One week later the intracorporeal pressure-to-blood pressure ratio and gene expression were determined by microarray analysis and quantitative reverse transcriptase-polymerase chain reaction. Rat corporeal cells were transfected in vitro with pVAX-hSlo, pSMAA-hSlo or pVAX and the change in gene expression was determined. We also determined whether Vcsa1 expression was changed after pharmacotherapy using tadalafil. Results Animals treated with vectors expressing hSlo had significantly improved erectile function compared to that in controls, accompanied by changed expression of a subset of genes. Vcsa1 was one of the genes that was most changed in expression (the third of approximately 31,000 with greater than 10-fold up-regulation). Changes in gene expression were different than those observed in corporeal cells transfected in vitro, distinguishing gene expression changes that were a direct effect of hSlo over expression. When tadalafil was administered in retired breeder rats, the Vcsa1 transcript increased 4-fold in corporeal tissue compared to that in untreated controls. Conclusions Our study identifies a set of genes that are changed in response to improved erectile function, rather than as a direct effect of treatment. We noted Vcsa1 may act as marker of the restoration of erectile function after gene transfer and pharmacotherapy. PMID:19375734
Calenda, Giulia; Tong, Yuehong; Tar, Moses; Lowe, Daniel; Siragusa, Joseph; Melman, Arnold; Davies, Kelvin P
2009-06-01
We identified molecular markers of erectile function, particularly those responding to erectile dysfunction treatment. Sprague-Dawley retired breeder rats were intracorporeally injected with pVAX-hSlo, pSMAA-hSlo or the control plasmid pVAX. One week later the intracorporeal pressure-to-blood pressure ratio and gene expression were determined by microarray analysis and quantitative reverse transcriptase-polymerase chain reaction. Rat corporeal cells were transfected in vitro with pVAX-hSlo, pSMAA-hSlo or pVAX and the change in gene expression was determined. We also determined whether Vcsa1 expression was changed after pharmacotherapy using tadalafil. Animals treated with vectors expressing hSlo had significantly improved erectile function compared to that in controls, accompanied by changed expression of a subset of genes. Vcsa1 was one of the genes that was most changed in expression (the third of approximately 31,000 with greater than 10-fold up-regulation). Changes in gene expression were different than those observed in corporeal cells transfected in vitro, distinguishing gene expression changes that were a direct effect of hSlo over expression. When tadalafil was administered in retired breeder rats, the Vcsa1 transcript increased 4-fold in corporeal tissue compared to that in untreated controls. Our study identifies a set of genes that are changed in response to improved erectile function, rather than as a direct effect of treatment. We noted Vcsa1 may act as marker of the restoration of erectile function after gene transfer and pharmacotherapy.
Melman, A; Biggs, G; Davies, K; Zhao, W; Tar, M T; Christ, G J
2008-03-01
Previous reports have demonstrated that gene transfer with the alpha, or pore-forming, subunit of the human Maxi-K channel (hSlo) restores the decline in erectile capacity observed in established rat models of diabetes and aging. Preliminary data from a human clinical trial also showed safety and potential efficacy in 11 men treated with the same plasmid construct expressing the Maxi-K channel. In all instances, the original plasmid was driven by the heterologous cytomegalovirus promoter which is broadly active in a wide variety of cell and tissue types. To more precisely determine the contribution of the corporal myocyte to the observed physiological effects in vivo, we report here our initial work using a distinct vector (pSMAA-hSlo) in which hSlo gene expression was driven off the mouse smooth muscle alpha-actin (SMAA) promoter. Specifically, older rats, with diminished erectile capacity, were given a single intracorporal injection with either 100 mug pVAX-hSlo or 10, 100 or 1000 mug pSMAA-hSlo, or vector or vehicle alone. Significantly increased intracavernous pressure (ICP) responses to cavernous nerve stimulation were observed for all doses of both plasmids encoding hSlo, relative to control injections. These data confirm and extend previous observations to document that smooth muscle cell-specific expression of hSlo in corporal tissue is both necessary and sufficient to restore erectile function in aging rats.
Zhu, Qiang; Dugardeyn, Jasper; Zhang, Chunyi; Mühlenbock, Per; Eastmond, Peter J; Valcke, Roland; De Coninck, Barbara; Oden, Sevgi; Karampelias, Michael; Cammue, Bruno P A; Prinsen, Els; Van Der Straeten, Dominique
2014-02-01
Recently, we reported that the novel mitochondrial RNA editing factor SLO2 is essential for mitochondrial electron transport, and vital for plant growth through regulation of carbon and energy metabolism. Here, we show that mutation in SLO2 causes hypersensitivity to ABA and insensitivity to ethylene, suggesting a link with stress responses. Indeed, slo2 mutants are hypersensitive to salt and osmotic stress during the germination stage, while adult plants show increased drought and salt tolerance. Moreover, slo2 mutants are more susceptible to Botrytis cinerea infection. An increased expression of nuclear-encoded stress-responsive genes, as well as mitochondrial-encoded NAD genes of complex I and genes of the alternative respiratory pathway, was observed in slo2 mutants, further enhanced by ABA treatment. In addition, H2O2 accumulation and altered amino acid levels were recorded in slo2 mutants. We conclude that SLO2 is required for plant sensitivity to ABA, ethylene, biotic, and abiotic stress. Although two stress-related RNA editing factors were reported very recently, this study demonstrates a unique role of SLO2, and further supports a link between mitochondrial RNA editing events and stress response.
Differential efficacy of GoSlo-SR compounds on BKα and BKαγ1–4 channels
Kshatri, Aravind S.; Li, Qin; Yan, Jiusheng; Large, Roddy J.; Sergeant, Gerard P.; McHale, Noel G.; Thornbury, Keith D.; Hollywood, Mark A.
2017-01-01
ABSTRACT Large conductance, voltage and Ca2+ activated K+ channels (BK channels) are abundantly expressed throughout the body and are important regulators of smooth muscle tone and neuronal excitability. Their dysfunction is implicated in various diseases including overactive bladder, hypertension and erectile dysfunction. Therefore, BK channel openers bear significant therapeutic potential to treat the above diseases. GoSlo-SR compounds were designed to be potent and efficacious BK channel openers. Although their structural activity relationships, activation in both BKα and BKαβ channels and the hypothetical mode of action of these compounds has been studied in detail in recent years, their effectiveness to open the BKαγ channels still remains unexplored. In this study, we have examined the efficacy of 3 closely related GoSlo-SR openers, GoSlo-SR-5-6 (SR-5-6), GoSlo-SR-5-44 (SR-5-44) and GoSlo-SR-5-130 (SR-5-130) using inside out patches on BKα channels coexpressed with 4 different LRRC (γ1–4) subunits in HEK293 cells. Our data suggests that the activation effects due to SR-5-6 were not significantly affected in the presence of γ1–4 subunits. Interestingly, the effects of more efficacious BK channel opener SR-5-44 were altered by different γ subunits. In cells expressing BKα channels, the shift in V1/2 (ΔV1/2) induced by SR-5-44 (3 μM) was −76 ± 3 mV, whereas it was significantly reduced by ∼70 % in BKαγ1 channels (ΔV1/2= −23 ± 3, p < 0.001, ANOVA). In BKαγ2 channels the ΔV1/2 was −36 ± 1 mV, which was less than that observed in BKαγ3 and BKαγ4 channels where the ΔV1/2 was −47 ± 5 mV, and −82 ± 5 mV, respectively. Additionally, the excitatory effects of a ‘β specific’ BK channel opener, SR-5-130 were only partially restored in the patches containing BKαγ1–4 channels. Together this data highlights that subtle modifications in GoSlo-SR structures alter their effectiveness on BK channels with accessory γ subunits and this study might provide a scaffold for the development of more tissue specific BK channel openers. PMID:27440457
Zeng, Xu-Hui; Yang, Chengtao; Xia, Xiao-Ming; Liu, Min; Lingle, Christopher J.
2015-01-01
Following entry into the female reproductive tract, mammalian sperm undergo a maturation process termed capacitation that results in competence to fertilize ova. Associated with capacitation is an increase in membrane conductance to both Ca2+ and K+, leading to an elevation in cytosolic Ca2+ critical for activation of hyperactivated swimming motility. In mice, the Ca2+ conductance (alkalization-activated Ca2+-permeable sperm channel, CATSPER) arises from an ensemble of CATSPER subunits, whereas the K+ conductance (sperm pH-regulated K+ current, KSPER) arises from a pore-forming ion channel subunit encoded by the slo3 gene (SLO3) subunit. In the mouse, both CATSPER and KSPER are activated by cytosolic alkalization and a concerted activation of CATSPER and KSPER is likely a common facet of capacitation-associated increases in Ca2+ and K+ conductance among various mammalian species. The properties of heterologously expressed mouse SLO3 channels differ from native mouse KSPER current. Recently, a potential KSPER auxiliary subunit, leucine-rich-repeat-containing protein 52 (LRRC52), was identified in mouse sperm and shown to shift gating of SLO3 to be more equivalent to native KSPER. Here, we show that genetic KO of LRRC52 results in mice with severely impaired fertility. Activation of KSPER current in sperm lacking LRRC52 requires more positive voltages and higher pH than for WT KSPER. These results establish a critical role of LRRC52 in KSPER channels and demonstrate that loss of a non-pore-forming auxiliary subunit results in severe fertility impairment. Furthermore, through analysis of several genotypes that influence KSPER current properties we show that in vitro fertilization competence correlates with the net KSPER conductance available for activation under physiological conditions. PMID:25675513
Toxin Pores Endocytosed During Plasma Membrane Repair Traffic into the Lumen of MVBs for Degradation
Corrotte, Matthias; Fernandes, Maria Cecilia; Tam, Christina; Andrews, Norma W.
2012-01-01
Cells permeabilized by the bacterial pore-forming toxin streptolysin O (SLO) reseal their plasma membrane in a Ca2+-dependent manner. Resealing involves Ca2+-dependent exocytosis of lysosomes, release of acid sphingomyelinase and rapid formation of endosomes that carry the transmembrane pores into the cell. The intracellular fate of the toxin-carrying endocytic vesicles, however, is still unknown. Here, we show that SLO pores removed from the plasma membrane by endocytosis are sorted into the lumen of lysosomes, where they are degraded. SLO-permeabilized cells contain elevated numbers of total endosomes, which increase gradually in size while transitioning from endosomes with flat clathrin coats to large multivesicular bodies (MVBs). Under conditions that allow endocytosis and plasma membrane repair, SLO is rapidly ubiquitinated and gradually degraded, in a process sensitive to inhibitors of lysosomal hydrolysis but not of proteasomes. The endosomes induced by SLO permeabilization become increasingly acidified and promote SLO degradation under normal conditions, but not in cells silenced for expression of Vps24, an ESCRT-III complex component required for the release of intraluminal vesicles into MVBs. Thus, cells dispose of SLO transmembrane pores by ubiquitination/ESCRT-dependent sorting into the lumen of late endosomes/lysosomes. PMID:22212686
Distribution of rSlo Ca2+-activated K+ channels in rat astrocyte perivascular endfeet.
Price, Diana L; Ludwig, Jeffrey W; Mi, Huaiyu; Schwarz, Thomas L; Ellisman, Mark H
2002-11-29
Evidence that Ca(2+)-activated K(+) (K(Ca)) channels play a role in cell volume changes and K(+) homeostasis led to a prediction that astrocytes would have K(Ca) channels near blood vessels in order to maintain K(+) homeostasis. Consistent with this thinking the present study demonstrates that rSlo K(Ca) channels are in glial cells of the adult rat central nervous system (CNS) and highly localized to specializations of astrocytes associated with the brain vasculature. Using confocal and thin-section electron microscopic immunolabeling methods the distribution of rSlo was examined in adult rat brain. Strong rSlo immunolabeling was present around the vasculature of most brain regions. Examination of dye-filled hippocampal astrocytes revealed rSlo immunolabeling polarized in astrocytic endfeet. Ultrastructural analysis confirmed that the rSlo staining was concentrated in astrocytic endfeet ensheathing capillaries as well as abutting the pia mater. Immunostaining within the endfeet was predominantly distributed at the plasma membrane directly adjacent to either the vascular basal lamina or the pial surface. The distribution of the aquaporin-4 (AQP-4) water channel was also examined using dye-filled hippocampal astrocytes. In confirmation of earlier reports, intense AQP-4 immunolabeling was generally observed at the perimeter of blood vessels, and coincided with perivascular endfeet and rSlo labeling. We propose that rSlo K(Ca) channels, with their sensitivity to membrane depolarization and intracellular calcium, play a role in the K(+) modulation of cerebral blood flow. Additional knowledge of the molecular and cellular machinery present at perivascular endfeet may provide insight into the structural and functional molecular elements responsible for the neuronal activity-dependent regulation of cerebral blood flow. Copyright 2002 Elsevier Science B.V.
A genetic variant of the sperm-specific SLO3 K+ channel has altered pH and Ca2+ sensitivities.
Geng, Yanyan; Ferreira, Juan J; Dzikunu, Victor; Butler, Alice; Lybaert, Pascale; Yuan, Peng; Magleby, Karl L; Salkoff, Lawrence; Santi, Celia M
2017-05-26
To fertilize an oocyte, sperm must first undergo capacitation in which the sperm plasma membrane becomes hyperpolarized via activation of potassium (K + ) channels and resultant K + efflux. Sperm-specific SLO3 K + channels are responsible for these membrane potential changes critical for fertilization in mouse sperm, and they are only sensitive to pH i However, in human sperm, the major K + conductance is both Ca 2+ - and pH i -sensitive. It has been debated whether Ca 2+ -sensitive SLO1 channels substitute for human SLO3 (hSLO3) in human sperm or whether human SLO3 channels have acquired Ca 2+ sensitivity. Here we show that hSLO3 is rapidly evolving and reveal a natural structural variant with enhanced apparent Ca 2+ and pH sensitivities. This variant allele (C382R) alters an amino acid side chain at a principal interface between the intramembrane-gated pore and the cytoplasmic gating ring of the channel. Because the gating ring contains sensors to intracellular factors such as pH and Ca 2+ , the effectiveness of transduction between the gating ring and the pore domain appears to be enhanced. Our results suggest that sperm-specific genes can evolve rapidly and that natural genetic variation may have led to a SLO3 variant that differs from wild type in both pH and intracellular Ca 2+ sensitivities. Whether this physiological variation confers differences in fertility among males remains to be established. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Biton, B; Sethuramanujam, S; Picchione, Kelly E; Bhattacharjee, A; Khessibi, N; Chesney, F; Lanneau, C; Curet, O; Avenet, P
2012-03-01
Sodium-activated potassium (K(Na)) channels have been suggested to set the resting potential, to modulate slow after-hyperpolarizations, and to control bursting behavior or spike frequency adaptation (Trends Neurosci 28:422-428, 2005). One of the genes that encodes K(Na) channels is called Slack (Kcnt1, Slo2.2). Studies found that Slack channels were highly expressed in nociceptive dorsal root ganglion neurons and modulated their firing frequency (J Neurosci 30:14165-14172, 2010). Therefore, Slack channel openers are of significant interest as putative analgesic drugs. We screened the library of pharmacologically active compounds with recombinant human Slack channels expressed in Chinese hamster ovary cells, by using rubidium efflux measurements with atomic absorption spectrometry. Riluzole at 500 μM was used as a reference agonist. The antipsychotic drug loxapine and the anthelmintic drug niclosamide were both found to activate Slack channels, which was confirmed by using manual patch-clamp analyses (EC(50) = 4.4 μM and EC(50) = 2.9 μM, respectively). Psychotropic drugs structurally related to loxapine were also evaluated in patch-clamp experiments, but none was found to be as active as loxapine. Loxapine properties were confirmed at the single-channel level with recombinant rat Slack channels. In dorsal root ganglion neurons, loxapine was found to behave as an opener of native K(Na) channels and to increase the rheobase of action potential. This study identifies new K(Na) channel pharmacological tools, which will be useful for further Slack channel investigations.
Dissection of K+ currents in Caenorhabditis elegans muscle cells by genetics and RNA interference
Santi, C. M.; Yuan, A.; Fawcett, G.; Wang, Z.-W.; Butler, A.; Nonet, M. L.; Wei, A.; Rojas, P.; Salkoff, L.
2003-01-01
GFP-promoter experiments have previously shown that at least nine genes encoding potassium channel subunits are expressed in Caenorhabditis elegans muscle. By using genetic, RNA interference, and physiological techniques we revealed the molecular identity of the major components of the outward K+ currents in body wall muscle cells in culture. We found that under physiological conditions, outward current is dominated by the products of only two genes, Shaker (Kv1) and Shal (Kv4), both expressing voltage-dependent potassium channels. Other channels may be held in reserve to respond to particular circumstances. Because GFP-promoter experiments indicated that slo-2 expression is prominent, we created a deletion mutant to identify the SLO-2 current in vivo. In both whole-cell and single-channel modes, in vivo SLO-2 channels were active only when intracellular Ca2+ and Cl- were raised above normal physiological conditions, as occurs during hypoxia. Under such conditions, SLO-2 is the largest outward current, contributing up to 87% of the total current. Other channels are present in muscle, but our results suggest that they are unlikely to contribute a large outward component under physiological conditions. However, they, too, may contribute currents conditional on other factors. Hence, the picture that emerges is of a complex membrane with a small number of household conductances functioning under normal circumstances, but with additional conductances that are activated during unusual circumstances. PMID:14612577
Park, Sung Pyo; Hong, In Hwan; Lee, Winston; Horowitz, Jason; Yzer, Suzanne; Allikmets, Rando; Chang, Stanley
2013-01-01
Background Enhanced S-cone syndrome is an orphan disease caused by mutations in the NR2E3 gene which result in an increased number of S-cones overpopulating the retina. Although the characteristic onset of enhanced S-cone syndrome can be well-documented by current ophthalmic imaging modalities, techniques such as spectral-domain optical coherence tomography (SD-OCT) and scanning laser ophthalmoscopy (SLO) fail to provide sufficient details regarding the microstructure of photoreceptors in retinal diseases. Adaptive optics (AO) provides a unique opportunity to analyze the effects of genetic mutations on photoreceptors by compensating aberrations of human eyes. Methods Three eyes of three young adults with enhanced Scone syndrome were studied by clinical examination, genetic screening, fundus autofluorescence (FAF) imaging, SD-OCT, and electroretinography (ERG). Cone mosaic imaging was accomplished by an AO-SLO equipped with a dual crystal on silicon spatial light modulator. Qualitative image analyses and genetic findings were investigated in each patient. Results The diagnosis of patients was confirmed by ERG finding. Genetic screening confirmed the presence of two disease-causing mutations in the NR2E3 gene in each study patient, as well as identified a novel mutation (202 A > G, S68G). Fundus photograph, FAF, and SD-OCT found rosette-like lesion within the mid-periphery along the vascular arcades of the retina. In all AO-SLO images of patients, sparse distribution and asymmetric size of cone mosaic pattern were found within central retina. There were regions of dark space between groups of photoreceptors, distinguishable from shadowing and artifacts. Conclusions AO-SLO provided an in-depth window into the retina of live enhanced S-cone syndrome patients beyond the ability of other current imaging modalities. Dark lesions within the central retina in each patient contain structurally dysfunctional cones which account for retinal mosaic disorganization, and may predispose affected areas to other abnormalities such as rosette lesions. AO-SLO can be an efficient diagnostic tool in clinics for examining cellular-level pathologies in various retinal dystrophies. PMID:23604511
Takahashi, Toshiya; Kimura, Yutaka; Saito, Rumiko; Nakajima, Yoshihiro; Ohmiya, Yoshihiro; Yamasaki, Kenshi; Aiba, Setsuya
2011-12-01
Several studies have suggested that interleukin (IL)-8 can serve as a biomarker for discrimination of skin sensitizers from nonsensitizers. We established a stable THP-1-derived IL-8 reporter cell line, THP-G8, which harbors SLO and SLR luciferase genes under the control of IL-8 and glyceraldehyde 3-phosphate dehydrogenase promoters, respectively. After 6 h treatment with chemicals, normalized SLO luciferase activity (nSLO-LA) was calculated by dividing SLO-LA by SLR-LA, and the fold induction of nSLO-LA (FInSLO-LA) was calculated by dividing nSLO-LA of chemically treated cells by that of nontreated cells. The nSLO-LA of THP-G8 cells increased in response to lipopolysaccharide (LPS) and several sensitizers. The FInSLO-LA in THP-G8 cells induced by LPS or sensitizers positively correlated with their induction of IL-8 messenger RNA in THP-1 cells. The nSLO-LA value of THP-G8 cells was significantly increased (FInSLO-LA ≥ 1.4) by 13 of the 15 sensitizers as well as by 5 of the 7 nonsensitizers. Interestingly, pretreatment with N-acetylcysteine suppressed the increase in FInSLO-LA induced by all sensitizers (inhibition index (II) ≤ 0.8) but did not suppress that induced by most of the nonsensitizers. We then evaluated the performance of this assay using values of FInSLO-LA ≥ 1.4 and II ≤ 0.8 in at least two of three independent experiments as the criteria of a sensitizer, which resulted in test accuracies of 82% for the 22 chemicals used and of 88% for the chemicals proposed by European Center for the Validation of Alternative Methods. This newly developed assay is a candidate replacement for animal tests of skin sensitization because of its accuracy, convenience, and high throughput performance.
Zhu, Luchang; Olsen, Randall J; Nasser, Waleed; de la Riva Morales, Ivan; Musser, James M
2015-10-06
Strains of emm89 Streptococcus pyogenes have become one of the major causes of invasive infections worldwide in the last 10 years. We recently sequenced the genome of 1,125 emm89 strains and identified three major phylogenetic groups, designated clade 1, clade 2, and the epidemic clade 3. Epidemic clade 3 strains, which now cause the great majority of infections, have two distinct genetic features compared to clade 1 and clade 2 strains. First, all clade 3 organisms have a variant 3 nga promoter region pattern, which is associated with increased production of secreted cytolytic toxins SPN (S. pyogenes NADase) and SLO (streptolysin O). Second, all clade 3 strains lack the hasABC locus mediating hyaluronic acid capsule synthesis, whereas this locus is intact in clade 1 and clade 2 strains. We constructed isogenic mutant strains that produce different levels of SPN and SLO toxins and capsule (none, low, or high). Here we report that emm89 strains with elevated toxin production are significantly more virulent than low-toxin producers. Importantly, we also show that capsule production is dispensable for virulence in strains that already produce high levels of SPN and SLO. Our results provide new understanding about the molecular mechanisms contributing to the rapid emergence and molecular pathogenesis of epidemic clade 3 emm89 S. pyogenes. S. pyogenes (group A streptococcus [GAS]) causes pharyngitis ("strep throat"), necrotizing fasciitis, and other human infections. Serious infections caused by emm89 S. pyogenes strains have recently increased in frequency in many countries. Based on whole-genome sequence analysis of 1,125 strains recovered from patients on two continents, we discovered that a new emm89 clone, termed clade 3, has two distinct genetic features compared to its predecessors: (i) absence of the genes encoding antiphagocytic hyaluronic acid capsule virulence factor and (ii) increased production of the secreted cytolytic toxins SPN and SLO. emm89 S. pyogenes strains with the clade 3 phenotype (absence of capsule and high expression of SPN and SLO) are highly virulent in mice. These findings provide new understanding of how new virulent clones emerge and cause severe infections worldwide. This newfound knowledge of S. pyogenes virulence can be used to help understand future epidemics and conduct new translational research. Copyright © 2015 Zhu et al.
Escajadillo, Tamara; Olson, Joshua; Luk, Brian T.; Zhang, Liangfang; Nizet, Victor
2017-01-01
Group A Streptococcus (GAS), an important human-specific Gram-positive bacterial pathogen, is associated with a broad spectrum of disease, ranging from mild superficial infections such as pharyngitis and impetigo, to serious invasive infections including necrotizing fasciitis and streptococcal toxic shock syndrome. The GAS pore-forming streptolysin O (SLO) is a well characterized virulence factor produced by nearly all GAS clinical isolates. High level expression of SLO is epidemiologically linked to intercontinental dissemination of hypervirulent clonotypes and poor clinical outcomes. SLO can trigger macrophage and neutrophil cell death and/or the inactivation of immune cell functions, and promotes tissue injury and bacterial survival in animal models of infection. In the present work, we describe how the pharmacological presentation of red blood cell (RBC) derived biomimetic nanoparticles (“nanosponges”) can sequester SLO and block the ability of GAS to damage host cells, thereby preserving innate immune function and increasing bacterial clearance in vitro and in vivo. Nanosponge administration protected human neutrophils, macrophages, and keratinocytes against SLO-mediated cytotoxicity. This therapeutic intervention prevented SLO-induced macrophage apoptosis and increased neutrophil extracellular trap formation, allowing increased GAS killing by the respective phagocytic cell types. In a murine model of GAS necrotizing skin infection, local administration of the biomimetic nanosponges was associated with decreased lesion size and reduced bacterial colony-forming unit recovery. Utilization of a toxin decoy and capture platform that inactivates the secreted SLO before it contacts the host cell membrane, presents a novel virulence factor targeted strategy that could be a powerful adjunctive therapy in severe GAS infections where morbidity and mortality are high despite antibiotic treatment. PMID:28769806
Bravo-Zehnder, Marcela; Orio, Patricio; Norambuena, Andrés; Wallner, Martin; Meera, Pratap; Toro, Ligia; Latorre, Ramón; González, Alfonso
2000-01-01
The voltage- and Ca2+-activated K+ (KV,Ca) channel is expressed in a variety of polarized epithelial cells seemingly displaying a tissue-dependent apical-to-basolateral regionalization, as revealed by electrophysiology. Using domain-specific biotinylation and immunofluorescence we show that the human channel KV,Ca α-subunit (human Slowpoke channel, hSlo) is predominantly found in the apical plasma membrane domain of permanently transfected Madin-Darby canine kidney cells. Both the wild-type and a mutant hSlo protein lacking its only potential N-glycosylation site were efficiently transported to the cell surface and concentrated in the apical domain even when they were overexpressed to levels 200- to 300-fold higher than the density of intrinsic Slo channels. Furthermore, tunicamycin treatment did not prevent apical segregation of hSlo, indicating that endogenous glycosylated proteins (e.g., KV,Ca β-subunits) were not required. hSlo seems to display properties for lipid-raft targeting, as judged by its buoyant distribution in sucrose gradients after extraction with either detergent or sodium carbonate. The evidence indicates that the hSlo protein possesses intrinsic information for transport to the apical cell surface through a mechanism that may involve association with lipid rafts and that is independent of glycosylation of the channel itself or an associated protein. Thus, this particular polytopic model protein shows that glycosylation-independent apical pathways exist for endogenous membrane proteins in Madin-Darby canine kidney cells. PMID:11069304
Clindamycin Affects Group A Streptococcus Virulence Factors and Improves Clinical Outcome.
Andreoni, Federica; Zürcher, Claudia; Tarnutzer, Andrea; Schilcher, Katrin; Neff, Andrina; Keller, Nadia; Marques Maggio, Ewerton; Poyart, Claire; Schuepbach, Reto A; Zinkernagel, Annelies S
2017-01-15
Group A Streptococcus (GAS) has acquired an arsenal of virulence factors, promoting life-threatening invasive infections such as necrotizing fasciitis. Current therapeutic regimens for necrotizing fasciitis include surgical debridement and treatment with cell wall-active antibiotics. Addition of clindamycin (CLI) is recommended, although clinical evidence is lacking. Reflecting the current clinical dilemma, an observational study showed that only 63% of the patients with severe invasive GAS infection received CLI. This work thus aimed to address whether CLI improves necrotizing fasciitis outcome by modulating virulence factors of CLI-susceptible and CLI-resistant GAS in vitro and in vivo. Treatment with CLI reduced extracellular DNase Sda1 and streptolysin O (SLO) activity in vivo, whereas subinhibitory CLI concentrations induced expression and activity of SLO, DNase, and Streptococcus pyogenes cell envelope protease in vitro. Our in vivo results suggest that CLI should be administered as soon as possible to patients with necrotizing fasciitis, while our in vitro studies emphasize that a high dosage of CLI is essential. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Park, Sung Pyo; Siringo, Frank S.; Pensec, Noelle; Hong, In Hwan; Sparrow, Janet; Barile, Gaetano; Tsang, Stephen H.; Chang, Stanley
2015-01-01
BACKGROUND AND OBJECTIVE To compare fundus autofluorescence (FAF) imaging via fundus camera (FC) and confocal scanning laser ophthalmoscope (cSLO). PATIENTS AND METHODS FAF images were obtained with a digital FC (530 to 580 nm excitation) and a cSLO (488 nm excitation). Two authors evaluated correlation of autofluorescence pattern, atrophic lesion size, and image quality between the two devices. RESULTS In 120 eyes, the autofluorescence pattern correlated in 86% of lesions. By lesion subtype, correlation rates were 100% in hemorrhage, 97% in geographic atrophy, 82% in flecks, 75% in drusen, 70% in exudates, 67% in pigment epithelial detachment, 50% in fibrous scars, and 33% in macular hole. The mean lesion size in geographic atrophy was 4.57 ± 2.3 mm2 via cSLO and 3.81 ± 1.94 mm2 via FC (P < .0001). Image quality favored cSLO in 71 eyes. CONCLUSION FAF images were highly correlated between the FC and cSLO. Differences between the two devices revealed contrasts. Multiple image capture and confocal optics yielded higher image contrast with the cSLO, although acquisition and exposure time was longer. PMID:24221461
Modulation of BK channels by ethanol
Dopico, Alex M.; Bukiya, Anna N.; Kuntamallappanavar, Guruprasad; Liu, Jianxi
2017-01-01
In alcohol-naïve systems, ethanol (<100 mM) exposure of calcium-gated BK channels perturbs physiology and behavior. Brief (several minutes) ethanol exposure usually leads to increased BK current, which results from ethanol interaction with a pocket mapped to the BK channel-forming slo1 protein cytosolic tail domain. The importance of this region in alcohol-induced intoxication has been addressed in Caenorhabditis elegans slo1 mutants. However, ethanol-induced BK activation is not universal as refractoriness and inhibition have been reported. The final effect depends on many factors, including intracellular calcium levels, slo1 isoform, BK beta subunit composition, post-translational modification of BK proteins, channel lipid microenvironment and type of ethanol administration. Studies in Drosophila melanogaster, Caenorhabditis elegans and rodents show that protracted/repeated ethanol administration leads to tolerance to alcohol-induced modification of BK-driven physiology and behavior. Unveiling the mechanisms underlying tolerance is of major importance, as tolerance to alcohol has been proposed as predictor of risk for alcoholism. PMID:27238266
Takayama, Kohei; Ooto, Sotaro; Hangai, Masanori; Arakawa, Naoko; Oshima, Susumu; Shibata, Naohisa; Hanebuchi, Masaaki; Inoue, Takashi; Yoshimura, Nagahisa
2012-01-01
To conduct high-resolution imaging of the retinal nerve fiber layer (RNFL) in normal eyes using adaptive optics scanning laser ophthalmoscopy (AO-SLO). AO-SLO images were obtained in 20 normal eyes at multiple locations in the posterior polar area and a circular path with a 3-4-mm diameter around the optic disc. For each eye, images focused on the RNFL were recorded and a montage of AO-SLO images was created. AO-SLO images for all eyes showed many hyperreflective bundles in the RNFL. Hyperreflective bundles above or below the fovea were seen in an arch from the temporal periphery on either side of a horizontal dividing line to the optic disc. The dark lines among the hyperreflective bundles were narrower around the optic disc compared with those in the temporal raphe. The hyperreflective bundles corresponded with the direction of the striations on SLO red-free images. The resolution and contrast of the bundles were much higher in AO-SLO images than in red-free fundus photography or SLO red-free images. The mean hyperreflective bundle width around the optic disc had a double-humped shape; the bundles at the temporal and nasal sides of the optic disc were narrower than those above and below the optic disc (P<0.001). RNFL thickness obtained by optical coherence tomography correlated with the hyperreflective bundle widths on AO-SLO (P<0.001) AO-SLO revealed hyperreflective bundles and dark lines in the RNFL, believed to be retinal nerve fiber bundles and Müller cell septa. The widths of the nerve fiber bundles appear to be proportional to the RNFL thickness at equivalent distances from the optic disc.
NASA Astrophysics Data System (ADS)
Wells-Gray, Elaine M.; Choi, Stacey S.; Zawadzki, Robert J.; Finn, Susanna C.; Greiner, Cherry; Werner, John S.; Doble, Nathan
2018-03-01
We have designed and implemented a dual-mode adaptive optics (AO) imaging system that combines spectral domain optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) for in vivo imaging of the human retina. The system simultaneously acquires SLO frames and OCT B-scans at 60 Hz with an OCT volume acquisition time of 4.2 s. Transverse eye motion measured from the SLO is used to register the OCT B-scans to generate three-dimensional (3-D) volumes. Key optical design considerations include: minimizing system aberrations through the use of off-axis relay telescopes, conjugate pupil plane requirements, and the use of dichroic beam splitters to separate and recombine the OCT and SLO beams around the nonshared horizontal scanning mirrors. To demonstrate system performance, AO-OCT-SLO images and measurements are taken from three normal human subjects ranging in retinal eccentricity from the fovea out to 15-deg temporal and 20-deg superior. Also presented are en face OCT projections generated from the registered 3-D volumes. The ability to acquire high-resolution 3-D images of the human retina in the midperiphery and beyond has clinical importance in diseases, such as retinitis pigmentosa and cone-rod dystrophy.
PIP₂ modulation of Slick and Slack K⁺ channels.
de los Angeles Tejada, Maria; Jensen, Lars Jørn; Klaerke, Dan A
2012-07-27
Slick and Slack are members of the Slo family of high-conductance potassium channels. These channels are activated by Na(+) and Cl(-) and are highly expressed in the CNS, where they are believed to contribute to the resting membrane potential of neurons and the control of excitability. Herein, we provide evidence that Slick and Slack channels are regulated by the phosphoinositide PIP(2). Two stereoisomers of PIP(2) were able to exogenously activate Slick and Slack channels expressed in Xenopus oocytes, and in addition, it is shown that Slick and Slack channels are modulated by endogenous PIP(2). The activating effect of PIP(2) appears to occur by direct interaction with lysine 306 in Slick and lysine 339 in Slack, located at the proximal C-termini of both channels. Overall, our data suggest that PIP(2) is an important regulator of Slick and Slack channels, yet it is not involved in the recently described cell volume sensitivity of Slick channels, since mutated PIP(2)-insensitive Slick channels retained their sensitivity to cell volume. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Pengfei; Zam, Azhar; Jian, Yifan; Wang, Xinlei; Burns, Marie E.; Sarunic, Marinko V.; Pugh, Edward N.; Zawadzki, Robert J.
2015-03-01
A compact, non-invasive multi-modal system has been developed for in vivo mouse retina imaging. It is configured for simultaneously detecting green and red fluorescent protein signals with scanning laser ophthalmoscopy (SLO) back-scattered light from the SLO illumination beam, and depth information about different retinal layers by means of Optical Coherence Tomography (OCT). Simultaneous assessment of retinal characteristics with different modalities can provide a wealth of information about the structural and functional changes in the retinal neural tissue and chorio-retinal vasculature in vivo. Additionally, simultaneous acquisition of multiple channels facilitates analysis of the data of different modalities by automatic temporal and structural co-registration. As an example of the instrument's performance we imaged the retina of a mouse with constitutive expression of GFP in microglia cells (Cx3cr1GFP/+), and which also expressed the red fluorescent protein mCherry in Müller glial cells by means of adeno-associated virus delivery (AAV2) of an mCherry cDNA driven by the GFAP (glial fibrillary acid protein) promoter.
Nelson-McMillan, Kristen; Hornik, Christoph P; He, Xia; Vricella, Luca A; Jacobs, Jeffrey P; Hill, Kevin D; Pasquali, Sara K; Alejo, Diane E; Cameron, Duke E; Jacobs, Marshall L
2016-11-01
Delayed sternal closure (DSC) is commonly used to optimize hemodynamic stability after neonatal and infant heart surgery. We hypothesized that duration of sternum left open (SLO) was associated with rate of infection complications, and that location of sternal closure may mitigate infection risk. Infants (age ≤365 days) undergoing index operations with cardiopulmonary bypass and DSC at STS Congenital Heart Surgery Database centers (from 2007 to 2013) with adequate data quality were included. Primary outcome was occurrence of infection complication, defined as one or more of the following: endocarditis, pneumonia, wound infection, wound dehiscence, sepsis, or mediastinitis. Multivariable regression models were fit to assess association of infection complication with: duration of SLO (days), location of DSC procedure (operating room versus elsewhere), and patient and procedural factors. Of 6,127 index operations with SLO at 100 centers, median age and weight were 8 days (IQR, 5-24) and 3.3 kg (IQR, 2.9-3.8); 66% of operations were STAT morbidity category 4 or 5. At least one infection complication occurred in 18.7%, compared with 6.6% among potentially eligible neonates and infants without SLO. Duration of SLO (median, 3 days; IQR, 2-5) was associated with an increased rate of infection complications (p < 0.001). Location of DSC procedure was operating room (16%), intensive care unit (67%), or other (17%). Location of DSC was not associated with rate of infection complications (p = 0.45). Rate of occurrence of infectious complications is high among infants with sternum left open following cardiac surgery. Longer duration of SLO is associated with increased infection complications. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Velarde, Jorge J.; O’Seaghdha, Maghnus; Baddal, Buket; Bastiat-Sempe, Benedicte
2017-01-01
ABSTRACT The globally dominant, invasive M1T1 strain of group A Streptococcus (GAS) harbors polymorphisms in the promoter region of an operon that contains the genes encoding streptolysin O (SLO) and NAD+-glycohydrolase (NADase), resulting in high-level expression of these toxins. While both toxins have been shown experimentally to contribute to pathogenesis, many GAS isolates lack detectable NADase activity. DNA sequencing of such strains has revealed that reduced or absent enzymatic activity can be associated with a variety of point mutations in nga, the gene encoding NADase; a commonly observed polymorphism associated with near-complete abrogation of activity is a substitution of aspartic acid for glycine at position 330 (G330D). However, nga has not been observed to contain early termination codons or mutations that would result in a truncated protein, even when the gene product contains missense mutations that abrogate enzymatic activity. It has been suggested that NADase that lacks NAD-glycohydrolase activity retains an as-yet-unidentified inherent cytotoxicity to mammalian cells and thus is still a potent virulence factor. We now show that expression of NADase, either enzymatically active or inactive, augments SLO-mediated toxicity for keratinocytes. In culture supernatants, SLO and NADase are mutually interdependent for protein stability. We demonstrate that the two proteins interact in solution and that both the translocation domain and catalytic domain of NADase are required for maximal binding between the two toxins. We conclude that binding of NADase to SLO stabilizes both toxins, thereby enhancing GAS virulence. PMID:28900022
NASA Astrophysics Data System (ADS)
Huang, Hongxin; Toyoda, Haruyoshi; Inoue, Takashi
2017-09-01
The performance of an adaptive optics scanning laser ophthalmoscope (AO-SLO) using a liquid crystal on silicon spatial light modulator and Shack-Hartmann wavefront sensor was investigated. The system achieved high-resolution and high-contrast images of human retinas by dynamic compensation for the aberrations in the eyes. Retinal structures such as photoreceptor cells, blood vessels, and nerve fiber bundles, as well as blood flow, could be observed in vivo. We also investigated involuntary eye movements and ascertained microsaccades and drifts using both the retinal images and the aberrations recorded simultaneously. Furthermore, we measured the interframe displacement of retinal images and found that during eye drift, the displacement has a linear relationship with the residual low-order aberration. The estimated duration and cumulative displacement of the drift were within the ranges estimated by a video tracking technique. The AO-SLO would not only be used for the early detection of eye diseases, but would also offer a new approach for involuntary eye movement research.
NASA Astrophysics Data System (ADS)
Terrones, Benjamin D.; Benavides, Oscar R.; Leeburg, Kelsey C.; Mehanathan, Sankarathi B.; Levine, Edward M.; Tao, Yuankai K.
2018-02-01
Intraocular injections are routinely performed for delivery of anti-VEGF and anti-inflammatory therapies in humans. While these injections are also performed in mice to develop novel models of ophthalmic diseases and screen novel therapeutics, the injection location and volume are not well-controlled and reproducible. We overcome limitations of conventional injections methods by developing a multimodality, long working distance, non-contact optical coherence tomography (OCT) and fluorescence confocal scanning laser ophthalmoscopy (cSLO) system for retinal imaging before and after injections. Our OCT+cSLO system combines a custom-built spectraldomain OCT engine (875+/-85 nm) with 125 kHz line-rate with a modified commercial cSLO with a maximum frame-rate of 30 fps (512 x 512 pix.). The system was designed for an overlapping OCT+cSLO field-of-view of 1.1 mm with a 7.76 mm working distance to the pupil. cSLO excitation light sources and filters were optimized for simultaneous GFP and tdTomato imaging. Lateral resolution was 3.02 µm for OCT and 2.74 μm for cSLO. Intravitreal injections of 5%, 10%, and 20% intralipid with Alex Fluor 488 were manually injected intraocularly in C57BL/6 mice. Post-injection imaging showed structural changes associated with retinal puncture, including the injection track, a retinal elevation, and detachment of the posterior hyaloid. OCT enables quantitative analysis of injection location and volumes whereas complementary cSLO improves specificity for identifying fluorescently labeled injected compounds and transgenic cells. The long working distance of our non-contact OCT+cSLO system is uniquely-suited for concurrent imaging with intraocular injections and may be applied for imaging of ophthalmic surgical dynamics and real-time image-guided injections.
Gating of the late Na+ channel in normal and failing human myocardium.
Undrovinas, Albertas I; Maltsev, Victor A; Kyle, John W; Silverman, Norman; Sabbah, Hani N
2002-11-01
We previously reported an ultraslow inactivating late Na+ current (INaL) in left ventricular cardiomyocytes (VC) isolated from normal (NVC) and failing (FVC) human hearts. This current could play a role in heart failure-induced repolarization abnormalities. To identify properties of NaCh contributing to INaL, we examined early and late openings in cell-attached patches of HEK293 cells expressing human cardiac NaCh alpha-subunit (alpha-HEK) and in VC of one normal and three failing human hearts. Two types of the late NaCh openings underlay INaL in all three preparations: scattered late (SLO) and bursts (BO). Amplitude analysis revealed that slope conductance for both SLO and BO was the same compared to the main level of early openings (EO) in both VC (21 vs 22.7pS, NVC; 22.7 vs 22.6pS, FVC) and alpha-HEK (23.2 vs 23pS), respectively. Analysis of SLO latencies revealed voltage-independent ultraslow inactivation in all preparations with tendency to be slower in FVC compared to NCV. EO and SLO render one open voltage-independent state (tau approximately 0.4ms) for NVC and FVC. One open (voltage-dependent) and two closed states (one voltage-dependent and another voltage-independent) were found in BO of both specimens. Burst duration tend to be longer in FVC ( approximately 50ms) than in NVC ( approximately 30ms). In FVC we found both modes SLO and BO at membrane potential of -10mV that is attribute for take-off voltages (from -18 to -2mV) for early afterdepolarizations (EAD's) in FVC. In conclusions, we found a novel gating mode SLO that manifest slow (hundreds of ms), voltage-independent inactivation in both NVC and FVC. We were unable to reliably demonstrate any differences in the properties of the late NaCh in failing vs a normal human heart. Accordingly, the late current appears to be generated by a single population of channels in normal and failing human ventricular myocardium. Both SLO and BO could be implicated in EADs in HF.
VizieR Online Data Catalog: SLoWPoKES-II catalog (Dhital+, 2015)
NASA Astrophysics Data System (ADS)
Dhital, S.; West, A. A.; Stassun, K. G.; Schluns, K. J.; Massey, A. P.
2015-11-01
We have identified the Sloan Low-mass Wide Pairs of Kinematically Equivalent Systems (SLoWPoKES)-II catalog of 105537 wide, low-mass binaries without using proper motions. We extend the SLoWPoKES catalog (Paper I; Dhital et al. 2010, cat. J/AJ/139/2566) by identifying binary systems with angular separations of 1-20'' based entirely on SDSS photometry and astrometry. As in Paper I, we used the Catalog Archive Server query tool (CasJobs6; http://skyserver.sdss3.org/CasJobs/) to select the sample of low-mass stars from the SDSS-DR8 star table as having r-i>=0.3 and i-z>=0.2, consistent with spectral types of K5 or later. Following Paper I (Dhital et al. 2010, cat. J/AJ/139/2566) we classified candidate pairs with a probability of chance alignment Pf{<=}0.05 as real binaries. We note that this limit does not have any physical motivation but was chosen to minimize the number of spurious pairs. This cut results in 105537 M dwarf (dM)+MS (see Table3), 78 white dwarf (WD)+dM (see Table5), and 184 sdM+sdM (see Table6) binary systems with separations of 1-20''. Of the dM+MS binaries, 44 are very low-mass (VLM) binary candidates (see Table4), with colors redder than the median M7 dwarf for both components. This represents a significant increase over the SLoWPoKES catalog of 1342 common proper motion (CPM) binaries that we presented in Paper I (Dhital et al. 2010, cat. J/AJ/139/2566). The SLoWPoKES and SLoWPoKES-II catalogs are available on the Filtergraph portal (http://slowpokes.vanderbilt.edu/). (4 data files).
Stewart, Sarah E; D'Angelo, Michael E; Paintavigna, Stefania; Tabor, Rico F; Martin, Lisandra L; Bird, Phillip I
2015-01-01
Streptolysin O (SLO) is a bacterial pore forming protein that is part of the cholesterol dependent cytolysin (CDC) family. We have used quartz crystal microbalance with dissipation monitoring (QCM-D) to examine SLO membrane binding and pore formation. In this system, SLO binds tightly to cholesterol-containing membranes, and assembles into partial and complete pores confirmed by atomic force microscopy. SLO binds to the lipid bilayer at a single rate consistent with the Langmuir isotherm model of adsorption. Changes in dissipation illustrate that SLO alters the viscoelastic properties of the bilayer during pore formation, but there is no loss of material from the bilayer as reported for small membrane-penetrating peptides. SLO mutants were used to further dissect the assembly and insertion processes by QCM-D. This shows the signature of SLO in QCM-D changes when pore formation is inhibited, and that bound and inserted SLO forms can be distinguished. Furthermore a pre-pore locked SLO mutant binds reversibly to lipid, suggesting that the partially complete wtSLO forms observed by AFM are anchored to the membrane. Copyright © 2014 Elsevier B.V. All rights reserved.
Heme Regulates Allosteric Activation of the Slo1 BK Channel
Horrigan, Frank T.; Heinemann, Stefan H.; Hoshi, Toshinori
2005-01-01
Large conductance calcium-dependent (Slo1 BK) channels are allosterically activated by membrane depolarization and divalent cations, and possess a rich modulatory repertoire. Recently, intracellular heme has been identified as a potent regulator of Slo1 BK channels (Tang, X.D., R. Xu, M.F. Reynolds, M.L. Garcia, S.H. Heinemann, and T. Hoshi. 2003. Nature. 425:531–535). Here we investigated the mechanism of the regulatory action of heme on heterologously expressed Slo1 BK channels by separating the influences of voltage and divalent cations. In the absence of divalent cations, heme generally decreased ionic currents by shifting the channel's G–V curve toward more depolarized voltages and by rendering the curve less steep. In contrast, gating currents remained largely unaffected by heme. Simulations suggest that a decrease in the strength of allosteric coupling between the voltage sensor and the activation gate and a concomitant stabilization of the open state account for the essential features of the heme action in the absence of divalent ions. At saturating levels of divalent cations, heme remained similarly effective with its influence on the G–V simulated by weakening the coupling of both Ca2+ binding and voltage sensor activation to channel opening. The results thus show that heme dampens the influence of allosteric activators on the activation gate of the Slo1 BK channel. To account for these effects, we consider the possibility that heme binding alters the structure of the RCK gating ring and thereby disrupts both Ca2+- and voltage-dependent gating as well as intrinsic stability of the open state. PMID:15955873
A BK (Slo1) channel journey from molecule to physiology
Contreras, Gustavo F; Castillo, Karen; Enrique, Nicolás; Carrasquel-Ursulaez, Willy; Castillo, Juan Pablo; Milesi, Verónica; Neely, Alan; Alvarez, Osvaldo; Ferreira, Gonzalo; González, Carlos; Latorre, Ramón
2013-01-01
Calcium and voltage-activated potassium (BK) channels are key actors in cell physiology, both in neuronal and non-neuronal cells and tissues. Through negative feedback between intracellular Ca2+ and membrane voltage, BK channels provide a damping mechanism for excitatory signals. Molecular modulation of these channels by alternative splicing, auxiliary subunits and post-translational modifications showed that these channels are subjected to many mechanisms that add diversity to the BK channel α subunit gene. This complexity of interactions modulates BK channel gating, modifying the energetic barrier of voltage sensor domain activation and channel opening. Regions for voltage as well as Ca2+ sensitivity have been identified, and the crystal structure generated by the 2 RCK domains contained in the C-terminal of the channel has been described. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, has been found to be relevant in many physiological processes. This review includes the hallmarks of BK channel biophysics and its physiological impact on specific cells and tissues, highlighting its relationship with auxiliary subunit expression. PMID:24025517
Inhibitory effect of protopine on K(ATP) channel subunits expressed in HEK-293 cells.
Jiang, Bo; Cao, Kun; Wang, Rui
2004-12-15
Protopine is an isoquinoline alkaloid purified from Corydalis tubers and other families of medicinal plants. The purpose of the present study was to investigate the effects of protopine on K(ATP) channels and big conductance (BKCa) channels. Protopine concentration-dependently inhibited K(ATP) channel currents in human embryonic kidney cells (HEK-293) which were cotransfected with Kir6.1 and sulfonylurea receptor 1 (SUR1) subunits, but not that with Kir6.1 cDNA transfection alone. At 25 muM, protopine reversibly decreased Kir6.1/SUR1 currents densities from -17.4+/-3 to -13.2+/-2.4 pA/pF at -60 mV (n=5, P<0.05). The heterologously expressed mSlo-encoded BK(Ca) channel currents in HEK-293 cells were not affected by protopine (25 muM), although iberiotoxin (100 nM) significantly inhibited the expressed BK(Ca) currents (n=5, P<0.05). In summary, protopine selectively inhibited K(ATP) channels by targeting on SUR1 subunit. This discovery may help design specific agents to selectively modulate the function of Kir6.1/SUR1 channel complex and facilitate the understanding of the structure-function relationship of specific subtype of K(ATP) channels.
Differential distribution of the sodium‐activated potassium channels slick and slack in mouse brain
Knaus, Hans‐Günther; Schwarzer, Christoph
2015-01-01
ABSTRACT The sodium‐activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are high‐conductance potassium channels of the Slo family. In neurons, Slick and Slack channels are involved in the generation of slow afterhyperpolarization, in the regulation of firing patterns, and in setting and stabilizing the resting membrane potential. The distribution and subcellular localization of Slick and Slack channels in the mouse brain have not yet been established in detail. The present study addresses this issue through in situ hybridization and immunohistochemistry. Both channels were widely distributed and exhibited distinct distribution patterns. However, in some brain regions, their expression overlapped. Intense Slick channel immunoreactivity was observed in processes, varicosities, and neuronal cell bodies of the olfactory bulb, granular zones of cortical regions, hippocampus, amygdala, lateral septal nuclei, certain hypothalamic and midbrain nuclei, and several regions of the brainstem. The Slack channel showed primarily a diffuse immunostaining pattern, and labeling of cell somata and processes was observed only occasionally. The highest Slack channel expression was detected in the olfactory bulb, lateral septal nuclei, basal ganglia, and distinct areas of the midbrain, brainstem, and cerebellar cortex. In addition, comparing our data obtained from mouse brain with a previously published study on rat brain revealed some differences in the expression and distribution of Slick and Slack channels in these species. J. Comp. Neurol. 524:2093–2116, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26587966
Yusuf, Imran H; Peirson, Stuart N; Patel, Chetan K
2012-03-01
To evaluate whether occlusive intraocular lenses (IOLs) produced by several manufacturers for clinical use equivalently transmit near-infrared (IR) light for scanning laser ophthalmoscopy (SLO) or optical coherence tomography (OCT) imaging. Nuffield Laboratory of Ophthalmology, Oxford University, United Kingdom. Evaluation of diagnostic test or technology. The study evaluated 6 black IOLs of 2 designs: 3 poly(methyl methacrylate) (PMMA) and 3 iris-claw anterior chamber IOLs. Each IOL was placed between a broad-spectrum white light source and a spectroradiometer to generate transmission spectra. Transmission in the near-IR range was examined using an 850 nm light-emitting diode. Scanning laser ophthalmoscopy or OCT imaging using Spectralis spectral-domain SLO or OCT was attempted through occlusive IOLs in a model eye. Artisan iris-claw and MS 612 PMMA occlusive IOLs totally occluded all wavelengths of light, including in the near IR range in which SLO and OCT imaging systems operate. It was not possible to capture SLO or OCT images through the iris-claw and PMMA occlusive IOLs in a model eye. Results suggest the property of near-IR transmission that permits SLO or OCT imaging through occlusive IOLs is restricted to the Morcher range of occlusive IOLs. Patients with non-near IR transmitting IOLs will not be able to receive detailed posterior segment monitoring with SLO or OCT. This finding may have a significant impact on preoperative occlusive IOL selection and the management of current patients with occlusive IOLs. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
[Malignant ovarian tumors and second look operations].
Yasuda, M
1983-08-01
There are many problems that, the timing of S.L.O. the range of reduction, and side effects etc., we studied retrospectively for the S.L.O. The number of subjects were 302 of common epithelial and 251 of germinal cell tumors, totalling 553 cases. Among them, 41 cases were common epithelial and 49 cases germ cell origine respectively, totalling 90 cases of S.L.O. were carried out. Conclusion The 5 year survival rate of S.L.O. was observed to a significant extent. The mean survival time of S.L.O. group: were significantly prolonged. Complete surgery at the S.L.O. of the patient with epithelial and germinal affected the survival rate significantly.
Horitani, Masaki; Offenbacher, Adam R; Carr, Cody A Marcus; Yu, Tao; Hoeke, Veronika; Cutsail, George E; Hammes-Schiffer, Sharon; Klinman, Judith P; Hoffman, Brian M
2017-02-08
In enzymatic C-H activation by hydrogen tunneling, reduced barrier width is important for efficient hydrogen wave function overlap during catalysis. For native enzymes displaying nonadiabatic tunneling, the dominant reactive hydrogen donor-acceptor distance (DAD) is typically ca. 2.7 Å, considerably shorter than normal van der Waals distances. Without a ground state substrate-bound structure for the prototypical nonadiabatic tunneling system, soybean lipoxygenase (SLO), it has remained unclear whether the requisite close tunneling distance occurs through an unusual ground state active site arrangement or by thermally sampling conformational substates. Herein, we introduce Mn 2+ as a spin-probe surrogate for the SLO Fe ion; X-ray diffraction shows Mn-SLO is structurally faithful to the native enzyme. 13 C ENDOR then reveals the locations of 13 C10 and reactive 13 C11 of linoleic acid relative to the metal; 1 H ENDOR and molecular dynamics simulations of the fully solvated SLO model using ENDOR-derived restraints give additional metrical information. The resulting three-dimensional representation of the SLO active site ground state contains a reactive (a) conformer with hydrogen DAD of ∼3.1 Å, approximately van der Waals contact, plus an inactive (b) conformer with even longer DAD, establishing that stochastic conformational sampling is required to achieve reactive tunneling geometries. Tunneling-impaired SLO variants show increased DADs and variations in substrate positioning and rigidity, confirming previous kinetic and theoretical predictions of such behavior. Overall, this investigation highlights the (i) predictive power of nonadiabatic quantum treatments of proton-coupled electron transfer in SLO and (ii) sensitivity of ENDOR probes to test, detect, and corroborate kinetically predicted trends in active site reactivity and to reveal unexpected features of active site architecture.
Differential distribution of the sodium-activated potassium channels slick and slack in mouse brain.
Rizzi, Sandra; Knaus, Hans-Günther; Schwarzer, Christoph
2016-07-01
The sodium-activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are high-conductance potassium channels of the Slo family. In neurons, Slick and Slack channels are involved in the generation of slow afterhyperpolarization, in the regulation of firing patterns, and in setting and stabilizing the resting membrane potential. The distribution and subcellular localization of Slick and Slack channels in the mouse brain have not yet been established in detail. The present study addresses this issue through in situ hybridization and immunohistochemistry. Both channels were widely distributed and exhibited distinct distribution patterns. However, in some brain regions, their expression overlapped. Intense Slick channel immunoreactivity was observed in processes, varicosities, and neuronal cell bodies of the olfactory bulb, granular zones of cortical regions, hippocampus, amygdala, lateral septal nuclei, certain hypothalamic and midbrain nuclei, and several regions of the brainstem. The Slack channel showed primarily a diffuse immunostaining pattern, and labeling of cell somata and processes was observed only occasionally. The highest Slack channel expression was detected in the olfactory bulb, lateral septal nuclei, basal ganglia, and distinct areas of the midbrain, brainstem, and cerebellar cortex. In addition, comparing our data obtained from mouse brain with a previously published study on rat brain revealed some differences in the expression and distribution of Slick and Slack channels in these species. J. Comp. Neurol. 524:2093-2116, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.
Alcohol modulation of BK channel gating depends on β subunit composition
Kuntamallappanavar, Guruprasad
2016-01-01
In most mammalian tissues, Ca2+i/voltage-gated, large conductance K+ (BK) channels consist of channel-forming slo1 and auxiliary (β1–β4) subunits. When Ca2+i (3–20 µM) reaches the vicinity of BK channels and increases their activity at physiological voltages, β1- and β4-containing BK channels are, respectively, inhibited and potentiated by intoxicating levels of ethanol (50 mM). Previous studies using different slo1s, lipid environments, and Ca2+i concentrations—all determinants of the BK response to ethanol—made it impossible to determine the specific contribution of β subunits to ethanol action on BK activity. Furthermore, these studies measured ethanol action on ionic current under a limited range of stimuli, rendering no information on the gating processes targeted by alcohol and their regulation by βs. Here, we used identical experimental conditions to obtain single-channel and macroscopic currents of the same slo1 channel (“cbv1” from rat cerebral artery myocytes) in the presence and absence of 50 mM ethanol. First, we assessed the role five different β subunits (1,2,2-IR, 3-variant d, and 4) in ethanol action on channel function. Thus, two phenotypes were identified: (1) ethanol potentiated cbv1-, cbv1+β3-, and cbv1+β4-mediated currents at low Ca2+i while inhibiting current at high Ca2+i, the potentiation–inhibition crossover occurring at 20 µM Ca2+i; (2) for cbv1+β1, cbv1+wt β2, and cbv1+β2-IR, this crossover was shifted to ∼3 µM Ca2+i. Second, applying Horrigan–Aldrich gating analysis on both phenotypes, we show that ethanol fails to modify intrinsic gating and the voltage-dependent parameters under examination. For cbv1, however, ethanol (a) drastically increases the channel’s apparent Ca2+ affinity (nine-times decrease in Kd) and (b) very mildly decreases allosteric coupling between Ca2+ binding and channel opening (C). The decreased Kd leads to increased channel activity. For cbv1+β1, ethanol (a) also decreases Kd, yet this decrease (two times) is much smaller than that of cbv1; (b) reduces C; and (c) decreases coupling between Ca2+ binding and voltage sensing (parameter E). Decreased allosteric coupling leads to diminished BK activity. Thus, we have identified critical gating modifications that lead to the differential actions of ethanol on slo1 with and without different β subunits. PMID:27799321
Zhang, Pengfei; Zam, Azhar; Jian, Yifan; Wang, Xinlei; Li, Yuanpei; Lam, Kit S.; Burns, Marie E.; Sarunic, Marinko V.; Pugh, Edward N.; Zawadzki, Robert J.
2015-01-01
Abstract. Scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) provide complementary views of the retina, with the former collecting fluorescence data with good lateral but relatively low-axial resolution, and the latter collecting label-free backscattering data with comparable lateral but much higher axial resolution. To take maximal advantage of the information of both modalities in mouse retinal imaging, we have constructed a compact, four-channel, wide-field (∼50 deg) system that simultaneously acquires and automatically coregisters three channels of confocal SLO and Fourier domain OCT data. The scanner control system allows “zoomed” imaging of a region of interest identified in a wide-field image, providing efficient digital sampling and localization of cellular resolution features in longitudinal imaging of individual mice. The SLO is equipped with a “flip-in” spectrometer that enables spectral “fingerprinting” of fluorochromes. Segmentation of retina layers and en face display facilitate spatial comparison of OCT data with SLO fluorescence patterns. We demonstrate that the system can be used to image an individual retinal ganglion cell over many months, to simultaneously image microglia and Müller glia expressing different fluorochromes, to characterize the distinctive spatial distributions and clearance times of circulating fluorochromes with different molecular sizes, and to produce unequivocal images of the heretofore uncharacterized mouse choroidal vasculature. PMID:26677070
Cell volume changes regulate slick (Slo2.1), but not slack (Slo2.2) K+ channels.
Tejada, Maria A; Stople, Kathleen; Hammami Bomholtz, Sofia; Meinild, Anne-Kristine; Poulsen, Asser Nyander; Klaerke, Dan A
2014-01-01
Slick (Slo2.1) and Slack (Slo2.2) channels belong to the family of high-conductance K+ channels and have been found widely distributed in the CNS. Both channels are activated by Na+ and Cl- and, in addition, Slick channels are regulated by ATP. Therefore, the roles of these channels in regulation of cell excitability as well as ion transport processes, like regulation of cell volume, have been hypothesized. It is the aim of this work to evaluate the sensitivity of Slick and Slack channels to small, fast changes in cell volume and to explore mechanisms, which may explain this type of regulation. For this purpose Slick and Slack channels were co-expressed with aquaporin 1 in Xenopus laevis oocytes and cell volume changes of around 5% were induced by exposure to hypotonic or hypertonic media. Whole-cell currents were measured by two electrode voltage clamp. Our results show that Slick channels are dramatically stimulated (196% of control) by cell swelling and inhibited (57% of control) by a decrease in cell volume. In contrast, Slack channels are totally insensitive to similar cell volume changes. The mechanism underlining the strong volume sensitivity of Slick channels needs to be further explored, however we were able to show that it does not depend on an intact actin cytoskeleton, ATP release or vesicle fusion. In conclusion, Slick channels, in contrast to the similar Slack channels, are the only high-conductance K+ channels strongly sensitive to small changes in cell volume.
Liu, Ping; Chen, Bojun; Wang, Zhao-Wen
2014-01-01
Slo2 channels are prominent K+ channels in mammalian neurons but their physiological functions are not well understood. Here we investigate physiological functions and regulation of the C. elegans homologue SLO-2 in motor neurons through electrophysiological analyses of wild-type and mutant worms. We find that SLO-2 is the primary K+ channel conducting delayed outward current in cholinergic motor neurons, and one of two K+ channels with this function in GABAergic motor neurons. Loss-of-function mutation of slo-2 increases the duration and charge transfer rate of spontaneous postsynaptic current bursts at the neuromuscular junction, which are physiological signals used by motor neurons to control muscle cells, without altering postsynaptic receptor sensitivity. SLO-2 activity in motor neurons depends on Ca2+ entry through EGL-19, an L-type voltage-gated Ca2+ channel (CaV1), but not on other proteins implicated in either Ca2+ entry or intracellular Ca2+ release. Thus, SLO-2 is functionally coupled with CaV1 and regulates neurotransmitter release. PMID:25300429
Adaptive optics scanning laser ophthalmoscopy in fundus imaging, a review and update.
Zhang, Bing; Li, Ni; Kang, Jie; He, Yi; Chen, Xiao-Ming
2017-01-01
Adaptive optics scanning laser ophthalmoscopy (AO-SLO) has been a promising technique in funds imaging with growing popularity. This review firstly gives a brief history of adaptive optics (AO) and AO-SLO. Then it compares AO-SLO with conventional imaging methods (fundus fluorescein angiography, fundus autofluorescence, indocyanine green angiography and optical coherence tomography) and other AO techniques (adaptive optics flood-illumination ophthalmoscopy and adaptive optics optical coherence tomography). Furthermore, an update of current research situation in AO-SLO is made based on different fundus structures as photoreceptors (cones and rods), fundus vessels, retinal pigment epithelium layer, retinal nerve fiber layer, ganglion cell layer and lamina cribrosa. Finally, this review indicates possible research directions of AO-SLO in future.
Adaptive optics scanning laser ophthalmoscopy in fundus imaging, a review and update
Zhang, Bing; Li, Ni; Kang, Jie; He, Yi; Chen, Xiao-Ming
2017-01-01
Adaptive optics scanning laser ophthalmoscopy (AO-SLO) has been a promising technique in funds imaging with growing popularity. This review firstly gives a brief history of adaptive optics (AO) and AO-SLO. Then it compares AO-SLO with conventional imaging methods (fundus fluorescein angiography, fundus autofluorescence, indocyanine green angiography and optical coherence tomography) and other AO techniques (adaptive optics flood-illumination ophthalmoscopy and adaptive optics optical coherence tomography). Furthermore, an update of current research situation in AO-SLO is made based on different fundus structures as photoreceptors (cones and rods), fundus vessels, retinal pigment epithelium layer, retinal nerve fiber layer, ganglion cell layer and lamina cribrosa. Finally, this review indicates possible research directions of AO-SLO in future. PMID:29181321
True color scanning laser ophthalmoscopy and optical coherence tomography handheld probe
LaRocca, Francesco; Nankivil, Derek; Farsiu, Sina; Izatt, Joseph A.
2014-01-01
Scanning laser ophthalmoscopes (SLOs) are able to achieve superior contrast and axial sectioning capability compared to fundus photography. However, SLOs typically use monochromatic illumination and are thus unable to extract color information of the retina. Previous color SLO imaging techniques utilized multiple lasers or narrow band sources for illumination, which allowed for multiple color but not “true color” imaging as done in fundus photography. We describe the first “true color” SLO, handheld color SLO, and combined color SLO integrated with a spectral domain optical coherence tomography (OCT) system. To achieve accurate color imaging, the SLO was calibrated with a color test target and utilized an achromatizing lens when imaging the retina to correct for the eye’s longitudinal chromatic aberration. Color SLO and OCT images from volunteers were then acquired simultaneously with a combined power under the ANSI limit. Images from this system were then compared with those from commercially available SLOs featuring multiple narrow-band color imaging. PMID:25401032
Seidensticker, Florian; Reznicek, Lukas; Mann, Thomas; Hübert, Irene; Kampik, Anselm; Ulbig, Michael; Hirneiss, Christoph; Neubauer, Aljoscha S; Kernt, Marcus
2014-01-01
Purpose To assess β-zone peripapillary atrophy (β-PPA) using spectral domain optical coherence tomography (SD-OCT), scanning laser ophthalmoscopy (SLO), and fundus auto-fluorescence (FAF) imaging in patients with primary open-angle glaucoma with advanced glaucomatous visual field defects. Methods A consecutive, prospective series of 82 study eyes with primary open-angle glaucoma were included in this study. All study participants underwent a full ophthalmic examination followed by SD-OCT, wide-field SLO, and FAF imaging of the optic nerve head and the peripapillary region. Results Eighty-four glaucomatous eyes were included in our prospective study. Correlation analyses for horizontally and vertically obtained β-PPA for all three imaging modalities (color SLO, FAF, and SD-OCT) revealed highest correlations between FAF and color SLO (Pearson correlation coefficient: 0.904 [P<0.001] for horizontal β-PPA and 0.786 [P<0.001] for vertical β-PPA). Bland–Altman plotting revealed highest agreements between color SLO and FAF, with −2.1 pixels ±1.96 standard deviation (SD) for horizontal β-PPA, SD: 10.5 pixels and 2.4 pixels ±1.96 SD for vertical β-PPA. Conclusion β-PPA can be assessed using en-face SLO and cross-sectional SD-OCT imaging. Correlation analyses revealed highest correlations between color SLO and FAF imaging, while correlations between SLO and SD-OCT were weak. A more precise structural definition of β-PPA is needed. PMID:25061270
Leiva, Natalia; Pavarotti, Martín; Colombo, María I; Damiani, María T
2006-06-10
By phagocytosis, macrophages engulf large particles, microorganisms and senescent cells in vesicles called phagosomes. Many internalized proteins rapidly shuttle back to the plasma membrane following phagosome biogenesis. Here, we report a new approach to the study of recycling from the phagosomal compartment: streptolysin O- (SLO) permeabilized macrophages. In this semi-intact cell system, energy and cytosol are required to efficiently reconstitute recycling transport. Addition of GDPbetaS strongly inhibits this transport step, suggesting that a GTP-binding protein modulates the dynamics of cargo exit from the phagosomal compartment. GTPases of the Rab family control vesicular trafficking, and Rab11 is involved in transferrin receptor recycling. To unravel the role of Rab11 in the phagocytic pathway, we added recombinant proteins to SLO-permeabilized macrophages. Rab11:S25N, a negative mutant, strongly diminishes the release of recycled proteins from phagosomes. In contrast, wild type Rab11 and its positive mutant (Rab11:Q70L) favor this vesicular transport event. Using biochemical and morphological assays, we confirm that overexpression of Rab11:S25N substantially decreases recycling from phagosomes in intact cells. These findings show the requirement of a functional Rab11 for the retrieval to the plasma membrane of phagosomal content. SLO-permeabilized macrophages likely constitute a useful tool to identify new molecules involved in regulating transport along the phagocytic pathway.
Cone Integrity in Glaucoma: An Adaptive-Optics Scanning Laser Ophthalmoscopy Study.
Hasegawa, Tomoko; Ooto, Sotaro; Takayama, Kohei; Makiyama, Yukiko; Akagi, Tadamichi; Ikeda, Hanako O; Nakanishi, Hideo; Suda, Kenji; Yamada, Hiroshi; Uji, Akihito; Yoshimura, Nagahisa
2016-11-01
To investigate photoreceptor changes in eyes with glaucoma. Cross-sectional study. The study included 35 eyes of 35 patients with primary open-angle glaucoma who had suffered parafoveal visual field loss at least 3 years previously, as well as 21 eyes of 21 normal subjects. Eyes with an axial length ≥26.0 mm were excluded. All subjects underwent a full ophthalmologic examination, including spectral-domain optical coherence tomography (SDOCT) and prototype adaptive-optics scanning laser ophthalmoscopy (AO-SLO) imaging. As determined using AO-SLO, eyes with glaucoma did not differ significantly from normal eyes in terms of either cone density (26 468 ± 3392 cones/m 2 vs 26 147 ± 2700 cones/m 2 , respectively; P = .77; measured 0.5 mm from the foveal center) or cone spatial organization (ratio of hexagonal Voronoi domain: 43.7% ± 4.4% vs 44.3% ± 4.9%; P = .76; measured 0.5 mm from the foveal center). Furthermore, SDOCT showed that the 2 groups did not differ significantly in terms of the photoreceptor-related layer thickness, and that the photoreceptor ellipsoid zone band was continuous in all normal and glaucoma eyes. In glaucoma eyes with vertically asymmetric severity, the more affected side did not significantly differ from the less affected side in terms of cone density, cone spatial organization, or photoreceptor-related layer thickness. In 8 eyes (22.9%) with glaucoma, dark, partition-like areas surrounded the cones on the AO-SLO. Both AO-SLO and SDOCT showed cone integrity in eyes with glaucoma, even in areas with visual field and nerve fiber loss. In AO-SLO, microcystic lesions in the inner nuclear layer may influence images of the cone mosaic. Copyright © 2016 Elsevier Inc. All rights reserved.
Slack channels expressed in sensory neurons control neuropathic pain in mice.
Lu, Ruirui; Bausch, Anne E; Kallenborn-Gerhardt, Wiebke; Stoetzer, Carsten; Debruin, Natasja; Ruth, Peter; Geisslinger, Gerd; Leffler, Andreas; Lukowski, Robert; Schmidtko, Achim
2015-01-21
Slack (Slo2.2) is a sodium-activated potassium channel that regulates neuronal firing activities and patterns. Previous studies identified Slack in sensory neurons, but its contribution to acute and chronic pain in vivo remains elusive. Here we generated global and sensory neuron-specific Slack mutant mice and analyzed their behavior in various animal models of pain. Global ablation of Slack led to increased hypersensitivity in models of neuropathic pain, whereas the behavior in models of inflammatory and acute nociceptive pain was normal. Neuropathic pain behaviors were also exaggerated after ablation of Slack selectively in sensory neurons. Notably, the Slack opener loxapine ameliorated persisting neuropathic pain behaviors. In conclusion, Slack selectively controls the sensory input in neuropathic pain states, suggesting that modulating its activity might represent a novel strategy for management of neuropathic pain. Copyright © 2015 the authors 0270-6474/15/351125-11$15.00/0.
Progression of Local Glaucomatous Damage Near Fixation as Seen with Adaptive Optics Imaging.
Hood, Donald C; Lee, Dongwon; Jarukasetphon, Ravivarn; Nunez, Jason; Mavrommatis, Maria A; Rosen, Richard B; Ritch, Robert; Dubra, Alfredo; Chui, Toco Y P
2017-07-01
Deep glaucomatous defects near fixation were followed over time with an adaptive optics-scanning light ophthalmoscope (AO-SLO) to better understand the progression of these defects and to explore the use of AO-SLO in detecting them. Six eyes of 5 patients were imaged with an AO-SLO from 2 to 4 times for a range of 14.6 to 33.6 months. All eyes had open-angle glaucoma with deep defects in the superior visual field (VF) near fixation as defined by 10-2 VFs with 5 or more points less than -15 dB; two of the eyes had deep defects in the inferior VF as well. AO-SLO images were obtained around the temporal edge of the disc. In 4 of the 6 eyes, the edge of the inferior-temporal disc region of the retinal nerve fiber (RNF) defect seen on AO-SLO moved closer to fixation within 10.6 to 14.7 months. In 4 eyes, RNF bundles in the affected region appeared to lose contrast and/or disappear. Progressive changes in RNF bundles associated with deep defects on 10-2 VFs can be seen within about 1 year with AO-SLO imaging. These changes are well below the spatial resolution of the 10-2 VF. On the other hand, subtle thinning of regions with RNF bundles is not easy to see with current AO-SLO technology, and may be better followed with OCT. AO-SLO imaging may be useful in clinical trials designed to see very small changes in deep defects.
Wang, Peng; Zhu, Zhouquan; Huang, Shuai
2013-01-01
This paper presents a novel biologically inspired metaheuristic algorithm called seven-spot ladybird optimization (SLO). The SLO is inspired by recent discoveries on the foraging behavior of a seven-spot ladybird. In this paper, the performance of the SLO is compared with that of the genetic algorithm, particle swarm optimization, and artificial bee colony algorithms by using five numerical benchmark functions with multimodality. The results show that SLO has the ability to find the best solution with a comparatively small population size and is suitable for solving optimization problems with lower dimensions.
Zhu, Zhouquan
2013-01-01
This paper presents a novel biologically inspired metaheuristic algorithm called seven-spot ladybird optimization (SLO). The SLO is inspired by recent discoveries on the foraging behavior of a seven-spot ladybird. In this paper, the performance of the SLO is compared with that of the genetic algorithm, particle swarm optimization, and artificial bee colony algorithms by using five numerical benchmark functions with multimodality. The results show that SLO has the ability to find the best solution with a comparatively small population size and is suitable for solving optimization problems with lower dimensions. PMID:24385879
NASA Astrophysics Data System (ADS)
Zhang, Pengfei; Goswami, Mayank; Pugh, Edward N.; Zawadzki, Robert J.
2016-03-01
Scanning Laser Ophthalmoscopy (SLO) is a very important imaging tool in ophthalmology research. By combing with Adaptive Optics (AO) technique, AO-SLO can correct for ocular aberrations resulting in cellular level resolution, allowing longitudinal studies of single cells morphology in the living eyes. The numerical aperture (NA) sets the optical resolution that can be achieve in the "classical" imaging systems. Mouse eye has more than twice NA of the human eye, thus offering theoretically higher resolution. However, in most SLO based imaging systems the imaging beam size at mouse pupil sets the NA of that instrument, while most of the AO-SLO systems use almost the full NA of the mouse eye. In this report, we first simulated the theoretical resolution that can be achieved in vivo for different imaging beam sizes (different NA), assumingtwo cases: no aberrations and aberrations based on published mouse ocular wavefront data. Then we imaged mouse retinas with our custom build SLO system using different beam sizes to compare these results with theory. Further experiments include comparison of the SLO and AO-SLO systems for imaging different type of fluorescently labeled cells (microglia, ganglion, photoreceptors, etc.). By comparing those results and taking into account systems complexity and ease of use, the benefits and drawbacks of two imaging systems will be discussed.
Anastasakis, Anastasios; Fishman, Gerald A; Lindeman, Martin; Genead, Mohamed A; Zhou, Wensheng
2010-01-01
Purpose To correlate the degree of functional loss with structural changes in patients with Stargardt disease. Methods Eighteen eyes of 10 Stargardt patients were studied. Scanning laser ophthalmoscope (SLO) infrared images were compared to corresponding spectral domain optical coherence tomography (SD-OCT) scans. Additionally, SLO microperimetry was performed and results were superimposed on SLO infrared images and in selected cases on fundus autofluorescence (FAF) images. Results Seventeen of 18 eyes showed a distinct hypo-reflective foveal and/or perifoveal area with distinct borders on SLO-infrared images which was less evident on funduscopy and incompletely depicted in FAF images. This hypo-reflective zone corresponded to areas of significantly elevated psychophysical thresholds on microperimetry testing, in addition to thinning of the retinal pigment epithelium (RPE), disorganization or loss of the photoreceptor cell inner-outer segment (IS-OS) junction and external limiting membrane (ELM) on SD-OCT. Conclusion SLO-infrared fundus images are useful for depicting retinal structural changes in Stargardt patients. An SD-OCT/SLO microperimetry device allows for a direct correlation of structural abnormalities with functional defects that will likely be applicable for the determination of retinal areas for potential improvement of retinal function in these patients during future clinical trials and for the monitoring of the diseases' natural history. PMID:21293320
Chun, Robert; Fishman, Gerald A.; Collison, Frederick T.; Stone, Edwin M.; Zernant, Jana; Allikmets, Rando
2014-01-01
Purpose To demonstrate the value of infrared scanning laser ophthalmoscopy (SLO) for determining structural retinal and choroidal changes in patients with Stargardt disease and its comparison to findings on short-wavelength fundus autofluorescence (SW-AF) imaging, spectral-domain optical coherence tomography, and microperimetry measurements. Methods Forty-four eyes of 22 patients with Stargardt disease were studied using infrared-SLO, spectral-domain optical coherence tomography, macular microperimetry, SW-AF, electroretinography, and fundus photography. Results Although SW-AF imaging outlined the regions of retinal pigment epithelial (RPE) atrophy (hypofluorescence) and enhanced the visibility of more funduscopically apparent flecks (hyperfluorescence), infrared-SLO imaging outlined the regions of choroidal, and RPE, atrophic changes. Degenerative changes in photoreceptor and RPE cell layers, evident on spectral-domain optical coherence tomography imaging, were associated with either hyporeflective or hyperreflective images on infrared-SLO imaging, depending on whether both RPE and choroidal atrophy (hyperreflectance) or solely RPE atrophy (hyporeflectance) was present. Threshold elevations on microperimetry testing corresponded to both RPE and choroidal atrophy on infrared-SLO imaging and RPE atrophy on SW-AF. Conclusion Although SW-AF identifies regions of RPE atrophy, infrared-SLO also identifies the involvement of the choroid that has important implications for the potential improvement in visual function from treatment. Thus, infrared-SLO imaging offers an additional advantage beyond that obtained with SW-AF. PMID:24317291
Hood, Donald C; Chen, Monica F; Lee, Dongwon; Epstein, Benjamin; Alhadeff, Paula; Rosen, Richard B; Ritch, Robert; Dubra, Alfredo; Chui, Toco Y P
2015-04-01
To improve our understanding of glaucomatous damage as seen on circumpapillary disc scans obtained with frequency-domain optical coherence tomography (fdOCT), fdOCT scans were compared to images of the peripapillary retinal nerve fiber (RNF) bundles obtained with an adaptive optics-scanning light ophthalmoscope (AO-SLO). The AO-SLO images and fdOCT scans were obtained on 6 eyes of 6 patients with deep arcuate defects (5 points ≤-15 db) on 10-2 visual fields. The AO-SLO images were montaged and aligned with the fdOCT images to compare the RNF bundles seen with AO-SLO to the RNF layer thickness measured with fdOCT. All 6 eyes had an abnormally thin (1% confidence limit) RNF layer (RNFL) on fdOCT and abnormal (hyporeflective) regions of RNF bundles on AO-SLO in corresponding regions. However, regions of abnormal, but equal, RNFL thickness on fdOCT scans varied in appearance on AO-SLO images. These regions could be largely devoid of RNF bundles (5 eyes), have abnormal-appearing bundles of lower contrast (6 eyes), or have isolated areas with a few relatively normal-appearing bundles (2 eyes). There also were local variations in reflectivity of the fdOCT RNFL that corresponded to the variations in AO-SLO RNF bundle appearance. Relatively similar 10-2 defects with similar fdOCT RNFL thickness profiles can have very different degrees of RNF bundle damage as seen on fdOCT and AO-SLO. While the results point to limitations of fdOCT RNFL thickness as typically analyzed, they also illustrate the potential for improving fdOCT by attending to variations in local intensity.
Takayama, Kohei; Ooto, Sotaro; Hangai, Masanori; Ueda-Arakawa, Naoko; Yoshida, Sachiko; Akagi, Tadamichi; Ikeda, Hanako Ohashi; Nonaka, Atsushi; Hanebuchi, Masaaki; Inoue, Takashi; Yoshimura, Nagahisa
2013-05-01
To detect pathologic changes in retinal nerve fiber bundles in glaucomatous eyes seen on images obtained by adaptive optics (AO) scanning laser ophthalmoscopy (AO SLO). Prospective cross-sectional study. Twenty-eight eyes of 28 patients with open-angle glaucoma and 21 normal eyes of 21 volunteer subjects underwent a full ophthalmologic examination, visual field testing using a Humphrey Field Analyzer, fundus photography, red-free SLO imaging, spectral-domain optical coherence tomography, and imaging with an original prototype AO SLO system. The AO SLO images showed many hyperreflective bundles suggesting nerve fiber bundles. In glaucomatous eyes, the nerve fiber bundles were narrower than in normal eyes, and the nerve fiber layer thickness was correlated with the nerve fiber bundle widths on AO SLO (P < .001). In the nerve fiber layer defect area on fundus photography, the nerve fiber bundles on AO SLO were narrower compared with those in normal eyes (P < .001). At 60 degrees on the inferior temporal side of the optic disc, the nerve fiber bundle width was significantly lower, even in areas without nerve fiber layer defect, in eyes with glaucomatous eyes compared with normal eyes (P = .026). The mean deviations of each cluster in visual field testing were correlated with the corresponding nerve fiber bundle widths (P = .017). AO SLO images showed reduced nerve fiber bundle widths both in clinically normal and abnormal areas of glaucomatous eyes, and these abnormalities were associated with visual field defects, suggesting that AO SLO may be useful for detecting early nerve fiber bundle abnormalities associated with loss of visual function. Copyright © 2013 Elsevier Inc. All rights reserved.
Community engagement as conflict prevention: Understanding the social license to operate
NASA Astrophysics Data System (ADS)
Knih, Dejana
This thesis examines community engagement as a form of conflict prevention in order to obtain the social license to operate (SLO) in Alberta's oil and gas industry. It does this by answering the question: what are the key elements of the Social License to Operate and how can these elements be applied to community engagement/consultation in a way that prevents conflicts in Alberta's oil and gas industry? The underlying assumption of this thesis is that building good relationships and working collaboratively functions as a form of conflict prevention and that this in turn leads to the SLO. This thesis outlines the key features of both successful community engagement and of the SLO, to provide a guideline for what is needed to obtain the SLO. Data was collected from semi-structured interviews and through a literature review. The data analysis concluded that there are direct parallels between the key elements of effective community engagement and the key elements of the SLO as identified in the interviews. These parallels are: knowing the community, addressing community needs, corporate social responsibility, relationship building, follow through and evidence for what has been done, executive buy-in, excellent communication, and open dialogue, all within a process which is principled (there is trust, understanding, transparency and respect), inclusive, dynamic, flexible, ongoing, and long-term. Moreover, the key elements of effective community engagement and of the SLO identified in the interviews also overlapped with those found in the literature review, with only one exception. The literature review explicitly named early involvement as a key element of both effective community engagement and the SLO, whereas the interview participants only explicitly indicated it as a key factor of community engagement and implied it to be a key element of the SLO.
The β1 Subunit Enhances Oxidative Regulation of Large-Conductance Calcium-activated K+ Channels
Santarelli, Lindsey Ciali; Chen, Jianguo; Heinemann, Stefan H.; Hoshi, Toshinori
2004-01-01
Oxidative stress may alter the functions of many proteins including the Slo1 large conductance calcium-activated potassium channel (BKCa). Previous results demonstrated that in the virtual absence of Ca2+, the oxidant chloramine-T (Ch-T), without the involvement of cysteine oxidation, increases the open probability and slows the deactivation of BKCa channels formed by human Slo1 (hSlo1) α subunits alone. Because native BKCa channel complexes may include the auxiliary subunit β1, we investigated whether β1 influences the oxidative regulation of hSlo1. Oxidation by Ch-T with β1 present shifted the half-activation voltage much further in the hyperpolarizing direction (−75 mV) as compared with that with α alone (−30 mV). This shift was eliminated in the presence of high [Ca2+]i, but the increase in open probability in the virtual absence of Ca2+ remained significant at physiologically relevant voltages. Furthermore, the slowing of channel deactivation after oxidation was even more dramatic in the presence of β1. Oxidation of cysteine and methionine residues within β1 was not involved in these potentiated effects because expression of mutant β1 subunits lacking cysteine or methionine residues produced results similar to those with wild-type β1. Unlike the results with α alone, oxidation by Ch-T caused a significant acceleration of channel activation only when β1 was present. The β1 M177 mutation disrupted normal channel activation and prevented the Ch-T–induced acceleration of activation. Overall, the functional effects of oxidation of the hSlo1 pore-forming α subunit are greatly amplified by the presence of β1, which leads to the additional increase in channel open probability and the slowing of deactivation. Furthermore, M177 within β1 is a critical structural determinant of channel activation and oxidative sensitivity. Together, the oxidized BKCa channel complex with β1 has a considerable chance of being open within the physiological voltage range even at low [Ca2+]i. PMID:15452197
Expression, purification and functional reconstitution of slack sodium-activated potassium channels.
Yan, Yangyang; Yang, Youshan; Bian, Shumin; Sigworth, Fred J
2012-11-01
The slack (slo2.2) gene codes for a potassium-channel α-subunit of the 6TM voltage-gated channel family. Expression of slack results in Na(+)-activated potassium channel activity in various cell types. We describe the purification and reconstitution of Slack protein and show that the Slack α-subunit alone is sufficient for potassium channel activity activated by sodium ions as assayed in planar bilayer membranes and in membrane vesicles.
Kimura, Y; Shimada-Omori, R; Takahashi, T; Tsuchiyama, K; Kusakari, Y; Yamasaki, K; Nishikawa, R; Nishigori, C; Aiba, S
2016-11-01
Tumour necrosis factor (TNF)-α antagonist therapy is currently used for moderate and severe psoriasis. However, this treatment has several drawbacks, including interindividual variability in clinical response and secondary loss of effectiveness. To evaluate quantitatively the TNF-α-neutralizing activity of the plasma of patients with psoriasis during TNF-α antagonist therapy and to determine poor responders objectively. We used a human interleukin-8 reporter monocyte cell line, THP-G8, that harbours a stable luciferase orange (SLO) gene under the control of the interleukin-8 promoter. After confirming its dose-dependent response to exogenous TNF-α, we examined the suppressive activity of TNF-α antagonists and of the patients' plasma during TNF-α antagonist therapy on TNF-α-induced SLO luciferase activity (TNF-SLO-LA). Pretreatment of TNF-α with TNF-α antagonists or with the plasma of patients with psoriasis who achieved 75% improvement in Psoriasis Area and Severity Index (PASI 75) dose dependently suppressed TNF-SLO-LA. There was a significant correlation between change in PASI and percentage suppression (inhibitory rate of a 1 : 2 dilution of patient plasma on TNF-SLO-LA). A percentage suppression of 50·3% has a positive predictive value of 87% of achieving PASI 75, with a sensitivity of 93% and a specificity of 80%. Therapeutic monitoring of patients with psoriasis during TNF-α antagonist therapy using THP-G8 can provide a useful tool to determine objectively the efficacy of the administered TNF-α antagonists. © 2016 British Association of Dermatologists.
Visualization of chorioretinal vasculature in mice in vivo using a combined OCT/SLO imaging system
NASA Astrophysics Data System (ADS)
Goswami, Mayank; Zhang, Pengfei; Pugh, Edward N.; Zawadzki, Robert J.
2016-03-01
Chorioretinal blood vessel morphology in mice is of great interest to researchers studying eye disease mechanisms in animal models. Two leading retinal imaging modalities -- Optical Coherence Tomography (OCT) and Scanning Laser Ophthalmoscopy (SLO) -- have offered much insight into vascular morphology and blood flow. OCT "flow-contrast" methods have provided detailed mapping of vascular morphology with micrometer depth resolution, while OCT Doppler methods have enabled the measurement of local flow velocities. SLO remains indispensable in studying blood leakage, microaneurysms, and the clearance time of contrast agents of different sizes. In this manuscript we present results obtained with a custom OCT/SLO system applied to visualize the chorioretinal vascular morphology of pigmented C57Bl/6J and albino nude (Nu/Nu) mice. Blood perfusion maps of choroidal vessels and choricapillaris created by OCT and SLO are presented, along with detailed evaluation of different OCT imaging parameters, including the use of the scattering contrast agent Intralipid. Future applications are discussed.
NASA Astrophysics Data System (ADS)
Prno, Jason; Slocombe, D. Scott
2014-03-01
The concept of a "social license to operate" (SLO) was coined in the 1990s and gained popularity as one way in which "social" considerations can be addressed in mineral development decision making. The need for a SLO implies that developers require the widespread approval of local community members for their projects to avoid exposure to potentially costly conflict and business risks. Only a limited amount of scholarship exists on the topic, and there is a need for research that specifically addresses the complex and changeable nature of SLO outcomes. In response to these challenges, this paper advances a novel, systems-based conceptual framework for assessing SLO determinants and outcomes in the mining industry. Two strands of systems theory are specifically highlighted—complex adaptive systems and resilience—and the roles of context, key system variables, emergence, change, uncertainty, feedbacks, cross-scale effects, multiple stable states, thresholds, and resilience are discussed. The framework was developed from the results of a multi-year research project which involved international mining case study investigations, a comprehensive literature review, and interviews conducted with mining stakeholders and observers. The framework can help guide SLO analysis and management efforts, by encouraging users to account for important contextual and complexity-oriented elements present in SLO settings. We apply the framework to a case study in Alaska, USA before discussing its merits and challenges. We also illustrate knowledge gaps associated with applications of complex adaptive systems and resilience theories to the study of SLO dynamics, and discuss opportunities for future research.
Prno, Jason; Slocombe, D Scott
2014-03-01
The concept of a "social license to operate" (SLO) was coined in the 1990s and gained popularity as one way in which "social" considerations can be addressed in mineral development decision making. The need for a SLO implies that developers require the widespread approval of local community members for their projects to avoid exposure to potentially costly conflict and business risks. Only a limited amount of scholarship exists on the topic, and there is a need for research that specifically addresses the complex and changeable nature of SLO outcomes. In response to these challenges, this paper advances a novel, systems-based conceptual framework for assessing SLO determinants and outcomes in the mining industry. Two strands of systems theory are specifically highlighted-complex adaptive systems and resilience-and the roles of context, key system variables, emergence, change, uncertainty, feedbacks, cross-scale effects, multiple stable states, thresholds, and resilience are discussed. The framework was developed from the results of a multi-year research project which involved international mining case study investigations, a comprehensive literature review, and interviews conducted with mining stakeholders and observers. The framework can help guide SLO analysis and management efforts, by encouraging users to account for important contextual and complexity-oriented elements present in SLO settings. We apply the framework to a case study in Alaska, USA before discussing its merits and challenges. We also illustrate knowledge gaps associated with applications of complex adaptive systems and resilience theories to the study of SLO dynamics, and discuss opportunities for future research.
Picosecond Electronics and Optoelectronics Held at Incline Village, Nevada on 13-15 March 1985.
1986-02-04
subpicosecond Observation of Modulation Speed Enhancement and laser pulses in s-lO n -si icrn Scnbttky diodes s in Phase Noise Reduction by Detuned Loading in...desadaptation is necessary for saving power dissipation so that multiple reflexions and inter connexion cross-talk noise could become the source of the...r : I:, .i . .. ,: V) i’). noise sidebands predominate. Because the samnler measures the product of the optical intensity and the electrical signal
Functional and Cellular Responses to Laser Injury in the Rat Snake Retina
2007-01-01
snake retina, previous studies have documented the role of photo-oxidative stress in inducing photoreceptor damage . 20 The present research was designed...Tyrrell, "Activation of NF-kappa B in human skin fibroblasts by the oxidative stress generated by UVA radiation," Photochem. Photobiol., 62, pp. 463-468...induced retinal photoreceptor damage .9. 10 In addition to its imaging capabilities, the cSLO can also be modulated externally to produce stimulus patterns
Lens based adaptive optics scanning laser ophthalmoscope.
Felberer, Franz; Kroisamer, Julia-Sophie; Hitzenberger, Christoph K; Pircher, Michael
2012-07-30
We present an alternative approach for an adaptive optics scanning laser ophthalmoscope (AO-SLO). In contrast to other commonly used AO-SLO instruments, the imaging optics consist of lenses. Images of the fovea region of 5 healthy volunteers are recorded. The system is capable to resolve human foveal cones in 3 out of 5 healthy volunteers. Additionally, we investigated the capability of the system to support larger scanning angles (up to 5°) on the retina. Finally, in order to demonstrate the performance of the instrument images of rod photoreceptors are presented.
Assessment of Central Retinal Sensitivity Employing Two Types of Microperimetry Devices
Liu, Hongting; Bittencourt, Millena G.; Wang, Jiangxia; Sophie, Raafay; Annam, Rachel; Ibrahim, Mohamed A.; Sepah, Yasir J.; Moradi, Ahmadreza; Scholl, Hendrik P. N.; Nguyen, Quan Dong
2014-01-01
Purpose To compare the retinal sensitivity measurements obtained with two microperimeters, the Micro-Perimeter 1 (MP-1) and the Optos optical coherence tomography (OCT)/scanning laser ophthalmoscope (SLO) in subjects with and without maculopathies. Methods Forty-five eyes with no known ocular disease and 47 eyes with maculopathies were examined using both microperimeters. A contrast-adjusted scale was applied to resolve the different stimuli and background luminance existing between the two devices. Results There was a strong ceiling effect with the MP-1 in the healthy group, with 90.1% (1136 of 1260) test points clustered at 20 dB. The mean sensitivity for the corresponding points in the OCT/SLO was 25.8 ± 1.9 dB. A floor effect was also observed with the OCT/SLO in the maculopathy group with 9.7% (128 of 1316) points clustered at 9-dB values. The corresponding mean sensitivity in the MP-1 was 1.7 ± 3.9 dB. A regression equation between the two microperimeters was established in the common 10 to19 dB intervals as: OCT/SLO = 15.6 + 0.564 × MP-1 − 0.009 × MP-12 + k (k is an individual point constant; MP-1 coefficient P < 0.001; MP-12 coefficient P = 0.006). Conclusion The OCT/SLO and the MP-1 provide two different ranges of contrasts for microperimetry examination. Broadening the dynamic range may minimize the constraint of the ceiling and floor effect. There is a significant mathematical relationship in the common interval of the contrast scale. Translational Relevance Applying a unified and broadened dynamic range in different types of microperimeters will help to generate consistent clinical reference for measurements. PMID:25237592
A novel method for segmentation of Infrared Scanning Laser Ophthalmoscope (IR-SLO) images of retina.
Ajaz, Aqsa; Aliahmad, Behzad; Kumar, Dinesh K
2017-07-01
Retinal vessel segmentation forms an essential element of automatic retinal disease screening systems. The development of multimodal imaging system with IR-SLO and OCT could help in studying the early stages of retinal disease. The advantages of IR-SLO to examine the alterations in the structure of retina and direct correlation with OCT can be useful for assessment of various diseases. This paper presents an automatic method for segmentation of IR-SLO fundus images based on the combination of morphological filters and image enhancement techniques. As a first step, the retinal vessels are contrasted using morphological filters followed by background exclusion using Contrast Limited Adaptive Histogram Equalization (CLAHE) and Bilateral filtering. The final segmentation is obtained by using Isodata technique. Our approach was tested on a set of 26 IR-SLO images and results were compared to two set of gold standard images. The performance of the proposed method was evaluated in terms of sensitivity, specificity and accuracy. The system has an average accuracy of 0.90 for both the sets.
Simultaneous three wavelength imaging with a scanning laser ophthalmoscope.
Reinholz, F; Ashman, R A; Eikelboom, R H
1999-11-01
Various imaging properties of scanning laser ophthalmoscopes (SLO) such as contrast or depth discrimination, are superior to those of the traditional photographic fundus camera. However, most SLO are monochromatic whereas photographic systems produce colour images, which inherently contain information over a broad wavelength range. An SLO system has been modified to allow simultaneous three channel imaging. Laser light sources in the visible and infrared spectrum were concurrently launched into the system. Using different wavelength triads, digital fundus images were acquired at high frame rates. Favourable wavelengths combinations were established and high contrast, true (red, green, blue) or false (red, green, infrared) colour images of the retina were recorded. The monochromatic frames which form the colour image exhibit improved distinctness of different retinal structures such as the nerve fibre layer, the blood vessels, and the choroid. A multi-channel SLO combines the advantageous imaging properties of a tunable, monochrome SLO with the benefits and convenience of colour ophthalmoscopy. The options to modify parameters such as wavelength, intensity, gain, beam profile, aperture sizes, independently for every channel assign a high degree of versatility to the system. Copyright 1999 Wiley-Liss, Inc.
Crespo-Garcia, Sergio; Reichhart, Nadine; Hernandez-Matas, Carlos; Zabulis, Xenophon; Kociok, Norbert; Brockmann, Claudia; Joussen, Antonia M; Strauss, Olaf
2015-10-01
Microglia play a major role in retinal neovascularization and degeneration and are thus potential targets for therapeutic intervention. In vivo assessment of microglia behavior in disease models can provide important information to understand patho-mechanisms and develop therapeutic strategies. Although scanning laser ophthalmoscope (SLO) permits the monitoring of microglia in transgenic mice with microglia-specific GFP expression, there are fundamental limitations in reliable identification and quantification of activated cells. Therefore, we aimed to improve the SLO-based analysis of microglia using enhanced image processing with subsequent testing in laser-induced neovascularization (CNV). CNV was induced by argon laser in MacGreen mice. Microglia was visualized in vivo by SLO in the fundus auto-fluorescence (FAF) mode and verified ex vivo using retinal preparations. Three image processing algorithms based on different analysis of sequences of images were tested. The amount of recorded frames was limiting the effectiveness of the different algorithms. Best results from short recordings were obtained with a pixel averaging algorithm, further used to quantify spatial and temporal distribution of activated microglia in CNV. Morphologically, different microglia populations were detected in the inner and outer retinal layers. In CNV, the peak of microglia activation occurred in the inner layer at day 4 after laser, lacking an acute reaction. Besides, the spatial distribution of the activation changed by the time over the inner retina. No significant time and spatial changes were observed in the outer layer. An increase in laser power did not increase number of activated microglia. The SLO, in conjunction with enhanced image processing, is suitable for in vivo quantification of microglia activation. This surprisingly revealed that laser damage at the outer retina led to more reactive microglia in the inner retina, shedding light upon a new perspective to approach the immune response in the retina in vivo. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oelkers, Ryan J.; Stassun, Keivan G.; Dhital, Saurav, E-mail: ryan.j.oelkers@vanderbilt.edu
The formation and evolution of binary star systems are some of the remaining key questions in modern astronomy. Wide binary pairs (separations >10{sup 3} au) are particularly intriguing because their low binding energies make it difficult for the stars to stay gravitationally bound over extended timescales, and thus to probe the dynamics of binary formation and dissolution. Our previous SLoWPoKES catalogs, I and II, provided the largest and most complete sample of wide-binary pairs of low masses. Here we present an extension of these catalogs to a broad range of stellar masses: the Gaia Assorted Mass Binaries Long Excluded frommore » SloWPoKES (GAMBLES), comprising 8660 statistically significant wide pairs that we make available in a living online database. Within this catalog we identify a subset of 543 long-lived (dissipation timescale >1.5 Gyr) candidate binary pairs, of assorted mass, with typical separations between 10{sup 3} and 10{sup 5.5} au (0.002–1.5 pc), using the published distances and proper motions from the Tycho -Gaia Astrometric Solution and Sloan Digital Sky Survey photometry. Each pair has at most a false positive probability of 0.05; the total expectation is 2.44 false binaries in our sample. Among these, we find 22 systems with 3 components, 1 system with 4 components, and 15 pairs consisting of at least 1 possible red giant. We find the largest long-lived binary separation to be nearly 3.2 pc; even so, >76% of GAMBLES long-lived binaries have large binding energies and dissipation lifetimes longer than 1.5 Gyr. Finally, we find that the distribution of binary separations is clearly bimodal, corroborating the findings from SloWPoKES and suggesting multiple pathways for the formation and dissipation of the widest binaries in the Galaxy.« less
Bick, D P; McCorkle, D; Stanley, W S; Stern, H J; Staszak, P; Berkovitz, G D; Meyers, C M; Kelley, R I
1999-01-01
A cytogenetically normal male fetus was subsequently found to have female external genitalia, a cardiac malformation and mid-trimester intra-uterine growth retardation by ultrasound examination. The maternal serum oestriol level was low. The combination of low oestriol and sonographic findings suggested Smith Lemli Opitz syndrome (SLO), which was confirmed by a markedly increased amniotic fluid level of 7-dehydrocholesterol. We review the differential diagnosis of apparent sex reversal in a fetus and low maternal serum oestriol level. To further examine the specificity of low maternal oestriol level as a marker for SLO a follow-up study of 12141 pregnancies screened for Down syndrome using three biochemical markers: alpha-fetoprotein, beta-human chorionic gonadotrophin and oestriol was performed. 26 pregnancies had an oestriol level that was 0.25 MoM or less. SLO was not diagnosed clinically in any of the liveborn children ascertained through a low maternal oestriol level. Nine of the pregnancies ended in spontaneous miscarriage. Although the frequency of SLO in pregnancies with low maternal oestriol levels or sex-reversed fetuses is unknown, the diagnosis of SLO should, nevertheless, be considered in both clinical settings.
Ultra-compact switchable SLO/OCT handheld probe design
NASA Astrophysics Data System (ADS)
LaRocca, Francesco; Nankivil, Derek; DuBose, Theodore; Farsiu, Sina; Izatt, Joseph A.
2015-03-01
Handheld scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) systems facilitate imaging of young children and subjects that have difficulty fixating. More compact and lightweight probes allow for better portability and increased comfort for the operator of the handheld probe. We describe a very compact, novel SLO and OCT handheld probe design. A single 2D microelectromechanical systems (MEMS) scanner and a custom optical design using a converging beam prior to the scanner permitted significant reduction in the system size. Our design utilized a combination of commercial and custom optics that were optimized in Zemax to achieve near diffraction-limited resolution of 8 μm over a 7° field of view. The handheld probe has a form factor of 7 x 6 x 2.5 cm and a weight of only 94 g, which is over an order of magnitude lighter than prior SLO-OCT handheld probes. Images were acquired from a normal subject with an incident power on the eye under the ANSI limit. With this device, which is the world's lightest and smallest SLO-OCT system, we were able to visualize parafoveal cone photoreceptors and nerve fiber bundles without the use of adaptive optics.
Solid lipid dispersions: potential delivery system for functional ingredients in foods.
Asumadu-Mensah, Aboagyewa; Smith, Kevin W; Ribeiro, Henelyta S
2013-07-01
Structured solid lipid (SL) systems have the advantages of long-term physical stability, low surfactant concentrations, and may exhibit controlled release of active ingredients. In this research work, the potential use of high-melting SLs for the production of the above structured SL carrier systems was investigated. Dispersions containing either SL or blend of solid lipid and oil (SL+O) were produced by a hot melt high-pressure homogenization method. Experiments involved the use of 3 different SLs for the disperse phase: stearic acid, candelilla wax and carnauba wax. Sunflower oil was incorporated in the disperse phase for the production of the dispersions containing lipid and oil. In order to evaluate the practical aspects of structured particles, analytical techniques were used including: static light scattering to measure particle sizes, transmission electron microscopy (TEM) for investigating particle morphology and differential scanning calorimetry (DSC) to investigate the crystallization behavior of lipids in bulk and in dispersions. Results showed different mean particle sizes depending on the type of lipid used in the disperse phase. Particle sizes for the 3 lipids were: stearic acid (SL: 195 ± 2.5 nm; SL+O: 138 ± 6.0 nm); candelilla wax (SL: 178 ± 1.7 nm; SL+O: 144 ± 0.6 nm); carnauba wax (SL: 303 ± 1.5 nm; SL+O: 295 ± 5.0 nm). TEM results gave an insight into the practical morphology, showing plate-like and needle-like structures. DSC investigations also revealed that SL dispersions melted and crystallized at lower temperatures than the bulk. This decrease can be explained by the small particle sizes of the dispersion, the high-specific surface area, and the presence of a surfactant. © 2013 Institute of Food Technologists®
Falsetta, Megan L.; Klein, Marlise I.; Lemos, José A.; Silva, Bruno B.; Agidi, Senyo; Scott-Anne, Kathy K.
2012-01-01
Fluoride is the mainstay of dental caries prevention, and yet current applications offer incomplete protection and may not effectively address the infectious character of the disease. Therefore, we evaluated the effectiveness of a novel combination therapy (CT; 2 mM myricetin, 4 mM tt-farnesol, 250 ppm of fluoride) that supplements fluoride with naturally occurring, food-derived, antibiofilm compounds. Treatment regimens simulating those experienced clinically (twice daily for ≤60 s) were used both in vitro over a saliva-coated hydroxyapatite biofilm model and in vivo with a rodent model of dental caries. The effectiveness of CT was evaluated based on the incidence and severity of carious lesions (compared to fluoride or vehicle control). We found that CT was superior to fluoride (positive control, P < 0.05); topical applications dramatically reduced caries development in Sprague-Dawley rats, all without altering the Streptococcus mutans or total populations within the plaque. We subsequently identified the underlying mechanisms through which applications of CT modulate biofilm virulence. CT targets expression of key Streptococcus mutans genes during biofilm formation in vitro and in vivo. These are associated with exopolysaccharide matrix synthesis (gtfB) and the ability to tolerate exogenous stress (e.g., sloA), which are essential for cariogenic biofilm assembly. We also identified a unique gene (SMU.940) that was severely repressed and may represent a potentially novel target; its inactivation disrupted exopolysaccharide accumulation and matrix development. Altogether, CT may be clinically more effective than current anticaries modalities, targeting expression of bacterial virulence associated with pathogenesis of the disease. These observations may have relevance for development of enhanced therapies against other biofilm-dependent infections. PMID:22985885
Modeling photo-bleaching kinetics to map local variations in rod rhodopsin density
NASA Astrophysics Data System (ADS)
Ehler, M.; Dobrosotskaya, J.; King, E. J.; Czaja, W.; Bonner, R. F.
2011-03-01
Localized rod photoreceptor and rhodopsin losses have been observed in post mortem histology both in normal aging and in age-related maculopathy. We propose to noninvasively map local rod rhodopsin density through analysis of the brightening of the underlying lipofuscin autofluorescence (LAF) in confocal scanning laser ophthalmoscopy (cSLO) imaging sequences starting in the dark adapted eye. The detected LAF increases as rhodopsin is bleached (time constant ~ 25sec) by the average retinal irradiance of the cSLO 488nm laser beam. We fit parameters of analytical expressions for the kinetics of rhodopsin bleaching that Lamb validated using electroretinogram recordings in human. By performing localized (~ 100μm) kinetic analysis, we create high resolution maps of the rhodopsin density. This new noninvasive imaging and analysis approach appears well-suited for measuring localized changes in the rod photoreceptors and correlating them at high spatial resolution with localized pathological changes of the retinal pigment epithelium (RPE) seen in steady-state LAF images.
NASA Astrophysics Data System (ADS)
Issaei, Ali; Szczygiel, Lukasz; Hossein-Javaheri, Nima; Young, Mei; Molday, L. L.; Molday, R. S.; Sarunic, M. V.
2011-03-01
Scanning Laser Ophthalmoscopy (SLO) and Coherence Tomography (OCT) are complimentary retinal imaging modalities. Integration of SLO and OCT allows for both fluorescent detection and depth- resolved structural imaging of the retinal cell layers to be performed in-vivo. System customization is required to image rodents used in medical research by vision scientists. We are investigating multimodal SLO/OCT imaging of a rodent model of Stargardt's Macular Dystrophy which is characterized by retinal degeneration and accumulation of toxic autofluorescent lipofuscin deposits. Our new findings demonstrate the ability to track fundus autofluorescence and retinal degeneration concurrently.
Uji, Akihito; Ooto, Sotaro; Hangai, Masanori; Arichika, Shigeta; Yoshimura, Nagahisa
2013-01-01
Purpose To investigate the effect of B-spline-based elastic image registration on adaptive optics scanning laser ophthalmoscopy (AO-SLO)-assisted capillary visualization. Methods AO-SLO videos were acquired from parafoveal areas in the eyes of healthy subjects and patients with various diseases. After nonlinear image registration, the image quality of capillary images constructed from AO-SLO videos using motion contrast enhancement was compared before and after B-spline-based elastic (nonlinear) image registration performed using ImageJ. For objective comparison of image quality, contrast-to-noise ratios (CNRS) for vessel images were calculated. For subjective comparison, experienced ophthalmologists ranked images on a 5-point scale. Results All AO-SLO videos were successfully stabilized by elastic image registration. CNR was significantly higher in capillary images stabilized by elastic image registration than in those stabilized without registration. The average ratio of CNR in images with elastic image registration to CNR in images without elastic image registration was 2.10 ± 1.73, with no significant difference in the ratio between patients and healthy subjects. Improvement of image quality was also supported by expert comparison. Conclusions Use of B-spline-based elastic image registration in AO-SLO-assisted capillary visualization was effective for enhancing image quality both objectively and subjectively. PMID:24265796
NASA Astrophysics Data System (ADS)
Benavides, Oscar R.; Terrones, Benjamin D.; Leeburg, Kelsey C.; Mehanathan, Sankarathi B.; Levine, Edward M.; Tao, Yuankai K.
2018-02-01
Rodent models are robust tools for understanding human retinal disease and function because of their similarities with human physiology and anatomy and availability of genetic mutants. Optical coherence tomography (OCT) has been well-established for ophthalmic imaging in rodents and enables depth-resolved visualization of structures and image-based surrogate biomarkers of disease. Similarly, fluorescence confocal scanning laser ophthalmoscopy (cSLO) has demonstrated utility for imaging endogenous and exogenous fluorescence and scattering contrast in the mouse retina. Complementary volumetric scattering and en face fluorescence contrast from OCT and cSLO, respectively, enables cellular-resolution longitudinal imaging of changes in ophthalmic structure and function. We present a non-contact multimodal OCT+cSLO small animal imaging system with extended working distance to the pupil, which enables imaging during and after intraocular injection. While injections are routinely performed in mice to develop novel models of ophthalmic diseases and screen novel therapeutics, the location and volume delivered is not precisely controlled and difficult to reproduce. Animals were imaged using a custom-built OCT engine and scan-head combined with a modified commercial cSLO scan-head. Post-injection imaging showed structural changes associated with retinal puncture, including the injection track, a retinal elevation, and detachment of the posterior hyaloid. When combined with imagesegmentation, we believe OCT can be used to precisely identify injection locations and quantify injection volumes. Fluorescence cSLO can provide complementary contrast for either fluorescently labeled compounds or transgenic cells for improved specificity. Our non-contact OCT+cSLO system is uniquely-suited for concurrent imaging with intraocular injections, which may be used for real-time image-guided injections.
Lai, Guey-Jen; McCobb, David P
2006-08-01
Stress triggers release of ACTH from the pituitary, glucocorticoids from the adrenal cortex, and epinephrine from the adrenal medulla. Although functions differ, these hormone systems interact in many ways. Previous evidence indicates that pituitary and steroid hormones regulate alternative splicing of the Slo gene at the stress axis-regulated exon (STREX), with functional implications for the calcium-activated K+ channels prominent in adrenal medullary and pituitary cells. Here we examine the role of corticosterone in Slo splicing regulation in pituitary and adrenal tissues during the stress-hyporesponsive period of early rat postnatal life. The sharp drop in plasma corticosterone (CORT) that defines this period offers a unique opportunity to test CORT's role in Slo splicing. We report that in both adrenal and pituitary tissues, the percentage of Slo transcripts having STREX declines and recovers in parallel with CORT. Moreover, addition of 500 nm CORT to cultures of anterior pituitary cells from 13-, 21-, and 30-d postnatal animals increased the percentage of Slo transcripts with STREX, whereas 20 microm CORT reduced STREX representation. Applied to adrenal chromaffin cells, 20 microm CORT decreased STREX inclusion, whereas neither 500 nm nor 2 microm had any effect. The mineralocorticoid receptor antagonist RU28318 abolished the effect of 500 nm CORT on splicing in pituitary cells, whereas the glucocorticoid receptor antagonist RU38486 blocked the effect of 20 microm CORT on adrenal chromaffin cells. These results support the hypothesis that the abrupt, transient drop in CORT during the stress-hyporesponsive period drives the transient decline in STREX splice variant representation in pituitary, but not adrenal.
Chen, Monica F; Chui, Toco Y P; Alhadeff, Paula; Rosen, Richard B; Ritch, Robert; Dubra, Alfredo; Hood, Donald C
2015-01-08
To better understand the nature of glaucomatous damage of the macula, especially the structural changes seen between relatively healthy and clearly abnormal (AB) retinal regions, using an adaptive optics scanning light ophthalmoscope (AO-SLO). Adaptive optics SLO images and optical coherence tomography (OCT) vertical line scans were obtained on one eye of seven glaucoma patients, with relatively deep local arcuate defects on the 10-2 visual field test in one (six eyes) or both hemifields (one eye). Based on the OCT images, the retinal nerve fiber (RNF) layer was divided into two regions: (1) within normal limits (WNL), relative RNF layer thickness within mean control values ±2 SD; and (2) AB, relative thickness less than -2 SD value. As seen on AO-SLO, the pattern of AB RNF bundles near the border of the WNL and AB regions differed across eyes. There were normal-appearing bundles in the WNL region of all eyes and AB-appearing bundles near the border with the AB region. This region with AB bundles ranged in extent from a few bundles to the entire AB region in the case of one eye. All other eyes had a large AB region without bundles. However, in two of these eyes, a few bundles were seen within this region of otherwise missing bundles. The AO-SLO images revealed details of glaucomatous damage that are difficult, if not impossible, to see with current OCT technology. Adaptive optics SLO may prove useful in following progression in clinical trials, or in disease management, if AO-SLO becomes widely available and easy to use. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.
DLA Class II Alleles Are Associated with Risk for Canine Symmetrical Lupoid Onychodystropy (SLO)
Wilbe, Maria; Ziener, Martine Lund; Aronsson, Anita; Harlos, Charlotte; Sundberg, Katarina; Norberg, Elin; Andersson, Lisa; Lindblad-Toh, Kerstin; Hedhammar, Åke; Andersson, Göran; Lingaas, Frode
2010-01-01
Symmetrical lupoid onychodystrophy (SLO) is an immune-mediated disease in dogs affecting the claws with a suggested autoimmune aethiology. Sequence-based genotyping of the polymorphic exon 2 from DLA-DRB1, -DQA1, and -DQB1 class II loci were performed in a total of 98 SLO Gordon setter cases and 98 healthy controls. A risk haplotype (DRB1*01801/DQA1*00101/DQB1*00802) was present in 53% of cases and 34% of controls and conferred an elevated risk of developing SLO with an odds ratio (OR) of 2.1. When dogs homozygous for the risk haplotype were compared to all dogs not carrying the haplotype the OR was 5.4. However, a stronger protective haplotype (DRB1*02001/DQA1*00401/DQB1*01303, OR = 0.03, 1/OR = 33) was present in 16.8% of controls, but only in a single case (0.5%). The effect of the protective haplotype was clearly stronger than the risk haplotype, since 11.2% of the controls were heterozygous for the risk and protective haplotypes, whereas this combination was absent from cases. When the dogs with the protective haplotype were excluded, an OR of 2.5 was obtained when dogs homozygous for the risk haplotype were compared to those heterozygous for the risk haplotype, suggesting a co-dominant effect of the risk haplotype. In smaller sample sizes of the bearded collie and giant schnauzer breeds we found the same or similar haplotypes, sharing the same DQA1 allele, over-represented among the cases suggesting that the risk is associated primarily with DLA-DQ. We obtained conclusive results that DLA class II is significantly associated with risk of developing SLO in Gordon setters, thus supporting that SLO is an immune-mediated disease. Further studies of SLO in dogs may provide important insight into immune privilege of the nail apparatus and also knowledge about a number of inflammatory disorders of the nail apparatus like lichen planus, psoriasis, alopecia areata and onycholysis. PMID:20808798
MOJANA, FRANCESCA; BRAR, MANPREET; CHENG, LINGYUN; BARTSCH, DIRK-UWE G.; FREEMAN, WILLIAM R.
2012-01-01
PURPOSE To determine the long-term effect of sub-threshold diode laser treatment for drusen in patients with non-exudative age-related macular degeneration (AMD) with spectral domain optical coherence tomography combined with simultaneous scanning laser ophthalmoscope (SD-OCT/SLO). METHODS 8 eyes of 4 consecutive AMD patients with bilateral drusen previously treated with sub-threshold diode laser were imaged with SD-OCT/SLO. Abnormalities in the outer retina layers reflectivity as seen with SD-OCT/SLO were retrospectively analyzed and compared with color fundus pictures and autofluorescence images (AF) acquired immediately before and after the laser treatment. RESULTS A focal discrete disruptions in the reflectivity of the outer retinal layers was noted in 29% of the laser lesions. The junction in between the inner and outer segment of the photoreceptor was more frequently affected, with associated focal damage of the outer nuclear layer. Defects of the RPE were occasionally detected. These changes did not correspond to threshold burns on color fundus photography, but corresponded to focal areas of increased AF in the majority of the cases. CONCLUSIONS Sub-threshold diode laser treatment causes long-term disruption of the retinal photoreceptor layer as analyzed by SD-OCT/SLO. The concept that sub-threshold laser treatment can achieve a selected RPE effect without damage to rods and cones may be flawed. PMID:21157398
Palmer, M; Harris, R; Freytag, C; Kehoe, M; Tranum-Jensen, J; Bhakdi, S
1998-03-16
Streptolysin O (SLO) is a bacterial exotoxin that binds to cell membranes containing cholesterol and then oligomerizes to form large pores. Along with rings, arc-shaped oligomers form on membranes. It has been suggested that each arc represents an incompletely assembled oligomer and constitutes a functional pore, faced on the opposite side by a free edge of the lipid membrane. We sought functional evidence in support of this idea by using an oligomerization-deficient, non-lytic mutant of SLO. This protein, which was created by chemical modification of a single mutant cysteine (T250C) with N-(iodoacetaminoethyl)-1-naphthylamine-5-sulfonic acid, formed hybrid oligomers with active SLO on membranes. However, incorporation of the modified T250C mutant inhibited subsequent oligomerization, so that the hybrid oligomers were reduced in size. These appeared as typical arc lesions in the electron microscope. They formed pores that permitted passage of NaCl and calcein but restricted permeation of large dextran molecules. The data indicate that the SLO pore is formed gradually during oligomerization, implying that pores lined by protein on one side and an edge of free lipid on the other may be created in the plasma membrane. Intentional manipulation of the pore size may extend the utility of SLO as a tool in cell biological experiments.
Lyu, Jiao; Zhang, Qi; Wang, Shi-Yuan; Chen, Yi-Ye; Xu, Yu; Zhao, Pei-Quan
2017-01-01
This study aims to investigate the ability of the ultra-wide-field scanning laser ophthalmoscope (UWF SLO) in clinically detecting and evaluating asymptomatic early-stage familial exudative vitreoretinopathy (FEVR). We retrospectively reviewed 163 eyes of 83 asymptomatic family members of 48 patients with FEVR. UWF SLO imaging (Optos® PLC, Scotland, UK) was performed on asymptomatic family members as a preliminary screening test for fundus anomalies, and the findings were compared with subsequent examinations using indirect fundus ophthalmoscopy in full mydriasis, fluorescein angiography (FA), fundus autoflourescence, and genetic sequencing. A total of 86 eyes of 43 asymptomatic family members were clinically diagnosed with early-stage FEVR, and 17 of the affected 43 family members were also genetically diagnosed. Compared with FA as a standard, the UWF SLO was highly effective in diagnosing FEVR with a sensitivity and specificity of 93.0 % and 97.5 %, respectively. The UWF SLO was able to diagnose early-stage FEVR in 93.0 % of eyes, and guided the selection of therapies in 46.5 % of the eyes studied. UWF SLO is a valuable imaging tool for detecting fundus anomalies related to early-stage FEVR, and this tool can assist in the clinical diagnosis and evaluation of early-stage FEVR in asymptomatic family members of patients with FEVR.
Hoshi, Toshinori; Wissuwa, Bianka; Tian, Yutao; Tajima, Nobuyoshi; Xu, Rong; Bauer, Michael; Heinemann, Stefan H.; Hou, Shangwei
2013-01-01
Long-chain polyunsaturated omega-3 fatty acids such as docosahexaenoic acid (DHA), found abundantly in oily fish, may have diverse health-promoting effects, potentially protecting the immune, nervous, and cardiovascular systems. However, the mechanisms underlying the purported health-promoting effects of DHA remain largely unclear, in part because molecular signaling pathways and effectors of DHA are only beginning to be revealed. In vascular smooth muscle cells, large-conductance Ca2+- and voltage-activated K+ (BK) channels provide a critical vasodilatory influence. We report here that DHA with an EC50 of ∼500 nM rapidly and reversibly activates BK channels composed of the pore-forming Slo1 subunit and the auxiliary subunit β1, increasing currents by up to ∼20-fold. The DHA action is observed in cell-free patches and does not require voltage-sensor activation or Ca2+ binding but involves destabilization of the closed conformation of the ion conduction gate. DHA lowers blood pressure in anesthetized wild-type but not in Slo1 knockout mice. DHA ethyl ester, contained in dietary supplements, fails to activate BK channels and antagonizes the stimulatory effect of DHA. Slo1 BK channels are thus receptors for long-chain omega-3 fatty acids, and these fatty acids—unlike their ethyl ester derivatives—activate the channels and lower blood pressure. This finding has practical implications for the use of omega-3 fatty acids as nutraceuticals for the general public and also for the critically ill receiving omega-3–enriched formulas. PMID:23487785
NASA Astrophysics Data System (ADS)
Oelkers, Ryan J.; Stassun, Keivan G.; Dhital, Saurav
2017-06-01
The formation and evolution of binary star systems are some of the remaining key questions in modern astronomy. Wide binary pairs (separations >103 au) are particularly intriguing because their low binding energies make it difficult for the stars to stay gravitationally bound over extended timescales, and thus to probe the dynamics of binary formation and dissolution. Our previous SLoWPoKES catalogs, I and II, provided the largest and most complete sample of wide-binary pairs of low masses. Here we present an extension of these catalogs to a broad range of stellar masses: the Gaia Assorted Mass Binaries Long Excluded from SloWPoKES (GAMBLES), comprising 8660 statistically significant wide pairs that we make available in a living online database. Within this catalog we identify a subset of 543 long-lived (dissipation timescale >1.5 Gyr) candidate binary pairs, of assorted mass, with typical separations between 103 and 105.5 au (0.002-1.5 pc), using the published distances and proper motions from the Tycho-Gaia Astrometric Solution and Sloan Digital Sky Survey photometry. Each pair has at most a false positive probability of 0.05; the total expectation is 2.44 false binaries in our sample. Among these, we find 22 systems with 3 components, 1 system with 4 components, and 15 pairs consisting of at least 1 possible red giant. We find the largest long-lived binary separation to be nearly 3.2 pc even so, >76% of GAMBLES long-lived binaries have large binding energies and dissipation lifetimes longer than 1.5 Gyr. Finally, we find that the distribution of binary separations is clearly bimodal, corroborating the findings from SloWPoKES and suggesting multiple pathways for the formation and dissipation of the widest binaries in the Galaxy.
Molecular basis and function of voltage-gated K+ channels in pulmonary arterial smooth muscle cells.
Yuan, X J; Wang, J; Juhaszova, M; Golovina, V A; Rubin, L J
1998-04-01
K(+)-channel activity-mediated alteration of the membrane potential and cytoplasmic free Ca2+ concentration ([Ca2+]cyt) is a pivotal mechanism in controlling pulmonary vasomotor tone. By using combined approaches of patch clamp, imaging fluorescent microscopy, and molecular biology, we examined the electrophysiological properties of K+ channels and the role of different K+ currents in regulating [Ca2+]cyt and explored the molecular identification of voltage-gated K+ (KV)- and Ca(2+)-activated K+ (KCa)-channel genes expressed in pulmonary arterial smooth muscle cells (PASMC). Two kinetically distinct KV currents [IK(V)], a rapidly inactivating (A-type) and a noninactivating delayed rectifier, as well as a slowly activated KCa current [IK(Ca)] were identified. IK(V) was reversibly inhibited by 4-aminopyridine (5 mM), whereas IK(Ca) was significantly inhibited by charybdotoxin (10-20 nM). K+ channels are composed of pore-forming alpha-subunits and auxiliary beta-subunits. Five KV-channel alpha-subunit genes from the Shaker subfamily (KV1.1, KV1.2, KV1.4, KV1.5, and KV1.6), a KV-channel alpha-subunit gene from the Shab subfamily (KV2.1), a KV-channel modulatory alpha-subunit (KV9.3), and a KCa-channel alpha-subunit gene (rSlo), as well as three KV-channel beta-subunit genes (KV beta 1.1, KV beta 2, and KV beta 3) are expressed in PASMC. The data suggest that 1) native K+ channels in PASMC are encoded by multiple genes; 2) the delayed rectifier IK(V) may be generated by the KV1.1, KV1.2, KV1.5, KV1.6, KV2.1, and/or KV2.1/KV9.3 channels; 3) the A-type IK(V) may be generated by the KV1.4 channel and/or the delayed rectifier KV channels (KV1 subfamily) associated with beta-subunits; and 4) the IK(Ca) may be generated by the rSlo gene product. The function of the KV channels plays an important role in the regulation of membrane potential and [Ca2+]cyt in PASMC.
Slo1 regulates ethanol-induced scrunching in freshwater planarians
NASA Astrophysics Data System (ADS)
Cochet-Escartin, Olivier; Carter, Jason A.; Chakraverti-Wuerthwein, Milena; Sinha, Joydeb; Collins, Eva-Maria S.
2016-10-01
When freshwater planarians are exposed to a low-percentage (0.5%-1%) alcohol solution, they display a characteristic ‘drunken’ phenotype. Here we show that this drunken phenotype is a mixture of cilia-mediated gliding and scrunching, a muscular-based planarian gait which we recently demonstrated to be triggered by adverse environmental stimuli. At exogenous ethanol concentrations ≥2% (v/v), planarians become gradually immobilized and ultimately die. Using RNA interference (RNAi) for targeted gene knockdown, we elucidate the molecular basis for ethanol sensing and show that the big potassium ion channel SLO1 is necessary for ethanol sensitivity in planarians. Because slo1(RNAi) animals maintain their ability to scrunch in response to other adverse triggers, these results suggest that slo1 specifically regulates ethanol sensitivity and not the scrunching gait per se. Furthermore, this study demonstrates the ease of performing pharmacological studies in planarians. Combined with the worms’ amenability to quantitative behavioral assays and targeted gene knockdown, planarians are a valuable model organism for studying the effect of neuroactive compounds on brain function and behavior.
A qualitative quantum rate model for hydrogen transfer in soybean lipoxygenase
NASA Astrophysics Data System (ADS)
Jevtic, S.; Anders, J.
2017-09-01
The hydrogen transfer reaction catalysed by soybean lipoxygenase (SLO) has been the focus of intense study following observations of a high kinetic isotope effect (KIE). Today high KIEs are generally thought to indicate departure from classical rate theory and are seen as a strong signature of tunnelling of the transferring particle, hydrogen or one of its isotopes, through the reaction energy barrier. In this paper, we build a qualitative quantum rate model with few free parameters that describes the dynamics of the transferring particle when it is exposed to energetic potentials exerted by the donor and the acceptor. The enzyme's impact on the dynamics is modelled by an additional energetic term, an oscillatory contribution known as "gating." By varying two key parameters, the gating frequency and the mean donor-acceptor separation, the model is able to reproduce well the KIE data for SLO wild-type and a variety of SLO mutants over the experimentally accessible temperature range. While SLO-specific constants have been considered here, it is possible to adapt these for other enzymes.
Slo1 regulates ethanol-induced scrunching in freshwater planarians.
Cochet-Escartin, Olivier; Carter, Jason A; Chakraverti-Wuerthwein, Milena; Sinha, Joydeb; Collins, Eva-Maria S
2016-09-09
When freshwater planarians are exposed to a low-percentage (0.5%-1%) alcohol solution, they display a characteristic 'drunken' phenotype. Here we show that this drunken phenotype is a mixture of cilia-mediated gliding and scrunching, a muscular-based planarian gait which we recently demonstrated to be triggered by adverse environmental stimuli. At exogenous ethanol concentrations ≥2% (v/v), planarians become gradually immobilized and ultimately die. Using RNA interference (RNAi) for targeted gene knockdown, we elucidate the molecular basis for ethanol sensing and show that the big potassium ion channel SLO1 is necessary for ethanol sensitivity in planarians. Because slo1(RNAi) animals maintain their ability to scrunch in response to other adverse triggers, these results suggest that slo1 specifically regulates ethanol sensitivity and not the scrunching gait per se. Furthermore, this study demonstrates the ease of performing pharmacological studies in planarians. Combined with the worms' amenability to quantitative behavioral assays and targeted gene knockdown, planarians are a valuable model organism for studying the effect of neuroactive compounds on brain function and behavior.
Retinal vessel segmentation on SLO image
Xu, Juan; Ishikawa, Hiroshi; Wollstein, Gadi; Schuman, Joel S.
2010-01-01
A scanning laser ophthalmoscopy (SLO) image, taken from optical coherence tomography (OCT), usually has lower global/local contrast and more noise compared to the traditional retinal photograph, which makes the vessel segmentation challenging work. A hybrid algorithm is proposed to efficiently solve these problems by fusing several designed methods, taking the advantages of each method and reducing the error measurements. The algorithm has several steps consisting of image preprocessing, thresholding probe and weighted fusing. Four different methods are first designed to transform the SLO image into feature response images by taking different combinations of matched filter, contrast enhancement and mathematical morphology operators. A thresholding probe algorithm is then applied on those response images to obtain four vessel maps. Weighted majority opinion is used to fuse these vessel maps and generate a final vessel map. The experimental results showed that the proposed hybrid algorithm could successfully segment the blood vessels on SLO images, by detecting the major and small vessels and suppressing the noises. The algorithm showed substantial potential in various clinical applications. The use of this method can be also extended to medical image registration based on blood vessel location. PMID:19163149
Social license to operate: case from brazilian mining industry
NASA Astrophysics Data System (ADS)
Santiago, Ana Lúcia F.; Demajorovic, Jacques; Aledo, Antonio
2015-04-01
The approach of the Social License to Operate (SLO) emerges as an important element in academic discussions and business practices related to extractive industries. It appears that in productive activities with great potential to produce economic, social and environmental impacts, conventional approaches based on legal compliance no longer sufficient to legitimize the actions of companies and engagement stakeholders. Studies highlight the need of mining activities receiving a SLO "issued" by companies stakeholders, including society, government, non-governmental organizations, media and communities. However, local communities appears as major stakeholders in governance arrangements, by virtue of its proximity to extractive areas and ability to affect the company's results. Stakeholders with unmet expectations can generate conflicts and risks to the company, the knowledge of these expectations and an awareness of company managers of the importance of Social License to Operate (SLO), can generate strategies and mitigating actions to prevent and or minimize possible conflicts. The concept of SLO arises in engineering extractive industry, when you need to respond to social challenges, beyond the usual environmental challenges, technological and management. According to Franks and Cohen (2012) there is a tendency of engineering sectors, sustainability, environmental, safety and especially in risk mappings, treat the technological issues in a neutral manner, separating the technological research projects of social influences. I want to contribute to the advancement of the debate on stakeholder engagement and adopting as focus on the company's relationship with the community, the aim of this study was to understand how a social project held by one of the largest mining companies in Brazil contributed to the process of SLO. This methodological procedure adopted was a qualitative, descriptive, and exploratory interviews with the communities located in rural areas of direct influence of the company's approach. The results show that the strategy adopted by the company contributed to the process of SLO, furthermore it is necessary adopt strong methodologies that facilitate the engagement processes of the other company's stakeholders, as well as the challenge to keep on local legitimacy earned. Key words: Mining, social license to operate (SLO), social impact, corporate social responsibility, stakeholders. References: * FRANKS, DANIEL M.; COHEN, TAMAR. Social Licence in Design: Constructive technology assessment within a mineral research and development institution. Centre for Social Responsibility in Mining, Sustainable Minerals Institute, University of Queensland, Australia. 79 122 Technological Forecasting & Social Change. 2012.
Sabel, Bernhard A; Kenkel, Sigrid; Kasten, Erich
2004-01-01
We wished to evaluate the efficacy of vision restoration therapy (VRT) in patients with post-chiasmatic brain damage using different functional perimetric tests. These were compared with measures of subjective vision and reaction time. An open trial was conducted with hemianopia/scotoma (n=16) patients. Before and after 6 months of VRT results of high resolution (HRP) and Tuebingen automated perimetry (TAP) were evaluated and compared to performance in a Scanning Laser Ophthalmoscope (SLO) as previously reported. Whereas TAP and HRP used above-threshold or near-threshold individual target stimuli on grey background, the SLO used a psychophysical task of detection of three black targets (reverse stimulus) on bright red, patterned background. Subjective testimonials of activities of daily living (ADL) were probed with questionnaires and interviews. Before VRT, the visual field border as assessed by SLO was located significantly closer to the vertical midline than the HRP and TAP border (border mismatch). After VRT the SLO border was still unchanged whereas HRP measurements revealed significant border shifts due to improved stimulus detection (p<0.0001) and improved reaction time (p<0.005) . Fewer misses were also observed in both eyes with TAP (p<0.01) which was primarily due to a significant shift of the absolute borders. Thus, VRT potentiated the mismatch between the SLO borders and the HRP/TAP borders. Fixation performance and the blind spot position remained unchanged after VRT. ADL ratings in the questionnaire improved significantly after VRT which was confirmed by independent patient testimonials. We replicated earlier findings that VRT improves stimulus detection in HRP and TAP perimetry which were accompanied by subjective, visual improvements. These changes are not caused by fixation or eye movement artifacts. Because the SLO border was located significantly closer to the vertical midline before VRT ("border mismatch") and, in contrast to HRP and TAP, did not change after VRT, we interpret this border mismatch to indicate that the SLO task was too difficult to perform and thus insensitive to VRT effects. Significant reaction time improvements indicate that plasticity of temporal processing might play an important role in vision restoration after brain damage. A further description of the precise psychophysical nature of the restored areas of residual vision is now warranted.
Using a Learning Progression Framework to Assess and Evaluate Student Growth
ERIC Educational Resources Information Center
Briggs, Derek C.; Diaz-Bilello, Elena; Peck, Fred; Alzen, Jessica; Chattergoon, Rajendra; Johnson, Raymond
2015-01-01
This report describes the use of a Learning Progression Framework (LPF) to support the Student Learning Objectives (SLO) process. The report highlights a few common threats we currently see in the SLO process implemented at various states and districts, and offers the LPF as a possible solution for addressing these threats. This report was…
A novel cross-species inhibitor to study the function of CatSper Ca2+ channels in sperm.
Rennhack, Andreas; Schiffer, Christian; Brenker, Christoph; Fridman, Dmitry; Nitao, Elis T; Cheng, Yi-Min; Tamburrino, Lara; Balbach, Melanie; Stölting, Gabriel; Berger, Thomas K; Kierzek, Michelina; Alvarez, Luis; Wachten, Dagmar; Zeng, Xu-Hui; Baldi, Elisabetta; Publicover, Stephen; Kaupp, U Benjamin; Strünker, Timo
2018-05-03
Sperm from many species share the sperm-specific Ca 2+ channel CatSper (cation channel of sperm) that controls the intracellular Ca 2+ concentration and, thereby, the swimming behaviour. A growing body of evidence suggests that the mechanisms controlling CatSper activity and the role of the channel during fertilization differ among species. However, a lack of suitable pharmacological tools has hampered the elucidation of the function of CatSper. Known CatSper inhibitors exhibit considerable side effects and inhibit also Slo3, the K + channel in mammalian sperm. The drug RU1968 was reported to suppress Ca 2+ signaling in human sperm by an unknown mechanism. We resynthesized the drug and revisited its mechanism of action in sperm form humans, mice, and sea urchins. We show by Ca 2+ fluorimetry, single-cell Ca 2+ imaging, electrophysiology, opto-chemistry, and motility analysis that RU1968 inhibits CatSper in sperm from invertebrates and mammals. The drug lacks toxic side effects in human sperm, does not affect mouse Slo3, and inhibits human Slo3 with about 15-fold lower potency than CatSper. Moreover, in human sperm, the inhibitor mimics CatSper dysfunction and suppresses motility responses evoked by progesterone, an oviductal steroid that activates CatSper. Finally, we show that the drug abolishes CatSper-mediated chemotactic navigation in sea urchin sperm. We propose RU1968 as a novel tool to elucidate the function of CatSper in sperm across species. This article is protected by copyright. All rights reserved.
Extrafoveal Cone Packing in Eyes With a History of Retinopathy of Prematurity.
Ramamirtham, Ramkumar; Akula, James D; Soni, Garima; Swanson, Matthew J; Bush, Jennifer N; Moskowitz, Anne; Swanson, Emily A; Favazza, Tara L; Tavormina, Jena L; Mujat, Mircea; Ferguson, R Daniel; Hansen, Ronald M; Fulton, Anne B
2016-02-01
To study the density and packing geometry of the extrafoveal cone photoreceptors in eyes with a history of retinopathy of prematurity (ROP). We used a multimodal combination of adaptive optics (AO) scanning light ophthalmoscopy (SLO) and optical coherence tomography (OCT). Cones were identified in subjects (aged 14-26 years) with a history of ROP that was either severe and treated by laser ablation of avascular peripheral retina (TROP; n = 5) or mild and spontaneously resolved, untreated (UROP; n = 5), and in term-born controls (CT; n = 8). The AO-SLO images were obtained at temporal eccentricities 4.5°, 9°, 13.5°, and 18° using both confocal and offset apertures with simultaneous, colocal OCT images. Effects of group, eccentricity, and aperture were evaluated and the modalities compared. In the SLO images, cone density was lower and the packing pattern less regular in TROP, relative to CT and UROP retinae. Although SLO image quality appeared lower in TROP, root mean square (RMS) wavefront error did not differ among the groups. In TROP eyes, cone discrimination was easier in offset aperture images. There was no evidence of cone loss in the TROP OCT images. Low cone density in TROP confocal SLO images may have resulted from lower image quality. Since AO correction in these eyes was equivalent to that of the control group, and OCT imaging showed no significant cone loss, the optical properties of the inner retina or properties of the cones themselves are likely altered in a way that affects photoreceptor imaging.
Extrafoveal Cone Packing in Eyes With a History of Retinopathy of Prematurity
Ramamirtham, Ramkumar; Akula, James D.; Soni, Garima; Swanson, Matthew J.; Bush, Jennifer N.; Moskowitz, Anne; Swanson, Emily A.; Favazza, Tara L.; Tavormina, Jena L.; Mujat, Mircea; Ferguson, R. Daniel; Hansen, Ronald M.; Fulton, Anne B.
2016-01-01
Purpose To study the density and packing geometry of the extrafoveal cone photoreceptors in eyes with a history of retinopathy of prematurity (ROP). We used a multimodal combination of adaptive optics (AO) scanning light ophthalmoscopy (SLO) and optical coherence tomography (OCT). Methods Cones were identified in subjects (aged 14–26 years) with a history of ROP that was either severe and treated by laser ablation of avascular peripheral retina (TROP; n = 5) or mild and spontaneously resolved, untreated (UROP; n = 5), and in term-born controls (CT; n = 8). The AO-SLO images were obtained at temporal eccentricities 4.5°, 9°, 13.5°, and 18° using both confocal and offset apertures with simultaneous, colocal OCT images. Effects of group, eccentricity, and aperture were evaluated and the modalities compared. Results In the SLO images, cone density was lower and the packing pattern less regular in TROP, relative to CT and UROP retinae. Although SLO image quality appeared lower in TROP, root mean square (RMS) wavefront error did not differ among the groups. In TROP eyes, cone discrimination was easier in offset aperture images. There was no evidence of cone loss in the TROP OCT images. Conclusions Low cone density in TROP confocal SLO images may have resulted from lower image quality. Since AO correction in these eyes was equivalent to that of the control group, and OCT imaging showed no significant cone loss, the optical properties of the inner retina or properties of the cones themselves are likely altered in a way that affects photoreceptor imaging. PMID:26868749
N-acetylcysteine and acute retinal laser lesions in the colubrid snake eye
NASA Astrophysics Data System (ADS)
Elliott, William R., III; Rentmeister-Bryant, Heike K.; Barsalou, Norman; Beer, Jeremy; Zwick, Harry
2004-07-01
This study examined the role of oxidative stress and the effect of a single dose treatment with N-Acetylcysteine (NAC) on the temporal development of acute laser-induced retinal injury. We used the snake eye/Scanning Laser Ophthalmoscope (SLO) model, an in vivo, non-invasive ocular imaging technique, which has the ability to image cellular retinal detail and allows for studying morphological changes of retinal injury over time. For this study 12 corn-snakes (Elaphe g. guttata) received 5 laser exposures per eye, followed by either a single dose of the antioxidant NAC (150mg/kg, IP in sterile saline) or placebo. Laser exposures were made with a Nd: VO4 DPSS, 532nm laser, coaxially aligned to the SLO. Shuttered pulses were 20msec x 50 mW; 1mJ each. Retinal images were taken using a Rodenstock cSLO and were digitally recorded at 1, 6, 24-hrs, and at 3-wks post-exposure. Lesions were assessed by two raters blind to the conditions of the study yielding measures of damaged area and counts of missing or damaged photoreceptors. Treated eyes showed a significant beneficial effect overall, and these results suggest that oxidative stress plays a role in laser-induced retinal injury. The use of NAC or a similar antioxidant shows promise as a therapeutic tool.
ERIC Educational Resources Information Center
Buckley, Katie Hills
2015-01-01
Despite the prevalence of student learning objectives (SLOs) in teacher evaluation systems throughout the United States, research on the validity of student and teacher SLO scores used for high-stakes decisions is lacking. For this reason, this dissertation is comprised of two chapters that examine student and teacher-level SLO performance data…
Skariyachan, Sinosh; Narayan, Naik Sowmyalaxmi; Aggimath, Tejaswini S; Nagaraj, Sushmitha; Reddy, Monika S; Narayanappa, Rajeswari
2014-03-01
Streptococcus pyogenes is a notorious pathogenic bacterium which causes various human diseases ranging from localized infections to life threatening invasive diseases. Streptolysin-O (SLO), pore-forming thiol-activated cytolysin, is the major virulent factor for streptococcal infections. Present therapies against streptococcal infections are limited as most of the strains have developed multi-drug resistance to present generation of drugs. Hence, there is a need for alternative therapeutic substances. Structure based virtual screening is a novel platform to select lead molecules with better pharmacokinetic properties. The 3D structure of SLO (not available in native form), essential for such studies, was computationally generated and this homology model was used as probable drug target. Based on literature survey, several phytoligands from 25 medicinal plants were selected. Out of these, leads from 11 plants showed better pharmacokinetic properties. The best lead molecules were screened based on computer aided drug likeness and pharmacokinetic predictions. The inhibitory properties of selected herbal leads against SLO were studied by molecular docking. An in vitro assay was further carried out and variations observed were found to be significant (p<0.05). Antibiotic sensitivity testing was also performed with the clinical strain of Streptococcus pyogenes with conventional drugs. The clinical strain showed multi-drug resistance to conventional drugs. Our study revealed that numerous phytoligands have better inhibitory properties towards the toxin. We noticed that incorporation of selected herbal extracts in blood agar medium showed significant reduction in hemolysis (MIC 300μl/plate), indicating inhibition of SLO. Furthermore, the butanol extracts of selected herbal preparation based on computer aided screening showed significant inhibitory properties at 250 mcg/disc concentration. We also noticed that selected herbal formulations have better antimicrobial properties at MIC range of 300- 400μl. Hence, our study suggests that these herbal extracts have better inhibitory properties against the toxin as well as drug resistant Streptococcus pyogenes.
[Follow-up on MEWDS by fundus perimetry and multifocal ERG with the SLO].
Bültmann, S; Martin, M; Rohrschneider, K
2002-09-01
Most conventional techniques for examination such as perimetry or ERG may not be sensitive enough to detect functional alterations due to MEWDS precisely. We report on a follow-up performed by fundus perimetry and the new technique of multifocal ERG using the scanning laser ophthalmoscope. A 24-year-old female patient (VA 0.2/0.8) was followed up for 7 weeks with these techniques as well as Octopus perimetry, fluorescence angiography, Ganzfeld ERG and biomicroscopy. Multifocal ERG stimulation (mfERG, Retiscan) was performed with the SLO. Visual acuity improved from 0.2 to 0.8 and the central relative scotoma disappeared while a relevant increase of P1-wave amplitudes in mfERG could be observed. Combining objective measurements from the fundus controlled SLO-mfERG and results from fundus perimetry enable good correlation of morphology and results, even for minor alterations of the macula only accessible by few established clinical examinations.
Cytolysin-dependent evasion of lysosomal killing.
Håkansson, Anders; Bentley, Colette Cywes; Shakhnovic, Elizabeth A; Wessels, Michael R
2005-04-05
Local host defenses limit proliferation and systemic spread of pathogenic bacteria from sites of mucosal colonization. For pathogens such as streptococci that fail to grow intracellularly, internalization and killing by epithelial cells contribute to the control of bacterial growth and dissemination. Here, we show that group A Streptococcus (GAS), the agent of streptococcal sore throat and invasive soft tissue infections, evades internalization and intracellular killing by pharyngeal epithelial cells. Production of the cholesterol-binding cytotoxin streptolysin O (SLO) prevented internalization of GAS into lysosomes. In striking contrast, GAS rendered defective in production of SLO were internalized directly or rapidly transported into lysosomes, where they were killed by a pH-dependent mechanism. Because SLO is the prototype of cholesterol-dependent cytolysins produced by many Gram-positive bacteria, cytolysin-mediated evasion of lysosomal killing may be a general mechanism to protect such pathogens from clearance by host epithelial cells.
ERIC Educational Resources Information Center
Hartl, David, Ed.; And Others
Designed to assist teachers in small schools with the improvement of curriculum and instruction and to help smaller districts that do not have curriculum personnel to comply with Washington's Student Learning Objectives (SLO) Law, this guide contains language arts curriculum materials for grades K-3. Learning objectives are correlated to the Goals…
ERIC Educational Resources Information Center
Hartl, David, Ed.; And Others
Designed to assist teachers in small schools with the improvement of curriculum and instruction and to help smaller districts without curriculum personnel to comply with Washington's Student Learning Objectives (SLO) Law, this guide contains spelling curriculum materials for grades K-3. The spelling section is part of the total language arts…
Komar, Katarzyna; Stremplewski, Patrycjusz; Motoczyńska, Marta; Szkulmowski, Maciej; Wojtkowski, Maciej
2013-01-01
In this paper we present a multimodal device for imaging fundus of human eye in vivo which combines functionality of autofluorescence by confocal SLO with Fourier domain OCT. Native fluorescence of human fundus was excited by modulated laser beam (λ = 473 nm, 20 MHz) and lock-in detection was applied resulting in improving sensitivity. The setup allows for acquisition of high resolution OCT and high contrast AF images using fluorescence excitation power of 50-65 μW without averaging consecutive images. Successful functioning of constructed device have been demonstrated for 8 healthy volunteers of different age ranging from 24 to 83 years old. PMID:24298426
What Is a Hill? An Analysis of the Meanings of Generic Topographic Terms
1985-08-01
to describe the di,.ferent characters of forms. FLAT: An area or surface with gantle, non-varying slope, that is highly platykurtic but not...Slo;e Change Index value of zero. ROLLING: A surface without elevated or Inverted forms, with platykurtic slo a Slope Ctange Index value of zero and...and contour planes of similar extent. POCKMARKEC (pitted): A surface that has within its contour repeated, small, circular or elliptical platykurtic
Automated volumetric evaluation of stereoscopic disc photography
Xu, Juan; Ishikawa, Hiroshi; Wollstein, Gadi; Bilonick, Richard A; Kagemann, Larry; Craig, Jamie E; Mackey, David A; Hewitt, Alex W; Schuman, Joel S
2010-01-01
PURPOSE: To develop a fully automated algorithm (AP) to perform a volumetric measure of the optic disc using conventional stereoscopic optic nerve head (ONH) photographs, and to compare algorithm-produced parameters with manual photogrammetry (MP), scanning laser ophthalmoscope (SLO) and optical coherence tomography (OCT) measurements. METHODS: One hundred twenty-two stereoscopic optic disc photographs (61 subjects) were analyzed. Disc area, rim area, cup area, cup/disc area ratio, vertical cup/disc ratio, rim volume and cup volume were automatically computed by the algorithm. Latent variable measurement error models were used to assess measurement reproducibility for the four techniques. RESULTS: AP had better reproducibility for disc area and cup volume and worse reproducibility for cup/disc area ratio and vertical cup/disc ratio, when the measurements were compared to the MP, SLO and OCT methods. CONCLUSION: AP provides a useful technique for an objective quantitative assessment of 3D ONH structures. PMID:20588996
ERIC Educational Resources Information Center
Hartl, David, Ed.; And Others
Developed during 1975-76 by 40 primary teachers and 10 elementary principals from 12 small school districts in 2 Washington counties and first used during 1976-77 in more than 20 districts, this K-3 mathematics curriculum is designed to assist district compliance with Washington's Student Learning Objectives (SLO) Law, which requires…
ERIC Educational Resources Information Center
Hartl, David, Ed.; And Others
Designed to assist teachers in small schools with the improvement of curriculum and instruction and to help smaller districts which do not have curriculum personnel to comply with Washington's Student Learning Objectives (SLO) Law, this guide contains reading curriculum materials for grades K-3. The objectives listed are correlated to the Goals…
NASA Astrophysics Data System (ADS)
Wells-Gray, Elaine M.; Choi, Stacey S.; Ohr, Matthew; Cebulla, Colleen M.; Doble, Nathan
2017-02-01
Combined adaptive optics (AO) optical coherence tomography (OCT) scanning laser ophthalmoscopy (SLO) imaging allows simultaneous en face and cross sectional views of the retina. We describe improvements to our AO-OCT-SLO system and highlight its resolution capability and clinical utility by presenting results from 3 control and 4 dry agerelated macular degeneration (AMD) subjects. From a group of subjects with healthy eyes, OCT A-scans were grouped as originating from cones or rods and were averaged. The resulting reflectance profiles were then used to identify the location of cone and rod segments. Results for rods and cones were compared, with the focus on inner segment (IS) and outer segment (OS) structures and where these cells embed into the retinal pigment epithelium (RPE). In the AMD patients, cone IS and OS lengths were measured over and around drusen for two retinal regions (fovea-2° and 2°-4°), and those results were correlated to drusen height. For the fovea-2° region, the drusen height that caused statistically significant shortening of cone ISL and OSL compared to the unaffected adjacent area were 40 μm and 50 μm respectively (p = 0.009, and p < 0.001, respectively). For the 2°-4° region, the equivalent drusen heights that caused significant shortening of segment length were 60 μm for IS (p = 0.017) and 80 μm for OS (p < 0.001)
Salvatore, Serena; Fishman, Gerald A.; McAnany, J. Jason; Genead, Mohamed A.
2014-01-01
Purpose To evaluate dark-adapted retinal sensitivity in patients with Stargardt disease (STGD1) using a modified MP-1 microperimeter (MP-1S) and to compare the sensitivity loss with structural changes observed by spectral-domain optical coherence tomography (SD-OCT) and confocal scanning laser ophthalmoscope (cSLO) infrared imaging. Methods Twelve STGD1 patients and 10 normally sighted controls participated. Dark-adapted mean sensitivity (MS) was obtained using a MP-1S. Additionally, MS percent difference between the patients and the controls was obtained. Sensitivity results were superimposed on cSLO infrared images and compared with corresponding SD-OCT scans. Results Dark-adapted MS±SD was 8.34±1.54 dB for the controls and 3.68±1.74 dB for STGD1(p<0.001). There was a significant reduction in MS of 24.0% in STGD1. Sensitivity reductions were observed in areas that showed changes on cSLO infrared images and on SD-OCT, including disorganizational loss of the retinal pigment epithelium, and abnormal photoreceptor inner-segment ellipsoid (ISe) and external limiting membrane reflectance band. Conclusions With topographical accuracy, dark-adapted sensitivity measurements can be made in STGD1 and normal controls with the MP-1S. Sensitivity loss is associated with structural changes. This finding can be useful for the determination of optimal areas for potential improvement of retinal function in Stargardt patients. PMID:24280667
Slo1 is the principal potassium channel of human spermatozoa
Mannowetz, Nadja; Naidoo, Natasha M; Choo, Seung-A Sara; Smith, James F; Lishko, Polina V
2013-01-01
Mammalian spermatozoa gain competence to fertilize an oocyte as they travel through the female reproductive tract. This process is accompanied by an elevation of sperm intracellular calcium and a membrane hyperpolarization. The latter is evoked by K+ efflux; however, the molecular identity of the potassium channel of human spermatozoa (hKSper) is unknown. Here, we characterize hKSper, reporting that it is regulated by intracellular calcium but is insensitive to intracellular alkalinization. We also show that human KSper is inhibited by charybdotoxin, iberiotoxin, and paxilline, while mouse KSper is insensitive to these compounds. Such unique properties suggest that the Slo1 ion channel is the molecular determinant for hKSper. We show that Slo1 is localized to the sperm flagellum and is inhibited by progesterone. Inhibition of hKSper by progesterone may depolarize the spermatozoon to open the calcium channel CatSper, thus raising [Ca2+] to produce hyperactivation and allowing sperm to fertilize an oocyte. DOI: http://dx.doi.org/10.7554/eLife.01009.001 PMID:24137539
A new fluorescent imaging procedure in vivo for evaluation of the retinal microcirculation in rats.
Kimura, H; Kiryu, J; Nishiwaki, H; Ogura, Y
1995-03-01
We investigated a new method for in vivo evaluation of the retinal microcirculation in rats using a cell-permeant fluorescent dye, acridine orange (AO), which stains cell nuclei and cytoplasm, and a scanning laser ophthalmoscope (SLO). AO, which binds and interacts with DNA and RNA, and thus stains cell nuclei and cytoplasm, was administered intravenously to rats. Fluorescein angiography was performed after administration of the AO, and fundus images were recorded on S-VHS videotape by means of an SLO. Argon laser was used as an exciter of the dye. The retinal vessels were stained with the dye, rendering the retinal microvasculature clearly visible. Cell nuclei and vessel walls were observed as greater fluorescence and lesser fluorescence, respectively. Leukocytes were also observed as highly fluorescent dots moving through the vessels. The results suggest that SLO visualization of AO uptake by cells may be a useful procedure for the evaluation of retinal microcirculation in vivo in rats.
Molecular mechanism of pharmacological activation of BK channels
Gessner, Guido; Cui, Yong-Mei; Otani, Yuko; Ohwada, Tomohiko; Soom, Malle; Hoshi, Toshinori; Heinemann, Stefan H.
2012-01-01
Large-conductance voltage- and Ca2+-activated K+ (Slo1 BK) channels serve numerous cellular functions, and their dysregulation is implicated in various diseases. Drugs activating BK channels therefore bear substantial therapeutic potential, but their deployment has been hindered in part because the mode of action remains obscure. Here we provide mechanistic insight into how the dehydroabietic acid derivative Cym04 activates BK channels. As a representative of NS1619-like BK openers, Cym04 reversibly left-shifts the half-activation voltage of Slo1 BK channels. Using an established allosteric BK gating model, the Cym04 effect can be simulated by a shift of the voltage sensor and the ion conduction gate equilibria toward the activated and open state, respectively. BK activation by Cym04 occurs in a splice variant-specific manner; it does not occur in such Slo1 BK channels using an alternative neuronal exon 9, which codes for the linker connecting the transmembrane segment S6 and the cytosolic RCK1 domain—the S6/RCK linker. In addition, Cym04 does not affect Slo1 BK channels with a two-residue deletion within this linker. Mutagenesis and model-based gating analysis revealed that BK openers, such as Cym04 and NS1619 but not mallotoxin, activate BK channels by functionally interacting with the S6/RCK linker, mimicking site-specific shortening of this purported passive spring, which transmits force from the cytosolic gating ring structure to open the channel's gate. PMID:22331907
Scanning laser ophthalmoscope fundus cyclometry in near-natural viewing conditions.
Ehrt, O; Boergen, K P
2001-09-01
For a better understanding of motor and sensory adaptations in cyclodeviations, subjective and objective ocular torsion have to be measured under the same conditions. The search coil technique and videooculography allow natural viewing but only assess relative cycloduction, the dynamics of torsion over a short period of time. Cycloposition, on the other hand, can be measured by analysing the position of the foveola relative to the optic disc with fundus photographs but only in nonphysiological viewing. The aim of the study was to develop a technique that allows natural viewing conditions during fundus cyclometry. The scanning laser beam of the SLO was deflected by 90 degrees with a semitransparent mirror in front of the patient's eyes. The patient was able to look through the semitransparent mirror with both eyes into the room, e.g. at Harms' tangent screen. The infrared SLO images the central retina via the mirror through the undilated pupil. Digital image analysis quantifies the cycloposition of the eye. Controlled head movements while fixating the centre of Harms' tangent screen allow measurements in reproducible gaze positions. The semitransparent mirror reduces SLO image brightness, but image quality is sufficient for cyclometry after contrast enhancement. The laser light can be vaguely perceived by the patient but does not interfere with natural viewing. Reproducibility of the measurement is within +/- 1 degree SD. Our modification of SLO fundus cyclometry allows direct measurements of cycloposition in natural viewing conditions. This opens a new field for investigations of cyclodeviations and their sensory and motor adaptations.
3D printed phantoms of retinal photoreceptor cells for evaluating adaptive optics imaging modalities
NASA Astrophysics Data System (ADS)
Kedia, Nikita; Liu, Zhuolin; Sochol, Ryan; Hammer, Daniel X.; Agrawal, Anant
2018-02-01
Adaptive optics-enabled optical coherence tomography (AO-OCT) and scanning laser ophthalmoscopy (AO-SLO) devices can resolve retinal cones and rods in three dimensions. To evaluate the improved resolution of AO-OCT and AO-SLO, a phantom that mimics retinal anatomy at the cellular level is required. We used a two-photon polymerization approach to fabricate three-dimensional (3D) photoreceptor phantoms modeled on the central foveal cones. By using a femtosecond laser to selectively photocure precise locations within a liquid-based photoresist via two-photon absorption, we produced high-resolution phantoms with μm-level dimensions similar to true anatomy. In this work, we present two phantoms to evaluate the resolution limits of an AO imaging system: one that models only the outer segments of the photoreceptor cells at varying retinal eccentricities and another that contains anatomically relevant features of the full-length photoreceptor. With these phantoms we are able to quantitatively estimate transverse resolution of an AO system and produce images that are comparable to those found in the human retina.
Lethal acrodysgenital dwarfism: a severe lethal condition resembling Smith-Lemli-Opitz syndrome.
Merrer, M L; Briard, M L; Girard, S; Mulliez, N; Moraine, C; Imbert, M C
1988-01-01
We report eight cases of a lethal association of failure to thrive, facial dysmorphism, ambiguous genitalia, syndactyly, postaxial polydactyly, and internal developmental anomalies (Hirschsprung's disease, cardiac and renal malformation). This syndrome is likely to be autosomal recessive and resembles Smith-Lemli-Opitz (SLO) syndrome. However, the lethality, the common occurrence of polydactyly, and the sexual ambiguity distinguishes this condition from SLO syndrome. A review of published reports supports the separate classification of this syndrome for which we propose the name lethal acrodysgenital dwarfism. Images PMID:2831368
Based on long-term monitoring conducted in Chang-ning county, a pilot site of the ‘Grain for Green Program’ (GFGP), an integrated emergy and economic method was applied to evaluate the dynamic ecological-economic performance of 3 kinds of bamboo systems planted on slo...
NASA Astrophysics Data System (ADS)
LaRocca, Francesco; Nankivil, Derek; DuBose, Theodore B.; Toth, Cynthia A.; Farsiu, Sina; Izatt, Joseph A.
2016-03-01
In vivo photoreceptor imaging has enhanced the way vision scientists and ophthalmologists understand the retinal structure, function, and etiology of numerous retinal pathologies. However, the complexity and large footprint of current systems capable of resolving photoreceptors has limited imaging to patients who are able to sit in an upright position and fixate for several minutes. Unfortunately, this excludes an important fraction of patients including bedridden patients, small children, and infants. Here, we show that our dual-modality, high-resolution handheld probe with a weight of only 94 g is capable of visualizing photoreceptors in supine children. Our device utilizes a microelectromechanical systems (MEMS) scanner and a novel telescope design to achieve over an order of magnitude reduction in size compared to similar systems. The probe has a 7° field of view and a lateral resolution of 8 µm. The optical coherence tomography (OCT) system has an axial resolution of 7 µm and a sensitivity of 101 dB. High definition scanning laser ophthalmoscopy (SLO) and OCT images were acquired from children ranging from 14 months to 12 years of age with and without pathology during examination under anesthesia in the operating room. Parafoveal cone imaging was shown using the SLO arm of this device without adaptive optics using a 3° FOV for the first time in children under 4 years old. This work lays the foundation for pediatric research, which will improve understanding of retinal development, maldevelopment and early onset of diseases at the cellular level during the beginning stages of human growth.
Cazalot, Guillaume; Rival, Franck; Linsart, Adeline; Isard, Pierre-François; Tissier, Marion; Peiffer, Robert Louis; Dulaurent, Thomas
2015-01-01
One of the singularities of the eyes of snakes is the presence of the spectacle, a transparent and vascularized integument covering the cornea. The spectacle is completely renewed during ecdysis. Combined scanning laser ophthalmoscopy (SLO), optical coherence tomography (OCT), and conventional macrophotography were used to image this phenomenon. A spectral OCT/SLO examination and macrophotography were performed in four healthy adult corn snakes (Pantherophis guttatus) and one healthy adult California king snake (Lampropeltis getulus californiae) the day before the start of ecdysis and then daily during ecdysis. In all animals, ecdysis lasted 5 days. The spectacle was hardly visible at baseline, but became obvious at day one, while the subspectacular space became larger and the superficial cornea presented a hyperechoic band. At day two, eye surface became translucent, and at the same time, vascularization of the spectacle was visible using SLO. At day 3, the vascularization was no longer visible, while the subspectacular space increased and the eye surface remained translucent. At day 4, the eye surface was transparent and the superficial hyperechoic band started to become less bright. At day 5, the old spectacle was shed and all the parameters returned to baseline. We hypothesize that the echogenicity modifications of the anterior cornea correspond to major metabolic activity associated with new spectacle formation. This increased metabolic activity may contribute to the neovascularization and play an important role in the accumulation of fluid in the subspectacular space, facilitating the shedding of the old spectacle. © 2014 American College of Veterinary Ophthalmologists.
Morgan, Jessica I. W.; Pugh, Edward N.
2013-01-01
Purpose. We measured the bleaching and regeneration kinetics of rhodopsin in the living human eye with two-wavelength, wide-field scanning laser ophthalmoscopy (SLO), and investigated the effect of rhodopsin bleaching on autofluorescence intensity. Methods. The retina was imaged with an Optos P200C SLO by its reflectance of 532 and 633 nm light, and its autofluorescence excited by 532 nm light, before and after exposure to lights calibrated to bleach rhodopsin substantially. Bleaching was confined to circular retinal regions of 4.8° visual angle located approximately 16° superotemporal and superonasal to fixation. Images were captured as 12-bit tiff files and postprocessed to extract changes in reflectance and autofluorescence. Results. At the locus of bleaching transient increases in reflectance of the 532 nm, but not the 633 nm beam were observed readily and quantified. A transient increase in autofluorescence also occurred. The action spectrum, absolute sensitivity, and recovery of the 532 nm reflectance increase were consistent with previous measurements of human rhodopsin's spectral sensitivity, photosensitivity, and regeneration kinetics. The autofluorescence changes closely tracked the changes in rhodopsin density. Conclusions. The bleaching and regeneration kinetics of rhodopsin can be measured locally in the human retina with a widely available SLO. The increased autofluorescence excited by 532 nm light upon bleaching appears primarily due to transient elimination of rhodopsin's screening of autofluorescent fluorochromes in the RPE. The spatially localized measurement with a widely available SLO of rhodopsin, the most abundant protein in the retina, could be a valuable adjunct to retinal health assessment. PMID:23412087
Morgan, Jessica I W; Pugh, Edward N
2013-03-01
We measured the bleaching and regeneration kinetics of rhodopsin in the living human eye with two-wavelength, wide-field scanning laser ophthalmoscopy (SLO), and investigated the effect of rhodopsin bleaching on autofluorescence intensity. The retina was imaged with an Optos P200C SLO by its reflectance of 532 and 633 nm light, and its autofluorescence excited by 532 nm light, before and after exposure to lights calibrated to bleach rhodopsin substantially. Bleaching was confined to circular retinal regions of 4.8° visual angle located approximately 16° superotemporal and superonasal to fixation. Images were captured as 12-bit tiff files and postprocessed to extract changes in reflectance and autofluorescence. At the locus of bleaching transient increases in reflectance of the 532 nm, but not the 633 nm beam were observed readily and quantified. A transient increase in autofluorescence also occurred. The action spectrum, absolute sensitivity, and recovery of the 532 nm reflectance increase were consistent with previous measurements of human rhodopsin's spectral sensitivity, photosensitivity, and regeneration kinetics. The autofluorescence changes closely tracked the changes in rhodopsin density. The bleaching and regeneration kinetics of rhodopsin can be measured locally in the human retina with a widely available SLO. The increased autofluorescence excited by 532 nm light upon bleaching appears primarily due to transient elimination of rhodopsin's screening of autofluorescent fluorochromes in the RPE. The spatially localized measurement with a widely available SLO of rhodopsin, the most abundant protein in the retina, could be a valuable adjunct to retinal health assessment.
Slater, Graham J.; Cui, Pin; Forasiepi, Analía M.; Lenz, Dorina; Tsangaras, Kyriakos; Voirin, Bryson; de Moraes-Barros, Nadia; MacPhee, Ross D. E.; Greenwood, Alex D.
2016-01-01
Macroevolutionary trends exhibited by retroviruses are complex and not entirely understood. The sloth endogenized foamy-like retrovirus (SloEFV), which demonstrates incongruence in virus–host evolution among extant sloths (Order Folivora), has not been investigated heretofore in any extinct sloth lineages and its premodern history within folivorans is therefore unknown. Determining retroviral coevolutionary trends requires a robust phylogeny of the viral host, but the highly reduced modern sloth fauna (6 species in 2 genera) does not adequately represent what was once a highly diversified clade (∼100 genera) of placental mammals. At present, the amount of molecular data available for extinct sloth taxa is limited, and analytical results based on these data tend to conflict with phylogenetic inferences made on the basis of morphological studies. To augment the molecular data set, we applied hybridization capture and next-generation Illumina sequencing to two extinct and three extant sloth species to retrieve full mitochondrial genomes (mitogenomes) from the hosts and the polymerase gene of SloEFV. The results produced a fully resolved and well-supported phylogeny that supports dividing crown families into two major clades: 1) The three-toed sloth, Bradypus, and Nothrotheriidae and 2) Megalonychidae, including the two-toed sloth, Choloepus, and Mylodontidae. Our calibrated time tree indicates that the Miocene epoch (23.5 Ma), particularly its earlier part, was an important interval for folivoran diversification. Both extant and extinct sloths demonstrate multiple complex invasions of SloEFV into the ancestral sloth germline followed by subsequent introgressions across different sloth lineages. Thus, sloth mitogenome and SloEFV evolution occurred separately and in parallel among sloths. PMID:26878870
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Chih-Jie; Kupinski, Matthew A.; Volokh, Lana
2013-01-15
Purpose: Single-photon emission computed tomography (SPECT) is widely used to detect myocardial ischemia and myocardial infarction. It is important to assess and compare different SPECT system designs in order to achieve the highest detectability of cardiac defects. Methods: Whitaker et al.'s study ['Estimating random signal parameters from noisy images with nuisance parameters: linear and scanning-linear methods,' Opt. Express 16(11), 8150-8173 (2008)] on the scanning linear observer (SLO) shows that the SLO can be used to estimate the location and size of signals. One major advantage of the SLO is that it can be used with projection data rather than withmore » reconstruction data. Thus, this observer model assesses the overall hardware performance independent of any reconstruction algorithm. In addition, the computation time of image quality studies is significantly reduced. In this study, three systems based on the design of the GE cadmium zinc telluride-based dedicated cardiac SPECT camera Discovery 530c were assessed. This design, which is officially named the Alcyone Technology: Discovery NM 530c, was commercialized in August, 2009. The three systems, GE27, GE19, and GE13, contain 27, 19, and 13 detectors, respectively. Clinically, a human heart can be virtually segmented into three coronary artery territories: the left-anterior descending artery, left-circumflex artery, and right coronary artery. One of the most important functions of a cardiac SPECT system is to produce images from which a radiologist can accurately predict in which territory the defect exists [http://www.asnc.org/media/PDFs/PPReporting081511.pdf, Guideline from American Society of Nuclear Cardiology]. A good estimation of the extent of the defect from the projection images is also very helpful for determining the seriousness of the myocardial ischemia. In this study, both the location and extent of defects were estimated by the SLO, and the system performance was assessed by localization receiver operating characteristic (LROC) [P. Khurd and G. Gindi, 'Decision strategies maximizing the area under the LROC curve,' Proc. SPIE 5749, 150-161 (2005)] or estimation receiver operating characteristic (EROC) [E. Clarkson, 'Estimation receiver operating characteristic curve and ideal observers for combined detection/estimation tasks,' J. Opt. Soc. Am. A 24, B91-B98 (2007)] curves. Results: The area under the LROC/EROC curve (AULC/AUEC) and the true positive fraction (TPF) at a specific false positive fraction (FPF) can be treated as the figures of merit. For radii estimation with a 1 mm tolerance, the AUEC values of the GE27, GE19, and GE13 systems are 0.8545, 0.8488, and 0.8329, and the TPF at FPF = 5% are 77.1%, 76.46%, and 73.55%, respectively. The assessment of all three systems revealed that the GE19 system yields estimated information and cardiac defect detectability very close to those of the GE27 system while using eight fewer detectors. Thus, 30% of the expensive detector units can be removed with confidence. Conclusions: As the results show, a combination of the SLO and LROC/EROC curves can determine the configuration that yields the most relevant estimation/detection information. Thus, this is a useful method for assessing cardiac SPECT systems.« less
An examination of slo-pitch pitching trajectories.
Wu, Tom; Gervais, Pierre
2008-01-01
Many slo-pitch coaches and players believe that generating spin on a ball can affect its trajectory. The influence of air resistance on a ball that is thrown at a moderate speed and spin is unclear. The aim of this study was to examine the influence of spin on the ball's trajectory in slo-pitch pitching using both experimental results and ball flight simulations. Fourteen pitchers participated in the study, each of whom threw five backspin and topspin pitches each. Data were collected using standard three-dimensional videography. The horizontal velocity, vertical velocity, angular velocity, release height, and horizontal displacement of the backspin pitches were significantly higher than those of the topspin pitches. The ball flight simulations were developed to examine the influence of the ball spin, and it was concluded that the spin of the ball had a significant effect on the ball's vertical and horizontal displacements. Furthermore, our results suggest that a backspin pitch that reaches the maximum height allowable and lands in the front edge of the strike zone has the steepest slope. The present results add to our understanding of projectile motion and aerodynamics.
The Protein Kinase, RSK2, A Novel Drug Target for Breast Cancer
2005-05-01
kaempferol, the flavonoid constituent of SL010l, forming the ATP-binding pocket of RSK with that of p70 S6K, was determined to be 15 iumol/L for RSK (Fig...and RSK2 Supplemental Fig. 2). Kaempferol, the flavonoid constituent of A. B. MCF-7 MCF-10A 180 PM 50 pM SLO101 U0126 Vehicle SLO101 U0126 vehicle...refracta. This flavonoid glycoside is specific inhibitor of p90 ribosomal S6 kinase (RSK) with a dissociation constant, Ki, of 1 [AM. In intact cells
Senate Rostrum: The Newsletter of the Academic Senate for California Community Colleges, May 2009
ERIC Educational Resources Information Center
Academic Senate for California Community Colleges, 2009
2009-01-01
The Rostrum is a quarterly publication of the Academic Senate for California Community Colleges. The following articles are included in this issue: (1) An SLO Terminology Glossary: A Draft in Progress by Lesley Kawaguchi; (2) A Tale of Two Data Elements by Mark Wade Lieu; (3) Sustainability and the Academic Senate by David Beaulieu and Don…
Wells-Gray, E M; Choi, S S; Bries, A; Doble, N
2016-01-01
Purpose To characterize the rod and cone photoreceptor mosaic at retinal locations spanning the central 60° in vivo using adaptive optics scanning laser ophthalmoscopy (AO-SLO) in healthy human eyes. Methods AO-SLO images (0.7 × 0.9°) were acquired at 680 nm from 14 locations from 30° nasal retina (NR) to 30° temporal retina (TR) in 5 subjects. Registered averaged images were used to measure rod and cone density and spacing within 60 × 60 μm regions of interest. Voronoi analysis was performed to examine packing geometry at all locations. Results Average peak cone density near the fovea was 164 000±24 000 cones/mm2 and decreased to 6700±1500 and 5400±700 cones/mm2 at 30° NR and 30° TR, respectively. Cone-to-cone spacing increased from 2.7±0.2 μm at the fovea to 14.6±1.4 μm at 30° NR and 16.3±0.7 μm at 30° TR. Rod density peaked at 25° NR (124 000±20 000 rods/mm2) and 20° TR (120 000±12 000 rods/mm2) and decreased at higher eccentricities. Center-to-center rod spacing was lowest nasally at 25° (2.1±0.1 μm). Temporally, rod spacing was lowest at 20° (2.2±0.1 μm) before increasing to 2.3±0.1 μm at 30° TR. Conclusions Both rod and cone densities showed good agreement with histology and prior AO-SLO studies. The results demonstrate the ability to image at higher retinal eccentricities than reported previously. This has clinical importance in diseases that initially affect the peripheral retina such as retinitis pigmentosa. PMID:27229708
Santarelli, Lindsey Ciali; Wassef, Ramez; Heinemann, Stefan H; Hoshi, Toshinori
2006-03-01
Methionine-directed oxidation of the human Slo1 potassium channel (hSlo1) shifts the half-activation voltage by -30 mV and markedly slows channel deactivation at low concentrations of intracellular Ca2+ ([Ca2+]i). We demonstrate here that the contemporaneous mutation of M536, M712 and M739 to leucine renders the channel functionally insensitive to methionine oxidation caused by the oxidant chloramine-T (Ch-T) without altering other functional characteristics. Coexpression with the auxiliary beta1 subunit fails to restore the full oxidative sensitivity to this triple mutant channel. The Ch-T effect is mediated specifically by M536, M712 and M739 because even small changes in this residue combination interfere with the ability to remove the oxidant sensitivity following mutation. Replacement of M712 or M739, but not M536, with the hydrophilic residue glutamate largely mimics oxidation of the channel and essentially removes the Ch-T sensitivity, suggesting that M712 and M739 may be part of a hydrophobic pocket disrupted by oxidation of non-polar methionine to the more hydrophilic methionine sulfoxide. The increase in wild-type hSlo1 open probability caused by methionine oxidation disappears at high [Ca2+]i and biophysical modelling of the Ch-T effect on steady-state activation implicates a decrease in the allosteric coupling between Ca2+ binding and the pore. The dramatic increase in open probability at low [Ca2+]i especially within the physiological voltage range suggests that oxidation of M536, M712 or M739 may enhance the Slo1 BK activity during conditions of oxidative stress, such as those associated with ischaemia-reperfusion and neurodegenerative disease, or in response to metabolic cues.
Olsen, Timothy W.
2008-01-01
Purpose To establish a grading system of eye bank eyes using fundus autofluorescence (FAF) and identify a methodology that correlates FAF to age-related macular degeneration (AMD) with clinical correlation to the Age-Related Eye Disease Study (AREDS). Methods Two hundred sixty-two eye bank eyes were evaluated using a standardized analysis of FAF. Measurements were taken with the confocal scanning laser ophthalmoscope (cSLO). First, high-resolution, digital, stereoscopic, color images were obtained and graded according to AREDS criteria. With the neurosensory retina removed, mean FAF values were obtained from cSLO images using software analysis that excludes areas of atrophy and other artifact, generating an FAF value from a grading template. Age and AMD grade were compared to FAF values. An internal fluorescence reference standard was tested. Results Standardization of the cSLO machine demonstrated that reliable data could be acquired after a 1-hour warm-up. Images obtained prior to 1 hour had falsely elevated levels of FAF. In this initial analysis, there was no statistical correlation of age to mean FAF. There was a statistically significant decrease in FAF from AREDS grade 1, 2 to 3, 4 (P < .0001). An internal fluorescent standard may serve as a quantitative reference. Conclusions The Minnesota Grading System (MGS) of FAF (MGS-FAF) establishes a standardized methodology for grading eye bank tissue to quantify FAF compounds in the retinal pigment epithelium and correlate these findings to the AREDS. Future studies could then correlate specific FAF to the aging process, histopathology AMD phenotypes, and other maculopathies, as well as to analyze the biochemistry of autofluorescent fluorophores. PMID:19277247
Olsen, Timothy W
2008-01-01
To establish a grading system of eye bank eyes using fundus autofluorescence (FAF) and identify a methodology that correlates FAF to age-related macular degeneration (AMD) with clinical correlation to the Age-Related Eye Disease Study (AREDS). Two hundred sixty-two eye bank eyes were evaluated using a standardized analysis of FAF. Measurements were taken with the confocal scanning laser ophthalmoscope (cSLO). First, high-resolution, digital, stereoscopic, color images were obtained and graded according to AREDS criteria. With the neurosensory retina removed, mean FAF values were obtained from cSLO images using software analysis that excludes areas of atrophy and other artifact, generating an FAF value from a grading template. Age and AMD grade were compared to FAF values. An internal fluorescence reference standard was tested. Standardization of the cSLO machine demonstrated that reliable data could be acquired after a 1-hour warm-up. Images obtained prior to 1 hour had falsely elevated levels of FAF. In this initial analysis, there was no statistical correlation of age to mean FAF. There was a statistically significant decrease in FAF from AREDS grade 1, 2 to 3, 4 (P < .0001). An internal fluorescent standard may serve as a quantitative reference. The Minnesota Grading System (MGS) of FAF (MGS-FAF) establishes a standardized methodology for grading eye bank tissue to quantify FAF compounds in the retinal pigment epithelium and correlate these findings to the AREDS. Future studies could then correlate specific FAF to the aging process, histopathology AMD phenotypes, and other maculopathies, as well as to analyze the biochemistry of autofluorescent fluorophores.
Malone, Joseph D.; El-Haddad, Mohamed T.; Bozic, Ivan; Tye, Logan A.; Majeau, Lucas; Godbout, Nicolas; Rollins, Andrew M.; Boudoux, Caroline; Joos, Karen M.; Patel, Shriji N.; Tao, Yuankai K.
2016-01-01
Scanning laser ophthalmoscopy (SLO) benefits diagnostic imaging and therapeutic guidance by allowing for high-speed en face imaging of retinal structures. When combined with optical coherence tomography (OCT), SLO enables real-time aiming and retinal tracking and provides complementary information for post-acquisition volumetric co-registration, bulk motion compensation, and averaging. However, multimodality SLO-OCT systems generally require dedicated light sources, scanners, relay optics, detectors, and additional digitization and synchronization electronics, which increase system complexity. Here, we present a multimodal ophthalmic imaging system using swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography (SS-SESLO-OCT) for in vivo human retinal imaging. SESLO reduces the complexity of en face imaging systems by multiplexing spatial positions as a function of wavelength. SESLO image quality benefited from single-mode illumination and multimode collection through a prototype double-clad fiber coupler, which optimized scattered light throughput and reduce speckle contrast while maintaining lateral resolution. Using a shared 1060 nm swept-source, shared scanner and imaging optics, and a shared dual-channel high-speed digitizer, we acquired inherently co-registered en face retinal images and OCT cross-sections simultaneously at 200 frames-per-second. PMID:28101411
Hancz, Dóra; Westerlund, Elsa; Bastiat-Sempe, Benedicte; Sharma, Onkar; Valfridsson, Christine; Meyer, Lena; Love, John F.; O’Seaghdha, Maghnus; Wessels, Michael R.
2017-01-01
ABSTRACT Group A Streptococcus (GAS) is a common human pathogen and the etiologic agent of a large number of diseases ranging from mild, self-limiting infections to invasive life-threatening conditions. Two prominent virulence factors of this bacterium are the genetically and functionally linked pore-forming toxin streptolysin O (SLO) and its cotoxin NAD+-glycohydrolase (NADase). Overexpression of these toxins has been linked to increased bacterial virulence and is correlated with invasive GAS disease. NADase can be translocated into host cells by a SLO-dependent mechanism, and cytosolic NADase has been assigned multiple properties such as protection of intracellularly located GAS bacteria and induction of host cell death through energy depletion. Here, we used a set of isogenic GAS mutants and a macrophage infection model and report that streptococcal NADase inhibits the innate immune response by decreasing inflammasome-dependent interleukin 1β (IL-1β) release from infected macrophages. Regulation of IL-1β was independent of phagocytosis and ensued also under conditions not allowing SLO-dependent translocation of NADase into the host cell cytosol. Thus, our data indicate that NADase not only acts intracellularly but also has an immune regulatory function in the extracellular niche. PMID:28720729
Automated Water Quality Survey and Evaluation Using an IoT Platform with Mobile Sensor Nodes.
Li, Teng; Xia, Min; Chen, Jiahong; Zhao, Yuanjie; de Silva, Clarence
2017-07-28
An Internet of Things (IoT) platform with capabilities of sensing, data processing, and wireless communication has been deployed to support remote aquatic environmental monitoring. In this paper, the design and development of an IoT platform with multiple Mobile Sensor Nodes (MSN) for the spatiotemporal quality evaluation of surface water is presented. A survey planner is proposed to distribute the Sampling Locations of Interest (SLoIs) over the study area and generate paths for MSNs to visit the SLoIs, given the limited energy and time budgets. The SLoIs are chosen based on a cellular decomposition that is composed of uniform hexagonal cells. They are visited by the MSNs along a path ring generated by a planning approach that uses a spanning tree. For quality evaluation, an Online Water Quality Index (OLWQI) is developed to interpret the large quantities of online measurements. The index formulations are modified by a state-of-the-art index, the CCME WQI, which has been developed by the Canadian Council of Ministers of Environment (CCME) for off-line indexing. The proposed index has demonstrated effective and reliable performance in online indexing a large volume of measurements of water quality parameters. The IoT platform is deployed in the field, and its performance is demonstrated and discussed in this paper.
Yamaguchi, Muneo; Nakao, Shintaro; Kaizu, Yoshihiro; Kobayashi, Yoshiyuki; Nakama, Takahito; Arima, Mitsuru; Yoshida, Shigeo; Oshima, Yuji; Takeda, Atsunobu; Ikeda, Yasuhiro; Mukai, Shizuo; Ishibashi, Tatsuro; Sonoda, Koh-hei
2016-01-01
Histological studies from autopsy specimens have characterized hard exudates as a composition of lipid-laden macrophages or noncellular materials including lipid and proteinaceous substances (hyaline substances). However, the characteristics of hard exudates in living patients have not been examined due to insufficient resolution of existing equipment. In this study, we used adaptive optics scanning laser ophthalmoscopy (AO-SLO) to examine the characteristics of hard exudates in patients with retinal vascular diseases. High resolution imaging using AO-SLO enables morphological classification of retinal hard exudates into two types, which could not be distinguished either on fundus examination or by spectral domain optical coherence tomography (SD-OCT). One, termed a round type, consisted of an accumulation of spherical particles (average diameter of particles: 26.9 ± 4.4 μm). The other, termed an irregular type, comprised an irregularly shaped hyper-reflective deposition. The retinal thickness in regions with round hard exudates was significantly greater than the thickness in regions with irregular hard exudates (P = 0.01 →0.02). This differentiation of retinal hard exudates in patients by AO-SLO may help in understanding the pathogenesis and clinical prognosis of retinal vascular diseases. PMID:27641223
Impaired clock output by altered connectivity in the circadian network.
Fernández, María de la Paz; Chu, Jessie; Villella, Adriana; Atkinson, Nigel; Kay, Steve A; Ceriani, María Fernanda
2007-03-27
Substantial progress has been made in elucidating the molecular processes that impart a temporal control to physiology and behavior in most eukaryotes. In Drosophila, dorsal and ventral neuronal networks act in concert to convey rhythmicity. Recently, the hierarchical organization among the different circadian clusters has been addressed, but how molecular oscillations translate into rhythmic behavior remains unclear. The small ventral lateral neurons can synchronize certain dorsal oscillators likely through the release of pigment dispersing factor (PDF), a neuropeptide central to the control of rhythmic rest-activity cycles. In the present study, we have taken advantage of flies exhibiting a distinctive arrhythmic phenotype due to mutation of the potassium channel slowpoke (slo) to examine the relevance of specific neuronal populations involved in the circadian control of behavior. We show that altered neuronal function associated with the null mutation specifically impaired PDF accumulation in the dorsal protocerebrum and, in turn, desynchronized molecular oscillations in the dorsal clusters. However, molecular oscillations in the small ventral lateral neurons are properly running in the null mutant, indicating that slo is acting downstream of these core pacemaker cells, most likely in the output pathway. Surprisingly, disrupted PDF signaling by slo dysfunction directly affects the structure of the underlying circuit. Our observations demonstrate that subtle structural changes within the circadian network are responsible for behavioral arrhythmicity.
Rizzi, Sandra; Schwarzer, Christoph; Kremser, Leopold; Lindner, Herbert H; Knaus, Hans-Günther
2015-12-01
The sodium-activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are paralogous channels of the Slo family of high-conductance potassium channels. Slick and Slack channels are widely distributed in the mammalian CNS and they play a role in slow afterhyperpolarization, generation of depolarizing afterpotentials and in setting and stabilizing the resting potential. In the present study we used a combined approach of (co)-immunoprecipitation studies, Western blot analysis, double immunofluorescence and mass spectrometric sequencing in order to investigate protein-protein interactions of the Slick and Slack channels. The data strongly suggest that Slick and Slack channels co-assemble into identical cellular complexes. Double immunofluorescence experiments revealed that Slick and Slack channels co-localize in distinct mouse brain regions. Moreover, we identified the small cytoplasmic protein beta-synuclein and the transmembrane protein 263 (TMEM 263) as novel interaction partners of both, native Slick and Slack channels. In addition, the inactive dipeptidyl-peptidase (DPP 10) and the synapse associated protein 102 (SAP 102) were identified as constituents of the native Slick and Slack channel complexes in the mouse brain. This study presents new insights into protein-protein interactions of native Slick and Slack channels in the mouse brain.
Santarelli, Lindsey Ciali; Wassef, Ramez; Heinemann, Stefan H; Hoshi, Toshinori
2006-01-01
Methionine-directed oxidation of the human Slo1 potassium channel (hSlo1) shifts the half-activation voltage by −30 mV and markedly slows channel deactivation at low concentrations of intracellular Ca2+ ([Ca2+]i). We demonstrate here that the contemporaneous mutation of M536, M712 and M739 to leucine renders the channel functionally insensitive to methionine oxidation caused by the oxidant chloramine-T (Ch-T) without altering other functional characteristics. Coexpression with the auxiliary β1 subunit fails to restore the full oxidative sensitivity to this triple mutant channel. The Ch-T effect is mediated specifically by M536, M712 and M739 because even small changes in this residue combination interfere with the ability to remove the oxidant sensitivity following mutation. Replacement of M712 or M739, but not M536, with the hydrophilic residue glutamate largely mimics oxidation of the channel and essentially removes the Ch-T sensitivity, suggesting that M712 and M739 may be part of a hydrophobic pocket disrupted by oxidation of non-polar methionine to the more hydrophilic methionine sulfoxide. The increase in wild-type hSlo1 open probability caused by methionine oxidation disappears at high [Ca2+]i and biophysical modelling of the Ch-T effect on steady-state activation implicates a decrease in the allosteric coupling between Ca2+ binding and the pore. The dramatic increase in open probability at low [Ca2+]i especially within the physiological voltage range suggests that oxidation of M536, M712 or M739 may enhance the Slo1 BK activity during conditions of oxidative stress, such as those associated with ischaemia-reperfusion and neurodegenerative disease, or in response to metabolic cues. PMID:16396928
Pharmacological consequences of the coexpression of BK channel α and auxiliary β subunits
Torres, Yolima P.; Granados, Sara T.; Latorre, Ramón
2014-01-01
Coded by a single gene (Slo1, KCM) and activated by depolarizing potentials and by a rise in intracellular Ca2+ concentration, the large conductance voltage- and Ca2+-activated K+ channel (BK) is unique among the superfamily of K+ channels. BK channels are tetramers characterized by a pore-forming α subunit containing seven transmembrane segments (instead of the six found in voltage-dependent K+ channels) and a large C terminus composed of two regulators of K+ conductance domains (RCK domains), where the Ca2+-binding sites reside. BK channels can be associated with accessory β subunits and, although different BK modulatory mechanisms have been described, greater interest has recently been placed on the role that the β subunits may play in the modulation of BK channel gating due to its physiological importance. Four β subunits have currently been identified (i.e., β1, β2, β3, and β4) and despite the fact that they all share the same topology, it has been shown that every β subunit has a specific tissue distribution and that they modify channel kinetics as well as their pharmacological properties and the apparent Ca2+ sensitivity of the α subunit in different ways. Additionally, different studies have shown that natural, endogenous, and synthetic compounds can modulate BK channels through β subunits. Considering the importance of these channels in different pathological conditions, such as hypertension and neurological disorders, this review focuses on the mechanisms by which these compounds modulate the biophysical properties of BK channels through the regulation of β subunits, as well as their potential therapeutic uses for diseases such as those mentioned above. PMID:25346693
Pharmacological consequences of the coexpression of BK channel α and auxiliary β subunits.
Torres, Yolima P; Granados, Sara T; Latorre, Ramón
2014-01-01
Coded by a single gene (Slo1, KCM) and activated by depolarizing potentials and by a rise in intracellular Ca(2+) concentration, the large conductance voltage- and Ca(2+)-activated K(+) channel (BK) is unique among the superfamily of K(+) channels. BK channels are tetramers characterized by a pore-forming α subunit containing seven transmembrane segments (instead of the six found in voltage-dependent K(+) channels) and a large C terminus composed of two regulators of K(+) conductance domains (RCK domains), where the Ca(2+)-binding sites reside. BK channels can be associated with accessory β subunits and, although different BK modulatory mechanisms have been described, greater interest has recently been placed on the role that the β subunits may play in the modulation of BK channel gating due to its physiological importance. Four β subunits have currently been identified (i.e., β1, β2, β3, and β4) and despite the fact that they all share the same topology, it has been shown that every β subunit has a specific tissue distribution and that they modify channel kinetics as well as their pharmacological properties and the apparent Ca(2+) sensitivity of the α subunit in different ways. Additionally, different studies have shown that natural, endogenous, and synthetic compounds can modulate BK channels through β subunits. Considering the importance of these channels in different pathological conditions, such as hypertension and neurological disorders, this review focuses on the mechanisms by which these compounds modulate the biophysical properties of BK channels through the regulation of β subunits, as well as their potential therapeutic uses for diseases such as those mentioned above.
Two Different Fatigue Protocols and Lower Extremity Motion Patterns During a Stop-Jump Task
Quammen, David; Cortes, Nelson; Van Lunen, Bonnie L.; Lucci, Shawn; Ringleb, Stacie I.; Onate, James
2012-01-01
Context: Altered neuromuscular control strategies during fatigue probably contribute to the increased incidence of non-contact anterior cruciate ligament injuries in female athletes. Objective: To determine biomechanical differences between 2 fatigue protocols (slow linear oxidative fatigue protocol [SLO-FP] and functional agility short-term fatigue protocol [FAST-FP]) when performing a running-stop-jump task. Design: Controlled laboratory study. Setting: Laboratory. Patients or Other Participants: A convenience sample of 15 female soccer players (age = 19.2 ±0.8 years, height = 1.67±0.05m, mass = 61.7 + 8.1 kg) without injury participated. Intervention(s): Five successful trials of a running–stop-jump task were obtained prefatigue and postfatigue during the 2 protocols. For the SLO-FP, a peak oxygen consumption (V˙o2peak) test was conducted before the fatigue protocol. Five minutes after the conclusion of the V˙o2peak test, participants started the fatigue protocol by performing a 30-minute interval run. The FAST-FP consisted of 4 sets of a functional circuit. Repeated 2 (fatigue protocol) × 2 (time) analyses of variance were conducted to assess differences between the 2 protocols and time (prefatigue, postfatigue). Main Outcome Measure(s): Kinematic and kinetic measures of the hip and knee were obtained at different times while participants performed both protocols during prefatigue and postfatigue. Results: Internal adduction moment at initial contact (IC) was greater during FAST-FP (0.064 ±0.09 Nm/kgm) than SLO-FP (0.024±0.06 Nm/kgm) (F1,14 = 5.610, P=.03). At IC, participants had less hip flexion postfatigue (44.7°±8.1°) than prefatigue (50.1°±9.5°) (F1,14 = 16.229, P=.001). At peak vertical ground reaction force, participants had less hip flexion postfatigue (44.7°±8.4°) than prefatigue (50.4°±10.3°) (F1,14 = 17.026, P=.001). At peak vertical ground reaction force, participants had less knee flexion postfatigue (−35.9°±6.5°) than prefatigue (−38.8°±5.03°) (F1,14 = 11.537, P=.001). Conclusions: Our results demonstrated a more erect landing posture due to a decrease in hip and knee flexion angles in the postfatigue condition. The changes were similar between protocols; however, the FAST-FP was a clinically applicable 5-minute protocol, whereas the SLO-FP lasted approximately 45 minutes. PMID:22488228
NASA Astrophysics Data System (ADS)
Carles, Guillem; Muyo, Gonzalo; van Hemert, Jano; Harvey, Andrew R.
2017-11-01
We demonstrate a multimode detection system in a scanning laser ophthalmoscope (SLO) that enables simultaneous operation in confocal, indirect, and direct modes to permit an agile trade between image contrast and optical sensitivity across the retinal field of view to optimize the overall imaging performance, enabling increased contrast in very wide-field operation. We demonstrate the method on a wide-field SLO employing a hybrid pinhole at its image plane, to yield a twofold increase in vasculature contrast in the central retina compared to its conventional direct mode while retaining high-quality imaging across a wide field of the retina, of up to 200 deg and 20 μm on-axis resolution.
Martinez-Espinosa, Pedro L.; Yang, Chengtao; Gonzalez-Perez, Vivian; Xia, Xiao-Ming
2014-01-01
Rat and mouse adrenal medullary chromaffin cells (CCs) express an inactivating BK current. This inactivation is thought to arise from the assembly of up to four β2 auxiliary subunits (encoded by the kcnmb2 gene) with a tetramer of pore-forming Slo1 α subunits. Although the physiological consequences of inactivation remain unclear, differences in depolarization-evoked firing among CCs have been proposed to arise from the ability of β2 subunits to shift the range of BK channel activation. To investigate the role of BK channels containing β2 subunits, we generated mice in which the gene encoding β2 was deleted (β2 knockout [KO]). Comparison of proteins from wild-type (WT) and β2 KO mice allowed unambiguous demonstration of the presence of β2 subunit in various tissues and its coassembly with the Slo1 α subunit. We compared current properties and cell firing properties of WT and β2 KO CCs in slices and found that β2 KO abolished inactivation, slowed action potential (AP) repolarization, and, during constant current injection, decreased AP firing. These results support the idea that the β2-mediated shift of the BK channel activation range affects repetitive firing and AP properties. Unexpectedly, CCs from β2 KO mice show an increased tendency toward spontaneous burst firing, suggesting that the particular properties of BK channels in the absence of β2 subunits may predispose to burst firing. PMID:25267913
Angiography reveals novel features of the retinal vasculature in healthy and diabetic mice.
McLenachan, Samuel; Magno, Aaron Len; Ramos, David; Catita, Joana; McMenamin, Paul G; Chen, Fred Kuanfu; Rakoczy, Elizabeth Piroska; Ruberte, Jesus
2015-09-01
The mouse retina is a commonly used animal model for the study of pathogenesis and treatment of blinding retinal vascular diseases such as diabetic retinopathy. In this study, we aimed to characterize normal and pathological variations in vascular anatomy in the mouse retina using fluorescein angiography visualized with scanning laser ophthalmoscopy and optical coherence tomography (SLO-OCT). We examined eyes from C57BL/6J wild type mice as well as the Ins2(Akita) and Akimba mouse models of diabetic retinopathy using the Heidelberg Retinal Angiography (HRA) and OCT system. Angiography was performed on three focal planes to examine distinct vascular layers. For comparison with angiographic data, ex vivo analyses, including Indian ink angiography, histology and 3D confocal scanning laser microscopy were performed in parallel. All layers of the mouse retinal vasculature could be readily visualized during fluorescein angiography by SLO-OCT. Blood vessel density was increased in the deep vascular plexus (DVP) compared with the superficial vascular plexus (SVP). Arteriolar and venular typologies were established and structural differences were observed between venular types. Unexpectedly, the hyaloid artery was found to persist in 15% of C57BL/6 mice, forming anastomoses with peripheral retinal capillaries. Fluorescein leakage was easily detected in Akimba retinae by angiography, but was not observed in Ins2(Akita) mice. Blood vessel density was increased in the DVP of 6 month old Ins2(Akita) mice, while the SVP displayed reduced branching in precapillary arterioles. In summary, we present the first comprehensive characterization of the mouse retinal vasculature by SLO-OCT fluorescein angiography. Using this clinical imaging technique, we report previously unrecognized variations in C57BL/6J vascular anatomy and novel features of vascular retinopathy in the Ins2(Akita) mouse model of diabetes. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Schuschereba, Steven T.; Bowman, Phillip D.; Ujimore, Veronica; Hoxie, Stephen W.; Pizarro, Jose M.; Cross, Michael E.; Lund, David J.
1996-04-01
The purpose of this study was to identify cytokines produced by the retina after laser injury. With the aid of a scanning laser ophthalmoscope (SLO), right eyes of mice received lesions from a continuous wave argon laser. Left eyes served as unirradiated controls. At 2, 4, 6, 12, 24, and 48 hr after laser irradiation groups of 3 mice were euthanized and retinas fixed for histology or isolated for RNA. Messenger RNA (mRNA) was reverse-transcribed into complementary DNA (cDNA) and subjected to polymerase chain reaction for the following cytokines: tumor necrosis factor-(alpha) (TNF-(alpha) ), interleukin-1(alpha) /(Beta) (IL- 1(alpha) /(Beta) ), interleukin-6 (IL-6), transforming growth factor-(Beta) 1 (TGF- (Beta) 1), macrophage colony stimulating factor (M-CSF), inducible nitric oxide synthase (iNOS), and glyceraldehyde 3-phosphate dehydrogenase (G3PDH). Histologically, lesions were confined to the photoreceptors, retinal pigment epithelium, and choroid. In laser-injured retinas, mRNA levels were elevated for IL-1(alpha) , TGF-(Beta) 1, iNOS, and G3PDH, but not TNF-(alpha) , IL-1(Beta) , or IL-6. It appears that the retina, in response to laser injury, upregulates a select number of cytokines in a time-course dependent fashion.
Zawadzki, Robert J.; Jones, Steven M.; Pilli, Suman; Balderas-Mata, Sandra; Kim, Dae Yu; Olivier, Scot S.; Werner, John S.
2011-01-01
We describe an ultrahigh-resolution (UHR) retinal imaging system that combines adaptive optics Fourier-domain optical coherence tomography (AO-OCT) with an adaptive optics scanning laser ophthalmoscope (AO-SLO) to allow simultaneous data acquisition by the two modalities. The AO-SLO subsystem was integrated into the previously described AO-UHR OCT instrument with minimal changes to the latter. This was done in order to ensure optimal performance and image quality of the AO- UHR OCT. In this design both imaging modalities share most of the optical components including a common AO-subsystem and vertical scanner. One of the benefits of combining Fd-OCT with SLO includes automatic co-registration between two acquisition channels for direct comparison between retinal structures imaged by both modalities (e.g., photoreceptor mosaics or microvasculature maps). Because of differences in the detection scheme of the two systems, this dual imaging modality instrument can provide insight into retinal morphology and potentially function, that could not be accessed easily by a single system. In this paper we describe details of the components and parameters of the combined instrument, including incorporation of a novel membrane magnetic deformable mirror with increased stroke and actuator count used as a single wavefront corrector. We also discuss laser safety calculations for this multimodal system. Finally, retinal images acquired in vivo with this system are presented. PMID:21698028
Issues in quantifying atrophic macular disease using retinal autofluorescence.
Sunness, Janet S; Ziegler, Matthias D; Applegate, Carol A
2006-01-01
To demonstrate the potential and limits of autofluorescence imaging in identifying and delineating areas of atrophy. Fundus photographs and infrared scanning laser ophthalmoscope (SLO) imaging, SLO macular perimetry, and SLO autofluorescence imaging results were compared for two patients with geographic atrophy (GA) from age-related macular degeneration, one patient with pigmentary alteration of the retina, and two patients with Stargardt disease. The main outcome measure in this case series was the presence of reduced autofluorescence. Drusen may become undetectable during autofluorescence imaging for some patients, allowing simple identification of areas of GA with areas of reduced autofluorescence. In other patients, drusen themselves have decreased autofluorescence, despite having intact retinal function in the retina overlying them. Some patients may have areas of reduced autofluorescence that persist for many years, without evidence of the development of atrophy. In Stargardt disease, decreased autofluorescence can easily detect and delineate areas of scotoma. Areas with mottled autofluorescence may have overlying function, but the function may not be adequate to support a fixation locus in that area. Using decreased autofluorescence to delineate areas of atrophy may be helpful in atrophic macular disorders. For GA, correlation with fundus photographs or macular perimetry findings may be necessary to differentiate between drusen and atrophy. For Stargardt disease, the nature of areas of decreased autofluorescence may help explain visual function of those areas.
Marques, Manuel J; Bradu, Adrian; Podoleanu, Adrian Gh
2014-05-01
We report a Talbot bands-based optical coherence tomography (OCT) system capable of producing longitudinal B-scan OCT images and en-face scanning laser ophthalmoscopy (SLO) images of the human retina in-vivo. The OCT channel employs a broadband optical source and a spectrometer. A gap is created between the sample and reference beams while on their way towards the spectrometer's dispersive element to create Talbot bands. The spatial separation of the two beams facilitates collection by an SLO channel of optical power originating exclusively from the retina, deprived from any contribution from the reference beam. Three different modes of operation are presented, constrained by the minimum integration time of the camera used in the spectrometer and by the galvo-scanners' scanning rate: (i) a simultaneous acquisition mode over the two channels, useful for small size imaging, that conserves the pixel-to-pixel correspondence between them; (ii) a hybrid sequential mode, where the system switches itself between the two regimes and (iii) a sequential "on-demand" mode, where the system can be used in either OCT or SLO regimes for as long as required. The two sequential modes present varying degrees of trade-off between pixel-to-pixel correspondence and independent full control of parameters within each channel. Images of the optic nerve and fovea regions obtained in the simultaneous (i) and in the hybrid sequential mode (ii) are presented.
Marques, Manuel J.; Bradu, Adrian; Podoleanu, Adrian Gh.
2014-01-01
We report a Talbot bands-based optical coherence tomography (OCT) system capable of producing longitudinal B-scan OCT images and en-face scanning laser ophthalmoscopy (SLO) images of the human retina in-vivo. The OCT channel employs a broadband optical source and a spectrometer. A gap is created between the sample and reference beams while on their way towards the spectrometer’s dispersive element to create Talbot bands. The spatial separation of the two beams facilitates collection by an SLO channel of optical power originating exclusively from the retina, deprived from any contribution from the reference beam. Three different modes of operation are presented, constrained by the minimum integration time of the camera used in the spectrometer and by the galvo-scanners’ scanning rate: (i) a simultaneous acquisition mode over the two channels, useful for small size imaging, that conserves the pixel-to-pixel correspondence between them; (ii) a hybrid sequential mode, where the system switches itself between the two regimes and (iii) a sequential “on-demand” mode, where the system can be used in either OCT or SLO regimes for as long as required. The two sequential modes present varying degrees of trade-off between pixel-to-pixel correspondence and independent full control of parameters within each channel. Images of the optic nerve and fovea regions obtained in the simultaneous (i) and in the hybrid sequential mode (ii) are presented. PMID:24877006
Automated Water Quality Survey and Evaluation Using an IoT Platform with Mobile Sensor Nodes
Li, Teng; Xia, Min; Chen, Jiahong; Zhao, Yuanjie; de Silva, Clarence
2017-01-01
An Internet of Things (IoT) platform with capabilities of sensing, data processing, and wireless communication has been deployed to support remote aquatic environmental monitoring. In this paper, the design and development of an IoT platform with multiple Mobile Sensor Nodes (MSN) for the spatiotemporal quality evaluation of surface water is presented. A survey planner is proposed to distribute the Sampling Locations of Interest (SLoIs) over the study area and generate paths for MSNs to visit the SLoIs, given the limited energy and time budgets. The SLoIs are chosen based on a cellular decomposition that is composed of uniform hexagonal cells. They are visited by the MSNs along a path ring generated by a planning approach that uses a spanning tree. For quality evaluation, an Online Water Quality Index (OLWQI) is developed to interpret the large quantities of online measurements. The index formulations are modified by a state-of-the-art index, the CCME WQI, which has been developed by the Canadian Council of Ministers of Environment (CCME) for off-line indexing. The proposed index has demonstrated effective and reliable performance in online indexing a large volume of measurements of water quality parameters. The IoT platform is deployed in the field, and its performance is demonstrated and discussed in this paper. PMID:28788098
Eligibility criteria for Nd-YAG laser treatment of highly symptomatic vitreous floaters.
Vandorselaer, T; Van De Velde, F; Tassignon, M J
2001-01-01
Ten eyes of nine patients were treated for very disturbing vitreous floaters with the technique of Nd-YAG laser vitreolysis. The Scanning Laser Ophthalmoscope (SLO) was used to objectivate the position, the size and the motility of the vitreous floaters with respect to the patient's visual axis, which can be precisely located with the SLO. With this technique it was possible to define more precisely some eligibility criteria for Nd-YAG laser treatment of vitreous floaters and to classify the vitreous floaters in ill-suspended and well-suspended floaters in the vitreous body, the well-suspended floaters responding better to treatment compared to the ill-suspended vitreous floaters. The treatment was performed using the Q-Switched Nd-YAG Laser type Nanolas 15S of Alcon.
Evaluation of the Precision of the Microperimetry Function of the Spectral OCT/SLO
2017-04-03
Age-Related Macular Degeneration; Geographic Atrophy; Diabetic Retinopathy; Macular Edema; Retinal Vein Occlusion; Central Serous Retinopathy; Pattern Dystrophy of Macula; Epiretinal Membrane; Macular Hole
Innamaa, A; Jackson, L; Asher, V; van Schalkwyk, G; Warren, A; Keightley, A; Hay, D; Bali, A; Sowter, H; Khan, R
2013-11-01
Aberrant expression of potassium (K(+)) channels contributes to cancer cell proliferation and apoptosis, and K(+) channel blockers can inhibit cell proliferation. TREK-1 and -2 belong to the two-pore domain (K2P) superfamily. We report TREK-1 and -2 expression in ovarian cancer and normal ovaries, and the effects of TREK-1 modulators on cell proliferation and apoptosis. The cellular localisation of TREK-1 and -2 was investigated by immunofluorescence in SKOV-3 and OVCAR-3 cell lines and in cultured ovarian surface epithelium and cancer. Channel expression in normal ovaries and cancer was quantified by western blotting. Immunohistochemical analysis demonstrated the association between channel expression and disease prognosis, stage, and grade. TREK-1 modulation of cell proliferation in the cell lines was investigated with the MTS-assay and the effect on apoptosis determined using flow cytometry. Expression was identified in both cell lines, ovarian cancer (n = 22) and normal ovaries (n = 6). IHC demonstrated positive staining for TREK-1 and -2 in 95.7 % of tumours (n = 69) and 100 % of normal ovaries (n = 9). A reduction in cell proliferation (P < 0.05) was demonstrated at 96 h in SKOV-3 and OVCAR-3 cells incubated TREK-1 modulating agents. Curcumin caused a significant reduction in early apoptosis in SKOV-3 (P < 0.001) and OVCAR-3 (P < 0.0001) cells and a significant increase in late apoptosis in SKOV-3 (P < 0.01) and OVCAR-3 cells (P < 0.0001). TREK-1 and -2 are expressed in normal ovaries and ovarian cancer. TREK-1 modulators have a significant effect on cell proliferation and apoptosis. We propose investigation of the therapeutic potential of TREK-1 blockers is warranted.
Ecological Evaluation of Proposed Discharge of Dredged Material into Ocean Waters.
1977-07-01
Methyl mercury Ref. 6 Oil and grease p. 229 - 5 5 Step 7.3 Petroleum hydrocarbons p. 226 Step 6.3 Phenol p. 241 Method SlO Method )I 78 p. 514 p. 4...and its compounds c. Cadmium and its compounds d. Petroleum hydrocarbons e. Known or suspected carcinogens, mutagens, or teratogens. 6 (This is a...its compounds 12 Cadmium and its compounds 12 6 0 Petroleum hydrocarbons : Aliphat ic 13 Aromatic 13 G8 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Table
A dual-modal retinal imaging system with adaptive optics.
Meadway, Alexander; Girkin, Christopher A; Zhang, Yuhua
2013-12-02
An adaptive optics scanning laser ophthalmoscope (AO-SLO) is adapted to provide optical coherence tomography (OCT) imaging. The AO-SLO function is unchanged. The system uses the same light source, scanning optics, and adaptive optics in both imaging modes. The result is a dual-modal system that can acquire retinal images in both en face and cross-section planes at the single cell level. A new spectral shaping method is developed to reduce the large sidelobes in the coherence profile of the OCT imaging when a non-ideal source is used with a minimal introduction of noise. The technique uses a combination of two existing digital techniques. The thickness and position of the traditionally named inner segment/outer segment junction are measured from individual photoreceptors. In-vivo images of healthy and diseased human retinas are demonstrated.
Imaging Lenticular Autofluorescence in Older Subjects.
Charng, Jason; Tan, Rose; Luu, Chi D; Sadigh, Sam; Stambolian, Dwight; Guymer, Robyn H; Jacobson, Samuel G; Cideciyan, Artur V
2017-10-01
To evaluate whether a practical method of imaging lenticular autofluorescence (AF) can provide an individualized measure correlated with age-related lens yellowing in older subjects undergoing tests involving shorter wavelength lights. Lenticular AF was imaged with 488-nm excitation using a confocal scanning laser ophthalmoscope (cSLO) routinely used for retinal AF imaging. There were 75 older subjects (ages 47-87) at two sites; a small cohort of younger subjects served as controls. At one site, the cSLO was equipped with an internal reference to allow quantitative AF measurements; at the other site, reduced-illuminance AF imaging (RAFI) was used. In a subset of subjects, lens density index was independently estimated from dark-adapted spectral sensitivities performed psychophysically. Lenticular AF intensity was significantly higher in the older eyes than the younger cohort when measured with the internal reference (59.2 ± 15.4 vs. 134.4 ± 31.7 gray levels; P < 0.05) as well as when recorded with RAFI without the internal reference (10.9 ± 1.5 vs. 26.1 ± 5.7 gray levels; P < 0.05). Lenticular AF was positively correlated with age; however, there could also be large differences between individuals of similar age. Lenticular AF intensity correlated well with lens density indices estimated from psychophysical measures. Lenticular AF measured with a retinal cSLO can provide a practical and individualized measure of lens yellowing, and may be a good candidate to distinguish between preretinal and retinal deficits involving short-wavelength lights in older eyes.
Microperimetry in patients with central serous retinopathy.
Toonen, F; Remky, A; Janssen, V; Wolf, S; Reim, M
1995-09-01
In patients with acute central serous retinopathy (CSR), evaluation of visual acuity alone may not represent visual function. In patients with acute CSR, visual function may be disturbed by localized scotomas, distortion, and waviness. For the assessment of localized light sensitivity and stability of fixation, patients with CSR were evaluated by fundus perimetry with a scanning laser ophthalmoscope (SLO 101, Rodenstock Instruments). In all, 21 patients with acute CSR and 19 healthy volunteers were included in the study. Diagnosis of CSR was established by ophthalmoscopy and digital video fluorescein angiography. All patients and volunteers underwent static suprathreshold perimetry with the SLO. Light sensitivity was quantified by presenting stimuli with different light intensities (intensity, 0-27.9 dB above background; size, Goldmann III; wavelength, 633 nm) using an automatic staircase strategy. Stimuli were presented with simultaneous real-time monitoring of the retina. Fixation stability was quantified by measuring the area encompassing 75% of all points of fixation. Light sensitivity was 18-20 dB in affected areas, whereas in healthy eyes and outside the affected area, values of 22-24 dB were obtained. Fixation stability was significantly decreased in the affected eye as compared with normal eyes (33 +/- 12 versus 21 +/- 4 min of arc; P < 0.01). Static perimetry with an SLO is a useful technique for the assessment of localized light sensitivity and fixation stability in patients with macular disease. This technique could provide helpful information in the management of CSR.
Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction.
Pircher, Michael; Baumann, Bernhard; Götzinger, Erich; Sattmann, Harald; Hitzenberger, Christoph K
2007-12-10
It has been shown that transversal scanning (or en-face) optical coherence tomography (TS-OCT) represents an imaging modality capable to record high isotropic resolution images of the human retina in vivo. However, axial eye motion still remains a challenging problem of this technique. In this paper we introduce a novel method to compensate for this eye motion. An auxiliary spectral domain partial coherence interferometer (SD-PCI) was integrated into an existing TS-OCT system and used to measure accurately the position of the cornea. A light source emitting at 1310nm was used in the additional interferometer which enabled a nearly loss free coupling of the two measurement beams via a dichroic mirror. The recorded corneal position was used to drive an additional voice coil translation stage in the reference arm of the TS-OCT system to correct for axial eye motion. Currently, the correction can be performed with an update rate of ~200Hz. The TS-OCT instrument is operated with a line scan rate of 4000 transversal lines per second which enables simultaneous SLO/OCT imaging at a frame rate of 40fps. 3D data of the human retina with isotropic high resolution, that was sufficient to visualize the human cone mosaic in vivo, is presented.
Reznicek, Lukas; Klein, Thomas; Wieser, Wolfgang; Kernt, Marcus; Wolf, Armin; Haritoglou, Christos; Kampik, Anselm; Huber, Robert; Neubauer, Aljoscha S
2014-06-01
To investigate the image quality of wide-angle cross-sectional and reconstructed fundus images based on ultra-megahertz swept-source Fourier domain mode locking (FDML) OCT compared to current generation diagnostic devices. A 1,050 nm swept-source FDML OCT system was constructed running at 1.68 MHz A-scan rate covering approximately 70° field of view. Twelve normal eyes were imaged with the device applying an isotropically dense sampling protocol (1,900 × 1,900 A-scans) with a fill factor of 100 %. Obtained OCT scan image quality was compared with two commercial OCT systems (Heidelberg Spectralis and Stratus OCT) of the same 12 eyes. Reconstructed en-face fundus images from the same FDML-OCT data set were compared to color fundus, infrared and ultra-wide-field scanning laser images (SLO). Comparison of cross-sectional scans showed a high overall image quality of the 15× averaged FDML images at 1.68 MHz [overall quality grading score: 8.42 ± 0.52, range 0 (bad)-10 (excellent)] comparable to current spectral-domain OCTs (overall quality grading score: 8.83 ± 0.39, p = 0.731). On FDML OCT, a dense 3D data set was obtained covering also the central and mid-peripheral retina. The reconstructed FDML OCT en-face fundus images had high image quality comparable to scanning laser ophthalmoscope (SLO) as judged from retinal structures such as vessels and optic disc. Overall grading score was 8.36 ± 0.51 for FDML OCT vs 8.27 ± 0.65 for SLO (p = 0.717). Ultra-wide-field megahertz 3D FDML OCT at 1.68 MHz is feasible, and provides cross-sectional image quality comparable to current spectral-domain OCT devices. In addition, reconstructed en-face visualization of fundus images result in a wide-field view with high image quality as compared to currently available fundus imaging devices. The improvement of >30× in imaging speed over commercial spectral-domain OCT technology enables high-density scan protocols leading to a data set for high quality cross-sectional and en-face images of the posterior segment.
Modifying a Rodenstock scanning laser ophthalmoscope for imaging densitometry.
Tornow, R P; Beuel, S; Zrenner, E
1997-08-01
The necessary modifications and technical requirements are described for using a commercially available scanning laser ophthalmoscope (Rodenstock Model 101 SLO) as an imaging densitometer to assess human photopigment distribution. The main requirements are a linear detector amplifier, fast shutters for the laser beams, and a trigger unit. Images must be compensated for varying laser intensity. Both rod and cone photopigments are measured with the 514-nm argon laser of the SLO. Discrimination is possible owing to the different spatial distribution. The cone pigment density peaks in the foveal center (D = 0.40) with a steep decrease with increasing eccentricity E (full width at half-maximum, 2.5 degrees ). Rod photopigment increases with increasing eccentricity (D = 0.23 for E = 11 degrees ). These values are in agreement with previous reported results obtained with scanning laser ophthalmoscopes specially designed for retinal densitometry and high stability.
Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope.
Burns, Stephen A; Tumbar, Remy; Elsner, Ann E; Ferguson, Daniel; Hammer, Daniel X
2007-05-01
We describe the design and performance of an adaptive optics retinal imager that is optimized for use during dynamic correction for eye movements. The system incorporates a retinal tracker and stabilizer, a wide-field line scan scanning laser ophthalmoscope (SLO), and a high-resolution microelectromechanical-systems-based adaptive optics SLO. The detection system incorporates selection and positioning of confocal apertures, allowing measurement of images arising from different portions of the double pass retinal point-spread function (psf). System performance was excellent. The adaptive optics increased the brightness and contrast for small confocal apertures by more than 2x and decreased the brightness of images obtained with displaced apertures, confirming the ability of the adaptive optics system to improve the psf. The retinal image was stabilized to within 18 microm 90% of the time. Stabilization was sufficient for cross-correlation techniques to automatically align the images.
Large Field of View, Modular, Stabilized, Adaptive-Optics-Based Scanning Laser Ophthalmoscope
Burns, Stephen A.; Tumbar, Remy; Elsner, Ann E.; Ferguson, Daniel; Hammer, Daniel X.
2007-01-01
We describe the design and performance of an adaptive optics retinal imager that is optimized for use during dynamic correction for eye movements. The system incorporates a retinal tracker and stabilizer, a wide field line scan Scanning Laser Ophthalmocsope (SLO), and a high resolution MEMS based adaptive optics SLO. The detection system incorporates selection and positioning of confocal apertures, allowing measurement of images arising from different portions of the double pass retinal point spread function (psf). System performance was excellent. The adaptive optics increased the brightness and contrast for small confocal apertures by more than 2x, and decreased the brightness of images obtained with displaced apertures, confirming the ability of the adaptive optics system to improve the pointspread function. The retinal image was stabilized to within 18 microns 90% of the time. Stabilization was sufficient for cross-correlation techniques to automatically align the images. PMID:17429477
Scanning laser ophthalmoscopy: optimized testing strategies for psychophysics
NASA Astrophysics Data System (ADS)
Van de Velde, Frans J.
1996-12-01
Retinal function can be evaluated with the scanning laser ophthalmoscope (SLO). the main advantage is a precise localization of the psychophysical stimulus on the retina. Four alternative forced choice (4AFC) and parameter estimation by sequential testing (PEST) are classic adaptive algorithms that have been optimized for use with the SLO, and combined with strategies to correct for small eye movements. Efficient calibration procedures are essential for quantitative microperimetry. These techniques measure precisely visual acuity and retinal sensitivity at distinct locations on the retina. A combined 632 nm and IR Maxwellian view illumination provides a maximal transmittance through the ocular media and has a animal interference with xanthophyll or hemoglobin. Future modifications of the instrument include the possibility of binocular evaluation, Maxwellian view control, fundus tracking using normalized gray-scale correlation, and microphotocoagulation. The techniques are useful in low vision rehabilitation and the application of laser to the retina.
Polarimetric imaging of retinal disease by polarization sensitive SLO
NASA Astrophysics Data System (ADS)
Miura, Masahiro; Elsner, Ann E.; Iwasaki, Takuya; Goto, Hiroshi
2015-03-01
Polarimetry imaging is used to evaluate different features of the macular disease. Polarimetry images were recorded using a commercially- available polarization-sensitive scanning laser opthalmoscope at 780 nm (PS-SLO, GDx-N). From data sets of PS-SLO, we computed average reflectance image, depolarized light images, and ratio-depolarized light images. The average reflectance image is the grand mean of all input polarization states. The depolarized light image is the minimum of crossed channel. The ratio-depolarized light image is a ratio between the average reflectance image and depolarized light image, and was used to compensate for variation of brightness. Each polarimetry image is compared with the autofluorescence image at 800 nm (NIR-AF) and autofluorescence image at 500 nm (SW-AF). We evaluated four eyes with geographic atrophy in age related macular degeneration, one eye with retinal pigment epithelium hyperplasia, and two eyes with chronic central serous chorioretinopathy. Polarization analysis could selectively emphasize different features of the retina. Findings in ratio depolarized light image had similarities and differences with NIR-AF images. Area of hyper-AF in NIR-AF images showed high intensity areas in the ratio depolarized light image, representing melanin accumulation. Areas of hypo-AF in NIR-AF images showed low intensity areas in the ratio depolarized light images, representing melanin loss. Drusen were high-intensity areas in the ratio depolarized light image, but NIR-AF images was insensitive to the presence of drusen. Unlike NIR-AF images, SW-AF images showed completely different features from the ratio depolarized images. Polarization sensitive imaging is an effective tool as a non-invasive assessment of macular disease.
NASA Astrophysics Data System (ADS)
Hossein-Javaheri, Nima; Molday, Laurie L.; Xu, Jing; Molday, Robert S.; Sarunic, Marinko V.
2009-02-01
Visualization of the internal structures of the retina is critical for clinical diagnosis and monitoring of pathology as well as for medical research investigating the root causes of retinal degeneration. Optical Coherence Tomography (OCT) is emerging as the preferred technique for non-contact sub-surface depth-resolved imaging of the retina. The high resolution cross sectional images acquired in vivo by OCT can be compared to histology to visually delineate the retinal layers. The recent demonstration of the significant sensitivity increase obtained through use of Fourier domain (FD) detection with OCT has been used to facilitate high speed scanning for volumetric reconstruction of the retina in software. The images acquired by OCT are purely structural, relying on refractive index differences in the tissue for contrast, and do not provide information on the molecular content of the sample. We have constructed a FDOCT prototype and combined it with a fluorescent Scanning Laser Ophthalmoscope (fSLO) to permit real time alignment of the field of view on the retina. The alignment of the FDOCT system to the specimen is crucial for the registration of measurements taken throughout longitudinal studies. In addition, fluorescence detection has been integrated with the SLO to enable the en face localization of a molecular contrast signal, which is important for retinal angiography, and also for detection of autofluorescence associated with some forms of retinal degeneration, for example autofluorescence lipofuscin accumulations are associated with Stargardt's Macular Dystrophy. The integrated FD OCT/fSLO system was investigated for imaging the retina of the mice in vivo.
Dillon, James; Andrianakis, Ioannis; Mould, Richard; Ient, Ben; Liu, Wei; James, Christopher; O'Connor, Vincent; Holden-Dye, Lindy
2013-01-01
Ethanol (alcohol) interacts with diverse molecular effectors across a range of concentrations in the brain, eliciting intoxication through to sedation. Invertebrate models including the nematode worm Caenorhabditis elegans have been deployed for molecular genetic studies to inform on key components of these alcohol signaling pathways. C. elegans studies have typically employed external dosing with high (>250 mM) ethanol concentrations: A careful analysis of responses to low concentrations is lacking. Using the C. elegans pharyngeal system as a paradigm, we report a previously uncharacterized continuum of cellular and behavioral responses to ethanol from low (10 mM) to high (300 mM) concentrations. The complexity of these responses indicates that the pleiotropic action of ethanol observed in mammalian brain is conserved in this invertebrate model. We investigated two candidate ethanol effectors, the calcium-activated K+ channel SLO-1 and gap junctions, and show that they contribute to, but are not sole determinants of, the low- and high-concentration effects, respectively. Notably, this study shows cellular and whole organismal behavioral responses to ethanol in C. elegans that directly equate to intoxicating through to supralethal blood alcohol concentrations in humans and provides an important benchmark for interpretation of paradigms that seek to inform on human alcohol use disorders.—Dillon, J., Andrianakis, I., Mould, R., Ient, B., Liu, W., James, C., O'Connor, V., Holden-Dye, L. Distinct molecular targets including SLO-1 and gap junctions are engaged across a continuum of ethanol concentrations in Caenorhabditis elegans. PMID:23882127
Imaging Lenticular Autofluorescence in Older Subjects
Charng, Jason; Tan, Rose; Luu, Chi D.; Sadigh, Sam; Stambolian, Dwight; Guymer, Robyn H.; Jacobson, Samuel G.; Cideciyan, Artur V.
2017-01-01
Purpose To evaluate whether a practical method of imaging lenticular autofluorescence (AF) can provide an individualized measure correlated with age-related lens yellowing in older subjects undergoing tests involving shorter wavelength lights. Methods Lenticular AF was imaged with 488-nm excitation using a confocal scanning laser ophthalmoscope (cSLO) routinely used for retinal AF imaging. There were 75 older subjects (ages 47–87) at two sites; a small cohort of younger subjects served as controls. At one site, the cSLO was equipped with an internal reference to allow quantitative AF measurements; at the other site, reduced-illuminance AF imaging (RAFI) was used. In a subset of subjects, lens density index was independently estimated from dark-adapted spectral sensitivities performed psychophysically. Results Lenticular AF intensity was significantly higher in the older eyes than the younger cohort when measured with the internal reference (59.2 ± 15.4 vs. 134.4 ± 31.7 gray levels; P < 0.05) as well as when recorded with RAFI without the internal reference (10.9 ± 1.5 vs. 26.1 ± 5.7 gray levels; P < 0.05). Lenticular AF was positively correlated with age; however, there could also be large differences between individuals of similar age. Lenticular AF intensity correlated well with lens density indices estimated from psychophysical measures. Conclusions Lenticular AF measured with a retinal cSLO can provide a practical and individualized measure of lens yellowing, and may be a good candidate to distinguish between preretinal and retinal deficits involving short-wavelength lights in older eyes. PMID:28973367
NASA Astrophysics Data System (ADS)
Li, Xiaoyue; Spitz, Kathleen; Bozic, Ivan; Tao, Yuankai K.
2018-02-01
Neovascularization in diabetic retinopathy (DR) and age-related macular degeneration (AMD) result in severe vision-loss and are two of the leading causes of blindness. The structural, metabolic, and vascular changes underlying retinal neovascularization are unknown and, thus, there is an unmet need to identify mechanisms of pathogenesis and novel anti-angiogenic therapies. Zebrafish is a robust ophthalmological model because its retina has comparable structure to the human retina and its fecundity and life-cycle enable development of mutant phenotypes of human pathologies. Here, we perform multimodal imaging with OCT and fluorescence confocal scanning laser ophthalmoscopy (cSLO) to identify changes in retinal structure and function in a zebrafish model of vascular leakage. Transgenic zebrafish with EGFP tagged plasma protein were imaged longitudinally at six time points over two weeks to visualize vascular perfusion changes from diethylaminobenzaldehyde (DEAB) treatment. Complementary contrast from OCT-A perfusion maps and cSLO imaging of plasma protein EGFP shows vascular occlusions posttreatment. cSLO images confirm presence of vessels despite loss of OCT-A signal. Plasma protein EGFP contrast also shows significant changes in vessel structure as compared to baseline images. OCT structural volumes show empty vessel cross-sections confirming non-perfusion. In addition, we present algorithms for automated biometric identification of OCT datasets using OCT-A vascular patterns in the presence of significant vascular perfusion changes. These results establish a framework for large-scale in vivo assays to identify novel anti-angiogenic compounds and understand the mechanisms ofneovascularization associated with retinal ocular pathologies.
2010-01-01
Background Regulatory elements that control expression of specific genes during development have been shown in many cases to contain functionally-conserved modules that can be transferred between species and direct gene expression in a comparable developmental pattern. An example of such a module has been identified at the rat myosin light chain (MLC) 1/3 locus, which has been well characterised in transgenic mouse studies. This locus contains two promoters encoding two alternatively spliced isoforms of alkali myosin light chain. These promoters are differentially regulated during development through the activity of two enhancer elements. The MLC3 promoter alone has been shown to confer expression of a reporter gene in skeletal and cardiac muscle in transgenic mice and the addition of the downstream MLC enhancer increased expression levels in skeletal muscle. We asked whether this regulatory module, sufficient for striated muscle gene expression in the mouse, would drive expression in similar domains in the chicken. Results We have observed that a conserved downstream MLC enhancer is present in the chicken MLC locus. We found that the rat MLC1/3 regulatory elements were transcriptionally active in chick skeletal muscle primary cultures. We observed that a single copy lentiviral insert containing this regulatory cassette was able to drive expression of a lacZ reporter gene in the fast-fibres of skeletal muscle in chicken in three independent transgenic chicken lines in a pattern similar to the endogenous MLC locus. Reporter gene expression in cardiac muscle tissues was not observed for any of these lines. Conclusions From these results we conclude that skeletal expression from this regulatory module is conserved in a genomic context between rodents and chickens. This transgenic module will be useful in future investigations of muscle development in avian species. PMID:20184756
[Analysis of gene expression pattern in peripheral blood leukocytes during experimental heat wave].
Feoktistova, E S; Skamrov, A V; Goryunova, L E; Khaspekov, G L; Osyaeva, M K; Rodnenkov, O V; Beabealashvilli, R Sh
2017-03-01
The conditions of Moscow 2010 summer heat wave were simulated in an accommodation module. Six healthy men aged from 22 to 46 years stayed in the module for 30 days. Measurements of gene expression in peripheral blood leukocytes before, during and 3 day after simulated heat wave were performed using qRT-PCR. We observed a shift in the expression level of certain genes after heat exposure for a long time, and rapid return to the initial level, when volunteers leaved the accommodation module. Eight genes were chosen to form the "heat expression signature". EGR2, EGR3 were upregulated in all six volunteers, EGR1, SIRT1, CYP51A1, MAPK9, BAG5, MNDA were upregulated in 5 volunteers.
Huang, Hsin-Yi; Cheng, Jen-Kun; Shih, Yang-Hsin; Chen, Pei-Hsuan; Wang, Chin-Lin; Tsaur, Meei-Ling
2005-09-01
Voltage-gated K(+) channel alpha subunits Kv 4.2 and Kv 4.3 are the major contributors of somatodendritic A-type K(+) currents in many CNS neurons. A recent hypothesis suggests that Kv 4 subunits may be involved in pain modulation in dorsal horn neurons. However, whether Kv 4 subunits are expressed in dorsal horn neurons remains unknown. Using immunohistochemistry, we found that Kv 4.2 and Kv 4.3 immunoreactivity was concentrated in the superficial dorsal horn, mainly in lamina II. Both Kv 4.2 and Kv 4.3 appeared on many rostrocaudally orientated dendrites, whereas Kv 4.3 could be also detected from certain neuronal somata. Kv 4.3(+) neurons were a subset of excitatory inerneurons with calretinin(+)/calbindin(-)/PKCgamma(-) markers, and a fraction of them expressed micro-opioid receptors. Kv 4.3(+) neurons also expressed ERK 2 and mGluR 5, which are molecules related to the induction of central sensitization, a mechanism mediating nociceptive plasticity. Together with the expression of Kv 4.3 in VR 1(+) DRG neurons, our data suggest that Kv C4 subunits could be involved in pain modulation.
α2-containing GABAA receptors expressed in hippocampal region CA3 control fast network oscillations
Heistek, Tim S; Ruiperez-Alonso, Marta; Timmerman, A Jaap; Brussaard, Arjen B; Mansvelder, Huibert D
2013-01-01
GABAA receptors are critically involved in hippocampal oscillations. GABAA receptor α1 and α2 subunits are differentially expressed throughout the hippocampal circuitry and thereby may have distinct contributions to oscillations. It is unknown which GABAA receptor α subunit controls hippocampal oscillations and where these receptors are expressed. To address these questions we used transgenic mice expressing GABAA receptor α1 and/or α2 subunits with point mutations (H101R) that render these receptors insensitive to allosteric modulation at the benzodiazepine binding site, and tested how increased or decreased function of α subunits affects hippocampal oscillations. Positive allosteric modulation by zolpidem prolonged decay kinetics of hippocampal GABAergic synaptic transmission and reduced the frequency of cholinergically induced oscillations. Allosteric modulation of GABAergic receptors in CA3 altered oscillation frequency in CA1, while modulation of GABA receptors in CA1 did not affect oscillations. In mice having a point mutation (H101R) at the GABAA receptor α2 subunit, zolpidem effects on cholinergically induced oscillations were strongly reduced compared to wild-type animals, while zolpidem modulation was still present in mice with the H101R mutation at the α1 subunit. Furthermore, genetic knockout of α2 subunits strongly reduced oscillations, whereas knockout of α1 subunits had no effect. Allosteric modulation of GABAergic receptors was strongly reduced in unitary connections between fast spiking interneurons and pyramidal neurons in CA3 of α2H101R mice, but not of α1H101R mice, suggesting that fast spiking interneuron to pyramidal neuron synapses in CA3 contain α2 subunits. These findings suggest that α2-containing GABAA receptors expressed in the CA3 region provide the inhibition that controls hippocampal rhythm during cholinergically induced oscillations. PMID:23109109
Yamamoto, Kaori; Hori, Sadao
2011-01-01
To elucidate the long-term outcome of internal limiting membrane (ILM) peeling on visual function during vitrectomy for idiopathic macular holes using scanning laser ophthalmoscope (SLO) microperimetry. Prospective uncontrolled study. We studied 31 eyes (29 patients) with idiopathic macular holes. All patients underwent vitrectomy with ILM peeling. The SLO microperimetry was performed preoperatively, and once a year for 3 years postoperatively to detect scotomas in and around the macular holes, and both within and in close vicinity to the areas of ILM peeling. Closure of macular holes after one surgery was confirmed in all cases except for 2 with second surgery. The visual acuity by logarithmic minimum angle of resolution (logMAR) averaged 0.71 +/- 0.36 before surgery, 0.23 +/- 0.31 one year, 0.14 +/- 0.27 two years and 0.12 +/- 0.26 three years after surgery. There was significant improvement up to 2 years after the surgery. All scotomas detected before surgery in the holes, and 77.4% of those detected around the holes decreased gradually. No scotomas were detected in or around the area of ILM peeling either before or after surgery. ILM peeling in vitrectomy for idiopathic macular holes successfully improved visual acuity and did not influence retinal sensitivity in and around the area of ILM peeling. The scotomas detected in and around the holes before surgery gradually reduced or disappeared.
Decreased retinal sensitivity after internal limiting membrane peeling for macular hole surgery.
Tadayoni, Ramin; Svorenova, Ivana; Erginay, Ali; Gaudric, Alain; Massin, Pascale
2012-12-01
To compare the retinal sensitivity and frequency of microscotomas found by spectral domain optical coherence tomography (SD-OCT) combined with scanning laser ophthalmoscopy (SLO) microperimetry after idiopathic macular hole closure, in eyes that underwent internal limiting membrane (ILM) peeling and eyes that did not. This was a retrospective, non-randomised, comparative study. Combined SD-OCT and SLO microperimetry was performed in 16 consecutive eyes after closure of an idiopathic macular hole. A customised microperimetry pattern with 29 measurement points was used. The ILM was peeled in 8/16 eyes. The main outcome measure was mean retinal sensitivity. Mean retinal sensitivity (in dB) was lower after peeling: 9.80 ± 2.35 dB with peeling versus 13.19 ± 2.92 without (p=0.0209). Postoperative microscotomas were significantly more frequent after ILM peeling: 11.3 ± 6.6 points with retinal sensitivity below 10 dB in eyes that underwent peeling versus 2.9 ± 4.6 in those that did not (p=0.0093). These results suggest that ILM peeling may reduce retinal sensitivity, and significantly increase the incidence of microscotomas. Until a prospective trial confirming or not these results, it seems justified to avoid peeling the ILM when its potential benefit seems minor or unproved, and when peeling is carried out, to limit the surface peeled to the bare minimum.
Energy Release in Solar Flares,
1982-10-01
Plasma Research, Stanford University P. Kaufmanu CRAA/CNPq -Conseiho lacional de Desenvolvimento Cientifico e Tecnologico, Slo Paulo, SP, Brasil D.F...three phases of energy release in solar flares (Sturrock, 1980). However, a recent article by Feldman e a.. (1982) points to a significant
Stability tests at Browns Ferry Unit 1 under single-loop operating conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
March-Leuba, J.; Wood, R.T.; Otaduy, P.J.
1986-07-01
The results of neutronic stability tests performed on February 9, 1985, at the Browns Ferry Nuclear Power Plant Unit 1 under single-loop operation (SLO) conditions are documented. The main conclusions of the tests are presented.
Peralta-Arrieta, Irlanda; Hernández-Sotelo, Daniel; Castro-Coronel, Yaneth; Leyva-Vázquez, Marco Antonio; Illades-Aguiar, Berenice
2017-01-01
Altered promoter DNA methylation is one of the most important epigenetic abnormalities in human cancer. DNMT3B, de novo methyltransferase, is clearly related to abnormal methylation of tumour suppressor genes, DNA repair genes and its overexpression contributes to oncogenic processes and tumorigenesis in vivo. The purpose of this study was to assess the effect of the overexpression of DNMT3B in HaCaT cells on global gene expression and on the methylation of selected genes to the identification of genes that can be target of DNMT3B. We found that the overexpression of DNMT3B in HaCaT cells, modulate the expression of genes related to cancer, downregulated the expression of 151 genes with CpG islands and downregulated the expression of the VAV3 gene via methylation of its promoter. These results highlight the importance of DNMT3B in gene expression and human cancer. PMID:28123849
Peralta-Arrieta, Irlanda; Hernández-Sotelo, Daniel; Castro-Coronel, Yaneth; Leyva-Vázquez, Marco Antonio; Illades-Aguiar, Berenice
2017-01-01
Altered promoter DNA methylation is one of the most important epigenetic abnormalities in human cancer. DNMT3B, de novo methyltransferase, is clearly related to abnormal methylation of tumour suppressor genes, DNA repair genes and its overexpression contributes to oncogenic processes and tumorigenesis in vivo . The purpose of this study was to assess the effect of the overexpression of DNMT3B in HaCaT cells on global gene expression and on the methylation of selected genes to the identification of genes that can be target of DNMT3B. We found that the overexpression of DNMT3B in HaCaT cells, modulate the expression of genes related to cancer, downregulated the expression of 151 genes with CpG islands and downregulated the expression of the VAV3 gene via methylation of its promoter. These results highlight the importance of DNMT3B in gene expression and human cancer.
Shin, Youngmi; Cho, Nam Jeong
2014-04-01
Many neurotransmitter receptors are known to interact with a variety of intracellular proteins that modulate signaling processes. In an effort to understand the molecular mechanism by which acetylcholine (ACh) signaling is modulated, we searched for proteins that interact with GAR-3, the Caenorhabditis elegans homolog of muscarinic ACh receptors. We isolated two proteins, VIG-1 and FRM-1, in a yeast two-hybrid screen of a C. elegans cDNA library using the third intracellular (i3) loop of GAR-3 as bait. To test whether these proteins regulate ACh signaling, we utilized Chinese hamster ovary (CHO) cells stably expressing GAR-3 (GAR-3/CHO cells). Previously we have shown that the cholinergic agonist carbachol stimulates extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation in an atropine-sensitive manner in this cell line. When VIG-1 was transiently expressed in GAR-3/CHO cells, carbachol-stimulated ERK1/2 activation was substantially reduced. In contrast, transient expression of FRM-1 significantly enhanced carbachol-stimulated ERK1/2 activation. Neither VIG-1 nor FRM-1 expression appeared to alter the affinity between GAR-3 and carbachol. In support of this notion, expression of these proteins did not affect GAR-3-mediated phospholipase C activation. To verify the modulation of ERK1/2 activity by VIG-1 and FRM-1, we used an i3 loop deletion mutant of GAR-3 (termed GAR-3Δi3). Carbachol treatment evoked robust ERK1/2 activation in CHO cells stably expressing the deletion mutant (GAR-3Δi3/CHO cells). However, transient expression of either VIG-1 or FRM-1 had little effect on carbachol-stimulated ERK1/2 activation in GAR-3Δi3/CHO cells. Taken together, these results indicate that VIG-1 and FRM-1 regulate GAR-3-mediated ERK1/2 activation by interacting with the i3 loop of GAR-3.
Expression of versican 3'-untranslated region modulates endogenous microRNA functions.
Lee, Daniel Y; Jeyapalan, Zina; Fang, Ling; Yang, Jennifer; Zhang, Yaou; Yee, Albert Y; Li, Minhui; Du, William W; Shatseva, Tatiana; Yang, Burton B
2010-10-25
Mature microRNAs (miRNAs) are single-stranded RNAs that regulate post-transcriptional gene expression. In our previous study, we have shown that versican 3'UTR, a fragment of non-coding transcript, has the ability to antagonize miR-199a-3p function thereby regulating expression of the matrix proteins versican and fibronectin, and thus resulting in enhanced cell-cell adhesion and organ adhesion. However, the impact of this non-coding fragment on tumorigenesis is yet to be determined. Using computational prediction confirmed with in vitro and in vivo experiments, we report that the expression of versican 3'UTR not only antagonizes miR-199a-3p but can also lower its steady state expression. We found that expression of versican 3'UTR in a mouse breast carcinoma cell line, 4T1, decreased miR-199a-3p levels. The decrease in miRNA activity consequently translated into differences in tumor growth. Computational analysis indicated that both miR-199a-3p and miR-144 targeted a cell cycle regulator, Rb1. In addition, miR-144 and miR-136, which have also been shown to interact with versican 3'UTR, was found to target PTEN. Expression of Rb1 and PTEN were up-regulated synergistically in vitro and in vivo, suggesting that the 3'UTR binds and modulates miRNA activities, freeing Rb1 and PTEN mRNAs for translation. In tumor formation assays, cells transfected with the 3'UTR formed smaller tumors compared with cells transfected with a control vector. Our results demonstrated that a 3'UTR fragment can be used to modulate miRNA functions. Our study also suggests that miRNAs in the cancer cells are more susceptible to degradation, due to its interaction with a non-coding 3'UTR. This non-coding component of mRNA may be used retrospectively to modulate miRNA activities.
Suryawanshi, Rahul D; Malik, Satya Veer Singh; Jayarao, Bhushan; Chaudhari, Sandeep P; Savage, Emily; Vergis, Jess; Kurkure, Nitin V; Barbuddhe, Sukhadeo B; Rawool, Deepak B
2017-06-01
The present study for the first time evaluates the serodiagnostic efficacy of two recombinant antigens namely, listeriolysin O (rLLO) and phosphatidyl-inositol phospholipase C (rPI-PLC). Indirect ELISA with the above recombinant antigens was used on samples collected from bovines (n=106), goats (n=138) and pigs (n=92) having either a history of abortion, emaciation and/or apparently healthy animals. Isolation of Listeria was attempted from the blood samples using USDA-FSIS method. On screening of test sera by rLLO-based ELISA, antibodies against anti-listeriolysin O (ALLO) were observed in goats (22.46%), bovines (15.10%) and pigs (16.31%). As advocated, after adsorption of positive serum samples with streptolysin O (SLO), the seropositivity for ALLO was marginally reduced (p>0.05) in goats (21.73%) and bovines (10.38%), whereas, in pigs the reduction (5.43%) was significant (p<0.05). On the contrary, rPI-PLC-based ELISA revealed higher non-specific seropositivity for antilisterial antibodies in goats (45.65%), bovines (31.13%) and pigs (8.69%). Further, on comparing the seropositivity with isolation rate, of the 16 animals that were culturally-positive for L. monocytogenes, 15 showed ALLO positivity in unadsorbed as well as SLO-adsorbed sera by rLLO-based ELISA, however, rPI-PLC-based ELISA could detect seropositivity in only 5 animals. Moreover, rPI-PLC-based ELISA also showed seropositivity in those animals (7/30) that were culturally positive for other Listeria spp. In conclusion, rLLO can serve as a better antigen than rPI-PLC in ELISA for the serodiagnosis of listeriosis in animals; however, prior adsorption of test sera with SLO is required to avoid false positive results. Copyright © 2017 Elsevier B.V. All rights reserved.
SLoWPoKES-II: 100,000 WIDE BINARIES IDENTIFIED IN SDSS WITHOUT PROPER MOTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhital, Saurav; West, Andrew A.; Schluns, Kyle J.
2015-08-15
We present the Sloan Low-mass Wide Pairs of Kinematically Equivalent Stars (SLoWPoKES)-II catalog of low-mass visual binaries identified from the Sloan Digital Sky Survey (SDSS) by matching photometric distances. The candidate pairs are vetted by comparing the stellar information. The candidate pairs are vetted by comparing the stellar density at their respective Galactic positions to Monte Carlo realizations of a simulated Milky Way. In this way, we are able to identify large numbers of bona fide wide binaries without the need for proper motions. Here, 105,537 visual binaries with angular separations of ∼1–20″ were identified, each with a probability ofmore » chance alignment of ≤5%. This is the largest catalog of bona fide wide binaries to date, and it contains a diversity of systems—in mass, mass ratios, binary separations, metallicity, and evolutionary states—that should facilitate follow-up studies to characterize the properties of M dwarfs and white dwarfs. There is a subtle but definitive suggestion of multiple populations in the physical separation distribution, supporting earlier findings. We suggest that wide binaries are composed of multiple populations, most likely representing different formation modes. There are 141 M7 or later wide binary candidates, representing a seven-fold increase over the number currently known. These binaries are too wide to have been formed via the ejection mechanism. Finally, we found that 6% of spectroscopically confirmed M dwarfs are not included in the SDSS STAR catalog; they are misclassified as extended sources due to the presence of a nearby or partially resolved companion. The SLoWPoKES-II catalog is publicly available to the entire community on the World Wide Web via the Filtergraph data visualization portal.« less
A Stimulus-Locked Vector Autoregressive Model for Slow Event-Related fMRI Designs
Siegle, Greg
2009-01-01
Summary Neuroscientists have become increasingly interested in exploring dynamic relationships among brain regions. Such a relationship, when directed from one region toward another, is denoted by “effective connectivity.” An fMRI experimental paradigm which is well-suited for examination of effective connectivity is the slow event-related design. This design presents stimuli at sufficient temporal spacing for determining within-trial trajectories of BOLD activation, allowing for the analysis of stimulus-locked temporal covariation of brain responses in multiple regions. This may be especially important for emotional stimuli processing, which can evolve over the course of several seconds, if not longer. However, while several methods have been devised for determining fMRI effective connectivity, few are adapted to event-related designs, which include non-stationary BOLD responses and multiple levels of nesting. We propose a model tailored for exploring effective connectivity of multiple brain regions in event-related fMRI designs - a semi-parametric adaptation of vector autoregressive (VAR) models, termed “stimulus-locked VAR” (SloVAR). Connectivity coefficients vary as a function of time relative to stimulus onset, are regularized via basis expansions, and vary randomly across subjects. SloVAR obtains flexible, data-driven estimates of effective connectivity and hence is useful for building connectivity models when prior information on dynamic regional relationships is sparse. Indices derived from the coefficient estimates can also be used to relate effective connectivity estimates to behavioral or clinical measures. We demonstrate the SloVAR model on a sample of clinically depressed and normal controls, showing that early but not late cortico-amygdala connectivity appears crucial to emotional control and early but not late cortico-cortico connectivity predicts depression severity in the depressed group, relationships that would have been missed in a more traditional VAR analysis. PMID:19236927
Kernt, Marcus; Hadi, Indrawati; Pinter, Florian; Seidensticker, Florian; Hirneiss, Christoph; Haritoglou, Christos; Kampik, Anselm; Ulbig, Michael W.; Neubauer, Aljoscha S.
2012-01-01
OBJECTIVE To compare the diagnostic properties of a nonmydriatic 200° ultra-widefield scanning laser ophthalmoscope (SLO) versus mydriatic Early Treatment of Diabetic Retinopathy Study (ETDRS) 7-field photography for diabetic retinopathy (DR) screening. RESEARCH DESIGN AND METHODS A consecutive series of 212 eyes of 141 patients with different levels of DR were examined. Grading of DR and clinically significant macular edema (CSME) from mydriatic ETDRS 7-field stereo photography was compared with grading obtained by Optomap Panoramic 200 SLO images. All SLO scans were performed through an undilated pupil, and no additional clinical information was used for evaluation of all images by the two independent, masked, expert graders. RESULTS Twenty-two eyes from ETDRS 7-field photography and 12 eyes from Optomap were not gradable by at least one grader because of poor image quality. A total of 144 eyes were analyzed regarding DR level and 155 eyes regarding CSME. For ETDRS 7-field photography, 22 eyes (18 for grader 2) had no or mild DR (ETDRS levels ≤ 20) and 117 eyes (111 for grader 2) had no CSME. A highly substantial agreement between both Optomap DR and CSME grading and ETDRS 7-field photography existed with κ = 0.79 for DR and 0.73 for CSME for grader 1, and κ = 0.77 (DR) and 0.77 (CSME) for grader 2. CONCLUSIONS Determination of CSME and grading of DR level from Optomap Panoramic 200 nonmydriatic images show a positive correlation with mydriatic ETDRS 7-field stereo photography. Both techniques are of sufficient quality to assess DR and CSME. Optomap Panoramic 200 images cover a larger retinal area and therefore may offer additional diagnostic properties. PMID:22912430
Kernt, Marcus; Hadi, Indrawati; Pinter, Florian; Seidensticker, Florian; Hirneiss, Christoph; Haritoglou, Christos; Kampik, Anselm; Ulbig, Michael W; Neubauer, Aljoscha S
2012-12-01
To compare the diagnostic properties of a nonmydriatic 200° ultra-widefield scanning laser ophthalmoscope (SLO) versus mydriatic Early Treatment of Diabetic Retinopathy Study (ETDRS) 7-field photography for diabetic retinopathy (DR) screening. A consecutive series of 212 eyes of 141 patients with different levels of DR were examined. Grading of DR and clinically significant macular edema (CSME) from mydriatic ETDRS 7-field stereo photography was compared with grading obtained by Optomap Panoramic 200 SLO images. All SLO scans were performed through an undilated pupil, and no additional clinical information was used for evaluation of all images by the two independent, masked, expert graders. Twenty-two eyes from ETDRS 7-field photography and 12 eyes from Optomap were not gradable by at least one grader because of poor image quality. A total of 144 eyes were analyzed regarding DR level and 155 eyes regarding CSME. For ETDRS 7-field photography, 22 eyes (18 for grader 2) had no or mild DR (ETDRS levels ≤ 20) and 117 eyes (111 for grader 2) had no CSME. A highly substantial agreement between both Optomap DR and CSME grading and ETDRS 7-field photography existed with κ = 0.79 for DR and 0.73 for CSME for grader 1, and κ = 0.77 (DR) and 0.77 (CSME) for grader 2. Determination of CSME and grading of DR level from Optomap Panoramic 200 nonmydriatic images show a positive correlation with mydriatic ETDRS 7-field stereo photography. Both techniques are of sufficient quality to assess DR and CSME. Optomap Panoramic 200 images cover a larger retinal area and therefore may offer additional diagnostic properties.
Wide field of view swept-source optical coherence tomography for peripheral retinal disease
McNabb, Ryan P.; Grewal, Dilraj S.; Mehta, Rajvi; Schuman, Stefanie G.; Izatt, Joseph A.; Mahmoud, Tamer H.; Jaffe, Glenn J.; Mruthyunjaya, Prithvi; Kuo, Anthony N.
2016-01-01
Background/Aims To assess peripheral retinal lesions and the posterior pole in single, widefield optical coherence tomography (OCT) volumes. Methods A wide field of view swept source OCT (WFOV SSOCT) system was developed using a commercial swept source laser and a custom sample arm consisting of two indirect ophthalmic lenses. Twenty-seven subjects with peripheral lesions (choroidal melanomas, choroidal nevii, sclerochoroidal calcification, retinitis pigmentosa, diabetic retinopathy, retinoschisis, and uveitis) were imaged with the WFOV SSOCT. Volumes were taken in primary gaze. Using the optic nerve to fovea distance as a reference measurement, comparisons were made between the lateral field of view (FOV) of the WFOV SSOCT, current generation spectral domain OCT (SDOCT), and widefield scanning laser ophthalmoscopy (SLO) of the same eyes. Results Peripheral pathologies were captured with WFOV SSOCT in 26 of the 27 subjects. The one not captured was in the far nasal periphery and was not seen in the primary gaze volume. Posterior pole associated pathologies were captured in all subjects. Current generation SDOCT had a mean lateral FOV of 2.08 ± 0.21 optic nerve-to-fovea distance units, WFOV SSOCT had a FOV of 4.62 ± 0.62 units, and SLO had a FOV of 9.35 ± 1.02 units. Conclusion WFOV OCT can be used to examine both peripheral retinal pathology and the posterior pole within a single volume acquisition. SLO had the greatest FOV, but does not provide depth information. Future studies using widefield OCT systems will help further delineate the role of WFOV OCT to quantitatively assess and monitor peripheral retinal disease in three dimensions. PMID:26755643
NASA Astrophysics Data System (ADS)
El-Haddad, Mohamed T.; Joos, Karen M.; Patel, Shriji N.; Tao, Yuankai K.
2017-02-01
Multimodal imaging systems that combine scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) have demonstrated the utility of concurrent en face and volumetric imaging for aiming, eye tracking, bulk motion compensation, mosaicking, and contrast enhancement. However, this additional functionality trades off with increased system complexity and cost because both SLO and OCT generally require dedicated light sources, galvanometer scanners, relay and imaging optics, detectors, and control and digitization electronics. We previously demonstrated multimodal ophthalmic imaging using swept-source spectrally encoded SLO and OCT (SS-SESLO-OCT). Here, we present system enhancements and a new optical design that increase our SS-SESLO-OCT data throughput by >7x and field-of-view (FOV) by >4x. A 200 kHz 1060 nm Axsun swept-source was optically buffered to 400 kHz sweep-rate, and SESLO and OCT were simultaneously digitized on dual input channels of a 4 GS/s digitizer at 1.2 GS/s per channel using a custom k-clock. We show in vivo human imaging of the anterior segment out to the limbus and retinal fundus over a >40° FOV. In addition, nine overlapping volumetric SS-SESLO-OCT volumes were acquired under video-rate SESLO preview and guidance. In post-processing, all nine SESLO images and en face projections of the corresponding OCT volumes were mosaicked to show widefield multimodal fundus imaging with a >80° FOV. Concurrent multimodal SS-SESLO-OCT may have applications in clinical diagnostic imaging by enabling aiming, image registration, and multi-field mosaicking and benefit intraoperative imaging by allowing for real-time surgical feedback, instrument tracking, and overlays of computationally extracted image-based surrogate biomarkers of disease.
NASA Astrophysics Data System (ADS)
Wahl, Daniel J.; Zhang, Pengfei; Jian, Yifan; Bonora, Stefano; Sarunic, Marinko V.; Zawadzki, Robert J.
2017-02-01
Adaptive optics (AO) is essential for achieving diffraction limited resolution in large numerical aperture (NA) in-vivo retinal imaging in small animals. Cellular-resolution in-vivo imaging of fluorescently labeled cells is highly desirable for studying pathophysiology in animal models of retina diseases in pre-clinical vision research. Currently, wavefront sensor-based (WFS-based) AO is widely used for retinal imaging and has demonstrated great success. However, the performance can be limited by several factors including common path errors, wavefront reconstruction errors and an ill-defined reference plane on the retina. Wavefront sensorless (WFS-less) AO has the advantage of avoiding these issues at the cost of algorithmic execution time. We have investigated WFS-less AO on a fluorescence scanning laser ophthalmoscopy (fSLO) system that was originally designed for WFS-based AO. The WFS-based AO uses a Shack-Hartmann WFS and a continuous surface deformable mirror in a closed-loop control system to measure and correct for aberrations induced by the mouse eye. The WFS-less AO performs an open-loop modal optimization with an image quality metric. After WFS-less AO aberration correction, the WFS was used as a control of the closed-loop WFS-less AO operation. We can easily switch between WFS-based and WFS-less control of the deformable mirror multiple times within an imaging session for the same mouse. This allows for a direct comparison between these two types of AO correction for fSLO. Our results demonstrate volumetric AO-fSLO imaging of mouse retinal cells labeled with GFP. Most significantly, we have analyzed and compared the aberration correction results for WFS-based and WFS-less AO imaging.
The Semantic Learning Organization
ERIC Educational Resources Information Center
Sicilia, Miguel-Angel; Lytras, Miltiadis D.
2005-01-01
Purpose: The aim of this paper is introducing the concept of a "semantic learning organization" (SLO) as an extension of the concept of "learning organization" in the technological domain. Design/methodology/approach: The paper takes existing definitions and conceptualizations of both learning organizations and Semantic Web technology to develop…
Stańczak, Joanna
2006-05-01
Dermacentor reticulatus ticks from Poland were investigated by molecular methods for the presence of rickettsiae. During 2003/2004, a total of 285 adult ticks was assayed using primers RpCS.877 and RpCS.1258 derived from the citrate synthase (gltA) gene, and 116 samples (40.7%) were positive for rickettsial DNA. Ten out of these positive samples were further assayed using SLO1F and SLO1R primers derived form the rOmpA-encoding gene to confirm that detected rickettsiae belong to the spotted fever group (SFG). The obtained sequence of a fragment of the gltA gene of Rickettsia sp. isolated from Polish D. reticulatus demonstrated 96-98% similarities to Rickettsia slovaca, Rickettsia sibirica, Rickettsia honei, and other SFG rickettsiae. The nucleotide sequences of the amplified fragments of the ompA gene were 98% homologous to RpA4 Rickettsia sp. reported from ticks collected in territories of the former Soviet Union.
1981-05-01
ROAD, WALTHAM, MA. 02254 110 14- MONITORING AGENCY NAME A ADORELSS(If dliffeIo town Cenwumf llaj e.. Is. SECURITY CLASS. (of chit mtovet UNCLASSIFIED ISO...Feet Test Flood Elevation 456.24 Feet I I. D- 2 I - i $ 44 - C3 4.44 IV Z0 II a. -f 0 o f a f V 0 aI We wo ko IL 2 ft ha- V. a. 4 slo zt -i z 49 0
Reichrath, Sandra; Reichrath, Jörg
2012-01-01
Notch signaling is of high importance for growth and survival of various cell types. We now analyzed the protein expression of two key components of the Notch signaling pathway (Notch-1, Jagged-1) in spontaneously immortalized (HaCaT) and in malignant (SCL-1) human keratinocytes, using western analysis. We found that Notch-1 and its corresponding ligand Jagged-1 are expressed in both cell lines, with no marked change following UV-B treatment. Moreover, treatment of both cell lines before or after UV-B irradiation with 1,25-dihydroxyvitamin D(3), the biologically active form of vitamin D, and/or epigenetic modulating drugs (TSA; 5-Aza) did not result in a marked modulation of the protein expression of Notch-1 or Jagged-1. Under the experimental conditions of this study, treatment with 1,25(OH)(2)D(3) protected human keratinocytes in part against the antiproliferative effects of UV-B-radiation. In conclusion, our findings do not point at a differential expression of these two key components of Notch signaling in non-malignant as compared to malignant human keratinocytes, indicating that alterations in their expression are not of importance for the photocarcinogenesis of human squamous cell carcinomas. Moreover, our findings do not support the hypothesis that modulation of Notch signaling may be involved in the photoprotective effect of 1,25-dihydroxyvitamin D(3), that we and others reported previously. Additionally, we demonstrate that epigenetic modulating drugs (TSA, 5-Aza) do not markedly modulate the expression Notch-1 or Jagged-1 in UV-B-treated human keratinocytes in vitro.
Nehme, A; Zibara, K; Cerutti, C; Bricca, G
2015-06-01
The implication of the renin-angiotensin-aldosterone system (RAAS) in atheroma development is well described. However, a complete view of the local RAAS in atheroma is still missing. In this study we aimed to reveal the organization of RAAS in atheroma at the transcriptomic level and identify the transcriptional regulators behind it. Extended RAAS (extRAAS) was defined as the set of 37 genes coding for classical and novel RAAS participants (Figure 1). Five microarray datasets containing overall 590 samples representing carotid and peripheral atheroma were downloaded from the GEO database. Correlation-based hierarchical clustering (R software) of extRAAS genes within each dataset allowed the identification of modules of co-expressed genes. Reproducible co-expression modules across datasets were then extracted. Transcription factors (TFs) having common binding sites (TFBSs) in the promoters of coordinated genes were identified using the Genomatix database tools and analyzed for their correlation with extRAAS genes in the microarray datasets. Expression data revealed the expressed extRAAS components and their relative abundance displaying the favored pathways in atheroma. Three co-expression modules with more than 80% reproducibility across datasets were extracted. Two of them (M1 and M2) contained genes coding for angiotensin metabolizing enzymes involved in different pathways: M1 included ACE, MME, RNPEP, and DPP3, in addition to 7 other genes; and M2 included CMA1, CTSG, and CPA3. The third module (M3) contained genes coding for receptors known to be implicated in atheroma (AGTR1, MR, GR, LNPEP, EGFR and GPER). M1 and M3 were negatively correlated in 3 of 5 datasets. We identified 19 TFs that have enriched TFBSs in the promoters of genes of M1, and two for M3, but none was found for M2. Among the extracted TFs, ELF1, MAX, and IRF5 showed significant positive correlations with peptidase-coding genes from M1 and negative correlations with receptors-coding genes from M3 (p < 0.05). The identified co-expression modules display the transcriptional organization of local extRAAS in human carotid atheroma. The identification of several TFs potentially associated to extRAAS genes may provide a frame for the discovery of atheroma-specific modulators of extRAAS activity.(Figure is included in full-text article.).
Budzinski, Jason W; Trudeau, Vance L; Drouin, Cathy E; Panahi, Mitra; Arnason, J Thor; Foster, Brian C
2007-09-01
In this study, we used an in vitro Caco-2 cell monolayer model to evaluate aqueous extracts of commercial-source goldenseal (Hydrastis canadensis) and milk thistle (Silybum marianum) capsule formulations, their marker phytochemicals (berberine and silibinin, respectively), as well as dillapiol, vinblastine, and the HIV protease inhibitor saquinavir for their ability to modulate CYP3A4 and ABCB1 expression after short-term exposure (48 h). Both upregulation and downregulation of CYP3A4 expression was observed with extracts of varying concentrations of the two natural health products (NHPs). CYP3A4 was highly responsive in our system, showing a strong dose-dependent modulation by the CYP3A4 inhibitor dillapiol (upregulation) and the milk thistle flavonolignan silibinin (downregulation). ABCB1 was largely unresponsive in this cellular model and appears to be of little value as a biomarker under our experimental conditions. Therefore, the modulation of CYP3A4 gene expression can serve as an important marker for the in vitro assessment of NHP-drug interactions.
Regulating the ethylene response of a plant by modulation of F-box proteins
Guo, Hongwei [Beijing, CN; Ecker, Joseph R [Carlsbad, CA
2014-01-07
The relationship between F-box proteins and proteins invovled in the ethylene response in plants is described. In particular, F-box proteins may bind to proteins involved in the ethylene response and target them for degradation by the ubiquitin/proteasome pathway. The transcription factor EIN3 is a key transcription factor mediating ethylne-regulated gene expression and morphological responses. EIN3 is degraded through a ubiquitin/proteasome pathway mediated by F-box proteins EBF1 and EBF2. The link between F-box proteins and the ethylene response is a key step in modulating or regulating the response of a plant to ethylene. Described herein are transgenic plants having an altered sensitivity to ethylene, and methods for making transgenic plant haing an althered sensitivity to ethylene by modulating the level of activity of F-box proteins. Methods of altering the ethylene response in a plant by modulating the activity or expression of an F-box protein are described. Also described are methods of identifying compounds that modulate the ethylene response in plants by modulating the level of F-box protein expression or activity.
Large California Tsunamis From Central Coast Historians And Central Coast Newspaper Records
NASA Astrophysics Data System (ADS)
Blanck, E. L.
2009-12-01
Approximately, 1996, Unocal historian Darwin Sainz mentioned the newly built Union Oil “Oilport” refinery in what is now Shell Beach (between Pismo & Avila Beaches and at 50 to 100 feet elevation) was destroyed by a tsunami in the early 1900’s. July 2009, George Plafker reported, “a bigger earthquake and a more destructive tsunami than the 1964 event are possible in the future”. The 1812 Santa Barbara Channel earthquake produced 5 tsunami waves approximately 50 feet in height to the front of the Santa Barbara Presidio based on a Franciscan Father’s journal. A book on “Shipwrecks, Smugglers, and Maritime Mysteries” by Wheeler & Kallman reports the largest wave was 48-50 feet estimated by the USGS west of Santa Barbara near Goleta. The “History of San Luis Obispo County, California” by Thompson & West (1883) reports 12 feet tsunamis occurred on August 13, 1868 (Peruvian earthquake) and April 16, 1877. On November 22, 1878, turbulent water in the absence of wind produced tsunamis that broke over the Morro Bay sand spit (current quad sheet high elevations 66 to 97 feet N to S), destroyed Avila & Pt. Sal piers, damaging Cayucos pier. A Japanese earthquake resulted in a tsunami at 12:40 PM December 9, 1907, near high tide and in already heavy seas, that stood out from the rest of the storm due to its’ enormous height. It wrecked the Ventura pier (12-13-1907, SLO Tribune) and the Oilport pier (12-13-1907, SLO Tribune & 12-6-1976 also 12-14-1907, Santa Maria Times & 12-10-1907 SLO Telegram) at Shell beach and destroyed the Oilport refinery (Darwin Sainz, personal communication). Before 7 AM on November 26, 1913, tsunamis wrecked the Monterey area including waves 10 to15 feet above the Del Monte wharf. At Seaside, “Immense domes of water and foam shot up above the general height” … “appearing from here to be higher than the highest sandhills along the shore.”(12-2-1913, SLO Tribune) Current quad sheet high elevations are 120 feet. These reports of historic tsunamis represent wave elevations significantly higher than the 1964 Alaska earthquake tsunami that is typically used for emergency planning for tsunami inundation in California. Since it appears 4 much larger tsunamis occurred in the Central Coast area in 1812, 1878, 1907 and 1913; it appears we may have become complacent during this recent period of tsunami quiescence. Emergency planning for Central Coast tsunamis should be anticipating tsunami waves in the 50 to 100 feet elevation range.
Retinal micropseudocysts in diabetic retinopathy: prospective functional and anatomic evaluation.
Forte, Raimondo; Cennamo, Gilda; Finelli, Maria Luisa; Bonavolontà, Paola; Greco, Giovanni Maria; de Crecchio, Giuseppe
2012-01-01
To evaluate the prevalence, progression and functional predictive value of retinal micropseudocysts (MPCs) in diabetic patients. Prospective controlled observational study. From among all the type 2 diabetic patients evaluated during a period of 5 months between September 2009 and January 2010, we enrolled all patients with retinal MPCs at spectral-domain scanning laser ophthalmoscope/optical coherence tomography (SD-SLO/OCT) not previously treated for diabetic retinopathy. Forty diabetic patients without MPCs served as the control group. Best-corrected visual acuity (BCVA), central retinal thickness (CRT), macular sensitivity and stability of fixation at SD-SLO/OCT microperimetry were measured monthly for 12 months. 22/156 patients with type 2 diabetes (14.1%, 32 eyes) met the inclusion criteria. The 95% confidence interval for the prevalence estimate of MPCs was 12.3-16.6%. Mean BCVA, CRT and central retinal sensitivity at baseline were 77.53 ± 2.2 Early Treatment Diabetic Retinopathy Study letters, 242.31 ± 31.0 µm and 15.95 ± 0.61 dB, respectively. Fixation was stable in all cases. Compared to the control group, eyes with MPCs had similar BCVA but greater CRT (p = 0.01) and reduced macular sensitivity (p = 0.001) at baseline and at each follow-up visit. Over time, CRT remained stable in eyes with MPCs, whereas macular sensitivity progressively decreased. MPCs in diabetic retinopathy are associated, temporally or causally, with a progressive reduction of macular sensitivity despite a stable BCVA, CRT and fixation. Copyright © 2011 S. Karger AG, Basel.
Shaimova, V A; Shaimov, T B; Shaimov, R B; Galin, A Yu; Goloshchapova, Zh A; Ryzhkov, P K; Fomin, A V
2018-01-01
To develop methods for evaluating effectiveness of YAG-laser vitreolysis of vitreous floaters. The study included 144 patients (173 eyes) who had underwent YAG-laser vitreolysis and were under observation from 01.09.16 to 31.01.18. The patients were 34 to 86 years old (mean age 62.7±10.2 years), 28 (19.4%) patients were male, 116 (80.6%) - female. All patients underwent standard and additional examination: ultrasonography (Accutome B-scan plus, U.S.A.), optic biometry (Lenstar 900, Haag-Streit, Switzerland), spectral optical coherence tomography using RTVue XR Avanti scanner (Optovue, U.S.A.) in modes Enhanced HD Line, 3D Retina, 3D Widefield MCT, Cross Line, Angio Retina, and scanning laser ophthalmoscopy (SLO) using Navilas 577s system. Laser vitreolysis was performed using the Ultra Q Reflex laser (Ellex, Australia). This paper presents methods of objective quantitative and qualitative assessment of artifactual shadows of vitreous floaters with spectral optical coherence tomographic scanner RTVue xR Avanti employing an algorithm of automatic detection of non-perfusion zones in modes Angio Retina, HD Angio Retina, as well as foveal avascular zone (FAZ) measurement with Angio Analytics® software. SLO performed with Navilas 577s was used as method of visualizing floaters and artifactual shadows in retinal surface layers prior to surgical treatment and after YAG-laser vitreolysis. Suggested methods of quantitative and qualitative assessment of artifactual shadows of the floaters in retinal layers are promising and may prove to be highly relevant for clinical monitoring of patients, optimization of treatment indications and evaluating effectiveness of YAG-laser vitreolysis. Further research of laser vitreolysis effectiveness in patients with vitreous floaters is necessary.
Expression of Versican 3′-Untranslated Region Modulates Endogenous MicroRNA Functions
Lee, Daniel Y.; Jeyapalan, Zina; Fang, Ling; Yang, Jennifer; Zhang, Yaou; Yee, Albert Y.; Li, Minhui; Du, William W.; Shatseva, Tatiana; Yang, Burton B.
2010-01-01
Background Mature microRNAs (miRNAs) are single-stranded RNAs that regulate post-transcriptional gene expression. In our previous study, we have shown that versican 3′UTR, a fragment of non-coding transcript, has the ability to antagonize miR-199a-3p function thereby regulating expression of the matrix proteins versican and fibronectin, and thus resulting in enhanced cell-cell adhesion and organ adhesion. However, the impact of this non-coding fragment on tumorigenesis is yet to be determined. Methods and Findings Using computational prediction confirmed with in vitro and in vivo experiments, we report that the expression of versican 3′UTR not only antagonizes miR-199a-3p but can also lower its steady state expression. We found that expression of versican 3′UTR in a mouse breast carcinoma cell line, 4T1, decreased miR-199a-3p levels. The decrease in miRNA activity consequently translated into differences in tumor growth. Computational analysis indicated that both miR-199a-3p and miR-144 targeted a cell cycle regulator, Rb1. In addition, miR-144 and miR-136, which have also been shown to interact with versican 3′UTR, was found to target PTEN. Expression of Rb1 and PTEN were up-regulated synergistically in vitro and in vivo, suggesting that the 3′UTR binds and modulates miRNA activities, freeing Rb1 and PTEN mRNAs for translation. In tumor formation assays, cells transfected with the 3′UTR formed smaller tumors compared with cells transfected with a control vector. Conclusion Our results demonstrated that a 3′UTR fragment can be used to modulate miRNA functions. Our study also suggests that miRNAs in the cancer cells are more susceptible to degradation, due to its interaction with a non-coding 3′UTR. This non-coding component of mRNA may be used retrospectively to modulate miRNA activities. PMID:21049042
South Dakota Student Learning Objectives Handbook
ERIC Educational Resources Information Center
Gill, Matt; Outka, Janeen; McCorkle, Mary
2015-01-01
Student growth is one of two essential components of South Dakota's Teacher and Principal Effectiveness Systems. In the state systems, student growth is defined as a positive change in student achievement between two or more points in time. "The South Dakota SLO Handbook" provides support and guidance to public schools and school…
Petkun, Svetlana; Rozman Grinberg, Inna; Lamed, Raphael; Jindou, Sadanari; Burstein, Tal; Yaniv, Oren; Shoham, Yuval; Shimon, Linda J.W.; Frolow, Felix
2015-01-01
Non-cellulosomal processive endoglucanase 9I (Cel9I) from Clostridium thermocellum is a modular protein, consisting of a family-9 glycoside hydrolase (GH9) catalytic module and two family-3 carbohydrate-binding modules (CBM3c and CBM3b), separated by linker regions. GH9 does not show cellulase activity when expressed without CBM3c and CBM3b and the presence of the CBM3c was previously shown to be essential for endoglucanase activity. Physical reassociation of independently expressed GH9 and CBM3c modules (containing linker sequences) restored 60–70% of the intact Cel9I endocellulase activity. However, the mechanism responsible for recovery of activity remained unclear. In this work we independently expressed recombinant GH9 and CBM3c with and without their interconnecting linker in Escherichia coli. We crystallized and determined the molecular structure of the GH9/linker-CBM3c heterodimer at a resolution of 1.68 Å to understand the functional and structural importance of the mutual spatial orientation of the modules and the role of the interconnecting linker during their re-association. Enzyme activity assays and isothermal titration calorimetry were performed to study and compare the effect of the linker on the re-association. The results indicated that reassembly of the modules could also occur without the linker, albeit with only very low recovery of endoglucanase activity. We propose that the linker regions in the GH9/CBM3c endoglucanases are important for spatial organization and fixation of the modules into functional enzymes. PMID:26401442
Guo, Sheng-Min; Wang, Jian-Xiong; Li, Jin; Xu, Fang-Yuan; Wei, Quan; Wang, Hai-Ming; Huang, Hou-Qiang; Zheng, Si-Lin; Xie, Yu-Jie; Zhang, Chi
2018-06-15
Osteoarthritis (OA) significantly influences the quality life of people around the world. It is urgent to find an effective way to understand the genetic etiology of OA. We used weighted gene coexpression network analysis (WGCNA) to explore the key genes involved in the subchondral bone pathological process of OA. Fifty gene expression profiles of GSE51588 were downloaded from the Gene Expression Omnibus database. The OA-associated genes and gene ontologies were acquired from JuniorDoc. Weighted gene coexpression network analysis was used to find disease-related networks based on 21756 gene expression correlation coefficients, hub-genes with the highest connectivity in each module were selected, and the correlation between module eigengene and clinical traits was calculated. The genes in the traits-related gene coexpression modules were subject to functional annotation and pathway enrichment analysis using ClusterProfiler. A total of 73 gene modules were identified, of which, 12 modules were found with high connectivity with clinical traits. Five modules were found with enriched OA-associated genes. Moreover, 310 OA-associated genes were found, and 34 of them were among hub-genes in each module. Consequently, enrichment results indicated some key metabolic pathways, such as extracellular matrix (ECM)-receptor interaction (hsa04512), focal adhesion (hsa04510), the phosphatidylinositol 3'-kinase (PI3K)-Akt signaling pathway (PI3K-AKT) (hsa04151), transforming growth factor beta pathway, and Wnt pathway. We intended to identify some core genes, collagen (COL)6A3, COL6A1, ITGA11, BAMBI, and HCK, which could influence downstream signaling pathways once they were activated. In this study, we identified important genes within key coexpression modules, which associate with a pathological process of subchondral bone in OA. Functional analysis results could provide important information to understand the mechanism of OA. © 2018 Wiley Periodicals, Inc.
A 3'-untranslated region (3'UTR) induces organ adhesion by regulating miR-199a* functions.
Lee, Daniel Y; Shatseva, Tatiana; Jeyapalan, Zina; Du, William W; Deng, Zhaoqun; Yang, Burton B
2009-01-01
Mature microRNAs (miRNAs) are single-stranded RNAs of 18-24 nucleotides that repress post-transcriptional gene expression. However, it is unknown whether the functions of mature miRNAs can be regulated. Here we report that expression of versican 3'UTR induces organ adhesion in transgenic mice by modulating miR-199a* activities. The study was initiated by the hypothesis that the non-coding 3'UTR plays a role in the regulation of miRNA function. Transgenic mice expressing a construct harboring the 3'UTR of versican exhibits the adhesion of organs. Computational analysis indicated that a large number of microRNAs could bind to this fragment potentially including miR-199a*. Expression of versican and fibronectin, two targets of miR-199a*, are up-regulated in transgenic mice, suggesting that the 3'UTR binds and modulates miR-199a* activities, freeing mRNAs of versican and fibronectin from being repressed by miR-199a*. Confirmation of the binding was performed by PCR using mature miR-199a* as a primer and the targeting was performed by luciferase assays. Enhanced adhesion by expression of the 3'UTR was confirmed by in vitro assays. Our results demonstrated that upon arrival in cytoplasm, miRNA activities can be modulated locally by the 3'UTR. Our assay may be developed as sophisticated approaches for studying the mutual regulation of miRNAs and mRNAs in vitro and in vivo. We anticipate that expression of the 3'UTR may be an approach in the development of gene therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Juan; Xin, Beibei; Wang, Hui
Gastrin is absent in most normal adult pancreatic tissues but is highly expressed in pancreatic cancer tissues. Although Gastrin expression was reported to be associated with tumor proliferation in human pancreatic cancer, studies on the relationship between Gastrin and tumor metastasis in pancreatic cancer are rare. In this study, we performed an analysis to determine the effects of Gastrin on modulating the side populations, cell proportion and tumor cell metastatic potential and invasion activity and explored its mechanisms in pancreatic cancer. We indicated that Gastrin and ABCG2 were widely expressed in pancreatic cancer cell lines and overexpressed in cancer tissues.more » Gastrin induced ABCG2 expression, and this effect was mediated by NF-κB activation. Gastrin regulated the SP proportion of BxPC-3 cells via modulating ABCG2 expression. Through the regulation of the functions of NF-κB/ABCG2, Gastrin functionally promoted the migration and invasion in pancreatic cancer cell. The present study indicated that Gastrin induced ABCG2 expression by activating NF-κB and thereby modulated the SP proportion, tumor cell metastatic potential and invasion activity in pancreatic cancer. Gastrin could serve as an effective therapeutic target for the metastasis of pancreatic cancer. - Highlights: • Gastrin induces ABCG2 expression mediated by NF-κB activation. • Gastrin regulates NF-κB's function that binds to the ABCG2 promoter in BxPC-3 cells. • Gastrin promotes the SP proportion in BxPC-3 cells by modulating ABCG2 expression via activation of NF-κB molecule. • Gastrin induces an increase in migration and invasion potential in pancreatic cancer cell by regulating NF-κB/ABCG2 signaling.« less
Intracellular pH in sperm physiology.
Nishigaki, Takuya; José, Omar; González-Cota, Ana Laura; Romero, Francisco; Treviño, Claudia L; Darszon, Alberto
2014-08-01
Intracellular pH (pHi) regulation is essential for cell function. Notably, several unique sperm ion transporters and enzymes whose elimination causes infertility are either pHi dependent or somehow related to pHi regulation. Amongst them are: CatSper, a Ca(2+) channel; Slo3, a K(+) channel; the sperm-specific Na(+)/H(+) exchanger and the soluble adenylyl cyclase. It is thus clear that pHi regulation is of the utmost importance for sperm physiology. This review briefly summarizes the key components involved in pHi regulation, their characteristics and participation in fundamental sperm functions such as motility, maturation and the acrosome reaction. Copyright © 2014 Elsevier Inc. All rights reserved.
OPERATION HARDTACK. Project 3.5. Loading and Response of Submarine Hulls from Underwater Bursts
1985-09-01
Bursts H. L. Rich, Project Officer F. Weinberger E. T. Habib R. L. Bor W. J. Sette David Taylor Model Basin Washington, DC 15 December 1960 NOTICE: This...Hulls from Underwater Bursts, Extracted Version 12. PERSONAL AUTHOR(S) Rich, H.L., Project Officer; Weinberger, F.; Habib , E.T.; Bort, R.L.; Sette, W.J...SLO A D IN G oa n d R E S P O N S E o f S U B M A R IN E tULLS from UNDERWATER BURSTS H. L. Rich, Project Officer F. Weinberger E.T. Habib R.L. Bort W
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko
2007-07-06
Estrogen-related receptor {alpha} (ERR{alpha}) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERR{alpha} in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERR{alpha} and ERR{alpha}-related transcriptional coactivators, peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) coactivator-1{alpha} (PGC-1{alpha}) and PGC-1{beta}, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERR{alpha}-specific siRNA results in mRNA down-regulation of fatty acidmore » binding protein 4, PPAR{gamma}, and PGC-1{alpha} in 3T3-L1 cells in the adipogenesis medium. ERR{alpha} and PGC-1{beta} mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERR{alpha} in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERR{alpha} may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes.« less
SLO Terminology Glossary: A Resource for Local Senates
ERIC Educational Resources Information Center
Academic Senate for California Community Colleges, 2010
2010-01-01
This glossary was developed from existing research and feedback from faculty and researchers from the California community colleges in response to Resolution S08 2.02 that asked the Academic Senate for California Community College to address the confusion in the field by researching and developing a glossary of common terms for student learning…
Real Progress in Maryland: Student Learning Objectives and Teacher and Principal Evaluation
ERIC Educational Resources Information Center
Slotnik, William J.; Bugler, Daniel; Liang, Guodong
2014-01-01
The Maryland State Department of Education (MSDE) is making significant strides in guiding and supporting the implementation of Student Learning Objectives (SLOs) as well as a teacher and principal evaluation (TPE) system statewide. MSDE support focuses on helping districts prepare for full SLO implementation by providing technical assistance with…
ERIC Educational Resources Information Center
Reed, Carole-Rae; Garcia, Luis Ivan; Slusser, Margaret M.; Konowitz, Sharon; Yep, Jewelry
2017-01-01
Assessing student learning outcomes and determining achievement of the Interprofessional Collaborative Practice (IPCEP) Core Competency of Values/Ethics in a generic pre-professional Bachelor of Science in Health Science (BSHS) program is challenging. A course level Student Learning Outcome (SLO) is: "….articulate the impact of personal…
Yi, Ji; Chen, Siyu; Shu, Xiao; Fawzi, Amani A.; Zhang, Hao F.
2015-01-01
We achieved human retinal imaging using visible-light optical coherence tomography (vis-OCT) guided by an integrated scanning laser ophthalmoscopy (SLO). We adapted a spectral domain OCT configuration and used a supercontinuum laser as the illumating source. The center wavelength was 564 nm and the bandwidth was 115 nm, which provided a 0.97 µm axial resolution measured in air. We characterized the sensitivity to be 86 dB with 226 µW incidence power on the pupil. We also integrated an SLO that shared the same optical path of the vis-OCT sample arm for alignment purposes. We demonstrated the retinal imaging from both systems centered at the fovea and optic nerve head with 20° × 20° and 10° × 10° field of view. We observed similar anatomical structures in vis-OCT and NIR-OCT. The contrast appeared different from vis-OCT to NIR-OCT, including slightly weaker signal from intra-retinal layers, and increased visibility and contrast of anatomical layers in the outer retina. PMID:26504622
Threading the biophysics of mammalian Slo1 channels onto structures of an invertebrate Slo1 channel
2017-01-01
For those interested in the machinery of ion channel gating, the Ca2+ and voltage-activated BK K+ channel provides a compelling topic for investigation, by virtue of its dual allosteric regulation by both voltage and intracellular Ca2+ and because its large-single channel conductance facilitates detailed kinetic analysis. Over the years, biophysical analyses have illuminated details of the allosteric regulation of BK channels and revealed insights into the mechanism of BK gating, e.g., inner cavity size and accessibility and voltage sensor-pore coupling. Now the publication of two structures of an Aplysia californica BK channel—one liganded and one metal free—promises to reinvigorate functional studies and interpretation of biophysical results. The new structures confirm some of the previous functional inferences but also suggest new perspectives regarding cooperativity between Ca2+-binding sites and the relationship between voltage- and Ca2+-dependent gating. Here we consider the extent to which the two structures explain previous functional data on pore-domain properties, voltage-sensor motions, and divalent cation binding and activation of the channel. PMID:29025867
Hu, Shenshen; Sharma, Sudhir C; Scouras, Alexander D; Soudackov, Alexander V; Carr, Cody A Marcus; Hammes-Schiffer, Sharon; Alber, Tom; Klinman, Judith P
2014-06-11
The enzyme soybean lipoxygenase (SLO) has served as a prototype for hydrogen-tunneling reactions, as a result of its unusual kinetic isotope effects (KIEs) and their temperature dependencies. Using a synergy of kinetic, structural, and theoretical studies, we show how the interplay between donor-acceptor distance and active-site flexibility leads to catalytic behavior previously predicted by quantum tunneling theory. Modification of the size of two hydrophobic residues by site-specific mutagenesis in SLO reduces the reaction rate 10(4)-fold and is accompanied by an enormous and unprecedented room-temperature KIE. Fitting of the kinetic data to a non-adiabatic model implicates an expansion of the active site that cannot be compensated by donor-acceptor distance sampling. A 1.7 Å resolution X-ray structure of the double mutant further indicates an unaltered backbone conformation, almost identical side-chain conformations, and a significantly enlarged active-site cavity. These findings show the compelling property of room-temperature hydrogen tunneling within a biological context and demonstrate the very high sensitivity of such tunneling to barrier width.
Shen, Haoran; Liang, Zhou; Zheng, Saihua; Li, Xuelian
2017-01-01
The purpose of this study was to identify promising candidate genes and pathways in polycystic ovary syndrome (PCOS). Microarray dataset GSE345269 obtained from the Gene Expression Omnibus database includes 7 granulosa cell samples from PCOS patients, and 3 normal granulosa cell samples. Differentially expressed genes (DEGs) were screened between PCOS and normal samples. Pathway enrichment analysis was conducted for DEGs using ClueGO and CluePedia plugin of Cytoscape. A Reactome functional interaction (FI) network of the DEGs was built using ReactomeFIViz, and then network modules were extracted, followed by pathway enrichment analysis for the modules. Expression of DEGs in granulosa cell samples was measured using quantitative RT-PCR. A total of 674 DEGs were retained, which were significantly enriched with inflammation and immune-related pathways. Eight modules were extracted from the Reactome FI network. Pathway enrichment analysis revealed significant pathways of each module: module 0, Regulation of RhoA activity and Signaling by Rho GTPases pathways shared ARHGAP4 and ARHGAP9; module 2, GlycoProtein VI-mediated activation cascade pathway was enriched with RHOG; module 3, Thromboxane A2 receptor signaling, Chemokine signaling pathway, CXCR4-mediated signaling events pathways were enriched with LYN, the hub gene of module 3. Results of RT-PCR confirmed the finding of the bioinformatic analysis that ARHGAP4, ARHGAP9, RHOG and LYN were significantly upregulated in PCOS. RhoA-related pathways, GlycoProtein VI-mediated activation cascade pathway, ARHGAP4, ARHGAP9, RHOG and LYN may be involved in the pathogenesis of PCOS. PMID:28949383
Headstart German Program. Module 5.
ERIC Educational Resources Information Center
Defense Language Inst., Monterey, CA.
This is the fifth module of 10 in the German Headstart program. Each of the 3 units in the module contains objectives, exercises, and a self-evaluation quiz. In addition, there are several supplementary exercises and self-evaluations. The objective of this module is to enable the student to use and understand: (1) courtesy expressions; (2) time…
Hosseini Ashtiani, Saman; Moeini, Ali; Nowzari-Dalini, Abbas; Masoudi-Nejad, Ali
2013-01-01
Our goal of this study was to reconstruct a “genome-scale co-expression network” and find important modules in lung adenocarcinoma so that we could identify the genes involved in lung adenocarcinoma. We integrated gene mutation, GWAS, CGH, array-CGH and SNP array data in order to identify important genes and loci in genome-scale. Afterwards, on the basis of the identified genes a co-expression network was reconstructed from the co-expression data. The reconstructed network was named “genome-scale co-expression network”. As the next step, 23 key modules were disclosed through clustering. In this study a number of genes have been identified for the first time to be implicated in lung adenocarcinoma by analyzing the modules. The genes EGFR, PIK3CA, TAF15, XIAP, VAPB, Appl1, Rab5a, ARF4, CLPTM1L, SP4, ZNF124, LPP, FOXP1, SOX18, MSX2, NFE2L2, SMARCC1, TRA2B, CBX3, PRPF6, ATP6V1C1, MYBBP1A, MACF1, GRM2, TBXA2R, PRKAR2A, PTK2, PGF and MYO10 are among the genes that belong to modules 1 and 22. All these genes, being implicated in at least one of the phenomena, namely cell survival, proliferation and metastasis, have an over-expression pattern similar to that of EGFR. In few modules, the genes such as CCNA2 (Cyclin A2), CCNB2 (Cyclin B2), CDK1, CDK5, CDC27, CDCA5, CDCA8, ASPM, BUB1, KIF15, KIF2C, NEK2, NUSAP1, PRC1, SMC4, SYCE2, TFDP1, CDC42 and ARHGEF9 are present that play a crucial role in cell cycle progression. In addition to the mentioned genes, there are some other genes (i.e. DLGAP5, BIRC5, PSMD2, Src, TTK, SENP2, PSMD2, DOK2, FUS and etc.) in the modules. PMID:23874428
Bidkhori, Gholamreza; Narimani, Zahra; Hosseini Ashtiani, Saman; Moeini, Ali; Nowzari-Dalini, Abbas; Masoudi-Nejad, Ali
2013-01-01
Our goal of this study was to reconstruct a "genome-scale co-expression network" and find important modules in lung adenocarcinoma so that we could identify the genes involved in lung adenocarcinoma. We integrated gene mutation, GWAS, CGH, array-CGH and SNP array data in order to identify important genes and loci in genome-scale. Afterwards, on the basis of the identified genes a co-expression network was reconstructed from the co-expression data. The reconstructed network was named "genome-scale co-expression network". As the next step, 23 key modules were disclosed through clustering. In this study a number of genes have been identified for the first time to be implicated in lung adenocarcinoma by analyzing the modules. The genes EGFR, PIK3CA, TAF15, XIAP, VAPB, Appl1, Rab5a, ARF4, CLPTM1L, SP4, ZNF124, LPP, FOXP1, SOX18, MSX2, NFE2L2, SMARCC1, TRA2B, CBX3, PRPF6, ATP6V1C1, MYBBP1A, MACF1, GRM2, TBXA2R, PRKAR2A, PTK2, PGF and MYO10 are among the genes that belong to modules 1 and 22. All these genes, being implicated in at least one of the phenomena, namely cell survival, proliferation and metastasis, have an over-expression pattern similar to that of EGFR. In few modules, the genes such as CCNA2 (Cyclin A2), CCNB2 (Cyclin B2), CDK1, CDK5, CDC27, CDCA5, CDCA8, ASPM, BUB1, KIF15, KIF2C, NEK2, NUSAP1, PRC1, SMC4, SYCE2, TFDP1, CDC42 and ARHGEF9 are present that play a crucial role in cell cycle progression. In addition to the mentioned genes, there are some other genes (i.e. DLGAP5, BIRC5, PSMD2, Src, TTK, SENP2, PSMD2, DOK2, FUS and etc.) in the modules.
Durani, Lina Wati; Tan, Jen Kit; Chua, Kien Hui
2017-01-01
Piper betle (PB) is a traditional medicine that is widely used to treat different diseases around Asian region. The leaf extracts contain various bioactive compounds, which were reported to have antidiabetic, antibacterial, anti-inflammatory, antioxidant, and anticancer effects. In this study, the effect of PB aqueous extracts on replicative senescent human diploid fibroblasts (HDFs) was investigated by determining the expressions of senescence-associated genes using quantitative PCR. Our results showed that PB extracts at 0.4 mg/ml can improve cell proliferation of young (143%), presenescent (127.3%), and senescent (157.3%) HDFs. Increased expressions of PRDX6, TP53, CDKN2A, PAK2, and MAPK14 were observed in senescent HDFs compared to young and/or presenescent HDFs. Treatment with PB extracts modulates the transcriptional profile changes in senescent HDFs. By contrast, expressions of SOD1 increased, whereas GPX1, PRDX6, TP53, CDKN2A, PAK2, and MAPK14 were decreased in PB-treated senescent HDFs compared to untreated senescent HDFs. In conclusion, this study indicates the modulation of PB extracts on senescence-associated genes expression of replicative senescent HDFs. Further studies warrant determining the mechanism of PB in modulating replicative senescence of HDFs through these signaling pathways. PMID:28596968
Durani, Lina Wati; Khor, Shy Cian; Tan, Jen Kit; Chua, Kien Hui; Mohd Yusof, Yasmin Anum; Makpol, Suzana
2017-01-01
Piper betle (PB) is a traditional medicine that is widely used to treat different diseases around Asian region. The leaf extracts contain various bioactive compounds, which were reported to have antidiabetic, antibacterial, anti-inflammatory, antioxidant, and anticancer effects. In this study, the effect of PB aqueous extracts on replicative senescent human diploid fibroblasts (HDFs) was investigated by determining the expressions of senescence-associated genes using quantitative PCR. Our results showed that PB extracts at 0.4 mg/ml can improve cell proliferation of young (143%), presenescent (127.3%), and senescent (157.3%) HDFs. Increased expressions of PRDX6 , TP53 , CDKN2A , PAK2 , and MAPK14 were observed in senescent HDFs compared to young and/or presenescent HDFs. Treatment with PB extracts modulates the transcriptional profile changes in senescent HDFs. By contrast, expressions of SOD1 increased, whereas GPX1 , PRDX6 , TP53 , CDKN2A , PAK2 , and MAPK14 were decreased in PB-treated senescent HDFs compared to untreated senescent HDFs. In conclusion, this study indicates the modulation of PB extracts on senescence-associated genes expression of replicative senescent HDFs. Further studies warrant determining the mechanism of PB in modulating replicative senescence of HDFs through these signaling pathways.
Tornow, R P; Stilling, R; Zrenner, E
1999-10-01
To test the feasibility of scanning laser densitometry with a modified Rodenstock scanning laser ophthalmoscope (SLO) to measure the rod and cone photopigment distribution in patients with retinal diseases. Scanning laser densitometry was performed using a modified Rodenstock scanning laser ophthalmoscope. The distribution of the photopigments was calculated from dark adapted and bleached images taken with the 514 nm laser of the SLO. This wavelength is absorbed by rod and cone photopigments. Discrimination is possible due to their different spatial distribution. Additionally, to measure retinal sensitivity profiles, dark adapted two color static perimetry with a Tübinger manual perimeter was performed along the horizontal meridian with 1 degree spacing. A patient with retinitis pigmentosa had slightly reduced photopigment density within the central +/- 5 degrees but no detectable photopigment for eccentricities beyond 5 degrees. A patient with cone dystrophy had nearly normal pigment density beyond +/- 5 degrees, but considerably reduced photopigment density within the central +/- 5 degrees. Within the central +/- 5 degrees, the patient with retinitis pigmentosa had normal sensitivity for the red stimulus and reduced sensitivity for the green stimulus. There was no measurable function beyond 7 degrees. The patient with cone dystrophy had normal sensitivity for the green stimulus outside the foveal center and reduced sensitivity for the red stimulus at the foveal center. The results of color perimetry for this patient with a central scotoma were probably influenced by eccentric fixation. Scanning laser densitometry with a modified Rodenstock SLO is a useful method to assess the human photopigment distribution. Densitometry results were confirmed by dark adapted two color static perimetry. Photopigment distribution and retinal sensitivity profiles can be measured with high spatial resolution. This may help to measure exactly the temporal development of retinal diseases and to test the success of different therapeutic treatments. Both methods have limitations at the present state of development. However, some of these limitations can be overcome by further improving the instruments.
Wu, Lijun; Zhang, Zhijin; Zhang, Haiwen; Wang, Xue-Chen; Huang, Rongfeng
2008-01-01
Abiotic stresses such as drought, cold, and salinity affect normal growth and development in plants. The production and accumulation of reactive oxygen species (ROS) cause oxidative stress under these abiotic conditions. Recent research has elucidated the significant role of ethylene response factor (ERF) proteins in plant adaptation to abiotic stresses. Our earlier functional analysis of an ERF protein, JERF3, indicated that JERF3-expressing tobacco (Nicotiana tabacum) adapts better to salinity in vitro. This article extends that study by showing that transcriptional regulation of JERF3 in the oxidative stress response modulates the increased tolerance to abiotic stresses. First, we confirm that JERF3-expressing tobacco enhances adaptation to drought, freezing, and osmotic stress during germination and seedling development. Then we demonstrate that JERF3-expressing tobacco imparts not only higher expression of osmotic stress genes compared to wild-type tobacco, but also the activation of photosynthetic carbon assimilation/metabolism and oxidative genes. More importantly, this regulation of the expression of oxidative genes subsequently enhances the activities of superoxide dismutase but reduces the content of ROS in tobacco under drought, cold, salt, and abscisic acid treatments. This indicates that JERF3 also modulates the abiotic stress response via the regulation of the oxidative stress response. Further assays indicate that JERF3 activates the expression of reporter genes driven by the osmotic-responsive GCC box, DRE, and CE1 and by oxidative-responsive as-1 in transient assays, suggesting the transcriptional activation of JERF3 in the expression of genes involved in response to oxidative and osmotic stress. Our results therefore establish that JERF3 activates the expression of such genes through transcription, resulting in decreased accumulation of ROS and, in turn, enhanced adaptation to drought, freezing, and salt in tobacco. PMID:18945933
17β-estradiol suppresses the macrophage foam cell formation associated with SOCS3.
Liang, X; He, M; Chen, T; Wu, Y; Tian, Y; Zhao, Y; Shen, Y; Liu, Y; Yuan, Z
2013-06-01
Evidence from clinical trials and animal experiments has shown that estrogen has anti-atherosclerotic effects when administered to young women or experimental animals. The mechanisms involve the modulation of vascular inflammation, growth factor expression, and oxidative stress injured arteries. However, whether estrogen modulates the foam cell formation in plaque remains unknown. Here, we investigated the effects of 17β-estradiol (E2) on cholesterol efflux in vivo and in vitro. ApoE null mice underwent an ovariectomy at 5(th) week of age and then were treated with E2 or vehicle for the following 8 weeks. Compared with the vehicle-treated mice, the serum total cholesterol level, atherosclerotic plaque size, and lipid deposits were decreased and meanwhile ATP-binding cassette transporter A1 (ABCA1) expression in the plaque was increased in mice with E2 treatment. E2 also increased suppressor of cytokine signaling 3 (SOCS3) expression in the atherosclerotic plaques and in RAW264.7 cells. In vitro, E2 treatment reversed janus kinase/signal transducers and activators of transcription (JAK/STAT)-inhibited ABCA1 expression in RAW264.7 cells but had no effect on ABCA1 expression in SOCS3 knockdown cells. SOCS3 overexpression elevated ABCA1 expression through the inhibition of JAK2/STAT3 phosphorylation. Finally, we also found that E2 enhanced the cholesterol efflux to apoA I in RAW264.7 cells. In summary, E2 reduces atherosclerosis in ApoE null mice associated with upregulating ABCA1 expression and modulating the cholesterol efflux, which are dependent on SOCS3 upregulation. These results provide new insight into the athero-protective effects of estrogen. © Georg Thieme Verlag KG Stuttgart · New York.
Protein inhibitor of activated STAT3 inhibits adipogenic gene expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng Jianbei; Hua Kunjie; Caveney, Erica J.
2006-01-20
Protein inhibitor of activated STAT3 (PIAS3), a cytokine-induced repressor of signal transducer and activator of transcription 3 (STAT3) and a modulator of a broad array of nuclear proteins, is expressed in white adipose tissue, but its role in adipogenesis is not known. Here, we determined that PIAS3 was constitutively expressed in 3T3-L1 cells at all stages of adipogenesis. However, it translocated from the nucleus to the cytoplasm 4 days after induction of differentiation by isobutylmethylxanthine, dexamethasone, and insulin (MDI). In ob/ob mice, PIAS3 expression was increased in white adipose tissue depots compared to lean mice and was found in themore » cytoplasm of adipocytes. Overexpression of PIAS3 in differentiating preadipocytes, which localized primarily to the nucleus, inhibited mRNA level gene expression of adipogenic transcription factors C/EBP{alpha} and PPAR{gamma}, as well as their downstream target genes aP2 and adiponectin. PIAS3 also inhibited C/EBP{alpha} promoter activation mediated specifically by insulin, but not dexamethasone or isobutylmethylxanthine. Taken together, these data suggest that PIAS3 may play an inhibitory role in adipogenesis by modulating insulin-activated transcriptional activation events. Increased PIAS3 expression in adipose tissue may play a role in the metabolic disturbances of obesity.« less
MIR146A inhibits JMJD3 expression and osteogenic differentiation in human mesenchymal stem cells
Huszar, Jessica M.; Payne, Christopher J.
2014-01-01
Chromatin remodeling is important for cell differentiation. Histone methyltransferase EZH2 and histone demethylase JMJD3 (KDM6B) modulate levels of histone H3 lysine 27 trimethylation (H3K27me3). Interplay between the two modulators influence lineage specification in stem cells. Here, we identified microRNA MIR146A to be a negative regulator of JMJD3. In the osteogenic differentiation of human mesenchymal stem cells (hMSCs), we observed an upregulation of JMJD3 and a downregulation of MIR146A. Blocking JMJD3 activity in differentiating hMSCs reduced transcript levels of osteogenic gene RUNX2. H3K27me3 levels decreased at the RUNX2 promoter during cell differentiation. Modulation of MIR146A levels in hMSCs altered JMJD3 and RUNX2 expression and affected osteogenic differentiation. We conclude that JMJD3 promotes osteogenesis in differentiating hMSCs, with MIR146A regulating JMJD3. PMID:24726732
A 3′-Untranslated Region (3′UTR) Induces Organ Adhesion by Regulating miR-199a* Functions
Lee, Daniel Y.; Shatseva, Tatiana; Jeyapalan, Zina; Du, William W.; Deng, Zhaoqun; Yang, Burton B.
2009-01-01
Mature microRNAs (miRNAs) are single-stranded RNAs of 18–24 nucleotides that repress post-transcriptional gene expression. However, it is unknown whether the functions of mature miRNAs can be regulated. Here we report that expression of versican 3′UTR induces organ adhesion in transgenic mice by modulating miR-199a* activities. The study was initiated by the hypothesis that the non-coding 3′UTR plays a role in the regulation of miRNA function. Transgenic mice expressing a construct harboring the 3′UTR of versican exhibits the adhesion of organs. Computational analysis indicated that a large number of microRNAs could bind to this fragment potentially including miR-199a*. Expression of versican and fibronectin, two targets of miR-199a*, are up-regulated in transgenic mice, suggesting that the 3′UTR binds and modulates miR-199a* activities, freeing mRNAs of versican and fibronectin from being repressed by miR-199a*. Confirmation of the binding was performed by PCR using mature miR-199a* as a primer and the targeting was performed by luciferase assays. Enhanced adhesion by expression of the 3′UTR was confirmed by in vitro assays. Our results demonstrated that upon arrival in cytoplasm, miRNA activities can be modulated locally by the 3′UTR. Our assay may be developed as sophisticated approaches for studying the mutual regulation of miRNAs and mRNAs in vitro and in vivo. We anticipate that expression of the 3′UTR may be an approach in the development of gene therapy. PMID:19223980
Identifiability, reducibility, and adaptability in allosteric macromolecules.
Bohner, Gergő; Venkataraman, Gaurav
2017-05-01
The ability of macromolecules to transduce stimulus information at one site into conformational changes at a distant site, termed "allostery," is vital for cellular signaling. Here, we propose a link between the sensitivity of allosteric macromolecules to their underlying biophysical parameters, the interrelationships between these parameters, and macromolecular adaptability. We demonstrate that the parameters of a canonical model of the mSlo large-conductance Ca 2+ -activated K + (BK) ion channel are non-identifiable with respect to the equilibrium open probability-voltage relationship, a common functional assay. We construct a reduced model with emergent parameters that are identifiable and expressed as combinations of the original mechanistic parameters. These emergent parameters indicate which coordinated changes in mechanistic parameters can leave assay output unchanged. We predict that these coordinated changes are used by allosteric macromolecules to adapt, and we demonstrate how this prediction can be tested experimentally. We show that these predicted parameter compensations are used in the first reported allosteric phenomena: the Bohr effect, by which hemoglobin adapts to varying pH. © 2017 Bohner and Venkataraman.
Identifiability, reducibility, and adaptability in allosteric macromolecules
Bohner, Gergő
2017-01-01
The ability of macromolecules to transduce stimulus information at one site into conformational changes at a distant site, termed “allostery,” is vital for cellular signaling. Here, we propose a link between the sensitivity of allosteric macromolecules to their underlying biophysical parameters, the interrelationships between these parameters, and macromolecular adaptability. We demonstrate that the parameters of a canonical model of the mSlo large-conductance Ca2+-activated K+ (BK) ion channel are non-identifiable with respect to the equilibrium open probability-voltage relationship, a common functional assay. We construct a reduced model with emergent parameters that are identifiable and expressed as combinations of the original mechanistic parameters. These emergent parameters indicate which coordinated changes in mechanistic parameters can leave assay output unchanged. We predict that these coordinated changes are used by allosteric macromolecules to adapt, and we demonstrate how this prediction can be tested experimentally. We show that these predicted parameter compensations are used in the first reported allosteric phenomena: the Bohr effect, by which hemoglobin adapts to varying pH. PMID:28416647
DREAM/Calsenilin/KChIP3 Modulates Strategy Selection and Estradiol-Dependent Learning and Memory
ERIC Educational Resources Information Center
Tunur, Tumay; Stelly, Claire E.; Schrader, Laura Ann
2013-01-01
Downstream regulatory element antagonist modulator (DREAM)/calsenilin(C)/K+ channel interacting protein 3 (KChIP3) is a multifunctional Ca[superscript 2+]-binding protein highly expressed in the hippocampus that inhibits hippocampus-sensitive memory and synaptic plasticity in male mice. Initial studies in our lab suggested opposing effects of…
Analyzing Impulse Using iPhone and Tracker
ERIC Educational Resources Information Center
Ayop, Shahrul Kadri
2017-01-01
The iPhone 6 introduced a new feature of recording video in Slo-Mo mode at 240 fps (4.17 ms interval). This great capability when integrated with video analysis freeware such as Tracker offers in-depth exploration for physical phenomena such as collisions that occur in a very short duration of time. This article discusses one such usage in…
ERIC Educational Resources Information Center
Rios, Joseph A.; Liu, Ou Lydia
2017-01-01
Online higher education institutions are presented with the concern of how to obtain valid results when administering student learning outcomes (SLO) assessments remotely. Traditionally, there has been a great reliance on unproctored Internet test administration (UIT) due to increased flexibility and reduced costs; however, a number of validity…
Examining the Alignment of Subject Learning Outcomes and Course Curricula through Curriculum Mapping
ERIC Educational Resources Information Center
Lam, Bick-Har; Tsui, Kwok-Tung
2013-01-01
Content analysis has been used to conduct curriculum mapping to map the course objectives, course content, and the assessment tasks of 14 compulsory courses, onto the five Subject Learning Objective (SLO) factors of the Department of Curriculum and Instruction (DC&I) in a teacher education institution in Hong Kong. The results show that the…
The Place of Content and Pedagogy in Shaping Sustainability Learning Outcomes in Higher Education
ERIC Educational Resources Information Center
Mintz, Keren; Tal, Tali
2018-01-01
This research investigates the ways in which undergraduate courses dealing with the environment address sustainable development (SD), and contribute to the development of sustainability learning outcomes (SLO). The participants in the study were 13 instructors, and 360 students who were enrolled in 13 courses that addressed the environment in a…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heckman, B.K.; Chinn, V.K.
1981-01-01
The development and use of computer programs written to produce the paper tape needed for the automation, or numeric control, of drill presses employed to fabricate computed-designed printed circuit boards are described. (LCL)
Meyer, Mark B.; Benkusky, Nancy A.; Kaufmann, Martin; Lee, Seong Min; Onal, Melda; Jones, Glenville; Pike, J. Wesley
2017-01-01
The vitamin D endocrine system regulates mineral homeostasis through its activities in the intestine, kidney, and bone. Terminal activation of vitamin D3 to its hormonal form, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), occurs in the kidney via the cytochrome P450 enzyme CYP27B1. Despite its importance in vitamin D metabolism, the molecular mechanisms underlying the regulation of the gene for this enzyme, Cyp27b1, are unknown. Here, we identified a kidney-specific control module governed by a renal cell-specific chromatin structure located distal to Cyp27b1 that mediates unique basal and parathyroid hormone (PTH)-, fibroblast growth factor 23 (FGF23)-, and 1,25(OH)2D3-mediated regulation of Cyp27b1 expression. Selective genomic deletion of key components within this module in mice resulted in loss of either PTH induction or FGF23 and 1,25(OH)2D3 suppression of Cyp27b1 gene expression; the former loss caused a debilitating skeletal phenotype, whereas the latter conferred a quasi-normal bone mineral phenotype through compensatory homeostatic mechanisms involving Cyp24a1. We found that Cyp27b1 is also expressed at low levels in non-renal cells, in which transcription was modulated exclusively by inflammatory factors via a process that was unaffected by deletion of the kidney-specific module. These results reveal that differential regulation of Cyp27b1 expression represents a mechanism whereby 1,25(OH)2D3 can fulfill separate functional roles, first in the kidney to control mineral homeostasis and second in extra-renal cells to regulate target genes linked to specific biological responses. Furthermore, we conclude that these mouse models open new avenues for the study of vitamin D metabolism and its involvement in therapeutic strategies for human health and disease. PMID:28808057
Modeling heat stress under different environmental conditions.
Carabaño, M J; Logar, B; Bormann, J; Minet, J; Vanrobays, M-L; Díaz, C; Tychon, B; Gengler, N; Hammami, H
2016-05-01
Renewed interest in heat stress effects on livestock productivity derives from climate change, which is expected to increase temperatures and the frequency of extreme weather events. This study aimed at evaluating the effect of temperature and humidity on milk production in highly selected dairy cattle populations across 3 European regions differing in climate and production systems to detect differences and similarities that can be used to optimize heat stress (HS) effect modeling. Milk, fat, and protein test day data from official milk recording for 1999 to 2010 in 4 Holstein populations located in the Walloon Region of Belgium (BEL), Luxembourg (LUX), Slovenia (SLO), and southern Spain (SPA) were merged with temperature and humidity data provided by the state meteorological agencies. After merging, the number of test day records/cows per trait ranged from 686,726/49,655 in SLO to 1,982,047/136,746 in BEL. Values for the daily average and maximum temperature-humidity index (THIavg and THImax) ranges for THIavg/THImax were largest in SLO (22-74/28-84) and shortest in SPA (39-76/46-83). Change point techniques were used to determine comfort thresholds, which differed across traits and climatic regions. Milk yield showed an inverted U-shaped pattern of response across the THI scale with a HS threshold around 73 THImax units. For fat and protein, thresholds were lower than for milk yield and were shifted around 6 THI units toward larger values in SPA compared with the other countries. Fat showed lower HS thresholds than protein traits in all countries. The traditional broken line model was compared with quadratic and cubic fits of the pattern of response in production to increasing heat loads. A cubic polynomial model allowing for individual variation in patterns of response and THIavg as heat load measure showed the best statistical features. Higher/lower producing animals showed less/more persistent production (quantity and quality) across the THI scale. The estimated correlations between comfort and THIavg values of 70 (which represents the upper end of the THIavg scale in BEL-LUX) were lower for BEL-LUX (0.70-0.80) than for SPA (0.83-0.85). Overall, animals producing in the more temperate climates and semi-extensive grazing systems of BEL and LUX showed HS at lower heat loads and more re-ranking across the THI scale than animals producing in the warmer climate and intensive indoor system of SPA. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Biasin, Mara; Piacentini, Luca; Lo Caputo, Sergio; Kanari, Yasuyoshi; Magri, Giuliana; Trabattoni, Daria; Naddeo, Valentina; Lopalco, Lucia; Clivio, Alberto; Cesana, Eugenio; Fasano, Francesca; Bergamaschi, Cristina; Mazzotta, Francesco; Miyazawa, Masaaki; Clerici, Mario
2007-04-01
Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G (APOBEC3G), a human cytidine deaminase, is a potent inhibitor of HIV replication. To explore a possible role of this protein in modulating in vivo susceptibility to HIV infection, we analyzed APOBEC3G expression in HIV-exposed seronegative individuals, HIV-seropositive patients, and healthy control subjects. The results showed that the expression of APOBEC3G is significantly increased in peripheral blood mononuclear cells (PBMCs)--mainly CD14(+) cells--and in cervical tissues of HIV-exposed seronegative individuals. Higher APOBEC3G expression correlated with a reduced susceptibility of PBMCs to in vitro infection with the HIV-1(Ba-L) R5 strain. APOBEC3G could be important in modulating in vivo susceptibility to sexually transmitted HIV infection.
Shen, Haoran; Liang, Zhou; Zheng, Saihua; Li, Xuelian
2017-11-01
The purpose of this study was to identify promising candidate genes and pathways in polycystic ovary syndrome (PCOS). Microarray dataset GSE345269 obtained from the Gene Expression Omnibus database includes 7 granulosa cell samples from PCOS patients, and 3 normal granulosa cell samples. Differentially expressed genes (DEGs) were screened between PCOS and normal samples. Pathway enrichment analysis was conducted for DEGs using ClueGO and CluePedia plugin of Cytoscape. A Reactome functional interaction (FI) network of the DEGs was built using ReactomeFIViz, and then network modules were extracted, followed by pathway enrichment analysis for the modules. Expression of DEGs in granulosa cell samples was measured using quantitative RT-PCR. A total of 674 DEGs were retained, which were significantly enriched with inflammation and immune-related pathways. Eight modules were extracted from the Reactome FI network. Pathway enrichment analysis revealed significant pathways of each module: module 0, Regulation of RhoA activity and Signaling by Rho GTPases pathways shared ARHGAP4 and ARHGAP9; module 2, GlycoProtein VI-mediated activation cascade pathway was enriched with RHOG; module 3, Thromboxane A2 receptor signaling, Chemokine signaling pathway, CXCR4-mediated signaling events pathways were enriched with LYN, the hub gene of module 3. Results of RT-PCR confirmed the finding of the bioinformatic analysis that ARHGAP4, ARHGAP9, RHOG and LYN were significantly upregulated in PCOS. RhoA-related pathways, GlycoProtein VI-mediated activation cascade pathway, ARHGAP4, ARHGAP9, RHOG and LYN may be involved in the pathogenesis of PCOS.
Hueber, Pierre-Alain; Fukuzawa, Ryuji; Elkares, Reyhan; Chu, Leelee; Blumentkrantz, Miriam; He, Shu-Jie; Anaka, Matthew R; Reeve, Anthony E; Eccles, Michael; Jabado, Nada; Iglesias, Diana M; Goodyer, Paul R
2009-01-01
Wilms tumor (WT) is the most frequent renal neoplasm of childhood; a myogenic component is observed in 5% to 10% of tumors. We demonstrate for the first time that myogenic WTs are associated with expression of PAX3, a transcription factor known to specify myoblast cell fate during muscle development. In a panel of 20 WTs, PAX3 was identified in 13 of 13 tumor samples with myogenic histopathology but was absent in 7 of 7 tumors lacking a myogenic component. Furthermore, we show that PAX3 is expressed in the metanephric mesenchyme and stromal compartment of developing mouse kidney. Modulation of endogenous PAX3 expression in human embryonic kidney (HEK293) cells influenced cell migration in in vitro assays. Mutations of WT1 were consistently associated with PAX3 expression in WTs, and modulation of WT1 expression in HEK293 cells was inversely correlated with the level of endogenous PAX3 protein. We demonstrate abundant PAX3 and absence of PAX2 expression in a novel cell line (WitP3) isolated from the stromal portion of a WT bearing a homozygous deletion of the WT1 gene. We hypothesize that PAX3 sets stromal cell fate in developing kidney but is normally suppressed by WT1 during the mesenchyme-to-epithelium transition leading to nephrogenesis. Loss of WT1 permits aberrant PAX3 expression in a subset of WTs with myogenic phenotype.
Antoniv, Taras T; Ivashkiv, Lionel B
2011-01-01
Interleukin-10 (IL-10) is an immunosuppressive cytokine that inhibits inflammatory gene expression. Phosphatidylinositol 3-kinase (PI3K) -mediated signalling regulates inflammatory responses and can induce IL-10 production, but a role for PI3K signalling in cellular responses to IL-10 is not known. In this study we investigated the involvement of the PI3K-Akt-GSK3 signalling pathway in IL-10-induced gene expression and IL-10-mediated suppression of Toll-like receptor-induced gene expression in primary human macrophages. A combination of loss and gain of function approaches using kinase inhibitors, expression of constitutively active Akt, and RNA interference in primary human macrophages showed that expression of a subset of IL-10-inducible genes was dependent on PI3K-Akt signalling. The effects of PI3K-Akt signalling on IL-10 responses were mediated at least in part by glycogen synthase kinase 3 (GSK3). In accordance with a functional role for PI3K pathways in contributing to the suppressive actions of IL-10, PI3K signalling augmented IL-10-mediated inhibition of lipopolysaccharide-induced IL-1, IL-8 and cyclo-oxygenase-2 expression. The PI3K signalling selectively modulated IL-10 responses, as it was not required for inhibition of tumour necrosis factor expression or for induction of certain IL-10-inducible genes such as SOCS3. These findings identify a new mechanism by which PI3K-mediated signalling can suppress inflammation by regulating IL-10-mediated gene induction and anti-inflammatory function. PMID:21255011
Safian, Diego; van der Kant, Henk J. G.; Crespo, Diego; Bogerd, Jan; Schulz, Rüdiger W.
2017-01-01
Previous work showed that pharmacological inactivation of Igf-binding proteins (Igfbps), modulators of Igf activity, resulted in an excessive differentiation of type A undifferentiated (Aund) spermatogonia in zebrafish testis in tissue culture when Fsh was present in the incubation medium. Using this testis tissue culture system, we studied here the regulation of igfbp transcript levels by Fsh and two of its downstream effectors, Igf3 and 11-ketotestosterone (11-KT). We also explored how Fsh-modulated igfbp expression affected spermatogonial proliferation by adding or removing the Igfbp inhibitor NBI-31772 at different times. Fsh (100 ng/mL) decreased the transcript levels of igfbp1a, -3, and -6a after 1 or 3 days, while increasing igfbp2a and -5b expression, but only after 5 days of incubation. Igf3 down-regulated the same igfbp transcripts as Fsh but with a delay of at least 4 days. 11-KT increased the transcripts (igfbp2a and 5b) that were elevated by Fsh and decreased those of igfbp6a, as did Fsh, while 11-KT did not change igfbp1a or -3 transcript levels. To evaluate Igfbps effects on spermatogenesis, we quantified under different conditions the mitotic indices and relative section areas occupied by the different spermatogonial generations (type Aund, type A differentiating (Adiff), or type B (B) spermatogonia). Igf3 (100 ng/mL) increased the area occupied by Adiff and B while decreasing the one for Aund. Interestingly, a concentration of Igf3 that was inactive by itself (25 ng/mL) became active in the presence of the Igfbp inhibitor NBI-31772 and mimicked the effect of 100 ng/mL Igf3 on spermatogonia. Studies exploiting the different dynamics of igfbp expression in response to Fsh and adding or removing NBI-31772 at different times showed that the quick downregulation of three igfbp as well as the delayed upregulated of two igfbps all support Igf3 bioactivity, namely the stimulation of spermatogonial differentiation. We conclude that Fsh modulates, directly or via androgens and Igf3, igfbp gene expression, supporting Igf3 bioactivity either by decreasing igfbp1a, -3, -6a or by increasing igfbp2a and -5b gene expression. PMID:29209278
14-3-3ε Overexpression Contributes to Epithelial-Mesenchymal Transition of Hepatocellular Carcinoma
Liang, Shu-Man; Chen, Shyh-Chang; Wang, John; Hsu, Chiun; Wu, Yao-Ming; Liou, Jun-Yang
2013-01-01
Background 14-3-3ε is implicated in regulating tumor progression, including hepatocellular carcinoma (HCC). Our earlier study indicated that elevated 14-3-3ε expression is significantly associated with higher risk of metastasis and lower survival rates of HCC patients. However, the molecular mechanisms of how 14-3-3ε regulates HCC tumor metastasis are still unclear. Methodology and Principal Findings In this study, we show that increased 14-3-3ε expression induces HCC cell migration and promotes epithelial-mesenchymal transition (EMT), which is determined by the reduction of E-cadherin expression and induction of N-cadherin and vimentin expression. Knockdown with specific siRNA abolished 14-3-3ε-induced cell migration and EMT. Furthermore, 14-3-3ε selectively induced Zeb-1 and Snail expression, and 14-3-3ε-induced cell migration was abrogated by Zeb-1 or Snail siRNA. In addition, the effect of 14-3-3ε-reduced E-cadherin was specifically restored by Zeb-1 siRNA. Positive 14-3-3ε expression was significantly correlated with negative E-cadherin expression, as determined by immunohistochemistry analysis in HCC tumors. Analysis of 14-3-3ε/E-cadherin expression associated with clinicopathological characteristics revealed that the combination of positive 14-3-3ε and negative E-cadherin expression is significantly correlated with higher incidence of HCC metastasis and poor 5-year overall survival. In contrast, patients with positive 14-3-3ε and positive E-cadherin expression had better prognostic outcomes than did those with negative E-cadherin expression. Significance Our findings show for the first time that E-cadherin is one of the downstream targets of 14-3-3ε in modulating HCC tumor progression. Thus, 14-3-3ε may act as an important regulator in modulating tumor metastasis by promoting EMT as well as cell migration, and it may serve as a novel prognostic biomarker or therapeutic target for HCC. PMID:23483955
Gonçalves, Joana P; Aires, Ricardo S; Francisco, Alexandre P; Madeira, Sara C
2012-01-01
Explaining regulatory mechanisms is crucial to understand complex cellular responses leading to system perturbations. Some strategies reverse engineer regulatory interactions from experimental data, while others identify functional regulatory units (modules) under the assumption that biological systems yield a modular organization. Most modular studies focus on network structure and static properties, ignoring that gene regulation is largely driven by stimulus-response behavior. Expression time series are key to gain insight into dynamics, but have been insufficiently explored by current methods, which often (1) apply generic algorithms unsuited for expression analysis over time, due to inability to maintain the chronology of events or incorporate time dependency; (2) ignore local patterns, abundant in most interesting cases of transcriptional activity; (3) neglect physical binding or lack automatic association of regulators, focusing mainly on expression patterns; or (4) limit the discovery to a predefined number of modules. We propose Regulatory Snapshots, an integrative mining approach to identify regulatory modules over time by combining transcriptional control with response, while overcoming the above challenges. Temporal biclustering is first used to reveal transcriptional modules composed of genes showing coherent expression profiles over time. Personalized ranking is then applied to prioritize prominent regulators targeting the modules at each time point using a network of documented regulatory associations and the expression data. Custom graphics are finally depicted to expose the regulatory activity in a module at consecutive time points (snapshots). Regulatory Snapshots successfully unraveled modules underlying yeast response to heat shock and human epithelial-to-mesenchymal transition, based on regulations documented in the YEASTRACT and JASPAR databases, respectively, and available expression data. Regulatory players involved in functionally enriched processes related to these biological events were identified. Ranking scores further suggested ability to discern the primary role of a gene (target or regulator). Prototype is available at: http://kdbio.inesc-id.pt/software/regulatorysnapshots.
Gonçalves, Joana P.; Aires, Ricardo S.; Francisco, Alexandre P.; Madeira, Sara C.
2012-01-01
Explaining regulatory mechanisms is crucial to understand complex cellular responses leading to system perturbations. Some strategies reverse engineer regulatory interactions from experimental data, while others identify functional regulatory units (modules) under the assumption that biological systems yield a modular organization. Most modular studies focus on network structure and static properties, ignoring that gene regulation is largely driven by stimulus-response behavior. Expression time series are key to gain insight into dynamics, but have been insufficiently explored by current methods, which often (1) apply generic algorithms unsuited for expression analysis over time, due to inability to maintain the chronology of events or incorporate time dependency; (2) ignore local patterns, abundant in most interesting cases of transcriptional activity; (3) neglect physical binding or lack automatic association of regulators, focusing mainly on expression patterns; or (4) limit the discovery to a predefined number of modules. We propose Regulatory Snapshots, an integrative mining approach to identify regulatory modules over time by combining transcriptional control with response, while overcoming the above challenges. Temporal biclustering is first used to reveal transcriptional modules composed of genes showing coherent expression profiles over time. Personalized ranking is then applied to prioritize prominent regulators targeting the modules at each time point using a network of documented regulatory associations and the expression data. Custom graphics are finally depicted to expose the regulatory activity in a module at consecutive time points (snapshots). Regulatory Snapshots successfully unraveled modules underlying yeast response to heat shock and human epithelial-to-mesenchymal transition, based on regulations documented in the YEASTRACT and JASPAR databases, respectively, and available expression data. Regulatory players involved in functionally enriched processes related to these biological events were identified. Ranking scores further suggested ability to discern the primary role of a gene (target or regulator). Prototype is available at: http://kdbio.inesc-id.pt/software/regulatorysnapshots. PMID:22563474
Gao, Peng; Zhang, Yuchao; Liu, Yuantao; Chen, Jicui; Zong, Chen; Yu, Cong; Cui, Shang; Gao, Weina; Qin, Dandan; Sun, Wenchuan; Li, Xia; Wang, Xiangdong
2015-12-01
The role and mechanism of signal transducer and activator of transcription 5B (STAT5B) in adipogenesis remain unclear. In this study, our data showed that Males absent on the first (MOF) protein expression was increased during 3 T3-L1 preadipocytes differentiation accompanied with STAT5B expression increasing. Over-expression STAT5B enhanced MOF promoter trans-activation in HeLa cells. Mutagenesis assay and ChIP analysis exhibited that STAT5B was able to bind MOF promoter. Knocking-down STAT5B in 3 T3-L1 preadipocytes led to decreased expression of MOF, but resulted in increased expression of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα) and fatty acid-binding protein 4 (Fabp4), which were important factors or enzymes for adipogenesis. We also found that knocking-down MOF in 3 T3-L1 preadipocytes resulted in increased expression of PPARγ, C/EBPα and Fabp4, which was in the same trend as STAT5B knocking-down. Over-expression MOF resulted in reduced promoter trans-activation activity of C/EBPα. These results suggest that STAT5B and MOF work as negative regulators in adipogenesis, and STAT5B modulates preadipocytes differentiation partially by regulating MOF expression. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Singh, Padmanabh; Konar, Arpita; Kumar, Ashish; Srivas, Sweta; Thakur, Mahendra K
2015-08-01
The amnesic potential of scopolamine is well manifested through synaptic plasticity gene expression changes and behavioral paradigms of memory impairment. However, the underlying mechanism remains obscure and consequently ideal therapeutic target is lacking. In this context, chromatin-modifying enzymes, which regulate memory gene expression changes, deserve major attention. Therefore, we analyzed the expression of chromatin-modifying enzymes and recovery potential of enzyme modulators in scopolamine-induced amnesia. Scopolamine administration drastically up-regulated DNA methyltransferases (DNMT1) and HDAC2 expression while CREB-binding protein (CBP), DNMT3a and DNMT3b remained unaffected. HDAC inhibitor sodium butyrate and DNMT inhibitor Aza-2'deoxycytidine recovered scopolamine-impaired hippocampal-dependent memory consolidation with concomitant increase in the expression of synaptic plasticity genes Brain-derived neurotrophic factor (BDNF) and Arc and level of histone H3K9 and H3K14 acetylation and decrease in DNA methylation level. Sodium butyrate showed more pronounced effect than Aza-2'deoxycytidine and their co-administration did not exhibit synergistic effect on gene expression. Taken together, we showed for the first time that scopolamine-induced up-regulation of chromatin-modifying enzymes, HDAC2 and DNMT1, leads to gene expression changes and consequent decline in memory consolidation. Our findings on the action of scopolamine as an epigenetic modulator can pave a path for ideal therapeutic targets. We propose the following putative pathway for scopolamine-mediated memory impairment; scopolamine up-regulates hippocampal DNMT1 and HDAC2 expression, induces methylation and deacetylation of BDNF and Arc promoter, represses gene expression and eventually impairs memory consolidation. On the other hand, Aza-2 and NaB inhibit DNMT1 and HDAC2 respectively, up-regulate BDNF and Arc expression and recover memory consolidation. We elucidate the action of scopolamine as an epigenetic modulator and hope that DNMT1 and HDAC2 would be ideal therapeutic targets for memory disorders. © 2015 International Society for Neurochemistry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhuri, Tathagata; Verma, Subhash C.; Lan, Ke
Epstein-Barr virus (EBV) is a lymphotrophic herpesvirus infecting most of the world's population. It is associated with a number of human lymphoid and epithelial tumors and lymphoproliferative diseases in immunocompromised patients. A subset of latent EBV antigens is required for immortalization of primary B-lymphocytes. The metastatic suppressor Nm23-H1 which is downregulated in human invasive breast carcinoma reduces the migration and metastatic activity of breast carcinoma cells when expressed from a heterologous promoter. Interestingly, the EBV nuclear antigen 3C (EBNA3C) reverses these activities of Nm23-H1. The alpha V integrins recognize a variety of ligands for signaling and are involved in cellmore » migration and proliferation and also serve as major receptors for extracellular-matrix-mediated cell adhesion and migration. The goal of this study was to determine if Nm23-H1 and EBNA3C can modulate alpha V integrin expression and downstream activities. The results of our studies indicate that Nm23-H1 downregulates alpha V intregrin expression in a dose responsive manner. In contrast, EBNA3C can upregulate alpha V integrin expression. Furthermore, the study showed that the association of the Sp1 and GATA transcription factors with Nm23-H1 is required for modulation of the alpha V integrin activity. Thus, these results suggest a direct correlation between the alpha V integrin expression and the interaction of Nm23-H1 with EBNA3C.« less
ERIC Educational Resources Information Center
Hartl, David, Ed.; And Others
Designed to assist teachers in small schools with the improvement of curriculum and instruction and to help smaller districts which do not have curriculum personnel to comply with Washington's Student Learning Objectives (SLO) Law, this guide contains reading curriculum materials for grades 7 and 8. The objectives listed are correlated to the…
ERIC Educational Resources Information Center
Hartl, David, Ed.; And Others
Designed to assist teachers in small schools with the improvement of curriculum and instruction and to help smaller districts which do not have curriculum personnel to comply with Washington's Student Learning Objectives (SLO) Law, this guide contains reading curriculum materials for grades 4-6. The objectives listed are correlated to the Goals…
Low-Speed Wind Tunnel Flow Quality Determination
2011-09-01
Traverse Motor The traverse motor for the BiSlide is a NEMA Type 34D, Slo-Syn® stepper motor, allowing the operator to position items in the test... norm (w1)^2/sum(w1)^2,’k’); %% plot on log-log scale ylabel(‘RMS Power/Frequency (V^2)’) xlabel(‘Frequency (Hz)’) title(‘Power Spectrum’) end
ERIC Educational Resources Information Center
Alsobrook, Metta
2010-01-01
All institutions of higher learning in America must have national accreditation in order to receive government funding. One of the main requirements from the national accreditation commissions is that the institution must have a process for assessing student learning outcomes (SLO). The reason for the new requirement is that the federal government…
Mabbott, Neil A
2012-01-01
Prion diseases are subacute neurodegenerative diseases that affect humans and a range of domestic and free-ranging animal species. These diseases are characterized by the accumulation of PrP (Sc), an abnormally folded isoform of the cellular prion protein (PrP (C)), in affected tissues. The pathology during prion disease appears to occur almost exclusively within the central nervous system. The extensive neurodegeneration which occurs ultimately leads to the death of the host. An intriguing feature of the prion diseases, when compared with other protein-misfolding diseases, is their transmissibility. Following peripheral exposure, some prion diseases accumulate to high levels within lymphoid tissues. The replication of prions within lymphoid tissue has been shown to be important for the efficient spread of disease to the brain. This article describes recent progress in our understanding of the cellular mechanisms that influence the propagation of prions from peripheral sites of exposure (such as the lumen of the intestine) to the brain. A thorough understanding of these events will lead to the identification of important targets for therapeutic intervention, or alternatively, reveal additional processes that influence disease susceptibility to peripherally-acquired prion diseases.
Du, William Weidong; Yang, Burton B.; Yang, Bing L.; Deng, Zhaoqun; Fang, Ling; Shan, Sze Wan; Jeyapalan, Zina; Zhang, Yaou; Seth, Arun; Yee, Albert J.
2011-01-01
Overexpression of EGFR and versican has been reported in association with breast cancers. Considered oncogenic, these molecules may be attractive therapeutic targets. Possessing anti-apoptotic and drug resistant properties, overexpression of these molecules is accompanied by selective sensitization to the process of apoptosis. In this study, we exogenously expressed a versican G3 construct in breast cancer cell lines and analyzed the effects of G3 on cell viability in fetal bovine serum free conditioned media and evaluated the effects of apoptotic agent C2-ceramide, and chemotherapeutic agents including Docetaxel, Doxorubicin, and Epirubicin. Versican G3 domain enhanced tumor cell resistance to apoptosis when cultured in serum free medium, Doxorubicin, or Epirubicin by up-regulating pERK and GSK-3β (S9P). However, it could be prevented by selective EGFR inhibitor AG 1478 and selective MEK inhibitor PD 98059. Both AG 1478 and PD 98059 enhanced expression of pSAPK/JNK, while selective JNK inhibitor SP 600125 enhanced expression of GSK-3β (S9P). Versican G3 promoted cell apoptosis induced by C2-ceramide or Docetaxel by enhancing expression of pSAPK/JNK and decreasing expression of GSK-3β (S9P), an observation blocked by AG 1478 or SP 6000125. Inhibition of endogenous versican expression by siRNA or reduction of versican G3's expression by linking G3 with 3′UTR prevented G3 modulated cell apoptosis. The dual roles of G3 in modulating breast cancer cell resistance to chemotherapeutic agents may in part explain a potential mechanism for breast cancer cell resistance to chemotherapy and EGFR therapy. The apoptotic effects of chemotherapeutics depend upon the activation and balance of down stream signals in the EGFR pathway. GSK-3β (S9P) appears to function as a key checkpoint in this balance of apoptosis and anti-apoptosis. Investigation and potential consideration of targeting GSK-3β (S9P) merits further study. PMID:22096483
Du, William Weidong; Yang, Burton B; Yang, Bing L; Deng, Zhaoqun; Fang, Ling; Shan, Sze Wan; Jeyapalan, Zina; Zhang, Yaou; Seth, Arun; Yee, Albert J
2011-01-01
Overexpression of EGFR and versican has been reported in association with breast cancers. Considered oncogenic, these molecules may be attractive therapeutic targets. Possessing anti-apoptotic and drug resistant properties, overexpression of these molecules is accompanied by selective sensitization to the process of apoptosis. In this study, we exogenously expressed a versican G3 construct in breast cancer cell lines and analyzed the effects of G3 on cell viability in fetal bovine serum free conditioned media and evaluated the effects of apoptotic agent C2-ceramide, and chemotherapeutic agents including Docetaxel, Doxorubicin, and Epirubicin. Versican G3 domain enhanced tumor cell resistance to apoptosis when cultured in serum free medium, Doxorubicin, or Epirubicin by up-regulating pERK and GSK-3β (S9P). However, it could be prevented by selective EGFR inhibitor AG 1478 and selective MEK inhibitor PD 98059. Both AG 1478 and PD 98059 enhanced expression of pSAPK/JNK, while selective JNK inhibitor SP 600125 enhanced expression of GSK-3β (S9P). Versican G3 promoted cell apoptosis induced by C2-ceramide or Docetaxel by enhancing expression of pSAPK/JNK and decreasing expression of GSK-3β (S9P), an observation blocked by AG 1478 or SP 6000125. Inhibition of endogenous versican expression by siRNA or reduction of versican G3's expression by linking G3 with 3'UTR prevented G3 modulated cell apoptosis. The dual roles of G3 in modulating breast cancer cell resistance to chemotherapeutic agents may in part explain a potential mechanism for breast cancer cell resistance to chemotherapy and EGFR therapy. The apoptotic effects of chemotherapeutics depend upon the activation and balance of down stream signals in the EGFR pathway. GSK-3β (S9P) appears to function as a key checkpoint in this balance of apoptosis and anti-apoptosis. Investigation and potential consideration of targeting GSK-3β (S9P) merits further study.
Pigard, Nadine; Elovaara, Irina; Kuusisto, Hanna; Paalavuo, Raija; Dastidar, Prasun; Zimmermann, Klaus; Schwarz, Hans-Peter; Reipert, Birgit
2009-04-30
The objective of this study was to identify genes that are differentially expressed in peripheral T cells of patients with MS exacerbation receiving treatment with IVIG. Using microarray analysis, we identified 360 genes that were at least two-fold up- or down-regulated. The expression of four representative genes (PTGER4, CXCL5, IL11 and CASP2) was confirmed by quantitative PCR. Four of the differentially expressed genes encode chemokines (CXCL3, CXCL5, CCL13 and XCL2) that are involved in directing leukocyte migration. We suggest that the modulation of chemokine expression in peripheral T cells contributes to the beneficial activity of IVIG in patients with MS exacerbation.
Gautier, Hélène; Auger, Jacques; Legros, Christian; Lapied, Bruno
2008-01-01
Dimethyl disulfide (DMDS), a plant-derived insecticide, is a promising fumigant as a substitute for methyl bromide. To further understand the mode of action of DMDS, we examined its effect on cockroach octopaminergic neurosecretory cells, called dorsal unpaired median (DUM) neurons, using whole-cell patch-clamp technique, calcium imaging and antisense oligonucleotide strategy. At low concentration (1 microM), DMDS modified spontaneous regular spike discharge into clear bursting activity associated with a decrease of the amplitude of the afterhyperpolarization. This effect led us to suspect alterations of calcium-activated potassium currents (IKCa) and [Ca(2+)](i) changes. We showed that DMDS reduced amplitudes of both peak transient and sustained components of the total potassium current. IKCa was confirmed as a target of DMDS by using iberiotoxin, cadmium chloride, and pSlo antisense oligonucleotide. In addition, we showed that DMDS induced [Ca(2+)](i) rise in Fura-2-loaded DUM neurons. Using calcium-free solution, and (R,S)-(3,4-dihydro-6,7-dimethoxy-isoquinoline-1-yl)-2-phenyl-N,N-di-[2-(2,3,4-trimethoxy-phenyl)ethyl]-acetamide (LOE 908) [an inhibitor of transient receptor potential (TRP)gamma], we demonstrated that TRPgamma initiated calcium influx. By contrast, omega-conotoxin GVIA (an inhibitor of N-type high-voltage-activated calcium channels), did not affect the DMDS-induced [Ca(2+)](i) rise. Finally, the participation of the calcium-induced calcium release mechanism was investigated using thapsigargin, caffeine, and ryanodine. Our study revealed that DMDS-induced elevation in [Ca(2+)](i) modulated IKCa in an unexpected bell-shaped manner via intracellular calcium. In conclusion, DMDS affects multiple targets, which could be an effective way to improve pest control efficacy of fumigation.
Trefoil factor 2 (TFF2) deficiency in murine digestive tract influences the immune system.
Baus-Loncar, Mirela; Schmid, Janinne; Lalani, El-Nasir; Rosewell, Ian; Goodlad, Robert A; Stamp, Gordon W H; Blin, Nikolaus; Kayademir, Tuncay
2005-01-01
The gastrointestinal trefoil factor family (TFF1, TFF2, TFF3) peptides are considered to play an important role in maintaining the integrity of the mucosa. The physiological role of TFF2 in the protection of the GI tract was investigated in TFF2 deficiency. TFF2-/- mice were generated and differential expression of various genes was assessed by using a mouse expression microarray, quantitative real time PCR, Northern blots or immunohistochemistry. On an mRNA level we found 128 differentially expressed genes. We observed modulation of a number of crucial genes involved in innate and adaptive immunity in the TFF2-/- mice. Expression of proteasomal subunits genes (LMP2, LMP7 and PSMB5) involved in the MHC class I presentation pathway were modulated indicating the formation of immunoproteasomes improving antigen presentation. Expression of one subunit of a transporter (TAP1) responsible for importing degraded antigens into ER was increased, similarly to the BAG2 gene that modulates chaperone activity in ER helping proper loading on MHC class I molecules. Several mouse defensin (cryptdin) genes coding important intestinal microbicidal proteins were up-regulated as a consequence of TFF2 deficiency. Normally moderate expression of TFF3 was highly increased in stomach. Copyright (c) 2005 S. Karger AG, Basel.
Proanthocyanidins Modulate MicroRNA Expression in Human HepG2 Cells
Arola-Arnal, Anna; Bladé, Cinta
2011-01-01
Mi(cro)RNAs are small non-coding RNAs of 18-25 nucleotides in length that modulate gene expression at the post-transcriptional level. These RNAs have been shown to be involved in a several biological processes, human diseases and metabolic disorders. Proanthocyanidins, which are the most abundant polyphenol class in the human diet, have positive health effects on a variety of metabolic disorders such as inflammation, obesity, diabetes and insulin resistance. The present study aimed to evaluate whether proanthocyanidin-rich natural extracts modulate miRNA expression. Using microarray analysis and Q-PCR, we investigated miRNA expression in HepG2 cells treated with proanthocyanidins. Our results showed that when HepG2 cells were treated with grape seed proanthocyanidin extract (GSPE), cocoa proanthocyanidin extract (CPE) or pure epigallocatechin gallate isolated from green tea (EGCG), fifteen, six and five differentially expressed miRNAs, respectively, were identified out of 904 mRNAs. Specifically, miR-30b* was downregulated by the three treatments, and treatment with GSPE or CPE upregulated miR-1224-3p, miR-197 and miR-532-3p. Therefore, these results provide evidence of the capacity of dietary proanthocyanidins to influence microRNA expression, suggesting a new mechanism of action of proanthocyanidins. PMID:21998738
Dact1-3 mRNAs exhibit distinct expression domains during tooth development
Kettunen, Päivi; Kivimäe, Saul; Keshari, Pankaj; Klein, Ophir D.; Cheyette, Benjamin N.R.; Luukko, Keijo
2010-01-01
Wnt signaling is essential for tooth formation. Dact proteins modulate Wnt signaling by binding to the intracellular protein Dishevelled (Dvl). Comparison of all known mouse Dact genes, Dact1-3, from the morphological initiation of mandibular first molar development after the onset of the root formation using sectional in situ hybridization showed distinct, complementary and overlapping expression patterns for the studied genes. While Dact2 expression was restricted to the dental epithelium including the enamel knot signaling centers and tooth specific preameloblasts, Dact1 and Dact3 showed developmentally regulated expression in the dental mesenchyme. Both mRNAs were first detected in the presumptive dental mesenchyme. After being downregulated from the condensed dental mesenchyme of the bud stage tooth germ, Dact1 was upregulated in the dental follicle masenchyme at the cap stage and subsequently also in the dental papilla at the bell stage where the expression persisted to the postnatal stages. In contrast, Dact3 transcripts persisted throughout the dental mesenchymal tissue components including the tooth-specific cells, preodontoblasts before transcripts were largely downregulated from the tooth germ postnatally. Collectively these results suggest that Dact1 and -3 may contribute to early tooth formation by modulation of Wnt signaling pathways in the mesenchyme, including preodontoblasts, whereas Dact2 may play important signal-modulating roles in the adjacent epithelial cells including the enamel knot signaling centers and preameloblasts. Future loss-of-function studies will help elucidate whether any of these functions are redundant, particularly for Dact1 and Dact3. PMID:20170752
The putative protein methyltransferase LAE1 controls cellulase gene expression in Trichoderma reesei
Seiboth, Bernhard; Karimi, Razieh Aghcheh; Phatale, Pallavi A; Linke, Rita; Hartl, Lukas; Sauer, Dominik G; Smith, Kristina M; Baker, Scott E; Freitag, Michael; Kubicek, Christian P
2012-01-01
Summary Trichoderma reesei is an industrial producer of enzymes that degrade lignocellulosic polysaccharides to soluble monomers, which can be fermented to biofuels. Here we show that the expression of genes for lignocellulose degradation are controlled by the orthologous T. reesei protein methyltransferase LAE1. In a lae1 deletion mutant we observed a complete loss of expression of all seven cellulases, auxiliary factors for cellulose degradation, β-glucosidases and xylanases were no longer expressed. Conversely, enhanced expression of lae1 resulted in significantly increased cellulase gene transcription. Lae1-modulated cellulase gene expression was dependent on the function of the general cellulase regulator XYR1, but also xyr1 expression was LAE1-dependent. LAE1 was also essential for conidiation of T. reesei. Chromatin immunoprecipitation followed by high-throughput sequencing (‘ChIP-seq’) showed that lae1 expression was not obviously correlated with H3K4 di- or trimethylation (indicative of active transcription) or H3K9 trimethylation (typical for heterochromatin regions) in CAZyme coding regions, suggesting that LAE1 does not affect CAZyme gene expression by directly modulating H3K4 or H3K9 methylation. Our data demonstrate that the putative protein methyltransferase LAE1 is essential for cellulase gene expression in T. reesei through mechanisms that remain to be identified. PMID:22554051
Gopinath, Kulasekaran; Sudhandiran, Ganapasam
2016-01-01
Naringin (4',5,7-trihydroxy-flavonone-7-rhamnoglucoside), a flavonone present in grapefruit, has recently been reported to protect against neurodegeration, induced with 3-nitropropionic acid (3-NP), through its antioxidant, anti-inflammatory, and antiapoptotic properties. This study used a rat model of 3-NP-induced neurodegeneration to investigate the neuroprotective effects of naringin exerted by modulating the expression of matrix metalloproteinases and glial fibrillary acidic protein. Neurodegeneration was induced with 3-NP (10 mg/kg body mass, by intraperitoneal injection) once a day for 2 weeks, and induced rats were treated with naringin (80 mg/kg body mass, by oral gavage, once a day for 2 weeks). Naringin ameliorated the motor abnormalities caused by 3-NP, and reduced blood-brain barrier dysfunction by decreasing the expression of matrix metalloproteinases 2 and 9, along with increasing the expression of the tissue inhibitors of metalloproteinases 1 and 2 in 3-NP-induced rats. Further, naringin reduced 3-NP-induced neuroinflammation by decreasing the expression of nuclear factor-kappa B and glial fibrillary acidic protein. Thus, naringin exerts protective effects against 3-NP-induced neurodegeneration by ameliorating the expressions of matrix metalloproteinases and glial fibrillary acidic protein.
Enhanced LOD Concepts for Virtual 3d City Models
NASA Astrophysics Data System (ADS)
Benner, J.; Geiger, A.; Gröger, G.; Häfele, K.-H.; Löwner, M.-O.
2013-09-01
Virtual 3D city models contain digital three dimensional representations of city objects like buildings, streets or technical infrastructure. Because size and complexity of these models continuously grow, a Level of Detail (LoD) concept effectively supporting the partitioning of a complete model into alternative models of different complexity and providing metadata, addressing informational content, complexity and quality of each alternative model is indispensable. After a short overview on various LoD concepts, this paper discusses the existing LoD concept of the CityGML standard for 3D city models and identifies a number of deficits. Based on this analysis, an alternative concept is developed and illustrated with several examples. It differentiates between first, a Geometric Level of Detail (GLoD) and a Semantic Level of Detail (SLoD), and second between the interior building and its exterior shell. Finally, a possible implementation of the new concept is demonstrated by means of an UML model.
Shen, Yun; Ruan, Qingxia; Chai, Haoxi; Yuan, Yongze; Yang, Wannian; Chen, Junping; Xin, Zhanguo; Shi, Huazhong
2016-12-01
Polyamines involve in gene regulation by interacting with and modulating the functions of various anionic macromolecules such as DNA, RNA and proteins. In this study, we identified an important function of the polyamine transporter LHR1 (LOWER EXPRESSION OF HEAT RESPONSIVE GENE1) in heat-inducible gene expression in Arabidopsis thaliana. The lhr1 mutant was isolated through a forward genetic screening for altered expression of the luciferase reporter gene driven by the promoter from the heat-inducible gene AtHSP18.2. The lhr1 mutant showed reduced induction of the luciferase gene in response to heat stress and was more sensitive to high temperature than the wild type. Map-based cloning identified that the LHR1 gene encodes the polyamine transporter PUT3 (POLYAMINE UPTAKE TRANSPORTER 3) localized in the plasma membrane. The LHR1/PUT3 is required for the uptake of extracellular polyamines and plays an important role in stabilizing the mRNAs of several crucial heat stress responsive genes under high temperature. Genome-wide gene expression analysis using RNA-seq identified an array of differentially expressed genes, among which the transcript levels of some of the heat shock protein genes significantly reduced in response to prolonged heat stress in the lhr1 mutant. Our findings revealed an important heat stress response and tolerance mechanism involving polyamine influx which modulates mRNA stability of heat-inducible genes under heat stress conditions. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Viveka Thangaraj, Soundara; Periasamy, Jayaprakash; Bhaskar Rao, Divya; Barnabas, Georgina D.; Raghavan, Swetha; Ganesan, Kumaresan
2013-01-01
Genomic aberrations are common in cancers and the long arm of chromosome 1 is known for its frequent amplifications in breast cancer. However, the key candidate genes of 1q, and their contribution in breast cancer pathogenesis remain unexplored. We have analyzed the gene expression profiles of 1635 breast tumor samples using meta-analysis based approach and identified clinically significant candidates from chromosome 1q. Seven candidate genes including exonuclease 1 (EXO1) are consistently over expressed in breast tumors, specifically in high grade and aggressive breast tumors with poor clinical outcome. We derived a EXO1 co-expression module from the mRNA profiles of breast tumors which comprises 1q candidate genes and their co-expressed genes. By integrative functional genomics investigation, we identified the involvement of EGFR, RAS, PI3K / AKT, MYC, E2F signaling in the regulation of these selected 1q genes in breast tumors and breast cancer cell lines. Expression of EXO1 module was found as indicative of elevated cell proliferation, genomic instability, activated RAS/AKT/MYC/E2F1 signaling pathways and loss of p53 activity in breast tumors. mRNA–drug connectivity analysis indicates inhibition of RAS/PI3K as a possible targeted therapeutic approach for the patients with activated EXO1 module in breast tumors. Thus, we identified seven 1q candidate genes strongly associated with the poor survival of breast cancer patients and identified the possibility of targeting them with EGFR/RAS/PI3K inhibitors. PMID:24147022
Mouchel-Vielh, Emmanuèle; De Castro, Sandra; Peronnet, Frédérique
2016-01-01
Phenotypic plasticity is the ability of a given genotype to produce different phenotypes in response to distinct environmental conditions. Phenotypic plasticity can be adaptive. Furthermore, it is thought to facilitate evolution. Although phenotypic plasticity is a widespread phenomenon, its molecular mechanisms are only beginning to be unravelled. Environmental conditions can affect gene expression through modification of chromatin structure, mainly via histone modifications, nucleosome remodelling or DNA methylation, suggesting that phenotypic plasticity might partly be due to chromatin plasticity. As a model of phenotypic plasticity, we study abdominal pigmentation of Drosophila melanogaster females, which is temperature sensitive. Abdominal pigmentation is indeed darker in females grown at 18°C than at 29°C. This phenomenon is thought to be adaptive as the dark pigmentation produced at lower temperature increases body temperature. We show here that temperature modulates the expression of tan (t), a pigmentation gene involved in melanin production. t is expressed 7 times more at 18°C than at 29°C in female abdominal epidermis. Genetic experiments show that modulation of t expression by temperature is essential for female abdominal pigmentation plasticity. Temperature modulates the activity of an enhancer of t without modifying compaction of its chromatin or level of the active histone mark H3K27ac. By contrast, the active mark H3K4me3 on the t promoter is strongly modulated by temperature. The H3K4 methyl-transferase involved in this process is likely Trithorax, as we show that it regulates t expression and the H3K4me3 level on the t promoter and also participates in female pigmentation and its plasticity. Interestingly, t was previously shown to be involved in inter-individual variation of female abdominal pigmentation in Drosophila melanogaster, and in abdominal pigmentation divergence between Drosophila species. Sensitivity of t expression to environmental conditions might therefore give more substrate for selection, explaining why this gene has frequently been involved in evolution of pigmentation. PMID:27508387
Patrussi, Laura; Capitani, Nagaja; Martini, Veronica; Pizzi, Marco; Trimarco, Valentina; Frezzato, Federica; Marino, Filippo; Semenzato, Gianpietro; Trentin, Livio; Baldari, Cosima T
2015-10-01
Lymphocyte trafficking is orchestrated by chemokine and sphingosine 1-phosphate (S1P) receptors that enable homing and egress from secondary lymphoid organs (SLO). These receptors undergo rapid internalization and plasma membrane recycling to calibrate cellular responses to local chemoattractants. Circulating chronic lymphocytic leukemia (CLL) cells display an abnormal increase in the surface levels of the homing receptors CCR7 and CXCR4 concomitant with low S1P receptor 1 (S1P1) expression. In this study, we investigated the role of receptor recycling on CXCR4/CCR7 surface levels in CLL cells and addressed the impact of quantitative alterations of these receptors and S1P1 on the ability of leukemic cells to accumulate in SLOs. We show that recycling accounts, to a major extent, for the high levels of surface CXCR4/CCR7 on CLL cells. In addition, increased expression of these receptors, together with S1P1 deficiency, is detectable not only in circulating leukemic cells, but also in SLOs of CLL patients with lymphoadenopathy. We further provide evidence that ibrutinib, a Btk inhibitor that promotes mobilization of leukemic cells from SLOs, normalizes the imbalance between CXCR4/CCR7 and S1P1. Taken together, our results highlight the relevance of chemokine and S1P receptor recycling in CLL pathogenesis and clinical outcome. ©2015 American Association for Cancer Research.
Central Corneal Thickness Reproducibility among Ten Different Instruments.
Pierro, Luisa; Iuliano, Lorenzo; Gagliardi, Marco; Ambrosi, Alessandro; Rama, Paolo; Bandello, Francesco
2016-11-01
To assess agreement between one ultrasonic (US) and nine optical instruments for the measurement of central corneal thickness (CCT), and to evaluate intra- and inter-operator reproducibility. In this observational cross-sectional study, two masked operators measured CCT thickness twice in 28 healthy eyes. We used seven spectral-domain optical coherence tomography (SD-OCT) devices, one time-domain OCT, one Scheimpflug camera, and one US-based instrument. Inter- and intra-operator reproducibility was evaluated by intraclass correlation coefficient (ICC), coefficient of variation (CV), and Bland-Altman test analysis. Instrument-to-instrument reproducibility was determined by ANOVA for repeated measurements. We also tested how the devices disagreed regarding systemic bias and random error using a structural equation model. Mean CCT of all instruments ranged from 536 ± 42 μm to 577 ± 40 μm. An instrument-to-instrument correlation test showed high values among the 10 investigated devices (correlation coefficient range 0.852-0.995; p values <0.0001 in all cases). The highest correlation coefficient values were registered between 3D OCT-2000 Topcon-Spectral OCT/SLO Opko (0.995) and Cirrus HD-OCT Zeiss-RS-3000 Nidek (0.995), whereas the lowest were seen between SS-1000 CASIA and Spectral OCT/SLO Opko (0.852). ICC and CV showed excellent inter- and intra-operator reproducibility for all optic-based devices, except for the US-based device. Bland-Altman analysis demonstrated low mean biases between operators. Despite highlighting good intra- and inter-operator reproducibility, we found that a scale bias between instruments might interfere with thorough CCT monitoring. We suggest that optimal monitoring is achieved with the same operator and the same device.
Oudrhiri, N; Farcet, J P; Gourdin, M F; M'Bemba, E; Gaulard, P; Katz, A; Divine, M; Galazka, A; Reyes, F
1990-01-01
The CD3-T cell receptor (TcR) complex is central to the immune response. Upon binding by specific ligands, internalized CD3-TcR molecules increase, and either T cell response or unresponsiveness may ensue depending on the triggering conditions. Using semi-solid agar culture, we have shown previously that quiescent CD4 but not CD8 lymphocytes generate clonal colonies under phytohaemagglutinin stimulation. Here we have demonstrated that the agar induces selective CD3-TcR modulation in the CD8 and not in the CD4 subset. CD8 lymphocytes preactivated in liquid culture and recultured in agar with exogenous recombinant interleukin-2 generate colonies with a modulated CD3-TcR surface expression. The peptides composing the CD3-TcR complex are synthesized in CD8 colonies as well as in CD4; however, the CD3 gamma chain is phosphorylated at a higher level in CD8 colonies. A component of the agar polymer, absent in agarose, appears to be the ligand that induces differential CD3-TcR modulation in the CD8 subset. In contrast to agar culture, CD8 colonies can be derived from quiescent CD8 lymphocytes in agarose. These CD8 colonies express unmodulated CD-TcR. CD3-TcR modulation with anti-CD3 monoclonal antibody prior to culturing in agarose inhibits the colony formation. We conclude that given triggering conditions can result in both CD3-TcR modulation and inhibition of the proliferative response selectively in the CD8 lymphocyte subset and not in the CD4. Images Fig. 3 Fig. 4 Fig. 5 PMID:2146997
Pax-3 expression in segmental mesoderm marks early stages in myogenic cell specification.
Williams, B A; Ordahl, C P
1994-04-01
Specification of the myogenic lineage begins prior to gastrulation and culminates in the emergence of determined myogenic precursor cells from the somites. The myoD family (MDF) of transcriptional activators controls late step(s) in myogenic specification that are closely followed by terminal muscle differentiation. Genes expressed in myogenic specification at stages earlier than MDFs are unknown. The Pax-3 gene is expressed in all the cells of the caudal segmental plate, the early mesoderm compartment that contains the precursors of skeletal muscle. As somites form from the segmental plate and mature, Pax-3 expression is progressively modulated. Beginning at the time of segmentation, Pax-3 becomes repressed in the ventral half of the somite, leaving Pax-3 expression only in the dermomyotome. Subsequently, differential modulation of Pax-3 expression levels delineates the medial and lateral halves of the dermomyotome, which contain precursors of axial (back) muscle and limb muscle, respectively. Pax-3 expression is then repressed as dermomyotome-derived cells activate MDFs. Quail-chick chimera and ablation experiments confirmed that the migratory precursors of limb muscle continue to express Pax-3 during migration. Since limb muscle precursors do not activate MDFs until 2 days after they leave the somite, Pax-3 represents the first molecular marker for this migratory cell population. A null mutation of the mouse Pax-3 gene, Splotch, produces major disruptions in early limb muscle development (Franz, T., Kothary, R., Surani, M. A. H., Halata, Z. and Grim, M. (1993) Anat. Embryol. 187, 153-160; Goulding, M., Lumsden, A. and Paquette, A. (1994) Development 120, 957-971). We conclude, therefore, that Pax-3 gene expression in the paraxial mesoderm marks earlier stages in myogenic specification than MDFs and plays a crucial role in the specification and/or migration of limb myogenic precursors.
BIGH3 modulates adhesion and migration of hematopoietic stem and progenitor cells
Klamer, Sofieke E; Kuijk, Carlijn GM; Hordijk, Peter L; van der Schoot, C Ellen; von Lindern, Marieke; van Hennik, Paula B; Voermans, Carlijn
2013-01-01
Cell adhesion and migration are important determinants of homing and development of hematopoietic stem and progenitor cells (HSPCs) in bone marrow (BM) niches. The extracellular matrix protein transforming growth factor-β (TGF-β) inducible gene H3 (BIGH3) is involved in adhesion and migration, although the effect of BIGH3 is highly cell type-dependent. BIGH3 is abundantly expressed by mesenchymal stromal cells, while its expression in HSPCs is relatively low unless induced by certain BM stressors. Here, we set out to determine how BIGH3 modulates HSPC adhesion and migration. We show that primary HSPCs adhere to BIGH3-coated substrates, which is, in part, integrin-dependent. Overexpression of BIGH3 in HSPCs and HL60 cells reduced the adhesion to the substrate fibronectin in adhesion assays, which was even more profound in electrical cell-substrate impedance sensing (ECIS) assays. Accordingly, the CXCL12 induced migration over fibronectin-coated surface was reduced in BIGH3-expressing HSPCs. The integrin expression profile of HSPCs was not altered upon BIGH3 expression. Although expression of BIGH3 did not alter actin polymerization in response to CXCL12, it inhibited the PMA-induced activation of the small GTPase RAC1 as well as the phosphorylation and activation of extracellular-regulated kinases (ERKs). Reduced activation of ERK and RAC1 may be responsible for the inhibition of cell adhesion and migration by BIGH3 in HSPCs. Induced BIGH3 expression upon BM stress may contribute to the regulation of BM homeostasis. PMID:24152593
Interrelationship between 3,5,3´-triiodothyronine and the circadian clock in the rodent heart.
Peliciari-Garcia, Rodrigo Antonio; Prévide, Rafael Maso; Nunes, Maria Tereza; Young, Martin Elliot
2016-01-01
Triiodothyronine (T3) is an important modulator of cardiac metabolism and function, often through modulation of gene expression. The cardiomyocyte circadian clock is a transcriptionally based molecular mechanism capable of regulating cardiac processes, in part by modulating responsiveness of the heart to extra-cardiac stimuli/stresses in a time-of-day (TOD)-dependent manner. Although TOD-dependent oscillations in circulating levels of T3 (and its intermediates) have been established, oscillations in T3 sensitivity in the heart is unknown. To investigate the latter possibility, euthyroid male Wistar rats were treated with vehicle or T3 at distinct times of the day, after which induction of known T3 target genes were assessed in the heart (4-h later). The expression of mRNA was assessed by real-time quantitative polymerase chain reaction (qPCR). Here, we report greater T3 induction of transcript levels at the end of the dark phase. Surprisingly, use of cardiomyocyte-specific clock mutant (CCM) mice revealed that TOD-dependent oscillations in T3 sensitivity were independent of this cell autonomous mechanism. Investigation of genes encoding for proteins that affect T3 sensitivity revealed that Dio1, Dio2 and Thrb1 exhibited TOD-dependent variations in the heart, while Thra1 and Thra2 did not. Of these, Dio1 and Thrb1 were increased in the heart at the end of the dark phase. Interestingly, we observed that T3 acutely altered the expression of core clock components (e.g. Bmal1) in the rat heart. To investigate this further, rats were injected with a single dose of T3, after which expression of clock genes was interrogated at 3-h intervals over the subsequent 24-h period. These studies revealed robust effects of T3 on oscillations of both core clock components and clock-controlled genes. In summary, the current study exposed TOD-dependent sensitivity to T3 in the heart and its effects in the circadian clock genes expression.
Cell line specific modulation of connexin43 expression after exposure to ionizing radiation.
Banaz-Yaşar, Ferya; Tischka, Rabea; Iliakis, George; Winterhager, Elke; Gellhaus, Alexandra
2005-01-01
Gap junctional intercellular communication plays a significant role in mediating radiation-induced bystander effects. However, the level of Cx43 itself is influenced by ionizing radiation, which could modify the bystander effect. Here we have investigated several cell lines for the modulation of Cx43 expression 24 h after irradiation with 5 Gy X-rays. The mouse endothelial cell line bEnd3 revealed a significantly elevated level of Cx43 already 15 min after exposure to X-rays, whereas human hybrid endothelial cells (EA.hy926) exhibited a transient downregulation of Cx43 mRNA. No obvious changes in the communication properties of the different cell lines could be observed after irradiation. The communication-deficient malignant human trophoblast cell line Jeg3 stably transfected with Cx43 did not reveal any induction of endogenous nor alteration in the exogenous Cx43 transcript level upon exposure to 5 Gy. Taken together, our data show a cell line specific modulation of Cx43 expression after exposure to X-rays.
Meyer, Mark B; Benkusky, Nancy A; Kaufmann, Martin; Lee, Seong Min; Onal, Melda; Jones, Glenville; Pike, J Wesley
2017-10-20
The vitamin D endocrine system regulates mineral homeostasis through its activities in the intestine, kidney, and bone. Terminal activation of vitamin D 3 to its hormonal form, 1α,25-dihydroxyvitamin D 3 (1,25(OH) 2 D 3 ), occurs in the kidney via the cytochrome P450 enzyme CYP27B1. Despite its importance in vitamin D metabolism, the molecular mechanisms underlying the regulation of the gene for this enzyme, Cyp27b1 , are unknown. Here, we identified a kidney-specific control module governed by a renal cell-specific chromatin structure located distal to Cyp27b1 that mediates unique basal and parathyroid hormone (PTH)-, fibroblast growth factor 23 (FGF23)-, and 1,25(OH) 2 D 3 -mediated regulation of Cyp27b1 expression. Selective genomic deletion of key components within this module in mice resulted in loss of either PTH induction or FGF23 and 1,25(OH) 2 D 3 suppression of Cyp27b1 gene expression; the former loss caused a debilitating skeletal phenotype, whereas the latter conferred a quasi-normal bone mineral phenotype through compensatory homeostatic mechanisms involving Cyp24a1 We found that Cyp27b1 is also expressed at low levels in non-renal cells, in which transcription was modulated exclusively by inflammatory factors via a process that was unaffected by deletion of the kidney-specific module. These results reveal that differential regulation of Cyp27b1 expression represents a mechanism whereby 1,25(OH) 2 D 3 can fulfill separate functional roles, first in the kidney to control mineral homeostasis and second in extra-renal cells to regulate target genes linked to specific biological responses. Furthermore, we conclude that these mouse models open new avenues for the study of vitamin D metabolism and its involvement in therapeutic strategies for human health and disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
2012-01-01
Background PCA3 is a non-coding RNA (ncRNA) that is highly expressed in prostate cancer (PCa) cells, but its functional role is unknown. To investigate its putative function in PCa biology, we used gene expression knockdown by small interference RNA, and also analyzed its involvement in androgen receptor (AR) signaling. Methods LNCaP and PC3 cells were used as in vitro models for these functional assays, and three different siRNA sequences were specifically designed to target PCA3 exon 4. Transfected cells were analyzed by real-time qRT-PCR and cell growth, viability, and apoptosis assays. Associations between PCA3 and the androgen-receptor (AR) signaling pathway were investigated by treating LNCaP cells with 100 nM dihydrotestosterone (DHT) and with its antagonist (flutamide), and analyzing the expression of some AR-modulated genes (TMPRSS2, NDRG1, GREB1, PSA, AR, FGF8, CdK1, CdK2 and PMEPA1). PCA3 expression levels were investigated in different cell compartments by using differential centrifugation and qRT-PCR. Results LNCaP siPCA3-transfected cells significantly inhibited cell growth and viability, and increased the proportion of cells in the sub G0/G1 phase of the cell cycle and the percentage of pyknotic nuclei, compared to those transfected with scramble siRNA (siSCr)-transfected cells. DHT-treated LNCaP cells induced a significant upregulation of PCA3 expression, which was reversed by flutamide. In siPCA3/LNCaP-transfected cells, the expression of AR target genes was downregulated compared to siSCr-transfected cells. The siPCA3 transfection also counteracted DHT stimulatory effects on the AR signaling cascade, significantly downregulating expression of the AR target gene. Analysis of PCA3 expression in different cell compartments provided evidence that the main functional roles of PCA3 occur in the nuclei and microsomal cell fractions. Conclusions Our findings suggest that the ncRNA PCA3 is involved in the control of PCa cell survival, in part through modulating AR signaling, which may raise new possibilities of using PCA3 knockdown as an additional therapeutic strategy for PCa control. PMID:23130941
NASA Astrophysics Data System (ADS)
Anderson, Alison M.; Kalimutho, Murugan; Harten, Sarah; Nanayakkara, Devathri M.; Khanna, Kum Kum; Ragan, Mark A.
2017-01-01
In breast cancer metastasis, the dynamic continuum involving pro- and anti-inflammatory regulators can become compromised. Over 600 genes have been implicated in metastasis to bone, lung or brain but how these genes might contribute to perturbation of immune function is poorly understood. To gain insight, we adopted a gene co-expression network approach that draws on the functional parallels between naturally occurring bone marrow-derived mesenchymal stem cells (BM-MSCs) and cancer stem cells (CSCs). Our network analyses indicate a key role for metastasis suppressor RARRES3, including potential to regulate the immunoproteasome (IP), a specialized proteasome induced under inflammatory conditions. Knockdown of RARRES3 in near-normal mammary epithelial and breast cancer cell lines increases overall transcript and protein levels of the IP subunits, but not of their constitutively expressed counterparts. RARRES3 mRNA expression is controlled by interferon regulatory factor IRF1, an inducer of the IP, and is sensitive to depletion of the retinoid-related receptor RORA that regulates various physiological processes including immunity through modulation of gene expression. Collectively, these findings identify a novel regulatory role for RARRES3 as an endogenous inhibitor of IP expression, and contribute to our evolving understanding of potential pathways underlying breast cancer driven immune modulation.
ERIC Educational Resources Information Center
Hartl, David, Ed.; And Others
Designed to assist teachers in small schools with the improvement of curriculum and instruction and to help smaller districts that do not have curriculum personnel to comply with Washington's Student Learning Objectives (SLO) Law, this guide contains language arts curriculum materials for grades 4-6. Learning objectives are correlated to the Goals…
ERIC Educational Resources Information Center
Hartl, David, Ed.; And Others
Designed to assist teachers in small schools with the improvement of curriculum and instruction and to help smaller districts that do not have curriculum personnel to comply with Washington's Student Learning Objectives (SLO) Law, this guide contains language arts curriculum materials for grades 7-8. Learning objectives are correlated to the Goals…
USDA-ARS?s Scientific Manuscript database
Inflammation has a role in prostate tumorigenesis. Recruitment of inflammatory monocytes to the tumor site is mediated by C-C chemokine ligand 2 (CCL2) through binding to its receptor CCR2. We hypothesized that androgen could modulate CCL2 expression in hormone-responsive prostate cancer cells, and ...
Déruaz, Anouk; Goldschmidt, Mira; Whatham, Andrew R; Mermoud, Christophe; Lorincz, Erika N; Schnider, Armin; Safran, Avinoam B
2006-11-23
Reading with a central scotoma involves the use of preferred retinal loci (PRLs) that enable both letter resolution and global viewing of word. Spontaneously developed PRLs however often privilege spatial resolution and, as a result, visual span is commonly limited by the position of the scotoma. In this study we designed and performed the pilot trial of a training procedure aimed at modifying oculomotor behavior in subjects with central field loss. We use an additional fixation point which, when combined with the initial PRL, allows the fulfillment of both letter resolution and global viewing of words. The training procedure comprises ten training sessions conducted with the scanning laser ophthalmoscope (SLO). Subjects have to read single letters and isolated words varying in length, by combining the use of their initial PRL with the one of an examiner's selected trained retinal locus (TRL). We enrolled five subjects to test for the feasibility of the training technique. They showed stable maculopathy and persisting major reading difficulties despite previous orthoptic rehabilitation. We evaluated ETDRS visual acuity, threshold character size for single letters and isolated words, accuracy for paragraphed text reading and reading strategies before, immediately after SLO training, and three months later. Training the use of multiple PRLs in patients with central field loss is feasible and contributes to adapt oculomotor strategies during reading related tasks. Immediately after SLO training subjects used in combination with their initial PRL the examiner's selected TRL and other newly self-selected PRLs. Training gains were also reflected in ETDRS acuity, threshold character size for words of different lengths and in paragraphed text reading. Interestingly, subjects benefited variously from the training procedure and gains were retained differently as a function of word length. We designed a new procedure for training patients with central field loss using scanning laser ophthalmoscopy. Our initial results on the acquisition of newly self-selected PRLs and the development of new oculomotor behaviors suggest that the procedure aiming primarily at developing an examiner's selected TRL might have initiated a more global functional adaptation process.
Liu, X; Schrager, J A; Lange, G D; Marsh, J W
2001-08-31
Nef is a regulatory protein encoded by the genome of both human and simian immunodeficiency virus. Its expression in T cells leads to CD4 and major histocompatibility complex class I modulation and either enhancement or suppression of T cell activation. How this viral protein achieves multiple and at times opposing activities has been unclear. Through direct measurements of Nef and the Nef-GFP fusion protein, we find that these events are mediated by different Nef concentrations. Relative to the intracellular concentration that down-modulates surface CD4, an order of magnitude increase in Nef-GFP expression is required for a comparable modulation of major histocompatibility complex class I, and a further 3-fold increase is necessary to suppress T cell activation.
Amyloid beta peptide as a physiological modulator of neuronal 'A'-type K+ current.
Plant, Leigh D; Webster, Nicola J; Boyle, John P; Ramsden, Martin; Freir, Darragh B; Peers, Chris; Pearson, Hugh A
2006-11-01
Control of neuronal spiking patterns resides, in part, in the type and degree of expression of voltage-gated K(+) channel subunits. Previous studies have revealed that soluble forms of the Alzheimer's disease associated amyloid beta protein (Abeta) can increase the 'A'-type current in neurones. In this study, we define the molecular basis for this increase and show that endogenous production of Abeta is important in the modulation of Kv4.2 and Kv4.3 subunit expression in central neurones. A-type K(+) currents, and Kv4.2 and Kv4.3 subunit expression, were transiently increased in cerebellar granule neurones by the 1-40 and 1-42 forms of Abeta (100nM, 2-24h). Currents through recombinant Kv4.2 channels expressed in HEK293 cells were increased in a similar fashion to those through the native channels. Increases in 'A'-type current could be prevented by the use of cycloheximide and brefeldin A, indicating that protein expression and trafficking processes were altered by Abeta, rather than protein degredation. Endogenous Abeta production in cerebellar granule neurones was blocked using inhibitors of either gamma- or beta-secretase and resulted in decreased K(+) current. Crucially this could be prevented by co-application of exogenous Abeta (1nM), however, no change in Kv4.2 or Kv4.3 subunit expression occurred. These data show that Abeta is a modulator of Kv4 subunit expression in neurones at both the functional and the molecular level. Thus Abeta is not only involved in Alzheimer pathology, but is also an important physiological regulator of ion channel expression and hence neuronal excitability.
NANOG regulates epithelial-mesenchymal transition and chemoresistance in ovarian cancer.
Qin, Shan; Li, Yanfang; Cao, Xuexia; Du, Jiexian; Huang, Xianghua
2017-02-28
A key transcription factor associated with poor prognosis and resistance to chemotherapy in ovarian cancer is NANOG. However, the mechanism by which NANOG functions remains undefined. It has been suggested that epithelial-to-mesenchymal transition (EMT) also contributes to development of drug resistance in different cancers. We thus determined whether NANOG expression was associated with EMT and chemoresistance in epithelial ovarian cancer cells. NANOG expression was increased in epithelial ovarian cancer cell lines compared with its expression in normal epithelial ovarian cell lines. NANOG expression in SKOV-3 or OV2008 cells directly correlated with high expression of mesenchymal cell markers and inversely with low expression of epithelial cell marker. RNAi-mediated silencing of NANOG in SKOV-3 reversed the expression of mesenchymal cell markers and restored expression of E-cadherin. Reversibly, stable overexpression of NANOG in Moody cells increased expression of N-cadherin whereas down-regulating expression of E-cadherin, cumulatively indicating that NANOG plays an important role in maintaining the mesenchymal cell markers. Modulating NANOG expression did not have any effect on proliferation or colony formation. Susceptibility to cisplatin increased in SKOV-3 cells on down-regulating NANOG and reversible results were obtained in Moody cells post-overexpression of NANOG. NANOG silencing in SKOV-3 and OV2008 robustly attenuated in vitro migration and invasion. NANOG expression exhibited a biphasic pattern in patients with ovarian cancer and expression was directly correlated to chemoresistance retrospectively. Cumulatively, our data demonstrate that NANOG expression modulates chemosensitivity and EMT resistance in ovarian cancer. © 2017 The Author(s).
Pham, Tammy L; St-Pierre, Marie-Eve; Ravel-Chapuis, Aymeric; Parks, Tara E C; Langlois, Stéphanie; Penuela, Silvia; Jasmin, Bernard J; Cowan, Kyle N
2018-05-10
Pannexin 1 (Panx1) and Pannexin 3 (Panx3) are single membrane channels recently implicated in myogenic commitment, as well as myoblast proliferation and differentiation in vitro. However, their expression patterns during skeletal muscle development and regeneration had yet to be investigated. Here, we show that Panx1 levels increase during skeletal muscle development becoming highly expressed together with Panx3 in adult skeletal muscle. In adult mice, Panx1 and Panx3 were differentially expressed in fast- and slow-twitch muscles. We also report that Panx1/PANX1 and Panx3/PANX3 are co-expressed in mouse and human satellite cells, which play crucial roles in skeletal muscle regeneration. Interestingly, Panx1 and Panx3 levels were modulated in muscle degeneration/regeneration, similar to the pattern seen during skeletal muscle development. As Duchenne muscular dystrophy is characterized by skeletal muscle degeneration and impaired regeneration, we next used mild and severe mouse models of this disease and found a significant dysregulation of Panx1 and Panx3 levels in dystrophic skeletal muscles. Together, our results are the first demonstration that Panx1 and Panx3 are differentially expressed amongst skeletal muscle types with their levels being highly modulated during skeletal muscle development, regeneration, and dystrophy. These findings suggest that Panx1 and Panx3 channels may play important and distinct roles in healthy and diseased skeletal muscles. © 2018 Wiley Periodicals, Inc.
Qian, Xuemin; Khammanivong, Ali; Song, Jung Min; Teferi, Fitsum; Upadhyaya, Pramod; Dickerson, Erin; Kassie, Fekadu
2016-01-01
Chronic pulmonary inflammation has been consistently shown to increase the risk of lung cancer. Therefore, assessing the molecular links between the two diseases and identification of chemopreventive agents that inhibit inflammation-driven lung tumorigenesis is indispensable. Recently, we found that 4-(methylnitro-samino)-1-(3-pyridyl)-1-butanone (NNK)-induced mouse lung tumorigenesis was significantly enhanced by chronic treatment with the inflammatory agents lipopolysaccharide (LPS) and combinatory treatment with the chemoprevenitve agents silibinin (Sil) and indole-3-carbinol (I3C) significantly inhibited the burden of inflammation-driven lung tumors. In this report, we described gene expression profiling of lung tissues derived from these studies to determine the gene expression signature in inflammation-driven lung tumors and modulation of this signature by the chemopreventive agents Sil and I3C. We found that 330, 2,957, and 1,143 genes were differentially regulated in mice treated with NNK, LPS, and NNK + LPS, respectively. The inflammatory response of lung tumors to LPS, as determined by the number of proinflammatory genes with altered gene expression or the level of alteration, was markedly less than that of normal lungs. Among 1,143 genes differentially regulated in the NNK + LPS group, the expression of 162 genes and associated signaling pathways were significantly modulated by I3C and/or Sil + I3C. These genes include cytokines, chemokines, putative oncogenes and tumor suppressor genes and Ros1, AREG, EREG, Cyp1a1, Arntl, and Npas2. To our knowledge, this is the first report that provides insight into genes that are differentially expressed during inflammation-driven lung tumorigenesis and the modulation of these genes by chemopreventive agents. PMID:25795230
FOXO3a regulates BNIP3 and modulates mitochondrial calcium, dynamics, and function in cardiac stress
Kohlbrenner, Erik; Gamb, Scott I.; Guenzel, Adam J.; Klaus, Katherine; Fayyaz, Ahmed U.; Nair, K. Sreekumaran; Hajjar, Roger J.
2016-01-01
The forkhead box O3a (FOXO3a) transcription factor has been shown to regulate glucose metabolism, muscle atrophy, and cell death in postmitotic cells. Its role in regulation of mitochondrial and myocardial function is not well studied. Based on previous work, we hypothesized that FOXO3a, through BCL2/adenovirus E1B 19-kDa protein-interacting protein 3 (BNIP3), modulates mitochondrial morphology and function in heart failure (HF). We modulated the FOXO3a-BNIP3 pathway in normal and phenylephrine (PE)-stressed adult cardiomyocytes (ACM) in vitro and developed a cardiotropic adeno-associated virus serotype 9 encoding dominant-negative FOXO3a (AAV9.dn-FX3a) for gene delivery in a rat model of HF with preserved ejection fraction (HFpEF). We found that FOXO3a upregulates BNIP3 expression in normal and PE-stressed ACM, with subsequent increases in mitochondrial Ca2+, leading to decreased mitochondrial membrane potential, mitochondrial fragmentation, and apoptosis. Whereas dn-FX3a attenuated the increase in BNIP3 expression and its consequences in PE-stressed ACM, AAV9.dn-FX3a delivery in an experimental model of HFpEF decreased BNIP3 expression, reversed adverse left ventricular remodeling, and improved left ventricular systolic and, particularly, diastolic function, with improvements in mitochondrial structure and function. Moreover, AAV9.dn-FX3a restored phospholamban phosphorylation at S16 and enhanced dynamin-related protein 1 phosphorylation at S637. Furthermore, FOXO3a upregulates maladaptive genes involved in mitochondrial apoptosis, autophagy, and cardiac atrophy. We conclude that FOXO3a activation in cardiac stress is maladaptive, in that it modulates Ca2+ cycling, Ca2+ homeostasis, and mitochondrial dynamics and function. Our results suggest an important role of FOXO3a in HF, making it an attractive potential therapeutic target. Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/role-of-foxo3a-in-heart-failure/. PMID:27694219
Regulation of Ion Channels by Pyridine Nucleotides
Kilfoil, Peter J.; Tipparaju, Srinivas M.; Barski, Oleg A.; Bhatnagar, Aruni
2014-01-01
Recent research suggests that in addition to their role as soluble electron carriers, pyridine nucleotides [NAD(P)(H)] also regulate ion transport mechanisms. This mode of regulation seems to have been conserved through evolution. Several bacterial ion–transporting proteins or their auxiliary subunits possess nucleotide-binding domains. In eukaryotes, the Kv1 and Kv4 channels interact with pyridine nucleotide–binding β-subunits that belong to the aldo-keto reductase superfamily. Binding of NADP+ to Kvβ removes N-type inactivation of Kv currents, whereas NADPH stabilizes channel inactivation. Pyridine nucleotides also regulate Slo channels by interacting with their cytosolic regulator of potassium conductance domains that show high sequence homology to the bacterial TrkA family of K+ transporters. These nucleotides also have been shown to modify the activity of the plasma membrane KATP channels, the cystic fibrosis transmembrane conductance regulator, the transient receptor potential M2 channel, and the intracellular ryanodine receptor calcium release channels. In addition, pyridine nucleotides also modulate the voltage-gated sodium channel by supporting the activity of its ancillary subunit—the glycerol-3-phosphate dehydrogenase-like protein. Moreover, the NADP+ metabolite, NAADP+, regulates intracellular calcium homeostasis via the 2-pore channel, ryanodine receptor, or transient receptor potential M2 channels. Regulation of ion channels by pyridine nucleotides may be required for integrating cell ion transport to energetics and for sensing oxygen levels or metabolite availability. This mechanism also may be an important component of hypoxic pulmonary vasoconstriction, memory, and circadian rhythms, and disruption of this regulatory axis may be linked to dysregulation of calcium homeostasis and cardiac arrhythmias. PMID:23410881
González-Castillo, Celia; Ortuño-Sahagún, Daniel; Guzmán-Brambila, Carolina; Márquez-Aguirre, Ana Laura; Raisman-Vozari, Rita; Pallás, Mercé; Rojas-Mayorquín, Argelia E
2016-09-01
Pleiotrophin (PTN) is a secreted growth factor recently proposed to act as a neuromodulatory peptide in the Central Nervous System. PTN appears to be involved in neurodegenerative diseases and neural disorders, and it has also been implicated in learning and memory. Specifically, PTN-deficient mice exhibit a lower threshold for LTP induction in the hippocampus, which is attenuated in mice overexpressing PTN. However, there is little information about the signaling systems recruited by PTN to modulate neural activity. To address this issue, the gene expression profile in hippocampus of mice lacking PTN was analyzed using microarrays of 22,000 genes. In addition, we corroborated the effect of the absence of PTN on the expression of these genes by silencing this growth factor in primary neuronal cultures in vitro. The microarray analysis identified 102 genes that are differentially expressed (z-score>3.0) in PTN null mice, and the expression of eight of those modified in the hippocampus of KO mice was also modified in vitro after silencing PTN in cultured neurons with siRNAs. The data obtained indicate that the absence of PTN affects AKT pathway response and modulates the expression of genes related with neuroprotection (Mgst3 and Estrogen receptor 1, Ers 1) and cell differentiation (Caspase 6, Nestin, and Odz4), both in vivo and in vitro. Copyright © 2016 Elsevier Inc. All rights reserved.
Webb, Natasha; Connolly, Geoff; Tellam, Judy; Yap, Alpha S; Khanna, Rajiv
2008-09-22
Previous studies have indicated that Epstein-Barr virus (EBV) can modulate the Wnt pathway in virus-infected cells and this effect is mediated by EBV-encoded oncogene latent membrane protein 1 (LMP1). Here we have reassessed the role of LMP1 in regulating the expression of various mediators of the canonical Wnt cascade. Contradicting the previous finding, we found that the levels of E-cadherin, beta-catenin, Glycogen Synthase Kinase 3ss (GSK3beta), axin and alpha-catenin were not affected by the expression of LMP1 sequences from normal B cells or nasopharyngeal carcinoma. Moreover, we also show that LMP1 expression had no detectable effect on the E-cadherin and beta-catenin interaction and did not induce transcriptional activation of beta-catenin. Taken together these studies demonstrate that EBV-mediated activation of Wnt pathway is not dependent on the expression of LMP1.
In silico pathway analysis in cervical carcinoma reveals potential new targets for treatment
van Dam, Peter A.; van Dam, Pieter-Jan H. H.; Rolfo, Christian; Giallombardo, Marco; van Berckelaer, Christophe; Trinh, Xuan Bich; Altintas, Sevilay; Huizing, Manon; Papadimitriou, Kostas; Tjalma, Wiebren A. A.; van Laere, Steven
2016-01-01
An in silico pathway analysis was performed in order to improve current knowledge on the molecular drivers of cervical cancer and detect potential targets for treatment. Three publicly available Affymetrix gene expression data-sets (GSE5787, GSE7803, GSE9750) were retrieved, vouching for a total of 9 cervical cancer cell lines (CCCLs), 39 normal cervical samples, 7 CIN3 samples and 111 cervical cancer samples (CCSs). Predication analysis of microarrays was performed in the Affymetrix sets to identify cervical cancer biomarkers. To select cancer cell-specific genes the CCSs were compared to the CCCLs. Validated genes were submitted to a gene set enrichment analysis (GSEA) and Expression2Kinases (E2K). In the CCSs a total of 1,547 probe sets were identified that were overexpressed (FDR < 0.1). Comparing to CCCLs 560 probe sets (481 unique genes) had a cancer cell-specific expression profile, and 315 of these genes (65%) were validated. GSEA identified 5 cancer hallmarks enriched in CCSs (P < 0.01 and FDR < 0.25) showing that deregulation of the cell cycle is a major component of cervical cancer biology. E2K identified a protein-protein interaction (PPI) network of 162 nodes (including 20 drugable kinases) and 1626 edges. This PPI-network consists of 5 signaling modules associated with MYC signaling (Module 1), cell cycle deregulation (Module 2), TGFβ-signaling (Module 3), MAPK signaling (Module 4) and chromatin modeling (Module 5). Potential targets for treatment which could be identified were CDK1, CDK2, ABL1, ATM, AKT1, MAPK1, MAPK3 among others. The present study identified important driver pathways in cervical carcinogenesis which should be assessed for their potential therapeutic drugability. PMID:26701206
Weissinger, Daniel; Tagscherer, Katrin E; Macher-Göppinger, Stephan; Haferkamp, Axel; Wagener, Nina; Roth, Wilfried
2013-10-10
Overexpression of Decoy Receptor 3 (DcR3), a soluble member of the tumor necrosis factor receptor superfamily, is a common event in several types of cancer. In renal cell carcinoma (RCC), DcR3 overexpression is associated with lymph node and distant metastasis as well as a poor prognosis. However, the functional role and regulation of DcR3 expression in RCC is so far unknown. Modulation of DcR3 expression by siRNA and ectopic gene expression, respectively, was performed in ACHN and 769-P RCC cell lines. Functional effects of a modulated DcR3 expression were analyzed with regard to migration, invasion, adhesion, clonogenicity, and proliferation. Furthermore, quantitative RT-PCR and immunoblot analyses were performed to evaluate the expression of downstream mediators of DcR3. In further experiments, luciferase assays, quantitative RT-PCR and immunoblot analyses were applied to study the regulation of DcR3 expression in RCC. Additionally, an ex vivo tissue slice culture technique combined with immunohistochemistry was used to study the regulation of DcR3 expression in human RCC specimens. Here, we show that DcR3 promotes adhesion, migration and invasiveness of RCC cells. The DcR3-dependent increase in cellular invasiveness is accompanied with an up-regulation of integrin alpha 4, matrixmetalloproteinase 7 and urokinase plasminogen activator (uPA). Further, we identified a signaling pathway regulating DcR3 expression in RCC. Using in vitro experiments as well as an ex vivo RCC tissue slice culture model, we demonstrate that expression of DcR3 is regulated in a PI3K/AKT-dependent manner involving the transcription factor nuclear factor of activated T-cells (NFAT). Taken together, our results identify DcR3 as a key driver of tumor cell dissemination and suggest DcR3 as a promising target for rational therapy of RCC.
Regulation of fibrillins and modulators of TGFβ in fetal bovine and human ovaries.
Bastian, Nicole A; Bayne, Rosemary A; Hummitzsch, Katja; Hatzirodos, Nicholas; Bonner, Wendy M; Hartanti, Monica D; Irving-Rodgers, Helen F; Anderson, Richard A; Rodgers, Raymond J
2016-08-01
Fibrillins 1-3 are stromal extracellular matrix proteins that play important roles in regulating TGFβ activity, which stimulates fibroblasts to proliferate and synthesize collagen. In the developing ovary, the action of stroma is initially necessary for the formation of ovigerous cords and subsequently for the formation of follicles and the surface epithelium of the ovary. FBN3 is highly expressed only in early ovarian development and then it declines. In contrast, FBN1 and 2 are upregulated in later ovarian development. We examined the expression of FBN1-3 in bovine and human fetal ovaries. We used cell dispersion and monolayer culture, cell passaging and tissue culture. Cells were treated with growth factors, hormones or inhibitors to assess the regulation of expression of FBN1-3 When bovine fetal ovarian tissue was cultured, FBN3 expression declined significantly. Treatment with TGFβ-1 increased FBN1 and FBN2 expression in bovine fibroblasts, but did not affect FBN3 expression. Additionally, in cultures of human fetal ovarian fibroblasts (9-17weeks gestational age), the expression of FBN1 and FBN2 increased with passage, whereas FBN3 dramatically decreased. Treatment with activin A and a TGFβ family signaling inhibitor, SB431542, differentially regulated the expression of a range of modulators of TGFβ signaling and of other growth factors in cultured human fetal ovarian fibroblasts suggesting that TGFβ signaling is differentially involved in the regulation of ovarian fibroblasts. Additionally, since the changes in FBN1-3 expression that occur in vitro are those that occur with increasing gestational age in vivo, we suggest that the fetal ovarian fibroblasts mature in vitro. © 2016 Society for Reproduction and Fertility.
Regulation of Histone Deacetylase 4 Expression by the SP Family of Transcription FactorsD⃞
Liu, Fang; Pore, Nabendu; Kim, Mijin; Voong, K. Ranh; Dowling, Melissa; Maity, Amit; Kao, Gary D.
2006-01-01
Histone deacetylases mediate critical cellular functions but relatively little is known about mechanisms controlling their expression, including expression of HDAC4, a class II HDAC implicated in the modulation of cellular differentiation and viability. Endogenous HDAC4 mRNA, protein levels and promoter activity were all readily repressed by mithramycin, suggesting regulation by GC-rich DNA sequences. We validated consensus binding sites for Sp1/Sp3 transcription factors in the HDAC4 promoter through truncation studies and targeted mutagenesis. Specific and functional binding by Sp1/Sp3 at these sites was confirmed with chromatin immunoprecipitation (ChIP) and electromobility shift assays (EMSA). Cotransfection of either Sp1 or Sp3 with a reporter driven by the HDAC4 promoter led to high activities in SL2 insect cells (which lack endogenous Sp1/Sp3). In human cells, restored expression of Sp1 and Sp3 up-regulated HDAC4 protein levels, whereas levels were decreased by RNA-interference-mediated knockdown of either protein. Finally, variable levels of Sp1 were in concordance with that of HDAC4 in a number of human tissues and cancer cell lines. These studies together characterize for the first time the activity of the HDAC4 promoter, through which Sp1 and Sp3 modulates expression of HDAC4 and which may contribute to tissue or cell-line-specific expression of HDAC4. PMID:16280357
Fernández, José R; Webb, Corey; Rouzard, Karl; Voronkov, Michael; Huber, Kristen L; Stock, Jeffry B; Stock, Maxwell; Gordon, Joel S; Perez, Eduardo
2017-03-01
Isoprenylcysteine (IPC) small molecules were discovered as signal transduction modulating compounds ~25 years ago. More recently, IPC molecules have demonstrated antioxidant and anti-inflammatory properties in a variety of dermal cells as well as antimicrobial activity, representing a novel class of compounds to ameliorate skin conditions and disease. Here, we demonstrate a new IPC compound, N-acetylglutaminoyl-S-farnesyl-L-cysteine (SIG-1191), which inhibits UVB-induced inflammation blocking pro-inflammatory cytokine interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) production. To investigate further the previously reported hydrating potential of IPC compounds, SIG-1191 was tested for its ability to modulate aquaporin expression. Specifically, aquaporin 3 (AQP3) the most abundant aquaporin found in skin has been reported to play a key role in skin hydration, elasticity and barrier repair. Results show here for the first time that SIG-1191 increases AQP3 expression in both cultured normal human epidermal keratinocytes as well as when applied topically in a three-dimensional (3D) reconstructed human skin equivalent. Additionally, SIG-1191 dose dependently increased AQP3 protein levels, as determined by specific antibody staining, in the epidermis of the 3D skin equivalents. To begin to elucidate which signaling pathways SIG-1191 may be modulating to increase AQP3 levels, we used several pharmacological pathway inhibitors and determined that AQP3 expression is mediated by the Mitogen-activated protein kinase/Extracellular signal-regulated kinase kinase (MEK) pathway. Altogether, these data suggest SIG-1191 represents a new IPC derivative with anti-inflammatory activity that may also promote increased skin hydration based on its ability to increase AQP3 levels.
Sakurai, Keisuke; Young, Joyce E.; Kefalov, Vladimir J.; Khani, Shahrokh C.
2011-01-01
Purpose. Rod photoreceptors are exquisitely sensitive light detectors that function in dim light. The timely inactivation of their light responses is critical for the ability of rods to reliably detect and count photons. A key step in the inactivation of the rod transduction is the phosphorylation of the rod visual pigment, rhodopsin, catalyzed by G-protein-dependent receptor kinase 1 (GRK1). Absence of GRK1 greatly prolongs the photoreceptors' light response and enhances their susceptibility to degeneration. This study examined the light responses from mouse rods expressing various levels of GRK1 to evaluate how their function is modulated by rhodopsin inactivation. Methods. Transretinal and single-cell rod electrophysiological recordings were obtained from several strains of mice expressing GRK1 at 0.3- to 3-fold the wild-type levels. The effect of GRK1 expression level on the function of mouse rods was examined in darkness and during background adaptation. Results. Altering the expression of GRK1 from 0.3- to 3-fold that in wild-type rods had little effect on the single photon response amplitude. Notably, increasing the expression level of GRK1 accelerated the dim flash response shut off but had no effect on the saturated response shut off. Additionally, GRK1 excess abolished the acceleration of saturated responses shut off during light adaptation. Conclusions. These results demonstrate that rhodopsin inactivation can modulate the kinetics of recovery from dim light stimulation. More importantly, the ratio of rhodopsin kinase to its modulator recoverin appears critical for the proper adaptation of rods and the acceleration of their response shut off in background light. PMID:21474765
Wang, Li-Xin; Li, Yang; Chen, Guan-Zhi
2018-01-01
Metastatic melanoma is an aggressive skin cancer and is one of the global malignancies with high mortality and morbidity. It is essential to identify and verify diagnostic biomarkers of early metastatic melanoma. Previous studies have systematically assessed protein biomarkers and mRNA-based expression characteristics. However, molecular markers for the early diagnosis of metastatic melanoma have not been identified. To explore potential regulatory targets, we have analyzed the gene microarray expression profiles of malignant melanoma samples by co-expression analysis based on the network approach. The differentially expressed genes (DEGs) were screened by the EdgeR package of R software. A weighted gene co-expression network analysis (WGCNA) was used for the identification of DEGs in the special gene modules and hub genes. Subsequently, a protein-protein interaction network was constructed to extract hub genes associated with gene modules. Finally, twenty-four important hub genes (RASGRP2, IKZF1, CXCR5, LTB, BLK, LINGO3, CCR6, P2RY10, RHOH, JUP, KRT14, PLA2G3, SPRR1A, KRT78, SFN, CLDN4, IL1RN, PKP3, CBLC, KRT16, TMEM79, KLK8, LYPD3 and LYPD5) were treated as valuable factors involved in the immune response and tumor cell development in tumorigenesis. In addition, a transcriptional regulatory network was constructed for these specific modules or hub genes, and a few core transcriptional regulators were found to be mostly associated with our hub genes, including GATA1, STAT1, SP1, and PSG1. In summary, our findings enhance our understanding of the biological process of malignant melanoma metastasis, enabling us to identify specific genes to use for diagnostic and prognostic markers and possibly for targeted therapy.
Sakurai, Keisuke; Young, Joyce E; Kefalov, Vladimir J; Khani, Shahrokh C
2011-08-29
Rod photoreceptors are exquisitely sensitive light detectors that function in dim light. The timely inactivation of their light responses is critical for the ability of rods to reliably detect and count photons. A key step in the inactivation of the rod transduction is the phosphorylation of the rod visual pigment, rhodopsin, catalyzed by G-protein-dependent receptor kinase 1 (GRK1). Absence of GRK1 greatly prolongs the photoreceptors' light response and enhances their susceptibility to degeneration. This study examined the light responses from mouse rods expressing various levels of GRK1 to evaluate how their function is modulated by rhodopsin inactivation. Transretinal and single-cell rod electrophysiological recordings were obtained from several strains of mice expressing GRK1 at 0.3- to 3-fold the wild-type levels. The effect of GRK1 expression level on the function of mouse rods was examined in darkness and during background adaptation. Altering the expression of GRK1 from 0.3- to 3-fold that in wild-type rods had little effect on the single photon response amplitude. Notably, increasing the expression level of GRK1 accelerated the dim flash response shut off but had no effect on the saturated response shut off. Additionally, GRK1 excess abolished the acceleration of saturated responses shut off during light adaptation. These results demonstrate that rhodopsin inactivation can modulate the kinetics of recovery from dim light stimulation. More importantly, the ratio of rhodopsin kinase to its modulator recoverin appears critical for the proper adaptation of rods and the acceleration of their response shut off in background light.
Identification of cancer cytotoxic modulators of PDE3A by predictive chemogenomics
de Waal, Luc; Lewis, Timothy A.; Rees, Matthew G.; Tsherniak, Aviad; Wu, Xiaoyun; Choi, Peter S.; Gechijian, Lara; Hartigan, Christina; Faloon, Patrick W.; Hickey, Mark J.; Tolliday, Nicola; Carr, Steven A.; Clemons, Paul A.; Munoz, Benito; Wagner, Bridget K.; Shamji, Alykhan F.; Koehler, Angela N.; Schenone, Monica; Burgin, Alex B.; Schreiber, Stuart L.; Greulich, Heidi; Meyerson, Matthew
2015-01-01
High cancer death rates indicate the need for new anti-cancer therapeutic agents. Approaches to discover new cancer drugs include target-based drug discovery and phenotypic screening. Here, we identified phosphodiesterase 3A modulators as cell-selective cancer cytotoxic compounds by phenotypic compound library screening and target deconvolution by predictive chemogenomics. We found that sensitivity to 6-(4-(diethylamino)-3-nitrophenyl)-5-methyl-4,5-dihydropyridazin-3(2H)-one, or DNMDP, across 766 cancer cell lines correlates with expression of the phosphodiesterase 3A gene, PDE3A. Like DNMDP, a subset of known PDE3A inhibitors kill selected cancer cells while others do not. Furthermore, PDE3A depletion leads to DNMDP resistance. We demonstrated that DNMDP binding to PDE3A promotes an interaction between PDE3A and Schlafen 12 (SLFN12), suggesting a neomorphic activity. Co-expression of SLFN12 with PDE3A correlates with DNMDP sensitivity, while depletion of SLFN12 results in decreased DNMDP sensitivity. Our results implicate PDE3A modulators as candidate cancer therapeutic agents and demonstrate the power of predictive chemogenomics in small-molecule discovery. PMID:26656089
Alfano, Massimo; Cinque, Paola; Giusti, Guido; Proietti, Silvia; Nebuloni, Manuela; Danese, Silvio; D’Alessio, Silvia; Genua, Marco; Portale, Federica; Lo Porto, Manuela; Singhal, Pravin C.; Rastaldi, Maria Pia; Saleem, Moin A.; Mavilio, Domenico; Mikulak, Joanna
2015-01-01
Increased plasma level of soluble urokinase-type plasminogen activator receptor (suPAR) was associated recently with focal segmental glomerulosclerosis (FSGS). In addition, different clinical studies observed increased concentration of suPAR in various glomerular diseases and in other human pathologies with nephrotic syndromes such as HIV and Hantavirus infection, diabetes and cardiovascular disorders. Here, we show that suPAR induces nephrin down-modulation in human podocytes. This phenomenon is mediated only by full-length suPAR, is time-and dose-dependent and is associated with the suppression of Wilms’ tumor 1 (WT-1) transcription factor expression. Moreover, an antagonist of αvβ3 integrin RGDfv blocked suPAR-induced suppression of nephrin. These in vitro data were confirmed in an in vivo uPAR knock out Plaur−/− mice model by demonstrating that the infusion of suPAR inhibits expression of nephrin and WT-1 in podocytes and induces proteinuria. This study unveiled that interaction of full-length suPAR with αvβ3 integrin expressed on podocytes results in down-modulation of nephrin that may affect kidney functionality in different human pathologies characterized by increased concentration of suPAR. PMID:26380915
Opiates Modulate Noxious Chemical Nociception through a Complex Monoaminergic/Peptidergic Cascade
Mills, Holly; Ortega, Amanda; Law, Wenjing; Hapiak, Vera; Summers, Philip; Clark, Tobias
2016-01-01
The ability to detect noxious stimuli, process the nociceptive signal, and elicit an appropriate behavioral response is essential for survival. In Caenorhabditis elegans, opioid receptor agonists, such as morphine, mimic serotonin, and suppress the overall withdrawal from noxious stimuli through a pathway requiring the opioid-like receptor, NPR-17. This serotonin- or morphine-dependent modulation can be rescued in npr-17-null animals by the expression of npr-17 or a human κ opioid receptor in the two ASI sensory neurons, with ASI opioid signaling selectively inhibiting ASI neuropeptide release. Serotonergic modulation requires peptides encoded by both nlp-3 and nlp-24, and either nlp-3 or nlp-24 overexpression mimics morphine and suppresses withdrawal. Peptides encoded by nlp-3 act differentially, with only NLP-3.3 mimicking morphine, whereas other nlp-3 peptides antagonize NLP-3.3 modulation. Together, these results demonstrate that opiates modulate nociception in Caenorhabditis elegans through a complex monoaminergic/peptidergic cascade, and suggest that this model may be useful for dissecting opiate signaling in mammals. SIGNIFICANCE STATEMENT Opiates are used extensively to treat chronic pain. In Caenorhabditis elegans, opioid receptor agonists suppress the overall withdrawal from noxious chemical stimuli through a pathway requiring an opioid-like receptor and two distinct neuropeptide-encoding genes, with individual peptides from the same gene functioning antagonistically to modulate nociception. Endogenous opioid signaling functions as part of a complex, monoaminergic/peptidergic signaling cascade and appears to selectively inhibit neuropeptide release, mediated by a α-adrenergic-like receptor, from two sensory neurons. Importantly, receptor null animals can be rescued by the expression of the human κ opioid receptor, and injection of human opioid receptor ligands mimics exogenous opiates, highlighting the utility of this model for dissecting opiate signaling in mammals. PMID:27194330
Inhibition of Large-Conductance Ca2+-Activated K+ Channels by Nanomolar Concentrations of Ag+S⃞
Xia, Xiaoming; Lingle, Christopher J.
2010-01-01
Silver has been widely used in various medical products because of its antibacterial properties. However, there is only limited information concerning silver-related cytotoxicity. In this study we show that Ag+ at low nanomolar concentrations (<10 nM) strongly inhibits the activity of large-conductance Ca2+-activated K+ channels (BK) (Slo1), a widely expressed and physiologically important potassium channel. The Ag+ inhibition is caused by irreversible modification on cytosolically accessible parts of the BK channel. At least four intracellular cysteines are involved in this process. In addition, at least one of these key cysteines is not accessible to the bulkier thiolate-active reagent [2-(trimethylammonium)ethyl] methanethiosulfonate bromide. One of the cysteine-less constructs generated in this study shows gating properties similar to wild-type BK channel but with much lower Ag+ sensitivity, in which the Ag+ modification rate was decreased by approximately 20-fold. The results from the present study suggest a possible contribution of BK channel inhibition to the cytotoxicity of Ag+ in humans and other species. PMID:20729303
Marginal reticular cells: a stromal subset directly descended from the lymphoid tissue organizer
Katakai, Tomoya
2012-01-01
The architecture of secondary lymphoid organs (SLOs) is supported by several non-hematopoietic stromal cells. Currently it is established that two distinct stromal subsets, follicular dendritic cells and fibroblastic reticular cells, play crucial roles in the formation of tissue compartments within SLOs, i.e., the follicle and T zone, respectively. Although stromal cells in the anlagen are essential for SLO development, the relationship between these primordial cells and the subsets in adulthood remains poorly understood. In addition, the roles of stromal cells in the entry of antigens into the compartments through some tissue structures peculiar to SLOs remain unclear. A recently identified stromal subset, marginal reticular cells (MRCs), covers the margin of SLOs that are primarily located in the outer edge of follicles and construct a unique reticulum. MRCs are closely associated with specialized endothelial or epithelial structures for antigen transport. The similarities in marker expression profiles and successive localization during development suggest that MRCs directly descend from organizer stromal cells in the anlagen. Therefore, MRCs are thought to be a crucial stromal component for the organization and function of SLOs. PMID:22807928
Prandini, Paola; De Logu, Francesco; Fusi, Camilla; Provezza, Lisa; Nassini, Romina; Montagner, Giulia; Materazzi, Serena; Munari, Silvia; Gilioli, Eliana; Bezzerri, Valentino; Finotti, Alessia; Lampronti, Ilaria; Tamanini, Anna; Dechecchi, Maria Cristina; Lippi, Giuseppe; Ribeiro, Carla M; Rimessi, Alessandro; Pinton, Paolo; Gambari, Roberto; Geppetti, Pierangelo; Cabrini, Giulio
2016-11-01
Pseudomonas aeruginosa colonization, prominent inflammation with massive expression of the neutrophil chemokine IL-8, and luminal infiltrates of neutrophils are hallmarks of chronic lung disease in patients with cystic fibrosis (CF). The nociceptive transient receptor potential ankyrin (TRPA) 1 calcium channels have been recently found to be involved in nonneurogenic inflammation. Here, we investigate the role of TRPA1 in CF respiratory inflammatory models in vitro. Expression of TRPA1 was evaluated in CF lung tissue sections and cells by immunohistochemistry and immunofluorescence. Epithelial cell lines (A549, IB3-1, CuFi-1, CFBE41o - ) and primary cells from patients with CF were used to: (1) check TRPA1 function modulation, by Fura-2 calcium imaging; (2) down-modulate TRPA1 function and expression, by pharmacological inhibitors (HC-030031 and A-967079) and small interfering RNA silencing; and (3) assess the effect of TRPA1 down-modulation on expression and release of cytokines upon exposure to proinflammatory challenges, by quantitative RT-PCR and 27-protein Bioplex assay. TRPA1 channels are expressed in the CF pseudostratified columnar epithelium facing the bronchial lumina exposed to bacteria, where IL-8 is coexpressed. Inhibition of TRPA1 expression results in a relevant reduction of release of several cytokines, including IL-8 and the proinflammatory cytokines IL-1β and TNF-α, in CF primary bronchial epithelial cells exposed to P. aeruginosa and to the supernatant of mucopurulent material derived from the chronically infected airways of patients with CF. In conclusion, TRPA1 channels are involved in regulating the extent of airway inflammation driven by CF bronchial epithelial cells.
Identifying key genes associated with acute myocardial infarction.
Cheng, Ming; An, Shoukuan; Li, Junquan
2017-10-01
This study aimed to identify key genes associated with acute myocardial infarction (AMI) by reanalyzing microarray data. Three gene expression profile datasets GSE66360, GSE34198, and GSE48060 were downloaded from GEO database. After data preprocessing, genes without heterogeneity across different platforms were subjected to differential expression analysis between the AMI group and the control group using metaDE package. P < .05 was used as the cutoff for a differentially expressed gene (DEG). The expression data matrices of DEGs were imported in ReactomeFIViz to construct a gene functional interaction (FI) network. Then, DEGs in each module were subjected to pathway enrichment analysis using DAVID. MiRNAs and transcription factors predicted to regulate target DEGs were identified. Quantitative real-time polymerase chain reaction (RT-PCR) was applied to verify the expression of genes. A total of 913 upregulated genes and 1060 downregulated genes were identified in the AMI group. A FI network consists of 21 modules and DEGs in 12 modules were significantly enriched in pathways. The transcription factor-miRNA-gene network contains 2 transcription factors FOXO3 and MYBL2, and 2 miRNAs hsa-miR-21-5p and hsa-miR-30c-5p. RT-PCR validations showed that expression levels of FOXO3 and MYBL2 were significantly increased in AMI, and expression levels of hsa-miR-21-5p and hsa-miR-30c-5p were obviously decreased in AMI. A total of 41 DEGs, such as SOCS3, VAPA, and COL5A2, are speculated to have roles in the pathogenesis of AMI; 2 transcription factors FOXO3 and MYBL2, and 2 miRNAs hsa-miR-21-5p and hsa-miR-30c-5p may be involved in the regulation of the expression of these DEGs.
Identifying key genes associated with acute myocardial infarction
Cheng, Ming; An, Shoukuan; Li, Junquan
2017-01-01
Abstract Background: This study aimed to identify key genes associated with acute myocardial infarction (AMI) by reanalyzing microarray data. Methods: Three gene expression profile datasets GSE66360, GSE34198, and GSE48060 were downloaded from GEO database. After data preprocessing, genes without heterogeneity across different platforms were subjected to differential expression analysis between the AMI group and the control group using metaDE package. P < .05 was used as the cutoff for a differentially expressed gene (DEG). The expression data matrices of DEGs were imported in ReactomeFIViz to construct a gene functional interaction (FI) network. Then, DEGs in each module were subjected to pathway enrichment analysis using DAVID. MiRNAs and transcription factors predicted to regulate target DEGs were identified. Quantitative real-time polymerase chain reaction (RT-PCR) was applied to verify the expression of genes. Result: A total of 913 upregulated genes and 1060 downregulated genes were identified in the AMI group. A FI network consists of 21 modules and DEGs in 12 modules were significantly enriched in pathways. The transcription factor-miRNA-gene network contains 2 transcription factors FOXO3 and MYBL2, and 2 miRNAs hsa-miR-21-5p and hsa-miR-30c-5p. RT-PCR validations showed that expression levels of FOXO3 and MYBL2 were significantly increased in AMI, and expression levels of hsa-miR-21–5p and hsa-miR-30c-5p were obviously decreased in AMI. Conclusion: A total of 41 DEGs, such as SOCS3, VAPA, and COL5A2, are speculated to have roles in the pathogenesis of AMI; 2 transcription factors FOXO3 and MYBL2, and 2 miRNAs hsa-miR-21-5p and hsa-miR-30c-5p may be involved in the regulation of the expression of these DEGs. PMID:29049183
Chen, Wei; Zhao, Wenshan; Yang, Aiting; Xu, Anjian; Wang, Huan; Cong, Min; Liu, Tianhui; Wang, Ping; You, Hong
2017-12-15
Liver fibrosis, characterized with the excessive accumulation of extracellular matrix (ECM) proteins, represents the final common pathway of chronic liver inflammation. Ever-increasing evidence indicates microRNAs (miRNAs) dysregulation has important implications in the different stages of liver fibrosis. However, our knowledge of miRNA-gene regulation details pertaining to such disease remains unclear. The publicly available Gene Expression Omnibus (GEO) datasets of patients suffered from cirrhosis were extracted for integrated analysis. Differentially expressed miRNAs (DEMs) and genes (DEGs) were identified using GEO2R web tool. Putative target gene prediction of DEMs was carried out using the intersection of five major algorithms: DIANA-microT, TargetScan, miRanda, PICTAR5 and miRWalk. Functional miRNA-gene regulatory network (FMGRN) was constructed based on the computational target predictions at the sequence level and the inverse expression relationships between DEMs and DEGs. DAVID web server was selected to perform KEGG pathway enrichment analysis. Functional miRNA-gene regulatory module was generated based on the biological interpretation. Internal connections among genes in liver fibrosis-related module were determined using String database. MiRNA-gene regulatory modules related to liver fibrosis were experimentally verified in recombinant human TGFβ1 stimulated and specific miRNA inhibitor treated LX-2 cells. We totally identified 85 and 923 dysregulated miRNAs and genes in liver cirrhosis biopsy samples compared to their normal controls. All evident miRNA-gene pairs were identified and assembled into FMGRN which consisted of 990 regulations between 51 miRNAs and 275 genes, forming two big sub-networks that were defined as down-network and up-network, respectively. KEGG pathway enrichment analysis revealed that up-network was prominently involved in several KEGG pathways, in which "Focal adhesion", "PI3K-Akt signaling pathway" and "ECM-receptor interaction" were remarked significant (adjusted p<0.001). Genes enriched in these pathways coupled with their regulatory miRNAs formed a functional miRNA-gene regulatory module that contains 7 miRNAs, 22 genes and 42 miRNA-gene connections. Gene interaction analysis based on String database revealed that 8 out of 22 genes were highly clustered. Finally, we experimentally confirmed a functional regulatory module containing 5 miRNAs (miR-130b-3p, miR-148a-3p, miR-345-5p, miR-378a-3p, and miR-422a) and 6 genes (COL6A1, COL6A2, COL6A3, PIK3R3, COL1A1, CCND2) associated with liver fibrosis. Our integrated analysis of miRNA and gene expression profiles highlighted a functional miRNA-gene regulatory module associated with liver fibrosis, which, to some extent, may provide important clues to better understand the underlying pathogenesis of liver fibrosis. Copyright © 2017. Published by Elsevier B.V.
Kim, Hyo-Soo; Skurk, Carsten; Maatz, Henrike; Shiojima, Ichiro; Ivashchenko, Yuri; Yoon, Suk-Won; Park, Young-Bae; Walsh, Kenneth
2005-06-01
To identify new antiapoptotic targets of the PI3K-Akt signaling pathway in endothelial cells, adenovirus-mediated Akt1 gene transfer and oligonucleotide microarrays were used to examine Akt-regulated transcripts. DNA microarray analysis revealed that HSP70 expression underwent the greatest fold activation of 12,532 transcripts examined in human umbilical vein endothelial cells (HUVEC) transduced with constitutively active Akt1. Akt1 gene transfer increased HSP70 transcript expression by 24.8-fold as determined by quantitative PCR and promoted a dose-dependent up-regulation of HSP70 protein as determined by Western immunoblot analysis. Gene transfer of FOXO3a, a downstream target of Akt in endothelial cells, significantly suppressed both basal and stress-induced HSP70 protein expression. FOXO3a induced caspase-9-dependent apoptosis in HUVEC, and cotransduction with Ad-HSP70 rescued endothelial cells from FOXO3a-induced apoptosis under basal and stress conditions. Our results identify HSP70 as a new antiapoptotic target of Akt-FOXO3a signaling in endothelial cells that controls viability through modulation of the stress-induced intrinsic cell death pathway.
Waning of "conditioned pain modulation": a novel expression of subtle pronociception in migraine.
Nahman-Averbuch, Hadas; Granovsky, Yelena; Coghill, Robert C; Yarnitsky, David; Sprecher, Elliot; Weissman-Fogel, Irit
2013-01-01
To assess the decay of the conditioned pain modulation (CPM) response along repeated applications as a possible expression of subtle pronociception in migraine. One of the most explored mechanisms underlying the pain modulation system is "diffuse noxious inhibitory controls," which is measured psychophysically in the lab by the CPM paradigm. There are contradicting reports on CPM response in migraine, questioning whether migraineurs express pronociceptive pain modulation. Migraineurs (n = 26) and healthy controls (n = 35), all females, underwent 3 stimulation series, consisting of repeated (1) "test-stimulus" (Ts) alone that was given first followed by (2) parallel CPM application (CPM-parallel), and (3) sequential CPM application (CPM-sequential), in which the Ts is delivered during or following the conditioning-stimulus, respectively. In all series, the Ts repeated 4 times (0-3). In the CPM series, repetition "0" consisted of the Ts-alone that was followed by 3 repetitions of the Ts with a conditioning-stimulus application. Although there was no difference between migraineurs and controls for the first CPM response in each series, we found waning of CPM-parallel efficiency along the series for migraineurs (P = .005 for third vs first CPM), but not for controls. Further, greater CPM waning in the CPM-sequential series was correlated with less reported extent of pain reduction by episodic medication (r = 0.493, P = .028). Migraineurs have subtle deficits in endogenous pain modulation which requires a more challenging test protocol than the commonly used single CPM. Waning of CPM response seems to reveal this pronociceptive state. The clinical relevance of the CPM waning effect is highlighted by its association with clinical parameters of migraine. © 2013 American Headache Society.
Demonstration of Advanced EMI Models for Live-Site UXO Discrimination at Waikoloa, Hawaii
2015-12-01
magnetic source models PNN Probabilistic Neural Network SERDP Strategic Environmental Research and Development Program SLO San Luis Obispo...SNR Signal to noise ratio SVM Support vector machine TD Time Domain TEMTADS Time Domain Electromagnetic Towed Array Detection System TOI... intrusive procedure, which was used by Parsons at WMA, failed to document accurately all intrusive results, or failed to detect and clear all UXO like
Ridge-branch-based blood vessel detection algorithm for multimodal retinal images
NASA Astrophysics Data System (ADS)
Li, Y.; Hutchings, N.; Knighton, R. W.; Gregori, G.; Lujan, B. J.; Flanagan, J. G.
2009-02-01
Automatic detection of retinal blood vessels is important to medical diagnoses and imaging. With the development of imaging technologies, various modals of retinal images are available. Few of currently published algorithms are applied to multimodal retinal images. Besides, the performance of algorithms with pathologies is expected to be improved. The purpose of this paper is to propose an automatic Ridge-Branch-Based (RBB) detection algorithm of blood vessel centerlines and blood vessels for multimodal retinal images (color fundus photographs, fluorescein angiograms, fundus autofluorescence images, SLO fundus images and OCT fundus images, for example). Ridges, which can be considered as centerlines of vessel-like patterns, are first extracted. The method uses the connective branching information of image ridges: if ridge pixels are connected, they are more likely to be in the same class, vessel ridge pixels or non-vessel ridge pixels. Thanks to the good distinguishing ability of the designed "Segment-Based Ridge Features", the classifier and its parameters can be easily adapted to multimodal retinal images without ground truth training. We present thorough experimental results on SLO images, color fundus photograph database and other multimodal retinal images, as well as comparison between other published algorithms. Results showed that the RBB algorithm achieved a good performance.
NASA Astrophysics Data System (ADS)
Viard, Clément; Nakashima, Kiyoko; Lamory, Barbara; Pâques, Michel; Levecq, Xavier; Château, Nicolas
2011-03-01
This research is aimed at characterizing in vivo differences between healthy and pathological retinal tissues at the microscopic scale using a compact adaptive optics (AO) retinal camera. Tests were performed in 120 healthy eyes and 180 eyes suffering from 19 different pathological conditions, including age-related maculopathy (ARM), glaucoma and rare diseases such as inherited retinal dystrophies. Each patient was first examined using SD-OCT and infrared SLO. Retinal areas of 4°x4° were imaged using an AO flood-illumination retinal camera based on a large-stroke deformable mirror. Contrast was finally enhanced by registering and averaging rough images using classical algorithms. Cellular-resolution images could be obtained in most cases. In ARM, AO images revealed granular contents in drusen, which were invisible in SLO or OCT images, and allowed the observation of the cone mosaic between drusen. In glaucoma cases, visual field was correlated to changes in cone visibility. In inherited retinal dystrophies, AO helped to evaluate cone loss across the retina. Other microstructures, slightly larger in size than cones, were also visible in several retinas. AO provided potentially useful diagnostic and prognostic information in various diseases. In addition to cones, other microscopic structures revealed by AO images may also be of interest in monitoring retinal diseases.
NASA Astrophysics Data System (ADS)
Rasta, Seyed Hossein; Manivannan, Ayyakkannu; Sharp, Peter F.
2012-11-01
To evaluate retinal perfusion in the human eye, a dual-wavelength confocal scanning laser ophthalmoscope (cSLO) was developed that provides spectral imaging of the fundus using a combination of red (670 nm) and near-infrared (810 nm) wavelengths. The image of the ocular fundus was analyzed to find out if quantitative measurements of the reflectivity of tissue permit assessment of the oxygen perfusion of tissue. We explored problems that affect the reproducibility of patient measurements such as non-uniformity errors on the image. For the first time, an image processing technique was designed and used to minimize the errors of oxygen saturation measurements by illumination correction in retina wide field by increasing SNR. Retinal images were taken from healthy and diabetic retinopathy eyes using the cSLO with a confocal aperture of 100 μm. The ratio image (RI) of red/IR, as oxygen saturation (SO2) index, was calculated for normal eyes. The image correction technique improved the reproducibility of the measurements. Average RI intensity variation of healthy retina tissue was determined within a range of about 5.5%. The capability of the new technique to discriminate oxygenation levels of retinal artery and vein was successfully demonstrated and showed good promise in the diagnosis of the perfused retina.
Zhu, Luchang; Olsen, Randall J; Horstmann, Nicola; Shelburne, Samuel A; Fan, Jia; Hu, Ye; Musser, James M
2016-07-01
Variable-number tandem-repeat (VNTR) polymorphisms are ubiquitous in bacteria. However, only a small fraction of them has been functionally studied. Here, we report an intergenic VNTR polymorphism that confers an altered level of toxin production and increased virulence in Streptococcus pyogenes The nature of the polymorphism is a one-unit deletion in a three-tandem-repeat locus upstream of the rocA gene encoding a sensor kinase. S. pyogenes strains with this type of polymorphism cause human infection and produce significantly larger amounts of the secreted cytotoxins S. pyogenes NADase (SPN) and streptolysin O (SLO). Using isogenic mutant strains, we demonstrate that deleting one or more units of the tandem repeats abolished RocA production, reduced CovR phosphorylation, derepressed multiple CovR-regulated virulence factors (such as SPN and SLO), and increased virulence in a mouse model of necrotizing fasciitis. The phenotypic effect of the VNTR polymorphism was nearly the same as that of inactivating the rocA gene. In summary, we identified and characterized an intergenic VNTR polymorphism in S. pyogenes that affects toxin production and virulence. These new findings enhance understanding of rocA biology and the function of VNTR polymorphisms in S. pyogenes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Effect of PGE2 on the cell surface molecule expression in PMA treated thymocytes.
Daculsi, R; Vaillier, D; Carron, J C; Gualde, N
1998-02-01
PGE2 is produced by cells of the thymic microenvironment. The effects of PGE2 are mediated by cAMP through binding to its intracellular receptor protein kinase A (PKA). Phorbol 12-myristate 13-acetate (PMA) is known to modulate CD molecule expression on thymocytes, probably through activation of protein kinase C (PKC). We have hypothesized that cross-talk between these two signalling pathways may affect modulation of the CD molecules on the cell surface of thymocytes. For this purpose, we compare the effects of PMA alone or combined with PGE2 on CD3, CD4 and CD8 expression on mouse thymocytes by flow-cytometric analysis. PMA treatment almost completely abolished CD4 expression and slightly decreased CD3 and CD8 expression. PGE2 alone did not change the CD3, CD4 and CD8 molecule expression. Combined with PMA, PGE2 can overcome the decrease induced by PMA of the CD3 expression and partially reduced the disappearance of the CD4 molecule. On the other hand PGE2 accelerated the loss of CD8 molecule expression. These events occurred only in CD4+ CD8+ immature thymocytes. An analogue of cAMP (dibutyryl cAMP) mimics the effect of PGE2, but not Br-cGMP. This differential regulation by PGE2 of the CD molecule expression on immature thymocytes may provide additional evidence on the role of PGE2 during the process of thymic differentiation.
Nie, Lulin; Wei, Gang; Peng, Shengming; Qu, Zhongsen; Yang, Ying; Yang, Qian; Huang, Xinfeng; Liu, Jianjun; Zhuang, Zhixiong; Yang, Xifei
2017-07-08
Alzheimer's disease (AD) is a devastating neurodegenerative disease accompanied by neuropsychiatric symptoms, such as anxiety and depression. The levels of melatonin decrease in brains of AD patients. The potential effect of melatonin on anxiety and depression behaviors in AD and the underlying mechanisms remain unclear. In this study, we treated 10-month-old triple transgenic mice of AD (3xTg-AD) with melatonin (10 mg/kg body weight/day) for 1 month and explored the effects of melatonin on anxiety and depression-like behaviors in 3xTg-AD mice and the protein expression of hippocampal tissues. The behavioral test showed that melatonin ameliorated anxiety and depression-like behaviors of 3xTg-AD mice as measured by open field test, elevated plus maze test, forced swimming test, and tail suspension test. By carrying out two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry, we revealed a total of 46 differentially expressed proteins in hippocampus between the wild-type (WT) mice and non-treated 3xTg-AD mice. A total of 21 differentially expressed proteins were revealed in hippocampus between melatonin-treated and non-treated 3xTg-AD mice. Among these differentially expressed proteins, glutathione S-transferase P 1 (GSTP1) (an anxiety-associated protein) and complexin-1 (CPLX1) (a depression-associated protein) were significantly down-regulated in hippocampus of 3xTg-AD mice compared with the WT mice. The expression of these two proteins was modulated by melatonin treatment. Our study suggested that melatonin could be used as a potential candidate drug to improve the neuropsychiatric behaviors in AD via modulating the expression of the proteins (i.e. GSTP1 and CPLX1) involved in anxiety and depression behaviors. © 2017 BioFactors, 43(4):593-611, 2017. © 2017 International Union of Biochemistry and Molecular Biology.
Schalinske, Kevin L.; Blemings, Kenneth P.; Steffen, Daniel W.; Chen, Opal S.; Eisenstein, Richard S.
1997-01-01
Iron regulatory proteins (IRPs) are cytoplasmic RNA binding proteins that are central components of a sensory and regulatory network that modulates vertebrate iron homeostasis. IRPs regulate iron metabolism by binding to iron responsive element(s) (IREs) in the 5′ or 3′ untranslated region of ferritin or transferrin receptor (TfR) mRNAs. Two IRPs, IRP1 and IRP2, have been identified previously. IRP1 exhibits two mutually exclusive functions as an RNA binding protein or as the cytosolic isoform of aconitase. We demonstrate that the Ba/F3 family of murine pro-B lymphocytes represents the first example of a mammalian cell line that fails to express IRP1 protein or mRNA. First, all of the IRE binding activity in Ba/F3-gp55 cells is attributable to IRP2. Second, synthesis of IRP2, but not of IRP1, is detectable in Ba/F3-gp55 cells. Third, the Ba/F3 family of cells express IRP2 mRNA at a level similar to other murine cell lines, but IRP1 mRNA is not detectable. In the Ba/F3 family of cells, alterations in iron status modulated ferritin biosynthesis and TfR mRNA level over as much as a 20- and 14-fold range, respectively. We conclude that IRP1 is not essential for regulation of ferritin or TfR expression by iron and that IRP2 can act as the sole IRE-dependent mediator of cellular iron homeostasis. PMID:9380695
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Shanqin; Zhi, Hui; Hou, Xiuyun
2011-07-08
Highlights: {yields} We examine how angiotensin II modulates ERK-NF-{kappa}B crosstalk and gene expression. {yields} Angiotensin II suppresses IL-1{beta}-induced prolonged ERK and NF-{kappa}B activation. {yields} ERK-RSK1 signaling is required for IL-1{beta}-induced prolonged NF-{kappa}B activation. {yields} Angiotensin II modulates NF-{kappa}B responsive genes via regulating ERK-NF-{kappa}B crosstalk. {yields} ERK-NF-{kappa}B crosstalk is a novel mechanism regulating inflammatory gene expression. -- Abstract: Angiotensin II is implicated in cardiovascular diseases, which is associated with a role in increasing vascular inflammation. The present study investigated how angiotensin II modulates vascular inflammatory signaling and expression of inducible nitric oxide synthase (iNOS) and vascular cell adhesion molecule (VCAM)-1. Inmore » cultured rat aortic vascular smooth muscle cells (VSMCs), angiotensin II suppressed interleukin-1{beta}-induced prolonged phosphorylation of extracellular signal-regulated kinase (ERK) and ribosomal S6 kinase (RSK)-1, and nuclear translocation of nuclear factor (NF)-{kappa}B, leading to decreased iNOS but enhanced VCAM-1 expression, associated with an up-regulation of mitogen-activated protein kinase phosphatase-1 expression. Knock-down of RSK1 selectively down regulated interleukin-1{beta}-induced iNOS expression without influencing VCAM-1 expression. In vivo experiments showed that interleukin-1{beta}, iNOS, and VCAM-1 expression were detectable in the aortic arches of both wild-type and apolipoprotein E-deficient (ApoE{sup -/-}) mice. VCAM-1 and iNOS expression were higher in ApoE{sup -/-} than in wild type mouse aortic arches. Angiotensin II infusion (3.2 mg/kg/day, for 6 days, via subcutaneous osmotic pump) in ApoE{sup -/-} mice enhanced endothelial and adventitial VCAM-1 and iNOS expression, but reduced medial smooth muscle iNOS expression associated with reduced phosphorylation of ERK and RSK-1. These results indicate that angiotensin II can differentially modulate inflammatory gene expression in aortic smooth muscle cells through influencing ERK-NF-{kappa}B crosstalk, which may contribute to angiotensin II-induced inflammatory disorders related to cardiovascular diseases.« less
TGF-β1 Downregulates the Expression of CX3CR1 by Inducing miR-27a-5p in Primary Human NK Cells.
Regis, Stefano; Caliendo, Fabio; Dondero, Alessandra; Casu, Beatrice; Romano, Filomena; Loiacono, Fabrizio; Moretta, Alessandro; Bottino, Cristina; Castriconi, Roberta
2017-01-01
Activity of human natural killer (NK) cells against cancer cells is deeply suppressed by TGF-β1, an immunomodulatory cytokine that is released and activated in the tumor microenvironment. Moreover, our previous data showed that TGF-β1 modifies the chemokine receptor repertoire of NK cells. In particular, it decreases the expression of CX 3 CR1 that drives these effectors toward peripheral tissues, including tumor sites. To identify possible mechanisms mediating chemokine receptors modulation, we analyzed the microRNA profile of TGF-β1-treated primary NK cells. The analysis pointed out miR-27a-5p as a possible modulator of CX 3 CR1. We demonstrated the functional interaction of miR-27a-5p with the 3' untranslated region (3'UTR) of CX 3 CR1 mRNA by two different experimental approaches: by the use of a luciferase assay based on a reporter construct containing the CX 3 CR1 3'UTR and by transfection of primary NK cells with a miR-27a-5p inhibitor. We also showed that the TGF-β1-mediated increase of miR-27a-5p expression is a consequence of miR-23a-27a-24-2 cluster induction. Moreover, we demonstrated that miR-27a-5p downregulates the surface expression of CX 3 CR1. Finally, we showed that neuroblastoma cells induced in resting NK cells a downregulation of the CX 3 CR1 expression that was paralleled by a significant increase of miR-27a-5p expression. Therefore, the present study highlights miR-27a-5p as a pivotal TGF-β1-induced regulator of CX 3 CR1 expression.
Koide, Masahiro; Ikeda, Koji; Akakabe, Yoshiki; Kitamura, Youhei; Ueyama, Tomomi; Matoba, Satoaki; Yamada, Hiroyuki; Okigaki, Mitsuhiko; Matsubara, Hiroaki
2011-06-07
Endothelial and endothelial progenitor cells (ECs and EPCs) play a fundamental role in angiogenesis that is essential for numerous physiological and pathological processes. The phosphatase and tensin homolog (PTEN)/ phosphoinositide 3-kinase (PI3K) pathway has been implicated in angiogenesis, but the mechanism in the regulation of this pathway in ECs and EPCs is poorly understood. Here we show that ARIA (apoptosis regulator through modulating IAP expression), a transmembrane protein that we recently identified, regulates the PTEN/PI3K pathway in ECs and EPCs and controls developmental and postnatal angiogenesis in vivo. We found that ARIA is abundantly expressed in EPCs and regulates their angiogenic functions by modulating PI3K/Akt/endothelial nitric oxide synthase (eNOS) signaling. Genetic deletion of ARIA caused nonfatal bleeding during embryogenesis, in association with increased small vessel density and altered expression of various vascular growth factors including angiopoietins and VEGF receptors. Postnatal neovascularization induced by critical limb ischemia was substantially enhanced in ARIA-null mice, in conjunction with more bone marrow (BM)-derived ECs detected in ischemic muscles. Administration of PI3K or NO synthase inhibitor completely abolished the enhanced neovascularization in ARIA(-/-) mice. Mechanistically, we identified that ARIA interacts with PTEN at the intracellular domain independently of the PTEN phosphorylation in its C-terminal tail. Overexpressed ARIA increased PTEN in the membrane fraction, whereas ARIA-silencing reduced the membrane-associated PTEN, resulting in modified PI3K/Akt signaling. Taken together, our findings establish a previously undescribed mode of regulation of the PTEN/PI3K/Akt pathway by ARIA, and reveal a unique mechanism in the control of angiogenesis. These functions of ARIA might offer a unique therapeutic potential.
Kozloski, Goldi A; Carraway, Coralie A Carothers; Carraway, Kermit L
2010-09-01
The membrane mucin Muc4 is aberrantly expressed in numerous epithelial carcinomas and is currently used as a cancer diagnostic and prognostic tool. Muc4 can also potentiate signal transduction by modulating differential ErbB2 phosphorylation in the absence and in the presence of the ErbB3 soluble ligand heregulin (HRG-beta1). These features of Muc4 suggest that Muc4 is not merely a cancer marker, but an oncogenic factor with a unique-binding/activation relationship with the receptor ErbB2. In the present study, we examined the signaling mechanisms that are associated with the Muc4-ErbB2 module by analyzing ErbB2 differential signaling in response to Muc4 expression. Our study was carried out in the A375 human melanoma and BT-474 breast cancer cell lines as our model systems. Quantitative and comparative signaling modulations were evaluated by immunoblot using phospho-specific antibodies, and densitometry analysis. Signaling complex components were identified by chemical cross-linking, fractionation by gel filtration, immunoprecipitation, and immunoblotting. Activated downstream signaling pathways were analyzed by an antibody microarray screen and immunoblot analyses. Our results indicate that Muc4 modulates ErbB2 signaling potential significantly by stabilizing and directly interacting with the ErbB2-ErbB3 heterodimer. Further analyses indicate that Muc4 promotes ErbB2 autocatalysis, but it has no effect on ErbB3 phosphorylation, although the chemical cross-linking data indicated that the signaling module is composed of Muc4, ErbB2, and ErbB3. Our microarray analysis indicates that Muc4 expression promotes cell migration by increasing the phosphorylation of the focal adhesion kinase and also through an increase in the levels of beta-catenin. (c) 2010 Wiley-Liss, Inc.
Chen, X Y; Chen, Y H; Zhang, L J; Wang, Y; Tong, Z C
2017-02-16
Osteosarcoma (OS) is the most common primary bone malignancy, but current therapies are far from effective for all patients. A better understanding of the pathological mechanism of OS may help to achieve new treatments for this tumor. Hence, the objective of this study was to investigate ego modules and pathways in OS utilizing EgoNet algorithm and pathway-related analysis, and reveal pathological mechanisms underlying OS. The EgoNet algorithm comprises four steps: constructing background protein-protein interaction (PPI) network (PPIN) based on gene expression data and PPI data; extracting differential expression network (DEN) from the background PPIN; identifying ego genes according to topological features of genes in reweighted DEN; and collecting ego modules using module search by ego gene expansion. Consequently, we obtained 5 ego modules (Modules 2, 3, 4, 5, and 6) in total. After applying the permutation test, all presented statistical significance between OS and normal controls. Finally, pathway enrichment analysis combined with Reactome pathway database was performed to investigate pathways, and Fisher's exact test was conducted to capture ego pathways for OS. The ego pathway for Module 2 was CLEC7A/inflammasome pathway, while for Module 3 a tetrasaccharide linker sequence was required for glycosaminoglycan (GAG) synthesis, and for Module 6 was the Rho GTPase cycle. Interestingly, genes in Modules 4 and 5 were enriched in the same pathway, the 2-LTR circle formation. In conclusion, the ego modules and pathways might be potential biomarkers for OS therapeutic index, and give great insight of the molecular mechanism underlying this tumor.
Chen, X.Y.; Chen, Y.H.; Zhang, L.J.; Wang, Y.; Tong, Z.C.
2017-01-01
Osteosarcoma (OS) is the most common primary bone malignancy, but current therapies are far from effective for all patients. A better understanding of the pathological mechanism of OS may help to achieve new treatments for this tumor. Hence, the objective of this study was to investigate ego modules and pathways in OS utilizing EgoNet algorithm and pathway-related analysis, and reveal pathological mechanisms underlying OS. The EgoNet algorithm comprises four steps: constructing background protein-protein interaction (PPI) network (PPIN) based on gene expression data and PPI data; extracting differential expression network (DEN) from the background PPIN; identifying ego genes according to topological features of genes in reweighted DEN; and collecting ego modules using module search by ego gene expansion. Consequently, we obtained 5 ego modules (Modules 2, 3, 4, 5, and 6) in total. After applying the permutation test, all presented statistical significance between OS and normal controls. Finally, pathway enrichment analysis combined with Reactome pathway database was performed to investigate pathways, and Fisher's exact test was conducted to capture ego pathways for OS. The ego pathway for Module 2 was CLEC7A/inflammasome pathway, while for Module 3 a tetrasaccharide linker sequence was required for glycosaminoglycan (GAG) synthesis, and for Module 6 was the Rho GTPase cycle. Interestingly, genes in Modules 4 and 5 were enriched in the same pathway, the 2-LTR circle formation. In conclusion, the ego modules and pathways might be potential biomarkers for OS therapeutic index, and give great insight of the molecular mechanism underlying this tumor. PMID:28225867
Zhang, Yi; Qian, Rui-Qin; Li, Ping-Ping
2009-10-18
Steroid sulfatase (STS) has an important role in regulating the biosynthesis of estrogen within breast tumors. We aimed to investigate whether shikonin, an ingredient of Lithospermum erythrorhizon, could modulate STS expression in breast cancer cells. By MTT assay, shikonin inhibited the cell proliferation of breast cancer cells MCF-7 and SK-BR-3. Moreover, by semi-quantitative/quantitative reverse transcription polymerase chain reaction and dual-luciferase reporter based bioluminescent measurements, the mRNA and enzymatic activity levels of STS were decreased after shikonin treatment. Concluding, shikonin could act as a selective estrogen enzyme modulator by down-regulating the STS expression.
Liu, Yangyang; Wang, Ruling; Zhang, Ping
2016-01-01
Methyl 3-(4-hydroxyphenyl)propionate (MHPP) is a root exudate that functions as a nitrification inhibitor and as a modulator of the root system architecture (RSA) by inhibiting primary root (PR) elongation and promoting lateral root formation. However, the mechanism underlying MHPP-mediated modulation of the RSA remains unclear. Here, we report that MHPP inhibits PR elongation in Arabidopsis (Arabidopsis thaliana) by elevating the levels of auxin expression and signaling. MHPP induces an increase in auxin levels by up-regulating auxin biosynthesis, altering the expression of auxin carriers, and promoting the degradation of the auxin/indole-3-acetic acid family of transcriptional repressors. We found that MHPP-induced nitric oxide (NO) production promoted reactive oxygen species (ROS) accumulation in root tips. Suppressing the accumulation of NO or ROS alleviated the inhibitory effect of MHPP on PR elongation by weakening auxin responses and perception and by affecting meristematic cell division potential. Genetic analysis supported the phenotype described above. Taken together, our results indicate that MHPP modulates RSA remodeling via the NO/ROS-mediated auxin response pathway in Arabidopsis. Our study also revealed that MHPP significantly induced the accumulation of glucosinolates in roots, suggesting the diverse functions of MHPP in modulating plant growth, development, and stress tolerance in plants. PMID:27217493
CFTR modulates RPS27 gene expression using chloride anion as signaling effector.
Valdivieso, Ángel G; Mori, Consuelo; Clauzure, Mariángeles; Massip-Copiz, Macarena; Santa-Coloma, Tomás A
2017-11-01
In Cystic Fibrosis (CF), the impairment of the CFTR channel activity leads to a variety of alterations, including differential gene expression. However, the CFTR signaling mechanisms remain unclear. Recently, culturing IB3-1 CF cells under different intracellular Cl - concentrations ([Cl - ] i ), we observed several Cl - -dependent genes and further characterized one of them as RPS27. Thus, we hypothesized that Cl - might act as a signaling effector for CFTR signaling. Here, to test this idea, we study RPS27 expression in T84 cells modulating the CFTR activity by using CFTR inhibitors. First, we observed that incubation of T84 cells with increasing concentrations of the CFTR inhibitors CFTR(inh)-172 or GlyH-101 determined a progressive increase in the relative [Cl - ] i (using the Cl - fluorescent probe SPQ). The [Cl - ] i rise was concomitant with a dose-dependent down-regulation of RPS27. These results imply that CFTR inhibition produce Cl - accumulation and that RPS27 expression can be modulated by CFTR inhibition. Therefore, Cl - behaves as a signaling effector for CFTR in the modulation of RPS27 expression. In addition, the IL-1β receptor antagonist IL1RN or the JNK inhibitor SP600125, both restored the down-regulation of RPS27 induced by CFTRinh-172, implying a role of autocrine IL-1β and JNK signaling downstream of Cl - in RPS27 modulation. Copyright © 2017 Elsevier Inc. All rights reserved.
Singh, Anamika; Gebhart, Mathias; Fritsch, Reinhard; Sinnegger-Brauns, Martina J; Poggiani, Chiara; Hoda, Jean-Charles; Engel, Jutta; Romanin, Christoph; Striessnig, Jörg; Koschak, Alexandra
2008-07-25
Low voltage activation of Ca(V)1.3 L-type Ca(2+) channels controls excitability in sensory cells and central neurons as well as sinoatrial node pacemaking. Ca(V)1.3-mediated pacemaking determines neuronal vulnerability of dopaminergic striatal neurons affected in Parkinson disease. We have previously found that in Ca(V)1.4 L-type Ca(2+) channels, activation, voltage, and calcium-dependent inactivation are controlled by an intrinsic distal C-terminal modulator. Because alternative splicing in the Ca(V)1.3 alpha1 subunit C terminus gives rise to a long (Ca(V)1.3(42)) and a short form (Ca(V)1.3(42A)), we investigated if a C-terminal modulatory mechanism also controls Ca(V)1.3 gating. The biophysical properties of both splice variants were compared after heterologous expression together with beta3 and alpha2delta1 subunits in HEK-293 cells. Activation of calcium current through Ca(V)1.3(42A) channels was more pronounced at negative voltages, and inactivation was faster because of enhanced calcium-dependent inactivation. By investigating several Ca(V)1.3 channel truncations, we restricted the modulator activity to the last 116 amino acids of the C terminus. The resulting Ca(V)1.3(DeltaC116) channels showed gating properties similar to Ca(V)1.3(42A) that were reverted by co-expression of the corresponding C-terminal peptide C(116). Fluorescence resonance energy transfer experiments confirmed an intramolecular protein interaction in the C terminus of Ca(V)1.3 channels that also modulates calmodulin binding. These experiments revealed a novel mechanism of channel modulation enabling cells to tightly control Ca(V)1.3 channel activity by alternative splicing. The absence of the C-terminal modulator in short splice forms facilitates Ca(V)1.3 channel activation at lower voltages expected to favor Ca(V)1.3 activity at threshold voltages as required for modulation of neuronal firing behavior and sinoatrial node pacemaking.
Importance of inverse correlation between ALDH3A1 and PPARγ in tumor cells and tissue regeneration.
Oraldi, M; Saracino, S; Maggiora, M; Chiaravalloti, A; Buemi, C; Martinasso, G; Paiuzzi, E; Thompson, D; Vasiliou, V; Canuto, R A
2011-05-30
Aldehyde dehydrogenase (ALDH) enzymes are involved in maintaining cellular homeostasis by metabolizing both endogenous and exogenous reactive aldehydes. They modulate several cell functions including proliferation, differentiation, survival as well as cellular response to oxidative stress. We previously reported that ALDH3A1 expression is inversely correlated with the activation of PPARs (Peroxisome Proliferators-Activated Receptors), a category of orphan nuclear hormone receptors, in both rat and human cells. PPARγ is involved in cell proliferation. In this study, we have used PPARγ transfection and inhibition to examine the relationship between ALDH3A1 and PPARγ and their role as regulators of cell proliferation. Induction of PPARγ in A549 and NCTC 2544 cells by transfection caused a decrease in ALDH3A1 and inhibition of cell proliferation, a result we obtained previously using ligands that induce PPARγ. A reduction of PPARγ expression using siRNA increased ALDH3A1 expression and cell proliferation. In cells induced to proliferate in a model of tissue regeneration, ALDH3A1 expression increased during the period of proliferation, whereas PPARγ expression decreased. In conclusion, through modulation of PPARγ or ALDH3A1, it may be possible to reduce cell proliferation in tumor cells or stimulate cell proliferation in normal cells during tissue regeneration. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
BAG3 down-modulation sensitizes HPV18(+) HeLa cells to PEITC-induced apoptosis and restores p53.
Cotugno, Roberta; Basile, Anna; Romano, Elena; Gallotta, Dario; Belisario, Maria Antonietta
2014-11-28
BAG3 is a multi-functional component of tumor cell pro-survival machinery, and its biological functions have been largely associated to proteasome system. Here, we show that BAG3 down-modulation resulted in reduced cell viability and enhanced PEITC-induced apoptosis largely more extensively in HeLa (HPV18(+)) rather than in C33A (HPV(-)) cervical carcinoma cell lines. Moreover, we demonstrate that BAG3 suppression led to a decrease of viral E6 oncoprotein and a concomitant recovery of p53 tumor suppressor, the best recognized target of E6 for proteasome degradation. E6 and p53 expression were modulated at protein level, since their respective mRNAs were unaffected. Taken together our findings reveal a novel role for BAG3 as host protein contributing to HPV18 E6-activated pro-survival strategies, and suggest a possible relevance of its expression levels in drug/radiotherapy-resistance of HPV18-bearing cervical carcinomas. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Wood, Peta; Mulay, Vishwaroop; Darabi, Masoud; Chan, Karen Cecilia; Heeren, Joerg; Pol, Albert; Lambert, Gilles; Rye, Kerry-Anne; Enrich, Carlos; Grewal, Thomas
2011-01-01
The mitogen-activated protein kinase (MAPK) Erk1/2 has been implicated to modulate the activity of nuclear receptors, including peroxisome proliferator activator receptors (PPARs) and liver X receptor, to alter the ability of cells to export cholesterol. Here, we investigated if the Ras-Raf-Mek-Erk1/2 signaling cascade could affect reverse cholesterol transport via modulation of scavenger receptor class BI (SR-BI) levels. We demonstrate that in Chinese hamster ovary (CHO) and human embryonic kidney (HEK293) cells, Mek1/2 inhibition reduces PPARα-inducible SR-BI protein expression and activity, as judged by reduced efflux onto high density lipoprotein (HDL). Ectopic expression of constitutively active H-Ras and Mek1 increases SR-BI protein levels, which correlates with elevated PPARα Ser-21 phosphorylation and increased cholesterol efflux. In contrast, SR-BI levels are insensitive to Mek1/2 inhibitors in PPARα-depleted cells. Most strikingly, Mek1/2 inhibition promotes SR-BI degradation in SR-BI-overexpressing CHO cells and human HuH7 hepatocytes, which is associated with reduced uptake of radiolabeled and 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyane-labeled HDL. Loss of Mek1/2 kinase activity reduces SR-BI expression in the presence of bafilomycin, an inhibitor of lysosomal degradation, indicating down-regulation of SR-BI via proteasomal pathways. In conclusion, Mek1/2 inhibition enhances the PPARα-dependent degradation of SR-BI in hepatocytes. PMID:21525007
Cai, Huan; Daimon, Caitlin M.; Cong, Wei-na; Wang, Rui; Chirdon, Patrick; de Cabo, Rafael; Sévigny, Jean; Maudsley, Stuart; Martin, Bronwen
2014-01-01
Calorie restriction (CR) is a lifestyle intervention employed to reduce body weight and improve metabolic functions primarily via reduction of ingested carbohydrates and fats. Taste perception is highly related to functional metabolic status and body adiposity. We have previously shown that sweet taste perception diminishes with age; however, relatively little is known about the effects of various lengths of CR upon taste cell morphology and function. We investigated the effects of CR on taste bud morphology and expression of sweet taste–related modulators in 5-, 17-, and 30-month-old rats. In ad libitum (AL) and CR rats, we consistently found the following parameters altered significantly with advancing age: reduction of taste bud size and taste cell numbers per taste bud and reduced expression of sonic hedgehog, type 1 taste receptor 3 (T1r3), α-gustducin, and glucagon-like peptide-1 (GLP-1). In the oldest rats, CR affected a significant reduction of tongue T1r3, GLP-1, and α-gustducin expression compared with age-matched AL rats. Leptin receptor immunopositive cells were elevated in 17- and 30-month-old CR rats compared with age-matched AL rats. These alterations of sweet taste–related modulators, specifically during advanced aging, suggest that sweet taste perception may be altered in response to different lengths of CR. PMID:24077597
Cai, Huan; Daimon, Caitlin M; Cong, Wei-Na; Wang, Rui; Chirdon, Patrick; de Cabo, Rafael; Sévigny, Jean; Maudsley, Stuart; Martin, Bronwen
2014-05-01
Calorie restriction (CR) is a lifestyle intervention employed to reduce body weight and improve metabolic functions primarily via reduction of ingested carbohydrates and fats. Taste perception is highly related to functional metabolic status and body adiposity. We have previously shown that sweet taste perception diminishes with age; however, relatively little is known about the effects of various lengths of CR upon taste cell morphology and function. We investigated the effects of CR on taste bud morphology and expression of sweet taste-related modulators in 5-, 17-, and 30-month-old rats. In ad libitum (AL) and CR rats, we consistently found the following parameters altered significantly with advancing age: reduction of taste bud size and taste cell numbers per taste bud and reduced expression of sonic hedgehog, type 1 taste receptor 3 (T1r3), α-gustducin, and glucagon-like peptide-1 (GLP-1). In the oldest rats, CR affected a significant reduction of tongue T1r3, GLP-1, and α-gustducin expression compared with age-matched AL rats. Leptin receptor immunopositive cells were elevated in 17- and 30-month-old CR rats compared with age-matched AL rats. These alterations of sweet taste-related modulators, specifically during advanced aging, suggest that sweet taste perception may be altered in response to different lengths of CR.
Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun
2014-11-01
In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes.
Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun
2014-01-01
In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes. PMID:25489416
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pena-Castillo, Lourdes; Mercer, Ryan; Gurinovich, Anastasia
2014-08-28
The genus Rhodobacter contains purple nonsulfur bacteria found mostly in freshwater environments. Representative strains of two Rhodobacter species, R. capsulatus and R. sphaeroides, have had their genomes fully sequenced and both have been the subject of transcriptional profiling studies. Gene co-expression networks can be used to identify modules of genes with similar expression profiles. Functional analysis of gene modules can then associate co-expressed genes with biological pathways, and network statistics can determine the degree of module preservation in related networks. In this paper, we constructed an R. capsulatus gene co-expression network, performed functional analysis of identified gene modules, and investigatedmore » preservation of these modules in R. capsulatus proteomics data and in R. sphaeroides transcriptomics data. Results: The analysis identified 40 gene co-expression modules in R. capsulatus. Investigation of the module gene contents and expression profiles revealed patterns that were validated based on previous studies supporting the biological relevance of these modules. We identified two R. capsulatus gene modules preserved in the protein abundance data. We also identified several gene modules preserved between both Rhodobacter species, which indicate that these cellular processes are conserved between the species and are candidates for functional information transfer between species. Many gene modules were non-preserved, providing insight into processes that differentiate the two species. In addition, using Local Network Similarity (LNS), a recently proposed metric for expression divergence, we assessed the expression conservation of between-species pairs of orthologs, and within-species gene-protein expression profiles. Conclusions: Our analyses provide new sources of information for functional annotation in R. capsulatus because uncharacterized genes in modules are now connected with groups of genes that constitute a joint functional annotation. We identified R. capsulatus modules enriched with genes for ribosomal proteins, porphyrin and bacteriochlorophyll anabolism, and biosynthesis of secondary metabolites to be preserved in R. sphaeroides whereas modules related to RcGTA production and signalling showed lack of preservation in R. sphaeroides. In addition, we demonstrated that network statistics may also be applied within-species to identify congruence between mRNA expression and protein abundance data for which simple correlation measurements have previously had mixed results.« less
Rasheed, Zafar; Rasheed, Naila; Al-Shaya, Osama
2018-04-01
MicroRNAs (miRNAs) are short, non-coding RNAs involved in almost all cellular processes. Epigallocatechin-3-O-gallate (EGCG) is a green tea polyphenol and is known to exert anti-arthritic effects by inhibiting genes associated with osteoarthritis (OA). This study was undertaken to investigate the global effect of EGCG on interleukin-1β (IL-1β)-induced expression of miRNAs in human chondrocytes. Human chondrocytes were derived from OA cartilage and then treated with EGCG and IL-1β. Human miRNA microarray technology was used to determine the expression profile of 1347 miRNAs. Microarray results were verified by taqman assays and transfection of chondrocytes with miRNA inhibitors. Out of 1347 miRNAs, EGCG up-regulated expression of 19 miRNAs and down-regulated expression of 17 miRNAs, whereas expression of 1311 miRNAs remains unchanged in IL-1β-stimulated human OA chondrocytes. Bioinformatics approach showed that 3`UTR of ADAMTS5 mRNA contains the 'seed-matched-sequence' for hsa-miR-140-3p. IL-1β-induced expression of ADAMTS5 correlated with down-regulation of hsa-miR-140-3p. Importantly, EGCG inhibited IL-1β-induced ADAMTS5 expression and up-regulated the expression of hsa-miR-140-3p. This EGCG-induced co-regulation between ADAMTS5 and hsa-miR-140-3p becomes reversed in OA chondrocytes transfected with anti-miR-140-3p. This study provides an important insight into the molecular basis of the reported anti-arthritic effects of EGCG. Our data indicate that the potential of EGCG in OA chondrocytes may be related to its ability to globally inhibit inflammatory response via modulation of miRNAs expressions.
Regulation of DREAM Expression by Group I mGluR
Lee, Jinu; Kim, Insook; Oh, So Ra; Ko, Suk Jin; Lim, Mi Kyung; Kim, Dong Goo
2011-01-01
DREAM (downstream regulatory element antagonistic modulator) is a calcium-binding protein that regulates dynorphin expression, promotes potassium channel surface expression, and enhances presenilin processing in an expression level-dependent manner. However, no molecular mechanism has yet explained how protein levels of DREAM are regulated. Here we identified group I mGluR (mGluR1/5) as a positive regulator of DREAM protein expression. Overexpression of mGluR1/5 increased the cellular level of DREAM. Up-regulation of DREAM resulted in increased DREAM protein in both the nucleus and cytoplasm, where the protein acts as a transcriptional repressor and a modulator of its interacting proteins, respectively. DHPG (3,5-dihydroxyphenylglycine), a group I mGluR agonist, also up-regulated DREAM expression in cortical neurons. These results suggest that group I mGluR is the first identified receptor that may regulate DREAM activity in neurons. PMID:21660149
Fasanaro, Pasquale; D'Alessandra, Yuri; Di Stefano, Valeria; Melchionna, Roberta; Romani, Sveva; Pompilio, Giulio; Capogrossi, Maurizio C.; Martelli, Fabio
2008-01-01
MicroRNAs (miRNAs) are small non-protein-coding RNAs that function as negative gene expression regulators. In the present study, we investigated miRNAs role in endothelial cell response to hypoxia. We found that the expression of miR-210 progressively increased upon exposure to hypoxia. miR-210 overexpression in normoxic endothelial cells stimulated the formation of capillary-like structures on Matrigel and vascular endothelial growth factor-driven cell migration. Conversely, miR-210 blockade via anti-miRNA transfection inhibited the formation of capillary-like structures stimulated by hypoxia and decreased cell migration in response to vascular endothelial growth factor. miR-210 overexpression did not affect endothelial cell growth in both normoxia and hypoxia. However, anti-miR-210 transfection inhibited cell growth and induced apoptosis, in both normoxia and hypoxia. We determined that one relevant target of miR-210 in hypoxia was Ephrin-A3 since miR-210 was necessary and sufficient to down-modulate its expression. Moreover, luciferase reporter assays showed that Ephrin-A3 was a direct target of miR-210. Ephrin-A3 modulation by miR-210 had significant functional consequences; indeed, the expression of an Ephrin-A3 allele that is not targeted by miR-210 prevented miR-210-mediated stimulation of both tubulogenesis and chemotaxis. We conclude that miR-210 up-regulation is a crucial element of endothelial cell response to hypoxia, affecting cell survival, migration, and differentiation. PMID:18417479
Mason, Mike J; Fan, Guoping; Plath, Kathrin; Zhou, Qing; Horvath, Steve
2009-01-01
Background Recent work has revealed that a core group of transcription factors (TFs) regulates the key characteristics of embryonic stem (ES) cells: pluripotency and self-renewal. Current efforts focus on identifying genes that play important roles in maintaining pluripotency and self-renewal in ES cells and aim to understand the interactions among these genes. To that end, we investigated the use of unsigned and signed network analysis to identify pluripotency and differentiation related genes. Results We show that signed networks provide a better systems level understanding of the regulatory mechanisms of ES cells than unsigned networks, using two independent murine ES cell expression data sets. Specifically, using signed weighted gene co-expression network analysis (WGCNA), we found a pluripotency module and a differentiation module, which are not identified in unsigned networks. We confirmed the importance of these modules by incorporating genome-wide TF binding data for key ES cell regulators. Interestingly, we find that the pluripotency module is enriched with genes related to DNA damage repair and mitochondrial function in addition to transcriptional regulation. Using a connectivity measure of module membership, we not only identify known regulators of ES cells but also show that Mrpl15, Msh6, Nrf1, Nup133, Ppif, Rbpj, Sh3gl2, and Zfp39, among other genes, have important roles in maintaining ES cell pluripotency and self-renewal. We also report highly significant relationships between module membership and epigenetic modifications (histone modifications and promoter CpG methylation status), which are known to play a role in controlling gene expression during ES cell self-renewal and differentiation. Conclusion Our systems biologic re-analysis of gene expression, transcription factor binding, epigenetic and gene ontology data provides a novel integrative view of ES cell biology. PMID:19619308
Zhao, Ming-Tao; Shao, Ning-Yi; Hu, Shijun; Ma, Ning; Srinivasan, Rajini; Jahanbani, Fereshteh; Lee, Jaecheol; Zhang, Sophia L; Snyder, Michael P; Wu, Joseph C
2017-11-10
Regulatory DNA elements in the human genome play important roles in determining the transcriptional abundance and spatiotemporal gene expression during embryonic heart development and somatic cell reprogramming. It is not well known how chromatin marks in regulatory DNA elements are modulated to establish cell type-specific gene expression in the human heart. We aimed to decipher the cell type-specific epigenetic signatures in regulatory DNA elements and how they modulate heart-specific gene expression. We profiled genome-wide transcriptional activity and a variety of epigenetic marks in the regulatory DNA elements using massive RNA-seq (n=12) and ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing; n=84) in human endothelial cells (CD31 + CD144 + ), cardiac progenitor cells (Sca-1 + ), fibroblasts (DDR2 + ), and their respective induced pluripotent stem cells. We uncovered 2 classes of regulatory DNA elements: class I was identified with ubiquitous enhancer (H3K4me1) and promoter (H3K4me3) marks in all cell types, whereas class II was enriched with H3K4me1 and H3K4me3 in a cell type-specific manner. Both class I and class II regulatory elements exhibited stimulatory roles in nearby gene expression in a given cell type. However, class I promoters displayed more dominant regulatory effects on transcriptional abundance regardless of distal enhancers. Transcription factor network analysis indicated that human induced pluripotent stem cells and somatic cells from the heart selected their preferential regulatory elements to maintain cell type-specific gene expression. In addition, we validated the function of these enhancer elements in transgenic mouse embryos and human cells and identified a few enhancers that could possibly regulate the cardiac-specific gene expression. Given that a large number of genetic variants associated with human diseases are located in regulatory DNA elements, our study provides valuable resources for deciphering the epigenetic modulation of regulatory DNA elements that fine-tune spatiotemporal gene expression in human cardiac development and diseases. © 2017 American Heart Association, Inc.
1982-09-01
of pervious sand and gravel overlying impervious clay till in the botton with the exception at the toe of the left abutment where there are 25 feet...34 or t~ POS C."Dnsymi.p Vst. .0 aft cofl*US. c oils Ip ~ c le O lot / 0 0 0’ U S ARMY .ION MOTION Tam alaimon 1300 r?5 *CMe Om ,.,6E.o.M-06 0 EVe.**a...joml 3S9ipt ? Noo ,m.S -W00 re -$Sopgf . .? m*.t c .0271s C -0 pm,~ -TO4pet fr osum I1 Slo aW ow)e ofoos o ft ws -om aUw"M - 5:C: 1W * .0601.0 "#O ,W
Maugeri, Grazia; D'Amico, Agata Grazia; Reitano, Rita; Saccone, Salvatore; Federico, Concetta; Cavallaro, Sebastiano; D'Agata, Velia
2016-06-01
Mutation of the Parkin gene causes an autosomal recessive juvenile-onset form of Parkinson's disease. However, recently, it has been also linked to a wide variety of malignancies, including glioblastoma multiforme (GBM). In this pathology, Parkin exhibits a tumor suppressor role by mitigating the proliferation rate in both in vitro and in vivo models. However, Parkin involvement in the hypoxic process has not as yet been investigated. GBM is the most common and aggressive primary brain tumor in adults and is characterized by hypoxic areas. The low oxygen supply causes the expression of hypoxia-inducible factors (HIFs) leading to an accumulation of pro-angiogenic factors and tumoral invasiveness. We assess the relationship between Parkin and two HIFs expressed during hypoxic conditions, namely HIF-1α and HIF-3α. Our data show that Parkin is downregulated under hypoxia and that it interferes with HIF expression based on cellular oxygen tension. These results suggest a role for the involvement of Parkin in GBM, although further studies will be needed to understand the mechanism by which it modulates HIF-1α and HIF-3α expression.
A Novel Approach for Sub-Threshold Detection and Prevention of Laser Injury in Ocular Tissue
2009-05-31
which laser-induced changes in the autofluorescence features of retina were observed in vivo following laser treatment. 10 Use or disclosure of...wavelength scanning laser ophthalmoscope (SLO) for multi spectral in vivo fluorescence imaging of animal retina following laser exposure. The imaging...system was optimized for retinal imaging in aged Brown Norway rats. In order to induce laser lesions in the retina in vivo, we integrated the surgical
Recommendations and Requirements for GenCade Simluations
2014-08-01
sand transport model, GenCade. It is considered as a companion report to the first report in the GenCade series, Frey et al. (2012a), and provides...of output in *.slo (data extend both downward and to the right). .................. 31 Figure 20. Example of output for transport rates...shoreline (in red) and the transport rate at the beginning of the simulation (in blue). The initial shoreline position is shown in black. a
Kim, Jae Joon; Lee, Jeong Hwan; Kim, Wanhui; Jung, Hye Seung; Huijser, Peter; Ahn, Ji Hoon
2012-01-01
The flowering time of plants is affected by modest changes in ambient temperature. However, little is known about the regulation of ambient temperature-responsive flowering by small RNAs. In this study, we show that the microRNA156 (miR156)-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 (SPL3) module directly regulates FLOWERING LOCUS T (FT) expression in the leaf to control ambient temperature-responsive flowering. Overexpression of miR156 led to more delayed flowering at a lower ambient temperature (16°C), which was associated with down-regulation of FT and FRUITFULL expression. Among miR156 target genes, SPL3 mRNA levels were mainly reduced, probably because miR156-mediated cleavage of SPL3 mRNA was higher at 16°C. Overexpression of miR156-resistant SPL3 [SPL3(−)] caused early flowering, regardless of the ambient temperature, which was associated with up-regulation of FT and FRUITFULL expression. Reduction of miR156 activity by target mimicry led to a phenotype similar to that of SUC2::rSPL3 plants. FT up-regulation was observed after dexamethasone treatment in GVG-rSPL3 plants. Misexpression and artificial microRNA-mediated suppression of FT in the leaf dramatically altered the ambient temperature-responsive flowering of plants overexpressing miR156 and SPL3(−). Chromatin immunoprecipitation assay showed that the SPL3 protein directly binds to GTAC motifs within the FT promoter. Lesions in TERMINAL FLOWER1, SHORT VEGETATIVE PHASE, and EARLY FLOWERING3 did not alter the expression of miR156 and SPL3. Taken together, our data suggest that the interaction between the miR156-SPL3 module and FT is part of the regulatory mechanism controlling flowering time in response to ambient temperature. PMID:22427344
Singh, Alok Kumar; Pandey, Rajeev Kumar; Shaha, Chandrima; Madhubala, Rentala
2016-10-02
Leishmania is an obligate intracellular parasite that replicates inside phagolysosomes or parasitophorous vacuoles (PV) of the monocyte/macrophage lineage. It reprograms macrophages and produces a metabolic state conducive to successful infection and multiplication. MicroRNAs (miRNAs), a class of small 22 to 24 nucleotide noncoding regulatory RNAs alter the gene expression and consequently proteome output by targeting mRNAs, may play a regulatory role in modulating host cell functions. In the present study, we demonstrate the novel regulatory role of host microRNA, MIR30A-3p in modulation of host cell macroautophagy/autophagy after infection with L. donovani. Our in vitro studies showed that MIR30A-3p expression was significantly enhanced after L. donovani infection in a time-dependent manner. Transient transfection with a MIR30A-3p inhibitor followed by L. donovani infection promoted the autophagic response and decreased the intracellular parasite burden in both THP-1 cells and human monocyte-derived macrophages (HsMDM). BECN1/Beclin 1, the mammalian ortholog of yeast Vps30/Atg6, is a key autophagy-promoting protein that plays a key role in the regulation of cell death and survival. We report BECN1-dependent modulation of host cell autophagy in response to L. donovani infection. Pretreatment of L. donovani-infected macrophages with the MIR30A-3p mimic decreased and with antagomir increased the expression of BECN1 protein. We demonstrate that BECN1 is a potential target of MIR30A-3p and this miRNA negatively regulates BECN1 expression. Our present study reveals for the first time a novel role of MIR30A-3p in regulating autophagy-mediated L. donovani elimination by targeting BECN1. The present study has significant impact for the treatment of visceral leishmaniasis.
Cotton, R N; McDonald-Fleming, R; Boyd, A; Spates, K; Nutman, T B; Tolouei Semnani, R
2015-02-01
Filarial infection in humans is initiated when a mosquito deposits third-stage parasite larvae (L3) in the skin. Langerhans cells (LCs) and dermal dendritic cells (DDCs) are the first cells that the parasite encounters, and L3s must evade these highly effective antigen-presenting cells to establish infection. To assess LC and DDC responses to L3 in human skin, we employed three models of increasing physiologic relevance: in vitro-generated LCs, epidermal blister explants and full-thickness human skin sections. In vitro-generated LCs expressed TLR1-10 and robustly produced IL-6 and TNF-α in response to PolyI:C, but pre-exposure to L3s did not alter inflammatory cytokine production or TLR expression. L3s did not modulate expression of LC markers CDH1, CD207, or CD1a, or the regulatory products TSLP or IDO in epidermal explants or in vitro-generated LC. LC, CD14+ DDC, CD1c+ DC and CD141+ DC from human skin sections were analysed by flow cytometry. While PolyI:C potently induced CCL22 production in LC, CD1c+ DC, and CD141+ DC, and IL-10 production in LC, L3s did not modulate the numbers of or cytokine production by any skin DC subset. L3s broadly failed to activate or modulate LCs or DDCs, suggesting filarial larvae expertly evade APC detection in human skin. © 2014 John Wiley & Sons Ltd.
Lax, Antonio; Sanchez-Mas, Jesus; Asensio-Lopez, Maria C; Fernandez-Del Palacio, Maria J; Caballero, Luis; Garrido, Iris P; Pastor-Perez, Francisco J; Januzzi, James L; Pascual-Figal, Domingo A
2015-01-01
This study aimed to evaluate the specific role of the 2 available mineralocorticoid receptor antagonists (MRAs), eplerenone and spironolactone, on the modulation of galectin-3 (Gal-3) and interleukin (IL)-33/ST2 signaling in an experimental model of left ventricular systolic dysfunction after acute myocardial infarction (MI). The molecular mechanisms of benefits of MRAs in patients with left ventricular systolic dysfunction after MI not well understood. MI and left ventricular systolic dysfunction were induced by permanent ligation of the anterior coronary artery in 45 male Wistar rats, randomly assigned to no therapy (MI group, n = 15) or to receive MRAs (100 mg/kg/day) for 4 weeks; either eplerenone (n = 15) or spironolactone (n = 15) was used. A sham group was used as a control (n = 8). Elements of the pathway for Gal-3 including transforming growth factor (TGF)-β and SMAD3, as well as that for IL-33/ST2 (including IL-33 and soluble ST2 [sST2]) were analyzed in the infarcted and noninfarcted myocardium by quantitative real-time reverse transcription polymerase chain reaction. Expression of markers of fibrosis (collagen types I and III, tissue inhibitor of metalloproteinase-1) and inflammation (IL-6, tumor necrosis factor-α, monocyte chemotactic protein-1) was also examined. In the infarcted myocardium, compared with sham animals, the MI group had higher concentrations of Gal-3, TGF-β, SMAD3, IL-33, and sST2, as well as higher concentrations of markers of fibrosis and inflammation. Treatment with MRAs down-regulated Gal-3, TGF-β, and SMAD3 and enhanced IL-33/ST2 signaling with lower expression of sST2; protective IL-33 up-regulation was unaffected by MRAs. Modulation of Gal-3 and IL-33/ST2 signaling induced by MRAs correlated with lower expression levels of fibrosis and inflammatory markers. No differences were found between eplerenone and spironolactone. In the noninfarcted myocardium, compared with sham animals, the MI group exhibited a higher expression of Gal-3 and IL-33, but no signs of inflammation or fibrosis were observed; in the presence of MRAs, IL-33 expression was significantly up-regulated, but Gal-3 was unaffected. MRAs play a pivotal role in the Gal-3 and IL-33/ST2 modulation in post-MI cardiac remodeling. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Wan, Qi; Tang, Jing; Han, Yu; Wang, Dan
2018-01-01
Uveal melanoma is an aggressive cancer which has a high percentage recurrence and with a worse prognosis. Identify the potential prognostic markers of uveal melanoma may provide information for early detection of recurrence and treatment. RNA sequence data of uveal melanoma and patient clinic traits were obtained from The Cancer Genome Atlas (TCGA) database. Co-expression modules were built by weighted gene co -expression network analysis (WGCNA) and applied to investigate the relationship underlying modules and clinic traits. Besides, functional enrichment analysis was performed on these co-expression genes from interested modules. First, using WGCNA, identified 21 co-expression modules were constructed by the 10975 genes from the 80 human uveal melanoma samples. The number of genes in these modules ranged from 42 to 5091. Found four co -expression modules significantly correlated with three clinic traits (status, recurrence and recurrence Time). Module red, and purple positively correlated with patient's life status and recurrence Time. Module green positively correlates with recurrence. The result of functional enrichment analysis showed that the module magenta was mainly enriched genetic material assemble processes, the purple module was mainly enriched in tissue homeostasis and melanosome membrane and the module red was mainly enriched metastasis of cell, suggesting its critical role in the recurrence and development of the disease. Additionally, identified the hug gene (top connectivity with other genes) in each module. The hub gene SLC17A7, NTRK2, ABTB1 and ADPRHL1 might play a vital role in recurrence of uveal melanoma. Our findings provided the framework of co-expression gene modules of uveal melanoma and identified some prognostic markers might be detection of recurrence and treatment for uveal melanoma. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hirasaki, Masataka; Hiraki-Kamon, Keiko; Kamon, Masayoshi; Suzuki, Ayumu; Katano, Miyuki; Nishimoto, Masazumi; Okuda, Akihiko
2013-01-01
Predominant transcriptional subnetworks called Core, Myc, and PRC modules have been shown to participate in preservation of the pluripotency and self-renewality of embryonic stem cells (ESCs). Epiblast stem cells (EpiSCs) are another cell type that possesses pluripotency and self-renewality. However, the roles of these modules in EpiSCs have not been systematically examined to date. Here, we compared the average expression levels of Core, Myc, and PRC module genes between ESCs and EpiSCs. EpiSCs showed substantially higher and lower expression levels of PRC and Core module genes, respectively, compared with those in ESCs, while Myc module members showed almost equivalent levels of average gene expression. Subsequent analyses revealed that the similarity in gene expression levels of the Myc module between these two cell types was not just overall, but striking similarities were evident even when comparing the expression of individual genes. We also observed equivalent levels of similarity in the expression of individual Myc module genes between induced pluripotent stem cells (iPSCs) and partial iPSCs that are an unwanted byproduct generated during iPSC induction. Moreover, our data demonstrate that partial iPSCs depend on a high level of c-Myc expression for their self-renewal properties. PMID:24386274
Wei, Qing; Liu, Hongliang; Ai, Zhiying; Wu, Yongyan; Liu, Yingxiang; Shi, Zhaopeng; Ren, Xuexue; Guo, Zekun
2017-01-01
Self-renewal is one of the most important features of embryonic stem (ES) cells. SC1 is a small molecule modulator that effectively maintains the self-renewal of mouse ES cells in the absence of leukemia inhibitory factor (LIF), serum and feeder cells. However, the mechanism by which SC1 maintains the undifferentiated state of mouse ES cells remains unclear. In this study, microarray and small RNA deep-sequencing experiments were performed on mouse ES cells treated with or without SC1 to identify the key genes and microRNAs that contributed to self-renewal. SC1 regulates the expressions of pluripotency and differentiation factors, and antagonizes the retinoic acid (RA)-induced differentiation in the presence or absence of LIF. SC1 inhibits the MEK/ERK pathway through Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and pathway reporting experiments. Small RNA deep-sequencing revealed that SC1 significantly modulates the expression of multiple microRNAs with crucial functions in ES cells. The expression of miR124-3p is upregulated in SC1-treated ES cells, which significantly inhibits the MEK/ERK pathway by targeting Grb2, Sos2 and Egr1. SC1 enhances the self-renewal capacity of mouse ES cells by modulating the expression of key regulatory genes and pluripotency-associated microRNAs. SC1 significantly upregulates miR124-3p expression to further inhibit the MEK/ ERK pathway by targeting Grb2, Sos2 and Egr1. © 2017 The Author(s). Published by S. Karger AG, Basel.
Maliqueo, Manuel; Benrick, Anna; Alvi, Asif; Johansson, Julia; Sun, Miao; Labrie, Fernand; Ohlsson, Claes; Stener-Victorin, Elisabet
2015-09-05
Acupuncture with combined manual and low-frequency electrical stimulation, or electroacupuncture (EA), reduces endocrine and reproductive dysfunction in women with polycystic ovary syndrome (PCOS), likely by modulating sympathetic nerve activity or sex steroid synthesis. To test this hypothesis, we induced PCOS in rats by prepubertal implantation of continuous-release letrozole pellets (200 µg/day) or vehicle. Six weeks later, rats were treated for 5-6 weeks with low-frequency EA 5 days/week, subcutaneous injection of 17β-estradiol (2.0 µg) every fourth day, or a β-adrenergic blocker (propranolol hydrochloride, 0.1 mg/kg) 5 days/week. Letrozole controls were handled without needle insertion or injected with sesame oil every fourth day. Estrous cyclicity, ovarian morphology, sex steroids, gonadotropins, insulin-like growth factor I, bone mineral density, and gene and protein expression in ovarian tissue were measured. Low-frequency EA induced estrous-cycle changes, decreased high levels of circulating luteinizing hormone (LH) and the LH/follicle-stimulating hormone (FSH) ratio, decreased high ovarian gene expression of adiponectin receptor 2, and increased expression of adiponectin receptor 2 protein and phosphorylation of ERK1/2. EA also increased cortical bone mineral density. Propranolol decreased ovarian expression of Foxo3, Srd5a1, and Hif1a. Estradiol decreased circulating LH, induced estrous cycle changes, and decreased ovarian expression of Adipor1, Foxo3, and Pik3r1. Further, total bone mineral density was higher in the letrozole-estradiol group. Thus, EA modulates the circulating gonadotropin levels independently of sex steroids or β-adrenergic action and affects the expression of ovarian adiponectin system. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Calabrese, Gina; Mesner, Larry D.; Foley, Patricia L.; Rosen, Clifford J.; Farber, Charles R.
2016-01-01
The postmenopausal period in women is associated with decreased circulating estrogen levels, which accelerate bone loss and increase the risk of fracture. Here, we gained novel insight into the molecular mechanisms mediating bone loss in ovariectomized (OVX) mice, a model of human menopause, using co-expression network analysis. Specifically, we generated a co-expression network consisting of 53 gene modules using expression profiles from intact and OVX mice from a panel of inbred strains. The expression of four modules was altered by OVX, including module 23 whose expression was decreased by OVX across all strains. Module 23 was enriched for genes involved in the response to oxidative stress, a process known to be involved in OVX-induced bone loss. Additionally, module 23 homologs were co-expressed in human bone marrow. Alpha synuclein (Snca) was one of the most highly connected “hub” genes in module 23. We characterized mice deficient in Snca and observed a 40% reduction in OVX-induced bone loss. Furthermore, protection was associated with the altered expression of specific network modules, including module 23. In summary, the results of this study suggest that Snca regulates bone network homeostasis and ovariectomy-induced bone loss. PMID:27378017
Olthof, Evelyn D; Gülich, Alexandra F; Renne, Mike F; Landman, Sija; Joosten, Leo A B; Roelofs, Hennie M J; Wanten, Geert J A
2015-10-01
Saturated medium-chain triglycerides (MCT) as part of the parenteral lipid regimen (50% MCT and 50% long chain triglycerides (LCT)) activate the immune system in vitro. Fish oil (FO)-derived n-3 fatty acids (FA) inhibit saturated FA-induced immune activation via a toll-like receptor (TLR)-4 mediated mechanism. We hypothesized that effects of parenteral MCTs on immune cells involve TLR-4 signaling and that these effects are modulated by n-3 FA that are present in FO. To test this hypothesis we assessed effects of addition of various commercially available mixed parenteral lipid emulsions, n-3 FA and of TLR-4 inhibition on MCT-induced human immune cell activation by evaluation of the expression of leukocyte membrane activation markers and reactive oxygen species (ROS) production. All MCT-containing lipid emulsions activated leukocytes by inducing changes in expression of membrane markers and stimulus induced ROS production, whereas MCT-free lipid emulsions lacked this effect. Moreover, addition of n-3 FA to LCT/MCT did not prevent MCT-induced immune activation. TLR-4 inhibitors did not distinctly modulate MCT-induced changes in immune function. Taken together, these findings suggest that leukocyte activation by parenteral MCTs does not involve TLR-4 signaling and is not modulated by n-3 FA in FO-, but is exerted via different signaling pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.
Morandi, Fabio; Ferretti, Elisa; Castriconi, Roberta; Dondero, Alessandra; Petretto, Andrea; Bottino, Cristina; Pistoia, Vito
2011-11-24
Soluble HLA-G (sHLA-G) inhibits natural killer (NK) cell functions. Here, we investigated sHLA-G-mediated modulation of (1) chemokine receptor and NK receptor expression and function and (2) cytokine and chemokine secretion in CD56bright and CD56dim NK cells. sHLA-G-treated or untreated peripheral blood (PB) and tonsil NK cells were analyzed for chemokine receptor and NK receptor expression by flow cytometry. sHLA-G down-modulated (1) CXCR3 on PB and tonsil CD56bright and CD56dim, (2) CCR2 on PB and tonsil CD56bright, (3) CX3CR1 on PB CD56dim, (4) CXCR5 on tonsil CD56dim, and (5) CD94/NKG2A on PB and tonsil CD56brigh) and CD56dim NK cells. Such sHLA-G-mediated down-modulations were reverted by adding anti-HLA-G or anti-ILT2 mAbs. sHLA-G inhibited chemotaxis of (1) PB NK cells toward CXCL10, CXCL11, and CX3CL1 and (2) PB CD56bright NK cells toward CCL2 and CXCL10. IFN-γ secretion induced by NKp46 engagement was inhibited by NKG2A engagement in untreated but not in sHLA-G-treated NK cells. sHLA-G up-regulated secretion of (1) CCL22 in CD56bright and CD56dim and (2) CCL2, CCL8, and CXCL2-CXCL3 in CD56dim PB NK cells. Signal transduction experiments showed sHLA-G-mediated down-modulation of Stat5 phosphorylation in PB NK cells. In conclusion, our data delineated novel mechanisms of sHLA-G-mediated inhibition of NK-cell functions.
Priest, Henry D; Fox, Samuel E; Rowley, Erik R; Murray, Jessica R; Michael, Todd P; Mockler, Todd C
2014-01-01
Brachypodium distachyon is a close relative of many important cereal crops. Abiotic stress tolerance has a significant impact on productivity of agriculturally important food and feedstock crops. Analysis of the transcriptome of Brachypodium after chilling, high-salinity, drought, and heat stresses revealed diverse differential expression of many transcripts. Weighted Gene Co-Expression Network Analysis revealed 22 distinct gene modules with specific profiles of expression under each stress. Promoter analysis implicated short DNA sequences directly upstream of module members in the regulation of 21 of 22 modules. Functional analysis of module members revealed enrichment in functional terms for 10 of 22 network modules. Analysis of condition-specific correlations between differentially expressed gene pairs revealed extensive plasticity in the expression relationships of gene pairs. Photosynthesis, cell cycle, and cell wall expression modules were down-regulated by all abiotic stresses. Modules which were up-regulated by each abiotic stress fell into diverse and unique gene ontology GO categories. This study provides genomics resources and improves our understanding of abiotic stress responses of Brachypodium.
Combined hairpin-antisense compositions and methods for modulating expression
Shanklin, John; Nguyen, Tam
2014-08-05
A nucleotide construct comprising a nucleotide sequence that forms a stem and a loop, wherein the loop comprises a nucleotide sequence that modulates expression of a target, wherein the stem comprises a nucleotide sequence that modulates expression of a target, and wherein the target modulated by the nucleotide sequence in the loop and the target modulated by the nucleotide sequence in the stem may be the same or different. Vectors, methods of regulating target expression, methods of providing a cell, and methods of treating conditions comprising the nucleotide sequence are also disclosed.
Combined hairpin-antisense compositions and methods for modulating expression
Shanklin, John; Nguyen, Tam Huu
2015-11-24
A nucleotide construct comprising a nucleotide sequence that forms a stem and a loop, wherein the loop comprises a nucleotide sequence that modulates expression of a target, wherein the stem comprises a nucleotide sequence that modulates expression of a target, and wherein the target modulated by the nucleotide sequence in the loop and the target modulated by the nucleotide sequence in the stem may be the same or different. Vectors, methods of regulating target expression, methods of providing a cell, and methods of treating conditions comprising the nucleotide sequence are also disclosed.
Modulation of human multidrug-resistance MDR-1 gene by natural curcuminoids
Limtrakul, Pornngarm; Anuchapreeda, Songyot; Buddhasukh, Duang
2004-01-01
Background Multidrug resistance (MDR) is a phenomenon that is often associated with decreased intracellular drug accumulation in patient's tumor cells resulting from enhanced drug efflux. It is related to the overexpression of a membrane protein, P-glycoprotein (Pgp-170), thereby reducing drug cytotoxicity. A variety of studies have tried to find MDR modulators which increase drug accumulation in cancer cells. Methods In this study, natural curcuminoids, pure curcumin, demethoxycurcumin and bisdemethoxycurcumin, isolated from turmeric (Curcuma longa Linn), were compared for their potential ability to modulate the human MDR-1 gene expression in multidrug resistant human cervical carcinoma cell line, KB-V1 by Western blot analysis and RT-PCR. Results Western blot analysis and RT-PCR showed that all the three curcuminoids inhibited MDR-1 gene expression, and bisdemethoxycurcumin produced maximum effect. In additional studies we found that commercial grade curcuminoid (approximately 77% curcumin, 17% demethoxycurcumin and 3% bisdemthoxycurcumin) decreased MDR-1 gene expression in a dose dependent manner and had about the same potent inhibitory effect on MDR-1 gene expression as our natural curcuminoid mixtures. Conclusion These results indicate that bisdemethoxycurcumin is the most active of the curcuminoids present in turmeric for modulation of MDR-1 gene. Treatment of drug resistant KB-V1 cells with curcumin increased their sensitivity to vinblastine, which was consistent with a decreased MDR-1 gene product, a P-glycoprotein, on the cell plasma membrane. Although many drugs that prevent the P-glycoprotein function have been reported, this report describes the inhibition of MDR-1 expression by a phytochemical. The modulation of MDR-1 expression may be an attractive target for new chemosensitizing agents. PMID:15090070
Luo, Jie; Xu, Pei; Cao, Peijian; Wan, Hongjian; Lv, Xiaonan; Xu, Shengchun; Wang, Gangjun; Cook, Melloni N.; Jones, Byron C.; Lu, Lu; Wang, Xusheng
2018-01-01
Although the link between stress and alcohol is well recognized, the underlying mechanisms of how they interplay at the molecular level remain unclear. The purpose of this study is to identify molecular networks underlying the effects of alcohol and stress responses, as well as their interaction on anxiety behaviors in the hippocampus of mice using a systems genetics approach. Here, we applied a gene co-expression network approach to transcriptomes of 41 BXD mouse strains under four conditions: stress, alcohol, stress-induced alcohol and control. The co-expression analysis identified 14 modules and characterized four expression patterns across the four conditions. The four expression patterns include up-regulation in no restraint stress and given an ethanol injection (NOE) but restoration in restraint stress followed by an ethanol injection (RSE; pattern 1), down-regulation in NOE but rescue in RSE (pattern 2), up-regulation in both restraint stress followed by a saline injection (RSS) and NOE, and further amplification in RSE (pattern 3), and up-regulation in RSS but reduction in both NOE and RSE (pattern 4). We further identified four functional subnetworks by superimposing protein-protein interactions (PPIs) to the 14 co-expression modules, including γ-aminobutyric acid receptor (GABA) signaling, glutamate signaling, neuropeptide signaling, cAMP-dependent signaling. We further performed module specificity analysis to identify modules that are specific to stress, alcohol, or stress-induced alcohol responses. Finally, we conducted causality analysis to link genetic variation to these identified modules, and anxiety behaviors after stress and alcohol treatments. This study underscores the importance of integrative analysis and offers new insights into the molecular networks underlying stress and alcohol responses. PMID:29674951
Sun, Mei-Yu; Li, Jing-Yi; Li, Dong; Huang, Feng-Jie; Wang, Di; Li, Hui; Xing, Quan; Zhu, Hui-Bin; Shi, Lei
2018-04-12
Drynaria roosii (Nakaike) is a traditional Chinese medicinal fern, known as 'GuSuiBu'. The corresponding effective components of naringin/neoeriocitrin share highly similar chemical structure and medicinal function. Our HPLC-MS/MS results showed that the accumulation of naringin/neoeriocitrin depended on specific tissues or ages. However, little was known about the expression patterns of naringin/neoeriocitrin related genes involved in their regulatory pathways. For lack of the basic genetic information, we applied a combination of SMRT sequencing and SGS to generate the complete and full-length transcriptome of D. roosii. According to the SGS data, the DEG-based heat map analysis revealed the naringin/neoeriocitrin related gene expression exhibited obvious tissue- and time-specific transcriptomic differences. Using the systems biology method of modular organization analysis, we clustered 16,472 DEGs into 17 gene modules and studied the relationships between modules and tissue/time point samples, as well as modules and naringin/neoeriocitrin contents. Hereinto, naringin/neoeriocitrin related DEGs distributed in nine distinct modules, and DEGs in these modules showed significant different patterns of transcript abundance to be linked with specific tissues or ages. Moreover, WGCNA results further identified that PAL, 4CL, C4H and C3H, HCT acted as the major hub genes involved in naringin and neoeriocitrin synthesis respectively and exhibited high co-expression with MYB- and bHLH-regulated genes. In this work, modular organization and co-expression networks elucidated the tissue- and time-specificity of gene expression pattern, as well as hub genes associated with naringin/neoeriocitrin synthesis in D. roosii. Simultaneously, the comprehensive transcriptome dataset provided the important genetic information for further research on D. roosii.
Hao, Fang; Jia, Li-Hua; Li, Xiao-Wan; Zhang, Ying-Rui; Liu, Xue-Wu
2016-01-01
Background Epilepsy is the most predominant neurological disorder characterized by recurrent seizures. Despite treatment with antiepileptic drugs, epilepsy still is a challenge to treat, due to the associated adverse effects of the drugs. Previous investigations have shown critical roles of BDNF-TrkB signalling and expression of glutamic acid decarboxylase 65 (GAD65) and GABAA in the brain during epilepsy. Thus, drugs that could modulate BDNF-TrkB signal and expression of GAD65 and GABAA could aid in therapy. Recent experimental data have focussed on plant-derived compounds in treatments. Garcinol (camboginol), is a polyisoprenylated benzophenone derived from the fruit of Garcinia indica. We investigated the effects of garcinol in pentylenetetrazole (PTZ)-induced epileptic models. Material/Methods Seizure scores were measured in epilepsy kindled mice. Neuronal degeneration and apoptosis were assessed by Nissl staining, TUNEL assay, and Fluoro-Jade B staining. Immunohistochemistry was performed to evaluate cleaved caspase-3 expressions. Expression of BDNF, TrkB, GABAA, GAD65, Bad, Bcl-2, Bcl-xL, and Bax were determined by western blots. Results Significantly reduced seizure scores and mortality rates were observed with pretreatment with garcinol. Elevated expression of apoptotic proteins and caspase-3 in kindled mice were effectively downregulated by garcinol. Epileptogenic mice presented increased BDNF and TrkB with considerably decreased GABAA and GAD65 expression. Garcinol significantly enhanced GABAA and GAD65 while it suppressed BDNF and TrkB. Garcinol enhanced the performance of mice in Morris water maze tests. Conclusions Garcinol exerts neuroprotective effects via supressing apoptosis and modulating BDNF-TrkB signalling and GAD65/GABAA expressions and also enhanced cognition and memory of the mice. PMID:27855137
Schlörmann, Wiebke; Lamberty, Julia; Lorkowski, Stefan; Ludwig, Diana; Mothes, Henning; Saupe, Christian; Glei, Michael
2017-05-01
Due to their beneficial nutritional profile the consumption of nuts contributes to a healthy diet and might reduce colon cancer risk. To get closer insights into potential mechanisms, the chemopreventive potential of different in vitro fermented nut varieties regarding the modulation of genes involved in detoxification (CAT, SOD2, GSTP1, GPx1) and cell cycle (p21, cyclin D2) as well as proliferation and apoptosis was examined in LT97 colon adenoma and primary epithelial colon cells. Fermentation supernatants (FS) of nuts significantly induced mRNA expression of CAT (up to 4.0-fold), SOD2 (up to 2.5-fold), and GSTP1 (up to 2.3-fold), while GPx1 expression was significantly reduced by all nut FS (0.8 fold on average). Levels of p21 mRNA were significantly enhanced (up to 2.6-fold), whereas all nut FS significantly decreased cyclin D2 expression (0.4-fold on average). In primary epithelial cells, expression of CAT (up to 3.5-fold), GSTP1 (up to 3.0-fold), and GPx1 (up to 3.9-fold) was increased, whereas p21 and cyclin D2 levels were not influenced. Nut FS significantly inhibited growth of LT97 cells and increased levels of early apoptotic cells (8.4% on average) and caspase 3 activity (4.6-fold on average), whereas caspase 3 activity was not modulated in primary colon cells. The differential modulation of genes involved in detoxification and cell cycle together with an inhibition of proliferation and induction of apoptosis in adenoma cells might contribute to chemopreventive effects of nuts regarding colon cancer. © 2017 Wiley Periodicals, Inc.
He, Fu; Xu, Changzheng; Fu, Xiaokang; Shen, Yun; Guo, Li; Leng, Mi; Luo, Keming
2018-06-01
Salt-induced developmental plasticity in a plant root system strongly depends on auxin signaling. However, the molecular events underlying this process are poorly understood. MicroRNA390 ( miR390 ), trans-actin small interfering RNA s ( tasiRNA s), and AUXIN RESPONSE FACTORs ( ARFs ) form a regulatory module involved in controlling lateral root (LR) growth. Here, we found that miR390 expression was strongly induced by exposure to salt during LR formation in poplar ( Populus spp.) plants. miR390 overexpression stimulated LR development and increased salt tolerance, whereas miR390 knockdown caused by a short tandem target mimic repressed LR growth and compromised salt resistance. ARF3.1 , ARF3.2 , and ARF4 expression was inhibited significantly by the presence of salt, and transcript abundance was decreased dramatically in the miR390 -overexpressing line but increased in the miR390 -knockdown line. Constitutive expression of ARF4m harboring mutated trans-acting small interfering ARF -binding sites removed the salt resistance of the miR390 overexpressors. miR390 positively regulated auxin signaling in LRs subjected to salt, but ARF4 inhibited auxin signaling. Salinity stabilized the poplar Aux/IAA repressor INDOLE-3-ACETIC ACID17.1, and overexpression of an auxin/salt-resistant form of this repressor suppressed LR growth in miR390 -overexpressing and ARF4 -RNA interfering lines in the presence of salt. Thus, the miR390/TAS3/ARFs module is a key regulator, via modulating the auxin pathway, of LR growth in poplar subjected to salt stress. © 2018 American Society of Plant Biologists. All rights reserved.
Young, J M; McNeilly, A S
2012-01-01
Activin and inhibin are important local modulators of theca cell steroidogenesis in the ovary. Using a serum-free primary theca cell culture system, this study investigated the effects of inhibin on theca cell androgen production and expression of steroidogenic enzymes. Androstenedione secretion from theca cells cultured in media containing activin, inhibin and follistatin was assessed by RIA over 144 h. Activin (1–100 ng/ml) suppressed androstenedione production. Inhibin (1–100 ng/ml) blocked the suppressive effects of added activin, but increased androstenedione production when added alone, suggesting it was blocking endogenous activin produced by theca cells. Addition of SB-431542 (activin receptor inhibitor) and follistatin (500 ng/ml) increased androstenedione production, supporting this concept. Infection of theca cells with adenoviruses expressing inhibitory Smad6 or 7 increased androstenedione secretion, confirming that the suppressive effects of activin required activation of the Smad2/3 pathway. Activin decreased the expression levels of steroidogenic acute regulatory protein (STAR), whereas STAR expression was increased by inhibin and SB-431542, alone and in combination. CYP11A was unaffected. The expression of CYP17 encoding 17α-hydroxylase was unaffected by activin but increased by inhibin and SB-431542, and when added in combination the effect was further enhanced. The expression of 3β-hydroxysteroid dehydrogenase (3β-HSD) was significantly decreased by activin, while inhibin alone and in combination with SB-431542 both potently increased the expression of 3β-HSD. In conclusion, activin suppressed theca cell androstenedione production by decreasing the expression of STAR and 3β-HSD. Inhibin and other blockers of activin action reversed this effect, supporting the concept that endogenous thecal activin modulates androgen production in theca cells. PMID:22082494
Arrestin-3-dependent activation of c-Jun N-terminal kinases (JNKs)
Kaoud, Tamer S.; Dalby, Kevin N.; Gurevich, Eugenia V.; Gurevich, Vsevolod V.
2015-01-01
Only one out of four arrestin subtypes expressed in mammals, arrestin-3, facilitates the activation of JNK family kinases. Here we describe two different paradigms that allow the elucidation of the mechanisms involved. One is based on reconstitution of signaling modules from purified proteins: arrestin-3, MKK4, MKK7, JNK1, JNK2, and JNK3. The main advantage of this method is that it can unambiguously establish which effects are direct, because only intended purified proteins are present in these assays. The key drawback is that the upstream-most kinases of these cascades, ASK1 or other MAPKKKs, are not available in purified form, limiting reconstitution to incomplete two-kinase modules. The other set of methods analyzes the effects of arrestin-3 on JNK activation in intact cells. In this case, signaling modules include ASK1 and/or other MAPKKKs. However, every cell expresses thousands of different proteins, and their possible effects on the readout cannot be excluded. However, the combination of in vitro reconstitution from purified proteins and cell-based assays enables comprehensive elucidation of the mechanisms of arrestin-3-dependent activation of JNK family kinases. PMID:25737158
Johnson, Michael R.; Rossetti, Tiziana; Speed, Doug; Srivastava, Prashant K.; Chadeau-Hyam, Marc; Hajji, Nabil; Dabrowska, Aleksandra; Rotival, Maxime; Razzaghi, Banafsheh; Kovac, Stjepana; Wanisch, Klaus; Grillo, Federico W.; Slaviero, Anna; Langley, Sarah R.; Shkura, Kirill; Roncon, Paolo; De, Tisham; Mattheisen, Manuel; Niehusmann, Pitt; O’Brien, Terence J.; Petrovski, Slave; von Lehe, Marec; Hoffmann, Per; Eriksson, Johan; Coffey, Alison J.; Cichon, Sven; Walker, Matthew; Simonato, Michele; Danis, Bénédicte; Mazzuferi, Manuela; Foerch, Patrik; Schoch, Susanne; De Paola, Vincenzo; Kaminski, Rafal M.; Cunliffe, Vincent T.; Becker, Albert J.; Petretto, Enrico
2015-01-01
Gene-regulatory network analysis is a powerful approach to elucidate the molecular processes and pathways underlying complex disease. Here we employ systems genetics approaches to characterize the genetic regulation of pathophysiological pathways in human temporal lobe epilepsy (TLE). Using surgically acquired hippocampi from 129 TLE patients, we identify a gene-regulatory network genetically associated with epilepsy that contains a specialized, highly expressed transcriptional module encoding proconvulsive cytokines and Toll-like receptor signalling genes. RNA sequencing analysis in a mouse model of TLE using 100 epileptic and 100 control hippocampi shows the proconvulsive module is preserved across-species, specific to the epileptic hippocampus and upregulated in chronic epilepsy. In the TLE patients, we map the trans-acting genetic control of this proconvulsive module to Sestrin 3 (SESN3), and demonstrate that SESN3 positively regulates the module in macrophages, microglia and neurons. Morpholino-mediated Sesn3 knockdown in zebrafish confirms the regulation of the transcriptional module, and attenuates chemically induced behavioural seizures in vivo. PMID:25615886
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Young-Chae, E-mail: ycchang@cu.ac.kr; Cho, Hyun-Ji, E-mail: hjcho.dr@gmail.com
2012-06-08
Highlights: Black-Right-Pointing-Pointer Ascofuranone increases expression of adiponectin and PPAR{gamma}. Black-Right-Pointing-Pointer Inhibitors for MEK and JNK increased the expression of adiponectin and PPAR{gamma}. Black-Right-Pointing-Pointer Ascofuranone significantly suppressed phosho-ERK, while increasing phospho-p38. -- Abstract: Ascofuranone, an isoprenoid antibiotic, was originally isolated as a hypolipidemic substance from a culture broth of the phytopathogenic fungus, Ascochyta visiae. Adiponectin is mainly synthesized by adipocytes. It relieves insulin resistance by decreasing the plasma triglycerides and improving glucose uptake, and has anti-atherogenic properties. Here, we found that ascofuranone increases expression of adiponectin and PPAR{gamma}, a major transcription factor for adiponectin, in 3T3-L1, murine pre-adipocytes cell line, withoutmore » promoting accumulation of lipid droplets. Ascofuranone induced expression of adiponectin, and increases the promoter activity of adiponectin and PPRE, PPAR response element, as comparably as a PPAR{gamma} agonist, rosiglitazone, that stimulates lipid accumulation in the preadipocyte cell line. Moreover, inhibitors for MEK and JNK, like ascofuranone, considerably increased the expression of adiponectin and PPAR{gamma}, while a p38 inhibitor significantly suppressed. Ascofuranone significantly suppressed ERK phosphorylation, while increasing p38 phosphorylation, during adipocyte differentiation program. These results suggest that ascofuranone regulates the expression of adiponectin and PPAR{gamma} through the modulation of MAP kinase family members.« less
USDA-ARS?s Scientific Manuscript database
Polyamines (PA) involve in the gene regulation by interacting with various anionic macromolecules such as DNA, RNA and proteins and modulating their structure and function. Previous studies have showed that changing in polyamine biosynthesis alters plant response to different abiotic stresses. Here,...
Transient Delivery of Adenosine as a Novel Therapy to Prevent Epileptogenesis
2013-08-01
rats characterized by the development of SRS triggered by systemic kainic acid–induced (KA-induced) status epilepticus (SE) (Figure 3A). Using...to modulate DNA methylation status , have not been studied to date. Based on ADO’s role as an obligatory end product of DNA methylation, we...1E). Together, these findings show that modulating ADO tone either directly or via modulation of ADK expression can affect DNA methylation status in
Yao, Yuan; Wu, Xiao-Hui; Geng, Meng-Ting; Li, Rui-Mei; Liu, Jiao; Hu, Xin-Wen; Guo, Jian-Chun
2014-05-15
Vacuolar invertase is one of the key enzymes in sucrose metabolism that irreversibly catalyzes the hydrolysis of sucrose to glucose and fructose in plants. In this research, three vacuolar invertase genes, named MeVINV1-3, and with 653, 660 and 639 amino acids, respectively, were cloned from cassava. The motifs of NDPNG (β-fructosidase motif), RDP and WECVD, which are conserved and essential for catalytic activity in the vacuolar invertase family, were found in MeVINV1 and MeVINV2. Meanwhile, in MeVINV3, instead of NDPNG we found the motif NGPDG, in which the three amino acids GPD are different from those in other vacuolar invertases (DPN) that might result in MeVINV3 being an inactivated protein. The N-terminal leader sequence of MeVINVs contains a signal anchor, which is associated with the sorting of vacuolar invertase to vacuole. The overall predicted 3D structure of the MeVINVs consists of a five bladed β-propeller module at N-terminus domain, and forms a β-sandwich module at the C-terminus domain. The active site of the protein is situated in the β-propeller module. MeVINVs are classified in two subfamilies, α and β groups, in which α group members of MeVINV1 and 2 are highly expressed in reproductive organs and tuber roots (considered as sink organs), while β group members of MeVINV3 are highly expressed in leaves (source organs). All MeVINVs are highly expressed in leaves, while only MeVINV1 and 2 are highly expressed in tubers at cassava tuber maturity stage. Thus, MeVINV1 and 2 play an important role in sucrose unloading and starch accumulation, as well in buffering the pools of sucrose, hexoses and sugar phosphates in leaves, specifically at later stages of plant development.
Bai, Gaobo; Zheng, Wenling; Ma, Wenli
2018-05-01
Hepatitis C virus (HCV)-induced human hepatocellular carcinoma (HCC) progression may be due to a complex multi-step processes. The developmental mechanism of these processes is worth investigating for the prevention, diagnosis and therapy of HCC. The aim of the present study was to investigate the molecular mechanism underlying the progression of HCV-induced hepatocarcinogenesis. First, the dynamic gene module, consisting of key genes associated with progression between the normal stage and HCC, was identified using the Weighted Gene Co-expression Network Analysis tool from R language. By defining those genes in the module as seeds, the change of co-expression in differentially expressed gene sets in two consecutive stages of pathological progression was examined. Finally, interaction pairs of HCV viral proteins and their directly targeted proteins in the identified module were extracted from the literature and a comprehensive interaction dataset from yeast two-hybrid experiments. By combining the interactions between HCV and their targets, and protein-protein interactions in the Search Tool for the Retrieval of Interacting Genes database (STRING), the HCV-key genes interaction network was constructed and visualized using Cytoscape software 3.2. As a result, a module containing 44 key genes was identified to be associated with HCC progression, due to the dynamic features and functions of those genes in the module. Several important differentially co-expressed gene pairs were identified between non-HCC and HCC stages. In the key genes, cyclin dependent kinase 1 (CDK1), NDC80, cyclin A2 (CCNA2) and rac GTPase activating protein 1 (RACGAP1) were shown to be targeted by the HCV nonstructural proteins NS5A, NS3 and NS5B, respectively. The four genes perform an intermediary role between the HCV viral proteins and the dysfunctional module in the HCV key genes interaction network. These findings provided valuable information for understanding the mechanism of HCV-induced HCC progression and for seeking drug targets for the therapy and prevention of HCC.
USDA-ARS?s Scientific Manuscript database
Mounting evidence shows microRNAs (miRNAs) directly regulate gene expression post-transcriptionally through base-pairing with regions in the 3’-untranslated sequences of target gene mRNAs, which results in dysregulation of gene expression/translation and subsequently modulates cellular processes. We...
Yang, Huihai; Li, Wei; Wang, Lulu; He, Xiaofeng; Sun, Hang; Zhang, Jing
2017-07-31
Our study aimed to investigate the protective role of SDAPR on cisplatin-induced cytotoxicity and its' possible mechanism in HEK293 cells. Cell viability was measured by MTT assay. Oxidative stress (SOD, GSH, LDH and MDA), inflammatory factors (TNF-α and IL-6) and apoptosis-related proteins (caspase-3, Bax, Bcl-2) expression were measured. The apoptotic cells were observed by TUNEL staining. Our study results indicated that non-cytotoxic levels of SDAPR significantly increased viability rate (LD 50 value of cisplatin is 20 μM), which improved antioxidant defence, attenuated apoptosis by decreasing expression levels of cleaved-caspase-3 and Bax, increasing Bcl-2 expression and inhibiting apoptotic positive cells in HEK 293 cells. In addition, SDAPR treatment markedly inhibited the levels of TNF-α and IL-6. In conclusion, Sika deer antler protein, a potential modulator, could alleviate cisplatin-induced cytotoxicity in HEK 293 cells.
Preservation affinity in consensus modules among stages of HIV-1 progression.
Mosaddek Hossain, Sk Md; Ray, Sumanta; Mukhopadhyay, Anirban
2017-03-20
Analysis of gene expression data provides valuable insights into disease mechanism. Investigating relationship among co-expression modules of different stages is a meaningful tool to understand the way in which a disease progresses. Identifying topological preservation of modular structure also contributes to that understanding. HIV-1 disease provides a well-documented progression pattern through three stages of infection: acute, chronic and non-progressor. In this article, we have developed a novel framework to describe the relationship among the consensus (or shared) co-expression modules for each pair of HIV-1 infection stages. The consensus modules are identified to assess the preservation of network properties. We have investigated the preservation patterns of co-expression networks during HIV-1 disease progression through an eigengene-based approach. We discovered that the expression patterns of consensus modules have a strong preservation during the transitions of three infection stages. In particular, it is noticed that between acute and non-progressor stages the preservation is slightly more than the other pair of stages. Moreover, we have constructed eigengene networks for the identified consensus modules and observed the preservation structure among them. Some consensus modules are marked as preserved in two pairs of stages and are analyzed further to form a higher order meta-network consisting of a group of preserved modules. Additionally, we observed that module membership (MM) values of genes within a module are consistent with the preservation characteristics. The MM values of genes within a pair of preserved modules show strong correlation patterns across two infection stages. We have performed an extensive analysis to discover preservation pattern of co-expression network constructed from microarray gene expression data of three different HIV-1 progression stages. The preservation pattern is investigated through identification of consensus modules in each pair of infection stages. It is observed that the preservation of the expression pattern of consensus modules remains more prominent during the transition of infection from acute stage to non-progressor stage. Additionally, we observed that the module membership values of genes are coherent with preserved modules across the HIV-1 progression stages.
BEND3 mediates transcriptional repression and heterochromatin organization
Khan, Abid; Prasanth, Supriya G
2015-01-01
Transcription repression plays a central role in gene regulation. Transcription repressors utilize diverse strategies to mediate transcriptional repression. We have recently demonstrated that BEND3 (BANP, E5R and Nac1 domain) protein represses rDNA transcription by stabilizing a NoRC component. We discuss the role of BEND3 as a global regulator of gene expression and propose a model whereby BEND3 associates with chromatin remodeling complexes to modulate gene expression and heterochromatin organization. PMID:26507581
BEND3 mediates transcriptional repression and heterochromatin organization.
Khan, Abid; Prasanth, Supriya G
2015-01-01
Transcription repression plays a central role in gene regulation. Transcription repressors utilize diverse strategies to mediate transcriptional repression. We have recently demonstrated that BEND3 (BANP, E5R and Nac1 domain) protein represses rDNA transcription by stabilizing a NoRC component. We discuss the role of BEND3 as a global regulator of gene expression and propose a model whereby BEND3 associates with chromatin remodeling complexes to modulate gene expression and heterochromatin organization.
Li, Yiping; Li, Yanhong; Bai, Zhenjiang; Pan, Jian; Wang, Jian; Fang, Fang
2017-12-13
Sepsis represents a complex disease with the dysregulated inflammatory response and high mortality rate. The goal of this study was to identify potential transcriptomic markers in developing pediatric sepsis by a co-expression module analysis of the transcriptomic dataset. Using the R software and Bioconductor packages, we performed a weighted gene co-expression network analysis to identify co-expression modules significantly associated with pediatric sepsis. Functional interpretation (gene ontology and pathway analysis) and enrichment analysis with known transcription factors and microRNAs of the identified candidate modules were then performed. In modules significantly associated with sepsis, the intramodular analysis was further performed and "hub genes" were identified and validated by quantitative real-time PCR (qPCR) in this study. 15 co-expression modules in total were detected, and four modules ("midnight blue", "cyan", "brown", and "tan") were most significantly associated with pediatric sepsis and suggested as potential sepsis-associated modules. Gene ontology analysis and pathway analysis revealed that these four modules strongly associated with immune response. Three of the four sepsis-associated modules were also enriched with known transcription factors (false discovery rate-adjusted P < 0.05). Hub genes were identified in each of the four modules. Four of the identified hub genes (MYB proto-oncogene like 1, killer cell lectin like receptor G1, stomatin, and membrane spanning 4-domains A4A) were further validated to be differentially expressed between septic children and controls by qPCR. Four pediatric sepsis-associated co-expression modules were identified in this study. qPCR results suggest that hub genes in these modules are potential transcriptomic markers for pediatric sepsis diagnosis. These results provide novel insights into the pathogenesis of pediatric sepsis and promote the generation of diagnostic gene sets.
Physiological modulators of Kv3.1 channels adjust firing patterns of auditory brain stem neurons.
Brown, Maile R; El-Hassar, Lynda; Zhang, Yalan; Alvaro, Giuseppe; Large, Charles H; Kaczmarek, Leonard K
2016-07-01
Many rapidly firing neurons, including those in the medial nucleus of the trapezoid body (MNTB) in the auditory brain stem, express "high threshold" voltage-gated Kv3.1 potassium channels that activate only at positive potentials and are required for stimuli to generate rapid trains of actions potentials. We now describe the actions of two imidazolidinedione derivatives, AUT1 and AUT2, which modulate Kv3.1 channels. Using Chinese hamster ovary cells stably expressing rat Kv3.1 channels, we found that lower concentrations of these compounds shift the voltage of activation of Kv3.1 currents toward negative potentials, increasing currents evoked by depolarization from typical neuronal resting potentials. Single-channel recordings also showed that AUT1 shifted the open probability of Kv3.1 to more negative potentials. Higher concentrations of AUT2 also shifted inactivation to negative potentials. The effects of lower and higher concentrations could be mimicked in numerical simulations by increasing rates of activation and inactivation respectively, with no change in intrinsic voltage dependence. In brain slice recordings of mouse MNTB neurons, both AUT1 and AUT2 modulated firing rate at high rates of stimulation, a result predicted by numerical simulations. Our results suggest that pharmaceutical modulation of Kv3.1 currents represents a novel avenue for manipulation of neuronal excitability and has the potential for therapeutic benefit in the treatment of hearing disorders. Copyright © 2016 the American Physiological Society.
Physiological modulators of Kv3.1 channels adjust firing patterns of auditory brain stem neurons
Brown, Maile R.; El-Hassar, Lynda; Zhang, Yalan; Alvaro, Giuseppe; Large, Charles H.
2016-01-01
Many rapidly firing neurons, including those in the medial nucleus of the trapezoid body (MNTB) in the auditory brain stem, express “high threshold” voltage-gated Kv3.1 potassium channels that activate only at positive potentials and are required for stimuli to generate rapid trains of actions potentials. We now describe the actions of two imidazolidinedione derivatives, AUT1 and AUT2, which modulate Kv3.1 channels. Using Chinese hamster ovary cells stably expressing rat Kv3.1 channels, we found that lower concentrations of these compounds shift the voltage of activation of Kv3.1 currents toward negative potentials, increasing currents evoked by depolarization from typical neuronal resting potentials. Single-channel recordings also showed that AUT1 shifted the open probability of Kv3.1 to more negative potentials. Higher concentrations of AUT2 also shifted inactivation to negative potentials. The effects of lower and higher concentrations could be mimicked in numerical simulations by increasing rates of activation and inactivation respectively, with no change in intrinsic voltage dependence. In brain slice recordings of mouse MNTB neurons, both AUT1 and AUT2 modulated firing rate at high rates of stimulation, a result predicted by numerical simulations. Our results suggest that pharmaceutical modulation of Kv3.1 currents represents a novel avenue for manipulation of neuronal excitability and has the potential for therapeutic benefit in the treatment of hearing disorders. PMID:27052580
Dabelic, Sanja; Novak, Ruder; Goreta, Sandra Supraha; Dumic, Jerka
2012-09-01
Galectin-3, a structurally unique beta-galactoside-binding lectin, through the specific protein-protein and protein-carbohydrate interactions participates in numerous biological processes, such as cell proliferation and apoptosis, adhesion and activation. Its expression and secretion by until now an unknown mechanism are modulated by diverse molecules and are dependent on different physiological and pathophysiological conditions. By autocrine and paracrine actions, galectin-3 modulates many immune reactions and affects various immune cells, particularly those of monocyte-macrophage lineage. This is why galectin-3 has recently become an attractive therapeutic target. However, molecular mechanisms of its actions as well as regulatory mechanism of its expression and activation are still largely unknown. In this study, we show that lipopolysaccharide (LPS) provokes upregulation of galectin-3 expression on both gene and protein level in monocyte-like THP-1 cells, which can be inhibited by dexamethasone, but not with non-steroidal anti-inflammatory drugs aspirin and indomethacin. Resting and LPS-challenged monocyte-like THP-1 cells do not have detectable amount of surface-bound galectin-3, but are able to bind exogenously added galectin-3 with the same capacity. Although galectin-3 is generally considered to be a pro-inflammatory molecule, here we show that the exogenously added galectin-3 does not affect interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-12p70 and TNF-α production in resting and LPS-activated monocyte-like THP-1 cells nor influences its own gene expression level in those cells.
ERIC Educational Resources Information Center
van der Dussen, Michael, Ed.; Hooghoff, Hans, Ed.
A discussion of the 1988 conference of the International Political Science Association (IPSA) along with a report on the meaning of the IPSA for the Dutch National Institute for Curriculum Development (SLO) are presented in this document. Part 1 includes: general information on the aims, structure, and activities of the IPSA; a description of the…
Analyzing Impulse Using iPhone and Tracker
NASA Astrophysics Data System (ADS)
Ayop, Shahrul Kadri
2017-11-01
The iPhone 6 introduced a new feature of recording video in Slo-Mo mode at 240 fps (4.17 ms interval). This great capability when integrated with video analysis freeware such as Tracker offers in-depth exploration for physical phenomena such as collisions that occur in a very short duration of time. This article discusses one such usage in analyzing impulse for a simple collision experiment. Students can benefit through investigation of various related mechanics concepts in the collision.
Optimal Sensor Management and Signal Processing for New EMI Systems
2010-09-01
adaptive techniques that would improve the speed of data collection and increase the mobility of a TEMTADS system. Although an active learning technique...data, SIG has simulated the active selection based on the data already collected at Camp SLO. In this setup, the active learning approach was constrained...to work only on a 5x5 grid (corresponding to twenty five transmitters and co-located receivers). The first technique assumes that active learning will
Kanmani, Paulraj; Albarracin, Leonardo; Kobayashi, Hisakazu; Iida, Hikaru; Komatsu, Ryoya; Humayun Kober, A K M; Ikeda-Ohtsubo, Wakako; Suda, Yoshihito; Aso, Hisashi; Makino, Seiya; Kano, Hiroshi; Saito, Tadao; Villena, Julio; Kitazawa, Haruki
2018-01-01
Previous studies demonstrated that the extracellular polysaccharides (EPSs) produced by Lactobacillus delbrueckii OLL1073R-1 (LDR-1) improve antiviral immunity, especially in the systemic and respiratory compartments. However, it was not studied before whether those EPSs are able to beneficially modulate intestinal antiviral immunity. In addition, LDR-1-host interaction has been evaluated mainly with immune cells while its interaction with intestinal epithelial cells (IECs) was not addressed before. In this work, we investigated the capacity of EPSs from LDR-1 to modulate the response of porcine IECs (PIE cells) to the stimulation with the Toll-like receptor (TLR)-3 agonist poly(I:C) and the role of TLR2, TLR4, and TLR negative regulators in the immunoregulatory effect. We showed that innate immune response triggered by TLR3 activation in porcine IECs was differentially modulated by EPS from LDR-1. EPSs treatment induced an increment in the expression of interferon (IFN)-α and IFN-β in PIE cells after the stimulation with poly(I:C) as well as the expression of the antiviral factors MxA and RNase L. Those effects were related to the reduced expression of A20 in EPS-treated PIE cells. EPS from LDR-1 was also able to reduce the expression of IL-6 and proinflammatory chemokines. Although further in vivo studies are needed, our results suggest that these EPSs or a yogurt fermented with LDR-1 have potential to improve intestinal innate antiviral response and protect against intestinal viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Dynamics of Transcript Abundance during Cellularization of Developing Barley Endosperm1[OPEN
Zhang, Runxuan; Burton, Rachel A; Shirley, Neil J.; Little, Alan; Morris, Jenny; Milne, Linda
2016-01-01
Within the cereal grain, the endosperm and its nutrient reserves are critical for successful germination and in the context of grain utilization. The identification of molecular determinants of early endosperm development, particularly regulators of cell division and cell wall deposition, would help predict end-use properties such as yield, quality, and nutritional value. Custom microarray data have been generated using RNA isolated from developing barley grain endosperm 3 d to 8 d after pollination (DAP). Comparisons of transcript abundance over time revealed 47 gene expression modules that can be clustered into 10 broad groups. Superimposing these modules upon cytological data allowed patterns of transcript abundance to be linked with key stages of early grain development. Here, attention was focused on how the datasets could be mined to explore and define the processes of cell wall biosynthesis, remodeling, and degradation. Using a combination of spatial molecular network and gene ontology enrichment analyses, it is shown that genes involved in cell wall metabolism are found in multiple modules, but cluster into two main groups that exhibit peak expression at 3 DAP to 4 DAP and 5 DAP to 8 DAP. The presence of transcription factor genes in these modules allowed candidate genes for the control of wall metabolism during early barley grain development to be identified. The data are publicly available through a dedicated web interface (https://ics.hutton.ac.uk/barseed/), where they can be used to interrogate co- and differential expression for any other genes, groups of genes, or transcription factors expressed during early endosperm development. PMID:26754666
Liu, Ping; Ge, Qian; Chen, Bojun; Salkoff, Lawrence; Kotlikoff, Michael I; Wang, Zhao-Wen
2011-01-01
Although the neuromuscular system of C. elegans has been studied intensively, little is known about the properties of muscle action potentials (APs). By combining mutant analyses with in vivo electrophysiological recording techniques and Ca2+ imaging, we have established the fundamental properties and molecular determinants of body-wall muscle APs. We show that, unlike mammalian skeletal muscle APs, C. elegans muscle APs occur in spontaneous trains, do not require the function of postsynaptic receptors, and are all-or-none overshooting events, rather than graded potentials as has been previously reported. Furthermore, we show that muscle APs depend on Ca2+ entry through the L-type Ca2+ channel EGL-19 with a contribution from the T-type Ca2+ channel CCA-1. Both the Shaker K+ channel SHK-1 and the Ca2+/Cl−-gated K+ channel SLO-2 play important roles in controlling the speed of membrane repolarization, the amplitude of afterhyperpolarization (AHP) and the pattern of AP firing; SLO-2 is also important in setting the resting membrane potential. Finally, AP-elicited elevations of [Ca2+]i require both EGL-19 and the ryanodine receptor UNC-68. Thus, like mammalian skeletal muscle, C. elegans body-wall myocytes generate all-or-none APs, which evoke Ca2+ release from the sarcoplasmic reticulum (SR), although the specific ion channels used for AP upstroke and repolarization differ. PMID:21059759
Capsofulvesins A-C, cholinesterase inhibitors from Capsosiphon fulvescens.
Fang, Zhe; Yang Jeong, Su; Ah Jung, Hyun; Sue Choi, Jae; Sun Min, Byung; Hee Woo, Mi
2012-01-01
Activity-directed isolation of the n-hexane and dichloromethane fractions of Capsosiphon fulvescens resulted in the identification of four new glycolipids (1-3): (2S)-1-O-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-O-(4Z,7Z,10Z,13Z-hexadecatetraenoyl)-3-O-β-D-galactopyranosyl glycerol (1, capsofulvesin A), (2S)-l-O-(9Z,12Z,15Z-octadecatrienoyl)-2-O-(10Z,13Z-hexadecadienoyl)-3-O-β-D-galactopyranosyl glycerol (2, capsofulvesin B), (2S)-1-O-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-3-O-β-D-galacatopyranosyl glycerol (3, capsofulvesin C). Compounds 1-6 exhibited acetylcholinesterase (AChE) inhibitory activities with IC(50) values ranging from 50.90 to 82.83 µM, whereas 2-6 showed butyrylcholinesterase (BChE) inhibitory activities with IC(50) values of 114.75-185.55 µM. Although most of the compounds isolated lacked scavenging activity for 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and peroxynitrite (ONOO(-)), compound 8 showed ONOO(-) scavenging activity with an IC(50) value of 26.23 µg/mL.
Large-scale production of tannase using the yeast Arxula adeninivorans.
Böer, Erik; Breuer, Friederike Sophie; Weniger, Michael; Denter, Sylvia; Piontek, Michael; Kunze, Gotthard
2011-10-01
Tannase (tannin acyl hydrolase, EC 3.1.1.20) hydrolyses the ester and depside bonds of gallotannins and gallic acid esters and is an important industrial enzyme. In the present study, transgenic Arxula adeninivorans strains were optimised for tannase production. Various plasmids carrying one or two expression modules for constitutive expression of tannase were constructed. Transformant strains that overexpress the ATAN1 gene from the strong A. adeninivorans TEF1 promoter produce levels of up to 1,642 U L(-1) when grown in glucose medium in shake flasks. The effect of fed-batch fermentation on tannase productivity was then investigated in detail. Under these conditions, a transgenic strain containing one ATAN1 expression module produced 51,900 U of tannase activity per litre after 142 h of fermentation at a dry cell weight of 162 g L(-1). The highest yield obtained from a transgenic strain with two ATAN1 expression modules was 31,300 U after 232 h at a dry cell weight of 104 g L(-1). Interestingly, the maximum achieved yield coefficients [Y(P/X)] for the two strains were essentially identical.
Chen, Qin; Yim, Peter D.; Yuan, Nina; Johnson, Juliette; Cook, James M.; Smith, Steve; Ionescu-Zanetti, Cristian; Wang, Zhi-Jian; Arnold, Leggy A.
2012-01-01
Abstract Ensemble recording and microfluidic perfusion are recently introduced techniques aimed at removing the laborious nature and low recording success rates of manual patch clamp. Here, we present assay characteristics for these features integrated into one automated electrophysiology platform as applied to the study of GABAA channels. A variety of cell types and methods of GABAA channel expression were successfully studied (defined as IGABA>500 pA), including stably transfected human embryonic kidney (HEK) cells expressing α1β3γ2 GABAA channels, frozen ready-to-assay (RTA) HEK cells expressing α1β3γ2 or α3β3γ2 GABAA channels, transiently transfected HEK293T cells expressing α1β3γ2 GABAA channels, and immortalized cultures of human airway smooth muscle cells endogenously expressing GABAA channels. Current measurements were successfully studied in multiple cell types with multiple modes of channel expression in response to several classic GABAA channel agonists, antagonists, and allosteric modulators. We obtained success rates above 95% for transiently or stably transfected HEK cells and frozen RTA HEK cells expressing GABAA channels. Tissue-derived immortalized cultures of airway smooth muscle cells exhibited a slightly lower recording success rate of 75% using automated patch, which was much higher than the 5% success rate using manual patch clamp technique by the same research group. Responses to agonists, antagonists, and allosteric modulators compared well to previously reported manual patch results. The data demonstrate that both the biophysics and pharmacologic characterization of GABAA channels in a wide variety of cell formats can be performed using this automated patch clamp system. PMID:22574655
PU.1 regulates TCR expression by modulating GATA-3 activity
Chang, Hua-Chen; Han, Ling; Jabeen, Rukhsana; Carotta, Sebastian; Nutt, Stephen L.; Kaplan, Mark H.
2009-01-01
The Ets transcription factor PU.1 is a master regulator for the development of multiple lineages during hematopoiesis. The expression pattern of PU.1 is dynamically regulated during early T lineage development in the thymus. We previously revealed that PU.1 delineates heterogeneity of effector Th2 populations. In this study, we further define the function of PU.1 on the Th2 phenotype using mice that specifically lack PU.1 in T cells using an lck-Cre transgene with a conditional Sfpi1 allele (Sfpi1lck-/-). While deletion of PU.1 by the lck-Cre transgene does not affect T cell development, Sfpi1lck-/- T cells have a lower activation threshold than wild type T cells. When TCR engagement is limiting, Sfpi1lck-/- T cells cultured in Th2 polarizing conditions secrete higher levels of Th2 cytokines and have greater cytokine homogeneity than wild type cells. We show that PU.1 modulates the levels of TCR expression in CD4+ T cells by regulating the DNA-binding activity of GATA-3 and limiting GATA-3 regulation of TCR gene expression. GATA-3 dependent regulation of TCR expression is also observed in Th1 and Th2 cells. In CD4+ T cells, PU.1 expression segregates into subpopulations of cells that have lower levels of surface TCR, suggesting that PU.1 contributes to the heterogeneity of TCR expression. Thus, we have identified a mechanism whereby increased GATA-3 function in the absence of the antagonizing activity of PU.1 leads to increased TCR expression, a reduced activation threshold and increased homogeneity in Th2 populations. PMID:19801513
Ahearn, Thomas U; McCullough, Marjorie L; Flanders, W Dana; Long, Qi; Sidelnikov, Eduard; Fedirko, Veronika; Daniel, Carrie R; Rutherford, Robin E; Shaukat, Aasma; Bostick, Roberd M
2011-01-15
In cancer cell lines and rodent models, calcium and vitamin D favorably modulate cell proliferation, differentiation, and apoptosis in colonic epithelia. These effects may be modulated by local expression of the calcium receptor (CaR), the vitamin D receptor (VDR), and the P450 cytochromes, CYP27B1 and CYP24A1; however, they have yet to be investigated in humans. To address this gap, we conducted a randomized, double-blinded, placebo-controlled 2×2 factorial clinical trial. Patients with at least one pathology-confirmed colorectal adenoma were treated with 2 g/d elemental calcium and/or 800 IU/d vitamin D3 versus placebo over 6 months (n=92; 23 per group). CaR, VDR, CYP27B1, and CYP24A1 expression and distribution in biopsies of normal appearing rectal mucosa were detected by standardized, automated immunohistochemistry and quantified by image analysis. In the calcium-supplemented group, CaR expression increased 27% (P=0.03) and CYP24A1 expression decreased 21% (P=0.79). In the vitamin D3-supplemented group, CaR expression increased 39% (P=0.01) and CYP27B1 expression increased 159% (P=0.06). In patients supplemented with both calcium and vitamin D3, VDR expression increased 19% (P=0.13) and CaR expression increased 24% (P=0.05). These results provide mechanistic support for further investigation of calcium and vitamin D3 as chemopreventive agents against colorectal neoplasms, and CaR, VDR, CYP27B1, and CYP24A1 as modifiable, preneoplastic risk biomarkers for colorectal neoplasms. © 2010 AACR.
Trichloroethylene (TCE) is a multimedia environmental pollution that is carcinogenic in mouse liver. The ability of TCE to modulate DNA methylation and the expression of immediate-early protooncogenes was evaluated. Female B6C3F1 mice were administered 1000 mg/kg TCE by gavage 5 ...
Mahanonda, R; Sa-Ard-Iam, N; Eksomtramate, M; Rerkyen, P; Phairat, B; Schaecher, K E; Fukuda, M M; Pichyangkul, S
2009-08-01
Human gingival epithelial cells (HGECs) are continually exposed to oral bacteria and to other harmful agents. Their responses to stimuli are critical in maintaining periodontal homeostasis. The aim of this study was to investigate the modulating effect of cigarette smoke extract (CSE) on the innate immune responses of HGECs. Toll-like receptor (TLR) expression of HGECs was determined by reverse transcriptase-polymerase chain reaction (RT-PCR). The effect of CSE or nicotine on the expression of the antimicrobial peptide human beta-defensin-2 (hBD-2) and the pro-inflammatory cytokine interleukin (IL)-8 in stimulated HGEC cultures was evaluated by RT-PCR and enzyme-linked immunosorbent assay. The HGECs expressed mRNA of TLRs 1, 2, 3, 5, 6, 9, 10, and minimally of TLR4, but not of TLRs 7 or 8. Stimulation of HGECs with highly purified TLR2, 3 or 5 ligands led to expression of hBD-2 and of IL-8. Enhancement of hBD-2 and IL-8 was observed in HGECs after combined stimulation with Porphyromonas gingivalis lipopolysaccharide (TLR2 ligand) and tumour necrosis factor-alpha, compared with stimulation using either agent alone. After CSE exposure, hBD-2 expression was markedly reduced in stimulated HGEC cultures, whereas IL-8 expression was markedly increased. These effects were also observed, but were markedly attenuated, upon nicotine treatment. Human gingival epithelial cells play a critical role in orchestrating the innate immune responses of periodontal tissue via TLR signalling. Our results represent the first demonstration that CSE can modulate HGEC function by suppressing hBD-2 and enhancing IL-8 production, and this may be, in part, a possible mechanism which promotes periodontal disease.
IBTK Differently Modulates Gene Expression and RNA Splicing in HeLa and K562 Cells.
Fiume, Giuseppe; Scialdone, Annarita; Rizzo, Francesca; De Filippo, Maria Rosaria; Laudanna, Carmelo; Albano, Francesco; Golino, Gaetanina; Vecchio, Eleonora; Pontoriero, Marilena; Mimmi, Selena; Ceglia, Simona; Pisano, Antonio; Iaccino, Enrico; Palmieri, Camillo; Paduano, Sergio; Viglietto, Giuseppe; Weisz, Alessandro; Scala, Giuseppe; Quinto, Ileana
2016-11-07
The IBTK gene encodes the major protein isoform IBTKα that was recently characterized as substrate receptor of Cul3-dependent E3 ligase, regulating ubiquitination coupled to proteasomal degradation of Pdcd4, an inhibitor of translation. Due to the presence of Ankyrin-BTB-RCC1 domains that mediate several protein-protein interactions, IBTKα could exert expanded regulatory roles, including interaction with transcription regulators. To verify the effects of IBTKα on gene expression, we analyzed HeLa and K562 cell transcriptomes by RNA-Sequencing before and after IBTK knock-down by shRNA transduction. In HeLa cells, 1285 (2.03%) of 63,128 mapped transcripts were differentially expressed in IBTK -shRNA-transduced cells, as compared to cells treated with control-shRNA, with 587 upregulated (45.7%) and 698 downregulated (54.3%) RNAs. In K562 cells, 1959 (3.1%) of 63128 mapped RNAs were differentially expressed in IBTK -shRNA-transduced cells, including 1053 upregulated (53.7%) and 906 downregulated (46.3%). Only 137 transcripts (0.22%) were commonly deregulated by IBTK silencing in both HeLa and K562 cells, indicating that most IBTKα effects on gene expression are cell type-specific. Based on gene ontology classification, the genes responsive to IBTK are involved in different biological processes, including in particular chromatin and nucleosomal organization, gene expression regulation, and cellular traffic and migration. In addition, IBTK RNA interference affected RNA maturation in both cell lines, as shown by the evidence of alternative 3'- and 5'-splicing, mutually exclusive exons, retained introns, and skipped exons. Altogether, these results indicate that IBTK differently modulates gene expression and RNA splicing in HeLa and K562 cells, demonstrating a novel biological role of this protein.
IBTK Differently Modulates Gene Expression and RNA Splicing in HeLa and K562 Cells
Fiume, Giuseppe; Scialdone, Annarita; Rizzo, Francesca; De Filippo, Maria Rosaria; Laudanna, Carmelo; Albano, Francesco; Golino, Gaetanina; Vecchio, Eleonora; Pontoriero, Marilena; Mimmi, Selena; Ceglia, Simona; Pisano, Antonio; Iaccino, Enrico; Palmieri, Camillo; Paduano, Sergio; Viglietto, Giuseppe; Weisz, Alessandro; Scala, Giuseppe; Quinto, Ileana
2016-01-01
The IBTK gene encodes the major protein isoform IBTKα that was recently characterized as substrate receptor of Cul3-dependent E3 ligase, regulating ubiquitination coupled to proteasomal degradation of Pdcd4, an inhibitor of translation. Due to the presence of Ankyrin-BTB-RCC1 domains that mediate several protein-protein interactions, IBTKα could exert expanded regulatory roles, including interaction with transcription regulators. To verify the effects of IBTKα on gene expression, we analyzed HeLa and K562 cell transcriptomes by RNA-Sequencing before and after IBTK knock-down by shRNA transduction. In HeLa cells, 1285 (2.03%) of 63,128 mapped transcripts were differentially expressed in IBTK-shRNA-transduced cells, as compared to cells treated with control-shRNA, with 587 upregulated (45.7%) and 698 downregulated (54.3%) RNAs. In K562 cells, 1959 (3.1%) of 63128 mapped RNAs were differentially expressed in IBTK-shRNA-transduced cells, including 1053 upregulated (53.7%) and 906 downregulated (46.3%). Only 137 transcripts (0.22%) were commonly deregulated by IBTK silencing in both HeLa and K562 cells, indicating that most IBTKα effects on gene expression are cell type-specific. Based on gene ontology classification, the genes responsive to IBTK are involved in different biological processes, including in particular chromatin and nucleosomal organization, gene expression regulation, and cellular traffic and migration. In addition, IBTK RNA interference affected RNA maturation in both cell lines, as shown by the evidence of alternative 3′- and 5′-splicing, mutually exclusive exons, retained introns, and skipped exons. Altogether, these results indicate that IBTK differently modulates gene expression and RNA splicing in HeLa and K562 cells, demonstrating a novel biological role of this protein. PMID:27827994
Montalban, Enrica; Mattugini, Nicola; Ciarapica, Roberta; Provenzano, Claudia; Savino, Mauro; Scagnoli, Fiorella; Prosperini, Gianluca; Carissimi, Claudia; Fulci, Valerio; Matrone, Carmela; Calissano, Pietro; Nasi, Sergio
2014-06-01
The neurotrophins Ngf, Bdnf, NT-3, NT4-5 have key roles in development, survival, and plasticity of neuronal cells. Their action involves broad gene expression changes at the level of transcription and translation. MicroRNAs (miRs)-small RNA molecules that control gene expression post-transcriptionally-are increasingly implicated in regulating development and plasticity of neural cells. Using PC12 cells as a model system, we show that Ngf modulates changes in expression of a variety of microRNAs, including miRs known to be modulated by neurotrophins-such as the miR-212/132 cluster-and several others, such as miR-21, miR-29c, miR-30c, miR-93, miR-103, miR-207, miR-691, and miR-709. Pathway analysis indicates that Ngf-modulated miRs may regulate many protein components of signaling pathways involved in neuronal development and disease. In particular, we show that miR-21 enhances neurotrophin signaling and controls neuronal differentiation induced by Ngf. Notably, in a situation mimicking neurodegeneration-differentiated neurons deprived of Ngf-this microRNA is able to preserve the neurite network and to support viability of the neurons. These findings uncover a broad role of microRNAs in regulating neurotrophin signaling and suggest that aberrant expression of one or more Ngf-modulated miRs may be involved in neurodegenerative diseases.
SOCS3 promotes apoptosis of mammary differentiated cells.
Le Provost, Fabienne; Miyoshi, Keiko; Vilotte, Jean-Luc; Bierie, Brian; Robinson, Gertraud W; Hennighausen, Lothar
2005-12-30
Growth and function of the mammary gland is regulated by cytokines and modulated by suppressor of cytokine signalling (SOCS) proteins. In vitro experiments demonstrated that SOCS3 can inhibit PRL induction of milk protein gene expression and STAT5 activation. We explored the SOCS3 expression pattern during mouse mammary development and its regulation by PRL and GH in wild-type and STAT5a-null mammary tissue. Our results suggest that, in vivo, PRL stimulates SOCS3 expression in stromal adipocytes, independently of STAT5a stimulation. In mammary epithelial cells, SOCS3 expression appears to be related to STAT3 activation. Together, our results are consistent with a role of SOCS3 in the mammary gland by promoting apoptosis of differentiated cells (adipocytes during gestation and epithelial cells during involution).
bc-GenExMiner 3.0: new mining module computes breast cancer gene expression correlation analyses.
Jézéquel, Pascal; Frénel, Jean-Sébastien; Campion, Loïc; Guérin-Charbonnel, Catherine; Gouraud, Wilfried; Ricolleau, Gabriel; Campone, Mario
2013-01-01
We recently developed a user-friendly web-based application called bc-GenExMiner (http://bcgenex.centregauducheau.fr), which offered the possibility to evaluate prognostic informativity of genes in breast cancer by means of a 'prognostic module'. In this study, we develop a new module called 'correlation module', which includes three kinds of gene expression correlation analyses. The first one computes correlation coefficient between 2 or more (up to 10) chosen genes. The second one produces two lists of genes that are most correlated (positively and negatively) to a 'tested' gene. A gene ontology (GO) mining function is also proposed to explore GO 'biological process', 'molecular function' and 'cellular component' terms enrichment for the output lists of most correlated genes. The third one explores gene expression correlation between the 15 telomeric and 15 centromeric genes surrounding a 'tested' gene. These correlation analyses can be performed in different groups of patients: all patients (without any subtyping), in molecular subtypes (basal-like, HER2+, luminal A and luminal B) and according to oestrogen receptor status. Validation tests based on published data showed that these automatized analyses lead to results consistent with studies' conclusions. In brief, this new module has been developed to help basic researchers explore molecular mechanisms of breast cancer. DATABASE URL: http://bcgenex.centregauducheau.fr
Prostaglandin reductase-3 negatively modulates adipogenesis through regulation of PPARγ activity[S
Yu, Yu-Hsiang; Chang, Yi-Cheng; Su, Tseng-Hsiung; Nong, Jiun-Yi; Li, Chao-Chin; Chuang, Lee-Ming
2013-01-01
Adipocyte differentiation is a multistep program under regulation by several factors. Peroxisome proliferator-activated receptor γ (PPARγ) serves as a master regulator of adipogenesis. However, the endogenous ligand for PPARγ remained elusive until 15-keto-PGE2 was identified recently as an endogenous PPARγ ligand. In this study, we demonstrate that zinc-containing alcohol dehydrogenase 2 (ZADH2; here termed prostaglandin reductase-3, PTGR-3) is a new member of prostaglandin reductase family that converts 15-keto-PGE2 to 13,14-dihydro-15-keto-PGE2. Adipogenesis is accelerated when endogenous PTGR-3 is silenced in 3T3-L1 preadipocytes, whereas forced expression of PTGR-3 significantly decreases adipogenesis. PTGR-3 expression decreased during adipocyte differentiation, accompanied by an increased level of 15-keto-PGE2. 15-keto-PGE2 exerts a potent proadipogenic effect by enhancing PPARγ activity, whereas overexpression of PTGR-3 in 3T3-L1 preadipocytes markedly suppressed the proadipogenic effect of 15-keto-PGE2 by repressing PPARγ activity. Taken together, these findings demonstrate for the first time that PTGR-3 is a novel 15-oxoprostaglandin-Δ13-reductase and plays a critical role in modulation of normal adipocyte differentiation via regulation of PPARγ activity. Thus, modulation of PTGR-3 might provide a novel avenue for treating obesity and related metabolic disorders. PMID:23821743
PANG, ALAN LAP-YIN; TITLE, ALEXANDRA C.; RENNERT, OWEN M.
2014-01-01
MicroRNAs (miRNAs) are small non-coding RNAs that regulate the expression of their target genes at the post-transcriptional level. In cancer cells, miRNAs, depending on the biological functions of their target genes, may have a tumor-promoting or -suppressing effect. Treatment of cancer cells with inhibitors of DNA methylation and/or histone deacetylation modulates the expression level of miRNAs, which provides evidence for epigenetic regulation of miRNA expression. The consequences of inhibition of histone methyltransferase on miRNA expression, however, have not been thoroughly investigated. The present study examined the expression pattern of miRNAs in the non-small cell lung cancer cell line, H1299 with or without treatment of BIX01294, a potent chemical inhibitor of G9a methyltransferase that catalyzes the mono-and di-methylation of the lysine 9 residue of histone H3. By coupling microarray analysis with quantitative real-time polymerase chain reaction analysis, two miRNAs were identified that showed consistent downregulation following BIX01294 treatment. The results indicate that histone H3 methylation regulates miRNA expression in lung cancer cells, which may provide additional insight for future chemical treatment of lung cancer. PMID:24932239
Kim, Arang; Lee, Wooje; Yun, Jung-Mi
2017-10-01
Chronic hyperglycemia induces oxidative stress via accumulation of reactive oxygen species (ROS) and contributes to diabetic complications. Hyperglycemia induces mitochondrial superoxide anion production through the increased activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. This study aimed to determine whether fisetin and luteolin treatments suppress the oxidative stress by modulating the expression of sirtuins (SIRTs) and forkhead box O3a (FOXO3a) under hyperglycemic conditions in human monocytes. Human monocytic cells (THP-1) were cultured under osmotic control (14.5 mmol/L mannitol), normoglycemic (NG, 5.5 mmol/L glucose), or hyperglycemic (HG, 20 mmol/L glucose) conditions, in the absence or presence of fisetin and luteolin for 48 h. To determine the effect of fisetin and luteolin treatments on high glucose-induced oxidative stress, western blotting and intracellular staining were performed. Hyperglycemic conditions increased the ROS production, as compared to normoglycemic condition. However, fisetin and luteolin treatments inhibited ROS production under hyperglycemia. To obtain further insight into ROS production in hyperglycemic conditions, evaluation of p47phox expression revealed that fisetin and luteolin treatments inhibited p47phox expression under hyperglycemic conditions. Conversely, the expression levels of SIRT1, SIRT3, SIRT6, and FOXO3a were decreased under high glucose conditions compared to normal glucose conditions, but exposure to fisetin and luteolin induced the expression of SIRT1, SIRT3, SIRT6, and FOXO3a. The above findings suggest that fisetin and luteolin inhibited high glucose-induced ROS production in monocytes through the activation of SIRTs and FOXO3a. The results of our study supports current researches that state fisetin and luteolin as potential agents for the development of novel strategies for diabetes.
Kim, Arang; Lee, Wooje
2017-01-01
BACKGROUND/OBJECTIVE Chronic hyperglycemia induces oxidative stress via accumulation of reactive oxygen species (ROS) and contributes to diabetic complications. Hyperglycemia induces mitochondrial superoxide anion production through the increased activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. This study aimed to determine whether fisetin and luteolin treatments suppress the oxidative stress by modulating the expression of sirtuins (SIRTs) and forkhead box O3a (FOXO3a) under hyperglycemic conditions in human monocytes. MATERIALS/METHODS Human monocytic cells (THP-1) were cultured under osmotic control (14.5 mmol/L mannitol), normoglycemic (NG, 5.5 mmol/L glucose), or hyperglycemic (HG, 20 mmol/L glucose) conditions, in the absence or presence of fisetin and luteolin for 48 h. To determine the effect of fisetin and luteolin treatments on high glucose-induced oxidative stress, western blotting and intracellular staining were performed. RESULTS Hyperglycemic conditions increased the ROS production, as compared to normoglycemic condition. However, fisetin and luteolin treatments inhibited ROS production under hyperglycemia. To obtain further insight into ROS production in hyperglycemic conditions, evaluation of p47phox expression revealed that fisetin and luteolin treatments inhibited p47phox expression under hyperglycemic conditions. Conversely, the expression levels of SIRT1, SIRT3, SIRT6, and FOXO3a were decreased under high glucose conditions compared to normal glucose conditions, but exposure to fisetin and luteolin induced the expression of SIRT1, SIRT3, SIRT6, and FOXO3a. The above findings suggest that fisetin and luteolin inhibited high glucose-induced ROS production in monocytes through the activation of SIRTs and FOXO3a. CONCLUSIONS The results of our study supports current researches that state fisetin and luteolin as potential agents for the development of novel strategies for diabetes. PMID:28989580
Tumbarello, David A; Temple, Jillian; Brenton, James D
2012-05-28
The extracellular matrix (ECM) has a key role in facilitating the progression of ovarian cancer and we have shown recently that the secreted ECM protein TGFBI modulates the response of ovarian cancer to paclitaxel-induced cell death. We have determined TGFBI signaling from the extracellular environment is preferential for the cell surface αvß3 integrin heterodimer, in contrast to periostin, a TGFBI paralogue, which signals primarily via a ß1 integrin-mediated pathway. We demonstrate that suppression of ß1 integrin expression, in ß3 integrin-expressing ovarian cancer cells, increases adhesion to rTGFBI. In addition, Syndecan-1 and -4 expression is dispensable for adhesion to rTGFBI and loss of Syndecan-1 cooperates with the loss of ß1 integrin to further enhance adhesion to rTGFBI. The RGD motif present in the carboxy-terminus of TGFBI is necessary, but not sufficient, for SKOV3 cell adhesion and is dispensable for adhesion of ovarian cancer cells lacking ß3 integrin expression. In contrast to TGFBI, the carboxy-terminus of periostin, lacking a RGD motif, is unable to support adhesion of ovarian cancer cells. Suppression of ß3 integrin in SKOV3 cells increases resistance to paclitaxel-induced cell death while suppression of ß1 integrin has no effect. Furthermore, suppression of TGFBI expression stimulates a paclitaxel resistant phenotype while suppression of fibronectin expression, which primarily signals through a ß1 integrin-mediated pathway, increases paclitaxel sensitivity. Therefore, different ECM components use distinct signaling mechanisms in ovarian cancer cells and in particular, TGFBI preferentially interacts through a ß3 integrin receptor mediated mechanism to regulate the response of cells to paclitaxel-induced cell death.
TGF-β1 Downregulates the Expression of CX3CR1 by Inducing miR-27a-5p in Primary Human NK Cells
Regis, Stefano; Caliendo, Fabio; Dondero, Alessandra; Casu, Beatrice; Romano, Filomena; Loiacono, Fabrizio; Moretta, Alessandro; Bottino, Cristina; Castriconi, Roberta
2017-01-01
Activity of human natural killer (NK) cells against cancer cells is deeply suppressed by TGF-β1, an immunomodulatory cytokine that is released and activated in the tumor microenvironment. Moreover, our previous data showed that TGF-β1 modifies the chemokine receptor repertoire of NK cells. In particular, it decreases the expression of CX3CR1 that drives these effectors toward peripheral tissues, including tumor sites. To identify possible mechanisms mediating chemokine receptors modulation, we analyzed the microRNA profile of TGF-β1-treated primary NK cells. The analysis pointed out miR-27a-5p as a possible modulator of CX3CR1. We demonstrated the functional interaction of miR-27a-5p with the 3′ untranslated region (3′UTR) of CX3CR1 mRNA by two different experimental approaches: by the use of a luciferase assay based on a reporter construct containing the CX3CR1 3′UTR and by transfection of primary NK cells with a miR-27a-5p inhibitor. We also showed that the TGF-β1-mediated increase of miR-27a-5p expression is a consequence of miR-23a-27a-24-2 cluster induction. Moreover, we demonstrated that miR-27a-5p downregulates the surface expression of CX3CR1. Finally, we showed that neuroblastoma cells induced in resting NK cells a downregulation of the CX3CR1 expression that was paralleled by a significant increase of miR-27a-5p expression. Therefore, the present study highlights miR-27a-5p as a pivotal TGF-β1-induced regulator of CX3CR1 expression. PMID:28791023
Berberine acts as a putative epigenetic modulator by affecting the histone code.
Wang, Zhixiang; Liu, Yuan; Xue, Yong; Hu, Haiyan; Ye, Jieyu; Li, Xiaodong; Lu, Zhigang; Meng, Fanyi; Liang, Shuang
2016-10-01
Berberine, an isoquinoline plant alkaloid, exhibits a wide range of biochemical and pharmacological effects. However, the precise mechanism of these bioactivities remains poorly understood. In this study, we found significant similarity between berberine and two epigenetic modulators (CG-1521 and TSA). Reverse-docking using berberine as a ligand identified lysine-N-methyltransferase as a putative target of berberine. These findings suggested the potential role of berberine in epigenetic modulation. The results of PCR array analysis of epigenetic chromatin modification enzymes supported our hypothesis. Furthermore, the analysis showed that enzymes involved in histone acetylation and methylation were predominantly affected by treatment with berberine. Up-regulation of histone acetyltransferase CREBBP and EP300, histone deacetylase SIRT3, histone demethylase KDM6A as well as histone methyltransferase SETD7, and down-regulation of histone acetyltransferase HDAC8, histone methyltransferase WHSC1I, WHSC1II and SMYD3, in addition to 38 genes from histone clusters 1-3 were observed in berberine-treated cells using real-time PCR. In parallel, western blotting analyses revealed that the expression of H3K4me3, H3K27me3 and H3K36me3 proteins decreased with berberine treatment. These results were further confirmed in acute myelocytic leukemia (AML) cell lines HL-60/ADR and KG1-α. Taken together, this study suggests that berberine might modulate the expression of epigenetic regulators important for many downstream pathways, resulting in the variation of its bioactivities. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Chen, Ming; Henry, Nathan; Almsaeed, Abdullah; Zhou, Xiao; Wegrzyn, Jill; Ficklin, Stephen
2017-01-01
Abstract Tripal is an open source software package for developing biological databases with a focus on genetic and genomic data. It consists of a set of core modules that deliver essential functions for loading and displaying data records and associated attributes including organisms, sequence features and genetic markers. Beyond the core modules, community members are encouraged to contribute extension modules to build on the Tripal core and to customize Tripal for individual community needs. To expand the utility of the Tripal software system, particularly for RNASeq data, we developed two new extension modules. Tripal Elasticsearch enables fast, scalable searching of the entire content of a Tripal site as well as the construction of customized advanced searches of specific data types. We demonstrate the use of this module for searching assembled transcripts by functional annotation. A second module, Tripal Analysis Expression, houses and displays records from gene expression assays such as RNA sequencing. This includes biological source materials (biomaterials), gene expression values and protocols used to generate the data. In the case of an RNASeq experiment, this would reflect the individual organisms and tissues used to produce sequencing libraries, the normalized gene expression values derived from the RNASeq data analysis and a description of the software or code used to generate the expression values. The module will load data from common flat file formats including standard NCBI Biosample XML. Data loading, display options and other configurations can be controlled by authorized users in the Drupal administrative backend. Both modules are open source, include usage documentation, and can be found in the Tripal organization’s GitHub repository. Database URL: Tripal Elasticsearch module: https://github.com/tripal/tripal_elasticsearch Tripal Analysis Expression module: https://github.com/tripal/tripal_analysis_expression PMID:29220446
Wang, Xusheng; Miles, Michael F.; Lu, Lu; Williams, Robert W.
2010-01-01
Background Catechol-O-methyltransferase (COMT) is a key enzyme responsible for the degradation of dopamine and norepinephrine. COMT activity influences cognitive and emotional states in humans and aggression and drug responses in mice. This study identifies the key sequence variant that leads to differences in Comt mRNA and protein levels among mice, and that modulates synaptic function and pharmacological and behavioral traits. Methodology/Principal Findings We examined Comt expression in multiple tissues in over 100 diverse strains and several genetic crosses. Differences in expression map back to Comt and are generated by a 230 nt insertion of a B2 short interspersed element (B2 SINE) in the proximal 3′ UTR of Comt in C57BL/6J. This transposon introduces a premature polyadenylation signal and creates a short 3′ UTR isoform. The B2 SINE is shared by a subset of strains, including C57BL/6J, A/J, BALB/cByJ, and AKR/J, but is absent in others, including DBA/2J, FVB/NJ, SJL/J, and wild subspecies. The short isoform is associated with increased protein expression in prefrontal cortex and hippocampus relative to the longer ancestral isoform. The Comt variant causes downstream differences in the expression of genes involved in synaptic function, and also modulates phenotypes such as dopamine D1 and D2 receptor binding and pharmacological responses to haloperidol. Conclusions/Significance We have precisely defined the B2 SINE as the source of variation in Comt and demonstrated that a transposon in a 3′ UTR can alter mRNA isoform use and modulate behavior. The recent fixation of the variant in a subset of strains may have contributed to the rapid divergence of inbred strains. PMID:20808911
Carbon monoxide is a rapid modulator of recombinant and native P2X(2) ligand-gated ion channels.
Wilkinson, W J; Gadeberg, H C; Harrison, A W J; Allen, N D; Riccardi, D; Kemp, P J
2009-10-01
Carbon monoxide (CO) is a potent modulator of a wide variety of physiological processes, including sensory signal transduction. Many afferent sensory pathways are dependent upon purinergic neurotransmission, but direct modulation of the P2X purinoceptors by this important, endogenously produced gas has never been investigated. Whole-cell patch-clamp experiments were used to measure ATP-elicited currents in human embryonic kidney 293 cells heterologously expressing P2X(2), P2X(3), P2X(2/3) and P2X(4) receptors and in rat pheochromocytoma (PC12) cells known to express native P2X(2) receptors. Modulation was investigated using solutions containing CO gas and the CO donor molecule, tricarbonyldichlororuthenium (II) dimer (CORM-2). CO was a potent and selective modulator of native P2X(2) receptors, and these effects were mimicked by a CO donor (CORM-2). Neither pre-incubation with 8-bromoguanosine-3',5'-cyclomonophosphate nor 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (a potent blocker of soluble guanylyl cyclase) affected the ability of the CO donor to enhance the ATP-evoked P2X(2) currents. The CO donor caused a small, but significant inhibition of currents evoked by P2X(2/3) and P2X(4) receptors, but was without effect on P2X(3) receptors. These data provided an explanation for how CO might regulate sensory neuronal traffic in physiological reflexes such as systemic oxygen sensing but also showed that CO could be used as a selective pharmacological tool to assess the involvement of homomeric P2X(2) receptors in physiological systems.
Transcriptional and Hormonal Regulation of Gravitropism of Woody Stems in Populus[OPEN
Gerttula, Suzanne; Zinkgraf, Matthew; Lewis, Daniel R.; Brumer, Harry; Hart, Foster; Filkov, Vladimir
2015-01-01
Angiosperm trees reorient their woody stems by asymmetrically producing a specialized xylem tissue, tension wood, which exerts a strong contractile force resulting in negative gravitropism of the stem. Here, we show, in Populus trees, that initial gravity perception and response occurs in specialized cells through sedimentation of starch-filled amyloplasts and relocalization of the auxin transport protein, PIN3. Gibberellic acid treatment stimulates the rate of tension wood formation and gravibending and enhances tissue-specific expression of an auxin-responsive reporter. Gravibending, maturation of contractile fibers, and gibberellic acid (GA) stimulation of tension wood formation are all sensitive to transcript levels of the Class I KNOX homeodomain transcription factor-encoding gene ARBORKNOX2 (ARK2). We generated genome-wide transcriptomes for trees in which gene expression was perturbed by gravistimulation, GA treatment, and modulation of ARK2 expression. These data were employed in computational analyses to model the transcriptional networks underlying wood formation, including identification and dissection of gene coexpression modules associated with wood phenotypes, GA response, and ARK2 binding to genes within modules. We propose a model for gravitropism in the woody stem in which the peripheral location of PIN3-expressing cells relative to the cambium results in auxin transport toward the cambium in the top of the stem, triggering tension wood formation, while transport away from the cambium in the bottom of the stem triggers opposite wood formation. PMID:26410302
Botía, Juan A; Vandrovcova, Jana; Forabosco, Paola; Guelfi, Sebastian; D'Sa, Karishma; Hardy, John; Lewis, Cathryn M; Ryten, Mina; Weale, Michael E
2017-04-12
Weighted Gene Co-expression Network Analysis (WGCNA) is a widely used R software package for the generation of gene co-expression networks (GCN). WGCNA generates both a GCN and a derived partitioning of clusters of genes (modules). We propose k-means clustering as an additional processing step to conventional WGCNA, which we have implemented in the R package km2gcn (k-means to gene co-expression network, https://github.com/juanbot/km2gcn ). We assessed our method on networks created from UKBEC data (10 different human brain tissues), on networks created from GTEx data (42 human tissues, including 13 brain tissues), and on simulated networks derived from GTEx data. We observed substantially improved module properties, including: (1) few or zero misplaced genes; (2) increased counts of replicable clusters in alternate tissues (x3.1 on average); (3) improved enrichment of Gene Ontology terms (seen in 48/52 GCNs) (4) improved cell type enrichment signals (seen in 21/23 brain GCNs); and (5) more accurate partitions in simulated data according to a range of similarity indices. The results obtained from our investigations indicate that our k-means method, applied as an adjunct to standard WGCNA, results in better network partitions. These improved partitions enable more fruitful downstream analyses, as gene modules are more biologically meaningful.
Prostaglandin E2 modulates dendritic cell function via EP2 and EP4 receptor subtypes.
Harizi, Hedi; Grosset, Christophe; Gualde, Norbert
2003-06-01
We have reported previously that PGE(2) inhibits dendritic cells (DC) functions. Because E prostanoid receptor (EPR) subtypes involved in this action are unknown, expression and functions of these receptors were examined in DC. Western blot and flow cytometry analyses showed that all EPRs were coexpressed in DC. In a dose-dependent manner, lipopolysaccharide (LPS) enhanced EP(2)R/EP(4)R but not EP(1)R/EP(3)R expressions. NS-398, a cyclooxygenase (COX)-2-selective inhibitor, suppressed LPS-enhanced EP(2)R/EP(4)R expression, suggesting that COX-2-issued prostaglandin E(2) (PGE(2)) modulates DC function through stimulation of specific EPR subtypes. Using selective agonists, we found that butaprost, an EP(2)R agonist, and PGE(1) alcohol, an EP(2)R and EP(2)R/EP(4)R agonist, inhibited major histocompatibility complex class II expression and enhanced interleukin-10 production from DC. However, no effect was observed with sulprostone and 17-phenyl-omega-trinor-PGE(2), selective agonists for EP(1)R and EP(1)R/EP(3)R, respectively. Treatment of DC with dibutyryl cyclic adenosine monophosphate (cAMP), an analog of cAMP, mimics PGE(2)-induced, inhibitory effects. Taken together, our data demonstrate that EP(2)R/EP(4)R are efficient for mediating PGE(2)-induced modulation of DC functions.
Changes in Leptin Signaling by SOCS3 Modulate Fasting-Induced Hyperphagia and Weight Regain in Mice.
Pedroso, João A B; Silveira, Marina A; Lima, Leandro B; Furigo, Isadora C; Zampieri, Thais T; Ramos-Lobo, Angela M; Buonfiglio, Daniella C; Teixeira, Pryscila D S; Frazão, Renata; Donato, Jose
2016-10-01
Weight regain frequently follows interventions that reduce body weight, leading to a failure in long-term obesity treatment. Inhibitory proteins of the leptin signaling pathway, such as the suppressor of cytokine signaling 3 (SOCS3), have been studied in conditions that predispose animals to obesity. However, whether SOCS3 modulates postrestriction hyperphagia and weight regain remains unknown. Mice lacking SOCS3 protein specifically in leptin receptor (LepR)-expressing cells (LepR SOCS3 knockout [KO]) were generated and studied in fasting and refeeding conditions. LepR SOCS3 KO mice exhibited increased leptin sensitivity in the hypothalamus. Notably, LepR SOCS3 KO males and females showed attenuated food intake and weight regain after 48 hours of fasting. Postrestriction hyperleptinemia was also prevented in LepR SOCS3 KO mice. Next, we studied possible mechanisms and neural circuits involved in the SOCS3 effects. SOCS3 deletion did not prevent fasting- or refeeding-induced c-Fos expression in the arcuate nucleus of the hypothalamus (ARH) nor fasting-induced increased excitability of ARH LepR-expressing cells. On the other hand, SOCS3 ablation reduced the mRNA levels of hypothalamic orexigenic neuropeptides during fasting (neuropeptide Y, agouti-related protein, orexin, and melanin-concentrating hormone). In summary, our findings suggest that increased leptin sensitivity contributes to the maintenance of a reduced body weight after food deprivation. In addition, the attenuated postrestriction food intake observed in mutant mice was not explained by fasting-induced changes in the activity of ARH neurons but exclusively by a lower transcription of orexigenic neuropeptides during fasting. These results indicate a partial dissociation between the regulation of neuronal activity and gene expression in ARH LepR-expressing cells.
Salmonella modulation of host cell gene expression promotes its intracellular growth.
Hannemann, Sebastian; Gao, Beile; Galán, Jorge E
2013-01-01
Salmonella Typhimurium has evolved a complex functional interface with its host cell largely determined by two type III secretion systems (T3SS), which through the delivery of bacterial effector proteins modulate a variety of cellular processes. We show here that Salmonella Typhimurium infection of epithelial cells results in a profound transcriptional reprogramming that changes over time. This response is triggered by Salmonella T3SS effector proteins, which stimulate unique signal transduction pathways leading to STAT3 activation. We found that the Salmonella-stimulated changes in host cell gene expression are required for the formation of its specialized vesicular compartment that is permissive for its intracellular replication. This study uncovers a cell-autonomous process required for Salmonella pathogenesis potentially opening up new avenues for the development of anti-infective strategies that target relevant host pathways.
Chen, Gang; Huang, Xiao-Jun; Lü, Bo-Dong; Chen, Shi-Tao; Zhang, Shi-Geng; Yang, Ke-Bing
2013-08-01
To explore the effects of salidroside on the phenotypic modulation of corpus cavernosum smooth muscle cells (CCSMC) in hypoxic SD rats. CCSMCs were cultured in vitro and identified by immunohistochemistry. The cells were divided into six groups: normal control (21% O2), hypoxia (1% O2), hypoxia + salidroside 1 mg/L, hypoxia + salidroside 3 mg/L, hypoxia + salidroside 5 mg/L and hypoxia + PGE1 0.4 microg/L, and then cultured for 48 hours. The relative expressions of alpha-actin and osteopontin (OPN) in each group were determined by RT-PCR. The in vitro cultured CCSMCs grew well, with anti-alpha-smooth muscle actin monoclonal antibodies immunohistochemically positive. The relative expression of alpha-actin was markedly decreased while that of OPN remarkably increased in the hypoxia group as compared with the normal control group (P < 0.01). The hypoxia + salidroside 5 mg/L group showed a significantly higher expression of alpha-actin and lower expression of OPN than the hypoxia group (P < 0.01), but exhibited no significant differences from the hypoxia + PGE group (P > 0.05). Hypoxia can reduce the relative expression level of alpha-actin and increase that of OPN in the CCSMCs of SD rats, namely, induce their phenotypic modulation from the contraction to the non-contraction type. Salidroside can restrain hypoxia-induced phenotypic modulation of CCSMCs, and its inhibitory effect at 5 mg/L is similar to that of PGE1.
2008-10-01
cell metastasis and survival through level of expression and differential phosphorylation. Phospho- HSP27 modulates cell motility; blocking...Phospho Hsp27 expression in prostate Compared to wt mice 0 10 20 30 40 50 60 9wk 11wk 13wk 15wk 17wk 19wk LPB-Tag LPB-Tag x PGKBP-3 LPB-Tag x PGKBP...3mut Figure 7 Relative change in expression of phoshorylated HSP27 by immunoblot analyses using anti-pHSP27 (Santa Cruz; pHSP27(ser78): sc-16568
Messerli, Mark A.; Collis, Leon P.; Smith, Peter J.S.
2009-01-01
Previously, functional mapping of channels has been achieved by measuring the passage of net charge and of specific ions with electrophysiological and intracellular fluorescence imaging techniques. However, functional mapping of ion channels using extracellular ion-selective microelectrodes has distinct advantages over the former methods. We have developed this method through measurement of extracellular K+ gradients caused by efflux through Ca2+-activated K+ channels expressed in Chinese hamster ovary cells. We report that electrodes constructed with short columns of a mechanically stable K+-selective liquid membrane respond quickly and measure changes in local [K+] consistent with a diffusion model. When used in close proximity to the plasma membrane (<4 μm), the ISMs pose a barrier to simple diffusion, creating an ion trap. The ion trap amplifies the local change in [K+] without dramatically changing the rise or fall time of the [K+] profile. Measurement of extracellular K+ gradients from activated rSlo channels shows that rapid events, 10–55 ms, can be characterized. This method provides a noninvasive means for functional mapping of channel location and density as well as for characterizing the properties of ion channels in the plasma membrane. PMID:19217875
Interrelationship between 3,5,3′-triiodothyronine and the circadian clock in the rodent heart
Peliciari-Garcia, Rodrigo Antonio; Prévide, Rafael Maso; Nunes, Maria Tereza; Young, Martin Elliot
2017-01-01
Triiodothyronine (T3) is an important modulator of cardiac metabolism and function, often through modulation of gene expression. The cardiomyocyte circadian clock is a transcriptionally-based molecular mechanism capable of regulating cardiac processes, in part by modulating responsiveness of the heart to extra-cardiac stimuli/stresses in a time-of-day- (TOD) dependent manner. Although TOD-dependent oscillations in circulating levels of T3 (and its intermediates) have been established, whether oscillations in T3 sensitivity in the heart occur is unknown. To investigate the latter possibility, euthyroid male Wistar rats were treated with vehicle or T3 at distinct times of the day, after which induction of known T3 target genes were assessed in the heart (4-h later). The expression of mRNA was assessed by Real-Time qPCR. Here, we report greater T3 induction of transcript levels at the end of the dark phase. Surprisingly, use of cardiomyocyte-specific clock mutant (CCM) mice revealed that TOD-dependent oscillations in T3 sensitivity were independent of this cell autonomous mechanism. Investigation of genes encoding for proteins that affect T3 sensitivity revealed that Dio1, Dio2, and Thrb1 exhibited TOD-dependent variations in the heart, while Thra1 and Thra2 did not. Of these, Dio1 and Thrb1 were increased in the heart at the end of the dark phase. Interestingly, we observed that T3 acutely altered the expression of core clock components (e.g., Bmal1) in the rat heart. To investigate this further, rats were injected with a single dose of T3, after which expression of clock genes were interrogated at 3-h intervals over the subsequent 24h-period. These studies revealed robust effects of T3 on oscillations of both core clock components and clock-controlled genes. In summary, the current study exposed time-of-day-dependent rhythms in cardiac T3 sensitivity, and that T3 alters the circadian clock in the heart. PMID:27661292
Transduction of Voltage and Ca2+ Signals by Slo1 BK Channels
Hoshi, T.; Pantazis, A.; Olcese, R.
2013-01-01
Large-conductance Ca2+- and voltage-gated K+ channels are activated by an increase in intracellular Ca2+ concentration and/or depolarization. The channel activation mechanism is well described by an allosteric model encompassing the gate, voltage sensors, and Ca2+ sensors, and the model is an excellent framework to understand the influences of auxiliary β and γ subunits and regulatory factors such as Mg2+. Recent advances permit elucidation of structural correlates of the biophysical mechanism. PMID:23636263
Imaging of the peripheral retina
Kernt, Marcus; Kampik, Anselm
2013-01-01
The technical progress of the recent years has revolutionized imaging in ophthalmology. Scanning laser ophthalmoscopy (SLO), digital angiography, optical coherence tomography (OCT), and detection of fundus autofluorescence (FAF) have fundamentally changed our understanding of numerous retinal and choroidal diseases. Besides the tremendous advances in macular diagnostics, there is more and more evidence that central pathologies are often directly linked to changes in the peripheral retina. This review provides a brief overview on current posterior segment imaging techniques with a special focus on the peripheral retina. PMID:24391370
Satou, Ryousuke; Miyata, Kayoko; Gonzalez-Villalobos, Romer A.; Ingelfinger, Julie R.; Navar, L. Gabriel; Kobori, Hiroyuki
2012-01-01
Renal inflammation modulates angiotensinogen (AGT) production in renal proximal tubular cells (RPTCs) via inflammatory cytokines, including interleukin-6, tumor necrosis factor α, and interferon-γ (IFN-γ). Among these, the effects of IFN-γ on AGT regulation in RPTCs are incompletely delineated. This study aimed to elucidate mechanisms by which IFN-γ regulates AGT expression in RPTCs. RPTCs were incubated with or without IFN-γ up to 48 h. AGT expression, STAT1 and STAT3 activities, and SOCS1 expression were evaluated. RNA interference studies against STAT1, SOCS1, and STAT3 were performed to elucidate a signaling cascade. IFN-γ decreased AGT expression at 6 h (0.61±0.05, ratio to control) and 12 h (0.47±0.03). In contrast, longer exposure for 24 and 48 h increased AGT expression (1.76±0.18, EC50=3.4 ng/ml, and 1.45±0.08, respectively). IFN-γ treatment for 6 h strongly induced STAT1 phosphorylation and SOCS1 augmentation, and decreased STAT3 activity. However, STAT1 phosphorylation and SOCS1 augmentation waned at 24 h, while STAT3 activity increased. RNA interference studies revealed that activation of STAT1-SOCS1 axis decreased STAT3 activity. Thus, IFN-γ biphasically regulates AGT expression in RPTCs via STAT3 activity modulated by STAT1-SOCS1 axis, suggesting the STAT1-SOCS1 axis is important in IFN-γ-induced activation of the intrarenal renin-angiotensin system.—Satou, R., Miyata, K., Gonzalez-Villalobos, R. A., Ingelfinger, J. R., Navar, L. G., Kobori, H. Interferon-γ biphasically regulates angiotensinogen expression via a JAK-STAT pathway and suppressor of cytokine signaling 1 (SOCS1) in renal proximal tubular cells. PMID:22302831
Rahmberg, Andrew R; Rajakumar, Premeela A; Billingsley, James M; Johnson, R Paul
2017-04-01
Although multiple restriction factors have been shown to inhibit HIV/SIV replication, little is known about their expression in vivo Expression of 45 confirmed and putative HIV/SIV restriction factors was analyzed in CD4 + T cells from peripheral blood and the jejunum in rhesus macaques, revealing distinct expression patterns in naive and memory subsets. In both peripheral blood and the jejunum, memory CD4 + T cells expressed higher levels of multiple restriction factors compared to naive cells. However, relative to their expression in peripheral blood CD4 + T cells, jejunal CCR5 + CD4 + T cells exhibited significantly lower expression of multiple restriction factors, including APOBEC3G , MX2 , and TRIM25 , which may contribute to the exquisite susceptibility of these cells to SIV infection. In vitro stimulation with anti-CD3/CD28 antibodies or type I interferon resulted in upregulation of distinct subsets of multiple restriction factors. After infection of rhesus macaques with SIVmac239, the expression of most confirmed and putative restriction factors substantially increased in all CD4 + T cell memory subsets at the peak of acute infection. Jejunal CCR5 + CD4 + T cells exhibited the highest levels of SIV RNA, corresponding to the lower restriction factor expression in this subset relative to peripheral blood prior to infection. These results illustrate the dynamic modulation of confirmed and putative restriction factor expression by memory differentiation, stimulation, tissue microenvironment and SIV infection and suggest that differential expression of restriction factors may play a key role in modulating the susceptibility of different populations of CD4 + T cells to lentiviral infection. IMPORTANCE Restriction factors are genes that have evolved to provide intrinsic defense against viruses. HIV and simian immunodeficiency virus (SIV) target CD4 + T cells. The baseline level of expression in vivo and degree to which expression of restriction factors is modulated by conditions such as CD4 + T cell differentiation, stimulation, tissue location, or SIV infection are currently poorly understood. We measured the expression of 45 confirmed and putative restriction factors in primary CD4 + T cells from rhesus macaques under various conditions, finding dynamic changes in each state. Most dramatically, in acute SIV infection, the expression of almost all target genes analyzed increased. These are the first measurements of many of these confirmed and putative restriction factors in primary cells or during the early events after SIV infection and suggest that the level of expression of restriction factors may contribute to the differential susceptibility of CD4 + T cells to SIV infection. Copyright © 2017 American Society for Microbiology.
Modulation of the olfactory CNG channel by Ptdlns(3,4,5)P3.
Zhainazarov, A B; Spehr, M; Wetzel, C H; Hatt, H; Ache, B W
2004-09-01
Recent data suggest that the 3-phosphoinositides can modulate cyclic nucleotide signaling in rat olfactory receptor neurons (ORNs). Given the ability of diverse lipids to modulate ion channels, we asked whether phosphatidylinositol 3,4,5-trisphosphate (PIP3) can regulate the olfactory cyclic nucleotide-gated (CNG) channel as a possible mechanism for this modulation. We show that applying PIP3 to the intracellular side of inside-out patches from rat ORNs inhibits activation of the olfactory CNG channel by cAMP. The effect of PIP3 is immediate and partially reversible, and reflects an increase in the EC50 of cAMP, not a reduction in the single-channel current amplitude. The effect of PIP3 is significantly stronger than that of PIP2; other phospholipids tested have no appreciable effect on channel activity. PIP3 similarly inhibits the recombinant heteromeric (A2/A4) and homomeric (A2) olfactory CNG channel expressed in HEK293 cells, suggesting that PIP3 acts directly on the channel. These findings indicate that 3-phosphoinositides can be functionally important regulators of CNG channels.
2015-01-01
Background Intensive research based on the inverse expression relationship has been undertaken to discover the miRNA-mRNA regulatory modules involved in the infection of Hepatitis C virus (HCV), the leading cause of chronic liver diseases. However, biological studies in other fields have found that inverse expression relationship is not the only regulatory relationship between miRNAs and their targets, and some miRNAs can positively regulate a mRNA by binding at the 5' UTR of the mRNA. Results This work focuses on the detection of both inverse and positive regulatory relationships from a paired miRNA and mRNA expression data set of HCV patients through a 'change-to-change' method which can derive connected discriminatory rules. Our study uncovered many novel miRNA-mRNA regulatory modules. In particular, it was revealed that GFRA2 is positively regulated by miR-557, miR-765 and miR-17-3p that probably bind at different locations of the 5' UTR of this mRNA. The expression relationship between GFRA2 and any of these three miRNAs has not been studied before, although separate research for this gene and these miRNAs have all drawn conclusions linked to hepatocellular carcinoma. This suggests that the binding of mRNA GFRA2 with miR-557, miR-765, or miR-17-3p, or their combinations, is worthy of further investigation by experimentation. We also report another mRNA QKI which has a strong inverse expression relationship with miR-129 and miR-493-3p which may bind at the 3' UTR of QKI with a perfect sequence match. Furthermore, the interaction between hsa-miR-129-5p (previous ID: hsa-miR-129) and QKI is supported with CLIP-Seq data from starBase. Our method can be easily extended for the expression data analysis of other diseases. Conclusion Our rule discovery method is useful for integrating binding information and expression profile for identifying HCV miRNA-mRNA regulatory modules and can be applied to the study of the expression profiles of other complex human diseases. PMID:25707620
Piairo, Paulina; Moura, Rute S; Baptista, Maria João; Correia-Pinto, Jorge; Nogueira-Silva, Cristina
2018-01-01
Congenital diaphragmatic hernia (CDH) is a life-threatening developmental anomaly, intrinsically combining severe pulmonary hypoplasia and hypertension. During development, signal transducers and activators of transcription (STAT) are utilized to elicit cell growth, differentiation, and survival. We used the nitrofen-induced CDH rat model. At selected gestational time points, lungs were divided into two experimental groups, i.e., control or CDH. We performed immunohistochemistry and western blotting analysis to investigate the developmental expression profile of the complete family of STATs (STAT1-6), plus specific STATs activation (p-STAT3, p-STAT6) and regulation by SOCS (SOCS3) in normal lungs against those of diseased lungs. The normal fetal lung explants were treated with piceatannol (STAT3 inhibitor) in vitro followed by morphometrical analysis. Molecular profiling of STATs during the lung development revealed distinct early and late expression signatures. Experimental CDH altered the STATs expression, activation, and regulation in the fetal lungs. In particular, STAT3 and STAT6 were persistently over-expressed and early over-activated. Piceatannol treatment dose-dependently stimulated the fetal lung growth. These findings suggest that STATs play an important role during normal fetal lung development and CDH pathogenesis. Moreover, functionally targeting STAT signaling modulates fetal lung growth, which highlights that STAT3 and STAT6 signaling might be promising therapeutic targets in reducing or preventing pulmonary hypoplasia in CDH. © 2018 The Author(s). Published by S. Karger AG, Basel.
Du, Rui; Xia, Lin; Ning, Xiaoxuan; Liu, Limin; Sun, Wenjuan; Huang, Chen; Wang, Hanmin; Sun, Shiren
2014-01-01
Hypoxia is an important microenvironmental factor in the development of renal fibrosis; however, the underlying mechanisms are not well elucidated. Here we show that hypoxia induces Bmi1 mRNA and protein expression in human tubular epithelial cells. We further demonstrate that Bmi1 expression might be directly regulated by hypoxia-inducible factor-1a (HIF-1a) under low oxygen. Moreover, chromatin immunoprecipitation and reporter gene assay studies reveal cooperative transactivation of Bmi1 by HIF-1α and Twist. Enforced Bmi1 expression induces epithelial–mesenchymal transition (EMT), whereas silencing endogenous Bmi-1 expression reverses hypoxia-induced EMT. Up-regulation of Bmi1 leads to stabilization of Snail via modulation of PI3K/Akt signaling, whereas ablation of PI3K/Akt signaling partially rescues the phenotype of Bmi1-overexpressing cells, indicating that PI3K/Akt signaling might be a major mediator of Bmi1-induced EMT. In a rat model of obstructive nephropathy, Bmi1 expression increases in a time-dependent manner. Furthermore, we demonstrate that increased levels of Bmi1, correlated with HIF-1α and Twist, are associated with patients with chronic kidney disease. We provide in vitro and in vivo evidence that activation of HIF-1a/Twist-Bmi1 signaling in renal epithelial cells is associated with the development of chronic renal disease and may promote fibrogenesis via modulation of PI3K/Akt/Snail signaling by facilitating EMT. PMID:25009285
Notarnicola, Maria; Tutino, Valeria; De Nunzio, Valentina; Dituri, Francesco; Caruso, Maria Gabriella; Giannelli, Gianluigi
2017-01-01
Mediterranean diet components, such as olive oil and ω-3 polyunsaturated fatty acids (ω-3 PUFAs), can arrest cell growth and promote cell apoptosis. Recently, olive oil has been demonstrated to modulate type-1 cannabinoid (CB1) receptor gene expression in both human colon cancer cells and rat colon. The aim of this study was to investigate a possible link between olive oil and ω-3 PUFAs effects and CB1 receptor expression in both intestinal and adipose tissue of ApcMin/+ mice. To confirm the role for the CB1 receptor as a negative modulator of cell proliferation in human colon cancer, CB1 receptor gene expression was also detected in tumor tissue and in surrounding normal mucosa of patients with colorectal cancer (CRC). Dietary ω-3 PUFAs significantly inhibited intestinal polyp growth in mice, correlating with CB1 receptor gene and protein expression induction. CB1 receptor gene up-regulation was also detected in adipose tissue, suggesting a close communication between cancer cells and the surrounding environment. Tissue CB1 receptor induction was associated with a concurrent inactivation of the Wnt/β-catenin pathway. Moreover, there was a significant reduction in CB1 receptor gene expression levels in cancer tissue compared to normal surrounding mucosa of patients with CRC, confirming that in cancer the “protective” action of the CB1 receptor is lost. PMID:28245562
Thyroid hormone and COUP-TF1 regulate kallikrein-binding protein (KBP) gene expression.
Liu, Yan-Yun; Nakatani, Teruyo; Kogai, Takahiko; Mody, Kaizeen; Brent, Gregory A
2011-03-01
Kallikrein-binding protein (KBP) is a component of the kallikrein-kinin system that mediates vasodilation and inhibits tumor growth by antagonizing vascular endothelial growth factor-mediated angiogenesis. We demonstrate that KBP gene expression is repressed by T(3) and modulated by the orphan nuclear receptor, chicken ovalbumin upstream promoter transcription factor 1 (COUP-TF1). In hypothyroid mice, KBP mRNA expression in the testis was increased 2.1-fold compared with euthyroid mice. We have identified two negative thyroid hormone response elements (nTREs) in the mouse KBP gene, nTRE1 located in the 5' flanking region (-53 to -29) and nTRE2, located in the first intron (104-132). We used functional assays, cofactor knockdown, and chromatin immunoprecipitation assays to characterize nTRE1 and nTRE2 in hepatic (HepG2) and testes (GC-1spg) cell lines. Reporter expression directed by both elements was enhanced with addition of thyroid hormone receptor and repressed with the addition of T(3). COUP-TF1 enhanced basal expression of both elements but blunted unliganded thyroid hormone receptor enhancement and T(3) repression of nTRE1 but not nTRE2. Both nTREs bound nuclear corepressor and binding increased in response to T(3). Nuclear corepressor knockdown resulted in loss of T(3) repression of both nTRE1 and nTRE2. COUP-TF1, which usually represses T(3) induction of positive thyroid hormone response elements, reverses T(3) repression mediated by nTRE1 in the mouse KBP gene. Endogenous KBP expression is repressed by T(3) and two functional nTREs, both of which are required, have been characterized in the KBP gene. COUP-TF1 may be an important factor to modulate expression of genes that are repressed by T(3).
Thyroid Hormone and COUP-TF1 Regulate Kallikrein-Binding Protein (KBP) Gene Expression
Liu, Yan-Yun; Nakatani, Teruyo; Kogai, Takahiko; Mody, Kaizeen
2011-01-01
Kallikrein-binding protein (KBP) is a component of the kallikrein-kinin system that mediates vasodilation and inhibits tumor growth by antagonizing vascular endothelial growth factor-mediated angiogenesis. We demonstrate that KBP gene expression is repressed by T3 and modulated by the orphan nuclear receptor, chicken ovalbumin upstream promoter transcription factor 1 (COUP-TF1). In hypothyroid mice, KBP mRNA expression in the testis was increased 2.1-fold compared with euthyroid mice. We have identified two negative thyroid hormone response elements (nTREs) in the mouse KBP gene, nTRE1 located in the 5′ flanking region (−53 to −29) and nTRE2, located in the first intron (104–132). We used functional assays, cofactor knockdown, and chromatin immunoprecipitation assays to characterize nTRE1 and nTRE2 in hepatic (HepG2) and testes (GC-1spg) cell lines. Reporter expression directed by both elements was enhanced with addition of thyroid hormone receptor and repressed with the addition of T3. COUP-TF1 enhanced basal expression of both elements but blunted unliganded thyroid hormone receptor enhancement and T3 repression of nTRE1 but not nTRE2. Both nTREs bound nuclear corepressor and binding increased in response to T3. Nuclear corepressor knockdown resulted in loss of T3 repression of both nTRE1 and nTRE2. COUP-TF1, which usually represses T3 induction of positive thyroid hormone response elements, reverses T3 repression mediated by nTRE1 in the mouse KBP gene. Endogenous KBP expression is repressed by T3 and two functional nTREs, both of which are required, have been characterized in the KBP gene. COUP-TF1 may be an important factor to modulate expression of genes that are repressed by T3. PMID:21266512
Teng, Xiaochun; Liu, Yan-Yun; Teng, Weiping; Brent, Gregory A
2018-05-01
Thyroid hormone is critical for normal brain development and acts in a spatial and temporal specific pattern. Thyroid hormone excess, or deficiency, can lead to irreversible impairment of brain and sensory development. Chicken ovalbumin upstream-transcription factor 1 (COUP-TF1), expressed early in neuronal development, is essential to achieve normal brain structure. Thyroid hormone stimulation of gene expression is inversely correlated with the level of COUP-TF1 expression. An in vitro method of differentiating mouse embryonic stem (mES) cells into cortical neurons was utilized to study the influence of COUP-TF1 on thyroid hormone signaling in brain development. mES cells were cultured and differentiated in specific conditioned media, and a high percentage of nestin-positive progenitor neurons in the first stage, and cortical neurons in the second stage, was obtained with characteristic neuronal firing. The number of nestin-positive progenitors, as determined by fluorescence-activated cell sorting analysis, was significantly greater with triiodothyronine (T3) treatment compared to control (p < 0.05). T3 enhanced the expression of cortical neuron marker (Tbr1 and Rc3) mRNAs. After COUP-TF1 knockdown, the number of nestin-positive progenitors was reduced compared to control (p < 0.05), but the number increased with T3 treatment. The mRNA of cortical neuronal gene markers was measured after COUP-TF1 knockdown. In the presence of T3, the peak expression of neuron markers Emx1, Tbr1, Camkiv, and Rc3 mRNA was earlier, at day 18 of differentiation, compared to control cells, at day 22. Furthermore, after COUP-TF1 knockdown, T3 induction of Rc3 and Tbr1 mRNA was significantly enhanced compared to cells expressing COUP-TF1. These results indicate that COUP-TF1 plays an important role in modulating the timing and magnitude of T3-stimulated gene expression required for normal corticogenesis.
Yao, Sheng; Bee, Alix; Brewer, Daniel; Dodson, Andrew; Beesley, Carol; Ke, Youqiang; Ambroisine, Laurence; Fisher, Gabrielle; Møller, Heinrich; Dickinson, Tim; Gerard, Patricia; Lian, Lu-Yu; Risk, Janet; Lane, Brian; Smith, Paul; Reuter, Victor; Berney, Daniel; Gosden, Christine; Scardino, Peter; Cuzick, Jack; Djamgoz, Mustafa B.A.; Cooper, Colin; Foster, Christopher S.
2010-01-01
We show protein kinase C–zeta (PKC-ζ) to be a novel predictive biomarker for survival from prostate cancer (P < 0.001). We also confirm that transcription of the PRKC-ζ gene is crucial to the malignant phenotype of human prostate cancer. Following siRNA silencing of PRKC-ζ in PC3-M prostate cancer cells, stable transfectant cell line si-PRKC-ζ-PC3-MT1-6 is phenotypically nonmalignant in vitro and in vivo. Genome-wide expression analysis identified 373 genes to be differentially expressed in the knockdown cells and 4 key gene networks to be significantly perturbed during phenotype modulation. Functional interconnection between some of the modulated genes is revealed, although these may be within different regulatory pathways, emphasizing the complexity of their mutual interdependence. Genes with altered expression following PRKC-ζ knockdown include HSPB1, RAD51, and ID1 that we have previously described to be critical in prostatic malignancy. Because expression of PRKC-ζ is functionally involved in promoting the malignant phenotype, we propose PKC-ζ as a novel and biologically relevant target for therapeutic intervention in prostate cancer. PMID:21779455
A Clb/Cdk1-mediated regulation of Fkh2 synchronizes CLB expression in the budding yeast cell cycle.
Linke, Christian; Chasapi, Anastasia; González-Novo, Alberto; Al Sawad, Istabrak; Tognetti, Silvia; Klipp, Edda; Loog, Mart; Krobitsch, Sylvia; Posas, Francesc; Xenarios, Ioannis; Barberis, Matteo
2017-01-01
Precise timing of cell division is achieved by coupling waves of cyclin-dependent kinase (Cdk) activity with a transcriptional oscillator throughout cell cycle progression. Although details of transcription of cyclin genes are known, it is unclear which is the transcriptional cascade that modulates their expression in a timely fashion. Here, we demonstrate that a Clb/Cdk1-mediated regulation of the Fkh2 transcription factor synchronizes the temporal mitotic CLB expression in budding yeast. A simplified kinetic model of the cyclin/Cdk network predicts a linear cascade where a Clb/Cdk1-mediated regulation of an activator molecule drives CLB3 and CLB2 expression. Experimental validation highlights Fkh2 as modulator of CLB3 transcript levels, besides its role in regulating CLB2 expression. A Boolean model based on the minimal number of interactions needed to capture the information flow of the Clb/Cdk1 network supports the role of an activator molecule in the sequential activation, and oscillatory behavior, of mitotic Clb cyclins. This work illustrates how transcription and phosphorylation networks can be coupled by a Clb/Cdk1-mediated regulation that synchronizes them.
El-Sharkawy, Islam; Liang, Dong; Xu, Kenong
2015-12-01
Using RNA-seq, this study analysed an apple (Malus×domestica) anthocyanin-deficient yellow-skin somatic mutant 'Blondee' (BLO) and its red-skin parent 'Kidd's D-8' (KID), the original name of 'Gala', to understand the molecular mechanisms underlying the mutation. A total of 3299 differentially expressed genes (DEGs) were identified between BLO and KID at four developmental stages and/or between two adjacent stages within BLO and/or KID. A weighted gene co-expression network analysis (WGCNA) of the DEGs uncovered a network module of 34 genes highly correlated (r=0.95, P=9.0×10(-13)) with anthocyanin contents. Although 12 of the 34 genes in the WGCNA module were characterized and known of roles in anthocyanin, the remainder 22 appear to be novel. Examining the expression of ten representative genes in the module in 14 diverse apples revealed that at least eight were significantly correlated with anthocyanin variation. MdMYB10 (MDP0000259614) and MdGST (MDP0000252292) were among the most suppressed module member genes in BLO despite being undistinguishable in their corresponding sequences between BLO and KID. Methylation assay of MdMYB10 and MdGST in fruit skin revealed that two regions (MR3 and MR7) in the MdMYB10 promoter exhibited remarkable differences between BLO and KID. In particular, methylation was high and progressively increased alongside fruit development in BLO while was correspondingly low and constant in KID. The methylation levels in both MR3 and MR7 were negatively correlated with anthocyanin content as well as the expression of MdMYB10 and MdGST. Clearly, the collective repression of the 34 genes explains the loss-of-colour in BLO while the methylation in MdMYB10 promoter is likely causal for the mutation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
El-Sharkawy, Islam; Liang, Dong; Xu, Kenong
2015-01-01
Using RNA-seq, this study analysed an apple (Malus×domestica) anthocyanin-deficient yellow-skin somatic mutant ‘Blondee’ (BLO) and its red-skin parent ‘Kidd’s D-8’ (KID), the original name of ‘Gala’, to understand the molecular mechanisms underlying the mutation. A total of 3299 differentially expressed genes (DEGs) were identified between BLO and KID at four developmental stages and/or between two adjacent stages within BLO and/or KID. A weighted gene co-expression network analysis (WGCNA) of the DEGs uncovered a network module of 34 genes highly correlated (r=0.95, P=9.0×10–13) with anthocyanin contents. Although 12 of the 34 genes in the WGCNA module were characterized and known of roles in anthocyanin, the remainder 22 appear to be novel. Examining the expression of ten representative genes in the module in 14 diverse apples revealed that at least eight were significantly correlated with anthocyanin variation. MdMYB10 (MDP0000259614) and MdGST (MDP0000252292) were among the most suppressed module member genes in BLO despite being undistinguishable in their corresponding sequences between BLO and KID. Methylation assay of MdMYB10 and MdGST in fruit skin revealed that two regions (MR3 and MR7) in the MdMYB10 promoter exhibited remarkable differences between BLO and KID. In particular, methylation was high and progressively increased alongside fruit development in BLO while was correspondingly low and constant in KID. The methylation levels in both MR3 and MR7 were negatively correlated with anthocyanin content as well as the expression of MdMYB10 and MdGST. Clearly, the collective repression of the 34 genes explains the loss-of-colour in BLO while the methylation in MdMYB10 promoter is likely causal for the mutation. PMID:26417021
Inflammation modulates the expression of the intestinal mucins MUC2 and MUC4 in gastric tumors.
Mejías-Luque, R; Lindén, S K; Garrido, M; Tye, H; Najdovska, M; Jenkins, B J; Iglesias, M; Ernst, M; de Bolós, C
2010-03-25
Infection of gastric mucosa by Helicobacter pylori induces an inflammatory response with increased levels of proinflammatory cytokines. Among them, tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6 induce the activation of signaling pathways that regulate genes expression, such as MUC2 and MUC4 intestinal mucins ectopically detected in gastric tumors. This study evaluated if the predominant inflammatory cell type correlates with MUC2 and MUC4 expression in human intestinal gastric tumors (n=78). In addition, we analyzed the regulatory effects of the associated inflammatory signaling pathways on their expression in gastric cancer cell lines, and in a mouse model with hyperactivated STAT3 signaling pathway. Tumors with predominant lymphoplasmocytic infiltrate (chronic inflammation), presented higher levels of MUC2 and were more differentiated than tumors with predominant polymorphonuclear infiltrate (acute inflammation). These differences can be attributed to specific cytokines, because TNF-alpha and IL-1beta induced MUC2 but no MUC4 expression in gastric cancer cell lines. The two groups of tumors expressed similar levels of MUC4 that correlated with the expression of STAT3 transcription factor, implicated in the activation of genes through the IL-6 pathway. In gastric tissues from gp130(+/+), gp130(Y757F/Y757F) and gp130(Y757F/Y757F) Stat3(-/+) mice, Muc2 was not detected, whereas Muc4 was found in the gastric tumors developed in the gp130(Y757F/Y757F) mice, with hyperactivated STAT3. These data indicate that the signaling pathways associated with the inflammatory response can modulate the expression of MUC2 and MUC4 intestinal mucin genes, in human and mouse gastric tumors.
Obanda, Diana N; Zhao, Peng; Richard, Allison J; Ribnicky, David; Cefalu, William T; Stephens, Jacqueline M
2016-01-01
Excess dietary lipids result in the accumulation of lipid metabolites including ceramides that can attenuate insulin signaling. There is evidence that a botanical extract of Urtica dioica L. (stinging nettle) improves insulin action, yet the precise mechanism(s) are not known. Hence, we examined the effects of Urtica dioica L. (UT) on adipocytes. We investigated the effects of an ethanolic extract of UT on free fatty acid (palmitic acid) induced inhibition of insulin-stimulated Akt serine phosphorylation and modulation of ceramidase expression in 3T3-L1 adipocytes. Adipocytes were exposed to excess FFAs in the presence or absence of UT. Effects on adiponectin expression, ceramidase expression, ceramidase activity, ceramide accumulation and insulin signaling were determined. As expected, FFAs reduced adiponectin expression and increased the expression of ceramidase enzymes but not their activity. FFA also induced the accumulation of ceramides and reduced insulin-stimulated phosphorylation of Akt in adipocytes. The effects of FFA were partially reversed by UT. UT enhanced adiponectin expression and ceramidase activity in the presence of excess FFAs. UT abated ceramide accumulation and increased insulin sensitivity via enhanced Akt phosphorylation. A siRNA knockdown of adiponectin expression prevented UT from exerting positive effects on ceramidase activity but not Akt phosphorylation. In adipocytes, the ability of UT to antagonize the negative effects of FFA by modulating ceramidase activity and ceramide accumulation is dependent on the presence of adiponectin. However, the ability of UT to enhance Akt phosphorylation is independent of adiponectin expression. These studies demonstrate direct effects of UT on adipocytes and suggest this botanical extract is metabolically beneficial.
Obanda, Diana N.; Zhao, Peng; Richard, Allison J.; Ribnicky, David; Cefalu, William T.; Stephens, Jacqueline M.
2016-01-01
Objective Excess dietary lipids result in the accumulation of lipid metabolites including ceramides that can attenuate insulin signaling. There is evidence that a botanical extract of Urtica dioica L. (stinging nettle) improves insulin action, yet the precise mechanism(s) are not known. Hence, we examined the effects of Urtica dioica L. (UT) on adipocytes. Research Design We investigated the effects of an ethanolic extract of UT on free fatty acid (palmitic acid) induced inhibition of insulin-stimulated Akt serine phosphorylation and modulation of ceramidase expression in 3T3-L1 adipocytes. Adipocytes were exposed to excess FFAs in the presence or absence of UT. Effects on adiponectin expression, ceramidase expression, ceramidase activity, ceramide accumulation and insulin signaling were determined. Results As expected, FFAs reduced adiponectin expression and increased the expression of ceramidase enzymes but not their activity. FFA also induced the accumulation of ceramides and reduced insulin-stimulated phosphorylation of Akt in adipocytes. The effects of FFA were partially reversed by UT. UT enhanced adiponectin expression and ceramidase activity in the presence of excess FFAs. UT abated ceramide accumulation and increased insulin sensitivity via enhanced Akt phosphorylation. A siRNA knockdown of adiponectin expression prevented UT from exerting positive effects on ceramidase activity but not Akt phosphorylation. Conclusions In adipocytes, the ability of UT to antagonize the negative effects of FFA by modulating ceramidase activity and ceramide accumulation is dependent on the presence of adiponectin. However, the ability of UT to enhance Akt phosphorylation is independent of adiponectin expression. These studies demonstrate direct effects of UT on adipocytes and suggest this botanical extract is metabolically beneficial. PMID:26939068
Lee, Ming-Fen; Pan, Min-Hsiung; Chiou, Yi-Siou; Cheng, An-Chin; Huang, Han
2011-11-09
Resveratrol and pterostilbene exhibit diverse biological activities. MED28, a subunit of the mammalian Mediator complex for transcription, was also identified as magicin, an actin cytoskeleton Grb2-associated protein, and as endothelial-derived gene (EG-1). Several tumors exhibit aberrant MED28 expression, whereas the underlying mechanism is unclear. Triple-negative breast cancers, often expressing epidermal growth factor (EGF) receptor (EGFR), are associated with metastasis and poor survival. The objective of this study is to compare the effect of resveratrol and pterostilbene and to investigate the role of MED28 in EGFR-overexpressing MDA-MB-231 breast cancer cells. Pretreatment of resveratrol, but not pterostlbene, suppressed EGF-mediated migration and expression of MED28 and matrix metalloproteinase (MMP)-9 in MDA-MB-231 cells. Moreover, overexpression of MED28 increased migration, and the addition of EGF further enhanced migration. Our data indicate that resveratrol modulates the effect of MED28 on cellular migration, presumably through the EGFR/phosphatidylinositol 3-kinase (PI3K) signaling pathway, in breast cancer cells.
Hydrostatic pressure modulates mRNA expressions for matrix proteins in human meniscal cells.
Suzuki, Toru; Toyoda, Takashi; Suzuki, Hiroshi; Hisamori, Noriyuki; Matsumoto, Hideo; Toyama, Yoshiaki
2006-01-01
There have been few reports describing the effects of mechanical loading on the metabolism of meniscal cells. The aim of this study was to investigate the effects of hydrostatic pressure on meniscal cell metabolism. Human meniscal cells were cultured in alginate beads for 3 days. They were then subjected to 4 MPa hydrostatic pressure for 4 hours in either a static or cyclic (1 Hz) mode using a specially designed and constructed system. Immediately after the pressure application, the messenger RNA levels for aggrecan, type I collagen, matrix metalloproteinases (MMP) -1, -3, -9, -13 and tissue inhibitors of metalloproteinases (TIMP) -1 and -2 were measured. It was found that the application of static hydrostatic pressure caused a significant decrease in mRNA expression for MMP-1 and -13 (p<0.05). In contrast, the application of cyclic hydrostatic pressure was associated with a significant increase in type I collagen (p<0.01), TIMP-1 and -2 mRNA expression (p<0.01). These results would suggest that hydrostatic pressure in isolation can modulate mRNA expressions for matrix proteins in meniscal cells.
Kikuchi, Masataka; Ogishima, Soichi; Miyamoto, Tadashi; Miyashita, Akinori; Kuwano, Ryozo; Nakaya, Jun; Tanaka, Hiroshi
2013-01-01
Alzheimer’s disease (AD), the most common cause of dementia, is associated with aging, and it leads to neuron death. Deposits of amyloid β and aberrantly phosphorylated tau protein are known as pathological hallmarks of AD, but the underlying mechanisms have not yet been revealed. A high-throughput gene expression analysis previously showed that differentially expressed genes accompanying the progression of AD were more down-regulated than up-regulated in the later stages of AD. This suggested that the molecular networks and their constituent modules collapsed along with AD progression. In this study, by using gene expression profiles and protein interaction networks (PINs), we identified the PINs expressed in three brain regions: the entorhinal cortex (EC), hippocampus (HIP) and superior frontal gyrus (SFG). Dividing the expressed PINs into modules, we examined the stability of the modules with AD progression and with normal aging. We found that in the AD modules, the constituent proteins, interactions and cellular functions were not maintained between consecutive stages through all brain regions. Interestingly, the modules were collapsed with AD progression, specifically in the EC region. By identifying the modules that were affected by AD pathology, we found the transcriptional regulation-associated modules that interact with the proteasome-associated module via UCHL5 hub protein, which is a deubiquitinating enzyme. Considering PINs as a system made of network modules, we found that the modules relevant to the transcriptional regulation are disrupted in the EC region, which affects the ubiquitin-proteasome system. PMID:24348898
Gong, Wei; Hu, Erling; Dou, Huan; Song, Yuxian; Yang, Liu; Ji, Jianjian; Li, Erguang; Tan, Renxiang; Hou, Yayi
2014-11-01
Sepsis is a clinical condition characterized by overwhelming systemic inflammation with high mortality rate and high prevalence, but effective treatment is still lacking. Toll-like receptor 3 (TLR3) is an endogenous sensor, thought to regulate the amplification of immune response during sepsis. Modulators of TLR3 have an advantage in the treatment of sepsis. Here, we aimed to explore the mechanism of a monosubstituted 1,2-benzenediamine derivative FC-99 {N(1) -[(4-methoxy)methyl]-4-methyl-1,2-benzenediamine}on modulating TLR3 expression and its therapeutic potential on mouse model of sepsis. Cells were pretreated with FC-99 followed by poly(I:C) or IFN-α stimulation; TLR3 and other indicators were assayed. Female C57BL/6 mice were subjected to sham or caecal ligation puncture (CLP) surgery after i.p. injection of vehicle or FC-99; serum and tissues were collected for further experiments. FC-99 suppressed inflammatory response induced by poly(I:C) with no effect on cell viability or uptake of poly(I:C). FC-99 also inhibited TLR3 expression induced by not only poly(I:C) but also by exogenous IFN-α. This inhibition of FC-99 was related to the poly(I:C)-evoked IRF3/IFN-α/JAK/STAT1 signalling pathway. In CLP-induced model of sepsis, FC-99 administration decreased mice mortality and serum levels of inflammatory factors, attenuated multiple organ dysfunction and enhanced bacterial clearance. Accordingly, systemic and local expression of TLR3 was reduced by FC-99 in vivo. FC-99 reversed TLR3 expression and ameliorate CLP-induced sepsis in mice. Thus, FC-99 will be a potential therapeutic candidate for sepsis. © 2014 The British Pharmacological Society.
Shi, Hui; Fang, Runping; Li, Yinghui; Li, Leilei; Zhang, Weiying; Wang, Huawei; Chen, Fuquan; Zhang, Shuqin; Zhang, Xiaodong; Ye, Lihong
2016-11-28
Hepatitis B X-interacting protein (HBXIP) as an oncoprotein plays crucial roles in the development of cancer, involving glucose metabolism reprogramming. In this study, we are interested in whether the oncoprotein HBXIP is involved in the modulation of gluconeogenesis in liver cancer. Here, we showed that the expression level of phosphoenolpyruvate carboxykinase (PCK1), a key enzyme of gluconeogenesis, was lower in clinical hepatocellular carcinoma (HCC) tissues than that in normal tissues. Mechanistically, HBXIP inhibited the expression of PCK1 through down-regulating transcription factor FOXO1 in hepatoma cells, and up-regulated miR-135a targeting the 3'UTR of FOXO1 mRNA in the cells. In addition, HBXIP increased the phosphorylation levels of FOXO1 protein by activating PI3K/Akt pathway, leading to the export of FOXO1 from nucleus to cytoplasm. Strikingly, over-expression of PCK1 could abolish the HBXIP-promoted growth of hepatoma cells in vitro and in vivo. Thus, we conclude that the oncoprotein HBXIP is able to depress the gluconeogenesis through suppressing PCK1 to promote hepatocarcinogenesis, involving miR-135a/FOXO1 axis and PI3K/Akt/p-FOXO1 pathway. Our finding provides new insights into the mechanism by which oncoprotein HBXIP modulates glucose metabolism reprogramming in HCC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Kim, Yong Sook; Jeong, Hye-yun; Kim, Ah Ra; Kim, Woong-Hee; Cho, Haaglim; Um, JungIn; Seo, Youngha; Kang, Wan Seok; Jin, Suk-Won; Kim, Min Chul; Kim, Yong-Chul; Jung, Da-Woon; Williams, Darren R.; Ahn, Youngkeun
2016-01-01
The cardiac microenvironment includes cardiomyocytes, fibroblasts and macrophages, which regulate remodeling after myocardial infarction (MI). Targeting this microenvironment is a novel therapeutic approach for MI. We found that the natural compound derivative, BIO ((2′Z,3′E)-6-Bromoindirubin-3′-oxime) modulated the cardiac microenvironment to exert a therapeutic effect on MI. Using a series of co-culture studies, BIO induced proliferation in cardiomyocytes and inhibited proliferation in cardiac fibroblasts. BIO produced multiple anti-fibrotic effects in cardiac fibroblasts. In macrophages, BIO inhibited the expression of pro-inflammatory factors. Significantly, BIO modulated the molecular crosstalk between cardiac fibroblasts and differentiating macrophages to induce polarization to the anti-inflammatory M2 phenotype. In the optically transparent zebrafish-based heart failure model, BIO induced cardiomyocyte proliferation and completely recovered survival rate. BIO is a known glycogen synthase kinase-3β inhibitor, but these effects could not be recapitulated using the classical inhibitor, lithium chloride; indicating novel therapeutic effects of BIO. We identified the mechanism of BIO as differential modulation of p27 protein expression and potent induction of anti-inflammatory interleukin-10. In a rat MI model, BIO reduced fibrosis and improved cardiac performance. Histological analysis revealed modulation of the cardiac microenvironment by BIO, with increased presence of anti-inflammatory M2 macrophages. Our results demonstrate that BIO produces unique effects in the cardiac microenvironment to promote recovery post-MI. PMID:27510556
Dai, Guanping; Sun, Tao; Miao, Liangtian; Li, Qingyan; Xiao, Dongguang; Zhang, Xueli
2014-08-01
β-carotene belongs to carotenoids family, widely applied in pharmaceuticals, neutraceuticals, cosmetics and food industries. In this study, three key genes (dxs, idi, and crt operon) within β-carotene synthetic pathway in recombinant Escherichia coli strain CAR005 were modulated with RBS Library to improve β-carotene production. There were 7%, 11% and 17% increase of β-carotene yield respectively after modulating dxs, idi and crt operon genes with RBS Library, demonstrating that modulating gene expression with regulatory parts libraries would have more opportunities to obtain optimal production of target compound. Combined modulation of crt operon, dxs and idi genes led to 35% increase of β-carotene yield compared to parent strain CAR005. The optimal gene expression strength identified in single gene modulation would not be the optimal strength when used in combined modulation. Our study provides a new strategy for improving production of target compound through modulation of gene expression.
Blomster, Linda V; Strøbaek, Dorte; Hougaard, Charlotte; Klein, Jessica; Pinborg, Lars H; Mikkelsen, Jens D; Christophersen, Palle
2016-12-01
The K Ca 3.1 channel (KCNN4) is an important modulator of microglia responses in rodents, but no information exists on functional expression on microglia from human adults. We isolated and cultured microglia (max 1% astrocytes, no neurons or oligodendrocytes) from neocortex surgically removed from epilepsy patients and employed electrophysiological whole-cell measurements and selective pharmacological tools to elucidate functional expression of K Ca 3.1. The channel expression was demonstrated as a significant increase in the voltage-independent current by NS309, a K Ca 3.1/K Ca 2 activator, followed by full inhibition upon co-application with NS6180, a highly selective K Ca 3.1 inhibitor. A major fraction (79%) of unstimulated human microglia expressed K Ca 3.1, and the difference in current between full activation and inhibition (ΔK Ca 3.1) was estimated at 292 ± 48 pA at -40 mV (n = 75), which equals at least 585 channels per cell. Serial K Ca 3.1 activation/inhibition significantly hyperpolarized/depolarized the membrane potential. The isolated human microglia were potently activated by lipopolysaccharide (LPS) shown as a prominent increase in TNF-α production. However, incubation with LPS neither changed the K Ca 3.1 current nor the fraction of K Ca 3.1 expressing cells. In contrast, the anti-inflammatory cytokine IL-4 slightly increased the K Ca 3.1 current per cell, but as the membrane area also increased, there was no significant change in channel density. A large fraction of the microglia also expressed a voltage-dependent current sensitive to the K Ca 1.1 modulators NS1619 and Paxilline and an inward-rectifying current with the characteristics of a K ir channel. The high functional expression of K Ca 3.1 in microglia from epilepsy patients accentuates the need for further investigations of its role in neuropathological processes. GLIA 2016;64:2065-2078. © 2016 Wiley Periodicals, Inc.
Zhai, Na; Jia, Haihong; Liu, Dongdong; Liu, Shuchang; Ma, Manli; Guo, Xingqi; Li, Han
2017-11-21
Mitogen-activated protein kinase kinase kinases (MAP3Ks), the top components of MAPK cascades, modulate many biological processes, such as growth, development and various environmental stresses. Nevertheless, the roles of MAP3Ks remain poorly understood in cotton. In this study, GhMAP3K65 was identified in cotton, and its transcription was inducible by pathogen infection, heat stress, and multiple signalling molecules. Silencing of GhMAP3K65 enhanced resistance to pathogen infection and heat stress in cotton. In contrast, overexpression of GhMAP3K65 enhanced susceptibility to pathogen infection and heat stress in transgenic Nicotiana benthamiana . The expression of defence-associated genes was activated in transgenic N. benthamiana plants after pathogen infection and heat stress, indicating that GhMAP3K65 positively regulates plant defence responses. Nevertheless, transgenic N. benthamiana plants impaired lignin biosynthesis and stomatal immunity in their leaves and repressed vitality of their root systems. In addition, the expression of lignin biosynthesis genes and lignin content were inhibited after pathogen infection and heat stress. Collectively, these results demonstrate that GhMAP3K65 enhances susceptibility to pathogen infection and heat stress by negatively modulating growth and development in transgenic N. benthamiana plants.
Corona, Giulia; Vauzour, David; Hercelin, Justine; Williams, Claire M; Spencer, Jeremy P E
2013-11-10
While much data exist for the effects of flavonoid-rich foods on spatial memory in rodents, there are no such data for foods/beverages predominantly containing hydroxycinnamates and phenolic acids. To address this, we investigated the effects of moderate Champagne wine intake, which is rich in these components, on spatial memory and related mechanisms relative to the alcohol- and energy-matched controls. In contrast to the isocaloric and alcohol-matched controls, supplementation with Champagne wine (1.78 ml/kg BW, alcohol 12.5% vol.) for 6 weeks led to an improvement in spatial working memory in aged rodents. Targeted protein arrays indicated that these behavioral effects were paralleled by the differential expression of a number of hippocampal and cortical proteins (relative to the isocaloric control group), including those involved in signal transduction, neuroplasticity, apoptosis, and cell cycle regulation. Western immunoblotting confirmed the differential modulation of brain-derived neurotrophic factor, cAMP response-element-binding protein (CREB), p38, dystrophin, 2',3'-cyclic-nucleotide 3'-phosphodiesterase, mammalian target of rapamycin (mTOR), and Bcl-xL in response to Champagne supplementation compared to the control drink, and the modulation of mTOR, Bcl-xL, and CREB in response to alcohol supplementation. Our data suggest that smaller phenolics such as gallic acid, protocatechuic acid, tyrosol, caftaric acid, and caffeic acid, in addition to flavonoids, are capable of exerting improvements in spatial memory via the modulation in hippocampal signaling and protein expression. Changes in spatial working memory induced by the Champagne supplementation are linked to the effects of absorbed phenolics on cytoskeletal proteins, neurotrophin expression, and the effects of alcohol on the regulation of apoptotic events in the hippocampus and cortex.
Identifying key genes in rheumatoid arthritis by weighted gene co-expression network analysis.
Ma, Chunhui; Lv, Qi; Teng, Songsong; Yu, Yinxian; Niu, Kerun; Yi, Chengqin
2017-08-01
This study aimed to identify rheumatoid arthritis (RA) related genes based on microarray data using the WGCNA (weighted gene co-expression network analysis) method. Two gene expression profile datasets GSE55235 (10 RA samples and 10 healthy controls) and GSE77298 (16 RA samples and seven healthy controls) were downloaded from Gene Expression Omnibus database. Characteristic genes were identified using metaDE package. WGCNA was used to find disease-related networks based on gene expression correlation coefficients, and module significance was defined as the average gene significance of all genes used to assess the correlation between the module and RA status. Genes in the disease-related gene co-expression network were subject to functional annotation and pathway enrichment analysis using Database for Annotation Visualization and Integrated Discovery. Characteristic genes were also mapped to the Connectivity Map to screen small molecules. A total of 599 characteristic genes were identified. For each dataset, characteristic genes in the green, red and turquoise modules were most closely associated with RA, with gene numbers of 54, 43 and 79, respectively. These genes were enriched in totally enriched in 17 Gene Ontology terms, mainly related to immune response (CD97, FYB, CXCL1, IKBKE, CCR1, etc.), inflammatory response (CD97, CXCL1, C3AR1, CCR1, LYZ, etc.) and homeostasis (C3AR1, CCR1, PLN, CCL19, PPT1, etc.). Two small-molecule drugs sanguinarine and papaverine were predicted to have a therapeutic effect against RA. Genes related to immune response, inflammatory response and homeostasis presumably have critical roles in RA pathogenesis. Sanguinarine and papaverine have a potential therapeutic effect against RA. © 2017 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.
Rukke, H V; Engen, S A; Schenck, K; Petersen, F C
2016-08-01
Streptococcus mitis is a colonizer of the oral cavity and the nasopharynx, and is closely related to Streptococcus pneumoniae. Both species occur in encapsulated and unencapsulated forms, but in S. mitis the role of the capsule in host interactions is mostly unknown. Therefore, the aim of this study was to examine how capsule expression in S. mitis can modulate interactions with the host with relevance for colonization. The S. mitis type strain, as well as two mutants of the type strain, an isogenic capsule deletion mutant, and a capsule switch mutant expressing the serotype 4 capsule of S. pneumoniae TIGR4, were used. Wild-type and capsule deletion strains of S. pneumoniae TIGR4 were included for comparison. We found that capsule production in S. mitis reduced adhesion to oral and lung epithelial cells. Further, exposure of oral epithelial cells to encapsulated S. mitis resulted in higher interleukin-6 and CXCL-8 transcription levels relative to the unencapsulated mutant. Capsule expression in S. mitis increased the sensitivity to human neutrophil peptide 1-3 but reduced the sensitivity to human β-defensin-3 and cathelicidin. This was in contrast with S. pneumoniae in which capsule expression has been generally associated with increased sensitivity to human antimicrobial peptides (AMPs). Collectively, these findings indicate that capsule expression in S. mitis is important in modulating interactions with epithelial cells, and is associated with increased or reduced susceptibility to AMPs depending on the nature of the AMP. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Salomón, Débora G; Fermento, María E; Gandini, Norberto A; Ferronato, María J; Arévalo, Julián; Blasco, Jorge; Andrés, Nancy C; Zenklusen, Jean C; Curino, Alejandro C; Facchinetti, María M
2014-05-01
Vitamin D and its analogs have been shown to display anti-proliferative effects in a wide variety of cancer types including glioblastoma multiforme (GBM). These anticancer effects are mediated by its active metabolite, 1α, 25-dihydroxyvitamin D3 (calcitriol) acting mainly through vitamin D receptor (VDR) signaling. In addition to its involvement in calcitriol action, VDR has also been demonstrated to be useful as a prognostic factor for some types of cancer. However, to our knowledge, there are no studies evaluating the expression of VDR protein and its association with outcome in gliomas. Therefore, we investigated VDR expression by using immunohistochemical analysis in human glioma tissue microarrays, and analyzed the association between VDR expression and clinico-pathological parameters. We further investigated the effects of genetic and pharmacologic modulation of VDR on survival and migration of glioma cell lines. Our data demonstrate that VDR is increased in tumor tissues when compared with VDR in non-malignant brains, and that VDR expression is associated with an improved outcome in patients with GBM. We also show that both genetic and pharmacologic modulation of VDR modulates GBM cellular migration and survival and that VDR is necessary for calcitriol-mediated effects on migration. Altogether these results provide some limited evidence supporting a role for VDR in glioma progression.
Mansara, Prakash P.; Deshpande, Rashmi A.; Vaidya, Milind M.; Kaul-Ghanekar, Ruchika
2015-01-01
Omega 3 (n3) and Omega 6 (n6) polyunsaturated fatty acids (PUFAs) have been reported to exhibit opposing roles in cancer progression. Our objective was to determine whether different ratios of n6/n3 (AA/EPA+DHA) FAs could modulate the cell viability, lipid peroxidation, total cellular fatty acid composition and expression of tumor regulatory Matrix Attachment Region binding proteins (MARBPs) in breast cancer cell lines and in non-cancerous, MCF10A cells. Low ratios of n6/n3 (1:2.5, 1:4, 1:5, 1:10) FA decreased the viability and growth of MDA-MB-231 and MCF7 significantly compared to the non-cancerous cells (MCF10A). Contrarily, higher n6/n3 FA (2.5:1, 4:1, 5:1, 10:1) decreased the survival of both the cancerous and non-cancerous cell types. Lower ratios of n6/n3 selectively induced LPO in the breast cancer cells whereas the higher ratios induced in both cancerous and non-cancerous cell types. Interestingly, compared to higher n6/n3 FA ratios, lower ratios increased the expression of tumor suppressor MARBP, SMAR1 and decreased the expression of tumor activator Cux/CDP in both breast cancer and non-cancerous, MCF10A cells. Low n6/n3 FAs significantly increased SMAR1 expression which resulted into activation of p21WAF1/CIP1 in MDA-MB-231 and MCF7, the increase being ratio dependent in MDA-MB-231. These results suggest that increased intake of n3 fatty acids in our diet could help both in the prevention as well as management of breast cancer. PMID:26325577
Talaverón, Rocío; Matarredona, Esperanza R; de la Cruz, Rosa R; Pastor, Angel M
2013-01-01
Axotomy of central neurons leads to functional and structural alterations which largely revert when neural progenitor cells (NPCs) are implanted in the lesion site. The new microenvironment created by NPCs in the host tissue might modulate in the damaged neurons the expression of a high variety of molecules with relevant roles in the repair mechanisms, including neurotrophic factors. In the present work, we aimed to analyze changes in neurotrophic factor expression in axotomized neurons induced by NPC implants. For this purpose, we performed immunofluorescence followed by confocal microscopy analysis for the detection of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and nerve growth factor (NGF) on brainstem sections from rats with axotomy of abducens internuclear neurons that received NPC implants (implanted group) or vehicle injections (axotomized group) in the lesion site. Control abducens internuclear neurons were strongly immunoreactive to VEGF and BDNF but showed a weak staining for NT-3 and NGF. Comparisons between groups revealed that lesioned neurons from animals that received NPC implants showed a significant increase in VEGF content with respect to animals receiving vehicle injections. However, the immunoreactivity for BDNF, which was increased in the axotomized group as compared to control, was not modified in the implanted group. The modifications induced by NPC implants on VEGF and BDNF content were specific for the population of axotomized abducens internuclear neurons since the neighboring abducens motoneurons were not affected. Similar levels of NT-3 and NGF immunolabeling were obtained in injured neurons from axotomized and implanted animals. Among all the analyzed neurotrophic factors, only VEGF was expressed by the implanted cells in the lesion site. Our results point to a role of NPC implants in the modulation of neurotrophic factor expression by lesioned central neurons, which might contribute to the restorative effects of these implants.
Vallée Marcotte, Bastien; Guénard, Frédéric; Cormier, Hubert; Lemieux, Simone; Couture, Patrick; Rudkowska, Iwona; Vohl, Marie-Claude
2017-01-26
A genome-wide association study (GWAS) by our group identified loci associated with the plasma triglyceride (TG) response to ω-3 fatty acid (FA) supplementation in IQCJ , NXPH1 , PHF17 and MYB . Our aim is to investigate potential mechanisms underlying the associations between single nucleotide polymorphisms (SNPs) in the four genes and TG levels following ω-3 FA supplementation. 208 subjects received 3 g/day of ω-3 FA (1.9-2.2 g of EPA and 1.1 g of docosahexaenoic acid (DHA)) for six weeks. Plasma TG were measured before and after the intervention. 67 SNPs were selected to increase the density of markers near GWAS hits. Genome-wide expression and methylation analyses were conducted on respectively 30 and 35 participants' blood sample together with in silico analyses. Two SNPs of IQCJ showed different affinities to splice sites depending on alleles. Expression levels were influenced by genotype for one SNP in NXPH1 and one in MYB . Associations between 12 tagged SNPs of IQCJ , 26 of NXPH1 , seven of PHF17 and four of MYB and gene-specific CpG site methylation levels were found. The response of plasma TG to ω-3 FA supplementation may be modulated by the effect of DNA methylation on expression levels of genes revealed by GWAS.
Vallée Marcotte, Bastien; Guénard, Frédéric; Cormier, Hubert; Lemieux, Simone; Couture, Patrick; Rudkowska, Iwona; Vohl, Marie-Claude
2017-01-01
A genome-wide association study (GWAS) by our group identified loci associated with the plasma triglyceride (TG) response to ω-3 fatty acid (FA) supplementation in IQCJ, NXPH1, PHF17 and MYB. Our aim is to investigate potential mechanisms underlying the associations between single nucleotide polymorphisms (SNPs) in the four genes and TG levels following ω-3 FA supplementation. 208 subjects received 3 g/day of ω-3 FA (1.9–2.2 g of EPA and 1.1 g of docosahexaenoic acid (DHA)) for six weeks. Plasma TG were measured before and after the intervention. 67 SNPs were selected to increase the density of markers near GWAS hits. Genome-wide expression and methylation analyses were conducted on respectively 30 and 35 participants’ blood sample together with in silico analyses. Two SNPs of IQCJ showed different affinities to splice sites depending on alleles. Expression levels were influenced by genotype for one SNP in NXPH1 and one in MYB. Associations between 12 tagged SNPs of IQCJ, 26 of NXPH1, seven of PHF17 and four of MYB and gene-specific CpG site methylation levels were found. The response of plasma TG to ω-3 FA supplementation may be modulated by the effect of DNA methylation on expression levels of genes revealed by GWAS. PMID:28134766
Auxin Controls Arabidopsis Adventitious Root Initiation by Regulating Jasmonic Acid Homeostasis[W
Gutierrez, Laurent; Mongelard, Gaëlle; Floková, Kristýna; Păcurar, Daniel I.; Novák, Ondřej; Staswick, Paul; Kowalczyk, Mariusz; Păcurar, Monica; Demailly, Hervé; Geiss, Gaia; Bellini, Catherine
2012-01-01
Vegetative shoot-based propagation of plants, including mass propagation of elite genotypes, is dependent on the development of shoot-borne roots, which are also called adventitious roots. Multiple endogenous and environmental factors control the complex process of adventitious rooting. In the past few years, we have shown that the auxin response factors ARF6 and ARF8, targets of the microRNA miR167, are positive regulators of adventitious rooting, whereas ARF17, a target of miR160, is a negative regulator. We showed that these genes have overlapping expression profiles during adventitious rooting and that they regulate each other’s expression at the transcriptional and posttranscriptional levels by modulating the homeostasis of miR160 and miR167. We demonstrate here that this complex network of transcription factors regulates the expression of three auxin-inducible Gretchen Hagen3 (GH3) genes, GH3.3, GH3.5, and GH3.6, encoding acyl-acid-amido synthetases. We show that these three GH3 genes are required for fine-tuning adventitious root initiation in the Arabidopsis thaliana hypocotyl, and we demonstrate that they act by modulating jasmonic acid homeostasis. We propose a model in which adventitious rooting is an adaptive developmental response involving crosstalk between the auxin and jasmonate regulatory pathways. PMID:22730403
Zhang, Wensheng; Edwards, Andrea; Fan, Wei; Flemington, Erik K; Zhang, Kun
2016-08-01
Ovarian carcinoma is the fifth-leading cause of cancer death among women in the United States. Major reasons for this persistent mortality include the poor understanding of the underlying biology and a lack of reliable biomarkers. Previous studies have shown that aberrantly expressed MicroRNAs (miRNAs) are involved in carcinogenesis and tumor progression by post-transcriptionally regulating gene expression. However, the interference of miRNAs in tumorigenesis is quite complicated and far from being fully understood. In this work, by an integrative analysis of mRNA expression, miRNA expression and clinical data published by The Cancer Genome Atlas (TCGA), we studied the modularity and dynamicity of miRNA-mRNA interactions and the prognostic implications in high-grade serous ovarian carcinomas. With the top transcriptional correlations (Bonferroni-adjusted p-value<0.01) as inputs, we identified five miRNA-mRNA module pairs (MPs), each of which included one positive-connection (correlation) module and one negative-connection (correlation) module. The number of miRNAs or mRNAs in each module varied from 3 to 7 or from 2 to 873. Among the four major negative-connection modules, three fit well with the widely accepted miRNA-mediated post-transcriptional regulation theory. These modules were enriched with the genes relevant to cell cycle and immune response. Moreover, we proposed two novel algorithms to reveal the group or sample specific dynamic regulations between these two RNA classes. The obtained miRNA-mRNA dynamic network contains 3350 interactions captured across different cancer progression stages or tumor grades. We found that those dynamic interactions tended to concentrate on a few miRNAs (e.g. miRNA-936), and were more likely present on the miRNA-mRNA pairs outside the discovered modules. In addition, we also pinpointed a robust prognostic signature consisting of 56 modular protein-coding genes, whose co-expression patterns were predictive for the survival time of ovarian cancer patients in multiple independent cohorts. Copyright © 2016 Elsevier Ltd. All rights reserved.
From Saccharomyces cerevisiae to human: The important gene co-expression modules.
Liu, Wei; Li, Li; Ye, Hua; Chen, Haiwei; Shen, Weibiao; Zhong, Yuexian; Tian, Tian; He, Huaqin
2017-08-01
Network-based systems biology has become an important method for analyzing high-throughput gene expression data and gene function mining. Yeast has long been a popular model organism for biomedical research. In the current study, a weighted gene co-expression network analysis algorithm was applied to construct a gene co-expression network in Saccharomyces cerevisiae . Seventeen stable gene co-expression modules were detected from 2,814 S. cerevisiae microarray data. Further characterization of these modules with the Database for Annotation, Visualization and Integrated Discovery tool indicated that these modules were associated with certain biological processes, such as heat response, cell cycle, translational regulation, mitochondrion oxidative phosphorylation, amino acid metabolism and autophagy. Hub genes were also screened by intra-modular connectivity. Finally, the module conservation was evaluated in a human disease microarray dataset. Functional modules were identified in budding yeast, some of which are associated with patient survival. The current study provided a paradigm for single cell microorganisms and potentially other organisms.
Co-expression analysis reveals key gene modules and pathway of human coronary heart disease.
Tang, Yu; Ke, Zun-Ping; Peng, Yi-Gen; Cai, Ping-Tai
2018-02-01
Coronary heart disease is a kind of disease which causes great injury to people world-widely. Although gene expression analyses had been performed previously, to our best knowledge, systemic co-expression analysis for this disease is still lacking to date. Microarray data of coronary heart disease was downloaded from NCBI with the accession number of GSE20681. Co-expression modules were constructed by WGCNA. Besides, the connectivity degree of eigengenes was analyzed. Furthermore, GO and KEGG enrichment analysis was performed on these eigengenes in these constructed modules. A total of 11 co-expression modules were constructed by the 3000 up-regulated genes from the 99 samples with coronary heart disease. The average number of genes in these modules was 270. The interaction analysis indicated the relative independence of gene expression in these modules. The functional enrichment analysis showed that there was a significant difference in the enriched terms and degree among these 11 modules. The results showed that modules 9 and 10 played critical roles in the occurrence of coronary disease. Pathways of hsa00190 (oxidative phosphorylation) and (hsa01130: biosynthesis of antibiotics) were thought to be closely related to the occurrence and development of coronary heart disease. Our result demonstrated that modules 9 and 10 were the most critical modules in the occurrence of coronary heart disease. Pathways as hsa00190 (oxidative phosphorylation) and (hsa01130: biosynthesis of antibiotics) had the potential to serve as the prognostic and predictive marker of coronary heart disease. © 2017 Wiley Periodicals, Inc.
Fu, X; Sun, Y; Wang, J; Xing, Q; Zou, J; Li, R; Wang, Z; Wang, S; Hu, X; Zhang, L; Bao, Z
2014-01-01
Marine organisms are commonly exposed to variable environmental conditions, and many of them are under threat from increased sea temperatures caused by global climate change. Generating transcriptomic resources under different stress conditions are crucial for understanding molecular mechanisms underlying thermal adaptation. In this study, we conducted transcriptome-wide gene expression profiling of the scallop Chlamys farreri challenged by acute and chronic heat stress. Of the 13 953 unique tags, more than 850 were significantly differentially expressed at each time point after acute heat stress, which was more than the number of tags differentially expressed (320-350) under chronic heat stress. To obtain a systemic view of gene expression alterations during thermal stress, a weighted gene coexpression network was constructed. Six modules were identified as acute heat stress-responsive modules. Among them, four modules involved in apoptosis regulation, mRNA binding, mitochondrial envelope formation and oxidation reduction were downregulated. The remaining two modules were upregulated. One was enriched with chaperone and the other with microsatellite sequences, whose coexpression may originate from a transcription factor binding site. These results indicated that C. farreri triggered several cellular processes to acclimate to elevated temperature. No modules responded to chronic heat stress, suggesting that the scallops might have acclimated to elevated temperature within 3 days. This study represents the first sequencing-based gene network analysis in a nonmodel aquatic species and provides valuable gene resources for the study of thermal adaptation, which should assist in the development of heat-tolerant scallop lines for aquaculture. © 2013 John Wiley & Sons Ltd.
Tao, Ling; Park, Jong-Yung; Lambert, Joshua D
2015-02-01
We have previously reported that the green tea catechin, (-)-epigallocatechin-3-gallate (EGCG), can induce oxidative stress in oral cancer cells but exerts antioxidant effects in normal cells. Here, we report that these differential prooxidative effects are associated with sirtuin 3 (SIRT3), an important mitochondrial redox modulator. EGCG rapidly induced mitochondria-localized reactive oxygen species in human oral squamous carcinoma cells (SCC-25, SCC-9) and premalignant leukoplakia cells (MSK-Leuk1), but not in normal human gingival fibroblast cells (HGF-1). EGCG suppressed SIRT3 mRNA and protein expression, as well as, SIRT3 activity in SCC-25 cells, whereas it increased SIRT3 activity in HGF-1 cells. EGCG selectively decreased the nuclear localization of the estrogen-related receptor α (ERRα), the transcription factor regulating SIRT3 expression, in SCC-25 cells. This indicates that EGCG may regulate SIRT3 transcription in oral cancer cells via ERRα. EGCG also differentially modulated the mRNA expressions of SIRT3-associated downstream targets including glutathione peroxidase 1 and superoxide dismutase 2 in normal and oral cancer cells. SIRT3 represents a novel potential target through which EGCG exerts differential prooxidant effects in cancer and normal cells. Our results provide new biomarkers to be further explored in animal studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Big Potassium (BK) ion channels in biology, disease and possible targets for cancer immunotherapy
Ge, Lisheng; Hoa, Neil T.; Wilson, Zechariah; Arismendi-Morillo, Gabriel; Kong, Xia-Tang; Tajhya, Rajeev B.; Beeton, Christine; Jadus, Martin R.
2017-01-01
The Big Potassium (BK) ion channel is commonly known by a variety of names (Maxi-K, KCNMA1, slo, Stretch-activated potassium channels, KCa1.1). Each name reflects a different physical property displayed by this single ion channel. This transmembrane channel is found on nearly every cell type of the body and has its own distinctive roles for that tissue type. The BKα channel contains the pore that releases potassium ions from intracellular stores. This ion channel is found on the cell membrane, endoplasmic reticulum, Golgi and mitochondria. Complex splicing pathways produce different isoforms. The BKα channels can be phosphorylated, palmitoylated and myristylated. BK is composed of a homo-tetramer that interacts with β and γ chains. These accessory proteins provide a further modulating effect on the functions of BKα channels. BK channels play important roles in cell division and migration. In this review, we will focus on the biology of BK channels, especially its role, and that it has in the immune response towards cancer. Recent proteomic studies have linked BK channels with various proteins. Some of these interactions offer further insight into the role that BK channels have with cancers, especially with brain tumors. This review shows that BK channels have a complex interplay with intracellular components of cancer cells and still have plenty of secrets to be discovered. PMID:25027630
Lewis, Kathy A.; Perrin, Marilyn H.; Sweet, Wendy E.; Moravec, Christine S.; Tang, W. H. Wilson; Huising, Mark O.; Troughton, Richard W.; Cameron, Vicky A.
2016-01-01
Corticotropin-releasing factor (CRF) and the CRF-related peptides, urocortin (Ucn)-1, Ucn2, and Ucn3 signal through receptors CRFR1 and CRFR2 to restore homeostasis in response to stress. The Ucns exert potent cardioprotective effects and may have clinical utility in heart failure. To explore the activity of this system in the heart, we measured the levels of myocardial gene expression of the CRF/Ucn family of ligands/receptors and investigated genetic variation and alternative splicing of CRFR1 in 110 heart failure patients and 108 heart donors. Using quantitative real-time PCR, we detected CRFR1, CRFR2, CRF, Ucn1, Ucn2, and Ucn3 in all samples. CRFR2α was the most abundant receptor and Ucn3 the most abundant ligand, both in patients and donors. Compared with donors, cardiac expression of CRFR1, CRF, and Ucn3 was higher (P < .001) and CRFR2α lower (P = .012) in patients. In patients and donors, genetic variation within CRFR1, represented by the chromosome 17q21.31 inversion polymorphism, was associated with markedly higher CRFR1 expression (P < .001), making CRFR1 and CRFR2α expression almost equivalent in some patients. A novel, truncated splice variant of CRFR1, designated CRFR1j, was identified and shown to exert a dominant-negative effect on CRFR1 signaling in vitro. The novel variant was expressed in a greater proportion of patients (60%) than donors (3%, P < .001). In summary, cardiac expression of CRFR1, CRF, and Ucn3 genes is elevated in heart failure and may contribute to the activation of the CRF/Ucn system in these patients. A common variant within the CRFR1 gene and a novel CRFR1 splice variant may modulate CRFR1 expression and signaling. PMID:27754786
Chen, Shu-jen; Hoffman, Nicholas E.; Shanmughapriya, Santhanam; Bao, Lei; Keefer, Kerry; Conrad, Kathleen; Merali, Salim; Takahashi, Yoshinori; Abraham, Thomas; Hirschler-Laszkiewicz, Iwona; Wang, JuFang; Zhang, Xue-Qian; Song, Jianliang; Barrero, Carlos; Shi, Yuguang; Kawasawa, Yuka Imamura; Bayerl, Michael; Sun, Tianyu; Barbour, Mustafa; Wang, Hong-Gang; Madesh, Muniswamy; Cheung, Joseph Y.; Miller, Barbara A.
2014-01-01
The calcium-permeable ion channel TRPM2 is highly expressed in a number of cancers. In neuroblastoma, full-length TRPM2 (TRPM2-L) protected cells from moderate oxidative stress through increased levels of forkhead box transcription factor 3a (FOXO3a) and superoxide dismutase 2. Cells expressing the dominant negative short isoform (TRPM2-S) had reduced FOXO3a and superoxide dismutase 2 levels, reduced calcium influx in response to oxidative stress, and enhanced reactive oxygen species, leading to decreased cell viability. Here, in xenografts generated with SH-SY5Y neuroblastoma cells stably expressing TRPM2 isoforms, growth of tumors expressing TRPM2-S was significantly reduced compared with tumors expressing TRPM2-L. Expression of hypoxia-inducible factor (HIF)-1/2α was significantly reduced in TRPM2-S-expressing tumor cells as was expression of target proteins regulated by HIF-1/2α including those involved in glycolysis (lactate dehydrogenase A and enolase 2), oxidant stress (FOXO3a), angiogenesis (VEGF), mitophagy and mitochondrial function (BNIP3 and NDUFA4L2), and mitochondrial electron transport chain activity (cytochrome oxidase 4.1/4.2 in complex IV). The reduction in HIF-1/2α was mediated through both significantly reduced HIF-1/2α mRNA levels and increased levels of von Hippel-Lindau E3 ligase in TRPM2-S-expressing cells. Inhibition of TRPM2-L by pretreatment with clotrimazole or expression of TRPM2-S significantly increased sensitivity of cells to doxorubicin. Reduced survival of TRPM2-S-expressing cells after doxorubicin treatment was rescued by gain of HIF-1 or -2α function. These data suggest that TRPM2 activity is important for tumor growth and for cell viability and survival following doxorubicin treatment and that interference with TRPM2-L function may be a novel approach to reduce tumor growth through modulation of HIF-1/2α, mitochondrial function, and mitophagy. PMID:25391657
2014-01-01
Background Glutamate, the main excitatory neurotransmitter, is involved in learning and memory processes but at higher concentration results excitotoxic causing degeneration and neuronal death. Adenosine is a nucleoside that exhibit neuroprotective effects by modulating of glutamate release. Hypoxic and related oxidative conditions, in which adenosine and metabotropic glutamate receptors are involved, have been demonstrated to contribute to neurodegenerative processes occurring in certain human pathologies. Results Human neuroblastoma cells (SH-SY5Y) were used to evaluate the long time (24, 48 and 72 hours) effects of a [60]fullerene hydrosoluble derivative (t3ss) as potential inhibitor of hypoxic insult. Low oxygen concentration (5% O2) caused cell death, which was avoided by t3ss exposure in a concentration dependent manner. In addition, gene expression analysis by real time PCR of adenosine A1, A2A and A2B and metabotropic glutamate 1 and 5 receptors revealed that t3ss significantly increased A1 and mGlu1 expression in hypoxic conditions. Moreover, t3ss prevented the hypoxia-induced increase in A2A mRNA expression. Conclusions As t3ss causes overexpression of adenosine A1 and metabotropic glutamate receptors which have been shown to be neuroprotective, our results point to a radical scavenger protective effect of t3ss through the enhancement of these neuroprotective receptors expression. Therefore, the utility of these nanoparticles as therapeutic target to avoid degeneration and cell death of neurodegenerative diseases is suggested. PMID:25123848
Treerat, Puthayalai; Alwis, Priyangi; D’Cruze, Tanya; Cullinane, Meabh; Vadivelu, Jamunarani; Devenish, Rodney J.; Prescott, Mark; Adler, Ben; Boyce, John D.
2015-01-01
Many Gram-negative pathogens use a type III secretion system (TTSS) for the injection of bacterial effector proteins into host cells. The injected effector proteins play direct roles in modulation of host cell pathways for bacterial benefit. Burkholderia pseudomallei, the causative agent of melioidosis, expresses three different TTSSs. One of these systems, the TTSS3, is essential for escape from host endosomes and therefore intracellular survival and replication. Here we have characterized three putative TTSS3 proteins; namely BapA, BapB and BapC. By employing a tetracysteine (TC)-FlAsH™ labelling technique to monitor the secretion of TC-tagged fusion proteins, BapA and BapC were shown to be secreted during in vitro growth in a TTSS3-dependant manner, suggesting a role as TTSS3 effectors. Furthermore, we constructed B. pseudomallei bapA, bapB and bapC mutants and used the well-characterized TTSS3 effector BopE as a marker of secretion to show that BapA, BapB and BapC are not essential for the secretion process. However, BopE transcription and secretion were significantly increased in the bapB mutant, suggesting that BapB levels modulate BopE expression. In a BALB/c mouse model of acute melioidosis, the bapA, bapB and bapC mutants showed a minor reduction of in vivo fitness. Thus, this study defines BapA and BapC as novel TTSS3 effectors, BapB as a regulator of BopE production, and all three as necessary for full B. pseudomallei in vivo fitness. PMID:26624293
Treerat, Puthayalai; Alwis, Priyangi; D'Cruze, Tanya; Cullinane, Meabh; Vadivelu, Jamunarani; Devenish, Rodney J; Prescott, Mark; Adler, Ben; Boyce, John D
2015-01-01
Many Gram-negative pathogens use a type III secretion system (TTSS) for the injection of bacterial effector proteins into host cells. The injected effector proteins play direct roles in modulation of host cell pathways for bacterial benefit. Burkholderia pseudomallei, the causative agent of melioidosis, expresses three different TTSSs. One of these systems, the TTSS3, is essential for escape from host endosomes and therefore intracellular survival and replication. Here we have characterized three putative TTSS3 proteins; namely BapA, BapB and BapC. By employing a tetracysteine (TC)-FlAsH™ labelling technique to monitor the secretion of TC-tagged fusion proteins, BapA and BapC were shown to be secreted during in vitro growth in a TTSS3-dependant manner, suggesting a role as TTSS3 effectors. Furthermore, we constructed B. pseudomallei bapA, bapB and bapC mutants and used the well-characterized TTSS3 effector BopE as a marker of secretion to show that BapA, BapB and BapC are not essential for the secretion process. However, BopE transcription and secretion were significantly increased in the bapB mutant, suggesting that BapB levels modulate BopE expression. In a BALB/c mouse model of acute melioidosis, the bapA, bapB and bapC mutants showed a minor reduction of in vivo fitness. Thus, this study defines BapA and BapC as novel TTSS3 effectors, BapB as a regulator of BopE production, and all three as necessary for full B. pseudomallei in vivo fitness.
Johnson, Michelle H; de Mejia, Elvira Gonzalez
2016-03-30
Berries are a rich source of bioactive phenolic compounds that are able to bind and inhibit the enzyme dipeptidyl peptidase-IV (DPP-IV), a current target for type-2 diabetes therapy. The objectives were to determine the role of berry phenolic compounds to modulate incretin-cleaving DPP-IV and its substrate glucagon-like peptide-1 (GLP-1), insulin secretion from pancreatic β-cells, and genes and proteins involved in the insulin secretion pathway using cell culture. Anthocyanins (ANC) from 50% blueberry-50% blackberry (Blu-Bla) and 100% blackberry (Bla) fermented beverages at 50 μM cyanidin-3-glucoside equivalents increased (p < 0.05) glucose-stimulated insulin secretion from pancreatic β-cells (iNS-1E) both when applied directly and following simulated absorption through Caco-2 cells (by 233 and 100 μIU insulin/mL, respectively). ANC 50%Blu-Bla and ANC 100%Bla upregulated the gene for incretin hormone GLP-1 (fold-change 3.0 ± 1.4 and 2.0 ± 0.3, respectively) and genes in the insulin secretory pathway including insulin-like growth factor 1 receptor (iGF1R, 2.3 ± 0.6 and 1.6 ± 0.3, respectively), and increased (p < 0.05) the protein expression of insulin-like growth factor 2 (IGF-II), insulin-like growth factor binding proteins (IGFBP-2 and 3), and vascular endothelial growth factor (VEGF) in iNS-1E cells. Taken together, anthocyanins, predominantly delphinidin-3-arabinoside, from fermented berry beverages have the potential to modulate DPP-IV and its substrate GLP-1, to increase insulin secretion, and to upregulate expression of mRNA of insulin-receptor associated genes and proteins in pancreatic β-cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qingzhan; Shi, Kaichuang; Yoo, Dongwan, E-mail: dyoo@illinois.edu
Type I interferons (IFN-α/β) are the major components of the innate immune response of hosts, and in turn many viruses have evolved to modulate the host response during infection. We found that the IFN-β production was significantly suppressed during PEDV infection in cells. To identify viral IFN antagonists and to study their suppressive function, viral coding sequences for the entire structural and nonstructural proteins were cloned and expressed. Of 16 PEDV nonstructural proteins (nsps), nsp1, nsp3, nsp7, nsp14, nsp15 and nsp16 were found to inhibit the IFN-β and IRF3 promoter activities. The sole accessory protein ORF3, structure protein envelope (E),more » membrane (M), and nucleocapsid (N) protein were also shown to inhibit such activities. PEDV nsp1 did not interfere the IRF3 phosphorylation and nuclear translocation but interrupted the enhanceosome assembly of IRF3 and CREB-binding protein (CBP) by degrading CBP. A further study showed that the CBP degradation by nsp1 was proteasome-dependent. Our data demonstrate that PEDV modulates the host innate immune responses by degrading CBP and suppressing ISGs expression. - Highlights: • PEDV modulates the host innate immune system by suppressing the type I interferon production and ISGs expression. • Ten viral proteins were identified as IFN antagonists, and nsp1 was the most potent viral IFN antagonist. • PEDV nsp1 did not interfere the IRF3 phosphorylation and nuclear translocation but interrupted the enhanceosome assembly of IRF3 and CREB-binding protein (CBP). • PEDV nsp1 caused the CBP degradation in the nucleus, which may be the key mechanism for PEDV-mediated IFN downregulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Guodong; Department of Abdominal Surgery, Cancer treatment center, Fourth Affiliated Hospital of Harbin Medical University, Harbin; Lin, Wenwei
Farnesoid X receptor (FXR) is a ligand-activated nuclear receptor and serves as a key regulator to maintain health of the liver and intestine. Bile acids are endogenous ligands of FXR, and there are increasing efforts to identify FXR modulators to serve as biological probes and/or pharmaceutical agents. Natural FXR ligands isolated from plants may serve as models to synthesize novel FXR modulators. In this study, we demonstrated that epigallocatechin-3-gallate (EGCG), a major tea catechin, specifically and dose-dependently activates FXR. In addition, EGCG induced FXR target gene expression in vitro. Surprisingly, in a co-activator (SRC2) recruitment assay, we found that EGCGmore » does not recruit SRC2 to FXR, but it dose-dependently inhibits recruitment of SRC2 to FXR (IC{sub 50}, 1 μM) by GW6064, which is a potent FXR synthetic ligand. In addition, EGCG suppressed FXR target gene expression induced by either GW4064 or chenodeoxycholic acid in vitro. Furthermore, wild-type and FXR knockout mice treated with an acute dose of EGCG had induced mRNA expression in a subset of FXR target genes in the intestine but not in the liver. In conclusion, EGCG is a unique modulator of FXR in the intestine and may serve as an important model for future development of FXR modulators. -- Highlights: ► Epigallocatechin-3-gallate (EGCG) is a unique farnesoid X receptor (FXR) modulator. ► EGCG activates FXR by itself, but inhibits FXR transactivation by other agonists. ► Low concentration of EGCG activates FXR in mouse intestine but not liver. ► EGCG activates FXR to induce a subset of FXR target genes in mouse intestine.« less
Mehrotra, Arpit; Kanwal, Abhinav; Banerjee, Sanjay Kumar; Sandhir, Rajat
2015-06-01
Huntington's disease (HD) is a chronic neurodegenerative condition involving impaired mitochondrial functions. The present study evaluates the therapeutic potential of combined administration of mitochondrial modulators: alpha-lipoic acid and acetyl-l-carnitine on mitochondrial dysfunctions in 3-NP-induced HD. Our results reveal 3-NP administration resulted in compromise of mitochondrial functions in terms of: (1) impaired activity of mitochondrial respiratory chain enzymes, altered cytochrome levels, reduced histochemical staining of complex-II and IV, reduced in-gel activity of complex-I to V, and reduced mRNA expression of respiratory chain complexes; (2) enhanced mitochondrial oxidative stress indicated by increased malondialdehyde, protein carbonyls, reactive oxygen species and nitrite levels, along with decreased Mn-superoxide dismutase and catalase activity; (3) mitochondrial structural changes measured by mitochondrial swelling, reduced mitochondrial membrane potential and ultra-structure changes; (4) increased cytosolic cytochrome c levels, caspase-3 and -9 activity along with altered expression of apoptotic proteins (AIF, Bim, Bad, and Bax); and (5) impaired cognitive functions assessed using Morris water maze and Y-maze. Combination of mitochondrial modulators (alpha-lipoic acid + acetyl-l-carnitine) on the other hand ameliorated 3-NP-induced mitochondrial dysfunctions, oxidative stress, histologic alterations, and behavioral deficits, suggesting their therapeutic efficacy in the management of HD. Copyright © 2015 Elsevier Inc. All rights reserved.
MarvelD3 regulates the c-Jun N-terminal kinase pathway during eye development in Xenopus
Vacca, Barbara; Sanchez-Heras, Elena; Steed, Emily; Balda, Maria S.; Ohnuma, Shin-Ichi; Sasai, Noriaki; Mayor, Roberto
2016-01-01
ABSTRACT Ocular morphogenesis requires several signalling pathways controlling the expression of transcription factors and cell-cycle regulators. However, despite a well-known mechanism, the dialogue between those signals and factors remains to be unveiled. Here, we identify a requirement for MarvelD3, a tight junction transmembrane protein, in eye morphogenesis in Xenopus. MarvelD3 depletion led to an abnormally pigmented eye or even an eye-less phenotype, which was rescued by ectopic MarvelD3 expression. Altering MarvelD3 expression led to deregulated expression of cell-cycle regulators and transcription factors required for eye development. The eye phenotype was rescued by increased c-Jun terminal Kinase activation. Thus, MarvelD3 links tight junctions and modulation of the JNK pathway to eye morphogenesis. PMID:27870636
The effects of glycogen synthase kinase-3beta in serotonin neurons.
Zhou, Wenjun; Chen, Ligong; Paul, Jodi; Yang, Sufen; Li, Fuzeng; Sampson, Karen; Woodgett, Jim R; Beaulieu, Jean Martin; Gamble, Karen L; Li, Xiaohua
2012-01-01
Glycogen synthase kinase-3 (GSK3) is a constitutively active protein kinase in brain. Increasing evidence has shown that GSK3 acts as a modulator in the serotonin neurotransmission system, including direct interaction with serotonin 1B (5-HT1B) receptors in a highly selective manner and prominent modulating effect on 5-HT1B receptor activity. In this study, we utilized the serotonin neuron-selective GSK3β knockout (snGSK3β-KO) mice to test if GSK3β in serotonin neurons selectively modulates 5-HT1B autoreceptor activity and function. The snGSK3β-KO mice were generated by crossbreeding GSK3β-floxed mice and ePet1-Cre mice. These mice had normal growth and physiological characteristics, similar numbers of tryptophan hydroxylase-2 (TpH2)-expressing serotonin neurons, and the same brain serotonin content as in littermate wild type mice. However, the expression of GSK3β in snGSK3β-KO mice was diminished in TpH2-expressing serotonin neurons. Compared to littermate wild type mice, snGSK3β-KO mice had a reduced response to the 5-HT1B receptor agonist anpirtoline in the regulation of serotonergic neuron firing, cAMP production, and serotonin release, whereas these animals displayed a normal response to the 5-HT1A receptor agonist 8-OH-DPAT. The effect of anpirtoline on the horizontal, center, and vertical activities in the open field test was differentially affected by GSK3β depletion in serotonin neurons, wherein vertical activity, but not horizontal activity, was significantly altered in snGSK3β-KO mice. In addition, there was an enhanced anti-immobility response to anpirtoline in the tail suspension test in snGSK3β-KO mice. Therefore, results of this study demonstrated a serotonin neuron-targeting function of GSK3β by regulating 5-HT1B autoreceptors, which impacts serotonergic neuron firing, serotonin release, and serotonin-regulated behaviors.
Distinct human and mouse membrane trafficking systems for sweet taste receptors T1r2 and T1r3.
Shimizu, Madoka; Goto, Masao; Kawai, Takayuki; Yamashita, Atsuko; Kusakabe, Yuko
2014-01-01
The sweet taste receptors T1r2 and T1r3 are included in the T1r taste receptor family that belongs to class C of the G protein-coupled receptors. Heterodimerization of T1r2 and T1r3 is required for the perception of sweet substances, but little is known about the mechanisms underlying this heterodimerization, including membrane trafficking. We developed tagged mouse T1r2 and T1r3, and human T1R2 and T1R3 and evaluated membrane trafficking in human embryonic kidney 293 (HEK293) cells. We found that human T1R3 surface expression was only observed when human T1R3 was coexpressed with human T1R2, whereas mouse T1r3 was expressed without mouse T1r2 expression. A domain-swapped chimera and truncated human T1R3 mutant showed that the Venus flytrap module and cysteine-rich domain (CRD) of human T1R3 contain a region related to the inhibition of human T1R3 membrane trafficking and coordinated regulation of human T1R3 membrane trafficking. We also found that the Venus flytrap module of both human T1R2 and T1R3 are needed for membrane trafficking, suggesting that the coexpression of human T1R2 and T1R3 is required for this event. These results suggest that the Venus flytrap module and CRD receive taste substances and play roles in membrane trafficking of human T1R2 and T1R3. These features are different from those of mouse receptors, indicating that human T1R2 and T1R3 are likely to have a novel membrane trafficking system.
Modulation of renal CNG-A3 sodium channel in rats subjected to low- and high-sodium diets.
Novaira, Horacio J; Botelho, Bruno F; Goldenberg, Regina C; Guggino, Sandra E; Morales, Marcelo M
2004-10-11
In this work, we studied the mRNA distribution of CNG-A3, an amiloride-sensitive sodium channel that belongs to the cyclic nucleotide-gated (CNG) family of channels, along the rat nephron. The possible involvement of aldosterone in this process was also studied. We also evaluated its expression in rats subjected to diets with different concentrations of sodium or to alterations in aldosterone plasma levels. Total RNA isolated from whole kidney and/or dissected nephron segments of Wistar rats subjected to low- and high-sodium diets, furosemide treatment, adrenalectomy, and adrenalectomy with replacement by aldosterone were analyzed by the use of Western blot, ribonuclease protection assay (RPA) and/or reverse transcription followed by semi-quantitative polymerase chain reaction (RT-PCR). CNG-A3 sodium channel mRNA and protein expression, in whole kidneys of rats subjected to high-Na+ diet, were lower than those in animals given a low-salt diet. Renal CNG-A3 mRNA expression was also decreased in adrenalectomized rats, and was normalized by aldosterone replacement. Moreover, a CNG-A3 mRNA expression study in different nephron segments revealed that aldosterone modulation is present in the cortical thick ascending loop (cTAL) and cortical collecting duct (CCD). This result suggests that CNG-A3 is responsive to the same hormone signaling as the amiloride sensitive sodium channel ENaC and suggests the CNG-A3 may have a physiological role in sodium reabsorption.
Gupta, S K; Mishra, R; Kusum, S; Spedding, M; Meiri, K F; Gressens, P; Mani, S
2009-04-01
Positive alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor modulators include benzamide compounds that allosterically modulate AMPA glutamate receptors. These small molecules that cross the blood-brain barrier have been shown to act as a neuroprotectant by increasing the levels of endogenous brain-derived neurotrophic factor (BDNF). Positive AMPA receptor modulators have also been shown to increase the levels of growth-associated protein-43 (GAP-43). GAP-43 plays a major role in many aspects of neuronal function in vertebrates. The goal of this study was to determine whether GAP-43 was important in mediating the actions of positive AMPA receptor modulator (S18986) and BDNF. Using cortical cultures from GAP-43 knockout and control mice, we show that (1) GAP-43 is upregulated in response to S18986 and BDNF in control cultures; (2) this upregulation of GAP-43 is essential for mediating the neuroprotective effects of S18986 and BDNF; (3) administration of S18986 and BDNF leads to an increase in the expression of the glutamate transporters GLT-1 and GLAST that are key to limiting excitotoxic cell death and this increase in GLT-1 and GLAST expression is completely blocked in the absence of GAP-43. Taken together this study concludes that GAP-43 is an important mediator of the neurotrophic effects of S18986 and BDNF on neuronal survival and plasticity, and is essential for the success of positive AMPA receptor modulator-BDNF-based neurotrophin therapy.
USDA-ARS?s Scientific Manuscript database
Background: Clinical and animal studies have suggested efficacies of common bean (Phaseolus vulgaris) consumption on weight loss. Fermentation of common bean-derived dietary fiber by gut microbiota is proposed to modulate obesity; however, the mechanism by which the adipogenesis is inhibited is uncl...
Landeen, Lee K; Aroonsakool, Nakon; Haga, Jason H; Hu, Betty S; Giles, Wayne R
2007-06-01
The bioactive molecule sphingosine-1-phosphate (S1P) binds with high affinity to five recognized receptors (S1P(1-5)) to affect various tissues, including cellular responses of cardiac fibroblasts (CFbs) and myocytes. CFbs are essential components of myocardium, and detailed study of their cell signaling and physiology is required for a number of emerging disciplines. Meaningful studies on CFbs, however, necessitate methods for selective, reproducible cell isolations. Macrophages reside within normal cardiac tissues and often are isolated with CFbs. A protocol was therefore developed that significantly reduces macrophage levels and utilizes more CFb-specific markers (discoidin domain receptor-2) instead of, or in addition to, more commonly used cytoskeletal markers. Our results demonstrate that primary isolated, purified CFbs express predominantly S1P(1-3); however, the relative levels of these receptor subtypes are modulated with time and by culture conditions. In coculture experiments, macrophages altered CFb S1P receptor levels relative to controls. Further investigations using known macrophage-secreted factors showed that S1P and H(2)O(2) had minimal effects on CFb S1P(1-3) expression, whereas transforming growth factor-beta1, TNF-alpha, and PDGF-BB significantly altered all S1P receptor subtypes. Lowering FBS concentrations from 10% to 0.1% increased S1P(2), whereas supplementation with either PDGF-BB or Rho-associated protein kinase inhibitor Y-27632 significantly elevated S1P(3) levels. S1P(2) and S1P(3) receptor levels are known to regulate cell migration. Using cells isolated from either normal or S1P(3)-null mice, we demonstrate that S1P(3) is important and necessary for CFb migration. These results highlight the importance of demonstrating CFb culture purity in functional studies of S1P and also identify conditions that modulate S1P receptor expression in CFbs.
Heterogeneity of neuroblastoma cell identity defined by transcriptional circuitries.
Boeva, Valentina; Louis-Brennetot, Caroline; Peltier, Agathe; Durand, Simon; Pierre-Eugène, Cécile; Raynal, Virginie; Etchevers, Heather C; Thomas, Sophie; Lermine, Alban; Daudigeos-Dubus, Estelle; Geoerger, Birgit; Orth, Martin F; Grünewald, Thomas G P; Diaz, Elise; Ducos, Bertrand; Surdez, Didier; Carcaboso, Angel M; Medvedeva, Irina; Deller, Thomas; Combaret, Valérie; Lapouble, Eve; Pierron, Gaelle; Grossetête-Lalami, Sandrine; Baulande, Sylvain; Schleiermacher, Gudrun; Barillot, Emmanuel; Rohrer, Hermann; Delattre, Olivier; Janoueix-Lerosey, Isabelle
2017-09-01
Neuroblastoma is a tumor of the peripheral sympathetic nervous system, derived from multipotent neural crest cells (NCCs). To define core regulatory circuitries (CRCs) controlling the gene expression program of neuroblastoma, we established and analyzed the neuroblastoma super-enhancer landscape. We discovered three types of identity in neuroblastoma cell lines: a sympathetic noradrenergic identity, defined by a CRC module including the PHOX2B, HAND2 and GATA3 transcription factors (TFs); an NCC-like identity, driven by a CRC module containing AP-1 TFs; and a mixed type, further deconvoluted at the single-cell level. Treatment of the mixed type with chemotherapeutic agents resulted in enrichment of NCC-like cells. The noradrenergic module was validated by ChIP-seq. Functional studies demonstrated dependency of neuroblastoma with noradrenergic identity on PHOX2B, evocative of lineage addiction. Most neuroblastoma primary tumors express TFs from the noradrenergic and NCC-like modules. Our data demonstrate a previously unknown aspect of tumor heterogeneity relevant for neuroblastoma treatment strategies.
Durudas, Andre; Milush, Jeffrey M; Chen, Hui-Ling; Engram, Jessica C; Silvestri, Guido; Sodora, Donald L
2009-12-01
Cytokines and chemokines are critical for establishing tissue-specific immune responses and play key roles in modulating disease progression in simian immunodeficiency virus (SIV)-infected macaques and human immunodeficiency virus (HIV)-infected humans. The goal here was to characterize the innate immune response at different tissue sites and to correlate these responses to clinical outcome, initially focusing on rhesus macaques orally inoculated with SIV and monitored until onset of simian AIDS. Cytokine and chemokine mRNA transcripts were assessed at lymph nodes (LN) and peripheral blood cells utilizing quantitative real-time PCR at different time points postinfection. The mRNA expression of four immune modulators-alpha interferon (IFN-alpha), oligoadenylate synthetase (OAS), CXCL9, and CXCL10-was positively associated with disease progression within LN tissue. Elevated cytokine/chemokine expression in LN did not result in any observed beneficial outcome since the numbers of CXCR3(+) cells were not increased, nor were the SIV RNA levels decreased. In peripheral blood, increased OAS and CXCL10 expression were elevated in SIV(+) monkeys that progress the fastest to simian AIDS. Our results indicate that higher IFN-alpha, OAS, CXCL9, and CXCL10 mRNA expression in LN was associated with rapid disease progression and a LN environment that may favor SIV replication. Furthermore, higher expression of CXCL10 and OAS in peripheral blood could potentially serve as a diagnostic marker for hosts that are likely to progress to AIDS. Understanding the expression patterns of key innate immune modulators will be useful in assessing the disease state and potential rates of disease progression in HIV(+) patients, which could lead to novel therapy and vaccine approaches.
(Bis)urea and (Bis)thiourea Inhibitors of Lysine-Specific Demethylase 1 as Epigenetic Modulators
Sharma, Shiv K.; Wu, Yu; Steinbergs, Nora; Crowley, Michael L.; Hanson, Allison S.; Casero, Robert A.; Woster, Patrick M.
2010-01-01
The recently discovered enzyme lysine-specific demethylase 1 (LSD1) plays an important role in the epigenetic control of gene expression, and aberrant gene silencing secondary to LSD1 over expression is thought to contribute to the development of cancer. We recently reported a series of (bis)guanidines and (bis)biguanides that are potent inhibitors of LSD1, and induce the re-expression of aberrantly silenced tumor suppressor genes in tumor cells in vitro. We now report a series of isosteric ureas and thioureas that are also potent inhibitors of LSD1. These compounds induce increases in methylation at the histone 3 lysine 4 (H3K4) chromatin mark, a specific target of LSD1, in Calu-6 lung carcinoma cells. In addition, these analogues increase cellular levels of secreted frizzle-related proteins (SFRP) 2 and 5, and transcription factor GATA4. These compounds represent an important new series of epigenetic modulators with the potential for use as antitumor agents. PMID:20568780