Sample records for modulating cardiac function

  1. Relationship between cardiac autonomic function and cognitive function in Alzheimer's disease.

    PubMed

    Nonogaki, Zen; Umegaki, Hiroyuki; Makino, Taeko; Suzuki, Yusuke; Kuzuya, Masafumi

    2017-01-01

    Alzheimer's disease (AD) affects many central nervous structures and neurotransmitter systems. These changes affect not only cognitive function, but also cardiac autonomic function. However, the functional relationship between cardiac autonomic function and cognition in AD has not yet been investigated. The objective of the present study was to evaluate the association between cardiac autonomic function measured by heart rate variability and cognitive function in AD. A total of 78 AD patients were recruited for this study. Cardiac autonomic function was evaluated using heart rate variability analysis. Multiple linear regression analysis was used to model the association between heart rate variability and cognitive function (global cognitive function, memory, executive function and processing speed), after adjustment for covariates. Global cognitive function was negatively associated with sympathetic modulation (low-to-high frequency power ratio). Memory performance was positively associated with parasympathetic modulation (high frequency power) and negatively associated with sympathetic modulation (low-to-high frequency power ratio). These associations were independent of age, sex, educational years, diabetes, hypertension and cholinesterase inhibitor use. Cognitive function, especially in the areas of memory, is associated with cardiac autonomic function in AD. Specifically, lower cognitive performance was found to be associated with significantly higher cardiac sympathetic and lower parasympathetic function in AD. Geriatr Gerontol Int 2017; 17: 92-98. © 2015 Japan Geriatrics Society.

  2. Health Instruction Packages: Cardiac Anatomy.

    ERIC Educational Resources Information Center

    Phillips, Gwen; And Others

    Text, illustrations, and exercises are utilized in these five learning modules to instruct nurses, students, and other health care professionals in cardiac anatomy and functions and in fundamental electrocardiographic techniques. The first module, "Cardiac Anatomy and Physiology: A Review" by Gwen Phillips, teaches the learner to draw…

  3. Measures of Autonomic Nervous System Regulation

    DTIC Science & Technology

    2011-04-01

    and most often used measures of ANS activation encompass non-invasive tools, which measure cardiac, skin conductance, respiratory , and vascular...regulation, osmotic balance, metabolism, digestion, excretion, and cardiac and respiratory activity. The ANS consists of the sympathetic and...modulate heart rate, as a function of the respiratory cycles. Generally, these two systems should be seen as permanently modulating vital functions to

  4. Rationally engineered Troponin C modulates in vivo cardiac function and performance in health and disease.

    PubMed

    Shettigar, Vikram; Zhang, Bo; Little, Sean C; Salhi, Hussam E; Hansen, Brian J; Li, Ning; Zhang, Jianchao; Roof, Steve R; Ho, Hsiang-Ting; Brunello, Lucia; Lerch, Jessica K; Weisleder, Noah; Fedorov, Vadim V; Accornero, Federica; Rafael-Fortney, Jill A; Gyorke, Sandor; Janssen, Paul M L; Biesiadecki, Brandon J; Ziolo, Mark T; Davis, Jonathan P

    2016-02-24

    Treatment for heart disease, the leading cause of death in the world, has progressed little for several decades. Here we develop a protein engineering approach to directly tune in vivo cardiac contractility by tailoring the ability of the heart to respond to the Ca(2+) signal. Promisingly, our smartly formulated Ca(2+)-sensitizing TnC (L48Q) enhances heart function without any adverse effects that are commonly observed with positive inotropes. In a myocardial infarction (MI) model of heart failure, expression of TnC L48Q before the MI preserves cardiac function and performance. Moreover, expression of TnC L48Q after the MI therapeutically enhances cardiac function and performance, without compromising survival. We demonstrate engineering TnC can specifically and precisely modulate cardiac contractility that when combined with gene therapy can be employed as a therapeutic strategy for heart disease.

  5. Rationally engineered Troponin C modulates in vivo cardiac function and performance in health and disease

    PubMed Central

    Shettigar, Vikram; Zhang, Bo; Little, Sean C.; Salhi, Hussam E.; Hansen, Brian J.; Li, Ning; Zhang, Jianchao; Roof, Steve R.; Ho, Hsiang-Ting; Brunello, Lucia; Lerch, Jessica K.; Weisleder, Noah; Fedorov, Vadim V.; Accornero, Federica; Rafael-Fortney, Jill A.; Gyorke, Sandor; Janssen, Paul M. L.; Biesiadecki, Brandon J.; Ziolo, Mark T.; Davis, Jonathan P.

    2016-01-01

    Treatment for heart disease, the leading cause of death in the world, has progressed little for several decades. Here we develop a protein engineering approach to directly tune in vivo cardiac contractility by tailoring the ability of the heart to respond to the Ca2+ signal. Promisingly, our smartly formulated Ca2+-sensitizing TnC (L48Q) enhances heart function without any adverse effects that are commonly observed with positive inotropes. In a myocardial infarction (MI) model of heart failure, expression of TnC L48Q before the MI preserves cardiac function and performance. Moreover, expression of TnC L48Q after the MI therapeutically enhances cardiac function and performance, without compromising survival. We demonstrate engineering TnC can specifically and precisely modulate cardiac contractility that when combined with gene therapy can be employed as a therapeutic strategy for heart disease. PMID:26908229

  6. The heart and potassium: a banana republic.

    PubMed

    Khan, Ehsan; Spiers, Christine; Khan, Maria

    2013-03-01

    The importance of potassium in maintaining stable cardiac function is a clinically understood phenomenon. Physiologically the importance of potassium in cardiac function is described by the large number of different kinds of potassium ions channels found in the heart compared to channels and membrane transport mechanisms for other ions such as sodium and calcium. Potassium is important in physiological homeostatic control of cardiac function, but is also of relevance to the diseased state, as potassium-related effects may stabilize or destabilize cardiac function. This article aims to provide a detailed understanding of potassium-mediated cardiac function. This will help the clinical practitioner evaluate how modulation of potassium ion channels by disease and pharmacological manipulation affect the cardiac patient, thus aiding in decision making when faced with clinical problems related to potassium.

  7. Cardiac Expression of ms1/STARS, a Novel Gene Involved in Cardiac Development and Disease, Is Regulated by GATA4

    PubMed Central

    Kobayashi, Satoru; Peterson, Richard E.; He, Aibin; Motterle, Anna; Samani, Nilesh J.; Menick, Donald R.; Pu, William T.; Liang, Qiangrong

    2012-01-01

    Ms1/STARS is a novel muscle-specific actin-binding protein that specifically modulates the myocardin-related transcription factor (MRTF)-serum response factor (SRF) regulatory axis within striated muscle. This ms1/STARS-dependent regulatory axis is of central importance within the cardiac gene regulatory network and has been implicated in cardiac development and postnatal cardiac function/homeostasis. The dysregulation of ms1/STARS is associated with and causative of pathological cardiac phenotypes, including cardiac hypertrophy and cardiomyopathy. In order to gain an understanding of the mechanisms governing ms1/STARS expression in the heart, we have coupled a comparative genomic in silico analysis with reporter, gain-of-function, and loss-of-function approaches. Through this integrated analysis, we have identified three evolutionarily conserved regions (ECRs), α, SINA, and DINA, that act as cis-regulatory modules and confer differential cardiac cell-specific activity. Two of these ECRs, α and DINA, displayed distinct regulatory sensitivity to the core cardiac transcription factor GATA4. Overall, our results demonstrate that within embryonic, neonatal, and adult hearts, GATA4 represses ms1/STARS expression with the pathologically associated depletion of GATA4 (type 1/type 2 diabetic models), resulting in ms1/STARS upregulation. This GATA4-dependent repression of ms1/STARS expression has major implications for MRTF-SRF signaling in the context of cardiac development and disease. PMID:22431517

  8. Development of a patch type embedded cardiac function monitoring system using dual microprocessor for arrhythmia detection in heart disease patient.

    PubMed

    Jang, Yongwon; Noh, Hyung Wook; Lee, I B; Jung, Ji-Wook; Song, Yoonseon; Lee, Sooyeul; Kim, Seunghwan

    2012-01-01

    A patch type embedded cardiac function monitoring system was developed to detect arrhythmias such as PVC (Premature Ventricular Contraction), pause, ventricular fibrillation, and tachy/bradycardia. The overall system is composed of a main module including a dual processor and a Bluetooth telecommunication module. The dual microprocessor strategy minimizes power consumption and size, and guarantees the resources of embedded software programs. The developed software was verified with standard DB, and showed good performance.

  9. Reciprocal Modulation of IK1–INa Extends Excitability in Cardiac Ventricular Cells

    PubMed Central

    Varghese, Anthony

    2016-01-01

    The inwardly rectifying potassium current (IK1) and the fast inward sodium current (INa) are reciprocally modulated in mammalian ventricular myocytes. An increase in the expression of channels responsible for one of these two currents results in a corresponding increase in expression of the other. These currents are critical in the propagation of action potentials (AP) during the normal functioning of the heart. This study identifies a physiological role for IK1–INa reciprocal modulation in ventricular fiber activation thresholds and conduction. Simulations of action potentials in single cells and propagating APs in cardiac fibers were carried out using an existing model of electrical activity in cardiac ventricular myocytes. The conductances, GK1, of the inwardly rectifying potassium current, and GNa, of the fast inward sodium current were modified independently and in tandem to simulate reciprocal modulation. In single cells, independent modulation of GK1 alone resulted in changes in activation thresholds that were qualitatively similar to those for reciprocal GK1–GNa modulation and unlike those due to independent modulation of GNa alone, indicating that GK1 determines the cellular activation threshold. On the other hand, the variations in conduction velocity in cardiac cell fibers were similar for independent GNa modulation and for tandem changes in GK1–GNa, suggesting that GNa is primarily responsible for setting tissue AP conduction velocity. Conduction velocity dependence on GK1–GNa is significantly affected by the intercellular gap junction conductance. While the effects on the passive fiber space constant due to changes in both GK1 and the intercellular gap junction conductance, Ggj, were in line with linear cable theory predictions, both conductances had surprisingly large effects on fiber activation thresholds. Independent modulation of GK1 rendered cardiac fibers inexcitable at higher levels of GK1 whereas tandem GK1–GNa changes allowed fibers to remain excitable at high GK1 values. Reciprocal modulation of the inwardly rectifying potassium current and the fast inward sodium current may have a functional role in allowing cardiac tissue to remain excitable when IK1 is upregulated. PMID:27895596

  10. Update on the slow delayed rectifier potassium current (I(Ks)): role in modulating cardiac function.

    PubMed

    Liu, Zhenzhen; Du, Lupei; Li, Minyong

    2012-01-01

    The slow delayed rectifier current (I(Ks)) is the slow component of cardiac delayed rectifier current and is critical for the late phase repolarization of cardiac action potential. This current is also an important target for Sympathetic Nervous System (SNS) to regulate the cardiac electivity to accommodate to heart rate alterations in response to exercise or emotional stress and can be up-regulated by β- adrenergic or other signal molecules. I(Ks) channel is originated by the co-assembly of pore-forming KCNQ1 α-subunit and accessory KCNE1 β-subunit. Mutations in any subunit can bring about severe long QT syndrome (LQT-1, LQT-5) as characterized by deliquium, seizures and sudden death. This review summarizes the normal physiological functions and molecular basis of I(Ks) channels, as well as illustrates up-to-date development on its blockers and activators. Therefore, the current extensive survey should generate fundamental understanding of the role of I(Ks) channel in modulating cardiac function and donate some instructions to the progression of I(Ks) blockers and activators as potential antiarrhythmic agents or pharmacological tools to determine the physiological and pathological function of I(Ks).

  11. Novel approaches to determine contractile function of the isolated adult zebrafish ventricular cardiac myocyte.

    PubMed

    Dvornikov, Alexey V; Dewan, Sukriti; Alekhina, Olga V; Pickett, F Bryan; de Tombe, Pieter P

    2014-05-01

    The zebrafish (Danio rerio) has been used extensively in cardiovascular biology, but mainly in the study of heart development. The relative ease of its genetic manipulation may indicate the suitability of this species as a cost-effective model system for the study of cardiac contractile biology. However, whether the zebrafish heart is an appropriate model system for investigations pertaining to mammalian cardiac contractile structure-function relationships remains to be resolved. Myocytes were isolated from adult zebrafish hearts by enzymatic digestion, attached to carbon rods, and twitch force and intracellular Ca(2+) were measured. We observed the modulation of twitch force, but not of intracellular Ca(2+), by both extracellular [Ca(2+)] and sarcomere length. In permeabilized cells/myofibrils, we found robust myofilament length-dependent activation. Moreover, modulation of myofilament activation-relaxation and force redevelopment kinetics by varied Ca(2+) activation levels resembled that found previously in mammalian myofilaments. We conclude that the zebrafish is a valid model system for the study of cardiac contractile structure-function relationships.

  12. Deletion of CXCR4 in cardiomyocytes exacerbates cardiac dysfunction following isoproterenol administration

    PubMed Central

    Wang, ER; Jarrah, AA; Benard, L; Chen, J; Schwarzkopf, M; Hadri, L; Tarzami, ST

    2014-01-01

    Altered alpha- and beta-adrenergic receptor signaling is associated with cardiac hypertrophy and failure. Stromal cell-derived factor-1α (SDF-1α) and its cognate receptor CXCR4 have been reported to mediate cardioprotection after injury through the mobilization of stem cells into injured tissue. However, little is known regarding whether SDF-1/CXCR4 induces acute protection following pathological hypertrophy and if so, by what molecular mechanism. We have previously reported that CXCR4 physically interacts with the beta-2 adrenergic receptor and modulates its down stream signaling. Here we have shown that CXCR4 expression prevents beta-adrenergic receptor induced hypertrophy. Cardiac beta-adrenergic receptors were stimulated with the implantation of a subcutaneous osmotic pump administrating isoproterenol and CXCR4 expression was selectively abrogated in cardiomyocytes using Cre-loxP-mediated gene recombination. CXCR4 knockout mice showed worsened fractional shortening and ejection fraction. CXCR4 ablation increased susceptibility to isoproterenol-induced heart failure, by upregulating apoptotic markers and reducing mitochondrial function; cardiac function decreases while fibrosis increases. Additionally, CXCR4 expression was rescued with the use of cardiotropic Adeno-associated viral-9 (AAV9) vectors. CXCR4 gene transfer reduced cardiac apoptotic signaling, improved mitochondrial function and resulted in a recovered cardiac function. Our results represent the first evidence that SDF-1/CXCR4 signaling mediates acute cardioprotection through modulating beta-adrenergic receptor signaling in vivo. PMID:24646609

  13. AKAP-scaffolding proteins and regulation of cardiac physiology

    PubMed Central

    Mauban, JRH; O'Donnell, M; Warrier, S; Manni, S; Bond, M

    2009-01-01

    A kinase anchoring proteins (AKAPs) compose a growing list of diverse but functionally related proteins defined by their ability to bind to the regulatory subunit of protein kinase A. AKAPs perform an integral role in the spatiotemporal modulation of a multitude of cellular signaling pathways. This review highlights the extensive role of AKAPs in cardiac excitation/contraction coupling and cardiac physiology. The literature shows that particular AKAPs are involved in cardiac Ca2+ influx, release, re-uptake, and myocyte repolarization. Studies have also suggested roles for AKAPs in cardiac remodeling. Transgenic studies show functional effects of AKAPs, not only in the cardiovascular system, but in other organ systems as well. PMID:19364910

  14. Nickel suppresses the PACAP-induced increase in guinea pig cardiac neuron excitability

    PubMed Central

    Tompkins, John D.; Merriam, Laura A.; Girard, Beatrice M.; May, Victor

    2015-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a potent intercellular signaling molecule involved in multiple homeostatic functions. PACAP/PAC1 receptor signaling increases excitability of neurons within the guinea pig cardiac ganglia, making them a unique system to establish mechanisms underlying PACAP modulation of neuronal function. Calcium influx is required for the PACAP-increased cardiac neuron excitability, although the pathway is unknown. This study tested whether PACAP enhancement of calcium influx through either T-type or R-type channels contributed to the modulation of excitability. Real-time quantitative polymerase chain reaction analyses indicated transcripts for Cav3.1, Cav3.2, and Cav3.3 T-type isoforms and R-type Cav2.3 in cardiac neurons. These neurons often exhibit a hyperpolarization-induced rebound depolarization that remains when cesium is present to block hyperpolarization-activated nonselective cationic currents (Ih). The T-type calcium channel inhibitors, nickel (Ni2+) or mibefradil, suppressed the rebound depolarization, and treatment with both drugs hyperpolarized cardiac neurons by 2–4 mV. Together, these results are consistent with the presence of functional T-type channels, potentially along with R-type channels, in these cardiac neurons. Fifty micromolar Ni2+, a concentration that suppresses currents in both T-type and R-type channels, blunted the PACAP-initiated increase in excitability. Ni2+ also blunted PACAP enhancement of the hyperpolarization-induced rebound depolarization and reversed the PACAP-mediated increase in excitability, after being initiated, in a subset of cells. Lastly, low voltage-activated currents, measured under perforated patch whole cell recording conditions and potentially flowing through T-type or R-type channels, were enhanced by PACAP. Together, our results suggest that a PACAP-enhanced, Ni2+-sensitive current contributes to PACAP-induced modulation of neuronal excitability. PMID:25810261

  15. Differential Regulation of Cardiac Function and Intracardiac Cytokines by Rapamycin in Healthy and Diabetic Rats.

    PubMed

    Luck, Christian; DeMarco, Vincent G; Mahmood, Abuzar; Gavini, Madhavi P; Pulakat, Lakshmi

    2017-01-01

    Diabetes is comorbid with cardiovascular disease and impaired immunity. Rapamycin improves cardiac functions and extends lifespan by inhibiting the mechanistic target of rapamycin complex 1 (mTORC1). However, in diabetic murine models, Rapamycin elevates hyperglycemia and reduces longevity. Since Rapamycin is an immunosuppressant, we examined whether Rapamycin (750  μ g/kg/day) modulates intracardiac cytokines, which affect the cardiac immune response, and cardiac function in male lean (ZL) and diabetic obese Zucker (ZO) rats. Rapamycin suppressed levels of fasting triglycerides, insulin, and uric acid in ZO but increased glucose. Although Rapamycin improved multiple diastolic parameters ( E / E ', E '/ A ', E / Vp ) initially, these improvements were reversed or absent in ZO at the end of treatment, despite suppression of cardiac fibrosis and phosphoSer473Akt. Intracardiac cytokine protein profiling and Ingenuity® Pathway Analysis indicated suppression of intracardiac immune defense in ZO, in response to Rapamycin treatment in both ZO and ZL. Rapamycin increased fibrosis in ZL without increasing phosphoSer473Akt and differentially modulated anti-fibrotic IL-10, IFN γ , and GM-CSF in ZL and ZO. Therefore, fundamental difference in intracardiac host defense between diabetic ZO and healthy ZL, combined with differential regulation of intracardiac cytokines by Rapamycin in ZO and ZL hearts, underlies differential cardiac outcomes of Rapamycin treatment in health and diabetes.

  16. Differential Regulation of Cardiac Function and Intracardiac Cytokines by Rapamycin in Healthy and Diabetic Rats

    PubMed Central

    Luck, Christian; DeMarco, Vincent G.; Mahmood, Abuzar; Gavini, Madhavi P.

    2017-01-01

    Diabetes is comorbid with cardiovascular disease and impaired immunity. Rapamycin improves cardiac functions and extends lifespan by inhibiting the mechanistic target of rapamycin complex 1 (mTORC1). However, in diabetic murine models, Rapamycin elevates hyperglycemia and reduces longevity. Since Rapamycin is an immunosuppressant, we examined whether Rapamycin (750 μg/kg/day) modulates intracardiac cytokines, which affect the cardiac immune response, and cardiac function in male lean (ZL) and diabetic obese Zucker (ZO) rats. Rapamycin suppressed levels of fasting triglycerides, insulin, and uric acid in ZO but increased glucose. Although Rapamycin improved multiple diastolic parameters (E/E′, E′/A′, E/Vp) initially, these improvements were reversed or absent in ZO at the end of treatment, despite suppression of cardiac fibrosis and phosphoSer473Akt. Intracardiac cytokine protein profiling and Ingenuity® Pathway Analysis indicated suppression of intracardiac immune defense in ZO, in response to Rapamycin treatment in both ZO and ZL. Rapamycin increased fibrosis in ZL without increasing phosphoSer473Akt and differentially modulated anti-fibrotic IL-10, IFNγ, and GM-CSF in ZL and ZO. Therefore, fundamental difference in intracardiac host defense between diabetic ZO and healthy ZL, combined with differential regulation of intracardiac cytokines by Rapamycin in ZO and ZL hearts, underlies differential cardiac outcomes of Rapamycin treatment in health and diabetes. PMID:28408970

  17. Understanding the physiology of mindfulness: aortic hemodynamics and heart rate variability.

    PubMed

    May, Ross W; Bamber, Mandy; Seibert, Gregory S; Sanchez-Gonzalez, Marcos A; Leonard, Joseph T; Salsbury, Rebecca A; Fincham, Frank D

    2016-01-01

    Data were collected to examine autonomic and hemodynamic cardiovascular modulation underlying mindfulness from two independent samples. An initial sample (N = 185) underwent laboratory assessments of central aortic blood pressure and myocardial functioning to investigated the association between mindfulness and cardiac functioning. Controlling for religiosity, mindfulness demonstrated a strong negative relationship with myocardial oxygen consumption and left ventricular work but not heart rate or blood pressure. A second sample (N = 124) underwent a brief (15 min) mindfulness inducing intervention to examine the influence of mindfulness on cardiovascular autonomic modulation via blood pressure variability and heart rate variability. The intervention had a strong positive effect on cardiovascular modulation by decreasing cardiac sympathovagal tone, vasomotor tone, vascular resistance and ventricular workload. This research establishes a link between mindfulness and cardiovascular functioning via correlational and experimental methodologies in samples of mostly female undergraduates. Future directions for research are outlined.

  18. Cardiac Remodeling: Endothelial Cells Have More to Say Than Just NO

    PubMed Central

    Segers, Vincent F. M.; Brutsaert, Dirk L.; De Keulenaer, Gilles W.

    2018-01-01

    The heart is a highly structured organ consisting of different cell types, including myocytes, endothelial cells, fibroblasts, stem cells, and inflammatory cells. This pluricellularity provides the opportunity of intercellular communication within the organ, with subsequent optimization of its function. Intercellular cross-talk is indispensable during cardiac development, but also plays a substantial modulatory role in the normal and failing heart of adults. More specifically, factors secreted by cardiac microvascular endothelial cells modulate cardiac performance and either positively or negatively affect cardiac remodeling. The role of endothelium-derived small molecules and peptides—for instance NO or endothelin-1—has been extensively studied and is relatively well defined. However, endothelial cells also secrete numerous larger proteins. Information on the role of these proteins in the heart is scattered throughout the literature. In this review, we will link specific proteins that modulate cardiac contractility or cardiac remodeling to their expression by cardiac microvascular endothelial cells. The following proteins will be discussed: IL-6, periostin, tenascin-C, thrombospondin, follistatin-like 1, frizzled-related protein 3, IGF-1, CTGF, dickkopf-3, BMP-2 and−4, apelin, IL-1β, placental growth factor, LIF, WISP-1, midkine, and adrenomedullin. In the future, it is likely that some of these proteins can serve as markers of cardiac remodeling and that the concept of endothelial function and dysfunction might have to be redefined as we learn more about other factors secreted by ECs besides NO. PMID:29695980

  19. Improved bioavailability of targeted Curcumin delivery efficiently regressed cardiac hypertrophy by modulating apoptotic load within cardiac microenvironment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, Aramita, E-mail: aramitaray@yahoo.co.in; Rana, Santanu, E-mail: rana.santanu@gmail.com; Banerjee, Durba, E-mail: durba.research@gmail.com

    Cardiomyocyte apoptosis acts as a prime modulator of cardiac hypertrophy leading to heart failure, a major cause of human mortality worldwide. Recent therapeutic interventions have focussed on translational applications of diverse pharmaceutical regimes among which, Curcumin (from Curcuma longa) is known to have an anti-hypertrophic potential but with limited pharmacological efficacies due to low aqueous solubility and poor bioavailability. In this study, Curcumin encapsulated by carboxymethyl chitosan (CMC) nanoparticle conjugated to a myocyte specific homing peptide was successfully delivered in bioactive form to pathological myocardium for effective regression of cardiac hypertrophy in a rat (Rattus norvegicus) model. Targeted nanotization showedmore » higher cardiac bioavailability of Curcumin at a low dose of 5 mg/kg body weight compared to free Curcumin at 35 mg/kg body weight. Moreover, Curcumin/CMC-peptide treatment during hypertrophy significantly improved cardiac function by downregulating expression of hypertrophy marker genes (ANF, β-MHC), apoptotic mediators (Bax, Cytochrome-c) and activity of apoptotic markers (Caspase 3 and PARP); whereas free Curcumin in much higher dose showed minimal improvement during compromised cardiac function. Targeted Curcumin treatment significantly lowered p53 expression and activation in diseased myocardium via inhibited interaction of p53 with p300-HAT. Thus attenuated acetylation of p53 facilitated p53 ubiquitination and reduced the apoptotic load in hypertrophied cardiomyocytes; thereby limiting cardiomyocytes' need to enter the regeneration cycle during hypertrophy. This study elucidates for the first time an efficient targeted delivery regimen for Curcumin and also attributes towards probable mechanistic insight into its therapeutic potential as a cardio-protective agent for regression of cardiac hypertrophy. - Highlights: • Cardiomyocyte targeted Curcumin/CMC-peptide increases bioavailability of the drug. • Curcumin nanoparticle regresses cardiac hypertrophy by reducing myocyte apoptosis. • Targeted Curcumin shows higher efficacy over free Curcumin to regress hypertrophy. • Curcumin modulates p300-HAT axis to facilitate p53 degradation.« less

  20. Modulation of cardiac fibrosis by Krüppel-like factor 6 through transcriptional control of thrombospondin 4 in cardiomyocytes

    PubMed Central

    Sawaki, Daigo; Hou, Lianguo; Tomida, Shota; Sun, Junqing; Zhan, Hong; Aizawa, Kenichi; Son, Bo-Kyung; Kariya, Taro; Takimoto, Eiki; Otsu, Kinya; Conway, Simon J.; Manabe, Ichiro; Komuro, Issei; Friedman, Scott L.; Nagai, Ryozo; Suzuki, Toru

    2015-01-01

    Aims Krüppel-like factors (KLFs) are a family of transcription factors which play important roles in the heart under pathological and developmental conditions. We previously identified and cloned Klf6 whose homozygous mutation in mice results in embryonic lethality suggesting a role in cardiovascular development. Effects of KLF6 on pathological regulation of the heart were investigated in the present study. Methods and results Mice heterozygous for Klf6 resulted in significantly diminished levels of cardiac fibrosis in response to angiotensin II infusion. Intriguingly, a similar phenotype was seen in cardiomyocyte-specific Klf6 knockout mice, but not in cardiac fibroblast-specific knockout mice. Microarray analysis revealed increased levels of the extracellular matrix factor, thrombospondin 4 (TSP4), in the Klf6-ablated heart. Mechanistically, KLF6 directly suppressed Tsp4 expression levels, and cardiac TSP4 regulated the activation of cardiac fibroblasts to regulate cardiac fibrosis. Conclusion Our present studies on the cardiac function of KLF6 show a new mechanism whereby cardiomyocytes regulate cardiac fibrosis through transcriptional control of the extracellular matrix factor, TSP4, which, in turn, modulates activation of cardiac fibroblasts. PMID:25987545

  1. Exercise improves cardiac autonomic function in obesity and diabetes.

    PubMed

    Voulgari, Christina; Pagoni, Stamatina; Vinik, Aaron; Poirier, Paul

    2013-05-01

    Physical activity is a key element in the prevention and management of obesity and diabetes. Regular physical activity efficiently supports diet-induced weight loss, improves glycemic control, and can prevent or delay type 2 diabetes diagnosis. Furthermore, physical activity positively affects lipid profile, blood pressure, reduces the rate of cardiovascular events and associated mortality, and restores the quality of life in type 2 diabetes. However, recent studies have documented that a high percentage of the cardiovascular benefits of exercise cannot be attributed solely to enhanced cardiovascular risk factor modulation. Obesity in concert with diabetes is characterized by sympathetic overactivity and the progressive loss of cardiac parasympathetic influx. These are manifested via different pathogenetic mechanisms, including hyperinsulinemia, visceral obesity, subclinical inflammation and increased thrombosis. Cardiac autonomic neuropathy is an underestimated risk factor for the increased cardiovascular morbidity and mortality associated with obesity and diabetes. The same is true for the role of physical exercise in the restoration of the heart cardioprotective autonomic modulation in these individuals. This review addresses the interplay of cardiac autonomic function in obesity and diabetes, and focuses on the importance of exercise in improving cardiac autonomic dysfunction. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. FGF2 modulates cardiac remodeling in an isoform- and sex-specific manner

    PubMed Central

    Nusayr, Eyad; Sadideen, Doraid Tarek; Doetschman, Tom

    2013-01-01

    Pathological cardiac hypertrophy and cardiac fibrosis are remodeling events that result in mechanical stiffness and pathophysiological changes in the myocardium. Both humans and animal models display a sexual dimorphism where females are more protected from pathological remodeling. Fibroblast growth factor 2 (FGF2) mediates cardiac hypertrophy, cardiac fibrosis, and protection against cardiac injury, and is made in high molecular weight and low molecular weight isoforms (Hi FGF2 and Lo FGF2, respectively). Although some light has been shed on isoform-specific functions in cardiac pathophysiology, their roles in pathologic cardiac remodeling have yet to be determined. We tested the hypothesis that Lo FGF2 and Hi FGF2 modulate pathological cardiac remodeling in an isoform-specific manner. Young adult male and female mice between 8 and 12 weeks of age of mixed background that were deficient in either Hi FGF2 or Lo FGF2 (Hi KO or Lo KO, respectively) were subjected to daily injections of isoproterenol (Iso) for 4 days after which their hearts were compared to wild-type cohorts. Post-Iso treatment, female Lo KO hearts do not exhibit significant differences in their hypertrophic and fibrotic response, whereas female Hi KO hearts present with a blunted hypertrophic response. In male animals, Lo KO hearts present with an exacerbated fibrotic response and increased α-smooth muscle actin protein expression, whereas Hi KO hearts present with a blunted fibrotic response and increased atrial natriuretic factor protein expression Thus, in female hearts Hi FGF2 mediates cardiac hypertrophy, whereas in male hearts Lo FGF2 and Hi FGF2 display an antithetical role in cardiac fibrosis where Lo FGF2 is protective while Hi FGF2 is damaging. In conclusion, cardiac remodeling following catecholamine overactivation is modulated by FGF2 in isoform- and sex-specific manners. PMID:24244869

  3. The Role of Exercise in Cardiac Aging: From Physiology to Molecular Mechanisms

    PubMed Central

    Roh, Jason; Rhee, James; Chaudhari, Vinita; Rosenzweig, Anthony

    2015-01-01

    Aging induces structural and functional changes in the heart that are associated with increased risk of cardiovascular disease and impaired functional capacity in the elderly. Exercise is a diagnostic and therapeutic tool, with the potential to provide insights into clinical diagnosis and prognosis, as well as the molecular mechanisms by which aging influences cardiac physiology and function. In this review, we first provide an overview of how aging impacts the cardiac response to exercise and the implications this has for functional capacity in older adults. We then review the underlying molecular mechanisms by which cardiac aging contributes to exercise intolerance, and conversely how exercise training can potentially modulate aging phenotypes in the heart. Finally, we highlight the potential use of these exercise models to complement models of disease in efforts to uncover new therapeutic targets to prevent or treat heart disease in the aging population. PMID:26838314

  4. The Role of Exercise in Cardiac Aging: From Physiology to Molecular Mechanisms.

    PubMed

    Roh, Jason; Rhee, James; Chaudhari, Vinita; Rosenzweig, Anthony

    2016-01-22

    Aging induces structural and functional changes in the heart that are associated with increased risk of cardiovascular disease and impaired functional capacity in the elderly. Exercise is a diagnostic and therapeutic tool, with the potential to provide insights into clinical diagnosis and prognosis, as well as the molecular mechanisms by which aging influences cardiac physiology and function. In this review, we first provide an overview of how aging impacts the cardiac response to exercise, and the implications this has for functional capacity in older adults. We then review the underlying molecular mechanisms by which cardiac aging contributes to exercise intolerance, and conversely how exercise training can potentially modulate aging phenotypes in the heart. Finally, we highlight the potential use of these exercise models to complement models of disease in efforts to uncover new therapeutic targets to prevent or treat heart disease in the aging population. © 2016 American Heart Association, Inc.

  5. The endothelin pathway: a protective or detrimental target of bardoxolone methyl on cardiac function in patients with advanced chronic kidney disease?

    PubMed

    Camer, Danielle; Huang, Xu-Feng

    2014-01-01

    Bardoxolone methyl has been reported to cause detrimental cardiovascular events in the terminated BEACON Phase III human clinical trial via modulation of the renal endothelin pathway. However, the effects of bardoxolone methyl administration on the endothelin pathway in the heart are unknown. Our purpose in this perspective is to highlight the distinctive opposing roles of the renal and heart endothelin pathway in cardiac function. Furthermore, we address the need for further investigation in order to determine if bardoxolone methyl has a protective role in cardiac function through the suppression of the endothelin pathway in the heart. © 2014 S. Karger AG, Basel.

  6. Adjustment of Dysregulated Ceramide Metabolism in a Murine Model of Sepsis-Induced Cardiac Dysfunction

    PubMed Central

    Chung, Ha-Yeun; Kollmey, Anna S.; Schrepper, Andrea; Kohl, Matthias; Bläss, Markus F.; Stehr, Sebastian N.; Lupp, Amelie; Gräler, Markus H.; Claus, Ralf A.

    2017-01-01

    Cardiac dysfunction, in particular of the left ventricle, is a common and early event in sepsis, and is strongly associated with an increase in patients’ mortality. Acid sphingomyelinase (SMPD1)—the principal regulator for rapid and transient generation of the lipid mediator ceramide—is involved in both the regulation of host response in sepsis as well as in the pathogenesis of chronic heart failure. This study determined the degree and the potential role to which SMPD1 and its modulation affect sepsis-induced cardiomyopathy using both genetically deficient and pharmacologically-treated animals in a polymicrobial sepsis model. As surrogate parameters of sepsis-induced cardiomyopathy, cardiac function, markers of oxidative stress as well as troponin I levels were found to be improved in desipramine-treated animals, desipramine being an inhibitor of ceramide formation. Additionally, ceramide formation in cardiac tissue was dysregulated in SMPD1+/+ as well as SMPD1−/− animals, whereas desipramine pretreatment resulted in stable, but increased ceramide content during host response. This was a result of elevated de novo synthesis. Strikingly, desipramine treatment led to significantly improved levels of surrogate markers. Furthermore, similar results in desipramine-pretreated SMPD1−/− littermates suggest an SMPD1-independent pathway. Finally, a pattern of differentially expressed transcripts important for regulation of apoptosis as well as antioxidative and cytokine response supports the concept that desipramine modulates ceramide formation, resulting in beneficial myocardial effects. We describe a novel, protective role of desipramine during sepsis-induced cardiac dysfunction that controls ceramide content. In addition, it may be possible to modulate cardiac function during host response by pre-conditioning with the Food and Drug Administration (FDA)-approved drug desipramine. PMID:28420138

  7. Adjustment of Dysregulated Ceramide Metabolism in a Murine Model of Sepsis-Induced Cardiac Dysfunction.

    PubMed

    Chung, Ha-Yeun; Kollmey, Anna S; Schrepper, Andrea; Kohl, Matthias; Bläss, Markus F; Stehr, Sebastian N; Lupp, Amelie; Gräler, Markus H; Claus, Ralf A

    2017-04-15

    Cardiac dysfunction, in particular of the left ventricle, is a common and early event in sepsis, and is strongly associated with an increase in patients' mortality. Acid sphingomyelinase (SMPD1)-the principal regulator for rapid and transient generation of the lipid mediator ceramide-is involved in both the regulation of host response in sepsis as well as in the pathogenesis of chronic heart failure. This study determined the degree and the potential role to which SMPD1 and its modulation affect sepsis-induced cardiomyopathy using both genetically deficient and pharmacologically-treated animals in a polymicrobial sepsis model. As surrogate parameters of sepsis-induced cardiomyopathy, cardiac function, markers of oxidative stress as well as troponin I levels were found to be improved in desipramine-treated animals, desipramine being an inhibitor of ceramide formation. Additionally, ceramide formation in cardiac tissue was dysregulated in SMPD1 +/+ as well as SMPD1 -/- animals, whereas desipramine pretreatment resulted in stable, but increased ceramide content during host response. This was a result of elevated de novo synthesis. Strikingly, desipramine treatment led to significantly improved levels of surrogate markers. Furthermore, similar results in desipramine-pretreated SMPD1 -/- littermates suggest an SMPD1-independent pathway. Finally, a pattern of differentially expressed transcripts important for regulation of apoptosis as well as antioxidative and cytokine response supports the concept that desipramine modulates ceramide formation, resulting in beneficial myocardial effects. We describe a novel, protective role of desipramine during sepsis-induced cardiac dysfunction that controls ceramide content. In addition, it may be possible to modulate cardiac function during host response by pre-conditioning with the Food and Drug Administration (FDA)-approved drug desipramine.

  8. Music Improves Subjective Feelings Leading to Cardiac Autonomic Nervous Modulation: A Pilot Study

    PubMed Central

    Kume, Satoshi; Nishimura, Yukako; Mizuno, Kei; Sakimoto, Nae; Hori, Hiroshi; Tamura, Yasuhisa; Yamato, Masanori; Mitsuhashi, Rika; Akiba, Keigo; Koizumi, Jun-ichi; Watanabe, Yasuyoshi; Kataoka, Yosky

    2017-01-01

    It is widely accepted that listening to music improves subjective feelings and reduces fatigue sensations, and different kinds of music lead to different activations of these feelings. Recently, cardiac autonomic nervous modulation has been proposed as a useful objective indicator of fatigue. However, scientific considerations of the relation between feelings of fatigue and cardiac autonomic nervous modulation while listening to music are still lacking. In this study, we examined which subjective feelings of fatigue are related to participants' cardiac autonomic nervous function while they listen to music. We used an album of comfortable and relaxing environmental music, with blended sounds from a piano and violin as well as natural sound sources. We performed a crossover trial of environmental music and silent sessions for 20 healthy subjects, 12 females, and 8 males, after their daily work shift. We measured changes in eight types of subjective feelings, including healing, fatigue, sleepiness, relaxation, and refreshment, using the KOKORO scale, a subjective mood measurement system for self-reported feelings. Further, we obtained measures of cardiac autonomic nervous function on the basis of heart rate variability before and after the sessions. During the music session, subjective feelings significantly shifted toward healing and a secure/relaxed feeling and these changes were greater than those in the silent session. Heart rates (ΔHR) in the music session significantly decreased compared with those in the silent session. Other cardiac autonomic parameters such as high-frequency (HF) component and the ratio of low-frequency (LF) and HF components (LF/HF) were similar in the two sessions. In the linear regression analysis of the feelings with ΔHR and changes in LF/HF (ΔLF/HF), increases and decreases in ΔHR were correlated to the feeling axes of Fatigue-Healing and Anxiety/Tension–Security/Relaxation, whereas those in ΔLF/HF were related to the feeling axes of Sleepiness–Wakefulness and Gloomy–Refreshed. This indicated that listening to music improved the participants' feelings of fatigue and decreased their heart rates. However, it did not reduce the cardiac LF/HF, suggesting that cardiac LF/HF might show a delayed response to fatigue. Thus, we demonstrated changes in cardiac autonomic nervous functions based on feelings of fatigue. PMID:28344545

  9. Music Improves Subjective Feelings Leading to Cardiac Autonomic Nervous Modulation: A Pilot Study.

    PubMed

    Kume, Satoshi; Nishimura, Yukako; Mizuno, Kei; Sakimoto, Nae; Hori, Hiroshi; Tamura, Yasuhisa; Yamato, Masanori; Mitsuhashi, Rika; Akiba, Keigo; Koizumi, Jun-Ichi; Watanabe, Yasuyoshi; Kataoka, Yosky

    2017-01-01

    It is widely accepted that listening to music improves subjective feelings and reduces fatigue sensations, and different kinds of music lead to different activations of these feelings. Recently, cardiac autonomic nervous modulation has been proposed as a useful objective indicator of fatigue. However, scientific considerations of the relation between feelings of fatigue and cardiac autonomic nervous modulation while listening to music are still lacking. In this study, we examined which subjective feelings of fatigue are related to participants' cardiac autonomic nervous function while they listen to music. We used an album of comfortable and relaxing environmental music, with blended sounds from a piano and violin as well as natural sound sources. We performed a crossover trial of environmental music and silent sessions for 20 healthy subjects, 12 females, and 8 males, after their daily work shift. We measured changes in eight types of subjective feelings, including healing, fatigue, sleepiness, relaxation, and refreshment, using the KOKORO scale, a subjective mood measurement system for self-reported feelings. Further, we obtained measures of cardiac autonomic nervous function on the basis of heart rate variability before and after the sessions. During the music session, subjective feelings significantly shifted toward healing and a secure/relaxed feeling and these changes were greater than those in the silent session. Heart rates (ΔHR) in the music session significantly decreased compared with those in the silent session. Other cardiac autonomic parameters such as high-frequency (HF) component and the ratio of low-frequency (LF) and HF components (LF/HF) were similar in the two sessions. In the linear regression analysis of the feelings with ΔHR and changes in LF/HF (ΔLF/HF), increases and decreases in ΔHR were correlated to the feeling axes of Fatigue-Healing and Anxiety/Tension-Security/Relaxation, whereas those in ΔLF/HF were related to the feeling axes of Sleepiness-Wakefulness and Gloomy-Refreshed. This indicated that listening to music improved the participants' feelings of fatigue and decreased their heart rates. However, it did not reduce the cardiac LF/HF, suggesting that cardiac LF/HF might show a delayed response to fatigue. Thus, we demonstrated changes in cardiac autonomic nervous functions based on feelings of fatigue.

  10. Effects of Kaempferia parviflora Wall. Ex. Baker and sildenafil citrate on cGMP level, cardiac function, and intracellular Ca2+ regulation in rat hearts.

    PubMed

    Weerateerangkul, Punate; Palee, Siripong; Chinda, Kroekkiat; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2012-09-01

    Although Kaempferia parviflora extract (KPE) and its flavonoids have positive effects on the nitric oxide (NO) signaling pathway, its mechanisms on the heart are still unclear. Because our previous studies demonstrated that KPE decreased defibrillation efficacy in swine similar to that of sildenafil citrate, the phosphodiesterase-5 inhibitor, it is possible that KPE may affect the cardiac NO signaling pathway. In the present study, the effects of KPE and sildenafil citrate on cyclic guanosine monophosphate (cGMP) level, modulation of cardiac function, and Ca transients in ventricular myocytes were investigated. In a rat model, cardiac cGMP level, cardiac function, and Ca transients were measured before and after treatment with KPE and sildenafil citrate. KPE significantly increased the cGMP level and decreased cardiac function and Ca transient. These effects were similar to those found in the sildenafil citrate-treated group. Furthermore, the nonspecific NOS inhibitor could abolish the effects of KPE and sildenafil citrate on Ca transient. KPE has positive effect on NO signaling in the heart, resulting in an increased cGMP level, similar to that of sildenafil citrate. This effect was found to influence the physiology of normal heart via the attenuation of cardiac function and the reduction of Ca transient in ventricular myocytes.

  11. Measures of Autonomic Nervous System

    DTIC Science & Technology

    2011-04-01

    activation encompass non-invasive tools, which measure cardiac, skin conductance, respiratory , and vascular activity. Choice of tools is dependent upon...digestion, excretion, and cardiac and respiratory activity. The ANS consists of the sympathetic and parasympathetic divisions and acts through a... respiratory cycles. Generally, these two systems should be seen as permanently modulating vital functions to achieve homeostasis. Since both systems are

  12. Phase dependencies of the human baroreceptor reflex

    NASA Technical Reports Server (NTRS)

    Seidel, H.; Herzel, H.; Eckberg, D. L.

    1997-01-01

    We studied the influence of respiratory and cardiac phase on responses of the cardiac pacemaker to brief (0.35-s) increases of carotid baroreceptor afferent traffic provoked by neck suction in seven healthy young adult subjects. Cardiac responses to neck suction were measured indirectly from electrocardiographic changes of heart period. Our results show that it is possible to separate the influences of respiratory and cardiac phases at the onset of a neck suction impulse by a product of two factors: one depending only on the respiratory phase and one depending only on the cardiac phase. This result is consistent with the hypothesis that efferent vagal activity is a function of afferent baroreceptor activity, whereas respiratory neurons modulate that medullary throughput independent of the cardiac phase. Furthermore, we have shown that stimulus broadening and stimulus cropping influence the outcome of neck suction experiments in a way that makes it virtually impossible to obtain information on the phase dependency of the cardiac pacemaker's sensitivity to vagal stimulation without accurate knowledge of the functional shape of stimulus broadening.

  13. Skeletal and cardiac muscle pericytes: Functions and therapeutic potential

    PubMed Central

    Murray, Iain R.; Baily, James E.; Chen, William C.W.; Dar, Ayelet; Gonzalez, Zaniah N.; Jensen, Andrew R.; Petrigliano, Frank A.; Deb, Arjun; Henderson, Neil C.

    2017-01-01

    Pericytes are periendothelial mesenchymal cells residing within the microvasculature. Skeletal muscle and cardiac pericytes are now recognized to fulfill an increasing number of functions in normal tissue homeostasis, including contributing to microvascular function by maintaining vessel stability and regulating capillary flow. In the setting of muscle injury, pericytes contribute to a regenerative microenvironment through release of trophic factors and by modulating local immune responses. In skeletal muscle, pericytes also directly enhance tissue healing by differentiating into myofibers. Conversely, pericytes have also been implicated in the development of disease states, including fibrosis, heterotopic ossication and calcification, atherosclerosis, and tumor angiogenesis. Despite increased recognition of pericyte heterogeneity, it is not yet clear whether specific subsets of pericytes are responsible for individual functions in skeletal and cardiac muscle homeostasis and disease. PMID:27595928

  14. Cardiac myofilaments: mechanics and regulation

    NASA Technical Reports Server (NTRS)

    de Tombe, Pieter P.; Bers, D. M. (Principal Investigator)

    2003-01-01

    The mechanical properties of the cardiac myofilament are an important determinant of pump function of the heart. This report is focused on the regulation of myofilament function in cardiac muscle. Calcium ions form the trigger that induces activation of the thin filament which, in turn, allows for cross-bridge formation, ATP hydrolysis, and force development. The structure and protein-protein interactions of the cardiac sarcomere that are responsible for these processes will be reviewed. The molecular mechanism that underlies myofilament activation is incompletely understood. Recent experimental approaches have been employed to unravel the mechanism and regulation of myofilament mechanics and energetics by activator calcium and sarcomere length, as well as contractile protein phosphorylation mediated by protein kinase A. Central to these studies is the question whether such factors impact on muscle function simply by altering thin filament activation state, or whether modulation of cross-bridge cycling also plays a part in the responses of muscle to these stimuli.

  15. A-kinase anchoring proteins that regulate cardiac remodeling.

    PubMed

    Carnegie, Graeme K; Burmeister, Brian T

    2011-11-01

    In response to injury or stress, the adult heart undergoes maladaptive changes, collectively defined as pathological cardiac remodeling. Here, we focus on the role of A-kinase anchoring proteins (AKAPs) in 3 main areas associated with cardiac remodeling and the progression of heart failure: excitation-contraction coupling, sarcomeric regulation, and induction of pathological hypertrophy. AKAPs are a diverse family of scaffold proteins that form multiprotein complexes, integrating cAMP signaling with protein kinases, phosphatases, and other effector proteins. Many AKAPs have been characterized in the heart, where they play a critical role in modulating cardiac function.

  16. A-Kinase Anchoring Proteins That Regulate Cardiac Remodeling

    PubMed Central

    Carnegie, Graeme K.; Burmeister, Brian T.

    2012-01-01

    In response to injury or stress, the adult heart undergoes maladaptive changes, collectively defined as pathological cardiac remodeling. Here, we focus on the role of A-kinase anchoring proteins (AKAPs) in 3 main areas associated with cardiac remodeling and the progression of heart failure: excitation–contraction coupling, sarcomeric regulation, and induction of pathological hypertrophy. AKAPs are a diverse family of scaffold proteins that form multi-protein complexes, integrating cAMP signaling with protein kinases, phosphatases, and other effector proteins. Many AKAPs have been characterized in the heart, where they play a critical role in modulating cardiac function. PMID:22075671

  17. Acute Alcohol Modulates Cardiac Function as PI3K/Akt Regulates Oxidative Stress

    PubMed Central

    Umoh, Nsini A.; Walker, Robin K.; Al-Rubaiee, Mustafa; Jeffress, Miara A.; Haddad, Georges E.

    2015-01-01

    Background Clinical manifestations of alcohol abuse on the cardiac muscle include defective contractility with the development of heart failure. Interestingly, low alcohol consumption has been associated with reduced risk of cardiovascular disease. Although several hypotheses have been postulated for alcoholic cardiomyopathy and for the low-dose beneficial cardiovascular effects, the precise mechanisms and mediators remain largely undefined. We hypothesize that modulation of oxidative stress by PI3K/Akt plays a key role in the cardiac functional outcome to acute alcohol exposure. Methods Thus, acutely exposed rat cardiac tissue and cardiocytes to low (LA: 5 mM), moderate (MA: 25 mM), and high (HA: 100 mM) alcohol were assessed for markers of oxidative stress in the presence and absence of PI3K/Akt activators (IGF-1 0.1 μM or constitutively active PI3K: Ad.BD110 transfection) or inhibitor (LY294002 1 μMor Akt-negative construct Ad.Akt(K179M) transfection). Results Acute LA reduced Akt, superoxide dismutase (SOD-3) and NFκB, ERK1, and p38 MAPK gene expression. Acute HA only increased that of SOD-3 and NFκB. These effects were generally inhibited by Ad.Akt(K179M) and enhanced with Ad.BD110 transfection. In parallel, LA reduced but HA enhanced Akt activity, which was reversed by IGF-1 and inhibited by Ad.Akt(K179M), respectively. Also, LA reduced caspase 3/7 activity and oxidative stress, while HA increased both. The former was blocked, while the latter effect was enhanced by Ad.Akt(K179M). The reverse was true with PI3K/Akt activation. This translated into reduced viability with HA, with no effect with LA. On the functional level, acute LA improved cardiac output and ejection fraction, mainly through increased stroke volume. This was accompanied with enhanced end-systolic pressure–volume relationship and preload recruitable stroke work. Opposite effect was recorded for HA. LA and HA in vivo functional effects were alleviated by LY and enhanced by IGF-1 treatment. Conclusions Acute LA and HA seem to oppositely affect cardiac function through modulation of oxidative stress where PI3K/Akt plays a pivotal role. PMID:24962888

  18. Roles of PDE1 in Pathological Cardiac Remodeling and Dysfunction.

    PubMed

    Chen, Si; Knight, Walter E; Yan, Chen

    2018-04-23

    Pathological cardiac hypertrophy and dysfunction is a response to various stress stimuli and can result in reduced cardiac output and heart failure. Cyclic nucleotide signaling regulates several cardiac functions including contractility, remodeling, and fibrosis. Cyclic nucleotide phosphodiesterases (PDEs), by catalyzing the hydrolysis of cyclic nucleotides, are critical in the homeostasis of intracellular cyclic nucleotide signaling and hold great therapeutic potential as drug targets. Recent studies have revealed that the inhibition of the PDE family member PDE1 plays a protective role in pathological cardiac remodeling and dysfunction by the modulation of distinct cyclic nucleotide signaling pathways. This review summarizes recent key findings regarding the roles of PDE1 in the cardiac system that can lead to a better understanding of its therapeutic potential.

  19. FOXO3a regulates BNIP3 and modulates mitochondrial calcium, dynamics, and function in cardiac stress

    PubMed Central

    Kohlbrenner, Erik; Gamb, Scott I.; Guenzel, Adam J.; Klaus, Katherine; Fayyaz, Ahmed U.; Nair, K. Sreekumaran; Hajjar, Roger J.

    2016-01-01

    The forkhead box O3a (FOXO3a) transcription factor has been shown to regulate glucose metabolism, muscle atrophy, and cell death in postmitotic cells. Its role in regulation of mitochondrial and myocardial function is not well studied. Based on previous work, we hypothesized that FOXO3a, through BCL2/adenovirus E1B 19-kDa protein-interacting protein 3 (BNIP3), modulates mitochondrial morphology and function in heart failure (HF). We modulated the FOXO3a-BNIP3 pathway in normal and phenylephrine (PE)-stressed adult cardiomyocytes (ACM) in vitro and developed a cardiotropic adeno-associated virus serotype 9 encoding dominant-negative FOXO3a (AAV9.dn-FX3a) for gene delivery in a rat model of HF with preserved ejection fraction (HFpEF). We found that FOXO3a upregulates BNIP3 expression in normal and PE-stressed ACM, with subsequent increases in mitochondrial Ca2+, leading to decreased mitochondrial membrane potential, mitochondrial fragmentation, and apoptosis. Whereas dn-FX3a attenuated the increase in BNIP3 expression and its consequences in PE-stressed ACM, AAV9.dn-FX3a delivery in an experimental model of HFpEF decreased BNIP3 expression, reversed adverse left ventricular remodeling, and improved left ventricular systolic and, particularly, diastolic function, with improvements in mitochondrial structure and function. Moreover, AAV9.dn-FX3a restored phospholamban phosphorylation at S16 and enhanced dynamin-related protein 1 phosphorylation at S637. Furthermore, FOXO3a upregulates maladaptive genes involved in mitochondrial apoptosis, autophagy, and cardiac atrophy. We conclude that FOXO3a activation in cardiac stress is maladaptive, in that it modulates Ca2+ cycling, Ca2+ homeostasis, and mitochondrial dynamics and function. Our results suggest an important role of FOXO3a in HF, making it an attractive potential therapeutic target. Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/role-of-foxo3a-in-heart-failure/. PMID:27694219

  20. Simulation system of arrhythmia using ActiveX control.

    PubMed

    Takeuchi, Akihiro; Hirose, Minoru; Hamada, Atsushi; Ikeda, Noriaki

    2005-07-01

    A simulation system for arrhythmias has been developed using Windows-based software technology, ActiveX control. The cardiac module consists of six cells, the sinus, atrium, AV node, ventricle, and ectopic foci. The physiological properties of the cells, the automaticity and conduction delay, were modelled, respectively, by the phase response curve and the excitability recovery curve. Cell functions were implemented in the ActiveX control and incorporated into the cardiac module. The system draws the ECG sequence as a ladder diagram in real time. The system interactively shows diverse arrhythmias for various user settings of the cell function and bidirectional conduction between the cells. Users are able to experiment virtually by setting up a so-called electrophysiological stimulation. This system is useful for learning and for teaching the interaction between the cells and arrhythmias.

  1. The Neural Crest in Cardiac Congenital Anomalies

    PubMed Central

    Keyte, Anna; Hutson, Mary Redmond

    2012-01-01

    This review discusses the function of neural crest as they relate to cardiovascular defects. The cardiac neural crest cells are a subpopulation of cranial neural crest discovered nearly 30 years ago by ablation of premigratory neural crest. The cardiac neural crest cells are necessary for normal cardiovascular development. We begin with a description of the crest cells in normal development, including their function in remodeling the pharyngeal arch arteries, outflow tract septation, valvulogenesis, and development of the cardiac conduction system. The cells are also responsible for modulating signaling in the caudal pharynx, including the second heart field. Many of the molecular pathways that are known to influence specification, migration, patterning and final targeting of the cardiac neural crest cells are reviewed. The cardiac neural crest cells play a critical role in the pathogenesis of various human cardiocraniofacial syndromes such as DiGeorge, Velocardiofacial, CHARGE, Fetal Alcohol, Alagille, LEOPARD, and Noonan syndromes, as well as Retinoic Acid Embryopathy. The loss of neural crest cells or their dysfunction may not always directly cause abnormal cardiovascular development, but are involved secondarily because crest cells represent a major component in the complex tissue interactions in the head, pharynx and outflow tract. Thus many of the human syndromes linking defects in the heart, face and brain can be better understood when considered within the context of a single cardiocraniofacial developmental module with the neural crest being a key cell type that interconnects the regions. PMID:22595346

  2. Improved bioavailability of targeted Curcumin delivery efficiently regressed cardiac hypertrophy by modulating apoptotic load within cardiac microenvironment.

    PubMed

    Ray, Aramita; Rana, Santanu; Banerjee, Durba; Mitra, Arkadeep; Datta, Ritwik; Naskar, Shaon; Sarkar, Sagartirtha

    2016-01-01

    Cardiomyocyte apoptosis acts as a prime modulator of cardiac hypertrophy leading to heart failure, a major cause of human mortality worldwide. Recent therapeutic interventions have focussed on translational applications of diverse pharmaceutical regimes among which, Curcumin (from Curcuma longa) is known to have an anti-hypertrophic potential but with limited pharmacological efficacies due to low aqueous solubility and poor bioavailability. In this study, Curcumin encapsulated by carboxymethyl chitosan (CMC) nanoparticle conjugated to a myocyte specific homing peptide was successfully delivered in bioactive form to pathological myocardium for effective regression of cardiac hypertrophy in a rat (Rattus norvegicus) model. Targeted nanotization showed higher cardiac bioavailability of Curcumin at a low dose of 5 mg/kg body weight compared to free Curcumin at 35 mg/kg body weight. Moreover, Curcumin/CMC-peptide treatment during hypertrophy significantly improved cardiac function by downregulating expression of hypertrophy marker genes (ANF, β-MHC), apoptotic mediators (Bax, Cytochrome-c) and activity of apoptotic markers (Caspase 3 and PARP); whereas free Curcumin in much higher dose showed minimal improvement during compromised cardiac function. Targeted Curcumin treatment significantly lowered p53 expression and activation in diseased myocardium via inhibited interaction of p53 with p300-HAT. Thus attenuated acetylation of p53 facilitated p53 ubiquitination and reduced the apoptotic load in hypertrophied cardiomyocytes; thereby limiting cardiomyocytes' need to enter the regeneration cycle during hypertrophy. This study elucidates for the first time an efficient targeted delivery regimen for Curcumin and also attributes towards probable mechanistic insight into its therapeutic potential as a cardio-protective agent for regression of cardiac hypertrophy. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Sulforaphane effects on postinfarction cardiac remodeling in rats: modulation of redox-sensitive prosurvival and proapoptotic proteins.

    PubMed

    Fernandes, Rafael Oliveira; De Castro, Alexandre Luz; Bonetto, Jéssica Hellen Poletto; Ortiz, Vanessa Duarte; Müller, Dalvana Daneliza; Campos-Carraro, Cristina; Barbosa, Silvia; Neves, Laura Tartari; Xavier, Léder Leal; Schenkel, Paulo Cavalheiro; Singal, Pawan; Khaper, Neelam; da Rosa Araujo, Alex Sander; Belló-Klein, Adriane

    2016-08-01

    This study investigated whether sulforaphane (SFN), a compound found in cruciferous vegetables, could attenuate the progression of post-myocardial infarction (MI) cardiac remodeling. Male Wistar rats (350 g) were allocated to four groups: SHAM (n=8), SHAM+SFN (n=7), MI (n=8) and MI+SFN (n=5). On the third day after surgery, cardiac function was assessed and SFN treatment (5 mg/kg/day) was started. At the end of 25 days of treatment, cardiac function was assessed and heart was collected to measure collagen content, oxidative stress and protein kinase. MI and MI+SFN groups presented cardiac dysfunction, without signs of congestion. Sulforaphane reduced fibrosis (2.1-fold) in infarcted rats, which was associated with a slight attenuation in the cardiac remodeling process. Both infarcted groups presented increases in the oxidative markers xanthine oxidase and 4-hydroxinonenal, as well as a parallel increase in the antioxidant enzymes glutathione peroxidase and superoxide dismutase. Moreover, sulforaphane stimulated the cytoprotective heme oxygenase-1 (HO-1) (38%). Oxidative markers correlated with ERK 1/2 activation. In the MI+SFN group, up-regulation of ERK 1/2 (34%) and Akt (35%), as well as down-regulation of p38 (52%), was observed. This change in the prosurvival kinase balance in the MI+SFN group was related to a down-regulation of apoptosis pathways (Bax/Bcl-2/caspase-3). Sulforaphane was unable to modulate autophagy. Taken together, sulforaphane increased HO-1, which may generate a redox environment in the cardiac tissue favorable to activation of prosurvival and deactivation of prodeath pathways. In conclusion, this natural compound contributes to attenuation of the fibrotic process, which may contribute to mitigation against the progression of cardiac remodeling postinfarction. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Influence of Smoking Consumption and Nicotine Dependence Degree in Cardiac Autonomic Modulation

    PubMed Central

    dos Santos, Ana Paula Soares; Ramos, Dionei; de Oliveira, Gabriela Martins; dos Santos, Ana Alice Soares; Freire, Ana Paula Coelho Figueira; It, Juliana Tiyaki; Fernandes, Renato Peretti Prieto; Vanderlei, Luiz Carlos Marques; Ramos, Ercy Mara Cipulo

    2016-01-01

    Background Smoking consumption alters cardiac autonomic function. Objective Assess the influence of the intensity of smoking and the nicotine dependence degree in cardiac autonomic modulation evaluated through index of heart rate variability (HRV). Methods 83 smokers, of both genders, between 50 and 70 years of age and with normal lung function were divided according to the intensity of smoking consumption (moderate and severe) and the nicotine dependency degree (mild, moderate and severe). The indexes of HRV were analyzed in rest condition, in linear methods in the time domain (TD), the frequency domain (FD) and through the Poincaré plot. For the comparison of smoking consumption, unpaired t test or Mann-Whitney was employed. For the analysis between the nicotine dependency degrees, we used the One-way ANOVA test, followed by Tukey's post test or Kruskal-Wallis followed by Dunn's test. The significance level was p < 0,05. Results Differences were only found when compared to the different intensities of smoking consumption in the indexes in the FD. LFun (62.89 ± 15.24 vs 75.45 ± 10.28), which corresponds to low frequency spectrum component in normalized units; HFun (37.11 ± 15.24 vs 24.55 ± 10.28), which corresponds to high frequency spectrum component in normalized units and in the LF/HF ratio (2.21 ± 1.47 vs 4.07 ± 2.94). However, in the evaluation of nicotine dependency, significant differences were not observed (p > 0.05). Conclusion Only the intensity of smoking consumption had an influence over the cardiac autonomic modulation of the assessed tobacco smokers. Tobacco smokers with severe intensity of smoking consumption presented a lower autonomic modulation than those with moderate intensity. PMID:27142649

  5. Understanding STAT3 signaling in cardiac ischemia.

    PubMed

    O'Sullivan, K E; Breen, E P; Gallagher, H C; Buggy, D J; Hurley, J P

    2016-05-01

    Cardiovascular disease is the leading cause of death worldwide. It remains one of the greatest challenges to global health and will continue to dominate mortality trends in the future. Acute myocardial infarction results in 7.4 million deaths globally per annum. Current management strategies are centered on restoration of coronary blood flow via percutaneous coronary intervention, coronary artery bypass grafting and administration of anti-platelet agents. Such myocardial reperfusion accounts for 40-50 % of the final infarct size in most cases. Signaling transducer and activator of transcription 3 (STAT3) has been shown to have cardioprotective effects via canonical and non-canonical activation and modulation of mitochondrial and transcriptional responses. A significant body of in vitro and in vivo evidence suggests that activation of the STAT3 signal transduction pathway results in a cardio protective response to ischemia and attempts have been made to modulate this with therapeutic effect. Not only is STAT3 important for cardiomyocyte function, but it also modulates the cardiac microenvironment and communicates with cardiac fibroblasts. To this end, we here review the current evidence supporting the manipulation of STAT3 for therapeutic benefit in cardiac ischemia and identify areas for future research.

  6. Biochemistry and biology: heart-to-heart to investigate cardiac progenitor cells.

    PubMed

    Chimenti, Isotta; Forte, Elvira; Angelini, Francesco; Messina, Elisa; Giacomello, Alessandro

    2013-02-01

    Cardiac regenerative medicine is a rapidly evolving field, with promising future developments for effective personalized treatments. Several stem/progenitor cells are candidates for cardiac cell therapy, and emerging evidence suggests how multiple metabolic and biochemical pathways strictly regulate their fate and renewal. In this review, we will explore a selection of areas of common interest for biology and biochemistry concerning stem/progenitor cells, and in particular cardiac progenitor cells. Numerous regulatory mechanisms have been identified that link stem cell signaling and functions to the modulation of metabolic pathways, and vice versa. Pharmacological treatments and culture requirements may be exploited to modulate stem cell pluripotency and self-renewal, possibly boosting their regenerative potential for cell therapy. Mitochondria and their many related metabolites and messengers, such as oxygen, ROS, calcium and glucose, have a crucial role in regulating stem cell fate and the balance of their functions, together with many metabolic enzymes. Furthermore, protein biochemistry and proteomics can provide precious clues on the definition of different progenitor cell populations, their physiology and their autocrine/paracrine regulatory/signaling networks. Interdisciplinary approaches between biology and biochemistry can provide productive insights on stem/progenitor cells, allowing the development of novel strategies and protocols for effective cardiac cell therapy clinical translation. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Apigenin Alleviates Endotoxin-Induced Myocardial Toxicity by Modulating Inflammation, Oxidative Stress, and Autophagy

    PubMed Central

    Li, Fang; Lang, Fangfang; Zhang, Huilin; Xu, Liangdong; Wang, Yidan; Zhai, Chunxiao

    2017-01-01

    Apigenin, a component in daily diets, demonstrates antioxidant and anti-inflammatory properties. Here, we intended to explore the mechanism of apigenin-mediated endotoxin-induced myocardial injury and its role in the interplay among inflammation, oxidative stress, and autophagy. In our lipopolysaccharide- (LPS-) induced myocardial injury model, apigenin ameliorated cardiac injury (lactate dehydrogenase (LDH) and creatine kinase (CK)), cell death (TUNEL staining, DNA fragmentation, and PARP activity), and tissue damage (cardiac troponin I (cTnI) and cardiac myosin light chain-1 (cMLC1)) and improved cardiac function (ejection fraction (EF) and end diastolic left ventricular inner dimension (LVID)). Apigenin also alleviated endotoxin-induced myocardial injury by modulating oxidative stress (nitrotyrosine and protein carbonyl) and inflammatory cytokines (TNF-α, IL-1β, MIP-1α, and MIP-2) along with their master regulator NFκB. Apigenin modulated redox homeostasis, and its anti-inflammatory role might be associated with its ability to control autophagy. Autophagy (determined by LAMP1, ATG5, and p62), its transcriptional regulator transcription factor EB (TFEB), and downstream target genes including vacuolar protein sorting-associated protein 11 (Vps11) and microtubule-associated proteins 1A/1B light chain 3B (Map1lc3) were modulated by apigenin. Thus, our study demonstrated that apigenin may lead to potential development of new target in sepsis treatment or other myocardial oxidative and/or inflammation-induced injuries. PMID:28828145

  8. Apigenin Alleviates Endotoxin-Induced Myocardial Toxicity by Modulating Inflammation, Oxidative Stress, and Autophagy.

    PubMed

    Li, Fang; Lang, Fangfang; Zhang, Huilin; Xu, Liangdong; Wang, Yidan; Zhai, Chunxiao; Hao, Enkui

    2017-01-01

    Apigenin, a component in daily diets, demonstrates antioxidant and anti-inflammatory properties. Here, we intended to explore the mechanism of apigenin-mediated endotoxin-induced myocardial injury and its role in the interplay among inflammation, oxidative stress, and autophagy. In our lipopolysaccharide- (LPS-) induced myocardial injury model, apigenin ameliorated cardiac injury (lactate dehydrogenase (LDH) and creatine kinase (CK)), cell death (TUNEL staining, DNA fragmentation, and PARP activity), and tissue damage (cardiac troponin I (cTnI) and cardiac myosin light chain-1 (cMLC1)) and improved cardiac function (ejection fraction (EF) and end diastolic left ventricular inner dimension (LVID)). Apigenin also alleviated endotoxin-induced myocardial injury by modulating oxidative stress (nitrotyrosine and protein carbonyl) and inflammatory cytokines (TNF- α , IL-1 β , MIP-1 α , and MIP-2) along with their master regulator NF κ B. Apigenin modulated redox homeostasis, and its anti-inflammatory role might be associated with its ability to control autophagy. Autophagy (determined by LAMP1, ATG5, and p62), its transcriptional regulator transcription factor EB (TFEB), and downstream target genes including vacuolar protein sorting-associated protein 11 (Vps11) and microtubule-associated proteins 1A/1B light chain 3B (Map1lc3) were modulated by apigenin. Thus, our study demonstrated that apigenin may lead to potential development of new target in sepsis treatment or other myocardial oxidative and/or inflammation-induced injuries.

  9. Exercise-Induced Changes in Glucose Metabolism Promote Physiological Cardiac Growth

    PubMed Central

    Gibb, Andrew A.; Epstein, Paul N.; Uchida, Shizuka; Zheng, Yuting; McNally, Lindsey A.; Obal, Detlef; Katragadda, Kartik; Trainor, Patrick; Conklin, Daniel J.; Brittian, Kenneth R.; Tseng, Michael T.; Wang, Jianxun; Jones, Steven P.; Bhatnagar, Aruni

    2017-01-01

    Background: Exercise promotes metabolic remodeling in the heart, which is associated with physiological cardiac growth; however, it is not known whether or how physical activity–induced changes in cardiac metabolism cause myocardial remodeling. In this study, we tested whether exercise-mediated changes in cardiomyocyte glucose metabolism are important for physiological cardiac growth. Methods: We used radiometric, immunologic, metabolomic, and biochemical assays to measure changes in myocardial glucose metabolism in mice subjected to acute and chronic treadmill exercise. To assess the relevance of changes in glycolytic activity, we determined how cardiac-specific expression of mutant forms of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase affect cardiac structure, function, metabolism, and gene programs relevant to cardiac remodeling. Metabolomic and transcriptomic screenings were used to identify metabolic pathways and gene sets regulated by glycolytic activity in the heart. Results: Exercise acutely decreased glucose utilization via glycolysis by modulating circulating substrates and reducing phosphofructokinase activity; however, in the recovered state following exercise adaptation, there was an increase in myocardial phosphofructokinase activity and glycolysis. In mice, cardiac-specific expression of a kinase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase transgene (GlycoLo mice) lowered glycolytic rate and regulated the expression of genes known to promote cardiac growth. Hearts of GlycoLo mice had larger myocytes, enhanced cardiac function, and higher capillary-to-myocyte ratios. Expression of phosphatase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in the heart (GlycoHi mice) increased glucose utilization and promoted a more pathological form of hypertrophy devoid of transcriptional activation of the physiological cardiac growth program. Modulation of phosphofructokinase activity was sufficient to regulate the glucose–fatty acid cycle in the heart; however, metabolic inflexibility caused by invariantly low or high phosphofructokinase activity caused modest mitochondrial damage. Transcriptomic analyses showed that glycolysis regulates the expression of key genes involved in cardiac metabolism and remodeling. Conclusions: Exercise-induced decreases in glycolytic activity stimulate physiological cardiac remodeling, and metabolic flexibility is important for maintaining mitochondrial health in the heart. PMID:28860122

  10. Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction

    PubMed Central

    Richart, Adèle; Vilar, Jose; Lemitre, Mathilde; Marck, Pauline; Branchereau, Maxime; Guerin, Coralie; Gautier, Gregory; Blank, Ulrich; Heymes, Christophe; Luche, Elodie; Cousin, Béatrice; Rodewald, Hans-Reimer

    2016-01-01

    Acute myocardial infarction (MI) is a severe ischemic disease responsible for heart failure and sudden death. Inflammatory cells orchestrate postischemic cardiac remodeling after MI. Studies using mice with defective mast/stem cell growth factor receptor c-Kit have suggested key roles for mast cells (MCs) in postischemic cardiac remodeling. Because c-Kit mutations affect multiple cell types of both immune and nonimmune origin, we addressed the impact of MCs on cardiac function after MI, using the c-Kit–independent MC-deficient (Cpa3Cre/+) mice. In response to MI, MC progenitors originated primarily from white adipose tissue, infiltrated the heart, and differentiated into mature MCs. MC deficiency led to reduced postischemic cardiac function and depressed cardiomyocyte contractility caused by myofilament Ca2+ desensitization. This effect correlated with increased protein kinase A (PKA) activity and hyperphosphorylation of its targets, troponin I and myosin-binding protein C. MC-specific tryptase was identified to regulate PKA activity in cardiomyocytes via protease-activated receptor 2 proteolysis. This work reveals a novel function for cardiac MCs modulating cardiomyocyte contractility via alteration of PKA-regulated force–Ca2+ interactions in response to MI. Identification of this MC-cardiomyocyte cross-talk provides new insights on the cellular and molecular mechanisms regulating the cardiac contractile machinery and a novel platform for therapeutically addressable regulators. PMID:27353089

  11. Tonic blood pressure modulates the relationship between baroreceptor cardiac reflex sensitivity and cognitive performance.

    PubMed

    Del Paso, Gustavo A Reyes; González, M Isabel; Hernández, José Antonio; Duschek, Stefan; Gutiérrez, Nicolás

    2009-09-01

    This study explored the effects of tonic blood pressure on the association between baroreceptor cardiac reflex sensitivity and cognitive performance. Sixty female participants completed a mental arithmetic task. Baroreceptor reflex sensitivity was assessed using sequence analysis. An interaction was found, indicating that the relationship between baroreceptor reflex sensitivity and cognitive performance is modulated by blood pressure levels. Reflex sensitivity was inversely associated to performance indices in the subgroup of participants with systolic blood pressure above the mean, whereas the association was positive in participants with systolic values below the mean. These results are in accordance with the findings in the field of pain perception and suggest that tonic blood pressure modulates the inhibitory effects of baroreceptor stimulation on high central nervous functions.

  12. Popeye domain containing proteins are essential for stress-mediated modulation of cardiac pacemaking in mice

    PubMed Central

    Froese, Alexander; Breher, Stephanie S.; Waldeyer, Christoph; Schindler, Roland F.R.; Nikolaev, Viacheslav O.; Rinné, Susanne; Wischmeyer, Erhard; Schlueter, Jan; Becher, Jan; Simrick, Subreena; Vauti, Franz; Kuhtz, Juliane; Meister, Patrick; Kreissl, Sonja; Torlopp, Angela; Liebig, Sonja K.; Laakmann, Sandra; Müller, Thomas D.; Neumann, Joachim; Stieber, Juliane; Ludwig, Andreas; Maier, Sebastian K.; Decher, Niels; Arnold, Hans-Henning; Kirchhof, Paulus; Fabritz, Larissa; Brand, Thomas

    2012-01-01

    Cardiac pacemaker cells create rhythmic pulses that control heart rate; pacemaker dysfunction is a prevalent disorder in the elderly, but little is known about the underlying molecular causes. Popeye domain containing (Popdc) genes encode membrane proteins with high expression levels in cardiac myocytes and specifically in the cardiac pacemaking and conduction system. Here, we report the phenotypic analysis of mice deficient in Popdc1 or Popdc2. ECG analysis revealed severe sinus node dysfunction when freely roaming mutant animals were subjected to physical or mental stress. In both mutants, bradyarrhythmia developed in an age-dependent manner. Furthermore, we found that the conserved Popeye domain functioned as a high-affinity cAMP-binding site. Popdc proteins interacted with the potassium channel TREK-1, which led to increased cell surface expression and enhanced current density, both of which were negatively modulated by cAMP. These data indicate that Popdc proteins have an important regulatory function in heart rate dynamics that is mediated, at least in part, through cAMP binding. Mice with mutant Popdc1 and Popdc2 alleles are therefore useful models for the dissection of the mechanisms causing pacemaker dysfunction and could aid in the development of strategies for therapeutic intervention. PMID:22354168

  13. MyoR Modulates Cardiac Conduction by Repressing Gata4

    PubMed Central

    Harris, John P.; Bhakta, Minoti; Bezprozvannaya, Svetlana; Wang, Lin; Lubczyk, Christina; Olson, Eric N.

    2014-01-01

    The cardiac conduction system coordinates electrical activation through a series of interconnected structures, including the atrioventricular node (AVN), the central connection point that delays impulse propagation to optimize cardiac performance. Although recent studies have uncovered important molecular details of AVN formation, relatively little is known about the transcriptional mechanisms that regulate AV delay, the primary function of the mature AVN. We identify here MyoR as a novel transcription factor expressed in Cx30.2+ cells of the AVN. We show that MyoR specifically inhibits a Cx30.2 enhancer required for AVN-specific gene expression. Furthermore, we demonstrate that MyoR interacts directly with Gata4 to mediate transcriptional repression. Our studies reveal that MyoR contains two nonequivalent repression domains. While the MyoR C-terminal repression domain inhibits transcription in a context-dependent manner, the N-terminal repression domain can function in a heterologous context to convert the Hand2 activator into a repressor. In addition, we show that genetic deletion of MyoR in mice increases Cx30.2 expression by 50% and prolongs AV delay by 13%. Taken together, we conclude that MyoR modulates a Gata4-dependent regulatory circuit that establishes proper AV delay, and these findings may have wider implications for the variability of cardiac rhythm observed in the general population. PMID:25487574

  14. Higher protein intake increases cardiac function parameters in healthy children: metabolic programming by infant nutrition-secondary analysis from a clinical trial.

    PubMed

    Collell, Rosa; Closa-Monasterolo, Ricardo; Ferré, Natalia; Luque, Veronica; Koletzko, Berthold; Grote, Veit; Janas, Roman; Verduci, Elvira; Escribano, Joaquín

    2016-06-01

    Protein intake may modulate cardiac structure and function in pathological conditions, but there is a lack of knowledge on potential effects in healthy infants. Secondary analysis of an ongoing randomized clinical trial comparing two groups of infants receiving a higher (HP) or lower (LP) protein content formula in the first year of life, and compared with an observational group of breastfed (BF) infants. Growth and dietary intake were assessed periodically from birth to 2 y. Insulin-like growth factor 1 (IGF-1) axis parameters were analyzed at 6 mo in a blood sample. At 2 y, cardiac mass and function were assessed by echocardiography. HP infants (n = 50) showed a higher BMI z-score at 2 y compared with LP (n = 47) or BF (n = 44). Cardiac function parameters were increased in the HP group compared with the LP and were directly related to the protein intake during the first 6 mo of life. Moreover, there was an increase in free IGF-1 in the HP group at 6 mo. A moderate increase in protein supply during the first year of life is associated with higher cardiac function parameters at 2 y. IGF-1 axis modifications may, at least in part, underlie these effects.

  15. Pay attention to cardiac remodeling in cancer cachexia.

    PubMed

    Zheng, Yawen; Chen, Han; Li, Xiaoqing; Sun, Yuping

    2016-07-01

    Cancer cachexia is a complex and multifaceted disease state characterized by fatigue, weakness, and loss of skeletal muscle and adipose tissue. Recently, the profound negative effects of cancer cachexia on cardiac tissue draw much attention, which is likely to contribute to mortality in tumor-bearing animals. The mechanism of cardiac remodeling is not so clear and involved with a series of molecular alterations. In cancer cachexia model, progressive loss of left ventricular mass and decrease in myocardial function is observed and cardiac autonomic functions are altered. Levels of several emerging cardiovascular neurohormones are found elevating in patients with cancer, but it is still controversial whether the changes could reflect the heart injury accurately. The remedy for cardiac remodeling has been explored. It is showed that exercise can modulate signaling pathways activated by wasting cytokines and impact on the resulting outcomes on heart adaptation. Some drugs, such as bisoprolol, spironolactone, perindopril, tandospirone, and simvastatin, can mitigate adverse effects of the tumor on the heart and prolong survival.

  16. Molecular identity of cardiac mitochondrial chloride intracellular channel proteins.

    PubMed

    Ponnalagu, Devasena; Gururaja Rao, Shubha; Farber, Jason; Xin, Wenyu; Hussain, Ahmed Tafsirul; Shah, Kajol; Tanda, Soichi; Berryman, Mark; Edwards, John C; Singh, Harpreet

    2016-03-01

    Emerging evidences demonstrate significance of chloride channels in cardiac function and cardioprotection from ischemia-reperfusion (IR) injury. Unlike mitochondrial potassium channels sensitive to calcium (BKCa) and ATP (KATP), molecular identity of majority of cardiac mitochondrial chloride channels located at the inner membrane is not known. In this study, we report the presence of unique dimorphic chloride intracellular channel (CLIC) proteins namely CLIC1, CLIC4 and CLIC5 as abundant CLICs in the rodent heart. Further, CLIC4, CLIC5, and an ortholog present in Drosophila (DmCLIC) localize to adult cardiac mitochondria. We found that CLIC4 is enriched in the outer mitochondrial membrane, whereas CLIC5 is present in the inner mitochondrial membrane. Also, CLIC5 plays a direct role in regulating mitochondrial reactive oxygen species (ROS) generation. Our study highlights that CLIC5 is localized to the cardiac mitochondria and directly modulates mitochondrial function. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  17. The adenosine A2A receptor — Myocardial protectant and coronary target in endotoxemia

    PubMed Central

    Reichelt, Melissa E.; Ashton, Kevin J.; Tan, Xing Lin; Mustafa, S. Jamal; Ledent, Catherine; Delbridge, Lea M.D.; Hofmann, Polly A.; Headrick, John P.; Morrison, R. Ray

    2013-01-01

    Background Cardiac injury and dysfunction are contributors to disease progression and mortality in sepsis. This study evaluated the cardiovascular role of intrinsic A2A adenosine receptor (A2AAR) activity during lipopolysaccharide (LPS)-induced inflammation. Methods We assessed the impact of 24 h of LPS challenge (20 mg/kg, IP) on cardiac injury, coronary function and inflammatory mediator levels in Wild-Type (WT) mice and mice lacking functional A2AARs (A2AAR KO). Results Cardiac injury was evident in LPS-treated WTs, with ∼7-fold elevation in serum cardiac troponin I (cTnI), and significant ventricular and coronary dysfunction. Absence of A2AARs increased LPS-provoked cTnI release at 24 h by 3-fold without additional demise of contraction function. Importantly, A2AAR deletion per se emulated detrimental effects of LPS on coronary function, and LPS was without effect in coronary vessels lacking A2AARs. Effects of A2AAR KO were independent of major shifts in circulating C-reactive protein (CRP) and haptoglobin. Cytokine responses were largely insensitive to A2AAR deletion; substantial LPS-induced elevations (up to 100-fold) in IFN-γ and IL-10 were unaltered in A2AAR KO mice, as were levels of IL-4 and TNF-α. However, late elevations in IL-2 and IL-5 were differentially modulated by A2AAR KO (IL-2 reduced, IL-5 increased). Data demonstrate that in the context of LPS-triggered cardiac and coronary injury, A2AAR activity protects myocardial viability without modifying contractile dysfunction, and selectively modulates cytokine (IL-2, IL-5) release. A2AARs also appear to be targeted by LPS in the coronary vasculature. Conclusions These experimental data suggest that preservation of A2AAR functionality might provide therapeutic benefit in human sepsis. PMID:22192288

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kajimoto, Masaki; Ledee, Dolena R.; Xu, Chun

    Background: Extracorporeal membrane oxygenation (ECMO) provides a rescue for children with severe cardiac failure. We previously showed that triiodothyronine (T3) improves cardiac function by modulating pyruvate oxidation during weaning. This study was focused on fatty acid (FA) metabolism modulated by T3 for weaning from ECMO after cardiac injury. Methods: Nineteen immature piglets (9.1-15.3 kg) were separated into 3 groups with ECMO (6.5 hours) and wean: normal circulation (Group-C);transient coronary occlusion (10 minutes) followed by ECMO (Group-IR); and IR with T3 supplementation (Group-IR-T3). 13-Carbon labeled lactate, medium-chain and long-chain FAs were infused as oxidative substrates. Substrate fractional contribution to the citricmore » acid cycle (FC) was analyzed by 13-Carbon nuclear magnetic resonance. Results: ECMO depressed circulating T3 levels to 40% baseline at 4 hours and were restored in Group-IR-T3. Group-IR decreased cardiac power, which was not fully restorable and 2 pigs were lost because of weaning failure. Group-IR also depressed FC-lactate, while the excellent contractile function and energy efficiency in Group-IR-T3 occurred along with a marked FC-lactate increase and [ATP]/[ADP] without either decreasing FC-FAs or elevating myocardial oxygen consumption over Group-C or -IR. Conclusions: T3 releases inhibition of lactate oxidation following ischemia-reperfusion injury without impairing FA oxidation. These findings indicate that T3 depression during ECMO is maladaptive, and that restoring levels improves metabolic flux and enhances contractile function during weaning.« less

  19. Myocyte-Derived Hsp90 Modulates Collagen Upregulation via Biphasic Activation of STAT-3 in Fibroblasts during Cardiac Hypertrophy

    PubMed Central

    Datta, Ritwik; Bansal, Trisha; Rana, Santanu; Datta, Kaberi; Datta Chaudhuri, Ratul; Chawla-Sarkar, Mamta

    2016-01-01

    ABSTRACT Signal transducer and activator of transcription 3 (STAT-3)-mediated signaling in relation to upregulated collagen expression in fibroblasts during cardiac hypertrophy is well defined. Our recent findings have identified heat shock protein 90 (Hsp90) to be a critical modulator of fibrotic signaling in cardiac fibroblasts in this disease milieu. The present study was therefore intended to analyze the role of Hsp90 in the STAT-3-mediated collagen upregulation process. Our data revealed a significant difference between in vivo and in vitro results, pointing to a possible involvement of myocyte-fibroblast cross talk in this process. Cardiomyocyte-targeted knockdown of Hsp90 in rats (Rattus norvegicus) in which the renal artery was ligated showed downregulated collagen synthesis. Furthermore, the results obtained with cardiac fibroblasts conditioned with Hsp90-inhibited hypertrophied myocyte supernatant pointed toward cardiomyocytes' role in the regulation of collagen expression in fibroblasts during hypertrophy. Our study also revealed a novel signaling mechanism where myocyte-derived Hsp90 orchestrates not only p65-mediated interleukin-6 (IL-6) synthesis but also its release in exosomal vesicles. Such myocyte-derived exosomes and myocyte-secreted IL-6 are responsible in unison for the biphasic activation of STAT-3 signaling in cardiac fibroblasts that culminates in excess collagen synthesis, leading to severely compromised cardiac function during cardiac hypertrophy. PMID:28031326

  20. Myocyte-Derived Hsp90 Modulates Collagen Upregulation via Biphasic Activation of STAT-3 in Fibroblasts during Cardiac Hypertrophy.

    PubMed

    Datta, Ritwik; Bansal, Trisha; Rana, Santanu; Datta, Kaberi; Datta Chaudhuri, Ratul; Chawla-Sarkar, Mamta; Sarkar, Sagartirtha

    2017-03-15

    Signal transducer and activator of transcription 3 (STAT-3)-mediated signaling in relation to upregulated collagen expression in fibroblasts during cardiac hypertrophy is well defined. Our recent findings have identified heat shock protein 90 (Hsp90) to be a critical modulator of fibrotic signaling in cardiac fibroblasts in this disease milieu. The present study was therefore intended to analyze the role of Hsp90 in the STAT-3-mediated collagen upregulation process. Our data revealed a significant difference between in vivo and in vitro results, pointing to a possible involvement of myocyte-fibroblast cross talk in this process. Cardiomyocyte-targeted knockdown of Hsp90 in rats ( Rattus norvegicus ) in which the renal artery was ligated showed downregulated collagen synthesis. Furthermore, the results obtained with cardiac fibroblasts conditioned with Hsp90-inhibited hypertrophied myocyte supernatant pointed toward cardiomyocytes' role in the regulation of collagen expression in fibroblasts during hypertrophy. Our study also revealed a novel signaling mechanism where myocyte-derived Hsp90 orchestrates not only p65-mediated interleukin-6 (IL-6) synthesis but also its release in exosomal vesicles. Such myocyte-derived exosomes and myocyte-secreted IL-6 are responsible in unison for the biphasic activation of STAT-3 signaling in cardiac fibroblasts that culminates in excess collagen synthesis, leading to severely compromised cardiac function during cardiac hypertrophy. Copyright © 2017 American Society for Microbiology.

  1. Sarcomeric protein modification during adrenergic stress enhances cross-bridge kinetics and cardiac output

    PubMed Central

    Gresham, Kenneth S.; Mamidi, Ranganath; Li, Jiayang; Kwak, Hyerin

    2017-01-01

    Molecular adaptations to chronic neurohormonal stress, including sarcomeric protein cleavage and phosphorylation, provide a mechanism to increase ventricular contractility and enhance cardiac output, yet the link between sarcomeric protein modifications and changes in myocardial function remains unclear. To examine the effects of neurohormonal stress on posttranslational modifications of sarcomeric proteins, mice were administered combined α- and β-adrenergic receptor agonists (isoproterenol and phenylephrine, IPE) for 14 days using implantable osmotic pumps. In addition to significant cardiac hypertrophy and increased maximal ventricular pressure, IPE treatment accelerated pressure development and relaxation (74% increase in dP/dtmax and 14% decrease in τ), resulting in a 52% increase in cardiac output compared with saline (SAL)-treated mice. Accelerated pressure development was maintained when accounting for changes in heart rate and preload, suggesting that myocardial adaptations contribute to enhanced ventricular contractility. Ventricular myocardium isolated from IPE-treated mice displayed a significant reduction in troponin I (TnI) and myosin-binding protein C (MyBP-C) expression and a concomitant increase in the phosphorylation levels of the remaining TnI and MyBP-C protein compared with myocardium isolated from saline-treated control mice. Skinned myocardium isolated from IPE-treated mice displayed a significant acceleration in the rate of cross-bridge (XB) detachment (46% increase) and an enhanced magnitude of XB recruitment (43% increase) at submaximal Ca2+ activation compared with SAL-treated mice but unaltered myofilament Ca2+ sensitivity of force generation. These findings demonstrate that sarcomeric protein modifications during neurohormonal stress are molecular adaptations that enhance in vivo ventricular contractility through accelerated XB kinetics to increase cardiac output. NEW & NOTEWORTHY Posttranslational modifications to sarcomeric regulatory proteins provide a mechanism to modulate cardiac function in response to stress. In this study, we demonstrate that neurohormonal stress produces modifications to myosin-binding protein C and troponin I, including a reduction in protein expression within the sarcomere and increased phosphorylation of the remaining protein, which serve to enhance cross-bridge kinetics and increase cardiac output. These findings highlight the importance of sarcomeric regulatory protein modifications in modulating ventricular function during cardiac stress. PMID:27909224

  2. Sarcomeric protein modification during adrenergic stress enhances cross-bridge kinetics and cardiac output.

    PubMed

    Gresham, Kenneth S; Mamidi, Ranganath; Li, Jiayang; Kwak, Hyerin; Stelzer, Julian E

    2017-03-01

    Molecular adaptations to chronic neurohormonal stress, including sarcomeric protein cleavage and phosphorylation, provide a mechanism to increase ventricular contractility and enhance cardiac output, yet the link between sarcomeric protein modifications and changes in myocardial function remains unclear. To examine the effects of neurohormonal stress on posttranslational modifications of sarcomeric proteins, mice were administered combined α- and β-adrenergic receptor agonists (isoproterenol and phenylephrine, IPE) for 14 days using implantable osmotic pumps. In addition to significant cardiac hypertrophy and increased maximal ventricular pressure, IPE treatment accelerated pressure development and relaxation (74% increase in dP/d t max and 14% decrease in τ), resulting in a 52% increase in cardiac output compared with saline (SAL)-treated mice. Accelerated pressure development was maintained when accounting for changes in heart rate and preload, suggesting that myocardial adaptations contribute to enhanced ventricular contractility. Ventricular myocardium isolated from IPE-treated mice displayed a significant reduction in troponin I (TnI) and myosin-binding protein C (MyBP-C) expression and a concomitant increase in the phosphorylation levels of the remaining TnI and MyBP-C protein compared with myocardium isolated from saline-treated control mice. Skinned myocardium isolated from IPE-treated mice displayed a significant acceleration in the rate of cross-bridge (XB) detachment (46% increase) and an enhanced magnitude of XB recruitment (43% increase) at submaximal Ca 2+ activation compared with SAL-treated mice but unaltered myofilament Ca 2+ sensitivity of force generation. These findings demonstrate that sarcomeric protein modifications during neurohormonal stress are molecular adaptations that enhance in vivo ventricular contractility through accelerated XB kinetics to increase cardiac output. NEW & NOTEWORTHY Posttranslational modifications to sarcomeric regulatory proteins provide a mechanism to modulate cardiac function in response to stress. In this study, we demonstrate that neurohormonal stress produces modifications to myosin-binding protein C and troponin I, including a reduction in protein expression within the sarcomere and increased phosphorylation of the remaining protein, which serve to enhance cross-bridge kinetics and increase cardiac output. These findings highlight the importance of sarcomeric regulatory protein modifications in modulating ventricular function during cardiac stress. Copyright © 2017 the American Physiological Society.

  3. Insulin receptor substrate signaling controls cardiac energy metabolism and heart failure.

    PubMed

    Guo, Cathy A; Guo, Shaodong

    2017-06-01

    The heart is an insulin-dependent and energy-consuming organ in which insulin and nutritional signaling integrates to the regulation of cardiac metabolism, growth and survival. Heart failure is highly associated with insulin resistance, and heart failure patients suffer from the cardiac energy deficiency and structural and functional dysfunction. Chronic pathological conditions, such as obesity and type 2 diabetes mellitus, involve various mechanisms in promoting heart failure by remodeling metabolic pathways, modulating cardiac energetics and impairing cardiac contractility. Recent studies demonstrated that insulin receptor substrates 1 and 2 (IRS-1,-2) are major mediators of both insulin and insulin-like growth factor-1 (IGF-1) signaling responsible for myocardial energetics, structure, function and organismal survival. Importantly, the insulin receptor substrates (IRS) play an important role in the activation of the phosphatidylinositide-3-dependent kinase (PI-3K) that controls Akt and Foxo1 signaling cascade, regulating the mitochondrial function, cardiac energy metabolism and the renin-angiotensin system. Dysregulation of this branch in signaling cascades by insulin resistance in the heart through the endocrine system promotes heart failure, providing a novel mechanism for diabetic cardiomyopathy. Therefore, targeting this branch of IRS→PI-3K→Foxo1 signaling cascade and associated pathways may provide a fundamental strategy for the therapeutic and nutritional development in control of metabolic and cardiovascular diseases. In this review, we focus on insulin signaling and resistance in the heart and the role energetics play in cardiac metabolism, structure and function. © 2017 Society for Endocrinology.

  4. Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction.

    PubMed

    Ngkelo, Anta; Richart, Adèle; Kirk, Jonathan A; Bonnin, Philippe; Vilar, Jose; Lemitre, Mathilde; Marck, Pauline; Branchereau, Maxime; Le Gall, Sylvain; Renault, Nisa; Guerin, Coralie; Ranek, Mark J; Kervadec, Anaïs; Danelli, Luca; Gautier, Gregory; Blank, Ulrich; Launay, Pierre; Camerer, Eric; Bruneval, Patrick; Menasche, Philippe; Heymes, Christophe; Luche, Elodie; Casteilla, Louis; Cousin, Béatrice; Rodewald, Hans-Reimer; Kass, David A; Silvestre, Jean-Sébastien

    2016-06-27

    Acute myocardial infarction (MI) is a severe ischemic disease responsible for heart failure and sudden death. Inflammatory cells orchestrate postischemic cardiac remodeling after MI. Studies using mice with defective mast/stem cell growth factor receptor c-Kit have suggested key roles for mast cells (MCs) in postischemic cardiac remodeling. Because c-Kit mutations affect multiple cell types of both immune and nonimmune origin, we addressed the impact of MCs on cardiac function after MI, using the c-Kit-independent MC-deficient (Cpa3(Cre/+)) mice. In response to MI, MC progenitors originated primarily from white adipose tissue, infiltrated the heart, and differentiated into mature MCs. MC deficiency led to reduced postischemic cardiac function and depressed cardiomyocyte contractility caused by myofilament Ca(2+) desensitization. This effect correlated with increased protein kinase A (PKA) activity and hyperphosphorylation of its targets, troponin I and myosin-binding protein C. MC-specific tryptase was identified to regulate PKA activity in cardiomyocytes via protease-activated receptor 2 proteolysis. This work reveals a novel function for cardiac MCs modulating cardiomyocyte contractility via alteration of PKA-regulated force-Ca(2+) interactions in response to MI. Identification of this MC-cardiomyocyte cross-talk provides new insights on the cellular and molecular mechanisms regulating the cardiac contractile machinery and a novel platform for therapeutically addressable regulators. ©2016 Ngkelo et al.

  5. Membrane estrogen receptor alpha is an important modulator of bone marrow C-Kit+ cells mediated cardiac repair after myocardial infarction

    PubMed Central

    Su, Feng; Zhang, Wentian; Liu, Jianfang

    2015-01-01

    It has been validated that c-kit positive (c-kit+) cells in infarcted myocardium are from bone marrow (BM). Given the recent study that in the heart, estrogen receptor alpha (ERα) is involved in adaptive mechanisms by supporting cardiomyocytes survival via post-infarct cardiac c-kit+ cells, we tested a novel hypothesis that membrane ERα (mERа) supports survival of BM c-kit+ cells and enhance protective paracrine function for cardiac repair. Our data showed that myocardial infarction (MI) leads to an increase in c-kit+ first in bone marrow and then specifically within the infarcted myocardium. Also up-regulated mERа in post-infarct BM c-kit+ cells was found in day 3 post MI. In vitro co-culture system, mERа+ enhances the beneficial effects of BM c-kit+ cells by increasing their viability and reducing apoptosis. Post-infarct c-kit+ mERа+ cells population expresses predominant ERα and holds self-renewal as well as cardiac differentiation potentials after MI. In vivo, BM c-kit+ cells reduced infarct size, fibrosis and improved cardiac function. In conclusion, BM c-kit+ mERа+ exerted significantly cardiac protection after MI. A potential important implication of this study is that the manipulation of BM c-kit+ stem cells with ERа-dependent fashion may be helpful in recovering functional performance after cardiac tissue injury. PMID:26191121

  6. Modulation of myocardial energetics: An important category of agents in the multimodal treatment of coronary artery disease and heart failure.

    PubMed

    Dalal, Jamshed J; Mishra, Sundeep

    The combined and relative contribution of glucose and fatty acid oxidation generates myocardial energy, which regulates the cardiac function and efficiency. Any dysregulation in this metabolic homeostasis can adversely affect the function of heart and contribute to cardiac conditions such as angina and heart failure. Metabolic agents ameliorate this internal metabolic anomaly, by shifting the energy production pathway from free fatty acids to glucose, resulting in a better performance of the heart. Metabolic therapy is relatively a new modality, which functions through optimization of cardiac substrate metabolism. Among the metabolic therapies, trimetazidine and ranolazine are the agents presently available in India. In the present review, we would like to present the metabolic perspective of pathophysiology of coronary artery disease and heart failure, and metabolic therapy by using trimetazidine and ranolazine. Copyright © 2017. Published by Elsevier B.V.

  7. Ivabradine and metoprolol differentially affect cardiac glucose metabolism despite similar heart rate reduction in a mouse model of dyslipidemia.

    PubMed

    Vaillant, Fanny; Lauzier, Benjamin; Ruiz, Matthieu; Shi, Yanfen; Lachance, Dominic; Rivard, Marie-Eve; Bolduc, Virginie; Thorin, Eric; Tardif, Jean-Claude; Des Rosiers, Christine

    2016-10-01

    While heart rate reduction (HRR) is a target for the management of patients with heart disease, contradictory results were reported using ivabradine, which selectively inhibits the pacemaker I f current, vs. β-blockers like metoprolol. This study aimed at testing whether similar HRR with ivabradine vs. metoprolol differentially modulates cardiac energy substrate metabolism, a factor determinant for cardiac function, in a mouse model of dyslipidemia (hApoB +/+ ;LDLR -/- ). Following a longitudinal study design, we used 3- and 6-mo-old mice, untreated or treated for 3 mo with ivabradine or metoprolol. Cardiac function was evaluated in vivo and ex vivo in working hearts perfused with 13 C-labeled substrates to assess substrate fluxes through energy metabolic pathways. Compared with 3-mo-old, 6-mo-old dyslipidemic mice had similar cardiac hemodynamics in vivo but impaired (P < 0.001) contractile function (aortic flow: -45%; cardiac output: -34%; stroke volume: -35%) and glycolysis (-24%) ex vivo. Despite inducing a similar 10% HRR, ivabradine-treated hearts displayed significantly higher stroke volume values and glycolysis vs. their metoprolol-treated counterparts ex vivo, values for the ivabradine group being often not significantly different from 3-mo-old mice. Further analyses highlighted additional significant cardiac alterations with disease progression, namely in the total tissue level of proteins modified by O-linked N-acetylglucosamine (O-GlcNAc), whose formation is governed by glucose metabolism via the hexosamine biosynthetic pathway, which showed a similar pattern with ivabradine vs. metoprolol treatment. Collectively, our results emphasize the implication of alterations in cardiac glucose metabolism and signaling linked to disease progression in our mouse model. Despite similar HRR, ivabradine, but not metoprolol, preserved cardiac function and glucose metabolism during disease progression. Copyright © 2016 the American Physiological Society.

  8. The Tropomyosin Binding Region of Cardiac Troponin T Modulates Crossbridge Recruitment Dynamics in Rat Cardiac Muscle Fibers

    PubMed Central

    Gollapudi, Sampath K.; Gallon, Clare E.; Chandra, Murali

    2013-01-01

    The cardiac muscle comprises dynamically interacting components that use allosteric/cooperative mechanisms to yield unique heart-specific properties. An essential protein in this allosteric/cooperative mechanism is cardiac muscle troponin T (cTnT), the central region (CR) and the T2 region of which differ significantly from those of fast skeletal muscle troponin T (fsTnT). To understand the biological significance of such sequence heterogeneity, we replaced the T1 or T2 domain of rat cTnT (RcT1 or RcT2) with its counterpart from rat fsTnT (RfsT1or RfsT2) to generate RfsT1-RcT2 and RcT1-RfsT2 recombinant proteins. In addition to contractile function measurements, dynamic features of RfsT1-RcT2 and RcT1-RfsT2 reconstituted rat cardiac muscle fibers were captured by fitting the recruitment-distortion model to force response of small amplitude (0.5%) muscle length changes. RfsT1-RcT2 fibers showed a ~40% decrease in tension and ~44% decrease in ATPase activity, but RcT1-RfsT2 fibers were unaffected. The magnitude of length-mediated increase in crossbridge recruitment (E0) decreased by ~33% and the speed of crossbridge recruitment (b) increased by ~100% in RfsT1-RcT2 fibers. Our data suggest the following: (1) the CR of cTnT modulates crossbridge recruitment dynamics; (2) the N-terminal end region of cTnT has a synergistic effect on the ability of CR to modulate crossbridge recruitment dynamics; (3) the T2 region is important for tuning the Ca2+ regulation of cardiac thin filaments. The combined effects of CR-Tm interactions and the modulating effect of the N-terminal end of cTnT on CR-Tm interactions may lead to the emergence of a unique property that tunes contractile dynamics to heart rates. PMID:23357173

  9. The heart as a self-regulating system: integration of homeodynamic mechanisms.

    PubMed

    Kresh, J Y; Armour, J A

    1997-04-01

    In the past the study of mechanical and electrical properties of the heart has been disjointed with minimal overlap and unification. The fact remains that these features are tightly coupled and central to the functioning heart. The maintenance of adequate cardiac output relies upon the highly integrated autoregulatory mechanisms and modulation of cardiac myocyte function. Regional ventricular mechanics and energetics are dependent upon muscle fiber stress-strain rate, the passive properties of myocardial collagen matrix, adequate vascular perfusion, transcapillary transport and electrical activation pattern. Intramural hydraulic "loading" is regulated by coronary arterial and venous dynamics. All of these components are under the constant influence of intrinsic cardiac and extracardiac autonomic neurons, as well as circulating hormones. A brief overview of the putative regulation of these various components is presented in this paper.

  10. Nitrite therapy after cardiac arrest reduces ROS generation, improves cardiac and neurological function and enhances survival via reversible inhibition of mitochondrial complex I

    PubMed Central

    Dezfulian, Cameron; Shiva, Sruti; Alekseyenko, Aleksey; Pendyal, Akshay; Beiser, DG; Munasinghe, Jeeva P.; Anderson, Stasia A.; Chesley, Christopher F.; Hoek, TL Vanden; Gladwin, Mark T.

    2009-01-01

    Background Three-fourths of cardiac arrest survivors die prior to hospital discharge or suffer significant neurological injury. Excepting therapeutic hypothermia and revascularization, no novel therapies have been developed that improve survival or cardiac and neurological function after resuscitation. Nitrite (NO2−) increases cellular resilience to focal ischemia-reperfusion injury in multiple organs. We hypothesized that nitrite therapy may improve outcomes after the unique global ischemia-reperfusion insult of cardiopulmonary arrest. Methods and Results We developed a mouse model of cardiac arrest characterized by 12-minutes of normothermic asystole and a high cardiopulmonary resuscitation (CPR) rate. In this model, global ischemia and CPR was associated with blood and organ nitrite depletion, reversible myocardial dysfunction, impaired alveolar gas exchange, neurological injury and an approximate 50% mortality. A single low dose of intravenous nitrite (50 nmol=1.85 μmol/kg=0.13 mg/kg) compared to blinded saline placebo given at CPR initiation with epinephrine improved cardiac function, survival and neurological outcomes. From a mechanistic standpoint, nitrite treatment restored intracardiac nitrite and increased S-nitrosothiol levels, decreased pathological cardiac mitochondrial oxygen consumption due to reactive oxygen species formation and prevented oxidative enzymatic injury via reversible specific inhibition of respiratory chain complex I. Conclusion Nitrite therapy after resuscitation from 12-minutes of asystole rapidly and reversibly modulated mitochondrial reactive oxygen species generation during early reperfusion, limiting acute cardiac dysfunction and death, as well as neurological impairment in survivors. PMID:19704094

  11. Comparative Proteome Profiling during Cardiac Hypertrophy and Myocardial Infarction Reveals Altered Glucose Oxidation by Differential Activation of Pyruvate Dehydrogenase E1 Component Subunit β.

    PubMed

    Mitra, Arkadeep; Basak, Trayambak; Ahmad, Shadab; Datta, Kaberi; Datta, Ritwik; Sengupta, Shantanu; Sarkar, Sagartirtha

    2015-06-05

    Cardiac hypertrophy and myocardial infarction (MI) are two etiologically different disease forms with varied pathological characteristics. However, the precise molecular mechanisms and specific causal proteins associated with these diseases are obscure to date. In this study, a comparative cardiac proteome profiling was performed in Wistar rat models for diseased and control (sham) groups using two-dimensional difference gel electrophoresis followed by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry. Proteins were identified using Protein Pilot™ software (version 4.0) and were subjected to stringent statistical analysis. Alteration of key proteins was validated by Western blot analysis. The differentially expressed protein sets identified in this study were associated with different functional groups, involving various metabolic pathways, stress responses, cytoskeletal organization, apoptotic signaling and other miscellaneous functions. It was further deciphered that altered energy metabolism during hypertrophy in comparison to MI may be predominantly attributed to induced glucose oxidation level, via reduced phosphorylation of pyruvate dehydrogenase E1 component subunit β (PDHE1-B) protein during hypertrophy. This study reports for the first time the global changes in rat cardiac proteome during two etiologically different cardiac diseases and identifies key signaling regulators modulating ontogeny of these two diseases culminating in heart failure. This study also pointed toward differential activation of PDHE1-B that accounts for upregulation of glucose oxidation during hypertrophy. Downstream analysis of altered proteome and the associated modulators would enhance our present knowledge regarding altered pathophysiology of these two etiologically different cardiac disease forms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Dual regression physiological modeling of resting-state EPI power spectra: Effects of healthy aging.

    PubMed

    Viessmann, Olivia; Möller, Harald E; Jezzard, Peter

    2018-02-02

    Aging and disease-related changes in the arteriovasculature have been linked to elevated levels of cardiac cycle-induced pulsatility in the cerebral microcirculation. Functional magnetic resonance imaging (fMRI), acquired fast enough to unalias the cardiac frequency contributions, can be used to study these physiological signals in the brain. Here, we propose an iterative dual regression analysis in the frequency domain to model single voxel power spectra of echo planar imaging (EPI) data using external recordings of the cardiac and respiratory cycles as input. We further show that a data-driven variant, without external physiological traces, produces comparable results. We use this framework to map and quantify cardiac and respiratory contributions in healthy aging. We found a significant increase in the spatial extent of cardiac modulated white matter voxels with age, whereas the overall strength of cardiac-related EPI power did not show an age effect. Copyright © 2018. Published by Elsevier Inc.

  13. Cardiac effects of 3-iodothyronamine: a new aminergic system modulating cardiac function.

    PubMed

    Chiellini, Grazia; Frascarelli, Sabina; Ghelardoni, Sandra; Carnicelli, Vittoria; Tobias, Sandra C; DeBarber, Andrea; Brogioni, Simona; Ronca-Testoni, Simonetta; Cerbai, Elisabetta; Grandy, David K; Scanlan, Thomas S; Zucchi, Riccardo

    2007-05-01

    3-Iodothyronamine T1AM is a novel endogenous thyroid hormone derivative that activates the G protein-coupled receptor known as trace anime-associated receptor 1 (TAAR1). In the isolated working rat heart and in rat cardiomyocytes, T1AM produced a reversible, dose-dependent negative inotropic effect (e.g., 27+/-5, 51+/-3, and 65+/-2% decrease in cardiac output at 19, 25, and 38 microM concentration, respectively). An independent negative chronotropic effect was also observed. The hemodynamic effects of T1AM were remarkably increased in the presence of the tyrosine kinase inhibitor genistein, whereas they were attenuated in the presence of the tyrosine phosphatase inhibitor vanadate. No effect was produced by inhibitors of protein kinase A, protein kinase C, calcium-calmodulin kinase II, phosphatidylinositol-3-kinase, or MAP kinases. Tissue cAMP levels were unchanged. In rat ventricular tissue, Western blot experiments with antiphosphotyrosine antibodies showed reduced phosphorylation of microsomal and cytosolic proteins after perfusion with synthetic T1AM; reverse transcriptase-polymerase chain reaction experiments revealed the presence of transcripts for at least 5 TAAR subtypes; specific and saturable binding of [125I]T1AM was observed, with a dissociation constant in the low micromolar range (5 microM); and endogenous T1AM was detectable by tandem mass spectrometry. In conclusion, our findings provide evidence for the existence of a novel aminergic system modulating cardiac function.

  14. Posttranslational modulation of FoxO1 contributes to cardiac remodeling in post-ischemic heart failure.

    PubMed

    Kappel, Ben Arpad; Stöhr, Robert; De Angelis, Lorenzo; Mavilio, Maria; Menghini, Rossella; Federici, Massimo

    2016-06-01

    Forkhead box protein O1 (FoxO1) plays a key role in energy homeostasis, stress response and autophagy and is dysregulated in diabetes and ischemia. We investigated cardiac FoxO1 expression and posttranstranslational modifications after myocardial infarction (MI) and further tested if active posttranstranslational modulation of FoxO1 can alter cardiac remodeling in postischemic heart failure. Non-diabetic and diabetic C57BL/6 mice were subjected to MI by ligation of left anterior descending artery. In selected experiments we combined this model with intramyocardial injection of adenovirus expressing different isoforms of FoxO1. We used Millar catheter, histology, Western blot and metabolomics for further analyses. We show that after MI total cardiac FoxO1 is downregulated and partly recovers after 7 days. This downregulation is accompanied by fundamental posttranslational modifications of FoxO1, particularly acetylation. Adenovirus experiments revealed smaller infarction size and improved heart function in mice expressing a constitutively deacetylated variant of FoxO1 compared to a wild type variant of FoxO1 in both non-diabetic (MI size: -13.4 ± 3.5%; LVDP: +29.1 ± 9.4  mmHg; p < 0.05) and diabetic mice (MI size: -17.6 ± 3.7%; LVDP: +10.9 ± 3.6  mmHg; p < 0.05). Metabolomics analyses showed alterations in metabolites connected to muscle breakdown, collagen/elastin and energy metabolism between the two groups. First, our results demonstrate that myocardial ischemia is associated with downregulation and posttranslational modification of cardiac FoxO1. Second, we show in a mouse model of postischemic heart failure that posttranslational modulation of FoxO1 alters heart function involving collagen and protein metabolism. Therefore, posttranslational modifications of FoxO1 could be an option to target remodeling processes in postischemic heart failure. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. What can we learn about treating heart failure from the heart's response to acute exercise? Focus on the coronary microcirculation.

    PubMed

    Heinonen, Ilkka; Sorop, Oana; de Beer, Vincent J; Duncker, Dirk J; Merkus, Daphne

    2015-10-15

    Coronary microvascular function and cardiac function are closely related in that proper cardiac function requires adequate oxygen delivery through the coronary microvasculature. Because of the close proximity of cardiomyocytes and coronary microvascular endothelium, cardiomyocytes not only communicate their metabolic needs to the coronary microvasculature, but endothelium-derived factors also directly modulate cardiac function. This review summarizes evidence that the myocardial oxygen balance is disturbed in the failing heart because of increased extravascular compressive forces and coronary microvascular dysfunction. The perturbations in myocardial oxygen balance are exaggerated during exercise and are due to alterations in neurohumoral influences, endothelial function, and oxidative stress. Although there is some evidence from animal studies that the myocardial oxygen balance can partly be restored by exercise training, it is largely unknown to what extent the beneficial effects of exercise training include improvements in endothelial function and/or oxidative stress in the coronary microvasculature and how these improvements are impacted by risk factors such as diabetes, obesity, and hypercholesterolemia. Copyright © 2015 the American Physiological Society.

  16. Triiodothyronine activates lactate oxidation without impairing fatty acid oxidation and improves weaning from extracorporeal membrane oxygenation.

    PubMed

    Kajimoto, Masaki; Ledee, Dolena R; Xu, Chun; Kajimoto, Hidemi; Isern, Nancy G; Portman, Michael A

    2014-01-01

    Extracorporeal membrane oxygenation (ECMO) provides a rescue for children with severe cardiac failure. It has previously been shown that triiodothyronine (T3) improves cardiac function by modulating pyruvate oxidation during weaning. This study focused on fatty acid (FA) metabolism modulated by T3 for weaning from ECMO after cardiac injury. METHODS AND RESULTS: Nineteen immature piglets (9.1-15.3 kg) were separated into 3 groups with ECMO (6.5 h) and wean: normal circulation (Group-C); transient coronary occlusion (10 min) for ischemia-reperfusion (IR) followed by ECMO (Group-IR); and IR with T3 supplementation (Group-IR-T3). 13-Carbon ((13)C)-labeled lactate, medium-chain and long-chain FAs, was infused as oxidative substrates. Substrate fractional contribution (FC) to the citric acid cycle was analyzed by(13)C-nuclear magnetic resonance. ECMO depressed circulating T3 levels to 40% of the baseline at 4 h and were restored in Group-IR-T3. Group-IR decreased cardiac power, which was not fully restorable and 2 pigs were lost because of weaning failure. Group-IR also depressed FC-lactate, while the excellent contractile function and energy efficiency in Group-IR-T3 occurred along with a marked FC-lactate increase and [adenosine triphosphate]/[adenosine diphosphate] without either decreasing FC-FAs or elevating myocardial oxygen consumption over Group-C or -IR. T3 releases inhibition of lactate oxidation following IR injury without impairing FA oxidation. These findings indicate that T3 depression during ECMO is maladaptive, and that restoring levels improves metabolic flux and enhances contractile function during weaning.

  17. Distribution of cardiac sodium channels in clusters potentiates ephaptic interactions in the intercalated disc.

    PubMed

    Hichri, Echrak; Abriel, Hugues; Kucera, Jan P

    2018-02-15

    It has been proposed that ephaptic conduction, relying on interactions between the sodium (Na + ) current and the extracellular potential in intercalated discs, might contribute to cardiac conduction when gap junctional coupling is reduced, but this mechanism is still controversial. In intercalated discs, Na + channels form clusters near gap junction plaques, but the functional significance of these clusters has never been evaluated. In HEK cells expressing cardiac Na + channels, we show that restricting the extracellular space modulates the Na + current, as predicted by corresponding simulations accounting for ephaptic effects. In a high-resolution model of the intercalated disc, clusters of Na + channels that face each other across the intercellular cleft facilitate ephaptic impulse transmission when gap junctional coupling is reduced. Thus, our simulations reveal a functional role for the clustering of Na + channels in intercalated discs, and suggest that rearrangement of these clusters in disease may influence cardiac conduction. It has been proposed that ephaptic interactions in intercalated discs, mediated by extracellular potentials, contribute to cardiac impulse propagation when gap junctional coupling is reduced. However, experiments demonstrating ephaptic effects on the cardiac Na + current (I Na ) are scarce. Furthermore, Na + channels form clusters around gap junction plaques, but the electrophysiological significance of these clusters has never been investigated. In patch clamp experiments with HEK cells stably expressing human Na v 1.5 channels, we examined how restricting the extracellular space modulates I Na elicited by an activation protocol. In parallel, we developed a high-resolution computer model of the intercalated disc to investigate how the distribution of Na + channels influences ephaptic interactions. Approaching the HEK cells to a non-conducting obstacle always increased peak I Na at step potentials near the threshold of I Na activation and decreased peak I Na at step potentials far above threshold (7 cells, P = 0.0156, Wilcoxon signed rank test). These effects were consistent with corresponding control simulations with a uniform Na + channel distribution. In the intercalated disc computer model, redistributing the Na + channels into a central cluster of the disc potentiated ephaptic effects. Moreover, ephaptic impulse transmission from one cell to another was facilitated by clusters of Na + channels facing each other across the intercellular cleft when gap junctional coupling was reduced. In conclusion, our proof-of-principle experiments demonstrate that confining the extracellular space modulates cardiac I Na , and our simulations reveal the functional role of the aggregation of Na + channels in the perinexus. These findings highlight novel concepts in the physiology of cardiac excitation. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  18. Live dynamic analysis of mouse embryonic cardiogenesis with functional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lopez, Andrew L.; Wang, Shang; Larina, Irina V.

    2018-02-01

    Hemodynamic load, contractile forces, and tissue elasticity are regulators of cardiac development and contribute to the mechanical homeostasis of the developing vertebrate heart. Congenital heart disease (CHD) is a prevalent condition in the United States that affects 8 in 1000 live births[1], and has been linked to disrupted cardiac biomechanics[2-4]. Therefore, it is important to understand how these forces integrate and regulate vertebrate cardiac development to inform clinical strategies to treat CHD early on by reintroducing proper mechanical load or modulating downstream factors that rely on mechanical signalling. Toward investigation of biomechanical regulation of mammalian cardiovascular dynamics and development, our methodology combines live mouse embryo culture protocols, state-of-the-art structural and functional Optical Coherence Tomography (OCT), second harmonic generation (SHG) microscopy, and computational analysis. Using these approaches, we assess functional aspects of the developing heart and characterize how they coincide with a determinant of tissue stiffness and main constituent of the extracellular matrix (ECM)—type I collagen. This work is bringing us closer to understanding how cardiac biomechanics change temporally and spatially during normal development, and how it regulates ECM to maintain mechanical homeostasis for proper function.

  19. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes.

    PubMed

    Kolwicz, Stephen C; Purohit, Suneet; Tian, Rong

    2013-08-16

    The network for cardiac fuel metabolism contains intricate sets of interacting pathways that result in both ATP-producing and non-ATP-producing end points for each class of energy substrates. The most salient feature of the network is the metabolic flexibility demonstrated in response to various stimuli, including developmental changes and nutritional status. The heart is also capable of remodeling the metabolic pathways in chronic pathophysiological conditions, which results in modulations of myocardial energetics and contractile function. In a quest to understand the complexity of the cardiac metabolic network, pharmacological and genetic tools have been engaged to manipulate cardiac metabolism in a variety of research models. In concert, a host of therapeutic interventions have been tested clinically to target substrate preference, insulin sensitivity, and mitochondrial function. In addition, the contribution of cellular metabolism to growth, survival, and other signaling pathways through the production of metabolic intermediates has been increasingly noted. In this review, we provide an overview of the cardiac metabolic network and highlight alterations observed in cardiac pathologies as well as strategies used as metabolic therapies in heart failure. Lastly, the ability of metabolic derivatives to intersect growth and survival are also discussed.

  20. Cardiac Metabolism and Its Interactions with Contraction, Growth, and Survival of the Cardiomyocte

    PubMed Central

    Kolwicz, Stephen C.; Purohit, Suneet; Tian, Rong

    2013-01-01

    The network for cardiac fuel metabolism contains intricate sets of interacting pathways that result in both ATP producing and non-ATP producing end-points for each class of energy substrates. The most salient feature of the network is the metabolic flexibility demonstrated in response to various stimuli, including developmental changes and nutritional status. The heart is also capable of remodeling the metabolic pathways in chronic pathophysiological conditions, which results in modulations of myocardial energetics and contractile function. In a quest to understand the complexity of the cardiac metabolic network, pharmacological and genetic tools have been engaged to manipulate cardiac metabolism in a variety of research models. In concert, a host of therapeutic interventions have been tested clinically to target substrate preference, insulin sensitivity, and mitochondrial function. In addition, the contribution of cellular metabolism to growth, survival, and other signaling pathways through the production of metabolic intermediates has been increasingly noted. In this review, we provide an overview of the cardiac metabolic network and highlight alterations observed in cardiac pathologies as well as strategies employed as metabolic therapies in heart failure. Lastly, the ability of metabolic derivatives to intersect growth and survival are also discussed. PMID:23948585

  1. Network interactions within the canine intrinsic cardiac nervous system: implications for reflex control of regional cardiac function

    PubMed Central

    Beaumont, Eric; Salavatian, Siamak; Southerland, E Marie; Vinet, Alain; Jacquemet, Vincent; Armour, J Andrew; Ardell, Jeffrey L

    2013-01-01

    The aims of the study were to determine how aggregates of intrinsic cardiac (IC) neurons transduce the cardiovascular milieu versus responding to changes in central neuronal drive and to determine IC network interactions subsequent to induced neural imbalances in the genesis of atrial fibrillation (AF). Activity from multiple IC neurons in the right atrial ganglionated plexus was recorded in eight anaesthetized canines using a 16-channel linear microelectrode array. Induced changes in IC neuronal activity were evaluated in response to: (1) focal cardiac mechanical distortion; (2) electrical activation of cervical vagi or stellate ganglia; (3) occlusion of the inferior vena cava or thoracic aorta; (4) transient ventricular ischaemia, and (5) neurally induced AF. Low level activity (ranging from 0 to 2.7 Hz) generated by 92 neurons was identified in basal states, activities that displayed functional interconnectivity. The majority (56%) of IC neurons so identified received indirect central inputs (vagus alone: 25%; stellate ganglion alone: 27%; both: 48%). Fifty per cent transduced the cardiac milieu responding to multimodal stressors applied to the great vessels or heart. Fifty per cent of IC neurons exhibited cardiac cycle periodicity, with activity occurring primarily in late diastole into isovolumetric contraction. Cardiac-related activity in IC neurons was primarily related to direct cardiac mechano-sensory inputs and indirect autonomic efferent inputs. In response to mediastinal nerve stimulation, most IC neurons became excessively activated; such network behaviour preceded and persisted throughout AF. It was concluded that stochastic interactions occur among IC local circuit neuronal populations in the control of regional cardiac function. Modulation of IC local circuit neuronal recruitment may represent a novel approach for the treatment of cardiac disease, including atrial arrhythmias. PMID:23818689

  2. Predominance of Intrinsic Mechanism of Resting Heart Rate Control and Preserved Baroreflex Sensitivity in Professional Cyclists after Competitive Training.

    PubMed

    Azevedo, Luciene Ferreira; Perlingeiro, Patricia; Hachul, Denise Tessariol; Gomes-Santos, Igor Lucas; Tsutsui, Jeane Mike; Negrao, Carlos Eduardo; De Matos, Luciana D N J

    2016-01-01

    Different season trainings may influence autonomic and non-autonomic cardiac control of heart rate and provokes specific adaptations on heart's structure in athletes. We investigated the influence of transition training (TT) and competitive training (CT) on resting heart rate, its mechanisms of control, spontaneous baroreflex sensitivity (BRS) and relationships between heart rate mechanisms and cardiac structure in professional cyclists (N = 10). Heart rate (ECG) and arterial blood pressure (Pulse Tonometry) were recorded continuously. Autonomic blockade was performed (atropine-0.04 mg.kg-1; esmolol-500 μg.kg-1 = 0.5 mg). Vagal effect, intrinsic heart rate, parasympathetic (n) and sympathetic (m) modulations, autonomic influence, autonomic balance and BRS were calculated. Plasma norepinephrine (high-pressure liquid chromatography) and cardiac structure (echocardiography) were evaluated. Resting heart rate was similar in TT and CT. However, vagal effect, intrinsic heart rate, autonomic influence and parasympathetic modulation (higher n value) decreased in CT (P≤0.05). Sympathetic modulation was similar in both trainings. The autonomic balance increased in CT but still showed parasympathetic predominance. Cardiac diameter, septum and posterior wall thickness and left ventricular mass also increased in CT (P<0.05) as well as diastolic function. We observed an inverse correlation between left ventricular diastolic diameter, septum and posterior wall thickness and left ventricular mass with intrinsic heart rate. Blood pressure and BRS were similar in both trainings. Intrinsic heart rate mechanism is predominant over vagal effect during CT, despite similar resting heart rate. Preserved blood pressure levels and BRS during CT are probably due to similar sympathetic modulation in both trainings.

  3. Effects of a hydrotherapy programme on symbolic and complexity dynamics of heart rate variability and aerobic capacity in fibromyalgia patients.

    PubMed

    Zamunér, Antonio Roberto; Andrade, Carolina P; Forti, Meire; Marchi, Andrea; Milan, Juliana; Avila, Mariana Arias; Catai, Aparecida Maria; Porta, Alberto; Silva, Ester

    2015-01-01

    To evaluate the effects of a hydrotherapy programme on aerobic capacity and linear and non-linear dynamics of heart rate variability (HRV) in women with fibromyalgia syndrome (FMS). 20 women with FMS and 20 healthy controls (HC) took part in the study. The FMS group was evaluated at baseline and after a 16-week hydrotherapy programme. All participants underwent cardiopulmonary exercise testing on a cycle ergometer and RR intervals recording in supine and standing positions. The HRV was analysed by linear and non-linear methods. The current level of pain, the tender points, the pressure pain threshold and the impact of FMS on quality of life were assessed. The FMS patients presented higher cardiac sympathetic modulation, lower vagal modulation and lower complexity of HRV in supine position than the HC. Only the HC decreased the complexity indices of HRV during orthostatic stimulus. After a 16-week hydrotherapy programme, the FMS patients increased aerobic capacity, decreased cardiac sympathetic modulation and increased vagal modulation and complexity dynamics of HRV in supine. The FMS patients also improved their cardiac autonomic adjustments to the orthostatic stimulus. Associations between improvements in non-linear dynamics of HRV and improvements in pain and in the impact of FMS on quality of life were found. A 16-week hydrotherapy programme proved to be effective in ameliorating symptoms, aerobic functional capacity and cardiac autonomic control in FMS patients. Improvements in the non-linear dynamics of HRV were related to improvements in pain and in the impact of FMS on quality of life.

  4. Natural product derivative BIO promotes recovery after myocardial infarction via unique modulation of the cardiac microenvironment

    PubMed Central

    Kim, Yong Sook; Jeong, Hye-yun; Kim, Ah Ra; Kim, Woong-Hee; Cho, Haaglim; Um, JungIn; Seo, Youngha; Kang, Wan Seok; Jin, Suk-Won; Kim, Min Chul; Kim, Yong-Chul; Jung, Da-Woon; Williams, Darren R.; Ahn, Youngkeun

    2016-01-01

    The cardiac microenvironment includes cardiomyocytes, fibroblasts and macrophages, which regulate remodeling after myocardial infarction (MI). Targeting this microenvironment is a novel therapeutic approach for MI. We found that the natural compound derivative, BIO ((2′Z,3′E)-6-Bromoindirubin-3′-oxime) modulated the cardiac microenvironment to exert a therapeutic effect on MI. Using a series of co-culture studies, BIO induced proliferation in cardiomyocytes and inhibited proliferation in cardiac fibroblasts. BIO produced multiple anti-fibrotic effects in cardiac fibroblasts. In macrophages, BIO inhibited the expression of pro-inflammatory factors. Significantly, BIO modulated the molecular crosstalk between cardiac fibroblasts and differentiating macrophages to induce polarization to the anti-inflammatory M2 phenotype. In the optically transparent zebrafish-based heart failure model, BIO induced cardiomyocyte proliferation and completely recovered survival rate. BIO is a known glycogen synthase kinase-3β inhibitor, but these effects could not be recapitulated using the classical inhibitor, lithium chloride; indicating novel therapeutic effects of BIO. We identified the mechanism of BIO as differential modulation of p27 protein expression and potent induction of anti-inflammatory interleukin-10. In a rat MI model, BIO reduced fibrosis and improved cardiac performance. Histological analysis revealed modulation of the cardiac microenvironment by BIO, with increased presence of anti-inflammatory M2 macrophages. Our results demonstrate that BIO produces unique effects in the cardiac microenvironment to promote recovery post-MI. PMID:27510556

  5. Interleukin 1 and Tumor Necrosis Factor Inhibit Cardiac Myocyte β -adrenergic Responsiveness

    NASA Astrophysics Data System (ADS)

    Gulick, Tod; Chung, Mina K.; Pieper, Stephen J.; Lange, Louis G.; Schreiner, George F.

    1989-09-01

    Reversible congestive heart failure can accompany cardiac allograft rejection and inflammatory myocarditis, conditions associated with an immune cell infiltrate of the myocardium. To determine whether immune cell secretory products alter cardiac muscle metabolism without cytotoxicity, we cultured cardiac myocytes in the presence of culture supernatants from activated immune cells. We observed that these culture supernatants inhibit β -adrenergic agonist-mediated increases in cultured cardiac myocyte contractility and intracellular cAMP accumulation. The myocyte contractile response to increased extracellular Ca2+ concentration is unaltered by prior exposure to these culture supernatants, as is the increase in myocyte intracellular cAMP concentration in response to stimulation with forskolin, a direct adenyl cyclase activator. Inhibition occurs in the absence of alteration in β -adrenergic receptor density or ligand binding affinity. Suppressive activity is attributable to the macrophage-derived cytokines interleukin 1 and tumor necrosis factor. Thus, these observations describe a role for defined cytokines in regulating the hormonal responsiveness and function of contractile cells. The effects of interleukin 1 and tumor necrosis factor on intracellular cAMP accumulation may be a model for immune modulation of other cellular functions dependent upon cyclic nucleotide metabolism. The uncoupling of agonist-occupied receptors from adenyl cyclase suggests that β -receptor or guanine nucleotide binding protein function is altered by the direct or indirect action of cytokines on cardiac muscle cells.

  6. Cardiac e-learning: Development of a web-based implantable cardioverter defibrillator educational system.

    PubMed

    Hickey, Kathleen T; Johnson, Mary P; Biviano, Angelo; Aboelela, Sally; Thomas, Tami; Bakken, Suzanne; Garan, Hasan; Zimmerman, John L; Whang, William

    2011-04-01

    The objective of this study was to design a Web-based implantable cardioverter defibrillator (ICD) module that would allow greater access to learning which could occur at an individual's convenience outside the fast-paced clinical environment. A Web-based ICD software educational program was developed to provide general knowledge of the function of the ICD and the interpretation of the stored electrocardiograms. This learning tool could be accessed at any time via the Columbia University Internet server, using a unique, password protected login. A series of basic and advanced ICD terms were presented using actual ICD screenshots and videos that simulated scenarios the practitioner would most commonly encounter in the fast-paced clinical setting. To determine the usefulness of the site and improve the module, practitioners were asked to complete a brief (less than 5 min) online survey at the end of the module. Twenty-six practitioners have logged into our Web site: 20 nurses/nurse practitioners, four cardiac fellows, and two other practitioners. The majority of respondents rated the program as easy to use and useful. The success of this module has led to it becoming part of the training for student nurse practitioners before a clinical electrophysiology rotation, and the module is accessed by our cardiac entry level fellows before a rotation in the intensive care unit or electrophysiology service. Remote electronic arrhythmia learning is a successful example of the melding of technology and education to enhance clinical learning.

  7. Down-regulation of fibroblast growth factor 2 and its co-receptors heparan sulfate proteoglycans by resveratrol underlies the improvement of cardiac dysfunction in experimental diabetes.

    PubMed

    Strunz, Célia Maria Cássaro; Roggerio, Alessandra; Cruz, Paula Lázara; Pacanaro, Ana Paula; Salemi, Vera Maria Cury; Benvenuti, Luiz Alberto; Mansur, Antonio de Pádua; Irigoyen, Maria Cláudia

    2017-02-01

    Cardiac remodeling in diabetes involves cardiac hypertrophy and fibrosis, and fibroblast growth factor 2 (FGF2) is an important mediator of this process. Resveratrol, a polyphenolic antioxidant, reportedly promotes the improvement of cardiac dysfunction in diabetic rats. However, little information exists linking the amelioration of the cardiac function promoted by resveratrol and the expression of FGF2 and its co-receptors, heparan sulfate proteoglycans (HSPGs: Glypican-1 and Syndecan-4), in cardiac muscle of Type 2 diabetic rats. Diabetes was induced experimentally by the injection of streptozotocin and nicotinamide, and the rats were treated with resveratrol for 6 weeks. According to our results, there is an up-regulation of the expression of genes and/or proteins of Glypican-1, Syndecan-4, FGF2, peroxisome proliferator-activated receptor gamma and AMP-activated protein kinase in diabetic rats. On the other hand, resveratrol treatment promoted the attenuation of left ventricular diastolic dysfunction and the down-regulation of the expression of all proteins under study. The trigger for the changes in gene expression and protein synthesis promoted by resveratrol was the presence of diabetes. The negative modulation conducted by resveratrol on FGF2 and HSPGs expression, which are involved in cardiac remodeling, underlies the amelioration of cardiac function. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Estrogen regulates histone deacetylases to prevent cardiac hypertrophy

    PubMed Central

    Pedram, Ali; Razandi, Mahnaz; Narayanan, Ramesh; Dalton, James T.; McKinsey, Timothy A.; Levin, Ellis R.

    2013-01-01

    The development and progression of cardiac hypertrophy often leads to heart failure and death, and important modulators of hypertrophy include the histone deacetylase proteins (HDACs). Estrogen inhibits cardiac hypertrophy and progression in animal models and humans. We therefore investigated the influence of 17-β-estradiol on the production, localization, and functions of prohypertrophic (class I) and antihypertrophic (class II) HDACs in cultured neonatal rat cardiomyocytes. 17-β-Estradiol or estrogen receptor β agonists dipropylnitrile and β-LGND2 comparably suppressed angiotensin II–induced HDAC2 (class I) production, HDAC-activating phosphorylation, and the resulting prohypertrophic mRNA expression. In contrast, estrogenic compounds derepressed the opposite effects of angiotensin II on the same parameters for HDAC4 and 5 (class II), resulting in retention of these deacetylases in the nucleus to inhibit hypertrophic gene expression. Key aspects were confirmed in vivo from the hearts of wild-type but not estrogen receptor β (ERβ) gene–deleted mice administered angiotensin II and estrogenic compounds. Our results identify a novel dual regulation of cardiomyocyte HDACs, shown here for the antihypertrophic sex steroid acting at ERβ. This mechanism potentially supports using ERβ agonists as HDAC modulators to treat cardiac disease. PMID:24152730

  9. Histone Deacetylases 5 and 9 Govern Responsiveness of the Heart to a Subset of Stress Signals and Play Redundant Roles in Heart Development

    PubMed Central

    Chang, Shurong; McKinsey, Timothy A.; Zhang, Chun Li; Richardson, James A.; Hill, Joseph A.; Olson, Eric N.

    2004-01-01

    The adult heart responds to stress signals by hypertrophic growth, which is often accompanied by activation of a fetal cardiac gene program and eventual cardiac demise. We showed previously that histone deacetylase 9 (HDAC9) acts as a suppressor of cardiac hypertrophy and that mice lacking HDAC9 are sensitized to cardiac stress signals. Here we report that mice lacking HDAC5 display a similar cardiac phenotype and develop profoundly enlarged hearts in response to pressure overload resulting from aortic constriction or constitutive cardiac activation of calcineurin, a transducer of cardiac stress signals. In contrast, mice lacking either HDAC5 or HDAC9 show a hypertrophic response to chronic β-adrenergic stimulation identical to that of wild-type littermates, suggesting that these HDACs modulate a specific subset of cardiac stress response pathways. We also show that compound mutant mice lacking both HDAC5 and HDAC9 show a propensity for lethal ventricular septal defects and thin-walled myocardium. These findings reveal central roles for HDACs 5 and 9 in the suppression of a subset of cardiac stress signals as well as redundant functions in the control of cardiac development. PMID:15367668

  10. Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development.

    PubMed

    Chang, Shurong; McKinsey, Timothy A; Zhang, Chun Li; Richardson, James A; Hill, Joseph A; Olson, Eric N

    2004-10-01

    The adult heart responds to stress signals by hypertrophic growth, which is often accompanied by activation of a fetal cardiac gene program and eventual cardiac demise. We showed previously that histone deacetylase 9 (HDAC9) acts as a suppressor of cardiac hypertrophy and that mice lacking HDAC9 are sensitized to cardiac stress signals. Here we report that mice lacking HDAC5 display a similar cardiac phenotype and develop profoundly enlarged hearts in response to pressure overload resulting from aortic constriction or constitutive cardiac activation of calcineurin, a transducer of cardiac stress signals. In contrast, mice lacking either HDAC5 or HDAC9 show a hypertrophic response to chronic beta-adrenergic stimulation identical to that of wild-type littermates, suggesting that these HDACs modulate a specific subset of cardiac stress response pathways. We also show that compound mutant mice lacking both HDAC5 and HDAC9 show a propensity for lethal ventricular septal defects and thin-walled myocardium. These findings reveal central roles for HDACs 5 and 9 in the suppression of a subset of cardiac stress signals as well as redundant functions in the control of cardiac development.

  11. TRPA1 mediates changes in heart rate variability and cardiac mechanical function in mice exposed to acrolein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurhanewicz, Nicole

    Short-term exposure to ambient air pollution is linked with adverse cardiovascular effects. While previous research focused primarily on particulate matter-induced responses, gaseous air pollutants also contribute to cause short-term cardiovascular effects. Mechanisms underlying such effects have not been adequately described, however the immediate nature of the response suggests involvement of irritant neural activation and downstream autonomic dysfunction. Thus, this study examines the role of TRPA1, an irritant sensory receptor found in the airways, in the cardiac response of mice to acrolein and ozone. Conscious unrestrained wild-type C57BL/6 (WT) and TRPA1 knockout (KO) mice implanted with radiotelemeters were exposed once tomore » 3 ppm acrolein, 0.3 ppm ozone, or filtered air. Heart rate (HR) and electrocardiogram (ECG) were recorded continuously before, during and after exposure. Analysis of ECG morphology, incidence of arrhythmia and heart rate variability (HRV) were performed. Cardiac mechanical function was assessed using a Langendorff perfusion preparation 24 h post-exposure. Acrolein exposure increased HRV independent of HR, as well as incidence of arrhythmia. Acrolein also increased left ventricular developed pressure in WT mice at 24 h post-exposure. Ozone did not produce any changes in cardiac function. Neither gas produced ECG effects, changes in HRV, arrhythmogenesis, or mechanical function in KO mice. These data demonstrate that a single exposure to acrolein causes cardiac dysfunction through TRPA1 activation and autonomic imbalance characterized by a shift toward parasympathetic modulation. Furthermore, it is clear from the lack of ozone effects that although gaseous irritants are capable of eliciting immediate cardiac changes, gas concentration and properties play important roles. - Highlights: • Acute acrolein exposure causes autonomic imbalance and altered CV function in mice. • TRPA1 mediates acrolein-induced autonomic nervous system cardiac effects. • Sensory irritation contributes to acrolein-induced cardiac arrhythmia & dysfunction.« less

  12. Dynamic reciprocity of sodium and potassium channel expression in a macromolecular complex controls cardiac excitability and arrhythmia.

    PubMed

    Milstein, Michelle L; Musa, Hassan; Balbuena, Daniela Ponce; Anumonwo, Justus M B; Auerbach, David S; Furspan, Philip B; Hou, Luqia; Hu, Bin; Schumacher, Sarah M; Vaidyanathan, Ravi; Martens, Jeffrey R; Jalife, José

    2012-07-31

    The cardiac electrical impulse depends on an orchestrated interplay of transmembrane ionic currents in myocardial cells. Two critical ionic current mechanisms are the inwardly rectifying potassium current (I(K1)), which is important for maintenance of the cell resting membrane potential, and the sodium current (I(Na)), which provides a rapid depolarizing current during the upstroke of the action potential. By controlling the resting membrane potential, I(K1) modifies sodium channel availability and therefore, cell excitability, action potential duration, and velocity of impulse propagation. Additionally, I(K1)-I(Na) interactions are key determinants of electrical rotor frequency responsible for abnormal, often lethal, cardiac reentrant activity. Here, we have used a multidisciplinary approach based on molecular and biochemical techniques, acute gene transfer or silencing, and electrophysiology to show that I(K1)-I(Na) interactions involve a reciprocal modulation of expression of their respective channel proteins (Kir2.1 and Na(V)1.5) within a macromolecular complex. Thus, an increase in functional expression of one channel reciprocally modulates the other to enhance cardiac excitability. The modulation is model-independent; it is demonstrable in myocytes isolated from mouse and rat hearts and with transgenic and adenoviral-mediated overexpression/silencing. We also show that the post synaptic density, discs large, and zonula occludens-1 (PDZ) domain protein SAP97 is a component of this macromolecular complex. We show that the interplay between Na(v)1.5 and Kir2.1 has electrophysiological consequences on the myocardium and that SAP97 may affect the integrity of this complex or the nature of Na(v)1.5-Kir2.1 interactions. The reciprocal modulation between Na(v)1.5 and Kir2.1 and the respective ionic currents should be important in the ability of the heart to undergo self-sustaining cardiac rhythm disturbances.

  13. Decoding telomere protein Rap1: Its telomeric and nontelomeric functions and potential implications in diabetic cardiomyopathy.

    PubMed

    Cai, Yin; Kandula, Vidya; Kosuru, Ramoji; Ye, Xiaodong; Irwin, Michael G; Xia, Zhengyuan

    2017-10-02

    Mammalian Rap1, the most conserved telomere-interacting protein, beyond its role within nucleus for the maintenance of telomeric functions, is also well known for its pleiotropic functions in various physiological and pathological conditions associated with metabolism, inflammation and oxidative stress. For all these, nowadays Rap1 is the subject of critical investigations aimed to unveil its molecular signaling pathways and to scrutinize the applicability of its modulation as a promising therapeutic strategy with clinical relevance. However, the underlying intimate mechanisms of Rap1 are not extensively studied, but any modulation of this protein level has been associated with pathologies like inflammation, oxidative stress and deregulated metabolism. This is considerably important in light of the recent discovery of Rap1 modulation in diseases like cancer and cardiac metabolic disorders. In this review, we focus on both the telomeric and nontelomeric functions of Rap1 and its modulation in various health risks, especially on the heart.

  14. Negative feedback regulation of Homer 1a on norepinephrine-dependent cardiac hypertrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiarello, Carmelina; Bortoloso, Elena; Carpi, Andrea

    2013-07-15

    Homers are scaffolding proteins that modulate diverse cell functions being able to assemble signalling complexes. In this study, the presence, sub-cellular distribution and function of Homer 1 was investigated. Homer 1a and Homer 1b/c are constitutively expressed in cardiac muscle of both mouse and rat and in HL-1 cells, a cardiac cell line. As judged by confocal immunofluorescence microscopy, Homer 1a displays sarcomeric and peri-nuclear localization. In cardiomyocytes and cultured HL-1 cells, the hypertrophic agonist norepinephrine (NE) induces α{sub 1}-adrenergic specific Homer 1a over-expression, with a two-to-three-fold increase within 1 h, and no up-regulation of Homer 1b/c, as judged bymore » Western blot and qPCR. In HL-1 cells, plasmid-driven over-expression of Homer 1a partially antagonizes activation of ERK phosphorylation and ANF up-regulation, two well-established, early markers of hypertrophy. At the morphometric level, NE-induced increase of cell size is likewise and partially counteracted by exogenous Homer 1a. Under the same experimental conditions, Homer 1b/c does not have any effect on ANF up-regulation nor on cell hypertrophy. Thus, Homer 1a up-regulation is associated to early stages of cardiac hypertrophy and appears to play a negative feedback regulation on molecular transducers of hypertrophy. -- Highlights: • Homer 1a is constitutively expressed in cardiac tissue. • In HL-1 cells, norepinephrine activates signaling pathways leading to hypertrophy. • Homer 1a up-regulation is an early event of norepinephrine-induced hypertrophy. • Homer 1a plays a negative feedback regulation modulating pathological hypertrophy. • Over-expression of Homer 1a per se does not induce hypertrophy.« less

  15. Triiodothyronine Activates Lactate Oxidation Without Impairing Fatty Acid Oxidation and Improves Weaning From Extracorporeal Membrane Oxygenation

    PubMed Central

    Kajimoto, Masaki; Ledee, Dolena R.; Xu, Chun; Kajimoto, Hidemi; Isern, Nancy G.; Portman, Michael A.

    2017-01-01

    Background Extracorporeal membrane oxygenation (ECMO) provides a rescue for children with severe cardiac failure. It has previously been shown that triiodothyronine (T3) improves cardiac function by modulating pyruvate oxidation during weaning. This study focused on fatty acid (FA) metabolism modulated by T3 for weaning from ECMO after cardiac injury. Methods and Results Nineteen immature piglets (9.1–15.3 kg) were separated into 3 groups with ECMO (6.5 h) and wean: normal circulation (Group-C); transient coronary occlusion (10 min) for ischemia-reperfusion (IR) followed by ECMO (Group-IR); and IR with T3 supplementation (Group-IR-T3). 13-Carbon (13C)-labeled lactate, medium-chain and long-chain FAs, was infused as oxidative substrates. Substrate fractional contribution (FC) to the citric acid cycle was analyzed by 13C-nuclear magnetic resonance. ECMO depressed circulating T3 levels to 40% of the baseline at 4 h and were restored in Group-IR-T3. Group-IR decreased cardiac power, which was not fully restorable and 2 pigs were lost because of weaning failure. Group-IR also depressed FC-lactate, while the excellent contractile function and energy efficiency in Group-IR-T3 occurred along with a marked FC-lactate increase and [adenosine triphosphate]/[adenosine diphosphate] without either decreasing FC-FAs or elevating myocardial oxygen consumption over Group-C or -IR. Conclusions T3 releases inhibition of lactate oxidation following IR injury without impairing FA oxidation. These findings indicate that T3 depression during ECMO is maladaptive, and that restoring levels improves metabolic flux and enhances contractile function during weaning. PMID:25421230

  16. Measuring health-related quality of life in Hungarian children with heart disease: psychometric properties of the Hungarian version of the Pediatric Quality of Life Inventory 4.0 Generic Core Scales and the Cardiac Module.

    PubMed

    Berkes, Andrea; Pataki, István; Kiss, Mariann; Kemény, Csilla; Kardos, László; Varni, James W; Mogyorósy, Gábor

    2010-01-28

    The aim of the study was to investigate the psychometric properties of the Hungarian version of the Pediatric Quality of Life Inventory (PedsQL) Generic Core Scales and Cardiac Module. The PedsQL 4.0 Generic Core Scales and the PedsQL 3.0 Cardiac Module was administered to 254 caregivers of children (aged 2-18 years) and to 195 children (aged 5-18 years) at a pediatric cardiology outpatient unit. A postal survey on a demographically group-matched sample of the general population with 525 caregivers of children (aged 2-18 years) and 373 children (aged 5-18 years) was conducted with the PedsQL 4.0 Generic Core Scale. Responses were described, compared over subgroups of subjects, and were used to assess practical utility, distributional coverage, construct validity, internal consistency, and inter-reporter agreement of the instrument. The moderate scale-level mean percentage of missing item responses (range 1.8-2.3%) supported the feasibility of the Generic Core Scales for general Hungarian children. Minimal to moderate ceiling effects and no floor effects were found on the Generic Core Scales. We observed stronger ceiling than floor effects in the Cardiac Module. Most of the scales showed satisfactory reliability with Cronbach's alpha estimates exceeding 0.70. Generally, moderate to good agreement was found between self- and parent proxy-reports in the patient and in the comparison group (intraclass correlation coefficient range 0.52-0.77), but remarkably low agreement in the perceived physical appearance subscale in the age group 5-7 years (0.18) and for the treatment II scale (problems on taking heart medicine) scale of the Cardiac Module in children aged 8-12 years (0.39). Assessing the construct validity of the questionnaires, statistically significant difference was found between the patient group and the comparison group only in the Physical Functioning Scale scores (p = 0.003) of the child self-report component, and in Physical (p = 0.022), Emotional, (p = 0.017), Psychosocial Summary (p = 0.019) scores and in the total HRQoL (health-related quality of life) scale score (p = 0.034) for parent proxy-report. The findings generally support the feasibility, reliability and validity of the Hungarian translation of the PedsQL 4.0 Generic Core Scales and the PedsQL 3.0 Cardiac Module in Hungarian children with heart disease.

  17. HMGB1-stimulated human primary cardiac fibroblasts exert a paracrine action on human and murine cardiac stem cells.

    PubMed

    Rossini, Alessandra; Zacheo, Antonella; Mocini, David; Totta, Pierangela; Facchiano, Antonio; Castoldi, Raffaella; Sordini, Paolo; Pompilio, Giulio; Abeni, Damiano; Capogrossi, Maurizio C; Germani, Antonia

    2008-04-01

    High Mobility Box 1 Protein (HMGB1) is a cytokine released into the extracellular space by necrotic cells and activated macrophages in response to injury. We recently demonstrated that HMGB1 administration into the mouse heart during acute myocardial infarction induces cardiac tissue regeneration by activating resident cardiac c-kit+ cells (CSCs) and significantly enhances left ventricular function. In the present study it was analyzed the hypothesis that human cardiac fibroblasts (cFbs) exposed to HMGB1 may exert a paracrine effect on mouse and human CSCs. Human cFbs expressed the HMGB1 receptor RAGE. Luminex technology and ELISA assays revealed that HMGB1 significantly enhanced VEGF, PlGF, Mip-1alpha, IFN-gamma, GM-CSF, Il-10, Il-1beta, Il-4, Il-1ra, Il-9 and TNF-alpha in cFbs cell culture medium. HMGB1-stimulated cFbs conditioned media induced CSC migration and proliferation. These effects were significantly higher to those obtained when HMGB1 was added directly to the culture medium. In conclusion, we provide evidence that HMGB1 may act in a paracrine manner stimulating growth factor, cytokine and chemokine release by cFbs which, in turn, modulate CSC function. Via this mechanism HMGB1 may contribute to cardiac tissue regeneration.

  18. Parkin regulation of CHOP modulates susceptibility to cardiac endoplasmic reticulum stress.

    PubMed

    Han, Kim; Hassanzadeh, Shahin; Singh, Komudi; Menazza, Sara; Nguyen, Tiffany T; Stevens, Mark V; Nguyen, An; San, Hong; Anderson, Stasia A; Lin, Yongshun; Zou, Jizhong; Murphy, Elizabeth; Sack, Michael N

    2017-05-18

    The regulatory control of cardiac endoplasmic reticulum (ER) stress is incompletely characterized. As ER stress signaling upregulates the E3-ubiquitin ligase Parkin, we investigated the role of Parkin in cardiac ER stress. Parkin knockout mice exposed to aortic constriction-induced cardiac pressure-overload or in response to systemic tunicamycin (TM) developed adverse ventricular remodeling with excessive levels of the ER regulatory C/EBP homologous protein CHOP. CHOP was identified as a Parkin substrate and its turnover was Parkin-dose and proteasome-dependent. Parkin depletion in cardiac HL-1 cells increased CHOP levels and enhanced susceptibility to TM-induced cell death. Parkin reconstitution rescued this phenotype and the contribution of excess CHOP to this ER stress injury was confirmed by reduction in TM-induced cell death when CHOP was depleted in Parkin knockdown cardiomyocytes. Isogenic Parkin mutant iPSC-derived cardiomyocytes showed exaggerated ER stress induced CHOP and apoptotic signatures and myocardium from subjects with dilated cardiomyopathy showed excessive Parkin and CHOP induction. This study identifies that Parkin functions to blunt excessive CHOP to prevent maladaptive ER stress-induced cell death and adverse cardiac ventricular remodeling. Additionally, Parkin is identified as a novel post-translational regulatory moderator of CHOP stability and uncovers an additional stress-modifying function of this E3-ubiquitin ligase.

  19. MicroRNA-133 modulates the β1-adrenergic receptor transduction cascade.

    PubMed

    Castaldi, Alessandra; Zaglia, Tania; Di Mauro, Vittoria; Carullo, Pierluigi; Viggiani, Giacomo; Borile, Giulia; Di Stefano, Barbara; Schiattarella, Gabriele Giacomo; Gualazzi, Maria Giovanna; Elia, Leonardo; Stirparo, Giuliano Giuseppe; Colorito, Maria Luisa; Pironti, Gianluigi; Kunderfranco, Paolo; Esposito, Giovanni; Bang, Marie-Louise; Mongillo, Marco; Condorelli, Gianluigi; Catalucci, Daniele

    2014-07-07

    The sympathetic nervous system plays a fundamental role in the regulation of myocardial function. During chronic pressure overload, overactivation of the sympathetic nervous system induces the release of catecholamines, which activate β-adrenergic receptors in cardiomyocytes and lead to increased heart rate and cardiac contractility. However, chronic stimulation of β-adrenergic receptors leads to impaired cardiac function, and β-blockers are widely used as therapeutic agents for the treatment of cardiac disease. MicroRNA-133 (miR-133) is highly expressed in the myocardium and is involved in controlling cardiac function through regulation of messenger RNA translation/stability. To determine whether miR-133 affects β-adrenergic receptor signaling during progression to heart failure. Based on bioinformatic analysis, β1-adrenergic receptor (β1AR) and other components of the β1AR signal transduction cascade, including adenylate cyclase VI and the catalytic subunit of the cAMP-dependent protein kinase A, were predicted as direct targets of miR-133 and subsequently validated by experimental studies. Consistently, cAMP accumulation and activation of downstream targets were repressed by miR-133 overexpression in both neonatal and adult cardiomyocytes following selective β1AR stimulation. Furthermore, gain-of-function and loss-of-function studies of miR-133 revealed its role in counteracting the deleterious apoptotic effects caused by chronic β1AR stimulation. This was confirmed in vivo using a novel cardiac-specific TetON-miR-133 inducible transgenic mouse model. When subjected to transaortic constriction, TetON-miR-133 inducible transgenic mice maintained cardiac performance and showed attenuated apoptosis and reduced fibrosis compared with control mice. miR-133 controls multiple components of the β1AR transduction cascade and is cardioprotective during heart failure. © 2014 American Heart Association, Inc.

  20. Matrix factorization reveals aging-specific co-expression gene modules in the fat and muscle tissues in nonhuman primates

    NASA Astrophysics Data System (ADS)

    Wang, Yongcui; Zhao, Weiling; Zhou, Xiaobo

    2016-10-01

    Accurate identification of coherent transcriptional modules (subnetworks) in adipose and muscle tissues is important for revealing the related mechanisms and co-regulated pathways involved in the development of aging-related diseases. Here, we proposed a systematically computational approach, called ICEGM, to Identify the Co-Expression Gene Modules through a novel mathematical framework of Higher-Order Generalized Singular Value Decomposition (HO-GSVD). ICEGM was applied on the adipose, and heart and skeletal muscle tissues in old and young female African green vervet monkeys. The genes associated with the development of inflammation, cardiovascular and skeletal disorder diseases, and cancer were revealed by the ICEGM. Meanwhile, genes in the ICEGM modules were also enriched in the adipocytes, smooth muscle cells, cardiac myocytes, and immune cells. Comprehensive disease annotation and canonical pathway analysis indicated that immune cells, adipocytes, cardiomyocytes, and smooth muscle cells played a synergistic role in cardiac and physical functions in the aged monkeys by regulation of the biological processes associated with metabolism, inflammation, and atherosclerosis. In conclusion, the ICEGM provides an efficiently systematic framework for decoding the co-expression gene modules in multiple tissues. Analysis of genes in the ICEGM module yielded important insights on the cooperative role of multiple tissues in the development of diseases.

  1. mAKAP – A Master Scaffold for Cardiac Remodeling

    PubMed Central

    Passariello, Catherine L.; Li, Jinliang; Dodge-Kafka, Kimberly; Kapiloff, Michael S.

    2014-01-01

    Cardiac remodeling is regulated by an extensive intracellular signal transduction network. Each of the many signaling pathways in this network contributes uniquely to the control of cellular adaptation. In the last few years, it has become apparent that multimolecular signaling complexes or ‘signalosomes’ are important for fidelity in intracellular signaling and for mediating crosstalk between the different signaling pathways. These complexes integrate upstream signals and control downstream effectors. In the cardiac myocyte, the protein mAKAPβ serves as a scaffold for a large signalosome that is responsive to cAMP, calcium, hypoxia, and mitogen-activated protein kinase signaling. The main function of mAKAPβ signalosomes is to modulate stress-related gene expression regulated by the transcription factors NFATc, MEF2 and HIF-1α and type II histone deacetylases that control pathological cardiac hypertrophy. PMID:25551320

  2. FPGA implementation of a ZigBee wireless network control interface to transmit biomedical signals

    NASA Astrophysics Data System (ADS)

    Gómez López, M. A.; Goy, C. B.; Bolognini, P. C.; Herrera, M. C.

    2011-12-01

    In recent years, cardiac hemodynamic monitors have incorporated new technologies based on wireless sensor networks which can implement different types of communication protocols. More precisely, a digital conductance catheter system recently developed adds a wireless ZigBee module (IEEE 802.15.4 standards) to transmit cardiac signals (ECG, intraventricular pressure and volume) which would allow the physicians to evaluate the patient's cardiac status in a noninvasively way. The aim of this paper is to describe a control interface, implemented in a FPGA device, to manage a ZigBee wireless network. ZigBee technology is used due to its excellent performance including simplicity, low-power consumption, short-range transmission and low cost. FPGA internal memory stores 8-bit signals with which the control interface prepares the information packets. These data were send to the ZigBee END DEVICE module that receives and transmits wirelessly to the external COORDINATOR module. Using an USB port, the COORDINATOR sends the signals to a personal computer for displaying. Each functional block of control interface was assessed by means of temporal diagrams. Three biological signals, organized in packets and converted to RS232 serial protocol, were sucessfully transmitted and displayed in a PC screen. For this purpose, a custom-made graphical software was designed using LabView.

  3. Cardiac ryanodine receptor phosphorylation by CaM Kinase II: keeping the balance right.

    PubMed

    Currie, Susan

    2009-06-01

    Phosphorylation of the cardiac ryanodine receptor (RyR2) is a key mechanism regulating sarcoplasmic reticulum (SR) Ca2+ release. Differences in opinion have arisen over the importance assigned to specific phosphorylation sites on RyR2, over the kinase (s) suggested to directly phosphorylate RyR2 and surrounding the possibility that altered phosphorylation of RyR2 is associated with contractile dysfunction observed in heart failure. Ca2+/calmodulin dependent protein kinase II (CaMKII) can phosphorylate RyR2 and modulate its activity. This phosphorylation positively modulates cardiac inotropic function but in extreme situations such as heart failure, elevated CaMKII activity can adversely increase Ca2+ release from the SR and lead to arrhythmogenesis. Although other kinases can phosphorylate RyR2, most notably cAMP-dependent protein kinase (PKA), evidence for a key role of CaMKII in mediating RyR2-dependent Ca2+ release is emerging. Future challenges include (i) fully identifying mechanisms of CaMKII interaction with the RyR2 complex and (ii) given the ubiquitous expression of CaMKII, developing selective strategies to modulate RyR2-targeted CaMKII activity and allow improved understanding of its role in normal and diseased heart.

  4. Analysis of the SWI/SNF chromatin-remodeling complex during early heart development and BAF250a repression cardiac gene transcription during P19 cell differentiation

    PubMed Central

    Singh, Ajeet Pratap; Archer, Trevor K.

    2014-01-01

    The regulatory networks of differentiation programs and the molecular mechanisms of lineage-specific gene regulation in mammalian embryos remain only partially defined. We document differential expression and temporal switching of BRG1-associated factor (BAF) subunits, core pluripotency factors and cardiac-specific genes during post-implantation development and subsequent early organogenesis. Using affinity purification of BRG1 ATPase coupled to mass spectrometry, we characterized the cardiac-enriched remodeling complexes present in E8.5 mouse embryos. The relative abundance and combinatorial assembly of the BAF subunits provides functional specificity to Switch/Sucrose NonFermentable (SWI/SNF) complexes resulting in a unique gene expression profile in the developing heart. Remarkably, the specific depletion of the BAF250a subunit demonstrated differential effects on cardiac-specific gene expression and resulted in arrhythmic contracting cardiomyocytes in vitro. Indeed, the BAF250a physically interacts and functionally cooperates with Nucleosome Remodeling and Histone Deacetylase (NURD) complex subunits to repressively regulate chromatin structure of the cardiac genes by switching open and poised chromatin marks associated with active and repressed gene expression. Finally, BAF250a expression modulates BRG1 occupancy at the loci of cardiac genes regulatory regions in P19 cell differentiation. These findings reveal specialized and novel cardiac-enriched SWI/SNF chromatin-remodeling complexes, which are required for heart formation and critical for cardiac gene expression regulation at the early stages of heart development. PMID:24335282

  5. Highly efficient and specific modulation of cardiac calcium homeostasis by adenovector-derived short hairpin RNA targeting phospholamban.

    PubMed

    Fechner, H; Suckau, L; Kurreck, J; Sipo, I; Wang, X; Pinkert, S; Loschen, S; Rekittke, J; Weger, S; Dekkers, D; Vetter, R; Erdmann, V A; Schultheiss, H-P; Paul, M; Lamers, J; Poller, W

    2007-02-01

    Impaired function of the phospholamban (PLB)-regulated sarcoplasmic reticulum Ca(2+) pump (SERCA2a) contributes to cardiac dysfunction in heart failure (HF). PLB downregulation may increase SERCA2a activity and improve cardiac function. Small interfering (si)RNAs mediate efficient gene silencing by RNA interference (RNAi). However, their use for in vivo gene therapy is limited by siRNA instability in plasma and tissues, and by low siRNA transfer rates into target cells. To address these problems, we developed an adenoviral vector (AdV) transcribing short hairpin (sh)RNAs against rat PLB and evaluated its potential to silence the PLB gene and to modulate SERCA2a-mediated Ca(2+) sequestration in primary neonatal rat cardiomyocytes (PNCMs). Over a period of 13 days, vector transduction resulted in stable > 99.9% ablation of PLB-mRNA at a multiplicity of infection of 100. PLB protein gradually decreased until day 7 (7+/-2% left), whereas SERCA, Na(+)/Ca(2+) exchanger (NCX1), calsequestrin and troponin I protein remained unchanged. PLB silencing was associated with a marked increase in ATP-dependent oxalate-supported Ca(2+) uptake at 0.34 microM of free Ca(2+), and rapid loss of responsiveness to protein kinase A-dependent stimulation of Ca(2+) uptake was maintained until day 7. In summary, these results indicate that AdV-derived PLB-shRNA mediates highly efficient, specific and stable PLB gene silencing and modulation of active Ca(2+) sequestration in PNCMs. The availability of the new vector now enables employment of RNAi for the treatment of HF in vivo.

  6. Assessment of phase based dose modulation for improved dose efficiency in cardiac CT on an anthropomorphic motion phantom

    NASA Astrophysics Data System (ADS)

    Budde, Adam; Nilsen, Roy; Nett, Brian

    2014-03-01

    State of the art automatic exposure control modulates the tube current across view angle and Z based on patient anatomy for use in axial full scan reconstructions. Cardiac CT, however, uses a fundamentally different image reconstruction that applies a temporal weighting to reduce motion artifacts. This paper describes a phase based mA modulation that goes beyond axial and ECG modulation; it uses knowledge of the temporal view weighting applied within the reconstruction algorithm to improve dose efficiency in cardiac CT scanning. Using physical phantoms and synthetic noise emulation, we measure how knowledge of sinogram temporal weighting and the prescribed cardiac phase can be used to improve dose efficiency. First, we validated that a synthetic CT noise emulation method produced realistic image noise. Next, we used the CT noise emulation method to simulate mA modulation on scans of a physical anthropomorphic phantom where a motion profile corresponding to a heart rate of 60 beats per minute was used. The CT noise emulation method matched noise to lower dose scans across the image within 1.5% relative error. Using this noise emulation method to simulate modulating the mA while keeping the total dose constant, the image variance was reduced by an average of 11.9% on a scan with 50 msec padding, demonstrating improved dose efficiency. Radiation dose reduction in cardiac CT can be achieved while maintaining the same level of image noise through phase based dose modulation that incorporates knowledge of the cardiac reconstruction algorithm.

  7. VALSARTAN REGULATES MYOCARDIAL AUTOPHAGY AND MITOCHONDRIAL TURNOVER IN EXPERIMENTAL HYPERTENSION

    PubMed Central

    Zhang, Xin; Li, Zi-Lun; Crane, John A.; Jordan, Kyra L.; Pawar, Aditya S.; Textor, Stephen C.; Lerman, Amir; Lerman, Lilach O.

    2014-01-01

    Renovascular hypertension alters cardiac structure and function. Autophagy is activated during left ventricular hypertrophy and linked to adverse cardiac function. The Angiotensin II receptor blocker Valsartan lowers blood pressure and is cardioprotective, but whether it modulates autophagy in the myocardium is unclear. We hypothesized that Valsartan would alleviate autophagy and improve left ventricular myocardial mitochondrial turnover in swine renovascular hypertension. Domestic pigs were randomized to control, unilateral renovascular hypertension, and renovascular hypertension treated with Valsartan (320 mg/day) or conventional triple therapy (Reserpine+hydralazine+hydrochlorothiazide) for 4 weeks post 6-weeks of renovascular hypertension (n=7 each group). Left ventricular remodeling, function and myocardial oxygenation and microcirculation were assessed by multi-detector computer tomography, blood-oxygen-level-dependent magnetic resonance imaging and microcomputer tomography. Myocardial autophagy, markers for mitochondrial degradation and biogenesis, and mitochondrial respiratory-chain proteins were examined ex vivo. Renovascular hypertension induced left ventricular hypertrophy and myocardial hypoxia, enhanced cellular autophagy and mitochondrial degradation, and suppressed mitochondrial biogenesis. Valsartan and triple therapy similarly decreased blood pressure, but Valsartan solely alleviated left ventricular hypertrophy, ameliorated myocardial autophagy and mitophagy, and increased mitochondrial biogenesis. In contrast, triple therapy only slightly attenuated autophagy and preserved mitochondrial proteins, but elicited no improvement in mitophagy. These data suggest a novel potential role of Valsartan in modulating myocardial autophagy and mitochondrial turnover in renovascular hypertension-induced hypertensive heart disease, which may possibly bolster cardiac repair via a blood pressure-independent manner. PMID:24752430

  8. CARDIAC AND THERMOREGULATORY RESPONSES TO INHALED POLLUTANTS IN HEALTHY AND COMPROMISED RODENTS: MODULATION VIA INTERACTION WITH ENVIRONMENTAL FACTORS

    EPA Science Inventory

    ABSTRACT
    Rodents often demonstrate a profound depression in physiological function following acute exposure to toxic xenobiotic agents. This effect, termed the hypothermic response, is primarily characterized by significant decreases in core temperature and heart rate, and is...

  9. Thymosin β4: multiple functions in protection, repair and regeneration of the mammalian heart.

    PubMed

    Bollini, Sveva; Riley, Paul R; Smart, Nicola

    2015-01-01

    Despite recent improvements in interventional medicine, cardiovascular disease still represents the major cause of morbidity worldwide, with myocardial infarction being the most common cardiac injury. This has sustained the development of several regenerative strategies based on the use of stem cells and tissue engineering approaches in order to achieve cardiac repair and regeneration by enhancing coronary neovascularization, modulating acute inflammation and supporting myocardial regeneration to provide new functional muscle. The actin monomer binding peptide, Thymosin β4 (Tβ4), has recently been described as a powerful regenerative agent with angiogenic, anti-inflammatory and cardioprotective effects on the heart and which specifically acts on its resident cardiac progenitor cells. In this review we will discuss the state of the art regarding the many roles of Tβ4 in preserving and regenerating the mammalian heart, with specific attention to its ability to activate the quiescent adult epicardium and specific subsets of epicardial progenitor cells for repair. The therapeutic potential of Tβ4 for the treatment of cardiac failure is herein evaluated alongside existing, emerging and prospective novel treatments.

  10. Role of NAD+ and mitochondrial sirtuins in cardiac and renal diseases

    PubMed Central

    Hershberger, Kathleen A.; Martin, Angelical S.; Hirschey, Matthew D.

    2017-01-01

    The coenzyme nicotinamide adenine dinucleotide (NAD+) has key roles in the regulation of redox status and energy metabolism. NAD+ depletion is emerging as a major contributor to the pathogenesis of cardiac and renal diseases and NAD+ repletion strategies have shown therapeutic potential as a means to restore healthy metabolism and physiological function. The pleotropic roles of NAD+ enable several possible avenues by which repletion of this coenzyme could have therapeutic efficacy. In particular, NAD+ functions as a co-substrate in deacylation reactions carried out by the sirtuin family of enzymes. These NAD+-dependent deacylases control several aspects of metabolism and a wealth of data suggests that boosting sirtuin activity via NAD+ supplementation might be a promising therapy for cardiac and renal pathologies. This Review summarizes the role of NAD+ metabolism in the heart and kidney, and highlights the mitochondrial sirtuins as mediators of some of the beneficial effects of NAD+-boosting therapies in preclinical animal models. We surmise that modulating the NAD+–sirtuin axis is a clinically relevant approach to develop new therapies for cardiac and renal diseases. PMID:28163307

  11. Role of NAD+ and mitochondrial sirtuins in cardiac and renal diseases.

    PubMed

    Hershberger, Kathleen A; Martin, Angelical S; Hirschey, Matthew D

    2017-04-01

    The coenzyme nicotinamide adenine dinucleotide (NAD + ) has key roles in the regulation of redox status and energy metabolism. NAD + depletion is emerging as a major contributor to the pathogenesis of cardiac and renal diseases and NAD + repletion strategies have shown therapeutic potential as a means to restore healthy metabolism and physiological function. The pleotropic roles of NAD + enable several possible avenues by which repletion of this coenzyme could have therapeutic efficacy. In particular, NAD + functions as a co-substrate in deacylation reactions carried out by the sirtuin family of enzymes. These NAD + -dependent deacylases control several aspects of metabolism and a wealth of data suggests that boosting sirtuin activity via NAD + supplementation might be a promising therapy for cardiac and renal pathologies. This Review summarizes the role of NAD + metabolism in the heart and kidney, and highlights the mitochondrial sirtuins as mediators of some of the beneficial effects of NAD + -boosting therapies in preclinical animal models. We surmise that modulating the NAD + -sirtuin axis is a clinically relevant approach to develop new therapies for cardiac and renal diseases.

  12. Glucose-6-phosphate dehydrogenase and NADPH redox regulates cardiac myocyte L-type calcium channel activity and myocardial contractile function.

    PubMed

    Rawat, Dhwajbahadur K; Hecker, Peter; Watanabe, Makino; Chettimada, Sukrutha; Levy, Richard J; Okada, Takao; Edwards, John G; Gupte, Sachin A

    2012-01-01

    We recently demonstrated that a 17-ketosteroid, epiandrosterone, attenuates L-type Ca(2+) currents (I(Ca-L)) in cardiac myocytes and inhibits myocardial contractility. Because 17-ketosteroids are known to inhibit glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme in the pentose phosphate pathway, and to reduce intracellular NADPH levels, we hypothesized that inhibition of G6PD could be a novel signaling mechanism which inhibit I(Ca-L) and, therefore, cardiac contractile function. We tested this idea by examining myocardial function in isolated hearts and Ca(2+) channel activity in isolated cardiac myocytes. Myocardial function was tested in Langendorff perfused hearts and I(Ca-L) were recorded in the whole-cell patch configuration by applying double pulses from a holding potential of -80 mV and then normalized to the peak amplitudes of control currents. 6-Aminonicotinamide, a competitive inhibitor of G6PD, increased pCO(2) and decreased pH. Additionally, 6-aminonicotinamide inhibited G6PD activity, reduced NADPH levels, attenuated peak I(Ca-L) amplitudes, and decreased left ventricular developed pressure and ±dp/dt. Finally, dialyzing NADPH into cells from the patch pipette solution attenuated the suppression of I(Ca-L) by 6-aminonicotinamide. Likewise, in G6PD-deficient mice, G6PD insufficiency in the heart decreased GSH-to-GSSG ratio, superoxide, cholesterol and acetyl CoA. In these mice, M-mode echocardiographic findings showed increased diastolic volume and end-diastolic diameter without changes in the fraction shortening. Taken together, these findings suggest that inhibiting G6PD activity and reducing NADPH levels alters metabolism and leads to inhibition of L-type Ca(2+) channel activity. Notably, this pathway may be involved in modulating myocardial contractility under physiological and pathophysiological conditions during which the pentose phosphate pathway-derived NADPH redox is modulated (e.g., ischemia-reperfusion and heart failure).

  13. Putting together the clues of the everlasting neuro-cardiac liaison.

    PubMed

    Franzoso, Mauro; Zaglia, Tania; Mongillo, Marco

    2016-07-01

    Starting from the late embryonic development, the sympathetic nervous system extensively innervates the heart and modulates its activity during the entire lifespan. The distribution of myocardial sympathetic processes is finely regulated by the secretion of limiting amounts of pro-survival neurotrophic factors by cardiac cells. Norepinephrine release by the neurons rapidly modulates myocardial electrophysiology, and increases the rate and force of cardiomyocyte contractions. Sympathetic processes establish direct interaction with cardiomyocytes, characterized by the presence of neurotransmitter vesicles and reduced cell-cell distance. Whether such contacts have a functional role in both neurotrophin- and catecholamine-dependent communication between the two cell types, is poorly understood. In this review we will address the effects of the sympathetic neuron activity on the myocardium and the hypothesis that the direct neuro-cardiac contact might have a key role both in norepinephrine and neurotrophin mediated signaling. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Device therapy in heart failure with reduced ejection fraction-cardiac resynchronization therapy and more.

    PubMed

    Duncker, D; Veltmann, C

    2018-05-09

    In patients with heart failure with reduced ejection fraction (HFrEF), optimal medical treatment includes beta-blockers, ACE inhibitors/angiotensinreceptor-neprilysin inhibitors (ARNI), mineralocorticoid receptor antagonists, and ivabradine when indicated. In device therapy of HFrEF, implantable cardioverter-defibrillators and cardiac resynchronization therapy (CRT) have been established for many years. CRT is the therapy of choice (class I indication) in symptomatic patients with HFrEF and a broad QRS complex with a left bundle branch block (LBBB) morphology. However, the vast majority of heart failure patients show a narrow QRS complex or a non-LBBB morphology. These patients are not candidates for CRT and alternative electrical therapies such as baroreflex activation therapy (BAT) and cardiac contractility modulation (CCM) may be considered. BAT modulates vegetative dysregulation in heart failure. CCM improves contractility, functional capacity, and symptoms. Although a broad data set is available for BAT and CCM, mortality data are still lacking for both methods. This article provides an overview of the device-based therapeutic options for patients with HFrEF.

  15. Thrombopoietin modulates cardiac contractility in vitro and contributes to myocardial depressing activity of septic shock serum.

    PubMed

    Lupia, Enrico; Spatola, Tiziana; Cuccurullo, Alessandra; Bosco, Ornella; Mariano, Filippo; Pucci, Angela; Ramella, Roberta; Alloatti, Giuseppe; Montrucchio, Giuseppe

    2010-09-01

    Thrombopoietin (TPO) is a humoral growth factor that has been shown to increase platelet activation in response to several agonists. Patients with sepsis have increased circulating TPO levels, which may enhance platelet activation, potentially participating to the pathogenesis of multi-organ failure. Aim of this study was to investigate whether TPO affects myocardial contractility and participates to depress cardiac function during sepsis. We showed the expression of the TPO receptor c-Mpl on myocardial cells and tissue by RT-PCR, immunofluorescence and western blotting. We then evaluated the effect of TPO on the contractile function of rat papillary muscle and isolated heart. TPO did not change myocardial contractility in basal conditions, but, when followed by epinephrine (EPI) stimulation, it blunted the enhancement of contractile force induced by EPI both in papillary muscle and isolated heart. An inhibitor of TPO prevented TPO effect on cardiac inotropy. Treatment of papillary muscle with pharmacological inhibitors of phosphatidylinositol 3-kinase, NO synthase, and guanilyl cyclase abolished TPO effect, indicating NO as the final mediator. We finally studied the role of TPO in the negative inotropic effect exerted by human septic shock (HSS) serum and TPO cooperation with TNF-alpha and IL-1beta. Pre-treatment with the TPO inhibitor prevented the decrease in contractile force induced by HSS serum. Moreover, TPO significantly amplified the negative inotropic effect induced by TNF-alpha and IL-1beta in papillary muscle. In conclusion, TPO negatively modulates cardiac inotropy in vitro and contributes to the myocardial depressing activity of septic shock serum.

  16. Characterization of Glutamatergic Neurons in the Rat Atrial Intrinsic Cardiac Ganglia that Project to the Cardiac Ventricular Wall

    PubMed Central

    Wang, Ting; Miller, Kenneth E.

    2016-01-01

    The intrinsic cardiac nervous system modulates cardiac function by acting as an integration site for regulating autonomic efferent cardiac output. This intrinsic system is proposed to be composed of a short cardio-cardiac feedback control loop within the cardiac innervation hierarchy. For example, electrophysiological studies have postulated the presence of sensory neurons in intrinsic cardiac ganglia for regional cardiac control. There is still a knowledge gap, however, about the anatomical location and neurochemical phenotype of sensory neurons inside intrinsic cardiac ganglia. In the present study, rat intrinsic cardiac ganglia neurons were characterized neurochemically with immunohistochemistry using glutamatergic markers: vesicular glutamate transporters 1 and 2 (VGLUT1; VGLUT2), and glutaminase (GLS), the enzyme essential for glutamate production. Glutamatergic neurons (VGLUT1/VGLUT2/GLS) in the ICG that have axons to the ventricles were identified by retrograde tracing of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) injected in the ventricular wall. Co-labeling of VGLUT1, VGLUT2, and GLS with the vesicular acetylcholine transporter (VAChT) was used to evaluate the relationship between post-ganglionic autonomic neurons and glutamatergic neurons. Sequential labeling of VGLUT1 and VGLUT2 in adjacent tissue sections was used to evaluate the co-localization of VGLUT1 and VGLUT2 in ICG neurons. Our studies yielded the following results: (1) intrinsic cardiac ganglia contain glutamatergic neurons with GLS for glutamate production and VGLUT1 and 2 for transport of glutamate into synaptic vesicles; (2) atrial intrinsic cardiac ganglia contain neurons that project to ventricle walls and these neurons are glutamatergic; (3) many glutamatergic ICG neurons also were cholinergic, expressing VAChT. (4) VGLUT1 and VGLUT2 co-localization occurred in ICG neurons with variation of their protein expression level. Investigation of both glutamatergic and cholinergic ICG neurons could help in better understanding the function of the intrinsic cardiac nervous system. PMID:27167082

  17. Ablation of biglycan attenuates cardiac hypertrophy and fibrosis after left ventricular pressure overload.

    PubMed

    Beetz, Nadine; Rommel, Carolin; Schnick, Tilman; Neumann, Elena; Lother, Achim; Monroy-Ordonez, Elsa Beatriz; Zeeb, Martin; Preissl, Sebastian; Gilsbach, Ralf; Melchior-Becker, Ariane; Rylski, Bartosz; Stoll, Monika; Schaefer, Liliana; Beyersdorf, Friedhelm; Stiller, Brigitte; Hein, Lutz

    2016-12-01

    Biglycan, a small leucine-rich proteoglycan, has been shown to play an important role in stabilizing fibrotic scars after experimental myocardial infarction. However, the role of biglycan in the development and regression of cardiomyocyte hypertrophy and fibrosis during cardiac pressure overload and unloading remains elusive. Thus, the aim of the present study was to assess the effect of biglycan on cardiac remodeling in a mouse model of left ventricular pressure overload and unloading. Left ventricular pressure overload induced by transverse aortic constriction (TAC) in mice resulted in left ventricular dysfunction, fibrosis and increased biglycan expression. Fluorescence- and magnetic-assisted sorting of cardiac cell types revealed upregulation of biglycan in the fibroblast population, but not in cardiomyocytes, endothelial cells or leukocytes after TAC. Removal of the aortic constriction (rTAC) after short-term pressure overload (3weeks) improved cardiac contractility and reversed ventricular hypertrophy but not fibrosis in wild-type (WT) mice. Biglycan ablation (KO) enhanced functional recovery but did not resolve cardiac fibrosis. After long-term TAC for 9weeks, ablation of biglycan attenuated the development of cardiac hypertrophy and fibrosis. In vitro, biglycan induced hypertrophy of neonatal rat cardiomyocytes and led to activation of a hypertrophic gene program. Putative downstream mediators of biglycan signaling include Rcan1, Abra and Tnfrsf12a. These genes were concordantly induced by TAC in WT but not in biglycan KO mice. Left ventricular pressure overload induces biglycan expression in cardiac fibroblasts. Ablation of biglycan improves cardiac function and attenuates left ventricular hypertrophy and fibrosis after long-term pressure overload. In vitro biglycan induces hypertrophy of cardiomyocytes, suggesting that biglycan may act as a signaling molecule between cell types to modulate cardiac remodeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Comparative Analysis of mRNA Isoform Expression in Cardiac Hypertrophy and Development Reveals Multiple Post-Transcriptional Regulatory Modules

    PubMed Central

    Park, Ji Yeon; Li, Wencheng; Zheng, Dinghai; Zhai, Peiyong; Zhao, Yun; Matsuda, Takahisa; Vatner, Stephen F.; Sadoshima, Junichi; Tian, Bin

    2011-01-01

    Cardiac hypertrophy is enlargement of the heart in response to physiological or pathological stimuli, chiefly involving growth of myocytes in size rather than in number. Previous studies have shown that the expression pattern of a group of genes in hypertrophied heart induced by pressure overload resembles that at the embryonic stage of heart development, a phenomenon known as activation of the “fetal gene program”. Here, using a genome-wide approach we systematically defined genes and pathways regulated in short- and long-term cardiac hypertrophy conditions using mice with transverse aortic constriction (TAC), and compared them with those regulated at different stages of embryonic and postnatal development. In addition, exon-level analysis revealed widespread mRNA isoform changes during cardiac hypertrophy resulting from alternative usage of terminal or internal exons, some of which are also developmentally regulated and may be attributable to decreased expression of Fox-1 protein in cardiac hypertrophy. Genes with functions in certain pathways, such as cell adhesion and cell morphology, are more likely to be regulated by alternative splicing. Moreover, we found 3′UTRs of mRNAs were generally shortened through alternative cleavage and polyadenylation in hypertrophy, and microRNA target genes were generally de-repressed, suggesting coordinated mechanisms to increase mRNA stability and protein production during hypertrophy. Taken together, our results comprehensively delineated gene and mRNA isoform regulation events in cardiac hypertrophy and revealed their relations to those in development, and suggested that modulation of mRNA isoform expression plays an importance role in heart remodeling under pressure overload. PMID:21799842

  19. Cardiac and respiratory patterns synchronize between persons during choir singing.

    PubMed

    Müller, Viktor; Lindenberger, Ulman

    2011-01-01

    Dyadic and collective activities requiring temporally coordinated action are likely to be associated with cardiac and respiratory patterns that synchronize within and between people. However, the extent and functional significance of cardiac and respiratory between-person couplings have not been investigated thus far. Here, we report interpersonal oscillatory couplings among eleven singers and one conductor engaged in choir singing. We find that: (a) phase synchronization both in respiration and heart rate variability increase significantly during singing relative to a rest condition; (b) phase synchronization is higher when singing in unison than when singing pieces with multiple voice parts; (c) directed coupling measures are consistent with the presence of causal effects of the conductor on the singers at high modulation frequencies; (d) the different voices of the choir are reflected in network analyses of cardiac and respiratory activity based on graph theory. Our results suggest that oscillatory coupling of cardiac and respiratory patterns provide a physiological basis for interpersonal action coordination.

  20. Cardiac and Respiratory Patterns Synchronize between Persons during Choir Singing

    PubMed Central

    Müller, Viktor; Lindenberger, Ulman

    2011-01-01

    Dyadic and collective activities requiring temporally coordinated action are likely to be associated with cardiac and respiratory patterns that synchronize within and between people. However, the extent and functional significance of cardiac and respiratory between-person couplings have not been investigated thus far. Here, we report interpersonal oscillatory couplings among eleven singers and one conductor engaged in choir singing. We find that: (a) phase synchronization both in respiration and heart rate variability increase significantly during singing relative to a rest condition; (b) phase synchronization is higher when singing in unison than when singing pieces with multiple voice parts; (c) directed coupling measures are consistent with the presence of causal effects of the conductor on the singers at high modulation frequencies; (d) the different voices of the choir are reflected in network analyses of cardiac and respiratory activity based on graph theory. Our results suggest that oscillatory coupling of cardiac and respiratory patterns provide a physiological basis for interpersonal action coordination. PMID:21957466

  1. Cardiac Metabolism in Heart Failure - Implications beyond ATP production

    PubMed Central

    Doenst, Torsten; Nguyen, T. Dung; Abel, E. Dale

    2013-01-01

    The heart has a high rate of ATP production and turnover which is required to maintain its continuous mechanical work. Perturbations in ATP generating processes may therefore affect contractile function directly. Characterizing cardiac metabolism in heart failure revealed several metabolic alterations termed metabolic remodeling, ranging from changes in substrate utilization to mitochondrial dysfunction, ultimately resulting in ATP deficiency and impaired contractility. However, ATP depletion is not the only relevant consequence of metabolic remodeling during heart failure. By providing cellular building blocks and signaling molecules, metabolic pathways control essential processes such as cell growth and regeneration. Thus, alterations in cardiac metabolism may also affect the progression to heart failure by mechanisms beyond ATP supply. Our aim is therefore to highlight that metabolic remodeling in heart failure not only results in impaired cardiac energetics, but also induces other processes implicated in the development of heart failure such as structural remodeling and oxidative stress. Accordingly, modulating cardiac metabolism in heart failure may have significant therapeutic relevance that goes beyond the energetic aspect. PMID:23989714

  2. Comparison between the protective effects of vitamin K and vitamin A on the modulation of hypervitaminosis D3 short-term toxicity in adult albino rats.

    PubMed

    Elshama, Said Said; Osman, Hosam-Eldin Hussein; El-Kenawy, Ayman El-Meghawry; Youseef, Hamdi Mohamed

    2016-02-17

    Vitamin D3 has increased risk of toxicity due to its common use in multivitamin preparations. Vitamin K and vitamin A play an important role in vitamin D action. The goal of the current study was to compare the protective effects of vitamin K and vitamin A on the modulation of hypervitaminosis D3 toxicity in rats by assessing serum calcium, renal function tests, cardiac enzymes, and related histopathological changes. Eighty adult albino rats were divided into four groups; each group consisted of 20 rats. The first group received water; the second received a toxic dose of vitamin D3; the third received a toxic dose of vitamin D3 with vitamin A; and the fourth received a toxic dose of vitamin D3 with vitamin K. Vitamin D3 toxicity led to significant abnormalities of cardiac enzymes, renal function tests, and serum calcium associated with histopathological changes in the kidney, heart, lung, adrenal gland, and aorta. Individual administration of vitamin A or vitamin K with a toxic dose of vitamin D improved the biochemical and histopathological abnormalities of hypervitaminosis D3. Vitamins A and K showed the same protective effects in the modulation of hypervitaminosis D3 short-term toxicity.

  3. Central venous pressure and mean circulatory filling pressure in the dogfish Squalus acanthias: adrenergic control and role of the pericardium.

    PubMed

    Sandblom, Erik; Axelsson, Michael; Farrell, Anthony P

    2006-11-01

    Subambient central venous pressure (Pven) and modulation of venous return through cardiac suction (vis a fronte) characterizes the venous circulation in sharks. Venous capacitance was estimated in the dogfish Squalus acanthias by measuring the mean circulatory filling pressure (MCFP) during transient occlusion of cardiac outflow. We tested the hypothesis that venous return and cardiac preload can be altered additionally through adrenergic changes of venous capacitance. The experiments involved the surgical opening of the pericardium to place a perivascular occluder around the conus arteriosus. Another control group was identically instrumented, but lacked the occluder, and was subjected to the same pharmacological protocol to evaluate how pericardioectomy affected cardiovascular status. Routine Pven was negative (-0.08+/-0.02 kPa) in control fish but positive (0.09+/-0.01 kPa) in the pericardioectomized group. Injections of 5 microg/kg body mass (Mb) of epinephrine and phenylephrine (100 microg/kg Mb) increased Pven and MCFP, whereas isoproterenol (1 microg/kg Mb) decreased both variables. Thus, constriction and relaxation of the venous vasculature were mediated through the respective stimulation of alpha- and beta-adrenergic receptors. Alpha-adrenergic blockade with prazosin (1 mg/kg Mb) attenuated the responses to phenylephrine and decreased resting Pven in pericardioectomized animals. Our results provide convincing evidence for adrenergic control of the venous vasculature in elasmobranchs, although the pericardium is clearly an important component in the modulation of venous function. Thus active changes in venous capacitance have previously been underestimated as an important means of modulating venous return and cardiac performance in this group.

  4. Elastic, silk-cardiac extracellular matrix hydrogels exhibit time-dependent stiffening that modulates cardiac fibroblast response

    PubMed Central

    Stoppel, Whitney L.; Gao, Albert E.; Greaney, Allison M.; Partlow, Benjamin P.; Bretherton, Ross C.; Kaplan, David L.; Black, Lauren D.

    2018-01-01

    Heart failure is the leading cause of death in the United States and rapidly becoming the leading cause of death worldwide. While pharmacological treatments can reduce progression to heart failure following myocardial infarction, there still exists a need for new therapies that promote better healing post injury for a more functional cardiac repair and methods to understand how the changes to tissue mechanical properties influence cell phenotype and function following injury. To address this need, we have optimized a silk-based hydrogel platform containing cardiac tissue-derived extracellular matrix (cECM). These silk-cECM hydrogels have tunable mechanical properties, as well as rate-controllable hydrogel stiffening over time. In vitro, silk-cECM scaffolds led to enhanced cardiac fibroblast (CF) cell growth and viability with culture time. cECM incorporation improved expression of integrin an focal adhesion proteins, suggesting that CFs were able to interact with the cECM in the hydrogel. Subcutaneous injection of silk hydrogels in rats demonstrated that addition of the cECM led to endogenous cell infiltration and promoted endothelial cell ingrowth after 4 weeks in vivo. This naturally derived silk fibroin platform is applicable to the development of more physiologically relevant constructs that replicate healthy and diseased tissue in vitro and has the potential to be used as an injectable therapeutic for cardiac repair. PMID:27480328

  5. Acetylation contributes to hypertrophy-caused maturational delay of cardiac energy metabolism.

    PubMed

    Fukushima, Arata; Zhang, Liyan; Huqi, Alda; Lam, Victoria H; Rawat, Sonia; Altamimi, Tariq; Wagg, Cory S; Dhaliwal, Khushmol K; Hornberger, Lisa K; Kantor, Paul F; Rebeyka, Ivan M; Lopaschuk, Gary D

    2018-05-17

    A dramatic increase in cardiac fatty acid oxidation occurs following birth. However, cardiac hypertrophy secondary to congenital heart diseases (CHDs) delays this process, thereby decreasing cardiac energetic capacity and function. Cardiac lysine acetylation is involved in modulating fatty acid oxidation. We thus investigated what effect cardiac hypertrophy has on protein acetylation during maturation. Eighty-four right ventricular biopsies were collected from CHD patients and stratified according to age and the absence (n = 44) or presence of hypertrophy (n = 40). A maturational increase in protein acetylation was evident in nonhypertrophied hearts but not in hypertrophied hearts. The fatty acid β-oxidation enzymes, long-chain acyl CoA dehydrogenase (LCAD) and β-hydroxyacyl CoA dehydrogenase (βHAD), were hyperacetylated and their activities positively correlated with their acetylation after birth in nonhypertrophied hearts but not hypertrophied hearts. In line with this, decreased cardiac fatty acid oxidation and reduced acetylation of LCAD and βHAD occurred in newborn rabbits subjected to cardiac hypertrophy due to an aortocaval shunt. Silencing the mRNA of general control of amino acid synthesis 5-like protein 1 reduced acetylation of LCAD and βHAD as well as fatty acid oxidation rates in cardiomyocytes. Thus, hypertrophy in CHDs prevents the postnatal increase in myocardial acetylation, resulting in a delayed maturation of cardiac fatty acid oxidation.

  6. Hybrid cardiac imaging with MR-CAT scan: a feasibility study.

    PubMed

    Hillenbrand, C; Sandstede, J; Pabst, T; Hahn, D; Haase, A; Jakob, P M

    2000-06-01

    We demonstrate the feasibility of a new versatile hybrid imaging concept, the combined acquisition technique (CAT), for cardiac imaging. The cardiac CAT approach, which combines new methodology with existing technology, essentially integrates fast low-angle shot (FLASH) and echoplanar imaging (EPI) modules in a sequential fashion, whereby each acquisition module is employed with independently optimized imaging parameters. One important CAT sequence optimization feature is the ability to use different bandwidths for different acquisition modules. Twelve healthy subjects were imaged using three cardiac CAT acquisition strategies: a) CAT was used to reduce breath-hold duration times while maintaining constant spatial resolution; b) CAT was used to increase spatial resolution in a given breath-hold time; and c) single-heart beat CAT imaging was performed. The results obtained demonstrate the feasibility of cardiac imaging using the CAT approach and the potential of this technique to accelerate the imaging process with almost conserved image quality. Copyright 2000 Wiley-Liss, Inc.

  7. Regulatory T cells are recruited in the infarcted mouse myocardium and may modulate fibroblast phenotype and function

    PubMed Central

    Saxena, Amit; Dobaczewski, Marcin; Rai, Vikrant; Haque, Zaffar; Chen, Wei; Li, Na

    2014-01-01

    Regulatory T cells (Tregs) play a pivotal role in suppressing immune responses regulating behavior and gene expression in effector T cells, macrophages, and dendritic cells. Tregs infiltrate the infarcted myocardium; however, their role the inflammatory and reparative response after myocardial infarction remains poorly understood. We used FoxP3EGFP reporter mice to study Treg trafficking in the infarcted heart and examined the effects of Treg depletion on postinfarction remodeling using an anti-CD25 antibody. Moreover, we investigated the in vitro effects of Tregs on cardiac fibroblast phenotype and function. Low numbers of Tregs infiltrated the infarcted myocardium after 24–72 h of reperfusion. Treg depletion had no significant effects on cardiac dysfunction and scar size after reperfused myocardial infarction but accelerated ventricular dilation and accentuated apical remodeling. Enhanced myocardial dilation in Treg-depleted animals was associated with increased expression of chemokine (C-C motif) ligand 2 and accentuated macrophage infiltration. In vitro, Tregs modulated the cardiac fibroblast phenotype, reducing expression of α-smooth muscle actin, decreasing expression of matrix metalloproteinase-3, and attenuating contraction of fibroblast-populated collagen pads. Our findings suggest that endogenous Tregs have modest effects on the inflammatory and reparative response after myocardial infarction. However, the anti-inflammatory and matrix-preserving properties of Tregs may suggest a role for Treg-based cell therapy in the attenuation of adverse postinfarction remodeling. PMID:25128167

  8. Chemical Enhancement of In Vitro and In Vivo Direct Cardiac Reprogramming.

    PubMed

    Mohamed, Tamer M A; Stone, Nicole R; Berry, Emily C; Radzinsky, Ethan; Huang, Yu; Pratt, Karishma; Ang, Yen-Sin; Yu, Pengzhi; Wang, Haixia; Tang, Shibing; Magnitsky, Sergey; Ding, Sheng; Ivey, Kathryn N; Srivastava, Deepak

    2017-03-07

    Reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells in situ represents a promising strategy for cardiac regeneration. A combination of 3 cardiac transcription factors, Gata4, Mef2c, and Tbx5 (GMT), can convert fibroblasts into induced cardiomyocyte-like cells, albeit with low efficiency in vitro. We screened 5500 compounds in primary cardiac fibroblasts to identify the pathways that can be modulated to enhance cardiomyocyte reprogramming. We found that a combination of the transforming growth factor-β inhibitor SB431542 and the WNT inhibitor XAV939 increased reprogramming efficiency 8-fold when added to GMT-overexpressing cardiac fibroblasts. The small molecules also enhanced the speed and quality of cell conversion; we observed beating cells as early as 1 week after reprogramming compared with 6 to 8 weeks with GMT alone. In vivo, mice exposed to GMT, SB431542, and XAV939 for 2 weeks after myocardial infarction showed significantly improved reprogramming and cardiac function compared with those exposed to only GMT. Human cardiac reprogramming was similarly enhanced on transforming growth factor-β and WNT inhibition and was achieved most efficiently with GMT plus myocardin. Transforming growth factor-β and WNT inhibitors jointly enhance GMT-induced direct cardiac reprogramming from cardiac fibroblasts in vitro and in vivo and provide a more robust platform for cardiac regeneration. © 2016 American Heart Association, Inc.

  9. Chemical Enhancement of In Vitro and In Vivo Direct Cardiac Reprogramming

    PubMed Central

    Mohamed, Tamer M. A.; Stone, Nicole R.; Berry, Emily C.; Radzinsky, Ethan; Huang, Yu; Pratt, Karishma; Ang, Yen-Sin; Yu, Pengzhi; Wang, Haixia; Tang, Shibing; Magnitsky, Sergey; Ding, Sheng; Ivey, Kathryn N.; Srivastava, Deepak

    2017-01-01

    Background Reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells (iCMs) in situ represents a promising strategy for cardiac regeneration. A combination of three cardiac transcription factors, Gata4, Mef2c and Tbx5 (GMT), can convert fibroblasts into iCMs, albeit with low efficiency in vitro. Methods We screened 5,500 compounds in primary cardiac fibroblasts to identify the pathways that can be modulated to enhance cardiomyocyte reprogramming. Results We found that a combination of the transforming growth factor (TGF)-β inhibitor SB431542 and the WNT inhibitor XAV939 increased reprogramming efficiency eight-fold when added to GMT-overexpressing cardiac fibroblasts. The small-molecules also enhanced the speed and the quality of cell conversion, as we observed beating cells as early as 1 week after reprogramming compared to 6–8 weeks with GMT alone. In vivo, mice exposed to GMT, SB431542, and XAV939 for 2 weeks after myocardial infarction showed significantly improved reprogramming and cardiac function compared to those exposed to only GMT. Human cardiac reprogramming was similarly enhanced upon TGF-β and WNT inhibition and was achieved most efficiently with GMT plus Myocardin. Conclusions Thus, TGF-β and WNT inhibitors jointly enhance GMT-induced direct cardiac reprogramming from cardiac fibroblasts in vitro and in vivo and provide a more robust platform for cardiac regeneration. PMID:27834668

  10. Cardiorespiratory Fitness and Cardiac Autonomic Function in Diabetes.

    PubMed

    Röhling, Martin; Strom, Alexander; Bönhof, Gidon J; Roden, Michael; Ziegler, Dan

    2017-10-23

    This review summarizes the current knowledge on the relationship of physical activity, exercise, and cardiorespiratory fitness (CRF) with cardiovascular autonomic neuropathy (CAN) based on epidemiological, clinical, and interventional studies. The prevalence of CAN increases with age and duration of diabetes. Further risk factors for CAN comprise poor glycemic control, dyslipidemia, abdominal obesity, hypertension, and the presence of diabetic complications. CAN has been also linked to reduced CRF. We recently showed that CRF parameters (e.g., maximal oxidative capacity or oxidative capacity at the anaerobic threshold) are associated with cardiac autonomic function in patients recently diagnosed with type 1 or type 2 diabetes. Exercise interventions have shown that physical activity can increase cardiovagal activity and reduce sympathetic overactivity. In particular, long-term and regularly, but also supervised, performed endurance and high-intense and high-volume exercise improves cardiac autonomic function in patients with type 2 diabetes. By contrast, the evidence in those with type 1 diabetes and also in individuals with prediabetes or metabolic syndrome is weaker. Overall, the studies reviewed herein addressing the question whether favorably modulating the autonomic nervous system may improve CRF during exercise programs support the therapeutic concept to promote physical activity and to achieve physical fitness. However, high-quality exercise interventions, especially in type 1 diabetes and metabolic syndrome including prediabetes, are further required to better understand the relationship between physical activity, fitness, and cardiac autonomic function.

  11. The effects of the modulation of NMDA receptors by homocysteine thiolactone and dizocilpine on cardiodynamics and oxidative stress in isolated rat heart.

    PubMed

    Srejovic, Ivan; Jakovljevic, Vladimir; Zivkovic, Vladimir; Barudzic, Nevena; Radovanovic, Ana; Stanojlovic, Olivera; Djuric, Dragan M

    2015-03-01

    In light of the limited data concerning the role of N-methyl-D-aspartate (NMDA) receptors in cardiac function, the aim of the present study was to determine the role of NMDA receptors in cardiac function, as well as the possible role played by the oxidative stress induced by the overstimulation of NMDA receptors in isolated rat heart. The hearts of male, Wistar albino rats (n = 24, 12 in each experimental group, BM 180-200 g) were retrogradely perfused at a constant perfusion pressure (70 cm H₂O₂), using the Langendorff technique, and cardiodynamic parameters were determined during the subsequent administration of DL-homocysteine thiolactone (DL-Hcy TLHC) alone, the combination of DL-Hcy TLHC and dizocilpine (MK-801), and MK-801 alone. In the second experimental group, the order of the administration of each of the substances was reversed. The oxidative stress biomarkers, including thiobarbituric acid reactive substances (TBARS), NO(2)(-), O(2)(-) and H₂O₂, were each determined spectrophotometrically. DL-Hcy TLHC and MK-801 depressed cardiac function. DL-Hcy TLHC decreased oxidative stress, a finding that contrasted with the results of the experiments in which MK-801 was administered first. The findings of this study were suggestive of the likely role played by NMDA receptors in the regulation of cardiac function and coronary circulation in isolated rat heart.

  12. Regulation of cardiac excitation and contraction by p21 activated kinase-1.

    PubMed

    Ke, Yunbo; Lei, Ming; Solaro, R John

    2008-01-01

    Cardiac excitation and contraction are regulated by a variety of signaling molecules. Central to the regulatory scheme are protein kinases and phosphatases that carry out reversible phosphorylation of different effectors. The process of beta-adrenergic stimulation mediated by cAMP dependent protein kinase (PKA) forms a well-known pathway considered as the most significant control mechanism in excitation and contraction as well as many other regulatory mechanisms in cardiac function. However, although dephosphorylation pathways are critical to these regulatory processes, signaling to phosphatases is relatively poorly understood. Emerging evidence indicates that regulation of phosphatases, which dampen the effect of beta-adrenergic stimulation, is also important. We review here functional studies of p21 activated kinase-1 (Pak1) and its potential role as an upstream signal for protein phosphatase PP2A in the heart. Pak1 is a serine/threonine protein kinase directly activated by the small GTPases Cdc42 and Rac1. Pak1 is highly expressed in different regions of the heart and modulates the activities of ion channels, sarcomeric proteins, and other phosphoproteins through up-regulation of PP2A activity. Coordination of Pak1 and PP2A activities is not only potentially involved in regulation of normal cardiac function, but is likely to be important in patho-physiological conditions.

  13. Optogenetic control of mitochondrial metabolism and Ca2+ signaling by mitochondria-targeted opsins.

    PubMed

    Tkatch, Tatiana; Greotti, Elisa; Baranauskas, Gytis; Pendin, Diana; Roy, Soumitra; Nita, Luliaoana I; Wettmarshausen, Jennifer; Prigge, Matthias; Yizhar, Ofer; Shirihai, Orian S; Fishman, Daniel; Hershfinkel, Michal; Fleidervish, Ilya A; Perocchi, Fabiana; Pozzan, Tullio; Sekler, Israel

    2017-06-27

    Key mitochondrial functions such as ATP production, Ca 2+ uptake and release, and substrate accumulation depend on the proton electrochemical gradient (ΔμH + ) across the inner membrane. Although several drugs can modulate ΔμH + , their effects are hardly reversible, and lack cellular specificity and spatial resolution. Although channelrhodopsins are widely used to modulate the plasma membrane potential of excitable cells, mitochondria have thus far eluded optogenetic control. Here we describe a toolkit of optometabolic constructs based on selective targeting of channelrhodopsins with distinct functional properties to the inner mitochondrial membrane of intact cells. We show that our strategy enables a light-dependent control of the mitochondrial membrane potential (Δψ m ) and coupled mitochondrial functions such as ATP synthesis by oxidative phosphorylation, Ca 2+ dynamics, and respiratory metabolism. By directly modulating Δψ m , the mitochondria-targeted opsins were used to control complex physiological processes such as spontaneous beats in cardiac myocytes and glucose-dependent ATP increase in pancreatic β-cells. Furthermore, our optometabolic tools allow modulation of mitochondrial functions in single cells and defined cell regions.

  14. Embryonic Stem Cell-Derived Exosomes Promote Endogenous Repair Mechanisms and Enhance Cardiac Function Following Myocardial Infarction

    PubMed Central

    Khan, Mohsin; Nickoloff, Emily; Abramova, Tatiana; Johnson, Jennifer; Verma, Suresh Kumar; Krishnamurthy, Prasanna; Mackie, Alexander Roy; Vaughan, Erin; Garikipati, Venkata Naga Srikanth; Benedict, Cynthia; Ramirez, Veronica; Lambers, Erin; Ito, Aiko; Gao, Erhe; Misener, Sol; Luongo, Timothy; Elrod, John; Qin, Gangjian; Houser, Steven R; Koch, Walter J; Kishore, Raj

    2015-01-01

    Rationale Embryonic stem cells (ESCs) hold great promise for cardiac regeneration but are susceptible to various concerns. Recently, salutary effects of stem cells have been connected to exosome secretion. ESCs have the ability to produce exosomes however their effect in the context of the heart is unknown. Objective Determine the effect of ESC-derived exosome for the repair of ischemic myocardium and whether c-kit+ CPCs function can be enhanced with ESC exosomes Methods and Results This study demonstrates that mouse ESC derived exosomes (mES Ex) possess ability to augment function in infarcted hearts. mES Ex enhanced neovascularization, cardiomyocyte survival and reduced fibrosis post infarction consistent with resurgence of cardiac proliferative response. Importantly, mES Ex augmented cardiac progenitor cell (CPC) survival, proliferation and cardiac commitment concurrent with increased c-kit+ CPCs in vivo 8 weeks after in vivo transfer along with formation of bonafide new cardiomyocytes in the ischemic heart. miRNA array revealed significant enrichment of miR290–295 cluster and particularly miR-294 in ESC exosomes. The underlying basis for the beneficial effect of mES Ex was tied to delivery of ESC specific miR-294 to CPCs promoting increased survival, cell cycle progression and proliferation. Conclusions mES Ex provide a novel cell free system that utilizes the immense regenerative power of ES cells while avoiding the risks associated with direct ES or ES derived cell transplantation and risk of teratomas. ESC exosomes possess cardiac regeneration ability and modulate both cardiomyocyte and CPC based repair programs in the heart. PMID:25904597

  15. Novel role of transient receptor potential vanilloid 2 in the regulation of cardiac performance

    PubMed Central

    Lasko, Valerie M.; Koch, Sheryl E.; Singh, Vivek P.; Carreira, Vinicius; Robbins, Nathan; Patel, Amit R.; Jiang, Min; Bidwell, Philip; Kranias, Evangelia G.; Jones, W. Keith; Lorenz, John N.

    2013-01-01

    Transient receptor potential cation channels have been implicated in the regulation of cardiovascular function, but only recently has our laboratory described the vanilloid-2 subtype (TRPV2) in the cardiomyocyte, though its exact mechanism of action has not yet been established. This study tests the hypothesis that TRPV2 plays an important role in regulating myocyte contractility under physiological conditions. Therefore, we measured cardiac and vascular function in wild-type and TRPV2−/− mice in vitro and in vivo and found that TRPV2 deletion resulted in a decrease in basal systolic and diastolic function without affecting loading conditions or vascular tone. TRPV2 stimulation with probenecid, a relatively selective TRPV2 agonist, caused an increase in both inotropy and lusitropy in wild-type mice that was blunted in TRPV2−/− mice. We examined the mechanism of TRPV2 inotropy/lusitropy in isolated myocytes and found that it modulates Ca2+ transients and sarcoplasmic reticulum Ca2+ loading. We show that the activity of this channel is necessary for normal cardiac function and that there is increased contractility in response to agonism of TRPV2 with probenecid. PMID:24322617

  16. In Vitro Effects of Pirfenidone on Cardiac Fibroblasts: Proliferation, Myofibroblast Differentiation, Migration and Cytokine Secretion

    PubMed Central

    Shi, Qiang; Liu, Xiaoyan; Bai, Yuanyuan; Cui, Chuanjue; Li, Jun; Li, Yishi; Hu, Shengshou; Wei, Yingjie

    2011-01-01

    Cardiac fibroblasts (CFs) are the primary cell type responsible for cardiac fibrosis during pathological myocardial remodeling. Several studies have illustrated that pirfenidone (5-methyl-1-phenyl-2-[1H]-pyridone) attenuates cardiac fibrosis in different animal models. However, the effects of pirfenidone on cardiac fibroblast behavior have not been examined. In this study, we investigated whether pirfenidone directly modulates cardiac fibroblast behavior that is important in myocardial remodeling such as proliferation, myofibroblast differentiation, migration and cytokine secretion. Fibroblasts were isolated from neonatal rat hearts and bioassays were performed to determine the effects of pirfenidone on fibroblast function. We demonstrated that treatment of CFs with pirfenidone resulted in decreased proliferation, and attenuated fibroblast α-smooth muscle actin expression and collagen contractility. Boyden chamber assay illustrated that pirfenidone inhibited fibroblast migration ability, probably by decreasing the ratio of matrix metalloproteinase-9 to tissue inhibitor of metalloproteinase-1. Furthermore, pirfenidone attenuated the synthesis and secretion of transforming growth factor-β1 but elevated that of interleukin-10. These direct and pleiotropic effects of pirfenidone on cardiac fibroblasts point to its potential use in the treatment of adverse myocardial remodeling. PMID:22132230

  17. Cardioprotective effects of baicalein on heart failure via modulation of Ca(2+) handling proteins in vivo and in vitro.

    PubMed

    Zhao, Fali; Fu, Lu; Yang, Wei; Dong, Yuhui; Yang, Jing; Sun, Shoubin; Hou, Yuling

    2016-01-15

    Baicalein is a widely used Chinese herbal medicine extracted from Labiatae plants Scutellaria baicalensis Georgi's dry root, which has multiple pharmacological activities. However, the precise mechanism of baicalein against myocardial remodeling remains poorly understood. The aim of our study was to investigate the underlying mechanism of baicalein treatment in rats model of heart failure (HF) and rat myocardial cells (H9C2). HF model was established by abdominal aorta constriction in rats and incubation with 50μM isoproterenol for 48h in H9C2 cells. Various molecular biological experiments were performed to assess the effects of baicalein on cardiac function, myocardial remodeling, apoptosis and Ca(2+) handling proteins. In the present study, first we found that baicalein alleviated HF in vivo. Additionally, treatment with baicalein inhibited the myocardial fibrosis, restrained the expression and activity of MMP2 and MMP9, and suppressed apoptosis in heart tissue. Moreover, baicalein could inhibit the cardiac myocyte hypertrophy and apoptosis induced by isoproterenol in vitro. Finally we found that baicalein could modulate the expressions and activities of Ca(2+) handling proteins, including downregulation of phosphorylation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and expression of Na(+)/Ca(2+)-exchangers (NCX1), upregulation of sarcoplasmic reticulum Ca(2+) ATPase 2 (SERCA2) and ryanodine receptor 2 (RYR2). Baicalein also restrained the decreased SERCA activity induced by aortic banding. Our studies suggested that baicalein alleviated myocardial remodeling and improved cardiac function via modulation of Ca(2+) handling proteins, which may be a potential phytochemical flavonoid for therapeutics of HF. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Using iPSC Models to Probe Regulation of Cardiac Ion Channel Function.

    PubMed

    Bruyneel, Arne A N; McKeithan, Wesley L; Feyen, Dries A M; Mercola, Mark

    2018-05-25

    Cardiovascular disease is the leading contributor to mortality and morbidity. Many deaths of heart failure patients can be attributed to sudden cardiac death due primarily to ventricular arrhythmia. Currently, most anti-arrhythmics modulate ion channel conductivity or β-adrenergic signaling, but these drugs have limited efficacy for some indications, and can potentially be proarrhythmic. Recent studies have shown that mutations in proteins other than cardiac ion channels may confer susceptibility to congenital as well as acquired arrhythmias. Additionally, ion channels themselves are subject to regulation at the levels of channel expression, trafficking and post-translational modification; thus, research into the regulation of ion channels may elucidate disease mechanisms and potential therapeutic targets for future drug development. This review summarizes the current knowledge of the molecular mechanisms of arrhythmia susceptibility and discusses technological advances such as induced pluripotent stem cell-derived cardiomyocytes, gene editing, functional genomics, and physiological screening platforms that provide a new paradigm for discovery of new therapeutic targets to treat congenital and acquired diseases of the heart rhythm.

  19. An Integrated Cardiology Patient Management System

    PubMed Central

    Kiely, F. Michael

    1988-01-01

    An integrated clinical database has been developed for all diagnostic cardiac services at Vancouver General Hospital. The system is installed on a Data General MV/10000 computer and utilizes the Flagship Application Generator from EPIC Systems Corp. Clinical information, as well as demographic and administrative data, is collected. The system features a custom menu for each user, whose selections provide direct access to the desired functional modules. The intention is to collect data from all the diagnostic areas of the Division of Cardiology, viz., Cardiac Ultrasound, Cardiac Catheterization Laboratory, Pacemaker Clinic and Electrocardiology (including 24 hour ambulatory EKGs and exercise testing). Automated links to the hospital's Admitting/Discharge/Transfer and Billing/Accounts Receivable systems have been implemented over the hospital's local area network. The system is used to produce routine reports of test results, patient billings, and departmental workload statistics. Inquiry functions permit the rapid location of patient records and produce an integrated profile of cardiology activity. In addition, selective searches of the data are available for research and/or other purposes.

  20. The UNC-45 Chaperone Is Critical for Establishing Myosin-Based Myofibrillar Organization and Cardiac Contractility in the Drosophila Heart Model

    PubMed Central

    Melkani, Girish C.; Bodmer, Rolf; Ocorr, Karen; Bernstein, Sanford I.

    2011-01-01

    UNC-45 is a UCS (UNC-45/CRO1/She4P) class chaperone necessary for myosin folding and/or accumulation, but its requirement for maintaining cardiac contractility has not been explored. Given the prevalence of myosin mutations in eliciting cardiomyopathy, chaperones like UNC-45 are likely to be equally critical in provoking or modulating myosin-associated cardiomyopathy. Here, we used the Drosophila heart model to examine its role in cardiac physiology, in conjunction with RNAi-mediated gene silencing specifically in the heart in vivo. Analysis of cardiac physiology was carried out using high-speed video recording in conjunction with movement analysis algorithms. unc-45 knockdown resulted in severely compromised cardiac function in adults as evidenced by prolonged diastolic and systolic intervals, and increased incidence of arrhythmias and extreme dilation; the latter was accompanied by a significant reduction in muscle contractility. Structural analysis showed reduced myofibrils, myofibrillar disarray, and greatly decreased cardiac myosin accumulation. Cardiac unc-45 silencing also dramatically reduced life-span. In contrast, third instar larval and young pupal hearts showed mild cardiac abnormalities, as severe cardiac defects only developed during metamorphosis. Furthermore, cardiac unc-45 silencing in the adult heart (after metamorphosis) led to less severe phenotypes. This suggests that UNC-45 is mostly required for myosin accumulation/folding during remodeling of the forming adult heart. The cardiac defects, myosin deficit and decreased life-span in flies upon heart-specific unc-45 knockdown were significantly rescued by UNC-45 over-expression. Our results are the first to demonstrate a cardiac-specific requirement of a chaperone in Drosophila, suggestive of a critical role of UNC-45 in cardiomyopathies, including those associated with unfolded proteins in the failing human heart. The dilated cardiomyopathy phenotype associated with UNC-45 deficiency is mimicked by myosin knockdown suggesting that UNC-45 plays a crucial role in stabilizing myosin and possibly preventing human cardiomyopathies associated with functional deficiencies of myosin. PMID:21799905

  1. Acute Effects of Different Types of Resistance Training on Cardiac Autonomic Modulation in COPD.

    PubMed

    Vanderlei, Franciele M; Zandonadi, Fernando; de Lima, Fabiano Franciso; Silva, Bruna S A; Freire, Ana Paula C F; Ramos, Dionei; Ramos, Ercy Mara C

    2018-05-22

    An exercise modality that has been gaining significant importance in the rehabilitation of subjects with COPD is resistance training. When considering that patients with COPD present alterations in autonomic cardiac modulation caused by the disease itself, it is necessary to investigate the behavior of the autonomic nervous system in relation to this type of exercise. Thus, the objective of this study was to compare the acute effects of resistance training with elastic tubes, elastic bands, and conventional weightlifitng on the behavior of cardiac autonomic modulation in post-exercise recovery in subjects with COPD. Thirty-four subjects with COPD performed an single session of resistance training divided according to the therapeutic resource used: elastic tubes ( n = 10), elastic bands ( n = 11), and conventional bodybuilding ( n = 13). For analysis of cardiac autonomic modulation, the heart rate was obtained beat to beat at rest and immediately after the end of the session for 60 min in a seated position. Heart rate variability indices were obtained in the time and frequency domains. The 3 therapeutic resource types used in the single session of resistance training promoted changes in heart rate variability linear indices in the time and frequency domains; however, post-exercise recovery time was similar for all protocols performed. After single resistance training the elastic tubes group presented a minimum alteration in the post-exercise recovery of cardiac autonomic modulation in the subjects with COPD; however, at 5 min after exercising, the subjects with COPD had already recovered. Therefore, if the purpose of the training is to restore autonomic cardiac modulation, the use of elastic tubes is suggested, when considering their low cost and versatility. Copyright © 2018 by Daedalus Enterprises.

  2. Sympathetic Nervous System Modulation of Inflammation and Remodeling in the Hypertensive Heart

    PubMed Central

    Levick, Scott P.; Murray, David B.; Janicki, Joseph S.; Brower, Gregory L.

    2010-01-01

    Chronic activation of the sympathetic nervous system (SNS) is a key component of cardiac hypertrophy and fibrosis. However, previous studies have provided evidence to also implicate inflammatory cells, including mast cells, in the development of cardiac fibrosis. The current study investigated the potential interaction of cardiac mast cells with the SNS. Eight week old male SHR were sympathectomized to establish the effect of the SNS on cardiac mast cell density, myocardial remodeling and cytokine production in the hypertensive heart. Age-matched WKY served as controls. Cardiac fibrosis and hypertension were significantly attenuated and left ventricular mass normalized while cardiac mast cell density was markedly increased in sympathectomized SHR. Sympathectomy normalized myocardial levels of IFN-γ, IL-6 and IL-10, but had no effect on IL-4. The effect of norepinephrine and substance P on isolated cardiac mast cell activation was investigated as potential mechanisms of interaction between the two. Only substance P elicited mast cell degranulation. Substance P was also shown to induce the production of angiotensin II by a mixed population of isolated cardiac inflammatory cells, including mast cells, lymphocytes and macrophages. These results demonstrate the ability of neuropeptides to regulate inflammatory cell function, providing a potential mechanism by which the SNS and afferent nerves may interact with inflammatory cells in the hypertensive heart. PMID:20048196

  3. Sarcopenia, cachexia, and muscle performance in heart failure: Review update 2016.

    PubMed

    Saitoh, Masakazu; Ishida, Junichi; Doehner, Wolfram; von Haehling, Stephan; Anker, Markus S; Coats, Andrew J S; Anker, Stefan D; Springer, Jochen

    2017-07-01

    Cachexia in the context of heart failure (HF) has been termed cardiac cachexia, and represents a progressive involuntary weight loss. Cachexia is mainly the result of an imbalance in the homeostasis of muscle protein synthesis and degradation due to a lower activity of protein synthesis pathways and an over-activation of protein degradation. In addition, muscle wasting leads to of impaired functional capacity, even after adjusting for clinical relevant variables in patients with HF. However, there is no sufficient therapeutic strategy in muscle wasting in HF patients and very few studies in animal models. Exercise training represents a promising intervention that can prevent or even reverse the process of muscle wasting, and worsening the muscle function and performance in HF with muscle wasting and cachexia. The pathological mechanisms and effective therapeutic approach of cardiac cachexia remain uncertain, because of the difficulty to establish animal cardiac cachexia models, thus novel animal models are warranted. Furthermore, the use of improved animal models will lead to a better understanding of the pathways that modulate muscle wasting and therapeutics of muscle wasting of cardiac cachexia. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Sphingosine-1-Phosphate (S1P) Lyase Inhibition Causes Increased Cardiac S1P Levels and Bradycardia in Rats.

    PubMed

    Harris, Christopher M; Mittelstadt, Scott; Banfor, Patricia; Bousquet, Peter; Duignan, David B; Gintant, Gary; Hart, Michelle; Kim, Youngjae; Segreti, Jason

    2016-10-01

    Inhibition of the sphingosine-1-phosphate (S1P)-catabolizing enzyme S1P lyase (S1PL) elevates the native ligand of S1P receptors and provides an alternative mechanism for immune suppression to synthetic S1P receptor agonists. S1PL inhibition is reported to preferentially elevate S1P in lymphoid organs. Tissue selectivity could potentially differentiate S1PL inhibitors from S1P receptor agonists, the use of which also results in bradycardia, atrioventricular block, and hypertension. But it is unknown if S1PL inhibition would also modulate cardiac S1P levels or cardiovascular function. The S1PL inhibitor 6-[(2R)-4-(4-benzyl-7-chlorophthalazin-1-yl)-2-methylpiperazin-1-yl]pyridine-3-carbonitrile was used to determine the relationship in rats between drug concentration, S1P levels in select tissues, and circulating lymphocytes. Repeated oral doses of the S1PL inhibitor fully depleted circulating lymphocytes after 3 to 4 days of treatment in rats. Full lymphopenia corresponded to increased levels of S1P of 100- to 1000-fold in lymph nodes, 3-fold in blood (but with no change in plasma), and 9-fold in cardiac tissue. Repeated oral dosing of the S1PL inhibitor in telemeterized, conscious rats resulted in significant bradycardia within 48 hours of drug treatment, comparable in magnitude to the bradycardia induced by 3 mg/kg fingolimod. These results suggest that S1PL inhibition modulates cardiac function and does not provide immune suppression with an improved cardiovascular safety profile over fingolimod in rats. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Hypoxic exercise training improves cardiac/muscular hemodynamics and is associated with modulated circulating progenitor cells in sedentary men.

    PubMed

    Wang, Jong-Shyan; Lee, Mei-Yi; Lien, Hen-Yu; Weng, Tzu-Pin

    2014-01-01

    Circulating progenitor cells (CPCs) improve cardiovascular function and organ perfusion by enhancing the capacities of endothelial repair and neovasculogenesis. This study investigates whether exercise regimens with/without hypoxia affect cardiac and muscular hemodynamics by modulating CPCs and angiogenic factors. Forty sedentary males were randomly divided into hypoxic (HT, n=20) and normoxic (NT, n=20) training groups. The subjects were trained on a bicycle ergometer at 60%VO(2max) under 15% (HT) or 21% (NT) O2 conditions for 30 min daily, five days weekly for five weeks. After the five-week interventions, the HT group exhibited a larger improvement in aerobic capacity than the NT group. Furthermore, the HT regimen (i) enhanced cardiac output (Q(H)) and perfusion (Q(M))/oxygenation of vastus lateralis during exercise; (ii) increased levels of CD34(+)/KDR(+)/CD117(+), CD34(+)/KDR(+)/CD133(+), and CD34(+)/KDR(+)/CD31(+) cells in blood; (iii) promoted the proliferative capacity of these CPC subsets, and (iv) elevated plasma nitrite/nitrate, stromal cell-derived factor-1 (SDF-1), matrix metalloproteinase-9 (MMP-9), and vascular endothelial growth factor-A (VEGF-A) concentrations. Despite the lack of changes in Q(H) and the number or proliferative capacity of CD34(+)/KDR(+)/CD117(+) or CD34(+)/KDR(+)/CD31(+) cells, the NT regimen elevated both Q(M) and plasma nitrite/nitrate levels and suppressed the shedding of endothelial cells (CD34(-)/KDR(+)/phosphatidylserine(+) cells). The HT regimen improves cardiac and muscular hemodynamic adaptations, possibly by promoting the mobilization/function of CPCs and the production of angiogenic factors. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. P2Y2 Nucleotide Receptor Prompts Human Cardiac Progenitor Cell Activation by Modulating Hippo Signaling.

    PubMed

    Khalafalla, Farid G; Greene, Steven; Khan, Hashim; Ilves, Kelli; Monsanto, Megan M; Alvarez, Roberto; Chavarria, Monica; Nguyen, Jonathan; Norman, Benjamin; Dembitsky, Walter P; Sussman, Mark A

    2017-11-10

    Autologous stem cell therapy using human c-Kit + cardiac progenitor cells (hCPCs) is a promising therapeutic approach for treatment of heart failure (HF). However, hCPCs derived from aged patients with HF with genetic predispositions and comorbidities of chronic diseases exhibit poor proliferative and migratory capabilities, which impair overall reparative potential for injured myocardium. Therefore, empowering functionally compromised hCPCs with proregenerative molecules ex vivo is crucial for improving the therapeutic outcome in patients with HF. To improve hCPC proliferation and migration responses that are critical for regeneration by targeting proregenerative P2Y 2 nucleotide receptor (P2Y 2 R) activated by extracellular ATP and UTP molecules released following injury/stress. c-Kit + hCPCs were isolated from cardiac tissue of patients with HF undergoing left ventricular assist device implantation surgery. Correlations between P2 nucleotide receptor expression and hCPC growth kinetics revealed downregulation of select P2 receptors, including P2Y 2 R, in slow-growing hCPCs compared with fast growers. hCPC proliferation and migration significantly improved by overexpressing or stimulating P2Y 2 R. Mechanistically, P2Y 2 R-induced proliferation and migration were dependent on activation of YAP (yes-associated protein)-the downstream effector of Hippo signaling pathway. Proliferation and migration of functionally impaired hCPCs are enhanced by P2Y 2 R-mediated YAP activation, revealing a novel link between extracellular nucleotides released during injury/stress and Hippo signaling-a central regulator of cardiac regeneration. Functional correlations exist between hCPC phenotypic properties and P2 purinergic receptor expression. Lack of P2Y 2 R and other crucial purinergic stress detectors could compromise hCPC responsiveness to presence of extracellular stress signals. These findings set the stage for subsequent studies to assess purinergic signaling modulation as a potential strategy to improve therapeutic outcome for use of hCPCs in patients with HF. © 2017 American Heart Association, Inc.

  7. Yoga respiratory training improves respiratory function and cardiac sympathovagal balance in elderly subjects: a randomised controlled trial

    PubMed Central

    Santaella, Danilo F; Devesa, Cesar R S; Rojo, Marcos R; Amato, Marcelo B P; Drager, Luciano F; Casali, Karina R; Montano, Nicola

    2011-01-01

    Objectives Since ageing is associated with a decline in pulmonary function, heart rate variability and spontaneous baroreflex, and recent studies suggest that yoga respiratory exercises may improve respiratory and cardiovascular function, we hypothesised that yoga respiratory training may improve respiratory function and cardiac autonomic modulation in healthy elderly subjects. Design 76 healthy elderly subjects were enrolled in a randomised control trial in Brazil and 29 completed the study (age 68±6 years, 34% males, body mass index 25±3 kg/m2). Subjects were randomised into a 4-month training program (2 classes/week plus home exercises) of either stretching (control, n=14) or respiratory exercises (yoga, n=15). Yoga respiratory exercises (Bhastrika) consisted of rapid forced expirations followed by inspiration through the right nostril, inspiratory apnoea with generation of intrathoracic negative pressure, and expiration through the left nostril. Pulmonary function, maximum expiratory and inspiratory pressures (PEmax and PImax, respectively), heart rate variability and blood pressure variability for spontaneous baroreflex determination were determined at baseline and after 4 months. Results Subjects in both groups had similar demographic parameters. Physiological variables did not change after 4 months in the control group. However, in the yoga group, there were significant increases in PEmax (34%, p<0.0001) and PImax (26%, p<0.0001) and a significant decrease in the low frequency component (a marker of cardiac sympathetic modulation) and low frequency/high frequency ratio (marker of sympathovagal balance) of heart rate variability (40%, p<0.001). Spontaneous baroreflex did not change, and quality of life only marginally increased in the yoga group. Conclusion Respiratory yoga training may be beneficial for the elderly healthy population by improving respiratory function and sympathovagal balance. Trial Registration CinicalTrials.gov identifier: NCT00969345; trial registry name: Effects of respiratory yoga training (Bhastrika) on heart rate variability and baroreflex, and quality of life of healthy elderly subjects. PMID:22021757

  8. Formation of virtual isthmus: A new scenario of spiral wave death after a decrease in excitability

    NASA Astrophysics Data System (ADS)

    Erofeev, I. S.; Agladze, K. I.

    2015-11-01

    Termination of rotating (spiral) waves or reentry is crucial when fighting with the most dangerous cardiac tachyarrhythmia. To increase the efficiency of the antiarrhythmic drugs as well as finding new prospective ones it is decisive to know the mechanisms how they act and influence the reentry dynamics. The most popular view on the mode of action of the contemporary antiarrhythmic drugs is that they increase the core of the rotating wave (reentry) to that extent that it is not enough space in the real heart for the reentry to exist. Since the excitation in cardiac cells is essentially change of the membrane potential, it relies on the functioning of the membrane ion channels. Thus, membrane ion channels serve as primary targets for the substances, which may serve as antiarrhythmics. At least, the entire group of antiarrhythmics class I (modulating activity of sodium channels) and partially class IV (modulating activity of calcium channels) are believed to destabilize and terminate reentry by decreasing the excitability of cardiac tissue. We developed an experimental model employing cardiac tissue culture and photosensitizer (AzoTAB) to study the process of the rotating wave termination while decreasing the excitability of the tissue. A new scenario of spiral wave cessation was observed: an asymmetric growth of the rotating wave core and subsequent formation of a virtual isthmus, which eventually caused a conduction block and the termination of the reentry.

  9. Low vagally-mediated heart rate variability and increased susceptibility to ventricular arrhythmias in rats bred for high anxiety.

    PubMed

    Carnevali, Luca; Trombini, Mimosa; Graiani, Gallia; Madeddu, Denise; Quaini, Federico; Landgraf, Rainer; Neumann, Inga D; Nalivaiko, Eugene; Sgoifo, Andrea

    2014-04-10

    In humans, there is a documented association between anxiety disorders and cardiovascular disease. Putative underlying mechanisms may include an impairment of the autonomic nervous system control of cardiac function. The primary objective of the present study was to characterize cardiac autonomic modulation and susceptibility to arrhythmias in genetic lines of rats that differ largely in their anxiety level. To reach this goal, electrocardiographic recordings were performed in high-anxiety behavior (HAB, n=10) and low-anxiety behavior (LAB, n=10) rats at rest, during stressful stimuli and under autonomic pharmacological manipulations, and analyzed by means of time- and frequency-domain indexes of heart rate variability. During resting conditions, HAB rats displayed a reduced heart rate variability, mostly in terms of lower parasympathetic (vagal) modulation compared to LAB rats. In HAB rats, this relatively low cardiac vagal control was associated with smaller heart rate responsiveness to acute stressors compared to LAB counterparts. In addition, beta-adrenergic pharmacological stimulation induced a larger incidence of ventricular tachyarrhythmias in HABs compared to LABs. At sacrifice, a moderate increase in heart-body weight ratio was observed in HAB rats. We conclude that high levels of anxiety-related behavior in rats are associated with signs of i) impaired autonomic modulation of heart rate (low vagally-mediated heart rate variability), ii) poor adaptive heart rate responsiveness to stressful stimuli, iii) increased arrhythmia susceptibility, and iv) cardiac hypertrophy. These results highlight the utility of the HAB/LAB model for investigating the mechanistic basis of the comorbidity between anxiety disorders and cardiovascular disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The Citrus Flavanone Naringenin Protects Myocardial Cells against Age-Associated Damage

    PubMed Central

    Costa, Barbara; Cavallini, Chiara; Testai, Lara; Martelli, Alma; Calderone, Vincenzo; Martini, Claudia

    2017-01-01

    In recent years, the health-promoting effects of the citrus flavanone naringenin have been examined. The results have provided evidence for the modulation of some key mechanisms involved in cellular damage by this compound. In particular, naringenin has been revealed to have protective properties such as an antioxidant effect in cardiometabolic disorders. Very recently, beneficial effects of naringenin have been demonstrated in old rats. Because aging has been demonstrated to be directly related to the occurrence of cardiac disorders, in the present study, the ability of naringenin to prevent cardiac cell senescence was investigated. For this purpose, a cellular model of senescent myocardial cells was set up and evaluated using colorimetric, fluorimetric, and immunometric techniques. Relevant cellular senescence markers, such as X-gal staining, cell cycle regulator levels, and the percentage of cell cycle-arrested cells, were found to be reduced in the presence of naringenin. In addition, cardiac markers of aging-induced damage, including radical oxidative species levels, mitochondrial metabolic activity, mitochondrial calcium buffer capacity, and estrogenic signaling functions, were also modulated by the compound. These results suggested that naringenin has antiaging effects on myocardial cells. PMID:28386313

  11. Differential activation of natriuretic peptide receptors modulates cardiomyocyte proliferation during development

    PubMed Central

    Becker, Jason R.; Chatterjee, Sneha; Robinson, Tamara Y.; Bennett, Jeffrey S.; Panáková, Daniela; Galindo, Cristi L.; Zhong, Lin; Shin, Jordan T.; Coy, Shannon M.; Kelly, Amy E.; Roden, Dan M.; Lim, Chee Chew; MacRae, Calum A.

    2014-01-01

    Organ development is a highly regulated process involving the coordinated proliferation and differentiation of diverse cellular populations. The pathways regulating cell proliferation and their effects on organ growth are complex and for many organs incompletely understood. In all vertebrate species, the cardiac natriuretic peptides (ANP and BNP) are produced by cardiomyocytes in the developing heart. However, their role during cardiogenesis is not defined. Using the embryonic zebrafish and neonatal mammalian cardiomyocytes we explored the natriuretic peptide signaling network during myocardial development. We observed that the cardiac natriuretic peptides ANP and BNP and the guanylate cyclase-linked natriuretic peptide receptors Npr1 and Npr2 are functionally redundant during early cardiovascular development. In addition, we demonstrate that low levels of the natriuretic peptides preferentially activate Npr3, a receptor with Gi activator sequences, and increase cardiomyocyte proliferation through inhibition of adenylate cyclase. Conversely, high concentrations of natriuretic peptides reduce cardiomyocyte proliferation through activation of the particulate guanylate cyclase-linked natriuretic peptide receptors Npr1 and Npr2, and activation of protein kinase G. These data link the cardiac natriuretic peptides in a complex hierarchy modulating cardiomyocyte numbers during development through opposing effects on cardiomyocyte proliferation mediated through distinct cyclic nucleotide signaling pathways. PMID:24353062

  12. Cardiac-specific suppression of NF-κB signaling prevents diabetic cardiomyopathy via inhibition of the renin-angiotensin system.

    PubMed

    Thomas, Candice M; Yong, Qian Chen; Rosa, Rodolfo M; Seqqat, Rachid; Gopal, Shanthi; Casarini, Dulce E; Jones, W Keith; Gupta, Sudhiranjan; Baker, Kenneth M; Kumar, Rajesh

    2014-10-01

    Activation of NF-κB signaling in the heart may be protective or deleterious depending on the pathological context. In diabetes, the role of NF-κB in cardiac dysfunction has been investigated using pharmacological approaches that have a limitation of being nonspecific. Furthermore, the specific cellular pathways by which NF-κB modulates heart function in diabetes have not been identified. To address these questions, we used a transgenic mouse line expressing mutated IκB-α in the heart (3M mice), which prevented activation of canonical NF-κB signaling. Diabetes was developed by streptozotocin injections in wild-type (WT) and 3M mice. Diabetic WT mice developed systolic and diastolic cardiac dysfunction by the 12th week, as measured by echocardiography. In contrast, cardiac function was preserved in 3M mice up to 24 wk of diabetes. Diabetes induced an elevation in cardiac oxidative stress in diabetic WT mice but not 3M mice compared with nondiabetic control mice. In diabetic WT mice, an increase in the phospholamban/sarco(endo)plasmic reticulum Ca(2+)-ATPase 2 ratio and decrease in ryanodine receptor expression were observed, whereas diabetic 3M mice showed an opposite effect on these parameters of Ca(2+) handling. Significantly, renin-angiotensin system activity was suppressed in diabetic 3M mice compared with an increase in WT animals. In conclusion, these results demonstrate that inhibition of NF-κB signaling in the heart prevents diabetes-induced cardiac dysfunction through preserved Ca(2+) handling and inhibition of the cardiac renin-angiotensin system.

  13. Cardiac-specific suppression of NF-κB signaling prevents diabetic cardiomyopathy via inhibition of the renin-angiotensin system

    PubMed Central

    Thomas, Candice M.; Yong, Qian Chen; Rosa, Rodolfo M.; Seqqat, Rachid; Gopal, Shanthi; Casarini, Dulce E.; Jones, W. Keith; Gupta, Sudhiranjan; Baker, Kenneth M.

    2014-01-01

    Activation of NF-κB signaling in the heart may be protective or deleterious depending on the pathological context. In diabetes, the role of NF-κB in cardiac dysfunction has been investigated using pharmacological approaches that have a limitation of being nonspecific. Furthermore, the specific cellular pathways by which NF-κB modulates heart function in diabetes have not been identified. To address these questions, we used a transgenic mouse line expressing mutated IκB-α in the heart (3M mice), which prevented activation of canonical NF-κB signaling. Diabetes was developed by streptozotocin injections in wild-type (WT) and 3M mice. Diabetic WT mice developed systolic and diastolic cardiac dysfunction by the 12th week, as measured by echocardiography. In contrast, cardiac function was preserved in 3M mice up to 24 wk of diabetes. Diabetes induced an elevation in cardiac oxidative stress in diabetic WT mice but not 3M mice compared with nondiabetic control mice. In diabetic WT mice, an increase in the phospholamban/sarco(endo)plasmic reticulum Ca2+-ATPase 2 ratio and decrease in ryanodine receptor expression were observed, whereas diabetic 3M mice showed an opposite effect on these parameters of Ca2+ handling. Significantly, renin-angiotensin system activity was suppressed in diabetic 3M mice compared with an increase in WT animals. In conclusion, these results demonstrate that inhibition of NF-κB signaling in the heart prevents diabetes-induced cardiac dysfunction through preserved Ca2+ handling and inhibition of the cardiac renin-angiotensin system. PMID:25085967

  14. Integromics network meta-analysis on cardiac aging offers robust multi-layer modular signatures and reveals micronome synergism.

    PubMed

    Dimitrakopoulou, Konstantina; Vrahatis, Aristidis G; Bezerianos, Anastasios

    2015-03-04

    The avalanche of integromics and panomics approaches shifted the deciphering of aging mechanisms from single molecular entities to communities of them. In this orientation, we explore the cardiac aging mechanisms - risk factor for multiple cardiovascular diseases - by capturing the micronome synergism and detecting longevity signatures in the form of communities (modules). For this, we developed a meta-analysis scheme that integrates transcriptome expression data from multiple cardiac-specific independent studies in mouse and human along with proteome and micronome interaction data in the form of multiple independent weighted networks. Modularization of each weighted network produced modules, which in turn were further analyzed so as to define consensus modules across datasets that change substantially during lifespan. Also, we established a metric that determines - from the modular perspective - the synergism of microRNA-microRNA interactions as defined by significantly functionally associated targets. The meta-analysis provided 40 consensus integromics modules across mouse datasets and revealed microRNA relations with substantial collective action during aging. Three modules were reproducible, based on homology, when mapped against human-derived modules. The respective homologs mainly represent NADH dehydrogenases, ATP synthases, cytochrome oxidases, Ras GTPases and ribosomal proteins. Among various observations, we corroborate to the involvement of miR-34a (included in consensus modules) as proposed recently; yet we report that has no synergistic effect. Moving forward, we determined its age-related neighborhood in which HCN3, a known heart pacemaker channel, was included. Also, miR-125a-5p/-351, miR-200c/-429, miR-106b/-17, miR-363/-92b, miR-181b/-181d, miR-19a/-19b, let-7d/-7f, miR-18a/-18b, miR-128/-27b and miR-106a/-291a-3p pairs exhibited significant synergy and their association to aging and/or cardiovascular diseases is supported in many cases by a disease database and previous studies. On the contrary, we suggest that miR-22 has not substantial impact on heart longevity as proposed recently. We revised several proteins and microRNAs recently implicated in cardiac aging and proposed for the first time modules as signatures. The integromics meta-analysis approach can serve as an efficient subvening signature tool for more-oriented better-designed experiments. It can also promote the combinational multi-target microRNA therapy of age-related cardiovascular diseases along the continuum from prevention to detection, diagnosis, treatment and outcome.

  15. Induction and differentiation of human induced pluripotent stem cells into functional cardiomyocytes on a compartmented monolayer of gelatin nanofibers

    NASA Astrophysics Data System (ADS)

    Tang, Yadong; Liu, Li; Li, Junjun; Yu, Leqian; Wang, Li; Shi, Jian; Chen, Yong

    2016-07-01

    Extensive efforts have been devoted to develop new substrates for culture and differentiation of human induced pluripotent stem cells (hiPSCs) toward cardiac cell-based assays. A more exciting prospect is the construction of cardiac tissue for robust drug screening and cardiac tissue repairing. Here, we developed a patch method by electrospinning and crosslinking of monolayer gelatin nanofibers on a honeycomb frame made of poly(ethylene glycol) diacrylate (PEGDA). The monolayer of the nanofibrous structure can support cells with minimal exogenous contact and a maximal efficiency of cell-medium exchange whereas a single hiPSC colony can be uniformly formed in each of the honeycomb compartments. By modulating the treatment time of the ROCK inhibitor Y-27632, the shape of the hiPSC colony could be controlled from a flat layer to a hemisphere. Afterwards, the induction and differentiation of hiPSCs were achieved on the same patch, leading to a uniform cardiac layer with homogeneous contraction. This cardiac layer could then be used for extracellular recording with a commercial multi-electrode array, showing representative field potential waveforms of matured cardiac tissues with appropriate drug responses.Extensive efforts have been devoted to develop new substrates for culture and differentiation of human induced pluripotent stem cells (hiPSCs) toward cardiac cell-based assays. A more exciting prospect is the construction of cardiac tissue for robust drug screening and cardiac tissue repairing. Here, we developed a patch method by electrospinning and crosslinking of monolayer gelatin nanofibers on a honeycomb frame made of poly(ethylene glycol) diacrylate (PEGDA). The monolayer of the nanofibrous structure can support cells with minimal exogenous contact and a maximal efficiency of cell-medium exchange whereas a single hiPSC colony can be uniformly formed in each of the honeycomb compartments. By modulating the treatment time of the ROCK inhibitor Y-27632, the shape of the hiPSC colony could be controlled from a flat layer to a hemisphere. Afterwards, the induction and differentiation of hiPSCs were achieved on the same patch, leading to a uniform cardiac layer with homogeneous contraction. This cardiac layer could then be used for extracellular recording with a commercial multi-electrode array, showing representative field potential waveforms of matured cardiac tissues with appropriate drug responses. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr04545f

  16. CIP, a cardiac Isl1-interacting protein, represses cardiomyocyte hypertrophy.

    PubMed

    Huang, Zhan-Peng; Young Seok, Hee; Zhou, Bin; Chen, Jinghai; Chen, Jian-Fu; Tao, Yazhong; Pu, William T; Wang, Da-Zhi

    2012-03-16

    Mammalian heart has minimal regenerative capacity. In response to mechanical or pathological stress, the heart undergoes cardiac remodeling. Pressure and volume overload in the heart cause increased size (hypertrophic growth) of cardiomyocytes. Whereas the regulatory pathways that activate cardiac hypertrophy have been well-established, the molecular events that inhibit or repress cardiac hypertrophy are less known. To identify and investigate novel regulators that modulate cardiac hypertrophy. Here, we report the identification, characterization, and functional examination of a novel cardiac Isl1-interacting protein (CIP). CIP was identified from a bioinformatic search for novel cardiac-expressed genes in mouse embryonic hearts. CIP encodes a nuclear protein without recognizable motifs. Northern blotting, in situ hybridization, and reporter gene tracing demonstrated that CIP is highly expressed in cardiomyocytes of developing and adult hearts. Yeast two-hybrid screening identified Isl1, a LIM/homeodomain transcription factor essential for the specification of cardiac progenitor cells in the second heart field, as a cofactor of CIP. CIP directly interacted with Isl1, and we mapped the domains of these two proteins, which mediate their interaction. We show that CIP represses the transcriptional activity of Isl1 in the activation of the myocyte enhancer factor 2C. The expression of CIP was dramatically reduced in hypertrophic cardiomyocytes. Most importantly, overexpression of CIP repressed agonist-induced cardiomyocyte hypertrophy. Our studies therefore identify CIP as a novel regulator of cardiac hypertrophy.

  17. Functional conservation between rodents and chicken of regulatory sequences driving skeletal muscle gene expression in transgenic chickens

    PubMed Central

    2010-01-01

    Background Regulatory elements that control expression of specific genes during development have been shown in many cases to contain functionally-conserved modules that can be transferred between species and direct gene expression in a comparable developmental pattern. An example of such a module has been identified at the rat myosin light chain (MLC) 1/3 locus, which has been well characterised in transgenic mouse studies. This locus contains two promoters encoding two alternatively spliced isoforms of alkali myosin light chain. These promoters are differentially regulated during development through the activity of two enhancer elements. The MLC3 promoter alone has been shown to confer expression of a reporter gene in skeletal and cardiac muscle in transgenic mice and the addition of the downstream MLC enhancer increased expression levels in skeletal muscle. We asked whether this regulatory module, sufficient for striated muscle gene expression in the mouse, would drive expression in similar domains in the chicken. Results We have observed that a conserved downstream MLC enhancer is present in the chicken MLC locus. We found that the rat MLC1/3 regulatory elements were transcriptionally active in chick skeletal muscle primary cultures. We observed that a single copy lentiviral insert containing this regulatory cassette was able to drive expression of a lacZ reporter gene in the fast-fibres of skeletal muscle in chicken in three independent transgenic chicken lines in a pattern similar to the endogenous MLC locus. Reporter gene expression in cardiac muscle tissues was not observed for any of these lines. Conclusions From these results we conclude that skeletal expression from this regulatory module is conserved in a genomic context between rodents and chickens. This transgenic module will be useful in future investigations of muscle development in avian species. PMID:20184756

  18. Effects of Hypertension and Exercise on Cardiac Proteome Remodelling

    PubMed Central

    Petriz, Bernardo A.; Franco, Octavio L.

    2014-01-01

    Left ventricle hypertrophy is a common outcome of pressure overload stimulus closely associated with hypertension. This process is triggered by adverse molecular signalling, gene expression, and proteome alteration. Proteomic research has revealed that several molecular targets are associated with pathologic cardiac hypertrophy, including angiotensin II, endothelin-1 and isoproterenol. Several metabolic, contractile, and stress-related proteins are shown to be altered in cardiac hypertrophy derived by hypertension. On the other hand, exercise is a nonpharmacologic agent used for hypertension treatment, where cardiac hypertrophy induced by exercise training is characterized by improvement in cardiac function and resistance against ischemic insult. Despite the scarcity of proteomic research performed with exercise, healthy and pathologic heart proteomes are shown to be modulated in a completely different way. Hence, the altered proteome induced by exercise is mostly associated with cardioprotective aspects such as contractile and metabolic improvement and physiologic cardiac hypertrophy. The present review, therefore, describes relevant studies involving the molecular characteristics and alterations from hypertensive-induced and exercise-induced hypertrophy, as well as the main proteomic research performed in this field. Furthermore, proteomic research into the effect of hypertension on other target-demerged organs is examined. PMID:24877123

  19. Quasiperiodicity and chaos in cardiac fibrillation.

    PubMed Central

    Garfinkel, A; Chen, P S; Walter, D O; Karagueuzian, H S; Kogan, B; Evans, S J; Karpoukhin, M; Hwang, C; Uchida, T; Gotoh, M; Nwasokwa, O; Sager, P; Weiss, J N

    1997-01-01

    In cardiac fibrillation, disorganized waves of electrical activity meander through the heart, and coherent contractile function is lost. We studied fibrillation in three stationary forms: in human chronic atrial fibrillation, in a stabilized form of canine ventricular fibrillation, and in fibrillation-like activity in thin sheets of canine and human ventricular tissue in vitro. We also created a computer model of fibrillation. In all four studies, evidence indicated that fibrillation arose through a quasiperiodic stage of period and amplitude modulation, thus exemplifying the "quasiperiodic transition to chaos" first suggested by Ruelle and Takens. This suggests that fibrillation is a form of spatio-temporal chaos, a finding that implies new therapeutic approaches. PMID:9005999

  20. Quasiperiodicity and chaos in cardiac fibrillation.

    PubMed

    Garfinkel, A; Chen, P S; Walter, D O; Karagueuzian, H S; Kogan, B; Evans, S J; Karpoukhin, M; Hwang, C; Uchida, T; Gotoh, M; Nwasokwa, O; Sager, P; Weiss, J N

    1997-01-15

    In cardiac fibrillation, disorganized waves of electrical activity meander through the heart, and coherent contractile function is lost. We studied fibrillation in three stationary forms: in human chronic atrial fibrillation, in a stabilized form of canine ventricular fibrillation, and in fibrillation-like activity in thin sheets of canine and human ventricular tissue in vitro. We also created a computer model of fibrillation. In all four studies, evidence indicated that fibrillation arose through a quasiperiodic stage of period and amplitude modulation, thus exemplifying the "quasiperiodic transition to chaos" first suggested by Ruelle and Takens. This suggests that fibrillation is a form of spatio-temporal chaos, a finding that implies new therapeutic approaches.

  1. Genome-wide computational analysis reveals cardiomyocyte-specific transcriptional Cis-regulatory motifs that enable efficient cardiac gene therapy.

    PubMed

    Rincon, Melvin Y; Sarcar, Shilpita; Danso-Abeam, Dina; Keyaerts, Marleen; Matrai, Janka; Samara-Kuko, Ermira; Acosta-Sanchez, Abel; Athanasopoulos, Takis; Dickson, George; Lahoutte, Tony; De Bleser, Pieter; VandenDriessche, Thierry; Chuah, Marinee K

    2015-01-01

    Gene therapy is a promising emerging therapeutic modality for the treatment of cardiovascular diseases and hereditary diseases that afflict the heart. Hence, there is a need to develop robust cardiac-specific expression modules that allow for stable expression of the gene of interest in cardiomyocytes. We therefore explored a new approach based on a genome-wide bioinformatics strategy that revealed novel cardiac-specific cis-acting regulatory modules (CS-CRMs). These transcriptional modules contained evolutionary-conserved clusters of putative transcription factor binding sites that correspond to a "molecular signature" associated with robust gene expression in the heart. We then validated these CS-CRMs in vivo using an adeno-associated viral vector serotype 9 that drives a reporter gene from a quintessential cardiac-specific α-myosin heavy chain promoter. Most de novo designed CS-CRMs resulted in a >10-fold increase in cardiac gene expression. The most robust CRMs enhanced cardiac-specific transcription 70- to 100-fold. Expression was sustained and restricted to cardiomyocytes. We then combined the most potent CS-CRM4 with a synthetic heart and muscle-specific promoter (SPc5-12) and obtained a significant 20-fold increase in cardiac gene expression compared to the cytomegalovirus promoter. This study underscores the potential of rational vector design to improve the robustness of cardiac gene therapy.

  2. Playing with Cardiac “Redox Switches”: The “HNO Way” to Modulate Cardiac Function

    PubMed Central

    Tocchetti, Carlo G.; Stanley, Brian A.; Murray, Christopher I.; Sivakumaran, Vidhya; Donzelli, Sonia; Mancardi, Daniele; Pagliaro, Pasquale; Gao, Wei Dong; van Eyk, Jennifer; Kass, David A.; Wink, David A.

    2011-01-01

    Abstract The nitric oxide (NO•) sibling, nitroxyl or nitrosyl hydride (HNO), is emerging as a molecule whose pharmacological properties include providing functional support to failing hearts. HNO also preconditions myocardial tissue, protecting it against ischemia-reperfusion injury while exerting vascular antiproliferative actions. In this review, HNO's peculiar cardiovascular assets are discussed in light of its unique chemistry that distinguish HNO from NO• as well as from reactive oxygen and nitrogen species such as the hydroxyl radical and peroxynitrite. Included here is a discussion of the possible routes of HNO formation in the myocardium and its chemical targets in the heart. HNO has been shown to have positive inotropic/lusitropic effects under normal and congestive heart failure conditions in animal models. The mechanistic intricacies of the beneficial cardiac effects of HNO are examined in cellular models. In contrast to β-receptor/cyclic adenosine monophosphate/protein kinase A-dependent enhancers of myocardial performance, HNO uses its “thiophylic” nature as a vehicle to interact with redox switches such as cysteines, which are located in key components of the cardiac electromechanical machinery ruling myocardial function. Here, we will briefly review new features of HNO's cardiovascular effects that when combined with its positive inotropic/lusitropic action may render HNO donors an attractive addition to the current therapeutic armamentarium for treating patients with acutely decompensated congestive heart failure. Antioxid. Redox Signal. 14, 1687–1698. PMID:21235349

  3. Cardiac autonomic modulation impairments in advanced breast cancer patients.

    PubMed

    Arab, Claudia; Vanderlei, Luiz Carlos Marques; da Silva Paiva, Laércio; Fulghum, Kyle Levi; Fristachi, Carlos Elias; Nazario, Afonso Celso Pinto; Elias, Simone; Gebrim, Luiz Henrique; Ferreira Filho, Celso; Gidron, Yori; Ferreira, Celso

    2018-05-02

    To compare cardiac autonomic modulation in early- versus advanced-stage breast cancer patients before any type of cancer treatment and investigate associated factors. This cross-sectional study included women (30-69 years old) with primary diagnosis of breast cancer and women with benign breast tumors. We evaluated cardiac modulation by heart rate variability and assessed factors of anxiety, depression, physical activity, and other relevant medical variables. Patients were divided into three groups based on TNM staging of cancer severity: early-stage cancer (n = 42), advanced-stage cancer (n = 37), or benign breast tumors to serve as a control (n = 37). We analyzed heart rate variability in time and frequency domains. The advanced-stage cancer group had lower vagal modulation than early-stage and benign groups; also, the advance-stage group had lower overall heart rate variability when compared to benign conditions. Heart rate variability was influenced by age, menopausal status, and BMI. Heart rate variability seems to be a promising, non-invasive tool for early diagnosis of autonomic dysfunction in breast cancer and detection of cardiovascular impairments at cancer diagnosis. Cardiac autonomic modulation is inversely associated with breast cancer staging.

  4. [Cardiac cachexia].

    PubMed

    Miján, Alberto; Martín, Elvira; de Mateo, Beatriz

    2006-05-01

    Chronic heart failure (CHF), especially affecting the right heart, frequently leads to malnutrition. If the latter is severe and is combined to other factors, it may lead to cardiac cachexia. This one is associated to increased mortality and lower survival of patients suffering from it. The causes of cardiac cachexia are diverse, generally associated to maintenance of a negative energy balance, with increasing evidence of its multifactorial origin. Neurohumoral, inflammatory, immunological, and metabolic factors, among others, are superimposed in the patient with CHF, leading to involvement and deterioration of several organs and systems, since this condition affects both lean (or active cellular) mass and adipose and bone tissue osteoporosis. Among all, the most pronounced deterioration may be seen at skeletal muscle tissue, at both structural and functional levels, the heart not being spared. As for treatment, it should be based on available scientific evidence. Assessment of nutritional status of any patient with CHF is a must, with the requirement of nutritional intervention in case of malnutrition. In this situation, especially if accompanied by cardiac cachexia, it is required to modify energy intake and oral diet quality, and to consider the indication of specific complementary or alternative artificial nutrition. Besides, the causal relationship of the beneficial role of moderate physical exertion is increasing, as well as modulation of metabolic and inflammatory impairments observed in cardiac cachexia with several drugs, leading to a favorable functional and structural response in CHF patients.

  5. North American ginseng (Panax quinquefolius) suppresses β-adrenergic-dependent signalling, hypertrophy, and cardiac dysfunction.

    PubMed

    Tang, Xilan; Gan, Xiaohong Tracey; Rajapurohitam, Venkatesh; Huang, Cathy Xiaoling; Xue, Jenny; Lui, Edmund M K; Karmazyn, Morris

    2016-12-01

    There is increasing evidence for a beneficial effect of ginseng on cardiac pathology. Here, we determined whether North American ginseng can modulate the deleterious effects of the β-adrenoceptor agonist isoproterenol on cardiac hypertrophy and function using in vitro and in vivo approaches. Isoproterenol was administered for 2 weeks at either 25 mg/kg per day or 50 mg/kg per day (ISO25 or ISO50) via a subcutaneously implanted osmotic mini-pump to either control rats or those receiving ginseng (0.9 g/L in the drinking water ad libitum). Isoproterenol produced time- and dose-dependent left ventricular dysfunction, although these effects were attenuated by ginseng. Improved cardiac functions were associated with reduced heart masses, as well as prevention in the upregulation of the hypertrophy-related fetal gene expression. Lung masses were similarly attenuated, suggesting reduced pulmonary congestion. In in vitro studies, ginseng (10 μg/mL) completely suppressed the hypertrophic response to 1 μmol/L isoproterenol in terms of myocyte surface area, as well as reduction in the upregulation of fetal gene expression. These effects were associated with attenuation in both protein kinase A and cAMP response element-binding protein phosphorylation. Ginseng attenuates adverse cardiac adrenergic responses and, therefore, may be an effective therapy to reduce hypertrophy and heart failure associated with excessive catecholamine production.

  6. Phagocyte-Myocyte Interactions and Consequences during Hypoxic Wound Healing

    PubMed Central

    Zhang, Shuang; Dehn, Shirley; DeBerge, Matthew; Rhee, KJ; Hudson, Barry; Thorp, Edward

    2014-01-01

    Myocardial infarction (MI), secondary to atherosclerotic plaque rupture and occlusive thrombi, triggers acute margination of inflammatory neutrophils and monocyte phagocyte subsets to the damaged heart, the latter of which may give rise briefly to differentiated macrophage-like or dendritic-like cells. Within the injured myocardium, a primary function of these phagocytic cells is to remove damaged extracellular matrix, necrotic and apoptotic cardiac cells, as well as immune cells that turn over. Recognition of dying cellular targets by phagocytes triggers intracellular signaling, particularly in macrophages, wherein cytokines and lipid mediators are generated to promote inflammation resolution, fibrotic scarring, angiogenesis, and compensatory organ remodeling. These actions cooperate in an effort to preserve myocardial contractility and prevent heart failure. Immune cell function is modulated by local tissue factors that include secreted protease activity, oxidative stress during clinical reperfusion, and hypoxia. Importantly, experimental evidence suggests that monocyte function and phagocytosis efficiency is compromised in the setting of MI risk factors, including hyperlipidemia and ageing, however underlying mechanisms remain unclear. Herein we review seminal phagocyte and cardiac molecular factors that lead to, and culminate in, the recognition and removal of dying injured myocardium, the effects of hypoxia, and their relationship to cardiac infarct size and heart healing. PMID:24862542

  7. Characterization of glutamatergic neurons in the rat atrial intrinsic cardiac ganglia that project to the cardiac ventricular wall.

    PubMed

    Wang, Ting; Miller, Kenneth E

    2016-08-04

    The intrinsic cardiac nervous system modulates cardiac function by acting as an integration site for regulating autonomic efferent cardiac output. This intrinsic system is proposed to be composed of a short cardio-cardiac feedback control loop within the cardiac innervation hierarchy. For example, electrophysiological studies have postulated the presence of sensory neurons in intrinsic cardiac ganglia (ICG) for regional cardiac control. There is still a knowledge gap, however, about the anatomical location and neurochemical phenotype of sensory neurons inside ICG. In the present study, rat ICG neurons were characterized neurochemically with immunohistochemistry using glutamatergic markers: vesicular glutamate transporters 1 and 2 (VGLUT1; VGLUT2), and glutaminase (GLS), the enzyme essential for glutamate production. Glutamatergic neurons (VGLUT1/VGLUT2/GLS) in the ICG that have axons to the ventricles were identified by retrograde tracing of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) injected in the ventricular wall. Co-labeling of VGLUT1, VGLUT2, and GLS with the vesicular acetylcholine transporter (VAChT) was used to evaluate the relationship between post-ganglionic autonomic neurons and glutamatergic neurons. Sequential labeling of VGLUT1 and VGLUT2 in adjacent tissue sections was used to evaluate the co-localization of VGLUT1 and VGLUT2 in ICG neurons. Our studies yielded the following results: (1) ICG contain glutamatergic neurons with GLS for glutamate production and VGLUT1 and 2 for transport of glutamate into synaptic vesicles; (2) atrial ICG contain neurons that project to ventricle walls and these neurons are glutamatergic; (3) many glutamatergic ICG neurons also were cholinergic, expressing VAChT; (4) VGLUT1 and VGLUT2 co-localization occurred in ICG neurons with variation of their protein expression level. Investigation of both glutamatergic and cholinergic ICG neurons could help in better understanding the function of the intrinsic cardiac nervous system. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Calcitriol Prevents Cardiovascular Repercussions in Puromycin Aminonucleoside-Induced Nephrotic Syndrome

    PubMed Central

    Roberto, Roncon-Albuquerque

    2018-01-01

    Puromycin aminonucleoside-induced nephrotic syndrome (PAN-NS) is characterized by cardiac remodeling and increased local inflammatory activity. Patients with NS and animal models of NS have vitamin D3 deficiency. The aim of the present study was to evaluate the influence of calcitriol on cardiac remodeling and local inflammatory state in PAN-NS rat model. Male Sprague-Dawley rats were injected with PAN or vehicle on day 0. PAN and control rats were divided into two subgroups for the administration of calcitriol (PAN-D and Ct-D groups) or the vehicle (PAN-V and Ct-V groups) during 21 days. On day 21, the renal function, metabolic balance, calcitriol and FGF-23 plasma levels, prohypertrophy and proinflammatory markers (ET-1, TGF-β1, TNF-α, and IL-1β), and calcium signaling molecules (PLB and SERCA-2a) were evaluated. Twenty-one days after injection, PAN-V group presented cardiac hypertrophy and a modulation of proinflammatory markers local expression. Calcitriol treatment of PAN rats prevented cardiac hypertrophy and was associated with marked reduction in the cardiac expression levels of proinflammatory markers. Our results suggest that vitamin D3 deficiency in PAN-NS may contribute to cardiac remodeling and to the increase in local inflammatory activity. Calcitriol treatment prevents both cardiac repercussions and local inflammatory processes in PAN-NS. PMID:29607318

  9. Amelioration of High Fructose-Induced Cardiac Hypertrophy by Naringin.

    PubMed

    Park, Jung Hyun; Ku, Hyeong Jun; Kim, Jae Kyeom; Park, Jeen-Woo; Lee, Jin Hyup

    2018-06-21

    Heart failure is a frequent unfavorable outcome of pathological cardiac hypertrophy. Recent increase in dietary fructose consumption mirrors the rise in prevalence of cardiovascular diseases such as cardiac hypertrophy leading to concerns raised by public health experts. Mitochondria, comprising 30% of cardiomyocyte volume, play a central role in modulating redox-dependent cellular processes such as metabolism and apoptosis. Furthermore, mitochondrial dysfunction is a key cause of pathogenesis of fructose-induced cardiac hypertrophy. Naringin, a major flavanone glycoside in citrus species, has displayed strong antioxidant potential in models of oxidative stress. In this study, we evaluated protective effects of naringin against fructose-induced cardiac hypertrophy and associated mechanisms of action, using in vitro and in vivo models. We found that naringin suppressed mitochondrial ROS production and mitochondrial dysfunction in cardiomyocytes exposed to fructose and consequently reduced cardiomyocyte hypertrophy by regulating AMPK-mTOR signaling axis. Furthermore, naringin counteracted fructose-induced cardiomyocyte apoptosis, and this function of naringin was linked to its ability to inhibit ROS-dependent ATM-mediated p53 signaling. This result was supported by observations in in vivo mouse model of cardiac hypertrophy. These findings indicate a novel role for naringin in protecting against fructose-induced cardiac hypertrophy and suggest unique therapeutic strategies for prevention of cardiovascular diseases.

  10. Cardiac reserve during weightlessness simulation and shuttle flight

    NASA Technical Reports Server (NTRS)

    Goldberger, A. L.

    1985-01-01

    Bedrest deconditioning is suspected to reduce cardiac function. However, quantitation of subtle decreases in cardiac reserve may be difficult. Normal subjects show considerable variability in heart rate response, reflected by a relatively broadband interbeat interval power spectrum. We hypothesized that the deconditioning effects of bedrest would induce narrowing of this spectrum, reflecting a reduction in the autonomically-modulated variability in heart rate. Ten aerobically conditioned men (average 35-50 years) underwent orthostatic tolerance testing with lower body negative pressure pre-bedrest and after 10 days of bedrest, while on placebo and after intravenous atropine. Spectra were derived by Fourier analysis of 128 interbeat interval data sets from subjects with sufficient numbers of beats during matched periods of the protocol. Data suggest that atropine unmasks the deconditioning effect of bedrest in athletic men, evidenced by a reduction in interbeat interval spectral power compared with placebo. Spectral analysis offers a new means of quantitating the effects of bedrest deconditioning and autonomic perturbations on cardiac dynamics.

  11. Use of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes (hiPSC-CMs) to Monitor Compound Effects on Cardiac Myocyte Signaling Pathways.

    PubMed

    Guo, Liang; Eldridge, Sandy; Furniss, Mike; Mussio, Jodie; Davis, Myrtle

    2015-09-01

    There is a need to develop mechanism-based assays to better inform risk of cardiotoxicity. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are rapidly gaining acceptance as a biologically relevant in vitro model for use in drug discovery and cardiotoxicity screens. Utilization of hiPSC-CMs for mechanistic investigations would benefit from confirmation of the expression and activity of cellular pathways that are known to regulate cardiac myocyte viability and function. This unit describes an approach to demonstrate the presence and function of signaling pathways in hiPSC-CMs and the effects of treatments on these pathways. We present a workflow that employs protocols to demonstrate protein expression and functional integrity of signaling pathway(s) of interest and to characterize biological consequences of signaling modulation. These protocols utilize a unique combination of structural, functional, and biochemical endpoints to interrogate compound effects on cardiomyocytes. Copyright © 2015 John Wiley & Sons, Inc.

  12. Kruppel-like Factor 4 Protein Regulates Isoproterenol-induced Cardiac Hypertrophy by Modulating Myocardin Expression and Activity*

    PubMed Central

    Yoshida, Tadashi; Yamashita, Maho; Horimai, Chihiro; Hayashi, Matsuhiko

    2014-01-01

    Kruppel-like factor 4 (KLF4) plays an important role in vascular diseases, including atherosclerosis and vascular injury. Although KLF4 is expressed in the heart in addition to vascular cells, the role of KLF4 in cardiac disease has not been fully determined. The goals of this study were to investigate the role of KLF4 in cardiac hypertrophy and to determine the underlying mechanisms. Cardiomyocyte-specific Klf4 knockout (CM Klf4 KO) mice were generated by the Cre/LoxP technique. Cardiac hypertrophy was induced by chronic infusion of the β-adrenoreceptor agonist isoproterenol (ISO). Results showed that ISO-induced cardiac hypertrophy was enhanced in CM Klf4 KO mice compared with control mice. Accelerated cardiac hypertrophy in CM Klf4 KO mice was accompanied by the augmented cellular enlargement of cardiomyocytes as well as the exaggerated expression of fetal cardiac genes, including atrial natriuretic factor (Nppa). Additionally, induction of myocardin, a transcriptional cofactor regulating fetal cardiac genes, was enhanced in CM Klf4 KO mice. Interestingly, KLF4 regulated Nppa expression by modulating the expression and activity of myocardin, providing a mechanical basis for accelerated cardiac hypertrophy in CM Klf4 KO mice. Moreover, we showed that KLF4 mediated the antihypertrophic effect of trichostatin A, a histone deacetylase inhibitor, because ISO-induced cardiac hypertrophy in CM Klf4 KO mice was attenuated by olmesartan, an angiotensin II type 1 antagonist, but not by trichostatin A. These results provide novel evidence that KLF4 is a regulator of cardiac hypertrophy by modulating the expression and the activity of myocardin. PMID:25100730

  13. Plasma asymmetric dimethylarginine, L-arginine and left ventricular structure and function in a community-based sample.

    PubMed

    Lieb, Wolfgang; Benndorf, Ralf A; Benjamin, Emelia J; Sullivan, Lisa M; Maas, Renke; Xanthakis, Vanessa; Schwedhelm, Edzard; Aragam, Jayashri; Schulze, Friedrich; Böger, Rainer H; Vasan, Ramachandran S

    2009-05-01

    Increasing evidence indicates that cardiac structure and function are modulated by the nitric oxide (NO) system. Elevated plasma concentrations of asymmetric dimethylarginine (ADMA; a competitive inhibitor of NO synthase) have been reported in patients with end-stage renal disease. It is unclear if circulating ADMA and L-arginine levels are related to cardiac structure and function in the general population. We related plasma ADMA and L-arginine (the amino acid precursor of NO) to echocardiographic left ventricular (LV) mass, left atrial (LA) size and fractional shortening (FS) using multivariable linear regression analyses in 1919 Framingham Offspring Study participants (mean age 57 years, 58% women). Overall, neither ADMA or L-arginine, nor their ratio was associated with LV mass, LA size and FS in multivariable models (p>0.10 for all). However, we observed effect modification by obesity of the relations of ADMA and LA size (p for interaction p=0.04): ADMA was positively related to LA size in obese individuals (adjusted-p=0.0004 for trend across ADMA quartiles) but not in non-obese people. In our large community-based sample, plasma ADMA and l-arginine concentrations were not related to cardiac structure or function. The observation of positive relations of LA size and ADMA in obese individuals warrants confirmation.

  14. Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure

    PubMed Central

    Xu, Jianchao; Li, Guoyong; Wang, Peili; Velazquez, Heino; Yao, Xiaoqiang; Li, Yanyan; Wu, Yanling; Peixoto, Aldo; Crowley, Susan; Desir, Gary V.

    2005-01-01

    The kidney not only regulates fluid and electrolyte balance but also functions as an endocrine organ. For instance, it is the major source of circulating erythropoietin and renin. Despite currently available therapies, there is a marked increase in cardiovascular morbidity and mortality among patients suffering from end-stage renal disease. We hypothesized that the current understanding of the endocrine function of the kidney was incomplete and that the organ might secrete additional proteins with important biological roles. Here we report the identification of a novel flavin adenine dinucleotide–dependent amine oxidase (renalase) that is secreted into the blood by the kidney and metabolizes catecholamines in vitro (renalase metabolizes dopamine most efficiently, followed by epinephrine, and then norepinephrine). In humans, renalase gene expression is highest in the kidney but is also detectable in the heart, skeletal muscle, and the small intestine. The plasma concentration of renalase is markedly reduced in patients with end-stage renal disease, as compared with healthy subjects. Renalase infusion in rats caused a decrease in cardiac contractility, heart rate, and blood pressure and prevented a compensatory increase in peripheral vascular tone. These results identify renalase as what we believe to be a novel amine oxidase that is secreted by the kidney, circulates in blood, and modulates cardiac function and systemic blood pressure. PMID:15841207

  15. Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation.

    PubMed

    Minor, Daniel L; Findeisen, Felix

    2010-01-01

    Voltage-gated calcium channels (CaVs) are large, transmembrane multiprotein complexes that couple membrane depolarization to cellular calcium entry. These channels are central to cardiac action potential propagation, neurotransmitter and hormone release, muscle contraction, and calcium-dependent gene transcription. Over the past six years, the advent of high-resolution structural studies of CaV components from different isoforms and CaV modulators has begun to reveal the architecture that underlies the exceptionally rich feedback modulation that controls CaV action. These descriptions of CaV molecular anatomy have provided new, structure-based insights into the mechanisms by which particular channel elements affect voltage-dependent inactivation (VDI), calcium‑dependent inactivation (CDI), and calcium‑dependent facilitation (CDF). The initial successes have been achieved through structural studies of soluble channel domains and modulator proteins and have proven most powerful when paired with biochemical and functional studies that validate ideas inspired by the structures. Here, we review the progress in this growing area and highlight some key open challenges for future efforts.

  16. SU-E-T-97: Dependence Of Optically Stimulated Luminescent Dosimeter (OSLD) Out Of Field Response On Volumetric Modulated Arc Therapy (VMAT) Field Modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ware, S; Clouser, E

    2014-06-01

    Purpose: To determine the out of field response of Microstar ii OSLDs as a function of field modulation and distance in VMAT plan delivery. This work has potential application in fetal dose monitoring or measurements on cardiac pacemakers Methods: VMAT plans were created in Eclipse and optimized to varying degrees of modulation. Three plans were chosen to represent low, medium and high degrees of modulation (modulation factors as defined by MU/cGy). Plans were delivered to slabs of solid water with dimensions 60cm length, 30cm width, and 10cm height. For each modulation factor, 2 OSLDs were placed at 1cm depth withmore » out of field distances of 1, 2, 3, 5, 8 and 10cm and the plan delivered isocentrically to a depth of 5cm. This technique was repeated for a Farmer Chamber by incrementing the table by the appropriate distance. The charge readings for the Farmer Chamber were converted to dose and the ratios taken as functions of modulation factors and distances out of field Results: Examination of the results as a function of out of field distance shows a trend of increasing OSLD/Farmer Chamber ratios for all modulation factors. The slopes appear to be roughly equivalent for all modulation factors investigated. Results as a function of modulation showed a downward trend for all out of field distances, with the greatest differences seen at 5cm and 8cm Conclusion: This study demonstrates that the response of OSLD dosimeters change as a function of out of field distance and modulation. The differences seen are within the stated accuracy of the system for the out of field distances and modulations investigated. Additional investigation is warranted to see if the OSLD response changes appreciably with longer out of field distances or wider ranges of modulation.« less

  17. Beneficial effects of edaravone, a novel antioxidant, in rats with dilated cardiomyopathy

    PubMed Central

    Arumugam, Somasundaram; Thandavarayan, Rajarajan A; Veeraveedu, Punniyakoti T; Nakamura, Takashi; Arozal, Wawaimuli; Sari, Flori R; Giridharan, Vijayasree V; Soetikno, Vivian; Palaniyandi, Suresh S; Harima, Meilei; Suzuki, Kenji; Nagata, Masaki; Kodama, Makoto; Watanabe, Kenichi

    2012-01-01

    Edaravone, a novel antioxidant, acts by trapping hydroxyl radicals, quenching active oxygen and so on. Its cardioprotective activity against experimental autoimmune myocarditis (EAM) was reported. Nevertheless, it remains to be determined whether edaravone protects against cardiac remodelling in dilated cardiomyopathy (DCM). The present study was undertaken to assess whether edaravone attenuates myocardial fibrosis, and examine the effect of edaravone on cardiac function in rats with DCM after EAM. Rat model of EAM was prepared by injection with porcine cardiac myosin 28 days after immunization, we administered edaravone intraperitoneally at 3 and 10 mg/kg/day to rats for 28 days. The results were compared with vehicle-treated rats with DCM. Cardiac function, by haemodynamic and echocardiographic study and histopathology were performed. Left ventricular (LV) expression of NADPH oxidase subunits (p47phox, p67phox, gp91phox and Nox4), fibrosis markers (TGF-β1 and OPN), endoplasmic reticulum (ER) stress markers (GRP78 and GADD 153) and apoptosis markers (cytochrome C and caspase-3) were measured by Western blotting. Edaravone-treated DCM rats showed better cardiac function compared with those of the vehicle-treated rats. In addition, LV expressions of NADPH oxidase subunits levels were significantly down-regulated in edaravone-treated rats. Furthermore, the number of collagen-III positive cells in the myocardium of edaravone-treated rats was lower compared with those of the vehicle-treated rats. Our results suggest that edaravone ameliorated the progression of DCM by modulating oxidative and ER stress-mediated myocardial apoptosis and fibrosis. PMID:22268705

  18. Spiral-Wave Dynamics in a Mathematical Model of Human Ventricular Tissue with Myocytes and Fibroblasts

    PubMed Central

    Nayak, Alok Ranjan; Shajahan, T. K.; Panfilov, A. V.; Pandit, Rahul

    2013-01-01

    Cardiac fibroblasts, when coupled functionally with myocytes, can modulate the electrophysiological properties of cardiac tissue. We present systematic numerical studies of such modulation of electrophysiological properties in mathematical models for (a) single myocyte-fibroblast (MF) units and (b) two-dimensional (2D) arrays of such units; our models build on earlier ones and allow for zero-, one-, and two-sided MF couplings. Our studies of MF units elucidate the dependence of the action-potential (AP) morphology on parameters such as , the fibroblast resting-membrane potential, the fibroblast conductance , and the MF gap-junctional coupling . Furthermore, we find that our MF composite can show autorhythmic and oscillatory behaviors in addition to an excitable response. Our 2D studies use (a) both homogeneous and inhomogeneous distributions of fibroblasts, (b) various ranges for parameters such as , and , and (c) intercellular couplings that can be zero-sided, one-sided, and two-sided connections of fibroblasts with myocytes. We show, in particular, that the plane-wave conduction velocity decreases as a function of , for zero-sided and one-sided couplings; however, for two-sided coupling, decreases initially and then increases as a function of , and, eventually, we observe that conduction failure occurs for low values of . In our homogeneous studies, we find that the rotation speed and stability of a spiral wave can be controlled either by controlling or . Our studies with fibroblast inhomogeneities show that a spiral wave can get anchored to a local fibroblast inhomogeneity. We also study the efficacy of a low-amplitude control scheme, which has been suggested for the control of spiral-wave turbulence in mathematical models for cardiac tissue, in our MF model both with and without heterogeneities. PMID:24023798

  19. Cardiac Exposure in the Dynamic Conformal Arc Therapy, Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy of Lung Cancer

    PubMed Central

    Ming, Xin; Feng, Yuanming; Liu, Huan; Zhang, Ying; Zhou, Li; Deng, Jun

    2015-01-01

    Purpose To retrospectively evaluate the cardiac exposure in three cohorts of lung cancer patients treated with dynamic conformal arc therapy (DCAT), intensity-modulated radiotherapy (IMRT), or volumetric modulated arc therapy (VMAT) at our institution in the past seven years. Methods and Materials A total of 140 lung cancer patients were included in this institutional review board approved study: 25 treated with DCAT, 70 with IMRT and 45 with VMAT. All plans were generated in a same commercial treatment planning system and have been clinically accepted and delivered. The dose distribution to the heart and the effects of tumor laterality, the irradiated heart volume and the beam-to-heart distance on the cardiac exposure were investigated. Results The mean dose to the heart among all 140 plans was 4.5 Gy. Specifically, the heart received on average 2.3, 5.2 and 4.6 Gy in the DCAT, IMRT and VMAT plans, respectively. The mean heart doses for the left and right lung tumors were 4.1 and 4.8 Gy, respectively. No patients died with evidence of cardiac disease. Three patients (2%) with preexisting cardiac condition developed cardiac disease after treatment. Furthermore, the cardiac exposure was found to increase linearly with the irradiated heart volume while decreasing exponentially with the beam-to-heart distance. Conclusions Compared to old technologies for lung cancer treatment, modern radiotherapy treatment modalities demonstrated better heart sparing. But the heart dose in lung cancer radiotherapy is still higher than that in the radiotherapy of breast cancer and Hodgkin’s disease where cardiac complications have been extensively studied. With strong correlations of mean heart dose with beam-to-heart distance and irradiated heart volume, cautions should be exercised to avoid long-term cardiac toxicity in the lung cancer patients undergoing radiotherapy. PMID:26630566

  20. Cardiomyocyte-enriched protein CIP protects against pathophysiological stresses and regulates cardiac homeostasis.

    PubMed

    Huang, Zhan-Peng; Kataoka, Masaharu; Chen, Jinghai; Wu, Gengze; Ding, Jian; Nie, Mao; Lin, Zhiqiang; Liu, Jianming; Hu, Xiaoyun; Ma, Lixin; Zhou, Bin; Wakimoto, Hiroko; Zeng, Chunyu; Kyselovic, Jan; Deng, Zhong-Liang; Seidman, Christine E; Seidman, J G; Pu, William T; Wang, Da-Zhi

    2015-11-02

    Cardiomyopathy is a common human disorder that is characterized by contractile dysfunction and cardiac remodeling. Genetic mutations and altered expression of genes encoding many signaling molecules and contractile proteins are associated with cardiomyopathy; however, how cardiomyocytes sense pathophysiological stresses in order to then modulate cardiac remodeling remains poorly understood. Here, we have described a regulator in the heart that harmonizes the progression of cardiac hypertrophy and dilation. We determined that expression of the myocyte-enriched protein cardiac ISL1-interacting protein (CIP, also known as MLIP) is reduced in patients with dilated cardiomyopathy. As CIP is highly conserved between human and mouse, we evaluated the effects of CIP deficiency on cardiac remodeling in mice. Deletion of the CIP-encoding gene accelerated progress from hypertrophy to heart failure in several cardiomyopathy models. Conversely, transgenic and AAV-mediated CIP overexpression prevented pathologic remodeling and preserved cardiac function. CIP deficiency combined with lamin A/C deletion resulted in severe dilated cardiomyopathy and cardiac dysfunction in the absence of stress. Transcriptome analyses of CIP-deficient hearts revealed that the p53- and FOXO1-mediated gene networks related to homeostasis are disturbed upon pressure overload stress. Moreover, FOXO1 overexpression suppressed stress-induced cardiomyocyte hypertrophy in CIP-deficient cardiomyocytes. Our studies identify CIP as a key regulator of cardiomyopathy that has potential as a therapeutic target to attenuate heart failure progression.

  1. Cardiomyocyte-enriched protein CIP protects against pathophysiological stresses and regulates cardiac homeostasis

    PubMed Central

    Huang, Zhan-Peng; Kataoka, Masaharu; Chen, Jinghai; Wu, Gengze; Ding, Jian; Nie, Mao; Lin, Zhiqiang; Liu, Jianming; Hu, Xiaoyun; Ma, Lixin; Zhou, Bin; Wakimoto, Hiroko; Zeng, Chunyu; Kyselovic, Jan; Deng, Zhong-Liang; Seidman, Christine E.; Seidman, J.G.; Pu, William T.; Wang, Da-Zhi

    2015-01-01

    Cardiomyopathy is a common human disorder that is characterized by contractile dysfunction and cardiac remodeling. Genetic mutations and altered expression of genes encoding many signaling molecules and contractile proteins are associated with cardiomyopathy; however, how cardiomyocytes sense pathophysiological stresses in order to then modulate cardiac remodeling remains poorly understood. Here, we have described a regulator in the heart that harmonizes the progression of cardiac hypertrophy and dilation. We determined that expression of the myocyte-enriched protein cardiac ISL1-interacting protein (CIP, also known as MLIP) is reduced in patients with dilated cardiomyopathy. As CIP is highly conserved between human and mouse, we evaluated the effects of CIP deficiency on cardiac remodeling in mice. Deletion of the CIP-encoding gene accelerated progress from hypertrophy to heart failure in several cardiomyopathy models. Conversely, transgenic and AAV-mediated CIP overexpression prevented pathologic remodeling and preserved cardiac function. CIP deficiency combined with lamin A/C deletion resulted in severe dilated cardiomyopathy and cardiac dysfunction in the absence of stress. Transcriptome analyses of CIP-deficient hearts revealed that the p53- and FOXO1-mediated gene networks related to homeostasis are disturbed upon pressure overload stress. Moreover, FOXO1 overexpression suppressed stress-induced cardiomyocyte hypertrophy in CIP-deficient cardiomyocytes. Our studies identify CIP as a key regulator of cardiomyopathy that has potential as a therapeutic target to attenuate heart failure progression. PMID:26436652

  2. OC19 - Measuring feasibility, reliability and validity of the Greek version of PedsQL cardiac module.

    PubMed

    Drakouli, Maria; Petsios, Konstantinos; Matziou, Vasiliki

    2016-05-09

    Theme: Cardiology Introduction: Measuring quality of life (QoL) in children and adolescents with congenital heart disease (CHD) is of great clinical importance. The aim of the study was: (a) to adapt the PedsQL Cardiac Module for children aged two to 18 years with CHD in a sample of the Greek population; (b) to determine its reliability and validity. Forward and backward translation methodology was used. Parents and children completed the instrument during: (a) hospitalization and (b) visits in the paediatric cardiology outpatient department. Cross-informant variance between children and parents was thoroughly assessed. Missing item responses did not exceed 5%. All internal consistency reliability coefficients for the inventory exceeded the minimum standards for group comparisons, over 0.75. Hypothesized correlations between cardiac module and core scales were statistically significant, (p<0.05). Agreement between children and parents was relatively high. Pilot study results will be additionally presented. The findings support the feasibility, reliability and validity of the Greek translation of the PedsQL Cardiac Module in children with congenital heart defect (CHD).

  3. Response of cardiac autonomic modulation after a single exposure to musical auditory stimulation

    PubMed Central

    Ferreira, Lucas L.; Vanderlei, Luiz Carlos M.; Guida, Heraldo L.; de Abreu, Luiz Carlos; Garner, David M.; Vanderlei, Franciele M.; Ferreira, Celso; Valenti, Vitor E.

    2015-01-01

    The acute effects after exposure to different styles of music on cardiac autonomic modulation assessed through heart rate variability (HRV) analysis have not yet been well elucidated. We aimed to investigate the recovery response of cardiac autonomic modulation in women after exposure to musical auditory stimulation of different styles. The study was conducted on 30 healthy women aged between 18 years and 30 years. We did not include subjects having previous experience with musical instruments and those who had an affinity for music styles. The volunteers remained at rest for 10 min and were exposed to classical baroque (64-84 dB) and heavy metal (75-84 dB) music for 10 min, and their HRV was evaluated for 30 min after music cessation. We analyzed the following HRV indices: Standard deviation of normal-to-normal (SDNN) intervals, root mean square of successive differences (RMSSD), percentage of normal-to-normal 50 (pNN50), low frequency (LF), high frequency (HF), and LF/HF ratio. SDNN, LF in absolute units (ms2) and normalized (nu), and LF/HF ratio increased while HF index (nu) decreased after exposure to classical baroque music. Regarding the heavy metal music style, it was observed that there were increases in SDNN, RMSSD, pNN50, and LF (ms2) after the musical stimulation. In conclusion, the recovery response of cardiac autonomic modulation after exposure to auditory stimulation with music featured an increased global activity of both systems for the two musical styles, with a cardiac sympathetic modulation for classical baroque music and a cardiac vagal tone for the heavy metal style. PMID:25774614

  4. The E-domain region of mechano-growth factor inhibits cellular apoptosis and preserves cardiac function during myocardial infarction.

    PubMed

    Mavrommatis, Evangelos; Shioura, Krystyna M; Los, Tamara; Goldspink, Paul H

    2013-09-01

    Insulin-like growth factor-1 (IGF-1) isoforms are expressed via alternative splicing. Expression of the minor isoform IGF-1Eb [also known as mechano-growth factor (MGF)] is responsive to cell stress. Since IGF-1 isoforms differ in their E-domain regions, we are interested in determining the biological function of the MGF E-domain. To do so, a synthetic peptide analog was used to gain mechanistic insight into the actions of the E-domain. Treatment of H9c2 cells indicated a rapid cellular uptake mechanism that did not involve IGF-1 receptor activation but resulted in a nuclear localization. Peptide treatment inhibited the intrinsic apoptotic pathway in H9c2 cells subjected to cell stress with sorbitol by preventing the collapse of the mitochondrial membrane potential and inhibition of caspase-3 activation. Therefore, we administered the peptide at the time of myocardial infarction (MI) in mice. At 2 weeks post-MI cardiac function, gene expression and cell death were assayed. A significant decline in both systolic and diastolic function was evident in untreated mice based on PV loop analysis. Delivery of the E-peptide ameliorated the decline in function and resulted in significant preservation of cardiac contractility. Associated with these changes were an inhibition of pathologic hypertrophy and significantly fewer apoptotic nuclei in the viable myocardium of E-peptide-treated mice post-MI. We conclude that administration of the MGF E-domain peptide may provide a means of modulating local tissue IGF-1 autocrine/paracrine actions to preserve cardiac function, prevent cell death, and pathologic remodeling in the heart.

  5. Ischemia/reperfusion-induced alterations of enzymatic and signaling functions of the rat cardiac Na+/K+-ATPase: protection by ouabain preconditioning.

    PubMed

    Belliard, Aude; Gulati, Gaurav K; Duan, Qiming; Alves, Rosana; Brewer, Shannon; Madan, Namrata; Sottejeau, Yoann; Wang, Xiaoliang; Kalisz, Jennifer; Pierre, Sandrine V

    2016-10-01

    Cardiac glycosides (CG) are traditionally known as positive cardiac inotropes that inhibit Na + /K + -ATPase-dependent ion transport. CG also trigger-specific signaling pathways through the cardiac Na + /K + -ATPase, with beneficial effects in ischemia/reperfusion (I/R) injury (e.g., ouabain preconditioning, known as OPC) and hypertrophy. Our current understanding of hypersensitivity to CG and subsequent toxicity in the ischemic heart is mostly based on specific I/R-induced alterations of the Na + /K + -ATPase enzymatic function and has remained incomplete. The primary goal of this study was to investigate and compare the impact of I/R on Na + /K + -ATPase enzymatic and signaling functions. Second, we assessed the impact of OPC on both functions. Langendorff-perfused rat hearts were exposed to 30 min of ischemia and 30 min of reperfusion. At the inotropic concentration of 50 μmol/L, ouabain increased ERK and Akt phosphorylation in control hearts. In I/R hearts, this concentration did not induced positive inotropy and failed to induce Akt or ERK phosphorylation. The inotropic response to dobutamine as well as insulin signaling persisted, suggesting specific alterations of Na + /K + -ATPase. Indeed, Na + /K + -ATPase protein expression was intact, but the enzyme activity was decreased by 60% and the enzymatic function of the isoform with high affinity for ouabain was abolished following I/R. Strikingly, OPC prevented all I/R-induced alterations of the receptor. Further studies are needed to reveal the respective roles of I/R-induced modulations of Na + /K + -ATPase enzymatic and signaling functions in cardiomyocyte death. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  6. The impact of cardiac perception on emotion experience and cognitive performance under mental stress.

    PubMed

    Kindermann, Nicole K; Werner, Natalie S

    2014-12-01

    Mental stress evokes several physiological responses such as the acceleration of heart rate, increase of electrodermal activity and the release of adrenaline. Moreover, physiological stress responses interact with emotional and behavioral stress responses. In the present study we provide evidence that viscero-sensory feedback from the heart (cardiac perception) is an important factor modulating emotional and cognitive stress responses. In our study, we compared participants with high versus low cardiac perception using a computerized mental stress task, in which they had to respond to rapidly presented visual and acoustic stimuli. Additionally, we assessed physiological responses (heart rate, skin conductance). Participants high in cardiac perception reported more negative emotions and showed worse task performance under the stressor than participants low in cardiac perception. These results were not moderated by physiological responses. We conclude that cardiac perception modulates stress responses by intensifying negative emotions and by impairing cognitive performance.

  7. Cardiac-Specific Disruption of GH Receptor Alters Glucose Homeostasis While Maintaining Normal Cardiac Performance in Adult Male Mice.

    PubMed

    Jara, Adam; Liu, Xingbo; Sim, Don; Benner, Chance M; Duran-Ortiz, Silvana; Qian, Yanrong; List, Edward O; Berryman, Darlene E; Kim, Jason K; Kopchick, John J

    2016-05-01

    GH is considered necessary for the proper development and maintenance of several tissues, including the heart. Studies conducted in both GH receptor null and bovine GH transgenic mice have demonstrated specific cardiac structural and functional changes. In each of these mouse lines, however, GH-induced signaling is altered systemically, being decreased in GH receptor null mice and increased in bovine GH transgenic mice. Therefore, to clarify the direct effects GH has on cardiac tissue, we developed a tamoxifen-inducible, cardiac-specific GHR disrupted (iC-GHRKO) mouse line. Cardiac GH receptor was disrupted in 4-month-old iC-GHRKO mice to avoid developmental effects due to perinatal GHR gene disruption. Surprisingly, iC-GHRKO mice showed no difference vs controls in baseline or postdobutamine stress test echocardiography measurements, nor did iC-GHRKO mice show differences in longitudinal systolic blood pressure measurements. Interestingly, iC-GHRKO mice had decreased fat mass and improved insulin sensitivity at 6.5 months of age. By 12.5 months of age, however, iC-GHRKO mice no longer had significant decreases in fat mass and had developed glucose intolerance and insulin resistance. Furthermore, investigation via immunoblot analysis demonstrated that iC-GHRKO mice had appreciably decreased insulin stimulated Akt phosphorylation, specifically in heart and liver, but not in epididymal white adipose tissue. These changes were accompanied by a decrease in circulating IGF-1 levels in 12.5-month-old iC-GHRKO mice. These data indicate that whereas the disruption of cardiomyocyte GH-induced signaling in adult mice does not affect cardiac function, it does play a role in systemic glucose homeostasis, in part through modulation of circulating IGF-1.

  8. Soluble epoxide hydrolase inhibition does not prevent cardiac remodeling and dysfunction after aortic constriction in rats and mice.

    PubMed

    Morgan, Lisa A; Olzinski, Alan R; Upson, John J; Zhao, Shufang; Wang, Tao; Eisennagel, Stephen H; Hoang, Bao; Tunstead, James R; Marino, Joseph P; Willette, Robert N; Jucker, Beat M; Behm, David J

    2013-04-01

    Epoxyeicosatrienoic acids, substrates for soluble epoxide hydrolase (sEH), exhibit vasodilatory and antihypertrophic activities. Inhibitors of sEH might therefore hold promise as heart failure therapeutics. We examined the ability of sEH inhibitors GSK2188931 and GSK2256294 to modulate cardiac hypertrophy, fibrosis, and function after transverse aortic constriction (TAC) in rats and mice. GSK2188931 administration was initiated in rats 1 day before TAC, whereas GSK2256294 treatment was initiated in mice 2 weeks after TAC. Four weeks later, cardiovascular function was assessed, plasma was collected for drug and sEH biomarker concentrations, and left ventricle was isolated for messenger RNA and histological analyses. In rats, although GSK2188931 prevented TAC-mediated increases in certain genes associated with hypertrophy and fibrosis (α-skeletal actin and connective tissue growth factor), the compound failed to attenuate TAC-induced increases in left ventricle mass, posterior wall thickness, end-diastolic volume and pressure, and perivascular fibrosis. Similarly, in mice, GSK2256294 did not reverse cardiac remodeling or systolic dysfunction induced by TAC. Both compounds increased the sEH substrate/product (leukotoxin/leukotoxin diol) ratio, indicating sEH inhibition. In summary, sEH inhibition does not prevent cardiac remodeling or dysfunction after TAC. Thus, targeting sEH seems to be insufficient for reducing pressure overload hypertrophy.

  9. Functional expression and pharmaceutical efficacy of cardiac-specific ion channels in human embryonic stem cell-derived cardiomyocytes.

    PubMed

    Kim, Han Sol; Yoon, Jung Won; Li, Hongliang; Jeong, Geun Ok; Park, Jin Ju; Shin, Sung Eun; Jang, Il Ho; Kim, Jae Ho; Park, Won Sun

    2017-10-23

    Cardiomyocytes differentiated from human pluripotent stem cells provide promising tools for screening of cardiotoxic drugs. For evaluation of human pluripotent stem cell-derived cardiomyocytes for cardiotoxicity test, in the present study, human embryonic stem cells (hESCs) were differentiated to cardiomyocytes, followed by metabolic selection to enrich the differentiated cardiomyocytes. The highly purified hESC-derived cardiomyocytes (hESC-CMs) expressed several cardiomyocyte-specific markers including cTnT, MLC2a, and α-SA, but not pluripotency markers, such as OCT4 and NANOG. Patch clamp technique and RT-PCR revealed the expression of cardiomyocyte-specific Na + , Ca 2+ , and K + channels and cardiac action potential in hESC-CMs. To explore the potential use of hESC-CMs as functional cardiomyocytes for drug discovery and cardiotoxicity screening, we examined the effects of bisindolylmaleimide (BIM) (I), which inhibits native cardiac Ca 2+ channels, on the Ca 2+ channel activity of hESC-CMs. We observed a similar response for the BIM (I)-induced modulation of Ca 2+ channels between hESC-CMs and native cardiomyocytes through L-type Ca 2+ channel current. These results suggest that hESC-CMs can be useful for evaluation of pharmaceutical efficacy and safety of novel drug candidate in cardiac research.

  10. CIP, a cardiac Isl1-interacting protein, represses cardiomyocyte hypertrophy

    PubMed Central

    Huang, Zhan-Peng; Seok, Hee Young; Zhou, Bin; Chen, Jinghai; Chen, Jian-Fu; Tao, Yazhong; Pu, William T.; Wang, Da-Zhi

    2012-01-01

    Rationale Mammalian heart has minimal regenerative capacity. In response to mechanical or pathological stress, the heart undergoes cardiac remodeling. Pressure and volume overload in the heart cause increased size (hypertrophic growth) of cardiomyocytes. Whereas the regulatory pathways that activate cardiac hypertrophy have been well established, the molecular events that inhibit or repress cardiac hypertrophy are less known. Objective To identify and investigate novel regulators that modulate cardiac hypertrophy. Methods and Results Here, we report the identification, characterization and functional examination of CIP, a novel cardiac Isl1-interacting protein. CIP was identified from a bioinformatic search for novel cardiac-expressed genes in mouse embryonic hearts. CIP encodes a nuclear protein without recognizable motifs. Northern blotting, in situ hybridization and reporter gene tracing demonstrated that CIP is highly expressed in cardiomyocytes of developing and adult hearts. Yeast-two-hybrid screening identified Isl1, a LIM/homeodomain transcription factor essential for the specification of cardiac progenitor cells in the second heart field, as a co-factor of CIP. CIP directly interacted with Isl1 and we mapped the domains of these two proteins which mediate their interaction. We show that CIP represses the transcriptional activity of Isl1 in the activation of the MEF2C enhancer. The expression of CIP was dramatically reduced in hypertrophic cardiomyocytes. Most importantly, overexpression of CIP repressed agonist-induced cardiomyocyte hypertrophy. Conclusions Our studies therefore identify CIP a novel regulator of cardiac hypertrophy. PMID:22343712

  11. The plasminogen activator system modulates sympathetic nerve function.

    PubMed

    Schaefer, Ulrich; Machida, Takuji; Vorlova, Sandra; Strickland, Sidney; Levi, Roberto

    2006-09-04

    Sympathetic neurons synthesize and release tissue plasminogen activator (t-PA). We investigated whether t-PA modulates sympathetic activity. t-PA inhibition markedly reduced contraction of the guinea pig vas deferens to electrical field stimulation (EFS) and norepinephrine (NE) exocytosis from cardiac synaptosomes. Recombinant t-PA (rt-PA) induced exocytotic and carrier-mediated NE release from cardiac synaptosomes and cultured neuroblastoma cells; this was a plasmin-independent effect but was potentiated by a fibrinogen cleavage product. Notably, hearts from t-PA-null mice released much less NE upon EFS than their wild-type (WT) controls (i.e., a 76.5% decrease; P<0.01), whereas hearts from plasminogen activator inhibitor-1 (PAI-1)-null mice released much more NE (i.e., a 275% increase; P<0.05). Furthermore, vasa deferentia from t-PA-null mice were hyporesponsive to EFS (P<0.0001) but were normalized by the addition of rt-PA. In contrast, vasa from PAI-1-null mice were much more responsive (P<0.05). Coronary NE overflow from hearts subjected to ischemia/reperfusion was much smaller in t-PA-null than in WT control mice (P<0.01). Furthermore, reperfusion arrhythmias were significantly reduced (P<0.05) in t-PA-null hearts. Thus, t-PA enhances NE release from sympathetic nerves and contributes to cardiac arrhythmias in ischemia/reperfusion. Because the risk of arrhythmias and sudden cardiac death is increased in hyperadrenergic conditions, targeting the NE-releasing effect of t-PA may have valuable therapeutic potential.

  12. Interval training based on ventilatory anaerobic threshold increases cardiac vagal modulation and decreases high-sensitivity c-reative protein: randomized clinical trial in coronary artery disease.

    PubMed

    Tamburus, Nayara Y; Paula, Roberta F L; Kunz, Vandeni C; César, Marcelo C; Moreno, Marlene A; da Silva, Ester

    2015-01-01

    Autonomic dysfunction and inflammatory activity are involved in the development and progression of coronary artery disease (CAD), and exercise training has been shown to confer a cardiovascular benefit. To evaluate the effects that interval training (IT) based on ventilatory anaerobic threshold (VAT) has on heart rate variability (HRV) and high-sensitivity C-reactive protein (hs-CRP) levels, as well as the relationship between both levels, in patients with CAD and/or cardiovascular risk factors (RF). Forty-two men (aged 57.88±6.20 years) were divided into two training groups, CAD-T (n= 12) and RF-T (n= 10), and two control groups, CAD-C (n= 10) and RF-C (n=10). Heart rate and RR intervals in the supine position, cardiopulmonary exercise tests, and hs-CRP levels were measured before and after IT. HRV was analyzed by spectral and symbolic analysis. The CAD-T and RF-T underwent a 16-week IT program of three weekly sessions at training intensities based on the VAT. In the RF-T, cardiac sympathetic modulation index and hs-CRP decreased (p<0.02), while cardiac parasympathetic modulation index increased (p<0.02). In the CAD-T, cardiac parasympathetic modulation index increased, while hs-CRP, systolic, and diastolic blood pressures decreased (p<0.02). Both control groups showed increase in hs-CRP parameters (p<0.02). There was a strong and significant association between parasympathetic and sympathetic modulations with hs-CRP. The IT program based on the VAT promoted a decrease in hs-CRP associated with improvement in cardiac autonomic modulation.

  13. Fndc5 knockdown induced suppression of mitochondrial integrity and significantly decreased cardiac differentiation of mouse embryonic stem cells.

    PubMed

    Nazem, Shima; Rabiee, Farzaneh; Ghaedi, Kamran; Babashah, Sadegh; Sadeghizadeh, Majid; Nasr-Esfahani, Mohammad Hossein

    2018-06-01

    Fibronectin type III domain-containing 5 protein (Fndc5) is a glycosylated protein with elevated expression in high energy demanded tissues as heart, brain, and muscle. It has been shown that upregulation of Fndc5 is regulated by peroxisome proliferator-activated receptor-γ coactivator-1 alpha (PGC-1α), which is known as a master regulator of mitochondrial function and biogenesis. Also, our group indicated that Fndc5 expression increases gradually during cardiac differentiation of mouse embryonic stem cells (mESCs). In this paper, to clarify the importance of Fndc5 in cardiac differentiation, we south to knock down Fndc5 expression by generation a stably transduced mESC line that derives the expression of a short hairpin RNA (shRNA) against Fndc5 gene following doxycycline (Dox) induction. Knock-down of Fndc5 demonstrated a considerable decrease in expression of cardiac progenitor and cardiomyocyte markers. Considering the fact that mitochondria play a crucial role in cardiac differentiation of ESCs, we investigated the role of Fndc5, as a downstream target of PGC1-α, on mitochondrial indices. Results showed that expression of nuclear encoded mitochondrial genes including PGC1-α, Atp5b, Ndufb5, and SOD2 significantly decreased. Moreover, mitochondrial membrane potential (ΔΨm) and relative ATP content of cardiomyocytes decreased markedly with relative ROS level increase. Together, our results suggest that Fndc5 attenuates process of cardiac differentiation of mESCs which is associated with modulation of mitochondrial function and gene expression. © 2017 Wiley Periodicals, Inc.

  14. p38 MAPK-dependent small HSP27 and αB-crystallin phosphorylation in regulation of myocardial function following cardioplegic arrest.

    PubMed

    Clements, Richard T; Feng, Jun; Cordeiro, Brenda; Bianchi, Cesario; Sellke, Frank W

    2011-05-01

    We previously demonstrated that myocardial p38 mitogen-activated protein kinase (MAPK) and heat shock protein 27 (HSP27) are phosphorylated following cardioplegic arrest in patients undergoing cardiac surgery and correlate with reduced cardiac function. The following studies were performed to determine whether inhibition of p38 MAPK and/or overexpression of nonphosphorylatable HSP27 improves cardiac function following cardioplegic arrest. Langendorff-perfused isolated rat hearts were subjected to 2 h of intermittent cold cardioplegia followed by 30 min of reperfusion. Hearts were treated with (CP+SB) or without (CP) the p38 MAPK inhibitor SB-203580 (5 μM) supplied in the cardioplegia. Sham-treated hearts served as controls. In separate experiments, isolated rat ventricular myocytes infected with either green fluorescent protein (GFP) or a nonphosphorylatable HSP27 mutant (3A-HSP27) were subjected to 3 h of cold hypoxic cardioplegia and simulated reperfusion (CP) followed by video microscopy and length change measurements. Baseline parameters of cardiac function were similar between groups [left ventricular developed pressure (LVDP), 119 ± 4.9 mmHg; positive and negative first derivatives of LV pressure (± dP/dt), 3,139 ± 245 and 2, 314 ± 110 mmHg/s]. CP resulted in reduced cardiac function (LVDP, 72.2 ± 5.8 mmHg; ± dP/dt, 2,076 ± 231 and -1,317 ± 156 mmHg/s) compared with baseline. Treatment with 5 μM SB-203580 significantly improved CP-induced cardiac function (LVDP, 101.9 ± 0 mmHg; ± dP/dt, 2,836 ± 163 and -2,108 ± 120 mmHg/s; P = 0.03, 0.01, and 0.04, CP+SB vs. CP). Inhibition of p38 MAPK significantly lowered CP-induced p38 MAPK, HSP27, and αB-crystallin (cryAB) phosphorylation. In vitro CP decreased myocyte length changes from 10.3 ± 1.5% (GFP) to 5.7 ± 0.8% (GFP+CP). Infection with 3A-HSP27 completely rescued CP-induced decreased myocyte contraction (11.1 ± 1.0%). However, infection with 3A-HSP27 did not block the endogenous HSP27 response. We conclude that inhibition of p38 MAPK and subsequent HSP27 and cryAB phosphorylation and/or overexpression of nonphosphorylatable HSP27 significantly improves cardiac performance following cardioplegic arrest. Modulation of HSP27 phosphorylation may improve myocardial stunning following cardiac surgery.

  15. Consequences of peripheral chemoreflex inhibition with low-dose dopamine in humans

    PubMed Central

    Niewinski, Piotr; Tubek, Stanislaw; Banasiak, Waldemar; Paton, Julian F R; Ponikowski, Piotr

    2014-01-01

    Low-dose dopamine inhibits peripheral chemoreceptors and attenuates the hypoxic ventilatory response (HVR) in humans. However, it is unknown: (1) whether it also modulates the haemodynamic reactions to acute hypoxia, (2) whether it also modulates cardiac baroreflex sensitivity (BRS) and (3) if there is any effect of dopamine withdrawal. We performed a double-blind, placebo-controlled study on 11 healthy male volunteers. At sea level over 2 days every subject was administered low-dose dopamine (2 μg kg–1 min–1) or saline infusion, during which we assessed both ventilatory and haemodynamic responses to acute hypoxia. Separately, we evaluated effects of initiation and withdrawal of each infusion and BRS. The initiation of dopamine infusion did not affect minute ventilation (MV) or mean blood pressure (MAP), but increased both heart rate (HR) and cardiac output. Concomitantly, it decreased systemic vascular resistance. Dopamine blunted the ventilatory, MAP and HR reactions (hypertension, tachycardia) to acute hypoxia. Dopamine attenuated cardiac BRS to falling blood pressure. Dopamine withdrawal evoked an increase in MV. The magnitude of the increment in MV due to dopamine withdrawal correlated with the size of the HVR and depended on the duration of dopamine administration. The ventilatory reaction to dopamine withdrawal constitutes a novel index of peripheral chemoreceptor function. PMID:24396060

  16. Electrical stimulation of cardiac adipose tissue-derived progenitor cells modulates cell phenotype and genetic machinery.

    PubMed

    Llucià-Valldeperas, A; Sanchez, B; Soler-Botija, C; Gálvez-Montón, C; Prat-Vidal, C; Roura, S; Rosell-Ferrer, J; Bragos, R; Bayes-Genis, A

    2015-11-01

    A major challenge of cardiac tissue engineering is directing cells to establish the physiological structure and function of the myocardium being replaced. Our aim was to examine the effect of electrical stimulation on the cardiodifferentiation potential of cardiac adipose tissue-derived progenitor cells (cardiac ATDPCs). Three different electrical stimulation protocols were tested; the selected protocol consisted of 2 ms monophasic square-wave pulses of 50 mV/cm at 1 Hz over 14 days. Cardiac and subcutaneous ATDPCs were grown on biocompatible patterned surfaces. Cardiomyogenic differentiation was examined by real-time PCR and immunocytofluorescence. In cardiac ATDPCs, MEF2A and GATA-4 were significantly upregulated at day 14 after stimulation, while subcutaneous ATDPCs only exhibited increased Cx43 expression. In response to electrical stimulation, cardiac ATDPCs elongated, and both cardiac and subcutaneous ATDPCs became aligned following the linear surface pattern of the construct. Cardiac ATDPC length increased by 11.3%, while subcutaneous ATDPC length diminished by 11.2% (p = 0.013 and p = 0.030 vs unstimulated controls, respectively). Compared to controls, electrostimulated cells became aligned better to the patterned surfaces when the pattern was perpendicular to the electric field (89.71 ± 28.47º for cardiac ATDPCs and 92.15 ± 15.21º for subcutaneous ATDPCs). Electrical stimulation of cardiac ATDPCs caused changes in cell phenotype and genetic machinery, making them more suitable for cardiac regeneration approaches. Thus, it seems advisable to use electrical cell training before delivery as a cell suspension or within engineered tissue. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Differential proteomics reveals S100-A11 as a key factor in aldosterone-induced collagen expression in human cardiac fibroblasts.

    PubMed

    Martínez-Martínez, Ernesto; Ibarrola, Jaime; Lachén-Montes, Mercedes; Fernández-Celis, Amaya; Jaisser, Frederic; Santamaría, Enrique; Fernández-Irigoyen, Joaquín; López-Andrés, Natalia

    2017-08-23

    Aldosterone (Aldo) could induce cardiac fibrosis, a hallmark of heart disease. Aldo direct effects on collagen production in cardiac fibroblasts remain controversial. Our aim is to characterize changes in the proteome of adult human cardiac fibroblasts treated with Aldo to identify new proteins altered that might be new therapeutic targets in cardiovascular diseases. Aldo increased collagens expressions in human cardiac fibroblasts. Complementary, using a quantitative proteomic approach, 30 proteins were found differentially expressed between control and Aldo-treated cardiac fibroblasts. Among these proteins, 7 were up-regulated and 23 were down-regulated by Aldo. From the up-regulated proteins, collagen type I, collagen type III, collagen type VI and S100-A11 were verified by Western blot. Moreover, protein interaction networks revealed a functional link between a third of Aldo-modulated proteome and specific survival routes. S100-A11 was identified as a possible link between Aldo and collagen. Interestingly, CRISPR/Cas9-mediated knock-down of S100-A11 blocked Aldo-induced collagen production in human cardiac fibroblasts. In adult human cardiac fibroblasts treated with Aldo, proteomic analyses revealed an increase in collagen production. S100-A11 was identified as a new regulator of Aldo-induced collagen production in human cardiac fibroblasts. These data could identify new candidate proteins for the treatment of cardiac fibrosis in cardiovascular diseases. S100-A11 is identified by a proteomic approach as a novel regulator of Aldosterone-induced collagen production in human cardiac fibroblasts. Our data could identify new candidate proteins of interest for the treatment of cardiac fibrosis in cardiovascular diseases. Copyright © 2017. Published by Elsevier B.V.

  18. Evidence for a crucial modulating role of the sodium channel in the QTc prolongation related to antipsychotics.

    PubMed

    Silvestre, Jordi S; O'Neill, Michael F; Prous, Josep R

    2014-04-01

    Blockade of the cardiac hERG channel is recognized as the main mechanism underlying the QT prolongation induced by many classes of drugs, including antipsychotics. However, antipsychotics interact with a variety of other pharmacological targets that could also modulate cardiac function. The present study aims to identify those key factors involved in the QT prolongation induced by antipsychotics. The interactions of 28 antipsychotics were measured on a variety of pharmacological targets. Binding affinity (K(i)), functional channel blockade (IC₅₀), and the corresponding ratios to total and free plasma drug concentration were compared with the corrected QT changes (QTc) associated with the therapeutic use of these drugs by multivariable linear regression analysis to determine the best predictors of QTc. Besides confirming hERG as the primary predictor of QTc, all analyses consistently show the concomitant involvement of Na(V)1.5 channel as modulating factor of the QTc related to hERG blockade. In particular, the hERG/Na(V)1.5 ratio explains the 57% of the overall QTc variability associated with antipsychotics. Since it is known that inhibition of late I Na could offset the dysfunctional effects of hERG blockade, we hypothesize the inhibition of late I(Na) as a crucial compensatory mechanism of the QTc associated with antipsychotics and hence an important factor to consider concomitantly with hERG blockade to appraise the arrhythmogenic risk of these drugs more accurately.

  19. Roselle Polyphenols Exert Potent Negative Inotropic Effects via Modulation of Intracellular Calcium Regulatory Channels in Isolated Rat Heart.

    PubMed

    Lim, Yi-Cheng; Budin, Siti Balkis; Othman, Faizah; Latip, Jalifah; Zainalabidin, Satirah

    2017-07-01

    Roselle (Hibiscus sabdariffa Linn.) calyces have demonstrated propitious cardioprotective effects in animal and clinical studies; however, little is known about its action on cardiac mechanical function. This study was undertaken to investigate direct action of roselle polyphenols (RP) on cardiac function in Langendorff-perfused rat hearts. We utilized RP extract which consists of 12 flavonoids and seven phenolic acids (as shown by HPLC profiling) and has a safe concentration range between 125 and 500 μg/ml in this study. Direct perfusion of RP in concentration-dependent manner lowered systolic function of the heart as shown by lowered LVDP and dP/dt max , suggesting a negative inotropic effect. RP also reduced heart rate (negative chronotropic action) while simultaneously increasing maximal velocity of relaxation (positive lusitropic action). Conversely, RP perfusion increased coronary pressure, an indicator for improvement in coronary blood flow. Inotropic responses elicited by pharmacological agonists for L-type Ca 2+ channel [(±)-Bay K 8644], ryanodine receptor (4-chloro-m-cresol), β-adrenergic receptor (isoproterenol) and SERCA blocker (thapsigargin) were all abolished by RP. In conclusion, RP elicits negative inotropic, negative chronotropic and positive lusitropic responses by possibly modulating calcium entry, release and reuptake in the heart. Our findings have shown the potential use of RP as a therapeutic agent to treat conditions like arrhythmia.

  20. Activin A Modulates CRIPTO-1/HNF4α+ Cells to Guide Cardiac Differentiation from Human Embryonic Stem Cells

    PubMed Central

    Duelen, Robin; Gilbert, Guillaume; Patel, Abdulsamie; de Schaetzen, Nathalie; De Waele, Liesbeth; Roderick, Llewelyn; Sipido, Karin R.; Verfaillie, Catherine M.; Buyse, Gunnar M.

    2017-01-01

    The use of human pluripotent stem cells in basic and translational cardiac research requires efficient differentiation protocols towards cardiomyocytes. In vitro differentiation yields heterogeneous populations of ventricular-, atrial-, and nodal-like cells hindering their potential applications in regenerative therapies. We described the effect of the growth factor Activin A during early human embryonic stem cell fate determination in cardiac differentiation. Addition of high levels of Activin A during embryoid body cardiac differentiation augmented the generation of endoderm derivatives, which in turn promoted cardiomyocyte differentiation. Moreover, a dose-dependent increase in the coreceptor expression of the TGF-β superfamily member CRIPTO-1 was observed in response to Activin A. We hypothesized that interactions between cells derived from meso- and endodermal lineages in embryoid bodies contributed to improved cell maturation in early stages of cardiac differentiation, improving the beating frequency and the percentage of contracting embryoid bodies. Activin A did not seem to affect the properties of cardiomyocytes at later stages of differentiation, measuring action potentials, and intracellular Ca2+ dynamics. These findings are relevant for improving our understanding on human heart development, and the proposed protocol could be further explored to obtain cardiomyocytes with functional phenotypes, similar to those observed in adult cardiac myocytes. PMID:28163723

  1. Binding of FUN14 Domain Containing 1 With Inositol 1,4,5-Trisphosphate Receptor in Mitochondria-Associated Endoplasmic Reticulum Membranes Maintains Mitochondrial Dynamics and Function in Hearts in Vivo.

    PubMed

    Wu, Shengnan; Lu, Qiulun; Wang, Qilong; Ding, Ye; Ma, Zejun; Mao, Xiaoxiang; Huang, Kai; Xie, Zhonglin; Zou, Ming-Hui

    2017-12-05

    FUN14 domain containing 1 (FUNDC1) is a highly conserved outer mitochondrial membrane protein. The aim of this study is to examine whether FUNDC1 modulates the mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), mitochondrial morphology, and function in cardiomyocytes and intact hearts. The impacts of FUNDC1 on MAMs formation and cardiac functions were studied in mouse neonatal cardiomyocytes, in mice with cardiomyocyte-specific Fundc1 gene knockout ( Fundc1 f/Y /Cre αMyHC+/- ), and in the cardiac tissues of the patients with heart failure. In mouse neonatal cardiomyocytes and intact hearts, FUNDC1 was localized in MAMs by binding to ER-resided inositol 1,4,5-trisphosphate type 2 receptor (IP 3 R2). Fundc1 ablation disrupted MAMs and reduced the levels of IP 3 R2 and Ca 2+ in both mitochondria and cytosol, whereas overexpression of Fundc1 increased the levels of IP 3 R2 and Ca 2+ in both mitochondria and cytosol. Consistently, Fundc1 ablation increased Ca 2+ levels in ER, whereas Fundc1 overexpression lowered ER Ca 2+ levels. Further, Fundc1 ablation in cardiomyocytes elongated mitochondria and compromised mitochondrial functions. Mechanistically, we found that Fundc1 ablation-induced reduction of intracellular Ca 2+ levels suppressed mitochondrial fission 1 protein ( Fis1 ) expression and mitochondrial fission by reducing the binding of the cAMP response element binding protein (CREB) in the Fis1 promoter. Fundc1 f/Y /Cre αMyHC+/- mice but not their littermate control mice ( Fundc1 wt/Y /Cre αMyHC+/- ) exhibited cardiac dysfunction. The ligation of the left ventricle artery of Fundc1 f/Y /Cre αMyHC+/- mice caused more severe cardiac dysfunction than those in sham-treated Fundc1 f/Y /Cre αMyHC+/- mice. Finally, we found that the FUNDC1/MAMs/CREB/Fis1 signaling axis was significantly suppressed in patients with heart failure. We conclude that FUNDC1 binds to IP 3 R2 to modulate ER Ca 2+ release into mitochondria and cytosol. Further, a disruption of the FUNDC1 and IP 3 R2 interaction lowers the levels of Ca 2+ in mitochondria and cytosol, both of which instigate aberrant mitochondrial fission, mitochondrial dysfunction, cardiac dysfunction, and heart failure. © 2017 American Heart Association, Inc.

  2. Reduced capacity of cardiac efferent sympathetic neurons to release noradrenaline and modify cardiac function in tachycardia-induced canine heart failure.

    PubMed

    Cardinal, R; Nadeau, R; Laurent, C; Boudreau, G; Armour, J A

    1996-09-01

    To investigate the capacity of efferent sympathetic neurons to modulate the failing heart, stellate ganglion stimulation was performed in dogs with biventricular heart failure induced by rapid ventricular pacing (240 beats/min) for 4-6 weeks. Less noradrenaline was released from cardiac myoneural junctions into coronary sinus blood in response to left stellate ganglion stimulation in anesthetized failing heart preparations (582 pg/mL, lower and upper 95% confidence intervals of 288 and 1174 pg/mL, n = 19) compared with healthy heart preparations (6391 pg/mL, 95% confidence intervals of 4180 and 9770 pg/mL, n = 14; p < 0.001). There was substantial adrenaline extraction by failing hearts (49 +/- 6%), although it was slightly lower than in healthy heart preparations (65 +/- 9%, p = 0.055). In contrast with healthy heart preparations, no net release of adrenaline occurred during stellate ganglion stimulation in any of the failing heart preparations, and ventricular tissue levels of adrenaline fell below the sensitivity limit of the HPLC technique. In failing heart preparations, maximal electrical stimulation of right or left stellate ganglia resulted in minimal augmentation of left ventricular intramyocardial (17%) and chamber (12%) systolic pressures. These indices were augmented by 145 and 97%, respectively, following exogenous noradrenaline administration. Thus, the cardiac efferent sympathetic neurons' reduced capacity to release noradrenaline and modify cardiac function can contribute to reduction of sympathetic support to the failing heart.

  3. Exercise-induced cardioprotection--biochemical, morphological and functional evidence in whole tissue and isolated mitochondria.

    PubMed

    Ascensão, António; Ferreira, Rita; Magalhães, José

    2007-04-12

    Myocardial injury is a major contributor to the morbidity and mortality associated with coronary artery disease. Regular exercise has been confirmed as a pragmatic countermeasure to protect against cardiac injury. Specifically, endurance exercise has been proven to provide cardioprotection against cardiac insults in both young and old animals. Proposed mechanisms to explain the cardioprotective effects of exercise are mediated, at least partially, by redox changes and include the induction of myocardial heat shock proteins, improved cardiac antioxidant capacity, and/or elevation of other cardioprotective molecules. Understanding the molecular basis for exercise-induced cardioprotection is important in developing exercise strategies to protect the heart during and after insults. Data suggest that these positive modulator effects occur at different levels of cellular organization, being mitochondria fundamental organelles that are sensitive to disturbances imposed by exercise on basal homeostasis. At present, which of these protective mechanisms is essential for exercise-induced cardioprotection remains unclear. This review analyzes the biochemical, morphological and functional outcomes of acute and chronic exercise on the overall cardiac muscle tissue and in isolated mitochondria. Some redox-based mechanisms behind the cross-tolerance effects particularly induced by endurance training, against certain stressors responsible for the impairments in cardiac homeostasis caused by aging, diabetes, drug administration or ischemia-reperfusion are also outlined. Further work should be addressed in order to clarify the precise regulatory mechanisms by which physical exercise augments heart tolerance against many cardiotoxic agents.

  4. Reduction in dynamin-2 is implicated in ischaemic cardiac arrhythmias

    PubMed Central

    Shi, Dan; Xie, Duanyang; Zhang, Hong; Zhao, Hong; Huang, Jian; Li, Changming; Liu, Yi; Lv, Fei; The, Erlinda; Liu, Yuan; Yuan, Tianyou; Wang, Shiyi; Chen, Jinjin; Pan, Lei; Yu, Zuoren; Liang, Dandan; Zhu, Weidong; Zhang, Yuzhen; Li, Li; Peng, Luying; Li, Jun; Chen, Yi-Han

    2014-01-01

    Ischaemic cardiac arrhythmias cause a large proportion of sudden cardiac deaths worldwide. The ischaemic arrhythmogenesis is primarily because of the dysfunction and adverse remodelling of sarcolemma ion channels. However, the potential regulators of sarcolemma ion channel turnover and function in ischaemic cardiac arrhythmias remains unknown. Our previous studies indicate that dynamin-2 (DNM2), a cardiac membrane-remodelling GTPase, modulates ion channels membrane trafficking in the cardiomyocytes. Here, we have found that DNM2 plays an important role in acute ischaemic arrhythmias. In rat ventricular tissues and primary cardiomyocytes subjected to acute ischaemic stress, the DNM2 protein and transcription levels were markedly down-regulated. This DNM2 reduction was coupled with severe ventricular arrhythmias. Moreover, we identified that the down-regulation of DNM2 within cardiomyocytes increases the action potential amplitude and prolongs the re-polarization duration by depressing the retrograde trafficking of Nav1.5 and Kir2.1 channels. These effects are likely to account for the DNM2 defect-induced arrhythmogenic potentials. These results suggest that DNM2, with its multi-ion channel targeting properties, could be a promising target for novel antiarrhythmic therapies. PMID:25092467

  5. Slow [Na+]i dynamics impacts arrhythmogenesis and spiral wave reentry in cardiac myocyte ionic model.

    PubMed

    Krogh-Madsen, Trine; Christini, David J

    2017-09-01

    Accumulation of intracellular Na + is gaining recognition as an important regulator of cardiac myocyte electrophysiology. The intracellular Na + concentration can be an important determinant of the cardiac action potential duration, can modulate the tissue-level conduction of excitation waves, and can alter vulnerability to arrhythmias. Mathematical models of cardiac electrophysiology often incorporate a dynamic intracellular Na + concentration, which changes much more slowly than the remaining variables. We investigated the dependence of several arrhythmogenesis-related factors on [Na + ] i in a mathematical model of the human atrial action potential. In cell simulations, we found that [Na + ] i accumulation stabilizes the action potential duration to variations in several conductances and that the slow dynamics of [Na + ] i impacts bifurcations to pro-arrhythmic afterdepolarizations, causing intermittency between different rhythms. In long-lasting tissue simulations of spiral wave reentry, [Na + ] i becomes spatially heterogeneous with a decreased area around the spiral wave rotation center. This heterogeneous region forms a functional anchor, resulting in diminished meandering of the spiral wave. Our findings suggest that slow, physiological, rate-dependent variations in [Na + ] i may play complex roles in cellular and tissue-level cardiac dynamics.

  6. Slow [Na+]i dynamics impacts arrhythmogenesis and spiral wave reentry in cardiac myocyte ionic model

    NASA Astrophysics Data System (ADS)

    Krogh-Madsen, Trine; Christini, David J.

    2017-09-01

    Accumulation of intracellular Na+ is gaining recognition as an important regulator of cardiac myocyte electrophysiology. The intracellular Na+ concentration can be an important determinant of the cardiac action potential duration, can modulate the tissue-level conduction of excitation waves, and can alter vulnerability to arrhythmias. Mathematical models of cardiac electrophysiology often incorporate a dynamic intracellular Na+ concentration, which changes much more slowly than the remaining variables. We investigated the dependence of several arrhythmogenesis-related factors on [Na+]i in a mathematical model of the human atrial action potential. In cell simulations, we found that [Na+]i accumulation stabilizes the action potential duration to variations in several conductances and that the slow dynamics of [Na+]i impacts bifurcations to pro-arrhythmic afterdepolarizations, causing intermittency between different rhythms. In long-lasting tissue simulations of spiral wave reentry, [Na+]i becomes spatially heterogeneous with a decreased area around the spiral wave rotation center. This heterogeneous region forms a functional anchor, resulting in diminished meandering of the spiral wave. Our findings suggest that slow, physiological, rate-dependent variations in [Na+]i may play complex roles in cellular and tissue-level cardiac dynamics.

  7. High-Intensity Progressive Resistance Training Increases Strength With No Change in Cardiovascular Function and Autonomic Neural Regulation in Older Adults.

    PubMed

    Kanegusuku, Hélcio; Queiroz, Andréia C; Silva, Valdo J; de Mello, Marco T; Ugrinowitsch, Carlos; Forjaz, Cláudia L

    2015-07-01

    The effects of high-intensity progressive resistance training (HIPRT) on cardiovascular function and autonomic neural regulation in older adults are unclear. To investigate this issue, 25 older adults were randomly divided into two groups: control (CON, N = 13, 63 ± 4 years; no training) and HIPRT (N = 12, 64 ± 4 years; 2 sessions/week, 7 exercises, 2–4 sets, 10–4 RM). Before and after four months, maximal strength, quadriceps cross-sectional area (QCSA), clinic and ambulatory blood pressures (BP), systemic hemodynamics, and cardiovascular autonomic modulation were measured. Maximal strength and QCSA increased in the HIPRT group and did not change in the CON group. Clinic and ambulatory BP, cardiac output, systemic vascular resistance, stroke volume, heart rate, and cardiac sympathovagal balance did not change in the HIPRT group or the CON group. In conclusion, HIPRT was effective at increasing muscle mass and strength without promoting changes in cardiovascular function or autonomic neural regulation.

  8. Evaluating an undergraduate interprofessional simulation-based educational module: communication, teamwork, and confidence performing cardiac resuscitation skills

    PubMed Central

    Luctkar-Flude, Marian; Baker, Cynthia; Pulling, Cheryl; Mcgraw, Robert; Dagnone, Damon; Medves, Jennifer; Turner-Kelly, Carly

    2010-01-01

    Purpose Interprofessional (IP) collaboration during cardiac resuscitation is essential and contributes to patient wellbeing. The purpose of this study is to evaluate an innovative simulation-based IP educational module for undergraduate nursing and medical students on cardiac resuscitation skills. Methods Nursing and medical trainees participated in a new cardiac resuscitation curriculum involving a 2-hour IP foundational cardiac resuscitation skills lab, followed by three 2-hour IP simulation sessions. Control group participants attended the existing two 2-hour IP simulation sessions. Study respondents (N = 71) completed a survey regarding their confidence performing cardiac resuscitation skills and their perceptions of IP collaboration. Results Despite a consistent positive trend, only one out of 17 quantitative survey items were significantly improved for learners in the new curriculum. They were more likely to report feeling confident managing the airway during cardiac resuscitation (P = 0.001). Overall, quantitative results suggest that senior nursing and medical students were comfortable with IP communication and teamwork and confident with cardiac resuscitation skills. There were no significant differences between nursing students’ and medical students’ results. Through qualitative feedback, participants reported feeling comfortable learning with students from other professions and found value in the IP simulation sessions. Conclusion Results from this study will inform ongoing restructuring of the IP cardiac resuscitation skills simulation module as defined by the action research process. Specific improvements that are suggested by these findings include strengthening the team leader component of the resuscitation skills lab and identifying learners who may benefit from additional practice in the role of team leader and with other skills where they lack confidence. PMID:23745064

  9. Cardiac autonomic function during sleep: effects of alcohol dependence and evidence of partial recovery with abstinence.

    PubMed

    de Zambotti, Massimiliano; Willoughby, Adrian R; Baker, Fiona C; Sugarbaker, David S; Colrain, Ian M

    2015-06-01

    Chronic alcoholism is associated with the development of cardiac and peripheral autonomic nervous system (ANS) pathology. The aim of the present study was to evaluate the extent to which recovery in ANS function could be demonstrated over the first 4 months of abstinence. Fifteen alcoholics (7 women) were studied on three occasions: within a month of detoxification, at approximately 2 months post-detox, and at 4 months post-detox. Thirteen control subjects (6 women) were also studied on three occasions with inter-study intervals matching those of the alcoholics. Six alcoholics relapsed, 48.7 ± 27.9 days following the initial PSG session. ANS function was assessed in the first part of stable non-rapid eye movement sleep. Frequency-domain power spectral analysis of heart rate variability (HRV) produced variables including: heart rate (HR), total power (TP; an index representing total HR variability), High Frequency power (HFa; an index reflecting cardiac vagal modulation), HF proportion of total power (HFprop sympathovagal balance), and HF peak frequency (HFpf; an index reflecting respiration rate). Overall, high total and high frequency variability and low sympathovagal balance and myocardial contractility are considered as desired conditions to promote cardiovascular health. At initial assessment, alcoholics had a higher HR (p < 0.001) and respiratory rate (p < 0.01), and lower vagal activity (HFa; p < 0.01) than controls. Alcoholics showed evidence of recovery in HR (p = 0.039) and HFa (p = 0.031) with 4 months of abstinence. Alcoholics with higher TP at the initial visit showed a greater improvement in TP from the initial to the 4 month follow-up session (r = 0.75, p < 0.05). Alcoholics showed substantial recovery in HR and vagal modulation of HRV with 4 months of abstinence, with evidence that the extent of recovery in HRV may be partially determined by the extent of alcohol dependence-related insult to the cardiac ANS system. These data support other studies showing recovery in a number of ANS, central nervous system, and behavioral domains with abstinence, even in those with long-term dependence. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Interacting Network of the Gap Junction (GJ) Protein Connexin43 (Cx43) is Modulated by Ischemia and Reperfusion in the Heart.

    PubMed

    Martins-Marques, Tania; Anjo, Sandra Isabel; Pereira, Paulo; Manadas, Bruno; Girão, Henrique

    2015-11-01

    The coordinated and synchronized cardiac muscle contraction relies on an efficient gap junction-mediated intercellular communication (GJIC) between cardiomyocytes, which involves the rapid anisotropic impulse propagation through connexin (Cx)-containing channels, namely of Cx43, the most abundant Cx in the heart. Expectedly, disturbing mechanisms that affect channel activity, localization and turnover of Cx43 have been implicated in several cardiomyopathies, such as myocardial ischemia. Besides gap junction-mediated intercellular communication, Cx43 has been associated with channel-independent functions, including modulation of cell adhesion, differentiation, proliferation and gene transcription. It has been suggested that the role played by Cx43 is dictated by the nature of the proteins that interact with Cx43. Therefore, the characterization of the Cx43-interacting network and its dynamics is vital to understand not only the molecular mechanisms underlying pathological malfunction of gap junction-mediated intercellular communication, but also to unveil novel and unanticipated biological functions of Cx43. In the present report, we applied a quantitative SWATH-MS approach to characterize the Cx43 interactome in rat hearts subjected to ischemia and ischemia-reperfusion. Our results demonstrate that, in the heart, Cx43 interacts with proteins related with various biological processes such as metabolism, signaling and trafficking. The interaction of Cx43 with proteins involved in gene transcription strengthens the emerging concept that Cx43 has a role in gene expression regulation. Importantly, our data shows that the interactome of Cx43 (Connexome) is differentially modulated in diseased hearts. Overall, the characterization of Cx43-interacting network may contribute to the establishment of new therapeutic targets to modulate cardiac function in physiological and pathological conditions. Data are available via ProteomeXchange with identifier PXD002331. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Biphasic Role of Chondroitin Sulfate in Cardiac Differentiation of Embryonic Stem Cells through Inhibition of Wnt/β-Catenin Signaling

    PubMed Central

    Prinz, Robert D.; Willis, Catherine M.; van Kuppevelt, Toin H.; Klüppel, Michael

    2014-01-01

    The glycosaminoglycan chondroitin sulfate is a critical component of proteoglycans on the cell surface and in the extracellular matrix. As such, chondroitin sulfate side chains and the sulfation balance of chondroitin play important roles in the control of signaling pathways, and have a functional importance in human disease. In contrast, very little is known about the roles of chondroitin sulfate molecules and sulfation patterns during mammalian development and cell lineage specification. Here, we report a novel biphasic role of chondroitin sulfate in the specification of the cardiac cell lineage during embryonic stem cell differentiation through modulation of Wnt/beta-catenin signaling. Lineage marker analysis demonstrates that enzymatic elimination of endogenous chondroitin sulfates leads to defects specifically in cardiac differentiation. This is accompanied by a reduction in the number of beating cardiac foci. Mechanistically, we show that endogenous chondroitin sulfate controls cardiac differentiation in a temporal biphasic manner through inhibition of the Wnt/beta-catenin pathway, a known regulatory pathway for the cardiac lineage. Treatment with a specific exogenous chondroitin sulfate, CS-E, could mimic these biphasic effects on cardiac differentiation and Wnt/beta-catenin signaling. These results establish chondroitin sulfate and its sulfation balance as important regulators of cardiac cell lineage decisions through control of the Wnt/beta-catenin pathway. Our work suggests that targeting the chondroitin biosynthesis and sulfation machinery is a novel promising avenue in regenerative strategies after heart injury. PMID:24667694

  12. Biphasic role of chondroitin sulfate in cardiac differentiation of embryonic stem cells through inhibition of Wnt/β-catenin signaling.

    PubMed

    Prinz, Robert D; Willis, Catherine M; van Kuppevelt, Toin H; Klüppel, Michael

    2014-01-01

    The glycosaminoglycan chondroitin sulfate is a critical component of proteoglycans on the cell surface and in the extracellular matrix. As such, chondroitin sulfate side chains and the sulfation balance of chondroitin play important roles in the control of signaling pathways, and have a functional importance in human disease. In contrast, very little is known about the roles of chondroitin sulfate molecules and sulfation patterns during mammalian development and cell lineage specification. Here, we report a novel biphasic role of chondroitin sulfate in the specification of the cardiac cell lineage during embryonic stem cell differentiation through modulation of Wnt/beta-catenin signaling. Lineage marker analysis demonstrates that enzymatic elimination of endogenous chondroitin sulfates leads to defects specifically in cardiac differentiation. This is accompanied by a reduction in the number of beating cardiac foci. Mechanistically, we show that endogenous chondroitin sulfate controls cardiac differentiation in a temporal biphasic manner through inhibition of the Wnt/beta-catenin pathway, a known regulatory pathway for the cardiac lineage. Treatment with a specific exogenous chondroitin sulfate, CS-E, could mimic these biphasic effects on cardiac differentiation and Wnt/beta-catenin signaling. These results establish chondroitin sulfate and its sulfation balance as important regulators of cardiac cell lineage decisions through control of the Wnt/beta-catenin pathway. Our work suggests that targeting the chondroitin biosynthesis and sulfation machinery is a novel promising avenue in regenerative strategies after heart injury.

  13. Phagocyte-myocyte interactions and consequences during hypoxic wound healing.

    PubMed

    Zhang, Shuang; Dehn, Shirley; DeBerge, Matthew; Rhee, Ki-Jong; Hudson, Barry; Thorp, Edward B

    2014-01-01

    Myocardial infarction (MI), secondary to atherosclerotic plaque rupture and occlusive thrombi, triggers acute margination of inflammatory neutrophils and monocyte phagocyte subsets to the damaged heart, the latter of which may give rise briefly to differentiated macrophage-like or dendritic-like cells. Within the injured myocardium, a primary function of these phagocytic cells is to remove damaged extracellular matrix, necrotic and apoptotic cardiac cells, as well as immune cells that turn over. Recognition of dying cellular targets by phagocytes triggers intracellular signaling, particularly in macrophages, wherein cytokines and lipid mediators are generated to promote inflammation resolution, fibrotic scarring, angiogenesis, and compensatory organ remodeling. These actions cooperate in an effort to preserve myocardial contractility and prevent heart failure. Immune cell function is modulated by local tissue factors that include secreted protease activity, oxidative stress during clinical reperfusion, and hypoxia. Importantly, experimental evidence suggests that monocyte function and phagocytosis efficiency is compromised in the setting of MI risk factors, including hyperlipidemia and ageing, however underlying mechanisms remain unclear. Herein we review seminal phagocyte and cardiac molecular factors that lead to, and culminate in, the recognition and removal of dying injured myocardium, the effects of hypoxia, and their relationship to cardiac infarct size and heart healing. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Plasma asymmetric dimethylarginine, L-arginine and Left Ventricular Structure and Function in a Community-based Sample

    PubMed Central

    Lieb, Wolfgang; Benndorf, Ralf A.; Benjamin, Emelia J.; Sullivan, Lisa M.; Maas, Renke; Xanthakis, Vanessa; Schwedhelm, Edzard; Aragam, Jayashri; Schulze, Friedrich; Böger, Rainer H.; Vasan, Ramachandran S.

    2009-01-01

    Objective Increasing evidence indicates that cardiac structure and function are modulated by the nitric oxide (NO) system. Elevated plasma concentrations of asymmetric dimethylarginine (ADMA; a competitive inhibitor of NO synthase) have been reported in patients with end-stage renal disease. It is unclear if circulating ADMA and L-arginine levels are related to cardiac structure and function in the general population. Methods We related plasma ADMA and L-Arginine (the amino acid precursor of NO) to echocardiographic left ventricular (LV) mass, left atrial (LA) size and fractional shortening (FS) using multivariable linear regression analyses in 1,919 Framingham Offspring Study participants (mean age 57 years, 58 % women). Results Overall, neither ADMA or L-arginine, nor their ratio was associated with LV mass, LA size and FS in multivariable models (p>0.10 for all). However, we observed effect modification by obesity of the relations of ADMA and LA size (p for interaction p=0.04): ADMA was positively related to LA size in obese individuals (adjusted-p=0.0004 for trend across ADMA quartiles) but not in non-obese people. Conclusion In our large community-based sample, plasma ADMA and L-arginine concentrations were not related to cardiac structure or function. The observation of positive relations of LA size and ADMA in obese individuals warrants confirmation. PMID:18829028

  15. Chaos for cardiac arrhythmias through a one-dimensional modulation equation for alternans

    PubMed Central

    Dai, Shu; Schaeffer, David G.

    2010-01-01

    Instabilities in cardiac dynamics have been widely investigated in recent years. One facet of this work has studied chaotic behavior, especially possible correlations with fatal arrhythmias. Previously chaotic behavior was observed in various models, specifically in the breakup of spiral and scroll waves. In this paper we study cardiac dynamics and find spatiotemporal chaotic behavior through the Echebarria–Karma modulation equation for alternans in one dimension. Although extreme parameter values are required to produce chaos in this model, it seems significant mathematically that chaos may occur by a different mechanism from previous observations. PMID:20590327

  16. Genetic Ablation of Fgf23 or Klotho Does not Modulate Experimental Heart Hypertrophy Induced by Pressure Overload.

    PubMed

    Slavic, Svetlana; Ford, Kristopher; Modert, Magalie; Becirovic, Amarela; Handschuh, Stephan; Baierl, Andreas; Katica, Nejla; Zeitz, Ute; Erben, Reinhold G; Andrukhova, Olena

    2017-09-12

    Left ventricular hypertrophy (LVH) ultimately leads to heart failure in conditions of increased cardiac pre- or afterload. The bone-derived phosphaturic and sodium-conserving hormone fibroblast growth factor-23 (FGF23) and its co-receptor Klotho have been implicated in the development of uremic LVH. Using transverse aortic constriction (TAC) in gene-targeted mouse models, we examine the role of Fgf23 and Klotho in cardiac hypertrophy and dysfunction induced by pressure overload. TAC profoundly increases serum intact Fgf23 due to increased cardiac and bony Fgf23 transcription and downregulation of Fgf23 cleavage. Aldosterone receptor blocker spironolactone normalizes serum intact Fgf23 levels after TAC by reducing bony Fgf23 transcription. Notably, genetic Fgf23 or Klotho deficiency does not influence TAC-induced hypertrophic remodelling, LV functional impairment, or LV fibrosis. Despite the profound, aldosterone-mediated increase in circulating intact Fgf23 after TAC, our data do not support an essential role of Fgf23 or Klotho in the pathophysiology of pressure overload-induced cardiac hypertrophy.

  17. Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation

    PubMed Central

    Findeisen, Felix

    2010-01-01

    Voltage-gated calcium channels (CaVs) are large, transmembrane multiprotein complexes that couple membrane depolarization to cellular calcium entry. These channels are central to cardiac action potential propagation, neurotransmitter and hormone release, muscle contraction and calcium-dependent gene transcription. Over the past six years, the advent of high-resolution structural studies of CaV components from different isoforms and CaV modulators has begun to reveal the architecture that underlies the exceptionally rich feedback modulation that controls CaV action. These descriptions of CaV molecular anatomy have provided new, structure-based insights into the mechanisms by which particular channel elements affect voltage-dependent inactivation (VDI), calcium-dependent inactivation (CDI) and calcium-dependent facilitation (CDF). The initial successes have been achieved through structural studies of soluble channel domains and modulator proteins and have proven most powerful when paired with biochemical and functional studies that validate ideas inspired by the structures. Here, we review the progress in this growing area and highlight some key open challenges for future efforts. PMID:21139419

  18. Cardiac voltage gated calcium channels and their regulation by β-adrenergic signaling.

    PubMed

    Kumari, Neema; Gaur, Himanshu; Bhargava, Anamika

    2018-02-01

    Voltage-gated calcium channels (VGCCs) are the predominant source of calcium influx in the heart leading to calcium-induced calcium release and ultimately excitation-contraction coupling. In the heart, VGCCs are modulated by the β-adrenergic signaling. Signaling through β-adrenergic receptors (βARs) and modulation of VGCCs by β-adrenergic signaling in the heart are critical signaling and changes to these have been significantly implicated in heart failure. However, data related to calcium channel dysfunction in heart failure is divergent and contradictory ranging from reduced function to no change in the calcium current. Many recent studies have highlighted the importance of functional and spatial microdomains in the heart and that may be the key to answer several puzzling questions. In this review, we have briefly discussed the types of VGCCs found in heart tissues, their structure, and significance in the normal and pathological condition of the heart. More importantly, we have reviewed the modulation of VGCCs by βARs in normal and pathological conditions incorporating functional and structural aspects. There are different types of βARs, each having their own significance in the functioning of the heart. Finally, we emphasize the importance of location of proteins as it relates to their function and modulation by co-signaling molecules. Its implication on the studies of heart failure is speculated. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Empowering human cardiac progenitor cells by P2Y14 nucleotide receptor overexpression.

    PubMed

    Khalafalla, Farid G; Kayani, Waqas; Kassab, Arwa; Ilves, Kelli; Monsanto, Megan M; Alvarez, Roberto; Chavarria, Monica; Norman, Benjamin; Dembitsky, Walter P; Sussman, Mark A

    2017-12-01

    Autologous cardiac progenitor cell (CPC) therapy is a promising approach for treatment of heart failure (HF). There is an unmet need to identify inherent deficits in aged/diseased human CPCs (hCPCs) derived from HF patients in the attempts to augment their regenerative capacity prior to use in the clinical setting. Here we report significant functional correlations between phenotypic properties of hCPCs isolated from cardiac biopsies of HF patients, clinical parameters of patients and expression of the P2Y 14 purinergic receptor (P2Y 14 R), a crucial detector for extracellular UDP-sugars released during injury/stress. P2Y 14 R is downregulated in hCPCs derived from HF patients with lower ejection fraction or diagnosed with diabetes. Augmenting P2Y 14 R expression levels in aged/diseased hCPCs antagonizes senescence and improves functional responses. This study introduces purinergic signalling modulation as a potential strategy to rejuvenate and improve phenotypic characteristics of aged/functionally compromised hCPCs prior to transplantation in HF patients. Autologous cardiac progenitor cell therapy is a promising alternative approach to current inefficient therapies for heart failure (HF). However, ex vivo expansion and pharmacological/genetic modification of human cardiac progenitor cells (hCPCs) are necessary interventions to rejuvenate aged/diseased cells and improve their regenerative capacities. This study was designed to assess the potential of improving hCPC functional capacity by targeting the P2Y 14 purinergic receptor (P2Y 14 R), which has been previously reported to induce regenerative and anti-senescence responses in a variety of experimental models. c-Kit + hCPCs were isolated from cardiac biopsies of multiple HF patients undergoing left ventricular assist device implantation surgery. Significant correlations existed between the expression of P2Y 14 R in hCPCs and clinical parameters of HF patients. P2Y 14 R was downregulated in hCPCs derived from patients with a relatively lower ejection fraction and patients diagnosed with diabetes. hCPC lines with lower P2Y 14 R expression did not respond to P2Y 14 R agonist UDP-glucose (UDP-Glu) while hCPCs with higher P2Y 14 R expression showed enhanced proliferation in response to UDP-Glu stimulation. Mechanistically, UDP-Glu stimulation enhanced the activation of canonical growth signalling pathways ERK1/2 and AKT. Restoring P2Y 14 R expression levels in functionally compromised hCPCs via lentiviral-mediated overexpression improved proliferation, migration and survival under stress stimuli. Additionally, P2Y 14 R overexpression reversed senescence-associated morphology and reduced levels of molecular markers of senescence p16 INK4a , p53, p21 and mitochondrial reactive oxygen species. Findings from this study unveil novel biological roles of the UDP-sugar receptor P2Y 14 in hCPCs and suggest purinergic signalling modulation as a promising strategy to improve phenotypic properties of functionally impaired hCPCs. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  20. Orientation of Myosin Binding Protein C in the Cardiac Muscle Sarcomere Determined by Domain-Specific Immuno-EM

    PubMed Central

    Lee, Kyounghwan; Harris, Samantha P.; Sadayappan, Sakthivel; Craig, Roger

    2014-01-01

    Myosin binding protein-C is a thick filament protein of vertebrate striated muscle. The cardiac isoform (cMyBP-C) is essential for normal cardiac function, and mutations in cMyBP-C cause cardiac muscle disease. The rod-shaped molecule is composed primarily of 11 immunoglobulin- or fibronectin-like domains, and is located at 9 sites, 43 nm apart, in each half of the A-band. To understand how cMyBP-C functions, it is important to know its structural organization in the sarcomere, as this will affect its ability to interact with other sarcomeric proteins. Several models have been proposed, in which cMyBP-C wraps around, extends radially from, or runs axially along the thick filament. Our goal was to define cMyBP-C orientation by determining the relative axial positions of different cMyBP-C domains. Immuno-electron microscopy was performed using mouse cardiac myofibrils labeled with antibodies specific to the N- and C-terminal domains and to the middle of cMyBP-C. Antibodies to all regions of the molecule, except the C-terminus, labeled at the same nine axial positions in each half A-band, consistent with a circumferential and/or radial rather than an axial orientation of the bulk of the molecule. The C-terminal antibody stripes were slightly displaced axially, demonstrating an axial orientation of the C-terminal 3 domains, with the C-terminus closer to the M-line. These results, combined with previous studies, suggest that the C-terminal domains of cMyBP-C run along the thick filament surface, while the N-terminus extends towards neighboring thin filaments. This organization provides a structural framework for understanding cMyBP-C’s modulation of cardiac muscle contraction. PMID:25451032

  1. Analysis of pressure head-flow loops of pulsatile rotodynamic blood pumps.

    PubMed

    Jahren, Silje E; Ochsner, Gregor; Shu, Fangjun; Amacher, Raffael; Antaki, James F; Vandenberghe, Stijn

    2014-04-01

    The clinical importance of pulsatility is a recurring topic of debate in mechanical circulatory support. Lack of pulsatility has been identified as a possible factor responsible for adverse events and has also demonstrated a role in myocardial perfusion and cardiac recovery. A commonly used method for restoring pulsatility with rotodynamic blood pumps (RBPs) is to modulate the speed profile, synchronized to the cardiac cycle. This introduces additional parameters that influence the (un)loading of the heart, including the timing (phase shift) between the native cardiac cycle and the pump pulses, and the amplitude of speed modulation. In this study, the impact of these parameters upon the heart-RBP interaction was examined in terms of the pressure head-flow (HQ) diagram. The measurements were conducted using a rotodynamic Deltastream DP2 pump in a validated hybrid mock circulation with baroreflex function. The pump was operated with a sinusoidal speed profile, synchronized to the native cardiac cycle. The simulated ventriculo-aortic cannulation showed that the level of (un)loading and the shape of the HQ loops strongly depend on the phase shift. The HQ loops displayed characteristic shapes depending on the phase shift. Increased contribution of native contraction (increased ventricular stroke work [WS ]) resulted in a broadening of the loops. It was found that the previously described linear relationship between WS and the area of the HQ loop for constant pump speeds becomes a family of linear relationships, whose slope depends on the phase shift. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  2. Effects of cigarette smoking on cardiac autonomic function during dynamic exercise.

    PubMed

    Mendonca, Goncalo V; Pereira, Fernando D; Fernhall, Bo

    2011-06-01

    The purpose of this study was to investigate the acute effect of cigarette smoking on cardiac autonomic function in young adult smokers during dynamic exercise. Fourteen healthy young smokers (21.4 ± 3.4 years) performed peak and submaximal exercise protocols under control and smoking conditions. Resting and submaximal beat-to-beat R-R series were recorded and spectrally decomposed using the fast Fourier transformation. Smoking resulted in a significant decrease in work time, VO(2peak) and peak O(2) pulse (P < 0.05). Heart rate increased at rest and during submaximal exercise after smoking (P < 0.05). The raw high frequency and low frequency power were significantly reduced by smoking, both at rest and during exercise (P < 0.05). The low to high frequency ratio was higher after smoking (P < 0.05). The normalised low frequency power was also significantly increased by smoking, but only at rest (P < 0.05). These data demonstrate that the tachycardic effect elicited by smoking is accompanied by acute changes in heart rate spectral components both at rest and during exercise. Therefore, the cardiac autonomic control is altered by smoking not only at rest, but also during exercise, resulting in reduced vagal modulation and increased sympathetic dominance.

  3. Gualou Xiebai Decoction, a Traditional Chinese Medicine, Prevents Cardiac Reperfusion Injury of Hyperlipidemia Rat via Energy Modulation.

    PubMed

    Yan, Lu-Lu; Zhang, Wei-Yang; Wei, Xiao-Hong; Yan, Li; Pan, Chun-Shui; Yu, Yang; Fan, Jing-Yu; Liu, Yu-Ying; Zhou, Hua; Han, Jing-Yan; Yao, Xin-Sheng

    2018-01-01

    Background: Gualou Xiebai Decoction (GLXB) is a classic prescription of Chinese medicine used for the treatment of cardiac problems. The present study was designed to explore the effect and mechanism of GLXB on ischemia/reperfusion (I/R) induced disorders in myocardial structure and function, focusing on the regulation of energy metabolism and the RhoA/ROCK pathway. Methods: After hyperlipidemic rat model was established by oral administration of high fat diet, the rats were treated with GLXB for 6 weeks and subjected to 30 min occlusion of the left anterior descending coronary artery (LADCA) followed by 90 min reperfusion to elicit I/R challenge. Myocardial infarct size was assessed by Evans blue-TTC staining. Myocardial blood flow (MBF) and cardiac function were evaluated. Enzyme-linked immunosorbent assay was performed to examine the content of ATP, ADP, AMP, CK, CK-MB, LDH, cTnT, cTnI, and IL-6. Double staining of F-actin and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was conducted to assess myocardial apoptosis. Expressions of ATP synthase subunit δ (ATP 5D), and RhoA and ROCK were determined by Western blotting. Results: Administration with GLXB at high dose for 6 weeks protected heart against I/R-induced MBF decrease, myocardial infarction and apoptosis, ameliorated I/R-caused impairment of cardiac function and myocardial structure, restored the decrease in the ratio of ADP/ATP and AMP/ATP, and the expression of ATP 5D with inhibiting the expression of RhoA and ROCK. Conclusions: Treatment with GLXB effectively protects myocardial structure and function from I/R challenge, possibly via regulating energy metabolism involving inactivation of RhoA/ROCK signaling pathway.

  4. Activation of MEK/ERK signaling contributes to the PACAP-induced increase in guinea pig cardiac neuron excitability

    PubMed Central

    Tompkins, John D.; Clason, Todd A.; Hardwick, Jean C.; Girard, Beatrice M.; Merriam, Laura A.; May, Victor

    2016-01-01

    Pituitary adenylate cyclase (PAC)-activating polypeptide (PACAP) peptides (Adcyap1) signaling at the selective PAC1 receptor (Adcyap1r1) participate in multiple homeostatic and stress-related responses, yet the cellular mechanisms underlying PACAP actions remain to be completely elucidated. PACAP/PAC1 receptor signaling increases excitability of neurons within the guinea pig cardiac ganglia, and as these neurons are readily accessible, this neuronal system is particularly amenable to study of PACAP modulation of ionic conductances. The present study investigated how PACAP activation of MEK/ERK signaling contributed to the peptide-induced increase in cardiac neuron excitability. Treatment with the MEK inhibitor PD 98059 blocked PACAP-stimulated phosphorylated ERK and, in parallel, suppressed the increase in cardiac neuron excitability. However, PD 98059 did not blunt the ability of PACAP to enhance two inward ionic currents, one flowing through hyperpolarization-activated nonselective cationic channels (Ih) and another flowing through low-voltage-activated calcium channels (IT), which support the peptide-induced increase in excitability. Thus a PACAP- and MEK/ERK-sensitive, voltage-dependent conductance(s), in addition to Ih and IT, modulates neuronal excitability. Despite prior work implicating PACAP downregulation of the KV4.2 potassium channel in modulation of excitability in other cells, treatment with the KV4.2 current blocker 4-aminopyridine did not replicate the PACAP-induced increase in excitability in cardiac neurons. However, cardiac neurons express the ERK target, the NaV1.7 sodium channel, and treatment with the selective NaV1.7 channel inhibitor PF-04856264 decreased the PACAP modulation of excitability. From these results, PACAP/PAC1 activation of MEK/ERK signaling may phosphorylate the NaV1.7 channel, enhancing sodium currents near the threshold, an action contributing to repetitive firing of the cardiac neurons exposed to PACAP. PMID:27488668

  5. Ghrelin potentiates cardiac reactivity to stress by modulating sympathetic control and beta-adrenergic response.

    PubMed

    Camargo-Silva, Gabriel; Turones, Larissa Córdova; da Cruz, Kellen Rosa; Gomes, Karina Pereira; Mendonça, Michelle Mendanha; Nunes, Allancer; de Jesus, Itamar Guedes; Colugnati, Diego Basile; Pansani, Aline Priscila; Pobbe, Roger Luis Henschel; Santos, Robson; Fontes, Marco Antônio Peliky; Guatimosim, Silvia; de Castro, Carlos Henrique; Ianzer, Danielle; Ferreira, Reginaldo Nassar; Xavier, Carlos Henrique

    2018-03-01

    Prior evidence indicates that ghrelin is involved in the integration of cardiovascular functions and behavioral responses. Ghrelin actions are mediated by the growth hormone secretagogue receptor subtype 1a (GHS-R1a), which is expressed in peripheral tissues and central areas involved in the control of cardiovascular responses to stress. In the present study, we assessed the role of ghrelin - GHS-R1a axis in the cardiovascular reactivity to acute emotional stress in rats. Ghrelin potentiated the tachycardia evoked by restraint and air jet stresses, which was reverted by GHS-R1a blockade. Evaluation of the autonomic balance revealed that the sympathetic branch modulates the ghrelin-evoked positive chronotropy. In isolated hearts, the perfusion with ghrelin potentiated the contractile responses caused by stimulation of the beta-adrenergic receptor, without altering the amplitude of the responses evoked by acetylcholine. Experiments in isolated cardiomyocytes revealed that ghrelin amplified the increases in calcium transient changes evoked by isoproterenol. Taken together, our results indicate that the Ghrelin-GHS-R1a axis potentiates the magnitude of stress-evoked tachycardia by modulating the autonomic nervous system and peripheral mechanisms, strongly relying on the activation of cardiac calcium transient and beta-adrenergic receptors. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Beneficial effects of leptin treatment in a setting of cardiac dysfunction induced by transverse aortic constriction in mouse.

    PubMed

    Gómez-Hurtado, Nieves; Domínguez-Rodríguez, Alejandro; Mateo, Philippe; Fernández-Velasco, María; Val-Blasco, Almudena; Aizpún, Rafael; Sabourin, Jessica; Gómez, Ana María; Benitah, Jean-Pierre; Delgado, Carmen

    2017-07-01

    Leptin, is a 16 kDa pleiotropic peptide not only primarily secreted by adipocytes, but also produced by other tissues, including the heart. Controversy exists regarding the adverse and beneficial effects of leptin on the heart We analysed the effect of a non-hypertensive dose of leptin on cardiac function, [Ca 2+ ] i handling and cellular electrophysiology, which participate in the genesis of pump failure and related arrhythmias, both in control mice and in mice subjected to chronic pressure-overload by transverse aorta constriction. We find that leptin activates mechanisms that contribute to cardiac dysfunction under physiological conditions. However, after the establishment of pressure overload, an increase in leptin levels has protective cardiac effects with respect to rescuing the cellular heart failure phenotype. These beneficial effects of leptin involve restoration of action potential duration via normalization of transient outward potassium current and sarcoplasmic reticulum Ca 2+ content via rescue of control sarcoplasmic/endoplasmic reticulum Ca 2+ ATPase levels and ryanodine receptor function modulation, leading to normalization of Ca 2+ handling parameters. Leptin, is a 16 kDa pleiotropic peptide not only primary secreted by adipocytes, but also produced by other tissues, including the heart. Evidence indicates that leptin may have either adverse or beneficial effects on the heart. To obtain further insights, in the present study, we analysed the effect of leptin treatment on cardiac function, [Ca 2+ ] i handling and cellular electrophysiology, which participate in the genesis of pump failure and related arrhythmias, both in control mice and in mice subjected to chronic pressure-overload by transverse aorta constriction (TAC). Three weeks after surgery, animals received either leptin (0.36 mg kg -1  day -1 ) or vehicle via osmotic minipumps for 3 weeks. Echocardiographic measurements showed that, although leptin treatment was deleterious on cardiac function in sham, leptin had a cardioprotective effect following TAC. [Ca 2+ ] i transient in cardiomyocytes followed similar pattern. Patch clamp experiments showed prolongation of action potential duration (APD) in TAC and leptin-treated sham animals, whereas, following TAC, leptin reduced the APD towards control values. APD variations were associated with decreased transient outward potassium current and Kv4.2 and KChIP2 protein expression. TAC myocytes showed a higher incidence of triggered activities and spontaneous Ca 2+ waves. These proarrhythmic manifestations, related to Ca 2+ /calmodulin-dependent protein kinase II and ryanodine receptor phosphorylation, were reduced by leptin. The results of the present study demonstrate that, although leptin treatment was deleterious on cardiac function in control animals, leptin had a cardioprotective effect following TAC, normalizing cardiac function and reducing arrhythmogeneity at the cellular level. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  7. Direct, Differential Effects of Tamoxifen, 4-Hydroxytamoxifen, and Raloxifene on Cardiac Myocyte Contractility and Calcium Handling

    PubMed Central

    Asp, Michelle L.; Martindale, Joshua J.; Metzger, Joseph M.

    2013-01-01

    Tamoxifen (Tam), a selective estrogen receptor modulator, is in wide clinical use for the treatment and prevention of breast cancer. High Tam doses have been used for treatment of gliomas and cancers with multiple drug resistance, but long QT Syndrome is a side effect. Tam is also used experimentally in mice for inducible gene knockout in numerous tissues, including heart; however, the potential direct effects of Tam on cardiac myocyte mechanical function are not known. The goal of this study was to determine the direct, acute effects of Tam, its active metabolite 4-hydroxytamoxifen (4OHT), and related drug raloxifene (Ral) on isolated rat cardiac myocyte mechanical function and calcium handling. Tam decreased contraction amplitude, slowed relaxation, and decreased Ca2+ transient amplitude. Effects were primarily observed at 5 and 10 μM Tam, which is relevant for high dose Tam treatment in cancer patients as well as Tam-mediated gene excision in mice. Myocytes treated with 4OHT responded similarly to Tam-treated cells with regard to both contractility and calcium handling, suggesting an estrogen-receptor independent mechanism is responsible for the effects. In contrast, Ral increased contraction and Ca2+ transient amplitudes. At 10 μM, all drugs had a time-dependent effect to abolish cellular contraction. In conclusion, Tam, 4OHT, and Ral adversely and differentially alter cardiac myocyte contractility and Ca2+ handling. These findings have important implications for understanding the Tam-induced cardiomyopathy in gene excision studies and may be important for understanding effects on cardiac performance in patients undergoing high-dose Tam therapy. PMID:24205315

  8. Delay-correlation landscape reveals characteristic time delays of brain rhythms and heart interactions

    PubMed Central

    Lin, Aijing; Liu, Kang K. L.; Bartsch, Ronny P.; Ivanov, Plamen Ch.

    2016-01-01

    Within the framework of ‘Network Physiology’, we ask a fundamental question of how modulations in cardiac dynamics emerge from networked brain–heart interactions. We propose a generalized time-delay approach to identify and quantify dynamical interactions between physiologically relevant brain rhythms and the heart rate. We perform empirical analysis of synchronized continuous EEG and ECG recordings from 34 healthy subjects during night-time sleep. For each pair of brain rhythm and heart interaction, we construct a delay-correlation landscape (DCL) that characterizes how individual brain rhythms are coupled to the heart rate, and how modulations in brain and cardiac dynamics are coordinated in time. We uncover characteristic time delays and an ensemble of specific profiles for the probability distribution of time delays that underly brain–heart interactions. These profiles are consistently observed in all subjects, indicating a universal pattern. Tracking the evolution of DCL across different sleep stages, we find that the ensemble of time-delay profiles changes from one physiologic state to another, indicating a strong association with physiologic state and function. The reported observations provide new insights on neurophysiological regulation of cardiac dynamics, with potential for broad clinical applications. The presented approach allows one to simultaneously capture key elements of dynamic interactions, including characteristic time delays and their time evolution, and can be applied to a range of coupled dynamical systems. PMID:27044991

  9. Delay-correlation landscape reveals characteristic time delays of brain rhythms and heart interactions

    NASA Astrophysics Data System (ADS)

    Lin, Aijing; Liu, Kang K. L.; Bartsch, Ronny P.; Ivanov, Plamen Ch.

    2016-05-01

    Within the framework of `Network Physiology', we ask a fundamental question of how modulations in cardiac dynamics emerge from networked brain-heart interactions. We propose a generalized time-delay approach to identify and quantify dynamical interactions between physiologically relevant brain rhythms and the heart rate. We perform empirical analysis of synchronized continuous EEG and ECG recordings from 34 healthy subjects during night-time sleep. For each pair of brain rhythm and heart interaction, we construct a delay-correlation landscape (DCL) that characterizes how individual brain rhythms are coupled to the heart rate, and how modulations in brain and cardiac dynamics are coordinated in time. We uncover characteristic time delays and an ensemble of specific profiles for the probability distribution of time delays that underly brain-heart interactions. These profiles are consistently observed in all subjects, indicating a universal pattern. Tracking the evolution of DCL across different sleep stages, we find that the ensemble of time-delay profiles changes from one physiologic state to another, indicating a strong association with physiologic state and function. The reported observations provide new insights on neurophysiological regulation of cardiac dynamics, with potential for broad clinical applications. The presented approach allows one to simultaneously capture key elements of dynamic interactions, including characteristic time delays and their time evolution, and can be applied to a range of coupled dynamical systems.

  10. The influence of right ventricular stimulation on acute response to cardiac resynchronisation therapy.

    PubMed

    Wu, L; de Roest, G J; Hendriks, M L; van Rossum, A C; de Cock, C C; Allaart, C P

    2016-01-01

    The contribution of right ventricular (RV) stimulation to cardiac resynchronisation therapy (CRT) remains controversial. RV stimulation might be associated with adverse haemodynamic effects, dependent on intrinsic right bundle branch conduction, presence of scar, RV function and other factors which may partly explain non-response to CRT. This study investigates to what degree RV stimulation modulates response to biventricular (BiV) stimulation in CRT candidates and which baseline factors, assessed by cardiac magnetic resonance imaging, determine this modulation. Forty-one patients (24 (59 %) males, 67 ± 10 years, QRS 153 ± 22 ms, 21 (51 %) ischaemic cardiomyopathy, left ventricular (LV) ejection fraction 25 ± 7 %), who successfully underwent temporary stimulation with pacing leads in the RV apex (RVapex) and left ventricular posterolateral (PL) wall were included. Stroke work, assessed by a conductance catheter, was used to assess acute haemodynamic response during baseline conditions and RVapex, PL (LV) and PL+RVapex (BiV) stimulation. Compared with baseline, stroke work improved similarly during LV and BiV stimulation (∆+ 51 ± 42 % and ∆+ 48 ± 47 %, both p < 0.001), but individual response showed substantial differences between LV and BiV stimulation. Multivariate analysis revealed that RV ejection fraction (β = 1.01, p = 0.02) was an independent predictor for stroke work response during LV stimulation, but not for BiV stimulation. Other parameters, including atrioventricular delay and scar presence and localisation, did not predict stroke work response in CRT. The haemodynamic effect of addition of RVapex stimulation to LV stimulation differs widely among patients receiving CRT. Poor RV function is associated with poor response to LV but not BiV stimulation.

  11. Megestrol acetate improves cardiac function in a model of cancer cachexia-induced cardiomyopathy by autophagic modulation.

    PubMed

    Musolino, Vincenzo; Palus, Sandra; Tschirner, Anika; Drescher, Cathleen; Gliozzi, Micaela; Carresi, Cristina; Vitale, Cristiana; Muscoli, Carolina; Doehner, Wolfram; von Haehling, Stephan; Anker, Stefan D; Mollace, Vincenzo; Springer, Jochen

    2016-12-01

    Cachexia is a complex metabolic syndrome associated with cancer. One of the features of cachexia is the loss of muscle mass, characterized by an imbalance between protein synthesis and protein degradation. Muscle atrophy is caused by the hyperactivation of some of the main cellular catabolic pathways, including autophagy. Cachexia also affects the cardiac muscle. As a consequence of the atrophy of the heart, cardiac function is impaired and mortality is increased. Anti-cachectic therapy in patients with cancer cachexia is so far limited to nutritional support and anabolic steroids. The use of the appetite stimulant megestrol acetate (MA) has been discussed as a treatment for cachexia. In this study the effects of MA were tested in cachectic tumour-bearing rats (Yoshida AH-130 ascites hepatoma). Rats were treated daily with 100 mg/kg of MA or placebo starting one day after tumour inoculation, and for a period of 16 days. Body weight and body composition were assessed at baseline and at the end of the study. Cardiac function was analysed by echocardiography at baseline and at day 11. Locomotor activity and food intake were assessed before tumour inoculation and at day 11. Autophagic markers were assessed in gastrocnemius muscle and heart by western blot analysis. Treatment with 100 mg/kg/day MA significantly attenuated the loss of body weight (-9 ± 12%, P  < 0.05) and the wasting of lean and fat mass (-7.0 ± 6% and -22.4 ± 3 %, P  < 0.001 and P  < 0.05, respectively). Administration of 100 mg/kg/day MA significantly protected the heart from general atrophy (633.8 ± 30 mg vs. placebo 474 ± 13 mg, P  < 0.001). Tumour-bearing rats displayed cardiac dysfunction, as indicated by the significant impairment of the left ventricular ejection fraction, the left ventricular fractional shortening, the stroke volume, the end dyastolic volume, and the end systolic volume. In contrast, MA significantly improved left ventricular ejection fraction, left ventricular fractional shortening, and left ventricular end systolic volume. Western blotting analysis showed an upregulation of the autophagic pathway in the gastrocnemius and hearts of the placebo-treated tumour-bearing rats. Treatment with MA, however, was able to modulate the autophagic markers (e.g. Beclin-1, p62, TRAF6, and LC3) in the gastrocnemius and in the hearts of tumour-bearing rats. Most importantly, 100 mg/kg/day MA reduced mortality [hazard ratio (HR): 0.44; 95%CI: 0.20-1.00; P  = 0.0486]. Megestrol acetate improved survival and reduced wasting through a marked downregulation of autophagy, occurring in both skeletal and heart muscle, the latter effect leading to a significant improvement of cardiac function. Our data suggest that MA might represent a valuable strategy to counteract the development of cancer cachexia-induced cardiomyopathy.

  12. The heart as an extravascular target of endothelin-1 in ...

    EPA Pesticide Factsheets

    Exposure to particulate matter air pollution has been causally linked to cardiovascular disease in humans. Several broad and overlapping hypotheses describing the biological mechanisms by which particulate matter exposure leads to cardiovascular disease and cardiac dysfunction have been explored, though linkage with specific factors or genes remains limited. Given evidence pointing to autocrine/paracrine signaling systems as modulators of cardiac dysfunction, the present review highlights the emerging role of endothelins as mediators of cardiac dysfunction following particulate matter exposure. Endothelin-1 is a small multifunctional protein expressed in the pulmonary and cardiovascular system, known for its ability to constrict blood vessels. Although endothelin-1 can also directly and indirectly (via secondary signaling events) modulate cardiac contractility, heart rate, and rhythm, research on the role of endothelins in the context of air pollution has tended to focus on the vascular effects. The plausibility of endothelin as a mechanism underlying particulate matter-induced cardiac dysfunction is further supported by the therapeutic utility of certain endothelin receptor antagonists. Extravascular effects of endothelin on the heart could better explain one mechanism by which particulate matter exposure may lead to cardiac dysfunction. We propose and support the novel hypothesis that autocrine/paracrine signaling systems, such as endothelins, mediate cardiac

  13. Cardiac Modulation of Startle: Effects on Eye Blink and Higher Cognitive Processing

    ERIC Educational Resources Information Center

    Schulz, Andre; Reichert, Carolin F.; Richter, Steffen; Lass-Hennemann, Johanna; Blumenthal, Terry D.; Schachinger, Hartmut

    2009-01-01

    Cardiac cycle time has been shown to affect pre-attentive brainstem startle processes, such as the magnitude of acoustically evoked reflexive startle eye blinks. These effects were attributed to baro-afferent feedback mechanisms. However, it remains unclear whether cardiac cycle time plays a role in higher startle-related cognitive processes, as…

  14. Spiral-wave dynamics in a mathematical model of human ventricular tissue with myocytes and fibroblasts.

    PubMed

    Nayak, Alok Ranjan; Shajahan, T K; Panfilov, A V; Pandit, Rahul

    2013-01-01

    Cardiac fibroblasts, when coupled functionally with myocytes, can modulate the electrophysiological properties of cardiac tissue. We present systematic numerical studies of such modulation of electrophysiological properties in mathematical models for (a) single myocyte-fibroblast (MF) units and (b) two-dimensional (2D) arrays of such units; our models build on earlier ones and allow for zero-, one-, and two-sided MF couplings. Our studies of MF units elucidate the dependence of the action-potential (AP) morphology on parameters such as [Formula: see text], the fibroblast resting-membrane potential, the fibroblast conductance [Formula: see text], and the MF gap-junctional coupling [Formula: see text]. Furthermore, we find that our MF composite can show autorhythmic and oscillatory behaviors in addition to an excitable response. Our 2D studies use (a) both homogeneous and inhomogeneous distributions of fibroblasts, (b) various ranges for parameters such as [Formula: see text], and [Formula: see text], and (c) intercellular couplings that can be zero-sided, one-sided, and two-sided connections of fibroblasts with myocytes. We show, in particular, that the plane-wave conduction velocity [Formula: see text] decreases as a function of [Formula: see text], for zero-sided and one-sided couplings; however, for two-sided coupling, [Formula: see text] decreases initially and then increases as a function of [Formula: see text], and, eventually, we observe that conduction failure occurs for low values of [Formula: see text]. In our homogeneous studies, we find that the rotation speed and stability of a spiral wave can be controlled either by controlling [Formula: see text] or [Formula: see text]. Our studies with fibroblast inhomogeneities show that a spiral wave can get anchored to a local fibroblast inhomogeneity. We also study the efficacy of a low-amplitude control scheme, which has been suggested for the control of spiral-wave turbulence in mathematical models for cardiac tissue, in our MF model both with and without heterogeneities.

  15. Structure and Function of Cardiac Troponin C (TNNC1): Implications for Heart Failure, Cardiomyopathies, and Troponin Modulating Drugs

    PubMed Central

    Li, Monica X.; Hwang, Peter M.

    2015-01-01

    In striated muscle, the protein troponin complex turns contraction on and off in a calcium-dependent manner. The calcium-sensing component of the complex is troponin C, which is expressed from the TNNC1 gene in both cardiac muscle and slow-twitch skeletal muscle (identical transcript in both tissues) and the TNNC2 gene in fast-twitch skeletal muscle. Cardiac troponin C (cTnC) is made up of two globular EF-hand domains connected by a flexible linker. The structural C-domain (cCTnC) contains two high affinity calcium-binding sites that are always occupied by Ca2+ or Mg2+ under physiologic conditions, stabilizing an open conformation that remains anchored to the rest of the troponin complex. In contrast, the regulatory N-domain (cNTnC) contains a single low affinity site that is largely unoccupied at resting calcium concentrations. During muscle activation, calcium binding to cNTnC favors an open conformation that binds to the switch region of troponin I, removing adjacent inhibitory regions of troponin I from actin and allowing muscle contraction to proceed. Regulation of the calcium binding affinity of cNTnC is physiologically important, because it directly impacts the calcium sensitivity of muscle contraction. Calcium sensitivity can be modified by drugs that stabilize the open form of cNTnC, post-translational modifications like phosphorylation of troponin I, or downstream thin filament protein interactions that impact the availability of the troponin I switch region. Recently, mutations in cTnC have been associated with hypertrophic or dilated cardiomyopathy. A detailed understanding of how calcium sensitivity is regulated through the troponin complex is necessary for explaining how mutations perturb its function to promote cardiomyopathy and how post-translational modifications in the thin filament affect heart function and heart failure. Troponin modulating drugs are being developed for the treatment of cardiomyopathies and heart failure. PMID:26232335

  16. Low to high frequency ratio of heart rate variability spectra fails to describe sympatho-vagal balance in cardiac patients.

    PubMed

    Milicević, Goran

    2005-06-01

    Heart rate variability (HRV) reflects an influence of autonomic nervous system on heart work. In healthy subjects, ratio between low and high frequency components (LF/HF ratio) of HRV spectra represents a measure of sympatho-vagal balance. The ratio was defined by the authorities as an useful clinical tool, but it seems that it fails to summarise sympatho-vagal balance in a clinical setting. Value of the method was re-evaluated in several categories of cardiac patients. HRV was analysed from 24-hour Holter ECGs in 132 healthy subjects, and 2159 cardiac patients dichotomised by gender, median of age, diagnosis of myocardial infarction or coronary artery surgery, left ventricular systolic function and divided by overall HRV into several categories. In healthy subjects, LF/HF ratio correlated with overall HRV negatively, as expected. The paradoxical finding was obtained in cardiac patients; the lower the overall HRV and the time-domain indices of vagal modulation activity were the lower the LF/HF ratio was. If used as a measure of sympatho-vagal balance, long-term recordings of LF/HF ratio contradict to clinical finding and time-domain HRV indices in cardiac patients. The ratio cannot therefore be used as a reliable marker of autonomic activity in a clinical setting.

  17. Apigenin Attenuates Experimental Autoimmune Myocarditis by Modulating Th1/Th2 Cytokine Balance in Mice.

    PubMed

    Zhang, Shouxin; Liu, Xiaoyan; Sun, Chengming; Yang, Jun; Wang, Lihong; Liu, Jie; Gong, Lei; Jing, Yanyan

    2016-04-01

    This study aims to investigate the protective effect of apigenin on the development of experimental autoimmune myocarditis (EAM) and the underlying mechanisms. An EAM model was induced in BALB/c mice by the injection of porcine cardiac myosin. Apigenin was orally administered from day 1 to 21. The severity of myocarditis was assessed by determination of heart weight/body weight ratio (HW/BW) and histopathological evaluation. Echocardiography was conducted to evaluate the cardiac function and heart structure. Antigen-specific T cell proliferation responses to cardiac myosin were evaluated by the lymphocyte proliferation assay. ELISA was used to determine serum levels of type 1 helper (Th1) and Th2 cytokines. Apigenin treatment significantly decreased HW/BW. Histopathologic analysis showed that the infiltration of inflammatory cells was reduced significantly by apigenin treatment. Meanwhile, apigenin administration effectively ameliorated autoimmune myocarditis-induced cardiac hypertrophy and cardiac dysfunction as well as inhibited lymphocyte proliferation in mice immunized with myosin. Furthermore, Th1 cytokines tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), and interleukin-2 (IL-2) were significantly downregulated, while Th2 cytokines IL-4 and IL-10 were markedly upregulated. The results indicated that apigenin can alleviate EAM due to its immunomodulatory reactions in modification of helper T cell balance.

  18. MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca2+ overload and cell death

    PubMed Central

    Aurora, Arin B.; Mahmoud, Ahmed I.; Luo, Xiang; Johnson, Brett A.; van Rooij, Eva; Matsuzaki, Satoshi; Humphries, Kenneth M.; Hill, Joseph A.; Bassel-Duby, Rhonda; Sadek, Hesham A.; Olson, Eric N.

    2012-01-01

    Early reperfusion of ischemic cardiac tissue remains the most effective intervention for improving clinical outcome following myocardial infarction. However, abnormal increases in intracellular Ca2+ during myocardial reperfusion can cause cardiomyocyte death and consequent loss of cardiac function, referred to as ischemia/reperfusion (IR) injury. Therapeutic modulation of Ca2+ handling provides some cardioprotection against the paradoxical effects of restoring blood flow to the heart, highlighting the significance of Ca2+ overload to IR injury. Cardiac IR is also accompanied by dynamic changes in the expression of microRNAs (miRNAs); for example, miR-214 is upregulated during ischemic injury and heart failure, but its potential role in these processes is unknown. Here, we show that genetic deletion of miR-214 in mice causes loss of cardiac contractility, increased apoptosis, and excessive fibrosis in response to IR injury. The cardioprotective roles of miR-214 during IR injury were attributed to repression of the mRNA encoding sodium/calcium exchanger 1 (Ncx1), a key regulator of Ca2+ influx; and to repression of several downstream effectors of Ca2+ signaling that mediate cell death. These findings reveal a pivotal role for miR-214 as a regulator of cardiomyocyte Ca2+ homeostasis and survival during cardiac injury. PMID:22426211

  19. Efficient attenuation of Friedreich's ataxia (FRDA) cardiomyopathy by modulation of iron homeostasis-human induced pluripotent stem cell (hiPSC) as a drug screening platform for FRDA.

    PubMed

    Lee, Yee-Ki; Lau, Yee-Man; Ng, Kwong-Man; Lai, Wing-Hon; Ho, Shu-Leong; Tse, Hung-Fat; Siu, Chung-Wah; Ho, Philip Wing-Lok

    2016-01-15

    Friedreich's ataxia (FRDA), a recessive neurodegenerative disorder commonly associated with hypertrophic cardiomyopathy, is caused by silencing of the frataxin (FXN) gene encoding the mitochondrial protein involved in iron-sulfur cluster biosynthesis. Application of our previously established FRDA human induced pluripotent stem cell (hiPSC) derived cardiomyocytes model as a platform to assess the efficacy of treatment with either the antioxidant coenzyme Q10 analog, idebenone (IDE) or the iron chelator, deferiprone (DFP), which are both under clinical trial. DFP was able to more significantly suppress synthesis of reactive oxygen species (ROS) than IDE at the dosages of 25 μM and 10nM respectively which agreed with the reduced rate of intracellular accumulation of iron by DFP treatment from 25 to 50 μM. With regard to cardiac electrical-contraction (EC) coupling function, decay velocity of calcium handling kinetics in FRDA-hiPSC-cardiomyocytes was significantly improved by DFP treatment but not by IDE. Further mechanistic studies revealed that DFP also modulated iron induced mitochondrial stress as reflected by mitochondria network disorganization and decline level of respiratory chain protein, succinate dehydrogenase (CxII) and cytochrome c oxidase (COXIV). In addition, iron-response protein (IRP-1) regulatory loop was overridden by DFP as reflected by resumed level of ferritin (FTH) back to basal level and the attenuated transferrin receptor (TSFR) mRNA level suppression thereby reducing further iron uptake. DFP modulated iron homeostasis in FRDA-hiPSC-cardiomyocytes and effectively relieved stress-stimulation related to cardiomyopathy. The resuming of redox condition led to the significantly improved cardiac prime events, cardiac electrical-coupling during contraction. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  20. Cardiac and electro-cortical concomitants of social feedback processing in women

    PubMed Central

    van der Molen, Melle J. W.; Gunther Moor, Bregtje; van der Veen, Frederik M.; van der Molen, Maurits W.

    2015-01-01

    This study provides a joint analysis of the cardiac and electro-cortical—early and late P3 and feedback-related negativity (FRN)—responses to social acceptance and rejection feedback. Twenty-five female participants performed on a social- and age-judgment control task, in which they received feedback with respect to their liking and age judgments, respectively. Consistent with previous reports, results revealed transient cardiac slowing to be selectively prolonged to unexpected social rejection feedback. Late P3 amplitude was more pronounced to unexpected relative to expected feedback. Both early and late P3 amplitudes were shown to be context dependent, in that they were more pronounced to social as compared with non-social feedback. FRN amplitudes were more pronounced to unexpected relative to expected feedback, irrespective of context and feedback valence. This pattern of findings indicates that social acceptance and rejection feedback have widespread effects on bodily state and brain function, which are modulated by prior expectancies. PMID:25870439

  1. Low heart rate variability in unemployed men: The possible mediating effects of life satisfaction.

    PubMed

    Jandackova, V K; Jackowska, M

    2015-01-01

    Unemployment has consistently been associated with increased risk of cardiovascular disease and premature mortality, and impaired autonomic modulation of the heart might be one mechanism partly explaining this. This study examined whether the possible effect of unemployment on cardiac autonomic modulation is in part mediated by lower psychological well-being. The sample comprised of 15 job-seeking men aged 30-49 years matched with 15 employed men on age, type of job, smoking habits, alcohol intake, frequency of physical activity, and body mass index. Heart rate variability (HRV) during a modified orthostatic test was the measure of cardiac autonomic modulation, and life satisfaction was the measure of psychological well-being. Unemployed men had significantly lower overall HRV (p = .040) than controls. This association was partially mediated through lower general life satisfaction, and in particular, by low financial satisfaction, independently of demographic and/or behavioral factors that influence HRV. These findings suggest that seeking a job is a potential stressor that may reduce overall HRV and contribute towards disturbance of cardiac autonomic modulation in men. Financial difficulties could be one mechanism through which the effects of unemployment are translated into impaired autonomic modulation.

  2. Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization

    PubMed Central

    Bueno-Orovio, Alfonso; Kay, David; Grau, Vicente; Rodriguez, Blanca; Burrage, Kevin

    2014-01-01

    Impulse propagation in biological tissues is known to be modulated by structural heterogeneity. In cardiac muscle, improved understanding on how this heterogeneity influences electrical spread is key to advancing our interpretation of dispersion of repolarization. We propose fractional diffusion models as a novel mathematical description of structurally heterogeneous excitable media, as a means of representing the modulation of the total electric field by the secondary electrical sources associated with tissue inhomogeneities. Our results, analysed against in vivo human recordings and experimental data of different animal species, indicate that structural heterogeneity underlies relevant characteristics of cardiac electrical propagation at tissue level. These include conduction effects on action potential (AP) morphology, the shortening of AP duration along the activation pathway and the progressive modulation by premature beats of spatial patterns of dispersion of repolarization. The proposed approach may also have important implications in other research fields involving excitable complex media. PMID:24920109

  3. Cardiac ACE2/angiotensin 1–7/Mas receptor axis is activated in thyroid hormone-induced cardiac hypertrophy

    PubMed Central

    Diniz, Gabriela P.; Senger, Nathalia; Carneiro-Ramos, Marcela S.; Santos, Robson A. S.; Barreto-Chaves, Maria Luiza M.

    2015-01-01

    Objectives: Thyroid hormone (TH) promotes marked effects on the cardiovascular system, including the development of cardiac hypertrophy. Some studies have demonstrated that the renin–angiotensin system (RAS) is a key mediator of the cardiac growth in response to elevated TH levels. Although some of the main RAS components are changed in cardiac tissue on hyperthyroid state, the potential modulation of the counter regulatory components of the RAS, such as angiotensin-converting enzyme type 2 (ACE2), angiotensin 1–7 (Ang 1–7) levels and Mas receptor induced by hyperthyroidism is unknown. The aim of this study was to investigate the effect of hyperthyroidism on cardiac Ang 1–7, ACE2 and Mas receptor levels. Methods: Hyperthyroidism was induced in Wistar rats by daily intraperitoneal injections of T4 for 14 days. Results: Although plasma Ang 1–7 levels were unchanged by hyperthyroidism, cardiac Ang 1–7 levels were increased in TH-induced cardiac hypertrophy. ACE2 enzymatic activity was significantly increased in hearts from hyperthyroid animals, which may be contributing to the higher Ang 1–7 levels observed in the T4 group. Furthermore, elevated cardiac levels of Ang 1–7 levels were accompanied by increased Mas receptor protein levels. Conclusion: The counter-regulatory components of the RAS are activated in hyperthyroidism and may be contributing to modulate the cardiac hypertrophy in response to TH. PMID:26715125

  4. Cardiac function in an endothermic fish: cellular mechanisms for overcoming acute thermal challenges during diving

    PubMed Central

    Shiels, H. A.; Galli, G. L. J.; Block, B. A.

    2015-01-01

    Understanding the physiology of vertebrate thermal tolerance is critical for predicting how animals respond to climate change. Pacific bluefin tuna experience a wide range of ambient sea temperatures and occupy the largest geographical niche of all tunas. Their capacity to endure thermal challenge is due in part to enhanced expression and activity of key proteins involved in cardiac excitation–contraction coupling, which improve cardiomyocyte function and whole animal performance during temperature change. To define the cellular mechanisms that enable bluefin tuna hearts to function during acute temperature change, we investigated the performance of freshly isolated ventricular myocytes using confocal microscopy and electrophysiology. We demonstrate that acute cooling and warming (between 8 and 28°C) modulates the excitability of the cardiomyocyte by altering the action potential (AP) duration and the amplitude and kinetics of the cellular Ca2+ transient. We then explored the interactions between temperature, adrenergic stimulation and contraction frequency, and show that when these stressors are combined in a physiologically relevant way, they alter AP characteristics to stabilize excitation–contraction coupling across an acute 20°C temperature range. This allows the tuna heart to maintain consistent contraction and relaxation cycles during acute thermal challenges. We hypothesize that this cardiac capacity plays a key role in the bluefin tunas' niche expansion across a broad thermal and geographical range. PMID:25540278

  5. Antagonist action of progesterone at σ-receptors in the modulation of voltage-gated sodium channels

    PubMed Central

    Johannessen, Molly; Fontanilla, Dominique; Mavlyutov, Timur; Ruoho, Arnold E.

    2011-01-01

    σ-Receptors are integral membrane proteins that have been implicated in a number of biological functions, many of which involve the modulation of ion channels. A wide range of synthetic ligands activate σ-receptors, but endogenous σ-receptor ligands have proven elusive. One endogenous ligand, dimethyltryptamine (DMT), has been shown to act as a σ-receptor agonist. Progesterone and other steroids bind σ-receptors, but the functional consequences of these interactions are unclear. Here we investigated progesterone binding to σ1- and σ2-receptors and evaluated its effect on σ-receptor-mediated modulation of voltage-gated Na+ channels. Progesterone binds both σ-receptor subtypes in liver membranes with comparable affinities and blocks photolabeling of both subtypes in human embryonic kidney 293 cells that stably express the human cardiac Na+ channel Nav1.5. Patch-clamp recording in this cell line tested Na+ current modulation by the σ-receptor ligands ditolylguanidine, PB28, (+)SKF10047, and DMT. Progesterone inhibited the action of these ligands to varying degrees, and some of these actions were reduced by σ1-receptor knockdown with small interfering RNA. Progesterone inhibition of channel modulation by drugs was consistent with stronger antagonism of σ2-receptors. By contrast, progesterone inhibition of channel modulation by DMT was consistent with stronger antagonism of σ1-receptors. Progesterone binding to σ-receptors blocks σ-receptor-mediated modulation of a voltage-gated ion channel, and this novel membrane action of progesterone may be relevant to changes in brain and cardiovascular function during endocrine transitions. PMID:21084640

  6. Antagonist action of progesterone at σ-receptors in the modulation of voltage-gated sodium channels.

    PubMed

    Johannessen, Molly; Fontanilla, Dominique; Mavlyutov, Timur; Ruoho, Arnold E; Jackson, Meyer B

    2011-02-01

    σ-Receptors are integral membrane proteins that have been implicated in a number of biological functions, many of which involve the modulation of ion channels. A wide range of synthetic ligands activate σ-receptors, but endogenous σ-receptor ligands have proven elusive. One endogenous ligand, dimethyltryptamine (DMT), has been shown to act as a σ-receptor agonist. Progesterone and other steroids bind σ-receptors, but the functional consequences of these interactions are unclear. Here we investigated progesterone binding to σ(1)- and σ(2)-receptors and evaluated its effect on σ-receptor-mediated modulation of voltage-gated Na(+) channels. Progesterone binds both σ-receptor subtypes in liver membranes with comparable affinities and blocks photolabeling of both subtypes in human embryonic kidney 293 cells that stably express the human cardiac Na(+) channel Na(v)1.5. Patch-clamp recording in this cell line tested Na(+) current modulation by the σ-receptor ligands ditolylguanidine, PB28, (+)SKF10047, and DMT. Progesterone inhibited the action of these ligands to varying degrees, and some of these actions were reduced by σ(1)-receptor knockdown with small interfering RNA. Progesterone inhibition of channel modulation by drugs was consistent with stronger antagonism of σ(2)-receptors. By contrast, progesterone inhibition of channel modulation by DMT was consistent with stronger antagonism of σ(1)-receptors. Progesterone binding to σ-receptors blocks σ-receptor-mediated modulation of a voltage-gated ion channel, and this novel membrane action of progesterone may be relevant to changes in brain and cardiovascular function during endocrine transitions.

  7. Influencing factors of NT-proBNP level inheart failure patients with different cardiacfunctions and correlation with prognosis.

    PubMed

    Xu, Liang; Chen, Yanchun; Ji, Yanni; Yang, Song

    2018-06-01

    Factors influencing N-terminal pro-brain natriuretic peptide (NT-proBNP) level in heart failure patients with different cardiac functions were identified to explore the correlations with prognosis. Eighty heart failure patients with different cardiac functions treated in Yixing People's Hospital from January 2016 to June 2017 were selected, and divided into two groups (group with cardiac function in class II and below and group with cardiac function in class III and above), according to the cardiac function classification established by New York Heart Association (NYHA). Blood biochemical test and outcome analysis were conducted to measure serum NT-proBNP and matrix metalloproteinase-9 (MMP-9) levels in patients with different cardiac functions, and correlations between levels of NT-proBNP and MMP-9 and left ventricular ejection fraction (LVEF) level were analyzed in patients with different cardiac functions at the same time. In addition, risk factors for heart failure in patients with different cardiac functions were analyzed. Compared with the group with cardiac function in class III and above, the group with cardiac function in class II and below had significantly lower serum NT-proBNP and MMP-9 levels (p<0.05). For echocardiogram indexes, left ventricular end-diastolic diameter (LVEDD) and left ventricular end-systolic diameter (LVESD) in the group with cardiac function in class II and below were obviously lower than those in the group with cardiac function in class III and above (p<0.05), while LVEF was higher in group with cardiac function in class II and below than that in group with cardiac function in class III and above (p<0.05). NT-proBNP and MMP-9 levels were negatively correlated with LVEF level [r=-0.8517 and -0.8517, respectively, p<0.001 (<0.05)]. Cardiac function in class III and above, increased NT-proBNP, increased MMP-9 and decreased LVEF were relevant risk factors and independent risk factors for heart failure in patients with different cardiac functions. NT-proBNP and MMP-9 levels are negatively correlated with LVEF in patients regardless of the cardiac function class. Therefore, attention should be paid to patients who have cardiac function in class III and above, increased NT-proBNP and MMP-9 levels and decreased LVEF in clinical practices, so as to actively prevent and treat heart failure.

  8. BDNF - A key player in cardiovascular system.

    PubMed

    Pius-Sadowska, Ewa; Machaliński, Bogusław

    2017-09-01

    Neurotrophins (NTs) were first identified as target-derived survival factors for neurons of the central and peripheral nervous system (PNS). They are known to control neural cell fate, development and function. Independently of their neuronal properties, NTs exert unique cardiovascular activity. The heart is innervated by sensory, sympathetic and parasympathetic neurons, which require NTs during early development and in the establishment of mature properties, contributing to the maintenance of cardiovascular homeostasis. The identification of molecular mechanisms regulated by NTs and involved in the crosstalk between cardiac sympathetic nerves, cardiomyocytes, cardiac fibroblasts, and vascular cells, has a fundamental importance in both normal heart function and disease. The article aims to review the recent data on the effects of Brain-Derived Neurotrophic Factor (BDNF) on various cardiovascular neuronal and non-neuronal functions such as the modulation of synaptic properties of autonomic neurons, axonal outgrowth and sprouting, formation of the vascular and neural networks, smooth muscle migration, and control of endothelial cell survival and cardiomyocytes. Understanding these mechanisms may be crucial for developing novel therapeutic strategies, including stem cell-based therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Combined short-arm centrifuge and aerobic exercise training improves cardiovascular function and physical working capacity in humans.

    PubMed

    Yang, Chang-Bin; Zhang, Shu; Zhang, Yu; Wang, Bing; Yao, Yong-Jie; Wang, Yong-Chun; Wu, Yan-Hong; Liang, Wen-Bin; Sun, Xi-Qing

    2010-12-01

    Musculoskeletal and cardiovascular deconditioning occurring in long-term spaceflight gives rise to the needs to develop new strategies to counteract these adverse effects. Short-arm centrifuge combined with ergometer has been proposed as a strategy to counteract adverse effects of microgravity. This study sought to investigate whether the combination of short-arm centrifuge and aerobic exercise training have advantages over short-arm centrifuge or aerobic exercise training alone. One week training was conducted by 24 healthy men. They were randomly divided into 3 groups: (1) short-arm centrifuge training, (2) aerobic exercise training, 40 W, and (3) combined short-arm centrifuge and aerobic exercise training. Before and after training, the cardiac pump function represented by stroke volume, cardiac output, left ventricular ejection time, and total peripheral resistance was evaluated. Variability of heart rate and systolic blood pressure were determined by spectral analysis. Physical working capacity was surveyed by near maximal physical working capacity test. The 1-week combined short-arm centrifuge and aerobic exercise training remarkably ameliorated the cardiac pump function and enhanced vasomotor sympathetic nerve modulation and improved physical working capacity by 10.9% (P<.05, n=8). In contrast, neither the short-arm centrifuge nor the aerobic exercise group showed improvements in these functions. These results demonstrate that combined short-arm centrifuge and aerobic exercise training has advantages over short-arm centrifuge or aerobic exercise training alone in influencing several physiologically important cardiovascular functions in humans. The combination of short-arm centrifuge and aerobic exercise offers a promising countermeasure to microgravity.

  10. Physiological Mechanisms Mediating the Coupling between Heart Period and Arterial Pressure in Response to Postural Changes in Humans

    PubMed Central

    Silvani, Alessandro; Calandra-Buonaura, Giovanna; Johnson, Blair D.; van Helmond, Noud; Barletta, Giorgio; Cecere, Anna G.; Joyner, Michael J.; Cortelli, Pietro

    2017-01-01

    The upright posture strengthens the coupling between heart period (HP) and systolic arterial pressure (SAP) consistently with a greater contribution of the arterial baroreflex to cardiac control, while paradoxically decreasing cardiac baroreflex sensitivity (cBRS). To investigate the physiological mechanisms that mediate the coupling between HP and SAP in response to different postures, we analyzed the cross-correlation functions between low-frequency HP and SAP fluctuations and estimated cBRS with the sequence technique in healthy male subjects during passive head-up tilt test (HUTT, n = 58), during supine wakefulness, supine slow-wave sleep (SWS), and in the seated and active standing positions (n = 8), and during progressive loss of 1 L blood (n = 8) to decrease central venous pressure in the supine position. HUTT, SWS, the seated, and the standing positions, but not blood loss, entailed significant increases in the positive correlation between HP and the previous SAP values, which is the expected result of arterial baroreflex control, compared with baseline recordings in the supine position during wakefulness. These increases were mirrored by increases in the low-frequency variability of SAP in each condition but SWS. cBRS decreased significantly during HUTT, in the seated and standing positions, and after blood loss compared with baseline during wakefulness. These decreases were mirrored by decreases in the RMSSD index, which reflects cardiac vagal modulation. These results support the view that the cBRS decrease associated with the upright posture is a byproduct of decreased cardiac vagal modulation, triggered by the arterial baroreflex in response to central hypovolemia. Conversely, the greater baroreflex contribution to cardiac control associated with upright posture may be explained, at least in part, by enhanced fluctuations of SAP, which elicit a more effective entrainment of HP fluctuations by the arterial baroreflex. These SAP fluctuations may result from enhanced fluctuations of vascular resistance specific to the upright posture, and not be driven by the accompanying central hypovolemia. PMID:28396638

  11. Physiological Mechanisms Mediating the Coupling between Heart Period and Arterial Pressure in Response to Postural Changes in Humans.

    PubMed

    Silvani, Alessandro; Calandra-Buonaura, Giovanna; Johnson, Blair D; van Helmond, Noud; Barletta, Giorgio; Cecere, Anna G; Joyner, Michael J; Cortelli, Pietro

    2017-01-01

    The upright posture strengthens the coupling between heart period (HP) and systolic arterial pressure (SAP) consistently with a greater contribution of the arterial baroreflex to cardiac control, while paradoxically decreasing cardiac baroreflex sensitivity (cBRS). To investigate the physiological mechanisms that mediate the coupling between HP and SAP in response to different postures, we analyzed the cross-correlation functions between low-frequency HP and SAP fluctuations and estimated cBRS with the sequence technique in healthy male subjects during passive head-up tilt test (HUTT, n = 58), during supine wakefulness, supine slow-wave sleep (SWS), and in the seated and active standing positions ( n = 8), and during progressive loss of 1 L blood ( n = 8) to decrease central venous pressure in the supine position. HUTT, SWS, the seated, and the standing positions, but not blood loss, entailed significant increases in the positive correlation between HP and the previous SAP values, which is the expected result of arterial baroreflex control, compared with baseline recordings in the supine position during wakefulness. These increases were mirrored by increases in the low-frequency variability of SAP in each condition but SWS. cBRS decreased significantly during HUTT, in the seated and standing positions, and after blood loss compared with baseline during wakefulness. These decreases were mirrored by decreases in the RMSSD index, which reflects cardiac vagal modulation. These results support the view that the cBRS decrease associated with the upright posture is a byproduct of decreased cardiac vagal modulation, triggered by the arterial baroreflex in response to central hypovolemia. Conversely, the greater baroreflex contribution to cardiac control associated with upright posture may be explained, at least in part, by enhanced fluctuations of SAP, which elicit a more effective entrainment of HP fluctuations by the arterial baroreflex. These SAP fluctuations may result from enhanced fluctuations of vascular resistance specific to the upright posture, and not be driven by the accompanying central hypovolemia.

  12. Modulation of cardiac myocyte phenotype in vitro by the composition and orientation of the extracellular matrix.

    PubMed

    Simpson, D G; Terracio, L; Terracio, M; Price, R L; Turner, D C; Borg, T K

    1994-10-01

    Cellular phenotype is the result of a dynamic interaction between a cell's intrinsic genetic program and the morphogenetic signals that serve to modulate the extent to which that program is expressed. In the present study we have examined how morphogenetic information might be stored in the extracellular matrix (ECM) and communicated to the neonatal heart cell (NHC) by the cardiac alpha 1 beta 1 integrin molecule. A thin film of type I collagen (T1C) was prepared with a defined orientation. This was achieved by applying T1C to the peripheral edge of a 100 mm culture dish. The T1C was then drawn across the surface of the dish in a continuous stroke with a sterile cell scraper and allowed to polymerize. When NHCs were cultured on this substrate, they spread, as a population, along a common axis in parallel with the gel lattice and expressed an in vivo-like phenotype. Individual NHCs displayed an elongated, rod-like shape and disclosed parallel arrays of myofibrils. These phenotypic characteristics were maintained for at least 4 weeks in primary culture. The evolution of this tissue-like organizational pattern was dependent upon specific interactions between the NHCs and the collagen-based matrix that were mediated by the cardiac alpha 1 beta 1 integrin complex. This conclusion was supported by a variety of experimental results. Altering the tertiary structure of the matrix or blocking the extracellular domains of either the cardiac alpha 1 or beta 1 integrin chain inhibited the expression of the tissue-like pattern of organization. Neither cell-to-cell contact or contractile function were necessary to induce the formation of the rod-like cell shape. However, beating activity was necessary for the assembly of a well-differentiated myofibrillar apparatus. These data suggest that the cardiac alpha 1 beta 1 integrin complex serves to detect and transduce phenotypic information stored within the tertiary structure of the surrounding matrix.

  13. Post-operative ventricular flow dynamics following atrioventricular valve surgical and device therapies: A review.

    PubMed

    Nguyen, Yen Ngoc; Ismail, Munirah; Kabinejadian, Foad; Tay, Edgar Lik Wui; Leo, Hwa Liang

    2018-04-01

    Intra-ventricular flow dynamics has recently emerged as an important evaluation and diagnosis tool in different cardiovascular conditions. The formation of vortex pattern during the cardiac cycle has been suggested to play important epigenetic and energy-modulation roles in cardiac remodelling, adaptations and mal-adaptations. In this new perspective, flow alterations due to different cardiovascular procedures can affect the long-term outcome of those procedures. Especially, repairs and replacements performed on atrioventricular valves are likely to exert direct impact on intra-ventricular flow pattern. In this review, current consensus around the roles of vortex dynamics in cardiac function is discussed. An overview of physiological vortex patterns found in healthy left and right ventricles as well as post-operative ventricular flow phenomenon owing to different atrioventricular valvular procedures are reviewed, followed by the summary of different vortex identification schemes used to characterise intraventricular flow. This paper also emphasises on future research directions towards a comprehensive understanding of intra-cardiac flow and its clinical relevance. The knowledge could encourage more effective pre-operative planning and better outcomes for current clinical practices. Copyright © 2018. Published by Elsevier Ltd.

  14. Dorsal spinal cord stimulation obtunds the capacity of intrathoracic extracardiac neurons to transduce myocardial ischemia

    PubMed Central

    Ardell, Jeffrey L.; Cardinal, René; Vermeulen, Michel; Armour, J. Andrew

    2009-01-01

    Populations of intrathoracic extracardiac neurons transduce myocardial ischemia, thereby contributing to sympathetic control of regional cardiac indices during such pathology. Our objective was to determine whether electrical neuromodulation using spinal cord stimulation (SCS) modulates such local reflex control. In 10 anesthetized canines, middle cervical ganglion neurons were identified that transduce the ventricular milieu. Their capacity to transduce a global (rapid ventricular pacing) vs. regional (transient regional ischemia) ventricular stress was tested before and during SCS (50 Hz, 0.2 ms duration at 90% MT) applied to the dorsal aspect of the T1 to T4 spinal cord. Rapid ventricular pacing and transient myocardial ischemia both activated cardiac-related middle cervical ganglion neurons. SCS obtunded their capacity to reflexly respond to the regional ventricular ischemia, but not rapid ventricular pacing. In conclusion, spinal cord inputs to the intrathoracic extracardiac nervous system obtund the latter's capacity to transduce regional ventricular ischemia, but not global cardiac stress. Given the substantial body of literature indicating the adverse consequences of excessive adrenergic neuronal excitation on cardiac function, these data delineate the intrathoracic extracardiac nervous system as a potential target for neuromodulation therapy in minimizing such effects. PMID:19515981

  15. [Development of multi-channels cardiac electrophysiological polygraph with LabVIEW as software platform and its clinical application].

    PubMed

    Fan, Shounian; Jiang, Yi; Jiang, Chenxi; Yang, Tianhe; Zhang, Chengyun; Liu, Junshi; Wu, Qiang; Zheng, Yaxi; Liu, Xiaoqiao

    2004-10-01

    Polygraph has become a necessary instrument in interventional cardiology and fundamental research of medicine up to the present. In this study, a LabView development system (DS) (developed by NI in U.S.) used as software platform, a DAQ data acquisition module and universal computer used as hardware platform, were creatively coupled with our self-made low noise multi-channels preamplifier to develop Multi-channels electrocardiograph. The device possessed the functions such as real time display of physiological process, digit highpass and lowpass, 50Hz filtered and gain adjustment, instant storing, random playback and printing, and process control stimulation. Besides, it was small-sized, economically practical and easy to operate. It could advance the spread of cardiac intervention treatment in hospitals.

  16. Near-Infrared Spectroscopy in Adult Cardiac Surgery Patients: A Systematic Review and Meta-Analysis.

    PubMed

    Chan, Matthew J; Chung, Tricia; Glassford, Neil J; Bellomo, Rinaldo

    2017-08-01

    To identify the normal baseline preoperative range of cerebral tissue oxygen saturation (SctO 2 ) derived using near-infrared spectroscopy (NIRS) and the efficacy of perioperative interventions designed to modulate SctO 2 in cardiac surgical patients. Systematic review and meta-analysis of relevant randomized controlled trials (RCTs) extracted from the Medline, Embase, and Cochrane Central Register of Controlled Trials databases. Hospitals performing cardiac surgery. The study comprised 953 participants from 11 RCTs. Interventions included the following: (1) SctO 2 monitoring protocol compared with no monitoring; (2) use of cardiopulmonary bypass (CPB) compared with no CPB; (3) normothermic CPB compared with hypothermic CPB; (4) glyceryl trinitrate during surgery compared with placebo; (5) midazolam during induction of anesthesia compared with propofol; (6) sevoflurane anesthesia compared with total intravenous anesthesia; (7) sevoflurane anesthesia compared with propofol-based anesthesia; and (8) norepinephrine during CPB compared with phenylephrine. Eleven RCTs with 953 participants measured baseline preoperative SctO 2 using NIRS. The pooled mean baseline SctO 2 was 66.4% (95% CI 65.0-67.7), generating a reference range of 51.0% to 81.8%. Four interventions (1, 3, 4, and 6 described in the Interventions section above) increased intraoperative SctO 2 across the majority of reported time points. Postoperative follow-up of SctO 2 occurred in only 1 study, and postoperative cognitive assessment correlating SctO 2 with cognitive function was applied in only 4 studies using variable methodology. The authors have established that reference values for baseline NIRS-derived SctO 2 in cardiac surgery patients are varied and have identified interventions that modulate SctO 2 . This information opens the door to standardized research and interventional studies in this field. Copyright © 2017. Published by Elsevier Inc.

  17. Interleukin-1β gene variants are associated with QTc interval prolongation following cardiac surgery: a prospective observational study.

    PubMed

    Kertai, Miklos D; Ji, Yunqi; Li, Yi-Ju; Mathew, Joseph P; Daubert, James P; Podgoreanu, Mihai V

    2016-04-01

    We characterized cardiac surgery-induced dynamic changes of the corrected QT (QTc) interval and tested the hypothesis that genetic factors are associated with perioperative QTc prolongation independent of clinical and procedural factors. All study subjects were ascertained from a prospective study of patients who underwent elective cardiac surgery during August 1999 to April 2002. We defined a prolonged QTc interval as > 440 msec, measured from 24-hr pre- and postoperative 12-lead electrocardiograms. The association of 37 single nucleotide polymorphisms (SNPs) in 21 candidate genes -involved in modulating arrhythmia susceptibility pathways with postoperative QTc changes- was investigated in a two-stage design with a stage I cohort (n = 497) nested within a stage II cohort (n = 957). Empirical P values (Pemp) were obtained by permutation tests with 10,000 repeats. After adjusting for clinical and procedural risk factors, we selected four SNPs (P value range, 0.03-0.1) in stage I, which we then tested in the stage II cohort. Two functional SNPs in the pro-inflammatory cytokine interleukin-1β (IL1β), rs1143633 (odds ratio [OR], 0.71; 95% confidence interval [CI], 0.53 to 0.95; Pemp = 0.02) and rs16944 (OR, 1.31; 95% CI, 1.01 to 1.70; Pemp = 0.04), remained independent predictors of postoperative QTc prolongation. The ability of a clinico-genetic model incorporating the two IL1B polymorphisms to classify patients at risk for developing prolonged postoperative QTc was superior to a clinical model alone, with a net reclassification improvement of 0.308 (P = 0.0003) and an integrated discrimination improvement of 0.02 (P = 0.000024). The results suggest a contribution of IL1β in modulating susceptibility to postoperative QTc prolongation after cardiac surgery.

  18. Effects of whole-body vibration on heart rate variability: acute responses and training adaptations.

    PubMed

    Wong, Alexei; Figueroa, Arturo

    2018-05-18

    Heart rate variability (HRV) is a noninvasive and practical measure of cardiac autonomic nervous system function, mainly the sympathetic and parasympathetic modulations of heart rate. A low HRV has been shown to be indicative of compromised cardiovascular health. Interventions that enhance HRV are therefore beneficial to cardiovascular health. Whole-body vibration (WBV) training has been proposed as an alternative time-efficient exercise intervention for the improvement of cardiovascular health. In this review, we discuss the effect of WBV both acute and after training on HRV. WBV training appears to be a useful therapeutic intervention to improve cardiac autonomic function in different populations, mainly through decreases in sympathovagal balance. Although the mechanisms by which WBV training improves symphathovagal balance are not yet well understood; enhancement of baroreflex sensitivity, nitric oxide bioavailability and angiotensin II levels seem to play an important role. © 2018 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  19. Accumulation of 5-oxoproline in myocardial dysfunction and the protective effects of OPLAH.

    PubMed

    van der Pol, Atze; Gil, Andres; Silljé, Herman H W; Tromp, Jasper; Ovchinnikova, Ekaterina S; Vreeswijk-Baudoin, Inge; Hoes, Martijn; Domian, Ibrahim J; van de Sluis, Bart; van Deursen, Jan M; Voors, Adriaan A; van Veldhuisen, Dirk J; van Gilst, Wiek H; Berezikov, Eugene; van der Harst, Pim; de Boer, Rudolf A; Bischoff, Rainer; van der Meer, Peter

    2017-11-08

    In response to heart failure (HF), the heart reacts by repressing adult genes and expressing fetal genes, thereby returning to a more fetal-like gene profile. To identify genes involved in this process, we carried out transcriptional analysis on murine hearts at different stages of development and on hearts from adult mice with HF. Our screen identified Oplah , encoding for 5-oxoprolinase, a member of the γ-glutamyl cycle that functions by scavenging 5-oxoproline. OPLAH depletion occurred as a result of cardiac injury, leading to elevated 5-oxoproline and oxidative stress, whereas OPLAH overexpression improved cardiac function after ischemic injury. In HF patients, we observed elevated plasma 5-oxoproline, which was associated with a worse clinical outcome. Understanding and modulating fetal-like genes in the failing heart may lead to potential diagnostic, prognostic, and therapeutic options in HF. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  20. Functional role of peripheral opioid receptors in the regulation of cardiac spinal afferent nerve activity during myocardial ischemia

    PubMed Central

    Longhurst, John C.

    2013-01-01

    Thinly myelinated Aδ-fiber and unmyelinated C-fiber cardiac sympathetic (spinal) sensory nerve fibers are activated during myocardial ischemia to transmit the sensation of angina pectoris. Although recent observations showed that myocardial ischemia increases the concentrations of opioid peptides and that the stimulation of peripheral opioid receptors inhibits chemically induced visceral and somatic nociception, the role of opioids in cardiac spinal afferent signaling during myocardial ischemia has not been studied. The present study tested the hypothesis that peripheral opioid receptors modulate cardiac spinal afferent nerve activity during myocardial ischemia by suppressing the responses of cardiac afferent nerve to ischemic mediators like bradykinin and extracellular ATP. The nerve activity of single unit cardiac afferents was recorded from the left sympathetic chain (T2–T5) in anesthetized cats. Forty-three ischemically sensitive afferent nerves (conduction velocity: 0.32–3.90 m/s) with receptive fields in the left and right ventricles were identified. The responses of these afferent nerves to repeat ischemia or ischemic mediators were further studied in the following protocols. First, epicardial administration of naloxone (8 μmol), a nonselective opioid receptor antagonist, enhanced the responses of eight cardiac afferent nerves to recurrent myocardial ischemia by 62%, whereas epicardial application of vehicle (PBS) did not alter the responses of seven other cardiac afferent nerves to ischemia. Second, naloxone applied to the epicardial surface facilitated the responses of seven cardiac afferent nerves to epicardial ATP by 76%. Third, administration of naloxone enhanced the responses of seven other afferent nerves to bradykinin by 85%. In contrast, in the absence of naloxone, cardiac afferent nerves consistently responded to repeated application of ATP (n = 7) or bradykinin (n = 7). These data suggest that peripheral opioid peptides suppress the responses of cardiac sympathetic afferent nerves to myocardial ischemia and ischemic mediators like ATP and bradykinin. PMID:23645463

  1. Murine Electrophysiological Models of Cardiac Arrhythmogenesis

    PubMed Central

    2016-01-01

    Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias. PMID:27974512

  2. Pharmacological identification of cholinergic receptor subtypes on Drosophila melanogaster larval heart.

    PubMed

    Malloy, Cole A; Ritter, Kyle; Robinson, Jonathan; English, Connor; Cooper, Robin L

    2016-01-01

    The Drosophila melanogaster heart is a popular model in which to study cardiac physiology and development. Progress has been made in understanding the role of endogenous compounds in regulating cardiac function in this model. It is well characterized that common neurotransmitters act on many peripheral and non-neuronal tissues as they flow through the hemolymph of insects. Many of these neuromodulators, including acetylcholine (ACh), have been shown to act directly on the D. melanogaster larval heart. ACh is a primary neurotransmitter in the central nervous system (CNS) of vertebrates and at the neuromuscular junctions on skeletal and cardiac tissue. In insects, ACh is the primary excitatory neurotransmitter of sensory neurons and is also prominent in the CNS. A full understanding regarding the regulation of the Drosophila cardiac physiology by the cholinergic system remains poorly understood. Here we use semi-intact D. melanogaster larvae to study the pharmacological profile of cholinergic receptor subtypes, nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs), in modulating heart rate (HR). Cholinergic receptor agonists, nicotine and muscarine both increase HR, while nAChR agonist clothianidin exhibits no significant effect when exposed to an open preparation at concentrations as low as 100 nM. In addition, both nAChR and mAChR antagonists increase HR as well but also display capabilities of blocking agonist actions. These results provide evidence that both of these receptor subtypes display functional significance in regulating the larval heart's pacemaker activity.

  3. Different gene expression in human heart tissue and progenitor cells from control and diabetic subjects: relevance to the pathogenesis of human diabetic cardiomyopathy.

    PubMed

    de Cillis, Emanuela; Leonardini, Anna; Laviola, Luigi; Giorgino, Francesco; Tupputi Schinosa, Luigi de Luca; Bortone, Alessandro Santo

    2010-04-01

    The The aim of our study is to investigate the molecular mechanisms of diabetic cardiomyopathy through the identification of remarkable genes for the myocardial function that are expressed differently between diabetic and normal subjects. Moreover, we intend to characterize both in human myocardial tissue and in the related cardiac progenitor cells the pattern of gene expression and the levels of expression and protein activation of molecular effectors involved in the regulation of the myocardial function and differentiation to clarify whether in specific human pathological conditions (type 2 diabetes mellitus, cardiac failure, coronary artery disease) specific alterations of the aforementioned factors could take place. Thirty-five patients scheduled for coronary artery bypass grafting (CABG) or for aortic or mitral valve replacement were recruited into the study. There were 13 men and 22 women with a mean age of 64.8 +/- 13.4 years. A list of anamnestic, anthropometric, clinical, and instrumental data required for an optimal phenotypical characterization of the patients is reported. The small cardiac biopsy specimens were placed in the nourishing buffer, in a sterile tube provided the day of the procedure, to maintain the stability of the sample for several hours at room temperature. The cells were isolated by a dedicated protocol and then cultured in vitro. The sample was processed for total RNA extraction and levels of gene expression and protein activation of molecular effectors involved in the regulation of function and differentiation of human myocardium was analyzed. In particular, cardiac genes that modulate the oxidative stress response or the stress induced by pro-inflammatory cytokines (p66Shc, SOCS-1, SOCS-3) were analyzed. From a small sample of myocardium cardiac stem cells and cardiomyoblasts were also isolated and characterized. These cells showed a considerable proliferative capacity due to the fact that they demonstrate stability up to the eleventh passage. Analysis of gene expression in a subgroup of subjects showed the trend of a decrease in levels of expression of cardiac-specific transcription genes and oxidative stress-related proteins in tissues of diabetic patients compared with controls subjects. This trend is not confirmed in isolated cells. As for the coronary artery disease, diabetic cardiomyopathy could be associated with a reduction of the cardiac stem and progenitor cells pool. The expansion of the cardiac resident cells pool could be associated with a preservation of cardiac performance, suggesting that a preserved stamina compartment can counteract the impact of diabetes on the myocardium.

  4. A randomized controlled trial to evaluate the safety and efficacy of cardiac contractility modulation in patients with systolic heart failure: rationale, design, and baseline patient characteristics.

    PubMed

    Abraham, William T; Burkhoff, Daniel; Nademanee, Koonlawee; Carson, Peter; Bourge, Robert; Ellenbogen, Kenneth A; Parides, Michael; Kadish, Alan

    2008-10-01

    Cardiac contractility modulation (CCM) signals are nonexcitatory electrical signals delivered during the cardiac absolute refractory period that enhance the strength of cardiac muscular contraction. Prior research in experimental and human heart failure has shown that CCM signals normalize phosphorylation of key proteins and expression of genes coding for proteins involved in regulation of calcium cycling and contraction. The results of prior clinical studies of CCM have supported its safety and efficacy. A large-scale clinical study, the FIX-HF-5 study, is currently underway to test the safety and efficacy of this treatment. In this article, we provide an overview of the system used to deliver CCM signals, the implant procedure, and the details and rationale of the FIX-HF-5 study design. Baseline characteristics for patients randomized in this trial are also presented.

  5. The Renin-Angiotensin-Aldosterone System (RAAS) and Cardiac Arrhythmias

    PubMed Central

    Iravanian, Shahriar; Dudley, Samuel C.

    2008-01-01

    The role of the renin-angiotensin-aldosterone system (RAAS) in many cardiovascular disorders, including hypertension, cardiac hypertrophy, and atherosclerosis is well established, whereas its relationship with cardiac arrhythmias is a new area of investigation. Atrial fibrillation and malignant ventricular tachyarrhythmias, especially in the setting of cardiac hypertrophy or failure, appear to be examples of RAAS-related arrhythmias, since treatment with RAAS modulators, including angiotensin converting enzyme inhibitors, angiotensin receptor blockers and mineralocorticoid receptor blockers, reduces the incidence of these arrhythmias. RAAS has a multitude of electrophysiological effects and can potentially cause arrhythmia through a variety of mechanisms. We review new experimental results that suggest RAAS has pro-arrhythmic effects on membrane and sarcoplasmic reticulum ion channels and that increased oxidative stress is likely contributing to the increased arrhythmic incidence. A summary of ongoing clinical trials that will address the clinical usefulness of RAAS modulators for prevention or treatment of arrhythmias is presented. PMID:18456194

  6. The renin-angiotensin-aldosterone system (RAAS) and cardiac arrhythmias.

    PubMed

    Iravanian, Shahriar; Dudley, Samuel C

    2008-06-01

    The role of the renin-angiotensin-aldosterone system (RAAS) in many cardiovascular disorders, including hypertension, cardiac hypertrophy, and atherosclerosis, is well established, whereas its relationship with cardiac arrhythmias is a new area of investigation. Atrial fibrillation and malignant ventricular tachyarrhythmias, especially in the setting of cardiac hypertrophy or failure, seem to be examples of RAAS-related arrhythmias because treatment with RAAS modulators, including angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and mineralocorticoid receptor blockers, reduces the incidence of these arrhythmias. RAAS has a multitude of electrophysiological effects and can potentially cause arrhythmia through a variety of mechanisms. We review new experimental results that suggest that RAAS has proarrhythmic effects on membrane and sarcoplasmic reticulum ion channels and that increased oxidative stress is likely contributing to the increased arrhythmic incidence. A summary of ongoing clinical trials that will address the clinical usefulness of RAAS modulators for prevention or treatment of arrhythmias is presented.

  7. Single cardiac ventricular myosins are autonomous motors

    PubMed Central

    Wang, Yihua; Yuan, Chen-Ching; Kazmierczak, Katarzyna; Szczesna-Cordary, Danuta

    2018-01-01

    Myosin transduces ATP free energy into mechanical work in muscle. Cardiac muscle has dynamically wide-ranging power demands on the motor as the muscle changes modes in a heartbeat from relaxation, via auxotonic shortening, to isometric contraction. The cardiac power output modulation mechanism is explored in vitro by assessing single cardiac myosin step-size selection versus load. Transgenic mice express human ventricular essential light chain (ELC) in wild- type (WT), or hypertrophic cardiomyopathy-linked mutant forms, A57G or E143K, in a background of mouse α-cardiac myosin heavy chain. Ensemble motility and single myosin mechanical characteristics are consistent with an A57G that impairs ELC N-terminus actin binding and an E143K that impairs lever-arm stability, while both species down-shift average step-size with increasing load. Cardiac myosin in vivo down-shifts velocity/force ratio with increasing load by changed unitary step-size selections. Here, the loaded in vitro single myosin assay indicates quantitative complementarity with the in vivo mechanism. Both have two embedded regulatory transitions, one inhibiting ADP release and a second novel mechanism inhibiting actin detachment via strain on the actin-bound ELC N-terminus. Competing regulators filter unitary step-size selection to control force-velocity modulation without myosin integration into muscle. Cardiac myosin is muscle in a molecule. PMID:29669825

  8. Stress-dependent dilated cardiomyopathy in mice with cardiomyocyte-restricted inactivation of cyclic GMP-dependent protein kinase I

    PubMed Central

    Frantz, Stefan; Klaiber, Michael; Baba, Hideo A.; Oberwinkler, Heike; Völker, Katharina; Gaβner, Birgit; Bayer, Barbara; Abeβer, Marco; Schuh, Kai; Feil, Robert; Hofmann, Franz; Kuhn, Michaela

    2013-01-01

    Aims Cardiac hypertrophy is a common and often lethal complication of arterial hypertension. Elevation of myocyte cyclic GMP levels by local actions of endogenous atrial natriuretic peptide (ANP) and C-type natriuretic peptide (CNP) or by pharmacological inhibition of phosphodiesterase-5 was shown to counter-regulate pathological hypertrophy. It was suggested that cGMP-dependent protein kinase I (cGKI) mediates this protective effect, although the role in vivo is under debate. Here, we investigated whether cGKI modulates myocyte growth and/or function in the intact organism. Methods and results To circumvent the systemic phenotype associated with germline ablation of cGKI, we inactivated the murine cGKI gene selectively in cardiomyocytes by Cre/loxP-mediated recombination. Mice with cardiomyocyte-restricted cGKI deletion exhibited unaltered cardiac morphology and function under resting conditions. Also, cardiac hypertrophic and contractile responses to β-adrenoreceptor stimulation by isoprenaline (at 40 mg/kg/day during 1 week) were unaltered. However, angiotensin II (Ang II, at 1000 ng/kg/min for 2 weeks) or transverse aortic constriction (for 3 weeks) provoked dilated cardiomyopathy with marked deterioration of cardiac function. This was accompanied by diminished expression of the [Ca2+]i-regulating proteins SERCA2a and phospholamban (PLB) and a reduction in PLB phosphorylation at Ser16, the specific target site for cGKI, resulting in altered myocyte Ca2+i homeostasis. In isolated adult myocytes, CNP, but not ANP, stimulated PLB phosphorylation, Ca2+i-handling, and contractility via cGKI. Conclusion These results indicate that the loss of cGKI in cardiac myocytes compromises the hypertrophic program to pathological stimulation, rendering the heart more susceptible to dysfunction. In particular, cGKI mediates stimulatory effects of CNP on myocyte Ca2+i handling and contractility. PMID:22199120

  9. p21-Activated kinase-1 and its role in integrated regulation of cardiac contractility.

    PubMed

    Sheehan, Katherine A; Ke, Yunbo; Solaro, R John

    2007-09-01

    We review here a novel concept in the regulation of cardiac contractility involving variations in the activity of the multifunctional enzyme, p21-activated kinase 1 (Pak1), a member of a family of proteins in the small G protein-signaling pathway that is activated by Cdc42 and Rac1. There is a large body of evidence from studies in noncardiac tissue that Pak1 activity is key in regulation of a number of cellular functions, including cytoskeletal dynamics, cell motility, growth, and proliferation. Although of significant potential impact, the role of Pak1 in regulation of the heart has been investigated in only a few laboratories. In this review, we discuss the structure of Pak1 and its sites of posttranslational modification and molecular interactions. We assemble an overview of the current data on Pak1 signaling in noncardiac tissues relative to similar signaling pathways in the heart, and we identify potential roles of Pak1 in cardiac regulation. Finally, we discuss the current state of Pak1 research in the heart in regard to regulation of contractility through functional myofilament and Ca(2+)-flux modification. An important aspect of this regulation is the modulation of kinase and phosphatase activity. We have focused on Pak1 regulation of protein phosphatase 2A (PP2A), which is abundant in cardiac muscle, thereby mediating dephosphorylation of sarcomeric proteins and sensitizing the myofilaments to Ca(2+). We present a model for Pak1 signaling that provides a mechanism for specifically affecting cardiac cellular processes in which regulation of protein phosphorylation states by PP2A dephosphorylation predominates.

  10. Na+/Ca2+ exchange and Na+/K+-ATPase in the heart

    PubMed Central

    Shattock, Michael J; Ottolia, Michela; Bers, Donald M; Blaustein, Mordecai P; Boguslavskyi, Andrii; Bossuyt, Julie; Bridge, John H B; Chen-Izu, Ye; Clancy, Colleen E; Edwards, Andrew; Goldhaber, Joshua; Kaplan, Jack; Lingrel, Jerry B; Pavlovic, Davor; Philipson, Kenneth; Sipido, Karin R; Xie, Zi-Jian

    2015-01-01

    This paper is the third in a series of reviews published in this issue resulting from the University of California Davis Cardiovascular Symposium 2014: Systems approach to understanding cardiac excitation–contraction coupling and arrhythmias: Na+ channel and Na+ transport. The goal of the symposium was to bring together experts in the field to discuss points of consensus and controversy on the topic of sodium in the heart. The present review focuses on cardiac Na+/Ca2+ exchange (NCX) and Na+/K+-ATPase (NKA). While the relevance of Ca2+ homeostasis in cardiac function has been extensively investigated, the role of Na+ regulation in shaping heart function is often overlooked. Small changes in the cytoplasmic Na+ content have multiple effects on the heart by influencing intracellular Ca2+ and pH levels thereby modulating heart contractility. Therefore it is essential for heart cells to maintain Na+ homeostasis. Among the proteins that accomplish this task are the Na+/Ca2+ exchanger (NCX) and the Na+/K+ pump (NKA). By transporting three Na+ ions into the cytoplasm in exchange for one Ca2+ moved out, NCX is one of the main Na+ influx mechanisms in cardiomyocytes. Acting in the opposite direction, NKA moves Na+ ions from the cytoplasm to the extracellular space against their gradient by utilizing the energy released from ATP hydrolysis. A fine balance between these two processes controls the net amount of intracellular Na+ and aberrations in either of these two systems can have a large impact on cardiac contractility. Due to the relevant role of these two proteins in Na+ homeostasis, the emphasis of this review is on recent developments regarding the cardiac Na+/Ca2+ exchanger (NCX1) and Na+/K+ pump and the controversies that still persist in the field. PMID:25772291

  11. Drosophila KCNQ Channel Displays Evolutionarily Conserved Electrophysiology and Pharmacology with Mammalian KCNQ Channels

    PubMed Central

    Cavaliere, Sonia; Hodge, James J. L.

    2011-01-01

    Of the five human KCNQ (Kv7) channels, KCNQ1 with auxiliary subunit KCNE1 mediates the native cardiac IKs current with mutations causing short and long QT cardiac arrhythmias. KCNQ4 mutations cause deafness. KCNQ2/3 channels form the native M-current controlling excitability of most neurons, with mutations causing benign neonatal febrile convulsions. Drosophila contains a single KCNQ (dKCNQ) that appears to serve alone the functions of all the duplicated mammalian neuronal and cardiac KCNQ channels sharing roughly 50–60% amino acid identity therefore offering a route to investigate these channels. Current information about the functional properties of dKCNQ is lacking therefore we have investigated these properties here. Using whole cell patch clamp electrophysiology we compare the biophysical and pharmacological properties of dKCNQ with the mammalian neuronal and cardiac KCNQ channels expressed in HEK cells. We show that Drosophila KCNQ (dKCNQ) is a slowly activating and slowly-deactivating K+ current open at sub-threshold potentials that has similar properties to neuronal KCNQ2/3 with some features of the cardiac KCNQ1/KCNE1 accompanied by conserved sensitivity to a number of clinically relevant KCNQ blockers (chromanol 293B, XE991, linopirdine) and opener (zinc pyrithione). We also investigate the molecular basis of the differential selectivity of KCNQ channels to the opener retigabine and show a single amino acid substitution (M217W) can confer sensitivity to dKCNQ. We show dKCNQ has similar electrophysiological and pharmacological properties as the mammalian KCNQ channels, allowing future study of physiological and pathological roles of KCNQ in Drosophila and whole organism screening for new modulators of KCNQ channelopathies. PMID:21915266

  12. Serca2a and Na{sup +}/Ca{sup 2+} exchanger are involved in left ventricular function following cardiac remodelling of female rats treated with anabolic androgenic steroid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nascimento, Andrews Marques do; Lima, Ewelyne Mira

    Anabolic-androgenic steroids are misused, including by women, but little is known about the cardiovascular effects of these drugs on women. Aim: To evaluated the effects of nandrolone decanoate (ND) and resistive physical exercise on cardiac contractility in young female rats. Main methods: Female Wistar rats were separated into 4 groups: C (untrained animals); E (animals were submitted to resistance exercise by jumping in water 5 times per week); ND (animals were treated with ND, 20 mg/kg/week for 4 weeks); and NDE (trained and treated). The haemodynamic parameters (+ dP/dt{sub max}, − dP/dt{sub min} and Tau) were assessed in the leftmore » ventricle. The heart was collected for histological analyses and collagen deposition. The gastrocnemius muscle was weighed, and hypertrophy was assessed by the ratio of their weights to gastrocnemius/tibia length. The expression of calcium handling proteins was measured by western blot analysis. Results: ND treatment and physical exercise increased cardiac contractility and relaxation. In addition, ND promoted increases in phospholamban phosphorylated (p-PLB) and isoforms of sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2a) expression, while resistance exercise increased the phosphorylation of PLB and expression of Na{sup +}/Ca{sup 2+} exchangers (NCX). Cardiac hypertrophy and collagen deposition were observed after ND treatment. Conclusion: Regulatory components of cytosolic calcium, such as SERCA2a and p-PLB, play important roles in modulating the contractility and relaxation effects of ND in females. - Highlights: • ND and resistive exercise enhanced the cardiac function and increased expression of cytosolic calcium regulatory components.« less

  13. Decoding the Long Noncoding RNA During Cardiac Maturation: A Roadmap for Functional Discovery.

    PubMed

    Touma, Marlin; Kang, Xuedong; Zhao, Yan; Cass, Ashley A; Gao, Fuying; Biniwale, Reshma; Coppola, Giovanni; Xiao, Xinshu; Reemtsen, Brian; Wang, Yibin

    2016-10-01

    Cardiac maturation during perinatal transition of heart is critical for functional adaptation to hemodynamic load and nutrient environment. Perturbation in this process has major implications in congenital heart defects. Transcriptome programming during perinatal stages is an important information but incomplete in current literature, particularly, the expression profiles of the long noncoding RNAs (lncRNAs) are not fully elucidated. From comprehensive analysis of transcriptomes derived from neonatal mouse heart left and right ventricles, a total of 45 167 unique transcripts were identified, including 21 916 known and 2033 novel lncRNAs. Among these lncRNAs, 196 exhibited significant dynamic regulation along maturation process. By implementing parallel weighted gene co-expression network analysis of mRNA and lncRNA data sets, several lncRNA modules coordinately expressed in a developmental manner similar to protein coding genes, while few lncRNAs revealed chamber-specific patterns. Out of 2262 lncRNAs located within 50 kb of protein coding genes, 5% significantly correlate with the expression of their neighboring genes. The impact of Ppp1r1b-lncRNA on the corresponding partner gene Tcap was validated in cultured myoblasts. This concordant regulation was also conserved in human infantile hearts. Furthermore, the Ppp1r1b-lncRNA/Tcap expression ratio was identified as a molecular signature that differentiated congenital heart defect phenotypes. The study provides the first high-resolution landscape on neonatal cardiac lncRNAs and reveals their potential interaction with mRNA transcriptome during cardiac maturation. Ppp1r1b-lncRNA was identified as a regulator of Tcap expression, with dynamic interaction in postnatal cardiac development and congenital heart defects. © 2016 American Heart Association, Inc.

  14. Triiodothyronine increases myocardial function and pyruvate entry into the citric acid cycle after reperfusion in a model of infant cardiopulmonary bypass

    PubMed Central

    Olson, Aaron K.; Bouchard, Bertrand; Ning, Xue-Han; Isern, Nancy; Rosiers, Christine Des

    2012-01-01

    Triiodothyronine (T3) supplementation improves clinical outcomes in infants after cardiac surgery using cardiopulmonary bypass by unknown mechanisms. We utilized a translational model of infant cardiopulmonary bypass to test the hypothesis that T3 modulates pyruvate entry into the citric acid cycle (CAC), thereby providing the energy support for improved cardiac function after ischemia-reperfusion (I/R). Neonatal piglets received intracoronary [2-13Carbon(13C)]pyruvate for 40 min (8 mM) during control aerobic conditions (control) or immediately after reperfusion (I/R) from global hypothermic ischemia. A third group (I/R-Tr) received T3 (1.2 μg/kg) during reperfusion. We assessed absolute CAC intermediate levels and flux parameters into the CAC through oxidative pyruvate decarboxylation (PDC) and anaplerotic carboxylation (PC) using [2-13C]pyruvate and isotopomer analysis by gas and liquid chromatography-mass spectrometry and 13C-nuclear magnetic resonance spectroscopy. When compared with I/R, T3 (group I/R-Tr) increased cardiac power and oxygen consumption after I/R while elevating flux of both PDC and PC (∼4-fold). Although neither I/R nor I/R-Tr modified absolute CAC levels, T3 inhibited I/R-induced reductions in their molar percent enrichment. Furthermore, 13C-labeling of CAC intermediates suggests that T3 may decrease entry of unlabeled carbons at the level of oxaloacetate through anaplerosis or exchange reaction with asparate. T3 markedly enhances PC and PDC fluxes, thereby providing potential substrate for elevated cardiac function after reperfusion. This T3-induced increase in pyruvate fluxes occurs with preservation of the CAC intermediate pool. Our labeling data raise the possibility that T3 reduces reliance on amino acids for anaplerosis after reperfusion. PMID:22180654

  15. Aldosterone Promotes Cardiac Endothelial Cell Proliferation In Vivo

    PubMed Central

    Gravez, Basile; Tarjus, Antoine; Pelloux, Véronique; Ouvrard‐Pascaud, Antoine; Delcayre, Claude; Samuel, Janelise; Clément, Karine; Farman, Nicolette; Jaisser, Fréderic; Messaoudi, Smail

    2015-01-01

    Background Experimentally, aldosterone in association with NaCl induces cardiac fibrosis, oxidative stress, and inflammation through mineralocorticoid receptor activation; however, the biological processes regulated by aldosterone alone in the heart remain to be identified. Methods and Results Mice were treated for 7 days with aldosterone, and then cardiac transcriptome was analyzed. Aldosterone regulated 60 transcripts (51 upregulated and 9 downregulated) in the heart (fold change ≥1.5, false discovery rate <0.01). To identify the biological processes modulated by aldosterone, a gene ontology analysis was performed. The majority of aldosterone‐regulated genes were involved in cell division. The cardiac Ki‐67 index (an index of proliferation) of aldosterone‐treated mice was higher than that of nontreated mice, confirming microarray predictions. Costaining of Ki‐67 with vinculin, CD68, α‐smooth muscle actin, CD31, or caveolin 1 revealed that the cycling cells were essentially endothelial cells. Aldosterone‐induced mineralocorticoid receptor–dependent proliferation was confirmed ex vivo in human endothelial cells. Moreover, pharmacological‐specific blockade of mineralocorticoid receptor by eplerenone inhibited endothelial cell proliferation in a preclinical model of heart failure (transverse aortic constriction). Conclusions Aldosterone modulates cardiac gene expression and induces the proliferation of cardiac endothelial cells in vivo. PMID:25564371

  16. S-Nitrosoglutathione Reductase Deficiency Enhances the Proliferative Expansion of Adult Heart Progenitors and Myocytes Post Myocardial Infarction

    PubMed Central

    Hatzistergos, Konstantinos E; Paulino, Ellena C; Dulce, Raul A; Takeuchi, Lauro M; Bellio, Michael A; Kulandavelu, Shathiyah; Cao, Yenong; Balkan, Wayne; Kanashiro-Takeuchi, Rosemeire M; Hare, Joshua M

    2015-01-01

    Background Mammalian heart regenerative activity is lost before adulthood but increases after cardiac injury. Cardiac repair mechanisms, which involve both endogenous cardiac stem cells (CSCs) and cardiomyocyte cell-cycle reentry, are inadequate to achieve full recovery after myocardial infarction (MI). Mice deficient in S-nitrosoglutathione reductase (GSNOR−⁄−), an enzyme regulating S-nitrosothiol turnover, have preserved cardiac function after MI. Here, we tested the hypothesis that GSNOR activity modulates cardiac cell proliferation in the post-MI adult heart. Methods and Results GSNOR−⁄− and C57Bl6/J (wild-type [WT]) mice were subjected to sham operation (n=3 GSNOR−⁄−; n=3 WT) or MI (n=41 GSNOR−⁄−; n=65 WT). Compared with WT,GSNOR−⁄− mice exhibited improved survival, cardiac performance, and architecture after MI, as demonstrated by higher ejection fraction (P<0.05), lower endocardial volumes (P<0.001), and diminished scar size (P<0.05). In addition, cardiomyocytes from post-MI GSNOR−⁄− hearts exhibited faster calcium decay and sarcomeric relaxation times (P<0.001). Immunophenotypic analysis illustrated that post-MI GSNOR−⁄− hearts demonstrated enhanced neovascularization (P<0.001), c-kit+ CSC abundance (P=0.013), and a ≈3-fold increase in proliferation of adult cardiomyocytes and c-kit+/CD45− CSCs (P<0.0001 and P=0.023, respectively) as measured by using 5-bromodeoxyuridine. Conclusions Loss of GSNOR confers enhanced post-MI cardiac regenerative activity, characterized by enhanced turnover of cardiomyocytes and CSCs. Endogenous denitrosylases exert an inhibitory effect over cardiac repair mechanisms and therefore represents a potential novel therapeutic target. PMID:26178404

  17. Cardiomyocyte-Restricted Low Density Lipoprotein Receptor-Related Protein 6 (LRP6) Deletion Leads to Lethal Dilated Cardiomyopathy Partly Through Drp1 Signaling

    PubMed Central

    Chen, Zhidan; Li, Yang; Wang, Ying; Qian, Juying; Ma, Hong; Wang, Xiang; Jiang, Guoliang; Liu, Ming; An, Yanpeng; Ma, Leilei; Kang, Le; Jia, Jianguo; Yang, Chunjie; Zhang, Guoping; Chen, Ying; Gao, Wei; Fu, Mingqiang; Huang, Zheyong; Tang, Huiru; Zhu, Yichun; Ge, Junbo; Gong, Hui; Zou, Yunzeng

    2018-01-01

    Low density lipoprotein receptor-related protein 6 (LRP6), a wnt co-receptor, regulates multiple functions in various organs. However, the roles of LRP6 in the adult heart are not well understood. Methods: We observed LRP6 expression in heart with end-stage dilated cardiomyopathy (DCM) by western blot. Tamoxifen-inducible cardiac-specific LRP6 knockout mouse was constructed. Hemodynamic and echocardiographic analyses were performed to these mice. Results: Cardiac LRP6 expression was dramatically decreased in patients with end-stage dilated cardiomyopathy (DCM) compared to control group. Tamoxifen-inducible cardiac-specific LRP6 knockout mice developed acute heart failure and mitochondrial dysfunction with reduced survival. Proteomic analysis suggests the fatty acid metabolism disorder involving peroxisome proliferator-activated receptors (PPARs) signaling in the LRP6 deficient heart. Accumulation of mitochondrial targeting to autophagosomes and lipid droplet were observed in LRP6 deletion hearts. Further analysis revealed cardiac LRP6 deletion suppressed autophagic degradation and fatty acid utilization, coinciding with activation of dynamin-related protein 1 (Drp1) and downregulation of nuclear TFEB (Transcription factor EB). Injection of Mdivi-1, a Drp1 inhibitor, not only promoted nuclear translocation of TFEB, but also partially rescued autophagic degradation, improved PPARs signaling, and attenuated cardiac dysfunction induced by cardiac specific LRP6 deletion. Conclusions: Cardiac LRP6 deficiency greatly suppressed autophagic degradation and fatty acid utilization, and subsequently leads to lethal dilated cardiomyopathy and cardiac dysfunction through activation of Drp1 signaling. It suggests that heart failure progression may be attenuated by therapeutic modulation of LRP6 expression. PMID:29344294

  18. Voltage gated sodium channels as drug discovery targets

    PubMed Central

    Bagal, Sharan K; Marron, Brian E; Owen, Robert M; Storer, R Ian; Swain, Nigel A

    2015-01-01

    Voltage-gated sodium (NaV) channels are a family of transmembrane ion channel proteins. They function by forming a gated, water-filled pore to help establish and control cell membrane potential via control of the flow of ions between the intracellular and the extracellular environments. Blockade of NaVs has been successfully accomplished in the clinic to enable control of pathological firing patterns that occur in a diverse range of conditions such as chronic pain, epilepsy, and cardiac arrhythmias. First generation sodium channel modulator drugs, despite low inherent subtype selectivity, preferentially act on over-excited cells which reduces undesirable side effects in the clinic. However, the limited therapeutic indices observed with the first generation demanded a new generation of sodium channel inhibitors. The structure, function and the state of the art in sodium channel modulator drug discovery are discussed in this chapter. PMID:26646477

  19. Medial prefrontal cortex TRPV1 and CB1 receptors modulate cardiac baroreflex activity by regulating the NMDA receptor/nitric oxide pathway.

    PubMed

    Lagatta, Davi C; Kuntze, Luciana B; Ferreira-Junior, Nilson C; Resstel, Leonardo B M

    2018-05-29

    The ventral medial prefrontal cortex (vMPFC) facilitates the cardiac baroreflex response through N-methyl-D-aspartate (NMDA) receptor activation and nitric oxide (NO) formation by neuronal NO synthase (nNOS) and soluble guanylate cyclase (sGC) triggering. Glutamatergic transmission is modulated by the cannabinoid receptor type 1 (CB 1 ) and transient receptor potential vanilloid type 1 (TRPV 1 ) receptors, which may inhibit or stimulate glutamate release in the brain, respectively. Interestingly, vMPFC CB 1 receptors decrease cardiac baroreflex responses, while TRPV 1 channels facilitate them. Therefore, the hypothesis of the present study is that the vMPFC NMDA/NO pathway is regulated by both CB 1 and TRPV 1 receptors in the modulation of cardiac baroreflex activity. In order to test this assumption, we used male Wistar rats that had stainless steel guide cannulae bilaterally implanted in the vMPFC. Subsequently, a catheter was inserted into the femoral artery, for cardiovascular recordings, and into the femoral vein for assessing baroreflex activation. The increase in tachycardic and bradycardic responses observed after the microinjection of a CB 1 receptors antagonist into the vMPFC was prevented by an NMDA antagonist as well as by the nNOS and sGC inhibition. NO extracellular scavenging also abolished these responses. These same pharmacological manipulations inhibited cardiac reflex enhancement induced by TRPV 1 agonist injection into the area. Based on these results, we conclude that vMPFC CB 1 and TRPV 1 receptors inhibit or facilitate the cardiac baroreflex activity by stimulating or blocking the NMDA activation and NO synthesis.

  20. The Transcription Factor Atonal homolog 8 Regulates Gata4 and Friend of Gata-2 during Vertebrate Development

    PubMed Central

    Rawnsley, David R.; Xiao, Jiping; Lee, John S.; Liu, Xi; Mericko-Ishizuka, Patricia; Kumar, Vinayak; He, Jie; Basu, Arindam; Lu, MinMin; Lynn, Francis C.; Pack, Michael; Gasa, Rosa; Kahn, Mark L.

    2013-01-01

    GATA and Friend of GATA (FOG) form a transcriptional complex that plays a key role in cardiovascular development in both fish and mammals. In the present study we demonstrate that the basic helix-loop-helix transcription factor Atonal homolog 8 (Atoh8) is required for development of the heart in fish but not in mice. Genetic studies reveal that Atoh8 interacts specifically with Gata4 and Fog1 during development of the heart and swim bladder in the fish. Biochemical studies reveal that ATOH8, GATA4, and FOG2 associate in a single complex in vitro. In contrast to fish, ATOH8-deficient mice exhibit normal cardiac development and loss of ATOH8 does not alter cardiac development in Gata4+/− mice. This species difference in the role of ATOH8 is explained in part by LacZ and GFP reporter alleles that reveal restriction of Atoh8 expression to atrial but not ventricular myocardium in the mouse. Our findings identify ATOH8 as a novel regulator of GATA-FOG function that is required for cardiac development in the fish but not the mouse. Whether ATOH8 modulates GATA-FOG function at other sites or in more subtle ways in mammals is not yet known. PMID:23836893

  1. Left atrial function: evaluation by strain analysis

    PubMed Central

    Gan, Gary C. H.; Ferkh, Aaisha; Boyd, Anita

    2018-01-01

    The left atrium has an important role in modulating left ventricular filling and is an important biomarker of cardiovascular disease and adverse cardiovascular outcomes. While previously left atrial (LA) size was utilised, the role of LA function as a biomarker is increasingly being evaluated, both independently and also in combination with LA size. Strain analysis has been utilised for evaluation of LA function and can be measured throughout the cardiac cycle, thereby enabling the evaluation of LA reservoir, conduit and contractile function. Strain evaluates myocardial deformation while strain rate examines the rate of change in strain. This review will focus on the various types of strain analysis for evaluation of LA function, alterations in LA strain in physiological and pathologic states that alter LA function and finally evaluate its utility as a prognostic marker. PMID:29541609

  2. Metabolic Modulators in Heart Disease: Past, Present, and Future.

    PubMed

    Lopaschuk, Gary D

    2017-07-01

    Ischemic heart disease and heart failure are leading causes of mortality and morbidity worldwide. They continue to be major burden on health care systems throughout the world, despite major advances made over the past 40 years in developing new therapeutic approaches to treat these debilitating diseases. A potential therapeutic approach that has been underutilized in treating ischemic heart disease and heart failure is "metabolic modulation." Major alterations in myocardial energy substrate metabolism occur in ischemic heart disease and heart failure, and are associated with an energy deficit in the heart. A metabolic shift from mitochondrial oxidative metabolism to glycolysis, as well as an uncoupling between glycolysis and glucose oxidation, plays a crucial role in the development of cardiac inefficiency (oxygen consumed per work performed) and functional impairment in ischemic heart disease as well as in heart failure. This has led to the concept that optimizing energy substrate use with metabolic modulators can be a potentially promising approach to decrease the severity of ischemic heart disease and heart failure, primarily by improving cardiac efficiency. Two approaches for metabolic modulator therapy are to stimulate myocardial glucose oxidation and/or inhibit fatty acid oxidation. In this review, the past, present, and future of metabolic modulators as an approach to optimizing myocardial energy substrate metabolism and treating ischemic heart disease and heart failure are discussed. This includes a discussion of pharmacological interventions that target enzymes involved in fatty acid uptake, fatty acid oxidation, and glucose oxidation in the heart, as well as enzymes involved in ketone and branched chain amino acid catabolism in the heart. Copyright © 2017 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  3. Cardiac function and cognition in older community-dwelling cardiac patients.

    PubMed

    Eggermont, Laura H P; Aly, Mohamed F A; Vuijk, Pieter J; de Boer, Karin; Kamp, Otto; van Rossum, Albert C; Scherder, Erik J A

    2017-11-01

    Cognitive deficits have been reported in older cardiac patients. An underlying mechanism for these findings may be reduced cardiac function. The relationship between cardiac function as represented by different echocardiographic measures and different cognitive function domains in older cardiac patients remains unknown. An older (≥70 years) heterogeneous group of 117 community-dwelling cardiac patients under medical supervision by a cardiologist underwent thorough echocardiographic assessment including left ventricular ejection fraction, cardiac index, left atrial volume index, left ventricular mass index, left ventricular diastolic function, and valvular calcification. During a home visit, a neuropsychological assessment was performed within 7.1 ± 3.8 months after echocardiographic assessment; the neuropsychological assessment included three subtests of a word-learning test (encoding, recall, recognition) to examine one memory function domain and three executive function tests, including digit span backwards, Trail Making Test B minus A, and the Stroop colour-word test. Regression analyses showed no significant linear or quadratic associations between any of the echocardiographic functions and the cognitive function measures. None of the echocardiographic measures as representative of cardiac function was correlated with memory or executive function in this group of community-dwelling older cardiac patients. These findings contrast with those of previous studies. © 2017 Japanese Psychogeriatric Society.

  4. Interrelationship between 3,5,3′-triiodothyronine and the circadian clock in the rodent heart

    PubMed Central

    Peliciari-Garcia, Rodrigo Antonio; Prévide, Rafael Maso; Nunes, Maria Tereza; Young, Martin Elliot

    2017-01-01

    Triiodothyronine (T3) is an important modulator of cardiac metabolism and function, often through modulation of gene expression. The cardiomyocyte circadian clock is a transcriptionally-based molecular mechanism capable of regulating cardiac processes, in part by modulating responsiveness of the heart to extra-cardiac stimuli/stresses in a time-of-day- (TOD) dependent manner. Although TOD-dependent oscillations in circulating levels of T3 (and its intermediates) have been established, whether oscillations in T3 sensitivity in the heart occur is unknown. To investigate the latter possibility, euthyroid male Wistar rats were treated with vehicle or T3 at distinct times of the day, after which induction of known T3 target genes were assessed in the heart (4-h later). The expression of mRNA was assessed by Real-Time qPCR. Here, we report greater T3 induction of transcript levels at the end of the dark phase. Surprisingly, use of cardiomyocyte-specific clock mutant (CCM) mice revealed that TOD-dependent oscillations in T3 sensitivity were independent of this cell autonomous mechanism. Investigation of genes encoding for proteins that affect T3 sensitivity revealed that Dio1, Dio2, and Thrb1 exhibited TOD-dependent variations in the heart, while Thra1 and Thra2 did not. Of these, Dio1 and Thrb1 were increased in the heart at the end of the dark phase. Interestingly, we observed that T3 acutely altered the expression of core clock components (e.g., Bmal1) in the rat heart. To investigate this further, rats were injected with a single dose of T3, after which expression of clock genes were interrogated at 3-h intervals over the subsequent 24h-period. These studies revealed robust effects of T3 on oscillations of both core clock components and clock-controlled genes. In summary, the current study exposed time-of-day-dependent rhythms in cardiac T3 sensitivity, and that T3 alters the circadian clock in the heart. PMID:27661292

  5. The Nociceptin/Orphanin FQ System Is Modulated in Patients Admitted to ICU with Sepsis and after Cardiopulmonary Bypass

    PubMed Central

    Serrano-Gomez, Alcira; McDonald, John; Ladak, Nadia; Bowrey, Sarah

    2013-01-01

    Background And Objectives Nociceptin/Orphanin FQ (N/OFQ) is a non-classical endogenous opioid peptide that modulates immune function in vitro. Its importance in inflammation and human sepsis is unknown. The objectives of this study were to determine the relationship between N/OFQ, transcripts for its precursor (pre-pro-N/OFQ [ppNOC]) and receptor (NOP), inflammatory markers and clinical outcomes in patients undergoing cardiopulmonary bypass and with sepsis. Methods A prospective observational cohort study of 82 patients admitted to Intensive Care (ICU) with sepsis and 40 patients undergoing cardiac surgery under cardiopulmonary bypass (as a model of systemic inflammation). Sixty three healthy volunteers, matched by age and sex to the patients with sepsis were also studied. Clinical and laboratory details were recorded. Polymorph ppNOC and NOP receptor mRNA were determined using quantitative PCR. Plasma N/OFQ was determined using ELISA and cytokines (TNF- α, IL-8, IL-10) measured using radioimmunoassay. Data from patients undergoing cardiac surgery were recorded before, 3 and 24 hours after cardiopulmonary bypass. ICU patients with sepsis were assessed on Days 1 and 2 of ICU admission, and after clinical recovery. Main Results Plasma N/OFQ concentrations increased (p<0.0001) on Days 1 and 2 of ICU admission with sepsis compared to matched recovery samples. Polymorph ppNOC (p= 0.019) and NOP mRNA (p<0.0001) decreased compared to healthy volunteers. TNF-α, IL-8 and IL-10 concentrations increased on Day 1 compared to matched recovery samples and volunteers (p<0.0001). Similar changes (increased plasma N/OFQ, [p=0.0058], decreased ppNOC [p<0.0001], increased IL-8 and IL-10 concentrations [both p<0.0001]) occurred after cardiac surgery but these were comparatively lower and of shorter duration. Conclusions The N/OFQ system is modulated in ICU patients with sepsis with similar but reduced changes after cardiac surgery under cardiopulmonary bypass. Further studies are required to clarify the role of the N/OFQ system in inflammation and sepsis, and the mechanisms involved. PMID:24124588

  6. Combinatorial therapy of exercise-preconditioning and nanocurcumin formulation supplementation improves cardiac adaptation under hypobaric hypoxia.

    PubMed

    Nehra, Sarita; Bhardwaj, Varun; Bansal, Anju; Saraswat, Deepika

    2017-09-26

    Chronic hypobaric hypoxia (cHH) mediated cardiac insufficiencies are associated with pathological damage. Sustained redox stress and work load are major causative agents of cardiac insufficiencies under cHH. Despite the advancements made in pharmacological (anti-oxidants, vasodilators) and non-pharmacological therapeutics (acclimatization strategies and schedules), only partial success has been achieved in improving cardiac acclimatization to cHH. This necessitates the need for potent combinatorial therapies to improve cardiac acclimatization at high altitudes. We hypothesize that a combinatorial therapy comprising preconditioning to mild aerobic treadmill exercise and supplementation with nanocurcumin formulation (NCF) consisting of nanocurcumin (NC) and pyrroloquinoline quinone (PQQ) might improve cardiac adaptation at high altitudes. Adult Sprague-Dawley rats pre-conditioned to treadmill exercise and supplemented with NCF were exposed to cHH (7620 m altitude corresponding to pO2~8% at 28±2°C, relative humidity 55%±1%) for 3 weeks. The rat hearts were analyzed for changes in markers of oxidative stress (free radical leakage, lipid peroxidation, manganese-superoxide dismutase [MnSOD] activity), cardiac injury (circulating cardiac troponin I [TnI] and T [cTnT], myocardial creatine kinase [CK-MB]), metabolic damage (lactate dehydrogenase [LDH] and acetyl-coenzyme A levels, lactate and pyruvate levels) and bio-energetic insufficiency (ATP, p-AMPKα). Significant modulations (p≤0.05) in cardiac redox status, metabolic damage, cardiac injury and bio-energetics were observed in rats receiving both NCF supplementation and treadmill exercise-preconditioning compared with rats receiving only one of the treatments. The combinatorial therapeutic strategy showed a tremendous improvement in cardiac acclimatization to cHH compared to either exercise-preconditioning or NCF supplementation alone which was evident from the effective modulation in redox, metabolic, contractile and bio-energetic homeostasis.

  7. Myofilament Calcium Sensitivity: Mechanistic Insight into TnI Ser-23/24 and Ser-150 Phosphorylation Integration

    PubMed Central

    Salhi, Hussam E.; Hassel, Nathan C.; Siddiqui, Jalal K.; Brundage, Elizabeth A.; Ziolo, Mark T.; Janssen, Paul M. L.; Davis, Jonathan P.; Biesiadecki, Brandon J.

    2016-01-01

    Troponin I (TnI) is a major regulator of cardiac muscle contraction and relaxation. During physiological and pathological stress, TnI is differentially phosphorylated at multiple residues through different signaling pathways to match cardiac function to demand. The combination of these TnI phosphorylations can exhibit an expected or unexpected functional integration, whereby the function of two phosphorylations are different than that predicted from the combined function of each individual phosphorylation alone. We have shown that TnI Ser-23/24 and Ser-150 phosphorylation exhibit functional integration and are simultaneously increased in response to cardiac stress. In the current study, we investigated the functional integration of TnI Ser-23/24 and Ser-150 to alter cardiac contraction. We hypothesized that Ser-23/24 and Ser-150 phosphorylation each utilize distinct molecular mechanisms to alter the TnI binding affinity within the thin filament. Mathematical modeling predicts that Ser-23/24 and Ser-150 phosphorylation affect different TnI affinities within the thin filament to distinctly alter the Ca2+-binding properties of troponin. Protein binding experiments validate this assertion by demonstrating pseudo-phosphorylated Ser-150 decreases the affinity of isolated TnI for actin, whereas Ser-23/24 pseudo-phosphorylation is not different from unphosphorylated. Thus, our data supports that TnI Ser-23/24 affects TnI-TnC binding, while Ser-150 phosphorylation alters TnI-actin binding. By measuring force development in troponin-exchanged skinned myocytes, we demonstrate that the Ca2+ sensitivity of force is directly related to the amount of phosphate present on TnI. Furthermore, we demonstrate that Ser-150 pseudo-phosphorylation blunts Ser-23/24-mediated decreased Ca2+-sensitive force development whether on the same or different TnI molecule. Therefore, TnI phosphorylations can integrate across troponins along the myofilament. These data demonstrate that TnI Ser-23/24 and Ser-150 phosphorylation regulates muscle contraction in part by modulating different TnI interactions in the thin filament and it is the combination of these differential mechanisms that provides understanding of their functional integration. PMID:28018230

  8. The chromatin-binding protein Smyd1 restricts adult mammalian heart growth

    PubMed Central

    Kimball, Todd; Rasmussen, Tara L.; Rosa-Garrido, Manuel; Chen, Haodong; Tran, Tam; Miller, Mickey R.; Gray, Ricardo; Jiang, Shanxi; Ren, Shuxun; Wang, Yibin; Tucker, Haley O.; Vondriska, Thomas M.

    2016-01-01

    All terminally differentiated organs face two challenges, maintaining their cellular identity and restricting organ size. The molecular mechanisms responsible for these decisions are of critical importance to organismal development, and perturbations in their normal balance can lead to disease. A hallmark of heart failure, a condition affecting millions of people worldwide, is hypertrophic growth of cardiomyocytes. The various forms of heart failure in human and animal models share conserved transcriptome remodeling events that lead to expression of genes normally silenced in the healthy adult heart. However, the chromatin remodeling events that maintain cell and organ size are incompletely understood; insights into these mechanisms could provide new targets for heart failure therapy. Using a quantitative proteomics approach to identify muscle-specific chromatin regulators in a mouse model of hypertrophy and heart failure, we identified upregulation of the histone methyltransferase Smyd1 during disease. Inducible loss-of-function studies in vivo demonstrate that Smyd1 is responsible for restricting growth in the adult heart, with its absence leading to cellular hypertrophy, organ remodeling, and fulminate heart failure. Molecular studies reveal Smyd1 to be a muscle-specific regulator of gene expression and indicate that Smyd1 modulates expression of gene isoforms whose expression is associated with cardiac pathology. Importantly, activation of Smyd1 can prevent pathological cell growth. These findings have basic implications for our understanding of cardiac pathologies and open new avenues to the treatment of cardiac hypertrophy and failure by modulating Smyd1. PMID:27663768

  9. The chromatin-binding protein Smyd1 restricts adult mammalian heart growth.

    PubMed

    Franklin, Sarah; Kimball, Todd; Rasmussen, Tara L; Rosa-Garrido, Manuel; Chen, Haodong; Tran, Tam; Miller, Mickey R; Gray, Ricardo; Jiang, Shanxi; Ren, Shuxun; Wang, Yibin; Tucker, Haley O; Vondriska, Thomas M

    2016-11-01

    All terminally differentiated organs face two challenges, maintaining their cellular identity and restricting organ size. The molecular mechanisms responsible for these decisions are of critical importance to organismal development, and perturbations in their normal balance can lead to disease. A hallmark of heart failure, a condition affecting millions of people worldwide, is hypertrophic growth of cardiomyocytes. The various forms of heart failure in human and animal models share conserved transcriptome remodeling events that lead to expression of genes normally silenced in the healthy adult heart. However, the chromatin remodeling events that maintain cell and organ size are incompletely understood; insights into these mechanisms could provide new targets for heart failure therapy. Using a quantitative proteomics approach to identify muscle-specific chromatin regulators in a mouse model of hypertrophy and heart failure, we identified upregulation of the histone methyltransferase Smyd1 during disease. Inducible loss-of-function studies in vivo demonstrate that Smyd1 is responsible for restricting growth in the adult heart, with its absence leading to cellular hypertrophy, organ remodeling, and fulminate heart failure. Molecular studies reveal Smyd1 to be a muscle-specific regulator of gene expression and indicate that Smyd1 modulates expression of gene isoforms whose expression is associated with cardiac pathology. Importantly, activation of Smyd1 can prevent pathological cell growth. These findings have basic implications for our understanding of cardiac pathologies and open new avenues to the treatment of cardiac hypertrophy and failure by modulating Smyd1. Copyright © 2016 the American Physiological Society.

  10. Allosteric modulation of cardiac myosin dynamics by omecamtiv mecarbil

    PubMed Central

    Tiberti, Matteo

    2017-01-01

    New promising avenues for the pharmacological treatment of skeletal and heart muscle diseases rely on direct sarcomeric modulators, which are molecules that can directly bind to sarcomeric proteins and either inhibit or enhance their activity. A recent breakthrough has been the discovery of the myosin activator omecamtiv mecarbil (OM), which has been shown to increase the power output of the cardiac muscle and is currently in clinical trials for the treatment of heart failure. While the overall effect of OM on the mechano-chemical cycle of myosin is to increase the fraction of myosin molecules in the sarcomere that are strongly bound to actin, the molecular basis of its action is still not completely clear. We present here a Molecular Dynamics study of the motor domain of human cardiac myosin bound to OM, where the effects of the drug on the dynamical properties of the protein are investigated for the first time with atomistic resolution. We found that OM has a double effect on myosin dynamics, inducing a) an increased coupling of the motions of the converter and lever arm subdomains to the rest of the protein and b) a rewiring of the network of dynamic correlations, which produces preferential communication pathways between the OM binding site and distant functional regions. The location of the residues responsible for these effects suggests possible strategies for the future development of improved drugs and the targeting of specific cardiomyopathy-related mutations. PMID:29108014

  11. Sphingosine and FTY720 are potent inhibitors of the transient receptor potential melastatin 7 (TRPM7) channels.

    PubMed

    Qin, Xin; Yue, Zhichao; Sun, Baonan; Yang, Wenzhong; Xie, Jia; Ni, Eric; Feng, Yi; Mahmood, Rafat; Zhang, Yanhui; Yue, Lixia

    2013-03-01

    Transient receptor potential melastatin 7 (TRPM7) is a unique channel kinase which is crucial for various physiological functions. However, the mechanism by which TRPM7 is gated and modulated is not fully understood. To better understand how modulation of TRPM7 may impact biological processes, we investigated if TRPM7 can be regulated by the phospholipids sphingosine (SPH) and sphingosine-1-phosphate (S1P), two potent bioactive sphingolipids that mediate a variety of physiological functions. Moreover, we also tested the effects of the structural analogues of SPH, N,N-dimethyl-D-erythro-sphingosine (DMS), ceramides and FTY720 on TRPM7. HEK293 cells stably expressing TRPM7 were used for whole-cell, single-channel and macropatch current recordings. Cardiac fibroblasts were used for native TRPM7 current recording. SPH potently inhibited TRPM7 in a concentration-dependent manner, whereas S1P and other ceramides did not produce noticeable effects. DMS also markedly inhibited TRPM7. Moreover, FTY720, an immunosuppressant and the first oral drug for treatment of multiple sclerosis, inhibited TRPM7 with a similar potency to that of SPH. In contrast, FTY720-P has no effect on TRPM7. It appears that SPH and FTY720 inhibit TRPM7 by reducing channel open probability. Furthermore, endogenous TRPM7 in cardiac fibroblasts was markedly inhibited by SPH, DMS and FTY720. This is the first study demonstrating that SPH and FTY720 are potent inhibitors of TRPM7. Our results not only provide a new modulation mechanism of TRPM7, but also suggest that TRPM7 may serve as a direct target of SPH and FTY720, thereby mediating S1P-independent physiological/pathological functions of SPH and FTY720. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  12. Negative Inotropic Effects of High Mobility Box Group 1 Protein in Isolated Contracting Cardiac Myocytes

    PubMed Central

    Tzeng, Huei-Ping; Fan, Jinping; Vallejo, Jesus G.; Dong, Jian Wen; Chen, Xiongwen; Houser, Steven R.; Mann, Douglas L.

    2013-01-01

    HMGB1 released from necrotic cells or macrophages functions as a late inflammatory mediator, and has been shown to induce cardiovascular collapse during sepsis. Thus far, however, the effect(s) of HMGB1 in the heart are not known. We determined the effects of HMGB1 on isolated feline cardiac myocytes by measuring sarcomere shortening in contracting cardiac myocytes, intracellular Ca2+ transients using fluo-3, and L-type calcium currents using whole cell perforate configuration of the patch clamp technique. Treatment of isolated myocytes with HMGB1 (100 ng/ml) resulted in a 70% decrease in sarcomere shortening and a 50% decrease in the height of the peak Ca++ transient within 5 min (p <0.01). The immediate negative inotropic effects HMGB1 on cell contractility and calcium homeostasis were partially reversible upon washout of HMGB1. A significant inhibition of the inward L-type calcium currents also was documented by the patch clamp technique. HMGB1 induced the PKCε translocation and a PKC inhibitor significantly attenuated the negative inotropic effects of HMGB1. These studies show for the first time that HMGB1 impairs sarcomere shortening by decreasing calcium availability in cardiac myocytes through modulating membrane calcium influx, and suggest that HMGB1 maybe act as a novel myocardial depressant factor during cardiac injury. PMID:18223193

  13. Preliminary clinical investigations of a new noninvasive venous pulse oximeter

    NASA Astrophysics Data System (ADS)

    Chan, Daniel; Smith, Peter R.; Caine, Michael P.; Spyt, Tomasz; Boehm, Maria; Machin, David

    2003-10-01

    For decades, the monitoring of mixed venous oxygen saturation, SvO2 has been performed invasively using fibre-optic catheters. This procedure is not without risk as complications may arise from catheterisation. The group has devised a new non-invasive venous oximetry method which involves inducing regular modulations of the venous blood volume and associated measurement of those modulations using optical means. A clinical investigation was conducted in Glenfield Hospital, UK to evaluate the sensitivity of the new technique to haemodynamic changes such as Cardiac Output (CO) in intraoperative and postoperative cardiac patients. Preliminary trials on patients recovering from cardiac surgery yielded an average correlation of r = 0.72 between CO at different Intra Aortic Balloon Pump (IABP) augmentation levels and SvO2 measured by the new venous oximeter. In intraoperative patients undergoing off-pump cardiac surgery, SvO2 recorded by the new technique responded to unplanned events such as a cardiac arrest. CONCLUSION: The new venous oximetry technique is a promising technique which responds to haemodynamic changes such as CO and with further development might offer an alternative means of monitoring SvO2 non-invasively.

  14. Congestive kidney failure in cardiac surgery: the relationship between central venous pressure and acute kidney injury.

    PubMed

    Gambardella, Ivancarmine; Gaudino, Mario; Ronco, Claudio; Lau, Christopher; Ivascu, Natalia; Girardi, Leonard N

    2016-11-01

    Acute kidney injury (AKI) in cardiac surgery has traditionally been linked to reduced arterial perfusion. There is ongoing evidence that central venous pressure (CVP) has a pivotal role in precipitating acute renal dysfunction in cardiac medical and surgical settings. We can regard this AKI driven by systemic venous hypertension as 'kidney congestive failure'. In the cardiac surgery population as a whole, when the CVP value reaches the threshold of 14 mmHg in postoperative period, the risk of AKI increases 2-fold with an odds ratio (OR) of 1.99, 95% confidence interval (95% CI) of 1.16-3.40. In cardiac surgery subsets where venous hypertension is a hallmark feature, the incidence of AKI is higher (tricuspid disease 30%, carcinoid valve disease 22%). Even in the non-chronically congested coronary artery bypass population, CVP measured 6 h postoperatively showed significant association to renal failure: risk-adjusted OR for AKI was 5.5 (95% CI 1.93-15.5; P = 0.001) with every 5 mmHg rise in CVP for patients with CVP <9 mmHg; for CVP increments of 5 mmHg above the threshold of 9 mmHg, the risk-adjusted OR for AKI was 1.3 (95% CI 1.01-1.65; P = 0.045). This and other clinical evidence are discussed along with the underlying pathophysiological mechanisms, involving the supremacy of volume receptors in regulating the autonomic output in hypervolaemia, and the regional effect of venous congestion on the nephron. The effect of CVP on renal function was found to be modulated by ventricular function class, aetiology and acuity of venous congestion. Evidence suggests that acute increases of CVP should be actively treated to avoid a deterioration of the renal function, particularly in patients with poor ventricular fraction. Besides, the practice of treating right heart failure with fluid loading should be avoided in favour of other ways to optimize haemodynamics in this setting, because of the detrimental effects on the kidney function. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  15. Toll‐Like Receptor‐2 Mediates Adaptive Cardiac Hypertrophy in Response to Pressure Overload Through Interleukin‐1β Upregulation via Nuclear Factor κB Activation

    PubMed Central

    Higashikuni, Yasutomi; Tanaka, Kimie; Kato, Megumi; Nureki, Osamu; Hirata, Yasunobu; Nagai, Ryozo; Komuro, Issei; Sata, Masataka

    2013-01-01

    Background Inflammation is induced in the heart during the development of cardiac hypertrophy. The initiating mechanisms and the role of inflammation in cardiac hypertrophy, however, remain unclear. Toll‐like receptor‐2 (TLR2) recognizes endogenous molecules that induce noninfectious inflammation. Here, we examined the role of TLR2‐mediated inflammation in cardiac hypertrophy. Methods and Results At 2 weeks after transverse aortic constriction, Tlr2−/− mice showed reduced cardiac hypertrophy and fibrosis with greater left ventricular dilatation and impaired systolic function compared with wild‐type mice, which indicated impaired cardiac adaptation in Tlr2−/− mice. Bone marrow transplantation experiment revealed that TLR2 expressed in the heart, but not in bone marrow–derived cells, is important for cardiac adaptive response to pressure overload. In vitro experiments demonstrated that TLR2 signaling can induce cardiomyocyte hypertrophy and fibroblast and vascular endothelial cell proliferation through nuclear factor–κB activation and interleukin‐1β upregulation. Systemic administration of a nuclear factor–κB inhibitor or anti–interleukin‐1β antibodies to wild‐type mice resulted in impaired adaptive cardiac hypertrophy after transverse aortic constriction. We also found that heat shock protein 70, which was increased in murine plasma after transverse aortic constriction, can activate TLR2 signaling in vitro and in vivo. Systemic administration of anti–heat shock protein 70 antibodies to wild‐type mice impaired adaptive cardiac hypertrophy after transverse aortic constriction. Conclusions Our results demonstrate that TLR2‐mediated inflammation induced by extracellularly released heat shock protein 70 is essential for adaptive cardiac hypertrophy in response to pressure overload. Thus, modulation of TLR2 signaling in the heart may provide a novel strategy for treating heart failure due to inadequate adaptation to hemodynamic stress. PMID:24249711

  16. [Experimental therapy of cardiac remodeling with quercetin-containing drugs].

    PubMed

    Kuzmenko, M A; Pavlyuchenko, V B; Tumanovskaya, L V; Dosenko, V E; Moybenko, A A

    2013-01-01

    It was shown that continuous beta-adrenergic hyperstimulation resulted in cardiac function disturbances and fibrosis of cardiac tissue. Treatment with quercetin-containing drugs, particularly, water-soluble corvitin and tableted quertin exerted favourable effect on cardiac hemodynamics, normalized systolic and diastolic function in cardiac remodeling, induced by sustained beta-adrenergic stimulation. It was estimated that conducted experimental therapy limited cardiac fibrosis area almost three-fold, that could be associated with first and foremost improved cardiac distensibility, characteristics of diastolic and also pump function in cardiac remodeling.

  17. Cardiac autonomic profile in different sports disciplines during all-day activity.

    PubMed

    Sztajzel, J; Jung, M; Sievert, K; Bayes De Luna, A

    2008-12-01

    Physical training and sport activity have a beneficial effect on cardiac autonomic activity. However, the exact impact of different types of sports disciplines on cardiac autonomic function is still unclear. The aim of this study was to evaluate the cardiac autonomic profile in different sports discplines and to determine their impact on cardiac autonomic function by using heart rate variability (HRV), a noninvasive electrocardiographic (ECG) analysis of the sympatho-vagal balance. Temporal and spectral HRV parameters determined from 24-hour continuous ECG monitoring were studied in 40 subjects, including 12 endurance athletes, 14 hockey players and 14 untrained male volunteers (control group). Each participant had to wear a Holter recorder during 24 hours and to continue his everyday activities. All HRV parameters were compared between the 3 study groups. All heart rate values were lower and all parasympathetic-related time domain indices, including root mean square of successive differences (RMSSD) and pNN50 (NN50 count divided by the total number of all NN intervals), were higher in both athletes groups as compared with controls (P<0.05). However, standard deviation of all NN intervals (SDNN) values, which determine global HRV, were significantly higher only in endurance athletes (P<0.05). Furthermore, the power spectral components low frequency (LF), a mixture of both autonomic inputs, and HF (high frequency), a marker of vagal modulation, were significantly higher with a resulting lower LF/HF ratio in both athletes groups as compared to controls (P<0.05). Both endurance and team playing athletic activity induce during all-day a high parasympathetic tone (higher RMSSD, pNN50 and HF, and lower LF/HF ratio). However, only endurance athletic activity has a particularly high global HRV (higher SDNN), indicating thereby that this type sports discipline may have a more substantially favorable effect on the cardiac autonomic profile.

  18. Effects of touch on emotional face processing: A study of event-related potentials, facial EMG and cardiac activity.

    PubMed

    Spapé, M M; Harjunen, Ville; Ravaja, N

    2017-03-01

    Being touched is known to affect emotion, and even a casual touch can elicit positive feelings and affinity. Psychophysiological studies have recently shown that tactile primes affect visual evoked potentials to emotional stimuli, suggesting altered affective stimulus processing. As, however, these studies approached emotion from a purely unidimensional perspective, it remains unclear whether touch biases emotional evaluation or a more general feature such as salience. Here, we investigated how simple tactile primes modulate event related potentials (ERPs), facial EMG and cardiac response to pictures of facial expressions of emotion. All measures replicated known effects of emotional face processing: Disgust and fear modulated early ERPs, anger increased the cardiac orienting response, and expressions elicited emotion-congruent facial EMG activity. Tactile primes also affected these measures, but priming never interacted with the type of emotional expression. Thus, touch may additively affect general stimulus processing, but it does not bias or modulate immediate affective evaluation. Copyright © 2017. Published by Elsevier B.V.

  19. Metabolic Modulation by Medium-Chain Triglycerides Reduces Oxidative Stress and Ameliorates CD36-Mediated Cardiac Remodeling in Spontaneously Hypertensive Rat in the Initial and Established Stages of Hypertrophy.

    PubMed

    Saifudeen, Ismael; Subhadra, Lakshmi; Konnottil, Remani; Nair, R Renuka

    2017-03-01

    Left ventricular hypertrophy (LVH) is characterized by a decrease in oxidation of long-chain fatty acids, possibly mediated by reduced expression of the cell-surface protein cluster of differentiation 36 (CD36). Spontaneously hypertensive rats (SHRs) were therefore supplemented with medium-chain triglycerides (MCT), a substrate that bypasses CD36, based on the assumption that the metabolic modulation will ameliorate ventricular remodeling. The diet of 2-month-old and 6-month-old SHRs was supplemented with 5% MCT (Tricaprylin), for 4 months. Metabolic modulation was assessed by mRNA expression of peroxisome proliferator-activated receptor α and medium-chain acyl-CoA dehydrogenase. Blood pressure was measured noninvasively. LVH was assessed with the use of hypertrophy index, cardiomyocyte cross-sectional area, mRNA expression of B-type natriuretic peptide, cardiac fibrosis, and calcineurin-A levels. Oxidative stress indicators (cardiac malondialdehyde, protein carbonyl, and 3-nitrotyrosine levels), myocardial energy level (ATP, phosphocreatine), and lipid profile were determined. Supplementation of MCT stimulated fatty acid oxidation in animals of both age groups, reduced hypertrophy and oxidative stress along with the maintenance of energy level. Blood pressure, body weight, and lipid profile were unaffected by the treatment. The results indicate that modulation of myocardial fatty acid metabolism by MCT prevents progressive cardiac remodeling in SHRs, possibly by maintenance of energy level and decrease in oxidative stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Hypertrophic cardiomyopathy mutation in cardiac troponin T (R95H) attenuates length-dependent activation in guinea pig cardiac muscle fibers.

    PubMed

    Mickelson, Alexis V; Chandra, Murali

    2017-12-01

    The central region of cardiac troponin T (TnT) is important for modulating the dynamics of muscle length-mediated cross-bridge recruitment. Therefore, hypertrophic cardiomyopathy mutations in the central region may affect cross-bridge recruitment dynamics to alter myofilament Ca 2+ sensitivity and length-dependent activation of cardiac myofilaments. Given the importance of the central region of TnT for cardiac contractile dynamics, we studied if hypertrophic cardiomyopathy-linked mutation (TnT R94H )-induced effects on contractile function would be differently modulated by sarcomere length (SL). Recombinant wild-type TnT (TnT WT ) and the guinea pig analog of the human R94H mutation (TnT R95H ) were reconstituted into detergent-skinned cardiac muscle fibers from guinea pigs. Steady-state and dynamic contractile measurements were made at short and long SLs (1.9 and 2.3 µm, respectively). Our results demonstrated that TnT R95H increased pCa 50 (-log of free Ca 2+ concentration) to a greater extent at short SL; TnT R95H increased pCa 50 by 0.11 pCa units at short SL and 0.07 pCa units at long SL. The increase in pCa 50 associated with an increase in SL from 1.9 to 2.3 µm (ΔpCa 50 ) was attenuated nearly twofold in TnT R95H fibers; ΔpCa 50 was 0.09 pCa units for TnT WT fibers but only 0.05 pCa units for TnT R95H fibers. The SL dependency of rate constants of cross-bridge distortion dynamics and tension redevelopment was also blunted by TnT R95H Collectively, our observations on the SL dependency of pCa 50 and rate constants of cross-bridge distortion dynamics and tension redevelopment suggest that mechanisms underlying the length-dependent activation cardiac myofilaments are attenuated by TnT R95H NEW & NOTEWORTHY Mutant cardiac troponin T (TnT R95H ) differently affects myofilament Ca 2+ sensitivity at short and long sarcomere length, indicating that mechanisms underlying length-dependent activation are altered by TnT R95H TnT R95H enhances myofilament Ca 2+ sensitivity to a greater extent at short sarcomere length, thus attenuating the length-dependent increase in myofilament Ca 2+ sensitivity. Copyright © 2017 the American Physiological Society.

  1. Evolution of cardiorespiratory interactions with age

    PubMed Central

    Iatsenko, D.; Bernjak, A.; Stankovski, T.; Shiogai, Y.; Owen-Lynch, P. J.; Clarkson, P. B. M.; McClintock, P. V. E.; Stefanovska, A.

    2013-01-01

    We describe an analysis of cardiac and respiratory time series recorded from 189 subjects of both genders aged 16–90. By application of the synchrosqueezed wavelet transform, we extract the respiratory and cardiac frequencies and phases with better time resolution than is possible with the marked events procedure. By treating the heart and respiration as coupled oscillators, we then apply a method based on Bayesian inference to find the underlying coupling parameters and their time dependence, deriving from them measures such as synchronization, coupling directionality and the relative contributions of different mechanisms. We report a detailed analysis of the reconstructed cardiorespiratory coupling function, its time evolution and age dependence. We show that the direct and indirect respiratory modulations of the heart rate both decrease with age, and that the cardiorespiratory coupling becomes less stable and more time-variable. PMID:23858485

  2. Evolution of cardiorespiratory interactions with age.

    PubMed

    Iatsenko, D; Bernjak, A; Stankovski, T; Shiogai, Y; Owen-Lynch, P J; Clarkson, P B M; McClintock, P V E; Stefanovska, A

    2013-08-28

    We describe an analysis of cardiac and respiratory time series recorded from 189 subjects of both genders aged 16-90. By application of the synchrosqueezed wavelet transform, we extract the respiratory and cardiac frequencies and phases with better time resolution than is possible with the marked events procedure. By treating the heart and respiration as coupled oscillators, we then apply a method based on Bayesian inference to find the underlying coupling parameters and their time dependence, deriving from them measures such as synchronization, coupling directionality and the relative contributions of different mechanisms. We report a detailed analysis of the reconstructed cardiorespiratory coupling function, its time evolution and age dependence. We show that the direct and indirect respiratory modulations of the heart rate both decrease with age, and that the cardiorespiratory coupling becomes less stable and more time-variable.

  3. Structural and functional aspects of the myosin essential light chain in cardiac muscle contraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muthu, Priya; Wang, Li; Yuan, Chen-Ching

    2012-04-02

    The myosin essential light chain (ELC) is a structural component of the actomyosin cross-bridge, but its function is poorly understood, especially the role of the cardiac specific N-terminal extension in modulating actomyosin interaction. Here, we generated transgenic (Tg) mice expressing the A57G (alanine to glycine) mutation in the cardiac ELC known to cause familial hypertrophic cardiomyopathy (FHC). The function of the ELC N-terminal extension was investigated with the Tg-{Delta}43 mouse model, whose myocardium expresses a truncated ELC. Low-angle X-ray diffraction studies on papillary muscle fibers in rigor revealed a decreased interfilament spacing ({approx} 1.5 nm) and no alterations in cross-bridgemore » mass distribution in Tg-A57G mice compared to Tg-WT, expressing the full-length nonmutated ELC. The truncation mutation showed a 1.3-fold increase in I{sub 1,1}/I{sub 1,0}, indicating a shift of cross-bridge mass from the thick filament backbone toward the thin filaments. Mechanical studies demonstrated increased stiffness in Tg-A57G muscle fibers compared to Tg-WT or Tg-{Delta}43. The equilibrium constant for the cross-bridge force generation step was smallest in Tg-{Delta}43. These results support an important role for the N-terminal ELC extension in prepositioning the cross-bridge for optimal force production. Subtle changes in the ELC sequence were sufficient to alter cross-bridge properties and lead to pathological phenotypes.« less

  4. Decreased brain sigma-1 receptor contributes to the relationship between heart failure and depression.

    PubMed

    Ito, Koji; Hirooka, Yoshitaka; Matsukawa, Ryuichi; Nakano, Masatsugu; Sunagawa, Kenji

    2012-01-01

    Depression often coexists with cardiovascular disease, such as hypertension and heart failure, in which sympathetic hyperactivation is critically involved. Reduction in the brain sigma-1 receptor (S1R) functions in depression pathogenesis via neuronal activity modulation. We hypothesized that reduced brain S1R exacerbates heart failure, especially with pressure overload via sympathetic hyperactivation and worsening depression. Male Institute of Cancer Research mice were treated with aortic banding and, 4 weeks thereafter, fed a high-salt diet for an additional 4 weeks to accelerate cardiac dysfunction (AB-H). Compared with sham-operated controls (Sham), AB-H showed augmented sympathetic activity, decreased per cent fractional shortening, increased left ventricular dimensions, and significantly lower brain S1R expression. Intracerebroventricular (ICV) infusion of S1R agonist PRE084 increased brain S1R expression, lowered sympathetic activity, and improved cardiac function in AB-H. ICV infusion of S1R antagonist BD1063 increased sympathetic activity and decreased cardiac function in Sham. Tail suspension test was used to evaluate the index of depression-like behaviour, with immobility time and strain amplitude recorded as markers of struggle activity using a force transducer. Immobility time increased and strain amplitude decreased in AB-H compared with Sham, and these changes were attenuated by ICV infusion of PRE084. These results indicate that decreased brain S1R contributes to the relationship between heart failure and depression in a mouse model of pressure overload.

  5. Air Pollution and Other Environmental Modulators of Cardiac Function.

    PubMed

    Gorr, Matthew W; Falvo, Michael J; Wold, Loren E

    2017-09-12

    Cardiovascular disease (CVD) is the leading cause of death in developed regions and a worldwide health concern. Multiple external causes of CVD are well known, including obesity, diabetes, hyperlipidemia, age, and sedentary behavior. Air pollution has been linked with the development of CVD for decades, though the mechanistic characterization remains unknown. In this comprehensive review, we detail the background and epidemiology of the effects of air pollution and other environmental modulators on the heart, including both short- and long-term consequences. Then, we provide the experimental data and current hypotheses of how pollution is able to cause the CVD, and how exposure to pollutants is exacerbated in sensitive states. Published 2017. Compr Physiol 7:1479-1495, 2017. Copyright © 2017 John Wiley & Sons, Inc.

  6. Creation and Global Deployment of a Mobile, Application-Based Cognitive Simulator for Cardiac Surgical Procedures.

    PubMed

    Brewer, Zachary E; Ogden, William David; Fann, James I; Burdon, Thomas A; Sheikh, Ahmad Y

    Several modern learning frameworks (eg, cognitive apprenticeship, anchored instruction, and situated cognition) posit the utility of nontraditional methods for effective experiential learning. Thus, development of novel educational tools emphasizing the cognitive framework of operative sequences may be of benefit to surgical trainees. We propose the development and global deployment of an effective, mobile cognitive cardiac surgical simulator. In methods, 16 preclinical medical students were assessed. Overall, 4 separate surgical modules (sternotomy, cannulation, decannulation, and sternal closure) were created utilizing the Touch Surgery (London, UK) platform. Modules were made available to download free of charge for use on mobile devices. Usage data were collected over a 6-month period. Educational efficacy of the modules was evaluated by randomizing a cohort of medical students to either module usage or traditional, reading-based self-study, followed by a multiple-choice learning assessment tool. In results, downloads of the simulator achieved global penetrance, with highest usage in the USA, Brazil, Italy, UK, and India. Overall, 5368 unique users conducted a total of 1971 hours of simulation. Evaluation of the medical student cohort revealed significantly higher assessment scores in those randomized to module use versus traditional reading (75% ± 9% vs 61% ± 7%, respectively; P < 0.05). In conclusion, this study represents the first effort to create a mobile, interactive cognitive simulator for cardiac surgery. Simulators of this type may be effective for the training and assessment of surgical students. We investigated whether an interactive, mobile-computing-based cognitive task simulator for cardiac surgery could be developed, deployed, and validated. Our findings suggest that such simulators may be a useful learning tool. Copyright © 2016. Published by Elsevier Inc.

  7. Expression Profiling Identifies Klf15 as a Glucocorticoid Target That Regulates Airway Hyperresponsiveness

    PubMed Central

    Masuno, Kiriko; Haldar, Saptarsi M.; Jeyaraj, Darwin; Mailloux, Christina M.; Huang, Xiaozhu; Panettieri, Rey A.; Jain, Mukesh K.

    2011-01-01

    Glucocorticoids (GCs), which activate GC receptor (GR) signaling and thus modulate gene expression, are widely used to treat asthma. GCs exert their therapeutic effects in part through modulating airway smooth muscle (ASM) structure and function. However, the effects of genes that are regulated by GCs on airway function are not fully understood. We therefore used transcription profiling to study the effects of a potent GC, dexamethasone, on human ASM (HASM) gene expression at 4 and 24 hours. After 24 hours of dexamethasone treatment, nearly 7,500 genes had statistically distinguishable changes in expression; quantitative PCR validation of a 40-gene subset of putative GR-regulated genes in 6 HASM cell lines suggested that the early transcriptional targets of GR signaling are similar in independent HASM lines. Gene ontology analysis implicated GR targets in controlling multiple aspects of ASM function. One GR-regulated gene, the transcription factor, Kruppel-like factor 15 (Klf15), was already known to modulate vascular smooth and cardiac muscle function, but had no known role in the lung. We therefore analyzed the pulmonary phenotype of Klf15−/− mice after ovalbumin sensitization and challenge. We found diminished airway responses to acetylcholine in ovalbumin-challenged Klf15−/− mice without a significant change in the induction of asthmatic inflammation. In cultured cells, overexpression of Klf15 reduced proliferation of HASM cells, whereas apoptosis in Klf15−/− murine ASM cells was increased. Together, these results further characterize the GR-regulated gene network in ASM and establish a novel role for the GR target, Klf15, in modulating airway function. PMID:21257922

  8. Cannabidiol Protects against Doxorubicin-Induced Cardiomyopathy by Modulating Mitochondrial Function and Biogenesis.

    PubMed

    Hao, Enkui; Mukhopadhyay, Partha; Cao, Zongxian; Erdélyi, Katalin; Holovac, Eileen; Liaudet, Lucas; Lee, Wen-Shin; Haskó, György; Mechoulam, Raphael; Pacher, Pál

    2015-01-06

    Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX's cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may contribute to its beneficial properties described in numerous other models of tissue injury.

  9. Cannabidiol Protects against Doxorubicin-Induced Cardiomyopathy by Modulating Mitochondrial Function and Biogenesis

    PubMed Central

    Hao, Enkui; Mukhopadhyay, Partha; Cao, Zongxian; Erdélyi, Katalin; Holovac, Eileen; Liaudet, Lucas; Lee, Wen-Shin; Haskó, György; Mechoulam, Raphael; Pacher, Pál

    2015-01-01

    Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX’s cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may contribute to its beneficial properties described in numerous other models of tissue injury. PMID:25569804

  10. Longstanding Hyperthyroidism Is Associated with Normal or Enhanced Intrinsic Cardiomyocyte Function despite Decline in Global Cardiac Function

    PubMed Central

    Redetzke, Rebecca A.; Gerdes, A. Martin

    2012-01-01

    Thyroid hormones (THs) play a pivotal role in cardiac homeostasis. TH imbalances alter cardiac performance and ultimately cause cardiac dysfunction. Although short-term hyperthyroidism typically leads to heightened left ventricular (LV) contractility and improved hemodynamic parameters, chronic hyperthyroidism is associated with deleterious cardiac consequences including increased risk of arrhythmia, impaired cardiac reserve and exercise capacity, myocardial remodeling, and occasionally heart failure. To evaluate the long-term consequences of chronic hyperthyroidism on LV remodeling and function, we examined LV isolated myocyte function, chamber function, and whole tissue remodeling in a hamster model. Three-month-old F1b hamsters were randomized to control or 10 months TH treatment (0.1% grade I desiccated TH). LV chamber remodeling and function was assessed by echocardiography at 1, 2, 4, 6, 8, and 10 months of treatment. After 10 months, terminal cardiac function was assessed by echocardiography and LV hemodynamics. Hyperthyroid hamsters exhibited significant cardiac hypertrophy and deleterious cardiac remodeling characterized by myocyte lengthening, chamber dilatation, decreased relative wall thickness, increased wall stress, and increased LV interstitial fibrotic deposition. Importantly, hyperthyroid hamsters demonstrated significant LV systolic and diastolic dysfunction. Despite the aforementioned remodeling and global cardiac decline, individual isolated cardiac myocytes from chronically hyperthyroid hamsters had enhanced function when compared with myocytes from untreated age-matched controls. Thus, it appears that long-term hyperthyroidism may impair global LV function, at least in part by increasing interstitial ventricular fibrosis, in spite of normal or enhanced intrinsic cardiomyocyte function. PMID:23056390

  11. Organelle communication: signaling crossroads between homeostasis and disease.

    PubMed

    Bravo-Sagua, Roberto; Torrealba, Natalia; Paredes, Felipe; Morales, Pablo E; Pennanen, Christian; López-Crisosto, Camila; Troncoso, Rodrigo; Criollo, Alfredo; Chiong, Mario; Hill, Joseph A; Simmen, Thomas; Quest, Andrew F; Lavandero, Sergio

    2014-05-01

    Cellular organelles do not function as isolated or static units, but rather form dynamic contacts between one another that can be modulated according to cellular needs. The physical interfaces between organelles are important for Ca2+ and lipid homeostasis, and serve as platforms for the control of many essential functions including metabolism, signaling, organelle integrity and execution of the apoptotic program. Emerging evidence also highlights the importance of organelle communication in disorders such as Alzheimer's disease, pulmonary arterial hypertension, cancer, skeletal and cardiac muscle dysfunction. Here, we provide an overview of the current literature on organelle communication and the link to human pathologies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The contributions of cardiac myosin binding protein C and troponin I phosphorylation to β‐adrenergic enhancement of in vivo cardiac function

    PubMed Central

    Gresham, Kenneth S.

    2016-01-01

    Key points β‐adrenergic stimulation increases cardiac myosin binding protein C (MyBP‐C) and troponin I phosphorylation to accelerate pressure development and relaxation in vivo, although their relative contributions remain unknown.Using a novel mouse model lacking protein kinase A‐phosphorylatable troponin I (TnI) and MyBP‐C, we examined in vivo haemodynamic function before and after infusion of the β‐agonist dobutamine.Mice expressing phospho‐ablated MyBP‐C displayed cardiac hypertrophy and prevented full acceleration of pressure development and relaxation in response to dobutamine, whereas expression of phosphor‐ablated TnI alone had little effect on the acceleration of contractile function in response to dobutamine.Our data demonstrate that MyBP‐C phosphorylation is the principal mediator of the contractile response to increased β‐agonist stimulation in vivo.These results help us understand why MyBP‐C dephosphorylation in the failing heart contributes to contractile dysfunction and decreased adrenergic reserve in response to acute stress. Abstract β‐adrenergic stimulation plays a critical role in accelerating ventricular contraction and speeding relaxation to match cardiac output to changing circulatory demands. Two key myofilaments proteins, troponin I (TnI) and myosin binding protein‐C (MyBP‐C), are phosphorylated following β‐adrenergic stimulation; however, their relative contributions to the enhancement of in vivo cardiac contractility are unknown. To examine the roles of TnI and MyBP‐C phosphorylation in β‐adrenergic‐mediated enhancement of cardiac function, transgenic (TG) mice expressing non‐phosphorylatable TnI protein kinase A (PKA) residues (i.e. serine to alanine substitution at Ser23/24; TnIPKA−) were bred with mice expressing non‐phosphorylatable MyBP‐C PKA residues (i.e. serine to alanine substitution at Ser273, Ser282 and Ser302; MyBPCPKA−) to generate a novel mouse model expressing non‐phosphorylatable PKA residues in TnI and MyBP‐C (DBLPKA−). MyBP‐C dephosphorylation produced cardiac hypertrophy and increased wall thickness in MyBPCPKA− and DBLPKA− mice, and in vivo echocardiography and pressure–volume catheterization studies revealed impaired systolic function and prolonged diastolic relaxation compared to wild‐type and TnIPKA– mice. Infusion of the β‐agonist dobutamine resulted in accelerated rates of pressure development and relaxation in all mice; however, MyBPCPKA− and DBLPKA− mice displayed a blunted contractile response compared to wild‐type and TnIPKA– mice. Furthermore, unanaesthesized MyBPCPKA− and DBLPKA− mice displayed depressed maximum systolic pressure in response to dobutamine as measured using implantable telemetry devices. Taken together, our data show that MyBP‐C phosphorylation is a critical modulator of the in vivo acceleration of pressure development and relaxation as a result of enhanced β‐adrenergic stimulation, and reduced MyBP‐C phosphorylation may underlie depressed adrenergic reserve in heart failure. PMID:26635197

  13. Portable guided-mode resonance biosensor platform for point-of-care testing

    NASA Astrophysics Data System (ADS)

    Sung, Gun Yong; Kim, Wan-Joong; Ko, Hyunsung; Kim, Bong K.; Kim, Kyung-Hyun; Huh, Chul; Hong, Jongcheol

    2012-10-01

    It represents a viable solution for the realization of a portable biosensor platform that could screen/diagnose acute myocardial infarction by measuring cardiac marker concentrations such as cardiac troponin I (cTnI), creatine kinase MB (CK-MB), and myoglobin (MYO) for application to u-health monitoring system. The portable biosensor platform introduced in this presentation has a more compact structure and a much higher measuring resolution than a conventional spectrometer system. Portable guided-mode resonance (GMR) biosensor platform was composed of a biosensor chip stage, an optical pick-up module, and a data display panel. Disposable plastic GMR biosensor chips with nano-grating patterns were fabricated by injection-molding. Whole blood filtration and label-free immunoassay were performed on these single chips, automatically. Optical pick-up module was fabricated by using the miniaturized bulk optics and the interconnecting optical fibers and a tunable VCSEL (vertical cavity surface emitting laser). The reflectance spectrum from the GMR biosensor was measured by the optical pick-up module. Cardiac markers in human serum with concentrations less than 0.1ng/mL were analyzed using a GMR biosensor. Analysis time was 30min, which is short enough to meet clinical requirements. Our results show that the GMR biosensor will be very useful in developing lowcost portable biosensors that can screen for cardiac diseases.

  14. Impact of obesity on hypertension-induced cardiac remodeling: role of oxidative stress and its modulation by gemfibrozil treatment in rats.

    PubMed

    Singh, Randhir; Singh, Amrit Pal; Singh, Manjeet; Krishan, Pawan

    2011-01-15

    This study investigated the possible synergistic role of obesity in hypertension-induced cardiac remodeling and its modulation by gemfibrozil treatment in rats. Male Wistar rats were fed a high-fat diet (HFD) for 90 days. Normal rats were subjected to hypertension by partial abdominal aortic constriction (PAAC) for 28 days. In the HFD+PAAC control group, rats on HFD were subjected to PAAC on the 62nd day and were sacrificed on the 90th day. HFD and PAAC individually resulted in significant cardiac hypertrophy and fibrosis along with increased oxidative stress and mean arterial blood pressure (MABP) in rats as evidenced by various morphological, biochemical, and histological parameters. Moreover, the HFD + PAAC control group showed marked cardiac remodeling compared to rats subjected to HFD or PAAC alone. The HFD+gemfibrozil and HFD+PAAC+gemfibrozil groups showed significant reduction in cardiac remodeling along with reduction in oxidative stress and MABP. Hence, it may be concluded that oxidative stress plays a key role in obesity-mediated synergistic effects on induction and progression of PAAC-induced cardiac remodeling, and its deleterious effects could be reversed by gemfibrozil treatment in rats through its antioxidant activity. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Development of a subspecialty cardiology curriculum for paediatric registrars in Malawi: Implementation of a long-distance hybrid model.

    PubMed

    Newberry, Laura; Kennedy, Neil; Greene, Elizabeth A

    2016-06-01

    Malawi has a high burden of paediatric cardiac disease but a limited number of health providers familiar with these chronic diseases. Given the rising number of Malawian postgraduate paediatric trainees at the University of Malawi College of Medicine, we sought to remedy this lack of basic cardiology training with a long-distance, module-based curriculum that could be utilised independently, as needed, with on-site teaching. We also wished to evaluate the initial modules for utility and improvement in knowledge and confidence in each topic. After an initial site visit to determine curriculum needs, online modules with interactive evaluations and quizzes were developed by a paediatric cardiologist in the United States, in collaboration with paediatric registrar training directors in Malawi. This online interactive curriculum was followed by several site visits to Malawi, by the United States-based paediatric cardiologist, to provide bedside teaching, case-based discussions and hands-on skill training in cardiac ultrasound and electrocardiogram interpretation. Evaluation of the curriculum model included post-module quizzes on cardiac topics as well as registrar self-assessments regarding confidence in content areas. The average post-module quiz score was 93.6%. Repeat testing with the same questions four months later yielded an average score of 78%, with a range from 60 to 100%. Pre- and post-module registrar self-assessment regarding confidence in content areas showed a substantial gain in knowledge and confidence mean. In their qualitative feedback, registrars noted that the modules were helpful in studying for their certifying examinations, and all four of the registrars sitting Part I of their Malawian and South African paediatric certifying examinations passed. Our innovative hybrid approach, combining online educational modules with in-person teaching visits, is a useful approach in expanding paediatric cardiology subspecialty education in Malawi.

  16. Zinc deficiency exacerbates while zinc supplement attenuates cardiac hypertrophy in high-fat diet-induced obese mice through modulating p38 MAPK-dependent signaling.

    PubMed

    Wang, Shudong; Luo, Manyu; Zhang, Zhiguo; Gu, Junlian; Chen, Jing; Payne, Kristen McClung; Tan, Yi; Wang, Yuehui; Yin, Xia; Zhang, Xiang; Liu, Gilbert C; Wintergerst, Kupper; Liu, Quan; Zheng, Yang; Cai, Lu

    2016-09-06

    Childhood obesity often leads to cardiovascular diseases, such as obesity-related cardiac hypertrophy (ORCH), in adulthood, due to chronic cardiac inflammation. Zinc is structurally and functionally essential for many transcription factors; however, its role in ORCH and underlying mechanism(s) remain unclear and were explored here in mice with obesity induced with high-fat diet (HFD). Four week old mice were fed on either HFD (60%kcal fat) or normal diet (ND, 10% kcal fat) for 3 or 6 months, respectively. Either diet contained one of three different zinc quantities: deficiency (ZD, 10mg zinc per 4057kcal), normal (ZN, 30mg zinc per 4057kcal) or supplement (ZS, 90mg zinc per 4057kcal). HFD induced a time-dependent obesity and ORCH, which was accompanied by increased cardiac inflammation and p38 MAPK activation. These effects were worsened by ZD in HFD/ZD mice and attenuated by ZS in HFD/ZS group, respectively. Also, administration of a p38 MAPK specific inhibitor in HFD mice for 3 months did not affect HFD-induced obesity, but completely abolished HFD-induced, and zinc deficiency-worsened, ORCH and cardiac inflammation. In vitro exposure of adult cardiomyocytes to palmitate induced cell hypertrophy accompanied by increased p38 MAPK activation, which was heightened by zinc depletion with its chelator TPEN. Inhibition of p38 MAPK with its specific siRNA also prevented the effects of palmitate on cardiomyocytes. These findings demonstrate that ZS alleviates but ZD heightens cardiac hypertrophy in HFD-induced obese mice through suppressing p38 MAPK-dependent cardiac inflammatory and hypertrophic pathways. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Protein Kinase A (PKA) Phosphorylation of Shp2 Protein Inhibits Its Phosphatase Activity and Modulates Ligand Specificity

    PubMed Central

    Burmeister, Brian T.; Wang, Li; Gold, Matthew G.; Skidgel, Randal A.; O'Bryan, John P.; Carnegie, Graeme K.

    2015-01-01

    Pathological cardiac hypertrophy (an increase in cardiac mass resulting from stress-induced cardiac myocyte growth) is a major factor underlying heart failure. Src homology 2 domain-containing phosphatase (Shp2) is critical for cardiac function because mutations resulting in loss of Shp2 catalytic activity are associated with congenital cardiac defects and hypertrophy. We identified a novel mechanism of Shp2 inhibition that may promote cardiac hypertrophy. We demonstrate that Shp2 is a component of the protein kinase A anchoring protein (AKAP)-Lbc complex. AKAP-Lbc facilitates PKA phosphorylation of Shp2, which inhibits Shp2 phosphatase activity. We identified two key amino acids in Shp2 that are phosphorylated by PKA. Thr-73 contributes a helix cap to helix αB within the N-terminal SH2 domain of Shp2, whereas Ser-189 occupies an equivalent position within the C-terminal SH2 domain. Utilizing double mutant PKA phosphodeficient (T73A/S189A) and phosphomimetic (T73D/S189D) constructs, in vitro binding assays, and phosphatase activity assays, we demonstrate that phosphorylation of these residues disrupts Shp2 interaction with tyrosine-phosphorylated ligands and inhibits its protein-tyrosine phosphatase activity. Overall, our data indicate that AKAP-Lbc integrates PKA and Shp2 signaling in the heart and that AKAP-Lbc-associated Shp2 activity is reduced in hypertrophic hearts in response to chronic β-adrenergic stimulation and PKA activation. Therefore, although induction of cardiac hypertrophy is a multifaceted process, inhibition of Shp2 activity through AKAP-Lbc-anchored PKA is a previously unrecognized mechanism that may promote this compensatory response. PMID:25802336

  18. Protein Kinase A (PKA) Phosphorylation of Shp2 Protein Inhibits Its Phosphatase Activity and Modulates Ligand Specificity.

    PubMed

    Burmeister, Brian T; Wang, Li; Gold, Matthew G; Skidgel, Randal A; O'Bryan, John P; Carnegie, Graeme K

    2015-05-08

    Pathological cardiac hypertrophy (an increase in cardiac mass resulting from stress-induced cardiac myocyte growth) is a major factor underlying heart failure. Src homology 2 domain-containing phosphatase (Shp2) is critical for cardiac function because mutations resulting in loss of Shp2 catalytic activity are associated with congenital cardiac defects and hypertrophy. We identified a novel mechanism of Shp2 inhibition that may promote cardiac hypertrophy. We demonstrate that Shp2 is a component of the protein kinase A anchoring protein (AKAP)-Lbc complex. AKAP-Lbc facilitates PKA phosphorylation of Shp2, which inhibits Shp2 phosphatase activity. We identified two key amino acids in Shp2 that are phosphorylated by PKA. Thr-73 contributes a helix cap to helix αB within the N-terminal SH2 domain of Shp2, whereas Ser-189 occupies an equivalent position within the C-terminal SH2 domain. Utilizing double mutant PKA phosphodeficient (T73A/S189A) and phosphomimetic (T73D/S189D) constructs, in vitro binding assays, and phosphatase activity assays, we demonstrate that phosphorylation of these residues disrupts Shp2 interaction with tyrosine-phosphorylated ligands and inhibits its protein-tyrosine phosphatase activity. Overall, our data indicate that AKAP-Lbc integrates PKA and Shp2 signaling in the heart and that AKAP-Lbc-associated Shp2 activity is reduced in hypertrophic hearts in response to chronic β-adrenergic stimulation and PKA activation. Therefore, although induction of cardiac hypertrophy is a multifaceted process, inhibition of Shp2 activity through AKAP-Lbc-anchored PKA is a previously unrecognized mechanism that may promote this compensatory response. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Modulating Beta-Cardiac Myosin Function at the Molecular and Tissue Levels

    PubMed Central

    Tang, Wanjian; Blair, Cheavar A.; Walton, Shane D.; Málnási-Csizmadia, András; Campbell, Kenneth S.; Yengo, Christopher M.

    2017-01-01

    Inherited cardiomyopathies are a common form of heart disease that are caused by mutations in sarcomeric proteins with beta cardiac myosin (MYH7) being one of the most frequently affected genes. Since the discovery of the first cardiomyopathy associated mutation in beta-cardiac myosin, a major goal has been to correlate the in vitro myosin motor properties with the contractile performance of cardiac muscle. There has been substantial progress in developing assays to measure the force and velocity properties of purified cardiac muscle myosin but it is still challenging to correlate results from molecular and tissue-level experiments. Mutations that cause hypertrophic cardiomyopathy are more common than mutations that lead to dilated cardiomyopathy and are also often associated with increased isometric force and hyper-contractility. Therefore, the development of drugs designed to decrease isometric force by reducing the duty ratio (the proportion of time myosin spends bound to actin during its ATPase cycle) has been proposed for the treatment of hypertrophic cardiomyopathy. Para-Nitroblebbistatin is a small molecule drug proposed to decrease the duty ratio of class II myosins. We examined the impact of this drug on human beta cardiac myosin using purified myosin motor assays and studies of permeabilized muscle fiber mechanics. We find that with purified human beta-cardiac myosin para-Nitroblebbistatin slows actin-activated ATPase and in vitro motility without altering the ADP release rate constant. In permeabilized human myocardium, para-Nitroblebbistatin reduces isometric force, power, and calcium sensitivity while not changing shortening velocity or the rate of force development (ktr). Therefore, designing a drug that reduces the myosin duty ratio by inhibiting strong attachment to actin while not changing detachment can cause a reduction in force without changing shortening velocity or relaxation. PMID:28119616

  20. Modulation of Hypercholesterolemia-Induced Oxidative/Nitrative Stress in the Heart

    PubMed Central

    Sárközy, Márta; Pipicz, Márton; Dux, László; Csont, Tamás

    2016-01-01

    Hypercholesterolemia is a frequent metabolic disorder associated with increased risk for cardiovascular morbidity and mortality. In addition to its well-known proatherogenic effect, hypercholesterolemia may exert direct effects on the myocardium resulting in contractile dysfunction, aggravated ischemia/reperfusion injury, and diminished stress adaptation. Both preclinical and clinical studies suggested that elevated oxidative and/or nitrative stress plays a key role in cardiac complications induced by hypercholesterolemia. Therefore, modulation of hypercholesterolemia-induced myocardial oxidative/nitrative stress is a feasible approach to prevent or treat deleterious cardiac consequences. In this review, we discuss the effects of various pharmaceuticals, nutraceuticals, some novel potential pharmacological approaches, and physical exercise on hypercholesterolemia-induced oxidative/nitrative stress and subsequent cardiac dysfunction as well as impaired ischemic stress adaptation of the heart in hypercholesterolemia. PMID:26788247

  1. Protective effects of intercalated disk protein afadin on chronic pressure overload-induced myocardial damage

    PubMed Central

    Zankov, Dimitar P.; Shimizu, Akio; Tanaka-Okamoto, Miki; Miyoshi, Jun; Ogita, Hisakazu

    2017-01-01

    Adhesive intercellular connections at cardiomyocyte intercalated disks (IDs) support contractile force and maintain structural integrity of the heart muscle. Disturbances of the proteins at IDs deteriorate cardiac function and morphology. An adaptor protein afadin, one of the components of adherens junctions, is expressed ubiquitously including IDs. At present, the precise role of afadin in cardiac physiology or disease is unknown. To explore this, we generated conditional knockout (cKO) mice with cardiomyocyte-targeted deletion of afadin. Afadin cKO mice were born according to the expected Mendelian ratio and have no detectable changes in cardiac phenotype. On the other hand, chronic pressure overload induced by transverse aortic constriction (TAC) caused systolic dysfunction, enhanced fibrogenesis and apoptosis in afadin cKO mice. Afadin deletion increased macrophage infiltration and monocyte chemoattractant protein-1 expression, and suppressed transforming growth factor (TGF) β receptor signaling early after TAC procedure. Afadin also associated with TGFβ receptor I at IDs. Pharmacological antagonist of TGFβ receptor I (SB431542) augmented mononuclear infiltration and fibrosis in the hearts of TAC-operated control mice. In conclusion, afadin is a critical molecule for cardiac protection against chronic pressure overload. The beneficial effects are likely to be a result from modulation of TGFβ receptor signaling pathways by afadin. PMID:28045017

  2. MiR-34a/miR-93 target c-Ski to modulate the proliferaton of rat cardiac fibroblasts and extracellular matrix deposition in vivo and in vitro.

    PubMed

    Zhang, Chengliang; Zhang, Yanfeng; Zhu, Hong; Hu, Jiajia; Xie, Zhongshang

    2018-06-01

    Cardiac fibrosis is associated with diverse heart diseases. In response to different pathological irritants, cardiac fibroblasts may be induced to proliferate and differentiate into cardiac myofibroblasts, thus contributing to cardiac fibrosis. TGF-β signaling is implicated in the development of heart failure through the induction of cardiac fibrosis. C-Ski, an inhibitory regulator of TGF-β signaling, has been reported to suppress TGF-β1-induced human cardiac fibroblasts' proliferation and ECM protein increase; however, the underlying molecular mechanism needs further investigation. In the present study, we demonstrated that c-Ski could ameliorate isoproterenol (ISO)-induced rat myocardial fibrosis model and TGF-β1-induced primary rat cardiac fibroblasts' proliferation, as well as extracellular matrix (ECM) deposition. The protein level of c-Ski was dramatically decreased in cardiac fibrosis and TGF-β1-stimulated primary rat cardiac fibroblasts. In recent decades, a family of small non-coding RNA, namely miRNAs, has been reported to regulate gene expression by interacting with diverse mRNAs and inducing either translational suppression or mRNA degradation. Herein, we selected miR-34a and miR-93 as candidate miRNAs that might target to regulate c-Ski expression. After confirming that miR-34a/miR-93 targeted c-Ski to inhibit its expression, we also revealed that miR-34a/miR-93 affected TGF-β1-induced fibroblasts' proliferation and ECM deposition through c-Ski. Taken together, we demonstrated a miR-34a/miR-93-c-Ski axis which modulates TGF-β1- and ISO-induced cardiac fibrosis in vitro and in vivo; targeting the inhibitory factors of c-Ski to rescue its expression may be a promising strategy for the treatment of cardiac fibrosis. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Serotonergic raphe magnus cell discharge reflects ongoing autonomic and respiratory activities.

    PubMed

    Mason, Peggy; Gao, Keming; Genzen, Jonathan R

    2007-10-01

    Serotonergic cells are located in a restricted number of brain stem nuclei, send projections to virtually all parts of the CNS, and are critical to normal brain function. They discharge tonically at a rate modulated by the sleep-wake cycle and, in the case of medullary serotonergic cells in raphe magnus and the adjacent reticular formation (RM), are excited by cold challenge. Yet, beyond behavioral state and cold, endogenous factors that influence serotonergic cell discharge remain largely mysterious. The present study in the anesthetized rat investigated predictors of serotonergic RM cell discharge by testing whether cell discharge correlated to three rhythms observed in blood pressure recordings that averaged >30 min in length. A very slow frequency rhythm with a period of minutes, a respiratory rhythm, and a cardiac rhythm were derived from the blood pressure recording. Cross-correlations between each of the derived rhythms and cell activity revealed that the discharge of 38 of the 40 serotonergic cells studied was significantly correlated to the very slow and/or respiratory rhythms. Very few serotonergic cells discharged in relation to the cardiac cycle and those that did, did so weakly. The correlations between serotonergic cell discharge and the slow and respiratory rhythms cannot arise from baroreceptive input. Instead we hypothesize that they are by-products of ongoing adjustments to homeostatic functions that happen to alter blood pressure. Thus serotonergic RM cells integrate information about multiple homeostatic activities and challenges and can consequently modulate spinal processes according to the most pressing need of the organism.

  4. Heart repair by reprogramming non-myocytes with cardiac transcription factors

    PubMed Central

    Song, Kunhua; Nam, Young-Jae; Luo, Xiang; Qi, Xiaoxia; Tan, Wei; Huang, Guo N.; Acharya, Asha; Smith, Christopher L.; Tallquist, Michelle D.; Neilson, Eric G.; Hill, Joseph A.; Bassel-Duby, Rhonda; Olson, Eric N.

    2012-01-01

    The adult mammalian heart possesses little regenerative potential following injury. Fibrosis due to activation of cardiac fibroblasts impedes cardiac regeneration and contributes to loss of contractile function, pathological remodeling and susceptibility to arrhythmias. Cardiac fibroblasts account for a majority of cells in the heart and represent a potential cellular source for restoration of cardiac function following injury through phenotypic reprogramming to a myocardial cell fate. Here we show that four transcription factors, GATA4, Hand2, MEF2C and Tbx5 can cooperatively reprogram adult mouse tail-tip and cardiac fibroblasts into beating cardiac-like myocytes in vitro. Forced expression of these factors in dividing non-cardiomyocytes in mice reprograms these cells into functional cardiac-like myocytes, improves cardiac function and reduces adverse ventricular remodeling following myocardial infarction. Our results suggest a strategy for cardiac repair through reprogramming fibroblasts resident in the heart with cardiogenic transcription factors or other molecules. PMID:22660318

  5. Processing of central and reflex vagal drives by rat cardiac ganglion neurones: an intracellular analysis

    PubMed Central

    McAllen, Robin M; Salo, Lauren M; Paton, Julian F R; Pickering, Anthony E

    2011-01-01

    Abstract Cardiac vagal tone is an important indicator of cardiovascular health, and its loss is an independent risk factor for arrhythmias and mortality. Several studies suggest that this loss of vagal tone can occur at the cardiac ganglion but the factors affecting ganglionic transmissionin vivoare poorly understood. We have employed a novel approach allowing intracellular recordings from functionally connected cardiac vagal ganglion cells in the working heart–brainstem preparation. The atria were stabilisedin situpreserving their central neural connections, and ganglion cells (n = 32) were impaled with sharp microelectrodes. Cardiac ganglion cells with vagal synaptic inputs (spontaneous, n = 10; or electrically evoked from the vagus, n = 3) were identified as principal neurones and showed tonic firing responses to current injected to their somata. Cells lacking vagal inputs (n = 19, presumed interneurones) were quiescent but showed phasic firing responses to depolarising current. In principal cells the ongoing action potentials and EPSPs exhibited respiratory modulation, with peak frequency in post-inspiration. Action potentials arose from unitary EPSPs and autocorrelation of those events showed that each ganglion cell received inputs from a single active preganglionic source. Peripheral chemoreceptor, arterial baroreceptor and diving response activation all evoked high frequency synaptic barrages in these cells, always from the same single preganglionic source. EPSP amplitudes showed frequency dependent depression, leading to more spike failures at shorter inter-event intervals. These findings indicate that rather than integrating convergent inputs, cardiac vagal postganglionic neurones gate preganglionic inputs, so regulating the proportion of central parasympathetic tone that is transmitted on to the heart. PMID:22005679

  6. Cardioprotective Signature of Short-Term Caloric Restriction

    PubMed Central

    Isserlin, Ruth; Arab, Sara; Momen, Abdul; Cheng, Henry S.; Wu, Jun; Afroze, Talat; Li, Ren-Ke; Fish, Jason E.; Bader, Gary D.; Husain, Mansoor

    2015-01-01

    Objective To understand the molecular pathways underlying the cardiac preconditioning effect of short-term caloric restriction (CR). Background Lifelong CR has been suggested to reduce the incidence of cardiovascular disease through a variety of mechanisms. However, prolonged adherence to a CR life-style is difficult. Here we reveal the pathways that are modulated by short-term CR, which are associated with protection of the mouse heart from ischemia. Methods Male 10-12 wk old C57bl/6 mice were randomly assigned to an ad libitum (AL) diet with free access to regular chow, or CR, receiving 30% less food for 7 days (d), prior to myocardial infarction (MI) via permanent coronary ligation. At d8, the left ventricles (LV) of AL and CR mice were collected for Western blot, mRNA and microRNA (miR) analyses to identify cardioprotective gene expression signatures. In separate groups, infarct size, cardiac hemodynamics and protein abundance of caspase 3 was measured at d2 post-MI. Results This short-term model of CR was associated with cardio-protection, as evidenced by decreased infarct size (18.5±2.4% vs. 26.6±1.7%, N=10/group; P=0.01). mRNA and miR profiles pre-MI (N=5/group) identified genes modulated by short-term CR to be associated with circadian clock, oxidative stress, immune function, apoptosis, metabolism, angiogenesis, cytoskeleton and extracellular matrix (ECM). Western blots pre-MI revealed CR-associated increases in phosphorylated Akt and GSK3ß, reduced levels of phosphorylated AMPK and mitochondrial related proteins PGC-1α, cytochrome C and cyclooxygenase (COX) IV, with no differences in the levels of phosphorylated eNOS or MAPK (ERK1/2; p38). CR regimen was also associated with reduced protein abundance of cleaved caspase 3 in the infarcted heart and improved cardiac function. PMID:26098549

  7. Central fat influences cardiac autonomic function in obese and overweight girls.

    PubMed

    Soares-Miranda, Luisa; Alves, Alberto J; Vale, Susana; Aires, Luisa; Santos, Rute; Oliveira, José; Mota, Jorge

    2011-10-01

    It has been suggested that upper-body fat compared with lower-body fat is more closely associated with cardiovascular abnormalities. Our objective was to analyze the relationship between central fat (CF) and cardiac autonomic (cANS) function in obese and overweight girls. Children were classified in two groups based on CF: those above (CFa(50)) and those below the 50th percentile (CFb(50)) of the entire sample. This study included 16 female children who were diagnosed as being overweight or obese (age: 14.3 ± 2.8 years; weight: 75.0 ± 15.8 kg; height: 157.1 ± 8.9 cm; body mass index: 30.1 ± 5.4; and total body fat: 40.5 ± 5.0%; Tanner stage: 4). cANS function was assessed through heart rate variability (HRV) and CF parameters by dual-energy X-ray absorptiometry. Female children with higher CF exhibited significantly higher sympathetic and lower parasympathetic modulation than those with lower CF, independently of total body fat. The data of the present study indicate that CF is associated with less favorable indexes of HRV. In addition, our findings suggest that CF might be an important measure to assess the effect of obesity on cANS function in female children.

  8. Sphingosine-1-phosphate receptor expression in cardiac fibroblasts is modulated by in vitro culture conditions.

    PubMed

    Landeen, Lee K; Aroonsakool, Nakon; Haga, Jason H; Hu, Betty S; Giles, Wayne R

    2007-06-01

    The bioactive molecule sphingosine-1-phosphate (S1P) binds with high affinity to five recognized receptors (S1P(1-5)) to affect various tissues, including cellular responses of cardiac fibroblasts (CFbs) and myocytes. CFbs are essential components of myocardium, and detailed study of their cell signaling and physiology is required for a number of emerging disciplines. Meaningful studies on CFbs, however, necessitate methods for selective, reproducible cell isolations. Macrophages reside within normal cardiac tissues and often are isolated with CFbs. A protocol was therefore developed that significantly reduces macrophage levels and utilizes more CFb-specific markers (discoidin domain receptor-2) instead of, or in addition to, more commonly used cytoskeletal markers. Our results demonstrate that primary isolated, purified CFbs express predominantly S1P(1-3); however, the relative levels of these receptor subtypes are modulated with time and by culture conditions. In coculture experiments, macrophages altered CFb S1P receptor levels relative to controls. Further investigations using known macrophage-secreted factors showed that S1P and H(2)O(2) had minimal effects on CFb S1P(1-3) expression, whereas transforming growth factor-beta1, TNF-alpha, and PDGF-BB significantly altered all S1P receptor subtypes. Lowering FBS concentrations from 10% to 0.1% increased S1P(2), whereas supplementation with either PDGF-BB or Rho-associated protein kinase inhibitor Y-27632 significantly elevated S1P(3) levels. S1P(2) and S1P(3) receptor levels are known to regulate cell migration. Using cells isolated from either normal or S1P(3)-null mice, we demonstrate that S1P(3) is important and necessary for CFb migration. These results highlight the importance of demonstrating CFb culture purity in functional studies of S1P and also identify conditions that modulate S1P receptor expression in CFbs.

  9. Interrelationship between 3,5,3´-triiodothyronine and the circadian clock in the rodent heart.

    PubMed

    Peliciari-Garcia, Rodrigo Antonio; Prévide, Rafael Maso; Nunes, Maria Tereza; Young, Martin Elliot

    2016-01-01

    Triiodothyronine (T3) is an important modulator of cardiac metabolism and function, often through modulation of gene expression. The cardiomyocyte circadian clock is a transcriptionally based molecular mechanism capable of regulating cardiac processes, in part by modulating responsiveness of the heart to extra-cardiac stimuli/stresses in a time-of-day (TOD)-dependent manner. Although TOD-dependent oscillations in circulating levels of T3 (and its intermediates) have been established, oscillations in T3 sensitivity in the heart is unknown. To investigate the latter possibility, euthyroid male Wistar rats were treated with vehicle or T3 at distinct times of the day, after which induction of known T3 target genes were assessed in the heart (4-h later). The expression of mRNA was assessed by real-time quantitative polymerase chain reaction (qPCR). Here, we report greater T3 induction of transcript levels at the end of the dark phase. Surprisingly, use of cardiomyocyte-specific clock mutant (CCM) mice revealed that TOD-dependent oscillations in T3 sensitivity were independent of this cell autonomous mechanism. Investigation of genes encoding for proteins that affect T3 sensitivity revealed that Dio1, Dio2 and Thrb1 exhibited TOD-dependent variations in the heart, while Thra1 and Thra2 did not. Of these, Dio1 and Thrb1 were increased in the heart at the end of the dark phase. Interestingly, we observed that T3 acutely altered the expression of core clock components (e.g. Bmal1) in the rat heart. To investigate this further, rats were injected with a single dose of T3, after which expression of clock genes was interrogated at 3-h intervals over the subsequent 24-h period. These studies revealed robust effects of T3 on oscillations of both core clock components and clock-controlled genes. In summary, the current study exposed TOD-dependent sensitivity to T3 in the heart and its effects in the circadian clock genes expression.

  10. High-intensity interval training has beneficial effects on cardiac remodeling through local renin-angiotensin system modulation in mice fed high-fat or high-fructose diets.

    PubMed

    de Oliveira Sá, Guilherme; Dos Santos Neves, Vívian; de Oliveira Fraga, Shyrlei R; Souza-Mello, Vanessa; Barbosa-da-Silva, Sandra

    2017-11-15

    HIIT (high-intensity interval training) has the potential to reduce cardiometabolic risk factors, but the effects on cardiac remodeling and local RAS (renin-angiotensin system) in mice fed high-fat or high-fructose diets still need to be fully addressed. Sixty male C57BL/6 mice (12weeks old) were randomly divided into three groups, control (C), High-fat (HF), or High-fructose diet (HRU) and were monitored for eight weeks before being submitted to the HIIT. Each group was randomly assigned to 2 subgroups, one subgroup was started on a 12-week HIIT protocol (T=trained group), while the other subgroup remained non-exercised (NT=not-trained group). HIIT reduced BM and systolic blood pressure in high-fat groups, while enhanced insulin sensitivity after high-fat or high-fructose intake. Moreover, HIIT reduced left ventricular hypertrophy in HF-T and HFRU-T. Notably, HIIT modulated key factors in the local left ventricular renin-angiotensin-system (RAS): reduced protein expression of renin, ACE (Angiotensin-converting enzyme), and (Angiotensin type 2 receptor) AT2R in HF-T and HFRU-T groups but reduced (Angiotensin type 1 receptor) AT1R protein expression only in the high-fat trained group. HIIT modulated ACE2/Ang (1-7)/Mas receptor axis. ACE2 mRNA gene expression was enhanced in HF-T and HFRU-T groups, complying with elevated Mas (Mas proto-oncogene, G protein-coupled receptor) receptor mRNA gene expression after HIIT. This study shows the effectiveness of HIIT sessions in producing improvements in insulin sensitivity and mitigating LV hypertrophy, though hypertension was controlled only in the high-fat-fed submitted to HIIT protocol. Local RAS system in the heart mediates these findings and receptor MAS seems to play a pivotal role when it comes to the amelioration of cardiac structural and functional remodeling due to HIIT. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Early-onset growth hormone deficiency results in diastolic dysfunction in adult-life and is prevented by growth hormone supplementation.

    PubMed

    Groban, L; Lin, M; Kassik, K A; Ingram, R L; Sonntag, W E

    2011-04-01

    The primary goal of growth hormone (GH) replacement is to promote linear growth in children with growth hormone deficiency (GHD). GH and insulin-like growth factor-1 (IGF-1) are also known to have roles in cardiac development and as modulators of myocardial structure and function in the adult heart. However, little is known about cardiac diastolic function in young adults with childhood onset GH deficiency in which GH treatment was discontinued following puberty. The aim of the study was to evaluate the effects of long standing GHD and peri-pubertal or continuous GH replacement therapy on diastolic function in the adult dwarf rat. The dwarf rat, which possesses a mutation in a transcription factor necessary for development of the somatotroph, does not exhibit the normal peri-pubertal rise in GH around day 28 and was used to model childhood or early-onset GHD (EOGHD). In another group of male dwarfs, GH replacement therapy was initiated at 4 weeks of age when GH pulsatility normally begins. Ten weeks after initiation of injections, GH-treated dwarf rats were divided into 2 groups; continued treatment with GH for 12 weeks (GH-replete) or treatment with saline for 12 weeks. This latter group models GH supplementation during adolescence with GHD beginning in adulthood (adult-onset GHD; AOGHD). Saline-treated heterozygous (HZ) rats were used as age-matched controls. At 26 weeks of age, cardiac function was assessed using invasive or noninvasive (conventional and tissue Doppler) indices of myocardial contractility and lusitropy. Systolic function, as determined by echocardiography, was similar among groups. Compared with HZ rats and GH-replete dwarfs, the EOGHD group exhibited significant reductions in myocardial relaxation and increases in left ventricular filling pressure, indicative of moderate diastolic dysfunction. This was further associated with a decrease in the cardiac content of sarcoplasmic reticulum Ca(2+) ATPase (SERCA2), one of the important cardiac calcium regulatory proteins. Dwarfs supplemented with GH during the peri-adolescence stage, but not beyond (AOGHD), exhibited a subtle prolongation in the deceleration time to early filling. In contrast, continual GH replacement preserved diastolic function such that the cardiac phenotype of the GH-replete dwarfs resembled that of their age-matched HZ counterpart. Our data indicate that GHD during adolescence leads to overt diastolic dysfunction in early adulthood and this is prevented by continual GH replacement therapy. Since discontinuation of GH replacement following adolescence only mitigated the lusitropic deficits that were observed in untreated dwarfs, GH treatment into adulthood could be beneficial. Copyright © 2011 Growth Hormone Research Society. Published by Elsevier Ltd. All rights reserved.

  12. MURC/Cavin-4 facilitates recruitment of ERK to caveolae and concentric cardiac hypertrophy induced by α1-adrenergic receptors.

    PubMed

    Ogata, Takehiro; Naito, Daisuke; Nakanishi, Naohiko; Hayashi, Yukiko K; Taniguchi, Takuya; Miyagawa, Kotaro; Hamaoka, Tetsuro; Maruyama, Naoki; Matoba, Satoaki; Ikeda, Koji; Yamada, Hiroyuki; Oh, Hidemasa; Ueyama, Tomomi

    2014-03-11

    The actions of catecholamines on adrenergic receptors (ARs) induce sympathetic responses, and sustained activation of the sympathetic nervous system results in disrupted circulatory homeostasis. In cardiomyocytes, α1-ARs localize to flask-shaped membrane microdomains known as "caveolae." Caveolae require both caveolin and cavin proteins for their biogenesis and function. However, the functional roles and molecular interactions of caveolar components in cardiomyocytes are poorly understood. Here, we showed that muscle-restricted coiled-coil protein (MURC)/Cavin-4 regulated α1-AR-induced cardiomyocyte hypertrophy through enhancement of ERK1/2 activation in caveolae. MURC/Cavin-4 was expressed in the caveolae and T tubules of cardiomyocytes. MURC/Cavin-4 overexpression distended the caveolae, whereas MURC/Cavin-4 was not essential for their formation. MURC/Cavin-4 deficiency attenuated cardiac hypertrophy induced by α1-AR stimulation in the presence of caveolae. Interestingly, MURC/Cavin-4 bound to α1A- and α1B-ARs as well as ERK1/2 in caveolae, and spatiotemporally modulated MEK/ERK signaling in response to α1-AR stimulation. Thus, MURC/Cavin-4 facilitates ERK1/2 recruitment to caveolae and efficient α1-AR signaling mediated by caveolae in cardiomyocytes, which provides a unique insight into the molecular mechanisms underlying caveola-mediated signaling in cardiac hypertrophy.

  13. MURC/Cavin-4 facilitates recruitment of ERK to caveolae and concentric cardiac hypertrophy induced by α1-adrenergic receptors

    PubMed Central

    Ogata, Takehiro; Naito, Daisuke; Nakanishi, Naohiko; Hayashi, Yukiko K.; Taniguchi, Takuya; Miyagawa, Kotaro; Hamaoka, Tetsuro; Maruyama, Naoki; Matoba, Satoaki; Ikeda, Koji; Yamada, Hiroyuki; Oh, Hidemasa; Ueyama, Tomomi

    2014-01-01

    The actions of catecholamines on adrenergic receptors (ARs) induce sympathetic responses, and sustained activation of the sympathetic nervous system results in disrupted circulatory homeostasis. In cardiomyocytes, α1-ARs localize to flask-shaped membrane microdomains known as “caveolae.” Caveolae require both caveolin and cavin proteins for their biogenesis and function. However, the functional roles and molecular interactions of caveolar components in cardiomyocytes are poorly understood. Here, we showed that muscle-restricted coiled-coil protein (MURC)/Cavin-4 regulated α1-AR–induced cardiomyocyte hypertrophy through enhancement of ERK1/2 activation in caveolae. MURC/Cavin-4 was expressed in the caveolae and T tubules of cardiomyocytes. MURC/Cavin-4 overexpression distended the caveolae, whereas MURC/Cavin-4 was not essential for their formation. MURC/Cavin-4 deficiency attenuated cardiac hypertrophy induced by α1-AR stimulation in the presence of caveolae. Interestingly, MURC/Cavin-4 bound to α1A- and α1B-ARs as well as ERK1/2 in caveolae, and spatiotemporally modulated MEK/ERK signaling in response to α1-AR stimulation. Thus, MURC/Cavin-4 facilitates ERK1/2 recruitment to caveolae and efficient α1-AR signaling mediated by caveolae in cardiomyocytes, which provides a unique insight into the molecular mechanisms underlying caveola-mediated signaling in cardiac hypertrophy. PMID:24567387

  14. Rays Sting: The Acute Cellular Effects of Ionizing Radiation Exposure

    PubMed Central

    Franco, A; Ciccarelli, M; Sorriento, D; Napolitano, L; Fiordelisi, A; Trimarco, B; Durante, M; Iaccarino, G

    2016-01-01

    High-precision radiation therapy is a clinical approach that uses the targeted delivery of ionizing radiation, and the subsequent formation of reactive oxygen species (ROS) in high proliferative, radiation sensitive cancers. In particular, in thoracic cancer ratdiation treatments, can not avoid a certain amount of cardiac toxicity. Given the low proliferative rate of cardiac myocytes, research has looked at the effect of radiation on endothelial cells and consequent coronary heart disease as the mechanism of ratdiation induced cardiotoxicity. In fact, little is known concerning the direct effect of radiation on mitochondria dynamis in cardiomyocyte. The main effect of ionizing radiation is the production of ROS and recent works have uncovered that they directly participates to pivotal cell function like mitochondrial quality control. In particular ROS seems to act as check point within the cell to promote either mitochondrial biogenesis and survival or mitochondrial damage and apoptosis. Thus, it appears evident that the functional state of the cell, as well as the expression patterns of molecules involved in mitochondrial metabolism may differently modulate mitochondrial fate in response to radiation induced ROS responses. Different molecules have been described to localize to mitochondria and regulate ROS production in response to stress, in particular GRK2. In this review we will discuss the evidences on the cardiac toxicity induced by X ray radiation on cardiomyocytes with emphasis on the role played by mitochondria dynamism. PMID:27326395

  15. Heart rate variability and turbulence in hyperthyroidism before, during, and after treatment.

    PubMed

    Osman, Faizel; Franklyn, Jayne A; Daykin, Jacqueline; Chowdhary, Saqib; Holder, Roger L; Sheppard, Michael C; Gammage, Michael D

    2004-08-15

    Patients with subclinical and treated overt hyperthyroidism have an excess vascular mortality rate. Several symptoms and signs in overt hyperthyroidism suggest abnormality of cardiac autonomic function that may account in part for this excess mortality rate, but few studies have examined cardiac autonomic function in untreated and treated hyperthyroidism. We assessed heart rate turbulence (HRT) and time-domain parameters of heart rate variability in a large, unselected cohort of patients with overt hyperthyroidism referred to our thyroid clinic (n = 259) and compared findings with a group of normal subjects with euthyroidism (n = 440). These measures were also evaluated during antithyroid therapy (when serum-free thyroxine and triiodothyronine concentrations returned to normal but thyrotropin remained suppressed (i.e., subclinical hyperthyroidism, n = 110) and when subjects were rendered clinically and biochemically euthyroid (normal serum thyrotropin, free thyroxine and triiodothyronine concentrations, n = 219). We found that overall measures of heart rate variability and those specific for cardiac vagal modulation were attenuated in patients with overt hyperthyroidism compared with normal subjects; measurements of overall heart rate variability remained low in those with low levels of serum thyrotropin but returned to normal in patients with biochemical euthyroidism. Measurements of HRT (onset and slope) were also decreased in patients with overt hyperthyroidism, but HRT slope returned to normal values with antithyroid treatment. This study is the first to evaluate HRT in overt and treated hyperthyroidism.

  16. Tetrahydrobiopterin in Cardiovascular Health and Disease

    PubMed Central

    Bendall, Jennifer K.; Douglas, Gillian; McNeill, Eileen; Channon, Keith M.

    2014-01-01

    Abstract Tetrahydrobiopterin (BH4) functions as a cofactor for several important enzyme systems, and considerable evidence implicates BH4 as a key regulator of endothelial nitric oxide synthase (eNOS) in the setting of cardiovascular health and disease. BH4 bioavailability is determined by a balance of enzymatic de novo synthesis and recycling, versus degradation in the setting of oxidative stress. Augmenting vascular BH4 levels by pharmacological supplementation has been shown in experimental studies to enhance NO bioavailability. However, it has become more apparent that the role of BH4 in other enzymatic pathways, including other NOS isoforms and the aromatic amino acid hydroxylases, may have a bearing on important aspects of vascular homeostasis, inflammation, and cardiac function. This article reviews the role of BH4 in cardiovascular development and homeostasis, as well as in pathophysiological processes such as endothelial and vascular dysfunction, atherosclerosis, inflammation, and cardiac hypertrophy. We discuss the therapeutic potential of BH4 in cardiovascular disease states and attempt to address how this modulator of intracellular NO-redox balance may ultimately provide a powerful new treatment for many cardiovascular diseases. Antioxid. Redox Signal. 20, 3040–3077. PMID:24294830

  17. Stimulus appraisal modulates cardiac reactivity to briefly presented mutilation pictures.

    PubMed

    Mocaiber, Izabela; Perakakis, Pandelis; Pereira, Mirtes Garcia; Pinheiro, Walter Machado; Volchan, Eliane; de Oliveira, Letícia; Vila, Jaime

    2011-09-01

    Emotional reactions to threatening situations can be either advantageous for human adaptation or unfavorable for physical and mental health if sustained over prolonged periods of time. These contrasting effects mostly depend on the individual's capacity for emotion regulation. It has been shown, for example, that changing appraisal can alter the course of emotional processing. In the present study, the influence of stimulus appraisal over cardiac reactivity to briefly presented (200ms) mutilation pictures was tested in the context of an affective classification task. Heart rate and reaction time of twenty-four undergraduate students were monitored during the presentation of pictures (neutral or mutilated bodies) in successive blocks. In one condition (real), participants were told that the pictures depicted real events. In the other condition (fictitious), they were told that the pictures were taken from movie scenes. As expected, the results showed a more pronounced bradycardia to mutilation pictures, in comparison to neural pictures, in the real context. In the fictitious context, a significant attenuation of the emotional modulation (defensive bradycardia) was observed. However, this attenuation seemed to be transient because it was only observed in the first presentation block of the fictitious context. Reaction time to classify mutilation pictures, compared to neutral pictures, was slower in both contexts, reflecting the privileged processing of emotionally laden material. The present findings show that even briefly presented mutilation pictures elicit a differential cardiac reactivity and modulate behavioral performance. Importantly, changing stimulus appraisal attenuates the emotional modulation of cardiac reactivity (defensive bradycardia). Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Heart rate variability in normal and pathological sleep.

    PubMed

    Tobaldini, Eleonora; Nobili, Lino; Strada, Silvia; Casali, Karina R; Braghiroli, Alberto; Montano, Nicola

    2013-10-16

    Sleep is a physiological process involving different biological systems, from molecular to organ level; its integrity is essential for maintaining health and homeostasis in human beings. Although in the past sleep has been considered a state of quiet, experimental and clinical evidences suggest a noteworthy activation of different biological systems during sleep. A key role is played by the autonomic nervous system (ANS), whose modulation regulates cardiovascular functions during sleep onset and different sleep stages. Therefore, an interest on the evaluation of autonomic cardiovascular control in health and disease is growing by means of linear and non-linear heart rate variability (HRV) analyses. The application of classical tools for ANS analysis, such as HRV during physiological sleep, showed that the rapid eye movement (REM) stage is characterized by a likely sympathetic predominance associated with a vagal withdrawal, while the opposite trend is observed during non-REM sleep. More recently, the use of non-linear tools, such as entropy-derived indices, have provided new insight on the cardiac autonomic regulation, revealing for instance changes in the cardiovascular complexity during REM sleep, supporting the hypothesis of a reduced capability of the cardiovascular system to deal with stress challenges. Interestingly, different HRV tools have been applied to characterize autonomic cardiac control in different pathological conditions, from neurological sleep disorders to sleep disordered breathing (SDB). In summary, linear and non-linear analysis of HRV are reliable approaches to assess changes of autonomic cardiac modulation during sleep both in health and diseases. The use of these tools could provide important information of clinical and prognostic relevance.

  19. Photocontrol of Voltage-Gated Ion Channel Activity by Azobenzene Trimethylammonium Bromide in Neonatal Rat Cardiomyocytes

    PubMed Central

    Frolova, Sheyda R.; Gaiko, Olga; Tsvelaya, Valeriya A.; Pimenov, Oleg Y.; Agladze, Konstantin I.

    2016-01-01

    The ability of azobenzene trimethylammonium bromide (azoTAB) to sensitize cardiac tissue excitability to light was recently reported. The dark, thermally relaxed trans- isomer of azoTAB suppressed spontaneous activity and excitation propagation speed, whereas the cis- isomer had no detectable effect on the electrical properties of cardiomyocyte monolayers. As the membrane potential of cardiac cells is mainly controlled by activity of voltage-gated ion channels, this study examined whether the sensitization effect of azoTAB was exerted primarily via the modulation of voltage-gated ion channel activity. The effects of trans- and cis- isomers of azoTAB on voltage-dependent sodium (INav), calcium (ICav), and potassium (IKv) currents in isolated neonatal rat cardiomyocytes were investigated using the whole-cell patch-clamp technique. The experiments showed that azoTAB modulated ion currents, causing suppression of sodium (Na+) and calcium (Ca2+) currents and potentiation of net potassium (K+) currents. This finding confirms that azoTAB-effect on cardiac tissue excitability do indeed result from modulation of voltage-gated ion channels responsible for action potential. PMID:27015602

  20. Redox signaling in cardiac myocytes

    PubMed Central

    Santos, Celio X.C.; Anilkumar, Narayana; Zhang, Min; Brewer, Alison C.; Shah, Ajay M.

    2011-01-01

    The heart has complex mechanisms that facilitate the maintenance of an oxygen supply–demand balance necessary for its contractile function in response to physiological fluctuations in workload as well as in response to chronic stresses such as hypoxia, ischemia, and overload. Redox-sensitive signaling pathways are centrally involved in many of these homeostatic and stress-response mechanisms. Here, we review the main redox-regulated pathways that are involved in cardiac myocyte excitation–contraction coupling, differentiation, hypertrophy, and stress responses. We discuss specific sources of endogenously generated reactive oxygen species (e.g., mitochondria and NADPH oxidases of the Nox family), the particular pathways and processes that they affect, the role of modulators such as thioredoxin, and the specific molecular mechanisms that are involved—where this knowledge is available. A better understanding of this complex regulatory system may allow the development of more specific therapeutic strategies for heart diseases. PMID:21236334

  1. Cardioprotective mIGF-1/SIRT1 signaling induces hypertension, leukocytosis and fear response in mice

    PubMed Central

    Bolasco, Giulia; Calogero, Raffaele; Carrara, Matteo; Al Banchaabouchi, Mumna; Bilbao, Daniel; Mazzoccoli, Gianluigi; Vinciguerra, Manlio

    2012-01-01

    Locally acting insulin growth factor isoform (mIGF-1) and the NAD+-dependent protein deacetylase SIRT1 are implicated in life and health span. Heart failure is associated with aging and is a major cause of death. mIGF-1 protects the heart from oxidative stresses via SIRT1. SIRT1 subcellular localization and its genomic regulation by mIGF-1 are unknown. We show here that SIRT1 is located in the nuclei of a significant fraction of cardiomyocytes. Using high throughput sequencing approaches in mIGF-1 transgenic mice, we identified new targets of the mIGF-1/SIRT1 signaling. In addition to its potent cardioprotective properties, cardiac-restricted mIGF-1 transgene induced systemic changes such as high blood pressure, leukocytosis and an enhanced fear response, in a SIRT1-dependent manner. Cardiac mIGF-1/SIRT1 signaling may thus modulate disparate systemic functions. PMID:22691943

  2. Caveolin Contributes to the Modulation of Basal and β-Adrenoceptor Stimulated Function of the Adult Rat Ventricular Myocyte by Simvastatin: A Novel Pleiotropic Effect

    PubMed Central

    Agarwal, Shailesh R.; Harvey, Robert D.; Porter, Karen E.; Calaghan, Sarah

    2014-01-01

    The number of people taking statins is increasing across the globe, highlighting the importance of fully understanding statins' effects on the cardiovascular system. The beneficial impact of statins extends well beyond regression of atherosclerosis to include direct effects on tissues of the cardiovascular system (‘pleiotropic effects’). Pleiotropic effects on the cardiac myocyte are often overlooked. Here we consider the contribution of the caveolin protein, whose expression and cellular distribution is dependent on cholesterol, to statin effects on the cardiac myocyte. Caveolin is a structural and regulatory component of caveolae, and is a key regulator of cardiac contractile function and adrenergic responsiveness. We employed an experimental model in which inhibition of myocyte HMG CoA reductase could be studied in the absence of paracrine influences from non-myocyte cells. Adult rat ventricular myocytes were treated with 10 µM simvastatin for 2 days. Simvastatin treatment reduced myocyte cholesterol, caveolin 3 and caveolar density. Negative inotropic and positive lusitropic effects (with corresponding changes in [Ca2+]i) were seen in statin-treated cells. Simvastatin significantly potentiated the inotropic response to β2-, but not β1-, adrenoceptor stimulation. Under conditions of β2-adrenoceptor stimulation, phosphorylation of phospholamban at Ser16 and troponin I at Ser23/24 was enhanced with statin treatment. Simvastatin increased NO production without significant effects on eNOS expression or phosphorylation (Ser1177), consistent with the reduced expression of caveolin 3, its constitutive inhibitor. In conclusion, statin treatment can reduce caveolin 3 expression, with functional consequences consistent with the known role of caveolae in the cardiac cell. These data are likely to be of significance, particularly during the early phases of statin treatment, and in patients with heart failure who have altered β-adrenoceptor signalling. In addition, as caveolin is ubiquitously expressed and has myriad tissue-specific functions, the impact of statin-dependent changes in caveolin is likely to have many other functional sequelae. PMID:25211146

  3. Cardiac Autonomic Dysfunction in Offspring of Hypertensive Parents During Exercise.

    PubMed

    Almeida, Leonardo Barbosa de; Peçanha, Tiago; Mira, Pedro Augusto de Carvalho; Souza, Livia Victorino de; da Silva, Lílian Pinto; Martinez, Daniel Godoy; Freitas, Isabelle Magalhães Guedes; Laterza, Mateus Camaroti

    2017-12-01

    Offspring of hypertensive parents present autonomic dysfunction at rest and during physiological maneuvers. However, the cardiac autonomic modulation during exercise remains unknown. This study tested whether the cardiac autonomic modulation would be reduced in offspring of hypertensive parents during exercise. Fourteen offspring of hypertensive and 14 offspring of normotensive individuals were evaluated. The groups were matched by age (24.5±1.0 vs. 26.6±1.5 years; p=0.25) and BMI (22.8±0.6 vs. 24.2±1.0 kg/m 2 ; p=0.30). Blood pressure and heart rate were assessed simultaneously during 3 min at baseline followed by 3-min isometric handgrip at 30% of maximal voluntary contraction. Cardiac autonomic modulation was evaluated using heart rate variability. Primary variables were subjected to two-way ANOVA (group vs. time). P value<0.05 was considered statistically significant. Blood pressure and heart rate were similar between groups during exercise protocol. In contrast, offspring of hypertensive subjects showed a reduction of SDNN (Basal=34.8±3.5 vs. 45.2±3.7 ms; Exercise=30.8±3.3 vs. 41.5±3.9 ms; p group=0.01), RMSSD (Basal=37.1±3.7 vs. 52.0±6.0 ms; Exercise=28.6±3.4 vs. 41.9±5.3 ms; p group=0.02) and pNN50 (Basal=15.7±4.0 vs. 29.5±5.5%; Exercise=7.7±2.4 vs. 18.0±4.3%; p group=0.03) during the exercise protocol in comparison with offspring of normotensive parents. We concluded that normotensive offspring of hypertensive parents exhibit impaired cardiac autonomic modulation during exercise. © Georg Thieme Verlag KG Stuttgart · New York.

  4. TRIIODOTHYRONINE INCREASES MYOCARDIAL FUNCTION AND PYRUVATE ENTRY INTO THE CITRIC ACID CYCLE AFTER REPERFUSION IN A MODEL OF INFANT CARDIOPULMONARY BYPASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Aaron; Bouchard, Bertrand; Ning, Xue-Han

    We utilized a translational model of infant CPB to test the hypothesis that T3 modulates pyruvate entry into the citric acid cycle (CAC) thereby providing the energy support for improved cardiac function after ischemia-reperfusion. Methods and Results: Neonatal piglets received intracoronary [2-13Carbon(13C)]-pyruvate for 40 minutes (8 mM) during control aerobic conditions (Cont) or immediately after reperfusion (IR) from global hypothermic ischemia. A third group (IR-Tr) received T3 (1.2 ug/kg) during reperfusion. We assessed absolute CAC intermediate levels (aCAC) and flux parameters into the CAC through oxidative pyruvate decarboxylation (PDC ) and anaplerotic carboxylation (PC; ) using 13C-labeled pyruvate and isotopomermore » analysis by gas and liquid chromatography-mass spectrometry and 13C NMR. Neither IR nor IR-Tr modified aCAC. However, compared to IR, T3 (group IR-Tr) increased cardiac power and oxygen consumption after CPB while elevating both PDC and PC (~ four-fold). T3 inhibited IR induced reductions in CAC intermediate molar percent enrichment (MPE) and oxaloacetate(citrate)/malate MPE ratio; an index of aspartate entry into the CAC. Conclusions: T3 markedly enhances PC and PDC thereby providing substrate for elevated cardiac function and work after reperfusion. The increases in pyruvate flux occur with preservation of the CAC intermediate pool. Additionally, T3 inhibition of reductions in CAC intermediate MPEs indicates that T3 reduces the reliance on amino acids (AA) for anaplerosis after reperfusion. Thus, AA should be more available for other functions such as protein synthesis.« less

  5. No overt structural or functional changes associated with PEG-coated gold nanoparticles accumulation with acute exposure in the mouse heart.

    PubMed

    Yang, Chengzhi; Yang, Hui; Wu, Jimin; Meng, Zenghui; Xing, Rui; Tian, Aiju; Tian, Xin; Guo, Lijun; Zhang, Youyi; Nie, Guangjun; Li, Zijian

    2013-10-24

    In this study, we investigated the cardiac biodistribution of polyethylene glycol (PEG)-coated AuNPs and their effects on cardiac function, structure and inflammation in both normal and cardiac remodeling mice. The model of cardiac remodeling was induced by subcutaneously injection of isoproterenol (ISO), a non-selective beta-adrenergic agonist, for 7 days. After AuNPs were injected intravenously in mice for 7 consecutive days, Au content in different organs was determined quantitatively by inductively coupled plasma mass spectrometry (ICP-MS), cardiac function and structure were measured by echocardiography, cardiac fibrosis was examined with picrosirius red staining, the morphology of cardiomyocytes was observed with hematoxylin and eosin (H & E) staining. The accumulation of AuNPs in hearts did not affect cardiac function or induce cardiac hypertrophy, cardiac fibrosis and cardiac inflammation under normal physiological condition. Cardiac AuNPs content was 6-fold higher in the cardiac remodeling mouse than normal mice. However, the increased accumulation of AuNPs in the heart did not aggravate ISO-induced cardiac hypertrophy, cardiac fibrosis or cardiac inflammation. These observations suggest that PEG-coated AuNPs possess excellent biocompatibility under both physiological and pathological conditions. Thus, AuNPs may be safe for cardiac patients and hold great promise for further development for various biomedical applications. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Cardiac stem cell therapy and arrhythmogenicity: prometheus and the arrows of Apollo and Artemis.

    PubMed

    Lyon, Alexander R; Harding, Sian E; Peters, Nicholas S

    2008-09-01

    Cardiac cell therapy is an expanding scientific field which is yielding new insights into the pathogenesis of cardiac disease and offers new therapeutic strategies. Inherent to both these areas of research are the electrical properties of individual cells, the electrical interplay between cardiomyocytes, and their roles in arrhythmogenesis. This review discusses the potential mechanisms by which various candidate cells for cardiac therapy may modulate the ventricular arrhythmic substrate and highlights the data and lessons learnt from the clinical cardiac cell therapy trials published to date. Pro- and antiarrhythmic mechanistic factors are discussed, and the importance of their consideration in the design of any future clinical cell therapy trials.

  7. MicroRNA-133 overexpression promotes the therapeutic efficacy of mesenchymal stem cells on acute myocardial infarction.

    PubMed

    Chen, Yueqiu; Zhao, Yunfeng; Chen, Weiqian; Xie, Lincen; Zhao, Zhen-Ao; Yang, Junjie; Chen, Yihuan; Lei, Wei; Shen, Zhenya

    2017-11-25

    Our study aim was to evaluate the therapeutic efficacy and mechanisms of miR-133-overexpressing mesenchymal stem cells (MSCs) on acute myocardial infarction. Rat MSCs were isolated and purified by whole bone marrow adherent culturing. After transfection with the agomir or antagomir of miR-133, MSCs were collected for assay of cell vitality, apoptosis, and cell cycle progression. At the same time, exosomes were isolated from the supernatant to analyze the paracrine miR-133. For in-vivo studies, constitutive activation of miR-133 in MSCs was achieved by lentivirus-mediated miR-133 overexpression. A rat myocardial infarction model was created by ligating the left anterior descending coronary artery, while control MSCs (vector-MSCs) or miR-133-overexpressed MSCs (miR-133-MSCs) were injected into the zone around the myocardial infarction. Subsequently, myocardial function was evaluated by echocardiography on days 7 and 28 post infarction. Finally the infarcted hearts were collected on days 7 and 28 for myocardial infarct size measurement and detection of snail 1 expression. Hypoxia-induced apoptosis of MSCs obviously reduced, along with enhanced expression of total poly ADP-ribose polymerase protein, after miR-133 agomir transfection, while the apoptosis rate increased in MSCs transfected with miR-133 antagomir. However, no change in cell viability and cell-cycle distribution was observed in control, miR-133-overexpressed, and miR-133-interfered MSCs. Importantly, rats transplanted with miR-133-MSCs displayed more improved cardiac function after acute myocardial infarction, compared with those that received vector-MSC injection. Further studies indicated that cardiac expression of snail 1 was significantly repressed by adjacent miR-133-overexpressing MSCs, and both the inflammatory level and the infarct size decreased in miR-133-MSC-injected rat hearts. miR-133-MSCs obviously improved cardiac function in a rat model of myocardial infarction. Transplantation of miR-133-overexpressing MSCs provides an effective strategy for cardiac repair and modulation of cardiac-related diseases.

  8. Identification of Glycosylation Sites Essential for Surface Expression of the CaVα2δ1 Subunit and Modulation of the Cardiac CaV1.2 Channel Activity*

    PubMed Central

    Tétreault, Marie-Philippe; Bourdin, Benoîte; Briot, Julie; Segura, Emilie; Lesage, Sylvie; Fiset, Céline; Parent, Lucie

    2016-01-01

    Alteration in the L-type current density is one aspect of the electrical remodeling observed in patients suffering from cardiac arrhythmias. Changes in channel function could result from variations in the protein biogenesis, stability, post-translational modification, and/or trafficking in any of the regulatory subunits forming cardiac L-type Ca2+ channel complexes. CaVα2δ1 is potentially the most heavily N-glycosylated subunit in the cardiac L-type CaV1.2 channel complex. Here, we show that enzymatic removal of N-glycans produced a 50-kDa shift in the mobility of cardiac and recombinant CaVα2δ1 proteins. This change was also observed upon simultaneous mutation of the 16 Asn sites. Nonetheless, the mutation of only 6/16 sites was sufficient to significantly 1) reduce the steady-state cell surface fluorescence of CaVα2δ1 as characterized by two-color flow cytometry assays and confocal imaging; 2) decrease protein stability estimated from cycloheximide chase assays; and 3) prevent the CaVα2δ1-mediated increase in the peak current density and voltage-dependent gating of CaV1.2. Reversing the N348Q and N812Q mutations in the non-operational sextuplet Asn mutant protein partially restored CaVα2δ1 function. Single mutation N663Q and double mutations N348Q/N468Q, N348Q/N812Q, and N468Q/N812Q decreased protein stability/synthesis and nearly abolished steady-state cell surface density of CaVα2δ1 as well as the CaVα2δ1-induced up-regulation of L-type currents. These results demonstrate that Asn-663 and to a lesser extent Asn-348, Asn-468, and Asn-812 contribute to protein stability/synthesis of CaVα2δ1, and furthermore that N-glycosylation of CaVα2δ1 is essential to produce functional L-type Ca2+ channels. PMID:26742847

  9. Interleukin-1β gene variants are associated with QTc interval prolongation following cardiac surgery: a prospective observational study

    PubMed Central

    Kertai, Miklos D.; Ji, Yunqi; Li, Yi-Ju; Mathew, Joseph P.; Daubert, James P.; Podgoreanu, Mihai V.

    2016-01-01

    Background We characterized cardiac surgery-induced dynamic changes of the corrected QT (QTc) interval and tested the hypothesis that genetic factors are associated with perioperative QTc prolongation independent of clinical and procedural factors. Methods All study subjects were ascertained from a prospective study of patients who underwent elective cardiac surgery during August 1999 to April 2002. We defined a prolonged QTc interval as >440 msec, measured from 24-hr pre- and postoperative 12-lead electrocardiograms. The association of 37 single nucleotide polymorphisms (SNPs) in 21 candidate genes – involved in modulating arrhythmia susceptibility pathways with postoperative QTc changes–was investigated in a two-stage design with a stage I cohort (n = 497) nested within a stage II cohort (n = 957). Empirical P values (Pemp) were obtained by permutation tests with 10,000 repeats. Results After adjusting for clinical and procedural risk factors, we selected four SNPs (P value range, 0.03-0.1) in stage I, which we then tested in the stage II cohort. Two functional SNPs in the pro-inflammatory cytokine interleukin-1β (IL1β), rs1143633 (odds ratio [OR], 0.71; 95% confidence interval [CI], 0.53 to 0.95; Pemp = 0.02) and rs16944 (OR, 1.31; 95% CI, 1.01 to 1.70; Pemp = 0.04), remained independent predictors of postoperative QTc prolongation. The ability of a clinico-genetic model incorporating the two IL1B polymorphisms to classify patients at risk for developing prolonged postoperative QTc was superior to a clinical model alone, with a net reclassification improvement of 0.308 (P = 0.0003) and an integrated discrimination improvement of 0.02 (P = 0.000024). Conclusion The results suggest a contribution of IL1β in modulating susceptibility to postoperative QTc prolongation after cardiac surgery. PMID:26858093

  10. New Insights into the Immunobiology of Mononuclear Phagocytic Cells and Their Relevance to the Pathogenesis of Cardiovascular Diseases

    PubMed Central

    Sanmarco, Liliana Maria; Eberhardt, Natalia; Ponce, Nicolás Eric; Cano, Roxana Carolina; Bonacci, Gustavo; Aoki, Maria Pilar

    2018-01-01

    Macrophages are the primary immune cells that reside within the myocardium, suggesting that these mononuclear phagocytes are essential in the orchestration of cardiac immunity and homeostasis. Independent of the nature of the injury, the heart triggers leukocyte activation and recruitment. However, inflammation is harmful to this vital terminally differentiated organ with extremely poor regenerative capacity. As such, cardiac tissue has evolved particular strategies to increase the stress tolerance and minimize the impact of inflammation. In this sense, growing evidences show that mononuclear phagocytic cells are particularly dynamic during cardiac inflammation or infection and would actively participate in tissue repair and functional recovery. They respond to soluble mediators such as metabolites or cytokines, which play central roles in the timing of the intrinsic cardiac stress response. During myocardial infarction two distinct phases of monocyte influx have been identified. Upon infarction, the heart modulates its chemokine expression profile that sequentially and actively recruits inflammatory monocytes, first, and healing monocytes, later. In the same way, a sudden switch from inflammatory macrophages (with microbicidal effectors) toward anti-inflammatory macrophages occurs within the myocardium very shortly after infection with Trypanosoma cruzi, the causal agent of Chagas cardiomyopathy. While in sterile injury, healing response is necessary to stop tissue damage; during an intracellular infection, the anti-inflammatory milieu in infected hearts would promote microbial persistence. The balance of mononuclear phagocytic cells seems to be also dynamic in atherosclerosis influencing plaque initiation and fate. This review summarizes the participation of mononuclear phagocyte system in cardiovascular diseases, keeping in mind that the immune system evolved to promote the reestablishment of tissue homeostasis following infection/injury, and that the effects of different mediators could modulate the magnitude and quality of the immune response. The knowledge of the effects triggered by diverse mediators would serve to identify new therapeutic targets in different cardiovascular pathologies. PMID:29375564

  11. New Insights into the Immunobiology of Mononuclear Phagocytic Cells and Their Relevance to the Pathogenesis of Cardiovascular Diseases.

    PubMed

    Sanmarco, Liliana Maria; Eberhardt, Natalia; Ponce, Nicolás Eric; Cano, Roxana Carolina; Bonacci, Gustavo; Aoki, Maria Pilar

    2017-01-01

    Macrophages are the primary immune cells that reside within the myocardium, suggesting that these mononuclear phagocytes are essential in the orchestration of cardiac immunity and homeostasis. Independent of the nature of the injury, the heart triggers leukocyte activation and recruitment. However, inflammation is harmful to this vital terminally differentiated organ with extremely poor regenerative capacity. As such, cardiac tissue has evolved particular strategies to increase the stress tolerance and minimize the impact of inflammation. In this sense, growing evidences show that mononuclear phagocytic cells are particularly dynamic during cardiac inflammation or infection and would actively participate in tissue repair and functional recovery. They respond to soluble mediators such as metabolites or cytokines, which play central roles in the timing of the intrinsic cardiac stress response. During myocardial infarction two distinct phases of monocyte influx have been identified. Upon infarction, the heart modulates its chemokine expression profile that sequentially and actively recruits inflammatory monocytes, first, and healing monocytes, later. In the same way, a sudden switch from inflammatory macrophages (with microbicidal effectors) toward anti-inflammatory macrophages occurs within the myocardium very shortly after infection with Trypanosoma cruzi , the causal agent of Chagas cardiomyopathy. While in sterile injury, healing response is necessary to stop tissue damage; during an intracellular infection, the anti-inflammatory milieu in infected hearts would promote microbial persistence. The balance of mononuclear phagocytic cells seems to be also dynamic in atherosclerosis influencing plaque initiation and fate. This review summarizes the participation of mononuclear phagocyte system in cardiovascular diseases, keeping in mind that the immune system evolved to promote the reestablishment of tissue homeostasis following infection/injury, and that the effects of different mediators could modulate the magnitude and quality of the immune response. The knowledge of the effects triggered by diverse mediators would serve to identify new therapeutic targets in different cardiovascular pathologies.

  12. Glutaredoxin-2 is required to control oxidative phosphorylation in cardiac muscle by mediating deglutathionylation reactions.

    PubMed

    Mailloux, Ryan J; Xuan, Jian Ying; McBride, Skye; Maharsy, Wael; Thorn, Stephanie; Holterman, Chet E; Kennedy, Christopher R J; Rippstein, Peter; deKemp, Robert; da Silva, Jean; Nemer, Mona; Lou, Marjorie; Harper, Mary-Ellen

    2014-05-23

    Glutaredoxin-2 (Grx2) modulates the activity of several mitochondrial proteins in cardiac tissue by catalyzing deglutathionylation reactions. However, it remains uncertain whether Grx2 is required to control mitochondrial ATP output in heart. Here, we report that Grx2 plays a vital role modulating mitochondrial energetics and heart physiology by mediating the deglutathionylation of mitochondrial proteins. Deletion of Grx2 (Grx2(-/-)) decreased ATP production by complex I-linked substrates to half that in wild type (WT) mitochondria. Decreased respiration was associated with increased complex I glutathionylation diminishing its activity. Tissue glucose uptake was concomitantly increased. Mitochondrial ATP output and complex I activity could be recovered by restoring the redox environment to that favoring the deglutathionylated states of proteins. Grx2(-/-) hearts also developed left ventricular hypertrophy and fibrosis, and mice became hypertensive. Mitochondrial energetics from Grx2 heterozygotes (Grx2(+/-)) were also dysfunctional, and hearts were hypertrophic. Intriguingly, Grx2(+/-) mice were far less hypertensive than Grx2(-/-) mice. Thus, Grx2 plays a vital role in modulating mitochondrial metabolism in cardiac muscle, and Grx2 deficiency leads to pathology. As mitochondrial ATP production was restored by the addition of reductants, these findings may be relevant to novel redox-related therapies in cardiac disease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. MURC, a Muscle-Restricted Coiled-Coil Protein That Modulates the Rho/ROCK Pathway, Induces Cardiac Dysfunction and Conduction Disturbance▿

    PubMed Central

    Ogata, Takehiro; Ueyama, Tomomi; Isodono, Koji; Tagawa, Masashi; Takehara, Naofumi; Kawashima, Tsuneaki; Harada, Koichiro; Takahashi, Tomosaburo; Shioi, Tetsuo; Matsubara, Hiroaki; Oh, Hidemasa

    2008-01-01

    We identified a novel muscle-restricted putative coiled-coil protein, MURC, which is evolutionarily conserved from frog to human. MURC was localized to the cytoplasm with accumulation in the Z-line of the sarcomere in the murine adult heart. MURC mRNA expression in the heart increased during the developmental process from the embryonic stage to adulthood. In response to pressure overload, MURC mRNA expression increased in the hypertrophied heart. Using the yeast two-hybrid system, we identified the serum deprivation response (SDPR) protein, a phosphatidylserine-binding protein, as a MURC-binding protein. MURC induced activation of the RhoA/ROCK pathway, which modulated serum response factor-mediated atrial natriuretic peptide (ANP) expression and myofibrillar organization. SDPR augmented MURC-induced transactivation of the ANP promoter in cardiomyocytes, and RNA interference of SDPR attenuated the action of MURC on the ANP promoter. Transgenic mice expressing cardiac-specific MURC (Tg-MURC) exhibited cardiac contractile dysfunction and atrioventricular (AV) conduction disturbances with atrial chamber enlargement, reduced thickness of the ventricular wall, and interstitial fibrosis. Spontaneous episodes of atrial fibrillation and AV block were observed in Tg-MURC mice. These findings indicate that MURC modulates RhoA signaling and that MURC plays an important role in the development of cardiac dysfunction and conduction disturbance with increased vulnerability to atrial arrhythmias. PMID:18332105

  14. MURC, a muscle-restricted coiled-coil protein that modulates the Rho/ROCK pathway, induces cardiac dysfunction and conduction disturbance.

    PubMed

    Ogata, Takehiro; Ueyama, Tomomi; Isodono, Koji; Tagawa, Masashi; Takehara, Naofumi; Kawashima, Tsuneaki; Harada, Koichiro; Takahashi, Tomosaburo; Shioi, Tetsuo; Matsubara, Hiroaki; Oh, Hidemasa

    2008-05-01

    We identified a novel muscle-restricted putative coiled-coil protein, MURC, which is evolutionarily conserved from frog to human. MURC was localized to the cytoplasm with accumulation in the Z-line of the sarcomere in the murine adult heart. MURC mRNA expression in the heart increased during the developmental process from the embryonic stage to adulthood. In response to pressure overload, MURC mRNA expression increased in the hypertrophied heart. Using the yeast two-hybrid system, we identified the serum deprivation response (SDPR) protein, a phosphatidylserine-binding protein, as a MURC-binding protein. MURC induced activation of the RhoA/ROCK pathway, which modulated serum response factor-mediated atrial natriuretic peptide (ANP) expression and myofibrillar organization. SDPR augmented MURC-induced transactivation of the ANP promoter in cardiomyocytes, and RNA interference of SDPR attenuated the action of MURC on the ANP promoter. Transgenic mice expressing cardiac-specific MURC (Tg-MURC) exhibited cardiac contractile dysfunction and atrioventricular (AV) conduction disturbances with atrial chamber enlargement, reduced thickness of the ventricular wall, and interstitial fibrosis. Spontaneous episodes of atrial fibrillation and AV block were observed in Tg-MURC mice. These findings indicate that MURC modulates RhoA signaling and that MURC plays an important role in the development of cardiac dysfunction and conduction disturbance with increased vulnerability to atrial arrhythmias.

  15. Cardiac Fibroblast-Specific Activating Transcription Factor 3 Protects Against Heart Failure by Suppressing MAP2K3-p38 Signaling.

    PubMed

    Li, Yulin; Li, Zhenya; Zhang, Congcong; Li, Ping; Wu, Yina; Wang, Chunxiao; Bond Lau, Wayne; Ma, Xin-Liang; Du, Jie

    2017-05-23

    Hypertensive ventricular remodeling is a common cause of heart failure. However, the molecular mechanisms regulating ventricular remodeling remain poorly understood. We used a discovery-driven/nonbiased approach to identify increased activating transcription factor 3 (ATF3) expression in hypertensive heart. We used loss/gain of function approaches to understand the role of ATF3 in heart failure. We also examined the mechanisms through transcriptome, chromatin immunoprecipitation sequencing analysis, and in vivo and in vitro experiments. ATF3 expression increased in murine hypertensive heart and human hypertrophic heart. Cardiac fibroblast cells are the primary cell type expressing high ATF3 levels in response to hypertensive stimuli. ATF3 knockout (ATF3KO) markedly exaggerated hypertensive ventricular remodeling, a state rescued by lentivirus-mediated/miRNA-aided cardiac fibroblast-selective ATF3 overexpression. Conversely, conditional cardiac fibroblast cell-specific ATF3 transgenic overexpression significantly ameliorated ventricular remodeling and heart failure. We identified Map2K3 as a novel ATF3 target. ATF3 binds with the Map2K3 promoter, recruiting HDAC1, resulting in Map2K3 gene-associated histone deacetylation, thereby inhibiting Map2K3 expression. Genetic Map2K3 knockdown rescued the profibrotic/hypertrophic phenotype in ATF3KO cells. Last, we demonstrated that p38 is the downstream molecule of Map2K3 mediating the profibrotic/hypertrophic effects in ATF3KO animals. Inhibition of p38 signaling reduced transforming growth factor-β signaling-related profibrotic and hypertrophic gene expression, and blocked exaggerated cardiac remodeling in ATF3KO cells. Our study provides the first evidence that ATF3 upregulation in cardiac fibroblasts in response to hypertensive stimuli protects the heart by suppressing Map2K3 expression and subsequent p38-transforming growth factor-β signaling. These results suggest that positive modulation of cardiac fibroblast ATF3 may represent a novel therapeutic approach against hypertensive cardiac remodeling. © 2017 American Heart Association, Inc.

  16. Deep sea minerals prolong life span of streptozotocin-induced diabetic rats by compensatory augmentation of the IGF-I-survival signaling and inhibition of apoptosis.

    PubMed

    Liao, Hung-En; Shibu, Marthandam Asokan; Kuo, Wei-Wen; Pai, Pei-Ying; Ho, Tsung-Jung; Kuo, Chia-Hua; Lin, Jing-Ying; Wen, Su-Ying; Viswanadha, Vijaya Padma; Huang, Chih-Yang

    2016-07-01

    Consumption of deep sea minerals (DSM), such as magnesium, calcium, and potassium, is known to reduce hypercholesterolemia-induced myocardial hypertrophy and cardiac-apoptosis and provide protection against cardiovascular diseases. Heart diseases develop as a lethal complication among diabetic patients usually due to hyperglycemia-induced cardiac-apoptosis that causes severe cardiac-damages, heart failure, and reduced life expectancy. In this study, we investigated the potential of DSM and its related cardio-protection to increase the life expectancy in diabetic rats. In this study, a heart failure rat model was developed by using streptozotocin (65 mg kg(-1) ) IP injection. Different doses of DSM-1× (37 mg kg(-1) day(-1) ), 2× (74 mg kg(-1) day(-1) ) and 3× (111 mg kg(-1) day(-1) ), were administered to the rats through gavages for 4 weeks. The positive effects of DSM on the survival rate of diabetes rats were determined with respect to the corresponding effects of MgSO4 . Further, to understand the mechanism by which DSM enhances the survival of diabetic rats, their potential to regulate cardiac-apoptosis and control cardiac-dysfunction were examined. Echocardiogram, tissue staining, TUNEL assay, and Western blotting assay were used to investigate modulations in the myocardial contractile function and related signaling protein expression. The results showed that DSM regulate apoptosis and complement the cardiomyocyte proliferation by enhancing survival mechanisms. Moreover DSM significantly reduced the mortality rate and enhanced the survival rate of diabetic rats. Experimental results show that DSM administration can be an effective strategy to improve the life expectancy of diabetic subjects by improving cardiac-cell proliferation and by controlling cardiac-apoptosis and associated cardiac-dysfunction. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 769-781, 2016. © 2015 Wiley Periodicals, Inc.

  17. Challenges in Cardiac Tissue Engineering

    PubMed Central

    Tandon, Nina; Godier, Amandine; Maidhof, Robert; Marsano, Anna; Martens, Timothy P.; Radisic, Milica

    2010-01-01

    Cardiac tissue engineering aims to create functional tissue constructs that can reestablish the structure and function of injured myocardium. Engineered constructs can also serve as high-fidelity models for studies of cardiac development and disease. In a general case, the biological potential of the cell—the actual “tissue engineer”—is mobilized by providing highly controllable three-dimensional environments that can mediate cell differentiation and functional assembly. For cardiac regeneration, some of the key requirements that need to be met are the selection of a human cell source, establishment of cardiac tissue matrix, electromechanical cell coupling, robust and stable contractile function, and functional vascularization. We review here the potential and challenges of cardiac tissue engineering for developing therapies that could prevent or reverse heart failure. PMID:19698068

  18. Transient Receptor Potential Vanilloid 2 Regulates Myocardial Response to Exercise

    PubMed Central

    Naticchioni, Mindi; Karani, Rajiv; Smith, Margaret A.; Onusko, Evan; Robbins, Nathan; Jiang, Min; Radzyukevich, Tatiana; Fulford, Logan; Gao, Xu; Apel, Ryan; Heiny, Judith; Rubinstein, Jack; Koch, Sheryl E.

    2015-01-01

    The myocardial response to exercise is an adaptive mechanism that permits the heart to maintain cardiac output via improved cardiac function and development of hypertrophy. There are many overlapping mechanisms via which this occurs with calcium handling being a crucial component of this process. Our laboratory has previously found that the stretch sensitive TRPV2 channels are active regulators of calcium handling and cardiac function under baseline conditions based on our observations that TRPV2-KO mice have impaired cardiac function at baseline. The focus of this study was to determine the cardiac function of TRPV2-KO mice under exercise conditions. We measured skeletal muscle at baseline in WT and TRPV2-KO mice and subjected them to various exercise protocols and measured the cardiac response using echocardiography and molecular markers. Our results demonstrate that the TRPV2-KO mouse did not tolerate forced exercise although they became increasingly exercise tolerant with voluntary exercise. This occurs as the cardiac function deteriorates further with exercise. Thus, our conclusion is that TRPV2-KO mice have impaired cardiac functional response to exercise. PMID:26356305

  19. Superoxide anion radical-triggered Ca2+ release from cardiac sarcoplasmic reticulum through ryanodine receptor Ca2+ channel.

    PubMed

    Kawakami, M; Okabe, E

    1998-03-01

    The ryanodine receptor Ca2+ channel (RyRC) constitutes the Ca2+-release pathway in sarcoplasmic reticulum (SR) of cardiac muscle. A direct mechanical and a Ca2+-triggered mechanism (Ca2+-induced Ca2+ release) have been proposed to explain the in situ activation of Ca2+ release in cardiac muscle. A variety of chemical oxidants have been shown to activate RyRC; however, the role of modification induced by oxygen-derived free radicals in pathological states of the muscle remains to be elucidated. It has been hypothesized that oxygen-derived free radicals initiate Ca2+-mediated functional changes in or damage to cardiac muscle by acting on the SR and promoting an increase in Ca2+ release. We confirmed that superoxide anion radical (O2-) generated from hypoxanthine-xanthine oxidase reaction decreases calmodulin content and increases 45Ca2+ efflux from the heavy fraction of canine cardiac SR vesicles; hypoxanthine-xanthine oxidase also decreases Ca2+ free within the intravesicular space of the SR with no effect on Ca2+-ATPase activity. Current fluctuations through single Ca2+-release channels have been monitored after incorporation into planar phospholipid bilayers. We demonstrate that activation of the channel by O2- is dependent of the presence of calmodulin and identified calmodulin as a functional mediator of O2--triggered Ca2+ release through the RyRC. For the first time, we show that O2- stimulates Ca2+ release from heavy SR vesicles and suggest the importance of accessory proteins such as calmodulin in modulating the effect of O2-. The decreased calmodulin content induced by oxygen-derived free radicals, especially O2-, is a likely mechanism of accumulation of cytosolic Ca2+ (due to increased Ca2+ release from SR) after reperfusion of the ischemic heart.

  20. How Hippo Signaling Pathway Modulates Cardiovascular Development and Diseases.

    PubMed

    Zhou, Wenyi; Zhao, Mingyi

    2018-01-01

    Cardiovascular disease remains the leading cause of death around the globe. Cardiac deterioration is associated with irreversible cardiomyocyte loss. Understanding how the cardiovascular system develops and the pathological processes of cardiac disease will contribute to finding novel and preventive therapeutic methods. The canonical Hippo tumor suppressor pathway in mammalian cells is primarily composed of the MST1/2-SAV1-LATS1/2-MOB1-YAP/TAZ cascade. Continuing research on this pathway has identified other factors like RASSF1A, Nf2, MAP4Ks, and NDR1/2, further enriching our knowledge of the Hippo-YAP pathway. YAP, the core effecter of the Hippo pathway, may accumulate in the nucleus and initiate transcriptional activity if the pathway is inhibited. The role of Hippo signaling has been widely investigated in organ development and cancers. A heart of normal size and function which is critical for survival could not be generated without the proper regulation of the Hippo tumor suppressor pathway. Recent research has demonstrated a novel role of Hippo signaling in cardiovascular disease in the context of development, hypertrophy, angiogenesis, regeneration, apoptosis, and autophagy. In this review, we summarize the current knowledge of how Hippo signaling modulates pathological processes in cardiovascular disease and discuss potential molecular therapeutic targets.

  1. Heparan Sulfate Biosynthesis Enzyme, Ext1, Contributes to Outflow Tract Development of Mouse Heart via Modulation of FGF Signaling.

    PubMed

    Zhang, Rui; Cao, Peijuan; Yang, Zhongzhou; Wang, Zhenzhen; Wu, Jiu-Lin; Chen, Yan; Pan, Yi

    2015-01-01

    Glycosaminoglycans are important regulators of multiple signaling pathways. As a major constituent of the heart extracellular matrix, glycosaminoglycans are implicated in cardiac morphogenesis through interactions with different signaling morphogens. Ext1 is a glycosyltransferase responsible for heparan sulfate synthesis. Here, we evaluate the function of Ext1 in heart development by analyzing Ext1 hypomorphic mutant and conditional knockout mice. Outflow tract alignment is sensitive to the dosage of Ext1. Deletion of Ext1 in the mesoderm induces a cardiac phenotype similar to that of a mutant with conditional deletion of UDP-glucose dehydrogenase, a key enzyme responsible for synthesis of all glycosaminoglycans. The outflow tract defect in conditional Ext1 knockout(Ext1f/f:Mesp1Cre) mice is attributable to the reduced contribution of second heart field and neural crest cells. Ext1 deletion leads to downregulation of FGF signaling in the pharyngeal mesoderm. Exogenous FGF8 ameliorates the defects in the outflow tract and pharyngeal explants. In addition, Ext1 expression in second heart field and neural crest cells is required for outflow tract remodeling. Our results collectively indicate that Ext1 is crucial for outflow tract formation in distinct progenitor cells, and heparan sulfate modulates FGF signaling during early heart development.

  2. Should modulation of p50 be a therapeutic target in the critically ill?

    PubMed

    Srinivasan, Amudan J; Morkane, Clare; Martin, Daniel S; Welsby, Ian J

    2017-05-01

    A defining feature of human hemoglobin is its oxygen binding affinity, quantified by the partial pressure of oxygen at which hemoglobin is 50% saturated (p50), and the variability of this parameter over a range of physiological and environmental states. Modulation of this property of hemoglobin can directly affect the degree of peripheral oxygen offloading and tissue oxygenation. Areas covered: This review summarizes the role of hemoglobin oxygen affinity in normal and abnormal physiology and discusses the current state of the literature regarding artificial modulation of p50. Hypoxic tumors, sickle cell disease, heart failure, and transfusion medicine are discussed in the context of recent advances in hemoglobin oxygen affinity manipulation. Expert commentary: Of particular clinical interest is the possibility of maintaining adequate end-organ oxygen availability in patients with anemia or compromised cardiac function via an increase in systemic p50. This increase in systemic p50 can be achieved with small molecule drugs or a packed red blood cell unit processing variant called rejuvenation, and human trials are needed to better understand the potential clinical benefits to modulating p50.

  3. Mesenchymal-endothelial-transition contributes to cardiac neovascularization

    PubMed Central

    Ubil, Eric; Duan, Jinzhu; Pillai, Indulekha C.L.; Rosa-Garrido, Manuel; Wu, Yong; Bargiacchi, Francesca; Lu, Yan; Stanbouly, Seta; Huang, Jie; Rojas, Mauricio; Vondriska, Thomas M.; Stefani, Enrico; Deb, Arjun

    2014-01-01

    Endothelial cells contribute to a subset of cardiac fibroblasts by undergoing endothelial-to-mesenchymal-transition, but whether cardiac fibroblasts can adopt an endothelial cell fate and directly contribute to neovascularization after cardiac injury is not known. Here, using genetic fate map techniques, we demonstrate that cardiac fibroblasts rapidly adopt an endothelial cell like phenotype after acute ischemic cardiac injury. Fibroblast derived endothelial cells exhibit anatomical and functional characteristics of native endothelial cells. We show that the transcription factor p53 regulates such a switch in cardiac fibroblast fate. Loss of p53 in cardiac fibroblasts severely decreases the formation of fibroblast derived endothelial cells, reduces post infarct vascular density and worsens cardiac function. Conversely, stimulation of the p53 pathway in cardiac fibroblasts augments mesenchymal to endothelial transition, enhances vascularity and improves cardiac function. These observations demonstrate that mesenchymal-to-endothelial-transition contributes to neovascularization of the injured heart and represents a potential therapeutic target for enhancing cardiac repair. PMID:25317562

  4. Regulation of basal and reserve cardiac pacemaker function by interactions of cAMP mediated PKA-dependent Ca2+ cycling with surface membrane channels

    PubMed Central

    Vinogradova, Tatiana M.; Lakatta, Edward G.

    2009-01-01

    Decades of intensive research of primary cardiac pacemaker, the sinoatrial node, have established potential roles of specific membrane channels in the generation of the diastolic depolarization, the major mechanism allowing sinoatrial node cells generate spontaneous beating. During the last three decades, multiple studies made either in the isolated sinoatrial node or sinoatrial node cells have demonstrated a pivotal role of Ca2+ and, specifically Ca2+-release from sarcoplasmic reticulum, for spontaneous beating of cardiac pacemaker. Recently, spontaneous, rhythmic local subsarcolemmal Ca2+ releases from ryanodine receptors during late half of the diastolic depolarization have been implicated as a vital factor in the generation of sinoatrial node cells spontaneous firing. Local Ca2+ releases are driven by a unique combination of high basal cAMP production by adenylyl cyclases, high basal cAMP degradation by phosphodiesterases and a high level of cAMP-mediated PKA-dependent phosphorylation. These local Ca2+ releases activate an inward Na+-Ca2+ exchange current which accelerates the terminal diastolic depolarization rate and, thus, controls the spontaneous pacemaker firing. Both the basal primary pacemaker beating rate and its modulation via β-adrenergic receptor stimulation appear to be critically dependent upon intact RyR function and local subsarcolemmal sarcoplasmic reticulum generated Ca2+ releases. This review aspires to integrate the traditional viewpoint that has emphasized the supremacy of the ensemble of surface membrane ion channels in spontaneous firing of the primary cardiac pacemaker, and these novel perspectives of cAMP-mediated PKA-dependent Ca2+ cycling in regulation of the heart pacemaker clock, both in the basal state and during β-adrenergic receptor stimulation. PMID:19573534

  5. Biomimetic engineering of the cardiac tissue through processing, functionalisation and biological characterization of polyesterurethanes.

    PubMed

    Vozzi, Federico; Logrand, Federica; Cabiati, Manuela; Cicione, Claudia; Boffito, Monica; Carmagnola, Irene; Vitale, Nicoletta; Gori, Manuele; Brancaccio, Mara; Del Ry, Silvia; Gastaldi, Dario; Cattarinuzzi, Emanuele; Vena, Pasquale; Rainer, Alberto; Domenici, Claudio; Ciardelli, Gianluca; Sartori, Susanna

    2018-06-05

    Three-dimensional (3D) tissue models offer new tools in the study of diseases. In the case of the engineering of the cardiac muscle, a realistic goal would be the design of a scaffold able to replicate the tissue-specific architecture, mechanical properties and chemical composition, so that it recapitulates the main functions of the tissue. This work is focused on the design and the preliminary biological validation of an innovative polyesterurethane (PUR) scaffold mimicking cardiac tissue properties. The porous scaffold was fabricated by Thermally Induced Phase Separation (TIPS) from poly(-caprolactone) diol, 1,4-butane diisocyanate and L-lysine ethyl ester. Morphological and mechanical scaffolds characterization was accomplished by confocal microscopy and micro-tensile and -compression techniques. Scaffolds were then functionalized with fibronectin by plasma treatment and the surface treatment was studied by XPS, ATR-FTIR and contact angle measurements. Primary rat neonatal cardiomyocytes were seeded on scaffolds and their colonization, survival and beating activity were analyzed for 14 days. Signal transduction pathways and apoptosis involved in cell, structural development of the heart and in its metabolism were analyzed. PUR scaffolds showed porous-aligned structure and mechanical properties consistent with that of the myocardial tissue. Cardiomyocytes plated on the scaffolds showed a high survival rate and a stable beating activity. AKT and ERK phosphorylation was higher in cardiomyocytes cultured on the PUR scaffold compared to those on tissue culture plates. RT-PCR analysis showed a significant modulation at 14 days of cardiac muscle (MYH7, ET-1), hypertrophy-specific (CTGF) and metabolism-related (SLC2a1, PFKL) genes in PUR scaffolds. © 2018 IOP Publishing Ltd.

  6. The Potential Role of Aerobic Exercise to Modulate Cardiotoxicity of Molecularly Targeted Cancer Therapeutics

    PubMed Central

    Lakoski, Susan; Mackey, John R.; Douglas, Pamela S.; Haykowsky, Mark J.; Jones, Lee W.

    2013-01-01

    Molecularly targeted therapeutics (MTT) are the future of cancer systemic therapy. They have already moved from palliative therapy for advanced solid malignancies into the setting of curative-intent treatment for early-stage disease. Cardiotoxicity is a frequent and potentially serious adverse complication of some targeted therapies, leading to a broad range of potentially life-threatening complications, therapy discontinuation, and poor quality of life. Low-cost pleiotropic interventions are therefore urgently required to effectively prevent and/or treat MTT-induced cardiotoxicity. Aerobic exercise therapy has the unique capacity to modulate, without toxicity, multiple gene expression pathways in several organ systems, including a plethora of cardiac-specific molecular and cell-signaling pathways implicated in MTT-induced cardiac toxicity. In this review, we examine the molecular signaling of antiangiogenic and HER2-directed therapies that may underpin cardiac toxicity and the hypothesized molecular mechanisms underlying the cardioprotective properties of aerobic exercise. It is hoped that this knowledge can be used to maximize the benefits of small molecule inhibitors, while minimizing cardiac damage in patients with solid malignancies. PMID:23335619

  7. Assessment of Cardiac Function in Fetuses of Gestational Diabetic Mothers During the Second Trimester.

    PubMed

    Atiq, Mehnaz; Ikram, Anum; Hussain, Batool M; Saleem, Bakhtawar

    2017-06-01

    Fetuses of diabetic mothers may have structural or functional cardiac abnormalities which increase morbidity and mortality. Isolated functional abnormalities have been identified in the third trimester. The aim of the present study was to assess fetal cardiac function (systolic, diastolic, and global myocardial performance) in the second trimester in mothers with gestational diabetes, and also to relate cardiac function with glycemic control. Mothers with gestational diabetes mellitus referred for fetal cardiac evaluation in the second trimester (between 19 and 24 weeks) from March 2015 to February 2016 were enrolled as case subjects in this study. Non-diabetic mothers who had a fetal echocardiogram done between 19 and 24 weeks for other indications were enrolled as controls. Functional cardiac variables showed a statistically significant difference in isovolumetric relaxation and contraction times and the myocardial performance index and mitral E/A ratios in the gestational diabetic group (p = 0.003). Mitral annular plane systolic excursion was significantly less in the diabetic group (p = 0.01). The only functional cardiac variable found abnormal in mothers with poor glycemic control was the prolonged isovolumetric relaxation time. Functional cardiac abnormalities can be detected in the second trimester in fetuses of gestational diabetic mothers and timely intervention can improve postnatal outcomes.

  8. Dual Endothelin-A/Endothelin-B Receptor Blockade and Cardiac Remodeling in Heart Failure With Preserved Ejection Fraction

    PubMed Central

    Valero-Munoz, Maria; Li, Shanpeng; Wilson, Richard M.; Boldbaatar, Batbold; Iglarz, Marc; Sam, Flora

    2017-01-01

    Background Despite the increasing prevalence of heart failure with preserved ejection fraction (HFpEF) in humans, there remains no evidence-based therapies for HFpEF. Endothelin-1 (ET-1) antagonists are a possibility because elevated ET-1 levels are associated with adverse cardiovascular effects, such as arterial and pulmonary vasoconstriction, impaired left ventricular (LV) relaxation, and stimulation of LV hypertrophy. LV hypertrophy is a common phenotype in HFpEF, particularly when associated with hypertension. Methods and Results In the present study, we found that ET-1 levels were significantly elevated in patients with chronic stable HFpEF. We then sought to investigate the effects of chronic macitentan, a dual ET-A/ET-B receptor antagonist, on cardiac structure and function in a murine model of HFpEF induced by chronic aldosterone infusion. Macitentan caused LV hypertrophy regression independent of blood pressure changes in HFpEF. Although macitentan did not modulate diastolic dysfunction in HFpEF, it significantly reduced wall thickness and relative wall thickness after 2 weeks of therapy. In vitro studies showed that macitentan decreased the aldosterone-induced cardiomyocyte hypertrophy. These changes were mediated by a reduction in the expression of cardiac myocyte enhancer factor 2a. Moreover, macitentan improved adverse cardiac remodeling, by reducing the stiffer cardiac collagen I and titin n2b expression in the left ventricle of mice with HFpEF. Conclusions These findings indicate that dual ET-A/ET-B receptor inhibition improves HFpEF by abrogating adverse cardiac remodeling via antihypertrophic mechanisms and by reducing stiffness. Additional studies are needed to explore the role of dual ET-1 receptor antagonists in patients with HFpEF. PMID:27810862

  9. Dual Endothelin-A/Endothelin-B Receptor Blockade and Cardiac Remodeling in Heart Failure With Preserved Ejection Fraction.

    PubMed

    Valero-Munoz, Maria; Li, Shanpeng; Wilson, Richard M; Boldbaatar, Batbold; Iglarz, Marc; Sam, Flora

    2016-11-01

    Despite the increasing prevalence of heart failure with preserved ejection fraction (HFpEF) in humans, there remains no evidence-based therapies for HFpEF. Endothelin-1 (ET-1) antagonists are a possibility because elevated ET-1 levels are associated with adverse cardiovascular effects, such as arterial and pulmonary vasoconstriction, impaired left ventricular (LV) relaxation, and stimulation of LV hypertrophy. LV hypertrophy is a common phenotype in HFpEF, particularly when associated with hypertension. In the present study, we found that ET-1 levels were significantly elevated in patients with chronic stable HFpEF. We then sought to investigate the effects of chronic macitentan, a dual ET-A/ET-B receptor antagonist, on cardiac structure and function in a murine model of HFpEF induced by chronic aldosterone infusion. Macitentan caused LV hypertrophy regression independent of blood pressure changes in HFpEF. Although macitentan did not modulate diastolic dysfunction in HFpEF, it significantly reduced wall thickness and relative wall thickness after 2 weeks of therapy. In vitro studies showed that macitentan decreased the aldosterone-induced cardiomyocyte hypertrophy. These changes were mediated by a reduction in the expression of cardiac myocyte enhancer factor 2a. Moreover, macitentan improved adverse cardiac remodeling, by reducing the stiffer cardiac collagen I and titin n2b expression in the left ventricle of mice with HFpEF. These findings indicate that dual ET-A/ET-B receptor inhibition improves HFpEF by abrogating adverse cardiac remodeling via antihypertrophic mechanisms and by reducing stiffness. Additional studies are needed to explore the role of dual ET-1 receptor antagonists in patients with HFpEF. © 2016 American Heart Association, Inc.

  10. Pathological Ace2-to-Ace enzyme switch in the stressed heart is transcriptionally controlled by the endothelial Brg1–FoxM1 complex

    PubMed Central

    Yang, Jin; Feng, Xuhui; Zhou, Qiong; Cheng, Wei; Shang, Ching; Han, Pei; Lin, Chiou-Hong; Chen, Huei-Sheng Vincent; Quertermous, Thomas; Chang, Ching-Pin

    2016-01-01

    Genes encoding angiotensin-converting enzymes (Ace and Ace2) are essential for heart function regulation. Cardiac stress enhances Ace, but suppresses Ace2, expression in the heart, leading to a net production of angiotensin II that promotes cardiac hypertrophy and fibrosis. The regulatory mechanism that underlies the Ace2-to-Ace pathological switch, however, is unknown. Here we report that the Brahma-related gene-1 (Brg1) chromatin remodeler and forkhead box M1 (FoxM1) transcription factor cooperate within cardiac (coronary) endothelial cells of pathologically stressed hearts to trigger the Ace2-to-Ace enzyme switch, angiotensin I-to-II conversion, and cardiac hypertrophy. In mice, cardiac stress activates the expression of Brg1 and FoxM1 in endothelial cells. Once activated, Brg1 and FoxM1 form a protein complex on Ace and Ace2 promoters to concurrently activate Ace and repress Ace2, tipping the balance to Ace2 expression with enhanced angiotensin II production, leading to cardiac hypertrophy and fibrosis. Disruption of endothelial Brg1 or FoxM1 or chemical inhibition of FoxM1 abolishes the stress-induced Ace2-to-Ace switch and protects the heart from pathological hypertrophy. In human hypertrophic hearts, BRG1 and FOXM1 expression is also activated in endothelial cells; their expression levels correlate strongly with the ACE/ACE2 ratio, suggesting a conserved mechanism. Our studies demonstrate a molecular interaction of Brg1 and FoxM1 and an endothelial mechanism of modulating Ace/Ace2 ratio for heart failure therapy. PMID:27601681

  11. Effect of methylene blue on the genomic response to reperfusion injury induced by cardiac arrest and cardiopulmonary resuscitation in porcine brain

    PubMed Central

    2010-01-01

    Background Cerebral ischemia/reperfusion injury is a common secondary effect of cardiac arrest which is largely responsible for postresuscitative mortality. Therefore development of therapies which restore and protect the brain function after cardiac arrest is essential. Methylene blue (MB) has been experimentally proven neuroprotective in a porcine model of global ischemia-reperfusion in experimental cardiac arrest. However, no comprehensive analyses have been conducted at gene expression level. Methods Pigs underwent either untreated cardiac arrest (CA) or CA with subsequent cardiopulmonary resuscitation (CPR) accompanied with an infusion of saline or an infusion of saline with MB. Genome-wide transcriptional profiling using the Affymetrix porcine microarray was performed to 1) gain understanding of delayed neuronal death initiation in porcine brain during ischemia and after 30, 60 and 180 min following reperfusion, and 2) identify the mechanisms behind the neuroprotective effect of MB after ischemic injury (at 30, 60 and 180 min). Results Our results show that restoration of spontaneous circulation (ROSC) induces major transcriptional changes related to stress response, inflammation, apoptosis and even cytoprotection. In contrast, the untreated ischemic and anoxic insult affected only few genes mainly involved in intra-/extracellular ionic balance. Furthermore, our data show that the neuroprotective role of MB is diverse and fulfilled by regulation of the expression of soluble guanylate cyclase and biological processes accountable for inhibition of apoptosis, modulation of stress response, neurogenesis and neuroprotection. Conclusions Our results support that MB could be a valuable intervention and should be investigated as a therapeutic agent against neural damage associated with I/R injury induced by cardiac arrest. PMID:20594294

  12. Pathological Ace2-to-Ace enzyme switch in the stressed heart is transcriptionally controlled by the endothelial Brg1-FoxM1 complex.

    PubMed

    Yang, Jin; Feng, Xuhui; Zhou, Qiong; Cheng, Wei; Shang, Ching; Han, Pei; Lin, Chiou-Hong; Chen, Huei-Sheng Vincent; Quertermous, Thomas; Chang, Ching-Pin

    2016-09-20

    Genes encoding angiotensin-converting enzymes (Ace and Ace2) are essential for heart function regulation. Cardiac stress enhances Ace, but suppresses Ace2, expression in the heart, leading to a net production of angiotensin II that promotes cardiac hypertrophy and fibrosis. The regulatory mechanism that underlies the Ace2-to-Ace pathological switch, however, is unknown. Here we report that the Brahma-related gene-1 (Brg1) chromatin remodeler and forkhead box M1 (FoxM1) transcription factor cooperate within cardiac (coronary) endothelial cells of pathologically stressed hearts to trigger the Ace2-to-Ace enzyme switch, angiotensin I-to-II conversion, and cardiac hypertrophy. In mice, cardiac stress activates the expression of Brg1 and FoxM1 in endothelial cells. Once activated, Brg1 and FoxM1 form a protein complex on Ace and Ace2 promoters to concurrently activate Ace and repress Ace2, tipping the balance to Ace2 expression with enhanced angiotensin II production, leading to cardiac hypertrophy and fibrosis. Disruption of endothelial Brg1 or FoxM1 or chemical inhibition of FoxM1 abolishes the stress-induced Ace2-to-Ace switch and protects the heart from pathological hypertrophy. In human hypertrophic hearts, BRG1 and FOXM1 expression is also activated in endothelial cells; their expression levels correlate strongly with the ACE/ACE2 ratio, suggesting a conserved mechanism. Our studies demonstrate a molecular interaction of Brg1 and FoxM1 and an endothelial mechanism of modulating Ace/Ace2 ratio for heart failure therapy.

  13. Use of the Frank-Starling mechanism during exercise is linked to exercise-induced changes in arterial load

    PubMed Central

    Chantler, Paul D.; Melenovsky, Vojtech; Schulman, Steven P.; Gerstenblith, Gary; Becker, Lewis C.; Ferrucci, Luigi; Fleg, Jerome L.; Najjar, Samer S.

    2012-01-01

    Effective arterial elastance(EA) is a measure of the net arterial load imposed on the heart that integrates the effects of heart rate(HR), peripheral vascular resistance(PVR), and total arterial compliance(TAC) and is a modulator of cardiac performance. To what extent the change in EA during exercise impacts on cardiac performance and aerobic capacity is unknown. We examined EA and its relationship with cardiovascular performance in 352 healthy subjects. Subjects underwent rest and exercise gated scans to measure cardiac volumes and to derive EA[end-systolic pressure/stroke volume index(SV)], PVR[MAP/(SV*HR)], and TAC(SV/pulse pressure). EA varied with exercise intensity: the ΔEA between rest and peak exercise along with its determinants, differed among individuals and ranged from −44% to +149%, and was independent of age and sex. Individuals were separated into 3 groups based on their ΔEAI. Individuals with the largest increase in ΔEA(group 3;ΔEA≥0.98 mmHg.m2/ml) had the smallest reduction in PVR, the greatest reduction in TAC and a similar increase in HR vs. group 1(ΔEA<0.22 mmHg.m2/ml). Furthermore, group 3 had a reduction in end-diastolic volume, and a blunted increase in SV(80%), and cardiac output(27%), during exercise vs. group 1. Despite limitations in the Frank-Starling mechanism and cardiac function, peak aerobic capacity did not differ by group because arterial-venous oxygen difference was greater in group 3 vs. 1. Thus the change in arterial load during exercise has important effects on the Frank-Starling mechanism and cardiac performance but not on exercise capacity. These findings provide interesting insights into the dynamic cardiovascular alterations during exercise. PMID:22003052

  14. Inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) Attenuates Interleukin-6 (IL-6)-induced Collagen Synthesis and Resultant Hypertrophy in Rat Heart

    PubMed Central

    Mir, Saiful Anam; Chatterjee, Arunachal; Mitra, Arkadeep; Pathak, Kanchan; Mahata, Sushil K.; Sarkar, Sagartirtha

    2012-01-01

    IL-6 has been shown to play a major role in collagen up-regulation process during cardiac hypertrophy, although the precise mechanism is still not known. In this study we have analyzed the mechanism by which IL-6 modulates cardiac hypertrophy. For the in vitro model, IL-6-treated cultured cardiac fibroblasts were used, whereas the in vivo cardiac hypertrophy model was generated by renal artery ligation in adult male Wistar rats (Rattus norvegicus). During induction of hypertrophy, increased phosphorylation of STAT1, STAT3, MAPK, and ERK proteins was observed both in vitro and in vivo. Treatment of fibroblasts with specific inhibitors for STAT1 (fludarabine, 50 μm), STAT3 (S31-201, 10 μm), p38 MAPK (SB203580, 10 μm), and ERK1/2 (U0126, 10 μm) resulted in down-regulation of IL-6-induced phosphorylation of specific proteins; however, only S31-201 and SB203580 inhibited collagen biosynthesis. In ligated rats in vivo, only STAT3 inhibitors resulted in significant decrease in collagen synthesis and hypertrophy markers such as atrial natriuretic factor and β-myosin heavy chain. In addition, decreased heart weight to body weight ratio and improved cardiac function as measured by echocardiography was evident in animals treated with STAT3 inhibitor or siRNA. Compared with IL-6 neutralization, more pronounced down-regulation of collagen synthesis and regression of hypertrophy was observed with STAT3 inhibition, suggesting that STAT3 is the major downstream signaling molecule and a potential therapeutic target for cardiac hypertrophy. PMID:22157761

  15. Cardiac autonomic modulation and sleepiness: physiological consequences of sleep deprivation due to 40 h of prolonged wakefulness.

    PubMed

    Glos, Martin; Fietze, Ingo; Blau, Alexander; Baumann, Gert; Penzel, Thomas

    2014-02-10

    The autonomic nervous system (ANS) is modulated by sleep and wakefulness. Noninvasive assessment of cardiac ANS with heart rate variability (HRV) analysis is a window for monitoring malfunctioning of cardiovascular autonomic modulation due to sleep deprivation. This study represents the first investigation of dynamic ANS effects and of electrophysiological and subjective sleepiness, in parallel, during 40 h of prolonged wakefulness under constant routine (CR) conditions. In eleven young male healthy subjects, ECG, EEG, EOG, and EMG chin recordings were performed during baseline sleep, during 40 h of sleep deprivation, and during recovery sleep. After sleep deprivation, slow-wave sleep and sleep efficiency increased, whereas HRV - global variability and HRV sympathovagal balance - was reduced (all p<0.05). Sleep-stage-dependent analysis revealed reductions in the sympathovagal balance only for NREM sleep stages (all p<0.05). Comparison of the daytime pattern of CR day one (CR baseline) with that of CR day two (CR sleep deprivation) disclosed an increase in subjective sleepiness, in the amount of unintended sleep, and in HRV sympathovagal balance, with accompaniment by increased EEG alpha attenuation (all p<0.05). Circadian rhythm analysis revealed the strongest influence on heart rate, with less influence on HRV sympathovagal balance. Hour-by-hour analysis disclosed the difference between CR sleep deprivation and CR baseline for subjective sleepiness at almost every single hour and for unintended sleep particularly in the morning and afternoon (both p<0.05). These findings indicate that 40 h of prolonged wakefulness lead in the following night to sleep-stage-dependent reduction in cardiac autonomic modulation. During daytime, an increased occurrence of behavioral and physiological signs of sleepiness was accompanied by diminished cardiac autonomic modulation. The observed changes are an indicator of autonomic stress due to sleep deprivation - which, if chronic, could potentially increase cardiovascular risk. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Sympathetic restraint of respiratory sinus arrhythmia: implications for vagal-cardiac tone assessment in humans

    NASA Technical Reports Server (NTRS)

    Taylor, J. A.; Myers, C. W.; Halliwill, J. R.; Seidel, H.; Eckberg, D. L.

    2001-01-01

    Clinicians and experimentalists routinely estimate vagal-cardiac nerve traffic from respiratory sinus arrhythmia. However, evidence suggests that sympathetic mechanisms may also modulate respiratory sinus arrhythmia. Our study examined modulation of respiratory sinus arrhythmia by sympathetic outflow. We measured R-R interval spectral power in 10 volunteers that breathed sequentially at 13 frequencies, from 15 to 3 breaths/min, before and after beta-adrenergic blockade. We fitted changes of respiratory frequency R-R interval spectral power with a damped oscillator model: frequency-dependent oscillations with a resonant frequency, generated by driving forces and modified by damping influences. beta-Adrenergic blockade enhanced respiratory sinus arrhythmia at all frequencies (at some, fourfold). The damped oscillator model fit experimental data well (39 of 40 ramps; r = 0.86 +/- 0.02). beta-Adrenergic blockade increased respiratory sinus arrhythmia by amplifying respiration-related driving forces (P < 0.05), without altering resonant frequency or damping influences. Both spectral power data and the damped oscillator model indicate that cardiac sympathetic outflow markedly reduces heart period oscillations at all frequencies. This challenges the notion that respiratory sinus arrhythmia is mediated simply by vagal-cardiac nerve activity. These results have important implications for clinical and experimental estimation of human vagal cardiac tone.

  17. Angiomodulin is required for cardiogenesis of embryonic stem cells and is maintained by a feedback loop network of p63 and Activin-A.

    PubMed

    Wolchinsky, Zohar; Shivtiel, Shoham; Kouwenhoven, Evelyn Nathalie; Putin, Daria; Sprecher, Eli; Zhou, Huiqing; Rouleau, Matthieu; Aberdam, Daniel

    2014-01-01

    The transcription factor p63, member of the p53 gene family, encodes for two main isoforms, TAp63 and ΔNp63 with distinct functions on epithelial homeostasis and cancer. Recently, we discovered that TAp63 is essential for in vitro cardiogenesis and heart development in vivo. TAp63 is expressed by embryonic endoderm and acts on cardiac progenitors by a cell-non-autonomous manner. In the present study, we search for cardiogenic secreted factors that could be regulated by TAp63 and, by ChIP-seq analysis, identified Angiomodulin (AGM), also named IGFBP7 or IGFBP-rP1. We demonstrate that AGM is necessary for cardiac commitment of embryonic stem cells (ESCs) and its regulation depends on TAp63 isoform. TAp63 directly activates both AGM and Activin-A during ESC cardiogenesis while these secreted factors modulate TAp63 gene expression by a feedback loop mechanism. The molecular circuitry controlled by TAp63 on AGM/Activin-A signaling pathway and thus on cardiogenesis emphasizes the importance of p63 during early cardiac development. © 2013.

  18. Resveratrol and polydatin as modulators of Ca2+ mobilization in the cardiovascular system.

    PubMed

    Liu, Wenjuan; Chen, Peiya; Deng, Jianxin; Lv, Jingzhang; Liu, Jie

    2017-09-01

    In the cardiovascular system, Ca 2+ controls cardiac excitation-contraction coupling and vascular contraction and dilation. Disturbances in intracellular Ca 2+ homeostasis induce malfunctions of the cardiovascular system, including cardiac pump dysfunction, arrhythmia, remodeling, and apoptosis, as well as hypertension and impairment of vascular reactivity. Therefore, developing drugs and strategies manipulating Ca 2+ handling are highly valued in the treatment of cardiovascular disease. Resveratrol (Res) and polydatin (PD), a Res glucoside, have been well established to have beneficial effects on improving cardiovascular function. Studies from our laboratory and others have demonstrated that they exhibit inotropic effects on normal heart and therapeutic effects on hypertension, cardiac ischemia/reperfusion injury, hypertrophy, and heart failure by manipulating Ca 2+ mobilization. The actions of Res and PD on Ca 2+ signals delicately manipulated by multiple Ca 2+ -handling proteins are pleiotropic and somewhat controversial, depending on cellular species and intracellular oxidative status. Here, we focus on the effects of Res and PD on controlling Ca 2+ homeostasis in the heart and vasculature under normal and diseased conditions and highlight the key direct and indirect molecules mediating these effects. © 2017 New York Academy of Sciences.

  19. Protective Effects of Gelam Honey against Oxidative Damage in Young and Aged Rats

    PubMed Central

    Sahhugi, Zulaikha; Jubri, Zakiah

    2014-01-01

    Aging is characterized by progressive decline in physiological and body function due to increase in oxidative damage. Gelam honey has been accounted to have high phenolic and nonphenolic content to attenuate oxidative damage. This study was to determine the effect of local gelam honey on oxidative damage of aged rats. Twenty-four male Spraque-Dawley rats were divided into young (2 months) and aged (19 months) groups. Each group was further divided into control (fed with plain water) and supplemented with 2.5 mg/kg body weight of gelam honey for 8 months. DNA damage level was determined by comet assay and plasma malondialdehyde (MDA) by high performance liquid chromatography (HPLC). The activity of blood and cardiac antioxidant enzymes was determined by spectrophotometer. The DNA damage and MDA level were reduced in both gelam honey supplemented groups. Gelam honey increases erythrocytes CAT and cardiac SOD activities in young and cardiac CAT activity in young and aged groups. The DNA damage was increased in the aged group compared to young group, but reduced at the end of the study. The decline of oxidative damage in rats supplemented with gelam honey might be through the modulation of antioxidant enzyme activities. PMID:25505937

  20. Simvastatin prevents isoproterenol-induced cardiac hypertrophy through modulation of the JAK/STAT pathway

    PubMed Central

    Al-rasheed, Nouf M; Al-Oteibi, Maha M; Al-Manee, Reem Z; Al-shareef, Sarah A; Al-Rasheed, Nawal M; Hasan, Iman H; Mohamad, Raeesa A; Mahmoud, Ayman M

    2015-01-01

    Simvastatin (SIM) is a lipid-soluble inhibitor of hydroxy-3-methylglutaryl coenzyme A reductase with multiple reported therapeutic benefits. The present study was designed to investigate the effect of pretreatment with SIM on isoproterenol (ISO)-induced cardiac hypertrophy in rats. Twenty-four male albino Wistar rats weighing 180–200 g were divided into four groups. Groups I and III received normal saline while groups II and IV received SIM (10 mg/kg body weight) for 30 days per gavage. In the last 7 days, rats of groups III and IV were administered ISO (5 mg/kg) intraperitoneally to induce cardiac hypertrophy. Administration of ISO induced an increase in heart-to-body weight (HW/BW) ratio, an increase in serum interleukin-6, and elevated systolic and diastolic blood pressure. Serum levels of lipids, cardiovascular risk indices, and cardiac troponin I and creatine phosphokinase-MB showed significant increase in ISO-induced hypertrophic rats. Histopathological examination of heart tissue revealed focal areas of subendocardium degeneration, mononuclear cellular infiltrations, fibrous tissue deposition, and increased thickness of the myocardium of left ventricle. In addition, ISO-administered rats exhibited significant upregulation of cardiac Janus kinase, phosphorylated signal transducer and activator of transcription, and nuclear factor-kappa B. Pretreatment with SIM significantly prevented ISO-induced cardiac hypertrophy, alleviated the altered biochemical parameters, and improved the heart architecture. In conclusion, our study provides evidence that SIM prevented the development of cardiac hypertrophy via modulation of the Janus kinase/signal transducer and activator of transcription-signaling pathway in the heart of ISO-administered animals. PMID:26150695

  1. Simvastatin prevents isoproterenol-induced cardiac hypertrophy through modulation of the JAK/STAT pathway.

    PubMed

    Al-Rasheed, Nouf M; Al-Oteibi, Maha M; Al-Manee, Reem Z; Al-Shareef, Sarah A; Al-Rasheed, Nawal M; Hasan, Iman H; Mohamad, Raeesa A; Mahmoud, Ayman M

    2015-01-01

    Simvastatin (SIM) is a lipid-soluble inhibitor of hydroxy-3-methylglutaryl coenzyme A reductase with multiple reported therapeutic benefits. The present study was designed to investigate the effect of pretreatment with SIM on isoproterenol (ISO)-induced cardiac hypertrophy in rats. Twenty-four male albino Wistar rats weighing 180-200 g were divided into four groups. Groups I and III received normal saline while groups II and IV received SIM (10 mg/kg body weight) for 30 days per gavage. In the last 7 days, rats of groups III and IV were administered ISO (5 mg/kg) intraperitoneally to induce cardiac hypertrophy. Administration of ISO induced an increase in heart-to-body weight (HW/BW) ratio, an increase in serum interleukin-6, and elevated systolic and diastolic blood pressure. Serum levels of lipids, cardiovascular risk indices, and cardiac troponin I and creatine phosphokinase-MB showed significant increase in ISO-induced hypertrophic rats. Histopathological examination of heart tissue revealed focal areas of subendocardium degeneration, mononuclear cellular infiltrations, fibrous tissue deposition, and increased thickness of the myocardium of left ventricle. In addition, ISO-administered rats exhibited significant upregulation of cardiac Janus kinase, phosphorylated signal transducer and activator of transcription, and nuclear factor-kappa B. Pretreatment with SIM significantly prevented ISO-induced cardiac hypertrophy, alleviated the altered biochemical parameters, and improved the heart architecture. In conclusion, our study provides evidence that SIM prevented the development of cardiac hypertrophy via modulation of the Janus kinase/signal transducer and activator of transcription-signaling pathway in the heart of ISO-administered animals.

  2. Methodological Gaps in Left Atrial Function Assessment by 2D Speckle Tracking Echocardiography

    PubMed Central

    Rimbaş, Roxana Cristina; Dulgheru, Raluca Elena; Vinereanu, Dragoş

    2015-01-01

    The assessment of left atrial (LA) function is used in various cardiovascular diseases. LA plays a complementary role in cardiac performance by modulating left ventricular (LV) function. Transthoracic two-dimensional (2D) phasic volumes and Doppler echocardiography can measure LA function non-invasively. However, evaluation of LA deformation derived from 2D speckle tracking echocardiography (STE) is a new feasible and promising approach for assessment of LA mechanics. These parameters are able to detect subclinical LA dysfunction in different pathological condition. Normal ranges for LA deformation and cut-off values to diagnose LA dysfunction with different diseases have been reported, but data are still conflicting, probably because of some methodological and technical issues. This review highlights the importance of an unique standardized technique to assess the LA phasic functions by STE, and discusses recent studies on the most important clinical applications of this technique. PMID:26761370

  3. Enhancing Cardiac Triacylglycerol Metabolism Improves Recovery From Ischemic Stress

    PubMed Central

    Liu, Li; Goldberg, Ira J.

    2015-01-01

    Elevated cardiac triacylglycerol (TAG) content is traditionally equated with cardiolipotoxicity and suggested to be a culprit in cardiac dysfunction. However, previous work demonstrated that myosin heavy-chain–mediated cardiac-specific overexpression of diacylglycerol transferase 1 (MHC-DGAT1), the primary enzyme for TAG synthesis, preserved cardiac function in two lipotoxic mouse models despite maintaining high TAG content. Therefore, we examined whether increased cardiomyocyte TAG levels due to DGAT1 overexpression led to changes in cardiac TAG turnover rates under normoxia and ischemia-reperfusion conditions. MHC-DGAT1 mice had elevated TAG content and synthesis rates, which did not alter cardiac function, substrate oxidation, or myocardial energetics. MHC-DGAT1 hearts had ischemia-induced lipolysis; however, when a physiologic mixture of long-chain fatty acids was provided, enhanced TAG turnover rates were associated with improved functional recovery from low-flow ischemia. Conversely, exogenous supply of palmitate during reperfusion suppressed elevated TAG turnover rates and impaired recovery from ischemia in MHC-DGAT1 hearts. Collectively, this study shows that elevated TAG content, accompanied by enhanced turnover, does not adversely affect cardiac function and, in fact, provides cardioprotection from ischemic stress. In addition, the results highlight the importance of exogenous supply of fatty acids when assessing cardiac lipid metabolism and its relationship with cardiac function. PMID:25858561

  4. Sphingosine and FTY720 are potent inhibitors of the transient receptor potential melastatin 7 (TRPM7) channels

    PubMed Central

    Qin, Xin; Yue, Zhichao; Sun, Baonan; Yang, Wenzhong; Xie, Jia; Ni, Eric; Feng, Yi; Mahmood, Rafat; Zhang, Yanhui; Yue, Lixia

    2013-01-01

    Background and Purpose Transient receptor potential melastatin 7 (TRPM7) is a unique channel kinase which is crucial for various physiological functions. However, the mechanism by which TRPM7 is gated and modulated is not fully understood. To better understand how modulation of TRPM7 may impact biological processes, we investigated if TRPM7 can be regulated by the phospholipids sphingosine (SPH) and sphingosine-1-phosphate (S1P), two potent bioactive sphingolipids that mediate a variety of physiological functions. Moreover, we also tested the effects of the structural analogues of SPH, N,N-dimethyl-D-erythro-sphingosine (DMS), ceramides and FTY720 on TRPM7. Experimental Approach HEK293 cells stably expressing TRPM7 were used for whole-cell, single-channel and macropatch current recordings. Cardiac fibroblasts were used for native TRPM7 current recording. Key Results SPH potently inhibited TRPM7 in a concentration-dependent manner, whereas S1P and other ceramides did not produce noticeable effects. DMS also markedly inhibited TRPM7. Moreover, FTY720, an immunosuppressant and the first oral drug for treatment of multiple sclerosis, inhibited TRPM7 with a similar potency to that of SPH. In contrast, FTY720-P has no effect on TRPM7. It appears that SPH and FTY720 inhibit TRPM7 by reducing channel open probability. Furthermore, endogenous TRPM7 in cardiac fibroblasts was markedly inhibited by SPH, DMS and FTY720. Conclusions and Implications This is the first study demonstrating that SPH and FTY720 are potent inhibitors of TRPM7. Our results not only provide a new modulation mechanism of TRPM7, but also suggest that TRPM7 may serve as a direct target of SPH and FTY720, thereby mediating S1P-independent physiological/pathological functions of SPH and FTY720. Linked Article This article is commented on by Rohacs, pp. 1291–1293 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph.12070 PMID:23145923

  5. Cardiac Atrophy and Diastolic Dysfunction During and After Long Duration Spaceflight: Functional Consequences for Orthostatic Intolerance, Exercise Capability and Risk for Cardiac Arrhythmias

    NASA Technical Reports Server (NTRS)

    Levine, Benjamin D.; Bungo, Michael W.; Platts, Steven H.; Hamilton, Douglas R.; Johnston, Smith L.

    2009-01-01

    Cardiac Atrophy and Diastolic Dysfunction During and After Long Duration Spaceflight: Functional Consequences for Orthostatic Intolerance, Exercise Capability and Risk for Cardiac Arrhythmias (Integrated Cardiovascular) will quantify the extent of long-duration space flightassociated cardiac atrophy (deterioration) on the International Space Station crewmembers.

  6. Myocardin-related transcription factors are required for cardiac development and function

    PubMed Central

    Mokalled, Mayssa H.; Carroll, Kelli J.; Cenik, Bercin K.; Chen, Beibei; Liu, Ning; Olson, Eric N.; Bassel-Duby, Rhonda

    2016-01-01

    Myocardin-Related Transcription Factors A and B (MRTF-A and MRTF-B) are highly homologous proteins that function as powerful coactivators of serum response factor (SRF), a ubiquitously expressed transcription factor essential for cardiac development. The SRF/MRTF complex binds to CArG boxes found in the control regions of genes that regulate cytoskeletal dynamics and muscle contraction, among other processes. While SRF is required for heart development and function, the role of MRTFs in the developing or adult heart has not been explored. Through cardiac-specific deletion of MRTF alleles in mice, we show that either MRTF-A or MRTF-B is dispensable for cardiac development and function, whereas deletion of both MRTF-A and MRTF-B causes a spectrum of structural and functional cardiac abnormalities. Defects observed in MRTF-A/B null mice ranged from reduced cardiac contractility and adult onset heart failure to neonatal lethality accompanied by sarcomere disarray. RNA-seq analysis on neonatal hearts identified the most altered pathways in MRTF double knockout hearts as being involved in cytoskeletal organization. Together, these findings demonstrate redundant but essential roles of the MRTFs in maintenance of cardiac structure and function and as indispensible links in cardiac cytoskeletal gene regulatory networks. PMID:26386146

  7. Cardiovascular and respiratory dynamics during normal and pathological sleep

    NASA Astrophysics Data System (ADS)

    Penzel, Thomas; Wessel, Niels; Riedl, Maik; Kantelhardt, Jan W.; Rostig, Sven; Glos, Martin; Suhrbier, Alexander; Malberg, Hagen; Fietze, Ingo

    2007-03-01

    Sleep is an active and regulated process with restorative functions for physical and mental conditions. Based on recordings of brain waves and the analysis of characteristic patterns and waveforms it is possible to distinguish wakefulness and five sleep stages. Sleep and the sleep stages modulate autonomous nervous system functions such as body temperature, respiration, blood pressure, and heart rate. These functions consist of a sympathetic tone usually related to activation and to parasympathetic (or vagal) tone usually related to inhibition. Methods of statistical physics are used to analyze heart rate and respiration to detect changes of the autonomous nervous system during sleep. Detrended fluctuation analysis and synchronization analysis and their applications to heart rate and respiration during sleep in healthy subjects and patients with sleep disorders are presented. The observed changes can be used to distinguish sleep stages in healthy subjects as well as to differentiate normal and disturbed sleep on the basis of heart rate and respiration recordings without direct recording of brain waves. Of special interest are the cardiovascular consequences of disturbed sleep because they present a risk factor for cardiovascular disorders such as arterial hypertension, cardiac ischemia, sudden cardiac death, and stroke. New derived variables can help to find indicators for these health risks.

  8. Unilateral dampening of Bmp activity by nodal generates cardiac left-right asymmetry.

    PubMed

    Veerkamp, Justus; Rudolph, Franziska; Cseresnyes, Zoltan; Priller, Florian; Otten, Cécile; Renz, Marc; Schaefer, Liliana; Abdelilah-Seyfried, Salim

    2013-03-25

    Signaling by Nodal and Bmp is essential for cardiac laterality. How activities of these pathways translate into left-right asymmetric organ morphogenesis is largely unknown. We show that, in zebrafish, Nodal locally reduces Bmp activity on the left side of the cardiac field. This effect is mediated by the extracellular matrix enzyme Hyaluronan synthase 2, expression of which is induced by Nodal. Unilateral reduction of Bmp signaling results in lower expression of nonmuscle myosin II and higher cell motility on the left, driving asymmetric displacement of the entire cardiac field. In silico modeling shows that left-right differences in cell motility are sufficient to induce a robust, directional migration of cardiac tissue. Thus, the mechanism underlying the formation of cardiac left-right asymmetry involves Nodal modulating an antimotogenic Bmp activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Second-generation compound for the modulation of utrophin in the therapy of DMD

    PubMed Central

    Guiraud, Simon; Squire, Sarah E.; Edwards, Benjamin; Chen, Huijia; Burns, David T.; Shah, Nandini; Babbs, Arran; Davies, Stephen G.; Wynne, Graham M.; Russell, Angela J.; Elsey, David; Wilson, Francis X.; Tinsley, Jon M.; Davies, Kay E.

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a lethal, X-linked muscle-wasting disease caused by lack of the cytoskeletal protein dystrophin. There is currently no cure for DMD although various promising approaches are progressing through human clinical trials. By pharmacologically modulating the expression of the dystrophin-related protein utrophin, we have previously demonstrated in dystrophin-deficient mdx studies, daily SMT C1100 treatment significantly reduced muscle degeneration leading to improved muscle function. This manuscript describes the significant disease modifying benefits associated with daily dosing of SMT022357, a second-generation compound in this drug series with improved physicochemical properties and a more robust metabolism profile. These studies in the mdx mouse demonstrate that oral administration of SMT022357 leads to increased utrophin expression in skeletal, respiratory and cardiac muscles. Significantly, utrophin expression is localized along the length of the muscle fibre, not just at the synapse, and is fibre-type independent, suggesting that drug treatment is modulating utrophin transcription in extra-synaptic myonuclei. This results in improved sarcolemmal stability and prevents dystrophic pathology through a significant reduction of regeneration, necrosis and fibrosis. All these improvements combine to protect the mdx muscle from contraction induced damage and enhance physiological function. This detailed evaluation of the SMT C1100 drug series strongly endorses the therapeutic potential of utrophin modulation as a disease modifying therapeutic strategy for all DMD patients irrespective of their dystrophin mutation. PMID:25935002

  10. A high-resolution thermoelectric module-based calorimeter for measuring the energetics of isolated ventricular trabeculae at body temperature.

    PubMed

    Johnston, Callum M; Han, June-Chiew; Ruddy, Bryan P; Nielsen, Poul M F; Taberner, Andrew J

    2015-07-15

    Isolated ventricular trabeculae are the most common experimental preparations used in the study of cardiac energetics. However, the experiments have been conducted at subphysiological temperatures. We have overcome this limitation by designing and constructing a novel calorimeter with sufficiently high thermal resolution for simultaneously measuring the heat output and force production of isolated, contracting, ventricular trabeculae at body temperature. This development was largely motivated by the need to better understand cardiac energetics by performing such measurements at body temperature to relate tissue performance to whole heart behavior in vivo. Our approach uses solid-state thermoelectric modules, tailored for both temperature sensing and temperature control. The thermoelectric modules have high sensitivity and low noise, which, when coupled with a multilevel temperature control system, enable an exceptionally high temperature resolution with a noise-equivalent power an order of magnitude greater than those of other existing muscle calorimeters. Our system allows us to rapidly and easily change the experimental temperature without disturbing the state of the muscle. Our calorimeter is useful in many experiments that explore the energetics of normal physiology as well as pathophysiology of cardiac muscle. Copyright © 2015 the American Physiological Society.

  11. Characterization and validation of new tools for measuring site-specific cardiac troponin I phosphorylation.

    PubMed

    Thoemmes, Stephen F; Stutzke, Crystal A; Du, Yanmei; Browning, Michael D; Buttrick, Peter M; Walker, Lori A

    2014-01-31

    Phosphorylation of cardiac troponin I is a well established mechanism by which cardiac contractility is modulated. However, there are a number of phosphorylation sites on TnI which contribute singly or in combination to influence cardiac function. Accordingly, methods for accurately measuring site-specific TnI phosphorylation are needed. Currently, two strategies are employed: mass spectrometry, which is costly, difficult and has a low throughput; and Western blotting using phospho-specific antibodies, which is limited by the availability of reagents. In this report, we describe a cohort of new site-specific TnI phosphoantibodies, generated against physiologically relevant phosphorylation sites, that are superior to the current commercially available antibodies: to phospho-serine 22/23 which shows a >5-fold phospho-specificity for phosphorylated TnI; to phospho-serine 43, which has >3-fold phospho-specificity for phosphorylated TnI; and phospho-serine 150 which has >2-fold phospho-specificity for phosphorylated TnI. These new antibodies demonstrated greater sensitivity and specificity for the phosphorylated TnI than the most widely used commercially available reagents. For example, at a protein load of 20 μg of total cardiac extract, a commercially available antibody recognized both phosphorylated and dephosphorylated TnI to the same degree. At the same protein load our phospho-serine 22/23 antibody exhibited no cross-reactivity with dephosphorylated TnI. These new tools should allow a more accurate assessment and a better understanding of the role of TnI phosphorylation in the response of the heart to pathologic stress. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Na+/H+ exchanger isoform 1-induced osteopontin expression facilitates cardiac hypertrophy through p90 ribosomal S6 kinase.

    PubMed

    Abdulrahman, Nabeel; Jaspard-Vinassa, Beatrice; Fliegel, Larry; Jabeen, Aayesha; Riaz, Sadaf; Gadeau, Alain-Pierre; Mraiche, Fatima

    2018-05-01

    Cardiovascular diseases are the leading cause of death worldwide. One in three cases of heart failure is due to dilated cardiomyopathy. The Na + /H + exchanger isoform 1 (NHE1), a multifunctional protein and the key pH regulator in the heart, has been demonstrated to be increased in this condition. We have previously demonstrated that elevated NHE1 activity induced cardiac hypertrophy in vivo. Furthermore, the overexpression of active NHE1 elicited modulation of gene expression in cardiomyocytes including an upregulation of myocardial osteopontin (OPN) expression. To determine the role of OPN in inducing NHE1-mediated cardiomyocyte hypertrophy, double transgenic mice expressing active NHE1 and OPN knockout were generated and assessed by echocardiography and the cardiac phenotype. Our studies showed that hearts expressing active NHE1 exhibited cardiac remodeling indicated by increased systolic and diastolic left ventricular internal diameter and increased ventricular volume. Moreover, these hearts demonstrated impaired function with decreased fractional shortening and ejection fraction. Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) mRNA was upregulated, and there was an increase in heart cell cross-sectional area confirming the cardiac hypertrophic effect. Moreover, NHE1 transgenic mice also showed increased collagen deposition, upregulation of CD44 and phosphorylation of p90 ribosomal s6 kinase (RSK), effects that were regressed in OPN knockout mice. In conclusion, we developed an interesting comparative model of active NHE1 transgenic mouse lines which express a dilated hypertrophic phenotype expressing CD44 and phosphorylated RSK, effects which were regressed in absence of OPN.

  13. A gain-of-function mutation in the M-domain of cardiac myosin-binding protein-C increases binding to actin.

    PubMed

    Bezold, Kristina L; Shaffer, Justin F; Khosa, Jaskiran K; Hoye, Elaine R; Harris, Samantha P

    2013-07-26

    The M-domain is the major regulatory subunit of cardiac myosin-binding protein-C (cMyBP-C) that modulates actin and myosin interactions to influence muscle contraction. However, the precise mechanism(s) and the specific residues involved in mediating the functional effects of the M-domain are not fully understood. Positively charged residues adjacent to phosphorylation sites in the M-domain are thought to be critical for effects of cMyBP-C on cross-bridge interactions by mediating electrostatic binding with myosin S2 and/or actin. However, recent structural studies revealed that highly conserved sequences downstream of the phosphorylation sites form a compact tri-helix bundle. Here we used site-directed mutagenesis to probe the functional significance of charged residues adjacent to the phosphorylation sites and conserved residues within the tri-helix bundle. Results confirm that charged residues adjacent to phosphorylation sites and residues within the tri-helix bundle are important for mediating effects of the M-domain on contraction. In addition, four missense variants within the tri-helix bundle that are associated with human hypertrophic cardiomyopathy caused either loss-of-function or gain-of-function effects on force. Importantly, the effects of the gain-of-function variant, L348P, increased the affinity of the M-domain for actin. Together, results demonstrate that functional effects of the M-domain are not due solely to interactions with charged residues near phosphorylatable serines and provide the first demonstration that the tri-helix bundle contributes to the functional effects of the M-domain, most likely by binding to actin.

  14. simBio: a Java package for the development of detailed cell models.

    PubMed

    Sarai, Nobuaki; Matsuoka, Satoshi; Noma, Akinori

    2006-01-01

    Quantitative dynamic computer models, which integrate a variety of molecular functions into a cell model, provide a powerful tool to create and test working hypotheses. We have developed a new modeling tool, the simBio package (freely available from ), which can be used for constructing cell models, such as cardiac cells (the Kyoto model from Matsuoka et al., 2003, 2004 a, b, the LRd model from Faber and Rudy, 2000, and the Noble 98 model from Noble et al., 1998), epithelial cells (Strieter et al., 1990) and pancreatic beta cells (Magnus and Keizer, 1998). The simBio package is written in Java, uses XML and can solve ordinary differential equations. In an attempt to mimic biological functional structures, a cell model is, in simBio, composed of independent functional modules called Reactors, such as ion channels and the sarcoplasmic reticulum, and dynamic variables called Nodes, such as ion concentrations. The interactions between Reactors and Nodes are described by the graph theory and the resulting graph represents a blueprint of an intricate cellular system. Reactors are prepared in a hierarchical order, in analogy to the biological classification. Each Reactor can be composed or improved independently, and can easily be reused for different models. This way of building models, through the combination of various modules, is enabled through the use of object-oriented programming concepts. Thus, simBio is a straightforward system for the creation of a variety of cell models on a common database of functional modules.

  15. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function

    PubMed Central

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-01-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, free-standing electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on-demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function. PMID:26974408

  16. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function.

    PubMed

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-06-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.

  17. Astrocytes Can Adopt Endothelial Cell Fates in a p53-Dependent Manner.

    PubMed

    Brumm, Andrew J; Nunez, Stefanie; Doroudchi, Mehdi M; Kawaguchi, Riki; Duan, Jinhzu; Pellegrini, Matteo; Lam, Larry; Carmichael, S Thomas; Deb, Arjun; Hinman, Jason D

    2017-08-01

    Astrocytes respond to a variety of CNS injuries by cellular enlargement, process outgrowth, and upregulation of extracellular matrix proteins that function to prevent expansion of the injured region. This astrocytic response, though critical to the acute injury response, results in the formation of a glial scar that inhibits neural repair. Scar-forming cells (fibroblasts) in the heart can undergo mesenchymal-endothelial transition into endothelial cell fates following cardiac injury in a process dependent on p53 that can be modulated to augment cardiac repair. Here, we sought to determine whether astrocytes, as the primary scar-forming cell of the CNS, are able to undergo a similar cellular phenotypic transition and adopt endothelial cell fates. Serum deprivation of differentiated astrocytes resulted in a change in cellular morphology and upregulation of endothelial cell marker genes. In a tube formation assay, serum-deprived astrocytes showed a substantial increase in vessel-like morphology that was comparable to human umbilical vein endothelial cells and dependent on p53. RNA sequencing of serum-deprived astrocytes demonstrated an expression profile that mimicked an endothelial rather than astrocyte transcriptome and identified p53 and angiogenic pathways as specifically upregulated. Inhibition of p53 with genetic or pharmacologic strategies inhibited astrocyte-endothelial transition. Astrocyte-endothelial cell transition could also be modulated by miR-194, a microRNA downstream of p53 that affects expression of genes regulating angiogenesis. Together, these studies demonstrate that differentiated astrocytes retain a stimulus-dependent mechanism for cellular transition into an endothelial phenotype that may modulate formation of the glial scar and promote injury-induced angiogenesis.

  18. Acute hyperglycaemia enhances oxidative stress and aggravates myocardial ischaemia/reperfusion injury: role of thioredoxin-interacting protein

    PubMed Central

    Su, Hui; Ji, Lele; Xing, Wenjuan; Zhang, Wei; Zhou, Heping; Qian, Xinhong; Wang, Xiaoming; Gao, Feng; Sun, Xin; Zhang, Haifeng

    2013-01-01

    Hyperglycaemia during acute myocardial infarction is common and associated with increased mortality. Thioredoxin-interacting protein (Txnip) is a modulator of cellular redox state and contributes to cell apoptosis. This study aimed to investigate whether or not hyperglycaemia enhances Txnip expression in myocardial ischaemia/reperfusion (MI/R) and consequently exacerbates MI/R injury. Rats were subjected to 30 min. of left coronary artery ligation followed by 4 hrs of reperfusion and treated with saline or high glucose (HG, 500 g/l, 4 ml/kg/h intravenously). In vitro study was performed on cultured rat cardiomyocytes subjected to simulated ischaemia/reperfusion (SI/R) and incubated with HG (25 mM) or normal glucose (5.6 mM) medium. In vivo HG infusion during MI/R significantly impaired cardiac function, aggravated myocardial injury and increased cardiac oxidative stress. Meanwhile, Txnip expression was enhanced whereas thioredoxin activity was inhibited following HG treatment in ischaemia/reperfusion (I/R) hearts. In addition, HG activated p38 MAPK and inhibited Akt in I/R hearts. In cultured cardiomyocytes subjected to SI/R, HG incubation stimulated Txnip expression and reduced thioredoxin activity. Overexpression of Txnip enhanced HG-induced superoxide generation and aggravated cardiomyocyte apoptosis, whereas Txnip RNAi significantly blunted the deleterious effects of HG. Moreover, inhibition of p38 MAPK or activation of Akt markedly blocked HG-induced Txnip expression in I/R cardiomyocytes. Most importantly, intramyocardial injection of Txnip siRNA markedly decreased Txnip expression and alleviated MI/R injury in HG-treated rats. Hyperglycaemia enhances myocardial Txnip expression, possibly through reciprocally modulating p38 MAPK and Akt activation, leading to aggravated oxidative stress and subsequently, amplification of cardiac injury following MI/R. PMID:23305039

  19. Kruppel-like factor 15 is required for the cardiac adaptive response to fasting.

    PubMed

    Sugi, Keiki; Hsieh, Paishiun N; Ilkayeva, Olga; Shelkay, Shamanthika; Moroney, Bridget; Baadh, Palvir; Haynes, Browning; Pophal, Megan; Fan, Liyan; Newgard, Christopher B; Prosdocimo, Domenick A; Jain, Mukesh K

    2018-01-01

    Cardiac metabolism is highly adaptive in response to changes in substrate availability, as occur during fasting. This metabolic flexibility is essential to the maintenance of contractile function and is under the control of a group of select transcriptional regulators, notably the nuclear receptor family of factors member PPARα. However, the diversity of physiologic and pathologic states through which the heart must sustain function suggests the possible existence of additional transcriptional regulators that play a role in matching cardiac metabolism to energetic demand. Here we show that cardiac KLF15 is required for the normal cardiac response to fasting. Specifically, we find that cardiac function is impaired upon fasting in systemic and cardiac specific Klf15-null mice. Further, cardiac specific Klf15-null mice display a fasting-dependent accumulation of long chain acylcarnitine species along with a decrease in expression of the carnitine translocase Slc25a20. Treatment with a diet high in short chain fatty acids relieves the KLF15-dependent long chain acylcarnitine accumulation and impaired cardiac function in response to fasting. Our observations establish KLF15 as a critical mediator of the cardiac adaptive response to fasting through its regulation of myocardial lipid utilization.

  20. Linear and Nonlinear Analyses of the Cardiac Autonomic Control in Children With Developmental Coordination Disorder: A Case-Control Study.

    PubMed

    Cavalcante Neto, Jorge L; Zamunér, Antonio R; Moreno, Bianca C; Silva, Ester; Tudella, Eloisa

    2018-01-01

    Children with Developmental Coordination Disorder (DCD) and children at risk for DCD (r-DCD) present motor impairments interfering in their school, leisure and daily activities. In addition, these children may have abnormalities in their cardiac autonomic control, which together with their motor impairments, restrict their health and functionality. Therefore, this study aimed to assess the cardiac autonomic control, by linear and nonlinear analysis, at supine and during an orthostatic stimulus in DCD, r-DCD and typically developed children. Thirteen DCD children (11 boys and 2 girls, aged 8.08 ± 0.79 years), 19 children at risk for DCD (13 boys and 6 girls, aged 8.10 ± 0.96 years) and 18 typically developed children, who constituted the control group (CG) (10 boys and 8 girls, aged 8.50 ± 0.96 years) underwent a heart rate variability (HRV) examination. R-R intervals were recorded in order to assess the cardiac autonomic control using a validated HR monitor. HRV was analyzed by linear and nonlinear methods and compared between r-DCD, DCD, and CG. The DCD group presented blunted cardiac autonomic adjustment to the orthostatic stimulus, which was not observed in r-DCD and CG. Regarding nonlinear analysis of HRV, the DCD group presented lower parasympathetic modulation in the supine position compared to the r-DCD and CG groups. In the within group analysis, only the DCD group did not increase HR from supine to standing posture. Symbolic analysis revealed a significant decrease in 2LV ( p < 0.0001) and 2UV ( p < 0.0001) indices from supine to orthostatic posture only in the CG. In conclusion, r-DCD and DCD children present cardiac autonomic dysfunction characterized by higher sympathetic, lower parasympathetic and lower complexity of cardiac autonomic control in the supine position, as well as a blunted autonomic adjustment to the orthostatic stimulus. Therefore, cardiovascular health improvement should be part of DCD children's management, even in cases of less severe motor impairment.

  1. Long-term administration of pyridostigmine attenuates pressure overload-induced cardiac hypertrophy by inhibiting calcineurin signalling.

    PubMed

    Lu, Yi; Zhao, Ming; Liu, Jin-Jun; He, Xi; Yu, Xiao-Jiang; Liu, Long-Zhu; Sun, Lei; Chen, Li-Na; Zang, Wei-Jin

    2017-09-01

    Cardiac hypertrophy is associated with autonomic imbalance, characterized by enhanced sympathetic activity and withdrawal of parasympathetic control. Increased parasympathetic function improves ventricular performance. However, whether pyridostigmine, a reversible acetylcholinesterase inhibitor, can offset cardiac hypertrophy induced by pressure overload remains unclear. Hence, this study aimed to determine whether pyridostigmine can ameliorate pressure overload-induced cardiac hypertrophy and identify the underlying mechanisms. Rats were subjected to either sham or constriction of abdominal aorta surgery and treated with or without pyridostigmine for 8 weeks. Vagal activity and cardiac function were determined using PowerLab. Cardiac hypertrophy was evaluated using various histological stains. Protein markers for cardiac hypertrophy were quantitated by Western blot and immunoprecipitation. Pressure overload resulted in a marked reduction in vagal discharge and a profound increase in cardiac hypertrophy index and cardiac dysfunction. Pyridostigmine increased the acetylcholine levels by inhibiting acetylcholinesterase in rats with pressure overload. Pyridostigmine significantly attenuated cardiac hypertrophy based on reduction in left ventricular weight/body weight, suppression of the levels of atrial natriuretic peptide, brain natriuretic peptide and β-myosin heavy chain, and a reduction in cardiac fibrosis. These effects were accompanied by marked improvement of cardiac function. Additionally, pyridostigmine inhibited the CaN/NFAT3/GATA4 pathway and suppressed Orai1/STIM1 complex formation. In conclusion, pressure overload resulted in cardiac hypertrophy, cardiac dysfunction and a significant reduction in vagal discharge. Pyridostigmine attenuated cardiac hypertrophy and improved cardiac function, which was related to improved cholinergic transmission efficiency (decreased acetylcholinesterase and increased acetylcholine), inhibition of the CaN/NFAT3/GATA4 pathway and suppression of the interaction of Orai1/STIM1. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  2. Health-Related Quality of Life, Functional Status, and Cardiac Event-Free Survival in Patients With Heart Failure.

    PubMed

    Wu, Jia-Rong; Lennie, Terry A; Frazier, Susan K; Moser, Debra K

    2016-01-01

    Health-related quality of life (HRQOL), functional status, and cardiac event-free survival are outcomes used to assess the effectiveness of interventions in patients with heart failure (HF). However, the nature of the relationships among HRQOL, functional status, and cardiac event-free survival remains unclear. The purpose of this study is to examine the nature of the relationships among HRQOL, functional status, and cardiac event-free survival in patients with HF. This was a prospective, observational study of 313 patients with HF that was a secondary analysis from a registry. At baseline, patient demographic and clinical data were collected. Health-related quality of life was assessed using the Minnesota Living With Heart Failure Questionnaire and functional status was measured using the Duke Activity Status Index. Cardiac event-free survival data were obtained by patient interview, hospital database, and death certificate review. Multiple linear and Cox regressions were used to explore the relationships among HRQOL, functional status, and cardiac event-free survival while adjusting for demographic and clinical factors. Participants (n = 313) were men (69%), white (79%), and aged 62 ± 11 years. Mean left ventricular ejection fraction was 35% ± 14%. The mean HRQOL score of 32.3 ± 20.6 indicated poor HRQOL. The mean Duke Activity Status Index score of 16.2 ± 12.9 indicated poor functional status. Cardiac event-free survival was significantly worse in patients who had worse HRQOL or poorer functional status. Patients who had better functional status had better HRQOL (P < .001). Health-related quality of life was not a significant predictor of cardiac event-free survival after entering functional status in the model (P = .54), demonstrating that it was a mediator of the relationship between HRQOL and outcome. Functional status was a mediator between HRQOL and cardiac event-free survival. These data suggest that intervention studies to improve functional status are needed.

  3. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes.

    PubMed

    Yang, Xiulan; Pabon, Lil; Murry, Charles E

    2014-01-31

    The discovery of human pluripotent stem cells (hPSCs), including both human embryonic stem cells and human-induced pluripotent stem cells, has opened up novel paths for a wide range of scientific studies. The capability to direct the differentiation of hPSCs into functional cardiomyocytes has provided a platform for regenerative medicine, development, tissue engineering, disease modeling, and drug toxicity testing. Despite exciting progress, achieving the optimal benefits has been hampered by the immature nature of these cardiomyocytes. Cardiac maturation has long been studied in vivo using animal models; however, finding ways to mature hPSC cardiomyocytes is only in its initial stages. In this review, we discuss progress in promoting the maturation of the hPSC cardiomyocytes, in the context of our current knowledge of developmental cardiac maturation and in relation to in vitro model systems such as rodent ventricular myocytes. Promising approaches that have begun to be examined in hPSC cardiomyocytes include long-term culturing, 3-dimensional tissue engineering, mechanical loading, electric stimulation, modulation of substrate stiffness, and treatment with neurohormonal factors. Future studies will benefit from the combinatorial use of different approaches that more closely mimic nature's diverse cues, which may result in broader changes in structure, function, and therapeutic applicability.

  4. Both alpha(1A)- and alpha(1B)-adrenergic receptors crosstalk to down regulate beta(1)-ARs in mouse heart: coupling to differential PTX-sensitive pathways.

    PubMed

    Rorabaugh, Boyd R; Gaivin, Robert J; Papay, Robert S; Shi, Ting; Simpson, Paul C; Perez, Dianne M

    2005-11-01

    Adrenergic receptors (ARs) play an important role in the regulation of cardiac function. Cardiac inotropy is primarily regulated by beta(1)-ARs. However, alpha(1)-ARs may play an important role in inotropy during heart failure. Previous work has suggested that the alpha(1B)-AR modulates beta(1)-AR function in the heart. The potential role of the alpha(1A)-AR has not been previously studied. We used transgenic mice that express constitutively active mutant (CAM) forms of the alpha(1A)-AR or alpha(1B)-AR regulated by their endogenous promoters. Expression of the CAM alpha(1A)-AR or CAM alpha(1B)-AR had no effect on basal cardiac function (developed pressure, +dP/dT, -dP/dT, heart rate, flow rate). However, both alpha(1)-AR subtypes significantly decreased isoproterenol-stimulated +dP/dT. Pertussis toxin had no effect on +dP/dT in CAM alpha(1A)-AR hearts but restored +dP/dT to non-transgenic values in CAM alpha(1B)-AR hearts. Radioligand binding indicated a selective decrease in the density of beta(1)-ARs in both CAM mice. However, G-proteins, cAMP, or the percentage of high and low affinity states were unchanged in either transgenic compared with control. These data demonstrate that CAM alpha(1A)- and alpha(1B)-ARs both down regulate beta(1)-AR-mediated inotropy in the mouse heart. However, alpha(1)-AR subtypes are coupled to different beta-AR mediated signaling pathways with the alpha(1B)-AR being pertussis toxin sensitive.

  5. The Correlation of Skeletal and Cardiac Muscle Dysfunction in Duchenne Muscular Dystrophy.

    PubMed

    Posner, Andrew D; Soslow, Jonathan H; Burnette, W Bryan; Bian, Aihua; Shintani, Ayumi; Sawyer, Douglas B; Markham, Larry W

    2016-01-01

    Duchenne muscular dystrophy (DMD) is characterized by progressive skeletal muscle and cardiac dysfunction. While skeletal muscle dysfunction precedes cardiomyopathy, the relationship between the progressive decline in skeletal and cardiac muscle function is unclear. This relationship is especially important given that the myocardial effects of many developing DMD therapies are largely unknown. Our objective was to assess the relationship between progression of skeletal muscle weakness and onset of cardiac dysfunction in DMD. A total of 77 DMD subjects treated at a single referral center were included. Demographic information, quantitative muscle testing (QMT), subjective muscle strength, cardiac function, and current and retrospective medications were collected. A Spearman rank correlation was used to evaluate for an association between subjective strength and fractional shortening. The effects of total QMT and arm QMT on fractional shortening were examined in generalized least square with and without adjustments for age, ambulatory status, and duration of corticosteroids and cardiac specific medications. We found a significant correlation between maintained subjective skeletal muscle arm and leg strength and maintained cardiac function as defined by fractional shortening (rho=0.47, p=0.004 and rho=0.48, p=0.003, respectively). We also found a significant association between QMT and fractional shortening among non-ambulatory DMD subjects (p=0.03), while this association was not significant in ambulatory subjects. Our findings allow us to conclude that in this population, there exists a significant relationship between skeletal muscle and cardiac function in non-ambulatory DMD patients. While this does not imply a causal relationship, a possible association between skeletal and cardiac muscle function suggests that researchers should carefully monitor cardiac function, even when the primary outcome measures are not cardiac in nature.

  6. Cardiac function and perfusion dynamics measured on a beat-by-beat basis in the live mouse using ultra-fast 4D optoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Ford, Steven J.; Deán-Ben, Xosé L.; Razansky, Daniel

    2015-03-01

    The fast heart rate (~7 Hz) of the mouse makes cardiac imaging and functional analysis difficult when studying mouse models of cardiovascular disease, and cannot be done truly in real-time and 3D using established imaging modalities. Optoacoustic imaging, on the other hand, provides ultra-fast imaging at up to 50 volumetric frames per second, allowing for acquisition of several frames per mouse cardiac cycle. In this study, we combined a recently-developed 3D optoacoustic imaging array with novel analytical techniques to assess cardiac function and perfusion dynamics of the mouse heart at high, 4D spatiotemporal resolution. In brief, the heart of an anesthetized mouse was imaged over a series of multiple volumetric frames. In another experiment, an intravenous bolus of indocyanine green (ICG) was injected and its distribution was subsequently imaged in the heart. Unique temporal features of the cardiac cycle and ICG distribution profiles were used to segment the heart from background and to assess cardiac function. The 3D nature of the experimental data allowed for determination of cardiac volumes at ~7-8 frames per mouse cardiac cycle, providing important cardiac function parameters (e.g., stroke volume, ejection fraction) on a beat-by-beat basis, which has been previously unachieved by any other cardiac imaging modality. Furthermore, ICG distribution dynamics allowed for the determination of pulmonary transit time and thus additional quantitative measures of cardiovascular function. This work demonstrates the potential for optoacoustic cardiac imaging and is expected to have a major contribution toward future preclinical studies of animal models of cardiovascular health and disease.

  7. Nanotized PPARα Overexpression Targeted to Hypertrophied Myocardium Improves Cardiac Function by Attenuating the p53-GSK3β-Mediated Mitochondrial Death Pathway.

    PubMed

    Rana, Santanu; Datta, Ritwik; Chaudhuri, Ratul Datta; Chatterjee, Emeli; Chawla-Sarkar, Mamta; Sarkar, Sagartirtha

    2018-05-09

    Metabolic remodeling of cardiac muscles during pathological hypertrophy is characterized by downregulation of fatty acid oxidation (FAO) regulator, peroxisome proliferator-activated receptor alpha (PPARα). Thereby, we hypothesized that a cardiac-specific induction of PPARα might restore the FAO-related protein expression and resultant energy deficit. In the present study, consequences of PPARα augmentation were evaluated for amelioration of chronic oxidative stress, myocyte apoptosis, and cardiac function during pathological cardiac hypertrophy. Nanotized PPARα overexpression targeted to myocardium was done by a stearic acid-modified carboxymethyl-chitosan (CMC) conjugated to a 20-mer myocyte-targeted peptide (CMCP). Overexpression of PPARα ameliorated pathological hypertrophy and improved cardiac function. Augmented PPARα in hypertrophied myocytes revealed downregulated p53 acetylation (lys 382), leading to reduced apoptosis. Such cells showed increased binding of PPARα with p53 that in turn reduced interaction of p53 with glycogen synthase kinase-3β (GSK3β), which upregulated inactive phospho-GSK3β (serine [Ser]9) expression within mitochondrial protein fraction. Altogether, the altered molecular milieu in PPARα-overexpressed hypertrophy groups restored mitochondrial structure and function both in vitro and in vivo. Cardiomyocyte-targeted overexpression of a protein of interest (PPARα) by nanotized plasmid has been described for the first time in this study. Our data provide a novel insight towards regression of pathological hypertrophy by ameliorating mitochondrial oxidative stress in targeted PPARα-overexpressed myocardium. PPARα-overexpression during pathological hypertrophy showed substantial betterment of mitochondrial structure and function, along with downregulated apoptosis. Myocardium-targeted overexpression of PPARα during pathological cardiac hypertrophy led to an overall improvement of cardiac energy deficit and subsequent cardiac function, thereby, opening up a potential avenue for cardiac tissue engineering during hypertrophic cardiac pathophysiology.

  8. Respiratory sinus arrhythmia is a limited measure of cardiac parasympathetic control in man.

    PubMed Central

    Kollai, M; Mizsei, G

    1990-01-01

    1. Respiratory modulation of cardiac parasympathetic activity and the relationship between respiratory sinus arrhythmia and parasympathetic control has been studied in twenty-nine conscious, healthy young adult subjects. 2. Changes in heart period in propranolol-treated subjects were taken as the measure of changes in cardiac parasympathetic activity; respiratory sinus arrhythmia was quantified as the difference between maximum and minimum heart periods in a given respiratory cycle; cardiac parasympathetic control was defined as the change in heart period after administration of a full dose of atropine. 3. During normal quiet breathing the inspiratory level of cardiac parasympathetic activity was not reduced to zero. The expiratory level was influenced by excitatory inputs whose activation was related to respiratory cycle length. 4. Slow breathing was associated with augmented sinus arrhythmia, but in different individuals the influence on minimum and maximum heart periods varied so that mean heart period was increased in some subjects but decreased in others. This occurred both in control conditions and after administration of a full dose of propranolol. 5. During normal breathing the correlation across subjects between respiratory sinus arrhythmia and parasympathetic control, although significant, was not close (r = 0.61). The relationship was not affected by beta-adrenergic blockade (r = 0.63). The strength of the correlation improved when multiple regression of respiratory sinus arrhythmia was performed on three variables: parasympathetic control, respiratory cycle length and tidal volume (R = 0.93). 6. It is concluded that in conscious human subjects the respiratory modulation of cardiac parasympathetic activity is different from that observed in the anaesthetized dog, and that variations in the amplitude of respiratory sinus arrhythmia do not necessarily reflect proportional changes in cardiac parasympathetic control. PMID:2391653

  9. Cardiomyocytes from late embryos and neonates do optimal work and striate best on substrates with tissue-level elasticity: metrics and mathematics.

    PubMed

    Majkut, Stephanie F; Discher, Dennis E

    2012-11-01

    In this review, we discuss recent studies on the mechanosensitive morphology and function of cardiomyocytes derived from embryos and neonates. For early cardiomyocytes cultured on substrates of various stiffnesses, contractile function as measured by force production, work output and calcium handling is optimized when the culture substrate stiffness mimics that of the tissue from which the cells were obtained. This optimal contractile function corresponds to changes in sarcomeric protein conformation and organization that promote contractile ability. In light of current models for myofibillogenesis, a recent mathematical model of striation and alignment on elastic substrates helps to illuminate how substrate stiffness modulates early myofibril formation and organization. During embryonic heart formation and maturation, cardiac tissue mechanics change dynamically. Experiments and models highlighted here have important implications for understanding cardiomyocyte differentiation and function in development and perhaps in regeneration processes.

  10. Anxiety Level and Cardiac Autonomic Modulations in Coronary Artery Disease and Cardiac Syndrome X Patients.

    PubMed

    Lutfi, Mohamed Faisal

    2017-01-01

    Anxiety and cardiac autonomic modulations (CAM) were thoroughly investigated in coronary artery disease (CAD) and cardiac syndrome X (CSX) patients worldwide, but not among Sudanese with similar pathology. To compare levels of anxiety and CAM between Sudanese patients with CSX and CAD. Anxiety was evaluated in 51 CAD and 26 CSX patients using Taylor Manifest anxiety score (TMAS) questionnaire while heart rate variability derived indices were used to assess CAM, namely natural logarithm of low frequency (LnLF), high frequency (LnHF) and LF/HF ratio (LnLF/HF). Low anxiety levels were achieved by 6 (23.1%) and 9 (17.6%) patients with CSX and CAD respectively. High anxiety level was achieved by only one (3.8%) patient, who was suffering from CSX. TMAS was significantly higher in CSX (31.27 (21.97)) compared to CAD (21.86 (12.97), P = 0.021). However, abnormally increased anxiety was not associated with higher risk of CSX. LnLF, LnHF and LnLF/HF were comparable in CAD and CSX patients. CSX and CAD patients showed comparable CAM. Although anxiety levels were higher in CSX compared to CAD, TMAS ≥ 35 failed to show significant association with CSX.

  11. Restoration of Cardiac Tissue Thyroid Hormone Status in Experimental Hypothyroidism: A Dose-Response Study in Female Rats

    PubMed Central

    Weltman, Nathan Y.; Ojamaa, Kaie; Savinova, Olga V.; Chen, Yue-Feng; Schlenker, Evelyn H.; Zucchi, Riccardo; Saba, Alessandro; Colligiani, Daria; Pol, Christine J.

    2013-01-01

    Thyroid hormones (THs) play a pivotal role in regulating cardiovascular homeostasis. To provide a better understanding of the coordinated processes that govern cardiac TH bioavailability, this study investigated the influence of serum and cardiac TH status on the expression of TH transporters and cytosolic binding proteins in the myocardium. In addition, we sought to determine whether the administration of T3 (instead of T4) improves the relationship between THs in serum and cardiac tissue and cardiac function over a short-term treatment period. Adult female Sprague Dawley rats were made hypothyroid by 7 weeks treatment with the antithyroid drug 6-n-propyl-2-thiouracil (PTU). After establishing hypothyroidism, rats were assigned to 1 of 5 graded T3 dosages plus PTU for a 2-week dose-response experiment. Untreated, age-matched rats served as euthyroid controls. PTU was associated with depressed serum and cardiac tissue T3 and T4 levels, arteriolar atrophy, altered TH transporter and cytosolic TH binding protein expression, fetal gene reexpression, and cardiac dysfunction. Short-term administration of T3 led to a mismatch between serum and cardiac tissue TH levels. Normalization of serum T3 levels was not associated with restoration of cardiac tissue T3 levels or cardiac function. In fact, a 3-fold higher T3 dosage was necessary to normalize cardiac tissue T3 levels and cardiac function. Importantly, this study provides the first comprehensive data on the relationship between altered TH status (serum and cardiac tissue), cardiac function, and the coordinated in vivo changes in cardiac TH membrane transporters and cytosolic TH binding proteins in altered TH states. PMID:23594789

  12. Erbin is a negative modulator of cardiac hypertrophy

    PubMed Central

    Rachmin, Inbal; Tshori, Sagi; Smith, Yoav; Oppenheim, Amit; Marchetto, Sylvie; Kay, Gillian; Foo, Roger S.-Y.; Dagan, Noa; Golomb, Eliahu; Gilon, Dan; Borg, Jean-Paul; Razin, Ehud

    2014-01-01

    ErbB2 interacting protein (Erbin) is a widely expressed protein and participates in inhibition of several intracellular signaling pathways. Its mRNA has been found to be present in relatively high levels in the heart. However, its physiological role in the heart has not been explored. In the present work, we elucidated the role of Erbin in cardiac hypertrophy. Cardiac hypertrophy was induced in mice either by isoproterenol administration or by aortic constriction. The level of Erbin was significantly decreased in both models. Erbin−/− mice rapidly develop decompensated cardiac hypertrophy, and following severe pressure overload all Erbin−/− mice died from heart failure. Down-regulation of Erbin expression was also observed in biopsies derived from human failing hearts. It is known that Erbin inhibits Ras-mediated activation of the extracellular signal-regulated kinase (ERK) by binding to Soc-2 suppressor of clear homolog (Shoc2). Our data clearly show that ERK phosphorylation is enhanced in the heart tissues of Erbin−/− mice. Furthermore, we clearly demonstrate here that Erbin associates with Shoc2 in both whole hearts and in cardiomyocytes, and that in the absence of Erbin, Raf is phosphorylated and binds Shoc2, resulting in ERK phosphorylation. In conclusion, Erbin is an inhibitor of pathological cardiac hypertrophy, and this inhibition is mediated, at least in part, by modulating ERK signaling. PMID:24711380

  13. Biofeedback assisted control of respiratory sinus arrhythmia as a biobehavioral intervention for depressive symptoms in patients after cardiac surgery: a preliminary study.

    PubMed

    Patron, Elisabetta; Messerotti Benvenuti, Simone; Favretto, Giuseppe; Valfrè, Carlo; Bonfà, Carlotta; Gasparotto, Renata; Palomba, Daniela

    2013-03-01

    The current study investigated whether biofeedback training aimed at increasing respiratory sinus arrhythmia (RSA), a measure of cardiac vagal modulation, can reduce depressive symptoms in patients after cardiac surgery. This randomized controlled study enrolled 26 patients after first-time cardiac surgery. The patients were randomly assigned to an RSA-biofeedback group (N = 13) or to a treatment as usual group (N = 13). The biofeedback training consisted of five 45 min sessions designed to increase RSA. The outcome was assessed as changes in RSA and in the Centre for Epidemiologic Studies of Depression (CES-D) values from pre- to post-training. Both groups were comparable for demographic and biomedical characteristics. RSA increased significantly in patients who underwent RSA-biofeedback compared to controls. Moreover, the CES-D scores were reduced significantly from pre- to post-training in the RSA-biofeedback group compared to the controls. Changes in RSA were inversely related to changes in CES-D scores from pre- to post-training. These findings extend the effectiveness of RSA-biofeedback for increasing vagal modulation as well as for reducing depressive symptoms in post-surgical patients. Overall, the current study also suggests that this biobehavioral intervention may add to the efficacy of postoperative risk reduction programs and rehabilitation protocols in cardiac surgery patients.

  14. Acupuncture's Cardiovascular Actions: A Mechanistic Perspective.

    PubMed

    Longhurst, John

    2013-04-01

    Over the last several decades, there has been an explosion of articles on acupuncture, including studies that have begun to explore mechanisms underlying its analgesic and cardiovascular actions. Modulation of cardiovascular function is most effective during manual and low-frequency, low-intensity electroacupuncture (EA) at a select set of acupoints situated along meridians located over deep somatic nerves on the upper and lower extremities. Stimulation at these acupoints activates underlying sensory neural pathways that project to a number of regions in the central nervous system (CNS) that ultimately regulate autonomic outflow and hence cardiovascular function. A long-loop pathway involving the hypothalamus, midbrain, and medulla underlies EA modulation of reflex increases in blood pressure (BP). Actions of excitatory and inhibitory neurotransmitters in the supraspinal CNS underlie processing of the somatic input and adjustment of autonomic outflow during EA. Acupuncture also decreases elevated blood pressure through actions in the thoracic spinal cord. Reflexes that lower BP likewise are modulated by EA through its actions on sympathetic and parasympathetic nuclei in the medulla. The autonomic influence of acupuncture is slow in onset but prolonged in duration, typically lasting beyond the period of stimulation. Clinical studies suggest that acupuncture can be used to treat cardiac diseases, such as myocardial ischemia and hypertension, associated with overactivity of the sympathetic nervous system.

  15. Acupuncture's Cardiovascular Actions: A Mechanistic Perspective

    PubMed Central

    2013-01-01

    Abstract Over the last several decades, there has been an explosion of articles on acupuncture, including studies that have begun to explore mechanisms underlying its analgesic and cardiovascular actions. Modulation of cardiovascular function is most effective during manual and low-frequency, low-intensity electroacupuncture (EA) at a select set of acupoints situated along meridians located over deep somatic nerves on the upper and lower extremities. Stimulation at these acupoints activates underlying sensory neural pathways that project to a number of regions in the central nervous system (CNS) that ultimately regulate autonomic outflow and hence cardiovascular function. A long-loop pathway involving the hypothalamus, midbrain, and medulla underlies EA modulation of reflex increases in blood pressure (BP). Actions of excitatory and inhibitory neurotransmitters in the supraspinal CNS underlie processing of the somatic input and adjustment of autonomic outflow during EA. Acupuncture also decreases elevated blood pressure through actions in the thoracic spinal cord. Reflexes that lower BP likewise are modulated by EA through its actions on sympathetic and parasympathetic nuclei in the medulla. The autonomic influence of acupuncture is slow in onset but prolonged in duration, typically lasting beyond the period of stimulation. Clinical studies suggest that acupuncture can be used to treat cardiac diseases, such as myocardial ischemia and hypertension, associated with overactivity of the sympathetic nervous system. PMID:24761168

  16. 3D bioprinted functional and contractile cardiac tissue constructs

    PubMed Central

    Wang, Zhan; Lee, Sang Jin; Cheng, Heng-Jie; Yoo, James J.; Atala, Anthony

    2018-01-01

    Bioengineering of a functional cardiac tissue composed of primary cardiomyocytes has great potential for myocardial regeneration and in vitro tissue modeling. However, its applications remain limited because the cardiac tissue is a highly organized structure with unique physiologic, biomechanical, and electrical properties. In this study, we undertook a proof-of-concept study to develop a contractile cardiac tissue with cellular organization, uniformity, and scalability by using three-dimensional (3D) bioprinting strategy. Primary cardiomyocytes were isolated from infant rat hearts and suspended in a fibrin-based bioink to determine the priting capability for cardiac tissue engineering. This cell-laden hydrogel was sequentially printed with a sacrificial hydrogel and a supporting polymeric frame through a 300-μm nozzle by pressured air. Bioprinted cardiac tissue constructs had a spontaneous synchronous contraction in culture, implying in vitro cardiac tissue development and maturation. Progressive cardiac tissue development was confirmed by immunostaining for α-actinin and connexin 43, indicating that cardiac tissues were formed with uniformly aligned, dense, and electromechanically coupled cardiac cells. These constructs exhibited physiologic responses to known cardiac drugs regarding beating frequency and contraction forces. In addition, Notch signaling blockade significantly accelerated development and maturation of bioprinted cardiac tissues. Our results demonstrated the feasibility of bioprinting functional cardiac tissues that could be used for tissue engineering applications and pharmaceutical purposes. PMID:29452273

  17. A randomized comparison of 5 versus 12 hours per day of cardiac contractility modulation treatment for heart failure patients: A preliminary report.

    PubMed

    Kloppe, Axel; Mijic, Dejan; Schiedat, Fabian; Bogossian, Harilaos; Mügge, Andreas; Rousso, Benny; Lemke, Bernd

    2016-01-01

    Cardiac contractility modulation (CCM) signals are non-excitatory electrical signals delivered during the absolute refractory period intended to improve contraction and cardiac function. Clinical trials have shown that CCM treatment significantly improves exercise tolerance and quality of life in symptomatic heart failure patients. Studies with CCM therapy typically include CCM delivery for 3, 5 or 7 h per day, although other configurations are also commonly used. Each has been associated with improved outcomes in heart failure, but it is not clear whether different application durations are associated with the various degrees of benefit. The purpose of the current pilot evaluation study was to evaluate the quality of life, exercise tolerance, and cardiac function, over a 6-month period when CCM was delivered for 5 h/day vs. 12 h/day. Increasing the daily CCM therapy duration is safe and as good as the standard CCM periods of application per day. This single center pilot evaluation study involved 19 medically refractory symptomatic patients with heart failure and reduced left ventricular function who underwent implantation of an Optimizer™ system (Impulse Dynamics, Orangeburg, NY, USA). Patients were randomized into one of two treatment groups; 5 h/day CCM treatment or 12 h/day CCM treatment. Subjects and evaluating physicians were blinded to the study group. Subjects returned to the hospital after 12 and 24 weeks. Efficacy evaluations included changes from baseline to 24 weeks in Minnesota Living With Heart Failure Questionnaire score (MLWHFQ), maximal oxygen consumption in the cardio-pulmonary stress test (peak VO2), New York Heart Association classification (NYHA), 6-min walk distance (6MWD), and ejection fraction (EF). At the end of 24 weeks, clinical improvement was observed in the entire cohort in all efficacy measures (mean change from baseline of -17.1 in MLWHFQ, -0.86 in NYHA, and improvement trend of 1.48 mL O2/kg/min in peak VO2, 31.3 m in 6MWD, and 2.25% in EF). There were no significant differences, either clinically or statistically, between the groups receiving CCM for 5 h/day vs. 12 h/day. Three subjects were voluntarily withdrawn before completing the study. One subject died from pneumonia after 125 days, and 6 serious adverse events were reported, none of which was classified as related to either the device or the procedure. Together with previously reported experience with CCM, delivery of CCM therapy is equally safe and appears similarly effective over the range of shorter (5 h) to longer (12 h) daily periods of application. Given the small sample size, further studies are warranted.

  18. Modulation of heart rate and heart rate variability by n-3 long chain polyunsaturated fatty acids: Speculation on mechanism(s).

    PubMed

    Drewery, Merritt L; Spedale, Steven B; Lammi-Keefe, Carol J

    2017-09-01

    Heart rate (HR) and heart rate variability (HRV) are valuable markers of health. Although the underlying mechanism(s) are controversial, it is well documented that n-3 long chain polyunsaturated fatty acid (LCPUFA) intake improves HR and HRV in various populations. Autonomic modulation and/or alterations in cardiac electrophysiology are commonly cited as potential mechanisms responsible for these effects. This article reviews existing evidence for each and explores a separate mechanism which has not received much attention but has scientific merit. Based on presented evidence, it is proposed that n-3 LCPUFAs affect HR and HRV directly by autonomic modulation and indirectly by altering circulating factors, both dependently and independently of the autonomic nervous system. The evidence for changes in cardiac electrophysiology as the mechanism by which n-3 LCPUFAs affect HR and HRV needs strengthening. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Alcohol modulation of cardiac matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs favors collagen accumulation.

    PubMed

    El Hajj, Elia C; El Hajj, Milad C; Voloshenyuk, Tetyana G; Mouton, Alan J; Khoutorova, Elena; Molina, Patricia E; Gilpin, Nicholas W; Gardner, Jason D

    2014-02-01

    Chronic alcohol consumption has been shown in human and animal studies to result in collagen accumulation, myocardial fibrosis, and heart failure. Cardiac fibroblasts produce collagen and regulate extracellular matrix (ECM) homeostasis through the synthesis and activity of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs), with the balance of MMPs/TIMPs determining the rate of collagen turnover. Dynamic changes of MMP and TIMP expression were reported in alcohol-induced hepatic fibrosis; however, the effect of alcohol on MMP/TIMP balance in the heart and cardiac fibroblasts is unknown. We hypothesized that alcohol exposure alters cardiac fibroblast MMP and TIMP expression to promote collagen accumulation in the heart. Cardiac fibroblasts isolated from adult rats were cultured in the presence of alcohol (12.5 to 200 mM) for 48 hours. MMP, TIMP, and collagen type I and III expression were assayed by Western blot analysis. Hydroxyproline (HPro) was used as a marker of collagen production. The in vivo cardiac effects of ethanol (EtOH) were determined using rats exposed to EtOH vapor for 2 weeks, resulting in blood alcohol levels of 150 to 200 mg/dl. Cardiac collagen volume fraction (CVF), as well as MMP, TIMP, and collagen expression, was assessed. EtOH-exposed rats exhibited up-regulation of TIMP-1, TIMP-3 and TIMP-4 in the heart, with no significant increases in MMPs. Cardiac fibroblasts exhibited transformation to a profibrotic phenotype following exposure to alcohol. These changes were reflected by increased α-smooth muscle actin and collagen I and III expression, as well as increased collagen secretion. In vivo EtOH exposure also produced fibrosis, indicated by increased CVF and expression of collagens. Alcohol exposure modulates cardiac fibroblast MMP/TIMP expression favoring a profile associated with collagen accumulation. Our data suggest that this disrupted MMP/TIMP profile may contribute to the development of myocardial fibrosis and cardiac dysfunction resulting from chronic alcohol abuse. Copyright © 2013 by the Research Society on Alcoholism.

  20. Differential and Conditional Activation of PKC-Isoforms Dictates Cardiac Adaptation during Physiological to Pathological Hypertrophy

    PubMed Central

    Naskar, Shaon; Datta, Kaberi; Mitra, Arkadeep; Pathak, Kanchan; Datta, Ritwik; Bansal, Trisha; Sarkar, Sagartirtha

    2014-01-01

    A cardiac hypertrophy is defined as an increase in heart mass which may either be beneficial (physiological hypertrophy) or detrimental (pathological hypertrophy). This study was undertaken to establish the role of different protein kinase-C (PKC) isoforms in the regulation of cardiac adaptation during two types of cardiac hypertrophy. Phosphorylation of specific PKC-isoforms and expression of their downstream proteins were studied during physiological and pathological hypertrophy in 24 week male Balb/c mice (Mus musculus) models, by reverse transcriptase-PCR, western blot analysis and M-mode echocardiography for cardiac function analysis. PKC-δ was significantly induced during pathological hypertrophy while PKC-α was exclusively activated during physiological hypertrophy in our study. PKC-δ activation during pathological hypertrophy resulted in cardiomyocyte apoptosis leading to compromised cardiac function and on the other hand, activation of PKC-α during physiological hypertrophy promoted cardiomyocyte growth but down regulated cellular apoptotic load resulting in improved cardiac function. Reversal in PKC-isoform with induced activation of PKC-δ and simultaneous inhibition of phospho-PKC-α resulted in an efficient myocardium to deteriorate considerably resulting in compromised cardiac function during physiological hypertrophy via augmentation of apoptotic and fibrotic load. This is the first report where PKC-α and -δ have been shown to play crucial role in cardiac adaptation during physiological and pathological hypertrophy respectively thereby rendering compromised cardiac function to an otherwise efficient heart by conditional reversal of their activation. PMID:25116170

  1. Sarcoplasmic reticulum-mitochondria communication in cardiovascular pathophysiology.

    PubMed

    Lopez-Crisosto, Camila; Pennanen, Christian; Vasquez-Trincado, Cesar; Morales, Pablo E; Bravo-Sagua, Roberto; Quest, Andrew F G; Chiong, Mario; Lavandero, Sergio

    2017-06-01

    Repetitive, calcium-mediated contractile activity renders cardiomyocytes critically dependent on a sustained energy supply and adequate calcium buffering, both of which are provided by mitochondria. Moreover, in vascular smooth muscle cells, mitochondrial metabolism modulates cell growth and proliferation, whereas cytosolic calcium levels regulate the arterial vascular tone. Physical and functional communication between mitochondria and sarco/endoplasmic reticulum and balanced mitochondrial dynamics seem to have a critical role for optimal calcium transfer to mitochondria, which is crucial in calcium homeostasis and mitochondrial metabolism in both types of muscle cells. Moreover, mitochondrial dysfunction has been associated with myocardial damage and dysregulation of vascular smooth muscle proliferation. Therefore, sarco/endoplasmic reticulum-mitochondria coupling and mitochondrial dynamics are now viewed as relevant factors in the pathogenesis of cardiac and vascular diseases, including coronary artery disease, heart failure, and pulmonary arterial hypertension. In this Review, we summarize the evidence related to the role of sarco/endoplasmic reticulum-mitochondria communication in cardiac and vascular muscle physiology, with a focus on how perturbations contribute to the pathogenesis of cardiovascular disorders.

  2. Cell Type-Specific Chromatin Signatures Underline Regulatory DNA Elements in Human Induced Pluripotent Stem Cells and Somatic Cells.

    PubMed

    Zhao, Ming-Tao; Shao, Ning-Yi; Hu, Shijun; Ma, Ning; Srinivasan, Rajini; Jahanbani, Fereshteh; Lee, Jaecheol; Zhang, Sophia L; Snyder, Michael P; Wu, Joseph C

    2017-11-10

    Regulatory DNA elements in the human genome play important roles in determining the transcriptional abundance and spatiotemporal gene expression during embryonic heart development and somatic cell reprogramming. It is not well known how chromatin marks in regulatory DNA elements are modulated to establish cell type-specific gene expression in the human heart. We aimed to decipher the cell type-specific epigenetic signatures in regulatory DNA elements and how they modulate heart-specific gene expression. We profiled genome-wide transcriptional activity and a variety of epigenetic marks in the regulatory DNA elements using massive RNA-seq (n=12) and ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing; n=84) in human endothelial cells (CD31 + CD144 + ), cardiac progenitor cells (Sca-1 + ), fibroblasts (DDR2 + ), and their respective induced pluripotent stem cells. We uncovered 2 classes of regulatory DNA elements: class I was identified with ubiquitous enhancer (H3K4me1) and promoter (H3K4me3) marks in all cell types, whereas class II was enriched with H3K4me1 and H3K4me3 in a cell type-specific manner. Both class I and class II regulatory elements exhibited stimulatory roles in nearby gene expression in a given cell type. However, class I promoters displayed more dominant regulatory effects on transcriptional abundance regardless of distal enhancers. Transcription factor network analysis indicated that human induced pluripotent stem cells and somatic cells from the heart selected their preferential regulatory elements to maintain cell type-specific gene expression. In addition, we validated the function of these enhancer elements in transgenic mouse embryos and human cells and identified a few enhancers that could possibly regulate the cardiac-specific gene expression. Given that a large number of genetic variants associated with human diseases are located in regulatory DNA elements, our study provides valuable resources for deciphering the epigenetic modulation of regulatory DNA elements that fine-tune spatiotemporal gene expression in human cardiac development and diseases. © 2017 American Heart Association, Inc.

  3. HYPNOTIZABILITY AND PAIN MODULATION: A Body-Mind Perspective.

    PubMed

    Varanini, Maurizio; Balocchi, Rita; Carli, Giancarlo; Paoletti, Giulia; Santarcangelo, Enrica L

    2018-01-01

    The study investigated whether the cardiac activity and cognitive-emotional traits sustained by the behavioral inhibition/activation system (BIS/BAS) may contribute to hypnotizability-related pain modulation. Nociceptive stimulation (cold-pressor test) was administered to healthy participants with high (highs) and low (lows) hypnotizability in the presence and absence of suggestions for analgesia. Results showed that heart rate increased abruptly at the beginning of nociceptive stimulation in all participants. Then, only in highs heart rate decreased for the entire duration of hand immersion. During stimulation with suggestions of analgesia, pain threshold negatively correlated with heart rate. BIS/BAS activity partially accounted for the observed hypnotizability-related differences in the relation between cardiac interoception and pain experience.

  4. The effect of time to defibrillation and targeted temperature management on functional survival after out-of-hospital cardiac arrest.

    PubMed

    Drennan, Ian R; Lin, Steve; Thorpe, Kevin E; Morrison, Laurie J

    2014-11-01

    Cardiac arrest physiology has been proposed to occur in three distinct phases: electrical, circulatory and metabolic. There is limited research evaluating the relationship of the 3-phase model of cardiac arrest to functional survival at hospital discharge. Furthermore, the effect of post-cardiac arrest targeted temperature management (TTM) on functional survival during each phase is unknown. To determine the effect of TTM on the relationship between the time of initial defibrillation during each phase of cardiac arrest and functional survival at hospital discharge. This was a retrospective observational study of consecutive adult (≥18 years) out-of-hospital cardiac arrest (OHCA) patients with initial shockable rhythms. Included patients obtained a return of spontaneous circulation (ROSC) and were eligible for TTM. Multivariable logistic regression was used to determine predictors of functional survival at hospital discharge. There were 20,165 OHCA treated by EMS and 871 patients were eligible for TTM. Of these patients, 622 (71.4%) survived to hospital discharge and 487 (55.9%) had good functional survival. Good functional survival was associated with younger age (OR 0.94; 95% CI 0.93-0.95), shorter times from collapse to initial defibrillation (OR 0.73; 95% CI 0.65-0.82), and use of post-cardiac arrest TTM (OR 1.49; 95% CI 1.07-2.30). Functional survival decreased during each phase of the model (65.3% vs. 61.7% vs. 50.2%, P<0.001). Functional survival at hospital discharge was associated with shorter times to initial defibrillation and was decreased during each successive phase of the 3-phase model. Post-cardiac arrest TTM was associated with improved functional survival. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Cigarette smoking causes epigenetic changes associated with cardiorenal fibrosis

    PubMed Central

    Haller, Steven T.; Fan, Xiaoming; Xie, Jeffrey X.; Kennedy, David J.; Liu, Jiang; Yan, Yanling; Hernandez, Dawn-Alita; Mathew, Denzil P.; Cooper, Christopher J.; Shapiro, Joseph I.; Tian, Jiang

    2016-01-01

    Clinical studies indicate that smoking combustible cigarettes promotes progression of renal and cardiac injury, leading to functional decline in the setting of chronic kidney disease (CKD). However, basic studies using in vivo small animal models that mimic clinical pathology of CKD are lacking. To address this issue, we evaluated renal and cardiac injury progression and functional changes induced by 4 wk of daily combustible cigarette smoke exposure in the 5/6th partial nephrectomy (PNx) CKD model. Molecular evaluations revealed that cigarette smoke significantly (P < 0.05) decreased renal and cardiac expression of the antifibrotic microRNA miR-29b-3 and increased expression of molecular fibrosis markers. In terms of cardiac and renal organ structure and function, exposure to cigarette smoke led to significantly increased systolic blood pressure, cardiac hypertrophy, cardiac and renal fibrosis, and decreased renal function. These data indicate that decreased expression of miR-29b-3p is a novel mechanism wherein cigarette smoke promotes accelerated cardiac and renal tissue injury in CKD. (155 words) PMID:27789733

  6. Sudarshan Kriya Yoga improves cardiac autonomic control in patients with anxiety-depression disorders.

    PubMed

    Toschi-Dias, Edgar; Tobaldini, Eleonora; Solbiati, Monica; Costantino, Giorgio; Sanlorenzo, Roberto; Doria, Stefania; Irtelli, Floriana; Mencacci, Claudio; Montano, Nicola

    2017-05-01

    Several studies have demonstrated that adjuvant therapies as exercise and breathing training are effective in improving cardiac autonomic control (CAC) in patients with affective spectrum disorders. However, the effects of Sudarshan Kriya Yoga (SKY) on autonomic function in this population is unknown. Our objective was to test the hypothesis that SKY training improves CAC and cardiorespiratory coupling in patients with anxiety and/or depression disorders. Forty-six patients with a diagnosis of anxiety and/or depression disorders (DSM-IV) were consecutively enrolled and divided in two groups: 1) conventional therapy (Control) and 2) conventional therapy associated with SKY (Treatment) for 15 days. Anxiety and depression levels were determined using quantitative questionnaires. For the assessment of CAC and cardiorespiratory coupling, cardiorespiratory traces were analyzed using monovariate and bivariate autoregressive spectral analysis, respectively. After 15-days, we observed a reduction of anxiety and depression levels only in Treatment group. Moreover, sympathetic modulation and CAC were significantly lower while parasympathetic modulation and cardiorespiratory coupling were significantly higher in the Treatment compared to Control group. Intensive breathing training using SKY approach improves anxiety and/or depressive disorders as well as CAC and cardiorespiratory coupling. These finding suggest that the SKY training may be a useful non-pharmacological intervention to improve symptoms and reduce cardiovascular risk in patients with anxiety/depression disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Histone Deacetylase 3 (HDAC3)-dependent Reversible Lysine Acetylation of Cardiac Myosin Heavy Chain Isoforms Modulates Their Enzymatic and Motor Activity*

    PubMed Central

    Samant, Sadhana A.; Pillai, Vinodkumar B.; Sundaresan, Nagalingam R.; Shroff, Sanjeev G.; Gupta, Mahesh P.

    2015-01-01

    Reversible lysine acetylation is a widespread post-translational modification controlling the activity of proteins in different subcellular compartments. We previously demonstrated that a class II histone deacetylase (HDAC), HDAC4, and a histone acetyltransferase, p300/CREB-binding protein-associated factor, associate with cardiac sarcomeres and that a class I and II HDAC inhibitor, trichostatin A, enhances contractile activity of myofilaments. In this study we show that a class I HDAC, HDAC3, is also present at cardiac sarcomeres. By immunohistochemical and electron microscopic analyses, we found that HDAC3 was localized to A-band of sarcomeres and capable of deacetylating myosin heavy chain (MHC) isoforms. The motor domains of both cardiac α- and β-MHC isoforms were found to be reversibly acetylated. Biomechanical studies revealed that lysine acetylation significantly decreased the Km for the actin-activated ATPase activity of MHC isoforms. By in vitro motility assay, we found that lysine acetylation increased the actin-sliding velocity of α-myosin by 20% and β-myosin by 36% compared with their respective non-acetylated isoforms. Moreover, myosin acetylation was found to be sensitive to cardiac stress. During induction of hypertrophy, myosin isoform acetylation increased progressively with duration of stress stimuli independently of isoform shift, suggesting that lysine acetylation of myosin could be an early response of myofilaments to increase contractile performance of the heart. These studies provide the first evidence for localization of HDAC3 at myofilaments and uncover a novel mechanism modulating the motor activity of cardiac MHC isoforms. PMID:25911107

  8. Attenuation of oxidative stress and cardioprotective effects of zinc supplementation in experimental diabetic rats.

    PubMed

    Barman, Susmita; Srinivasan, Krishnapura

    2017-02-01

    Oxidative stress plays a major role in the pathogenesis of diabetes mellitus, which further exacerbates damage of cardiac, hepatic and other tissues. We have recently reported that Zn supplementation beneficially modulates hyperglycaemia and hypoinsulinaemia, with attendant reduction of associated metabolic abnormalities in diabetic rats. The present study assessed the potential of Zn supplementation in modulating oxidative stress and cardioprotective effects in diabetic rats. Diabetes was induced in Wistar rats with streptozotocin, and groups of diabetic rats were treated with 5- and 10-fold dietary Zn interventions (0·19 and 0·38 g Zn/kg diet) for 6 weeks. The markers of oxidative stress, antioxidant enzyme activities and concentrations of antioxidant molecules, lipid profile, and expressions of fibrosis and pro-apoptotic factors in the cardiac tissue were particularly assessed. Supplemental Zn showed significant attenuation of diabetes-induced oxidative stress in terms of altered antioxidant enzyme activities and increased the concentrations of antioxidant molecules. Hypercholesterolaemia and hyperlipidaemia were also significantly countered by Zn supplementation. Along with attenuated oxidative stress, Zn supplementation also showed significant cardioprotective effects by altering the mRNA expressions of fibrosis and pro-apoptotic factors (by >50 %). The expression of lipid oxidative marker 4-hydroxy-2-nonenal (4-HNE) protein in cardiac tissue of diabetic animals was rectified (68 %) by Zn supplementation. Elevated cardiac and hepatic markers in circulation and pathological abnormalities in cardiac and hepatic tissue architecture of diabetic animals were ameliorated by dietary Zn intervention. The present study indicates that Zn supplementation can attenuate diabetes-induced oxidative stress in circulation as well as in cardiac and hepatic tissues.

  9. Simultaneous determination of dynamic cardiac metabolism and function using PET/MRI.

    PubMed

    Barton, Gregory P; Vildberg, Lauren; Goss, Kara; Aggarwal, Niti; Eldridge, Marlowe; McMillan, Alan B

    2018-05-01

    Cardiac metabolic changes in heart disease precede overt contractile dysfunction. However, metabolism and function are not typically assessed together in clinical practice. The purpose of this study was to develop a cardiac positron emission tomography/magnetic resonance (PET/MR) stress test to assess the dynamic relationship between contractile function and metabolism in a preclinical model. Following an overnight fast, healthy pigs (45-50 kg) were anesthetized and mechanically ventilated. 18 F-fluorodeoxyglucose ( 18 F-FDG) solution was administered intravenously at a constant rate of 0.01 mL/s for 60 minutes. A cardiac PET/MR stress test was performed using normoxic gas (F I O 2  = .209) and hypoxic gas (F I O 2  = .12). Simultaneous cardiac imaging was performed on an integrated 3T PET/MR scanner. Hypoxic stress induced a significant increase in heart rate, cardiac output, left ventricular (LV) ejection fraction (EF), and peak torsion. There was a significant decline in arterial SpO 2 , LV end-diastolic and end-systolic volumes in hypoxia. Increased LV systolic function was coupled with an increase in myocardial FDG uptake (Ki) during hypoxic stress. PET/MR with continuous FDG infusion captures dynamic changes in both cardiac metabolism and contractile function. This technique warrants evaluation in human cardiac disease for assessment of subtle functional and metabolic abnormalities.

  10. A high-sugar and high-fat diet impairs cardiac systolic and diastolic function in mice.

    PubMed

    Carbone, Salvatore; Mauro, Adolfo G; Mezzaroma, Eleonora; Kraskauskas, Donatas; Marchetti, Carlo; Buzzetti, Raffaella; Van Tassell, Benjamin W; Abbate, Antonio; Toldo, Stefano

    2015-11-01

    Heart failure (HF) is a clinical syndrome characterized by dyspnea, fatigue, exercise intolerance and cardiac dysfunction. Unhealthy diet has been associated with increased risk of obesity and heart disease, but whether it directly affects cardiac function, and promotes the development and progression of HF is unknown. We fed 8-week old male or female CD-1 mice with a standard diet (SD) or a diet rich in saturated fat and sugar, resembling a "Western" diet (WD). Cardiac systolic and diastolic function was measured at baseline and 4 and 8 weeks by Doppler echocardiography, and left ventricular (LV) end-diastolic pressure (EDP) by cardiac catheterization prior to sacrifice. An additional group of mice received WD for 4 weeks followed by SD (wash-out) for 8 weeks. WD-fed mice experienced a significant decreased in LV ejection fraction (LVEF), reflecting impaired systolic function, and a significant increase in isovolumetric relaxation time (IRT), myocardial performance index (MPI), and LVEDP, showing impaired diastolic function, without any sex-related differences. Switching to a SD after 4 weeks of WD partially reversed the cardiac systolic and diastolic dysfunction. A diet rich in saturated fat and sugars (WD) impairs cardiac systolic and diastolic function in the mouse. Further studies are required to define the mechanism through which diet affects cardiac function, and whether dietary interventions can be used in patients with, or at risk for, HF. Published by Elsevier Ireland Ltd.

  11. Vascular Endothelial Growth Factor Secretion by Nonmyocytes Modulates Connexin-43 Levels in Cardiac Organoids

    PubMed Central

    Iyer, Rohin K.; Odedra, Devang; Chiu, Loraine L.Y.; Vunjak-Novakovic, Gordana

    2012-01-01

    We previously showed that the sequential, but not simultaneous, culture of endothelial cells (ECs), fibroblasts (FBs), and cardiomyocytes (CMs) resulted in elongated, beating cardiac organoids. We hypothesized that the expression of Cx43 and contractile function are mediated by vascular endothelial growth factor (VEGF) released by nonmyocytes during the preculture period. Cardiac organoids (∼200 μm diameter) were cultivated in microchannels to enable rapid screening. Three experimental groups were formed: (i) Simultaneous Preculture (ECs+FBs for 48 h, followed by CMs), (ii) Sequential Preculture (ECs for 24 h, FBs for 24 h, followed by CMs), and (iii) Simultaneous Triculture (ECs+FBs+CMs). Controls included CMs only, FBs only, and ECs only groups, and preculture with ECs only or FBs only. The highest VEGF levels were found in the Preculture groups [Simultaneous Preculture, 8.9±2.7 ng/(mL·h−1); Sequential Preculture, 16.6±3.4 ng/(mL·h−1)], as compared with Simultaneous Triculture where VEGF was not detectable, as shown by enzyme-linked immunosorbent assay. Analytical flow cytometry showed that VEGFR2 was expressed by ECs (86%±2 VEGFR2+), FBs (44%±1 VEGFR2+), and CMs (49%±2 VEGFR2+), showing that all three cell types were capable of responding to changes in VEGF. Addition of anti-VEGF neutralizing IgG (0.4 μg/mL) to Simultaneous Preculture resulted in 3-fold decrease in Cx43 mRNA and 1.5-fold decrease in Cx43 protein, while Simultaneous Triculture supplemented with VEGF ligand (30 ng/mL) had a threefold increase in Cx43 mRNA and a twofold increase in Cx43 protein. Addition of a small molecule inhibitor of the VEGFR2 receptor (19.4 nM) to Sequential Preculture caused a 1.4-fold decrease in Cx43 mRNA and a 4.1-fold decrease in Cx43 protein. Cx43 was localized within CMs, and not within FBs or ECs. Enriched CM organoids and Sequential Preculture organoids grown in the presence of VEGFR2 inhibitor displayed low levels of Cx43 and poor functional properties. Taken together, these results suggest that endogenous VEGF-VEGFR2 signaling enhanced Cx43 expression and cardiac function in engineered cardiac organoids. PMID:22519405

  12. High level of oxygen treatment causes cardiotoxicity with arrhythmias and redox modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapalamadugu, Kalyan C.; Panguluri, Siva K.; Bennett, Eric S.

    2015-01-01

    Hyperoxia exposure in mice leads to cardiac hypertrophy and voltage-gated potassium (Kv) channel remodeling. Because redox balance of pyridine nucleotides affects Kv function and hyperoxia alters cellular redox potential, we hypothesized that hyperoxia exposure leads to cardiac ion channel disturbances and redox changes resulting in arrhythmias. In the present study, we investigated the electrical changes and redox abnormalities caused by 72 h hyperoxia treatment in mice. Cardiac repolarization changes were assessed by acquiring electrocardiogram (ECG) and cardiac action potentials (AP). Biochemical assays were employed to identify the pyridine nucleotide changes, Kv1.5 expression and myocardial injury. Hyperoxia treatment caused marked bradycardia,more » arrhythmia and significantly prolonged (ms) the, RR (186.2 ± 10.7 vs. 146.4 ± 6.2), PR (46.8 ± 3.1 vs. 39.3 ± 1.6), QRS (10.8 ± 0.6 vs. 8.5 ± 0.2), QTc (57.1 ± 3.5 vs. 40 ± 1.4) and JT (13.4 ± 2.1 vs. 7.0 ± 0.5) intervals, when compared with normoxia group. Hyperoxia treatment also induced significant increase in cardiac action potential duration (APD) (ex-APD{sub 90}; 73.8 ± 9.5 vs. 50.9 ± 3.1 ms) and elevated levels of serum markers of myocardial injury; cardiac troponin I (TnI) and lactate dehydrogenase (LDH). Hyperoxia exposure altered cardiac levels of mRNA/protein expression of; Kv1.5, Kvβ subunits and SiRT1, and increased ratios of reduced pyridine nucleotides (NADH/NAD and NADPH/NADP). Inhibition of SiRT1 in H9C2 cells using Splitomicin resulted in decreased SiRT1 and Kv1.5 expression, suggesting that SiRT1 may mediate Kv1.5 downregulation. In conclusion, the cardiotoxic effects of hyperoxia exposure involve ion channel disturbances and redox changes resulting in arrhythmias. - Highlights: • Hyperoxia treatment leads to arrhythmia with prolonged QTc and action potential duration. • Hyperoxia treatment alters cardiac pyridine nucleotide [NAD(P)H/NAD(P)] levels. • SiRT1 and Kv1.5 are co-regulated in hyperoxic heart injury. • Hyperoxia may lead to cardiotoxicity.« less

  13. Human cardiomyocyte generation from pluripotent stem cells: A state-of-art.

    PubMed

    Talkhabi, Mahmood; Aghdami, Nasser; Baharvand, Hossein

    2016-01-15

    The human heart is considered a non-regenerative organ. Worldwide, cardiovascular diseases continue to be the leading cause of death. Despite advances in cardiac treatment, myocardial repair remains severely limited by the lack of an appropriate source of viable cardiomyocytes (CMs) to replace damaged tissue. Human pluripotent stem cells (hPSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can efficiently be differentiated into functional CMs necessary for cell replacement therapy and other potential applications. The number of protocols that derive CMs from hPSCs has increased exponentially over the past decade following observation of the first human beating CMs. A number of highly efficient, chemical based protocols have been developed to generate human CMs (hCMs) in small-scale and large-scale suspension systems. To reduce the heterogeneity of hPSC-derived CMs, the differentiation protocols were modulated to exclusively generate atrial-, ventricular-, and nodal-like CM subtypes. Recently, remarkable advances have been achieved in hCM generation including chemical-based cardiac differentiation, cardiac subtype specification, large-scale suspension culture differentiation, and development of chemically defined culture conditions. These hCMs could be useful particularly in the context of in vitro disease modeling, pharmaceutical screening and in cellular replacement therapies once the safety issues are overcome. Herein we review recent progress in the in vitro generation of CMs and cardiac subtypes from hPSCs and discuss their potential applications and current limitations. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Serca2a and Na(+)/Ca(2+) exchanger are involved in left ventricular function following cardiac remodelling of female rats treated with anabolic androgenic steroid.

    PubMed

    Nascimento, Andrews Marques do; Lima, Ewelyne Miranda de; Brasil, Girlandia Alexandre; Caliman, Izabela Facco; Silva, Josiane Fernandes da; Lemos, Virgínia Soares; Andrade, Tadeu Uggere de; Bissoli, Nazaré Souza

    2016-06-15

    Anabolic-androgenic steroids are misused, including by women, but little is known about the cardiovascular effects of these drugs on women. To evaluated the effects of nandrolone decanoate (ND) and resistive physical exercise on cardiac contractility in young female rats. Female Wistar rats were separated into 4 groups: C (untrained animals); E (animals were submitted to resistance exercise by jumping in water 5 times per week); ND (animals were treated with ND, 20mg/kg/week for 4weeks); and NDE (trained and treated). The haemodynamic parameters (+dP/dtmax, -dP/dtmin and Tau) were assessed in the left ventricle. The heart was collected for histological analyses and collagen deposition. The gastrocnemius muscle was weighed, and hypertrophy was assessed by the ratio of their weights to gastrocnemius/tibia length. The expression of calcium handling proteins was measured by western blot analysis. ND treatment and physical exercise increased cardiac contractility and relaxation. In addition, ND promoted increases in phospholamban phosphorylated (p-PLB) and isoforms of sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2a) expression, while resistance exercise increased the phosphorylation of PLB and expression of Na(+)/Ca(2+) exchangers (NCX). Cardiac hypertrophy and collagen deposition were observed after ND treatment. Regulatory components of cytosolic calcium, such as SERCA2a and p-PLB, play important roles in modulating the contractility and relaxation effects of ND in females. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Exercise training in Tgαq*44 mice during the progression of chronic heart failure: cardiac vs. peripheral (soleus muscle) impairments to oxidative metabolism.

    PubMed

    Grassi, Bruno; Majerczak, Joanna; Bardi, Eleonora; Buso, Alessia; Comelli, Marina; Chlopicki, Stefan; Guzik, Magdalena; Mavelli, Irene; Nieckarz, Zenon; Salvadego, Desy; Tyrankiewicz, Urszula; Skórka, Tomasz; Bottinelli, Roberto; Zoladz, Jerzy A; Pellegrino, Maria Antonietta

    2017-08-01

    Cardiac function, skeletal (soleus) muscle oxidative metabolism, and the effects of exercise training were evaluated in a transgenic murine model (Tgα q *44) of chronic heart failure during the critical period between the occurrence of an impairment of cardiac function and the stage at which overt cardiac failure ensues (i.e., from 10 to 12 mo of age). Forty-eight Tgα q *44 mice and 43 wild-type FVB controls were randomly assigned to control groups and to groups undergoing 2 mo of intense exercise training (spontaneous running on an instrumented wheel). In mice evaluated at the beginning and at the end of training we determined: exercise performance (mean distance covered daily on the wheel); cardiac function in vivo (by magnetic resonance imaging); soleus mitochondrial respiration ex vivo (by high-resolution respirometry); muscle phenotype [myosin heavy chain (MHC) isoform content; citrate synthase (CS) activity]; and variables related to the energy status of muscle fibers [ratio of phosphorylated 5'-AMP-activated protein kinase (AMPK) to unphosphorylated AMPK] and mitochondrial biogenesis and function [peroxisome proliferative-activated receptor-γ coactivator-α (PGC-1α)]. In the untrained Tgα q *44 mice functional impairments of exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed. The impairment of mitochondrial respiration was related to the function of complex I of the respiratory chain, and it was not associated with differences in CS activity, MHC isoforms, p-AMPK/AMPK, and PGC-1α levels. Exercise training improved exercise performance and cardiac function, but it did not affect mitochondrial respiration, even in the presence of an increased percentage of type 1 MHC isoforms. Factors "upstream" of mitochondria were likely mainly responsible for the improved exercise performance. NEW & NOTEWORTHY Functional impairments in exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed in transgenic chronic heart failure mice, evaluated in the critical period between the occurrence of an impairment of cardiac function and the terminal stage of the disease. Exercise training improved exercise performance and cardiac function, but it did not affect the impaired mitochondrial respiration. Factors "upstream" of mitochondria, including an enhanced cardiovascular O 2 delivery, were mainly responsible for the functional improvement. Copyright © 2017 the American Physiological Society.

  16. Sphingosine 1-Phosphate Receptor Modulators for the Treatment of Multiple Sclerosis.

    PubMed

    Chaudhry, Burhan Z; Cohen, Jeffrey A; Conway, Devon S

    2017-10-01

    Sphingosine 1-phosphate receptor (S1PR) modulators possess a unique mechanism of action in the treatment of multiple sclerosis (MS). Subtype 1 of the S1PR is expressed on the surface of lymphocytes and is important in regulating egression from lymph nodes. The S1PR modulators indirectly antagonize the receptor's function leading to sequestration of lymphocytes in the lymph nodes. Fingolimod was the first S1PR modulator to receive regulatory approval for relapsing-remitting MS after 2 phase III trials demonstrated potent efficacy, safety, and tolerability. Fingolimod can cause undesirable effects as a result of its interaction with other S1PR subtypes, which are expressed in diverse tissues, including cardiac myocytes. As such, agents that more selectively target subtype 1 of the S1PR are of interest and are at various stages of development. These include ponesimod (ACT128800), siponimod (BAF312), ozanimod (RPC1063), ceralifimod (ONO-4641), GSK2018682, and MT-1303. Data from phase II trials and early results from phase III studies have been promising and will be presented in this review. Of special interest are results from the EXPAND study of siponimod, which suggest a potential role for S1PR modulators in secondary progressive MS.

  17. DJ-1 activates autophagy in the repression of cardiac hypertrophy.

    PubMed

    Xue, Ruicong; Jiang, Jingzhou; Dong, Bin; Tan, Weiping; Sun, Yu; Zhao, Jingjing; Chen, Yili; Dong, Yugang; Liu, Chen

    2017-11-01

    Cardiac hypertrophy is the risk factor of heart failure when the heart is confronted with pressure overload or neurohumoral stimuli. Autophagy, a conserved degradative pathway, is one of the important mechanisms involved in the regulation of cardiac hypertrophy. DJ-1 is a traditional anti-oxidative protein and emerging evidence suggested that DJ-1 might modulate autophagy. However, the regulation of autophagy by DJ-1 in the process of cardiac hypertrophy remains unknown. In our study, we firstly discovered that the expression of DJ-1declined in the process of pressure overload cardiac hypertrophy, and its alteration was parallel with the impairment of autophagy. Furthermore, we proved that DJ-1 knockout mice exhibited a more hypertrophied phenotype than wildtype mice in cardiac hypertrophy which indicated that DJ-1 is responsible for the repression of cardiac hypertrophy. Furthermore, DJ-1 knockout significantly exacerbated pulmonary edema due to cardiac hypertrophy. In the process of cardiac hypertrophy, DJ-1 knockout significantly impaired autophagy activation and enhanced mTORC1 and mTORC2 phosphorylation were found. Similarly, our in vitro study proved that DJ-1 overexpression ameliorated phenylephrine (PE)-induced cardiac hypertrophy and promoted autophagy activation. Taken together, DJ-1 might repress both pressure overload and PE-induced cardiac hypertrophy via the activation of autophagy. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Cardiac mTOR rescues the detrimental effects of diet-induced obesity in the heart after ischemia-reperfusion.

    PubMed

    Aoyagi, Toshinori; Higa, Jason K; Aoyagi, Hiroko; Yorichika, Naaiko; Shimada, Briana K; Matsui, Takashi

    2015-06-15

    Diet-induced obesity deteriorates the recovery of cardiac function after ischemia-reperfusion (I/R) injury. While mechanistic target of rapamycin (mTOR) is a key mediator of energy metabolism, the effects of cardiac mTOR in ischemic injury under metabolic syndrome remains undefined. Using cardiac-specific transgenic mice overexpressing mTOR (mTOR-Tg mice), we studied the effect of mTOR on cardiac function in both ex vivo and in vivo models of I/R injury in high-fat diet (HFD)-induced obese mice. mTOR-Tg and wild-type (WT) mice were fed a HFD (60% fat by calories) for 12 wk. Glucose intolerance and insulin resistance induced by the HFD were comparable between WT HFD-fed and mTOR-Tg HFD-fed mice. Functional recovery after I/R in the ex vivo Langendorff perfusion model was significantly lower in HFD-fed mice than normal chow diet-fed mice. mTOR-Tg mice demonstrated better cardiac function recovery and had less of the necrotic markers creatine kinase and lactate dehydrogenase in both feeding conditions. Additionally, mTOR overexpression suppressed expression of proinflammatory cytokines, including IL-6 and TNF-α, in both feeding conditions after I/R injury. In vivo I/R models showed that at 1 wk after I/R, HFD-fed mice exhibited worse cardiac function and larger myocardial scarring along myofibers compared with normal chow diet-fed mice. In both feeding conditions, mTOR overexpression preserved cardiac function and prevented myocardial scarring. These findings suggest that cardiac mTOR overexpression is sufficient to prevent the detrimental effects of diet-induced obesity on the heart after I/R, by reducing cardiac dysfunction and myocardial scarring. Copyright © 2015 the American Physiological Society.

  19. Evaluation of cardiac function in active and hibernating grizzly bears.

    PubMed

    Nelson, O Lynne; McEwen, Margaret-Mary; Robbins, Charles T; Felicetti, Laura; Christensen, William F

    2003-10-15

    To evaluate cardiac function parameters in a group of active and hibernating grizzly bears. Prospective study. 6 subadult grizzly bears. Indirect blood pressure, a 12-lead ECG, and a routine echocardiogram were obtained in each bear during the summer active phase and during hibernation. All measurements of myocardial contractility were significantly lower in all bears during hibernation, compared with the active period. Mean rate of circumferential left ventricular shortening, percentage fractional shortening, and percentage left ventricular ejection fraction were significantly lower in bears during hibernation, compared with the active period. Certain indices of diastolic function appeared to indicate enhanced ventricular compliance during the hibernation period. Mean mitral inflow ratio and isovolumic relaxation time were greater during hibernation. Heart rate was significantly lower for hibernating bears, and mean cardiac index was lower but not significantly different from cardiac index during the active phase. Contrary to results obtained in hibernating rodent species, cardiac index was not significantly correlated with heart rate. Cardiac function parameters in hibernating bears are opposite to the chronic bradycardic effects detected in nonhibernating species, likely because of intrinsic cardiac muscle adaptations during hibernation. Understanding mechanisms and responses of the myocardium during hibernation could yield insight into mechanisms of cardiac function regulation in various disease states in nonhibernating species.

  20. Preserved cardiac autonomic dynamics during sleep in subjects with spinal cord injuries.

    PubMed

    Tobaldini, Eleonora; Proserpio, Paola; Sambusida, Katrina; Lanza, Andrea; Redaelli, Tiziana; Frigerio, Pamela; Fratticci, Lara; Rosa, Silvia; Casali, Karina R; Somers, Virend K; Nobili, Lino; Montano, Nicola

    2015-06-01

    Spinal cord injuries (SCI) are associated with altered cardiovascular autonomic control (CAC). Sleep is characterized by modifications of autonomic control across sleep stages; however, no data are available in SCI subjects on CAC during sleep. We aim to assess cardiac autonomic modulation during sleep in subjects with SCI. 27 participants with a neurological and radiological diagnosis of cervical (Cerv, n = 12, ie, tetraplegic) and thoracic SCI (Thor, n = 15, ie, paraplegic) and healthy subjects (Controls) were enrolled. Overnight polysomnographic (PSG) recordings were obtained in all participants. Electrocardiography and respiration were extracted from PSG, divided into sleep stages [wakefulness (W), non-REM sleep (NREM) and REM] for assessment of CAC, using symbolic analysis (SA) and corrected conditional entropy (CCE). SA identified indices of sympathetic and parasympathetic modulation and CCE evaluated the degree of complexity of the heart period time series. SA revealed a reduction of sympathetic and predominant parasympathetic control during NREM compared to W and REM in SCI patients, independent of the level of the lesion, similar to the Controls. In all three groups, complexity of autonomic regulation was higher in NREM compared to W and REM. In subjects with SCI, cardiac autonomic control changed across sleep stages, with a reduction of sympathetic and an increase of parasympathetic modulation during NREM compared to W and REM, and a parallel increase of complexity during NREM, which was similar to the Controls. Cardiac autonomic dynamics during sleep are maintained in SCI, independent of the level of the lesion. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Effects of Obesity on Cardiovascular Hemodynamics, Cardiac Morphology, and Ventricular Function.

    PubMed

    Alpert, Martin A; Omran, Jad; Bostick, Brian P

    2016-12-01

    Obesity produces a variety of hemodynamic alterations that may cause changes in cardiac morphology which predispose to left and right ventricular dysfunction. Various neurohormonal and metabolic alterations commonly associated with obesity may contribute to these abnormalities of cardiac structure and function. These changes in cardiovascular hemodynamics, cardiac morphology, and ventricular function may, in severely obese patients, predispose to heart failure, even in the absence of other forms of heart disease (obesity cardiomyopathy). In normotensive obese patients, cardiac involvement is commonly characterized by elevated cardiac output, low peripheral vascular resistance, and increased left ventricular (LV) end-diastolic pressure. Sleep-disordered breathing may lead to pulmonary arterial hypertension and, in association with left heart failure, may contribute to elevation of right heart pressures. These alterations, in association with various neurohormonal and metabolic abnormalities, may produce LV hypertrophy; impaired LV diastolic function; and less commonly, LV systolic dysfunction. Many of these alterations are reversible with substantial voluntary weight loss.

  2. Association between cardiac autonomic function, oxidative stress and inflammatory response in impaired fasting glucose subjects: cross-sectional study.

    PubMed

    Thiyagarajan, Ramkumar; Subramanian, Senthil Kumar; Sampath, Nishanth; Madanmohan Trakroo; Pal, Pravati; Bobby, Zachariah; Paneerselvam, Sankar; Das, Ashok Kumar

    2012-01-01

    The worldwide burden of diabetes in 2030 is projected around 552 million. Diabetes leads to higher risk for cardiovascular diseases (CVD). Altered cardiac autonomic function (CAF) measured by heart rate variability (HRV) is observed in early stages of diabetes but the relationship between impaired fasting glucose (IFG) and HRV is still debatable. The aim of the study was to evaluate the association between CAF, oxidative stress, insulin resistance (IR), and inflammatory response in IFG subjects. Cross-sectional blinded study. Volunteers recruited from health awareness camps underwent CAF and biochemical tests. Based on fasting plasma glucose (FPG) participants (n = 123) were divided into two groups, normal fasting glucose (n = 76) and IFG (n = 47). The comparison of parameters between the groups was carried out using student t test and Mann-Whitney U test for parametric and non-parametric data respectively. The correlation between the parameters was analyzed by Spearman's rank correlation using SPSS 13.0. The resting cardiovagal modulation parameters, heart rate response to forced timed breathing, and orthostatic stress were reduced in IFG subjects. Fasting plasma lipid profile, coronary atherogenic lipid risk factors, IR, thiobarbituric acid reactive substance (TBARS), high sensitive C-reactive protein, and tumor necrosis factor alpha were increased and total antioxidant capacity (TAC) was decreased significantly in IFG group but no significant alteration was observed in high-density lipoprotein (HDL-c). Cardiovagal modulation parameters were negatively correlated with triglycerides, FPG, insulin, IR, TBARS, and inflammatory markers and positively with TAC. There is a continuous interplay between the altered CAF, hyperinsulinemia, IR, oxidative stress parameters, inflammatory response, and IFG in which one factor perpetuates another leading to the progression of disease.

  3. Melatonin protects diabetic heart against ischemia-reperfusion injury, role of membrane receptor-dependent cGMP-PKG activation.

    PubMed

    Yu, Li-Ming; Di, Wen-Cheng; Dong, Xue; Li, Zhi; Zhang, Yong; Xue, Xiao-Dong; Xu, Yin-Li; Zhang, Jian; Xiao, Xiong; Han, Jin-Song; Liu, Yu; Yang, Yang; Wang, Hui-Shan

    2018-02-01

    It has been demonstrated that the anti-oxidative and cardioprotective effects of melatonin are, at least in part, mediated by its membrane receptors. However, the direct downstream signaling remains unknown. We previously found that melatonin ameliorated myocardial ischemia-reperfusion (MI/R) injury in diabetic animals, although the underlying mechanisms are also incompletely understood. This study was designed to determine the role of melatonin membrane receptors in melatonin's cardioprotective actions against diabetic MI/R injury with a focus on cGMP and its downstream effector PKG. Streptozotocin-induced diabetic Sprague-Dawley rats and high-glucose medium-incubated H9c2 cardiomyoblasts were utilized to determine the effects of melatonin against MI/R injury. Melatonin treatment preserved cardiac function and reduced oxidative damage and apoptosis. Additionally, melatonin increased intracellular cGMP level, PKGIα expression, p-VASP/VASP ratio and further modulated myocardial Nrf-2-HO-1 and MAPK signaling. However, these effects were blunted by KT5823 (a selective inhibitor of PKG) or PKGIα siRNA except that intracellular cGMP level did not changed significantly. Additionally, our in vitro study showed that luzindole (a nonselective melatonin membrane receptor antagonist) or 4P-PDOT (a selective MT 2 receptor antagonist) not only blocked the cytoprotective effect of melatonin, but also attenuated the stimulatory effect of melatonin on cGMP-PKGIα signaling and its modulatory effect on Nrf-2-HO-1 and MAPK signaling. This study showed that melatonin ameliorated diabetic MI/R injury by modulating Nrf-2-HO-1 and MAPK signaling, thus reducing myocardial apoptosis and oxidative stress and preserving cardiac function. Importantly, melatonin membrane receptors (especially MT 2 receptor)-dependent cGMP-PKGIα signaling played a critical role in this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Role of ionotropic GABA, glutamate and glycine receptors in the tonic and reflex control of cardiac vagal outflow in the rat

    PubMed Central

    2010-01-01

    Background Cardiac vagal preganglionic neurons (CVPN) are responsible for the tonic, reflex and respiratory modulation of heart rate (HR). Although CVPN receive GABAergic and glutamatergic inputs, likely involved in respiratory and reflex modulation of HR respectively, little else is known regarding the functions controlled by ionotropic inputs. Activation of g-protein coupled receptors (GPCR) alters these inputs, but the functional consequence is largely unknown. The present study aimed to delineate how ionotropic GABAergic, glycinergic and glutamatergic inputs contribute to the tonic and reflex control of HR and in particular determine which receptor subtypes were involved. Furthermore, we wished to establish how activation of the 5-HT1A GPCR affects tonic and reflex control of HR and what ionotropic interactions this might involve. Results Microinjection of the GABAA antagonist picrotoxin into CVPN decreased HR but did not affect baroreflex bradycardia. The glycine antagonist strychnine did not alter HR or baroreflex bradycardia. Combined microinjection of the NMDA antagonist, MK801, and AMPA antagonist, CNQX, into CVPN evoked a small bradycardia and abolished baroreflex bradycardia. MK801 attenuated whereas CNQX abolished baroreceptor bradycardia. Control intravenous injections of the 5-HT1A agonist 8-OH-DPAT evoked a small bradycardia and potentiated baroreflex bradycardia. These effects were still observed following microinjection of picrotoxin but not strychnine into CVPN. Conclusions We conclude that activation of GABAA receptors set the level of HR whereas AMPA to a greater extent than NMDA receptors elicit baroreflex changes in HR. Furthermore, activation of 5-HT1A receptors evokes bradycardia and enhances baroreflex changes in HR due to interactions with glycinergic neurons involving strychnine receptors. This study provides reference for future studies investigating how diseases alter neurochemical inputs to CVPN. PMID:20939929

  5. Do mobile phones pose a potential risk to autonomic modulation of the heart?

    PubMed

    Barutcu, Irfan; Esen, Ali Metin; Kaya, Dayimi; Turkmen, Muhsin; Karakaya, Osman; Saglam, Mustafa; Melek, Mehmet; Çelik, Ataç; Kilit, Celal; Onrat, Ersel; Kirma, Cevat

    2011-11-01

    It has long been speculated that mobile phones may interact with the cardiac devices and thereby cardiovascular system may be a potential target for the electromagnetic fields emitted by the mobile phones. Therefore, the present study was designed to test possible effects of radiofrequency waves emitted by digital mobile phones on cardiac autonomic modulation by short-time heart rate variability (HRV) analysis. A total of 20 healthy young subjects were included to the study. All participants were rested in supine position at least for 15 minutes on a comfortable bed, and then time and frequency domain HRV parameters were recorded at baseline in supine position for 5 minutes. After completion of baseline records, by using a mobile GSM (Global System for Mobile Communication) phone, HRV parameters were recorded at turned off mode, at turned on mode, and at calling mode over 5 minutes periods for each stage. Neither time nor frequency domain HRV parameters altered significantly during off mode compare to their baseline values. Also, neither time nor frequency domain HRV parameters altered significantly during turned on and calling mode compared to their baseline values. Short-time exposure to electromagnetic fields emitted by mobile phone does not affect cardiac autonomic modulation in healthy subjects.

  6. Validation of a novel CARTOSEG™ segmentation module software for contrast-enhanced computed tomography-guided radiofrequency ablation in patients with atrial fibrillation.

    PubMed

    Imanli, Hasan; Bhatty, Shaun; Jeudy, Jean; Ghzally, Yousra; Ume, Kiddy; Vunnam, Rama; Itah, Refael; Amit, Mati; Duell, John; See, Vincent; Shorofsky, Stephen; Dickfeld, Timm M

    2017-11-01

    Visualization of left atrial (LA) anatomy using image integration modules has been associated with decreased radiation exposure and improved procedural outcome when used for guidance of pulmonary vein isolation (PVI) in atrial fibrillation (AF) ablation. We evaluated the CARTOSEG™ CT Segmentation Module (Biosense Webster, Inc.) that offers a new CT-specific semiautomatic reconstruction of the atrial endocardium. The CARTOSEG™ CT Segmentation Module software was assessed prospectively in 80 patients undergoing AF ablation. Using preprocedural contrast-enhanced computed tomography (CE-CT), cardiac chambers, coronary sinus (CS), and esophagus were semiautomatically segmented. Segmentation quality was assessed from 1 (poor) to 4 (excellent). The reconstructed structures were registered with the electroanatomic map (EAM). PVI was performed using the registered 3D images. Semiautomatic reconstruction of the heart chambers was successfully performed in all 80 patients with AF. CE-CT DICOM file import, semiautomatic segmentation of cardiac chambers, esophagus, and CS was performed in 185 ± 105, 18 ± 5, 119 ± 47, and 69 ± 19 seconds, respectively. Average segmentation quality was 3.9 ± 0.2, 3.8 ± 0.3, and 3.8 ± 0.2 for LA, esophagus, and CS, respectively. Registration accuracy between the EAM and CE-CT-derived segmentation was 4.2 ± 0.9 mm. Complications consisted of one perforation (1%) which required pericardiocentesis, one increased pericardial effusion treated conservatively (1%), and one early termination of ablation due to thrombus formation on the ablation sheath without TIA/stroke (1%). All targeted PVs (n  =  309) were successfully isolated. The novel CT- CARTOSEG™ CT Segmentation Module enables a rapid and reliable semiautomatic 3D reconstruction of cardiac chambers and adjacent anatomy, which facilitates successful and safe PVI. © 2017 Wiley Periodicals, Inc.

  7. Sedentary Behavior and Light Physical Activity Are Associated with Brachial and Central Blood Pressure in Hypertensive Patients

    PubMed Central

    Gerage, Aline M.; Benedetti, Tania R. B.; Farah, Breno Q.; Santana, Fábio da S.; Ohara, David; Andersen, Lars B.; Ritti-Dias, Raphael M.

    2015-01-01

    Background Physical activity is recommended as a part of a comprehensive lifestyle approach in the treatment of hypertension, but there is a lack of data about the relationship between different intensities of physical activity and cardiovascular parameters in hypertensive patients. The purpose of this study was to investigate the association between the time spent in physical activities of different intensities and blood pressure levels, arterial stiffness and autonomic modulation in hypertensive patients. Methods In this cross-sectional study, 87 hypertensive patients (57.5 ± 9.9 years of age) had their physical activity assessed over a 7 day period using an accelerometer and the time spent in sedentary activities, light physical activities, moderate physical activities and moderate-to-vigorous physical activities was obtained. The primary outcomes were brachial and central blood pressure. Arterial stiffness parameters (augmentation index and pulse wave velocity) and cardiac autonomic modulation (sympathetic and parasympathetic modulation in the heart) were also obtained as secondary outcomes. Results Sedentary activities and light physical activities were positively and inversely associated, respectively, with brachial systolic (r = 0.56; P < 0.01), central systolic (r = 0.51; P < 0.05), brachial diastolic (r = 0.45; P < 0.01) and central diastolic (r = 0.42; P < 0.05) blood pressures, after adjustment for sex, age, trunk fat, number of antihypertensive drugs, accelerometer wear time and moderate-to-vigorous physical activities. Arterial stiffness parameters and cardiac autonomic modulation were not associated with the time spent in sedentary activities and in light physical activities (P > 0.05). Conclusion Lower time spent in sedentary activities and higher time spent in light physical activities are associated with lower blood pressure, without affecting arterial stiffness and cardiac autonomic modulation in hypertensive patients. PMID:26717310

  8. Self-Efficacy as a Marker of Cardiac Function and Predictor of Heart Failure Hospitalization and Mortality in Patients With Stable Coronary Heart Disease: Findings From the Heart and Soul Study

    PubMed Central

    Sarkar, Urmimala; Ali, Sadia; Whooley, Mary A.

    2009-01-01

    Objective The authors sought to evaluate the association of self-efficacy with objective measures of cardiac function, subsequent hospitalization for heart failure (HF), and all-cause mortality. Design Observational cohort of ambulatory patients with stable CHD. The authors measured self-efficacy using a published, validated, 5-item summative scale, the Sullivan Self-Efficacy to Maintain Function Scale. The authors also performed a cardiac assessment, including an exercise treadmill test with stress echocardiography. Main Outcome Measures Hospitalizations for HF, as determined by blinded review of medical records, and all-cause mortality, with adjustment for demographics, medical history, medication use, depressive symptoms, and social support. Results Of the 1,024 predominately male, older CHD patients, 1013 (99%) were available for follow-up, 124 (12%) were hospitalized for HF, and 235 (23%) died during 4.3 years of follow-up. Mean cardiac self-efficacy score was 9.7 (SD 4.5, range 0–20), corresponding to responses between “not at all confident” and “somewhat confident” for ability to maintain function. Lower self-efficacy predicted subsequent HF hospitalization (OR per SD decrease = 1.4, p = 0006), and all-cause mortality (OR per SD decrease = 1.4, p < .0001). After adjustment, the association of cardiac self-efficacy with both HF hospitalization and mortality was explained by worse baseline cardiac function. Conclusion Among patients with CHD, self-efficacy was a reasonable proxy for predicting HF hospitalizations. The increased risk of HF associated with lower baseline self-efficacy was explained by worse cardiac function. These findings indicate that measuring cardiac self-efficacy provides a rapid and potentially useful assessment of cardiac function among outpatients with CHD. PMID:19290708

  9. Dynamic Organization of lncRNA and Circular RNA Regulators Collectively Controlled Cardiac Differentiation in Humans.

    PubMed

    Li, Yongsheng; Zhang, Jinwen; Huo, Caiqin; Ding, Na; Li, Junyi; Xiao, Jun; Lin, Xiaoyu; Cai, Benzhi; Zhang, Yunpeng; Xu, Juan

    2017-10-01

    Advances in developmental cardiology have increased our understanding of the early aspects of heart differentiation. However, understanding noncoding RNA (ncRNA) transcription and regulation during this process remains elusive. Here, we constructed transcriptomes for both long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) in four important developmental stages ranging from early embryonic to cardiomyocyte based on high-throughput sequencing datasets, which indicate the high stage-specific expression patterns of two ncRNA types. Additionally, higher similarities of samples within each stage were found, highlighting the divergence of samples collected from distinct cardiac developmental stages. Next, we developed a method to identify numerous lncRNA and circRNA regulators whose expression was significantly stage-specific and shifted gradually and continuously during heart differentiation. We inferred that these ncRNAs are important for the stages of cardiac differentiation. Moreover, transcriptional regulation analysis revealed that the expression of stage-specific lncRNAs is controlled by known key stage-specific transcription factors (TFs). In addition, circRNAs exhibited dynamic expression patterns independent from their host genes. Functional enrichment analysis revealed that lncRNAs and circRNAs play critical roles in pathways that are activated specifically during heart differentiation. We further identified candidate TF-ncRNA-gene network modules for each differentiation stage, suggesting the dynamic organization of lncRNAs and circRNAs collectively controlled cardiac differentiation, which may cause heart-related diseases when defective. Our study provides a foundation for understanding the dynamic regulation of ncRNA transcriptomes during heart differentiation and identifies the dynamic organization of novel key lncRNAs and circRNAs to collectively control cardiac differentiation. Copyright © 2017. Published by Elsevier B.V.

  10. Conservation of cardiac L-type Ca2+ channels and their regulation in Drosophila: A novel genetically-pliable channelopathic model.

    PubMed

    Limpitikul, Worawan B; Viswanathan, Meera C; O'Rourke, Brian; Yue, David T; Cammarato, Anthony

    2018-04-21

    Dysregulation of L-type Ca 2+ channels (LTCCs) underlies numerous cardiac pathologies. Understanding their modulation with high fidelity relies on investigating LTCCs in their native environment with intact interacting proteins. Such studies benefit from genetic manipulation of endogenous channels in cardiomyocytes, which often proves cumbersome in mammalian models. Drosophila melanogaster, however, offers a potentially efficient alternative as it possesses a relatively simple heart, is genetically pliable, and expresses well-conserved genes. Fluorescence in situ hybridization confirmed an abundance of Ca-α1D and Ca-α1T mRNA in fly myocardium, which encode subunits that specify hetero-oligomeric channels homologous to mammalian LTCCs and T-type Ca 2+ channels, respectively. Cardiac-specific knockdown of Ca-α1D via interfering RNA abolished cardiac contraction, suggesting Ca-α1D (i.e. A1D) represents the primary functioning Ca 2+ channel in Drosophila hearts. Moreover, we successfully isolated viable single cardiomyocytes and recorded Ca 2+ currents via patch clamping, a feat never before accomplished with the fly model. The profile of Ca 2+ currents recorded in individual cells when Ca 2+ channels were hypomorphic, absent, or under selective LTCC blockage by nifedipine, additionally confirmed the predominance of A1D current across all activation voltages. T-type current, activated at more negative voltages, was also detected. Lastly, A1D channels displayed Ca 2+ -dependent inactivation, a critical negative feedback mechanism of LTCCs, and the current through them was augmented by forskolin, an activator of the protein kinase A pathway. In sum, the Drosophila heart possesses a conserved compendium of Ca 2+ channels, suggesting that the fly may serve as a robust and effective platform for studying cardiac channelopathies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Nutrition Modulation of Cardiotoxicity and Anticancer Efficacy Related to Doxorubicin Chemotherapy by Glutamine and ω-3 Polyunsaturated Fatty Acids

    PubMed Central

    Xue, Hongyu; Ren, Wenhua; Denkinger, Melanie; Schlotzer, Ewald; Wischmeyer, Paul E.

    2015-01-01

    Background Doxorubicin (DOX) has been one of the most effective antitumor agents against a broad spectrum of malignancies. However, DOX-induced cardiotoxicity forms the major cumulative dose-limiting factor. Glutamine and ω-3 polyunsaturated fatty acids (PUFAs) are putatively cardioprotective during various stresses and/or have potential chemosensitizing effects during cancer chemotherapy. Methods Antitumor activity and cardiotoxicity of DOX treatment were evaluated simultaneously in a MatBIII mammary adenocarcinoma tumor-bearing rat model treated with DOX (cumulative dose 12 mg/kg). Single or combined treatment of parenteral glutamine (0.35 g/kg) and ω-3 PUFAs (0.19 g/kg eicosapentaenoic acid and 0.18 g/kg docosahexaenoic acid) was administered every other day, starting 6 days before chemotherapy initiation until the end of study (day 50). Results Glutamine alone significantly prevented DOX-related deterioration of cardiac function, reduced serum cardiac troponin I levels, and diminished cardiac lipid peroxidation while not affecting tumor inhibition kinetics. Single ω-3 PUFA treatment significantly enhanced antitumor activity of DOX associated with intensified tumoral oxidative stress and enhanced tumoral DOX concentration while not potentiating cardiac dysfunction or increasing cardiac oxidative stress. Intriguingly, providing glutamine and ω-3 PUFAs together did not consistently confer a greater benefit; conversely, individual benefits on cardiotoxicity and chemosensitization were mostly attenuated or completely lost when combined. Conclusions Our data demonstrate an interesting differentiality or even dichotomy in the response of tumor and host to single parenteral glutamine and ω-3 PUFA treatments. The intriguing glutamine × ω-3 PUFA interaction observed draws into question the common assumption that there are additive benefits of combinations of nutrients that are beneficial on an individual basis. PMID:25888676

  12. Nutrition Modulation of Cardiotoxicity and Anticancer Efficacy Related to Doxorubicin Chemotherapy by Glutamine and ω-3 Polyunsaturated Fatty Acids.

    PubMed

    Xue, Hongyu; Ren, Wenhua; Denkinger, Melanie; Schlotzer, Ewald; Wischmeyer, Paul E

    2016-01-01

    Doxorubicin (DOX) has been one of the most effective antitumor agents against a broad spectrum of malignancies. However, DOX-induced cardiotoxicity forms the major cumulative dose-limiting factor. Glutamine and ω-3 polyunsaturated fatty acids (PUFAs) are putatively cardioprotective during various stresses and/or have potential chemosensitizing effects during cancer chemotherapy. Antitumor activity and cardiotoxicity of DOX treatment were evaluated simultaneously in a MatBIII mammary adenocarcinoma tumor-bearing rat model treated with DOX (cumulative dose 12 mg/kg). Single or combined treatment of parenteral glutamine (0.35 g/kg) and ω-3 PUFAs (0.19 g/kg eicosapentaenoic acid and 0.18 g/kg docosahexaenoic acid) was administered every other day, starting 6 days before chemotherapy initiation until the end of study (day 50). Glutamine alone significantly prevented DOX-related deterioration of cardiac function, reduced serum cardiac troponin I levels, and diminished cardiac lipid peroxidation while not affecting tumor inhibition kinetics. Single ω-3 PUFA treatment significantly enhanced antitumor activity of DOX associated with intensified tumoral oxidative stress and enhanced tumoral DOX concentration while not potentiating cardiac dysfunction or increasing cardiac oxidative stress. Intriguingly, providing glutamine and ω-3 PUFAs together did not consistently confer a greater benefit; conversely, individual benefits on cardiotoxicity and chemosensitization were mostly attenuated or completely lost when combined. Our data demonstrate an interesting differentiality or even dichotomy in the response of tumor and host to single parenteral glutamine and ω-3 PUFA treatments. The intriguing glutamine × ω-3 PUFA interaction observed draws into question the common assumption that there are additive benefits of combinations of nutrients that are beneficial on an individual basis. © 2015 American Society for Parenteral and Enteral Nutrition.

  13. Relationship between cardiac function and resting cerebral blood flow: MRI measurements in healthy elderly subjects.

    PubMed

    Henriksen, Otto M; Jensen, Lars T; Krabbe, Katja; Larsson, Henrik B W; Rostrup, Egill

    2014-11-01

    Although both impaired cardiac function and reduced cerebral blood flow are associated with ageing, current knowledge of the influence of cardiac function on resting cerebral blood flow (CBF) is limited. The aim of this study was to investigate the potential effects of cardiac function on CBF. CBF and cardiac output were measured in 31 healthy subjects 50-75 years old using magnetic resonance imaging techniques. Mean values of CBF, cardiac output and cardiac index were 43.6 ml per 100 g min(-1), 5.5 l min(-1) and 2.7 l min(-1) m(-2), respectively, in males, and 53.4 ml per 100 g min(-1), 4.3 l min(-1) and 2.4 l min(-1) m(-2), respectively, in females. No effects of cardiac output or cardiac index on CBF or structural signs of brain ageing were observed. However, fractional brain flow defined as the ratio of total brain flow to cardiac output was inversely correlated with cardiac index (r(2) = 0.22, P = 0.008) and furthermore lower in males than in females (8.6% versus 12.5%, P = 0.003). Fractional brain flow was also inversely correlated with cerebral white matter lesion grade, although this effect was not significant when adjusted for age. Frequency analysis of heart rate variability showed a gender-related inverse association of increased low-to-high-frequency power ratio with CBF and fractional brain flow. The findings do not support a direct effect of cardiac function on CBF, but demonstrates gender-related differences in cardiac output distribution. We propose fractional brain flow as a novel index that may be a useful marker of adequate brain perfusion in the context of ageing as well as cardiovascular disease. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  14. [Cardiac failure in endocrine diseases].

    PubMed

    Hashizume, K

    1993-05-01

    Several endocrine diseases show the symptoms of cardiac failure. Among them, patients with acromegaly show a specific cardiomyopathy which results in a severe left-sided cardiac failure. Hypoparathyroidism also induces cardiac failure, which is resulted from hypocalcemia and low levels of serum parathyroid hormone. In the cases of hypothyroidism, the patients with myxedemal coma show a severe cardiac failure, which is characterized by disturbance of central nervous system, renal function, and cardiac function. In the patients with thyroid crisis (storm), the cardiac failure comes from the great reduction of cardiac output with dehydration. The reduction of circulation volume, observed in the patients with pheochromocytoma easily induces cardiac failure (shock) just after the removal of adrenal tumor. In patients with malignant carcinoid syndrome, right-sided ventricular failure which may be occurred through the actions of biogenic amines is observed.

  15. Cardiac Fibroblast: The Renaissance Cell

    PubMed Central

    Souders, Colby A.; Bowers, Stephanie L.K.; Baudino, Troy A.

    2012-01-01

    The permanent cellular constituents of the heart include cardiac fibroblasts, myocytes, endothelial cells and vascular smooth muscle cells. Previous studies have demonstrated that there are undulating changes in cardiac cell populations during embryonic development, through neonatal development and into the adult. Transient cell populations include lymphocytes, mast cells and macrophages, which can interact with these permanent cell types to affect cardiac function. It has also been observed that there are marked differences in the makeup of the cardiac cell populations depending on the species, which may be important when examining myocardial remodeling. Current dogma states that the fibroblast makes up the largest cell population of the heart; however, this appears to vary for different species, especially mice. Cardiac fibroblasts play a critical role in maintaining normal cardiac function, as well as in cardiac remodeling during pathological conditions such as myocardial infarct and hypertension. These cells have numerous functions, including synthesis and deposition of extracellular matrix, cell-cell communication with myocytes, cell-cell signaling with other fibroblasts, as well as with endothelial cells. These contacts affect the electrophysiological properties, secretion of growth factors and cytokines, as well as potentiating blood vessel formation. While a plethora of information is known about several of these processes, relatively little is understood about fibroblasts and their role in angiogenesis during development or cardiac remodeling. In this review we provide insight into the various properties of cardiac fibroblasts that helps illustrate their importance in maintaining proper cardiac function, as well as their critical role in the remodeling heart. PMID:19959782

  16. Tissue perfusion during normovolemic hemodilution investigated by a hydraulic model of the cardiovascular system.

    PubMed

    Mirhashemi, S; Messmer, K; Intaglietta, M

    1987-01-01

    Normovolemic hemodilution on a whole body basis is studied by means of a steady flow, hydraulic analogue simulation of the cardiovascular system, based on the Casson's model and current hemodynamic and rheological data. The vasculature is divided into serially connected compartments whose hydraulic resistance is characterized by the average diameter, length, number of vessels, and the corresponding rheological properties of blood formulated by Dintenfass (1971) and Lipowsky et al. (1980). This model computes the pressure distributions in all compartments, where the calculated venous pressure modulates the cardiac function according to the Starling mechanism for cardiac performance. The alterations of flow induced by the action of the heart are added to the effects due to changes in peripheral vascular resistance as a result of hematocrit variation. This model shows that when the response of heart to the changes of venous pressure is impaired, the maximum oxygen carrying capacity occurs at 40% hematocrit (H) where it is 1% higher than normal hematocrit (H = 44%). The normal cardiac response to the changes of venous pressure, causes the maximum oxygen carrying capacity to occur at 32% H where it is 12% greater than that at normal hematocrit. Mean arteriolar pressure and capillary pressure increase while venular pressure is slightly reduced during normovolemic hemodilution.

  17. Cardiac-locked bursts of muscle sympathetic nerve activity are absent in familial dysautonomia

    PubMed Central

    Macefield, Vaughan G; Norcliffe-Kaufmann, Lucy; Axelrod, Felicia B; Kaufmann, Horacio

    2013-01-01

    Familial dysautonomia (Riley–Day syndrome) is an hereditary sensory and autonomic neuropathy (HSAN type III), expressed at birth, that is associated with reduced pain and temperature sensibilities and absent baroreflexes, causing orthostatic hypotension as well as labile blood pressure that increases markedly during emotional excitement. Given the apparent absence of functional baroreceptor afferents, we tested the hypothesis that the normal cardiac-locked bursts of muscle sympathetic nerve activity (MSNA) are absent in patients with familial dysautonomia. Tungsten microelectrodes were inserted percutaneously into muscle or cutaneous fascicles of the common peroneal nerve in 12 patients with familial dysautonomia. Spontaneous bursts of MSNA were absent in all patients, but in five patients we found evidence of tonically firing sympathetic neurones, with no cardiac rhythmicity, that increased their spontaneous discharge during emotional arousal but not during a manoeuvre that unloads the baroreceptors. Conversely, skin sympathetic nerve activity (SSNA), recorded in four patients, appeared normal. We conclude that the loss of phasic bursts of MSNA and the loss of baroreflex modulation of muscle vasoconstrictor drive contributes to the poor control of blood pressure in familial dysautonomia, and that the increase in tonic firing of muscle vasoconstrictor neurones contributes to the increase in blood pressure during emotional excitement. PMID:23165765

  18. TRPM4 non-selective cation channels influence action potentials in rabbit Purkinje fibres.

    PubMed

    Hof, Thomas; Sallé, Laurent; Coulbault, Laurent; Richer, Romain; Alexandre, Joachim; Rouet, René; Manrique, Alain; Guinamard, Romain

    2016-01-15

    The transient receptor potential melastatin 4 (TRPM4) inhibitor 9-phenanthrol reduces action potential duration in rabbit Purkinje fibres but not in ventricle. TRPM4-like single channel activity is observed in isolated rabbit Purkinje cells but not in ventricular cells. The TRPM4-like current develops during the notch and early repolarization phases of the action potential in Purkinje cells. Transient receptor potential melastatin 4 (TRPM4) Ca(2+)-activated non-selective cation channel activity has been recorded in cardiomyocytes and sinus node cells from mammals. In addition, TRPM4 gene mutations are associated with human diseases of cardiac conduction, suggesting that TRPM4 plays a role in this aspect of cardiac function. Here we evaluate the TRPM4 contribution to cardiac electrophysiology of Purkinje fibres. Ventricular strips with Purkinje fibres were isolated from rabbit hearts. Intracellular microelectrodes recorded Purkinje fibre activity and the TRPM4 inhibitor 9-phenanthrol was applied to unmask potential TRPM4 contributions to the action potential. 9-Phenanthrol reduced action potential duration measured at the point of 50 and 90% repolarization with an EC50 of 32.8 and 36.1×10(-6) mol l(-1), respectively, but did not modulate ventricular action potentials. Inside-out patch-clamp recordings were used to monitor TRPM4 activity in isolated Purkinje cells. TRPM4-like single channel activity (conductance = 23.8 pS; equal permeability for Na(+) and K(+); sensitivity to voltage, Ca(2+) and 9-phenanthrol) was observed in 43% of patches from Purkinje cells but not from ventricular cells (0/16). Action potential clamp experiments performed in the whole-cell configuration revealed a transient inward 9-phenanthrol-sensitive current (peak density = -0.65 ± 0.15 pA pF(-1); n = 5) during the plateau phases of the Purkinje fibre action potential. These results show that TRPM4 influences action potential characteristics in rabbit Purkinje fibres and thus could modulate cardiac conduction and be involved in triggering arrhythmias. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  19. Spectrum and Prevalence of CALM1-, CALM2-, and CALM3-Encoded Calmodulin (CaM) Variants in Long QT Syndrome (LQTS) and Functional Characterization of a Novel LQTS-Associated CaM Missense Variant, E141G

    PubMed Central

    Calvert, Melissa L.; Tester, David J.; Kryshtal, Dmytro; Hwang, Hyun Seok; Johnson, Christopher N.; Chazin, Walter J.; Loporcaro, Christina G.; Shah, Maully; Papez, Andrew L.; Lau, Yung R.; Kanter, Ronald; Knollmann, Bjorn C.; Ackerman, Michael J.

    2016-01-01

    Background Calmodulin (CaM) is encoded by three genes, CALM1, CALM2, and CALM3, all of which harbor pathogenic variants linked to long QT syndrome (LQTS) with early and severe expressivity. These LQTS-causative variants reduce CaM affinity to Ca2+ and alter the properties of the cardiac L-type calcium channel (CaV1.2). CaM also modulates NaV1.5 and the ryanodine receptor, RyR2. All of these interactions may play a role in disease pathogenesis. Here, we determine the spectrum and prevalence of pathogenic CaM variants in a cohort of genetically elusive LQTS, and functionally characterize the novel variants. Methods and Results Thirty-nine genetically elusive LQTS cases underwent whole exome sequencing to identify CaM variants. Non-synonymous CaM variants were overrepresented significantly in this heretofore LQTS cohort (15.4%) compared to exome aggregation consortium (0.04%; p<0.0001). When the clinical sequelae of these 6 CaM-positive cases was compared to the 33 CaM-negative cases, CaM-positive cases had a more severe phenotype with an average age of onset of 8 months, an average QTc of 679 ms, and a high prevalence of cardiac arrest. Functional characterization of one novel variant, E141G-CaM, revealed an 11-fold reduction in Ca2+ binding affinity and a functionally-dominant loss of inactivation in CaV1.2, mild accentuation in NaV1.5 late current, but no effect on intracellular RyR2-mediated calcium release. Conclusions Overall, 15% of our genetically elusive LQTS cohort harbored non-synonymous variants in CaM. Genetic testing of CALM1-3 should be pursued for individuals with LQTS, especially those with early childhood cardiac arrest, extreme QT prolongation, and a negative family history. PMID:26969752

  20. Increasing Pyruvate Dehydrogenase Flux as a Treatment for Diabetic Cardiomyopathy: A Combined 13C Hyperpolarized Magnetic Resonance and Echocardiography Study.

    PubMed

    Le Page, Lydia M; Rider, Oliver J; Lewis, Andrew J; Ball, Vicky; Clarke, Kieran; Johansson, Edvin; Carr, Carolyn A; Heather, Lisa C; Tyler, Damian J

    2015-08-01

    Although diabetic cardiomyopathy is widely recognized, there are no specific treatments available. Altered myocardial substrate selection has emerged as a candidate mechanism behind the development of cardiac dysfunction in diabetes. As pyruvate dehydrogenase (PDH) activity appears central to the balance of substrate use, we aimed to investigate the relationship between PDH flux and myocardial function in a rodent model of type 2 diabetes and to explore whether or not increasing PDH flux, with dichloroacetate, would restore the balance of substrate use and improve cardiac function. All animals underwent in vivo hyperpolarized [1-(13)C]pyruvate magnetic resonance spectroscopy and echocardiography to assess cardiac PDH flux and function, respectively. Diabetic animals showed significantly higher blood glucose levels (10.8 ± 0.7 vs. 8.4 ± 0.5 mmol/L), lower PDH flux (0.005 ± 0.001 vs. 0.017 ± 0.002 s(-1)), and significantly impaired diastolic function (transmitral early diastolic peak velocity/early diastolic myocardial velocity ratio [E/E'] 12.2 ± 0.8 vs. 20 ± 2), which are in keeping with early diabetic cardiomyopathy. Twenty-eight days of treatment with dichloroacetate restored PDH flux to normal levels (0.018 ± 0.002 s(-1)), reversed diastolic dysfunction (E/E' 14 ± 1), and normalized blood glucose levels (7.5 ± 0.7 mmol/L). The treatment of diabetes with dichloroacetate therefore restored the balance of myocardial substrate selection, reversed diastolic dysfunction, and normalized blood glucose levels. This suggests that PDH modulation could be a novel therapy for the treatment and/or prevention of diabetic cardiomyopathy. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  1. Interoception across Modalities: On the Relationship between Cardiac Awareness and the Sensitivity for Gastric Functions

    PubMed Central

    Herbert, Beate M.; Muth, Eric R.; Pollatos, Olga; Herbert, Cornelia

    2012-01-01

    The individual sensitivity for ones internal bodily signals (“interoceptive awareness”) has been shown to be of relevance for a broad range of cognitive and affective functions. Interoceptive awareness has been primarily assessed via measuring the sensitivity for ones cardiac signals (“cardiac awareness”) which can be non-invasively measured by heartbeat perception tasks. It is an open question whether cardiac awareness is related to the sensitivity for other bodily, visceral functions. This study investigated the relationship between cardiac awareness and the sensitivity for gastric functions in healthy female persons by using non-invasive methods. Heartbeat perception as a measure for cardiac awareness was assessed by a heartbeat tracking task and gastric sensitivity was assessed by a water load test. Gastric myoelectrical activity was measured by electrogastrography (EGG) and subjective feelings of fullness, valence, arousal and nausea were assessed. The results show that cardiac awareness was inversely correlated with ingested water volume and with normogastric activity after water load. However, persons with good and poor cardiac awareness did not differ in their subjective ratings of fullness, nausea and affective feelings after drinking. This suggests that good heartbeat perceivers ingested less water because they subjectively felt more intense signals of fullness during this lower amount of water intake compared to poor heartbeat perceivers who ingested more water until feeling the same signs of fullness. These findings demonstrate that cardiac awareness is related to greater sensitivity for gastric functions, suggesting that there is a general sensitivity for interoceptive processes across the gastric and cardiac modality. PMID:22606278

  2. Simultaneous exposure to concentrated ambient particles and acrolein causes cardiac effects mediated by parasympathetic modulation in mice

    EPA Science Inventory

    This study shows that exposure to CAPs and acrolein causes an increase in HRV that is mediated by the parasympathetic nervous system. Numerous studies show that short-term air pollution exposure modulates heart rate variability (HRV), which is an indicator of autonomic influence...

  3. Effect of Mindfulness Meditation on Perceived Stress Scores and Autonomic Function Tests of Pregnant Indian Women.

    PubMed

    Muthukrishnan, Shobitha; Jain, Reena; Kohli, Sangeeta; Batra, Swaraj

    2016-04-01

    Various pregnancy complications like hypertension, preeclampsia have been strongly correlated with maternal stress. One of the connecting links between pregnancy complications and maternal stress is mind-body intervention which can be part of Complementary and Alternative Medicine (CAM). Biologic measures of stress during pregnancy may get reduced by such interventions. To evaluate the effect of Mindfulness meditation on perceived stress scores and autonomic function tests of pregnant Indian women. Pregnant Indian women of 12 weeks gestation were randomised to two treatment groups: Test group with Mindfulness meditation and control group with their usual obstetric care. The effect of Mindfulness meditation on perceived stress scores and cardiac sympathetic functions and parasympathetic functions (Heart rate variation with respiration, lying to standing ratio, standing to lying ratio and respiratory rate) were evaluated on pregnant Indian women. There was a significant decrease in perceived stress scores, a significant decrease of blood pressure response to cold pressor test and a significant increase in heart rate variability in the test group (p< 0.05, significant) which indicates that mindfulness meditation is a powerful modulator of the sympathetic nervous system and can thereby reduce the day-to-day perceived stress in pregnant women. The results of this study suggest that mindfulness meditation improves parasympathetic functions in pregnant women and is a powerful modulator of the sympathetic nervous system during pregnancy.

  4. Glutaredoxin-2 controls cardiac mitochondrial dynamics and energetics in mice, and protects against human cardiac pathologies.

    PubMed

    Kanaan, Georges N; Ichim, Bianca; Gharibeh, Lara; Maharsy, Wael; Patten, David A; Xuan, Jian Ying; Reunov, Arkadiy; Marshall, Philip; Veinot, John; Menzies, Keir; Nemer, Mona; Harper, Mary-Ellen

    2018-04-01

    Glutaredoxin 2 (GRX2), a mitochondrial glutathione-dependent oxidoreductase, is central to glutathione homeostasis and mitochondrial redox, which is crucial in highly metabolic tissues like the heart. Previous research showed that absence of Grx2, leads to impaired mitochondrial complex I function, hypertension and cardiac hypertrophy in mice but the impact on mitochondrial structure and function in intact cardiomyocytes and in humans has not been explored. We hypothesized that Grx2 controls cardiac mitochondrial dynamics and function in cellular and mouse models, and that low expression is associated with human cardiac dysfunction. Here we show that Grx2 absence impairs mitochondrial fusion, ultrastructure and energetics in primary cardiomyocytes and cardiac tissue. Moreover, provision of the glutathione precursor, N-acetylcysteine (NAC) to Grx2-/- mice did not restore glutathione redox or prevent impairments. Using genetic and histopathological data from the human Genotype-Tissue Expression consortium we demonstrate that low GRX2 is associated with fibrosis, hypertrophy, and infarct in the left ventricle. Altogether, GRX2 is important in the control of cardiac mitochondrial structure and function, and protects against human cardiac pathologies. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Sulforaphane improves oxidative status without attenuating the inflammatory response or cardiac impairment induced by ischemia-reperfusion in rats.

    PubMed

    Bonetto, Jéssica Hellen Poletto; Fernandes, Rafael Oliveira; Seolin, Bruna Gazzi de Lima; Müller, Dalvana Daneliza; Teixeira, Rayane Brinck; Araujo, Alex Sander; Vassallo, Dalton; Schenkel, Paulo Cavalheiro; Belló-Klein, Adriane

    2016-05-01

    Sulforaphane, a natural isothiocyanate, demonstrates cardioprotection associated with its capacity to stimulate endogenous antioxidants and to inhibit inflammation. The aim of this study was to investigate whether sulforaphane is capable of attenuating oxidative stress and inflammatory responses through the TLR4/MyD88/NFκB pathway, and thereby could modulate post-ischemic ventricular function in isolated rat hearts submitted to ischemia and reperfusion. Male Wistar rats received sulforaphane (10 mg·kg(-1)·day(-1)) or vehicle i.p. for 3 days. Global ischemia was performed using isolated hearts, 24 h after the last injection, by interruption of the perfusion flow. The protocol included a 20 min pre-ischemic period followed by 20 min of ischemia and a 20 min reperfusion. Although no changes in mechanical function were observed, sulforaphane induced a significant increase in superoxide dismutase and heme oxygenase-1 expression (both 66%) and significantly reduced reactive oxygen species levels (7%). No differences were observed for catalase and glutathione peroxidase expression or their activities, nor for thioredoxin reductase, glutaredoxin reductase and glutathione-S-transferase. No differences were found in lipid peroxidation or TLR4, MyD88, and NF-κB expression. In conclusion, although sulforaphane was able to stimulate endogenous antioxidants modestly, this result did not impact inflammatory signaling or cardiac function of hearts submitted to ischemia and reperfusion.

  6. Preface: cardiac control pathways: signaling and transport phenomena.

    PubMed

    Sideman, Samuel

    2008-03-01

    Signaling is part of a complex system of communication that governs basic cellular functions and coordinates cellular activity. Transfer of ions and signaling molecules and their interactions with appropriate receptors, transmembrane transport, and the consequent intracellular interactions and functional cellular response represent a complex system of interwoven phenomena of transport, signaling, conformational changes, chemical activation, and/or genetic expression. The well-being of the cell thus depends on a harmonic orchestration of all these events and the existence of control mechanisms that assure the normal behavior of the various parameters involved and their orderly expression. The ability of cells to sustain life by perceiving and responding correctly to their microenvironment is the basis for development, tissue repair, and immunity, as well as normal tissue homeostasis. Natural deviations, or human-induced interference in the signaling pathways and/or inter- and intracellular transport and information transfer, are responsible for the generation, modulation, and control of diseases. The present overview aims to highlight some major topics of the highly complex cellular information transfer processes and their control mechanisms. Our goal is to contribute to the understanding of the normal and pathophysiological phenomena associated with cardiac functions so that more efficient therapeutic modalities can be developed. Our objective in this volume is to identify and enhance the study of some basic passive and active physical and chemical transport phenomena, physiological signaling pathways, and their biological consequences.

  7. Nonlinearities of heart rate variability in animal models of impaired cardiac control: contribution of different time scales.

    PubMed

    Silva, Luiz Eduardo Virgilio; Lataro, Renata Maria; Castania, Jaci Airton; Silva, Carlos Alberto Aguiar; Salgado, Helio Cesar; Fazan, Rubens; Porta, Alberto

    2017-08-01

    Heart rate variability (HRV) has been extensively explored by traditional linear approaches (e.g., spectral analysis); however, several studies have pointed to the presence of nonlinear features in HRV, suggesting that linear tools might fail to account for the complexity of the HRV dynamics. Even though the prevalent notion is that HRV is nonlinear, the actual presence of nonlinear features is rarely verified. In this study, the presence of nonlinear dynamics was checked as a function of time scales in three experimental models of rats with different impairment of the cardiac control: namely, rats with heart failure (HF), spontaneously hypertensive rats (SHRs), and sinoaortic denervated (SAD) rats. Multiscale entropy (MSE) and refined MSE (RMSE) were chosen as the discriminating statistic for the surrogate test utilized to detect nonlinearity. Nonlinear dynamics is less present in HF animals at both short and long time scales compared with controls. A similar finding was found in SHR only at short time scales. SAD increased the presence of nonlinear dynamics exclusively at short time scales. Those findings suggest that a working baroreflex contributes to linearize HRV and to reduce the likelihood to observe nonlinear components of the cardiac control at short time scales. In addition, an increased sympathetic modulation seems to be a source of nonlinear dynamics at long time scales. Testing nonlinear dynamics as a function of the time scales can provide a characterization of the cardiac control complementary to more traditional markers in time, frequency, and information domains. NEW & NOTEWORTHY Although heart rate variability (HRV) dynamics is widely assumed to be nonlinear, nonlinearity tests are rarely used to check this hypothesis. By adopting multiscale entropy (MSE) and refined MSE (RMSE) as the discriminating statistic for the nonlinearity test, we show that nonlinear dynamics varies with time scale and the type of cardiac dysfunction. Moreover, as complexity metrics and nonlinearities provide complementary information, we strongly recommend using the test for nonlinearity as an additional index to characterize HRV. Copyright © 2017 the American Physiological Society.

  8. Opening of the inward rectifier potassium channel alleviates maladaptive tissue repair following myocardial infarction.

    PubMed

    Liu, Chengfang; Liu, Enli; Luo, Tiane; Zhang, Weifang; He, Rongli

    2016-08-01

    Activation of the inward rectifier potassium current (IK1) channel has been reported to be associated with suppression of ventricular arrhythmias. In this study, we tested the hypothesis that opening of the IK1 channel with zacopride (ZAC) was involved in the modulation of tissue repair after myocardial infarction. Sprague-Dawley rats were subject to coronary artery ligation and ZAC was administered intraperitoneally (15 µg/kg/day) for 28 days. Compared with the ischemia group, treatment with ZAC significantly reduced the ratio of heart/body weight and the cross-sectional area of cardiomyocytes, suggesting less cardiac hypertrophy. ZAC reduced the accumulation of collagen types I and III, accompanied with decrease of collagen area, which were associated with a reduction of collagen deposition in the fibrotic myocardium. Echocardiography showed improved cardiac function, evidenced by the reduced left ventricular end-diastolic dimension and left ventricular end-systolic dimension, and the increased ejection fraction and fractional shortening in ZAC-treated animals (all P < 0.05 vs. ischemia group). In coincidence with these changes, ZAC up-regulated the protein level of the IK1 channel and down-regulated the phosphorylation of mammalian target of rapamycin (mTOR) and 70-kDa ribosomal protein S6 (p70S6) kinase. Administration of chloroquine alone, an IK1 channel antagonist, had no effect on all the parameters measured, but significantly blocked the beneficial effects of ZAC on cardiac repair. In conclusion, opening of the IK1 channel with ZAC inhibits maladaptive tissue repair and improves cardiac function, potentially mediated by the inhibition of ischemia-activated mTOR-p70S6 signaling pathway via the IK1 channel. So the development of pharmacological agents specifically targeting the activation of the IK1 channel may protect the heart against myocardial ischemia-induced cardiac dysfunction. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Cholinergic Signaling Exerts Protective Effects in Models of Sympathetic Hyperactivity-Induced Cardiac Dysfunction

    PubMed Central

    Gavioli, Mariana; Lara, Aline; Almeida, Pedro W. M.; Lima, Augusto Martins; Damasceno, Denis D.; Rocha-Resende, Cibele; Ladeira, Marina; Resende, Rodrigo R.; Martinelli, Patricia M.; Melo, Marcos Barrouin; Brum, Patricia C.; Fontes, Marco Antonio Peliky; Souza Santos, Robson A.; Prado, Marco A. M.; Guatimosim, Silvia

    2014-01-01

    Cholinergic control of the heart is exerted by two distinct branches; the autonomic component represented by the parasympathetic nervous system, and the recently described non-neuronal cardiomyocyte cholinergic machinery. Previous evidence has shown that reduced cholinergic function leads to deleterious effects on the myocardium. Yet, whether conditions of increased cholinergic signaling can offset the pathological remodeling induced by sympathetic hyperactivity, and its consequences for these two cholinergic axes are unknown. Here, we investigated two models of sympathetic hyperactivity: i) the chronic beta-adrenergic receptor stimulation evoked by isoproterenol (ISO), and ii) the α2A/α2C-adrenergic receptor knockout (KO) mice that lack pre-synaptic adrenergic receptors. In both models, cholinergic signaling was increased by administration of the cholinesterase inhibitor, pyridostigmine. First, we observed that isoproterenol produces an autonomic imbalance characterized by increased sympathetic and reduced parasympathetic tone. Under this condition transcripts for cholinergic proteins were upregulated in ventricular myocytes, indicating that non-neuronal cholinergic machinery is activated during adrenergic overdrive. Pyridostigmine treatment prevented the effects of ISO on autonomic function and on the ventricular cholinergic machinery, and inhibited cardiac remodeling. α2A/α2C-KO mice presented reduced ventricular contraction when compared to wild-type mice, and this dysfunction was also reversed by cholinesterase inhibition. Thus, the cardiac parasympathetic system and non-neuronal cardiomyocyte cholinergic machinery are modulated in opposite directions under conditions of increased sympathetic drive or ACh availability. Moreover, our data support the idea that pyridostigmine by restoring ACh availability is beneficial in heart disease. PMID:24992197

  10. Impact of exercise training associated to pyridostigmine treatment on autonomic function and inflammatory profile after myocardial infarction in rats.

    PubMed

    Feriani, Daniele J; Souza, Gabriel I H; Carrozzi, Nicolle M; Mostarda, Cristiano; Dourado, Paulo M M; Consolim-Colombo, Fernanda M; De Angelis, Kátia; Moreno, Heitor; Irigoyen, Maria Cláudia; Rodrigues, Bruno

    2017-01-15

    The effects of exercise training (ET) associated with pyridostigmine bromide (PYR) treatment on cardiac and autonomic function, as well as on inflammatory profile after myocardial infarction (MI), are unclear. Male Wistar rats were randomly assigned to: control (C); sedentary+infarcted (I); sedentary+infarcted treated with PYR (IP); infarcted submitted to aerobic exercise training (IT); and infarcted submitted to treatment with PYR and aerobic exercise training (ITP). After 12weeks of ET (50-70% maximal running speed; 1h a day, 5days a week) and/or PYR treatment (0.14mg/mL on drink water), hemodynamic, autonomic and cytokines expression were performed. We observed that both aerobic ET, associated or not with PYR treatment in MI animals, were able to: reduced MI area, improved systolic and diastolic function, baroreflex sensitivity, cardiovascular autonomic modulation, and tonic activity of the sympathetic and parasympathetic nervous system. Also, they led to a reduction of inflammatory profile measured at plasma, left ventricle and soleus skeletal muscle. However, additional effects were observed when ET and PYR were associated, such as an increase in vagal tonus and modulation, reduction of MI area, interferon-γ and tumor necrosis factor-α (TNF-α), as well as an increase of interleukin-10/TNF-α ratio on left ventricle. These data suggest that associating ET and PYR promotes some additional benefits on cardiovascular autonomic modulation and inflammatory profile in infarcted rats. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Calcitriol attenuates cardiac remodeling and dysfunction in a murine model of polycystic ovary syndrome.

    PubMed

    Gao, Ling; Cao, Jia-Tian; Liang, Yan; Zhao, Yi-Chao; Lin, Xian-Hua; Li, Xiao-Cui; Tan, Ya-Jing; Li, Jing-Yi; Zhou, Cheng-Liang; Xu, Hai-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-05-01

    Polycystic ovary syndrome (PCOS) is a complex reproductive and metabolic disorder affecting 10 % of reproductive-aged women, and is well associated with an increased prevalence of cardiovascular risk factors. However, there are few data concerning the direct association of PCOS with cardiac pathologies. The present study aims to investigate the changes in cardiac structure, function, and cardiomyocyte survival in a PCOS model, and explore the possible effect of calcitriol administration on these changes. PCOS was induced in C57BL/6J female mice by chronic dihydrotestosterone administration, as evidenced by irregular estrous cycles, obesity and dyslipidemia. PCOS mice progressively developed cardiac abnormalities including cardiac hypertrophy, interstitial fibrosis, myocardial apoptosis, and cardiac dysfunction. Conversely, concomitant administration of calcitriol significantly attenuated cardiac remodeling and cardiomyocyte apoptosis, and improved cardiac function. Molecular analysis revealed that the beneficial effect of calcitriol was associated with normalized autophagy function by increasing phosphorylation levels of AMP-activated protein kinase and inhibiting phosphorylation levels of mammalian target of rapamycin complex. Our findings provide the first evidence for the presence of cardiac remodeling in a PCOS model, and vitamin D supplementation may be a potential therapeutic strategy for the prevention and treatment of PCOS-related cardiac remodeling.

  12. The effects of obesity and type 2 diabetes mellitus on cardiac structure and function in adolescents and young adults.

    PubMed

    Shah, A S; Khoury, P R; Dolan, L M; Ippisch, H M; Urbina, E M; Daniels, S R; Kimball, T R

    2011-04-01

    We sought to evaluate the effects of obesity and obesity-related type 2 diabetes mellitus on cardiac geometry (remodelling) and systolic and diastolic function in adolescents and young adults. Cardiac structure and function were compared by echocardiography in participants who were lean, obese or obese with type 2 diabetes (obese diabetic), in a cross sectional study. Group differences were assessed using ANOVA. Independent determinants of cardiac outcome measures were evaluated with general linear models. Adolescents with obesity and obesity-related type 2 diabetes were found to have abnormal cardiac geometry compared with lean controls (16% and 20% vs <1%, p < 0.05). These two groups also had increased systolic function. Diastolic function decreased from the lean to obese to obese diabetic groups with the lowest diastolic function observed in the obese diabetic group (p < 0.05). Regression analysis showed that group, BMI z score (BMIz), group × BMIz interaction and systolic BP z score (BPz) were significant determinants of cardiac structure, while group, BMIz, systolic BPz, age and fasting glucose were significant determinants of the diastolic function (all p < 0.05). Adolescents with obesity and obesity-related type 2 diabetes demonstrate changes in cardiac geometry consistent with cardiac remodelling. These two groups also demonstrate decreased diastolic function compared with lean controls, with the greatest decrease observed in those with type 2 diabetes. Adults with diastolic dysfunction are known to be at increased risk of progressing to heart failure. Therefore, our findings suggest that adolescents with obesity-related type 2 diabetes may be at increased risk of progressing to early heart failure compared with their obese and lean counterparts.

  13. Transgenic Analysis of the Role of FKBP12.6 in Cardiac Function and Intracellular Calcium Release

    PubMed Central

    Liu, Ying; Chen, Hanying; Ji, Guangju; Li, Baiyan; Mohler, Peter J.; Zhu, Zhiming; Yong, Weidong; Chen, Zhuang; Xu, Xuehong

    2011-01-01

    Abstract FK506 binding protein12.6 (FKBP12.6) binds to the Ca2+ release channel ryanodine receptor (RyR2) in cardiomyocytes and stabilizes RyR2 to prevent premature sarcoplasmic reticulum Ca2+ release. Previously, two different mouse strains deficient in FKBP12.6 were reported to have different abnormal cardiac phenotypes. The first mutant strain displayed sex-dependent cardiac hypertrophy, while the second displayed exercise-induced cardiac arrhythmia and sudden death. In this study, we tested whether FKBP12.6-deficient mice that display hypertrophic hearts can develop exercise-induced cardiac sudden death and whether the hypertrophic heart is a direct consequence of abnormal calcium handling in mutant cardiomyocytes. Our data show that FKBP12.6-deficient mice with cardiac hypertrophy do not display exercise-induced arrhythmia and/or sudden cardiac death. To investigate the role of FKBP12.6 overexpression for cardiac function and cardiomyocyte calcium release, we generated a transgenic mouse line with cardiac specific overexpression of FKBP12.6 using α-myosin heavy chain (αMHC) promoter. MHC-FKBP12.6 mice displayed normal cardiac development and function. We demonstrated that MHC-FKBP12.6 mice are able to rescue abnormal cardiac hypertrophy and abnormal calcium release in FKBP12.6-deficient mice. PMID:22087651

  14. Impact of Chronic Alcohol Ingestion on Cardiac Muscle Protein Expression

    PubMed Central

    Fogle, Rachel L.; Lynch, Christopher J.; Palopoli, Mary; Deiter, Gina; Stanley, Bruce A.; Vary, Thomas C.

    2014-01-01

    Background Chronic alcohol abuse contributes not only to an increased risk of health-related complications, but also to a premature mortality in adults. Myocardial dysfunction, including the development of a syndrome referred to as alcoholic cardiomyopathy, appears to be a major contributing factor. One mechanism to account for the pathogenesis of alcoholic cardiomyopathy involves alterations in protein expression secondary to an inhibition of protein synthesis. However, the full extent to which myocardial proteins are affected by chronic alcohol consumption remains unresolved. Methods The purpose of this study was to examine the effect of chronic alcohol consumption on the expression of cardiac proteins. Male rats were maintained for 16 weeks on a 40% ethanol-containing diet in which alcohol was provided both in drinking water and agar blocks. Control animals were pair-fed to consume the same caloric intake. Heart homogenates from control- and ethanol-fed rats were labeled with the cleavable isotope coded affinity tags (ICAT™). Following the reaction with the ICAT™ reagent, we applied one-dimensional gel electrophoresis with in-gel trypsin digestion of proteins and subsequent MALDI-TOF-TOF mass spectrometric techniques for identification of peptides. Differences in the expression of cardiac proteins from control- and ethanol-fed rats were determined by mass spectrometry approaches. Results Initial proteomic analysis identified and quantified hundreds of cardiac proteins. Major decreases in the expression of specific myocardial proteins were observed. Proteins were grouped depending on their contribution to multiple activities of cardiac function and metabolism, including mitochondrial-, glycolytic-, myofibrillar-, membrane-associated, and plasma proteins. Another group contained identified proteins that could not be properly categorized under the aforementioned classification system. Conclusions Based on the changes in proteins, we speculate modulation of cardiac muscle protein expression represents a fundamental alteration induced by chronic alcohol consumption, consistent with changes in myocardial wall thickness measured under the same conditions. PMID:20477769

  15. Effects of testosterone and nandrolone on cardiac function: a randomized, placebo-controlled study.

    PubMed

    Chung, T; Kelleher, S; Liu, P Y; Conway, A J; Kritharides, L; Handelsman, D J

    2007-02-01

    Androgens have striking effects on skeletal muscle, but the effects on human cardiac muscle function are not well defined, neither has the role of metabolic activation (aromatization, 5alpha reduction) of testosterone on cardiac muscle been directly studied. To assess the effects of testosterone and nandrolone, a non-amplifiable and non-aromatizable pure androgen, on cardiac muscle function in healthy young men. Double-blind, randomized, placebo-controlled, three-arm parallel group clinical trial. Ambulatory care research centre. Healthy young men randomized into three groups of 10 men. Weekly intramuscular injections of testosterone (200 mg mixed esters), nandrolone (200 mg nandrolone decanoate) or matching (2 ml arachis oil vehicle) placebo for 4 weeks. Comprehensive measures of cardiac muscle function involving transthoracic cardiac echocardiography measuring myocardial tissue velocity, peak systolic strain and strain rates, and bioimpedance measurement of cardiac output and systematic vascular resistance. Left ventricular (LV) function (LV ejection fraction, LV modified TEI index), right ventricular (RV) function (ejection area, tricuspid annular systolic planar motion, RV modified TEI index) as well as cardiac afterload (mean arterial pressure, systemic vascular resistance) and overall cardiac contractility (stroke volume, cardiac output) were within age- and gender-specific reference ranges and were not significantly (P < 0.05) altered by either androgen or placebo over 4 weeks of treatment. Minor changes remaining within normal range were observed solely within the testosterone group for: increased LV end-systolic diameter (30 +/- 7 vs. 33 +/- 5 mm, P = 0.04) and RV end-systolic area (12.8 +/- 1.3 vs. 14.6 +/- 3.3 cm(2), P = 0.04), reduced LV diastolic septal velocity (Em, 9.5 +/- 2.6 vs. 8.7 +/- 2.0 cm/s, P = 0.006), increased LV filling pressure (E/Em ratio, 7.1 +/- 1.6 vs. 8.3 +/- 1.8, P = 0.02) and shortened PR interval on the electrocardiogram (167 +/- 13 vs. 154 +/- 12, P = 0.03). Four weeks of treatment with testosterone or nandrolone had no beneficial or adverse effects compared with placebo on cardiac function in healthy young men.

  16. [Effect of formula of removing both phlegm and blood stasis in improving cardiac function of Chinese mini-swine with coronary heart disease of phlegm-stasis cementation syndrome].

    PubMed

    Li, Lei; Lin, Cheng-Ren; Ren, Jian-Xun; Miao, Lan; Yao, Ming-Jiang; Li, Dan; Shi, Yue; Ma, Yan-Lei; Fu, Jian-Hua; Liu, Jian-Xun

    2014-02-01

    To evaluate that the effect of formula of removing both phlegm and blood stasis in improving cardiac function of Chinese mini-swine with coronary heart disease of phlegm-stasis cementation syndrome. Totally 36 Chinese mini-swine were randomly divided to six groups: the normal control group, the model group, the Danlou tablet group, and Tanyu Tonzhi Fang(TYTZ) groups with doses of 2. 0, 1. 0 and 0. 5 g kg-1, with six in each group. Except for the normal control group, all of other groups were fed with high-fat diet for 2 weeks. Interventional balloons are adopted to injure their left anterior descending artery endothelium. After the operation, they were fed with high-fat diet for 8 weeks to prepare the coronary heart disease model of phlegm-stasis cementation syndrome. After the operation, they were administered with drugs for 8 weeks. The changes in the myocardial ischemia were observed. The changes in the cardiac function and structure were detected by cardiac ultrasound and noninvasive hemodynamic method. Compared with the normal control group, the model group showed significant increase in myocardial ischemia and SVR and obvious decrease in CO, SV and LCW in noninvasive hemodynamic parameters (P <0.05 or P <0.01). The ultrasonic cardiogram indicated notable decrease in IVSd, LVPWs, EF and FS, and remarkable increase in LVIDs (P<0. 05 orP<0.01). Compared with the model group, TYTZ could reduce the myocardial ischemia, strengthen cardiac function, and improve the abnormal cardiac structure and function induced by ischemia (P <0. 05 or P <0. 01). TYTZ shows a significant effect in improving cardiac function of Chinese mini-swine with coronary heart disease of phlegm-stasis cementation syndrome. The clinical cardiac function detection method could be adopted to correctly evaluate the changes in the post-myocardial ischemia cardiac function, and narrow the gap between clinical application and basic experimental studies.

  17. Cardiac Expression of Microsomal Triglyceride Transfer Protein Is Increased in Obesity and Serves to Attenuate Cardiac Triglyceride Accumulation

    PubMed Central

    Bartels, Emil D.; Nielsen, Jan M.; Hellgren, Lars I.; Ploug, Thorkil; Nielsen, Lars B.

    2009-01-01

    Obesity causes lipid accumulation in the heart and may lead to lipotoxic heart disease. Traditionally, the size of the cardiac triglyceride pool is thought to reflect the balance between uptake and β-oxidation of fatty acids. However, triglycerides can also be exported from cardiomyocytes via secretion of apolipoproteinB-containing (apoB) lipoproteins. Lipoprotein formation depends on expression of microsomal triglyceride transfer protein (MTP); the mouse expresses two isoforms of MTP, A and B. Since many aspects of the link between obesity-induced cardiac disease and cardiac lipid metabolism remain unknown, we investigated how cardiac lipoprotein synthesis affects cardiac expression of triglyceride metabolism-controlling genes, insulin sensitivity, and function in obese mice. Heart-specific ablation of MTP-A in mice using Cre-loxP technology impaired upregulation of MTP expression in response to increased fatty acid availability during fasting and fat feeding. This resulted in cardiac triglyceride accumulation but unaffected cardiac insulin-stimulated glucose uptake. Long-term fat-feeding of male C57Bl/6 mice increased cardiac triglycerides, induced cardiac expression of triglyceride metabolism-controlling genes and attenuated heart function. Abolishing cardiac triglyceride accumulation in fat-fed mice by overexpression of an apoB transgene in the heart prevented the induction of triglyceride metabolism-controlling genes and improved heart function. The results suggest that in obesity, the physiological increase of cardiac MTP expression serves to attenuate cardiac triglyceride accumulation albeit without major effects on cardiac insulin sensitivity. Nevertheless, the data suggest that genetically increased lipoprotein secretion prevents development of obesity-induced lipotoxic heart disease. PMID:19390571

  18. Pharmacological modulations of cardiac ultra-rapid and slowly activating delayed rectifier currents: potential antiarrhythmic approaches.

    PubMed

    Islam, Mohammed A

    2010-01-01

    Despite the emerging new insights into our understandings of the cellular mechanisms underlying cardiac arrhythmia, medical therapy for this disease remains unsatisfactory. Atrial fibrillation (AF), the most prevalent arrhythmia, is responsible for significant morbidity and mortality. On the other hand, ventricular fibrillation results in sudden cardiac deaths in many instances. Prolongation of cardiac action potential (AP) is a proven principle of antiarrhythmic therapy. Class III antiarrhythmic agents prolong AP and QT interval by blocking rapidly activating delayed rectifier current (I(Kr)). However, I(Kr) blocking drugs carry the risk of life-threatening proarrhythmia. Recently, modulation of atrial-selective ultra-rapid delayed rectifier current (I(Kur)), has emerged as a novel therapeutic approach to treat AF. A number of I(Kur) blockers are being evaluated for the treatment of AF. The inhibition of slowly activating delayed rectifier current (I(Ks)) has also been proposed as an effective and safer antiarrhythmic approach because of its distinguishing characteristics that differ in remarkable ways from other selective class III agents. Selective I(Ks) block may prolong AP duration (APD) at rapid rates without leading to proarrhythmia. This article reviews the pathophysiological roles of I(Kur) and I(Ks) in cardiac repolarization and the implications of newly developed I(Kur) and I(Ks) blocking agents as promising antiarrhythmic approaches. Several recent patents pertinent to antiarrhythmic drug development have been discussed. Further research will be required to evaluate the efficacy and safety of these agents in the clinical setting.

  19. The effect of low-frequency oscillations on cardio-respiratory synchronization. Observations during rest and exercise

    NASA Astrophysics Data System (ADS)

    Kenwright, D. A.; Bahraminasab, A.; Stefanovska, A.; McClintock, P. V. E.

    2008-10-01

    We show that the transitions which occur between close orders of synchronization in the cardiorespiratory system are mainly due to modulation of the cardiac and respiratory processes by low-frequency components. The experimental evidence is derived from recordings on healthy subjects at rest and during exercise. Exercise acts as a perturbation of the system that alters the mean cardiac and respiratory frequencies and changes the amount of their modulation by low-frequency oscillations. The conclusion is supported by numerical evidence based on a model of phase-coupled oscillators, with white noise and lowfrequency noise. Both the experimental and numerical approaches confirm that low-frequency oscillations play a significant role in the transitional behavior between close orders of synchronization.

  20. Structural and functional screening in human induced-pluripotent stem cell-derived cardiomyocytes accurately identifies cardiotoxicity of multiple drug types

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doherty, Kimberly R., E-mail: kimberly.doherty@quintiles.com; Talbert, Dominique R.; Trusk, Patricia B.

    Safety pharmacology studies that evaluate new drug entities for potential cardiac liability remain a critical component of drug development. Current studies have shown that in vitro tests utilizing human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM) may be beneficial for preclinical risk evaluation. We recently demonstrated that an in vitro multi-parameter test panel assessing overall cardiac health and function could accurately reflect the associated clinical cardiotoxicity of 4 FDA-approved targeted oncology agents using hiPS-CM. The present studies expand upon this initial observation to assess whether this in vitro screen could detect cardiotoxicity across multiple drug classes with known clinical cardiac risks.more » Thus, 24 drugs were examined for their effect on both structural (viability, reactive oxygen species generation, lipid formation, troponin secretion) and functional (beating activity) endpoints in hiPS-CM. Using this screen, the cardiac-safe drugs showed no effects on any of the tests in our panel. However, 16 of 18 compounds with known clinical cardiac risk showed drug-induced changes in hiPS-CM by at least one method. Moreover, when taking into account the Cmax values, these 16 compounds could be further classified depending on whether the effects were structural, functional, or both. Overall, the most sensitive test assessed cardiac beating using the xCELLigence platform (88.9%) while the structural endpoints provided additional insight into the mechanism of cardiotoxicity for several drugs. These studies show that a multi-parameter approach examining both cardiac cell health and function in hiPS-CM provides a comprehensive and robust assessment that can aid in the determination of potential cardiac liability. - Highlights: • 24 drugs were tested for cardiac liability using an in vitro multi-parameter screen. • Changes in beating activity were the most sensitive in predicting cardiac risk. • Structural effects add in-depth insight towards mechanism of cardiac toxicity. • Testing functional and structural endpoints enhances early cardiac risk assessment.« less

  1. Assessment of TRPM7 functions by drug-like small molecules.

    PubMed

    Chubanov, Vladimir; Ferioli, Silvia; Gudermann, Thomas

    2017-11-01

    Transient receptor potential cation channel subfamily M member 7 (TRPM7) is a plasma membrane ion channel linked to a cytosolic protein kinase domain. Genetic inactivation of this bi-functional protein revealed its crucial role in Ca 2+ signalling, Mg 2+ metabolism, immune responses, cell motility, proliferation and differentiation. Malfunctions of TRPM7 are associated with anoxic neuronal death, cardiac fibrosis, tumour progression and macrothrombocytopenia. Recently, several groups have identified small organic compounds acting as inhibitors or activators of the TRPM7 channel. In follow-up studies, the identified TRPM7 modulators were successfully used to uncover new cellular functions of TRPM7 in situ including a crucial role of TRPM7 in Ca 2+ signaling and Ca 2+ dependent cellular processes. Hence, TRPM7 has been defined as a promising drug target. Here, we summarize the progress in this quickly developing field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A systematic review of neuroprotective strategies after cardiac arrest: from bench to bedside (Part I – Protection via specific pathways)

    PubMed Central

    2014-01-01

    Neurocognitive deficits are a major source of morbidity in survivors of cardiac arrest. Treatment options that could be implemented either during cardiopulmonary resuscitation or after return of spontaneous circulation to improve these neurological deficits are limited. We conducted a literature review of treatment protocols designed to evaluate neurologic outcome and survival following cardiac arrest with associated global cerebral ischemia. The search was limited to investigational therapies that were utilized to treat global cerebral ischemia associated with cardiac arrest. In this review we discuss potential mechanisms of neurologic protection following cardiac arrest including actions of several medical gases such as xenon, argon, and nitric oxide. The 3 included mechanisms are: 1. Modulation of neuronal cell death; 2. Alteration of oxygen free radicals; and 3. Improving cerebral hemodynamics. Only a few approaches have been evaluated in limited fashion in cardiac arrest patients and results show inconclusive neuroprotective effects. Future research focusing on combined neuroprotective strategies that target multiple pathways are compelling in the setting of global brain ischemia resulting from cardiac arrest. PMID:24808942

  3. The relationship between changes in functional cardiac parameters following anthracycline therapy and carbonyl reductase 3 and glutathione S transferase Pi polymorphisms.

    PubMed

    Volkan-Salanci, Bilge; Aksoy, Hakan; Kiratli, Pınar Özgen; Tülümen, Erol; Güler, Nilüfer; Öksüzoglu, Berna; Tokgözoğlu, Lale; Erbaş, Belkıs; Alikaşifoğlu, Mehmet

    2012-10-01

    The aim of this prospective clinical study is to evaluate the relationship between changes in functional cardiac parameters following anthracycline therapy and carbonyl reductase 3 (CBR3p.V244M) and glutathione S transferase Pi (GSTP1p.I105V) polymorphisms. Seventy patients with normal cardiac function and no history of cardiac disease scheduled to undergo anthracycline chemotherapy were included in the study. The patients' cardiac function was evaluated by gated blood pool scintigraphy and echocardiography before and after chemotherapy, as well as 1 year following therapy. Gene polymorphisms were genotyped in 70 patients using TaqMan probes, validated by DNA sequencing. A deteriorating trend was observed in both systolic and diastolic parameters from GG to AA in CBR3p.V244M polymorphism. Patients with G-allele carriers of GSTP1p.I105V polymorphism were common (60%), with significantly decreased PFR compared to patiens with AA genotype. Variants of CBR3 and GSTP1 enzymes may be associated with changes in short-term functional cardiac parameters.

  4. Reversible preoperative renal dysfunction does not add to the risk of postoperative acute kidney injury after cardiac valve surgery

    PubMed Central

    Xu, Jia-Rui; Zhuang, Ya-Min; Liu, Lan; Shen, Bo; Wang, Yi-Mei; Luo, Zhe; Teng, Jie; Wang, Chun-Sheng; Ding, Xiao-Qiang

    2017-01-01

    Objective To evaluate the impact of the renal dysfunction (RD) type and change of postoperative cardiac function on the risk of developing acute kidney injury (AKI) in patients who underwent cardiac valve surgery. Method Reversible renal dysfunction (RRD) was defined as preoperative RD in patients who had not been initially diagnosed with chronic kidney disease (CKD). Cardiac function improvement (CFI) was defined as postoperative left ventricular ejection function – preoperative left ventricular ejection function (ΔEF) >0%, and cardiac function not improved (CFNI) as ΔEF ≤0%. Results Of the 4,805 (94%) cardiac valve surgery patients, 301 (6%) were RD cases. The AKI incidence in the RRD group (n=252) was significantly lower than in the CKD group (n=49) (36.5% vs 63.3%, P=0.018). The AKI and renal replacement therapy incidences in the CFI group (n=174) were significantly lower than in the CFNI group (n=127) (33.9% vs 50.4%, P=0.004; 6.3% vs 13.4%, P=0.037). After adjustment for age, gender, and other confounding factors, CKD and CKD + CFNI were identified as independent risk factors for AKI in all patients after cardiac valve surgery. Multivariate logistic regression analysis showed that the risk factors for postoperative AKI in preoperative RD patients were age, gender (male), hypertension, diabetes, chronic heart failure, cardiopulmonary bypass time (every 1 min added), and intraoperative hypotension, while CFI after surgery could reduce the risk. Conclusion For cardiac valve surgery patients, preoperative CKD was an independent risk factor for postoperative AKI, but RRD did not add to the risk. Improved postoperative cardiac function can significantly reduce the risk of postoperative AKI. PMID:29184415

  5. Role of SDF‐1:CXCR4 in Impaired Post‐Myocardial Infarction Cardiac Repair in Diabetes

    PubMed Central

    Mayorga, Maritza E.; Kiedrowski, Matthew; McCallinhart, Patricia; Forudi, Farhad; Ockunzzi, Jeremiah; Weber, Kristal; Chilian, William; Penn, Marc S.

    2017-01-01

    Abstract Diabetes is a risk factor for worse outcomes following acute myocardial infarction (AMI). In this study, we tested the hypothesis that SDF‐1:CXCR4 expression is compromised in post‐AMI in diabetes, and that reversal of this defect can reverse the adverse effects of diabetes. Mesenchymal stem cells (MSC) isolated from green fluorescent protein (GFP) transgenic mice (control MSC) were induced to overexpress stromal cell‐derived factor‐1 (SDF‐1). SDF‐1 expression in control MSC and SDF‐1‐overexpressing MSC (SDF‐1:MSC) were quantified using enzyme‐linked immunosorbent assay (ELISA). AMI was induced on db/db and control mice. Mice were randomly selected to receive infusion of control MSC, SDF‐1:MSC, or saline into the border zone after AMI. Serial echocardiography was used to assess cardiac function. SDF‐1 and CXCR4 mRNA expression in the infarct zone of db/db mice and control mice were quantified. Compared to control mice, SDF‐1 levels were decreased 82%, 91%, and 45% at baseline, 1 day and 3 days post‐AMI in db/db mice, respectively. CXCR4 levels are increased 233% at baseline and 54% 5 days post‐AMI in db/db mice. Administration of control MSC led to a significant improvement in ejection fraction (EF) in control mice but not in db/db mice 21 days after AMI. In contrast, administration of SDF‐1:MSC produced a significant improvement in EF in both control mice and db/db mice 21 days after AMI. The SDF‐1:CXCR4 axis is compromised in diabetes, which appears to augment the deleterious consequences of AMI. Over‐express of SDF‐1 expression in diabetes rescues cardiac function post AMI. Our results suggest that modulation of SDF‐1 may improve post‐AMI cardiac repair in diabetes. stem cells translational medicine 2018;7:115–124 PMID:29119710

  6. Hypothyroidism and its rapid correction alter cardiac remodeling.

    PubMed

    Hajje, Georges; Saliba, Youakim; Itani, Tarek; Moubarak, Majed; Aftimos, Georges; Farès, Nassim

    2014-01-01

    The cardiovascular effects of mild and overt thyroid disease include a vast array of pathological changes. As well, thyroid replacement therapy has been suggested for preserving cardiac function. However, the influence of thyroid hormones on cardiac remodeling has not been thoroughly investigated at the molecular and cellular levels. The purpose of this paper is to study the effect of hypothyroidism and thyroid replacement therapy on cardiac alterations. Thirty Wistar rats were divided into 2 groups: a control (n = 10) group and a group treated with 6-propyl-2-thiouracil (PTU) (n = 20) to induce hypothyroidism. Ten of the 20 rats in the PTU group were then treated with L-thyroxine to quickly re-establish euthyroidism. The serum levels of inflammatory markers, such as C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL6) and pro-fibrotic transforming growth factor beta 1 (TGF-β1), were significantly increased in hypothyroid rats; elevations in cardiac stress markers, brain natriuretic peptide (BNP) and cardiac troponin T (cTnT) were also noted. The expressions of cardiac remodeling genes were induced in hypothyroid rats in parallel with the development of fibrosis, and a decline in cardiac function with chamber dilation was measured by echocardiography. Rapidly reversing the hypothyroidism and restoring the euthyroid state improved cardiac function with a decrease in the levels of cardiac remodeling markers. However, this change further increased the levels of inflammatory and fibrotic markers in the plasma and heart and led to myocardial cellular infiltration. In conclusion, we showed that hypothyroidism is related to cardiac function decline, fibrosis and inflammation; most importantly, the rapid correction of hypothyroidism led to cardiac injuries. Our results might offer new insights for the management of hypothyroidism-induced heart disease.

  7. Hypothyroidism and Its Rapid Correction Alter Cardiac Remodeling

    PubMed Central

    Itani, Tarek; Moubarak, Majed; Aftimos, Georges; Farès, Nassim

    2014-01-01

    The cardiovascular effects of mild and overt thyroid disease include a vast array of pathological changes. As well, thyroid replacement therapy has been suggested for preserving cardiac function. However, the influence of thyroid hormones on cardiac remodeling has not been thoroughly investigated at the molecular and cellular levels. The purpose of this paper is to study the effect of hypothyroidism and thyroid replacement therapy on cardiac alterations. Thirty Wistar rats were divided into 2 groups: a control (n = 10) group and a group treated with 6-propyl-2-thiouracil (PTU) (n = 20) to induce hypothyroidism. Ten of the 20 rats in the PTU group were then treated with L-thyroxine to quickly re-establish euthyroidism. The serum levels of inflammatory markers, such as C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL6) and pro-fibrotic transforming growth factor beta 1 (TGF-β1), were significantly increased in hypothyroid rats; elevations in cardiac stress markers, brain natriuretic peptide (BNP) and cardiac troponin T (cTnT) were also noted. The expressions of cardiac remodeling genes were induced in hypothyroid rats in parallel with the development of fibrosis, and a decline in cardiac function with chamber dilation was measured by echocardiography. Rapidly reversing the hypothyroidism and restoring the euthyroid state improved cardiac function with a decrease in the levels of cardiac remodeling markers. However, this change further increased the levels of inflammatory and fibrotic markers in the plasma and heart and led to myocardial cellular infiltration. In conclusion, we showed that hypothyroidism is related to cardiac function decline, fibrosis and inflammation; most importantly, the rapid correction of hypothyroidism led to cardiac injuries. Our results might offer new insights for the management of hypothyroidism-induced heart disease. PMID:25333636

  8. Estrogen-Related Receptor α (ERRα) and ERRγ Are Essential Coordinators of Cardiac Metabolism and Function

    PubMed Central

    Wang, Ting; McDonald, Caitlin; Petrenko, Nataliya B.; Leblanc, Mathias; Wang, Tao; Giguere, Vincent; Evans, Ronald M.; Patel, Vickas V.

    2015-01-01

    Almost all cellular functions are powered by a continuous energy supply derived from cellular metabolism. However, it is little understood how cellular energy production is coordinated with diverse energy-consuming cellular functions. Here, using the cardiac muscle system, we demonstrate that nuclear receptors estrogen-related receptor α (ERRα) and ERRγ are essential transcriptional coordinators of cardiac energy production and consumption. On the one hand, ERRα and ERRγ together are vital for intact cardiomyocyte metabolism by directly controlling expression of genes important for mitochondrial functions and dynamics. On the other hand, ERRα and ERRγ influence major cardiomyocyte energy consumption functions through direct transcriptional regulation of key contraction, calcium homeostasis, and conduction genes. Mice lacking both ERRα and cardiac ERRγ develop severe bradycardia, lethal cardiomyopathy, and heart failure featuring metabolic, contractile, and conduction dysfunctions. These results illustrate that the ERR transcriptional pathway is essential to couple cellular energy metabolism with energy consumption processes in order to maintain normal cardiac function. PMID:25624346

  9. Small interfering RNA targeting focal adhesion kinase prevents cardiac dysfunction in endotoxemia.

    PubMed

    Guido, Maria C; Clemente, Carolina F; Moretti, Ana I; Barbeiro, Hermes V; Debbas, Victor; Caldini, Elia G; Franchini, Kleber G; Soriano, Francisco G

    2012-01-01

    Sepsis and septic shock are associated with cardiac depression. Cardiovascular instability is a major cause of death in patients with sepsis. Focal adhesion kinase (FAK) is a potential mediator of cardiomyocyte responses to oxidative and mechanical stress. Myocardial collagen deposition can affect cardiac compliance and contractility. The aim of the present study was to determine whether the silencing of FAK is protective against endotoxemia-induced alterations of cardiac structure and function. In male Wistar rats, endotoxemia was induced by intraperitoneal injection of lipopolysaccharide (10 mg/kg). Cardiac morphometry and function were studied in vivo by left ventricular catheterization and histology. Intravenous injection of small interfering RNA targeting FAK was used to silence myocardial expression of the kinase. The hearts of lipopolysaccharide-injected rats showed collagen deposition, increased matrix metalloproteinase 2 activity, and myocyte hypertrophy, as well as reduced 24-h +dP/dt and -dP/dt, together with hypotension, increased left ventricular end-diastolic pressure, and elevated levels of FAK (phosphorylated and unphosphorylated). Focal adhesion kinase silencing reduced the expression and activation of the kinase in cardiac tissue, as well as protecting against the increased collagen deposition, greater matrix metalloproteinase 2 activity, and reduced cardiac contractility that occur during endotoxemia. In conclusion, FAK is activated in endotoxemia, playing a role in cardiac remodeling and in the impairment of cardiac function. This kinase represents a potential therapeutic target for the protection of cardiac function in patients with sepsis.

  10. Cardiac Alpha1-Adrenergic Receptors: Novel Aspects of Expression, Signaling Mechanisms, Physiologic Function, and Clinical Importance

    PubMed Central

    O’Connell, Timothy D.; Jensen, Brian C.; Baker, Anthony J.

    2014-01-01

    Adrenergic receptors (AR) are G-protein-coupled receptors (GPCRs) that have a crucial role in cardiac physiology in health and disease. Alpha1-ARs signal through Gαq, and signaling through Gq, for example, by endothelin and angiotensin receptors, is thought to be detrimental to the heart. In contrast, cardiac alpha1-ARs mediate important protective and adaptive functions in the heart, although alpha1-ARs are only a minor fraction of total cardiac ARs. Cardiac alpha1-ARs activate pleiotropic downstream signaling to prevent pathologic remodeling in heart failure. Mechanisms defined in animal and cell models include activation of adaptive hypertrophy, prevention of cardiac myocyte death, augmentation of contractility, and induction of ischemic preconditioning. Surprisingly, at the molecular level, alpha1-ARs localize to and signal at the nucleus in cardiac myocytes, and, unlike most GPCRs, activate “inside-out” signaling to cause cardioprotection. Contrary to past opinion, human cardiac alpha1-AR expression is similar to that in the mouse, where alpha1-AR effects are seen most convincingly in knockout models. Human clinical studies show that alpha1-blockade worsens heart failure in hypertension and does not improve outcomes in heart failure, implying a cardioprotective role for human alpha1-ARs. In summary, these findings identify novel functional and mechanistic aspects of cardiac alpha1-AR function and suggest that activation of cardiac alpha1-AR might be a viable therapeutic strategy in heart failure. PMID:24368739

  11. Diabetic db/db mice do not develop heart failure upon pressure overload: a longitudinal in vivo PET, MRI, and MRS study on cardiac metabolic, structural, and functional adaptations.

    PubMed

    Abdurrachim, Desiree; Nabben, Miranda; Hoerr, Verena; Kuhlmann, Michael T; Bovenkamp, Philipp; Ciapaite, Jolita; Geraets, Ilvy M E; Coumans, Will; Luiken, Joost J F P; Glatz, Jan F C; Schäfers, Michael; Nicolay, Klaas; Faber, Cornelius; Hermann, Sven; Prompers, Jeanine J

    2017-08-01

    Heart failure is associated with altered myocardial substrate metabolism and impaired cardiac energetics. Comorbidities like diabetes may influence the metabolic adaptations during heart failure development. We quantified to what extent changes in substrate preference, lipid accumulation, and energy status predict the longitudinal development of hypertrophy and failure in the non-diabetic and the diabetic heart. Transverse aortic constriction (TAC) was performed in non-diabetic (db/+) and diabetic (db/db) mice to induce pressure overload. Magnetic resonance imaging, 31P magnetic resonance spectroscopy (MRS), 1H MRS, and 18F-fluorodeoxyglucose-positron emission tomography (PET) were applied to measure cardiac function, energy status, lipid content, and glucose uptake, respectively. In vivo measurements were complemented with ex vivo techniques of high-resolution respirometry, proteomics, and western blotting to elucidate the underlying molecular pathways. In non-diabetic mice, TAC induced progressive cardiac hypertrophy and dysfunction, which correlated with increased protein kinase D-1 (PKD1) phosphorylation and increased glucose uptake. These changes in glucose utilization preceded a reduction in cardiac energy status. At baseline, compared with non-diabetic mice, diabetic mice showed normal cardiac function, higher lipid content and mitochondrial capacity for fatty acid oxidation, and lower PKD1 phosphorylation, glucose uptake, and energetics. Interestingly, TAC affected cardiac function only mildly in diabetic mice, which was accompanied by normalization of phosphorylated PKD1, glucose uptake, and cardiac energy status. The cardiac metabolic adaptations in diabetic mice seem to prevent the heart from failing upon pressure overload, suggesting that restoring the balance between glucose and fatty acid utilization is beneficial for cardiac function. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions please email: journals.permissions@oup.com.

  12. Medial prefrontal cortex TRPV1 channels modulate the baroreflex cardiac activity in rats

    PubMed Central

    Lagatta, D C; Ferreira‐Junior, N C

    2015-01-01

    Background and Purpose The ventral portion of the medial prefrontal cortex (vMPFC) comprises the infralimbic (IL), prelimbic (PL) and dorsopenducular (DP) cortices. The IL and PL regions facilitate the baroreceptor reflex arc. This facilitatory effect on the baroreflex is thought to be mediated by vMPFC glutamatergic transmission, through NMDA receptors. The glutamatergic transmission can be modulated by other neurotransmitters, such as the endocannabinoids, which are agonists of the TRPV1 receptor. TRPV1 channels facilitate glutamatergic transmission in the brain. Thus, we hypothesized that TRPV1 receptors in the vMPFC enhance the cardiac baroreflex response. Experimental Approach Stainless steel guide cannulae were bilaterally implanted into the vMPFC of male Wistar rats. Afterwards, a catheter was inserted into the femoral artery, for recording MAP and HR, and into the femoral vein for assessing baroreflex activation. Key Results Microinjections of the TRPV1 receptor antagonists capsazepine and 6‐iodo‐nordihydrocapsaicin (6‐IODO) into the vMPFC reduced the cardiac baroreflex activity in unanaesthetized rats. Capsaicin microinjected into the vMPFC increased the cardiac baroreflex activity in unanaesthetized rats. When an ineffective dose of the TRPV1 receptor antagonist 6‐IODO was used, the capsaicin‐induced increase in the cardiac baroreflex response was abolished. The higher doses of capsaicin administered into the vMPFC after the ineffective dose of 6‐IODO displaced the dose–response curve of the baroreflex parameters to the right, with no alteration in the maximum effect of capsaicin. Conclusions and Implications The results of the present study show that stimulation of the TRPV1 receptors in the vMPFC increases the cardiac baroreceptor reflex response. PMID:26360139

  13. The selective estrogen receptor modulators (SERMs) raloxifene and tamoxifen improve ANP levels and decrease nuclear translocation of NF-kB in estrogen-deficient rats.

    PubMed

    Lamas, Aline Z; Nascimento, Andrews M; Medeiros, Ana Raquel S; Caliman, Izabela F; Dalpiaz, Polyana L M; Firmes, Luciana B; Sousa, Glauciene J; Oliveira, Phablo Wendell C; Andrade, Tadeu U; Reis, Adelina M; Gouvea, Sônia A; Bissoli, Nazaré S

    2017-08-01

    The selective estrogen receptor modulators (SERMs) raloxifene and tamoxifen are used for the treatment of osteoporosis and cancer, respectively, in women. The impairment of both the Atrial Natriuretic Peptide (ANP) cell signaling system and the translocation of nuclear factor-kappa B (NF-kB) to the cell nucleus are associated with detrimental cardiovascular effects and inflammation. The effects of SERMs on these parameters in the cardiac tissue of estrogen-deficient rats has not been reported. We investigated the effects of raloxifene and tamoxifen on ANP signaling, p65 NF-kB nuclear translocation, cardiac histology and contractility. Female rats were divided into five groups: control (SHAM), ovariectomized (OVX), OVX-treated 17-β-estradiol (E), OVX-treated raloxifene (RLX) and OVX-treated tamoxifen (TAM). The treatments started 21days after ovariectomy and continued for 14days. Ovariectomy reduced ANP mRNA in the left atrium (LA), decreased the content of ANP protein in the LA and in plasma, and increased the level of p65 NF-kB nuclear translocation in the left ventricle. Both 17-β-estradiol and SERMs were able to reverse these alterations, which were induced by the estrogen deficient state. The hemodynamic and cardiac structural parameters analyzed in the present work were not modified by the interventions. Our study demonstrates, for the first time, the additional benefits of raloxifene and tamoxifen in an estrogen-deficient state. These include the normalization of plasmatic and cardiac ANP levels and cardiac p65 NF-kB translocation. Therefore, these treatments promote cardiovascular protection and may contribute to the prevention of cardiac dysfunction observed long-term in postmenopausal women. Copyright © 2017. Published by Elsevier Urban & Partner Sp. z o.o.

  14. Metabonomics Indicates Inhibition of Fatty Acid Synthesis, β-Oxidation, and Tricarboxylic Acid Cycle in Triclocarban-Induced Cardiac Metabolic Alterations in Male Mice.

    PubMed

    Xie, Wenping; Zhang, Wenpeng; Ren, Juan; Li, Wentao; Zhou, Lili; Cui, Yuan; Chen, Huiming; Yu, Wenlian; Zhuang, Xiaomei; Zhang, Zhenqing; Shen, Guolin; Li, Haishan

    2018-02-14

    Triclocarban (TCC) has been identified as a new environmental pollutant that is potentially hazardous to human health; however, the effects of short-term TCC exposure on cardiac function are not known. The aim of this study was to use metabonomics and molecular biology techniques to systematically elucidate the molecular mechanisms of TCC-induced effects on cardiac function in mice. Our results show that TCC inhibited the uptake, synthesis, and oxidation of fatty acids, suppressed the tricarboxylic acid (TCA) cycle, and increased aerobic glycolysis levels in heart tissue after short-term TCC exposure. TCC also inhibited the nuclear peroxisome proliferator-activated receptor α (PPARα), confirming its inhibitory effects on fatty acid uptake and oxidation. Histopathology and other analyses further confirm that TCC altered mouse cardiac physiology and pathology, ultimately affecting normal cardiac metabolic function. We elucidate the molecular mechanisms of TCC-induced harmful effects on mouse cardiac metabolism and function from a new perspective, using metabonomics and bioinformatics analysis data.

  15. High-fat diet induces protein kinase A and G-protein receptor kinase phosphorylation of β2 -adrenergic receptor and impairs cardiac adrenergic reserve in animal hearts.

    PubMed

    Fu, Qin; Hu, Yuting; Wang, Qingtong; Liu, Yongming; Li, Ning; Xu, Bing; Kim, Sungjin; Chiamvimonvat, Nipavan; Xiang, Yang K

    2017-03-15

    Patients with diabetes show a blunted cardiac inotropic response to β-adrenergic stimulation despite normal cardiac contractile reserve. Acute insulin stimulation impairs β-adrenergically induced contractile function in isolated cardiomyocytes and Langendorff-perfused hearts. In this study, we aimed to examine the potential effects of hyperinsulinaemia associated with high-fat diet (HFD) feeding on the cardiac β 2 -adrenergic receptor signalling and the impacts on cardiac contractile function. We showed that 8 weeks of HFD feeding leads to reductions in cardiac functional reserve in response to β-adrenergic stimulation without significant alteration of cardiac structure and function, which is associated with significant changes in β 2 -adrenergic receptor phosphorylation at protein kinase A and G-protein receptor kinase sites in the myocardium. The results suggest that clinical intervention might be applied to subjects in early diabetes without cardiac symptoms to prevent further cardiac complications. Patients with diabetes display reduced exercise capability and impaired cardiac contractile reserve in response to adrenergic stimulation. We have recently uncovered an insulin receptor and adrenergic receptor signal network in the heart. The aim of this study was to understand the impacts of high-fat diet (HFD) on the insulin-adrenergic receptor signal network in hearts. After 8 weeks of HFD feeding, mice exhibited diabetes, with elevated insulin and glucose concentrations associated with body weight gain. Mice fed an HFD had normal cardiac structure and function. However, the HFD-fed mice displayed a significant elevation of phosphorylation of the β 2 -adrenergic receptor (β 2 AR) at both the protein kinase A site serine 261/262 and the G-protein-coupled receptor kinase site serine 355/356 and impaired adrenergic reserve when compared with mice fed on normal chow. Isolated myocytes from HFD-fed mice also displayed a reduced contractile response to adrenergic stimulation when compared with those of control mice fed normal chow. Genetic deletion of the β 2 AR led to a normalized adrenergic response and preserved cardiac contractile reserve in HFD-fed mice. Together, these data indicate that HFD promotes phosphorylation of the β 2 AR, contributing to impairment of cardiac contractile reserve before cardiac structural and functional remodelling, suggesting that early intervention in the insulin-adrenergic signalling network might be effective in prevention of cardiac complications in diabetes. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  16. High‐fat diet induces protein kinase A and G‐protein receptor kinase phosphorylation of β2‐adrenergic receptor and impairs cardiac adrenergic reserve in animal hearts

    PubMed Central

    Hu, Yuting; Wang, Qingtong; Liu, Yongming; Li, Ning; Xu, Bing; Kim, Sungjin; Chiamvimonvat, Nipavan

    2017-01-01

    Key points Patients with diabetes show a blunted cardiac inotropic response to β‐adrenergic stimulation despite normal cardiac contractile reserve.Acute insulin stimulation impairs β‐adrenergically induced contractile function in isolated cardiomyocytes and Langendorff‐perfused hearts.In this study, we aimed to examine the potential effects of hyperinsulinaemia associated with high‐fat diet (HFD) feeding on the cardiac β2‐adrenergic receptor signalling and the impacts on cardiac contractile function.We showed that 8 weeks of HFD feeding leads to reductions in cardiac functional reserve in response to β‐adrenergic stimulation without significant alteration of cardiac structure and function, which is associated with significant changes in β2‐adrenergic receptor phosphorylation at protein kinase A and G‐protein receptor kinase sites in the myocardium.The results suggest that clinical intervention might be applied to subjects in early diabetes without cardiac symptoms to prevent further cardiac complications. Abstract Patients with diabetes display reduced exercise capability and impaired cardiac contractile reserve in response to adrenergic stimulation. We have recently uncovered an insulin receptor and adrenergic receptor signal network in the heart. The aim of this study was to understand the impacts of high‐fat diet (HFD) on the insulin–adrenergic receptor signal network in hearts. After 8 weeks of HFD feeding, mice exhibited diabetes, with elevated insulin and glucose concentrations associated with body weight gain. Mice fed an HFD had normal cardiac structure and function. However, the HFD‐fed mice displayed a significant elevation of phosphorylation of the β2‐adrenergic receptor (β2AR) at both the protein kinase A site serine 261/262 and the G‐protein‐coupled receptor kinase site serine 355/356 and impaired adrenergic reserve when compared with mice fed on normal chow. Isolated myocytes from HFD‐fed mice also displayed a reduced contractile response to adrenergic stimulation when compared with those of control mice fed normal chow. Genetic deletion of the β2AR led to a normalized adrenergic response and preserved cardiac contractile reserve in HFD‐fed mice. Together, these data indicate that HFD promotes phosphorylation of the β2AR, contributing to impairment of cardiac contractile reserve before cardiac structural and functional remodelling, suggesting that early intervention in the insulin–adrenergic signalling network might be effective in prevention of cardiac complications in diabetes. PMID:27983752

  17. Correlation between increased urinary sodium excretion and decreased left ventricular diastolic function in patients with type 2 diabetes mellitus.

    PubMed

    Kagiyama, Shuntaro; Koga, Tokushi; Kaseda, Shigeru; Ishihara, Shiro; Kawazoe, Nobuyuki; Sadoshima, Seizo; Matsumura, Kiyoshi; Takata, Yutaka; Tsuchihashi, Takuya; Iida, Mitsuo

    2009-10-01

    Increased salt intake may induce hypertension, lead to cardiac hypertrophy, and exacerbate heart failure. When elderly patients develop heart failure, diastolic dysfunction is often observed, although the ejection fraction has decreased. Diabetes mellitus (DM) is an established risk factor for heart failure. However, little is known about the relationship between cardiac function and urinary sodium excretion (U-Na) in patients with DM. We measured 24-hour U-Na; cardiac function was evaluated directly during coronary catheterization in type 2 DM (n = 46) or non-DM (n = 55) patients with preserved cardiac systolic function (ejection fraction > or = 60%). Cardiac diastolic and systolic function was evaluated as - dp/dt and + dp/dt, respectively. The average of U-Na was 166.6 +/- 61.2 mEq/24 hour (mean +/- SD). In all patients, stepwise multivariate regression analysis revealed that - dp/dt had a negative correlation with serum B-type natriuretic peptide (BNP; beta = - 0.23, P = .021) and U-Na (beta = - 0.24, P = .013). On the other hand, + dp/dt negatively correlated with BNP (beta = - 0.30, P < .001), but did not relate to U-Na. In the DM-patients, stepwise multivariate regression analysis showed that - dp/dt still had a negative correlation with U-Na (beta = - 0.33, P = .025). The results indicated that increased urinary sodium excretion is associated with an impairment of cardiac diastolic function, especially in patients with DM, suggesting that a reduction of salt intake may improve cardiac diastolic function.

  18. National Training Course. Emergency Medical Technician. Paramedic. Instructor's Lesson Plans. Module VI. Cardiovascular System.

    ERIC Educational Resources Information Center

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    This instructor's lesson plan guide on the cardiovascular system is one of fifteen modules designed for use in the training of emergency medical technicians (paramedics). Seven units of study are presented: (1) the anatomy and physiology of the cardiovascular system; (2) patient assessment for the cardiac patient; (3) pathophysiology; (4) reading…

  19. Systematic Characterization of the Murine Mitochondrial Proteome Using Functionally Validated Cardiac Mitochondria

    PubMed Central

    Zhang, Jun; Li, Xiaohai; Mueller, Michael; Wang, Yueju; Zong, Chenggong; Deng, Ning; Vondriska, Thomas M.; Liem, David A.; Yang, Jeong-In; Korge, Paavo; Honda, Henry; Weiss, James N.; Apweiler, Rolf; Ping, Peipei

    2009-01-01

    Mitochondria play essential roles in cardiac pathophysiology and the murine model has been extensively used to investigate cardiovascular diseases. In the present study, we characterized murine cardiac mitochondria using an LC/MS/MS approach. We extracted and purified cardiac mitochondria; validated their functionality to ensure the final preparation contains necessary components to sustain their normal function; and subjected these validated organelles to LC/MS/MS-based protein identification. A total of 940 distinct proteins were identified from murine cardiac mitochondria, among which, 480 proteins were not previously identified by major proteomic profiling studies. The 940 proteins consist of functional clusters known to support oxidative phosphorylation, metabolism and biogenesis. In addition, there are several other clusters--including proteolysis, protein folding, and reduction/oxidation signaling-which ostensibly represent previously under-appreciated tasks of cardiac mitochondria. Moreover, many identified proteins were found to occupy other subcellular locations, including cytoplasm, ER, and golgi, in addition to their presence in the mitochondria. These results provide a comprehensive picture of the murine cardiac mitochondrial proteome and underscore tissue- and species-specification. Moreover, the use of functionally intact mitochondria insures that the proteomic observations in this organelle are relevant to its normal biology and facilitates decoding the interplay between mitochondria and other organelles. PMID:18348319

  20. Normalization of cardiac substrate utilization and left ventricular hypertrophy precede functional recovery in heart failure regression.

    PubMed

    Byrne, Nikole J; Levasseur, Jody; Sung, Miranda M; Masson, Grant; Boisvenue, Jamie; Young, Martin E; Dyck, Jason R B

    2016-05-15

    Impaired cardiac substrate metabolism plays an important role in heart failure (HF) pathogenesis. Since many of these metabolic changes occur at the transcriptional level of metabolic enzymes, it is possible that this loss of metabolic flexibility is permanent and thus contributes to worsening cardiac function and/or prevents the full regression of HF upon treatment. However, despite the importance of cardiac energetics in HF, it remains unclear whether these metabolic changes can be normalized. In the current study, we investigated whether a reversal of an elevated aortic afterload in mice with severe HF would result in the recovery of cardiac function, substrate metabolism, and transcriptional reprogramming as well as determined the temporal relationship of these changes. Male C57Bl/6 mice were subjected to either Sham or transverse aortic constriction (TAC) surgery to induce HF. After HF development, mice with severe HF (% ejection fraction < 30) underwent a second surgery to remove the aortic constriction (debanding, DB). Three weeks following DB, there was a near complete recovery of systolic and diastolic function, and gene expression of several markers for hypertrophy/HF were returned to values observed in healthy controls. Interestingly, pressure-overload-induced left ventricular hypertrophy (LVH) and cardiac substrate metabolism were restored at 1-week post-DB, which preceded functional recovery. The regression of severe HF is associated with early and dramatic improvements in cardiac energy metabolism and LVH normalization that precede restored cardiac function, suggesting that metabolic and structural improvements may be critical determinants for functional recovery. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

Top